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Editorial

Special Issue “Actuarial and Financial Risks in Life
Insurance, Pensions and Household Finance”

Luca Regis

Department of Economics and Statistics, University of Siena, Siena 53100, Italy; luca.regis@unisi.it

Received: 16 October 2017; Accepted: 28 November 2017; Published: 5 December 2017

The aim of the Special Issue is to address some of the main challenges individuals and companies
face in managing financial and actuarial risks, when dealing with their investment/retirement or
business-related decisions. We have received a large number of submissions, and ultimately published
the nine high quality contributions that compose this issue. The papers address a variety of important
issues, ranging from mortality modeling to risk management.

The paper by Kevin Dowd, David Blake and Andrew Cairns (Dowd et al. 2016), introduces
mortality fan charts as a novel instrument to visualize the most likely forecasts of human mortality
rates, together with their uncertainty. Their application to UK mortality data suggests that there are
clear limits to mortality improvements: living as long as Methusalah, who according to the Bible
reached the age of 969, is pure utopia.

Pierre Devolder and Adrièn Lebegue (Devolder and Lebègue 2016), in their contribution, study
compositions of time-consistent dynamic risk measures, a crucial issue insurance companies have to
tackle when computing their economic capital.

Yuguang Fan, Philip S. Griffin, Ross Maller, Alexander Szimayer and Tiandong Wang
(Fan et al. 2017) carry out an extensive simulation-based study of the effects of two reinsurance policies,
namely the Largest Claim and the Excess of Loss, on the ruin probability, ruin time and value of an
insurance company under the classical compound Poisson risk model. Their exercise should help
guide insurers in the design of their most appropriate reinsurance strategy.

The contribution by Pierre Devolder and Sébastien de Valeriola (Devolder and de Valeriola 2017)
examines the two options that a new Belgian law offers to employers about the types of guarantees that
the pension plans they offer to their employers should embed. Two different methodologies compare
the alternatives. The paper highlights that the reform will most likely have the effect of changing the
investment choices of pension plan funding vehicles.

Thomas Koch (Koch 2017) addresses theoretically the issue of adverse selection in insurance
markets, and applies the theoretical framework to better understand the equilibrium in the market for
insurance against medical risks in the U.S. The paper suggests that changes in insurance prices were
the most important determinant of the changes in the demand for medical insurance.

The article by Catherine Donnelly (Donnelly 2017) deals with risk-sharing pension plans,
that adjust the investment strategy and benefits to stabilize the funding ratio. The paper compares
the theoretical performance of this type of plan vis-à-vis defined contribution plans, comparing the
degrees of stability of the benefits provided to plan members.

The paper by Jan Natolski and Ralf Werner (Natolski and Werner 2017) gives a proper
mathematical formulation to the replicating portfolio approach that insurance companies commonly
utilize to compute risk capital under the Solvency II framework.

Gabriella Piscopo and Marina Resta (Piscopo and Resta 2017) propose an application of spectral
bi-clustering to human mortality datasets. This technique can be a useful tool to guide mortality model
selection, because, for instance, it may help identify the presence of cohort effects.

Finally, the paper by Carlo Maccheroni and Samuel Nocito (Maccheroni and Nocito 2017)
provides a backtesting analysis of the performance of the two most known stochastic mortality
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models, the Lee-Carter and the Cairns-Blake and Dowd models, to Italian male and female mortality
rates. The paper identifies when the use of one of the two models should be preferable.

All the papers went through the refereeing process subject to the high standard of Risks.
I am deeply thankful to all the referees who collaborated. Their contribution was invaluable.

I would also like to express my gratitude to the editor of Risks, Mogens Steffensen, to the Assistant
Editors, Shelly Liu and Jamie Li, and to MDPI for their support in the editorial process.

Finally, I would like to thank all of the authors who contributed; it is thanks to their excellent
articles that I am particularly proud of the quality of this Special Issue.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: This paper uses mortality fan charts to illustrate prospective future male mortality. These
fan charts show both the most likely path of male mortality and the bands of uncertainty surrounding
that path. The fan charts are based on a model of male mortality that is known to provide a good fit to
UK mortality data. The fan charts suggest that there are clear limits to longevity—that future mortality
rates are very uncertain and tend to become more uncertain the further ahead the forecast—and that
forecasts of future mortality uncertainty must also take account of uncertainty in the parameters of
the underlying mortality model.

Keywords: mortality; fan charts; longevity risk; parameter risk

1. Introduction

As every schoolchild knows, the oldest living man was Methuselah, the grandfather of Noah.
Genesis tells us that he survived to the ripe old age of 969 years 1 and died in the same year as the
Great Flood. The Sumerian literature goes even further: the Epic of Gilgamesh states that Utnapishtim,
the Sumerian equivalent of Noah, was actually granted immortality as a gift from the gods. 2 By any
comparison, the current generation of men living on this planet are weaklings, with only a few living
to the measly age of 120.

Yet evidence has been growing over the last quarter century that the longevity of men in
developed countries has been improving considerably. Demographers such as Vaupel et al. [1],
Tuljapurkar et al. [2], Oeppen and Vaupel [3], and Tuljapurkar [4], argue that there is no natural
upper limit to the length of human life and that we could be well on the way to living as long as
Methuselah. The approach that these demographers use is based on an extrapolation of recent mortality
trends. This approach has inevitably come in for criticism because it ignores factors relating to lifestyle
and the environment that might influence future mortality trends. On the other hand, another group
of demographers (e.g., Olshansky et al. [5–7], Mizuno et al. [8], and Loladze [9]) have suggested that
future life expectancy might level off or even decline due to factors such as obesity and decreased
food-derived health benefits associated with higher levels of atmospheric CO2. But even demographers
(e.g., de Grey [10]) critical of the extrapolative forecasting approach adopted by Vaupel still accept the
possibility that scientific advances and the socio-political responses to them might lead to substantial
increases in life expectancy over the next century.

1 Book of Genesis 5:27: ‘And all the days of Methuselah were nine hundred sixty and nine years: and he died.’
2 Sandars ([11], p. 107).

Risks 2016, 4, 21 3 www.mdpi.com/journal/risks
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This debate within the demography profession clearly indicates that there is considerable
uncertainty about future trends in mortality. In this article we seek to contribute further to this
debate by providing some new mortality projections based on a calibrated mortality model that is
known to provide good fit to recent mortality data (Cairns et al. [12]). The calibrations are based on the
mortality rates of UK males aged 65 and older. The actual projections take the form of mortality fan
charts – these are charts showing some central projection (such as the median, mode or mean) of the
forecasted mortality rate, surrounded by bounds showing the probabilities that future mortality will
lie within specified ranges. Fan charts are ideal for showing not only the most likely future outcomes,
but also the degree of quantitative uncertainty surrounding future mortality rates, and have been
used with considerable success by the Bank of England in its efforts to promote public debate on UK
monetary policy. 3

2. Mortality Fan Charts

Figure 1 shows the mortality fan chart forecasts for males who were 65 years old in 2002. The fan
charts are projected out to a horizon of 100 years, i.e., to 2102. The fan chart in the upper panel of the
Figure assumes estimated parameters to be known, while that in the lower panel makes allowance
for possible uncertainty in the parameters of the mortality model. For each fan chart, the highest
and lowest bounds mark the 90% prediction interval over the forecast horizon (i.e., they suggest that
we can be 90% confident that future mortality on any given date will lie between these bounds), the
second highest and second lowest bounds mark the 80% prediction interval, and so forth, and the
darkest bounds in the central regions of the fan charts represent the most likely mortality outcomes as
predicted by the model. 4

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
0  

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

M
or

ta
lit

y 
ra

te

Year

(a) Mortality fan charts with parameters assumed certain
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(b) Mortality fan charts with uncertain parameters
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Figure 1. Mortality Fan Charts for Cohorts of Males Currently Aged 65 Years Old. Notes: The chart
shows the central 10% prediction interval with the heaviest shading, surrounded by the 20%, 30%,
. . . , 90% prediction intervals with progressively lighter shading. Estimated using 10,000 Monte Carlo
simulation trials with the mortality model of Cairns et al. [12] calibrated on Government Actuary’s
Department (GAD) data over the period 1982–2002.

3 The first inflation fan chart was published by the Bank of England in 1996 (Bank of England [13]), and inflation fan charts
have been published in each of the Bank’s quarterly Inflation Reports ever since. Some longevity fan charts were published in
King [14] and further mortality-related fan charts are shown in Blake et al. [15], Dowd et al. [16] and Li et al. [17].

4 Details of the calculations underlying the mortality fan charts are given in the Appendix A.
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Both fan charts have an initial mortality rate of about 2% per annum, but mortality is projected
to rise over the horizon period as the cohort ages and approach 1 for extreme old ages. At first sight,
the mortality rates for very old ages might appear to be rather low and suggest that a small number
of men might reach grand old ages of well over 115. However, the mortality rates in the Figure need
to be interpreted against the likely survival probabilities implied by the model, and some illustrative
survival probabilities are presented in Table 1. These show, for example, that a man aged 65 in 2002
has about a 2% probability of reaching 100, a 0.2% probability of reaching 105, and an almost negligible
probability of reaching 110. Furthermore, even if he reaches 100, his probability of reaching 115 is
negligible. This means that the post-115 mortality rates in the Figure are essentially conjectural, as
almost no-one will reach those ages. According to these results, the probability of anyone getting to
grand old ages like 130 is essentially zero: sadly, Methusalah is a myth.

Table 1. Projected Survival Probabilities.

Probability Assuming:

Survival to Age Parameters Certain Parameters Uncertain

Survival Probabilities for Males Aged 65 in 2002 (%)

70 90.77 90.78
75 78.42 78.49
80 62.52 62.75
85 43.61 44.19
90 24.34 25.25
95 9.33 10.23
100 1.92 2.37
105 0.15 0.23
110 0.00 0.01

Survival Probabilities for Males Aged 65 in 2002, Conditional on Reaching 85 (%)

90 55.81 57.13
95 21.39 23.16
100 4.40 5.37
105 0.34 0.52
110 0.01 0.01
115 0.00 0.00

Survival Probabilities for Males Aged 65 in 2002, Conditional on Reaching 100 (%)

105 7.66 9.64
110 0.13 0.25
115 0.00 0.00

Notes: Projected survival probabilities are calculated as the median projections using the model and parameter
values in the notes to Figure 1. All probabilities are rounded to two decimal places.

The widths of the fan chart intervals in Figure 1 show that our mortality projections are very
uncertain, and over the range of empirically plausible ages this uncertainty increases as the forecast
horizon gets longer.

A comparison of the two fan charts also shows that the fan chart that takes account of parameter
uncertainty is much wider than the one that assumes parameters to be known with certainty 5—
and, since we do not actually know the true values of the parameters, we would suggest the
parameter-uncertainty estimates are likely to be more reliable. As a rough order of magnitude, the gap
between the lowermost and uppermost bounds of the parameter uncertainty fan chart is close to twice
that of its parameter certainty counterpart. If we take this gap as a rough indicator of our uncertainty
about future mortality, we can therefore say that taking account of parameter uncertainty leads our

5 The principal reason for this increased width is uncertainty in the underlying trend rather than in the volatility of mortality
rates. As the time horizon increases, uncertainty in the trend dominates all other sources of risk in influencing the width of
the lower side fan chart.
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estimates of mortality uncertainty to nearly double. We can also see that parameter uncertainty has
a very skewed effect on the fan chart prediction intervals, and pushes the lower bounds down very
considerably whilst pushing the upper bounds up only slightly. Thus, taking account of parameter
uncertainty significantly decreases the projected mortality rates of the ‘luckier’ members of the cohort,
namely those who live longer than implied by the cohort’s generational life table.

To give some indication of the quantitative magnitudes involved, the more reliable
parameter-uncertain (i.e., lower) fan chart suggests that we can be 90% confident that the mortality
rate of survivors from this cohort will lie (roughly) between 6% and 11% by the time they reach 85,
will lie (roughly) between 17% and 53% by the time they reach 100, and will lie (roughly) between 40%
and 90% for any who reach 115.

Figure 2 gives the comparable fan charts for the cohort of males aged 75 in 2002. As we would
expect, these fan charts start out from a higher base mortality rate (of about 4% per annum) and involve
higher mortality rate projections than for the 65-year olds. The broad shapes of the fan charts are
similar to those of the earlier fan charts, and we again find that the fan charts are quite broad and
(except for implausibly extreme old ages) tend to widen as the horizon lengthens. As before, we also
find that the parameter-uncertain fan chart has nearly twice the dispersion of the parameter-certain
fan chart, and that the impact of parameter uncertainty is to push the lower bounds well down and to
push the upper bounds only slightly up.
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(a) Mortality fan charts with parameters assumed certain 
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(b) Mortality fan charts with uncertain parameters

Age=85
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Age=115

Figure 2. Mortality Fan Charts for Cohorts of Males Currently Aged 75 Years Old. Notes: As per Figure 1.

To illustrate the quantitative magnitudes, the parameter-uncertain fan chart suggests that we can
be 90% confident that the mortality rate of survivors from this cohort will lie (roughly) between 8%
and 13% by the time they reach 85, will lie (roughly) between 23% and 48% by the time they reach 100,
and will lie (roughly) between 49% and 92% for any who reach 115.

Figure 3 gives the fan charts for males aged 85 in 2002. These are also in line with what we would
expect: the fan charts start at a higher base mortality rate (about 12%), involve higher mortality projections
and indicate considerable uncertainty which rises with the horizon period for any plausible ages. As
before, parameter uncertainty makes the fan charts nearly twice as wide and pushes the lower bounds
considerably downwards whilst pushing the upper bounds only slightly up. In this case, we can be
approximately 90% confident that the mortality rate for survivors of this cohort who reach 100 will lie
between 27% and 48%, and that the mortality rate of any who reach 115 will lie between 53% and 89%.
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(a) Mortality fan charts with parameters assumed certain 
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(b) Mortality fan charts with uncertain parameters

Age=100
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Age=115

Figure 3. Mortality Fan Charts for Cohorts of Males Currently Aged 85 Years Old. Notes: As per Figure 1.

Finally, Figure 4 shows the 90% prediction bounds for all three cohorts derived from the
parameter-uncertain fan charts of the previous three Figures. The bounds for the older cohorts
are higher and tend to be wider than those for younger cohorts. To illustrate numerically, it takes a
horizon of about 25 years before the width of the prediction bounds of the youngest cohort widens
to 10%, but it takes about 15 years for the middle cohort and only 10 for the oldest one. The Figure
also shows how the bounds become very wide as we go 30 to 40 years out, and then start to narrow
again for extreme old ages. Leaving aside extreme ages, we can conclude that mortality rates are very
uncertain, and become even more uncertain for older cohorts.
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Figure 4. 90% Prediction Bounds for Male Mortality Rates. Notes: As per the uncertain-parameter fan
chart in Figure 1.

3. Conclusions

The mortality fan charts presented here are a useful way of forecasting future mortality rates.
They also quantify the uncertainty in our mortality projections and provide an intuitively revealing
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way of visually representing that uncertainty: put simply, the wider the fan charts, the more
uncertainty there is. They are also quantitatively plausible, in so far as they are based on an underlying
mortality model that is known to provide a good fit to the data, and because these data reflect recent
mortality improvements.

Our fan charts suggest three main findings. First and foremost, despite recent mortality
improvements, the fan chart projections suggest that no-one will live to the very extreme old ages that
have sometimes been suggested in the more ‘optimistic’ literature on likely future longevity. According
to these results, the idea that anyone will live to the ages reported for any of the unnaturally long-lived
Patriarchs in Genesis—let alone Methusalah—is a pipe dream. Second, the fan charts clearly show
that future mortality rates are highly uncertain and become more uncertain as the forecast horizon
increases. They also show that future mortality rates for older cohorts are more uncertain than those
for younger cohorts, other things being equal. Mortality rates are difficult to predict, especially for
older cohorts, and this is so even though the mortality model provides a close fit to recent historical
data: one is reminded of the old quip that forecasting is a difficult business, especially forecasting the
future. Finally, the fan charts show that allowing for parameter uncertainty has a very major impact in
widening the dispersion of estimated fan charts: as a rough rule of thumb, we found that allowing for
uncertain parameters nearly doubles the dispersion of our fan charts. Failing to allow for parameter
uncertainty therefore leads to fan chart forecasts that are far too narrow and that have lower bounds
with a significant upwards bias. If we wish to reliably forecast the uncertainty in future mortality, we
must therefore take account of the uncertainty in our parameter estimates as well. 6

These findings have obvious and disturbing implications for those providing services to the
elderly such as health and long-term care or pensions. If people are living longer than previously
anticipated, then provision needs to be made for more services for the elderly and pensioners will
be drawing pensions for longer than expected. Someone then has to bear the resulting higher costs.
In addition, since future mortality is very uncertain, the fan charts also suggest that the healthcare
system, pension funds, life companies and, indeed, the state itself, are all heavily exposed to longevity
risk, and their exposure to this risk needs to be managed.

Author Contributions: KD and AJGC wrote the underlying software; all authors contributed to writing the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A Mortality Model

The mortality fan charts discussed in this paper are based on an underlying mortality model set
out by Cairns et al. [12]. Let q(t, x) be the realized mortality rate in year t + 1 (that is, from time t to
time t + 1) of a cohort aged x at time 0. We assume that q(t, x) is governed by the following two-factor
Perks stochastic process:

qpt, xq “ exp rA1pt ` 1q ` A2pt ` 1qpt ` xqs
1 ` exp rA1pt ` 1q ` A2pt ` 1qpt ` xqs (A1)

where A1(t + 1) and A2(t + 1) are themselves stochastic processes that are measurable at time t + 1
(see Perks [18], Benjamin and Pollard [19]). Now let A(t) = (A1(t), A2(t)) and assume that A(t) is a
random walk with drift:

Apt ` 1q “ Aptq ` μ ` CZpt ` 1q (A2)

6 Of course, in interpreting the fan chart forecasts, we also need to be on our guard against possible biases in the model.
(1) The mortality forecasts have a possible upward bias, in so far as they do not take account of future improvements to
medical science (e.g., miracle cures of major illnesses) that we cannot predict; (2) On the other hand, the forecasts have a
possible downward bias in that they ignore important factors such as the impact of obesity that threaten to increase future
mortality but have not yet fed through into the mortality data on which our model is calibrated. Readers who have strong
views on these issues might wish to take them into account in interpreting the fan charts.
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where μ is a constant 2 ˆ 1 vector of drift parameters, C is a constant 2 ˆ 2 lower triangular Choleski
square root matrix of the covariance matrix V, and Z(t) is a 2 ˆ 1 vector of independent standard
normal variables. Cairns et al. (2006) show that this model provides a good fit to UK Government
Actuary’s Department (GAD) data for English and Welsh males over 1961–2002. For each set of
parameter values, we simulated 10,000 paths of A1(t + 1) and A2(t + 1), and then used these in Equation
(A1) to obtain 10,000 simulated paths of q(t, x) over a chosen horizon. For each given t, the quantiles
of q(t, x) were then obtained from the relevant order statistics of our ‘sample’ of q(t, x) values. These
quantiles give us the bounds of the fan chart intervals.
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Abstract: We apply spectral biclustering to mortality datasets in order to capture three relevant
aspects: the period, the age and the cohort effects, as their knowledge is a key factor in understanding
actuarial liabilities of private life insurance companies, pension funds as well as national pension
systems. While standard techniques generally fail to capture the cohort effect, on the contrary,
biclustering methods seem particularly suitable for this aim. We run an exploratory analysis on the
mortality data of Italy, with ages representing genes, and years as conditions: by comparison between
conventional hierarchical clustering and spectral biclustering, we observe that the latter offers more
meaningful results.

Keywords: mortality data; biclustering; cohort effect

1. Introduction

During the last decade, the analysis of mortality datasets has been deepened by actuaries and
statisticians. The growing attention devoted to mortality investigation is due to the financial impact on
actuarial liabilities of private life insurance companies, pension funds and national pension systems:
as a matter of fact, monthly pension payments are generally based on remaining life expectancy at
retirement; the accurate modeling and projection of mortality rates and life expectancy are therefore
of growing interest to researchers. In this respect, it makes sense to monitor how much longevity
improvements are sizeable: it has been noted that, in the past century survival, probabilities have
increased for each age group, even though with some undeniable differences.

As mortality forecasts have become increasingly important, various parametric models have
been proposed to describe mortality patterns and produce predictions: in the actuarial literature and
practice, the well-known Lee-Carter (LC) model [1] extrapolates the trends of mortality and describes
the secular change in longevity as a function of three determinants: the overall time trend, the age
component, and the extent of change over time by age. Let us introduce the matrix M = {log mx,t} of
log-mortality data for the age x at time t in more detail: x is an integer number in the range [0, 120],
and t an integer representing the year of observation (to make an example: m58,2001 is the log-mortality
rate recorded in 2001 for individuals 58 years old), so that M has 121 rows and a number of columns
depending on the overall number of years for which log-mortality data are available. The model
seeks to summarize an age-period surface of log–mortality rates in terms of the vectors a and b along
the age dimension, and k along the time dimension: log mx,t = ax + bxkt + εx,t, for every x ∈ [0, 120],
and for every t, with restrictions such that the “b”s are normalized to sum to one, the “k”s sum to
zero, and the “a”s are average log rates. The vector a can be interpreted as an average age profile,
tracking mortality changes over time; the vector b determines how much each age group changes
when kt changes. Finally, the error term εx,t reflects age-period effects eventually not captured by the
model. In the basic model, the fit to historical data is made through the Singular Value Decomposition
(SVD) [2] of M, and then the time-varying parameter is modeled and forecasted as an ARIMA process
using standard Box-Jenkins methodology.
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As per [3], the diffusion of the LC model is mainly due to its capability to generate realistic life
expectancy forecasts; moreover, many developments of the LC method have been suggested (see [4,5]).
Furthermore, in the last decade, several authors have proposed approaches to mortality fitting based
on smoothing procedures [6,7]; finally, [8] shows a version of the Lee–Carter methodology, the so-called
Functional Demographic Model, based on the combination of smoothing techniques and functional
data analysis.

More recently, authors have focused attention on mortality patterns of particular generations:
increased focus on the size of pension-scheme deficits, in fact, led actuaries to know more about the
possible trends in future life span [9]: to such aim, some studies compare the relative influence of
both the year of birth and the year of observation, and [10] introduced a variation on the LC model
in order to capture the so-called cohort effect, which occurs when a particular generation exhibits
patterns of mortality improvements different to those of previous generations. The LC can model
the age-period effects; nevertheless, it does not consider the cohort effects, as the analysis of UK data
confirms [11]. As a matter of fact, the LC age-period model does not always fit empirical data well
(see, for example, [12]), while incorporating the cohort effect into the model sensitively improves the
results of the fitting, as well as the comprehension of the mortality evolution. Finally, in the most recent
years, a different approach is being experimented to consider the instances and issues highlighted in
previous rows; it is based on clustering techniques that are employed to improve the estimation of
mortality rates and the cohort effect [13]; in addition, a few number of contributions applied fuzzy
logic techniques in mortality projection [14,15]. In particular, [15] applied fuzzy logic to mortality
datasets of different countries, capturing the main time effect of the Lee-Carter model for each country.

With respect to the cited literature, our work fits into different research streams, as it extends the
application of biclustering techniques, already widely employed to classify gene expression matrices,
to the problem of exploring mortality patterns, and it has contact points with the actuarial research
strand focused on pattern recognition towards the path already opened by [13]. While, in general, the
aim of clustering in genomics is to find gene similarities across all given conditions, in the mortality
context, we may assume that the genes are represented by ages and the conditions by years. In the
physical world, as with mortality datasets, however, a group of genes often shows similar behavior
across just some of the conditions and different properties when looking at others; in these cases, the
simple clustering approach is unsuitable for describing the specific patterns in the data. To overcome
this limitation, biclustering approaches have been introduced to capture specific patterns in the data
even if genes behave similarly over just a subset of conditions ([16–18], see also: [19] for a survey).
Considering this, as well as the peculiar structure of mortality datasets, we follow the recent actuarial
literature on pattern recognition and enhance the clustering approach with the novel introduction of
biclustering to analyze mortality data.

In practice, while clusters correspond to disjoint strips in the data matrix, biclusters correspond
to arbitrary subsets of rows and columns. To this extent, the notion of bicluster gives rise to a more
flexible computational framework. A bicluster can be defined as a submatrix spanned by a set of genes
and a set of samples or equivalently, in our case, as the corresponding age and year subsets. Given a
mortality matrix, we can therefore characterize the features it embodies by a collection of biclusters,
each representing a different type of joint behaviour of a set of ages in a corresponding set of years,
without any a priori constraints on the organization of biclusters. The biclustering problem consists
then in finding a set of significant biclusters in the data matrix.

Keeping in mind what was stated in previous rows, using biclustering on mortality data should
make it possible to identify structural changes in the mortality trend, avoiding the estimation of terms
specifically designed to incorporate cohort effects, but rather letting the features of data emerge from
the analysis in quite a natural and intuitive way, as we will explain in the section of the paper devoted
to describe the methodology. This, in turn, might help to develop more tailored models of mortality
forecasting, providing a possibility to compare cohort effects among different countries or groups.
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The paper is organized as follows: Section 2 briefly recalls the notions of biclustering and spectral
biclustering; Section 3 applies spectral biclustering on a mortality dataset: some numerical results and
comments are presented; and final remarks are offered in Section 4.

2. Methodological Aspects of Spectral Biclustering

2.1. Biclustering

The goal of clustering is to partition the elements into sets (clusters), while trying to both optimize
groups homogeneity (i.e., elements of a cluster should be highly similar to each other), and group
separation, which is to say: elements from different clusters should have low similarity to each other.
Clustering may be a very powerful tool to automatically detect relevant sub–groups when one does not
have prior knowledge about the hidden structure of these data. However, an important issue related
to clustering techniques was firstly investigated in the past decade while identifying local patterns in
gene expression data: it was highlighted that cluster analysis makes several a priori assumptions [16]
that may not be perfectly adequate in all circumstances. As a matter of fact, clustering can be applied
to either genes or samples, implicitly directing the analysis to a peculiar aspect of the system under
study; in addition, clustering algorithms usually seek a disjoint cover of the set of elements, requiring
that no gene or sample belongs to more than one cluster.

The notion of bicluster then gave rise to a more flexible computational framework. Given a gene
expression matrix, we can characterize the biological phenomena that it embodies by a collection of
biclusters, each representing a different type of joint behavior of a set of genes in a corresponding set of
samples. Moreover, as clustering can be separately applied to either the rows or the columns of the data
matrix; biclustering, on the other hand, performs clustering in these two dimensions simultaneously.
This, in turn, means that while clustering derives a global model, biclustering produces a local
model [19]: likewise, in genomics, this aspect is of importance within the mortality context because of
the interest of actuaries for age-specific mortality patterns.

As already mentioned in Section 1, in fact, scholars are intended to capture three relevant aspects:
the period, the age and the cohort effects, as their knowledge is a key factor in understanding actuarial
liabilities of private life insurance companies, pension funds and national pension systems.

2.2. Spectral Biclustering

Following the work of [16], biclustering has quickly become popular in analyzing gene expression
data and various biclustering algorithms have been proposed [17–26]. Since each algorithm focuses
on identification of different bicluster patterns, it is a very challenging task to thoroughly evaluate
these algorithms.

The rationale inside the spectral biclustering method [27] is that checkerboard structures may
emerge in matrices of expression data once they have been properly arranged using a linear algebra
approach, by means of the Singular Value Decomposition (SVD). Using SVD, the data matrix D of
dimensions N × M can be decomposed as D = UΛVT, where Λ is a diagonal matrix with decreasing
non-negative entries, and U and V are orthonormal column matrices with dimensions N × min(N,M)
and M × min(N,M), respectively. If the data matrix has a block diagonal structure (with all elements
outside the blocks equal to zero), then each block can be associated with a bicluster. Specifically, if the
data matrix is of the form:

D =

⎡⎢⎢⎢⎢⎣
D1 0 . . . 0
0 D2 . . . 0

...
...

. . .
...

0 0 . . . Dk

⎤⎥⎥⎥⎥⎦ (1)

where Di (i = 1, . . . , k) are arbitrary matrices, then, for each Di, there will be a singular vector
pair (ui, vi) such that a nonzero component of ui corresponds to rows occupied by Di, and a nonzero
component of vi corresponds to columns occupied by Di.
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In a less idealized case, when the elements outside the diagonal blocks are not necessarily zeros
but the diagonal blocks still contain dominating values, the SVD can reveal the biclusters as dominating
components in the singular vector pairs.

Box 1 illustrates the algorithmic details of the procedure, as reported in [27].

Box 1. Spectral biclustering: the algorithm.

U: conditions; V: genes
DN×M: gene expression matrix.
Compute R = diag(D·1M) and C = diag(1M

T D)
Compute SVD of R−1/2 D C−1/2

Discard the pair of eigenvectors corresponding to the largest eigenvalue
For each pair of eigenvectors u,v of R−1DC−1DT and C−1DTR−1D with the same eigenvalue do:

Apply K-means to check the fit of u and v to stepwise vectors
Report the block structure for the p couples u, v with the best stepwise fit.

In our case, the choice of the biclustering method was suggested by the analogies existing
between spectral biclustering and the Singular Value Decomposition on which the Lee–Carter
method [1]—LCm—is based.

Furthermore, the starting point of the introduction of biclustering method in mortality context is
to design a clustering approach suitable for the kind of data we are working on. Most biclustering
algorithms, in fact, are apt to binary data only, and, therefore, they are not appropriate for mortality
rates. Instead, spectral biclustering appears suitable for death rates matrix because it finds the
checkerboard structure in data through the extraction of significant eigenvectors using the SVD
associated to some normalization steps; this approach is also in line with the most used approach for
fitting mortality data, the LCm, based on the SVD of the mortality matrix. Moreover, the normalization
step reduces the effects of random differences in experimental conditions and levels of genes, and
it is useful to highlight biclusters, if a structure exists. Finally, as a common practice in biclustering
analysis is transforming the data by taking logarithms, we believe the log-normalization is appropriate
in a mortality context because two or more ages are experiencing the same evolution if their mortality
profiles are constantly proportional, and the log-transformation is not affected by an additive constant.

3. Discussion Case

The structural description of mortality table constitutes the base to understand mortality patterns
and to derive an opportune mortality model to fit and project historical data; our research aims to
identify every demographic feature in mortality data, capturing both the so-called period and age
effects: the former is related to the evolution of life expectancy during the years, the latter to the
differences of mortality across ages. Recently, demographers and actuaries have focused their attention
on a third effect, the so-called cohort effect, looking for generations that show particular mortality
patterns. Without an ex-ante investigation of the structure of data, the demographical models are often
worsened with cohort parameters to capture generational effect, while the interaction of age–time
effects in the data structure could be misunderstood and, for example, wrongly attributed to the cohort
effect. For this reason, a preliminary investigation of data becomes useful to design a parsimonious
mortality model.

While the microarray technology is a central tool in biological studies, it is an unexplored field in
demographic context, where the identification of individuals with similar mortality patterns represents
a key step in the analysis of life tables. However, traditional clustering algorithms, like the hierarchical
one, organize the mortality matrix into submatrices assuming that all genes behave similarly in groups
of conditions, but it would be unreasonable in the mortality context.

The biclustering methods are useful to find meaningful checkerboard patterns in matrices where
data represent marker genes expressed under a particular set of conditions; they permit simultaneously
clustering genes and conditions. In the mortality datasets, the genes are represented by ages and the
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conditions by years: we observe how the mortality for individuals aged differently has changed under
different conditions, i.e., as time changes.

The aim of biclustering is therefore to highlight groups of mortality rates in which ages are
clustered together if they exhibit similar patterns across years and, likewise, years are clustered
together if they include ages whose mortality has shown a similar evolution. In this way, it is possible
to discover homogeneous submatrices that are relevant for understanding mortality evolution in social
and actuarial studies.

3.1. Demographical Settings and Notational Conventions

In the context of mortality data, demographers and actuaries work on life tables. A life table is a
finite decreasing sequence l0, l1, ... , lω where lx refers to an integer age x and represents the estimated
number of people alive at x in a given population composed by l 0 individuals aged 0 at inception;
note that ω commonly indicates the so-called extreme age, representing the age at which it occurs:
lω = 0: for sake of convenience, we can assume ω = 120. A cohort table is obtained if the sequence l0,
l1, ... , lω is the longitudinal observation of the actual numbers of individuals alive at ages 1, 2, . . . ,
ω out of a given initial cohort of l0 newborns. If we consider an existing population and observe the
frequency of death at different ages in a given period, for example, one year, then we obtain the period
table. Finally, M = {log mij} is usually employed to denote the matrix of death rates of a particular
population, where the data are organized in rows by age, and in columns by years, so that mi,j is the
mortality rate at the age i (i = 0, . . . ,ω) in the year j.

3.2. Empirical Results

In our case study, we considered the death rates of the whole (male and female) Italian population;
the data were downloaded from the Human Mortality Database 1 (HMD). The genes are represented
by ages collected between 40 and 60, and the conditions by the years between 1950 and 2006. We focus
on the ages in the range [40, 60] because those ages are the most important in pensions and actuarial
product design.

We applied to data both the hierarchical Euclidean clustering (whose algorithm is provided in
Appendix A, at the end of the paper) and the spectral biclustering, already explained in Box 1 of
Section 2, and visualized the results through heatmaps.

The first step of our analysis consists in grouping the data through a Euclidean hierarchical cluster
method; we applied the algorithm to the columns and rows of death rates matrix separately, and
Figures 1 and 2 show the corresponding heat maps.

Clustering performs data in one dimension at a time, so each gene in a given gene cluster is
defined using all the conditions, and, similarly, each condition in a condition cluster is characterized
by the activity of all the genes that belong to it. From a graphical point of view, this produces vertical
regions that appear in Figures 1 and 2, where the period effect and the age effect become visible:
moving from yellow regions to red regions, the mortality decreases during years and increases across
ages. We also highlight the presence of the cohort effect, as some generations have experienced specific
mortality patterns differently from others. If the cohort effect is present, a kind of “ladder” appears
in the heatmap: genes aged x in t, x + 1 in t + 1, and so on are grouped in the same cluster and are
represented with the same color shade in the heatmap.

1 http://www.mortality.org.
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Figure 1. Clustering: the period effect.

Figure 2. Clustering: the age effect.

In more detail, in Figure 1, we may observe a diagonal line, corresponding to the individuals
aged 40 in 1958, i.e., the generation born in 1918; such graphical evidence suggests that this group has
experienced a particular reduction in mortality during the years.

However, it is not reasonable that groups of genes behave similarly under all conditions; it could
occur, for example, that group of ages show similar features just during some years, and they cluster
differently during other years. To capture this detailed structure, we introduce the biclustering as a
useful tool to find meaningful checkerboard patterns.
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In the second step of our application, we have therefore randomly applied the spectral biclustering
algorithm to the matrix of mortality rates, normalized through the log-transformation, thus obtaining
20 clusters: main results are visually summarized in Figures 3–7. Above all, the heat map of Figure 3
shows not only vertical regions, but also rectangular areas produced by the interaction between age
and period effects.

Figure 3. Biclustering on the mortality dataset.

Moreover, Figures 4 and 5 highlight the composition of each bicluster, summarized in Table 1:
four groups of ages (40–47, 48–53, 54–57, 58–60) are defined, each of them characterized by significant
patterns across particular years. For example, the first bicluster contains ages 58–60 during the years
1987–1993; the same ages act differently during the years 1970–1986 and are grouped in the second
bicluster, and so on.

Figure 4. Biclusters 1–10.
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Figure 5. Biclusters 11–20.

Table 1. The composition of biclusters.

Cluster Age Years

1 58–60 1987–1993
2 58–60 1970–1986
3 58–60 1952, 1956, 1957, 1962
4 58–60 1994–2006
5 58–60 1950–1969 except for 1952, 1956, 1957, 1962
6 48–53 1987–1993
7 48–53 1970–1986
8 48–53 1952, 1956, 1957, 1962
9 48–53 1994–2006

10 48–53 1950–1969 except for 1952, 1956, 1957, 1962
11 40–47 1987–1993
12 40–47 1970–1986
13 40–47 1952, 1956, 1957, 1962
14 40–47 1994–2006
15 40–47 1950–1969 except for 1952, 1956, 1957, 1962
16 54–57 1987–1993
17 54–57 1970–1986
18 54–57 1952, 1956, 1957, 1962
19 54–57 1994–2006
20 54–57 1950–1969 except for 1952, 1956, 1957, 1962

In order to provide the reader with additional interpretative keys, in Figures 6 and 7, we show
parallel coordinate graphs for mortality levels.
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Figure 6. Parallel coordinate graphs for biclusters 1–10.

Figure 7. Parallel coordinate graphs for biclusters 11–20.

Let us take a look, for instance, at the first two clusters including the levels of mortality between
the ages 58 and 60 during the years 1987–1993 and 1987–1993. In the parallel coordinate graphs, the
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light gray lines represent the mortality for each year of the whole dataset, while the bold lines represent
the level of mortality for each year included in the bicluster. By a mutual comparison of the lines in
the first two boxes of Figure 7, we can note that the mortality between the ages 58–60 moving from
the period 1970–1986 to the period 1987–1993 has sensitively decreased. In particular, we can note
the effect of the reduction of mortality trend during the period 1950–2006, looking in sequence at
box 5-2-1-4 of Figure 7. The years included in the third bicluster represent an exception to the general
trend, probably due to accidental deviations in the mortality trend. In the actuarial practice, it is
well known that the demographic risk can be split into two components: the insurance risk and the
longevity risk. The former arises from accidental deviations of the number of deaths from its expected
trend, while the latter derives from systematic improvements in the mortality trend. It is possible to
improve mortality forecasts removing the accidental deviations from the dataset on which the fitting
and forecasts are implemented and the bicluster method can be useful to this scope.

Similar considerations can be easily extended to the other biclusters; for instance, as it is clear
from biclusters 4-9-14-19, in Figures 6 and 7, all ages have experimented a reduction from the mortality
trend during the last two decays.

We also checked the statistical significance and the stability of the applied biclustering technique.
To this aim, F-statistics are calculated from the two-way ANOVA mode with the row and column
effect; low p-values denote non-random selection of columns for a given bicluster. We have calculated
the F-statistics for each cluster and have obtained p-values of almost zero for both row and column
effects. Table 2 shows the p-values of the F-statistics corresponding to the row and column effects.

Moreover, for each cluster, Constant and Additive Variances are calculated, as one can see in
Table 3. They represent measures of how a bicluster is coherent, following [19], and return the
corresponding variance of genes or conditions as the average of the sum of Euclidean distances
between all rows and columns of the bicluster. The lower the values returned, the more constant or
coherent the bicluster is. If the value returned is near 0, the bicluster is ideally constant or coherent.
Usually, a value above 1–1.5 is enough to determine if the bicluster is not constant or coherent.

Table 2. The p-values of the F-statistics from the two-way ANOVA.

Cluster Row Effect Column Effect

1 9.457631e-19 3.080849e-12
2 2.154947e-22 1.920493e-09
3 1.539265e-20 2.823244e-16
4 7.044707e-17 3.358952e-11
5 7.679044e-32 3.538135e-17
6 3.098577e-31 1.597127e-19
7 1.830569e-77 1.243124e-42
8 1.646694e-63 1.872372e-38
9 1.909664e-37 1.459496e-07

10 4.317890e-57 3.326384e-28
11 8.420389e-19 1.149809e-07
12 1.218959e-22 4.788635e-08
13 3.097022e-23 6.420247e-18
14 5.204899e-20 1.365834e-14
15 1.877757e-30 5.348786e-11
16 1.244019e-15 7.830883e-10
17 7.935750e-44 6.552596e-30
18 2.060731e-33 5.490419e-24
19 3.489601e-17 4.602981e-06
20 3.741736e-37 9.304545e-23
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Table 3. Constant and additive variance.

Cluster Constant Variance Additive Variance

1 0.0008312501 0.0001943193
2 0.0010608750 0.0007238702
3 0.0008112594 0.0002344328
4 0.0008110202 0.0002252854
5 0.0009152584 0.0003184399
6 0.0006558884 0.0002591269
7 0.0011777088 0.0004089964
8 0.0010524882 0.0001846966
9 0.0006908077 0.0001800295

10 0.0012443249 0.0005012390
11 0.0004307733 0.0001486275
12 0.0008466223 0.0002278785
13 0.0007208565 0.0002152609
14 0.0004183225 0.0001126892
15 0.0009253514 0.0004143284
16 0.0007953189 0.0002157055
17 0.0010980629 0.0006934491
18 0.0009243758 0.0002063028
19 0.0007612718 0.0002334575
20 0.0010023427 0.0003085179

4. Conclusions

In this paper, we discussed the use of biclustering techniques to discover patterns in mortality
data tables. This approach can be motivated by the attention devoted to mortality investigations:
the accurate modeling and projection of mortality rates and life expectancy, in fact, are of growing
interest to researchers because of their impact on actuarial liabilities of private life insurance companies,
pension funds and national pension systems; in this respect, it makes sense to monitor the extent to
which the longevity improvements is meaningful.

Our work therefore nests in at least two research strands. The first research vein deals with
biclustering: to the best of our knowledge, this is a first-time application, with spectral biclustering
applied to a classification problem where the role of genes is played by individuals’ ages, and the time
to represent condition. Furthermore, we show that using spectral biclustering instead of standard
clustering techniques presents several advantages, as in this way it is possible to capture demographical
effects that are generally disregarded by other techniques. An example in such sense is offered by
the so-called cohort effect that occurs when it is possible to identify generations exhibiting particular
mortality patterns and where condition is represented by time: without proper ex ante investigations
of the mortality data structure, the demographical models are often worsened with cohort parameters
to capture generational effect, while the interaction of age–time effect in the data structure could
be misunderstood and, for example, wrongly attributed to the cohort effect. In this respect, a
preliminary investigation of data with biclustering methods becomes useful to design a parsimonious
mortality model.

However, as biclustering algorithms are mostly apt to binary data, they are not always appropriate
to deal with mortality rates. Nevertheless, the spectral biclustering appears suitable for a death
rates matrix because it finds the checkerboard structure in data through the extraction of significant
eigenvectors using the SVD associated with some normalization steps; this approach is also in line
with the most used approach for fitting mortality data.

In our case study, we applied spectral biclustering to the death rates of the whole (male and
female) Italian population, with genes represented by ages collected between 40 and 60, and the
conditions by the years between 1950 and 2006. We applied both the hierarchical clustering and the
spectral biclustering, and visualized the results through heat maps. By visual comparison of the results,

20

Bo
ok
s

M
DP
I



Risks 2017, 5, 24

we highlighted that the spectral biclustering was able both to capture effects lost in the case of standard
clustering, and to correctly address the significance of existing patterns, as testified by the analysis of
biclusters’ coherence.

However, we are aware that the scope of the clusterization and biclusterization technique is not to
explain why certain patterns occur, but to identify patterns in the data. They are unsupervised learning
methods: the results of clustering algorithms are data driven, and, for this reason, they explain better
the underlying structure of the data. This represents an advantage, but also a drawback: without
a possibility to tell the system what to do like in other supervised methods, it is often difficult to
explain clustering results. Every method has advantages and drawbacks, and the choice of a particular
one depends on the scope of the research. The biclusterization we have proposed could be useful
for a preliminary investigation of the mortality dataset, before implementing a stochastic model for
the mortality projections. In fact, the widely used stochastic mortality models, like the Lee–Carter
model, are based on time series extrapolation, and the results are influenced by the historical series
considered and the estimation window. Projections change considerably according to the age and
years considered, and the biclusters could represent important preliminary information about how
data have to be included in the projections.

We can therefore conclude that biclustering can offer a useful technique to run exploratory
analysis of mortality datasets, as a prelude to the construction of an efficient and parsimonious
model of mortality. Steps for future works include the possibility to fit some well-known mortality
models separately on different biclusters and verify the potential improvements in the fitting with
an opportune analysis of the residuals. The biclustering approach can also offer useful preliminary
information for the segmentation of the pension and insurance market.
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Appendix A. The Euclidean Hierarchical Clustering Method

We assume to have a set of N items to be clustered, and an N × N distance matrix whose
components are calculated by evaluating the Euclidean distance between each couple of item. Then,
the basic process of hierarchical clustering (as defined by [28]) works as follows:

1. Assigning each item to a cluster, so that if you have N items, you now have N clusters, each
containing just one item. The distances between the clusters are assumed to be the same as the
distances (similarities) between the items they contain.

2. Find the closest (i.e., the most similar) pair of clusters and merge them into a single cluster, hence
reducing by one the original number of clusters, as defined in 1.

3. Compute the distances between the new cluster and each of the old clusters.
4. Repeat steps 2 and 3 until the items are clustered into the desired number k of clusters.
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Abstract: This work proposes a backtesting analysis that compares the Lee–Carter and the
Cairns–Blake–Dowd mortality models, employing Italian data. The mortality data come from
the Italian National Statistics Institute (ISTAT) database and span the period 1975–2014, over which
we computed back-projections evaluating the performances of the models compared with real
data. We propose three different backtest approaches, evaluating the goodness of short-run forecast
versus medium-length ones. We find that neither model was able to capture the improving shock on
mortality observed for the male population on the analysed period. Moreover, the results suggest
that CBD forecasts are reliable prevalently for ages above 75, and that LC forecasts are basically more
accurate for this data.

Keywords: lee-carter model; cairns-blake-dowd model; backtesting; mortality forecast

1. Introduction

Dowd et al. (2010a) performed a backtesting analysis on seven different stochastic mortality models
with results showing that the models performed adequately by most backtests. The analysis was applied
to English and Welsh male mortality data. We decided to perform a backtesting investigation using
Italian mortality data. The decision was motivated by the study of the historical mortality trend, observed
on the forty-past-years horizon for both the male and female populations. The gap between genders
deeply decreased over the considered horizon with steep improvements in male mortality. Thus, the
first aim of this paper is to scrutinize the forecast proposed by the models for both sexes, which have
experienced different mortality evolutions. Moreover, in the last three decades, mortality projections
have been widely used by Italian policy-makers for making decisions about public pension reforms. The
study of mortality risk, intended as the uncertainty in future mortality rates as well as longevity risk for
the long-term trend in mortality rates (Cairns et al. 2006), played a central role for both public and private
annuity providers. For these reasons, among all the principal stochastic mortality models1, we chose to
compare Lee–Carter (LC) and the Cairns–Blake–Dowd (CBD) ones. In particular, the Italian National
Statistics Institute (ISTAT) adopted the original formulation of the LC model to forecast mortality over
the projection horizon 2007–2051 (Istat 2008) now updated2 over the horizon 2011–2065. The National
Association of Insurance Companies (ANIA) uses those projections as demographic basis for annuity

1 Refer to Cairns et al. (2009) for a detailed list and quantitative comparison of the principal stochastic mortality models.
2 ISTAT population projections 2011–2065: http://demo.istat.it/uniprev2011/note.html.
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computations (ANIA 2014). Therefore, we chose to compare the original formulation of the LC model to
the original CBD since they also represent the two most used parametric families of mortality models.

On the one hand, the Lee–Carter model has sparked a deep methodological revolution in the
field of demographic forecast, particularly in mortality. The mortality model has been used together
with a similar fertility model and deterministic migration assumptions to generate stochastic forecasts
about the population and its components. These stochastic population forecasts, in turn, have been
used as the key component of stochastic projections of the finances of the US Social Security system.
The stochastic forecast avoids some of the problems inherent to using the classic scenario method
for representing forecast uncertainty (Lee 2000). Then, in concurrence with the main demographic
applications, the LC model suggested:

• an important research front on problems related to the parameter estimations (Booth et al. 2006),
with many applications also in the actuarial and economics literature (Loisel and Serant 2007); and

• extension of the forecasting analysis with disaggregated projections on demographic subsets to
maintain consistency at the aggregate level (Lee and Miller 2001; Li and Lee 2005; Li 2010).

On the other hand, the Cairns–Blake–Dowd model, even if more recent in its formulation than the
LC model, has played an important role in forecasting mortality at higher ages (i.e., ages starting at 60
and over). The mortality model made great contributions for pension funds, life-insurance companies
and private annuity providers in general. It is mainly used for pricing longevity bonds as suggested
also by the authors in the first formulation of the model (Cairns et al. 2006).

The second aim of this work is to analyse the medium-length forecast with respect to the short term,
observing potential differences in the parameter estimations (Mavros et al. 2014)3 accordingly with
changes in the starting point of the database. Chan et al. (2014) have also studied the new-data-invariant
property on the quality of the CBD mortality index. For this purpose, we introduced a new backtesting
approach named the jumping fixed-length horizon, which makes short-run projections of five years,
“jumping forward” in the historical database by five-year-steps.

Considerations of the backtesting results do not imply a conclusive evaluation of the models,
since we perform the analysis exclusively for the range of ages 57 to 90. The choice for the interval
of ages was motivated by the fact that, in Italy, Ragioneria dello Stato computes the so-called
transformation coefficients for pension annuities, starting from age 57. Moreover, since the CBD
model is recommended as a good predictor of mortality at higher ages, we chose this interval of ages
to make a more prudent and accurate comparison between the models. Furthermore, we decided to
take into consideration only death probabilities qx,t among all of the other possible biometric functions.

We used4 death probabilities qx,t provided by ISTAT spanning the period 1975–2014. Then, over
the designated horizon of historical data, we select the “lookback” and the “lookforward” windows5,
respectively, for the parameter estimation and forecast. In particular, the length of the forecast window
will be different for each of the three backtesting approaches proposed by the work:

• fixed horizon backtests: lookback and lookforward windows of 20 years;
• jumping fixed-length horizon backtests: lookback window of 20 years and lookforward window of

5 years (short-term projections); and
• rolling fixed-length horizon backtests: lookback window of fixed-length (20 years) and a contracting

lookforward window from 20 to 2 years of projections.

The paper is organized as follows. Section 2 briefly presents the models and the adopted
terminology, Section 3 shows the historical Italian mortality data, and Section 4 and subsections explain
methodology and the backtesting results obtained by the different approaches. Section 5 provides
conclusions.

3 Particularly for the case of Cairns–Blake–Dowd model.
4 Data downloaded on June 2016. Source: http://demo.istat.it/tvm2016/index.php?lingua=eng.
5 For the sake of simplicity, we decided to adopt the same terminology used by Dowd et al. (2010a).
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2. Model Specifications

2.1. The Lee–Carter Model

We took into consideration the original formulation of Lee and Carter (1992), represented by the
following model equation:

mx,t = eαx+βxkt+εx,t , (1)

where mx,t is the central rate of mortality at age x and at time t, and it is given by the formula:

mx,t =
dx,t

Lx,t
,

with6 dx,t representing the number of deaths that occurred between x and x + 1, and Lx,t called the age
units living in x, which is simply the average number of individuals alive between x and x + 1.

For simplicity, the model was implemented by adopting its logarithm transformation:

ln mx,t = αx + βxkt + εx,t,

with the following parameter interpretations:

• kt is the time index representing the level of mortality at time t;
• αx represents the average trend of mortality on the time horizon at age x;
• βx represents a measure of the sensitivity in movement from the parameter kt. In particular,

βx describes the relative speed of mortality changes, at each age, when kt changes; and
• εx,t is the homoskedastic error term, which incorporates historical trends not considered by the

model. It is assumed to be εx,t ∼ N (0, σ2
ε ).

Appendix A illustrates the method adopted for the estimation and projection of the parameters.

2.2. The Cairns–Blake–Dowd Model

We considered the original formulation of the model provided by Cairns et al. (2006) with the
following model equation:

ln

[
qx,t

px,t

]
= k(1)t + k(2)t (x − x̄) + εx,t, (2)

where

• k(1)t and k(2)t are two stochastic processes and represent the two time indexes of the model;
• qx,t and px,t represent, respectively, the death and the survival probability, at time t for an

individual aged x;

• ln

[
qx,t
px,t

]
= ln (φx) = logit qx,t is the logit transformation of qx,t, with φx representing the

mortality odds;
• x̄ is the mean age of the considered interval of ages; and
• εx,t is the error term that encloses the historical trend that the model does not express. All of the

error terms are i.i.d following the Normal distribution with mean 0 and variance σ2
ε .

The model is fully identified, so it does not require additional constraints.
Moreover, the time index k(1)t is the intercept of the model. It affects every age in the same way,

and it represents the level of mortality at time t. More precisely, if it declines over time, it means that

6 The variables dx,t and Lx,t are the common biometric functions as described in the life tables.
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the mortality rate has been decreasing over time at all ages. The time index k(2)t represents the slope of
the model: every age is differently affected by this parameter. For instance, if during the fitting period,
the mortality improvements have been greater at lower ages than at higher ages, the slope period term
k(2)t would be increasing over time. In such a case, the plot of the logit of death probabilities against
age would become steeper as it shifts downwards over time (Pitacco et al. 2009).

Appendix B illustrates the estimation and projection methods involved.

3. Case Study: Italian Mortality Data from 1975 to 2014

The application of the presented models requires the use of the death probabilities time series for
extrapolating mortality forecast. As already mentioned, we use data provided by ISTAT because these
data are commonly used by private insurance companies and public pension providers. The range of ages
is 57 ≤ x ≤ 90. In particular, we chose the upper limit for taking into consideration the ISTAT graduation
method of ending the life table (Istat 2001). The calculation of the probabilities of dying for ages over 95 is
performed by extrapolating the qx,t graduated values following the Thatcher et al. (1998) model7:

qx,t =
ϑeγx

1 + ϑeγx ; x ≥ 95. (3)

This kind of graduation could affect the backtesting results, comparing realized data with forecasts
obtained by applying the LC (1) and the CBD (2) models, since they offer a different mortality pattern at
old ages. For the ages from 5 to 94, ISTAT uses a moving average of crude rates with the length of seven
values. Moreover, we selected the time period from 1975 to 2014 because, from in the mid-seventies in
Italy, the successful fight against cardiovascular diseases began. More recently, efforts against tumors,
which are still the main cause of death, have been launched. These successes have contributed to
an extraordinary acceleration of growth in life expectancy, especially at higher ages: e.g., from 1975
to 2014, life expectancy at 60 years has seen an average increase of about four hours each day, both
for men and women. In the male case, this phenomena extraordinarily occurred. Previously, life
expectancy at birth had registered the first significant increase due to the control of infant and child
mortality, while during the years under review, it has also benefited from the control of adult age
mortality.

Currently, the probability of reaching an old age for a young adult is really high: for a 30 year old,
the probability of reaching the age of 60 is almost 94% for males and 96.4% for females. However, it
remains difficult to reach the threshold of 90 years, especially for men. Table 1 accurately shows8 how
this probability changed starting from age 50. Moreover, it shows how the difference in probability
between genders became greater as the age increased.

This process is known as the rectangularization and shift forward of the survival curves. Its measure
can be derived from the entropy of a life table (Equation (4)). It was introduced by Keyfitz and Caswell
(2005) and it is referred to in this paper as tHK,ξ with ξ the age by which the survival curve is built, and t
the year of the period life table at which the entropy is computed (in our case t = 1975, 1976, ... 2014).
Then,

t HK,ξ = −∑j(ln lj)lj

∑j lj
, (4)

7 In Equation (3) ϑ and γ are parameters that need to be estimated. In general, those parameters are estimated by applying
Ordinary Least Squares (OLS) on the logit transformation of Equation (3).

8 Even though the backtesting analysis will be focused on the interval of ages 57–90, here we decided to provide information
also on ages lower than x = 57. In this way, we are able to present a more accurate Italian demographic scenario for the
period observed.
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where lj is the probability of surviving from age9 ξ (ξ = 0, 1, ..., w ; lξ=1 ∀ ξ) to age j (j = ξ + 1, ξ +

2, . . . w). The entropy index becomes smaller whenever the survivorship curve lj moves towards a
rectangular form; in this limit case, tHK,ξ = 0.

Table 1. Proportion of persons aged 30 and expected to be alive at selected ages.

Italian Period Life Tables

Ages 1975 1980 1985 1990 1995 2000 2005 2010 2014

Male

50 0.9438 0.9483 0.9554 0.9583 0.9591 0.9662 0.9722 0.9755 0.9777
60 0.8406 0.8487 0.8646 0.8839 0.8951 0.90962 0.9242 0.9324 0.9376
70 0.6292 0.6409 0.6691 0.7081 0.7351 0.7732 0.8060 0.8257 0.8385
80 0.3014 0.3161 0.3539 0.4029 0.4406 0.4936 0.5434 0.5912 0.6188
90 0.0464 0.0527 0.0682 0.0954 0.1170 0.1396 0.1648 0.1996 0.2250
95 0.0080 0.0096 0.0140 0.0235 0.0318 0.0401 0.0491 0.0595 0.0743

Female

50 0.9703 0.9739 0.9769 0.9785 0.9796 0.9822 0.9850 0.9865 0.9871
60 0.9194 0.9290 0.9364 0.9427 0.9473 0.9525 0.9585 0.9620 0.9639
70 0.8009 0.8168 0.8337 0.8546 0.8681 0.8828 0.8972 0.9053 0.9087
80 0.5070 0.5403 0.5814 0.6249 0.6576 0.69561 0.7322 0.7540 0.7674
90 0.1154 0.1433 0.1629 0.2141 0.2547 0.2860 0.3297 0.3653 0.3878
95 0.0226 0.0326 0.0380 0.0626 0.0830 0.1030 0.1259 0.1420 0.1654

Figure 1 shows how the trend of the rectangularization process has changed according to ages
(i.e., from ξ = 50 to ξ = 65, 75). Regarding women, this process was already in place before 1975.
In particular, starting from ages 50 and 65, it is continued with a substantially linear continuity. In the case
of men, the rectangularization process begins to escalate smoothly after 1984. However, the following
trend shows a deep reduction of mortality, from which is derived an attenuation of the inequality between
sexes even though it has not disappeared. In Figure 1, tHk,ξ shows that the mortality improvement in the
elderly population has taken place at different rates over time, particularly with a faster steep decline for
both sexes after 1993.

Figure 1. Italian life tables 1975–2014: males and females entropy (t HK,ξ ).

The differentiation of the pace in reducing mortality of both sexes starting from adult age up to
those who are old is confirmed by the results of the Kullback and Leibler (1951) divergence:

9 The starting point for the final age interval is denoted by w.
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tDKL,ξ(hz, gz) =
w−ξ

∑
z=0

hz ln

(
hz

gz

)
, (5)

where hz and gz are the probability distributions of the “time until death” random variable Zξ for a
person aged ξ, respectively, for males and females. Equation (5) measures the “difference” between
these two probability distributions, which, in our case, is taken as the reference model gz. The choice is
motived not only by the fact that mortality is significantly lower for women than for men, but also
because the continuous decline of female mortality in the reporting period occurred much more
regularly (Maccheroni 2014). The divergence in mortality between genders mortality has different
characteristics depending on the considered age group.

Figure 2 shows that the divergence in mortality between sexes presents different characteristics,
depending on the observed age. In particular, until 1981, the divergence gradually increased on the full
range of ages. At a later time, differentials in mortality between sexes decrease whenever x is lower
than 60, while they progressively increase at higher ages. These diverging trends make the application
of the models interesting, especially for the comparison of results. Needless to say, the mortality
forecast will be more accurate for women than men because women experienced a death risk reduction
process with greater regularity than men.

Figure 2. Kullback–Leibler divergence with respect to Zξ at selected ages.

4. Backtesting Analysis

In this section, we introduce the three different backtesting frameworks, and we present the
related forecast results.

• The fixed horizon backtest uses a fixed twenty-year historical “lookback” interval, 1975 ≤ t ≤ 1994 ,
and a fixed “lookforward” horizon, 1995 ≤ t ≤ 2014 (20 years).

• The jumping fixed-length horizon backtests make short run projections of five years10 and keep fixed
the length of the “lookback” horizon (20 years), but make jumps of five years ahead to cover the
“lookforward” interval, 1995 ≤ t ≤ 2014. This analysis is divided into four groups of estimations
and forecast, described in Table 2.

• Finally, the rolling fixed-length horizon backtests keep fixed the length of the “lookback” horizon (i.e.,
20 years) and let it roll ahead year by year. The projections are made over the remaining horizon,
keeping fixed the last year of the projection at t = 2014. This analysis is divided into nineteen
groups of estimations and forecast, described in Table 3.

10 We made a forecast of each year in the short-run projection window (5 years).

28

Bo
ok
s

M
DP
I



Risks 2017, 5, 34

Table 2. Jumping fixed-length horizon backtests data horizon.

Lookback Horizon Lookforward Horizon

1975–1994 1995–1999
1980–1999 2000–2004
1985–2004 2005–2009
1990–2009 2010–2014

Table 3. Rolling fixed-length horizon backtests data horizon.

Lookback Lookforward Lookback Lookforward

1975–1994 1995–2014 (20) 1985–2004 2005-2014 (10)
1976–1995 1996–2014 (19) 1986–2005 2006–2014 (9)
1977–1996 1997–2014 (18) 1987–2006 2007–2014 (8)
1978–1997 1998–2014 (17) 1988–2007 2008–2014 (7)
1979–1998 1999–2014 (16) 1989–2008 2009–2014 (6)
1980–1999 2000–2014 (15) 1990–2009 2010–2014 (5)
1981–2000 2001–2014 (14) 1991–2010 2011–2014 (4)
1982–2001 2002–2014 (13) 1992–2011 2012–2014 (3)
1983–2002 2003–2014 (12) 1993–2012 2013–2014 (2)
1984–2003 2004–2014 (11)

The numbers in parentheses show the length of the “lookforward” horizon. Moreover, they indicate
the position of the year 2014 over the related projection interval. This will be particularly useful for the
analysis of results that will be presented in Section 4.3.

Before going in depth about the backtesting analysis, we check for the estimation quality of the
models over the historical “lookback” interval, 1975 ≤ t ≤ 1994. For this purpose, we use the index
Λ2

x, a form of R2 that particularly fits our case (Draper and Smith 2014), described as follows:

Λ2
x = 1 −

1
n ∑t(qO

x,t − q f t
x,t)

2 −
[

1
n ∑t(qO

x,t − q f t
x,t)
]2

1
n ∑t(qO

x,t)
2 −
[

1
n ∑t(qO

x,t)
]2 ,

where q f t
x,t is the fitted value for the qx,t and n is the total number of considered years (i.e., n = 20).

The index provides the proportion of the temporal variance explained by the model for all 57 ≤ x ≤ 90.
Figure 3 shows that both models fit the observed data generally well. Particularly in the case of males,
the share of the “explained variance” at any age is always greater than 88%, while, for females, in the
case of LC, it falls to 85% at x = 63. However, such a decrease takes place within a very limited age
range between 61 and 65 years.

Figure 3. Proportion of temporal variance explained by the models: 1975–1994.
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More specifically, by the analysis of the “explained variance” for both models, we see that the
irregular path of the curves may be influenced by a cohort effect before the age x = 80. This effect is
diagonally observable on the graphs in Figure 4 for those individuals aged 57–59 in 1975 and 76–78 in
1994, respectively. These are the generations born during the First World War (1915-1918) who, in the
course of their lives, have experienced higher mortality at the same ages than the previous and next
cohorts (Maccheroni 2016). For ages older than x = 75, the differences between the models are sharply
evident. In particular, LC overestimates qO

x,t and CBD underestimates (Figure 4).

Figure 4. Residuals
(
qO

x,t − qP
x,t
)

by age x: 1975–1994.

Analysis of the projection results that will be presented in the next section shows that the described
cohort effect has an impact on the forecast quality of the models in two ways.

• Both models slightly suffer the cohort effect for both populations over the projection horizon
(1995–2014) for the same cohort aged 77–79 in 1995 that is no longer observed from 2006.
In particular, both models show an underestimated forecast for such birth cohorts on both
sexes with observed values above the upper limit of the confidence interval for some ages of the
cohort. This occurred particularly for males.

• The observed male qx,t for individuals aged 57–59 in 1995 and 76–78 in 2014, respectively, are often
under the lower extreme of the forecast confidence interval. It seems that models have replicated
the cohort effect over an homologous cohort in 1995, but since the male mortality evolution has
changed consistently from 1975–1994 to 1995–2014, the two homologous cohorts (i.e., 57–59 in 1975
and 57–59 in 1995) showed different trends that lead to forecast errors. This scenario does not
occur for females, since women experienced a more ordinary mortality evolution. Therefore, the
homologous cohorts are similar, so the bias is not observable.

For these reasons, the results obtained with the three backtesting approaches need to be evaluated,
taking into consideration the analysed cohort effect and its related impact on the forecast. In particular,
forecasts seem to suffer the cohort effect as long as the data used for the estimation of the parameters
take into account years from 1975 to 1985. After 1985, the cohort effect is small compared to the overall
sample; therefore, projections do not suffer greatly from it.
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4.1. Fixed Horizon Backtest (1995–2014)

The first backtesting analysis takes into account a forecast horizon that is demographically
considered a medium-term projection horizon. The comparisons proposed are among the most likely
values of qP

x,t prediction, which is the projected central value derived by the model on which we
constructed the 95% confidence interval and those observed qO

x,t; comparisons between the central
value and extremes of the confidence interval occur only for the ages 65 and 85. These are the ages that
in the demographic literature mark the entrance in the range of so-called “young-old” and “oldest-old”.
Unfortunately, due to space limitations, it was not possible to present the comparison to the age of 75,
which divides the old from the “young-old” (Vaupel 2010).

The qO
x,t can present a strong temporal variability due to the observed cohort effect and to the

so-called “period effect”, which is the time condition that affects mortality via a variety of factors.
Among these, the best known is the climatic effect that can, for instance, cause a rise in mortality at old
ages during a very hot summer (e.g., an episode occurred in Italy in 2003), or epidemiological effects
that arise from flu in winter in low-mortality countries. Needless to say, the impact of those factors
is stronger on the most vulnerable people. For this reason, a rise in mortality due to those factors is
generally followed by a decrease in mortality, since those who remained alive have a lower frailty level.
These mortality shocks can affect short-term forecasts rather than medium-term ones, since the latter
are usually more capable of capturing changes in environmental and socio-economic conditions and
people’s lifestyles.
From an applicative point of view, particularly focused on the insurance and social security sector,
we were interested in analysing the performance of the models on assessing the risk of death at various
ages. It is from this point of view that we are going to develop our analysis. For this purpose, we make
a brief assessment of forecast errors that was performed using as an index the Root Mean Squared
Errors (RMSE), defined as follows:

RMSE =
√

MSE,

with
MSE =

1
υ ∑

x
∑

t
(qO

x,t − qP
x,t)

2,

where the mean squared errors (MSE) are equal to the sum of squared errors adjusted for the residual
degrees of freedom υ. Moreover, qO

x,t and qP
x,t are, respectively, the death probabilities observed and

forecast (projected). We use the root of the adjusted SSE to take into account the difference in the
number of free parameters between the models. Table 4 shows RMSE for the first and the second
backtesting approach that will be presented in the following section. Moreover, it takes into account
exclusively the central value of the confidence interval as the most relevant for pension policy-makers
and annuity providers (Whitehouse 2007).

Table 4 shows how the LC model proposes a more accurate forecast with respect to the CBD
model for the period 1995–2014 for females; it is more difficult to judge the models’ performances for
males given the small difference between the RMSE results. These predictions are produced on the
extrapolated parameters kt (Appendix Equations (A7) and (A9)), but the result is made more flexible
by the stochastic component of the models that allows building of the forecast confidence interval.
One cause of error can arise from the fact that the central value of the projection may be shifted with
respect to the observed data, even though it does not differ from the observed trend recorded over
the projection horizon. Figure 5 provides a graphic explanation of the phenomenon. In particular,
for individuals aged 65, the male forecasts 1995–2014 are above the mortality trend observed for the
same period, with divergent paths for the LC model. In the female case (age 65), only the CBD model
shows divergences. However, these deviations may be instead very low, as in the case of the LC model
for females aged 65, or in the case of both models for both sexes aged 85 (Figure 5). Moreover, the
bias due to the continuing fluctuations of the risk of death over time has to be taken in consideration.
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The confidence interval provided by the two models takes into account this stochastic component of
mortality (Figures 7 and 9), although this may occur with different levels of precision (Figure 10).

Figures 6 and 8 show the overall error dynamic highlighted by the ratio between the projected
qP

x,t and the observed qO
x,t.

Figure 5. LC and CBD models: comparisons between observed and forecast mortality trends.

As far as men are concerned, the LC model initially overestimates qO
x,t from ages 57 to 80

(approximately), with persistence across years. In particular, the overestimation errors become
sharply evident as the projection is extended to the last year of the forecast horizon. Figure 6
multi-dimensionally shows the ratio between projected and the real death probabilities. The described
LC performance trend is also graphically reported by the Figure 7, comparing projections at ages 65
and 85 to the observed data. The overestimation starts decreasing from age 80, pointing out that the
divergence between qO

x,t and qP
x,t is really close to zero. However, for high ages at the extreme of the

interval, LC forecasts systematically underestimate qO
x,t.

Figure 6. Lee–Carter Fixed Horizon Backtest: qP
x,t

qO
x,t

ratio.

As for women, the divergence between qO
x,t and qP

x,t is sharply smaller than for men. This is
particularly evident in Figure 6, which shows that the forecast initially underestimates real data
converging at the age 65 and then starts overestimating for a wide span of ages. Furthermore, the last
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part of the age range is again characterized by an underestimation path. However, the overestimation
experienced at higher ages is smaller than the one observed in the male case.

Figure 7. LC Fixed Horizon Backtest forecast: comparison between observed death rates and the
corresponding 95% confidence interval of the forecast based on the time series 1975–1994.

The CBD forecast greatly overestimates the male mortality historical evolution, particularly for
the central and last years of projection. The error is evident in the full range of ages, although it
becomes smaller at the age 80, after which forecasts start underestimating qO

x,t with an increasing
magnitude until the last age and the last projection year (i.e., x = 90 and t = 2014) (Figure 8).

When we look at the female case, the accuracy of the CBD forecast is worse. In this case, in fact,
we can notice a wide and systematic underestimation on approximately all of the first half of the age
range for almost the totality of the forecast horizon. In particular, the forecast error reduces around the
age 68, then it starts overestimating until x = 85, after which it underestimates again. However, at
x = 85, the forecast is relatively accurate, with values of qO

x,t all inside the confidence interval (Figure
9).

Figure 8. Cairns–Blake–Dowd Fixed Horizon Backtest: qP
x,t

qO
x,t

ratio.
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In conclusion, both models make similar forecast errors. On the one hand, regarding males, the
error is represented by an initial overestimation that smoothly converges to the real data and then
starts underestimating, although the divergences experienced with the CBD model are characterized
by a smaller variability with respect to the LC model. On the other hand, the female case shows
an initial underestimation converging to the real data and then a fluctuation of overestimation and
final underestimation. In general, the LC model provides a better fit over a wide range of ages,
showing lower variability in both over and underestimation.

Figure 9. CBD Fixed Horizon Backtest forecast: comparison between observed death rates and the
corresponding 95% confidence interval of the forecast based on the time series 1975–1994.

In any case, the choice between the models becomes difficult at particular ages. Figure 10 shows
the high and low confidence intervals for both models. Even though LC curves are nested into the
CBD lines with greater differences shown in the male case, both models’ confidence intervals include
the observed data, providing theoretical robustness to the projections.

Figure 10. Fixed Horizon Backtest forecast: comparison between CBD and LC confidence intervals at
age 85.
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Table 4. Root Mean Squared Errors (RMSE) between observed qO
x,t and forecast qP

x,t.

Fixed Horizon Backtest

CBD model LC model

Prediction Years Male Female Male Female
1995-2014 0.00625 0.00401 0.00596 0.00274

Jumping Fixed-Length Horizon Backtests

CBD model LC model

Prediction Years Male Female Male Female
1995–1999 0.00321 0.00201 0.00386 0.00210
2000–2004 0.00470 0.00411 0.00532 0.00369
2005–2009 0.00373 0.00366 0.00455 0.00301
2010–2014 0.00250 0.00229 0.00299 0.00219

4.2. Jumping Fixed-Length Horizon Backtests

From the results shown in Table 4, it is clear that the two models best capture the trend of
female mortality. More specifically, the accuracy of the prediction about the next five years, using the
periods 1975–1994 and 1990–2009 as the database, is far higher than the other two sub-groups of
forecast. On the contrary, neither model shows the underestimating and overestimating path of the qO

x,t
at various ages, which was peculiar in characterizing the result in the previous backtesting case. Only
the results of the CBD model show a similar pattern, although in this case with overestimates and
underestimates staggered by age differently from period to period. This point will be discussed in
detail hereafter.

The analysed models should be assessed on a long-term prediction, but in this case, it is particularly
noticeable how a change in the starting point of the time series makes the models differently incorporate
the changes in mortality that occurred in the past 20 years. This is generally accomplished through
the parameter estimates, which are also reflected throughout the extrapolation process associated with
the model. However, an estimation procedure cannot guarantee a priori a constant performance of
the forecast. This is also due to the fact that the dynamic of mortality varies in accordance with a
multiplicity of social factors that affect the life of every person. Unfortunately, mathematical models are
not always able to capture such factors11. “We conclude that the deviations from exponential law at
young ages can be explained by heterogeneity, namely by the presence of a subpopulation with a high
initial mortality rate presumably due to congenital defects, while those for old ages can be viewed as
fluctuations and explained by stochastic effects” (Avraam et al. 2013, p. 1).

Now, we analyse the immediate effects of these estimates, starting with the LC model (1).
The parameters αx and βx are time-independent age-specific constants, so their estimations will
depend on the historical period used as the database and do not need to be predicted. The kt index
captures the time-series common risk factor in that same period, showing the main mortality trend
for all ages at time t. Forecasts are produced by extrapolating the time index kt, and the mortality
projections at each age are all linked together by the product12 βxkt (1).

In this backtesting framework, the shift forward of the database shows a continuous decline
in mortality provided by the estimates of the parameter αx and kt. Moreover, the estimations for
the parameter βx referring to the male case show greater values at the beginning of the age range
(57 ≤ x ≤ 90) than at the end. This result describes a greater decrease in mortality for those ages with
respect to the others, at which βx presents smaller estimated values (Figure 11, male).

11 Even though the LC and CBD models do not take into account social factors in their original formulation, several other
studies have considered heterogeneity and vitality factors (Li and Anderson 2009; Li and Anderson 2013).

12 For this reason, we decided to plot exclusively the βx dynamics, since they show a more interesting variability with respect
to the kt parameters that, in this case, are barely distant parallel and smooth curves among backtest jumps.
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This scenario is in line ex ante with the historical experience. However, the forecast for the
period 2000–2004 shows a systematic overestimation of the qO

x,t for both men and women until the age
x = 80 (Figure 12, LC model). Taking into consideration the female case, the estimates of the parameter
βx are more susceptible to changes in the starting point of the time series. Figure 11 shows this for the
female case. Needless to say, the female βx trend improved the accuracy of the forecast for the periods
1995–1999 and 2010–2014 (Figure 12, LC model).

Figure 11. LC Jumping Fixed-Length-Horizon: βx parameter estimates.

In the case of CBD model (2), the presence of two time-varying parameters k(1)t and k(2)t should
increase at least a priori the forecasting performance with respect to the LC model. This result is
evident for the male forecast in the short-run (Table 4). As mentioned, in the CBD model, the k(1)t
mortality index represents the level of the mortality curve, after the logit transformation. A reduction
in k(1)t entails a parallel downward shift of the logit-transformed mortality curve, which represents an
overall mortality improvement. In particular, this is what occurred in practice, with greater effects for
the female case that are enhanced by the smooth divergences of k(1)t trends between sexes. This is clear
on the left-hand side of Figure 13 below, in which we also checked for the new-data-invariant property
of the model (Chan et al. 2014).

Figure 12. LC and CBD qP
x,t

qO
x,t

ratio: comparison between models. Note: the curves represent the average

of the qP
x,t

qO
x,t

ratio over the five-years forecast horizon.

In this case, the jumps of five years ahead do not seem to affect the k(1)t trend. This is also
evidenced by the substantial continuity of the overall reduction in mortality. This is not the case as far
as the the k(2)t mortality index is concerned. Its path drafts the slope of the logit-transformed mortality

curve. An increase in k(2)t entails an increase in the steepness of the logit-transformed mortality curve,
which means that mortality at younger ages i.e., those below the mean age x̄ (here x̄ = 73.5) improves
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more rapidly than at older ages. This is clear on the right-hand side of Figure 13. Regarding the male
case, we find that the speed of increase in k(2)t is greater for the periods 1985–2004 and 1990–2009 than
for the other two. For this reason, the projected qP

x,t shows stronger improvements in mortality for
the periods 2005–2009 and 2010–2014 than for the others, particularly for the ages lower than x = 69.
More in depth, results show an underestimation of the qO

x,t for the ages lower than x = 69 and a smooth

overestimation path for those higher. Despite the fact that the growth of k(2)t between 1980 and 1999

is higher than that of 1975–1994 and that the reduction of k(1)t is greater, we find that qP
x,t sharply

overestimates qO
x,t in the period 1995–1999 and particularly in 2000–2004 for the full range of ages.

Figure 13. CBD Jumping Fixed-Length-Horizon: parameter estimates.

Regarding women, k(2)t presents similar records to men, whereas for the period 1990–2009,

the growth rate of k(1)t is slightly attenuated. In contrast with the male scenario, in this case, qP
x,t

systematically and significantly underestimates qO
x,t from the age x = 57, converging gradually to the

observed data as x moves towards x̄. Moreover, Figure 14 shows that the underestimations are larger
for the projection periods 2005–2009 and 2010–2014. This error path does not influence the forecasts of
ages higher than x̄ that generally overestimate qO

x,t. In particular, for ages higher than x̄, forecasts of the
periods 1995–1999 and 2010–2014 show better results than those of the other two projection windows
(Figure 12, CBD model).

Hence, comparatively, we conclude that a good result for the performance index RMSE (Table
4) can hide some compensation for the forecast error in terms of age and time. Figure 14 graphically
shows the described scenario.

Figure 14. LC and CBD qP
x,t

qO
x,t

ratio: comparison between models on the same gender. Note: the curves

represent the average of the qP
x,t

qO
x,t

ratio over the five-years forecast horizon.
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4.3. Rolling Fixed-Length Horizon Backtests

Finally, the analysis concludes with the study of the forecast convergence to the observed qO
x,t in the

year13 2014. For this reason, we build a framework of 19 groups of estimations and projections, rolling
the database (fixed-length of 20 years) sequentially forward from14 1975 to 1993. Then, we compare
the 2014 forecast obtained in each group with the realized mortality for that year. We observe that the
comparison enhances the same critical issues analysed in the previous paragraphs, with particular
emphasis on two main aspects.

Firstly, scrolling the database over time year by year gives rise to strong fluctuations in the
performance of the prediction measured by the ratio of qP

x,t and qO
x,t. These oscillations (Figures 15

and 16) are evident for both sexes in the results of both the LC and the CBD models. Moreover, the trend
is interrupted by a deep break in correspondence of the 1985–2004 database. In particular, the previous
base (1984–2003) provided a strong overestimation of qO

x,t especially at old ages. The base 1985–2004 data
has then reduced the size, while the next one (1986–2005) moved closer to qO

x,t.
One the one hand, this result may be related to the cohort effect described at the beginning

of paragraph 4, since the cohort effect is proportionally greater on the base of data including years
before 1985. On the other hand, they can be partially justified by also recalling that the year 2003
was characterized by a sharp rise in mortality, especially at old ages. Therefore, this historical event
may have affected the estimated parameters. However, in the male case, both models systematically
underestimate qO

x,t when the age is lower than x = 73, and overestimate when it is higher.

Figure 15. LC Rolling Fixed-Length Horizon Backtests: qP
x,t

qO
x,t

ratio 2014.

This result is particularly evident when the “lookback” horizon is 1985–2004, and also for the
following cases. In particular, CBD underestimates when the database refers to the period 1981–2000.
However, for the period 1985–2004, the divergence becomes greater compared to the LC model
(Figures 15 and 16). As is shown, the choice of the database plays a crucial role in forecasting mortality.

Figure 15 shows the ratio between the projected and observed death probabilities for the
year 2014. Table 3 shows the projections obtained for that year on each pair of “Lookback” and
“Lookforward” horizons.

13 The choice for the year 2014 was motivated by the observed regular mortality path. The 2015 mortality trend is expected to
be increased, particularly at old ages (Istat 2016).

14 These represent the initial years of the 20-year-long database; i.e., 1975 refers to the estimation period 1975–1994, and so on.
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Figure 16. CBD Rolling Fixed-Length Horizon Backtests: qP
x,t

qO
x,t

ratio 2014.

In particular, the sub-case index of the graph shows the position of that year on the projection
horizon (i.e., 20 means that the year 2014 was the 20th year of the projection, 19 means the 19th,
and so on ). Since the dataset is rolling over time and decreasing the projection horizon, we decided
to show the position of the year 2014 to take into account both the specific sub-case and the related
length of the forecast horizon. Figure 16 shows the same for the CBD model with an inverted order of
sub-cases for males to better show the shape of each curve.

Secondly, we detected substantial differences between the performances of the two models by
analysing female mortality. Figure 16 shows how the CBD model systematically underestimates real
mortality until the age of 75 and then starts converging to qO

x,t after that “threshold” age. This result,
which was already evident in the previous analysis, is likely linked to the combined effects on the
CBD model (2) of the role of the mean age x̄ (in our case x̄ = 73.5) of the age group, for which the
forecast is made, and of the observed female mortality pattern. These results are also confirmed from
the analysis of the confidence interval referred to the forecast. Figure 17 shows that, in the female case
at age 65 (t = 2014), qO

x,t is always outside the confidence interval, while at age 85, it is inside with
central values almost converged to the real data in each sub-case (Figure 18). In the case of the LC
model, the initial underestimation of the qO

x,t is much less pronounced with respect to the previous
case. Moreover, the “threshold” age, with respect to which the forecast underestimates and then
overestimates qO

x,t, increases as the database moves forward (Figure 15).
Figures 17 and 18 show the convergence of the projections to the observed data for the year 2014,

at ages 65 and 85. The x-axis shows the position of the year on the forecast horizon as before. Figures
19 and 20 present the same for the Lee–Carter model.

Figure 17. CBD Rolling Fixed-Length Horizon Backtests (age 65): convergence to real data (2014).
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Figure 18. CBD Rolling Fixed-Length Horizon Backtests (age 85): convergence to real data (2014).

Figure 19. LC Rolling Fixed-Length Horizon Backtests (age 65): convergence to real data (2014).

Figure 20. LC Rolling Fixed-Length Horizon Backtests (age 85): convergence to real data (2014).

5. Conclusions

The main aims of this paper are to scrutinize the forecast for both sexes proposed by the original
formulation of the models, given the wide use of LC at the national level, and to analyse the long-term
forecast with respect to the short term, observing qualitative differences in the estimation of the
parameter accordingly to changes in the starting point of the database.

Regarding the former, we find that, basically, neither model was able to capture the shock in
terms of improvements on the male mortality trend, with greater biases for ages lower than x = 75,
which were those more affected by the improvement. In this sense, CBD forecasts for those ages are
more biased than LC projections in terms of overestimations. The limited capacity of the models
to predict male mortality is evident in all of the three backtesting frameworks. Table 4 numerically
summarizes the difference in terms of performances between sexes for the first two backtesting
approaches. In addition, the analysis of the forecast for the year 2014 that we provided with the third

40

Bo
ok
s

M
DP
I



Risks 2017, 5, 34

approach confirms this result. Moreover, women’s forecasts are widely more accurate than men’s,
with small biases observed both in the short and the medium-term. However, in the female case,
CBD projections showed particularly deep and systematic underestimations with respect to ages lower
than 75.

From the comparison between the short-term and the medium-term forecast, we find that changes
in the starting point of the database widely affect the estimation of the LC parameters, particularly
for βx with observable impacts on the projections. The female forecasts are more influenced by those
changes in βx. The CBD model satisfies the “new-data-invariant” property for the estimation of the
parameter k(1)t , while k(2)t presents persistent changes for the same year as the dataset slides forward.
This aspect is more evident in males than in females. In particular, the adjustment of the parameter
k(2)t (i.e., x − x̄) affects mortality forecasts with weights of the opposite sign at the extremes of the
considered age range. The weight is greater the larger the age range. This structural characteristic of
the model, albeit simultaneously with k(1)t , results in a systematic underestimation of the qO

x,t for ages
lower than x̄ that gradually decrease as x moves towards x̄. Moreover, mortality forecasts around x̄
are almost exclusively explained by k(1)t , since (x − x̄) is really close to 0 in that case. On the contrary,
as x gets closer to the upper limit of the age range, the weight of (x − x̄) on mortality forecasts changes
with the opposite sign, with resulting overestimation of the qO

x,t. For these reasons, the risk in terms of
application of the models is conspicuous because it could potentially affect both the mortality risk and
the longevity risk. Taking into consideration the variability of both the parameters βx (LC) and k(2)t
(CBD), it is difficult to judge a priori what these two rigidities penalize more in the mortality forecast.

As far as the CBD model is concerned, we find that projections are not reliable for describing
mortality at ages before x = 75. For this reason, LC projections are preferable for describing Italian
mortality in this particular framework of years and ages. However, CBD forecasts showed a more
restrained variability of the forecast error at higher ages with respect to LC. This result and the fact
that usually the CBD confidence interval at higher ages is wider (i.e., LC is nested in CBD) than LC
ones provide a more accurate theoretical robustness to the CBD for ages greater than x = 75.

We would like to make clear that we examined the models in their original form, so we cannot
rule out the possibility that some extensions of the models might resolve these issues on Italian data
(1975–2014). In particular, we expect that the results of both models may be improved with the
adoption of the model extensions, including a cohort component, in order to reduce the bias caused by
the cohort effect of those born during the First World War. Moreover, the CBD extension, including the
quadratic term of the age component, may solve the weighting issue of the model over the considered
interval of ages on this data.

In conclusion, the results seem to be relevant for private and public Italian annuity providers that
use LC forecasts as demographic bases. From this perspective, the choice between the two models may
vary in accordance with the purpose of the use of the model (e.g., the age and the sex of the insured).
Even though we limited our analysis to the study of the forecast qx,t, we can infer that a backtesting
analysis of annuity prices, based on the forecast obtained by the original formulations of the models,
would show evidence of a distortion caused by the forecast error on the money’s worth of an annuity
and on reserves.
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Appendix A. Lee–Carter Estimation and Projection

Appendix A.1. Parameter Estimations

The parameter estimation was computed with respect to the Ordinary Least Square (OLS) estimation
method in accordance with the original approach suggested by the authors.

The following constraints were used to find a unique solution for the parameters:

xm

∑
x=x1

βx = 1 and
tn

∑
t=t1

kt = 0. (A1)

To obtain the estimation for the variable α̂x, it was necessary to compute the partial derivative
of the equation LS(α, β, k) = ∑x ∑t(ln (mx,t)− αx − βxkt)2 , with respect to αx. Then, as a first order
condition, we get:

α̂x =
1

tn − t1 + 1 ∑
t

ln (mx,t), (A2)

where the denominator simply represents the number of years considered in the dataset,
and x = x1, ..., xm is the considered range of ages. As is expressed by the Equation (A2), the estimation
for the first parameter αx was given by the average of the logarithms of the central rate of mortality
over time t. Furthermore, the estimations of β̂x and k̂t for the parameters βx and kt were obtained by
adopting the Singular Value Decomposition of the matrix A of elements (ln mxi ,tj − αxi ), with i as age
index and j as time index (years considered in the data).

At this point, the estimated parameters were recalibrated so the differences between the actual
and the estimated total deaths in each year were zero. This implies that the recalibrated k̂∗t solves
the equation15:

∑
x

dx,t = ∑
x

e(α̂
∗
x+β̂∗x k̂∗t )Lx,t. (A3)

Finally, the estimated parameters were adjusted to satisfy the constraint at (A1) for the parameter
k̂∗t . Then:

a∗x = α̂x + β̂xk̄, (A4)

β∗
x = β̂x

(
xm−x1+1

∑
j=1

β̂1j

)
, (A5)

k∗t = (k̂∗t − k̄)

(
xm−x1+1

∑
j=1

β̂1j

)
, (A6)

where k̄ = 1
tn−t1+1 ∑tn

t=1 k̂∗t is the arithmetic average of k̂∗t with respect to time t, and

(
∑xm−x1+1

j=1 β̂1j

)
is simply the sum of all the estimated β̂, which sum to 1. The fitted model is then used to estimate the
median and the 95% prediction interval.

15 Equation (A3) has no explicit solution, so it has to be solved numerically.
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Appendix A.2. Parameter Projection

We projected the estimated16 parameters k∗t of the Lee–Carter model using a Random Walk with
Drift equation:

kt = kt−1 + d + ηt with ηx,t ∼ N (0, 1)aandaE(ηs, ηt) = 0, (A7)

where the drift d is estimated by the formula:

d̂ =
(k∗2 − k∗1) + (k∗3 − k∗2) + ... + (k∗T − k∗T−1)

tn − t1
=

(k∗T − k∗1)
tn − t1

,

with k∗T and k∗1, respectively, given by the first and the last elements of the vector k∗t = [k∗1, ..., k∗T ].
The drift is simply the arithmetic mean of the differenced series of estimated parameters.

After having solved Equation (A7) of the RWD model, we describe the projection of the parameter
kt at time T + Δt as follows:

k̂T+Δt = k∗T + (Δt)d̂ +
√

Δtηt.

At this point, it was possible to get the equation for the projection of the central rates of mortality
as follows:

m̂x,T+Δt = ea∗x+b∗x k̂T+Δt .

Finally, we transformed the central mortality rates into probabilities by adopting the Reed and
Merrell (1939) method. The relation is expressed by the equation:

nqx,t = 1 − e−n(mx,t)−n30.008(mx,t)
2
.

Appendix B. Cairns–Blake–Dowd Estimation and Projection

According to the original formulation of the model proposed by Cairns et al. (2006), Equation (2)
is the result of the logit transformation of the following model equation:

qx,t =
ek(1)t +k(2)t (x−x̄)

1 + ek(1)t +k(2)t (x−x̄)
. (A8)

Fitted values for the stochastic processes k(1)t and k(2)t were obtained using least squares applied
to the Equation (A8). The fitted model is then used to estimate the median and the 95% prediction
interval.

The parameters vector�kt =
[
k(1)t , k(2)t

]′
has been projected by considering the following equation

of a two-dimensional random walk with drift:

�kt+1 =�kt + μ + CN(t + 1), (A9)

where

• μ is a constant 2 × 1 vector of drifts, computed as the arithmetic mean of the differenced series of
estimated parameters;

• C is a constant 2 × 2 upper triangular matrix, derived by the unique Cholesky decomposition of
the variance–covariance matrix V = CC′ of the parameters vector�kt+1; and

• N(t + 1) is a two-dimensional standard normal random variable.

16 We used MATLAB (R2010b, The MathWorks, Inc., Natick, Massachusetts 01760 USA) for estimation and forecast.
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The adopted forecast method treats the estimated parameters as if they were the true parameter
values (parameters certainty). In particular, the presented projections were computed17 considering
parameter certainty based on 5000 simulation trials.
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Abstract: The regulation on the Belgian occupational pension schemes has been recently changed.
The new law allows for employers to choose between two different types of guarantees to offer to
their affiliates. In this paper, we address the question arising naturally: which of the two guarantees
is the best one? In order to answer that question, we set up a stochastic model and use financial
pricing tools to compare the methods. More specifically, we link the pension liabilities to a portfolio
of financial assets and compute the price of exchange options through the Margrabe formula.

Keywords: pensions; Defined Contributions; guaranteed rate; option theory; Margrabe formula

1. Introduction

In most European countries, the sustainability of the pension system has become a major concern.
The past few decades have therefore seen an evolution of the pension plan designs (as remarked
e.g., by the European Commission, [1]). On one hand, more and more plans are financed through
funding by pension funds or group/life insurance contracts (as opposed to plans financed through
pay-as-you-go mechanisms). On the other hand, Defined Contribution (DC) schemes have tended to
overtake Defined Benefit (DB) schemes. This new pension plan model (funding and DC) addresses—at
least partially—the sustainability problem. However, it generates another issue, which is related to the
adequacy of the benefits: in such a plan, the affiliates bear all of the financial risk.

To protect the affiliates and make these plans politically acceptable, many European countries have
enacted legislations. Among various types of guarantees (presented e.g., in [2]), some of them impose
on pension sponsors ensuring a minimum financial performance on plan contributions. The Swiss
system is one of them, and an early and interesting example. Dating back to 1985, it imposes a minimal
guaranteed rate that can be revised every other year by the Federal Council, which takes into account
financial markets to do so. Accordingly, the rate was progressively lowered from 4% (its value between
1985 and 2002) to its current level of 1.25%.

In 2003, Belgian authorities implemented the Law on Complementary Pension (LCP), obliging
sponsors to guarantee a minimum rate of 3.25% on the employer’s contributions and of 3.75% on
employees’ contributions. Since then, these values have proven to be unsustainable in the context of a
decreasing interest rates market.

A reform act 1 has therefore been passed by the government (applicable since the beginning of
2016), that transforms the fixed minimum guaranteed rate into a variable rate, linked to the yield rate

1 “Loi du 18 décembre 2015 visant à garantir la pérennité et le caractère social des pensions complémentaires et visant
à renforcer le caractère complémentaire par rapport aux pensions de retraite”, published in the Moniteur Belge on
24 December 2015.
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of the 10 year Belgian governmental bond. As it is fluctuating, one needs to indicate how the guarantee
is applied to the previously paid contributions. Two different computation approaches are described
in the new legal text, designated as the horizontal and vertical methods. In the case of newly created
plans, sponsors are allowed to choose between them. On the contrary, in the case of already existing
plans, the method that has to be used depends on the funding vehicle of the plan.

The existence of two computation methods raises the natural question of their comparison. In this
paper, we address it by setting a stochastic framework for the interest rates and considering the
evolution of the pension liability over the years. In order to compare the amounts obtained from one
initial contribution using the horizontal and vertical methods, we embrace two distinct approaches.
On one hand, we simply compute the expectations of the corresponding stochastic processes and
determine which method leads to the best results. This approach can be associated with the affiliates’
point of view, as it estimates how much the affiliates will earn from the initial contribution.

On the other hand, we take the pension sponsor’s point of view and compute the price of both
pension guarantees. The topic of pension guarantee pricing has been much studied in the literature
(starting with the seminal papers of Pennacchi and Fischer [3,4] and going on after that with [5,6],
among many others). More specifically, we follow an Asset and Liability Management-driven
methodology (as done for example in [7–9]): we suppose that the sponsor has an asset investment
portfolio in front of its pension liabilities, and we try to determine which method is preferable for him,
taking into account its investment preferences. In order to do so, we consider options allowing for
exchanging the asset portfolio for the horizontal (respectively vertical) liability and compute their
prices: the best method is the one associated to the cheapest option. This methodology has already
been used, for example in [10]. The pricing of these exchange options is achieved using the Margrabe
formula (see [11]). More precisely, we use a generalization of this formula to a stochastic interest rates
framework obtained (in the general case, where assets and rates are not independent) by Bernard and
Cui [12] (see also [13]).

The paper is organized as follows: in Section 2, we present the details of the reform act, such as
the definition of the guaranteed rate, and describe the horizontal and vertical computation methods.
Then, we set up a stochastic framework and perform the first comparison of the two methods in
Section 3. Section 4 is devoted to our second comparison approach, using option prices and the
Margrabe formula. Finally, we comment on the results and conclude in Section 5.

2. Detailed Design of the Reform Act

The new LCP links the guaranteed rate to a 24-month moving average of the 10-year OLO (i.e.,
Belgian governmental bond) yield rate . A cap and a floor is applied to this average, and the result is
multiplied by a constant:

rguaranteed(t0) = max

(
1.75%; min

(
π

1
24

23 months

∑
t=0 months

rOLO 10(t0 − t); 3.75%

))
.

The value of π is defined as 65%, but the law states that, under some circumstances (which are
linked to the evolution of the maximum rate of long-term insurance contracts), the National Bank of
Belgium can decide to raise this percentage to 75% in 2018 and to 85% in 2020. Figure 1 shows the
evolution of these rates between January 1991 and September 2015.
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Figure 1. Different rates appearing in the definition of the reference rate.

Let us now present the two computation methods, which are summarized in Figure 2. The vertical
method is used when the vehicle of an existing pension scheme is a pension fund (or a pure unit linked
product sold by an insurance company), or when the sponsor of a new pension scheme (i.e., created
before 1 January 2015) chooses so. In this case, the guaranteed rate of year t is applied to the whole
amount of cotisations already paid by the affiliated up to year t. The vertical liability is then similar to
the one produced by a savings product where the contributions are deposited, whose interest rate is
the guaranteed rate, susceptible to be different from year to year.
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Figure 2. The two different methods of guaranteed rate application.

The horizontal method is used when the financing vehicle is a life insurance contract with interest
rate guarantee or when the sponsor of a new pension scheme chooses so. Remark that, in this case,
the guarantee level offered by the insurer can be different from the guarantee level that the sponsor
must legally ensure to its affiliates. The guaranteed rate of year t is then applied to the new cotisations
paid in year t, the cotisations already paid in years t − 1 being accounted for with the guaranteed
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rate of year t − 1, etc. The resulting horizontal liability is similar to the one produced by a standard life
insurance product.

Let us first consider a very simple example to illustrate the two methods: assume that an affiliate
successively pays two contributions of 1 Euro in 2016 and 2017, and retires in 2018. In Table 1,
we consider two scenarios for the evolution of the guaranteed interest rate.

Table 1. Simple example illustrating how the horizontal and vertical methods are applied to the
plan contributions.

Scenario 1 Scenario 2

2016 guaranteed rate 2.5% 2.5%
2017 guaranteed rate 3.5% 2%

2018 liability (horizontal) 1.0252 + 1.035 = 2.086 1.0252 + 1.02 = 2.071

2018 liability (vertical) 1.025 · 1.035 + 1.035 = 2.096 1.025 · 1.02 + 1.02 = 2.066

Highest liability vertical horizontal

Although very simple, this small toy example provides some intuition about the relation between
the two computation methods and the market evolution. If the interest rates are increasing, the vertical
method leads to a larger amount. If, on the contrary, the interest rates are decreasing, the horizontal
liability is larger.

3. Direct Comparison

In this section, we set up a stochastic framework for the interest rates and use it to compare the
level of the two guarantees in absolute terms.

3.1. Interest Rate Framework

We assume that the short rate rt is modelled with a Vasicek one-factor model, i.e., that in the
risk-neutral world

drt = k(θ − rt)dt + σdWr
t , (1)

where k > 0, σ > 0 and θ are real constants and Wr is a standard Brownian motion. It is well-known
(see e.g., [14]) that the solution of this stochastic differential equation is

rt = r0e−kt + θ(1 − e−kt) + σ
∫ t

0
e−k(t−s)dWr

s , (2)

and that the K-years zero-coupon bond yield is given by

rK
t =

C(K) + D(K)rt

K
= A(K) + B(K)rt, (3)

where

A(K) =
C(K)

K
,

B(K) =
D(K)

K
,

C(K) =
(

σ2

2k2 − θ

)
(D(K)− K) +

σ2

4k
D2(K),

D(K) =
1
k

(
1 − e−kK

)
. (4)
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Note that, in the following, we will drop the K dependence and write A = A(K) and B = B(K)
when the context is clear.

For simplicity reasons, and in order to obtain closed formula, we now make four assumptions.
First, we replace the coupon-bearing reference bond instrument by a standard zero-coupon bond, i.e.,
we assume that the OLO bonds do not bear coupons. Second, we define the reference rate R as a
three-year moving average of the market rate, instead of a 24-month moving average. This assumption
strongly simplifies the notations but does not make the mathematical development easier. It also limits
the smoothing effect of the moving average, but we think that it does not affect the hierarchy between
the two methods. Third, we neglect the cap and floor applied to the market rate. It then follows from
previous expressions that

Rt = π
r10

t−2 + r10
t−1 + r10

t
3

.

Finally, we consider that the parameter π is constant, i.e., that the National Bank does not modify
it during the considered period of time.

Note that we assume that the quantities r−2, r−1 and r0 are known at t = 0.
We consider a unique unitary payment made at time t = 0 and look at the capital generated by

this payment after T years (with T ≥ 4).

3.2. Expression of the Liability

When the horizontal method is used, the expression of the liability is very simple:

Lh
T = eR0T = exp

(
πA(10)T +

B(10)πT
3

(r−2 + r−1 + r0)

)
,

which is a deterministic quantity.
When, on the contrary, the vertical method is preferred, the liability is given by

Lv
T =

T−1

∏
t=0

eRt = exp

(
T−1

∑
t=0

Rt

)
. (5)

The following proposition gives the distribution of this liability.

Proposition 1. Under the assumptions stated above, the vertical liability at time T is given by

Lv
T = exp

{
πAT + πB

(
1
3

r−2 +
2
3

r−1 + (1 + Λ(1))r0 + θ(T − 2 − Λ(1))
)

+ πBσ
T−1

∑
t=1

Λ(t)
∫ t

t−1
eksdWr

s

}
, (6)

where

A = A(10) and B = B(10),

λ(t) =

⎧⎪⎪⎨⎪⎪⎩
1 if t = 1, 2, . . . , T − 3
2
3 if t = T − 2
1
3 if t = T − 1

, (7)

Λ(t) =
T−1

∑
u=t

λ(u)e−ku. (8)
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In particular, Lv
T ∼ LN

(
mv(T), s2

v(T)
)

with

mv(T) = πAT + πB
(

1
3

r−2 +
2
3

r−1 + (1 + Λ(1))r0 + θ(T − 2 − Λ(1))
)

,

s2
v(T) =

π2B2σ2(1 − e−2k)

2k

T−1

∑
t=1

Λ2(t)e2kt.

The proof of this result is given in the Appendix A.

3.3. Comparison of the Expectations

Intuition, guided by the example given in Table 1, suggests that the hierarchy between the two
methods depends on the evolution of the markets: if they are increasing (resp. decreasing), the vertical
(resp. horizontal) method produces a larger amount. An analysis of the results obtained in the less
trivial stochastic framework presented in the preceding section shows that they go in that direction.

Table 2 gives the parameters that were used in the computations. Remark that the Vasicek
parameters (namely, k, σ and r0) have been calibrated using historical OLO yield curves from 1991
to 2015.

Table 2. Parameters used in the computations of the direct comparison.

k σ r0 r−1 r−2

0.15 0.41% 1.34% 1.34% 1.34%

In Figure 3, we show the values of the four expectations:

E
[
log(Lh

T)
]
= mh(T) ; E

[
Lh

T

]
= exp

(
mh(T) +

s2
h(T)

2

)
= exp (mh(T)) ,

E [log(Lv
T)] = mv(T) ; E [Lv

T ] = exp
(

mv(T) +
s2

v(T)
2

)
,

when the parameter θ varies (the values of the other parameters are given in the appendix). We observe
in the upper plot that, in accordance with the intuition, r0 acts as a turning point:⎧⎪⎪⎨⎪⎪⎩

mh(T) > mv(T) if θ < r0,

mh(T) = mv(T) if θ = r0,

mh(T) < mv(T) if θ > r0.

However, as is shown in the lower plot, another conclusion can be made for the expectations of
the liabilities themselves, though the difference is not huge. There exists indeed another turning point,
which is related but not equal to r0. The reason for this phenomenon is the difference of volatility
between the two liabilities (0 = sh(T) < sv(T)).
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Figure 3. Comparison of the expectations of the log-liability (upper graph) and of the liability (lower
graph) obtained using the horizontal and the vertical methods.

4. ALM-Based Comparison

In this section, we compare the horizontal and vertical liabilities using an Asset and Liability
Management approach. For this purpose, we assume that the organization offering the pension scheme
to the affiliated invests the paid contributions in an investment portfolio. In order to compare the two
methods, we compute the prices of two options giving the right to exchange the asset portfolio for the
horizontal (resp. vertical) liability.

This is done using the well-known Margrabe formula (see [11]), which has been extended to a
stochastic interest rates environment by [12]:

Proposition 2. Let U and V be two non-dividend paying assets whose distributions are log-normal. If the short
rate is a Brownian diffusion, the price of the European option whose pay-off at time T has the form (UT − VT)+
is given by

M = U0Φ

(
log U0

V0
+ 1

2 ν2(T)

ν(T)

)
− V0Φ

(
log U0

V0
− 1

2 ν2(T)

ν(T)

)
, (9)

with
ν(T) =

√
σ2

U(T) + σ2
V(T)− 2cU,V(T),

52

Bo
ok
s

M
DP
I



Risks 2017, 5, 5

where Φ is the cumulative distribution function of the standard normal, σU(T) and σV(T) are the standard
deviations of log(UT) and log(VT), respectively, and cU,V(T) is the covariance between log(UT) and log(VT).

Note that, in the case of the horizontal liability (which is constant), the exchange option is identical
to a standard put option. If the asset is log-normally distributed, the Margrabe formula thus reduces to
the standard Black and Scholes formula (with stochastic interest rates).

4.1. Assets

We consider that the pension organizer has three investment opportunities: a bank deposit
account, a rolling bond with fixed maturity and a stock. We first need to define the portfolio’s
dynamics under the risk-neutral measure. The dynamics of the cash C is straightforwardly obtained
from the short rate:

dCt = Ctrtdt.

The price of the rolling bond P with maturity K is related to the forward rate given in Equations (3)
and (4):

Pt = exp (−C(K)− D(K)rt) ,

so that, using the Itô formula, we easily obtain its dynamics:

dPt = Pt (rtdt − σDdWr
t ) .

Finally, we assume that the stock S follows a geometric Brownian motion:

dSt = St

(
rt dt + ηρ dWr

t + η
√

1 − ρ2 dWS
t

)
,

where η > 0 and ρ ∈ [−1, 1] are real parameters and WS is a standard Brownian motion that is
independent from Wr.

We assume that the proportion of each asset in the portfolio A is kept constant over time, being
x ∈ [0, 1] for stock, y ∈ [0, 1] for bond and (1 − x − y) ∈ [0, 1] for cash. Obtaining an expression for the
portfolio value is easy. First, we write its value as

At = NC
t Ct + NP

t Pt + NS
t St,

where NC, NP and NS are, respectively, the number of cash, rolling bond and stock units held at time t
in the portfolio. Considering a self-financing portfolio, we obtain that

dAt = NC
t dCt + NP

t dPt + NS
t dSt,

or, equivalently, that

NC
t = (1 − x − y)

At

Ct
,

NP
t = y

At

Pt
,

NS
t = x

At

St
.

The dynamics of A are therefore given by

dAt

At
= rtdt + xη

√
1 − ρ2dWS

t + (xηρ − yσD)dWr
t .
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The solution of the preceding equation can be easily obtained using the Itô formula:

AT = A0 exp
(∫ T

0
rsds − 1

2
(x2η2 + y2σ2D2 − 2ρxyησD)T

+xη
√

1 − ρ2WS
T + (xηρ − yσD)Wr

T

)
= A0 exp

(
θT +

r0 − θ

k
(1 − e−kT)− 1

2
(x2η2 + y2σ2D2 − 2ρxyησD)T

+
∫ T

0

(
γ − σ

k
e−k(T−s)

)
dWr

s + xη
√

1 − ρ2WS
T

)
,

where
γ =

σ

k
+ xηρ − yσD

so that AT ∼ LN
(
ma(T), s2

a(T)
)

with

s2
a(T) =

∫ T

0

(
γ − σ

k
e−k(T−s)

)2
ds + x2η2(1 − ρ2)T

=
σ2

2k3 (1 − e−2kT)− 2
σγ

k2 (1 − e−kT) +
(

γ2 + x2η2(1 − ρ2)
)

T.

Remark that the asset allocation we consider here is constant over time. This is consistent with
the investment habits of many Belgian pension funds and insurance companies. Some other pension
funds around the world implement different strategies, e.g., following the affiliates’ risk preferences,
and decreasing the volatility of the asset portfolios as the affiliates grow old. Generalizing the results,
we obtain in the following sections that such a situation is not conceptually difficult, as we only have
to replace the constants x and y by deterministic functions x(t) and y(t) in A’s dynamics. In particular,
the asset random variable remains log-normally distributed.

4.2. Liabilities

As we have previously seen, the variables AT and Lv
T are log-normally distributed under our

asset and interest rate assumptions, and Lh
T is constant. However, as Lv and Lh are not tradable assets,

we have to define their fair values in order to apply the Margrabe formula (9):

Uh
t = EQ

[
exp

(
−
∫ T

t
rsds

)
Lh

T

∣∣∣∣ Ft

]
and Uv

t = EQ

[
exp

(
−
∫ T

t
rsds

)
Lv

T

∣∣∣∣ Ft

]
.

The processes Uh and Uv will successively play the role of U in Proposition 2, while the asset
portfolio A will play the role of V. The payoffs of the considered options become then, respectively,
(Uh

T − AT)
+ and (Uv

T − AT)
+. To apply Proposition 2 and compute their prices, we only have to

compute three supplementary quantities: the initial fair values Uh
0 and Uv

0 and the covariance between
the (logarithms of) AT and Lv

T .
To obtain Uv

0 , we first integrate Equation (2) to obtain

∫ T

0
rsds = θT +

r0 − θ

k
(1 − e−kT) +

σ

k

∫ T

0

(
1 − e−k(T−s)

)
dWr

s .

Putting this expression together with Formula (6) leads to
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L̃v
T = exp

(
−
∫ T

0
rsds

)
Lv

T

= exp

{
πAT + πB

(
1
3

r−2 +
2
3

r−1 + (1 + Λ(1))r0 + θ(T − 2 − Λ(1))
)

− θT − r0 − θ

k
(1 − e−kT)

+
T−1

∑
t=1

∫ t

t−1

(
πBσΛ(t)eks − σ

k
(1 − e−k(T−s))

)
dWr

s

− σ

k

∫ T

T−1

(
1 − e−k(T−s)

)
dWr

s

}
,

so that the discounted vertical liability L̃v
T ∼ LN

(
m̃v(T), s̃2

v(T)
)

with

m̃v(T) = πAT + πB
(

1
3

r−2 +
2
3

r−1 + (1 + Λ(1))r0 + θ(T − 2 − Λ(1))
)
− θT − r0 − θ

k
(1 − e−kT),

s̃2
v(T) =

σ2

k2 T +
T−1

∑
t=1

{
(πBσΛ(t) + σ

k e−kT)2

2k
e2kt
(

1 − e−2k
)

− 2σ(πBσΛ(t) + σ
k e−kT)

k2 ekt
(

1 − e−k
)}

+
σ2

k3

(
−3

2
+ 2e−k − 1

2
e−2k

)
.

Now, Uv
0 is straightforwardly obtained, as it is the expectation of a log-normally distributed

random variable

Uv
0 = E

[
LN

(
m̃v(T), s̃2

v(T)
)]

= exp
(

m̃v(T) +
s̃2

v(T)
2

)
.

In addition, the initial value of the horizontal liability is easy to obtain, as

Uh
0 = EQ

[
exp

(
−
∫ T

0
rsds

)
Lh

T

]
= Lh

TEQ

[
exp

(
−
∫ T

0
rsds

)]
= Lh

T P(0, T) = Lh
T exp (−C(T)− D(T)r0) .

Finally, we compute, using Proposition 1,

cv,a(T) = cov [log(AT), log(Lv
T)]

= E

[(∫ T

0

(
γ − σ

k
e−k(T−s)

)
dWr

s + xη
√

1 − ρ2WS
T

)

·
(

πBσ
T−1

∑
t=1

Λ(t)
∫ t

t−1
eksdWr

s

)]

= πBσ
T−1

∑
t=1

Λ(t)
∫ t

t−1

(
γ − σ

k
e−k(T−s)

)
eksds

= πBσ
T−1

∑
t=1

Λ(t)
(γ

k
(ekt − ek(t−1))− σ

2k2 e−kT(e2kt − e2k(t−1))
)

.
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4.3. Comparison of Margrabe Option Prices

We are now able to compare the two liabilities using the ALM methodology explained supra.
On one hand, the price of the option giving the right at time T to exchange the asset portfolio for the
vertical liability is equal to

pv
0 = exp

(
m̃v(T) +

1
2

s̃2
v(T)

)
Φ

(
m̃v(T) + 1

2 s̃2
v(T) +

1
2
(
s2

v(T) + s2
a(T)− 2cv,a(T)

)√
s2

v(T) + s2
a(T)− 2cv,a(T)

)

− Φ

(
m̃v(T) + 1

2 s̃2
v(T)− 1

2
(
s2

v(T) + s2
a(T)− 2cv,a(T)

)√
s2

v(T) + s2
a(T)− 2cv,a(T)

)
.

On the other hand, the price of the option giving the right at time T to exchange the asset portfolio
for the horizontal liability, which reduces to a standard put option on the asset portfolio with the strike
being equal to the final value of the horizontal liability, is equal to

ph
0 = −Φ

⎛⎝ log
(

Lh
T P(0, T)

)
− 1

2 s2
a(T)

sa(T)

⎞⎠+ Lh
T P(0, T)Φ

⎛⎝ log
(

Lh
T P(0, T)

)
+ 1

2 s2
a(T)

sa(T)

⎞⎠ .

We can now compute these option prices for a set of various investment portfolios, using the
parameters of Tables 2 and 3. Table 4 gathers the results of the comparison. Among the example
portfolios that we have considered, the “Typical insurer portfolio” is meant to mimic the investment
habits of Belgian insurers. The prices of the two options are given in this case in Table 5.

Table 3. Supplementary parameters used in the computations of the ALM comparison.

θ K η μ

1.34% 10 25% 5%

Table 4. Results of the ALM comparison for some example portfolios. The cheapest liability is the
horizontal one when H is displayed, and the vertical one when V is displayed.

Composition Cheapest Liability
Description x y z ρ = −1 ρ = −0.5 ρ = 0 ρ = 0.5 ρ = 1

Only stocks 100% 0% 0% H H V V V
Only bonds 0% 100% 0% H H H H H
Only cash 0% 0% 100% V V V V V
Stocks and bonds 50% 50% 0% H H V V V
Stocks and cash 50% 0% 50% H H V V V
Bonds and cash 0% 50% 50% V V V V V
Equal repartition 33% 33% 33% H H V V V
Typical insurer portfolio 10% 80% 10% H H V V V

Table 5. Prices of the options giving the right to exchange the “Typical insurer” asset portfolio (as
defined in Table 4) for the horizontal (resp. vertical) liability.

ρ = −1 ρ = −0.5 ρ = 0 ρ = 0.5 ρ = 1

ph
0 0.0044 0.0077 0.0112 0.0148 0.0183

pv
0 0.0108 0.0099 0.0090 0.0082 0.0073

ph
0 − pv

0 −0.0065 −0.0023 0.0022 0.0066 0.0111

Let us first consider portfolios without any stock. In the case of the “only bonds” one, the
horizontal liability is cheaper. This result is not really surprising, as this method looks like the way
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bonds produce money. On the contrary, in the case of the “only cash” portfolio, the vertical option price
is smaller. Again, this conclusion is not unexpected because this method is similar to a savings product.

When stocks are included in the portfolio, the hierarchy between the methods depends on the
correlation between stocks and rates. If ρ > 0, the stock and the cash are similar in some sense.
The vertical method is thus the cheapest one, as in the case of portfolios without stock. If, on the
contrary, ρ < 0, the asset portfolio is very different from cash, and the horizontal method is preferred.

The funding vehicle of the pension plan in question is therefore an important feature to consider
when comparing the two computation methods. The nature of this institution has indeed a strong
influence on its investment habits: insurers tend to invest a lot in bonds, while pension funds often
prefer stocks.

5. Conclusions

The two comparison methodologies give different points of view of the two computation methods.
The first one confirms what was trivially suggested by the intuition: the horizontal liability is larger than
the vertical liability in the case of a decreasing rates market, and vice versa. The second methodology
yields more interesting conclusions, as it connects the hierarchy between the two methods to the
investment profile of the institution granting the guarantee. We have seen that two methods represent
two different philosophies: the horizontal one is closer to the insurers’ asset management habits, while
the vertical one is closer to pension funds’ investment preferences. For this reason, the reform act
will possibly have consequences regarding the investment strategies of the Belgian pensions plans’
funding vehicles.

We have chosen to consider a valuation framework in order to be consistent with the IAS
philosophy, and thus with the funding vehicles’ interests. It should, however, be noted that other
methodologies would make sense. For example, it is possible to compute, instead of exchange option
prices, risk measures (such as VaR or TVaR) applied to the gap between the asset portfolio value and
the liability value.

Political circumstances have led Belgian authorities to let the choice for new pensions schemes,
but, as the results generated by the two methods are different, a whole set of legal questions arise
(out of scope here). Among them, we can mention discrimination problems (possible arbitrage by the
sponsor, see e.g., [15–17]).

Our work leaves some questions open for further research, mainly in two directions. On one
hand, we could consider the exact definition of the guaranteed rate, i.e., take into account the cap and
the floor as defined in the legal text. In order to compute options prices similar to the ones that we
have obtained with closed formulas, it would then be necessary to use numerical methods. On the
other hand, we could consider more complex models for the interest rate and the stock price, including
a more complete dependence structure between the two risk factors.
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Appendix A. Proof of Proposition 1

Proof. First, we rewrite the sum of R’s consecutive values:

1
π

T−1

∑
t=0

Rt =
T−1

∑
t=0

r10
t−2 + r10

t−1 + r10
t

3

=
T−1

∑
t=0

A + Brt−2 + A + Brt−1 + A + Brt

3

= AT + B

(
1
3

r−2 +
2
3

r−1 + r0 +
T−3

∑
t=1

rt +
2
3

rT−2 +
1
3

rT−1

)

= α + B
T−1

∑
t=1

λ(t)rt,

where we denoted the sum of the deterministic terms by α and introduced the notation λ(t) defined
in Formula (7). Using the expression for rt given by Equation (2),

1
π

T−1

∑
t=0

Rt = α + B(r0 − θ)
T−1

∑
t=1

λ(t)e−kt + Bθ
T−1

∑
t=1

λ(t) + Bσ
T−1

∑
t=1

λ(t)e−kt
∫ t

0
eksdWr

s

= α + B(r0 − θ)Λ(1) + Bθ(T − 2) + Bσ
T−1

∑
t=1

Λ(t)
∫ t

t−1
eksdWr

s ,

where we have used the notation Λ(t) defined in Formula (8), as

T−1

∑
t=1

λ(t)e−kt
∫ t

0
#

= λ(1)e−k
∫ 1

0
# + λ(2)e−k2

∫ 2

0
# + · · ·+ λ(T − 1)e−k(T−1)

∫ T−1

0
#

=
(

λ(1)e−k + λ(2)e−k2 + · · ·+ λ(T − 1)e−k(T−1)
) ∫ 1

0
#

+
(

λ(2)e−k2 + · · ·+ λ(T − 1)e−k(T−1)
) ∫ 2

1
#

+ . . .

+ λ(T − 1)e−k(T−1)
∫ T−1

T−2
#,

where # denotes any integrand. These notations seem cumbersome, but allow handling the sum of
independent stochastic integrals, which is much easier for the following computations than dependent
stochastic integrals.

The mv(T) parameter is straightforwardly obtained from the expression obtained for the sum of
R’s values. For the volatility, we compute

s2
v(T) = E

⎡⎣(πBσ
T−1

∑
t=1

Λ(t)
∫ t

t−1
eksdWr

s

)2
⎤⎦

= π2B2σ2
T−1

∑
t=1

Λ2(t)
∫ t

t−1
e2ksds

=
π2B2σ2

2k

T−1

∑
t=1

Λ2(t)
(

e2kt − e2k(t−1)
)

,

which completes the proof of Proposition 1.
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Abstract: I show that risk-sharing pension plans can reduce some of the shortcomings of defined
benefit and defined contributions plans. The risk-sharing pension plan presented aims to improve
the stability of benefits paid to generations of members, while allowing them to enjoy the expected
advantages of a risky investment strategy. The plan does this by adjusting the investment strategy
and benefits in response to a changing funding level, motivated by the with-profits contract proposed
by Goecke (2013). He suggests a mean-reverting log reserve (or funding) ratio, where mean reversion
occurs through adjustments to the investment strategy and declared bonuses. To measure the
robustness of the plan to human factors, I introduce a measurement of disappointment, where
disappointment is high when there are many consecutive years over which benefit payments are
declining. Another measure introduced is devastation, where devastation occurs when benefit
payments are zero. The motivation is that members of a pension plan who are easily disappointed or
likely to get no benefit, are more likely to exit the plan. I find that the risk-sharing plan offers more
disappointment than a defined contribution plan, but it eliminates the devastation possible in a plan
that tries to accumulate contributions at a steadily increasing rate. The proposed risk-sharing plan
can give a narrower range of benefits than in a defined contribution plan. Thus it can offer a stable
benefit to members without the risk of running out of money.

Keywords: defined contribution; defined benefit; risk-sharing; pension

1. Introduction

Risk-sharing pension plans offer a middle ground between the extremes of defined benefit
(DB) and defined contribution (DC) pension plans. They don’t promise a certain level of pension at
retirement like DB plans, but neither do they promise something that they may not deliver. They don’t
give members control over their own investment strategy like DC plans, but neither do they require
members to be financial experts. Instead, they try to pay a stable pension to the members. They try to
give members an idea of what their pension may be in retirement, but an aim or target amount rather
than a guarantee. And they try to actively maintain the sustainability of the plan to adverse investment
returns, by adjusting one or more of the investment strategy, benefits and contributions to be paid.

I discuss a model risk-sharing pension plan that adjusts only the investment strategy and
retirement benefits. It is closer to a DC plan than a DB plan. In the risk-sharing plan, the retirement
benefits are the accumulated value of the contributions. The plan reduces retirement benefit volatility
to the plan members, paying a more stable benefit to its members than under a DC plan. It does
not require additional contributions to make good a funding deficit. Instead, the benefits paid and
investment strategy adjust so that the funding level is self-correcting. Adjusting the investment strategy
means adjusting the level of investment risk taken by the plan. Moreover, the structure of the plan is
highly flexible. By changing the parameters of the plan, the amount of benefit volatility experienced
by different generations of members can be adjusted.

Risks 2017, 5, 12 60 www.mdpi.com/journal/risks
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Although DB plans are currently in decline, they have some very appealing features for their
members. A retirement “defined benefit” income or lump sum is promised to the plan members
without regard to the achieved investment return. This is very attractive to the membership since they
are insulated from the ups and downs of investment returns. However, the adverse consequence is
that a DB plan can require large cash injections from its sponsoring employer. If the sponsor does
not make the cash injections, then the plan may have to wind up and secure whatever fraction of the
promised benefits it can for its members. In recent years, poor equity returns and low interest rates
have resulted in many DB plans being underfunded [1]. As a result, many employers are closing down
their DB plans and replacing them by DC plans [2].

In contrast, DC plans are in the ascendancy in countries such as the UK and USA. They have some
very appealing features for the employer who sets them up on behalf of their employees. DC plans
require no unexpected contributions to make good a funding deficit. This means that the employer
has no uncertainty about their contribution rate to a DC plan, unlike in a DB plan. Typically, members
and the employer pay in contributions which are invested in the financial market. The accumulated
value of their contributions, which varies directly with the investment return achieved, is the value of
the benefit paid to a member at their retirement date. There are no guarantees as to the amount of the
retirement benefit, unless a financial guarantee is purchased. Thus members are exposed to the full
volatility of their investment choices. If returns are much lower than expected, members may question
the value of saving for retirement and not save enough for their retirement. Moreover, in DC plans the
member must choose the investment strategy, although many people are financially illiterate [3] and
do not consult a financial advisor ([Figure 325], [4]).

They are other types of pension plans, such as collective DC (CDC) plans. They are a type of
risk-sharing plan, which can adjust the benefits paid to members in response to achieved investment
returns. If annuities are paid as a benefit from a CDC plan, then the benefits can also be adjusted in
response to mortality experience. The Dutch hybrid pension plans [5] can be considered as the latter
type of CDC plan.

Plans with inter-generational risk-sharing, such as CDC plans and other risk-sharing plans, have
been shown to be welfare-improving, compared to the individually optimal lifecycle strategy [6,7].
This is when measuring welfare using an expected utility-of-consumption framework, and maximizing
utility across all generations. Inter-generational risk-sharing plans have higher and smoother
consumption patterns, averaged across generations, than in a pure DC plan. More generally,
risk-sharing in pension plans is discussed in Pugh and Yermo [8] and Blommestein et al. [9], both in
terms of types of risk and who bears each risk. For example, in both DB and cash-balance plans the
sponsoring employers bear the investment risk, whereas the members bear this risk in DC plans and in
the plan analyzed here. Another example are conditional indexation plans: they share investment risk
between the sponsor and the members, and the members’ basic benefit is guaranteed by the sponsor
but benefit increases are not.

Closely related to the idea of risk-sharing plans are participating policies, which are contracts
issued by insurance companies. Participating policies typically increase contributions annually at the
risk-free rate, and thus provide a minimum guarantee of the benefit paid at retirement. Briys and De
Varenne [10] study a model participating policy, focusing on the maturity value of the policy. Other
studies including the minimum guarantee are Barbarin and Devolder [11], Graf et al. [12], Grosen and
Jørgensen [13], Hieber et al. [14]. Guillén et al. [15] analyze a policy that was launched by a Danish
insurance company. The policy smooths investment returns over the contract duration, but does
not guarantee a minimum investment return. In these new contracts, there is no direct or indirect
inter-generational investment risk-sharing. Baumann and Müller [16] propose a pension plan in which
benefits are increased by the risk-free rate plus or minus a proportion of the funding level above or
below a desired funding level. They find the static investment strategy that maximizes the discounted
expected utility of employees averaged over all generations. They find that their proposed plan
increases the risk tolerance and the expected utility of the retirement benefits. Analyses of different
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surplus appropriation schemes in participating policies are provided by Bohnert and Gatzert [17] and
Zemp [18].

The risk-sharing pension plan that I study changes explicitly both the accumulation of
contributions and the investment strategy in response to changes in a notional funding level. Thus it
is not like a Dutch-style plan, nor a typically considered CDC plan in the literature, in which there
is no explicit adjustment to the investment strategy. It is an adaptation of the scheme proposed by
Goecke [19], which he proposed in the context of a with-profits contract. Unlike many with-profit
contracts, there are no investment guarantees in Goecke’s scheme, and hence there is no need for an
insurance company to financially underwrite the proposed contract. Thus Goecke’s scheme could be
considered as a type of CDC plan, since the policyholders collectively bear all of the risk. However,
Goecke [19] considers only a single generation of members, all of whom enter the contract at the same
time with the same amount of money, and obtain the terminal value of the contract at the same time.
In this paper, I analyze how the plan performs over time when there are regular withdrawals from its
assets, which is not generally a consideration for with-profits contracts and was thus, unsurprisingly,
not considered in Goecke [19].

The risk-sharing plan promises to increase the accumulated value of contributions each year in
line with the expected return on assets, adjusted for the plan being over- or under-funded relative to
a target funding level. Although the plan uses a notional funding level in its operation, benefits are
not guaranteed. While the increase in the accumulation of contributions varies each year, the idea
is that the annual variation in the accumulation increase is kept small. The notional funding level
is simply a mechanism to determine the investment strategy and accumulation on the contributions
at a selected time. The target funding level is fixed and its value helps to determine the spread of
investment returns across generations.

The plan invests its money in line with a long-term strategic investment strategy, which would be
chosen by the trustees or plan managers. However, if the plan is over-funded, then the investment
risk of its strategy is increased (and correspondingly its expected investment return is increased). The
opposite happens if the plan is under-funded: the investment risk is decreased. The two adjustments,
to the accumulated contributions and the investment strategy, act to encourage the funding level back
towards the target funding level.

I examine the robustness of the proposed risk-sharing pension plan from the viewpoint of
individual members. I believe this is more appropriate for private pension plans than a social-planning
viewpoint. Plans can fail because of what happens to one generation, regardless if they are expected to
be a success averaged across all generations.

I focus on the actual retirement benefit payments made to members, as this is the ultimate purpose
of the plan, rather than, for example, maximizing the expected utility derived from the payments. To
do this, I examine the stability of the retirement benefit payments between generations of members
and look at their distribution. Furthermore, in risk-sharing plans, it is inevitable that benefits have to
be cut for some generations. However, the benefit cuts should not be too large between generations. A
plan structure which means there is a high chance of members getting nothing is unlikely to succeed
long-term in the marketplace. Similarly if the benefits decline year-on-year. For this reason, I calculate
the probability of the plan’s assets being exhausted before all benefits have been paid, which I call
devastation, and the probabilities of benefits declining year-on-year between generations, which I
call disappointment.

I investigate (i) how changing the parameterization of the risk-sharing plan changes the range
of benefits across generations; (ii) the retirement benefit stability across generations of members; (iii)
disappointment, namely the frequency of runs of declining accumulation of contributions; and (iv)
devastation, namely the chance of the plan exhausting its assets before all members have received
their benefit.

I find that a suitably parameterized risk-sharing plan can offer a stable retirement benefit across
generations. With a suitable choice of plan-specific parameters, it has a zero chance of running out
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of money before all members have retired, for the chosen financial market model. The downside is
that members must expect that retirement benefits may decrease; there is no guaranteed minimum
retirement benefit. While this is also seen in the DC plan, and many people are in DC plans, the
risk-sharing plan members may compare themselves with other plan members and feel that they
should get more each year.

2. Risk-Sharing Plan

The risk-sharing plan has the aim of paying a reasonable retirement benefit to its members, while
maintaining the financial security of the non-retired members. Financial security is measured through
the funding level of the plan, namely the ratio of the plan’s assets to its liabilities. The most attractive
aspect is that each plan can be adjusted to the needs of the beneficiaries and sponsors, if any.

A target funding level is fixed and the plan’s managers seek to bring the funding level back to the
chosen target, by adjusting the accumulated value of the members’ contributions and the investment
strategy. The motivation is to maintain a cushion of assets as financial security for the non-retired plan
members. This is done through applying the scheme of Goecke [19], and adapting it for use as an
inter-generational pension plan.

Rather than pension plans that pay benefits, Goecke [19] studies with-profit contracts and
introduces a mechanism for the smoothing of capital market returns in them. This involves changing
the bonus declaration and the investment strategy in response to changes in the reserve ratio. A highly
attractive property is that the log reserve ratio is mean-reverting to a fixed target log reserve ratio. As
Goecke [19] studies with-profits contracts, which are held to the same maturity date, there is naturally
no consideration of payments out. However, this must be allowed for in the risk-sharing plan as a
pension plan is constantly paying out benefits to its retired members. Furthermore, I do not allow
short-selling of any asset, which is a realistic assumption for a pension plan since the plan manager
must act as a “prudent investor” [20].

2.1. Investment Strategy

Assume that time is measured in years. In the financial market, the plan can invest in a risky
stock and a risk-free bond. The annual effective return over the time period [n − 1, n) on the risky
stock is represented by the random variable Rn > −1, for n = 1, 2, . . .. For the risk-free bond, its
annual effective return over the time period [n − 1, n) is the constant r > −1. The plan’s investment
strategy at time n is represented by the proportion πn of assets invested in the risky stock, for each
n = 0, 1, 2, . . .. The proportion is determined through several elements.

One of the elements is a long-term strategic investment of sLT in the risky stock. This can be
decided by reference to the risk attitude of a typical member or, more realistically, the risk attitude of
the trustees of the plan, a small group of people who run the plan in the interests of the members. An
approach to deciding an investment strategy for a long-term investor like a pension fund is given in
de Jong [21].

Another element of the strategy is positive or negative at time n, according to the funding level Fn

of the plan. The funding level is defined as the value of assets divided by the value of the liabilities,
and it is formally defined in Section 2.3. If the plan is over-funded relative to a fixed target funding
level F ≥ 1, then it invests more in the risky stock. The idea is that the plan can risk losing money by
following a more risky investment strategy. The reverse is true when the plan is under-funded.

I impose the realistic investment constraints that the plan cannot short-sell the stock and neither
can it invest more than 100% of its asset value in the stock. Taking these constraints into account, the
total proportion of assets which are invested in the risky stock at time n, for investment over the period
[n, n + 1) is

πn := max
{

0, min
{

1, sLT + a
(

Fn − F
)}}

,

63

Bo
ok
s

M
DP
I



Risks 2017, 5, 12

in which a ≥ 0 is a constant called the investment risk adjustment that is chosen when the plan is set
up, and Fn is the plan’s notional funding level at time n. I state in Section 2.3 how the funding level
is calculated. The higher the value of the constant a, the more sensitive is the strategy to over- and
under-funding and hence the more volatile is the proportion invested in the risky stock.

2.2. Accumulation of Contributions

The members’ contributions are increased each year using a rate calculated via a pre-specified
formula. Once each member’s retirement benefit, i.e., the accumulated value of their contributions, is
paid to them as a lump sum on their retirement date, there is no more plan liability to that member.

The annual accumulation factor (AAF) granted on each member’s contributions at time n (i.e., for
accumulation from time n − 1 to time n) is

1 + r + πn−1(E(Rn)− r) + β
(

Fn− − F
)
, (1)

for n = 1, 2, . . .. The funding level Fn− is the funding level just prior to any payment made at time n
and it is defined in Section 2.3. The AAF adjustment β ≥ 0 is chosen when the plan is set-up. There
are two components to the AAF. The first is a stable return, r + πn−1(E(Rn)− r), equal to the expected
return on the assets for the current investment strategy.

The second component is a return, β
(

Fn− − F
)
, that is positive or negative according to the

funding level of the plan relative to the target. The AAF is higher when the plan is over-funded relative
to the target funding level, i.e., when Fn− > F, as the plan can afford to grant higher accumulation
factors. The higher value of the accumulated contributions acts to decrease the funding level when
the plan is over-funded. The reverse happens when the plan is under-funded. The AAF adjustment β

decrees the extent to which the AAF responds to situations of over- and under-funding; the higher the
value of β, the greater the sensitivity. Notice that if β = 0 then the AAF is not affected by deviations in
the notional funding level from the target.

Here the funding level just prior to any payment out that is made at time n is used to calculate
the AAF. If the funding level at time n was used then the AAF would have to be solved for implicitly,
which makes the accumulation calculation more opaque to the members.

Let B(k)
n denote the value of the accumulated contributions of generation k at time n, for n =

1, . . . , k. It is calculated from the previous year’s accumulated value, B(k)
n−1, and any new contributions as

B(k)
n = B(k)

n−1
(
1 + r + πn−1(E(Rn)− r) + β

(
Fn− − F

))
+ C(k)

n ,

in which C(k)
n ≥ 0 represents the new contribution made at time n = 1, . . . , k − 1 by generation

k = 2, . . . N. As generation 1 retires at time 1, the only contribution that generation 1 makes is B(1)
0 at

time 0.
The retirement benefit depends directly on the investment strategy of the risk-sharing plan. This

is not quite the same as in a DC plan, in which the contributions are increased at the rate of investment
return on the assets. For example, a DC plan has its contributions increasing at the annual rate
r + πn−1(Rn − r), i.e., with the actual return on the DC plan’s assets rather than with the expected
return, as in the risk-sharing plans considered here.

2.3. Funding Level

The funding level of the risk-sharing plan is encouraged to move towards the target funding level.
The AAF changes in response to deviations in the funding level, in order to bring the funding level
back to the target value. Simultaneously, the investment strategy adjusts its investment risk-taking,
lowering it if the plan is under-funded and otherwise raising it.
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The funding level of the risk-sharing plan at time n is

Fn :=
An

Ln
,

where An is the value of the assets at time n. The value Ln at time n, is a notional liability, since the
plan does not guarantee to pay any benefit. The plan simply accumulates contributions. However, I
regard the accumulated contributions as a notional deferred benefit. The notional liability is calculated
assuming that the accumulated contributions at time n are increased at every subsequent year by the
current expected return on the long-term investment strategy and discounted by the same expected
return. In valuing the notional liabilities like this, the idea is that the retirement benefit is intended,
but not guaranteed, to be the accumulated contributions that would be obtained from following the
strategic long-term investment strategy and receiving the expected return on that strategy. Thus for N
starting generations in the plan, of whom generations n + 1, . . . , N will retire after time n,

Ln =
N

∑
k=n+1

(
B(k)

n + C(k)
n

)
,

i.e., it is a notional liability to pay the current value of accumulated contributions to each currently
non-retired generation, including their new contributions. The notional liability at time n− includes
the generation who are about to retire at time n, but accumulates their contributions at the expected,
long-term strategic return over [n − 1, n) rather than the actual return, i.e.,

Ln− :=
(

1 + r + sLT(E(Rn)− r)
) N

∑
k=n

B(k)
n−1.

Accumulating the previous’s years contributions using the expected return on the long-term 
strategy is for two reasons: (i) to reflect the investment aim of the plan to invest in line with the 
long-term strategy; and (ii) to avoid the implicit equation involving Ln− (through Fn−) that would 
arise if we used the AAF shown in (1).

3. Illustrations

3.1. Model Parameterization

For simplicity, I assume that the risky stock’s annual effective random returns R1, R2, . . . are
independent, lognormally distributed random variables each with location parameter μ and scale
parameter σ > 0. The continuously-compounded annual risk-free rate is denoted by the constant r. To
parameterize the model, I used long-term returns. However, the risk-free bond return is “normalized”
to 0% p.a. The reason for the normalization is to make it clear when members get a higher benefit
from investing in the plan rather than investing all their money in the risk-free bond. The choice of the
risk-free rate of 0% per annum means that, for example, a member who obtains a retirement benefit
higher in value than their total contributions has done better than investing their contributions entirely
in the risk-free asset. This corresponds to an average AAF which is greater than one.

The annual return on the S&P500 index over the years 1956–1999 is about 12% with an annual
volatility of about 15%, based on the values in (Table 2.1, Hardy [22]). Over the same time period,
annual 10-year US Treasury bond returns were around 7%1. This gives the S&P500 annual return to be
about 5% above the 10-year US Treasury bond return.

1 Based on the average annual 10-year US Treasury bond returns obtained from https://fred.stlouisfed.org/series/
IRLTLT01USA156N over the years 1956–1999.
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To broadly mimic these historical long-term returns, set the financial market parameters to

r = 0, μ = 0.0375, σ = 0.15.

Then the mean annual return of the risky asset is eμ+0.5σ2 − 1 ≈ 0.05 and its annual volatility is√
eσ2 − 1 × eμ+0.5σ2 ≈ 0.15.

The long-term strategic investment in risky stocks, sLT, is set to 80%. All the figures shown in the
paper are based on 5000 simulations.

3.2. Comparison Plans

In most of the illustrations, I compare a selection of the risk-sharing pension plans to a pure
DC plan, to understand better the advantages and disadvantages of the risk-sharing plan. I do not
compare the plans to a DB plan, as the latter type of plan typically has a sponsoring employer who
makes good any deficit and this makes a like-for-like comparison difficult. The DC plan follows
exactly the long-term investment strategy of the risk-sharing plans, i.e., it invests the proportion sLT

of its assets in the risky stock, and the remainder in the risk-free asset. The strategy is rebalanced
annually to this proportion. The benefit paid to a retiring member is the accumulation of that member’s
contributions from time 0, accumulated at the actual achieved investment return. This results in a
volatile benefit payment to all members over time: the benefit can decrease as well as increase in line
with the cumulative investment return. The DC plan is always 100% funded, since the benefit promise
is to pay the accumulation of the contributions.

In the preliminary investigation, I also compare the risk-sharing plans to a benchmark plan. In the
benchmark plan, neither the investment strategy nor the AAF is adjusted for over- or under-funding,
that is a = 0 and β = 0. Instead, the AAF equals the expected investment return each year based
on the long-term strategic investment strategy sLT. This means that the benchmark plan is not a
risk-sharing plan. Assuming that sLT ∈ [0, 1], then the AAF in year n in the benchmark plan is(
1 + r + sLT(E(Rn)− r)

)
. I use this plan as a benchmark plan since it accumulates contributions at a

constant rate, up to the time that it runs out of money (although it may not run out of money). It makes
it a helpful reference line between the plots, and for this reason I keep it in the further investigation
although I do not analyze it any more.

3.3. Preliminary Investigation

3.3.1. Simple Membership Profile

As a first look at the risk-sharing plan, I assume a simple membership. Each member pays a
contribution of $1 at time 0, and nothing else. Thus B(k)

0 = 1 for k = 1, 2, . . . , N and C(k)
n = 0 for

n = 1, . . . , k − 1 and k = 2, . . . , N. At the start, there are N := 40 members in the plan, the first of
whom retires at time 1 (i.e., generation 1), the second of whom retires at time 2 (i.e., generation 2), and
so on, until the Nth member retires at time N. This assumption is made to enable a straightforward
comparison of outcomes between plans. In practice, members would be expected to pay contributions
up to their retirement. Each member’s contributions are accumulated each year, until they are paid out
at the member’s retirement date as a single lump sum. The final accumulated value of the contributions
that is paid out to each retiring member is called the retirement benefit.

3.3.2. Plans Which Vary Only the Investment Strategy

Figure 1 illustrates quantiles of the (geometric) average AAF for plans which adjust only the
investment strategy—through the parameter a—and not the accumulation factors. Rather than showing
the accumulated contributions paid at retirement, the average AAF for each year is plotted. For
example, if the AAF is 1.02 for year 1, 1.03 for year 2 and 1.05 for year 3 then the average AAF is
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approximately 1.033 = (1.02 × 1.03 × 1.05)1/3. However, the average AAF of 1.033 is displayed as
0.033 in the figures.

Figure 1. The average AAF for each generation in the model, as the investment risk adjustment (a) is
varied and the AAF adjustment (β) is set equal to zero. The target funding level is F = 100%. In this
simple membership, each of the 40 members starts with $1 at time 0, and makes no further contribution.
(a) 75% quantile, F = 100%; (b) Median, F = 100%; (c) 25% quantile, F = 100%.

Also shown in Figure 1 is a plot for a DC plan. In the DC plan, the proportion sLT of its assets is
invested in the risky stock, and the remainder in the risk-free asset. The strategy is rebalanced annually
to this proportion. The retirement benefit paid to a member is the accumulation of that member’s
contributions, accumulated at the actual achieved investment return. The solid black line shows the
average AAF for the benchmark plan.

Examining the five plans (the benchmark plan, the DC and the three risk-sharing plans) at the
three chosen quantiles, the risk-sharing plans have quite a smooth average AAF. The risk-sharing
plans have a lower inter-quartile range of average AAFs than the DC plan. The lower the value of the
parameter a in the risk-sharing plans, the lower is the inter-quartile range of the average AAF.

3.3.3. Plans Which Vary Only the AAFs

Next I consider risk-sharing plans which adjust only the AAFs—through the parameter β—and
not the investment strategy. The 25%, 50% and 75% quantiles of the (geometric) average AAF is shown
in Figure 2. Again, the DC and benchmark plan quantiles are also shown. It is observed than the
risk-sharing plans do not have the same smooth average AAF as when the investment strategy is
adjusted. As in the latter plans, the risk-sharing plans have a lower inter-quartile range of average
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AAFs than the DC plan, although the range is wider. The lower the value of the parameter β in the
risk-sharing plans, the lower is the inter-quartile range of the average AAF. The figures suggests that
the parameter β, which adjusts the annual accumulation factors, has a lesser effect on the AAFs than
the parameter a, which adjusts the investment strategy.

Figure 2. The average AAF for each generation in the model, as the AAF adjustment (β) is varied and
the investment risk adjustment (a) is set equal to zero. The target funding level is F = 100%. In this
simple membership, each of the 40 members starts with $1 at time 0, and makes no further contribution.
(a) 75% quantile, F = 100%; (b) Median, F = 100%; (c) 25% quantile, F = 100%.

3.3.4. Devastation

Although the benchmark plan is promising to pay out a constant average AAF, of around 1.04 per
annum (which is displayed as 0.04 in the figures), it may run out of money before the last generation
has retired. To capture the catastrophic risk that a plan runs out of money before all members have
retired, I introduce a measure of devastation. This counts the number of consecutive years in which
retiring members receive zero retirement benefits. Doing this across all simulations, I can calculate
the probability of two or more consecutive generations of members receiving zero retirement benefits,
the probability of three or more consecutive generations receiving zero retirement benefits, and so
on. As there is no sponsoring employer for any of the plans considered, then a probability of 30% of
two or more generations receiving zero retirement benefits means that there is a 30% chance of the
plan running out of money on or after the (N − 2)th generation, where the Nth generation is the last
generation to retire. The devastation measure is zero for the DC plan, since there is no risk-sharing,
and it is therefore not shown in the devastation plots.
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On the devastation measure, none of the plans in which only the investment strategy is adjusted
perform particularly well (Figure 3). For these plans and the benchmark plan, there is a 60%–70%
chance of the plan running out of money just before the last generation has retired (shown in Figure 3
as the left-most probabilities plotted for each plan). The risk-sharing plans have a higher probability
of this event than the benchmark plan. However, this varies across the retirement times. There is
around a 35% chance of all the plans running out of money just before the 31st generation has retired
(shown in Figure 3 as the probabilities for 9 consecutive years of zero benefits). For generations retiring
earlier than the 31st, the benchmark plan performs worse than the risk-sharing plans. For example,
the benchmark plan has a 10% chance of running out of money just before the 25th generation has
retired, and the corresponding probability for the considered risk-sharing plans is below 10% (shown
in Figure 3 as the probabilities for 15 consecutive years of zero benefits). Risk-sharing plans with a
lower value of the parameter β have a probability of running out of money which is closer to that of
the benchmark plan.

Figure 3. Devastation. The number of consecutive years in which there is no retirement benefit paid to
a retiring generation, plotted against the probability. The investment risk adjustment (a) is varied and
the AAF adjustment (β) is set equal to zero, and the target funding level F = 100%.

Plotting the devastation measure for plans in which only the AAFs are adjusted, Figure 4 is
obtained. Here, the difference of the risk-sharing plans from the benchmark plan is dramatic. The
chance of the risk-sharing plans running out of money is significantly less than for the benchmark plan.
The higher the value of the AAF adjustment β, the lower is this probability. However, it is important to
note that although the members may receive something, the amount of their retirement benefits may
be small.
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Figure 4. Devastation. The number of consecutive years in which there is no retirement benefit paid
to a retiring generation, plotted against the probability. The AAF adjustment (β) is varied and the
investment risk adjustment (a) is set equal to zero, and the target funding level F = 100%.

3.3.5. Preliminary Findings

This preliminary investigation indicates the impact of the two adjustment factors. The average
AAF is most sensitive to the investment strategy adjustment a. Choosing a positive value of a can
reduce the inter-generational volatility of the retirement benefit, i.e., maintain a relatively steady
increase in the AAF as the generations retire. However, the chance of the plan running out of money
is most sensitive to the AAF adjustment β. Choosing a positive value of β can reduce the chance of
the plan running out of money. For this reason, in the sequel, I examine plans in which both a and β

are positive.

3.4. Further Investigation

Here I examine a different selection of the risk-sharing plans under a more realistic membership.
In the selection of risk-sharing plans, both the adjustments a and β are positive. I also introduce
a measure of disappointment that measures the year-on-year decline in the AAFs and their average.
Examining the devastation measure is not meaningful for the membership, in which non-retired
members make annual contributions. Due to the annual contributions, the plans do not run out
of money.

The critical element to examine is the retirement benefit paid to the members, as this is the purpose
of the plan. I look at the quantiles of the retirement benefit paid to each generation because this is
important to an individual. I do not look at the expected retirement benefit across all generations. A
beneficiary does not care if across all generations, the retirement benefit of Plan A is higher than Plan
B, if they themselves get a lower benefit under Plan A than under Plan B.

Some questions to ask are: are the AAFs and their average high enough for each generation? Are
they stable enough across the generations? Are earlier generations benefiting at the expense of the later
generations, or vice versa? Through a numerical investigation, it is seen that the expected answers
to these questions depend heavily on the choice of the three plan parameters: the investment strategy
adjustment a, the AAF adjustment β and the target funding level F.

3.4.1. Selected Risk-Sharing Pension Plans

I choose three plans which combine adjustments to both the benefits and the investments strategy,
but which—for the chosen financial market model—do not result in the plan running out of money
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before all members have retired. I continue to keep the benchmark plan in, as a benchmark plan. The
parameters of the plans are shown in Table 1.

Table 1. Plan parameters for the risk-sharing plans.

Plan Type Investment Risk Adjustment a AAF Adjustment β

Benchmark plan 0 0
Risk-sharing 0.2 0.2
Risk-sharing 0.2 0.4
Risk-sharing 0.4 0.2

DC plan N/A N/A

3.4.2. Membership Profile

There are N := 40 generations at time 0, the first generation retiring at time 1, the second
generation at time 2, and so on. The kth generation contributes $(N + 1 − k) to the plan as an initial
lumpsum payment at time 0, for k = 1, 2, . . . , 40. Additionally, each generation pays an annual
lumpsum contribution of $1 at each integer time before their retirement time. Thus generation 1 pays
only a lumpsum of $N at time 0, and nothing else until their retirement at time 1. Generation 2 pays
a lumpsum of $(N − 1) at time 0, another contribution of $1 at time 1, and nothing else until their
retirement at time 2. In the introduced notation, B(k)

0 = N + 1 − k for k = 1, 2, . . . , N, and C(k)
n = 1 for

n = 1, . . . , k − 1, for k = 2, . . . , N. The motivation is to represent the contribution profile of a more
realistic membership. Moreover, by fixing the total amount of contributions made by each generation
at $N, it makes the measure of disappointment introduced below more meaningful: members who
contribute the same amount may feel that they should receive similar benefits.

The notional funding level of each risk-sharing plan is exactly equal to 100% at time 0.

3.4.3. Quantiles of the Average AAF

Figure 5 shows the 25%, 50% (median) and 75% quantiles of the annualized average accumulation
factor under the selected risk-sharing plans, the DC plan and the benchmark plan. The target funding
level is F = 100% for the risk-sharing plans. It can be seen that up to, roughly, the 25th generation, the
average AAF is more stable (i.e., has a lower inter-quartile range) under the risk-sharing plans than
the DC plan. Past the 25th generation, the differences in inter-quartile range between the risk-sharing
plans and the DC plan is not significant. The median average AAF has a decreasing trend as time
increases for the risk-sharing plans, whereas it is flat for the DC plan.
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Figure 5. The annualized average accumulation factor for each generation in the model, for the more
realistic membership, as both the investment risk adjustment (a) and the AAF adjustment (β) are varied.
The target funding level is F = 100%. In this membership profile, the kth generation contributes
$(40 − k + 1) at time 0, and contributes a further $1 per annum at the end of each year that they are not
retired. (a) 75% quantile, F = 100%; (b) Median, F = 100%; (c) 25% quantile, F = 100%.

The widest range of possible retirement benefits is with the DC plan. The earliest generations of the
DC plan experience a huge range of possible benefits, although this declines with the investment period.

Increasing the target funding level to F = 120% for the risk-sharing plans, Figure 6 shows the
same quantiles. Since the risk-sharing plans are only 100% funded at time 0, they attempt to reach the

72

Bo
ok
s

M
DP
I



Risks 2017, 5, 12

target funding level through reducing the AAFs (via the adjustment β) and reducing the investment in
the risky stock (via the adjustment a). This is observed in the figures, as the average AAF is below one
(shown in Figure 6 as negative values, since the figure displays the value of the average AAF minus
one) for the earliest retiring generations, and becomes greater than one (shown in Figure 6 as positive
values) for the later generations as the target funding level is attained. The average AAF remains
more stable (i.e., has a lower inter-quartile range) under the risk-sharing plans than the DC plan, for
generations up to, roughly, the 30th.

Figure 6. The annualized average accumulation factor for each generation in the model, for the more
realistic membership, as both the investment risk adjustment (a) and the AAF adjustment (β) are varied.
The target funding level is F = 120%. In this membership profile, the kth generation contributes
$(40 − k + 1) at time 0, and contributes a further $1 per annum at the end of each year that they are not
retired. (a) 75% quantile, F = 120%; (b) Median, F = 120%; (c) 25% quantile, F = 120%.
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The shift in the median quantile, between Figures 5b and 6b, is interesting. For the higher target
funding level F = 120%, the median average AAF has an increasing trend as time increases for the
risk-sharing plans. This is the opposite trend to the plans with a target funding level F = 100%. The
conclusion is that the target funding level can be used to shift the investment gains from the latest
retiring generations to the earliest retiring generations. The reason for this shift is that the plan attempts
to build up a cushion of assets, to reach the target funding level F = 120%. This cushion comes at the
expense of the earlier generations, who pay for it and hence who are more likely to receive a lower
average AAF than the later generations.

The figures demonstrate the flexibility of the risk-sharing plan; the plan parameters allow us to
adjust the average AAF quantiles (and hence the amount of retirement benefit) across the generations.

3.4.4. Analyzing Benefit Stability

Here I analyze the stability of the average AAFs across generations for each plan. Rather than
looking at means, I try to capture the spread of the possible average AAFs through an inter-quantile
range. Setting for generation n = 1, 2, . . . , 40,

IQRn := 95% average AAF quantile of nth generation
−5% average AAF quantile of nth generation,

Next I calculate the range of {IQRn}n=1,...,40 for each plan, namely

IQR instability := max
n=1,2,...,40

{IQRn} − min
n=1,2,...,40

{IQRn}.

A plan with low instability should have an average AAF whose 5% to 95% quantile range does
not change much between generations. However, this does not tell us whether the values in the range
change between generations; a plan can have zero instability but generation 1 faces an average AAF in
the range [0%, 3%], generation 2 in the range [1%, 4%], and so on. The disparity between the values
of the average AAF is also important, so that a plan does not give highly negative increases to the
earlier generations and highly positive increases to the later generations, or vice versa. To capture the
latter, define

Quantile inequity := max
n=1,2,...,40

{95% average AAF quantile of nth generation}
− min

n=1,2,...,40
{5% average AAF quantile of nth generation}.

The lower the quantile inequity, the lower is the overall range of the average AAFs across all
generations. This means that a plan with a low quantile inequity does not have the earlier generations
benefiting at the expense of the later generations, or vice versa.

A narrower measure is the median inequity, which looks at the range of the median average AAF
across all generations.

Median inequity := max
n=1,2,...,40

{50% average AAF quantile of nth generation}
− min

n=1,2,...,40
{50% average AAF quantile of nth generation}.

Table 2 shows the values of instability and inequity of the plans, for different target funding levels.
Note that the values for the DC plan do not depend on the target funding level.
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Table 2. Instability and inequity, across the generations for different target funding levels.

Plan Type a β
Target Funding Level F = 100%

IQR
Instability

Qu. Inequity
Median
Inequity

Risk-sharing 0.2 0.2 9.4% 10.3% 3.8%
Risk-sharing 0.2 0.4 15.7% 15.7% 3.7%
Risk-sharing 0.4 0.2 9.7% 10.5% 3.8%

DC N/A N/A 40.7% 40.7% 3.3%

Plan Type a β
Target Funding Level F = 120%

IQR
Instability

Qu. Inequity
Median
Inequity

Risk-sharing 0.2 0.2 9.5% 12.1% 4.4%
Risk-sharing 0.2 0.4 14.9% 19.4% 8.9%
Risk-sharing 0.4 0.2 9.5% 12.2% 4.6%

DC N/A N/A 40.7% 40.7% 3.3%

The risk-sharing plans have significantly lower values of IQR instability and quantile inequity
than the DC plan. Thus, in terms of having a low range of possible average AAFs faced by different
generations between the 5% and 95% quantiles, the risk-sharing plans perform well. The lowest
measures are seen in the two plans with β = 0.2. Looking further down the table, the IQR instability
measures decline for the risk-sharing plans as the target funding level increases, but this is at the cost
of the quantile inequity increasing. Thus while the 5%–95% inter-quantile range declines over all
generations, the range of possible values that the average AAF can take increases.

Interestingly, the DC plan has the lowest median average AAF inequity. For the risk-sharing
plans, the median inequity rises as the target funding level rises. This is the due to the plans starting
with a funding level of 100%, and therefore being under-funded relative to the higher target funding
levels considered. Earlier generations are granted lower AAFs as the plan attempts to reach the target
funding level. Later generations gain from the lower payments out from the plan’s assets and the
accumulated investment returns.

3.4.5. Disappointment

Although reducing the accumulated contributions is a integral part of the considered risk-sharing
plans, perhaps some plan structures result in a higher chance of reductions in the accumulated value
of contributions than others. If reductions occur too often, then it is possible that members will exit the
plan. They will compare what they are getting with the recently retired members, and will be unhappy
if they get a lower retirement benefit than them [23–26]. I call this member disappointment.

Member disappointment is related to disappointment aversion, which was introduced by Gul [27].
Ang et al. [28] develop a portfolio choice framework under disappointment aversion preferences, using
a dynamic CRRA problem. Fielding and Stracca [29] analyze both loss and disappointment aversion,
and find that stocks may disappoint in the long term.

Here I introduce a way of trying to measure retiring members’ disappointment if their average
AAF is less than the average AAF for the previous year’s retiring generation. To measure member
disappointment over two consecutive years, in each simulation I count the number of runs of exactly
two consecutive years in which the average AAF is strictly declining. Doing this across all simulations, I
calculate the probability of having two consecutive years in which the average AAF is strictly declining.
Using the same approach, I calculate the probability of having three consecutive years in which the
average AAF is strictly declining. I repeat this for four consecutive years, five consecutive years and so
on. The resulting probability can be used to see the frequency of runs of declining average AAFs.

Figures 7 and 8 show the probability of disappointment for the plans, i.e., the probability of a fixed
number of years of declining average AAF, for a target funding levels of 100% and 120%, respectively.

75

Bo
ok
s

M
DP
I



Risks 2017, 5, 12

Members of the plans with the higher target funding level F = 120% (Figure 8) are less likely to suffer
disappointment. Thus the higher target funding level gives more security to the members. In all
figures, it is observed that members of the risk-sharing plans are more likely to suffer declining average
AAFs than DC plan participants. Therefore, communication of this possibility to members is essential
for risk-sharing plans.

Figure 7. Disappointment for the more realistic membership when the target funding level F = 100%.
The probability of a declining average AAF plotted against the number of consecutive years that the
decline occurs over. Both the investment risk adjustment (a) and the AAF adjustment (β) are varied.

Figure 8. Disappointment for the more realistic membership when the target funding level F = 120%.
The probability of a declining average AAF plotted against the number of consecutive years that the
decline occurs over. Both the investment risk adjustment (a) and the AAF adjustment (β) are varied.

Figures 9 and 10 show the probability of disappointment for the plans, but for the AAF instead of
the average of the AAFs. The message is the same, albeit the disappointment measure is very close to
that of the DC plan. Disappointment is reduced by increasing the target funding level. This suggests
that members who are easily disappointed should be in a plan with a higher target funding level.
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Figure 9. Disappointment for the more realistic membership when the target funding level F = 100%.
The probability of a declining AAF plotted against the number of consecutive years that the decline
occurs over. Both the investment risk adjustment (a) and the AAF adjustment (β) are varied.

Figure 10. Disappointment for the more realistic membership when the target funding level F = 120%.
The probability of a declining AAF plotted against the number of consecutive years that the decline
occurs over. Both the investment risk adjustment (a) and the AAF adjustment (β) are varied.

4. Conclusions

The risk-sharing plan presented enables its members to receive more stable increases on their
contributions than under a DC plan. However, the downside is that members may face year-on-year
reductions in the accumulated value of their contributions, which I call disappointment. There is a
higher chance of this than under a DC plan, for the chosen financial market model and membership
profile. The possibility of members’ accumulated contributions declining over time would need to
be well-communicated to them. However, as the average accumulation factors on the contributions
made in the risk-sharing plan are more stable than under a DC plan, a risk-sharing plan may allow
members to plan better for their retirement since they have more certainty about the amount of their
retirement benefit.
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The chance of year-on-year reductions in the accumulated value of contributions can be reduced
by increasing the target funding level. This suggests that members who wish to reduce the chance
of reductions should be in a plan with a higher target funding level. However, increasing the target
funding level means that earlier generations pay for a cushion of assets from which they may not
benefit. Instead, the later retiring generations are more likely to benefit from the cushion, in the form
of higher accumulation factors granted on their contributions.

The choice of the plan parameters—which determine by how much to adjust the investment
strategy, the accumulation factors and the target funding level—are critical to the sustainability of
the plan, and the degree of risk-sharing between generations. Based on the studied plans, I draw
the following conclusions. The accumulation factor granted on contributions is most sensitive to the
parameter that adjusts the investment strategy. The chance of the plan running out of money is most
sensitive to the parameter that adjusts the accumulation factors. The target funding level can be used
to shift the level of accumulation factors between generations; a higher target funding level means that
earlier generations are granted lower accumulation factors than later generations, and vice versa.

The choice of the plan parameters requires a careful study of the expected membership profile,
allowing for a financial market model or models. A preliminary analysis by the author, using the
membership profiles analyzed in the paper, suggests that the conclusions continue to hold when
the financial model is changed. While this paper analyzes a selection of the plan parameters, any
implementation in practice would require further analysis to choose appropriate values for the expected
plan membership.

Acknowledgments: The author gratefully acknowledges the financial support of the 2013 Individual Grant
received from The Actuarial Foundation. The author thanks the reviewers of the paper, who made valuable
comments which helped to greatly improve the paper.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Ramaswamy, S. The Sustainability of Pension Schemes; Technical Report; Working Papers No. 368; Bank for
International Settlements: Basel, Switzerland, 2012.

2. Franzen, D. Managing Investment Risk in Defined Benefit Pension Funds; Technical Report; Organisation for
Economic Co-Operation and Development; OECD Working Papers on Insurance and Private Pensions;
Number 38; OECD Publishing: Paris, France, 2010.

3. Lusardi, A.; Mitchell, O. Financial literacy around the world: An overview. J. Pension Econ. Financ. 2011, 10,
497–508. [CrossRef]

4. Greenwald & Associates. 2015 Risks and Process of Retirement Survey; Technical Report; Society of Actuaries:
Schaumburg, IL, USA, January 2016.

5. Ponds, E.; Riel, B. Sharing risk: The Netherlands’ new approach to pensions. J. Pension Econ. Financ. 2009, 8,
91–105. [CrossRef]

6. Cui, J.; de Jong, F.; Ponds, E. Intergenerational risk sharing within funded pension schemes. J. Pension Econ.
Financ. 2011, 10, 1–29. [CrossRef]

7. Gollier, C. Intergenerational risk-sharing and risk-taking of a pension fund. J. Public Econ. 2008, 92, 1463–1485.
[CrossRef]

8. Pugh, C.; Yermo, J. Funding Regulations and Risk-Sharing; Technical Report; Organisation for Economic
Co-operation and Development; OECD Working Papers on Insurance and Private Pensions; Number 17;
OECD Publishing: Paris, France, 2008.

9. Blommestein, H.; Janssen, P.; Kortleve, N.; Yermo, J. Evaluating the Design of Private Pension Plans: Costs and
Benefits of Risk-Sharing; Technical Report; Organisation for Economic Co-operation and Development; OECD
Working Papers on Insurance and Private Pensions; Number 34; OECD Publishing: Paris, France, 2009.

10. Briys, E.; de Varenne, F. On the risk of insurance liabilities: Debunking some common pitfalls. J. Risk Insur.
1997, 64, 673–694. [CrossRef]

11. Barbarin, J.; Devolder, P. Risk measure and fair valuation of an investment guarantee in life insurance.
Insur. Math. Econ. 2005, 37, 297–323. [CrossRef]

78

Bo
ok
s

M
DP
I



Risks 2017, 5, 12

12. Graf, S.; Kling, A.; Ruß, J. Risk analysis and valuation of life insurance contracts: Combining actuarial and
financial approaches. Insur. Math. Econ. 2011, 49, 115–125. [CrossRef]

13. Grosen, A.; Jørgensen, P. Fair valuation of life insurance liabilities: The impact of interest rate guarantees,
surrender options, and bonus policies. Insur. Math. Econ. 2000, 26, 37–57. [CrossRef]

14. Hieber, P.; Korn, R.; Scherer, M. Analyzing the effect of low interest rates on the surplus participation of life
insurance policies with different annual interest rate guarantees. Eur. Actuar. J. 2015, 5, 11–28. [CrossRef]

15. Guillén, M.; Jørgensen, P.; Nielsen, J. Return smoothing mechanism in life and pension insurance. Insur.
Math. Econ. 2006, 38, 229–252. [CrossRef]

16. Baumann, R.; Müller, H. Pension funds as institutions for intertemporal risk transfer. Insur. Math. Econ. 2008,
42, 1000–1012. [CrossRef]

17. Bohnert, A.; Gatzert, N. Analyzing surplus appropriation schemes in participating life insurance from the
insurer’s and the policyholder’s perspective. Insur. Math. Econ. 2012, 50, 64–78. [CrossRef]

18. Zemp, A. Risk comparison of different bonus distribution approaches in participating life insurance.
Insur. Math. Econ. 2011, 49, 249–264. [CrossRef]

19. Goecke, O. Pension saving schemes with return smoothing mechanisms. Insur. Math. Econ. 2013, 53, 678–689.
[CrossRef]

20. Galer, R. “Prudent Person Rule” Standard for the Investment of Pension Fund Assets; Technical Report;
Organisation for Economic Co-Operation and Development; Financial Market Trends; Number 83; OECD
Publishing: Paris, France, November 2002.

21. De Jong, F. Pension fund investments and the valuation of liabilities under conditional indexation.
Insur. Math. Econ. 2008, 42, 1–13. [CrossRef]

22. Hardy, M. Investment Guarantees: Modeling and Risk Management for Equity-Linked Life Insurance; Wiley Finance:
Hoboken, NJ, USA, 2003.

23. Boyce, C.; Brown, G.; Moore, S. Money and happiness: Rank of income, not income, affects life satisfaction.
Psychol. Sci. 2010, 21, 471–475. [CrossRef] [PubMed]

24. Clark, A.; Senik, C. Who compares to whom? The anatomy of income comparisons in Europe. Econ. J. 2010,
120, 573–594. [CrossRef]

25. Luttmer, E. Neighbors as negatives: Relative earnings and well-being. Q. J. Econ. 2005, 120, 963–1002.
[CrossRef]

26. Wolbring, T.; Keuschnigg, M.; Negele, E. Needs, comparisons, and adaptation: The importance of relative
income for life satisfaction. Eur. Sociol. Rev. 2013, 29, 86–104. [CrossRef]

27. Gul, F. A theory of disappointment aversion. Econometrica 1991, 59, 667–686. [CrossRef]
28. Ang, A.; Bekaert, G.; Liu, J. Why stocks may disappoint. J. Financ. Econ. 2005, 76, 471–508. [CrossRef]
29. Fielding, D.; Stracca, L. Myopic loss aversion, disappointment aversion, and the equity premium puzzle.

J. Econ. Behav. Organ. 2007, 64, 250–268. [CrossRef]

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

79

Bo
ok
s

M
DP
I



Article

The Shifting Shape of Risk:
Endogenous Market Failure for Insurance

Thomas G. Koch

Bureau of Economics, Federal Trade Commission, Washington, DC 20580, USA; tkoch@ftc.gov;
Tel.: +1-512-809-8014

Academic Editor: Luca Regis
Received: 6 July 2016; Accepted: 9 December 2016; Published: 27 January 2017

Abstract: This article considers an economy where risk is insurable, but selection determines the pool
of individuals who take it up. First, we demonstrate that the comparative statics of these economies
do not necessarily depend on its marginal selection (adverse versus favorable), but rather other
characteristics. We then use repeated cross-sections of medical expenditures in the U.S. to understand
the role of changes in the medical risk distribution on the fraction of Americans without medical
insurance. We find that both the level and the shape of the distribution of risk are important in
determining the equilibrium quantity of insurance. Symmetric changes in risk (e.g., shifts in the
price of medical care) better explain the shifting insurance rate over time. Asymmetric changes
(e.g., associated with a shifting age distribution) are not as important.

Keywords: risk sharing; medical insurance; adverse selection
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1. Introduction

This article considers how the price for insurance and the number of people insured varies when
the risk and other characteristics of the population change. We study these relationships, known as
comparative statics, for insurance markets that suffer from either adverse or advantageous selection,
and then consider the specific case of medical insurance markets.

The comparative statics of medical insurance markets is of interest, as these markets leave millions
of Americans uninsured against medical risk. Eighty percent of the private medical insurance in the
US is employer-provided1, and employers are not allowed to discriminate according to relevant
demographic and medical information when they price insurance provided to their employees.2

Policies, such as the income-tax deductability of health insurance, or a “Cadillac tax” on expensive
health plans, should induce changes in prices and quantity. I demonstrate that increases in the cost
of insurance, such as the “Cadillac tax”, may actually increase the amount of insurance, rather than
decrease it. The actual price and quantity effects of policies designed to shift either the supply or
demand curves in insurance markets may have counter-intuitive effects. For example, many aspects of
the Affordable Care Act (ACA), such as the Cadillac tax or ACA plan subsidies, that are designed to
decrease or increase the amount of insurance, respectively, may have opposite effects.

In these models, the amount of risk left uninsured due to selection depends upon the distribution
of risks—for example, what is the ratio of high-cost to low-cost individuals, and how different in
average costs are high- and low-cost individuals. We use repeated cross-sections of medical expenditure

1 This number is based upon the author’s calculations using the MEPS, which is described below.
2 This is why a menu of contracts is unlikely to solve the adverse selection problem here: any separate pooling they could

induce would rely on indirect, and possibly manipulable, correlates with expected cost.
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data to infer such ratios, and use them in a model of insurance markets with asymmetric information.
I also find that changes to the distribution of medical risk faced by consumers in recent years should
have lead to more expensive medical insurance. It should also have lead to more people with
medical insurance.

The price of employer-provided medical insurance to cover a single employee has grown five
percent a year from 1996 to 2005. The price of family coverage has grown 5.7 percent per year over the
same period.3 At the same time, more Americans have gone without medical insurance. Among the
non-poor and non-elderly, the percentage of individuals without private insurance rose 22 percent
(18 percent to 22) from 1996 to 2004.4

One explanation for higher insurance prices is the well-documented growth in average medical
spending (Swartz [1]; Freudenheim [2]). As medical costs grow, the supply curve for medical insurance
shifts up, and induces movement along the demand curve. This new equilibrium price is higher,
while equilibrium quantity is lower. However, changes in the distribution of medical expenditures
(e.g., mean, median, variance, etc.) are the result of changes in the distribution of medical risk.
In this case, the demand curve also shifts up. The new equilibrium price is larger, but whether the new
equilibrium quantity is larger or smaller is unclear.

This article attempts to disentangle these changes. This study complements the findings of Gruber
and Levy [3], which documented similar (though differently measured) changes to the distribution of
medical risk. We use changes in the distribution of medical expenditures in the US to infer changes
in the distribution of medical risk. We then take these measured differences in the distribution of
medical risk into a quantitative model of insurance choice with asymmetric information. We find that
measured changes in the distribution of medical risk should have made insurance more expensive and
more prevalent. While the former trend is consistent with the data, the latter is not.

This work can help shed light on recent research that considers alternative risk-adjustment factors;
that is, what kinds of information could be used to price insurance that would limit the amount of
market failure due to adverse selection. Both [4,5] find evidence that age-based health insurance prices
may drive some of those age-specific markets to collapse. Here, we identify some of the characteristics
of risk pools that make them sustainable.

The lessons from this exercise go beyond the sectoral concerns of medical insurance. If the source
of uninsurance in other markets is asymmetric information, then this reminds us that distributions
matter. If there is an across-the-board increase in risk, then insurance markets likely would provide
more insurance, instead of less, as the demand curve shifts out further than the supply curve because
of risk aversion. Furthermore, it introduces the notion that comparative statics do not depend upon the
nature of the selection (adverse vs. advantageous). Instead, the comparative statics depend upon the
stability of the equilibrium. For example, if wage volatility goes up, it matters whose wage volatility
goes up.

This also relates to the market failure as discussed in recent work on insurance against aggregate,
catastrophic risk [6–8]. When a natural disaster strikes, it may test the solvency of the risk pool, leading
to partial insurance. The risks under study here have idiosyncratic realizations, as opposed to the
widespread loss of property due to an earthquake or hurricane. For example, we do not consider
how insurance markets might deal with a flu pandemic. Likewise, the tax subsidy of health insurance
should mitigate adverse selection, and the indirect nature of the contract (typically via employers,
instead of directly to consumers) may also influence the extent of adverse selection.

3 The level changes from 1996 to 2005 for these two prices is 1992 to 3227, and 4954 to 8675, as reported by the MEPS-IC.
These calculations adjust for changes in the price level, as measured by the Urban CPI.

4 These numbers are calculated from the MEPS-HC, which collects information from a nationally-representative sample
of households.
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2. A General Framework with Initial Results

Suppose there is a unit measure of risk-averse agents, heterogenous in their financial risk, x̃.
Each agent’s risk is characterized by λ ∈ R, with conditional expectation E [x̃|λ] ∈ R. Risk types
are distributed according to a second distribution, λ ∼ Γ. Agents with wealth w and preferences
u(·)5 have a willingness to pay for insurance, π(λ), which is the dollar amount that makes the agent
indifferent between paying π(λ) for insurance, or facing the risk without insurance:

u(w − π(λ)) = E[u(w − x̃)|λ].

Risk aversion means that willingness to pay for insurance is greater than expected outcome.
An agent purchases insurance if his or her willingness to pay for insurance is larger than its price,
� ∈ R—that is, if π ≥ �, and not otherwise. An inverse demand function, π−1(�), provides the risk
type(s) associated with a particular level of demand at price �.

The demand curve for insurance is simply the ordering of the individual demands:

D(�) = 1 − Γ(π−1(�)).

The demand curve is downward sloping by construction.
We assume that insurance firms provide insurance via price competition. These firms cannot

provide risk-type contingent contracts because of asymmetric information. The sources of this
asymmetric information may either be based in the microfoundations of the model, or due to legal
constraints imposed upon insurers. In the case of the US medical insurance market, the latter case
is certainly true—firms that offer their workers medical insurance are not allowed to discriminate
the premiums paid for that insurance according to individual criteria such as age, gender, and health
status. Given that employer-provided insurance is the dominant source of insurance, it is a reasonable
assumption for this question.

Thus, firms offer a full insurance at price �, and agents select into the contract according to their
demand. The firm’s per-contract profit is:

Π = � −E [x̃|π(λ) ≥ �] .

Free entry drives the expected profits of insurance firms to zero. Thus, the supply curve is the
average cost of supplying insurance to the first 1 − Γ(π−1(�)) agents who select into it. The shape of
supply curve is determined by the mechanics of marginal selection at every price. The supply curve
may or may not be monotonic, depending upon the expected cost of the each agent, relative to the
average cost of the agents up to that agent.

An equilibrium is a price of insurance, �, and set of agents, Λ ⊂ Γ, who select, or pool, into that
insurance contract, that are consistent with price equals average cost. Five equilibria types are possible:

• Downward-sloping demand and upward-sloping supply: in this case, the marginal agents are
more expensive than the average agent;

• Downward-sloping demand and supply with, from left to right:

– demand going from above to below supply;
– demand going from below to above supply;
– supply and demand just tangent, with supply above demand; and
– supply and demand just tangent, with demand above supply.

5 It will be assumed that marginal utility does not change with the realization of the risk, besides the risk’s effect on the
agent’s consumption level. If the risk changed the agent’s marginal utility, then the agent may want consumption levels that
are unequal between different outcomes of the realization. While such circumstances may be interesting, state-dependent
utility functions are beyond the scope of study here.
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The first equilibrium exhibits local favorable selection, as in Jovanovic [9]. This could be due to
heterogeneneity in risk preferences that was negatively correlated with expected cost. Alternatively,
the final four equilibria exhibit local adverse selection. This typology of equilibria is necessary because
different types of equilibria have different comparative statics. For the balance of the article, the
tangency equilibria will be ignored, as they are not robust to changes in the supply and demand
curves—either the equilibrium vanishes (supply and demand no longer cross), or two equilibria
emerge from the changes (they further overlap).

Consider the second and third types. Suppose there is an outward shift of demand without a
shift in supply—for example, if agents become more risk averse. When demand starts above supply,
the new equilibrium supports more insurance at a lower price. The price falls because the selection is
locally adverse. However, when supply begins above demand, the shift in the demand curve leads to
less insurance at a higher price. These two cases are demonstrated in the sub-figures of Figure 1.

The response to a change in preferences can be characterized according to an
equilibrium’s stability.

Definition 1. An equilibrium characterized by its marginal agent λm is locally stable, if, for all local ε > 0,

�(λm + ε) ≥ π(λm + ε)

and
�(λm − ε) ≤ π(λm − ε).

The stability refinement is similar to the trembling-hand refinement of Selten [10], and the stability
refinement of Kohlberg and Mertens [11]. This refinement is intuitive—the equilibria in this model are
pooling equilibria. The first and second equilibria are stable, while the third is not.

(a) (b)

Figure 1. Supply and demand for insurance with asymmetric information and changes in demand.

Changes in preferences are generally difficult to identify, whereas it may be more feasible to
identify changes to the distribution of risk, Γ. Changes to the distribution of risk can be classified as
symmetric or asymmetric. First, consider asymmetric changes. Such changes have consequences for
the average cost (supply) curve, with relatively modest effects on the marginal benefit (demand) curve.
Figure 2 presents the three cases of interest—a (stable) equilibrium with favorable selection, and two
equilibria exhibiting adverse selection, one stable and the other unstable.
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(a)

(b) (c)

Figure 2. Supply and demand for insurance with asymmetric information and asymmetric changes to
cost (i.e., no change in marginal demand).

The comparative statics depend upon the stability of the equilibrium. A shift up in the supply
curve without a commensurate shift in the demand curve will lead to less insurance (a smaller
pool) if we consider a stable equilibria. However, if we consider unstable equilibria, the opposite is
true—a shift up in the supply curve will lead to an increase in the amount of insurance provided in
spite of asymmetric information.

The number and stability of equilibria depend upon the micro-foundations of the
model—preferences, and risk types and distributions, for example. In order to more clearly understand
the relationship between risk and insurance in spite of asymmetric information, more assumptions
are required.

3. A Series of Instructive Numerical Examples

Consider an economy with two types of agents who face a Bernoulli risk—they may catch an
illness and have to go to the doctor. The cost of a visit, L, is the same for both types, though the healthy
differ from the sick in that they face a smaller probability of going to the doctor, ph < ps. Fraction
s of the population is sick, while the rest are healthy. The specific values for these parameters and
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calculations for each example can be found in Table 1. If preferences for risk can be characterized by
CARA, with degree of risk aversion r, each agent’s willingness to pay for full insurance is:

π(p·, L; r) =
1
r

ln
(

1 − p· + p·erL
)

.

Note that π(p, L; r) is an increasing function in each of its arguments. Sicker agents are willing to
pay more for insurance, ∂π(p,L;r)

∂p > 0, and all agents are willing to pay more for full insurance as the

cost of a visit grows, ∂π(p,L;r)
∂L > 0. It will also be useful to think of each agent’s certainty equivalent,

π(p·, L; r)− p·L—the amount an agent is willing to pay for insurance above and beyond a fair price.

Table 1. Parameter values for Bernoulli numerical examples in the text.

Example L ps ph s a∗
all πh Adverse Selection?

1 1200 0.5 0.1 0.5 360 316 Yes
2 1500 0.5 0.1 0.5 450 483 No
3 1500 0.8 0.1 0.5 675 483 Yes

The average medical cost in the economy is a∗all = (sps + (1 − s)ph)L. Note that this value
can increase because of increasing cost, L, or increasing probability of illness, p·. Suppose that the
population is half sick and half healthy (s = 0.5). Furthermore, let L = 1200, and set the probabilities
of illness to ps = 0.5 and ph = 0.1. The average medical cost is now 360, which would be the
price of insurance if all agents chose full insurance bought in competitive markets with asymmetric
information—the insurers do not provide type-based insurance. However, the healthy may not choose
to buy such insurance, as their willingness to pay for insurance is less than its unfair price. This is the
case here, using a calibration, r = 0.0018—a healthy agent is only willing to pay 316 for insurance.
The healthy go uninsured in such a market, while the sick sort into fairly-priced insurance.

Suppose that the price of a doctor’s visit rises to L′ = 1500—a symmetric change in
risk. Average medical costs rise to 450. Now note, though, that the healthy agents are
willing to pay for unfairly-priced full insurance provided by a competitive market. That is,
π(0.1, 1200; 0.002) = 483 > 450. As the cost of a visit grows, the certainty equivalent of the healthy
agent grows faster than the price of insurance. More full insurance was provided because these changes
were symmetric—both the healthy and the sick face larger risks.

Now suppose an asymmetric change, p′s = 0.8, keeping the price of a doctors visit at 1500.
Average medical costs rise to 675. The healthy are not willing to pay this much for full insurance, as
their willingness to pay for insurance does not change. Here, there is a decrease in insurance because
the change was asymmetric.

This specification for risk is clearly not useful when considering the U.S. medical insurance
market, as it is very coarse and does not allow for much heterogeneity. That said, it does suggest the
general principle at work in the following section: following the average medical cost is not enough to
determine whether an insurance market with incomplete information will allow for more insurance or
less. The change in the distribution of risk that induced the change in the average medical cost is what
determines the amount of insurance provided under asymmetric information. We will now apply that
general principle to the preferred specification for medical risk.

4. A More General Setting

The model economy has a unit measure of risk-averse agents with utility function u(·). Each agent
faces medical expenditures risk, m̃xi, and its risk is private information. The risks faced by agents are
heterogeneous and are distributed according to Γ. This model was previously used in Koch [12], which
contains the details of preference parameter estimation. The private information assumption means
that insurers are not able to sort, so all agents face a common price of insurance, �. The purchase of
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insurance is subsidized at a rate s, which is paid for using lump-sum taxes, τ. Insurance is subsidized
at a rate here as it is in the U.S. federal income tax code—here it is a positive subsidy, relative to wage
income. The two are equivalent with constant absolute risk aversion. Depending upon type, each
agent has a willingness to pay for insurance, πi, which makes them indifferent between facing the risk
associated with with their type, m̃xi, and paying for insurance. The decision to purchase insurance, ιi,
is a discrete choice:

UI(w, m̃xi; �, τ) = max

{
u(w − (1 − s)� − τ), E

[
u(w − m̃xi − τ)

]}
. (1)

If u(w − (1 − s)� − τ) > E
[
u(w − m̃xi − τ) (i.e., πi ≥ �), then the agent purchases insurance,

and does not otherwise. Because of asymmetric information, agents do not get access to fairly-priced
insurance. The distribution of πi is the demand curve for full insurance.

The market to provide full insurance is competitive, so that the price of insurance is equal to the
average realized risk of the insured. Thus, we define an equilibrium to be:

• the insurance choice, ιi, is the optimal solution to Equation (1);
• insurance price, �, is equal to the average realized risk of the insured; and,
• tax level, τ, is equal to the total cost of the subsidy of medical insurance.

The specification of preferences and risk heterogeneity is chosen to mirror several empirical
facts, while also aiding in the computation of equilibria. The cross-sectional distribution of medical
expenditures has three main features: a large number of zeros, a monotonically-decreasing partial
density, and a fat, Pareto-like tail.

In order to match the three main features of the distribution of medical expenditures, we will use
the following specification of individual risk and heterogeneity:

• individual i faces risk according to the exponential distribution, parameterized by λi; and,
• these types are distributed according to the Gamma distribution, with parameters α and β.

These two assumptions lead to a cross-sectional (i.e., unconditional) Pareto-type distribution of
realized medical risk, with all three characteristics. This specification of uncertainty was originally
proposed by Harris [13], though in a different context. Preferences against this risk are assumed to
exhibit CARA.

CARA preferences are tractable, especially in this context. The willingness to pay for insurance,
given type λi, parameter of risk aversion r, and upper bound of risk κ can be written as:

π(λi) =
1
r

log

(
λi − re−(λi−r)κ

λi − r

)
.

Note that willingness to pay for insurance with CARA preferences is independent of wages
or wealth.

It can be shown that this willingness to pay is monotonically decreasing in λi. Because of this,
equilibria can be characterized by their marginal agent type, λm, whose willingness to pay for insurance
is equal to its price. The price of medical insurance is equal to the average realized risk of the insured:

�(λm) =
∫ λm

0
t−1 tαe−

t
β

βα+1Γ( λm
β , α + 1)

dt

=
Γ( λm

β , α)

βΓ( λm
β , α + 1)

,

where Γ(·, ·) is the incomplete gamma function.
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These specifications also mitigate the problem of multiple equilibria. Figure 3 plots out the supply
and demand curves for a set of candidate parameters—the degree of risk aversion, r, upper bound
of risk faced by an agent, κ, and the distribution of medical risk, α and β. Preferences and adverse
selection (due to asymmetric information) lead to a downward-sloping supply curve. In this case,
there are two potential equilibria. Other parameterizations could lead to one equilibrium (the supply
and demand curve are just tangent), or no equilibria—the case where no risk sharing is possible.

Figure 3. The stability of two equilibria.

Because the movements in insurance rates and prices are steady, it is unlikely that the equilibria
we observe is unstable. Figure 3 demonstrates that the equilibrium with more insurance is the stable of
the two. Parameter values that lead to a single equilibrium lead to unstable equilibria.

Medical insurance in the U.S. is primarily provided in the context of firms. Thus, the ideal data set
would consider risk sharing across individuals within a firm. Unfortunately, such data is not publicly
available. Instead, we use data from a nationally representative data set. To the extent that risks faced
by workers within a firm look like the general population, this will be a useful examination. If workers
could act on the distribution of medical risks within a firm, or firms could fire workers for being poor
medical risks, this would be an unreasonable approximation. However, in both cases, such behavior
might very well be either infeasible or illegal. Part of the medical risk under consideration here is
latent—factors such as family history can impact future expectations—and information about it would
thus be difficult to gather reliably. Even for evident medical conditions, it may be against the law for
supervisors or co-workers to be informed about the health status of others, let alone act upon it.

Alternatively, one might worry that workers do not have an opportunity to take-up insurance
within a firm. Decreases in the overall insurance rate may be due to fewer firms offering insurance,
instead of fewer workers taking it up. This model does not account for these sorts of changes.
Evidence suggests that these kinds of changes are not important. Stanton [14] finds that the number of
workers employed by firms that offered medical insurance rose from 1996 to 2002. The decrease in
employer-provided insurance over this period is instead tied to decreases in take-up by employees,
and, to a lesser extent, fewer employees being eligible for medical insurance.

Here, we use the Medical Expenditure Panel Survey (MEPS). The MEPS is a series of overlapping
two-year panels, with information on annual medical expenditures, charges, and insurance status. The
panel aspect of the data is beyond the focus of this article—we use the series of cross sections in the
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MEPS, starting in 1996, going to 2004, in order to infer each year’s distribution of medical risk—each
year’s Gamma distribution, its (αt, βt) pair. We will later use these values to infer the amount of private
insurance possible in the asymmetric-information model.

We restrict the sample to the non-elderly and the non-poor in order to avoid complications due
to Medicare and Medicaid. Veterans are also removed, due to access to VA care. In all three cases,
publicly-provided insurance can crowd out private insurance. This restriction also avoids potential
confusion about private insurance among the elderly (over 65).

Unfortunately, the data do not present a perfect candidate for the insurable (i.e., covered by
insurance) realizations of medical risk. One potential measure is the total charges for an individual
over a year. Because medical insurance contracts typically have co-payments or deductibles, this is an
imprecise measure of the realized insurable medical risk.

This specification of risk has an internally-coherent and tractable way to back out the insurable
fraction of total risk. If a fraction ρ−1 < 1 of an exponential risk is insurable, parameterized by λ, then
this fraction of a risk is also an exponential risk. This new risk is parameterized by λ

ρ . If this fraction ρ

is common across agents, then all of the exponential risks are scaled by ρ. A common ρ might come
from the fact that these co-insurance rates are used to solve a hidden-action problem, and type privacy
does not allow for discrimination. Finally, since β is a scale parameter for the Gamma distribution, the
new distribution of insurable risk is also a Gamma distribution, with parameters α and β

ρ .
The distribution of insurable risk can also be inferred from the distribution of medical expenditures

paid by private insurance companies for the privately insured. The first moment of the conditional
distribution, the average realized risk of the insured, can be found by integrating the expected realized
risk over the types who choose insurance; i.e.,

E(m̃xi|ιi = 1) =
∫ λm

0
t−1 tαe−

t
β

βα+1Γ( λm
β , α + 1)

dt

=
Γ( λm

β , α)

βΓ( λm
β , α + 1)

.

The average square of realized risk of the insured (i.e., the second non-central conditional moment)
is found similarly:

E(m̃x2
i |ιi = 1) =

∫ λm

0
2t−2 tαe−

t
β

βα+1Γ( λm
β , α + 1)

dt

=
2Γ( λm

β , α − 1)

β2Γ( λm
β , α + 1)

.

These are two unique moments that identify the two parameters of the risk distribution, (α, β).
That said, the amount paid for treatment by a private insurance company is unlikely to be the

amount billed to the uninsured. Insurance companies buy a large volume of medical goods and
services throughout a year, and frequently bargain with with medical providers over the cost of
treatment. This bargaining power is not available to the individual uninsured patient. The resolution
here is the same as for charges—assume a common proportional mark-up from the expenditures paid
for by private medical insurance companies. This new marked-up distribution of risk is also a Gamma
distribution, with parameters α and β

ρ . The balance of this article will use both methods—marking
up from private medical expenditures, and marking down from total charges. Both series tell the
same story.

It may be useful to characterize changes in α and β. As the discussions of mark-up and mark-down
above suggest, changes in β are easier to interpret. Since β is a scale parameter, a decrease in β scales
up the medical risk faced by every agent an equal amount.
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The parameter α is best characterized by a distribution’s kurtosis. A distribution’s kurtosis
is the ratio of its fourth moment to the square of its second moment (variance). As discussed in
Balanda and MacGillivray [15], kurtosis is synonymous with “peakedness” and “tail weight.” Two
distributions may have the same variance, but kurtosis measures whether that variance is due to a
large amount of moderate dispersion or a moderate amount of large dispersion. Flatter distributions
have lower kurtosis.

Changes in kurtosis are central to the ability of insurance markets to spread risk across types.
The variance of risk types may increase. If this increase is because many types became a little more
different, then it is unlikely that many will newly refuse to buy the same insurance. However, if a few
of the agents became very different from the rest, then cross-type risk sharing becomes less likely.

The kurtosis for a gamma distribution is 6
α . Thus, as α decreases, the risk types are becoming

more and more disparate, and market failure becomes more pervasive. The sickest members of the
population are becoming relatively more sick than the rest of the population. We will refer to this
effect as the kurtosis effect—as α increases, risk types become more similar, and insurance becomes
more widespread. When κ is large, the kurtosis effect dominates.

However, the calibrated value of κ is only $5600. This reflects the many ways in which uninsured
individuals can seek and receive free or uncompensated care. Hospitals reported providing an average
of $20 billion per year in uncompensated and charity care (American Hospital Association [16]).
The charity portion of care reflects the not-for-profit and humanitarian missions of many hospitals.
Uncompensated care is typically provided in emergency rooms, where hospitals are required to
provide care independent of insurance status or ability to pay. In either case, this provides an upper
bound risk faced by an uninsured individual, and it has consequences for an agent’s willingness to pay
for insurance (i.e., in distribution, the demand curve for insurance). The calibrated value for CARA
risk aversion, r = 0.0018, is in the range of risk preferences estimated by Cohen and Einav [17].

The subsidy rate, s, has important implications for the calibration. Because ninety percent of the
privately insured get medical insurance from their employer, and the cost of that insurance is not taxed
as wage income would be, the subsidy rate is the marginal tax rate faced by the individual. Marginal
tax rates are important, because they provide extra incentive to have insurance, and increase the
insurance rate. This model corresponds to a competitive labor market where workers are compensated
with their productivity, and only their compensation can come in the form of taxed wages or untaxed
medical insurance.

Saez [18] provides the average marginal tax rates for the US. These calculations stop at the year
2000. The marginal tax rate for the year 2001 and later will be the average value for the years 1996
to 2000.

When α decreases, the marginal agent faces a larger risk, and her willingness to pay for insurance
increases. However, when that agent faces only a fraction of the realized risk (i.e., κ is small), the
marginal agent’s willingness to pay for insurance does not increase more than the increase in the price
of insurance. Here, the price of insurance is increasing because everyone who has insurance is also
becoming more expensive. The kurtosis effect is dominated by the price effect of decreasing α.

Recall the claim in Swartz [1] that increases in the average cost of care led to the increased price
of insurance, and therefore fewer people had medical insurance. If the increase in average medical
expenditure is due to a common increase in medical risk (β goes down), then the insurance rate may
increase. As everyone’s medical risk grows, so does their certainty equivalent—how much above and
beyond a fair price each agent is willing to pay for insurance. Larger certainty equivalents allow for
more risk sharing across types. If the increase in medical expenditure is the result of a change in the
shape of the distribution of medical risk, then the outcome is ambiguous—either the price effect or the
kurtosis effect may dominate.

As described in Table 2, the changes inferred from 1996 to 2004 are a mixture of the two. Over this
period, we might derive these changes as coming from two sources: an increasing price of medical
goods and services (falling β); and an increasing incidence of costly medical conditions (falling α). This
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latter trend is consistent with the aging American population and the increased incidence of obesity,
each associated with costly medical conditions.

The mark-up rate for a given year is exactly identified as the ratio of the price of insurance and
the average medical expenditure paid for insurance on behalf of the insured, both from the data. The
mark-down rate from total charges for a particular year is found by matching the model’s price of
insurance to that found in the data. These estimates are presented in Table 2. The price of insurance
used here is the average price of single-coverage employer-provided medical (hospital and doctor)
insurance in the US, as reported in the MEPS. Since the risk is reported on the individual level, the
price of the corresponding coverage is considered as well. As mentioned in the introduction, the
price of single-coverage and family-coverage employer-provided insurance grew at similar rates.
Over this period, family coverage (covering two or more individuals) was steadily two-and-a-half
times as expensive as single coverage. The implicit assumption is that there are constant returns to
scale when it comes to family insurance plans versus single coverage, and there is no differential
selection across them.

Table 2. Parameter values that vary by year; see text for explanation of subsidy rate for years since 2000.

Year
Charges Expenditures

Subsidy
αyear βyear ρyear αyear βyear ρyear

1996 1.091 5.30 × 10−4 0.9706 1.0453 0.0010 1.8046 0.2475
1997 1.107 5.17 × 10−4 0.968 1.1557 0.0011 2.0931 0.2533
1998 1.087 4.70 × 10−4 0.9079 1.1645 0.0011 2.1757 0.2556
1999 1.128 4.57 × 10−4 0.988 1.1479 0.0010 2.1994 0.2584
2000 1.156 3.95 × 10−4 1.0028 1.1203 0.0010 2.2978 0.2613
2001 1.132 3.51 × 10−4 0.9145 1.166 0.0008 2.118 0.2522 *
2002 1.141 3.21 × 10−4 0.9293 1.1838 0.0008 2.2149 0.2522 *
2003 1.049 3.01 × 10−4 0.84 1.0547 0.0008 1.9889 0.2522 *
2004 1.067 2.72 × 10−4 0.8126 1.1096 0.0007 2.0232 0.2522 *

Figure 4a,b plot the insurance rate predicted by the model against the rate observed in the data.
The two trends are within four percentage points of one another until 2001, the year of significant tax
reform legislation. Since this tax reform decreased the marginal tax rates faced by households, this
may explain why the model predicts increasing insurance rates, while the data finds insurance rates
dropping slightly since 2000.

(a) (b)

Figure 4. Predicted trends are consistent across methods.
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Figure 5a,b assess the relative importance of changes in the level of risk (β) and the shape of risk
(α). They each plot two counterfactual insurance rates—the first, if the shape of the distribution of risk
stayed the same, but the level of risk changed as described in Table 2 (i.e., α1996 for all years, βt for all
t); the second, if the level of risk did not change, but the shape of the distribution of risk changed as
described in the same table (i.e., β1996 for all years, αt for all t).

(a) (b)

Figure 5. Changes in levels dominate changes in shape.

Changes common to the medical risk of all agents are driving the insurance rate trends predicted
by the model. Inferred changes in the shape in the distribution of medical risk (i.e., changes in α) play a
very small roll in the predicted trends. Thus, in this period, changes due to the shifting age distribution
or obesity have very little explanatory power. Instead, the model suggests a focus on changes common
to all agents, such as moving prices for medical goods and services.

5. Conclusions

A competitive insurance market’s capacity to provide insurance in spite of asymmetric information
depends upon the distribution of risk. When an economy faces greater average risk, the amount of
uninsured risk may vary, but depends crucially upon what kind of change took place. An observed
increase in average medical costs could be due to either a common increase in the risk faced by all; or,
it could reflect the change in risk faced by some agents. In the former case, there is more opportunity
for risk sharing across types. In the latter, uninsurance is more frequent because the risk types are
more disparate.

Changes in the cross-sectional distribution of medical risk suggest that there have been changes to
both the level and the shape in the distribution of medical risk. The changes in the medical insurance
rate predicted here are due primarily to the former. This emphasizes the role of changing medical
prices for the rate of and price for insurance. It meanwhile suggests that changes due to shifting
demographics, such as age and obesity, have had little effect on the number of people with medical
insurance.

Conflicts of Interest: The views expressed in this article are those of the author. They do not necessarily represent
those of the Federal Trade Commission, and the work was not prepared as part of the author’s work for the FTC.
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Abstract: In this paper, we consider compositions of conditional risk measures in order to obtain
time-consistent dynamic risk measures and determine the solvency capital of a life insurer selling
pension liabilities or a pension fund with a single cash-flow at maturity. We first recall the notion of
conditional, dynamic and time-consistent risk measures. We link the latter with its iterated property,
which gives us a way to construct time-consistent dynamic risk measures from a backward iteration
scheme with the composition of conditional risk measures. We then consider particular cases with
the conditional version of the value at risk, tail value at risk and conditional expectation measures.
We finally give an application of these measures with the determination of the solvency capital
of a pension liability, which offers a fixed guaranteed rate without any intermediate cash-flow.
We assume that the company is fully hedged against the mortality and underwriting risks.

Keywords: dynamic risk measures; time consistency; iterated risk measures; pension liability;
solvency capital

1. Introduction

The determination of the economic capital of a life insurer or pension fund has become of
paramount importance over the past decade due to the recent financial crisis in the banking sector.
The management and measurement of risk is of great interest, as can be seen from the recent Basel II
and III regulatory frameworks for banks and Solvency II for the European insurance sector. These new
regulations are designed to be risk sensitive. The Solvency II regulation recognizes that the insurer
faces different kinds of risks, like market and longevity risks, while the previous regulation (Solvency I)
is factor based. These regulations use risk measures as introduced in [1–3] in order to quantify the
riskiness of financial positions and to provide a criterion to determine their acceptability. For instance,
the new Solvency II framework requires a value at risk (VaR) measure to determine the solvency
capital requirement, while the Swiss Solvency Test uses the tail value at risk (TVaR) measure for its
target capital. These measures consider a real-valued random variable describing a future financial
value and measure its risk at the beginning of the time period. Under the Solvency II and the Swiss
Solvency Test regulations, the length of the time period is equal to one year, i.e., these frameworks
consider the evolution of their own funds of the insurance undertaking over one year. However, life
insurers and pension funds hold also long-term products, such as pension liabilities, which are the
topic of this paper.

In this paper, we consider pension liabilities, and we study risk measures that consider the
long-term characteristic of these products. We focus here on the market risk, especially the equity risk.
We also assume that the company is fully hedged against the mortality and underwriting risks.

An important drawback of the classic static risk measures is that they do not take into account the
information disclosed through time. These measures only consider the end-points of the time period.
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If we deal with liabilities with a maturity of one year, then these risk measures are adapted as we work
with a time horizon equal to the accounting horizon. Because we consider pension liabilities with a
long-term horizon, this information could be meaningful in the computation of the solvency capital
through time, especially on a yearly basis, as is the case for accounting purposes. That is why we
consider dynamic risk measures as studied in [3–6]. The information is modeled by a filtration, and
this filtration is incorporated in the computation of the capital each year.

A first example of a dynamic risk measure could be the recalculated version of the static
risk measures. We could for instance recalculate the solvency capital each year according to a static
risk measure by incorporating the information available. However, this approach only incorporates
past information, and for well-known measures, such as the VaR or TVaR measures, this could lead
to time inconsistency, i.e., a position that was acceptable could become undesirable in any scenario.
Therefore, we require a particularly useful property for dynamic risk measures, which is called
time consistency. This property tells us that if we prefer a position tomorrow in almost every state of
the world, then we already prefer it today. It is well known that the recalculated versions of the VaR
and TVaR measures are not time consistent (see [7,8]).

It has been proven that a time-consistent dynamic risk measure is closely linked to a backward
iteration scheme [9]. We then consider this property to construct time-consistent risk measures through
the iteration of conditional risk measures. This approach has been considered for the determination of
the solvency capital of life insurance products in [10–12]. Nevertheless, it appears that the solvency
capital obtained can be very expensive if we do not take care of the confidence level of each conditional
VaR and TVaR measures involved in the iteration scheme. This is linked to a result obtained in [13],
which tells us that, under certain hypotheses, if we consider a great number of iterations, the risk
measure obtained is close to either the conditional expectation of the risk or its essential supremum.

In order to overcome this difficulty, we consider the iterations of different conditional risk
measures with a yearly time step fitting the accounting point of view. We also build these measures in
such a way that they are coherent with the Solvency II or Swiss Solvency Test frameworks, meaning
that for the last year of the product, the measures we introduce here correspond to the one used in
these frameworks.

This paper then introduces a new way to compute the solvency capital in life insurance, in order
to take into account simultaneously the following three constraints

• to be in line with Solvency II on a one-year horizon;
• to be time consistent;
• to incorporate in the risk measurement the maturity of the product.

The paper is organized as follows. We set the mathematical framework in Section 2. Then, we
recall the definition of conditional and dynamic risk measures in Section 3, of time consistency and
iterated risk measures in Section 4 and present some compositions of conditional risk measures in
order to determine the solvency capital in Section 5. We then compute the solvency capital in Section 6
and finally give a numerical illustration in Section 7.

2. Framework

Throughout the paper, we consider a complete atomless probability space (Ω,F ,P). We write
N∗ = N \ {0}. We fix T ∈ N∗ seen as the maturity of a pension liability and define T = {0, . . . , T − 1}
as the set of intermediate dates. We also consider a filtration:

F = (Ft)t∈T∪{T} ,

such that F0 = {∅, Ω} and FT = F . All inequalities and equalities between random variables
(r.v.’s) are meant to hold P-almost surely (P-a.s.) if not stated otherwise. Let t ∈ T ∪ {T}.
We define L1(Ω,Ft,P) as the space of all real-valued Ft-measurable r.v.’s X, such that E[|X|] < +∞,
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where two r.v.’s are identified if they coincide a.s. We consider an equivalence class X ∈ L1(Ω,Ft,P)
as a r.v., and we understand X as a financial amount at date t of date t money. We also identify
L1(Ω,F0,P) with R.

3. Conditional and Dynamic Risk Measures

We consider dynamic risk measures in order to determine the solvency capital of a pension liability.
The solvency capital is the amount the company has to put aside, in addition to the initial value of its
portfolio, in order to be solvent. The idea behind dynamic risk measures is to consider the amount
of information available through time. In our setting, this amount of information is modeled by the
filtration F.

Let t ∈ T. We consider a reference instrument ιt,T ∈ L1(Ω,FT ,P), as introduced in [1] in the
static case. The amount ιt,T is the value at time T of one unit of currency invested in this reference
instrument between time t and T. The solvency capital computed at date t is then invested in this
financial instrument ιt,T from date t to the maturity T. We assume that ιt,T(ω) > 0 for all ω ∈ Ω.
This reference instrument could be a risk-free zero-coupon bond, and the value at time T would be:

ιt,T =
1

P(t, T)
,

where P(t, T) is the price of a risk-free zero-coupon bond at time t with maturity T and paying one
unit of currency.

We first recall the definition of a conditional risk measure. In the following, we understand
X ∈ L1(Ω,FT ,P) as a profit r.v., which means that if X(ω) < 0, then the company faces a loss at
maturity T under scenario ω ∈ Ω; otherwise, it makes a profit.

Definition 1. A conditional risk measure ρt on L1(Ω,FT ,P) with a reference instrument ιt,T is a function:

ρt : L1(Ω,FT ,P) −→ L1(Ω,Ft,P),

such that it satisfies the following properties, for X, Y ∈ L1(Ω,FT ,P),

• (monotonicity) X ≤ Y implies ρt(X) ≥ ρt(Y);
• (conditional cash invariance) for all mt ∈ L1(Ω,Ft,P),

ρt(X + mtιt,T) = ρt(X)− mt;

• (normalization) ρt(0) = 0.

We can also define convex and coherent conditional risk measures as in the classic static setting.

Definition 2. A conditional risk measure ρt on L1(Ω,FT ,P) is called convex if for X, Y ∈ L1(Ω,FT ,P) and
λ ∈ L1(Ω,Ft,P), 0 ≤ λ ≤ 1,

ρt (λX + (1 − λ)Y) ≤ λρt(X) + (1 − λ)ρt(Y).

Furthermore, ρt is called coherent if it is convex and, for X ∈ L1(Ω,FT ,P) and λ ∈ L1(Ω,Ft,P), λ ≥ 0,

ρt(λX) = λρt(X).

A dynamic risk measure is simply a sequence of conditional risk measures.

Definition 3. A dynamic risk measure:
ρ = (ρt)t∈T
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on L1(Ω,FT ,P) is a sequence of conditional risk measures ρt on L1(Ω,FT ,P) (with the reference
instrument ιt,T), for t ∈ T. It is called convex (resp. coherent) if ρt is convex (resp. coherent) for all t ∈ T.

Remark 1. We refer the reader to [3–6] for a detailed study of this kind of measure.

For X ∈ L1(Ω,FT ,P) seen as a final net worth at date T of a life insurer or pension fund and
t ∈ T, the amount ρt(X) (which is an r.v.) can be seen as a solvency capital at date t of date t money for
the final net worth X, which is invested in the reference instrument ιt,T over the period [t, T], i.e.,

ρt (X + ρt(X)ιt,T) = 0,

by the conditional cash invariance property, where we recall that this equality holds in the P-a.s. sense.

4. Time Consistency and Iterated Risk Measures

A time-consistent risk measure tells us that if we prefer a position tomorrow, in almost all states
of nature, then we already prefer it today (see [4,5], for instance).

Definition 4. A dynamic risk measure ρ on L1(Ω,FT ,P) is called time consistent if:

ρt+1(X) ≤ ρt+1(Y),

implies:
ρt(X) ≤ ρt(Y),

for all t ∈ T, t �= T − 1 and X, Y ∈ L1(Ω,FT ,P).

Example 1. In order to understand why this property is important, in particular in the field of a pension
liability, we consider two r.v.’s X and Y described in Figure 1. While in Section 2, we consider an atomless
probability space, we set here for the purpose of the example a discrete probability space (Ω,F ,P).

Ω

{ω3, ω4}

5 −5 ω4
0.99

−150 25 ω3
0.010.99

{ω1, ω2}

−10 −50 ω2
0.99

−250 −500 ω1

X Y Ω

0.01

0.01

Figure 1. Distributions of X and Y (Example 1).

The set of states of nature Ω is given by:

Ω = {ω1, ω2, ω3, ω4},

with the σ-algebra F given by:
F = P(Ω),
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and a probability measure P given by:

P[{ω1}] = 0.01 × 0.01 = 0.0001

P[{ω2}] = 0.01 × 0.99 = 0.0099

P[{ω3}] = 0.99 × 0.01 = 0.0099

P[{ω4}] = 0.99 × 0.99 = 0.9801.

We consider two periods, i.e., we set T = 2. We then define a filtration F = (Ft)t∈{0,1,2} with:

F0 = {∅, Ω}
F1 = σ ({ω1, ω2}, {ω3, ω4})
F2 = F .

This filtration means that at time t = 1, we know if we are at node {ω1, ω2} or {ω3, ω4}, i.e., at time
t = 1, we know that two scenarios are possible, either ω1 and ω2 or ω3 and ω4. We also compute that:

P[{ω1}|{ω1, ω2}] = 0.01

P[{ω2}|{ω1, ω2}] = 0.99

P[{ω3}|{ω3, ω4}] = 0.01

P[{ω4}|{ω3, ω4}] = 0.99.

We see X and Y as two possible outcomes (strategies) for our life insurer or pension fund at time T = 2.
For instance, if we follow the strategy of X, we see that at time t = 1, if we are at node {ω1, ω2}, the probability
of facing a loss of 250 is 1%. We emphasize that when X or Y are positive, the company faces a profit, while it
faces a loss when X or Y are negative. That is why the amount of the loss is 250, while X takes as a value −250.
We assume here that ι0,2 = ι1,2 = 1, so that we neglect the time value of money for this example.

We consider the VaR measure with a level of 99% in order to make a choice between X and Y. We first
compute the VaR measure with a confidence level of 99% at time t = 0 (see [1,3]),

VaR0.99
0 (X) = − inf {x ∈ R : P [X ≤ x] > 0.01}

= 10 ,

and:

VaR0.99
0 (Y) = 5 ,

which means that at time t = 0, we prefer Y over X, because:

VaR0.99
0 (X) > VaR0.99

0 (Y) .

However, at time t = 1, we compute that, if we are at node {ω1, ω2},

VaR0.99
1 (X)

∣∣∣ {ω1, ω2} = − inf {x ∈ R : P [X ≤ x|{ω1, ω2}] > 0.01}

= 10 ,

and:

VaR0.99
1 (Y)

∣∣∣ {ω1, ω2} = 50 ;
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and, at node {ω3, ω4},

VaR0.99
1 (X)

∣∣∣ {ω3, ω4} = − inf {x ∈ R : P [X ≤ x|{ω3, ω4}] > 0.01}

= −5 ,

and:

VaR0.99
1 (Y)

∣∣∣ {ω3, ω4} = 5 ,

which means that at time t = 1, we now prefer X over Y, because:

VaR0.99
1 (X) < VaR0.99

1 (Y) ,

while we chose Y at time t = 0 (see Figure 2 for a summary). It is clear that at time t = 1, the strategy Y appears
riskier than strategy X. If the dynamic (recalculated) version of the VaR measure was time consistent, we would
not have faced such an inconsistent behavior over time. That is why we believe that a time-consistent measure
is needed.

10

−50.99

100.01

5

50.99

50
0.01

Figure 2. Evolution of the VaR between times t = 0 and 1 (Example 1). Left: evolution for X.
Right: evolution for Y.

For instance, let us consider the conditional expectation. We compute that:

E[−X] = −3.29 < 5.2 = E[−Y] ,

so that we prefer X over Y at time t = 0. Then, at time t = 1, we compute that:

E [−X| {ω1, ω2}] = 12.4 < 54.5 = E [−Y| {ω1, ω2}] ,

and:
E [−X| {ω3, ω4}] = −3.45 < 4.7 = E [−Y| {ω3, ω4}] ,

which means that at time t = 1, we still prefer X over Y (see Figure 3 for a summary). According to this measure,
the choice of X is constant over time, because this measure is time consistent.

−3.29

−3.450.99

12.40.01

5.2

4.7
0.99

54.50.01

Figure 3. Evolution of the expectation between times t = 0 and 1 (Example 1). Left: evolution for X.
Right: evolution for Y.

Remark 2. We also refer to [11] for another example and [8] for an example with an atomless probability space.

Time-consistent risk measures are closely-linked to iterated risk measures.
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Definition 5. A dynamic risk measure ρ on L1(Ω,FT ,P) is called iterated if:

ρt(X) = ρt (−ρt+1(X)ιt+1,T) ,

for t ∈ T, t �= T − 1 and X ∈ L1(Ω,FT ,P).

Theorem A1 of Appendix A tells us that time-consistent and iterated risk measures are equivalent
and then that a time-consistent risk measure can be computed following a backward iteration scheme.
Furthermore, it also gives us a way to construct time-consistent risk measures following this backward
iteration scheme. This is formalized in Corollary 1. Section 5 aims at designing suitable time-consistent
risk measures by means of this result.

Corollary 1. Let γ be a dynamic risk measure on L1(Ω,FT ,P) that is not time consistent. Then, the dynamic
risk measure ρ on L1(Ω,FT ,P) given by:

ρT−1(X) = γT−1(X),

and:
ρt(X) = γt (−ρt+1(X)ιt+1,T) ,

for all t ∈ T, t �= T − 1, is time consistent. Furthermore, if γ is convex (resp. coherent), then ρ is also convex
(resp. coherent).

5. Compositions of Conditional Risk Measures

While classic static risk measures have been considered to determine the solvency capital of
a financial institution (see, for instance, [1,3]), we would now like to consider dynamic risk measures
and, more precisely, time-consistent dynamic risk measures in order to determine the solvency capital
of a life insurer or pension fund. A first study of this approach can be found in [10–12], where they
consider iterated versions of the conditional VaR or TVaR measures. However, it appears clear that the
levels of the solvency capital are quite expensive (about equal to the present value of the liability for
long maturities in some cases).

This observation is related to ([13] [Theorem 1.10]). Following this result, they assume a certain
class of dynamic risk measures, i.e., law-invariant, and a great number of iterations, i.e., they consider
T = N, which means that a countably infinite number of steps is considered. Then, under these
hypotheses, the dynamic risk measure obtained is given by a sequence of conditional entropic
risk measures. In particular, if the dynamic measure is assumed coherent, then the solvency capital
would be given by either the expected value of the final net worth or its largest possible value, its
essential supremum.

The difference between the approach of ([13] [Theorem 1.10]) and the one we present here
lies in the number of iterations. We consider here T iterations, i.e., a finite number of steps t ∈ T

(see Corollary 1), while in ([13] [Theorem 1.10]) they consider an infinite (but still countable) number of
iterations, i.e., t ∈ N. However, depending on the choice of the dynamic risk measure and on the actual
final net worth considered, a great number of iterations T could converge towards ([13] [Theorem 1.10]),
which is the case in [10–12].

The idea behind this section is to consider a yearly basis for the computation of the solvency
capital and to be careful of the confidence level considered within each iteration. If we reduce the time
step (for instance, with a weekly or daily basis, without considering its practicability), then we will tend
toward the previous observation because, due to the long-term characteristic of our pension products
(typically 45 years), we would obtain a great number of iterations (about 2340 with a weekly-step over
45 years). This yearly time step is based on an accounting point of view and allows us to develop some
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time-consistent risk measures that could fit the Solvency II or Swiss Solvency Test frameworks in the
last year of the product.

In Section 5.1, we consider the composition of conditional VaR measures, while in Section 5.2,
we consider the case with conditional TVaR measures. Finally, in Section 5.3, we construct a
time-consistent measure from the composition of either a conditional VaR measure or a conditional
TVaR measure and conditional expectations.

5.1. Composition of VaRs

We begin this section with the definition of a conditional VaR measure (see [3]).

Definition 6. Let t ∈ T and α ∈ (0, 1). The conditional VaR measure on L1(Ω,FT ,P) with the confidence
level α is defined by:

VaRα
t (X) = − ess inf

{
V ∈ L1(Ω,Ft,P) : P [X ≤ Vιt,T |Ft] > 1 − α a.s.

}
,

for X ∈ L1(Ω,FT ,P), where ess inf stands for the essential infimum as defined in [3].

We are now able to define the dynamic generalization of the classic static VaR measure,
the recalculated VaR measure, which is simply the sequence of conditional VaR measures.

Definition 7. The recalculated VaR measure on L1(Ω,FT ,P) with a confidence level α ∈ (0, 1) is defined by
the sequence:

VaRα = (VaRα
t )t∈T .

This dynamic risk measure does not fulfill the useful property of time consistency and is even
not convex.

Proposition 1. Let α ∈ (0, 1). The dynamic risk measure VaRα on L1(Ω,FT ,P) is neither convex nor
time consistent.

Proof. For the convexity, take for instance t = 0, and for the time consistency, see ([3]
[Example 11.13]).

Let α ∈ (0, 1)T , i.e.,
α = (α1, . . . , αT) ,

with αi ∈ (0, 1) for i ∈ {1, . . . , T}. We define an iterated measure according to this vector, by means
of conditional VaR measures. This vector is a vector of confidence levels, which could be different.
The iterated measure is then a composition of different conditional (VaR) measures.

Definition 8. Let α ∈ (0, 1)T. For X ∈ L1(Ω,FT ,P), the iterated VaR (IVaR) measure on L1(Ω,FT ,P) is
given by,

IVaRα
T−1(X) = VaRα1

T−1(X),

and:

IVaRα
t (X) = VaRαT−t

t
(
−IVaRα

t+1(X)ιt+1,T
)

,

for t ∈ T, t �= T − 1.
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Remark 3. It is clear that this measure is a dynamic risk measure that is time consistent, because the sequence:(
VaRαT−t

t

)
t∈T

defines a dynamic risk measure, and Corollary 1 allows us to conclude.

Remark 4. For a given α ∈ (0, 1) and αi = α, for all i ∈ {1, . . . , T}, this case has been considered in [8,12].
However, it appears in [12] that this dynamic measure gives expensive solvency capital. This is due to ([13]
[Theorem 1.10]) and the observation made at the beginning of this section. Instead of considering the same α

within each iteration, we propose here to make it dependent on the date t ∈ T of valuation.

Remark 5. If we set α1 = 99.5%, then this time-consistent dynamic risk measure is consistent with the
Solvency II framework. For a product with a time to maturity of one year or, more generally, for the last year of a
product, we get back the SIIframework, since we then only consider a VaR at a level of 99.5% over one year.

5.2. Composition of TVaRs

We can also consider the case of the iterated TVaR measure, which will give us a coherent
and time-consistent risk measure. We recall the definition of the conditional TVaR measure
(see ([3] [Proposition 11.9])).

Definition 9. Let t ∈ T and α ∈ (0, 1). For X ∈ L1(Ω,FT ,P), the conditional TVaR measure on
L1(Ω,FT ,P) with the confidence level α is defined by,

TVaRα
t (X) = VaRα

t (X) +
1

1 − α
E

[(
X

ιt,T
+ VaRα

t (X)

)
−

∣∣∣∣∣Ft

]
,

where (·)− = −min(·, 0).

Its corresponding dynamic risk measure is not time consistent.

Definition 10. The recalculated TVaR measure on L1(Ω,FT ,P) with a confidence level α ∈ (0, 1) is defined
by the sequence:

TVaRα = (TVaRα
t )t∈T .

Proposition 2. Let α ∈ (0, 1). The dynamic risk measure TVaRα on L1(Ω,FT ,P) is coherent, but not
time consistent.

Proof. It is clearly coherent from the classic properties of the conditional expectation. Concerning the
time consistency, we refer to ([3] [Example 11.13]).

Again, we consider Corollary 1 in order to construct a time-consistent version.

Definition 11. Let α ∈ (0, 1)T. The iterated TVaR (ITVaR) measure on L1(Ω,FT ,P) is given by, for
X ∈ L1(Ω,FT ,P),

ITVaRα
T−1(X) = TVaRα1

T−1(X),

and:

ITVaRα
t (X) = TVaRαT−t

t
(
−ITVaRα

t+1(X)ιt+1,T
)

,

for t ∈ T, t �= T − 1.
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Remark 6. Following Remark 5, if we set α1 = 99%, then this time-consistent dynamic risk measure is also
consistent with the Swiss Solvency Test.

5.3. Composition with Conditional Expectations

In this section, we define a time-consistent dynamic measure as the composition of either
a conditional VaR measure or a conditional TVaR measure and conditional expectations. We start by
giving the definition of a conditional expectation measure.

Definition 12. Let t ∈ T. The conditional expectation measure Et on L1(Ω,FT ,P) is defined by,

Et(X) = E

[
− X

ιt,T

∣∣∣∣Ft

]
,

for X ∈ L1(Ω,FT ,P).

We now give the definition of the composition of a conditional VaR measure and conditional
expectation measures. We construct it by means of Corollary 1, and we call it the expected VaR measure.
With the first iteration, we consider a usual conditional VaR measure, then through the following steps,
we consider its expected value.

Definition 13. Let α ∈ (0, 1). The expected VaR (EVaR) measure EVaRα on L1(Ω,FT ,P) with the confidence
level α is given by:

EVaRα
T−1(X) = VaRα

T−1(X),

and:

EVaRα
t (X) = Et

(
−EVaRα

t+1(X)ιt+1,T
)

,

for t ∈ T, t �= T − 1 and X ∈ L1(Ω,FT ,P).

Remark 7. Again, following Remark 5, if we set α = 99.5%, this time consistent dynamic risk measure
is consistent with the Solvency II framework. The first iteration is the same as with the IVaR measure.
However, the difference between the IVaR and EVaR measures is in the following steps, where we consider now
the conditional expected measure.

We also consider the expected TVaR measure.

Definition 14. Let α ∈ (0, 1). The expected TVaR (ETVaR) measure ETVaRα on L1(Ω,FT ,P) with the
confidence level α is given by:

ETVaRα
T−1(X) = TVaRα

T−1(X),

and:

ETVaRα
t (X) = Et

(
−ETVaRα

t+1(X)ιt+1,T
)

,

for t ∈ T, t �= T − 1 and X ∈ L1(Ω,FT ,P).

We see that this definition is a particular case of Definition 11. If we consider the vector α ∈ (0, 1)T

in Definition 11 with:

αi =

{
α if i = 1

0 if i > 1
,
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then we get back Definition 14.

Remark 8. We emphasize that the order considered in Definitions 13 and 14 is important. In the first step, we
consider the conditional VaR or TVaR measure, and then, we use the conditional expectation for the subsequent
steps. This means that for the last year of the product, or equivalently, when the time to maturity is equal to one,
we get back the classic VaR or TVaR.

However, if we chose the conditional expectation for t = 1, . . . , T − 1 and used the VaR or TVaR for t = 0,
then we would get a completely different time-consistent measure. For the last year of the product, the capital
would be given by the conditional expectation only and not by a VaR or TVaR. This is due to the fact that each
year t, when we recompute the solvency capital, we do not consider anymore the measure used at time t − 1.

6. Solvency Computation

The purpose of this section is to study the impact of the equity risk on the solvency capital
computed by means of the measures previously defined. The inclusion of the interest rate and
longevity risks has been considered in [14] with static risk measures. However, the inclusion of these
risks in our dynamic setting would require the use of numerical techniques in order to compute the
solvency capital, while the framework that we consider here allows us to obtain closed-form formulae.
For instance, considering a simple Vasicek model for the short-term interest rate would gives us
differences between log-normally-distributed random variables.

In Section 6.1, we set the pension liability of the life insurer or pension fund. We define its assets
in Section 6.2, its final net worth in Section 6.3 and consider its solvency capital in Section 6.4.

6.1. Liabilities

We consider a life insurer or pension fund that offers a fixed guaranteed rate rG ∈ R over
a time horizon T ∈ N∗. We assume that the company is fully hedged against the mortality and
underwriting risks. Then, the liability at maturity is given by:

LT = π0erGT ,

where π0 ∈ R is the initial unique contribution paid for the affiliate.

Remark 9. This corresponds to a defined contribution with a minimum guaranteed rate or a cash-balance plan.
However, we could have considered a defined benefit (DB) plan, as well. Results in Propositions 3, 4 and 5 are
sufficiently general to allow easy adaptations when liabilities and interest rate are deterministic.

6.2. Assets

We assume a financial market modeled by a Black–Scholes–Merton model [15,16] with r ∈ R

the constant risk-free interest rate, a bank account and a stock. The contribution π0 is invested in a
portfolio A over the period [0, T] made up of these assets and which follows a constant proportion
allocation strategy, i.e., its stochastic differential equation (SDE) is given by, for t ∈ [0, T],

dAt = (θμ + (1 − θ)r) At dt + θσAt dWt,

where θ ∈ [0, 1] is the deterministic proportion of the portfolio invested in the stock, W is a standard
Brownian motion, A0 = π0, μ, σ ∈ R and σ > 0. Therefore, at any time t ∈ [0, T], a proportion θ of
the portfolio At is invested in the stock, and a proportion 1 − θ is invested in the bank account. We
then have:

At = π0 exp
[(

θμ + (1 − θ)r − θ2σ2

2

)
t + θσWt

]
, (1)
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for all t ∈ [0, T].
As the term structure is flat and known with certainty, the price at time t ∈ [0, T] of a zero-coupon

bond paying one unit of currency at maturity s ∈ [0, T], t ≤ s, is given by:

P(t, s) = e−r(s−t).

6.3. Final Net Worth

The final net worth (at maturity T) of the pension liability is simply given by the difference
between its final assets and liabilities, i.e., given by the r.v.:

FNWT = AT − LT .

For ω ∈ Ω, the company faces a loss at maturity under scenario ω if:

FNWT(ω) < 0,

otherwise, it is solvent.

6.4. Solvency Capital

We define the solvency capital as the amount the company has to put aside, in addition to the
initial value of its portfolio, in order to be solvent at maturity according to a particular measure. This
amount at time t ∈ T is invested in a product ιt,T over the period [t, T]. We consider here:

ιt,T =
1

P(t, T)
,

which means that the solvency capital at time t is invested in a zero-coupon bond between dates t
and T. This choice for the reference instrument can be considered as prudent. For instance, we could
have decided to invest the solvency capital in the portfolio of assets, i.e.,

ιt,T =
AT
At

,

which is clearly riskier. This approach has been considered in [12] where it is observed that the
solvency capital computed according to this investment strategy is higher than the prudent approach
of a risk-free zero-coupon bond.

The solvency capital given by the iterated VaR and TVaR measures (see Definitions 8 and 11) is
computed as follows.

Proposition 3. Let α ∈ (0, 1)T. We compute that:

IVaRα
t (FNWT)

= LT P(t, T)− P(t, T)At exp

[(
θμ + (1 − θ)r − θ2σ2

2

)
(T − t) + θσ

T−t

∑
i=1

Φ−1 (1 − αi)

]
, (2)

and:

ITVaRα
t (FNWT) = LT P(t, T)− P(t, T)At exp [(θμ + (1 − θ)r) (T − t)]

T−t

∏
i=1

[
Φ
(
Φ−1 (1 − αi)− θσ

)
1 − αi

]
,
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for t ∈ T, where Φ denotes the cumulative distribution function of a standard normal r.v., i.e., for y ∈ R,

Φ(y) =
1√
2π

∫ y

−∞
e−

x2
2 dx ,

and Φ−1 its inverse.

Proof. See Appendix B.

Remark 10. For both the iterated VaR and TVaR measures, we observe that the solvency capital is a decreasing
function of μ, while it is increasing with σ. Furthermore, for the iterated VaR, the first derivative with respect to
μ is a decreasing function, meaning that the speed of decrease will increase with μ, while the first derivate with
respect to σ is an increasing function.

We also consider the solvency capital given by the expected VaR and TVaR measures
(see Definitions 13 and 14).

Proposition 4. Let α ∈ (0, 1). We compute that:

EVaRα
t (FNWT) = LT P(t, T)− P(t, T)At exp

[
(θμ + (1 − θ)r) (T − t)− θ2σ2

2
+ θσΦ−1 (1 − α)

]
,

and:

ETVaRα
t (FNWT) = LT P(t, T)− P(t, T)At exp [(θμ + (1 − θ)r) (T − t)]

Φ
(
Φ−1 (1 − α)− θσ

)
1 − α

,

for t ∈ T.

Proof. Similar to the proof of Proposition 3.

If we compare Propositions 3 and 4, we see that the iterated VaR (resp. TVaR) considers a sequence
of bad events, while the expected VaR (resp. TVaR) only considers one bad event affecting the last year
of the product (the first iteration). The expected VaR (resp. TVaR) incorporates a security margin in the
first iteration, for the last year of the product. However, the iterated VaR (resp. TVaR) can incorporate
a security margin in each iteration, according to the confidence level considered at each step. For
instance, we could consider a linearly-decreasing margin when the number of iterations increases
(see examples below). We could then consider the expected VaR or TVaR as a lower bound for the
solvency capital.

Finally, we compare this solvency capital with that obtained by means of the recalculated
risk measures.

Proposition 5. Let α ∈ (0, 1). We compute that:

VaRα
0(FNWT) = LT P(0, T)− P(0, T)A0 exp

[(
θμ + (1 − θ)r − θ2σ2

2

)
T + θσ

√
TΦ−1 (1 − α)

]
,

and:

TVaRα
0(FNWT) = LT P(0, T)− P(0, T)A0 exp [(θμ + (1 − θ)r) T]

Φ
(

Φ−1 (1 − α)− θσ
√

T
)

1 − α
.

Proof. We only consider one step in the proof of Proposition 3.
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7. Numerical Illustration

In this section, we consider different values for α ∈ (0, 1)T and α ∈ (0, 1) in order to compute the
solvency capital. We only compare the initial values of the solvency capital, i.e., t = 0.

We assume that T ∈ {1, . . . , 45}, θ = 40%, so that 40% of the portfolio is invested in the stock,
that the guaranteed interest rate is equal to the risk free rate, i.e., rG = r, and that π0 = 1000 e.
Concerning the financial market, the stock has been calibrated on daily log returns of the Belgian
BEL20 index from 2 April 1991 to 31 December 2013 by means of the maximum likelihood estimation
(MLE) method (see Table 1). We also set the constant interest rate to 1.5%.

Table 1. Parameters of the GBMobtained by the MLE method with the corresponding standard errors
between brackets.

μ σ

0.05564 (0.03827) 0.18415 (0.00172)

In order to be consistent with either a Solvency II or a Swiss Solvency Test approach,
we will consider:

α(SII) = 0.995 ,

when working with VaR measures and:

α(SST) = 0.99 ,

for TVaR measures.
We first define the confidence levels in the case of the recalculated measures of Proposition 5.

We follow the maturity approach as introduced in [10] and set:

α1 =
(

α(SII)
)T

,

and:
α2 =

(
α(SST)

)T
.

We also consider four definitions for the vector α ∈ (0, 1)T for the VaR and TVaR cases. We write
for the j-th definition, j ∈ {1, · · · , 4},

α(SII),j =
(

α
(SII),j
i

)
i∈{1,...,T}

,

when dealing with VaR measures and:

α(SST),j =
(

α
(SST),j
i

)
i∈{1,...,T}

,

for TVaR measures. We give an illustration of these definitions in Figure 4 for the SII case.
The first one is the constant case, which is also studied in [12],

α(SII),1
i = α(SII) ,

and:
α(SST),1

i = α(SST) ,

for i ∈ {1, . . . , T}.
For the three others definitions, we consider an integer K > 0. We see this parameter as the

maturity after which we consider that a product is a long-term product, for instance K = 8 years.
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t

α
T
−

t

1 15 30 45

0.
5

0.
75

0.
99

5

α(SII),1

α(SII),2

α(SII),3

α(SII),4

Figure 4. Different choices for the confidence vector, for a maturity T = 45 and a long-term threshold
K = 8.

The second definition follows a linear increase when the time to maturity is decreasing,
i.e., when i decreases,

α(SII),2
i =

{
α(SII) − α(SII)−0.5

K−1 (i − 1) if i < K

0.5 if i ≥ K
,

and:

α(SST),2
i =

{
α(SST) − α(SST)−1

K−1 (i − 1) if i < K

0 if i ≥ K
,

for i ∈ {1, . . . , T}. We see that the confidence parameter decreases linearly towards either 50% or 0%
within K years and afterwards stays constant. We chose 50% for the measures based on the VaR in
order to obtain either the mean of the solvency capital if its distribution is symmetric or its median
if not. With 0% for the measures based on the TVaR, we obtain directly the mean of the solvency capital.
These choices are linked with the EVaR and ETVaR measures where the decrease is instantaneous
(K = 1). In other words, for a time to maturity greater than K years, the parameter stays constant while
it starts increasing towards either 99.5% or 99% when the time to maturity decreases.

Now, instead of considering a linear increase in terms of time to maturity, we could consider
a square or an exponential increase, which is the aim of the two others definitions. We then have,
for the square increase,

α(SII),3
i =

⎧⎪⎨⎪⎩1 − 0.5−α(SII)

(K−1)2

(
i2 − 2Ki + K2 + 0.5 (K−1)2

0.5−α(SII)

)
if i < K

0.5 if i ≥ K
,

α(SST),3
i =

⎧⎪⎨⎪⎩1 + α(SST)

(K−1)2

(
i2 − 2Ki + K2 − 100% (K−1)2

α(SST)

)
if i < K

0 if i ≥ K
,

and for the exponential increase,

α(SII),4
i =

⎧⎨⎩0.5 +
(
α(SII)−0.5) ( 0.5−s(SII)

α(SII)−0.5

) i−1
K−1 if i < K

0.5 if i ≥ K
,

α(SST),4
i =

⎧⎨⎩α(SST)
(

1−s(SST)

α(SST)

) i−1
K−1 if i < K

0 if i ≥ K
,
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for t ∈ T, where 0 < s(SII) < α(SII) and 0 < s(SST) < α(SST) are some adjustment parameter for the
smoothness around K, typically s(SII) close to α(SII) and s(SST) close to α(SST).

We now study the level of the initial solvency capital according to the previous definitions of the
confidence vectors. In Figure 5, we consider the solvency capital at time t = 0 given by Propositions 3, 4
and 5, for T ∈ {1, . . . , 45} and K = 8. We only consider the positive part. We observe that for the
constant case, i.e., α(SII),1 and α(SST),1, the level of the solvency capital significantly increases with
the maturity of the product. As already mentioned, it has been observed in [11,12]. The level of the
solvency capital converges towards 100% of the initial value of the portfolio, i.e., towards the present
value of the liability, which is here its supremum.

T

SC
/

A
0

1 15 30 45

0
0.

5
1

IVaR0 with α(SII),1

IVaR0 with α(SII),2

IVaR0 with α(SII),3

IVaR0 with α(SII),4

EVaR0 with α(SII)

VaR0 with α1

Figure 5. Computation of the solvency capital in the proportion of the initial value of the portfolio,
for maturities T ∈ {1, . . . , 45} and a long-term threshold K = 8.

However, for the three others definitions of the confidence level, we remark that the solvency
capital level increases for short maturities, while it decreases for long maturities. This decrease in the
level is higher when the decrease of the confidence level increases as well, as expected. For instance,
the solvency capital under the exponential function α(SII),4 declines more quickly than the solvency
capital under the square function α(SII),3. We also observe a similar increasing and decreasing shape
with the recalculated VaR and TVaR measures. This shape is very similar to the one given by the
maturity approach of [10]. However, the main advantage is that the measure that we consider now is
time consistent.

Concerning the EVaR measures, we see that we could consider it as the lower bound for the
solvency capital level. This solvency capital is simply the expectation of the solvency capital needed
for the last year of the product. It is the best estimate of the capital needed for the last year and does
not include any security margin, except for the last year.

The difficulty we face now is the determination of a reasonable or relevant confidence
level function. We could obtain any shape of the curve of the solvency capital with a particular choice
of the confidence function. A way of solving this would be to consider an easy understandable function,
such as the linear increase, e.g., starting K years before the maturity, we increase the confidence level
from a fixed amount each year towards a classic level, such as the Solvency II or the Swiss Solvency
Test levels.

Finally, according to Remark 10, we also observe in Figure 6 that the solvency capital increases
when μ decreases and σ increases, while it decreases when μ increases and σ decreases.
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T

SC
/

A
0

1 15 30 45

0
0.

1
0.

2
0.

3
0.

4
μ and σ
μ × 1.1 and σ × 0
μ × 0.9 and σ × 1

Figure 6. Computation of the solvency capital in the proportion of the initial value of the portfolio
according to the iterated VaR measure with α(SII),2 and with different values for μ and σ, for maturities
T ∈ {1, . . . , 45} and a long-term threshold K = 8.

8. Conclusions

In this paper, we presented different constructions of time-consistent dynamic risk measures in
order to determine the solvency capital of a life insurer or pension fund by taking into account the
information disclosed through time. These dynamic risk measures are built such that they are coherent
with the Solvency II or Swiss Solvency Test regulatory frameworks in the last year of the product.

We saw that according to the choice of the conditional risk measures considered for the
iteration scheme and, in particular, according to the choice of the confidence levels for each iteration,
different shapes for the solvency capital can be obtained. Several confidence levels that seem convenient
have been proposed in order to benefit from the long-term characteristic of these products.

We also introduced a time-consistent measure where the first iteration is a VaR or TVaR measure,
and the subsequent iterations make use of the conditional expectation. This measure is a kind of best
estimate of the capital needed for the last year of the product and is particularly intuitive and elegant.

Finally, an important step forward will be to consider the case of multiple cash flows and to
include more risks, such as the interest rate and mortality risks.
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Appendix A. Link between Time-Consistent and Iterated Measures

We recall here the equivalence between time-consistent and iterated risk measures (see [4]).

Theorem A1. Let ρ be a dynamic risk measure on L1(Ω,FT ,P). The following conditions are equivalent:

(a) ρ is time consistent;
(b) if:

ρt+1(X) = ρt+1(Y),

then:
ρt(X) = ρt(Y),

for all t ∈ T, t �= T − 1 and X, Y ∈ L1(Ω,FT ,P);
(c) ρ is iterated.
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Proof. We first prove (a) implies (b). Let t ∈ T, t �= T − 1 and X, Y ∈ L1(Ω,FT ,P). If:

ρt+1(X) = ρt+1(Y),

then by time consistency, we have either:

ρt(X) ≤ ρt(Y),

or:
ρt(X) ≥ ρt(Y),

and the first conclusion holds.
We now prove (b) implies (c). Let t ∈ T, t �= T − 1 and X ∈ L1(Ω,FT ,P). By conditional cash

invariance and normalization of the conditional risk measure, we compute that:

ρt+1 (−ρt+1(X)ιt+1,T) = ρt+1(X),

and by (b) with:
Y = −ρt+1(X)ιt+1,T ,

ρ is iterated.
Finally, we see that (c) implies (a). Let t ∈ T, t �= T − 1 and X, Y ∈ L1(Ω,FT ,P). If:

ρt+1(X) ≤ ρt+1(Y),

then by the assumption of recursiveness and the monotonicity of the conditional risk measure, we have:

ρt(X) = ρt (−ρt+1(X)ιt+1,T)

≤ ρt (−ρt+1(Y)ιt+1,T)

= ρt(Y),

and the proof is complete.

Appendix B. Proof of Proposition 3

The demonstration requires the following lemma; see ([17] [Lemma A.108]), for a proof of
this result.

Lemma B1. Let X, Y ∈ L1(Ω,FT ,P) and G ⊆ FT be a σ-algebra, such that X is independent of G and Y
is G-measurable. Then, for every B(R2)-measurable bounded (or non-negative) function:

h : R2 −→ R,

we have that:
E [h(X, Y)|G] = g(Y),

where B(R2) is the Borel σ-algebra on R2 and:

g(y) = E [h(X, y)] ,

for y ∈ R.
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We only consider the case of the IVaR measure, and we start the proof with t = T − 1. We find that:

IVaRα
T−1(FNWT) = VaRα1

T−1(AT − LT)

= VaRα1
T−1(AT) + LT P(T − 1, T),

by conditional cash invariance. Let V ∈ L1(Ω,FT−1,P). We compute that, by Equation (1),

P [ AT P(T − 1, T) ≤ V| FT−1]

= P

[
AT−1

AT
AT−1

P(T − 1, T) ≤ V
∣∣∣∣FT−1

]
= P

[
AT−1 exp

[
θμ + (1 − θ)r − θ2σ2

2
+ θσ (WT − WT−1)

]
P(T − 1, T) ≤ V

∣∣∣∣FT−1

]
= P

[
Z ≤ 1

θσ

[
ln V − ln AT−1 − ln P(T − 1, T)−

(
θμ + (1 − θ)r − θ2σ2

2

)]∣∣∣∣FT−1

]
,

with Z a standard normal r.v. independent of FT−1 and the r.v. V must satisfy the condition V > 0.
According to Lemma B1 with X = Z,

Y =
1

θσ

[
ln V − ln AT−1 − ln P(T − 1, T)−

(
θμ + (1 − θ)r − θ2σ2

2

)]
,

and:
h(x, y) = χ{x≤y},

for x, y ∈ R, where χ stands for the indicator function, we find that:

P [ AT P(T − 1, T) ≤ V| FT−1]

= Φ
(

1
θσ

[
ln V − ln AT−1 − ln P(T − 1, T)−

(
θμ + (1 − θ)r − θ2σ2

2

)])
.

Due to the continuous and strictly increasing properties of the cumulative distribution function Φ,
it is invertible and:

P [ AT P(T − 1, T) ≤ V| FT−1] > α1,

is equivalent to:

1
θσ

[
ln V − ln AT−1 − ln P(T − 1, T)−

(
θμ + (1 − θ)r − θ2σ2

2

)]
> Φ−1(α1).

We find that V ∈ L1(Ω,FT−1,P) must also satisfy:

V > P(T − 1, T)AT−1 exp
[

θμ + (1 − θ)r − θ2σ2

2
+ θσΦ−1(α1)

]
,

and the case t = T − 1 follows.
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We assume now that the result is true for t ∈ T, t �= 0, and we show that it is also true for t − 1.
We have that, by Equation (2),

IVaRα
t−1(FNWT)

= VaRαT−t+1
t−1

(
−IVaRα

t (FNWT)
1

P(t, T)

)
= VaRαT−t+1

t−1

(
At exp

[(
θμ + (1 − θ)r − θ2σ2

2

)
(T − t) + θσ

T−t

∑
i=1

Φ−1 (αi)

])
+ LT P(t − 1, T).

Let V ∈ L1(Ω,Ft−1,P). We then find that,

P

[
At exp

[(
θμ + (1 − θ)r − θ2σ2

2

)
(T − t) + θσ

T−t

∑
i=1

Φ−1 (αi)

]
P(t − 1, T) ≤ V

∣∣∣∣∣Ft−1

]

= P

[
Z ≤ 1

θσ

[
ln V − ln At−1 − ln P(t − 1, T)−

(
θμ + (1 − θ)r − θ2σ2

2

)
(T − (t − 1))

− θσ
T−t

∑
i=1

Φ−1 (αi)

]∣∣∣∣∣Ft−1

]
,

where again Z is a standard normal r.v. independent of Ft−1, and the r.v. V ∈ L1(Ω,Ft−1,P) must
satisfy the condition V > 0. According to Lemma B1 and the properties of the cumulative distribution
function Φ, the first result follows from the same reasoning as the first part of the proof.

The second part of the result follows from the same reasoning adapted to the TVaR measure.
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Abstract: We compare two types of reinsurance: excess of loss (EOL) and largest claim reinsurance
(LCR), each of which transfers the payment of part, or all, of one or more large claims from the primary
insurance company (the cedant) to a reinsurer. The primary insurer’s point of view is documented in
terms of assessment of risk and payment of reinsurance premium. A utility indifference rationale
based on the expected future dividend stream is used to value the company with and without
reinsurance. Assuming the classical compound Poisson risk model with choices of claim size
distributions (classified as heavy, medium and light-tailed cases), simulations are used to illustrate
the impact of the EOL and LCR treaties on the company’s ruin probability, ruin time and value as
determined by the dividend discounting model. We find that LCR is at least as effective as EOL in
averting ruin in comparable finite time horizon settings. In instances where the ruin probability for
LCR is smaller than for EOL, the dividend discount model shows that the cedant is able to pay a
larger portion of the dividend for LCR reinsurance than for EOL while still maintaining company
value. Both methods reduce risk considerably as compared with no reinsurance, in a variety of
situations, as measured by the standard deviation of the company value. A further interesting finding
is that heaviness of tails alone is not necessarily the decisive factor in the possible ruin of a company;
small and moderate sized claims can also play a significant role in this.

Keywords: largest claims reinsurance; excess of loss reinsurance; ruin probability; ruin time;
compound Poisson risk model; heavy tails; Lévy insurance risk process

1. Introduction

The classical insurance risk model for a company employs a compound Poisson process with
negative drift as the claims surplus process, and measures the lifetime of the company as the time taken
for the value of the process to exceed the initial capital of the firm; the “ruin time”. Originally developed
under a light tailed Cramér condition, in recent decades a wider spectrum of claim distributions—light,
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medium and heavy tailed—has been analysed, and, more generally, a Lévy process has been used in
place of the compound Poisson process.

A need for heavy tailed insurance risk models has been stressed, for example, by [1–3], and in
this context, special interest lies in the possibility of reinsurance, whereby the company can hedge its
risk of suffering extremely large claims. A reinsurance scheme increases its potential lifetime, thereby
reducing the company’s risk of default. However, reinsurance treaties come at a cost, and pricing of
those contracts and the consequent impact on the company’s overall value need to be considered.

In this paper we investigate how reinsurance can extend the lifetime of the company and reduce
the probability of ruin, with attention not just to heavy tailed claim distributions, but also to a variety
of other possible distributional tail behaviours. Reinsurance works by transferring responsibility for
some portion of the claims in a specified time period from the primary insurance company (the cedant)
to the reinsurer. Two types of reinsurance which guard against the possibility of extremely large claims
are excess of loss (EOL), and largest claim reinsurance (LCR). Each of these transfers the payment of
part, or all, of one or more of the largest claims from the cedant to a reinsurer. A considerable amount
of work has been done on these and related methods, usually taking the point of view of the reinsurer.
Here, by contrast, we concentrate on the properties of the resulting reduced process from the point of
view of the cedant and consider the relative merits of each type.

To illustrate the effects, we analyse compound Poisson models for an insurance risk process
incorporating an EOL or LCR aspect, or neither, computing ruin times and probabilities of ruin both
in finite and infinite time scenarios. Using a dividend discounting model, we also determine the
maximal amount the cedant is able to divert from dividend payments to the reinsurance premium,
without reducing company value.

To cover the spectrum of possibilities, as claims distributions we consider subexponential
(including Pareto) distributions, as typifying heavy tailed situations, convolution equivalent
distributions (such as the Inverse Gaussian) for medium, and distributions satisfying a Cramér
condition (we use a Gamma distribution), for light tailed cases. In this way, much insight into the
behaviour of the ruin time and associated quantities, such as the shortfall at ruin, can be gained.

The paper is organised as follows. The EOL and LCR reinsurance models are reviewed in Section 2.
Section 3 outlines our methods, with the compound Poisson model in Section 3.1, and the tail regimes
we consider in Section 3.2. Section 4 gives the results of the simulations, separately for LCR (Section 4.1)
and EOL reinsurance (Section 4.2). Section 4.3 compares results across the distributions for both kinds
of reinsurance. In Section 5 we set out the dividend discounting model which is our basis for valuation
of the cedant company, and use it to find the amount of the dividend the cedant is able to transfer
to reinsurance without reducing the value of the company. This value is then simulated under the
various regimes and conditions and comparisons made between the EOL and LCR strategies. Section 6
contains a summary discussion of our results with suggestions for future research. In an Appendix we
state some useful results concerning Laplace transforms of passage times which can be used to check
on some aspects of the simulations, or provide bounds for quantities of interest.

2. Reinsurance Models

A primary incentive for an insurance company to enter a reinsurance contract is to gain some
degree of certainty over its cash flows. There are of course many ways in which risks can be transferred
from cedant company to reinsurer. We briefly outline the two methods of reinsurance we will consider.

Excess of Loss Reinsurance: Under this scheme, a retention amount L is pre-determined and the
amount of any claim in excess of L is liable for the reinsurer. This scheme in effect truncates all claims
at the level L, and the modified aggregate claims process is then simply the sum of the truncated
claims. Analysis, both theoretical and practical, is relatively straightforward.
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A potential problem with this procedure, however, is the moral hazard it may give rise to.
Moral hazard refers to changes in the cedant’s behaviour that may occur after having taken out
reinsurance; it may lead to less cautious behaviour and consequently to an increase in the potential
magnitude and/or probability of a large loss. The work of [4,5], for example, discusses the issues
involved in this, and how their effects may be disentangled empirically.

Largest Claims Reinsurance: There are various alternatives to using a fixed retention level,
usually based on making the insurer liable for a proportion of the total loss in some way. Here we
examine the LCR treaty: having set a fixed follow-up time t, we delete from the process the largest claim
occurring up to and including that time. Defined in this way, the scheme incorporates a retrospective
feature akin to the construction of a “lookback” option as understood in finance 1.

The reduced process constitutes a “trimmed” process, in which some part of, or all of, one or
more of the largest claims has been deleted. Changes in the ruin probabilities and the expected ruin
times of the cedant due to the trimming are then of particular interest.

Ruin: “Ruin” occurs if the modified claim surplus process, starting from 0, exceeds the initial
capital level u. The ruin time and consequent quantities are then calculated on the modified risk process.
In Figure 1, we provide graphical realisations of the LCR reinsurance scheme for one particular claim
distribution, a Pareto(1, 2) (precise definitions of distributions are given in Section 3.2). The black
points in Figure 1 indicate individual claims arriving sequentially in time and the red segments
represent the amounts that will be covered by reinsurance.

Figure 1. A schematic illustration of the largest claim reinsurance (LCR) reinsurance scheme with
a Pareto(1,2) claim distribution. Black dots indicate claim amounts and red lines are the successive
amounts liable for the reinsurance company.

Translating this scheme into the sample path of the cedant’s insurance risk process, we then have
the illustration in Figure 2, where the black line stands for the original risk process and the red line is
the process adjusted for LCR reinsurance. Figure 2 also includes a sample path for EOL reinsurance,
as the green line. In general, the ruin time with reinsurance will exceed or equal that without, for

1 The LCR procedure can be made prospective by implementing it as a forward looking dynamic procedure in real time,
from the cedant’s point of view. Designate as time zero the time at which the reinsurance is taken out. At this time, the cedant
company’s assets amount to u > 0, say. The first claim arriving after time 0 is referred to the reinsurer and not debited
to the cedant. Subsequent claims smaller than the initial claim are paid by the cedant until a claim larger than the first
(the previous largest) arrives. The difference between these two claims is referred to the reinsurer and not debited to the
cedant. The process continues in this way so that at time t, the accumulated amount referred to the reinsurer equals the
largest claim up till that time. This procedure has the same effect as referring the largest claim up till time t retrospectively
to the reinsurer.
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each sample path, and the question we address here is how to measure this effect with regard to the
company’s viability.

Figure 2. Sample paths of the insurance risk processes without reinsurance (black line), with LCR
reinsurance (red line), and with EOL reinsurance (green line), for a Pareto(1,2) claim distribution.
The company’s initial reserve is u = 10, the safety loading is θ = 0.1, expected claim size is μ = 2,
claim arrival rate is λ = 1, and each time unit is 0.01 year = 3.65 days. For comparability between the
two schemes, the retention level L for the EOL scheme is chosen so that the expected values of the LCR
and EOL aggregate claims are equal at maturity time T = 5000.

3. Methods

In this section we briefly set out notation for the compound Poisson process model we will use,
and describe the simulations to be carried out.

3.1. Compound Poisson Process Methodology

Our results are formulated in terms of the familiar Cramér-Lundberg compound Poisson process
model. In this, the claim surplus process takes the form

Ct =
Nt

∑
i=1

ξi − ct, t ≥ 0, (1)

where c is the premium rate, the ξi are independent positive random variables all having the same
claim size distribution function F(x) on [0, ∞) with F(0) = 0, and Nt is a Poisson process with intensity
λ, independent of the ξi. (A sum of the form ∑0

i=1 is taken as 0, and N0 := 0.) The premium rate c is
chosen to satisfy the net profit condition

c = (1 + θ)λμ, (2)

where θ > 0 is a prespecified safety loading factor and μ is the expectation of a random variable
generated from F, assumed finite. Ruin occurs if Ct exceeds the initial capital level u > 0, for some t > 0.
The net profit condition ensures that expected income outweighs expected claims, thus precluding the
possible case of almost sure ruin; but ruin will occur with positive probability.

In order to describe the reinsured claim surplus process, consider the claims occurring as a point
process in time. After reinsurance, the claim surplus process, denoted by CR

t , can be written at time
t ≥ 0 as

CR
t = Ct − Rt, (3)
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where in the case of an EOL treaty

Rt =
Nt

∑
i=1

(ξi − L)1{ξi>L}, (4)

for some L > 0, while for the LCR treaty

Rt = max
1≤i≤Nt

ξi. (5)

(1A denotes the indicator of an event A, and a maximum of the form max1≤i≤0 is taken as 0). In the
EOL version, Rt is the accumulated amount of claims exceeding the cutoff level L up till time t, which is
referred to the reinsurer hence subtracted from the claim surplus process in (3). In the LCR version,
CR

t is represented as the dynamically trimmed risk process with the largest jump occurring so far
omitted at each point in time. In either case, ruin occurs for the reinsured company if CR

t exceeds the
initial capital level u, for some t > 0.

3.2. Tail Regimes

Our analysis is divided into three different cases based on the heaviness of the tails of the claims
distribution. Thus we consider light (Cramér), medium-heavy (convolution equivalent) and heavy
(subexponential) scenarios. For detailed background concerning these models, we refer to [6–8], as
well as the references therein. Illustrations of practical applications using convolution equivalent
models are in [9,10], Here we only provide a list of basic definitions and the assumptions involved in
each regime. In order to make the models comparable, we choose parameters in each case such that
Eξ1 = 2.

(i) Cramér case: There exists a finite positive constant ν0 such that the claim distribution F satisfies

λ(mν0(F)− 1) = cν0, (6)

where mν(F) =
∫
[0,∞) eνxdF(x) is the moment generating function (mgf) of F, assumed finite

for ν = ν0. These are relatively “light-tailed” (exponentially small) distributions. As a typical
example in our simulations we choose F to be a Gamma(2, 1) distribution with density

f (x) = xe−x, x ≥ 0. (7)

(ii) Convolution equivalent case: The claims distribution function F is said to be convolution
equivalent with index α > 0, if its tail F(x) := 1 − F(x), x > 0, satisfies

lim
x→∞

F(x − y)
F(x)

= eαy and lim
x→∞

F2×(x)
F(x)

= 2mα(F) < ∞, (8)

where F2× is the convolution, F2× = F × F. The distribution function F has the properties

mα(F) < ∞ and mα+ε(F) = ∞ for ∀ε > 0. (9)

These distributions have “medium-heavy” tails in the sense that a convolution equivalent
distribution of index α has a finite exponential moment of order α, but any larger order moment
is infinite. Typical examples are distributions with tails of the form

F(x) ∼ ce−αx

xρ , as x → ∞, (10)
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for some c > 0, α > 0, ρ > 1. One important example of a class of distributions which
are convolution equivalent is the Inverse Gaussian family with densities parametrised as in
Chapter 2.2 of [11]:

f (x; a, b) =

√
b

2π
x−3/2 exp

(
− b(x − a)2

2a2x

)
, x > 0. (11)

Here a > 0 is the mean parameter and b > 0 is called the scale parameter. We denote such a
distribution as IG(a, b). In our simulations we choose a = 2 and b = 1.5.

(iii) Subexponential case: When (8) is satisfied with α = 0, F is said to have a subexponential
tail. Typical examples are the Pareto distributions. In our simulations we used a Pareto(1, 2)
distribution with (power law) tail of the form

F(x) =
1
x2 , x ≥ 1. (12)

These distributions have very heavy tails, giving rise to occasional extremely large jumps.

With the parameters as specified above, these three regimes are mutually exclusive; see [8].

3.3. Simulation Methodology

Our focus is on illustrating notionally how reinsurance affects the ruin time of the company,
rather than on definitive numerical comparisons, so we adopt a straightforward approach to the
simulations which is adequate for our purposes. Specifically, we generate a number N = 100, 000
sample paths and keep track of whether and when they exceed the predetermined reserve level u
at some time during a time interval [0, T], T > 0. This allows estimation of the ruin probabilities
P(τu ≤ T) and P(τR

u ≤ T) for the risk processes with and without reinsurance. We also estimate the
conditional expected values of these ruin times. The ruin times are defined formally as

τu = inf{t > 0 : Ct > u}, and τR
u = inf{t > 0 : CR

t > u}. (13)

Simulated sample paths may be categorised as follows.

(a) Neither Ct nor CR
t transits above u in [0, T]. Suppose there are n1 such paths among the N.

(b) Ct transits above u in [0, T] but CR
t does not. Suppose there are n2 such paths among the N.

(c) CR
t transits above u in [0, T] and hence Ct does also. There are n3 = N − n1 − n2 such paths

among the N.

The ruin probabilities P(τu ≤ T) and P(τR
u ≤ T) were estimated by calculating the proportion

of all paths which exceeded the reserve level u during [0, T]. Standard errors of the probability
estimates were calculated using the binomial variance P̂(1 − P̂)/N, where P̂ was the corresponding
estimated probability.

In calculating ruin times, we restrict ourselves to paths of Type (c). These are the only paths
for which we can determine both τu and τR

u , and lead to a useful comparison between them in the
form of estimates for E(τR

u |τR
u ≤ T) and E(τu|τR

u ≤ T). For these paths we record the times of first
passage above u for each of Ct and CR

t , denoted by τu,T,1, · · · , τu,T,n3 and τR
u,T,1, · · · , τR

u,T,n3
respectively,

and then estimate E(τR
u |τR

u ≤ T) and E(τu|τR
u ≤ T) by

τ̂R
u,T =

∑n3
i=1 τR

u,T,i

n3
(14)
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and

τ̂u,T =
∑n3

i=1 τu,T,i

n3
. (15)

For each of the n3 paths of Type (c) we have τu,T,i ≤ τR
u,T,i, implying of course that τ̂u,T ≤ τ̂R

u,T .
For the simulations in the next section we need to make choices for the parameters T, θ, μ, λ and

u. We discuss these choices in more detail in Section 5.2, but for the present purposes, we set them as
follows: expectation of claims distributions μ = 2; claim arrival rate is λ = 1; safety loading θ = 0.1.
Initial reserve takes values u = 10, 30, 50, 70, 100 and time spans are T = 100, 500, 1000. Each time unit
is 0.01 year = 3.65 days.

4. Results

In this section, we report on simulations for the classical compound Poisson risk model in
which the claim surplus process takes the form specified in (1) and the reinsured process is as in (3).
We inspected the impact of EOL and LCR reinsurances in the three different tail regimes by varying
the claim size distributions. In all examples, we chose the claim arrival rate as λ = 1 and the safety
loading as θ = 0.1. For a variety of combinations of initial capital u and follow-up time T, we recorded
the estimated original and the reinsured ruin probabilities, and the estimated ruin times.

4.1. Largest Claim Reinsurance

For the case of LCR we denote the claims surplus process in (3) by CM and the ruin time in
(13) by τM

u . We chose a Pareto(1, 2) distribution for the simulations in the heavy-tailed case. This
choice of parameters parallels that of [12], who calculated the ultimate ruin probabilities for these
particular Cramér-Lundberg risk models. So we can benchmark our results against theirs to check on
the accuracy of our simulations.

The results are summarised in Table 1. Comparing Columns 3 and 4 in Table 1, we see that
the estimated ruin probability P̂(τu < T) drops substantially to P̂(τM

u < T) after reinsurance.
Correspondingly, significant increases in the expected conditional lifetime of the company with
reinsurance are observed (compare Columns 5 and 6). Column 7 gives the percentage change in
the conditional ruin times due to reinsurance. As expected, the effect tends to diminish when u is
increased, but remains substantial even for u = 100. The probabilities in Columns 3 and 4 of Table 1,
and in similar tables below, are estimated correct to 2 decimal places (standard error less than 10−2).
Numbers in the T = ∞ rows in Table 1 are calculated from Algorithm III in [12].

We next investigate the impact of reinsurance on the Cramér-Lundberg model with light or
medium-heavy tailed claim distributions. The specific examples chosen are Gamma(2, 1) (light tailed)
and IG(2, 1.5) (medium-heavy tailed). For consistency, we chose the expectations of the claims
distributions to be μ = 2 (the same as in the Pareto case), and all other parameters (claim arrival rate
λ = 1, safety loading θ = 0.1, initial reserves u and time spans T) also the same.
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Table 1. LCR reinsurance for Pareto(1, 2) distributed claims. The safety loading is θ = 0.1,
expected claim size is μ = 2, claim arrival rate is λ = 1, and each time unit is 0.01 years. Simulations are
done with N = 100, 000 sample paths. The T = ∞ case refers to the results obtained from Algorithm III
in [12].

u T P̂(τu < T) P̂(τM
u < T) τ̂u,T τ̂M

u,T % Changes

10

100 0.43 0.14 19.06 37.03 93.34
500 0.53 0.20 38.14 85.45 124.02

1000 0.55 0.21 44.75 104.35 133.19
∞ 0.56 ± 0.03 - - - -

30

100 0.14 0.02 35.78 58.97 64.84
500 0.26 0.06 90.65 164.25 81.19

1000 0.28 0.06 113.18 214.20 89.25
∞ 0.32 ± 0.02 - - - -

50

100 0.06 0.00 44.64 66.40 55.74
500 0.14 0.02 129.20 215.24 66.59

1000 0.17 0.03 172.73 303.81 75.89
∞ 0.20 ± 0.02 - - - -

70

100 0.03 0.00 45.66 73.67 61.37
500 0.09 0.01 157.07 263.60 67.82

1000 0.11 0.01 221.55 380.55 71.77
∞ 0.14 ± 0.02 - - - -

100

100 0.01 0.00 37.32 75.64 102.71
500 0.05 0.00 180.25 300.30 66.60

1000 0.06 0.00 258.22 450.58 74.50
∞ 0.081 ± 0.017 - - - -

Graphical illustrations are in Figures 3 and 4. Relatively smaller claim sizes occur in these two
cases (compare the vertical scales of these two plots with that of Figure 1), and as a result the impact of
reinsurance is not as dramatic as it is for the heavy-tailed cases. A similar conclusion can be drawn
from the numerical results in Tables 2 and 3.

In both the Gamma and Inverse Gaussian cases, improvements in ruin probabilities after
reinsurance are significant, especially for u small, but proportionally not as substantial as for the Pareto.

Figure 3. Sample paths of the insurance risk processes without reinsurance (black line), with LCR
reinsurance (red line), and with excess of loss (EOL) reinsurance (green line), for a Gamma(2, 1) claim
distribution. The safety loading is θ = 0.1, expected claim size is μ = 2, claim arrival rate is λ = 1, and
each time unit is 0.01 years. L for the EOL scheme is chosen so that the expected values of the LCR and
EOL claim distributions are equal at maturity time T = 5000.
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Figure 4. Sample paths of the insurance risk processes without reinsurance (black line), with LCR
reinsurance (red line), and with EOL reinsurance (green line), for an IG(2, 1.5) claim distribution.
The safety loading is θ = 0.1, expected claim size is μ = 2, claim arrival rate is λ = 1, and each time unit
is 0.01 years. L for the EOL scheme is chosen so that the expected values of the LCR and EOL claim
distributions are equal at maturity time T = 5000.

Table 2. LCR reinsurance for Gamma(2, 1) distributed claims. The safety loading is θ = 0.1,
expected claim size is μ = 2, claim arrival rate is λ = 1, and each time unit is 0.01 years. Simulations are
done with N = 100, 000 sample paths.

u T P̂(τu < T) P̂(τM
u < T) τ̂u,T τ̂M

u,T % Changes

10
100 0.43 0.25 22.22 34.91 57.11
500 0.49 0.32 44.35 70.81 61.18

1000 0.50 0.32 47.79 77.57 63.39

30
100 0.08 0.04 47.95 59.49 24.08
500 0.14 0.08 115.46 145.61 26.11

1000 0.15 0.09 135.16 170.45 26.11

50
100 0.01 0.00 62.13 72.35 16.45
500 0.04 0.02 177.90 208.29 17.08

1000 0.04 0.02 214.04 254.08 18.71

70
100 0.00 0.00 68.07 79.12 16.24
500 0.01 0.01 233.81 264.30 13.04

1000 0.01 0.01 292.09 327.81 12.23

100
100 0.00 0.00 - - -
500 0.00 0.00 315.52 347.89 10.26

1000 0.00 0.00 393.28 438.94 11.61
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Table 3. LCR reinsurance for IG(2, 1.5) distributed claims. The safety loading is θ = 0.1, expected
claim size is μ = 2, claim arrival rate is λ = 1, and each time unit is 0.01 years. Simulations are done
with N = 100, 000 sample paths.

u T P̂(τu < T) P̂(τM
u < T) τ̂u,T τ̂M

u,T % Changes

10
100 0.51 0.24 18.63 35.88 92.61
500 0.59 0.33 40.69 83.27 104.67

1000 0.60 0.34 47.97 100.35 109.18

30
100 0.16 0.05 38.97 56.63 45.33
500 0.27 0.13 101.28 153.44 51.51

1000 0.28 0.14 122.80 189.76 54.53

50
100 0.04 0.01 52.30 68.41 30.81
500 0.12 0.05 150.57 205.16 36.25

1000 0.13 0.06 197.59 272.25 37.79

70
100 0.01 0.00 61.72 78.22 26.73
500 0.05 0.02 197.71 253.26 28.10

1000 0.06 0.03 261.72 339.91 29.88

100
100 0.00 0.00 54.87 64.62 17.77
500 0.01 0.00 250.91 303.45 20.94

1000 0.02 0.01 368.16 455.16 23.63

4.2. Excess of Loss Reinsurance

In this section we examine the EOL reinsurance scheme. We denote the corresponding claims
surplus process by CL and the ruin time by τL

u . Under this treaty, the reinsurer pays the total amount
of any claim in excess of some pre-determined retention level L. For the results in the present section,
in order to afford some degree of comparability with the LCR scheme, we chose L such that

E(CL
T) = E(CM

T ),

For any t > 0 we have

E(CM
t ) = E(Ct)− E

(
max

1≤i≤Nt
ξi

)
,

and

E(CL
t ) = E(Ct)− E

(
Nt

∑
i=1

(ξi − L)1{ξi>L}

)
,

so for comparability we need to solve the equation

E

(
max

1≤i≤Nt
ξi

)
= E

(
Nt

∑
i=1

(ξi − L)1{ξi>L}

)
(16)

for L = L(t). The left-hand side of (16) is equal to

E

(
max

1≤i≤Nt
ξi

)
=

∞

∑
n=0

E

(
max

1≤i≤n
ξi

)
e−λt(λt)n

n!

=
∞

∑
n=0

∫ ∞

0
P

(
max

1≤i≤n
ξi > x

)
dx × e−λt(λt)n

n!

=
∫ ∞

0
dx

∞

∑
n=0

(1 − Fn(x))× e−λt(λt)n

n!

=
∫ ∞

0
(1 − e−λtF(x))dx,
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where F(x) = 1 − F(x) is the tail of the distribution of the ξi. The right-hand side of (16) is equal to

E

(
Nt

∑
i=1

(ξi − L)1{ξi>L}

)
=

∞

∑
n=0

e−λt(λt)n

n!
nE((ξ1 − L)1{ξ1>L}) = λt

∫ ∞

L
(x − L)dF(x).

Choosing t = T and λ = 1, L is required to solve

∫ ∞

L
(x − L)dF(x) =

∫ ∞

L
F(x)dx =

1
T

∫ ∞

0
(1 − e−TF(x))dx. (17)

This is easily done in the R package, which we used for the simulations also. Once having selected
L in this way, we used the same approach as before to estimate ruin probabilities and ruin times.
The results are displayed in Tables 4–6.

In these tables we abuse notation slightly and continue to use τ̂u,T as the estimated conditional
ruin time for the plain risk process, noting, however, that in the present case the conditioning is on the
event τL

u ≤ T and not on τM
u ≤ T as in Tables 1–3. This is the reason for the differing values of τ̂u,T in

Tables 4–6 as opposed to Tables 1–3.
Tables 4–6 contain an extra column “No Effect” as compared to Tables 1–3. The extra column

records the proportion of paths for which ruin occurs but the ruin times are the same for the original
sample path Ct as for the reinsured path CL

t . In these cases the reinsurance scheme does not avoid ruin.
There are two ways in which this can happen. One is that ruin occurs but reinsurance is not invoked
at all; that is, there was no claim larger than L before ruin. The second scenario is that even though
reinsurance was invoked at some time or times before ruin, nevertheless the jump causing ruin has
magnitude less than L. There is no saving effect from the EOL scheme in these cases.

Table 4. EOL reinsurance for Pareto(2, 1) distributed claims. The safety loading is θ = 0.1,
expected claim size is μ = 2, claim arrival rate is λ = 1, and each time unit is 0.01 years. Simulations
are done with N = 100, 000 sample paths. Retention level L is the solution to (17). For T = 100,
L(T) = 5.64; for T = 500, L(T) = 12.62; for T = 1000, L(T) = 17.84.

u T P̂(τu < T) P̂(τL
u < T) τ̂u,T τ̂L

u,T % Changes No Effect

10
100 0.43 0.20 15.88 21.36 34.55 0.08
500 0.53 0.39 31.50 36.55 16.03 0.30
1000 0.55 0.44 38.93 43.54 11.84 0.38

30
100 0.14 0.01 33.48 49.71 48.47 0.00
500 0.26 0.08 71.37 92.83 30.08 0.03
1000 0.28 0.12 87.85 106.86 21.63 0.07

50
100 0.06 0.00 45.22 67.26 48.76 0.00
500 0.14 0.02 107.64 145.85 35.50 0.00
1000 0.17 0.03 134.88 172.85 28.15 0.01

70
100 0.03 0.00 70.52 79.83 13.20 0.00
500 0.09 0.00 144.90 195.31 34.79 0.00
1000 0.11 0.01 182.04 243.62 33.82 0.00

100
100 0.01 0.00 - - - 0.00
500 0.05 0.00 181.23 281.15 55.13 0.00
1000 0.06 0.00 235.18 318.21 35.31 0.00
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Table 5. EOL reinsurance for Gamma(2, 1) distributed claims. The safety loading is θ = 0.1,
expected claim size is μ = 2, claim arrival rate is λ = 1, and each time unit is 0.01 years. Simulations
are done with N = 100, 000 sample paths. Retention level L is the solution to (17). For T = 100,
L(T) = 4.49; for T = 500, L(T) = 6.10; for T = 1000, L(T) = 6.79.

u T P̂(τu < T) P̂(τL
u < T) τ̂u,T τ̂L

u,T % Changes No Effect

10
100 0.43 0.32 20.02 24.34 21.55 0.13
500 0.49 0.45 40.67 44.52 9.45 0.32
1000 0.50 0.47 45.80 48.49 5.85 0.38

30
100 0.08 0.03 44.45 53.24 19.77 0.00
500 0.14 0.11 106.87 116.82 9.31 0.04
1000 0.15 0.13 127.08 135.13 6.33 0.07

50
100 0.01 0.00 57.85 68.12 17.74 0.00
500 0.04 0.03 165.39 181.42 9.69 0.01
1000 0.04 0.03 200.86 214.19 6.64 0.01

70
100 0.00 0.00 66.66 80.33 20.52 0.00
500 0.01 0.01 219.09 239.44 9.29 0.00
1000 0.01 0.01 279.28 294.17 5.33 0.00

100
100 0.00 0.00 - - - 0.00
500 0.00 0.00 306.48 334.20 9.04 0.00
1000 0.00 0.00 385.12 410.96 6.71 0.00

Table 6. EOL reinsurance for IG(2, 1.5) distributed claims. The safety loading is θ = 0.1, expected claim
size is μ = 2, claim arrival rate is λ = 1, and each time unit is 0.01 years. Simulations are done with
N = 100, 000 sample paths. Retention level L is the solution to (17). For T = 100, L(T) = 6.89; for
T = 500, L(T) = 11.27; for T = 1000, L(T) = 13.39.

u T P̂(τu < T) P̂(τL
u < T) τ̂u,T τ̂L

u,T % Changes No Effect

10
100 0.51 0.33 15.99 21.11 32.05 0.15
500 0.59 0.52 35.92 41.51 15.55 0.39
1000 0.60 0.56 44.17 48.64 10.10 0.47

30
100 0.16 0.04 35.16 47.97 36.44 0.00
500 0.27 0.18 89.10 106.78 19.85 0.07
1000 0.28 0.22 109.79 124.45 13.35 0.12

50
100 0.04 0.00 46.48 63.63 36.89 0.00
500 0.12 0.06 133.06 159.35 19.76 0.01
1000 0.13 0.09 175.11 199.22 13.77 0.03

70
100 0.01 0.00 55.19 71.45 29.44 0.00
500 0.05 0.02 177.18 211.36 19.29 0.00
1000 0.06 0.03 233.06 267.53 14.79 0.01

100
100 0.00 0.00 - - - 0.00
500 0.01 0.00 227.50 272.16 19.63 0.00
1000 0.02 0.00 333.10 384.93 15.56 0.00

Improvements under EOL reinsurance are more substantial when the claims have a heavier
tailed distribution (the Pareto(1, 2) case) as opposed to the medium-heavy and light tailed cases,
where decreases in ruin probabilities and increases in conditional ruin times are comparatively minor.
Comparing the results in Tables 4–6 to those in Tables 1–3 correspondingly, we see that when u ≤ 30
the LCR treaty gives larger percentage improvements in the ruin probabilities over all three tail
regimes, but this superiority diminishes as u grows. The same is true of the conditional lifetimes.
The EOL method appears to perform markedly better than no reinsurance only when there are
heavy tailed claims, whereas the LCR treaty shows consistent improvements over all three classes of
claim distributions.
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4.3. Comparisons Across Distributions

The simulations also allow us to make interesting comparisons across distributions, that is,
between the Pareto, Inverse Gaussian and Gamma distributed cases. Intuitively our initial expectation
might be that heavier tailed claims distributions would tend to lead to higher ruin probabilities than
lighter tailed ones. Seemingly perplexing at first, then, might be that the ruin probability with or
without reinsurance is, for small reserve levels (u ≤ 30), larger for Inverse Gaussian claims than for
Pareto-type claims, despite the fact that the Inverse Gaussian has much lighter tails than the power
law distributions. This is true for both LCR (compare Columns 3 and 4 in Table 1 with Columns 3
and 4 in Table 3) and for EOL (compare Columns 3 and 4 in Table 4 with Columns 3 and 4 in Table 6),
to varying degrees.

The explanation for this is that in general ruin probabilities and are not closely correlated with
“heaviness” of tails, at least for moderate values of u. Ruin can occur by the accumulation of many
small or medium sized jumps as well as by occasional huge jumps. When the claim size distribution
follows Pareto(1, 2), we see in Figure 1 that most claims have relatively small sizes, roughly in the
range 1 to 4. Eventually, though, as in Figure 1, a huge claim (having magnitude near 60 in the figure),
will arrive. Thus, in a heavy tailed situation, the ruinous jump is very likely to be due to the largest
claim. However ruin may occur by the accumulation of many smaller jumps. In Figure 4, for the
Inverse Gaussian, we see this effect; there are many small and moderate sized claims which can
accumulate to give ruin. The effect tends to be more noticeable when the initial reserve is small.

Figure 5 plots the tails of the three distributions used in the simulations. The tail of the
Pareto(1, 2) is undoubtedly much bigger than for the other two distributions (not obvious in this figure,
but apparent if the x–axis is extended further to the right). Correspondingly, there is less probability
mass at small and medium sized claims than for the Gamma and Inverse Gaussian. The Gamma
distribution has distinctly higher probability mass around relatively small (<5) claim sizes. In the
medium size range (5–15), the Inverse Gaussian provides many substantial claims whose sum can
contribute to ruin for a small reserve, more so than for a heavy tailed distribution.

Figure 5. Tails of the three claim distributions involved in our simulations.

The table entries for τ̂u,T or τ̂R
u,T (with R = M or L) are expected ruin times conditional on ruin

occurring by time T for the reinsured processes, and consequently are not particularly meaningful across
distributions. The percentage changes however are of some interest. In this case improvements due to
reinsurance are greater for the Pareto than for the Inverse Gaussian, as evidenced by the values of the
percentage-wise increases (Column 7) in all tables.

126

Bo
ok
s

M
DP
I



Risks 2017, 5, 3

5. Cost of Reinsurance

Reinsurance treaties are undertaken to reduce risk, but there is a cost attached. In the present
section we employ a dividend discount model to determine the available means by which the company
is able to pay for reinsurance without reducing the firm’s value, and how this affects risk as measured
by the standard deviation of the company value.

5.1. Reinsurance Premium and Dividend Adjustment

We assume the company’s current value is given by its future potential dividend stream,
discounted to present value. Let ρ be the time value of money and assume that dividends are
paid at constant rate d until the cedant’s default, if this occurs. Then the claim surplus process in (1)
must be modified to reflect the dividend payment:

Yt := Ct + dt =
Nt

∑
i=1

ξi − (c − d)t, t > 0. (18)

The insurance company will require a specified safety loading θ to be in effect after the dividend
is paid, so the net profit condition (2) is modified to

c − d = (1 + θ)λμ. (19)

In (18), Y does not depend directly on c and d, only on c − d through the value of θ. Since our
main interest is in the cost of reinsurance, we will take c and d as given. In practice their values will be
dependent on policyholders’ willingness to pay and the choice of safety loading θ. Note also that the
values of c in (1) and (18) must differ if d > 0 and the same safety loading is used in both cases.

The ruin time of the company is now given by τu = inf{t : Yt > u}, for an initial capital level
u > 0, and the cumulative dividend income by

Iu = d
∫ τu

0
e−ρt dt =

d
ρ
(1 − e−ρτu). (20)

The company is subsequently valued at

Vu = E(Iu) =
d
ρ

(
1 − E(e−ρτu ; τu < ∞)

)
. (21)

Now suppose a reinsurance scheme is incorporated, for which the cedant pays the reinsurer a
premium which is constant in time at rate r. As a result of the consequent change in risk profile of the
insurer, policyholders may be willing to pay an increased premium c∗ ≥ c, while shareholders will
accept a reduced dividend d∗ ≤ d. The reinsured claim surplus process is then given by

Y∗
t =

Nt

∑
i=1

ξi − (c∗ − r − d∗)t − Rt, t > 0, (22)

where the nondecreasing process R represents the reduction in claims due to reinsurance. This is
given by (4) in the case of an EOL treaty, and by (5) for the LCR treaty. The reinsured claim surplus
process has ruin time τ∗

u = inf{t : Y∗
t > u}, and the dividend income Equation (20) and the valuation

Equation (21) are then modified by replacing d and τu with d∗ and τ∗
u respectively. Thus

V∗
u = E(I∗u) = E

(
d∗
∫ τ∗u

0
e−ρt dt

)
=

d∗

ρ

(
1 − E(e−ρτ∗u ; τ∗

u < ∞)
)

. (23)
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Since the aim of reinsurance is to prevent, or at least delay ruin, it is natural to require that τ∗
u ≥ τu

for all u > 0. For the LCR and EOL reinsurance schemes, this can only be guaranteed if c∗ − r − d∗ ≥
c − d, and so we make this assumption. Thus for a given new premium rate c∗ and dividend rate d∗,
the largest reinsurance premium the cedant would consider paying is r = c∗ − c + d − d∗. When this
condition holds, (22) becomes

Y∗
t =

Nt

∑
i=1

ξi − (c − d)t − Rt := Y′
t , (24)

which does not depend on c∗ or on d∗, and the valuation Equation (23) becomes

V∗
u =

d∗

ρ

(
1 − E(e−ρτ′u ; τ′

u < ∞)
)

, (25)

where τ′
u = inf{t : Y′

t > u} does not depend on c∗ or on d∗. In particular, reducing d∗ reduces V∗
u .

Adopting a “utility indifference” rationale ([13,14]) whereby the reinsurance contract is beneficial
for the cedant if its utility with reinsurance exceeds that without, and “utility” is taken to be the net
present value of dividend income received, acceptable reinsurance contracts must satisfy V∗

u ≥ Vu. So
to find the maximal reinsurance premium rmax that the cedant is willing to pay for a reinsurance treaty
R, we should maximize r = c∗ − c + d − d∗ over all d∗ ∈ [0, d] for which V∗

u ≥ Vu.
Since V∗

u is increasing in d∗, it follows immediately from (21) and (25) that the maximizing value
of d∗ is given by

d∗max(u) = d
1 − E(e−ρτu ; τu < ∞)

1 − E(e−ρτ′u ; τ′
u < ∞)

, (26)

and the corresponding maximal reinsurance premium by

rmax(u) = c∗ − c + d − d∗max(u) = c∗ − c + d
E(e−ρτu ; τu < ∞)− E(e−ρτ′u ; τ′

u < ∞)

1 − E(e−ρτ′u ; τ′
u < ∞)

. (27)

One interesting aspect of (27) is that the factor

vθ(u) :=
E(e−ρτu ; τu < ∞)− E(e−ρτ′u ; τ′

u < ∞)

1 − E(e−ρτ′u ; τ′
u < ∞)

∈ (0, 1) (28)

depends on u and θ only, and not on d, and so represents the proportion of the dividend that may
be used to pay the reinsurance premium for a given safety loading. Thus if the reinsurer demands a
premium which does not exceed dvθ(u), then, without reducing the value of the firm, the premium
can be paid for entirely with a reduction in dividend. However if the insurance premium is in excess
of dvθ(u), then the insurance company will be forced to turn to policyholders to pay part of the cost if
a reduction in the value of the firm is to be avoided.

The calculation of dmax, rmax and vθ(u) amounts to the evaluation of the Laplace transforms of τu

and τ′
u, where τ′

u represents the ruin time under whichever type of reinsurance is being considered.
For LCR, τ′

u = τM
u , and for EOL, τ′

u = τL
u as specified in Sections 4.1 and 4.2. Currently there are no

known theoretical results for the Laplace transform of τM
u , and it would be of interest and useful to

derive them 2.

2 Indeed, from a theoretical perspective, very little appears to be known about the effects of trimming on an insurance risk
process and the subsequent ruin quantities. A series of approximate premium calculations for LCR treaties has been made
in the literature; see, for example, [15,16], and [17–20], and their references.
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In general the Laplace transforms need to be approximated by some means. We did this by using
the simulations to directly estimate Ee−ρ(τu∧T) for large T, and then observing that

0 ≤ Ee−ρ(τu∧T) − E(e−ρτu ; τu < ∞) ≤ e−ρT . (29)

This applies equally well to τ′
u. As a check on this, and to decide on the number of simulations

needed for sufficient accuracy, we also used Proposition A1 in the Appendix, which shows that

E(e−ρτu ; τu < ∞) = P(Yeρ > u) (30)

where Yt = sup0≤s≤t Ys and eρ is an independent exponential random variable with mean 1/ρ.
The right hand side of (30) can be estimated by simulating the paths of Y. (30) also holds if Y and
τu are replaced by Y′ and τ′

u, so the Laplace transform of τ′
u can be estimated by the same means.

Then dmax, rmax and vθ(u) can be evaluated by

d∗max(u) = d
P(Yeρ ≤ u)

P(Y′
eρ

≤ u)
rmax(u) = c∗ − c + d

⎛⎝1 −
P(Yeρ ≤ u)

P(Y′
eρ

≤ u)

⎞⎠ . (31)

and

vθ(u) := 1 −
P(Yeρ ≤ u)

P(Y′
eρ

≤ u)
. (32)

5.2. Choice of Parameters

Below we report on simulations for some of the derived quantities in the present section. We want
to give reasonably realistic simulation scenarios, so we have to make a credible choice of parameter
values. There seems to be little guidance in the literature for doing this. In the end, the values we
decided on are loosely based on some given in [21,22] together with some pragmatic considerations.

To start with, the initial reserve level u is only determined up to a scale constant. It can be thought
of as units of $10 k, or $1 m, etc., as convenient. The mean claim size μis then to be taken relative to u.

The time unit we set to be 0.01 years = 3.65 days, so values of T = 100, 500, 1000, as designated
in Section 3.3 and in the finite horizon scenarios considered in Section 5.5, correspond to 1 year,
5 years, 10 years. The time value of money is set at ρ = 0.0005. Taken together with the time unit
specified, this corresponds to a discount rate of 5% p.a. To approximate the infinite time horizon
we take T = 13800 in (29) so that the error of the asymptotic approximation to (30) is bounded by
e−13800ρ ≈ 10−3.

Safety loadings are taken to be θ = 0, 0.025, 0.05, 0.075, 0.1. The expected claim size μ = 2 and
claims rate of λ = 1 are again as designated in Section 3.3. Thus claims accumulate on average an
amount of 2 units per unit time length. This again is taken relative to u. The rate of premium inflow
c and the dividend rate d need not be specified because as shown in Section 5.1, only the difference
c − d = (1+ θ)λμ is relevant for the computations in the present section, and this is fixed by our choice
of θ, λ and μ.

How to decide on the value of L for the EOL reinsurance is also problematic. Again we could
find little guidance in the literature 3. We want to maintain comparability between the LCR and EOL
schemes as far as possible. The values of L used in Tables 4–6 (finite horizon cases) were chosen so

3 The work of [23] suggests that one common principle in choosing L is to keep it at “a level at which claims become
very infrequent”.
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that the expected claim surpluses were equal at the specified expiration time T of the reinsurance
treaties. These were found by solving (17). For the infinite time horizon problem, choosing L by first
solving (17) and then letting T → ∞, would render EOL reinsurance equivalent to no reinsurance,
as L → ∞ when T → ∞. Hence in order to maintain comparability with LCR, for the simulations in
the next section we chose L as a percentile of the claim distribution in such a way that the proportion
of the dividend available to support the reinsurance premium was approximately the same between
the EOL and LCR schemes.

5.3. Proportion of Dividend Paid for Reinsurance

Figure 6 exhibits the graph of vθ(u) (see (32)) for each of the LCR and EOL treaties under each
of the three claims distributions. For the EOL treaty, L is taken as the 98th percentile of the claims
distribution. This percentile was chosen after some experimentation to give similar values for vθ(u) in
the LCR and EOL cases.

Figure 6. vθ(u) (from (32)) is the proportion of the dividend available to pay for reinsurance without
reducing the value of the firm. For Pareto, Inverse Gaussian and Gamma claim distributions, initial
reserve levels u = 10, 30, 50, 70, 100, time value of money ρ = 0.0005, and safety loadings θ = 0, 0.025,
0.05, 0.075, 0.1. Top panel: LCR; bottom panel, EOL with L taken as the 98th percentile of the claims
distribution. Simulations are done with N = 10, 000 sample paths.

In both the LCR and EOL frameworks, we observe from Figure 6 that vθ(u) varies noticeably
across u levels and distributions. As the reserve level increases from u = 10 to u = 100, the proportion
of the dividend the company is willing to pay for reinsurance drops significantly, for each value of θ.
The rate of decrease is larger for smaller values of u for LCR but rather uniform across u values for
EOL. As the safety loading increases, the insurance company is only willing to apportion a smaller
part of the dividend toward reinsurance.

It is interesting to note that vθ(u) is bounded by 0.65 in all settings, indicating that the cedant is
unwilling to pay more than 65% of the dividend to reinsurance despite the high risk of ruin in cases
when θ is low and u is low (e.g., θ = 0 and u = 10). In this high risk region, ruin, though being likely
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(certain when θ = 0), will, with sufficient frequency, occur far enough into the future that the dividend
stream lost due to ruin is negligible. Hence the cedant finds it unneccesary to dedicate more than 65%
of dividend to reinsurance.

Since we have adopted a “utility indifference” rationale in calculating the premium, the expected
values of the company, with and without reinsurance, are forced to be equal. This can also be readily
checked: from (21), (23) and (31), we have

V∗
u =

d∗max(u)
ρ

P(Y∗
eρ

≤ u) =
d
ρ

P(Yeρ ≤ u) = Vu.

5.4. Standard Deviation of Dividend Income

In this section we compare the two reinsurance treaties, and the case with no reinsurance,
with respect to the standard deviation of the dividend income. This will provide insight into the
stabilising effect, or otherwise, of the reinsurance, which is a primary concern of the cedant company.

To calculate the standard deviation of the dividend income, observe that

σ(Iu) =
d
ρ

σ(1 − e−ρτu),

while for the reinsured portfolio, by (26),

σ(I∗u) =
d∗max(u)

ρ
σ(1 − e−ρτ′u)

=
d
ρ

1 − E(e−ρτu ; τu < ∞)

1 − E(e−ρτ′u ; τ′
u < ∞)

σ(1 − e−ρτ′u)

=
1 − E(e−ρτu ; τu < ∞)

σ(1 − e−ρτu)

σ(1 − e−ρτ′u)

1 − E(e−ρτ′u ; τ′
u < ∞)

(
d
ρ

σ(1 − e−ρτu)

)
=

c∗u
cu

σ(Iu),

(33)

where cu is the coefficient of variation of 1 − e−ρτu and c∗u is the coefficient of variation of 1 − e−ρτ′u .
Observe that the change in standard deviation is by a factor

sθ(u) =
c∗u
cu

(34)

which, as for vθ(u), depends on u and θ but not on d. Values of sθ(u) are summarised in Figure 7,
which shows a clear reduction in the standard deviation of the dividend income received, compared
with the case of no reinsurance, across all distributions, reserve levels and safety loadings, for both
LCR and EOL. The reduction is most significant under the Pareto claim distribution, lessening as the
tail of the claim distribution becomes lighter.
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Figure 7. sθ(u) (from (34), obtained by approximation at T = 13, 800) is the ratio of the standard
deviation of the dividend income obtained under reinsurance, to that without (infinite horizon case).
For Pareto, Inverse Gaussian and Gamma claim distributions, initial reserve levels u = 10, 30, 50, 70,
100, time value of money ρ = 0.0005, and safety loadings θ = 0, 0.025, 0.05, 0.075, 0.1. Top panel: LCR;
bottom panel, EOL, with L taken as the 98th percentile of the claims distribution. Simulations are done
with N = 10, 000 sample paths.

As the safety loading θ increases, in almost all cases, the amount of variance reduction increases.
However, looking across u levels, two clearly different trends emerge for LCR and EOL reinsurances.
In the EOL setting, sθ(u) decreases across all scenarios. In contrast, for LCR, sθ(u) increases initially
except for larger values θ in the Pareto case. Interestingly, small values of u exhibit the least variance
reduction for EOL across all distributions, but, outside of the Pareto case, the most variance reduction
for LCR, for the chosen parameters.

Overall, it may be adjudged that reinsurance has a non-trivial stabilising effect on the value of the
company, particularly for heavier tailed claims distributions.

5.5. Dividend Adjustment and Reinsurance Premium, Finite Horizon

While it may be useful for planning and evaluation purposes to consider infinite horizon results,
in practice a reinsurance treaty is not taken over an infinite time horizon, nor are dividends paid at a
constant rate forever. Thus it is also prudent to value the company over a finite time horizon. In this
case we should take into account both the value of the dividends paid, VT,u, up to the expiration time
T of the reinsurance treaty, and also the value of the (liquidated) portfolio, FT,u, at time T. Thus, we
replace (21) for the uninsured process with

VT,u =
d
ρ

(
1 − Ee−ρ(τu∧T)

)
, together with FT,u = e−ρTE(u − YT)1{τu>T}. (35)
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Similarly, for the reinsured process, (23) is replaced by

V∗
T,u =

d∗

ρ

(
1 − Ee−ρ(τ∗u∧T)

)
, together with F∗

T,u = e−ρTE(u − Y∗
T)1{τ∗u>T}. (36)

By analogy with the infinite horizon case, we now wish to find the maximal reinsurance premium
the cedant is willing to pay subject to τ∗

u ≥ τu a.s, V∗
T,u ≥ VT,u and F∗

T,u ≥ FT,u
4.

Applying the same logic as in Section 5.1, we find that Y∗ = Y′ is given by (24) and does not
depend on d∗. Since Y′

t ≤ Yt for all t ∈ [0, T], the condition F∗
T,u ≥ FT,u is automatically satisfied.

Thus, arguing as before, the maximizing dividend rate d∗max(T, u) and the corresponding maximal
reinsurance premium rmax(T, u) (now both depending on T and u) are found by equating VT,u and
V∗

T,u in (35) and (36). Setting

vθ(T, u) =
E
(

e−ρ(τu∧T) − e−ρ(τ′u∧T)
)

1 − Ee−ρ(τ′u∧T)
= 1 −

P(Yeρ ≤ u, eρ ≤ T)

P(Y′
eρ

≤ u, eρ ≤ T)
, (37)

(where the second equality in (37) follows from (A1) in the Appendix), we find that

d∗max(T, u) = d [1 − vθ(T, u)] and rmax(T, u) = c∗ − c + dvθ(T, u). (38)

Observe that 0 ≤ vθ(T, u) ≤ 1, and, as in the infinite horizon case, vθ(T, u) depends on u and θ

but not on d. Thus, again, only a fixed proportion of the dividend is available to pay for reinsurance if
the value of the firm is not to be reduced.

We simulated vθ(T, u) with the parameters kept the same as in Tables 1– 3 for LCR reinsurance
and Tables 4–6 for EOL reinsurance. As mentioned previously, this is done to maintain comparability
between the two reinsurance schemes. In particular L is not the 98-th percentile, as in the infinite
horizon case, but is chosen according to (17). The results are summarized in Figure 8, which displays
several interesting features.

For both types of reinsurance, the value of vθ(T, u) is slightly higher for a Pareto claim distribution
than for an Inverse Gaussian, which is greater again than for a Gamma claim distribution. This is
consistent with the results for the ruin times in Tables 1–6. It is notable that for T = 100, u = 100,
regardless of θ and the claim distribution, the cedant is essentially unwilling to commit any of the
dividend payment to reinsurance. Observe also that when the ruin probabilities under LCR and
EOL are comparable in Tables 1–6, the values of vθ(T, u) are also comparable, whereas when the ruin
probability under LCR is smaller than under EOL, for example when u = 10 across all distributions,
the cedant is able to contribute a larger portion of the dividend to reinsurance for LCR than EOL.

Considered as a function of u, vθ(T, u) is decreasing and apparently convex in the case of the
LCR treaty across all values of θ and T and all distributions, and this is also true for the EOL treaty
in the T = 100 case. For larger T, vθ(T, u) is neither decreasing nor convex for EOL. Indeed for small
u, vθ(T, u) is seen to be increasing. As a function of T, for fixed θ and u, vθ(T, u) is increasing for
the LCR treaty. For the EOL treaty this is not the case since, for example, vθ(T, u) is decreasing for
u = 10. Finally, for fixed T and u, the influence of the safety loading θ is much less pronounced than
in Figure 6.

4 There are other possibilities here, for example requiring V∗
T,u + F∗

T,u ≥ VT,u + FT,u, instead of V∗
T,u ≥ VT,u and F∗

T,u ≥ FT,u.
We chose our formulation since it most clearly mirrors the infinite horizon problem. The interested reader may investigate
other versions of the optimization problem.
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Figure 8. vθ(T, u) (from (37)) is the proportion of the dividend available to pay for reinsurance without
reduing the value of the firm. For LCR and EOL reinsurance policies, Pareto, Inverse Gaussian and
Gamma claim distributions, initial reserve levels u = 10, 30, 50, 70, 100, time value of money ρ = 0.0005,
and safety loadings θ = 0, 0.025, 0.05, 0.075, 0.1. Top panel: T = 100; Middle panel: T = 500; Bottom
panel: T = 1000. Retention level L for EOL reinsurance is the solution to (17). For T = 100, L(T) = 5.64,
6.89, 4.49; for T = 500, L(T) = 12.62, 11.27, 6.10; for T = 1000, L(T) = 17.84, 13.39, 6.79 for Pareto,
Inverse Guassian and Gamma distributions respectively. Simulations are done with N = 10, 000
sample paths.

6. Related Literature and Discussion

In this section we mention some related results and propose possibly fruitful areas for
future investigation.

6.1. Beveridge, Dickson and Wu Simulations

The work of [24] considers a model with a constant dividend barrier. Their insurance risk
model incorporates a reinsurance arrangement h that applies to an individual claim, so that if the
individual claim amount is x, the reinsurer pays x − h(x), and the primary insurer retains h(x), where
0 ≤ h(x) ≤ x. A dividend barrier, b, is specified such that when the surplus process, net of reinsurance,
attains level b, dividends are paid out to shareholders at a specified rate c∗ until the next claim occurs.
The modified surplus process remains at level b until the next claim occurs, then falls by the (net of
reinsurance) amount of that claim. On any subsequent occasion that the net of reinsurance surplus
process attains level b, dividends are again payable at rate c∗. Ruin occurs when the surplus process
falls below zero, and no dividends are payable after the time of ruin. (See also [25–27].)
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Under such a barrier scheme, the cedant’s ultimate ruin is certain, and the insurance operation is
essentially being used to generate dividend income for the insurance company’s shareholders. The
work of [24] investigates the effect of the reinsurance for two possible versions of the function h:
proportional reinsurance, with h(x) = ax, where 0 < a ≤ 1, and excess of loss reinsurance, as we
define it.

The emphasis of their study is different to ours, being mainly concerned with the value of net
income to shareholders. They find for example that proportional reinsurance does not increase the
expected present value of net income to shareholders, at least for the situations they consider, although
“it is possible to increase the expected present value of net income to shareholders by effecting (EOL)
reinsurance”. Other than this their results are mixed and not comparable with ours since in our setup
ruin is not certain and we can investigate increases in ruin time with reinsurance and the other effects
listed in Section 5.

6.2. Trimming More Values

The LCR scheme can be generalised by removing from the claims surplus process, not just the
largest claim up to time t, but also the 2nd largest, 3rd largest, etc., up to a total of the r largest claims,
r = 2, 3, 4, . . .. In this connection [28] discuss two kinds of reinsurance systems in particular, using the
nomenclatures ECOMOR and LCR. ECOMOR stands for excédent du coû moyen relatif. In this scheme,
the reinsured amount is the sum of the differences between the r largest claims, and the r-th largest,
r = 1, 2, . . ., up to a designated time. It was introduced into the actuarial literature by [29]. LCR in [28]
is largest claims reinsurance as we define it, in which the reinsured amount is the sum of the r largest
claims up to a designated time.

A considerable amount of work has been done on these and related methods; for background
we refer to [30], who gives an overview of commonly used forms of reinsurance, and [28] for further
literature. The [28] results 5 are concerned with limiting distributions of the reinsured amounts under
the ECOMOR and LCR schemes, with subexponential, extremal class or regular variation assumptions
on the tail of the claim distribution. They illustrate their results with simulations of the distributions.

Recall the discussion in Section 4.1, where we observed that the Inverse Gaussian case has several
sizeable claims apart from the largest one. In order to achieve a similar level of efficiency for the
reinsurance policy as in the Pareto case, the cedant can seek covers on the sum of the r largest claims.
Then arises the question of an optimal choice of r, etc., which we do not go into here.

Some distributional identities for the r-trimmed version of a Lévy process have been studied
in [31]. The continuity properties of various trimming functionals in cádlág space are investigated
in [32]. Their formulae could be used to further analyse the first passage time (ruin time) and other
path properties of r-trimmed processes.

6.3. The “Light-Medium-Heavy” Classification

It is important to stress that our division of claims distributions into “Light”, “Medium” and
“Heavy”-tailed is not definitive, and the “lightness” of tails is not a uniquely defined concept.
For example, if this were to be defined by whether the ratio of tails is asymptotically smaller
for one than for the other, the “light-tailed” Gamma(2,1) distribution in (7) is judged “heavier”
than the “medium”-tailed Inverse Gaussian in (11) for certain values of the parameters 6 a and b.

5 The work of [28] allows a generalised version of the compound Poisson model where the Nt in (1) is replaced by a mixed
Poisson process. But their simulations are done with the compound Poisson.

6 But our particular choice of a = 2 and b = 1.5 makes the Inverse Gaussian heavier-tailed than the Gamma(2,1).
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Nevertheless, the classification is a useful way of specifying a range of tail behaviours on which to
base simulation investigations.

The work of [33] gives a detailed analysis of the classical Norwegian Fire Claims data set,
comparing a number of distributions for goodness of fit and using them to calculate value-at-risk and
related measures. Of the six probability models considered some are heavy tailed, such as the GPD
(generalised Pareto), others are lighter-tailed (the Weibull-Pareto). They argue “it is certainly tempting
to conclude that simpler distributions, such as GPD and FT (folded-t) are preferred for the task of
measuring tail risk” but “lead to substantially different risk evaluations”. This underlines the value
of investigations like ours for understanding the behaviour of the risk process across a variety of tail
regimens. The work of [33] further stress the need for formal statistical analysis for measuring and
pricing tail risk.

In any case, as we discussed in Section 4.1, the behaviour of ruin probabilities and ruin times for
finite u is not necessarily closely correlated with tail heaviness, however defined. These characteristics
can be strongly influenced by the distribution of small and medium claim sizes. In this context we
refer to discussions in [34,35] where asymptotic analyses of path properties of the process are given for
convolution equivalent distributions, and related to the ruin prospects of the company.

On the other hand, of course, in any scenario, reinsurance in either of the ways we have defined it
increases the lifetime of the company.

6.4. Lévy Insurance Risk Models

The LCR model can be extended in various directions. Insofar as our analysis is restricted to
the classical compound Poisson risk process, it can be generalised to a broader class of processes, the
“general Lévy insurance risk models”. See for example [7–10,36,37] , where these models and some
subclasses of them are considered in this context.

7. Summary

We considered two types of reinsurance, EOL and LCR, and investigated the pros and cons of
each by simulations. We took as outcomes the extent of increases in ruin times and decreases in ruin
probabilities as a result of reinsurance. Using a dividend discount model, we also investigated the
amount of the dividend available to pay for reinsurance and the consequent effect on the standard
deviation of the company value.

We found in Section 4.2 that the EOL method performs markedly better than no reinsurance
in terms of lower ruin probability and longer ruin times mainly when there are heavy tailed claims,
whereas the LCR treaty shows consistent improvements over all three classes of claim distributions.

Regarding payment for reinsurance, we saw in Figures 6 and 8 that for a Pareto claim distribution
a greater proportion of the dividend is available to pay the reinsurance premium than for Inverse
Gaussian, which is greater again than for a Gamma claim distribution. Over a finite time horizon,
with equal expected aggregate claims, LCR is at least as effective as EOL in averting ruin (Tables 1–6).
When they are equally effective, the proportion of the dividend available to pay for reinsurance
is comparable. When LCR is more effective, then the proportion is greater for LCR than for EOL
(Figure 5). LCR and EOL both reduce risk considerably as compared with no reinsurance, in a variety
of situations, as measured by the standard deviation of the dividend income.
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Appendix A. Laplace Transforms

Here we state some useful results concerning Laplace transforms of passage times. We used the
formulae in this section for checking the asymptotic values in Section 5.1.

Simulating the Laplace transforms: The Laplace transforms Ee−ρ(τu∧T) etc. for finite or infinite times
T can be simulated using the following formulae.

Proposition A1. For any ρ > 0, T > 0 and u ≥ 0,

Ee−ρ(τu∧T) = e−ρT + P(Yeρ > u, eρ ≤ T), (A1)

while for ρ > 0 and u ≥ 0,
E(e−ρτu ; τu < ∞) = P(Yeρ > u). (A2)

The same results hold if Y and τu are replaced by Y′ and τ′
u.

Proof. For (A1), we have

Ee−ρ(τu∧T) = E(e−ρτu ; τu ≤ T) + e−ρTP(τu > T)

=
∫
[0,T]

e−ρtP(τu ∈ dt) + e−ρTP(τu > T)

= e−ρTP(τu ≤ T) +
∫
[0,T]

ρe−ρtP(τu ≤ t)dt + e−ρTP(τu > T)

= e−ρT +
∫
[0,T]

ρe−ρtP(Yt > u)dt

= e−ρT + P(Yeρ > u, eρ ≤ T).

A check of the calculation shows this also holds if Y and τu are replaced by Y′ and τ′
u. Letting

T → ∞ then proves (A2) in both cases.

Although we did not use it in the simulation exercises, the asymptotic dividend d∗max can be
estimated similarly using the formula

P(Yeρ ≤ u, eρ ≤ s) ≤ P(Yeρ ≤ u) ≤ P(Yeρ ≤ u, eρ ≤ s) + e−ρs (A3)

for P(Yeρ ≤ u). (Take s large enough that e−ρs is negligible.)
Explicit Formula for Exponentially Distributed Claims: The Laplace transform of τu has been well

studied in the literature; see for example [37–41]. Explicit, or even semi-explicit, formulae are rarely
available. The simplest instance of an explicit formula is when claims are exponentially distributed
with mean 1/δ. Then by Proposition 4.1.2 of [6],

E(e−ρτu ; τu < ∞) = e−νu
(

1 − ν

δ

)
,
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where ν is given by

ν =
(c − d)δ − λ − ρ +

√
((c − d)δ − λ − ρ)2 + 4(c − d)ρδ

2(c − d)
.

Setting ρ = 0 gives the probability of ultimate ruin as

P(τu < ∞) =
exp(−θδu(1 + θ)−1)

1 + θ
,

where c − d = (1 + θ)λδ−1.
An Upper Bound for P(τM

u < ∞): With the notation in (13), assume the Cramér case, so that (6) is
satisfied for some ν0 > 0. Assume that Ct is defined on a filtered probability space (Ω,Ft,F , P), and
let P∗ be the exponentially tilted probability measure given by

dP∗ := eν0Ct dP on Ft.

Then
dP = e−ν0Ct dP∗

and
dP = e

−ν0C
τM
u dP∗

on Ft ∩ {τM
u < ∞}. It follows from Corollary 3.11 of [37] that

eν0uP(τM
u < ∞) = eν0uE∗ exp

(
−ν0CτM

u

)
= E∗ exp

(
−ν0

(
CM

τM
u
− u + ZM

u

))
where CM

τM
u
− u ≥ 0 is the overshoot for the trimmed process over level u and,

ZM
u = sup

0<s≤N
τM
u

ξi ≥ 0.

So we get
eν0uP(τM

u < ∞) ≤ E∗ exp
(
−ν0ZM

u

)
.

Assuming ξ1 has unbounded support, then ZM
u → ∞ almost surely as u → ∞,

so eν0uP(τM
u < ∞) → 0, whereas eν0uP(τu < ∞) → c > 0. This shows that the probability of eventual

ruin is much smaller when trimming and suggests a way of quantifying this effect via the overshoot of
the trimmed process.
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Abstract: The replicating portfolio approach is a well-established approach carried out by many life
insurance companies within their Solvency II framework for the computation of risk capital. In this
note, we elaborate on one specific formulation of a replicating portfolio problem. In contrast to the two
most popular replication approaches, it does not yield an analytic solution (if, at all, a solution exists
and is unique). Further, although convex, the objective function seems to be non-smooth, and hence a
numerical solution might thus be much more demanding than for the two most popular formulations.
Especially for the second reason, this formulation did not (yet) receive much attention in practical
applications, in contrast to the other two formulations. In the following, we will demonstrate that
the (potential) non-smoothness can be avoided due to an equivalent reformulation as a linear second
order cone program (SOCP). This allows for a numerical solution by efficient second order methods
like interior point methods or similar. We also show that—under weak assumptions—existence and
uniqueness of the optimal solution can be guaranteed. We additionally prove that—under a further
similarly weak condition—the fair value of the replicating portfolio equals the fair value of liabilities.
Based on these insights, we argue that this unloved stepmother child within the replication problem
family indeed represents an equally good formulation for practical purposes.

Keywords: life insurance; replicating portfolio; market consistent valuation; cash flow matching;
fair value; stochastic Fermat–Torricelli problem

1. Introduction

Market-consistent valuation has gained increasing importance in the risk management of life
insurance policies (e.g., Bauer et al. [1]). However, many life insurance contracts have features which
are too complicated to undertake analytical analysis. These include participating contracts, surrender
options, and guaranteed interest rates, to name a few. They leave only little structure in the payoff
profile, thus making analytical risk neutral valuation almost impossible. Therefore, one has to resort
to some type of Monte Carlo method for market-consistent valuation of life insurance policies. As a
result, Monte Carlo methods of various types have attracted a lot of attention in recent research.
Although Monte Carlo methods work quite well for one specific valuation, they prove to be rather
inefficient for repeated application in risk capital computation. For instance, the computational
inefficiency of nested Monte Carlo methods for risk capital computation (cf. below and Figure 1 for
a brief description, or see Bauer et al. [1] for more details) has led to an investigation of alternative
methods. Andreatta and Corradin [2], Baione et al. [3], Glasserman and Yu [4], Stentoft [5], and
several other authors apply or analyze the well-known least squares Monte Carlo approach, which was
originally introduced by Longstaff and Schwartz [6] and Tsitsiklis and van Roy [7] to price American
options. Bergmann [8] also mentions the stochastic mesh method of Broadie and Glasserman [9],
although no application to life insurance policies is known to our best knowledge.
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In hindsight, Pelsser [10] probably first suggested valuation of with-profits guaranteed annuity
options—which are typical life insurance products—via static replicating portfolios. Although static
hedging seems overly simplistic—especially compared to more advanced dynamic hedging—a
remarkably good fit of the behaviour of annuity options was obtained by a static portfolio of vanilla
swaptions. In general, by constructing such a static replicating portfolio, one tries to form a static
portfolio of a finite number of selected financial instruments which are easy to price, such that they
generate cash-flows which approximate cash-flows on the liability side at each point in time and in
each scenario. If this approximation is accurate, one obtains a good estimate of the market value of
liabilities from the fair value of the replicating portfolio. Further, the market consistent embedded value
(MCEV) can be obtained accordingly by subtracting this value from the value of the insurer’s asset
holdings. One could of course determine the value of liabilities directly by Monte Carlo simulations:
generate risk-neutral sample paths of liability cash-flows and compute the mean of present values
of the discounted cash-flows (e.g., Grosen and Jørgensen [11]). However, as the Solvency II capital
requirement demands the computation of the 99.5% value at risk (see EIOPA [12], page 7) of the MCEV
distribution in one year under the real world measure, it is not sufficient to compute the MCEV today,
but its distribution in the future. This requires the aforementioned nested approach; see Figure 1.

Figure 1. Replicating portfolio approach: Each node at t = 1 and t = T represents a state of the
portfolio and liabilities. The target is to estimate the 99.5% quantile of the market consistent embedded
value (MCEV) distribution at t = 1.

As static replication is much more simplistic than dynamic replication, it has been an open
question until quite recently, as to whether the approach of replicating portfolio can actually work.
Although replication seems to resemble traditional immunization approaches, one major difference
stands out: on the one hand, immunization works well in one period (as sensitivities to risk factors
have been immunized), but leaves the portfolio un-immunized in the next period, which requires
re-immunization (this is the main idea of dynamic delta hedging). On the other hand, replication
matches cash flows, so there is hope that although one is not fully immunized in the first period,
the immunization is still reasonable in the next period, as future cash flows are still replicated well.
Very recent results have shown that replication indeed works under quite general setups, with efficiency
comparable to the least squares Monte Carlo approach. The first theoretical foundations for replicating
portfolios have been given in a series of papers by Beutner et al. [13], Pelsser and Schweizer [14],
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and Beutner et al. [15]. They analyze the asymptotic behaviour of matching the terminal value of
liabilities (instead of matching cash flows; see below for more details) as the number of scenarios and
the number of replicating assets grows at specific relative speeds. Recently, Cambou and Filipovic [16]
proved that the matching of terminal values indeed has a mathematical foundation in the sense that
a good match of the terminal values is strongly intertwined with a good approximation of the risk
measure of the future MCEV (i.e., the resulting risk capital). Simultaneously, Natolski and Werner [17]
demonstrated that this foundation holds for any form of matching problem in Natolski and Werner [18]

(and many more), especially including all cash flow matching and all terminal value matching
problems considered here. In both Cambou and Filipovic [16] and Natolski and Werner [18], it is
shown that it is possible to change from the real world measure in the first period to the risk neutral
measure while maintaining the strong link between objective function and error in risk capital.
These results provide the basis for the practically most relevant replication setup1 where only the risk
neutral measure is considered (see Section 2 for the mathematical setup).

The replicating portfolio approach represents a well-established approach carried out by many
life insurance companies within their Solvency II framework for the computation of market risk capital.
It is very specific to life insurance companies, and to our best knowledge so far, not used outside life
insurance. We note that it could in theory also be used in banks for improving risk figure computation
for hard-to-price portfolios2.

Of course, only considering financial instruments might fall short of matching actuarial risks like
mortality or lapse risk. This is one of the well-known weaknesses of replicating portfolios, and usually
leads to a remaining mismatch. However, as replicating portfolios are usually only applied within
the market risk computation in Solvency II, this only represents a minor issue of replicating portfolios
in practice.

As already briefly indicated above, there exist different choices for the specific matching problem.
In Natolski and Werner [18], some of these criteria were already investigated in more detail. The focus
there was put on the two criteria which are most popular in the insurance industry:

• Squared cash flow matching: this was probably the first formulation considered in the context of
replicating portfolios. Here, the difference of cash flows at the same time point is measured by
the squared L2-norm, and the sum of these is used as matching criterion. This problem is called
(RPSCF) in the following.

• Terminal value matching: as an alternative to the cash flow matching criterion, terminal value
matching—called (RP ˜TV) below—was introduced by Oechslin et al. [20]. The main idea is that
it is expected that a good approximation of the risk capital can already be obtained if the value
of the cash flows is matched sufficiently well, while the timing of the cash flows should not be
of any importance. Usually, cash flows are aggregated to the terminal time point, leading to the
consideration of terminal values. This point of view was mathematically supported in Natolski
and Werner [17].

These two (and other) choices might differ in important properties:

• Depending on the choice of the fitting criterion, similarly good fits of the fitting criterion lead to
differing good or even only reasonably good approximations of the risk capital figure. In summary,
terminal value matching provides better bounds than cash flow matching. Further, squared cash
flow matching provides worse bounds than cash flow matching (to be defined below). Details on
the exact relationships are provided in Natolski and Werner [17].

1 In Natolski and Werner [18] it is argued that working with the risk neutral measure is feasible, while it is better to keep the
mix of measures as indicated in Figure 1.

2 A recent paper by Broadie et al. [19] gives some first arguments in this direction. Although the paper does not explicitly
treat replicating portfolio, but focuses on least squares Monte Carlo methods, the idea can also be extended to replicating
portfolios. The reason for this is that replication and least squares Monte Carlo are strongly interconnected, as has been
shown by Glasserman and Yu [4].
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• Depending on the choice of the fitting criterion, the solution of the corresponding optimization
problems might pose difficulties. Although all formulations usually lead to convex problems,
not all problems might be strictly convex, and thus may have non-unique optimal solutions.
Further, non-smooth problems might be much harder to solve than smooth problems. Finally,
some fitting criteria (for instance, those based on L1-norms instead of L2-norms) lead to an increase
of the problem dimension with increasing number of scenarios, while others do not face this issue.

• It is expected by practitioners that the fair value of the replicating portfolio also matches the fair
value of the liabilities. This has already been proven for the two most practically relevant criteria,
but this question remains open for other criteria.

The analysis of the replication problems in Natolski and Werner [18] focused on the two most
popular matching criteria, as these are a) quite easy to analyze and b) are strongly connected. As has
been shown in Natolski and Werner [18], the terminal value match can be seen as a squared cash
flow match plus an additional dynamic trading strategy moving cash flows optimally in time.
From a theoretical perspective, both choices provide a good link between matching criterion and
approximation of risk capital (see Natolski and Werner [17]), although terminal value matching
dominates squared cash flow matching. Further, both problems lead to strictly convex quadratic
optimization problems possessing a unique optimal solution (under rather weak assumptions). From a
practical perspective, however, both problems show some unwanted behaviour. Extensive numerical
tests (Daul and Vidal [21]) have shown that the out-of-sample performance of terminal value matching
is worse than the corresponding performance of (squared) cash flow matching. However, the latter
problem reacts more sensitively to the scaling and the conditioning of the data than terminal value
matching due to increased dimensions of relevant covariance matrices. The bad out-of-sample
performance of terminal value matching can be linked to the property that it actually already
includes a dynamic cash flow distribution strategy. This indicates that an unwanted overfitting
takes place; i.e., there are too many optimization variables given only a few number of scenarios.
As pointed out, it is not feasible to provide more scenarios, as these are computationally quite expensive.
Therefore, the consideration of more enhanced replication—for example, by a more dynamic replication
strategy—is clearly not advocated.

For the above reasons, it might make sense to look for alternative criteria which have the
potential to successfully address these issues. For this purpose, we consider a modified cash
flow matching problem—called (RPCF)—where the penalization of cash flows does not use the
squared L2-norm, but just the L2-norm itself. This problem has already been briefly considered
in Natolski and Werner [18], but a full analysis was out of the scope of that paper.

Compared to the other two problems (RPSCF) and (RP ˜TV), it has a more complicated objective
function, since the objective function cannot be expressed as a convex quadratic function. Thus, it is
impossible to obtain an explicit expression for the solution of the problem, and results on the existence
and uniqueness of a solution are not straightforward. Further, the objective function of (RPCF) might
be non-smooth at certain points. We believe that it is for this reason that problem formulation (RPCF)
did not yet get as much attention as the other two formulations, both from practitioners and academics.

In the following, we will argue that on the contrary, there are good reasons to believe that (RPCF)
is indeed at least as preferable as (RPSCF) or (RP ˜TV). To be able to do so, we first provide the detailed
proofs for the existence and uniqueness of the solution under weak assumptions. Further, we show
that despite the similarity to the famous Fermat–Torricelli problem, it matches the fair value of the
replicating portfolio and the fair value of liabilities under an additional rather weak assumption.
We also prove that the objective function is uniformly convex in practical problem instances (satisfying
an additional assumption), a useful feature for optimization and statistical properties. Finally, we
demonstrate that (RPCF) can be equivalently cast as a second-order cone problem, which allows its
unique solution to be obtained by efficient second-order methods like interior point methods (without
the additional assumption satisfied in practical problems). Ultimately, we provide a discussion as to
why problem (RPCF) should be preferred over problems (RPSCF) and (RP ˜TV), and why not.
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The rest of the paper is organized as follows. In Section 2, we introduce the mathematical setup for
the financial market following Natolski and Werner [17], and we recall the cash flow matching problem
of the Fermat–Torricelli type. The main Section 3 states and proves the aforementioned properties of
the replication problem, and Section 4 concludes.

2. The Mathematical Setup

As mentioned in the introduction, this setup is taken from Natolski and Werner [17]. We fix
a finite time horizon T ∈ N and set T := {t = 1, 2, . . . , T}, T0 := {0} ∪ T . Let

(
Ω,F , (Ft)t∈T0

,Q
)

be

a filtered probability space with risk-neutral3 measure and numéraire (Nt)t∈T0
, where F0 is assumed

to be complete and trivial and FT = F . Denote by

1. C̃F
t =

(
C̃F

i,t

)
i=1,...,m

∈ L2 (Q)m , t ∈ T , the discounted4 financial cash flows of all assets at time t,

where 1 ≤ i ≤ m and m denotes the number of available financial assets,
2. ÃF := ∑t∈T C̃F

t the vector of discounted terminal5 financial cash flows,
3. C̃L

t ∈ L2 (Q) , t ∈ T the discounted liability cash flows, and by
4. ÃL := ∑t∈T C̃L

t , the discounted terminal value of liability cash flows.

The final cash flow C̃F
T is equal to the corresponding asset value. The interpretation is that all

assets are sold at the time horizon T. Assets are bought and sold at time t before the time t cash flows
take place.

The following three replication problems were considered in Natolski and Werner [18], where the
first problem (RPCF), cash flow matching, is in the focus of this exposition. In this context, a portfolio α

represents the units of the financial instruments which have to be bought or sold.

inf
α∈Rm

T

∑
t=1

[
EQ

([
C̃L

t − α�C̃F
t

]2
∣∣∣∣∣F0

)] 1
2

. (RPCF)

inf
α∈Rm

[
T

∑
t=1

EQ

([
C̃L

t − α�C̃F
t

]2
∣∣∣∣∣F0

)] 1
2

. (RPSCF)

inf
α∈Rm

[
EQ

([
ÃL − α�ÃF

]2
∣∣∣∣∣F0

)] 1
2

. (RP ˜TV)

The first formulation penalizes the deviation of cash flows by the L2-norm, whereas the second
formulation penalizes the cash flows by the squared L2-norm. Otherwise, the formulations are the
same. The third formulation (where the sum has moved inside the square inside the expected value)
represents the penalized squared deviation of the terminal values.

Remark 1. It has to be noted that there is no budget constraint in all three optimization problems, as the budget
is not restricted, but allowed to vary freely. In Section 3.4, we will characterize the optimal budget, which is
equal to the fair value of the replicating portfolio. It is shown there that the optimal budget equals the fair value
of the liabilities under rather weak assumptions.

3 All results of this exposition remain true with one obvious exception: if instead of the risk neutral measure the real world
measure is chosen. Naturally, the result on the fair value in Section 3.4 crucially depends on the property that a risk neutral
measure is chosen.

4 We use tilded variables to express the fact that the variable is discounted.
5 ÃF

i represents the pathwise discounted terminal value of all cash flows of asset i, i.e., the cash flow at time t is invested in
the numeraire until time T, and the aggregated value of all these is discounted by the terminal numeraire value to time 0.
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Remark 2. In this context, an open issue concerning the formulation of the optimization problems is the
relevance of the particular risk neutral measure chosen. Assuming that the probability space (Ω,F ,Q) cannot be
partitioned into finitely many atoms, the market has to be incomplete, and there are infinitely many risk-neutral
measures for each numéraire. Hence, one can choose from a variety of risk neutral measure/numéraire pairs
(Q, (Nt)t=1,...,T) to construct replicating portfolios. Obviously, for fixed numéraire, the objective function in
(RPCF) depends on the specific choice of the risk neutral measure. Thus, the optimal solution (i.e., the replicating
portfolio) depends on this risk neutral measure. Similarly, the fair value of both the liability and the replicating
portfolio also depend on the choice of the risk neutral measure. Only in the special case of perfect replication
(i.e., optimal objective value of 0) is there no dependence on the choice of the measure. As all risk neutral measures
for some numéraire are equivalent, the same (unique) replicating portfolio is optimal for all such measures.

In practice, a natural measure to use in the objective function is the real-world measure. It is well-known
(see for example Korn and Schäl [22]) that the real-world measure becomes a martingale measure if the numéraire
is chosen as the portfolio process maximizing the logarithmic utility function. Then, the real world measure P
is a martingale measure with numéraire given by the maximizing portfolio process. This way, one can avoid
the discussion on the choice of the risk neutral measure and simply use the real world measure together with
portfolio process (π∗

t )t=1,...,T as numéraire.
Unfortunately, this approach is usually not followed in practical settings. The main reason is probably

twofold: first, in practice, insurance companies are provided with economic scenario generators (ESG) tools
which readily yield risk neutral scenarios for arbitrary numéraires (usually the cash rollup). Second, due to the
linear nature of real world scenarios provided by these ESG tools, the utility maximizing portfolio process cannot
be calculated due to the missing nested scenario structure.

For further analysis, let us introduce the symmetric matrices

QSCF
t := EQ

[(
C̃F

t

) (
C̃F

t

)� ∣∣∣∣∣F0

]
,

QSCF :=
T

∑
t=1

QSCF
t , and

QTV := EQ

[(
ÃF

i ÃF
j

) ∣∣∣∣∣F0

]
i,j=1,...,m

These matrices represent the covariance matrices of the terminal values and the cash flows,
respectively. They will play an important role in formulations of (weak) assumptions on the financial
market. To obtain existence and uniqueness results (and more), the following few rather weak
assumptions will have to be made. These are usually satisfied if financial assets for replication are
chosen accordingly. Assumption 1. The matrix QSCF is positive definite or equivalently

� ∃ u ∈ Rm \ {0} : ∀t = 1, . . . , T :
(

C̃F
t

)�
u = 0.

Assumption 2. The matrix QTV is positive definite or equivalently

� ∃ u ∈ Rm \ {0} :

(
T

∑
t=1

C̃F
t

)�
u = 0.

Assumption 3. The numéraire is replicable at any time; that is,

∃ u ∈ Rm : ∀t = 1, . . . , T : u�C̃F
t = 1.
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Assumption 3 can be easily6 fulfilled, taking into account that the numéraire is a tradable
instrument itself. For any choice of the numéraire, one simply has to provide T financial instruments
as follows: for each time t, we add an option on the numéraire to the market with strike 0 and maturity
t. Equivalently, this can be seen as an asset which costs N0 today (today’s price of the numéraire)
and yields a cash flow of Nt at time t. A proper combination of these options then yields the desired
portfolio u as in Assumption 3. Of course, Assumption 3 is only necessary if cash flow matching is
considered; for terminal value matching, it is sufficient to include exactly one of these options.

For problems (RPSCF) and (RP ˜TV), the following two properties have been shown in Natolski and
Werner [18]:

(1) The solutions to (RPSCF) and (RP ˜TV) exist and under Assumption 1 (Assumption 2 , respectively)
they are unique; i.e., there exist unique αSCF

opt , αTV
opt ∈ Rm such that

αSCF
opt = argmin

α∈Rm

[
T

∑
t=1

EQ

([
C̃L

t − α�C̃F
t

]2
∣∣∣∣∣F0

)] 1
2

αTV
opt = argmin

α∈Rm

[
EQ

([
ÃL − α�ÃF

]2
∣∣∣∣∣F0

)] 1
2

.

(2) Under Assumption 3 , the fair values of both optimal replicating portfolios equal the fair value of
liability cash flows; that is:

EQ

((
αSCF

opt

)�
ÃF

∣∣∣∣∣F0

)
= EQ

((
αTV

opt

)�
ÃF

∣∣∣∣∣F0

)
= EQ

(
ÃL

∣∣∣∣∣F0

)
.

For existence and uniqueness, the proofs exploit the convex quadratic structure of the two problems.
Both replicating portfolios can be written as solutions to quadratic problems, and under the assumption
of no redundant assets, the corresponding quadratic matrices are positive definite. Equality of fair values
can then be deduced directly from the corresponding optimality conditions.

So far, problem (RPCF) has not been analyzed on the same level of detail. As pointed out in Natolski
and Werner [18], its close connection to the Fermat–Torricelli problem (c.f. Nam [23]) gives strong
evidence that on the one hand, existence and uniqueness of a solution is provided, whereas on the
other hand, equality of fair values cannot be expected in all cases.

In what follows, we give a detailed proof of the existence and uniqueness of a solution based on the
above assumptions. We also show that the optimal replicating portfolio indeed has the same fair value
as the liability cash flows under surprisingly weak additional conditions. Further, we prove that for
realistic problem instances (i.e., under certain additional assumptions), the numerical solution of (RPCF)
can be obtained by efficient standard second-order methods like Newton’s method. Going one step
further, we provide a reformulation as a linear second order cone program and thus demonstrate that
these additional assumptions are actually not necessary to allow for efficient numerical solution by
efficient second-order methods. Based on these novel insights, we will argue that (RPCF) ranks at least
equal to the two alternative formulations for practical problem instances.

6 Let us note that in Theorem 4 we will need a somewhat stronger condition; however, this condition can be satisfied exactly
along the same lines as Assumption 3 , and can thus also be characterized as rather weak condition.
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3. Properties of RPCF

Before we start to provide the results, we need a few technical preparations. Let us define:

ϕ(α) :=
T

∑
t=1

ϕt(α), with

ϕt(α) :=

[
EQ

([
C̃L

t − α�C̃F
t

]2
∣∣∣∣∣F0

)] 1
2

=

∥∥∥∥∥∥∥C̃L
t − α�C̃F

t︸ ︷︷ ︸
=:εt(α)

∥∥∥∥∥∥∥
L2

,

so that we may rewrite problem (RPCF) as

inf
α∈Rm

ϕ(α).

It is easily seen that each ϕt (and thus the objective function ϕ as well) is convex on the whole
Rm. As all ϕt are finite on Rm, they are thus also (locally Lipschitz) continuous. Their directional
derivatives in direction d are given by

ϕ′(α, d) =
T

∑
t=1

ϕ′
t(α, d), with

ϕ′
t(α, d) =

⎧⎪⎨⎪⎩
∥∥d�C̃F

t
∥∥

L2 , if ϕt(α) = 0

EQ

(
−εt(α)·d�C̃F

t

∣∣∣F0

)
‖εt(α)‖L2

= d�∇ϕt(α), else.

If ϕt is differentiable, then

∇ϕt(α) =
EQ
(
−εt(α) · C̃F

t

∣∣∣F0

)
‖εt(α)‖L2

.

Obviously, if ϕt is (continuously) differentiable in a point α, it is also twice continuously
differentiable there. Its Hessian is given as

∇2 ϕt(α) =
‖εt(α)‖2

L2 EQ
(

C̃F
t
(
C̃F

t
)�)−EQ

(
εt(α) · C̃F

t
) (

EQ
(
εt(α) · C̃F

t
))�

‖εt(α)‖3
L2

. (1)

As ϕt is convex, its Hessian is positive semidefinite. Unfortunately, it cannot be expected that the
Hessian is positive definite due to potential rank deficits in EQ

(
C̃F

t
(
C̃F

t
)�), plus a further rank deficit

of at most one (due to the dyadic term in the nominator).

3.1. Existence of Optimal Solution

We begin by showing that a solution to (RPCF) exists in the first place.

Theorem 1. Under Assumption 1 , problem (RPCF) possesses at least one optimal solution αCF
opt.
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Proof. As already observed, ϕ is convex and continuous. Furthermore, ϕ is also coercive7. To see
this, denote by λSCF

min the smallest eigenvalue of the matrix QSCF. Due to Assumption 1 , λSCF
min > 0, and

we obtain

λSCF
min‖α‖2 ≤

√
λSCF

min · α�QSCFα =
√

λSCF
min ·EQ

(
T

∑
t=1

[
α�C̃F

t

]2
∣∣∣∣∣F0

) 1
2

.

By Minkowski’s inequality, it follows

[
EQ

(
T

∑
t=1

[
α�C̃F

t

]2
∣∣∣∣∣F0

)] 1
2

≤
[
EQ

(
T

∑
t=1

[
α�C̃F

t − C̃L
t

]2
∣∣∣∣∣F0

)] 1
2

+

[
EQ

(
T

∑
t=1

[
C̃L

t

]2
∣∣∣∣∣F0

)] 1
2

.

Finally, it holds

[
EQ

(
T

∑
t=1

[
α�C̃F

t − C̃L
t

]2
∣∣∣∣∣F0

)] 1
2

≤
[

T · max
t∈T

EQ

([
α�C̃F

t − C̃L
t

]2
∣∣∣∣∣F0

)] 1
2

=
√

T · max
t∈T

[
EQ

([
α�C̃F

t − C̃L
t

]2
∣∣∣∣∣F0

)] 1
2

≤
√

T ·
T

∑
t=1

[
EQ

([
α�C̃F

t − C̃L
t

]2
∣∣∣∣∣F0

)] 1
2

=
√

T · ϕ(α).

Therefore, in total we have

λSCF
min‖α‖2 ≤

√
λSCF

min ·

⎛⎝√
T · ϕ(α) +

[
EQ

(
T

∑
t=1

[
C̃L

t

]2
∣∣∣∣∣F0

)] 1
2
⎞⎠ , (2)

so that in particular

‖α‖2 → ∞ =⇒ ϕ(α) → ∞.

As a continuous convex and coercive function, ϕ attains its minimum, and we are finished.

3.2. Uniqueness of Optimal Solution

Now, let us consider under which conditions we get uniqueness of the optimal replicating
portfolio. Let us first consider the rather easy but practically most likely case that no liability cash flow
at any time can be replicated:

Assumption 4.

∀α ∈ Rm : min
t∈T

ϕt(α) > 0 .

7 A function f : Rm �→ R is called coercive iff f (x) → +∞ whenever ‖x‖ → ∞.
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Under this assumption, ϕ is obviously twice continuously differentiable on the whole Rm.
In practice, Assumption 4 is usually fulfilled, since liability cash flows are not replicable at any
time in the future. If it holds, one can easily show the following strong result.

Theorem 2. Under Assumptions 1 and 4 , the objective function ϕ is strictly convex and twice continuously
differentiable. Furthermore, it is strongly and uniformly convex on each compact subset of Rm. Especially,
the global minimum of ϕ is unique.

Proof. Let α ∈ Rm be arbitrary. As for each t, ϕt is twice continuously differentiable, and we can
consider the Hessian ∇2 ϕt(α) (cf. (1)). As this Hessian is positive semi-definite, it holds that

∀ t ∈ T , ∀ x ∈ Rm : x�EQ
(

εt(α) · C̃F
t

)
EQ
(

C̃F
t · εt(α)

)�
x

≤ ‖εt(α)‖2
2 x�EQ

(
C̃F

t

(
C̃F

t

)�)
x.

As no ϕt vanishes, we have εt(α) �= 0 for all t. Then, due to the Cauchy–Schwarz inequality, it
holds that this inequality is strict for t if and only if x�C̃F

t �= 0 and εt(α) is not collinear with x�C̃F
t .

Due to Assumption 1 , for each x �= 0, there is at least one t0 such that x�C̃F
t0
�= 0. Now let us assume

that εt0(α) is collinear to x�C̃F
t0

; i.e., let us assume that

∃λ0 ∈ R : λ0 x�C̃F
t0
= εt0(α).

By definition of ε, this is equivalent to

C̃L
t0
= (λ0x + α)�C̃F

t0
.

However, this means that in t0, the liability cash flow can be perfectly replicated, which is
a contradiction to Assumption 4. Therefore, εt0(α) cannot be collinear to x�C̃F

t0
, and the above

inequality is strict for each x �= 0. Thus, the Hessian matrix of ϕ is positive definite, and as α was
arbitrary, ϕ is strictly convex. The remaining claims are straightforward consequences.

Remark 3. In Görner and Kanzow [24], it is shown that for uniformly convex ϕ, Newton’s method is globally
quadratically convergent on any compact set. From inequality (2), we see that

{α ∈ Rm | ϕ(α) ≤ ϕ(0)}

is compact and contains the optimal solution. Hence, if we restrict to the optimization on this set we know that
Newton’s method will be globally quadratically convergent.

Although for practical purposes the following result might not be as important as Theorem 2
(obtained under the stronger Assumption 4 ), there still remain some cases when Assumption 4 is
violated. In particular, this includes all models where liability cash flows are predictable, for example,
as in Grosen and Jørgensen [11]. In this more general case, it is still possible to show uniqueness of the
optimal replicating portfolio. However, without Assumption 4 , strict convexity and smoothness of the
objective function will be lost in general.

Theorem 3. Under Assumption 1 , the global minimum of ϕ is unique.

Proof. Let us assume that ϕ possesses (at least) two different global minima, called α1 and α2. Then,
let us consider the midpoint

α :=
1
2
(α1 + α2) ,
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which, due to convexity, has to be optimal as well. Due to the optimality of α, the directional derivative
of ϕ′(α, d) has to vanish in all directions d, especially in direction h := α − α1.

As ϕ is the sum of convex functions ϕt, α can only be optimal if all terms ϕt are linear in
direction h (e.g., Nam [23] for the same argument). If ϕt(α) = 0, this can only be the case if both
ϕt(α1) = 0 = ϕt(α2); otherwise, we would have a contradiction to the assumption that both α1 and
α2 are optimal, and we are done. From ϕt(α1) = 0 = ϕt(α2), it directly follows that h is such that
0 = h�C̃F

t . If, alternatively, ϕt(α) > 0, then the second derivative in direction h has to vanish for
linearity. This can only happen if either 0 = h�C̃F

t or h�C̃F
t is collinear to εt(α). In the first case,

the directional derivative of ϕt in direction h vanishes, whereas in the second case, we have that

ϕ′
t(α, h) = |λ0| ‖εt(α)‖L2 > 0

as h�C̃F
t = λ0εt(α) for some λ0 �= 0 due to collinearity. So, for all t, we need to have h�C̃F

t = 0 for
optimality. However, due to Assumption 1 , there is at least one t0 such that 0 �= h�C̃F

t0
; thus, h�C̃F

t0
has

to be collinear to εt0(α), which shows that the directional derivative of ϕ does not vanish in direction h.
This is a contradiction to our initial assumption, and we are done.

In the general case without Assumption 4 , no first- or even second-order method can be used to
directly solve the cash flow replication problem (RPCF) due to potential non-smoothness of ϕ. However,
we will show in the following that we can avoid this non-smoothness by an equivalent reformulation
as a second-order cone program, which can then be solved by efficient second-order methods.

3.3. Reformulation as Second-Order Cone Program

Let us start with the unconstrained formulation of the cash flow replication problem

min
α∈Rm

ϕ(α) = min
α∈Rm

T

∑
t=1

ϕt(α) ,

and let us introduce auxiliary variables γt ∈ R for each term to obtain the obviously equivalent
constrained formulation

min
α∈Rm

γ∈RT

T

∑
t=1

γt

subject to

ϕt(α) ≤ γt, t = 1, . . . , T.

Now, we have

ϕt(α) =
∥∥∥C̃L

t − α�C̃F
t

∥∥∥
L2

=

(∥∥∥C̃L
t − α�C̃F

t

∥∥∥2

L2

) 1
2

=

⎛⎝( 1
−α

)�
EQ

⎡⎣(C̃L
t

C̃F
t

)(
C̃L

t
C̃F

t

)�⎤⎦( 1
−α

)⎞⎠ 1
2

=

⎛⎝( 1
−α

)�
RSCF

t

(
1
−α

)⎞⎠ 1
2

=

∥∥∥∥∥HSCF
t

(
1
−α

)∥∥∥∥∥
2

,
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where

RSCF
t := EQ

⎡⎣(C̃L
t

C̃F
t

)(
C̃L

t
C̃F

t

)�⎤⎦
and

HSCF
t := (RSCF

t )
1
2

is the root matrix of the positive semi-definite matrix RSCF
t . In summary, we obtain the linear second

order cone program

min
α∈Rm

γ∈RT

T

∑
t=1

γt

subject to∥∥∥∥∥HSCF
t

(
1
−α

)∥∥∥∥∥
2

≤ γt, t = 1, . . . , T,

which can be solved by efficient numerical methods with superlinear convergence (e.g., Alizadeh and
Goldfarb [25]).

3.4. Fair Value of Optimal Solution

Finally, let us consider the equality of fair values. The standard Fermat–Torricelli problem as
in Nam [23] is given by

inf
x∈Rm

T

∑
t=1

‖x − at‖2 ,

with a ∈ RT and where ‖.‖2 denotes the standard Euclidean norm. In general, this problem does not
entail optimality conditions which yield equality of means; i.e., in general,

x =
1
T

T

∑
t=1

x �= 1
T

T

∑
t=1

at.

However, although the structure of (RPCF) is very similar, there is a crucial difference. Instead of
x ∈ Rm being fixed in each t, (RPCF) allows some degree of freedom at each time t in the appearance of
the time-dependent random variable α�C̃F

t . In particular, we may assume that for any t we may trade
an option today which has payoff equal to the numéraire at t and no payoff otherwise (i.e., call options
on the numéraire with strike price 0 and maturity t). In the context of (RPCF), this corresponds to the
freedom of choosing the expectation of α�C̃F

t for each t individually. However, since (RPCF) is nothing
but a sum of optimization problems in L2, optimality conditions will yield that it is best to match
expectations of α�C̃F

t and C̃L
t . This observation is made precise in the following theorem.

Theorem 4. Suppose that for any c ∈ RT there exists β ∈ Rm such that

∀t ∈ T : β�C̃F
t = ct. (3)

Then, any solution αCF
opt to (RPCF) satisfies

EQ

((
αCF

opt

)�
ÃF
∣∣∣F0

)
= EQ

(
ÃL
∣∣∣F0

)
.
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Proof. Condition (3) implies that for any t̄ ∈ T there exists β t̄ ∈ Rm such that

β�
t̄ C̃F

t =

{
1, t = t̄

0, t �= t̄
.

By examining the directional derivatives of the objective function ϕ in (RPCF) with respect to the
direction β t̄, we see that all but the t̄’th summand disappear:

ϕ′(α, β t̄) = ϕ′
t̄(α, β t̄).

As αCF
opt is an unconstrained minimum of a convex function, this requires that all directional

derivatives are non-negative, especially the ones in directions of ±β t̄. If ϕt(αCF
opt) = 0 we do not need

to inspect the directional derivative, as in this case the cash flow at time t̄ is exactly replicated and thus
the fair values of these cash flows are equal. Therefore, let us consider the case ϕt(αCF

opt) �= 0. Then,
considering both ±β t̄, this means that

EQ

(
−
[
C̃L

t̄ − α�C̃F
t̄

]
β�

t̄ C̃F
t̄

∣∣∣∣∣F0

)
= 0

and thus

EQ

([
C̃L

t̄ − α�C̃F
t̄

] ∣∣∣∣∣F0

)
= 0 .

As t̄ ∈ T was chosen arbitrarily, this shows that the fair value of cash flows is in fact equal at any
time. In particular, this obviously implies the claim.

Remark 4. As a matter of fact, the observation that some degree of freedom becomes available through time
dependence of α�ÃF

t has already been made in Natolski and Werner [18] in Subsection “Time-separable case”.
There it was demonstrated that in the case where cash payments are generated at each time separately, (RPCF)
and (RPSCF) are equivalent. In particular, fair values of the replicating portfolios are the same and equal to
the fair value of liability cash flows. Going one step further, Theorem 4 now illustrates that for matching fair
values it is already sufficient if cash payments equal to the numéraire can be generated at each time separately.
This can be considered a rather weak condition, which is usually fulfilled in practical settings if the replication
instruments are chosen accordingly.

3.5. Pros and Cons of (RPCF) versus (RPSCF) and (RP ˜TV)

So far, problem (RPCF) has not received much attention amongst practitioners. The reasons for
this are manifold:

1. Problems (RPSCF) and (RP ˜TV) possess analytical solutions. Thus, the replicating portfolio can be
obtained by simple numerical linear algebra, and no optimization framework is needed.

2. Problems (RPSCF) and (RP ˜TV) possess unique solutions with fair values equal to the liability
fair value.

3. Problem (RPCF) potentially represents a non-smooth problem, and thus cannot be solved efficiently.

In the above analysis, we have shown that all other reasons besides the first one go up in smoke
after a detailed investigation of (RPCF). From a theoretical point of view (see for example Natolski and
Werner [17]), terminal value matching should be preferred over cash flow matching, as it yields lower
error estimates on the resulting risk capital figure. However, numerous numerical studies have shown
that the out-of-sample performance of cash flow matched replicating portfolios is superior to terminal
value matched portfolios. Further, if one is interested in matching the cash flow profile (and not only
risk capital), then cash flow matching is (almost) inevitable. From this point of view, (RPSCF) should
be clearly preferred.
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However, due to the long maturity of life insurance contracts (usual models range from
40 to 60 years final maturity), numerical issues cannot be avoided. Usually, the matching error of
certain maturities significantly dominates all other maturities. In this case, only the dominating
maturities are properly matched. From a statistical point of view (robust statistics, robust least
squares), it is well known that this can be partially mitigated if one moves from the square of the
L2-norm to the L2-norm itself (i.e., if a kind of Fermat–Torricelli structure is chosen). From that
perspective, (RPCF) might indeed represent the formulation which leads to the most stable portfolios
with satisfying out-of-sample performance. To support such a hypothesis, a thorough numerical
analysis is strongly indicated—however, this is clearly beyond the scope of this contribution and is
thus left for future research.

4. Conclusions

We picked up on the replication problems presented in Natolski and Werner [18]. Therein,
for (RPSCF) and (RP ˜TV), existence and uniqueness results as well as the matching of the fair value of
liabilities have been provided. In this contribution, similar results are shown for (RPCF), and we also
prove further structural results on this problem. We especially show that it possesses a unique solution
under weak assumptions. Furthermore, we supplement Natolski and Werner [18] by showing that the
optimal replicating portfolio indeed has the same fair value as liabilities under additional rather weak
assumptions. Finally, we also provided a reformulation of (RPCF) as an SOCP for efficient numerical
solution. In case an additional assumption holds, (RPCF) can be solved directly by Newton’s method,
thus rendering the solution of (RPCF) as efficient as for (RPSCF) and (RP ˜TV). Finally we have provided
a discussion on the pros and cons of each formulation, which shows that the best formulation still
remains to be found.
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