
Edited by

Machine Learning 
in Tribology

Stephan Tremmel and Max Marian

Printed Edition of the Special Issue Published in Lubricants

www.mdpi.com/journal/lubricants



Machine Learning in Tribology





Machine Learning in Tribology

Editors

Stephan Tremmel

Max Marian

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editors

Stephan Tremmel

University of Bayreuth

Germany

Max Marian

Pontificia Universidad Católica de Chile
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Tribology has been and continues to be one of the most relevant fields, being present in
almost all aspects of our lives. The understanding of tribology provides us with solutions
for future technical challenges. At the root of all advances made so far are multitudes of
precise experiments and an increasing number of advanced computer simulations across
different scales and multiple physical disciplines. Based upon this sound and data-rich
foundation, advanced data handling, analysis and learning methods can be developed and
employed to expand existing knowledge. Therefore, modern machine learning (ML) or
artificial intelligence (AI) methods provide opportunities to explore the complex processes
in tribological systems and to classify or quantify their behavior in an efficient or even
real-time way. Thus, their potential also goes beyond purely academic aspects into actual
industrial applications.

To help pave the way, this Special Issue (SI) aimed to present the latest research on
ML or AI approaches for solving tribology-related issues. The focus was less on presenting
new ML or AI methods but rather on demonstrating the possible applications of existing
methods and their adaptation to problems in tribology. We are pleased that the SI has
collected ten articles including a perspective [1], a technical note [2], seven original research
articles [3–9], and a review [10]. The contributions came from both academia and industry
all around the globe and presented cutting-edge research in the field and provided deep
insights into the development or the application of sophisticated ML or AI approaches to
resolve problems broadly related to friction, lubrication and wear.

Rosenkranz et al. [1] opened the SI by highlighting successful case studies using AI
methods in a tribological context, e.g., online condition monitoring, designing material
compositions, lubricant formulations, or lubrication and fluid film formation.

Almqvist [2] derived a physics-informed neural network (PINN) applicable to solve
initial and boundary value problems described by linear ordinary differential equations in
the context of hydrodynamic lubrication. In contrast to finite-element- or finite-difference-
based methods, the fully explicit mathematical description of the PINN is a meshless
method, and the training did not require large amounts of data as are typically employed
for other AI/ML training procedures.

Prost et al. [3] trained a semi-supervised Random Forest (RF) online classifier for the
operational state of a self-lubricating steel shaft/bronze pairing using experimental data.
Thereby, automatically generated labels or full manual labelling by an expert user can be
employed. They reported that the labelling of the individual cycles from the lateral force
tribometer data was crucial for a high prediction accuracy.

Zambrano et al. [4] utilized Reduced Order Modeling (ROM) to predict the friction
behavior of dynamic rubber applications under different operating conditions and to find
optimized micro-texture parameters such as depth, diameter, or distance. The approach
was also used to evaluate the influence manufacturing deviations of the surface textures on
friction. With respect to an industrial context, it is believed that the product performance of
rubber products could be optimized by tailoring micro-textures and controlling nominal
texture tolerances prior to production.
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Ruan et al. [5] combined a Convolutional Neural Network (CNN) with a Generative
Adversarial Network (GAN) for bearing fault diagnosis with unbalanced datasets. Thereby,
the GAN provided a more balanced dataset for the CNN, and the CNN gave the fault
diagnosis as a correction term in the GAN generator’s loss function. The envelope spectrum
error between the generated data and the original measurement of the fault characteristic
frequencies was taken as another correction in the GAN generator’s loss function. Thus, it
was reported that the CNN’s fault classification accuracy was substantially improved.

Kügler et al. [6] employed semantic annotation and natural language processing (NLP)
techniques for generating knowledge graphs in the domain of tribology. The pipeline was
built on Bidirectional Encoder Representations from Transformers (BERT) and involved
some NLP tasks such as information extraction, named entity recognition and question an-
swering. The authors verified a satisfactory performance compared to a manual annotation
of publications on tribological model testing. It is believed that the approach will decrease
manual effort involving time-consuming literature review by providing a semi-automatic
support in knowledge acquisition.

Schwarz et al. [7] utilized ML regression methods trained by multibody simulations to
predict the dynamic behavior of various cages in angular-contact ball bearings. Thereby,
the hyperparameters of RF, extreme gradient boosting (XGBoost), and ANN models were
optimized by an evolutionary algorithm. It was reported that all regression algorithms
predicted the highly non-linear interplay of operational conditions and cage geometry with
satisfactory accuracy. The authors emphasized that the ML approaches will allow to analyze
a new dataset in the shortest time without the need to perform new dynamics simulations.

Sauer et al. [8] compared various supervised ML approaches for predicting the elastic
and hardness characteristics of diamond-like carbon (DLC) coatings on polymeric medical
materials in dependency of the sputter process parameters. It was reported that Gaussian
Process Regression (GPR) featured the highest accuracy compared to polynomial regression,
support vector machines (SVM), or ANN. Slicing-based data visualization and process
maps can further provide support to experts when designing coating systems and processes.

Bienefeld et al. [9] used RF regression for predicting the remaining useful life (RUL)
of deep-groove ball bearings from temporal information, such as the means of structure-
borne sound signals. The authors reported that by taking temporal past information
into account, the prediction quality could be increased by 37% compared to conventional
lifetime prediction.

Finally, we [10] systematically reviewed the trends and applications of ML in tribology.
We demonstrated that ML has already been employed in many fields of tribology, from
composite materials and drive technology to manufacturing, surface engineering, and
lubricants. It was emphasized that the intent of ML might not necessarily be to create
conclusive predictive models but can be seen as complementary tool to efficiently achieve
optimum designs for problems, which elude other physically motivated mathematical and
numerical formulations. Therefore, ML and AI might change the landscape of what is
possible, going beyond the mere understanding of mechanisms towards designing novel
and/or potentially smart tribological systems. One of the challenges is that ML approaches
do not necessarily guide towards specific solutions and the selection/optimization of ML
algorithms is crucial.

This SI shows that there already is a wide variety of approaches that have been
successfully applied to tackle tribological challenges generating true added value beyond
just buzzwords. In this sense, the SI can support researchers in identifying initial selections
and best practice solutions for ML in tribology.

Ultimately, the Guest Editors would like to express their sincere gratitude to all authors
and reviewers contributing to this SI for their exceptional efforts and to the editorial staff of
MDPI Lubricants for their valuable support and professional guidance.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.
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Abstract: Artificial intelligence and, in particular, machine learning methods have gained notable
attention in the tribological community due to their ability to predict tribologically relevant pa-
rameters such as, for instance, the coefficient of friction or the oil film thickness. This perspective
aims at highlighting some of the recent advances achieved by implementing artificial intelligence,
specifically artificial neutral networks, towards tribological research. The presentation and discussion
of successful case studies using these approaches in a tribological context clearly demonstrates
their ability to accurately and efficiently predict these tribological characteristics. Regarding future
research directions and trends, we emphasis on the extended use of artificial intelligence and machine
learning concepts in the field of tribology including the characterization of the resulting surface
topography and the design of lubricated systems.

Keywords: artificial intelligence; machine learning; artificial neural networks; tribology

1. Introduction and Background

There have been very recent advances in applying methods of deep or machine
learning (ML) to improve tribological characteristics of materials by means of artificial
intelligence (AI). AI is generally concerned with the design and construction of intelligent
agents, which is anything that acts in the best way possible in any situation [1]. ML refers
to a vast set of data-driven methods and computational tools for modelling and under-
standing complex datasets. These methods can be used to detect automatically patterns in
datasets thus creating models to predict future data or other outcomes of interest under
uncertainty [2–4]. Generally, ML methods can be divided into supervised learning and
unsupervised learning [3,5], see Figure 1. Regarding predictive or supervised learning
approaches, the aim is to learn a mapping from input vectors (training data) to their
corresponding output vectors (target data). Depending on the nature of the target data, su-
pervised approaches can be subdivided into classification or regression methods. When the
output is a categorical or nominal variable from a finite set of discrete categories (e.g., type
of surface finish, oil grade, lubricant additive, etc.), the problem is known as classification
or pattern recognition. In contrast, when the output consists of one or more real-valued
continuous variables (e.g., coefficient of friction, film thickness, temperature rise, etc.),
the problem is defined as regression. The second type of machine learning approaches is
denoted as descriptive or unsupervised learning. In this case, only inputs are provided
without any corresponding output vectors. The goal is to find meaningful patterns and
groups of similar features within the dataset (clustering), to determine the distribution of
data in the input space (density estimation), or to reduce high-dimensional data space to
two or three dimensions for visualization purposes (dimensionality reduction) [5]. Unlike
supervised learning, for which comparisons can be made between the predictions to the

Lubricants 2021, 9, 2. https://dx.doi.org/10.3390/lubricants9010002 https://www.mdpi.com/journal/lubricants
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observed values, problems involving unsupervised learning are not well-defined since
no additional information or obvious error metric is provided about the patterns to be
’discovered’ in the dataset [5].

 

Figure 1. Diagram generally classifying existing machine learning methods and algorithms.

A prominent method that machines employ to learn is by using artificial neural
networks (ANNs). These networks are based upon the network of neurons in the human
brain and have the ability to “learn” in a fashion similar to the way humans do. An ANN is
made of a network of model neurons, which can use algorithms to make them function like
biological neurons. In this context, each model neuron has a threshold. The model neurons
will receive many different inputs, which are summed up and sent an output equal to 1, if
the sum is larger than the threshold. Otherwise, the output is 0. Machines are able to learn
by modifying the thresholds of each model neuron, when a new example is introduced,
until the thresholds reach a point to where they don’t change much [6].

 
Figure 2. Correlation between material properties and testing conditions using artificial neural networks. Redrawn
from [7,8].
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In addition to ANNs, fuzzy systems are another type of models used in AI. These
systems are based on fuzzy logic and represent a more human way of thinking in their
application of inference. They are characterized by displaying a range of truth from 0 to 1
instead of displaying Boolean true/false results [9]. In the field of tribology, many tests
on materials are typically performed, which define a set of tribological properties. This
dataset can for example be incorporated to develop an ANN (Figure 2), which can be used
for further optimization [8,10]. This perspective attempts to display some of the recent
advances done in implementing AI, specifically but not limited to ANNs. Furthermore, we
intend to address current challenges and future research directions towards tribological-
related problems.

2. Application Fields of AI in Tribology

As briefly evidenced by several examples below, the use of AI and ML approaches
already covers various fields of tribology, ranging from condition monitoring over the
design of material compositions to lubricant formulations or film thickness predictions.

2.1. Online Condition Monitoring

As early as in 1998, Umeda et al. [11] trained a multilayer and a self-organizing fea-
ture map ANN with microscopy data from lubricated ball-on-disk sliding experiments
to classify wear particles by means of various descriptors (width, length, projection area,
perimeter, representative diameter, elongation, reflectivity etc.). When trained with rep-
resentative data, the multilayer ANN successfully predicted the relation between the
experimental conditions and the obtained particle features. The self-organizing feature
map ANN was found to be capable of classifying the data without any supervised data.
Thus, on the one hand, characteristic particle features can be identified, and, on the other
hand, the authors suggested that these approaches could be used for condition monitoring,
while the (partly unknown) sliding conditions can be derived from the automated particle
analysis. Shortly after, Subrahmanyam and Sujatha [12] applied two ANN approaches,
namely a multilayered feed forward neural network trained with supervised error back
propagation (EBP) technique and an unsupervised adaptive resonance theory-2 (ART2)
based neural network for the detection and diagnosis of localized defects in ball bearings.
These networks were trained with vibration acceleration signals from a rolling bearing
test-rig under various load and speed conditions. Thereby, the EBP and the ART2 model
were found to be accurate in distinguishing a defective bearing from a normal one (100% re-
liability), with the ART2 being 100 times faster. Moreover, the EBP network was capable to
classify the ball bearings into different states, i.e., ball or raceway defect, with a success rate
over 95%. A more recent ANN-based approach for monitoring and classifying the multi-
variant wear behavior of lubricated journal bearings was presented by König et al. [13].
As illustrated in Figure 3, an autoencoder was used for anomaly detection. Moreover,
acoustic emission signals with continuous wavelet transformation were utilized to train a
convolutional neural network to classify the modes of running-in, insufficient lubrication
and particle-contamination of the oil. While the first and second were sometimes mistaken,
the contaminated lubricant was detected with an accuracy and a sensitivity of 97 and 100%,
respectively.

7
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Figure 3. Framework of the machine learning approach from [13]. Redrawn and adopted with
permission.

2.2. Design of Material Composition

In addition, various researchers have applied ML and AI approaches to predict and
optimize the tribological behavior of different materials and operating conditions with
manifold applications in mind [14–20]. For instance, Alambeigi et al. [21] investigated the
accuracy of predictive AI models by comparing them with experimental results obtained
by testing the dry sliding contact of sintered steels [21]. The steel for this study was
manufactured by powder metallurgy, which is known to have many industrial applications
in engine parts and transmission systems with problems related to friction and wear. Three
different types of predictive models were used in this study. The first approach made use of
an ANN. ANNs have a significant advantage in their learning ability and their handling of
nonlinear functions, which the wear tests of these steel materials are mainly characterized
by. The second model used is known as a “fuzzy system,” specifically known as a fuzzy
C-means clustering algorithm (FCM). Fuzzy systems also work well in decision making
with nonlinear functions and for systems with many time-dependent parameters. The third
model was based upon a fuzzy-neuro system known as adaptive neuro fuzzy inference
system (ANFIS), which combines the qualities of both ANNs and regular fuzzy networks.
Their tests were conducted using input parameters such as cooling rates, applied loads,
sliding distances, and the type of powders. Therefore, tests were done at three different
cooling rates and three different applied loads. In this study, all three methods displayed
high accuracy in predicting the behavior of the wear tests with the ANN model performing
the best, generating an R2 value above 0.9911 and a root mean square error of 3.98 × 10−4

for testing data sets [21].
Apart from steels, composite materials have also been the subject of investigations

based upon AI and ML approaches. Senatore et al. [22] developed an EBP model to study
the tribological behavior of different brakes and clutch materials thus elucidating the
influence of different materials, loading, sliding and acceleration conditions. Therefore,
the three-layer ANNs were optimized by an evolutionary genetic algorithm to maximize
the prediction quality and the data base was extracted from experimental pin-on-disc
tests. By means of a sensitivity analysis, it was demonstrated, for instance, that the sliding
velocity particularly contributed to the friction coefficient in the experiments carried out.
Moreover, it was verified that the behavior within the data limits was predicted well,
whereas an extrapolation rather serves merely as a first indication for future research
directions. Besides, Busse and Schlarb [23] developed an ANN architecture with the
Levenberg–Marquardt (LM) training algorithm and mean squared error with regularization
(MSEREG) as performance function to predict the tribological properties of polyphenylene
sulfide (PPS) reinforced on different scales. Using this approach, the coefficient of friction
(COF) was predicted with two times and the wear rate with six times higher accuracy
than with conventional ANN pruned by the optimal brain surgeon (OBS) method. In
addition, the predicted error scales for both friction and wear were ten times smaller than

8



Lubricants 2021, 9, 2

the standard deviations from the tribological pin-on-disk experiments of the database. Both
tribological properties were predicted well by using the material composition, sliding speed
and contact pressure as input variables. It was also demonstrated that additional input
variables such as tensile or compression properties only slightly improve the predictions
for friction and wear.

2.3. Lubricant Formulations

In addition to material composition, AI/ML approaches can be used for designing
lubricant formulations. Bhaumik et al. [24] used the ANN approach to create a biolubricant
with optimized properties and characteristics. They used a genetic algorithm to optimize
the properties and the ANN acted as the objective function for the genetic algorithm.
Their goal was to create a blend of different vegetable oils, including castor, coconut, and
palm oils using multiple friction modifiers, including carbon nanotubes and graphene,
which were intended to be optimized using an ANN. The ANN was used to verify the
effect of these inputs on the COF. Two different ANN models were used to optimize and
design two different lubricants. The first lubricant (Lube A) had a composition of 40%
palm oil, 40% castor oil, and 20% coconut oil with 0.7 wt.-% carbon nanotubes and no
graphene. The second lubricant (Lube B) contained equal percentages of all oils with
1 wt.-% each of carbon nanotubes and graphene. Based upon the experimental results,
it was shown that the COF was reduced by the addition of friction modifiers in both
lubricants. Additionally, experimental work demonstrated a sensitivity regarding the
respective testing conditions (four-ball versus pin-on-disk tester). A similar study was
performed by Bhaumik et al. [25], in which a genetic algorithm and ANN were used to
optimize and design a castor oil lubricant with graphite, graphene, multi-walled carbon
nanotubes, and zinc oxide nanoparticles. Pin-on-disk tests were used to gather tribological
data for the castor oil with different concentrations of these modifiers. The ANN used
concentration, load, and speed as input parameters and the COF as output parameter.
The composition of the designed lubricants using the ANN came out to have a total
concentration of friction modifiers of 2 wt.-% with a distribution of 0.66 wt.-% each of
graphite, carbon nanotubes, and zinc oxide nanoparticles. There was no graphene in the
designed lubricant since the amount of graphene was shown to have a negligible effect.
Afterward, it was experimentally verified that the designed lubricant induced a friction
reduction by about 50% compared to most conventional mineral oils.

Other researchers [26] also analyzed the use of ANNs to design lubricants with
significantly lower COFs (Figure 4). They considered the optimization of mixtures of
vegetable oil (sunflower and rapeseed oils) with diesel oil for use in diesel engines. The
ANN predicted a lower COF for a mixture of 4 wt.-% sunflower oil and 0 wt.-% rapeseed oil
compared to a mixture of 0 wt.-% sunflower oil and 20 wt.-% rapeseed oil. The ANN also
predicted a lower COF for a mixture of 6.5 wt.-% sunflower oil and 0 wt.-% rapeseed oil
compared to a mixture of 0 wt.-% sunflower oil and 0 wt.-% rapeseed oil. Both predictions
aligned well with experimental results.
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Figure 4. Artificial neural network (ANN) architecture (a) and coefficient of friction for different vegetable oil concentrations
(b) according to [26] (CC BY 4.0).

2.4. Lubrication and Fluid Film Formation

In addition, AI/ML algorithms can be used to predict lubricant film formation and
friction behavior in thermo-hydrodynamically (THL) and thermo-elastohydrodynamically
lubricated (TEHL) contacts. For example, Moder et al. [27] used highspeed data signals of
a torque sensor obtained from a journal bearing test-rig to train ML models for predicting
lubrication regimes (Figure 5). Main results showed that deep and shallow neural networks
performed equally well, reaching high accuracies. Furthermore, logistic regression yielded
the same level of accuracy as neural networks. It was also emphasized the potential
use of the proposed methodology for further investigations of ML applications on other
tribological experiments.

Figure 5. Lubricant regime classification approach (a) and schematic illustration of lubricant regimes and frequency ranges
(b) according to [27] (CC BY 4.0).

Senatore and Ciortan [28] trained an ANN with excellent prediction quality to optimize
the frictional performance of the piston-liner using data obtained from numerical HL
simulations. Wang and Tsai [29] proposed a surrogate model using ANN for fast prediction
of the THL lubrication performance of a slider bearing. The goal of creating the meta-
model was to reduce the computational efforts of conventional THL analysis without
compromising the solution accuracy. The dataset used to train and validate the ANN were
obtained from numerical simulations. Results showed that when using an appropriate,
results can be predicted with reasonable accuracy. Furthermore, it was also verified that
the training algorithm and the sample size affect the prediction accuracy significantly.
Gorasso and Wang [30] proposed a journal bearing optimization process, in which the
performance functions were an ANN trained with a dataset obtained from numerical
solutions of the Reynolds equation and Computational Fluid Dynamics (CFD) simulations.
The optimization strategies adopted for the calculations were non-sorted genetic algorithm
and artificial bee colony algorithm. Otero et al. [31] investigated the use of ANNs for
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predicting the friction coefficient in EHL point contacts. The model was fed with friction
data obtained from tribological tests carried out for different lubricants and a range of
operating conditions. It was shown that properly trained networks are capable to offer
excellent predictions with a high level of correlation with the corresponding experimental
data. Nonetheless, it was highlighted that special care is needed when using ANNs
models as predictive since they are accompanied with the loss of relevant information, or
intermediate results of interest (e.g., the complex rheological response of the lubricant at
high pressure, temperature and shear-strain rate conditions), associated with the physical
phenomena taking place in TEHL contacts. However, the supervised ML approach could
be extended by using data from mixed-TEHL simulations for a wide range of materials
and lubricant properties, contact geometries and working conditions. This would enable a
fast and powerful design tool to predict the lubrication performance (e.g., film thickness,
friction, temperature rise, leakage, among others) of different types of bearings and other
lubricated systems [32]. For example, Marian et al. [33] applied a metamodel of optimal
prognosis (MOP) to predict the influence of surface micro-textures on the frictional behavior
of EHL point-contacts, see Figure 6. Thereby, the database was generated by numerical
simulations considering mixed lubrication, whereby geometrical micro-texture parameters
such as dimple depth and diameter were varied. Non-significant variables were then
filtered and various metamodels, such as polynomial regression, moving least squares and
kriging were trained. The most suitable approach was then automatically selected using a
coefficient of prognosis and used for optimization by a genetic algorithm. Thus, tailored
and load-case dependent surface textures can be determined.

Figure 6. Framework of the metamodel of optimal prognosis to predict the tribological behavior of
micro-textured EHL contacts utilized in [33].

Furthermore, Boidi et al. [34] employed the radial basis function (RBF) method for
predicting the friction coefficient in lubricated contacts with textured and porous surfaces.
The RBF model was trained with friction data obtained from tribological tests conducted
on surfaces with different features and for a range of entrainment velocity and slide-roll
ratio. The main results show that the hardy multiquadric radial basis function provided
satisfactory overall correlation with the experimental data. It was also pointed out that
the application of the suggested methodology could be extended to other experimental
results to train more robust ML models for predicting tribological performances of textured
and structured surfaces. In this respect, unsupervised ML methods could be used to
construct design charts and to identify patterns of optimum performance. Furthermore,
the reliability and accuracy of these ML-based tools are expected to improve continuously
as more data is available. Regarding the analysis of the involved surface topography,
unsupervised ML methods could be applied to achieve robust segmentation procedures for
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the characterization of real surface topographies. In this regard, clustering methods can help
to identify and separate different surface features with tribological functionalities, such as
plateau regions, bumps, honing grooves, textures, pores, wear zones, among others. Once
the surface features are detected and separated in clusters, specific characterization methods
and statistical assessments can be individually applied to each cluster. Furthermore, the
analysis of the surface topography could further benefit from the use of supervised ML
methods, in which ML algorithms are trained using post-processed data (e.g., roughness
parameters, features statistics, etc.) of a variety of surfaces to create classification learning
models. These trained models are intended to be used to assess surface finishing processes
or correlated with tribological results to reveal specific characteristics of the surfaces that
most affect the tribological performance.

3. Current Challenges, Future Research Directions and Concluding Remarks

Summarizing, the application of AI and ML has been shown to be a powerful and
efficient way in predicting tribological characteristics and performance of materials with
respect to valuable resources and time. Thereby, these techniques combine statistics and
machine learning, imitating human intelligence at a more unconscious or untransparent
level. ANNs are suitable for highly complex, non-linear fundamental and applied problems,
which makes them particularly interesting for various fields of tribology. In addition,
however, there are some other approaches that should certainly receive attention from
tribologists. With this perspective, we intended to highlight some successful examples
that show the potential for further research and future applications. In the future, AI
methods could be applied in a lot more fields of tribology, e.g., the additivation of base oils
with viscosity and friction modifies (for instance, nano-particles) to predict the results of
experiments done on various materials compositions and test conditions.

Besides the prediction of optimal concentration, we hypothesize that AI and ML
approaches will be useful to predict the size of the nano-particles (x-, y- and z-dimension)
to effectively reduce friction and wear. Moreover, these approaches may be used to predict
the likelihood of a tribo-layer formation, which largely depends on a complex interplay
between different operational conditions. Moreover, AI and ML methods may be useful
to support the characterization and classification of the involved surface topography in
case of a stochastic surface roughness or even deterministic textured surfaces. Thereby, the
change of the surface topography during running-in or wearing may also be addressed.
From a more applied point of view, it can be also expected that AI and ML methods will be
greatly involved in the design process of dry or lubricated components, see Figure 7. Apart
from the prediction of optimum oil film thicknesses in machine components depending on
the operational conditions such as sliding speed or load, surface topographies and textures,
which are designed for specific conditions resulting in certain oil film thicknesses, are likely
to be predictable by AI and ML algorithms.

With the fast-paced developments in the area of algorithms and computing power
as well as the increasing availability and reusability of data [35], the utilization of AI in
tribology will certainly increase in the upcoming years. To increase the range of applications
and enhance the accuracy of the AI models, an online open platform could be created,
on which the tribology community could share data of numerical simulations, surface
characterizations and experiments. It is also conceivable that the database will not only be
based on numerical simulations or experimental work on a research/laboratory scale but
will also include actual operating data from real applications such as machine elements
or engine components. This would enable controllers with ML/AI algorithms to be
incorporated directly into these applications, e.g., rolling/sliding bearings, gears, brakes,
clutches or the piston assembly, and used for performance prediction and adaptation to
discontinuous and critical operating conditions.
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Figure 7. Schematic showing the main steps and parameters associated with the training process of
ML/AI models to predict the lubrication performance from experimental and simulation data-sets.

The recently emerging big data trend won’t bypass tribology and AI techniques have
already be shown to be effective for many tribological questions. However, one of the
biggest obstacles remaining is the handling of uncertainties in experimental and practical
data sets due to differences in setups and sensor systems as well as the inherent multi-
scale and statistical character of tribology with partially pronounced scattering of targeted
parameters. These are not hard data but correspond to time-dependent and very specific
loss variables, also resulting in frequently difficult transferability to other conditions or
even tribosystems. Therefore, further fundamental research is essential for the application
of new AI methods to ensure suitability and reliability in solving tribological issues. In
particular, strongly domain-specific expert knowledge is crucial. The interdisciplinary
character of tribology represents a great opportunity, but also a great challenge for the
intense collaborations between different disciplines including physics, chemistry, materials
science, mechanical engineering and computational science. Therefore, we would like
to encourage tribologists all over the world to be open to new approaches/methods and
interdisciplinary collaborations. Together with the aid of AI/ML algorithms, this can
enable deeper insights in the incredibly important domain of tribology thus guiding us
towards a new, greener and more energy-efficient era.
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Abstract: This paper presents a complete derivation and design of a physics-informed neural net-
work (PINN) applicable to solve initial and boundary value problems described by linear ordinary
differential equations. The objective with this technical note is not to develop a numerical solution
procedure which is more accurate and efficient than standard finite element- or finite difference-based
methods, but to give a fully explicit mathematical description of a PINN and to present an application
example in the context of hydrodynamic lubrication. It is, however, worth noticing that the PINN
developed herein, contrary to FEM and FDM, is a meshless method and that training does not require
big data which is typical in machine learning.

Keywords: PINN; machine learning; reynolds equation

1. Introduction

There are various categories of artificial neural networks (ANN) and a physics-
informed neural network (PINN), see [1] for a recent review on the matter, is a neural
network trained to solve both supervised and unsupervised learning tasks while satis-
fying some given laws of physics, which may be described in terms of nonlinear partial
differential equations (PDE). For example, the balance of momentum and conservation
laws in solid- and fluid mechanics and various types of initial value problems (IVP) and
boundary value problems (BVP), see e.g., [2,3]. The application of a PINN (of this type)
to solve differential equations, renders meshless numerical solution procedures [4], and
an important feature from a machine learning perspective, is that it is not a data-driven
approach requiring a large set of training data to learn the solution.

In fluid mechanics, under certain assumptions, i.e., that the fluid is incompressible,
iso-viscous, the balance of linear momentum and the continuity equation, for flows in
narrow interfaces reduces to the classical Reynolds equation [5]. For more recent work
establishing lower-dimensional models in a similar manner, see e.g., [6–8]. The present
work describes how a PINN can be adapted and trained to solve both initial and boundary
value problems, described by ordinary differential equations, numerically. The theoretical
description starts by presenting the neural network’s architecture and it is first applied to
solve an initial value problem, which is described by a first order ODE, which can be solved
analytically so that the validity of the solution can be thoroughly assessed. Thereafter, it
is used to obtain a PINN for the classical one-dimensional Reynolds equation, which is a
boundary value problem governing, e.g., the flow of lubricant between the runner and the
stator in a 1D slider bearing. The novelty and originality of the present work lays in the
explicit mathematical description of the cost function, which constitutes the physics-informed
feature of the ANN, and the associated gradient with respect to the networks weights and
bias. Important features of this particular numerical solution procedure, that is publicly
available here: [9], are that it is not data driven, i.e., no training data need to be provided
and that it is a meshless method [4].
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2. PINN Architecture

Knowing the characteristics of the solution to the differential equation under consider-
ation is very helpful when designing the PINN architecture, including structure, number of
hidden layers, activation function, etc. For this reason, the PINN developed here has one
input node x (the independent variable representing the spatial coordinate), one hidden
layer consisting of N nodes and one output node y (the dependent variable representing
pressure). Figure 1 depicts a graphical illustration of the present architecture, which when
trained solves both the IVP example and the Reynolds BVP considered here.
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Figure 1. Architecture of the PINN employed to solve the IVP and BVP considered here.

The Sigmoid function, i.e.,

φ(ξ) =
1

1 + e−ξ
, (1)

which is mapping R to [0, 1] and exhibits the property

φ′(ξ) = φ(ξ)(1 − φ(ξ)). (2)

is employed as activation function for the hidden layer. This means that the neural network
has 3N + 1 trainable parameters. That is, the weights w(0)

i and bias b(0)i for the nodes in the

hidden layer and the weights w(1)
i , i = 1 . . . N, for each synapses connecting them with the

output node, plus the bias b(1) applied there.
Based on this particular architecture, the output zi of each node in the first hidden

layer is,
zi(x) = φ

(
w(0)

i x + b(0)i

)
. (3)

The output value is then given by applying the Sigmoid activation function scaled by the
weight from the node in the second layer and yields

y(x) = b(1) +
N

∑
i=1

w(1)
i zi(x) = b(1) +

N

∑
i=1

w(1)
i φ

(
w(0)

i x + b(0)i

)
. (4)

Let us now construct the cost function which the network will be trained to minimise.
While the cost function appearing in a typical machine learning procedure is just the
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quadratic difference between the predicted and the target values, it will here be defined by
means of the operators L and B. The cost function applied here reads

l =
〈
(Ly − f )2

〉
+ ((By − b) · e1)

2 + ((By − b) · e2)
2, (5)

where 〈 f 〉 defines the average value of f , and this is exactly the feature that makes an ANN
“physics informed”, i.e., a PINN.

Since Ly is a differential operator the cost function contains derivatives of the network
output (4). In order to obtain an expression of the cost function, in terms of the input x, the
weights w and bias b, the network output (4), must be differentiated twice with respect to
(w.r.t. ) x. This can be accomplished by some kind of automatic differentiation (AD) (also
referred to as algorithmic differentiation, computer differentiation, auto-differentiation or
simply autodiff), which is a computerised methodology based on the chain rule, which
can be applied to efficiently and accurately evaluate derivatives of numeric functions, see
e.g., [10,11]. The present work instead applies symbolic differentiation to clearly explain
all the essential details of the PINN. Indeed, differentiating one yield

y′(x) =
∂

∂x

((
N

∑
i=1

w(1)
i zi(x)

)
+ b(1)

)
=

∂

∂x
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N
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w(1)
i φ

(
w(0)

i x + b(0)i
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+ b(1)

)
=

=
N

∑
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i w(0)

i φ′
(

w(0)
i x + b(0)i
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N
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i w(0)

i φ
(

w(0)
i x + b(0)i

)(
1 − φ

(
w(0)

i x + b(0)i
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,

(6)

and, because of (2), a consecutive differentiation then yields
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(7)

Moreover, finding the set of weights and bias minimising the cost function requires its
partial derivatives w.r.t. to each weight and bias defining the PINN. In the subsections
below, we will present how to achieve this, by first considering a first order differential
equation with an analytical solution, and, thereafter, we will consider the classical Reynolds
equation which is a second order (linear) ODE that describes laminar flow of incompressible
and iso-viscous fluids in narrow interfaces.

3. A First Order ODE Example

Let us consider the first order ODE, describing the initial value problem (IVP) given by

Ly − f = y′ + 2xy = 0, x > 0 (8a)

By − b = y(0)− 1 = 0, (8b)

with the exact solution y = e−x2
. By means of (6), a cost function suitable for solving (8)

may be generated by

l =

〈[
N

∑
i=1

w(1)
i w(0)

i φ
(

w(0)
i x + b(0)i

)(
1 − φ
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+
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+ b(1)

)]2〉
+ [y(0)− 1]2

(9)
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The solution of (8) can be obtained by implementing a training routine which iteratively
finds the set of weights w and bias b that minimises (9) (and similarly for (19) minimising
(17)). The most well-known of these is the Gradient Decent method attributed to Cauchy,
who first suggested it in 1847 [12]. For an overview, see, e.g., [13].

As mentioned in the previous section, the derivatives of (4) w.r.t. to the weights w
and bias b are required to find them, and automatic differentiation is, normally, employed
to perform the differentiation. However, here we carry out symbolic differentiation to
demonstrate exactly the explicit expressions that constitute the gradient of the cost function.
Indeed, by taking the partial derivatives we obtain

∂y

∂w(0)
i

=
∂

∂w(0)
i

((
N
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w(1)
i φ

(
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))
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)
= w(1)
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(
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)
x, (10a)
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= φ
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i x + b(0)i

)
, (10b)

∂y

∂b(0)i

=
∂

∂b(0)i
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N
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w(1)
i φ

(
w(0)
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))
+ b(1)

)
= w(1)

i φ′
(

w(0)
i x + b(0)i

)
, (10c)

∂y
∂b(1)

= 1. (10d)

Moreover, the derivatives of the cost function (5) w.r.t. to the weights and bias are also
required. For the derivative w.r.t. w(0)

i for the first order ODE (8), this means that

〈
2
(
y′ + 2xy

)( ∂y′

∂w(0)
i

+ 2x
∂y

∂w(0)
i

)〉
+ 2(y(0)− 1)

∂y(0)

∂w(0)
i

. (11)

To complete the analysis, we also need expressions for the derivatives of y′ w.r.t. w(0)
i , w(1)

i ,

b(0)i and b(1). By the chain rule, the following expressions can be obtained, viz.
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∂y′

∂b(1)
= 0. (12d)

What remains now is to obtain expressions for y(0) and the partial derivatives of y(0), w.r.t.
to the weights and bias. Let us start with y(0). With y(x) given by (4) we directly have

y(0) =

(
N

∑
i=1

w(1)
i φ

(
b(0)i

))
+ b(1), (13)
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which, in turn, means that
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= 0, (14a)
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∂y(0)
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= 1. (14d)

The PINN (following the architecture presented above) was implemented as computer
program in MATLAB. The program was employed to obtain a numerical solution to the
IVP in (8), using the parameters in Table 1.

Table 1. Parameters used to defined the PINN to for the IVP in (8).

Parameter Description Value

Ni # of grid points for the solution domain [0, 2] 41
Ne # of training batches (# or corrections during 1 Epoch) 1000
Tb # of Epochs (1 Epoch contains Tb training batches) 100
Lr Learning rate coefficient (relaxation for the update) 0.01
N # of nodes/neurons in the hidden layer 10

The weights w(0)
i and bias b(0)i were initialised using randomly generated and uniformly

distributed numbers in the interval [−2, 2], while the weights w(1)
i were initially set to zero

and the bias b(1) to one, to ensure fulfilment of the initial condition (y(0) = 1).
Table 2 lists the weights an bias corresponding to the solution presented in Figure 2.

We note that, with the weights and bias given by Table 2, the trained network’s prediction
exhibits the overall error

1
Ni

√√√√ Ni

∑
k=1

(
e−x2

k − y(xk)
)2

= 5.8 × 10−4, (15)

and 1 − y(0) = 2.2 × 10−4, when comparing against the initial condition.

Table 2. Parameters used to defined the PINN for the IVP (8).

Node w(0) b(0) w(1) b(1)

1 1.8500 −0.5946 −3.5805 0.3055
2 1.8588 1.5974 0.9712
3 0.3025 1.9241 0.8921
4 1.4546 0.3742 −0.9955
5 0.5065 1.2535 −0.1430
6 −1.0898 −1.0199 −1.1067
7 −0.8302 0.3519 −1.1668
8 0.3789 1.6502 0.1754
9 2.5012 0.7657 1.2955

10 2.2743 1.4172 1.2787
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Figure 2. The solution to the IVP (8), predicted by the PINN (red line with circle markers) and the
exact solution obtained by integration (blue continuous line).

4. A PINN for the Classical Reynolds Equation

The Reynolds equation for a one-dimensional flow situation, where the lubricant is
assumed to be incompressible and iso-viscous, is a second order Boundary Value Problem
(BVP), which in dimensionless form can be formulated as

d
dx

(
c(x)

dy
dx

)
= f (x), 0 < x < 1, (16a)

y(0) = 0, y(1) = 0, (16b)

where c(x) = H3, f (x) = dH
/

dX and H is the dimensionless film thickness, if it is
assumed that the pressure y at the boundaries is zero. For the subsequent analysis it is,
however, more suitable work with a condensed form which can be obtained by defining
the operators L and B as

Ly = c(x)y′′ + c′(x)y′, (17a)

By =

[
y(0)
y(1)

]
. (17b)

The Reynolds BVP given by (16) can then be presented as

Ly − f = 0, 0 < x < 1, (18a)

By − b = 0, (18b)

where b = 0.
For the Reynolds BVP, the cost function (5) becomes

l =
〈(

c(x)y′′ + c′(x)y′ − f
)2
〉
+ y2(0) + y2(1), (19)

and from the analysis presented for the IVP in Section 3 above, we have all the “ingredients”
except for the partial derivatives of y′′ and y(1) w.r.t. to the weights and bias. For y′′, based
on (7) and (12), we obtain
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where the third derivative of the Sigmoid function (1) is required. It yields
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For y(1) we obtain

∂y(1)

∂w(0)
i

=
∂

∂w(0)
i

((
N

∑
i=1

w(1)
i φ

(
w(0)

i + b(0)i

))
+ b(1)

)
= w(1)

i φ′
(

w(0)
i + b(0)i

)
, (22a)

∂y(1)

∂w(1)
i

=
∂

∂w(1)
i

((
N

∑
i=1

w(1)
i φ

(
w(0)

i + b(0)i

))
+ b(1)

)
= φ

(
w(0)

i + b(0)i

)
, (22b)

∂y(1)

∂b(0)i

=
∂

∂b(0)i

((
N

∑
i=1

w(1)
i φ

(
w(0)

i + b(0)i

))
+ b(1)

)
= w(1)

i φ′
(

w(0)
i + b(0)i

)
, (22c)

∂y(1)
∂b(1)

=
∂

∂b(1)

((
N

∑
i=1

w(1)
i φ

(
w(0)

i + b(0)i

))
+ b(1)

)
= 1, (22d)

and we now have all the “ingredients” required to fully specify (19). To test the performance
of the PINN, a Reynolds BVP was specified for a linear slider with dimensionless film
thickness defined by

H(x) = 1 + K − Kx. (23)

This means that c(x) = (1+K −Kx)3 and f (x) = dH
/

dx = −K and that the exact solution
is

yexact(x) =

[
1
K

(
1

1 + K − Kx
− 1 + K

2 + K
1

(1 + K − Kx)2 − 1
2 + K

)]
, (24)

see, e.g., [14].
The PINN (following the architecture suggested herein) was implemented in MATLAB

and a numerical solution to (16) was obtained using the parameters in Table 3. As for
the IVP, addressed in the previous section, the weights w(0)

i and bias b(0)i were, again,
initialised using randomly generated numbers, uniformly distributed in [−2, 2], while the
weights w(1)

i and the bias b(1) was initially set to zero, to ensure fulfilment of the boundary
conditions.

Figure 3 depicts solution predicted by the PINN (red line with circle markers) and the
exact solution obtained by integration (blue continuous line).
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Table 3. Parameters used to defined the ANN to for the Reynolds equation.

Parameter Description Value

Ni # of grid points for the solution domain [0, 1] 21
K Slope parameter for the Reynolds equation 1
Ne # of training batches (# or corrections during 1 epoch) 2000
Tb # of Epochs (1 epoch contains Tb training batches) 600
Lr Learning rate coefficient (relaxation for the update) 0.005
N # of nodes/neurons in the hidden layer 10
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Figure 3. The solution achieved by the ANN (red line with circle markers) and the exact solution
obtained by integration (blue continuous line).

Table 4 lists the weights an bias corresponding to the solution presented in Figure 3.

Table 4. Parameters used to defined the ANN.

Node w(0) b(0) w(1) b(1)

1 0.0557 1.9808 −0.2186 −0.0641
2 −6.3047 6.1664 0.1220
3 −9.3674 11.4571 0.3843
4 −4.5473 3.3266 0.0305
5 −2.4464 −1.9884 0.1188
6 −0.1365 −0.1674 0.4155
7 0.8581 0.5253 0.5089
8 1.0901 2.0858 0.3348
9 0.2085 0.2523 −0.2024

10 −3.2168 5.9722 −0.9899

We note that, with these weights and bias, the trained network’s prediction of the solution
to the Reynolds BVP exhibits the overall error

1
Ni

√√√√ Ni

∑
k=1

(yexact(xk)− y(xk))
2 = 6.2 × 10−5, (25)

while y(0) = 4.1 × 10−4 and y(1) = −4.0 × 10−4.
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Remark 1. The formulation of the PINN presented here is applicable as a numerical solution
procedure for the Reynolds BVP (16) and it does not consider the effect of cavitation. Exactly how
the effect of cavitation can be included is, however, out of the scope of this paper.

5. Concluding Remarks

A physics-informed neural network (PINN) applicable to solve initial and boundary
value problems has been established. The PINN was applied to solve an initial value
problem described by a first order ordinary differential equation and to solve the Reynolds
boundary value problem, described by a second order ordinary differential equation.
Both these problems were selected since they can be solved analytically, and the error
analysis showed that the predictions returned by the PINN was in good agreement with
the analytical solutions for the specifications given. The advantage of the present approach
is, however, neither accuracy nor efficiency when solving these linear equations, but that
it presents a meshless method and that it is not data driven. This concept may, of course,
be generalised, and it is hypothesised that future research in this direction may lead
to more accurate and efficient in solving related but nonlinear problems than currently
available routines.
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Abstract: For a tribological experiment involving a steel shaft sliding in a self-lubricating bronze
bearing, a semi-supervised machine learning method for the classification of the state of operation
is proposed. During the translatory oscillating motion, the system may undergo different states of
operation from normal to critical, showing self-recovering behaviour. A Random Forest classifier
was trained on individual cycles from the lateral force data from four distinct experimental runs in
order to distinguish between four states of operation. The labelling of the individual cycles proved to
be crucial for a high prediction accuracy of the trained RF classifier. The proposed semi-supervised
approach allows choosing within a range between automatically generated labels and full manual
labelling by an expert user. The algorithm was at the current state used for ex post classification of
the state of operation. Considering the results from the ex post analysis and providing a sufficiently
sized training dataset, online classification of the state of operation of a system will be possible. This
will allow taking active countermeasures to stabilise the system or to terminate the experiment before
major damage occurs.

Keywords: condition monitoring; semi-supervised learning; random forest classifier; self-lubricating
journal bearings

1. Introduction

Predictive maintenance has been a topic of increasing interest in research and industry
over the past few years [1]. As part of predictive maintenance techniques, condition
monitoring [2–4] is used to detect anomalies and to predict the health of machinery in real
time. It uses both sensor data and monitoring software to establish whether a component
failure is likely. While some types of failure occur gradually and can be prevented by
routine examinations, sudden failures are of course very difficult to forecast. This is the
reason why artificial intelligence (AI), especially machine learning (ML) techniques, has
gained increasing popularity in the recent years. ML algorithms are trained to learn from
the available data and help identify certain behaviours or parameters that contribute to
failure with high accuracy. ML algorithms can be divided into two main groups, namely
supervised and unsupervised learning [5], differing in whether prior knowledge on the
expected output is considered or not. The prerequisite for supervised learning is a set of
labelled training data, while unsupervised learning aims at uncovering features on its own.

In tribology research, AI has already been applied to various fields, including in-
process tool condition monitoring [3], anomaly detection [6–8], failure prediction [9],
classification of the lubrication regime [10], optimisation of tribological performance of
copper composites [11], as well as AI-based lubricant design [12]. Deshpande et al. [13]
give a good summary of the most common machine learning algorithms used in the
classification of tribological states of operation and prediction of wear, depending on the

Lubricants 2021, 9, 50. https://doi.org/10.3390/lubricants9050050 https://www.mdpi.com/journal/lubricants
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application. Classical ML techniques, such as Support Vector Machine (SVM) [3,6,14],
Random Forest (RF) [9,15] and Radial Base Function (RBF) methods [16] are widely used.
An approach for fast bearing fault diagnosis in rolling elements, combining traditional
pattern recognition methods with meta-heuristic search and ML, was presented by Sun
et al. [17]. Additionally, deep-learning techniques based on Artificial Neural Networks
(ANN) have gained increased popularity over the past few years [10,18,19]. The recently
published article by Rosenkranz et al. [20] gives a comprehensive overview of the various
application fields and methods in tribology and shows the extended use of AI and ML
techniques in the field of tribology as a future perspective.

Acoustic emission (AE), both airborne [8] and structure-borne [9,14], have proven to
provide well-suited datasets for training ML algorithms. Other datasets used in tribology-
related applications include torque [10] and force [2] data, accelerometer signals [21], as well
as images of worn tool surfaces [22]. Thermal imaging has also been applied successfully
to fault diagnosis [23].

RF classifiers may have a slightly lower prediction accuracy compared to ANN-based
classifiers. However, ANN algorithms require careful parameter tuning and large training
datasets. RF classifiers already give good prediction accuracy without or with little fine
tuning of their hyperparameters. This makes RF models very suitable for industrial use, as
they are easier to adopt for specific applications [24].

In general, self-lubricating sliding elements are composed of porous sintered materials
filled with a lubricant [25]. Often, the bearing itself is made out of a porous material, such
as sintered metal compounds [26–28] or oil-bearing self-lubricating layers [29], as well as
polymer composites [30]. Another variant of self-lubricating elements is the use of solid
lubricants as coatings, e.g., PTFE in roller bearings [31].

In contrast, the bearings used in this study consist of a base material equipped with a
grid of bores, which are filled with a porous polymer compound infiltrated with lubricant.
This kind of bearing is common in industrial applications. However, scientific literature
on these specific systems is not very widely available; e.g., [32,33], information on this
topic is often restricted to company-owned empirical know-how. Consequently, precise
knowledge of the main acting mechanisms has not been reported publicly. It is assumed
that the variety of commercially available products is based on proprietary know-how and
engineering experience.

In 2007, Jisa [34] performed a fundamental review and studied sliding elements in the
shape of plates and bearings with different copper-based alloys forming the supporting
structure. Jisa has shown that the thermal expansion of the liquid lubricant in the gap
between the two sliding components, assisted by capillary effects of the pore and surface
topography structures, determine friction levels and lifetime. Generally, the lubricating
effect is assisted by a moderate rise of temperature, as the bearing is most likely to operate in
boundary or mixed friction conditions. This made a stepwise increase of loading necessary
during the run-in phase of the experiment, as a too-high temperature would lead to inferior
lubrication due to lower oil viscosity, resulting in adhesive wear and finally end of lifetime
by increase of the friction force up to the limit of the specific machine.

For axial sliding operation conditions as studied in the current work, wear is predomi-
nantly taking place at the bearing edges and at the edges of the lubricant macrodepots. The
wear debris generated at these positions causes abrasive wear in the whole contact zone,
leading to gradually growing grooves. As long as the lubricant macrodepots are in contact
with the counterbody, these grooves are no lifetime-limiting feature, and most of the wear
debris particles are quickly transported out of the contact zone. The re-disposition of wear
debris particles into the lubricant macrodepots may lead to a temporary strong increase of
the friction force. These events occur rather statistically, accompanied by friction peaks, but
they do not result in permanent damage of the lubricant macrodepots and eventually the
removal of the loosened wear debris from the sliding contact. Due to these mechanisms,
this type of bearings shows self-recovery effects [34].
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The judgment of critical operation and useful remaining lifetime in industrial appli-
cations relies on specific experience and empirical data exhibiting large variance. The
system studied in this work is interesting for application of ML techniques to explore the
opportunities of ML for a self-recovering complex tribological system.

2. Materials and Methods

2.1. Experimental Setup

The experiments were performed on a laboratory-built tribometer setup for bidi-
rectional, translatory movements with high normal loads, and large sliding amplitudes
(Figure 1a). In this setup, a self-lubricating journal bearing made of a bronze alloy with
polymer lubricant macrodepots is horizontally mounted on the tribometer and held in a
fixed position. The counterpart, a shaft made of hardened and polished Cr-steel, slides
inside this bearing in a translatory oscillating movement driven by a pneumatic cylinder.
Two adjustable electronic switches define the reversal points of the oscillating movement.
The normal load is applied by a second pneumatic cylinder. The executed force is trans-
mitted via a parallelogram structure, which ensures that the horizontal position of the
bearing is always maintained even in the event of wear-induced lowering (Figure 1b). The
pressure applied on the bearing was calculated as the normal force acting on the nominal
cross-section, according to engineering standards for journal bearings.

 

Figure 1. (a) Translatory oscillating tribometer setup, (b) lateral force measurement, (c) position
measurement, (d) bearing temperature measurement, and (e) normal force measurement.

The tribometer is equipped with several sensors to monitor and document the defined
experimental parameters, the environmental situation, and the reactions of the tribometer
to the different friction conditions. The instrumentation of the setup is described in detail
below. In the current study, the focus lies on the data generated by the lateral force sensor.

A commercially available linear inductive position sensor (Turck Li300P0-Q17LM0-
LiU5X2) measures the oscillating movement of the shaft. The applied normal load and
the lateral force, i.e., the force in sliding direction, are recorded by two load sensors
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(HBM Type U2B and HBM U9C, respectively). The wear of the journal bearing can be
qualitatively monitored by the vertical movement of the cantilever, which is measured by a
laser triangulation sensor (Keyence IL-030). The temperature of the bearing is measured
by a thermocouple (type K, diameter 0.5 mm), which is mounted inside a drilled hole at
the top point of the bearing’s front face, where the highest contact pressure and therefore
the highest temperature is to be expected. Figure 1 indicates the mounting positions of the
force, position, and laser triangulation sensors as well as the thermocouple.

In addition, several sensing techniques are used to detect friction-induced vibrations.
Two acoustic emission sensors (NF-Corporation AE-900M-WB), one mounted at the shaft
and one mounted at the bearing holder, measure high-frequency structure-borne noise in
the range between 100 kHz and 5 MHz. Three MEMS (micro-electro-mechanical system)-
acceleration sensors (Analog Devices ADXL1002) are mounted at the bearing holder and
detect low-frequency vibrations up to 11 kHz in all spatial directions. The emitted airborne
noise is measured in the frequency range between 20 Hz and 20 kHz using a high-precision
microphone (Brüel & Kjaer 4189-A-021).

Furthermore, the ambient air temperature and humidity is monitored in the vicinity
of the experiment by a TE Connectivity HTM 2500 LF sensing module and the supply air
pressure of the pneumatic drive by a Telemecanique XMLP016BC71V pressure transducer.

The oscillation frequency of the shaft was set to a nominal value of 1 Hz and a stroke
amplitude of 30 mm, which ensured that each contact point of the shaft was moved out of
the contact completely in each stroke. It has to be noted that the oscillation frequency was
not constant during the experiment but varied with the resistance the pneumatic cylinder
had to overcome to move the shaft. During the first 1.5 h of the experiment, the normal
load was gradually increased until a nominal bearing pressure of 8 N/mm2, corresponding
to a normal load of 6 kN, was reached. The experiments were performed until at least one
of two thresholds was exceeded. The first threshold was set for the bearing temperature at
150 ◦C and the second one was set for the uncorrected lateral force at ±3.5 kN. However, it
should be noted that the temperature threshold was never exceeded, and all experiments
were stopped after exceeding the lateral force threshold.

In total, data from 9 experiments performed under the described conditions were used
for this study.

2.2. Data Preprocessing

As mentioned above, the sensor measuring the lateral force FL is part of the lever
system. In order to obtain the coefficient of friction (μ), the geometry of the lever system
has to be taken into account, resulting in the following relation:

μ =
100 FL − 2 FN

175 FN
. (1)

Before feeding the algorithm, several data preprocessing steps were necessary. This
was done using the programming language Python in the form of interactive Jupyter
notebooks [35], using NumPy arrays [36] and pandas DataFrame objects [37] for effi-
cient computing.

The time-series signals acquired by the force, acceleration, and supplementary sensors,
sampled at rates of up to 5 kHz, were stored in the hdf5 file format [38] on a file server
dedicated to the storage of large amounts of raw measurement data. Since the amount of
raw data was too large for efficient processing on a conventional workstation, data were
directly read from the server and downsampled to 100 Hz, thereby carefully retaining the
main characteristics of the sensor data.

In a second step, noise was removed from the lateral force and position signals
by smoothing with a third-degree Savitzky–Golay filter [39] with a window length of
25 samples.

Due to the oscillating nature of the setup, periodic patterns repeating with the os-
cillation frequency of the system are present in the lateral force data. Each one of these
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patterns describes the evolution of the lateral force during one cycle. Deviations from the
normal state of operation can be seen as distortions of the individual cycle shapes, which
are discussed in more detail in Section 3.1. This leads to an increase in the cycle periods as
well as the lateral force levels and maxima.

The zero position of single-cycle curves were triggered using the zero-crossings of the
normalised position signal in negative stroke direction. Thus, the length of the extracted
curves was normalised to 100 data points per curve using linear interpolation. In the
end, an m × 100 matrix, with m being the number of individual cycles of the respective
experiment, was obtained as input for the Random Forest classifier.

2.3. Random Forest Classifiers

The RF algorithm was first described in detail by Breiman [40]. RF is an ensemble
learning algorithm and is based on the aggregation of a large number of independent
decision trees. When used for classification, the class votes of each tree determine the
classification by majority vote [5], resulting in enhanced classification accuracy and reduced
overfitting. Each tree within this RF is grown using random feature selection; each new
training set being drawn with replacement from the original training set. This method is
known as bootstrap aggregation or bagging [40,41].

In RFs, bagging is combined with a randomised selection of the p input features to be
considered for splitting an internal node. At each node, a random subset of k features is
selected, from which only the best split is determined [42]. For classification, the default
value for k is typically set as the square root of p. At each split, the total reduction in the
split criterion, usually measured by the Gini index [43], can be used as an importance
measure for the corresponding splitting feature. The feature importance is obtained by
accumulating this importance measure over all trees separately for each feature [5]. The
size of an individual tree is typically controlled by predefined parameters, such as the
terminal node size and tree depth. As a consequence, for every tree in the RF ensemble, a
set of observations exists that are not used for growing the tree. These so-called out-of-bag
observations (OOB) can be used to estimate the prediction accuracy of the individual
decision trees [43].

Generally speaking, the larger the number of estimators, the better the prediction
accuracy becomes. However, beyond a critical number of trees, there is no significant
performance gain in adding more trees, at the cost of increasing computing demand.
Numbers available in the literature include 128 [44], 200 [5], or 250 [45] trees.

In order to assess the prediction quality of the trained RF algorithm, a series of
classification metrics is used [46,47].

The most straightforward metric is the accuracy (qa), which is defined as the ratio
between the number of correct predictions (NT) and the total number of samples (N), i.e.,

qa =
NT
N

. (2)

If a sample that has been labelled as positive is also predicted as positive, the classifi-
cation is counted as a True Positive (NTP). If it is predicted as negative, the classification is a
False Negative (NFN). True Negatives (NTN) and False Positives (NFP) are defined analogously.
These four numbers can be displayed as a 2 × 2 confusion matrix C. In the present study, we
follow scikit-learn’s implementation [48]; other sources may use the transposed version,
e.g., [46].

C =

(
NTP NFN
NFP NTN

)
. (3)

Using above four definitions, the number of correct predictions is given by

NT = NTP + NTN . (4)
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The precision (qp) or confidence is defined as the fraction of all positively predicted
samples (NPP), which are actually labelled as positive (NTP), i.e.,

qp =
NTP
NPP

=
NTP

NTP + NFP
. (5)

Conversely, the recall (qr) or sensitivity gives the fraction of all positively labelled
samples (NPL), which are correctly identified as positive, i.e.,

qr =
NTP
NPL

=
NTP

NTP + NFN
. (6)

In the case of multi-label classification, precision and recall values are calculated
separately for each class, with ‘positives’ meaning samples belonging to the respective class.
Each row in the confusion matrix represents a ‘true’ class, with the ‘predicted’ class labels
as columns. In this case, the confusion matrix contains the number of correct predictions of
each class in the diagonal, and false predictions are contained in the respective off-diagonal
elements. Given a classification with N labels, the precision and recall can be calculated
separately for each class (denoted by index i, i = 1 . . . N) from the coefficients of the
N × N confusion matrix as follows:

q(i)p =
Cii

∑N
j=1 Cji

(7)

and
q(i)r =

Cii

∑N
j=1 Cij

. (8)

2.4. Labelling of Datasets and RF Model

In this and the following sections, the term ‘state’ refers to the current state of operation
on the basis of individual cycles. The term ‘phase’ denotes a longer period of time, in which
the system is in a certain state of operation. The term ‘class’ describes a specific categorical
label in a set of labels that is assigned to the individual cycles of the dataset during the
training period of the RF algorithm, based on their state. Thus, each class consists of a set
of individual cycles belonging to one state of operation.

As manual labelling of tens of thousands of cycles would be a very tedious and time-
consuming task, a pre-labelling of the cycles via clustering methods was performed. Given
the large size of the data, Principal Components Analysis (PCA) was applied to reduce the
dimensionality of the input and visualise the general shape of the data. After selecting an
appropriate number of principal components, based on the amount of variance covered, a
k-means clustering algorithm was applied to the reduced dataset. Each cycle was assigned
to a cluster such that the squared Euclidean distances within each cluster were minimised.
The implementations of these two steps were performed in R using the prcomp and kmeans
functions [49].

The results of this pre-labelling stage are given in Table 1. Before applying PCA, the
datasets were centred and scaled to have unit variance. For the k-means clustering, the
first two principal components were selected, showing cumulative proportions of variance
between 0.79 and 0.93. The number of clusters for the k-means algorithm was set to 5, based
on the expected tribological regimes of the studied tribological experiment. The resulting
cluster sizes for each experiment are unevenly distributed, as can be seen in Table 1.
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Table 1. Overview of k-means clustering results.

Experiment
No.

Cumulative
Variance

Total Number of
Cycles

Number of Cycles in Each Cluster
(in Ascending Order)

Experiment 1 0.79 46,485 66 1447 10,029 16,271 18,672

Experiment 2 0.83 44,265 458 1992 4075 15,684 22,074

Experiment 3 0.89 38,605 364 2690 5553 12,467 17,531

Experiment 4 0.86 57,516 4532 8075 13,281 14,484 17,144

Experiment 5 0.87 44,944 2043 3279 9904 10,905 18,813

Experiment 6 0.80 35,388 38 2569 5214 13,443 14,124

Experiment 7 0.80 39,822 245 1918 6411 12,718 18,530

Experiment 8 0.84 54,782 1368 3359 9603 19,197 21,255

Experiment 9 0.85 35,734 1193 5678 8896 9920 10,047

The clusters were subsequently assigned to tribological states of operation: ‘Steady1’,
‘Steady2’, ‘Pre-critical’, and ‘Critical’. The first 5000 cycles were defined ‘Run-in’ and
discarded due to the high variability of the data. The preliminary labelling was refined in a
second step by closer inspection of the data, taking into account distinctive features in the
other sensor signals, e.g., sudden temperature increases or distortions of the position signal.
This resulted in the inclusion of additional ‘Pre-critical’ areas–typically before and after
short-term (‘Critical’) anomalies or before critical operation at the end of the experiments
as well as physically meaningful merging of regions fragmented into various states of
operation by the clustering algorithm. Figure 2 shows the comparison of the classification
obtained by k-means clustering and the final labelling for one of the experiments used
for training the RF algorithm. Here, single cycles or groups of cycles that did not differ
significantly from their surroundings, which were marked as ‘Pre-critical’ (cluster 4) by
the k-means clustering, were assigned to the respective steady state. Furthermore, the
area preceding the final critical state was labelled as ‘Pre-critical’ in its entirety, while the
k-means result switched between ‘Pre-critical’ and ‘Steady2’ in this region. This led to
an overall increase of cycles labelled as ‘Pre-critical’ after manual adaptation (see Table 2).
The ‘Steady1’ state is reduced in size after manual adaptation, as the first 5000 cycles
were discarded.

Figure 2. Labelling of the lateral force signal of one experiment (Experiment 2 in Table 1). (a) Classifi-
cation obtained using k-means clustering, (b) Labels used for training the RF model after manual
adaptation. The clusters were assigned to tribological states of operation: ‘Run-in’ (Cluster 1),
‘Steady1’ (Cluster 2), ‘Steady2’ (Cluster 3), ‘Pre-critical’ (Cluster 4), and ‘Critical’ (Cluster 5).
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Table 2. Number of cycles for one experiment (Experiment 2 in Table 1) as classified by k-means
clustering before and after manual adaptation.

State No. of Cycles after k-Means No. of Cycles after Manual Adaptation

Steady1 22,074 19,120
Steady2 15,684 15,331

Pre-critical 4075 4263
Critical 458 551

In the end, four classes representing the individual states of operation were distin-
guished; see Figure 3. ‘Steady1’ was used for steady operation, typically right after the
run-in period, with little fluctuation and few distortions in the data. ‘Steady2’ typically
occurred after major events. The system stabilises, but higher lateral forces are measured,
and the curve shapes of the cycles are more distorted and variable. After sufficient running
time without major events, the system may reach the ‘Steady1’ state again. ‘Pre-critical’
cycles are typically found before and after cycles labelled as ‘Critical’. The ‘Pre-critical’
label is also associated with short-time events, typically lasting less than 100 cycles. During
these short-time events, maximum lateral force values of 1.5 times the maxima of the
surrounding steady-state cycles or lager were measured. ‘Critical’ cycles show heavily
distorted curves with the lateral force increasing considerably at one or both turning points.
This indicates that the bearing was stuck in its turning position and could only be brought
back into motion when a sufficiently high lateral force was applied. One has to note that the
x-axis in the graphs of Figure 3 corresponds to a relative position in time within each cycle
rather than the actual physical encoder position. The length of the half-cycle, in which the
deadlock occurred (the case for the positive half-cycle is depicted in Figure 3d), is extended,
leading to an overall asymmetric cycle shape. As all cycles were normalised to a length of
100 data points, the steepness of the lateral force curve in the turning points is related to
the cycle duration, which itself depends on the friction in the system at that moment.

Figure 3. Characteristic cycle shapes of the four operation states: (a) Steady1, (b) Steady2, (c) Pre-
critical, and (d) Critical. Please note the different scaling of the y-axis for the critical state in (d).
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The RF algorithm was developed using the Python ML package scikit-learn [48]. The
workflow for training and application of the algorithm is described in detail below, and the
corresponding flowchart is shown in Figure 4.

Figure 4. Flowchart of the training and classification of lateral force datasets with an RF classifier.

The dataset for training the algorithm was created using labelled cycles from four
experiments, namely the numbers 2, 4, 7, and 9 in Table 1. As mentioned above, the
first 5000 cycles from each experiment were considered as run-in and discarded from the
dataset. Data from multiple experiments were chosen in order to cover the diversity of
cycle shapes within each state and to equalise bias towards a certain state introduced by
manual labelling. This includes, above all, the distortions introduced by pre-critical and
critical operation, which can happen in either positive, negative, or both stroke directions.

As the distribution of the cycles over the classes representing the four states of opera-
tion was highly unbalanced (see Table 3), each class was resampled to a size of 15,000 cycles
by random selection with replacement. That means that the classes ‘Steady1’, ‘Steady2’,
and ‘Pre-critical’ were downsampled, and a random selection of the cycles over all four
experiments was used for training. However, the size of the class representing the ‘Critical’
state was only 1265 cycles and had to be upsampled by a factor of nearly 12, drawing each
cycle multiple times from the dataset. The number of 15,000 cycles was chosen, as it seemed
to be a good compromise between retaining as much information as possible from the three
larger classes and keeping the upsampling factor of the ‘Critical’ class reasonably small.

Table 3. Number of cycles for each class present in the training dataset before resampling.

Class No. of Cycles Resampling Factor

Steady1 51,217 0.29
Steady2 83,678 0.18

Pre-critical 21,177 0.71
Critical 1265 11.86

Before training the RF algorithm, a randomised hyperparameter tuning was per-
formed using scikit-learn’s RandomizedSearchCV function in order to optimise the following
hyperparameters. Randomised hyperparameter tuning has the advantage of a fixed, pre-
defined number of trials, independent of the total number of combinations, which can be
very large. This strategy will find a near-best combination of hyperparameters at the advan-
tage of not spending too much time on unpromising candidates [50]. For the present work,
the number of iterations was set to 100. The following hyperparameters were optimised
using randomised hyperparameter tuning: n_estimators indicates the number of individual
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decision trees in the RF, min_samples_split is the minimum number of samples to split an
internal node, min_samples_leaf is the minimum number of samples required to be in a leaf
node, max_features is the maximum number of features to consider at each split and was
always set to the square root of the total number of features; i.e., 10, max_depth indicates the
maximum number of levels within an individual decision tree and finally, bootstrap = True
means that bootstrap samples are used to build each tree rather than the whole dataset.
Table 4 shows the best obtained set of hyperparameters, which were subsequently used for
training the algorithm.

Table 4. Best hyperparameter grid for the RF after hyperparameter tuning.

Hyperparameter Value

n_estimators 101
min_samples_split 2
min_samples_leaf 1

max_features ‘sqrt’
max_depth 30
bootstrap True

The RF algorithm was trained using 75% of the input dataset as training data and
25% as test data used for determination of the quality estimators described in Section 2.3.
Then, the prediction accuracy of the trained RF algorithm was assessed by a 5-fold cross-
validation with random selection of cycles for the training and test dataset. Data were again
split into 75% training and 25% test data for each run, which were randomly selected from
the input dataset. Finally, the algorithm was validated on a labelled experiment (number 8
in Table 1), which was not used for training.

3. Results

3.1. Frictional Behaviour

The average duration of an experiment until reaching the stop criterion was 14.5 ± 2.6 h,
corresponding to roughly 44,170 ± 7400 cycles.

Although the temporal evolution of the measured signals varied between the experi-
ments, a few characteristic features were observed throughout the experiments. Figure 5
shows the time series of coefficient of friction, temperature, and contact pressure of experi-
ment 4 as an example for characteristic features observed during the series of experiments.
For the coefficient of friction, the arithmetic means of the absolute values of the 10% and
the 90% quantiles are displayed. The 10% quantile gives a characteristic value for the
coefficient of friction in negative stroke direction, whereas the 90% quantile was used for
the positive direction.

After the run-in, the system was operating in a stable condition at a mean coefficient
of friction of around 0.06, with the temperature steadily increasing close to 90 ◦C. After
typically 15,000 to 30,000 cycles, a region of pre-critical and critical operation was observed.
This manifests itself in a sudden increase in the coefficient of friction and the temperature
exceeding 100 ◦C. This may be attributed to locally inferior lubrication and consequently
short-time metal-to-metal contact and adhesion. After a few minutes, the system was able to
loosen the adhesive contact spot or to tear off a machining chip from the edge of a lubricant
macrodepot. After that, the system remained in the pre-critical state, self-healed, and thus
slowly returning to steady operation, albeit at a slightly higher coefficient of friction in
most cases, typically between 0.07 and 0.10. The eventual steady increase of the coefficient
of friction can be attributed to the gradually deteriorating lubricant supply due to capillary
forces, which reduce due to the increasing number and depth of abrasive grooves caused
by wear particles. The short-time critical states with subsequent stabilisation of the system
due to self-recovery could be observed repeatedly in all experiments.
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Figure 5. Temporal evolution of the coefficient of friction (blue), the sample temperature (red), and
the applied contact pressure (green) from one selected experiment. The annotation of the observed
features is based on a tribologist’s expert opinion.

During the experiment, spikes in the friction curves were observed. In order to
investigate the origin of these spikes, additional experiments were carried out and stopped
manually when the first spike occurred. Investigation of the bearing revealed that these
spikes were most likely caused by wear debris in the form of tiny machining chips detached
from the edge of a lubricant macrodepot and subsequently transported further in the
contact zone to be either embedded within another lubricant macrodepot or transported
out of the contact at the edges of the sliding element; see Figure 6a. Figure 6b indicates
the large extent of the clearly visible wear area on the self-lubricating journal bearing after
the experiment.

Figure 6. (a) Macro image showing deposition of wear debris on the surface of a lubricant macrodepot,
(b) Macro image of the wear area of a journal bearing after the experiment illustrating typically
occurring grooves and shifting deposit material onto the bronze base structure and vice versa.

Prior to reaching the set threshold criteria of the system by reaching a given lateral
force, four experiments exhibited an extended instable state, which lasted for up to several
thousand cycles. However, in the other five experiments, the stop criterion was reached
almost instantaneously, with instable operation of less than 10 min before termination of
the experiment. Experiment 4, as shown in Figure 5, belongs to the latter category. In
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experiment 6, no intermediary critical operation was observed. The system remained
steady for about 10 h, with a sudden increase of the lateral force in the end, exceeding
the stop criterion. Experiment 3 was manually terminated after about 2 h of pre-critical
operation, before reaching the stop criterion.

3.2. Classification of States of Operation

The prediction accuracy of the trained RF model was determined to be 0.991, corre-
sponding to an OOB score of 0.996. Five-fold cross-validation yielded a mean prediction
accuracy of the model of 0.993 ± 0.001. These values indicate a classification error rate
between 0.5% and 1%.

Figure 7 shows the locations of the 20 most important features used for splitting nodes
in the RF model. The x-axis label ‘Relative position’ refers to a relative position in time
during the duration of one stroke rather than an actual physical position. One can see
clearly that the most important areas are located around the two turning points of the
stroke direction of the steady-state cycles, i.e., around 60 for the change between positive
and negative stroke and around 100 or 0 for the change from negative to positive. Another
region, where important features are located, can be found around 80, corresponding to the
location of turning points of the critical cycles in the positive stroke direction. The feature
around 50 may be associated with critical cycles in the negative stroke direction.

Figure 7. The 20 features with the highest importance are marked as red crosses.

In order to assess the prediction quality of the RF algorithm on other datasets, the
dataset of experiment 8, which was not used for training the RF algorithm, was labelled
according to the procedure described above, and classification metrics were calculated. A
comparison between the labels assigned to each cycle and the labels predicted by the RF
algorithm is shown in Figure 8.

The overall classification accuracy of experiment 8 was 0.939. Table 5 shows the
precision and recall values for the four classes. Both steady states as well as the pre-
critical state were recognised with high precision and recall. Of the cycles classified by the
algorithm as ‘Critical’, only 78% were actually labelled as ‘Critical’. The remaining 12%,
or 188 cycles, had the true label ‘Pre-critical’. However, 88% of the actual states labelled
as ‘Critical’ were identified correctly. The corresponding absolute values are shown in the
confusion matrix in Figure 9. The colour scale indicates the fraction between predicted
labels and the total number of true labels assigned to the respective class, summing up to 1
for each row. For the diagonal elements, this corresponds to the recall. The last row and
column, labelled as ‘None’, indicates cycles, for which the algorithm was not able to issue
a prediction. This was predominantly the case for the two steady states, with about 4.5%
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of the cycles labelled ‘Steady2’ not classified. This is also the reason for the relatively low
recall of 0.9 for this class.

Figure 8. (a) Manually labelled dataset from Experiment 8, (b) the classification made by the trained
RF algorithm.

Table 5. Precision and recall for experiment 8.

Class Precision Recall

Steady1 0.98 0.98
Steady2 0.97 0.90

Pre-critical 0.90 0.95
Critical 0.78 0.88

Figure 9. Confusion matrix of the labelled dataset of experiment 8.

Based on the results of the RF classification, Table 6 shows a summary of the lengths
of the pre-critical phases preceding the end of the respective experiment. As already
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mentioned, the experiments could be divided in two distinctly different groups according
to their behaviour towards the end of the experiment. In the first group, an extended
pre-critical phase was observed before the termination of the experiment. This pre-critical
phase was found to last between 60 and 211 min or between 7.4 and 19.2% of the total
running time. Before reaching the stop criterion, individual critical cycles were observed
during the pre-critical phase, with an increasing abundance of critical cycles towards the
end, as shown in Figure 10.

Table 6. Start of pre-critical phase for each experiment.

Experiment No.
Total Running Time

(Hours)

Start Pre-Critical
Phase (Minutes

before End)

Fraction of Total
Running Time (%)

Experiment 1 15.4 7.5 0.8
Experiment 2 14.8 73 8.3

Experiment 3 1 12.3 113 15.3
Experiment 4 19.1 2.5 0.2
Experiment 5 14.7 4 0.5
Experiment 6 11.1 1.5 0.2
Experiment 7 13.5 60 7.4
Experiment 8 18.3 211 19.2
Experiment 9 11.7 5 0.7

1 Experiment 3 was stopped manually, before the stop criterion was reached.

Figure 10. Change between pre-critical and critical operation at the end of experiment 1. Critical
operation started with a pronounced increase in the friction force at one turning point.

The second group shows a pre-critical and critical operation rather suddenly. The stop
criterion was exceeded within less than 10 min. Experiment 6 reached pre-critical operation
as few as 1.5 min before termination of the experiment. This sudden critical behaviour may
be due to a sudden loss of the lubricant supply, resulting in a pronounced increase in the
lateral force, whereas in the first group, lubricant supply was sufficient to keep the system
in an operable state over a longer period.
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4. Discussion

This paper presents a semi-supervised method for the classification of states of opera-
tion during a tribological sliding experiment in oscillating, translatory motion using an
RF classifier.

An RF classifier was selected due to its low complexity regarding implementation, its
good prediction accuracies, and the low requirements for model tuning. The RF model can
be easily trained, validated, and applied on a local machine, with the capability of real-time
classification. RF classifiers are especially well suited for industrial applications, as no AI
expert is required to set up and tune sophisticated ANN-based algorithms [24].

The algorithm was trained on the basis of individual cycles. This is only possible
if the force data are recorded with high temporal resolution. The trained algorithm was
able to classify the state of operation with an accuracy of 0.939 for data of a labelled test
experiment, using samples from four different experimental runs (i.e., four different journal
bearings with otherwise identical experimental setup) as the training dataset.

The proposed methodology can be extended to similar systems, with different di-
mensions and materials of the involved bodies. However, datasets from these systems are
necessary for training the algorithm. The transfer of an already trained algorithm to other
systems remains an aspect for further investigation.

As a future perspective, online classification of the current status of the system will
help to identify critical operation conditions. This will allow taking real-time countermea-
sures to assist the self-recovering process of the system, such as reduction of oscillation
frequency or normal load, up to stopping the experiment to prevent major damage. The
experiment can be stopped during critical operation for ex post analysis, e.g., material or
surface analysis of the sliding bodies. Detailed knowledge of the system and its history can
be used to define more complex stopping criteria, additionally to simple threshold values.

The presented approach may be extended to applications in industrial machinery,
provided that a continuous force measurement and a sufficient amount of training data
from ex post analysis are available. Examples for potential industrial applications range
from journal bearings mounted in industrial equipment or drive trains to hydraulic presses,
pistons, and manufacturing tools, especially where the accessibility of the system is limited
for optical inspection.

In a further step, the presented algorithm may form a basis for lifetime prediction.
Experimentally determined durations until reaching the stop criteria and thus termination
of the experiment may be used as additional input for training the algorithm. This is a
challenging task, as terminal failure often occurs suddenly without showing progressive
deterioration in advance [9]. In the present work, sudden terminal failure occurred in about
half of the analysed experiments. In the other experiments, terminal failure was preceded
by pre-critical operation of up to 3.5 h. Inclusion of further continuous sensor data, such as
temperature, acceleration, airborne or structure-borne AE, may serve to improve labelling
and provide additional information for lifetime prediction. With a combination of these
sensors, training of a similar RF algorithm is possible, even if no continuous force data
are available.

In contrast to most studies regarding ML in tribological applications, in the current
study, a self-recovering system was analysed. Thus, the system may stabilise after a pre-
critical or even critical phase and return to steady operation. For conventional tribological
systems, pre-critical or critical operation indicates an impending failure of the system, and
stopping the experiment is the only way to prevent major damages. For self-recovering
systems, an online ML algorithm will have to distinguish between transient and terminal
critical operation. To achieve that, additional datasets such as AE or acceleration data have
to be included.

A high quality of the labels assigned to the training dataset has proven to be the
key for a high prediction accuracy of the RF algorithm. The presented semi-supervised
approach—labelling by unsupervised k-means clustering with manual refinement—offers
the flexibility to choose within a range between fully automated, unsupervised labelling
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and entirely manual labelling based on expert knowledge. In order to provide high-quality
labelled training datasets, tribological and engineering expertise have to be included in the
classification process in any case.

There are several papers on friction and wear monitoring as well as failure classifica-
tion using data from AE sensors, e.g., [9,14,51] or image data, including optical [22] and
thermal imaging [23]. In contrast, the proposed method focuses on time-series data from
a force sensor collected at sampling rate of 5 kHz, similar to e.g., [2], as a data source for
training a ML algorithm. This has the great advantage that high classification accuracy can
be reached by using only force data, recorded by default in any tribological experiment.
However, time-series data from other sensors, such as AE or acceleration, and optical
or thermal image data, can provide useful additional information, which can be used to
increase the algorithm’s classification accuracy.

The focus of the current work was set to the overall health condition of the bearing,
which can be characterised by its state of operation, ultimately related to wear and lubrica-
tion in the contact area. As a system of self-lubricating journal bearings exhibits the ability
for self-recovery during usage, it could be shown that the presented RF classifier allows
detecting critical conditions prior to the onset of machine failure, solely based on the lateral
force data. Future research will address the prediction of useful remaining lifetime and
ultimate system failure.

5. Conclusions

In this paper, an oscillating, translatory sliding experiment of a self-lubricating bronze
journal bearing, which provides the system with the ability to self-recover minor damages,
was studied to elaborate a semi-supervised ML algorithm predicting critical operating
conditions. An RF classifier was trained on the basis of single cycles of lateral force signals
acquired with high resolution and including expertise knowledge of tribologists. Four
different states of operation were identified based on the shape of the cycles. The main
findings of the present paper are as follows:

• An RF algorithm, trained with high-resolution force signals of four experiments,
showed a high degree of classification accuracy (0.939) after validation against a
labelled dataset of another experiment.

• The labelling step is essential and preferably includes tribological expert knowledge.
The proposed method offers the flexibility to choose within a range between fully
automated and fully expert-related labelling.

• The application of a pre-trained algorithm to unlabelled data is very efficient and
therefore can be used for immediate countermeasures to assist the self-recovering
process of the system or to prevent major damage.
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Abstract: Surface texturing is an effective method to reduce friction without the need to change
materials. In this study, surface textures were transferred to rubber samples in the form of dimples,
using a novel laser surface texturing (LST)—based texturing during moulding (TDM) production
process, developed within the European Project MouldTex. The rubber samples were used to
experimentally determine texture-induced friction variations, although, due to the complexity of
manufacturing, only a limited amount was available. The tribological friction measurements were
hence combined with an artificial intelligence (AI) technique, i.e., Reduced Order Modelling (ROM).
ROM allows obtaining a virtual representation of reality through a set of numerical strategies for
problem simplification. The ROM model was created to predict the friction outcome under different
operating conditions and to find optimised dimple parameters, i.e., depth, diameter and distance,
for friction reduction. Moreover, the ROM model was used to evaluate the impact on friction when
manufacturing deviations on dimple dimensions were observed. These results enable industrial
producers to improve the quality of their products by finding optimised textures and controlling
nominal surface texture tolerances prior to the rubber components production.

Keywords: reduced order modelling; dynamic friction; rubber seal applications; tensor decompo-
sition; laser surface texturing; texturing during moulding; digital twin; machine learning; artificial
intelligence

1. Introduction

1.1. Surface Texturing in Tribological Applications

In most dynamic rubber applications, low friction is desired to increase the energy
efficiency of the tribological system. Therefore, improved friction behaviour is an im-
portant design objective in the development process of components like dynamic seals.
Within the industrial and scientific communities, significant improvements in dynamic
seal performance have been achieved through a series of technological advances, such as
the introduction of low-friction polymers [1]. However, this approach is limited by the
operating conditions, such as temperatures or the chemical resistance of the new materials.

Surface texturing is an effective method to modify the friction level without changing
materials or the lubricant in the dynamic seal contact. An early method of surface texturing,
used to improve the tribological performance of mechanical components, is cylinder honing
in internal-combustion engines [2]. Further experimental and theoretical studies revealed a
significant reduction in friction due to grooves [3] and, in particular, micro dimples in the
reciprocating contact of piston rings and cylinder bores of combustion engines [4,5].

The analysis of laser surface textured (LST) piston rings have been extended to model-
based and experimental investigations of mechanical seals, identifying optimised dimple
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dimensions with lowest friction for specific operating conditions [6,7]. In this context, the
dimples are advantageous as they serve as hydrodynamic bearings and exhibit the ability
to store lubricant [8]. Moreover, the surface textures reduce the real area of contact and trap
wear particles [9,10].

Other authors even highlighted the positive effect of surface textured rubber seals in
soft elasto-hydrodynamic lubrication (SEHL), resulting in a significant friction reduction
compared to the untextured references [11–13]. However, it has also been found that an
inappropriate selection of the surface texture dimensions leads to a detrimental increase in
friction due to excessive enlargement of cavitation zones in the lubricant, causing a reduced
local film thickness and load carrying capacity [14,15]. Furthermore, the influence of the
real dimple shape of textured mechanical seals has been identified as an important factor
that needs to be considered for valid friction determination [16].

1.2. Reduced Order Modelling

The introduction of extended methods, based on artificial intelligence (AI), which go
further than usual tribological measurements, is beneficial for friction predictions. The
selected AI technique is based on the digital twin (DT) paradigm, i.e., a virtual represen-
tation of reality [17–19]. Several techniques belong within the DT paradigm, the most
popular being Reduced Order Modelling (ROM) [20,21] and machine learning (ML) [22].
Both techniques are based on mathematical models for real-time simulations. In particular,
ROM consists of a set of numerical strategies for multi-variable problem simplification to
solve complex numerical systems and it aims to describe and, hence, predict a system’s
behaviour through a mathematical approximation, by preserving its main characteristics,
as described in [23]. Tensor rank decomposition (TRD) approach is a non-intrusive, i.e.,
completely data-driven, method that allows to describe a complex system’s behaviour,
where its variables influence each other, as a simplified mathematical function that de-
scribes each variable’s effect separately. As previously detailed in [23], TRD is based on the
assumption that a problem of N, not necessarily independent, variables can be rewritten as
the product of N one-dimensional functions, one for each of the variables of the system, as
shown in Equation (1):

F(v1, . . . , vN) =
M

∑
m=1

αm

N

∏
n=1

fm,n(vn) (1)

where M is the order of approximation of the ROM model and αm, m = 1, . . . , M are
weighting coefficients. The functions fm,n, in their most simple form, are piecewise linear
functions; hence the adjustment parameters are the positions and the values at which the
functions change slope. The adjustment of all these parameters is carried out through a
least square optimisation.

The first term of the sum in Equation (1) represents a first approximation of the system,
being its corresponding coefficient α1 the largest one, while the following terms would be
corrections to it and will generally have lower coefficient values unless the correction only
applies to a specific outliers population and does not affect the general trend of data.

1.3. Objectives

Although many experimental and model-based studies have been accomplished
on the subject of friction reduction of surface textured components, all investigations
require extensive series of experiments or complex contact- or fluid-mechanic simulations.
Therefore, this paper aims to introduce a novel approach, in which a limited number of
friction measurements of surface textured rubber samples are combined with ROM to
identify optimal surface textures as a function of the prevailing operating conditions in
real-time. Besides the nominal dimple texture parameters, the real dimple dimensions,
defined by diameter, distance, and depth, are taken into account for the friction values
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computed by the ROM. Therefore, ROM technique is further used to determine nominal
surface texture values uncertainties for valid friction prediction.

2. Materials and Methods

The following Sections are dedicated to the description of the experimental studies and
the used software, data analysis (dataset publicly available under [24]), and statistical tools.

2.1. Rubber Specimen Geometry and Surface Texture Parameters

The objective of the experimental testing procedure is to measure the friction between
surface textured rubber specimens and a rotating counter surface by utilising a pin-on-disc
tribometer. The grinded steel counter surface exhibits a surface roughness of Ra = 0.50 μm,
but no further texturing. Due to the variety of seal geometries available on the market, a
simplified rubber sample geometry was chosen for the experiments, in order to test the
surface texture-induced friction variation independent of a specific seal geometry. The
corresponding geometry of the rubber samples is shown in Figure 1a.

Figure 1. (a) Geometry of the rubber specimens including the most relevant dimensions, (b) picture
of the rubber specimen with focus on the dimple texture and (c) positioning of the dimples in relation
to the relative velocity vector.

A 2 mm thick layer of a fluorelastomer with a shore hardness of 80A (FKM 80A) is
vulcanised onto a blue anodised aluminium specimen holder. Furthermore, the contact
zone of the 30 mm diameter rubber sample has a spherical shape to avoid edge effects in
the dynamic contact.

The surface textures are applied to the contact areas of the rubber samples in the form
of deterministic positioned dimples, see Figure 1b. The geometry of the circular dimples is
defined by the diameter, the distance and the depth. The corresponding parameters and the
alignment of the dimples are shown in Figure 1c. During the test procedure, the positioning
of the dimples, within a squared area, was rotated by an angle of φ = 45◦, since preliminary
experiments showed about 20% greater friction reduction in this arrangement compared to
φ = 0◦. The reason for this is the avoidance of continuous flow channels without dimples in
the direction of relative motion for φ = 45◦. The angle φ between the square shaped texture
arrangement and the relative velocity vector is visualised in Figure 1c.

In order to perform the experiments, test specimens with eight different surface
textures were manufactured by texturing during moulding (TDM). The associated sample
number i and the nominal texture parameters are listed in Table 1.

Table 1. Nominal dimple texture parameters defined by diameter, distance and depth.

Sample i Dimple Diameter Dimple Distance Dimple Depth
[μm] [μm] [μm]

1 100 300 10
2 200 100 10
3 200 200 10
4 300 100 30
5 300 200 20
6 300 200 30
7 300 300 20
8 - - -
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The parameter range of the dimple dimensions was selected to ensure a transferability
of the textures to dynamic seal applications. For example, if the diameter of a dimple is
larger than the contact width of a seal, the system would leak. Since the contact width
of many lip seals is only 0.80 mm or less [25], the maximum size of the dimple diameter
and distance was set to 300 μm. In contrast, e.g., the lower limit of the dimple diameter
of 100 μm was determined by the accuracy of the LST process of the TDM manufacturing
method. Based on the texturing results of the rubber samples, the transfer of the textures to
real seals has already been successfully realised, but will not be discussed within the scope
of this work.

The design of experiment (DoE) on the variation of the surface texture parameters is
chosen according to the requirements of the ROM, described in Section 2.4. While seven
specimens exhibit a dimple texture, one specimen was produced without dimples to serve
as a reference for the dimple-induced friction variation of the other textures. The surface
roughness of all eight samples was adjusted to an identical value of Ra = 0.50 μm by laser
surface processing of the mould. Therefore, the influence of dimple textures on friction is
investigated independently of different surface roughnesses.

2.2. Test Rig Setup and Experimental Procedure for Determining the Coefficient of Friction

A pin-on-disc tribometer is utilised to measure the friction forces between the rubber
specimens and the rotating steel counter surface. The design of the test rig is shown in
Figure 2a.

Figure 2. (a) Pin-on-disc tribometer design, (b) picture of the tribometer with focus on the rubber specimen and the rotating
counter surface, and (c) contact conditions between the rubber sample and the counter surface.

The rotation of the counter surface is realised by a servomotor. The force sensors
measure both the force FN in the normal direction of the sample, as well as the friction
force FF in the circumferential direction of the rotating counter surface, compare Figure 2c.
The rotational speed n of the counter surface and the normal force FN are kept constant
during each measurement, in order to measure quasi-stationary friction values under
steady operating conditions. Each relative velocity vr, specified in Table 2a, is tested at
each of the 3 different contact pressure levels pc,max, given in Table 2b.

The relative velocity vr between the rubber specimen and the counter surface is equal
to the circumferential velocity vc at the point of contact: vr = vc. The velocity vr is
calculated from the rotational speed n of the counter surface and the distance r = 100 mm
between the shaft centre and the contact point, see Figure 2c, as defined in Equation (2).

vr = ωr = 2πnr (2)

The focus of this paper is on dynamic friction, so static friction is not investigated.
Thus, the rotational speed n of the servomotor was varied between 0.6 and 24.0 min−1,
resulting in relative velocities vr of 6 to 251 mm/s.

48



Lubricants 2021, 9, 57

Table 2. Operating parameters that are examined during the test procedure. (a) Rotational speeds n of the servomotor and
corresponding relative velocities vr between the rubber sample and the counter surface (2), (b) together with the normal
force FN , the related maximum contact pressure pc,max, the contact diameter dc between the rubber sample and the counter
surface, as well as the nominal contact area Anominal (2).

a

Rotational Speed Relative Velocity

n [min−1] vr [mm/s]

0.6 6
1.2 12
1.8 19
3.0 31
6.0 63

12.0 126
18.0 188
24.0 251

b

Normal Force Max Contact Pressure Contact Diameter Nominal Contact Area
FN [N] pc,max [MPa] dc [mm] Anominal [mm2]

3.9 0.5 4.2 13.8
7.9 0.7 5.0 19.6
13.3 0.9 5.8 26.4

The normal forces FN were selected to achieve maximum contact pressures pc,max
of 0.5, 0.7, and 0.9 MPa, which are typical values in pneumatic seal applications [26].
Because of the spherical shape of the rubber specimen, the variation of the normal force FN
influences not only the magnitude of the parabolic contact pressure distribution pc, but also
the dimensions of the nominal contact area between the rubber sample and counter surface,
see Figure 3b. Therefore, not only the maximum of the contact pressure distribution
pc,max is specified in Table 2b, but also the corresponding contact diameter dc and the
respective circular nominal contact area Anominal . The contact pressure distribution pc and
the contact diameter dc are computed by finite element analyses, taking into account the
rubber thickness of 2 mm. Within the static simulations, the rubber sample is pressed
against the counter surface with the defined normal force FN , see Figure 3a. At this, the
coloured spherical contact area of the rubber specimen is brought into contact with the
grey flat counter surface, resulting in the specified contact area and contact pressure pc.

All components are modelled as 2D axisymmetric parts. A hyper elastic Mooney-
Rivlin material behaviour is assigned to the 2 mm layer of the FKM80A rubber material,
which is specified by the temperature-dependent material parameters C10 = 1,442,425.12,
C01 = 208,308.34, D = 6.059933161 ×10−10, considering a Poisson’s Ratio of 0.4995. For both
measurements and simulations, the temperature is equal to 20 ◦C. The material of the anodised
aluminium sample holder is modelled as pure elastic part with a Young’s modulus of 70 GPa
and a Poisson’s Ratio of 0.34. The counter surface is defined as rigid part.

All experiments are performed with an adherent silicone grease OKS 1155 in the
dynamic contact, which exhibits a base oil viscosity of 100 mm2/s at 25 ◦C [27]. The same
lubrication and conditioning procedure was applied to every rubber specimen before the
actual friction measurements to ensure comparability between the results. Every single
measurement lasts for 5 s and each measurement was repeated 5 times to ensure a statis-
tical certainty. In order to generate the quasi-stationary friction values μuntext for rubber
specimen 8 and μtext,i for rubber samples i = 1–7, the mean value of each measurement
is calculated over the entire measuring period of 5 s. The friction coefficients μuntext and
μtext,i are evaluated to identify dimple textures with the highest friction reduction potential.
In addition, the results are further processed to generate the ROM model.
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Figure 3. (a) Assembly of the finite element method (FEM). The coloured spherical contact area of the rubber specimen is
brought into contact with the grey flat counter surface. (b) Parabolic contact pressure distribution pc as a function of the
contact diameter dc.

2.3. Method of Measurement for Real Dimple Dimensions

An additional important aspect for the determination of the influence of the dimple
textures on friction are the real dimensions of the dimples. While the nominal values
of the investigated textures are given in Table 1, the real values of diameter, distance
and depth vary due to imperfections in the innovative industrialised TDM production
process of the rubber specimens. During this process, the negative of the desired texture
is applied to a mould by LST ablation. A 5-axis 100 W pico-second laser is utilised for
this purpose. During the injection moulding and vulcanisation procedure, the texture is
directly transferred from the mould to the rubber surface. Protrusions in the mould become
dimples in the elastomer. Due to imperfections in the laser machining of the mould, both a
deviation from the nominal dimple parameters and ring-shaped cavities in the peripheral
areas of the dimple valleys are identifiable, see Figure 4b. These deviations mainly result
from re-solidifying metal vapours on the surface of the metallic vulcanisation mould.

In order to measure and visualise the actual dimple texture dimensions, a 3D optical
microscope, based on focus-variation, is used. Figure 4a shows an exemplary 4 × 4 mm
surface scan of rubber specimen 6 with a nominal dimple diameter of 300 μm, a distance of
200 μm and a depth of 30 μm.

Figure 4. (a) Microscope image of rubber specimen 6, considering a measured area of 4 × 4 mm and (b) related height
profile h as function of the measuring length l, considering the indicated line scan trough four adjacent dimples.

Figure 4b shows the corresponding line scan as height profile h over the measuring
length l, which is measured through the centre of four adjacent dimples. The positions that
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are measured to determine the real dimple dimensions of diameter, distance, and depth
are marked in the height profile. To ensure accurate measurement results of the dimple
dimensions, the curvature of the contact surface of the rubber samples was subtracted,
resulting in the flat surface scan depicted. Beyond this, no corrections were made to the
surface scans. The dimple dimensions were measured at 16 different positions of the
textured area of each rubber sample. The mean values of the 16 measurements and the
corresponding dimensionless texture parameters are listed in Table 3.

Table 3. Real dimple dimensions, indicated by diameter, distance, and depth. The aspect ratio is the quotient of dimple
depth and diameter. The textured area percentage is determined from the quotient of the textured area Atextured and the
nominal contact area Anominal .

Sample i Dimple Diameter Dimple Distance Dimple Depth
Aspect Ratio

Textured Area
[μm] [μm] [μm] [%]

1 135 258 16 0.11 9
2 242 100 11 0.05 39
3 241 165 10 0.04 28
4 337 66 35 0.10 55
5 330 170 22 0.06 34
6 346 153 35 0.10 37
7 336 252 20 0.06 25
8 - - - - -

2.4. Software Development for Reduced Order Modelling

The software library (Twinkle), implemented and used to compute the ROM models, is
available on GitHub platform [28] and described in [23], where its basic concept, structure
and environmental dependencies are detailed.

Within this study, two separate ROM models were computed: one for untextured and
one for textured tribometer samples data, consisting of 24 and 168 data points, respectively.
The reliability of the two obtained ROM models was then validated using Python Scikit-
learn [29] (version 0.22.1) k-fold cross validation technique, where a train-test procedure is
performed k-times, randomly extracting a k-fraction sub-dataset for testing [30]. For the
validation, the parameter k was set to 10, so that 10 different train-test validations were
performed, randomly selecting the corresponding 90%–10% data fractions each time a new
validation was performed.

Moreover, minimum values of the ROM function, i.e., Equation (1), were obtained
using the ALGLIB Free Edition library [31], version 3.14.0, to find the surface texture
dimensions that allow minimising friction, as described in Section 3.5.

Twinkle library can be described through the supervised learning algorithm concept
in ML [32,33]. The input values used for ROM construction were the dimple dimen-
sions, i.e., depth, diameter and distance, when available, together with pressure and
velocity (please refer to Tables 1 and 2 or the available dataset under [24]), the output
being the experimentally measured friction coefficient. Within the scope of this paper
Equation (1) would represent the friction coefficient, expressed as the sum of 2 or 17 terms
(in case of untextured or textured surface data, respectively). Each term being the product
of one-dimensional functions, i.e., one function for each input separately, as shown for
simplicity in Equation (3) for the untextured case.

μ(pressure, velocity) = α1[ f1(pressure) f1(velocity)] + α2[ f2(pressure) f2(velocity)] (3)

where α1 and α2 are the weighting coefficients of each computed term. The functions f1
and f2 are one-dimensional piecewise linear functions that describe the impact, on the
friction outcome, of each input separately.
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2.5. Reduced Order Modelling Data Pre-Processing for Friction Reduction

The friction variations (in%) obtained with the introduction of a dimple texture on the
rubber surface are evaluated using Equation (4) in order to quantify the surface texture-
induced friction variations.

Δμ = 100
μuntext − μtext,i

μuntext
% (4)

In Equation (4) textured cases are compared to their corresponding untextured re-
sult, so that a negative value suggests a friction increase and a positive one reveals a
friction reduction.

The final Δμ prediction was obtained using Equation (4), where the μuntext and the
μtext,i values, predicted by the ROM models, were used, instead of using the experimentally
measured results.

The two datasets, prepared and used in the statistical analysis, were created from two
data samples of 48 data points each, using Python NumPy version 1.18.1 [34] and SciPy
version 1.4.1 [35] libraries, as described in Sections 2.6 and 3.3.

2.6. Statistical Analysis of Real Dimple Dimensions

Due to manufacturing tolerances, the real dimple dimensions are not equal to the nominal
ones. Experimental data were used to extract statistical information from 16 measurements of
geometrical parameters of the textured surface, i.e., mean values and standard deviations for
the three geometrical parameters were identified: dimple depth, diameter, and distance. The
measuring procedure and mean values are described in Sections 2.3 and 3.1, respectively. By
comparing the results to a foreseen normal distribution centred on the nominal value, having
as standard deviation the value obtained from the different repetitions, it was possible to infer
the type of probability density function (PDF) of each of the studied parameters.

Once the PDFs were known, the dimple depth was varied separately, while diameter
and distance were varied together, as their variations are not independent and occur in the
same plane, as defined by the textured area (Section 3.1). To do that, not all data were taken
into account, but only those dimple parameters whose variations fell within the ROM’s
definition limits, minimum and maximum values in Tables 1 and 2, which resulted in 48
data points for both datasets, that were obtained when vertical, i.e., depth, and horizontal,
i.e., diameter and distance, variations were applied.

The PDFs were hence created by means of a Python script and were used to generate
the above mentioned datasets of 48 data points each, as it follows. Each original point was
replicated 100 times where the nominal values were changed accordingly to their evaluated
PDFs and a final amount of 4800 points were obtained. As mentioned before, the described
approach was performed two times: one repeating depth values only and a second time
replicating diameter and distance values together. Since dimple diameter and distance are
dependent magnitudes, these were made to vary accordingly to one another as follows:
at first a new diameter value was randomly generated through the known PDF, then the
cumulative density function (CDF) was obtained for the specific diameter value and the
corresponding distance value was calculated as the value holding the complement of the
CDF in the distance PDF.

The new obtained dataset contains input parameters statistical fluctuations and was
used to perform ROM predictions on the enlarged sets of points, where the dimple values
experimental variations on dimple dimensions’ nominal values are taken into account. The
effects on friction due to the experimental texturing deviations were then analysed and a
t-Student test was used for a statistical comparison of the obtained results to an ideal PDF
around nominal surface texture values, as described in Section 3.4.
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3. Results

In the following subsections the results obtained from the experimental tribotests and
dimple dimensions nominal values assessment, the data pre-processing and the statistical
analysis of textures dimensions are detailed.

3.1. Measurement Results of the Real Dimple Dimensions and Definition of Dimensionless
Dimple Parameters

The aim of the real dimple dimensions measurement procedure, which has been
previously described in Section 2.3, is the identification of the effective texture geometry.
While the real dimple diameter and depth reveal larger values compared to the nominal
dimensions, the dimple distances are smaller than the nominally specified values, compare
Tables 1 and 3.

In addition to the diameter, distance, and depth dimple parameters, the dimensionless as-
pect ratio and textured area (equal to area density), which are often referred in literature [36–38],
are further specified in Table 3. The aspect ratio is the quotient of the dimple depth and the
dimple diameter and varies between 0.04 and 0.11 for the analysed textures. The area density is
equal to textured area percentage. It is calculated by the quotient of the textured area Atextured
and the nominal circular contact area Anominal, which are both visualised in Figure 5.

Figure 5. (a) Red marked nominal circular contact area Anominal between an untextured rubber
specimen and the counter surface and (b) contact area of a textured sample. The textured area
Atextured is indicated by the black circular dimples, the untextured area that is in direct contact with
the counter surface is coloured in blue.

The area density of the studied textures varies between 9% and 55%. Despite the fact
that the three different normal forces FN analysed result in three different nominal contact
areas Anominal , the percentage textured area is independent of the nominal contact area
Anominal , since more dimples come into contact with increasing normal force FN , compare
also Table 2b.

3.2. Reduced Order Modelling on Friction Coefficient Data

The two ROM functions (please refer to Equations (1) and (3)), obtained for untextured
and textured friction coefficient datasets, converged to a stable solution, using only 2 and
17 terms, respectively. In order to assess the correctness and precision of the ROM results,
the predicted value is compared to the corresponding experimental one, as ideally, both
should be the same. The prediction lines are plotted, for both untextured and textured
ROM models, in Figure 6a,b.

From Figure 6a,b it is possible to conclude that the ROM prediction is extremely
accurate, being the obtained ROM models’ standard deviations σuntext = 0.0014 and
σtext = 0.0012 for untextured and textured data, respectively, and both regression lines
(dashed black) match the goal prediction line (solid red).

Both ROM models were validated using the k-fold cross validation technique (see
Section 2.4). The results obtained for the R2 are shown in Table 4a,b for untextured and
textured data, respectively.
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(a) (b)

Figure 6. ROM prediction for (a) untextured and (b) textured friction coefficient data. The blue dots are obtained by
evaluating the ROM with the experimental data, the dashed black line is the linear regression that fits the data, while the
solid red line represents the ideal ROM result, where the ROM evaluation on each experimental friction value returns the
same value.

Table 4. (a) Untextured and (b) Textured ROM R2 for Train and Test datasets when the k-fold cross validation method
is applied.

a b

Untextured ROM R2 Textured ROM R2

Train Test Train Test

1 1.000 0.895 1 1.000 0.914
2 1.000 0.968 2 1.000 0.872
3 1.000 0.988 3 1.000 0.882
4 1.000 0.974 4 1.000 0.943
5 1.000 0.988 5 1.000 0.923
6 1.000 0.903 6 1.000 0.896
7 1.000 0.871 7 1.000 0.963
8 1.000 0.994 8 1.000 0.912
9 1.000 0.915 9 1.000 0.953

10 1.000 0.982 10 1.000 0.938

avg 1.000 0.948 avg 1.000 0.919

Table 4a,b show that for both ROM models the results of the validation are very precise
and that there is always an excellent correlation between the input data, i.e., untextured or
textured friction coefficient data (available under [24]), and the ROM prediction.

3.3. Reduced Order Modelling on Pre-Processed Data for Friction Variations

As described in Section 2.5, the friction variations were computed according to
Equation (4), both for experimental and ROM predicted data. Similarly to Section 3.2,
a prediction line was obtained to assess the accuracy of the results, obtained as the com-
bination of the two (untextured and textured) ROM models. The results are shown in
Figure 7.
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Figure 7. 2-ROM-models prediction for combined untextured and textured friction data, according
to Equation (4). The blue dots are obtained by evaluating the combined 2-ROM predictions with the
combined experimental data (Equation (4)), the dashed black line is the linear regression that fits
the data, while the solid red line represents the ideal prediction result, where the predicted values
perfectly match the experimental ones.

From Figure 7 it is observed that the ROM prediction is highly accurate, since the
regression line (dashed black) is highly comparable to the goal prediction (solid red).

Moreover, an error propagation was performed on the friction percent variation
variable (Equation (4)), in order to assess the maximum error assumed by the predictive
model. For this purpose, experimental deviations on friction measurements were not
included, since these are not considered intrinsic properties of the prediction accuracy, but
depend on the a-priori goodness of the dataset solely. The results obtained when taking
into account both the error propagation on Δμ and the standard deviation obtained for the
2-ROM prediction, i.e., σ = 1.4412 as shown in Figure 7, show values between 2% and 9%,
with a mean value of 3% and 95% of data with a prediction deviation below 5%. Moreover,
a study was performed to check the impact that each input parameter has on the measured
friction, according to Equations (1) and (3), as shown in Figure 8 for textured ROM.

Figure 8. Textured data ROM’s first term. The one-dimensional functions, for each variable are shown separately in the
plots, according to Equation (1), labelled with letters from (a–e).
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The one-dimensional functions (specified in Equation (1)) for the textured ROM,
shown in Figure 8, represent the impact of each input on the friction variation. The textured
ROM shows α1 = 46.0479 for the first term (see Equations (1) and (3)), being its weighting
factor one or two orders of magnitude higher than the remaining terms. The first term of
the ROM series expansion can be, hence, considered a fair approximation of the system,
where other terms are corrections to it, as described in Section 1.2. From Figure 8 one
can see that bigger friction variations occur at extreme surface texturing parameters, e.g.,
smaller dimple depth and bigger diameter values.

3.4. Statistical Analysis Results of Real Dimple Dimensions

As described in Section 2.6, PDFs were extrapolated for all texture parameters and
were used to assess the measured differences from the desired nominal dimple values. The
observed variations from the nominal dimple dimensions, described in Section 2.3, were
introduced into the datasets in order to predict the corresponding friction variation using
the previously computed ROM. The observed PDFs were normal distributions for both
dimple depth and distance, while for diameter a skewed normal distribution was observed.
dimple depth PDF showed a right shift of the mean equal to 3 μm and a standard deviation
equal to 1.5 μm. Concerning the distance, the right shift of the mean was equal to 41 μm
and 37 μm for corresponding nominal values of 200 μm and 300 μm, with a standard
deviation of 13 μm and 9 μm, respectively. These findings led to significant differences in
observed friction values, which means that deviations from nominal texture values, shown
in Figures 9 and 10a,b, do actually affect friction as observed in Figure 11a,b.

Figure 9. Dimple depth specific PDF and corresponding nominal value.

A ROM model allows verifying that the introduction of a statistical noise on nominal
surface texture values affects friction, as shown in Figure 11a,b. From these Figures it
is possible to observe significant variations in friction PDFs distributions when depth
or diameter and distances, respectively, vary from nominal values, and to compare the
obtained friction distribution to a normal PDF with zero mean and σ = 0.01.

A two-tailed t-Student test was performed to check the compatibility of the two PDFs,
i.e., the noisy nominal values friction distribution (orange) and the ideal friction distribution
(green), shown in Figure 11a,b. The test result showed a statistically significant difference
between the noisy and the ideal PDF in case of dimple diameter-distance variations,
according to what can be expected from Figures 9 and 10a,b.
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(a)

(b)

Figure 10. (a) Dimple diameter and (b) distance specific PDFs and respective nominal values.

As previously described in Section 2.5, two expanded datasets were generated in-
troducing statistical noise to the textured data sample by varying the nominal dimple
parameters (i.e., depth, diameter, and distance) according to the obtained PDFs. When
depth was made to vary, only values equal to 20 μm could be used; in fact, nominal depth
values of 10 μm and 30 μm would cause friction values to fall outside the ROM domain if
a PDF was applied to generate data around these values. In this case the corresponding
ranges for dimple diameter and distance were 200 μm and 200–300 μm, respectively. For
the second dataset, given the ROM definition domain, feasible dimple diameter and dis-
tance ranges resulted in 100–200 μm and 200–300 μm, respectively, corresponding to depth
values of 10 μm only. It is important to remark that, in this case, given the geometrical
definition of the dimples, diameter and distance are inversely correlated and that the two
PDFs are very different, being the first one a skewed distribution and the second a normal
one (please refer to Section 2.5 for method details).
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(a)

(b)

Figure 11. Friction coefficient distribution (orange) when (a) dimple depth or (b) diameter and
distance are varried according to their specific PDFs (Figures 9 and 10a,b, respectively), centred and
compared to a normal distribution (green) with zero mean and σ = 0.01.

Figure 12a,b show the findings for the friction prediction when the geometrical pa-
rameters of the seals deviate from nominal values.
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(a)

(b)

Figure 12. (a) ROM prediction with statistical noise introduction on depth and (b) on diameter and distance. The blue dots are
obtained by evaluating the ROM on the statistically expanded dataset, the solid red line represents the ideal ROM result and
the error bars show the friction variations linked to (a) depth or (b) diameter and distance deviations from nominal values.

According to the results shown in Figure 12a,b, when the textured ROM was evaluated
on the expanded noisy dataset, friction prediction turned out to be completely affected by
the statistical nominal texture values deviations. Once again one can observe that when
diameter and distance were made to vary, these variations produced big uncertainties
on the predicted friction values and statistically significant differences on mean values,
which was corrected when an ideal PDF was used for texture parameters. In order to prove
this, friction prediction was repeated using the green distribution in Figure 11a,b, where
the texture parameters are centred in their nominal value, with a standard deviation of
σ = 0.01. The obtained results are shown in Figure 13a,b.
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(a)

(b)

Figure 13. (a) ROM prediction with statistical noise introduction on depth and (b) on diameter and distance, with centred
mean on nominal value and σ = 0.01. The blue dots are obtained by evaluating the ROM on the statistically expanded
dataset, the solid red line represents the ideal ROM result and the error bars show the friction variations linked to (a) depth
or (b) diameter and distance deviations from nominal values.

3.5. Experimental Friction Measurement Results and ROM Friction Prediction Outcome

The objective of the experimental testing procedure is to identify specific surface
textures, which exhibit the lowest friction as a function of the relative velocity vr and the
contact pressure pc. In Figures 14–16 the quasi-stationary friction coefficients μ of the
8 rubber specimens with different textures are shown as function of the relative velocity vr.
Data points depicted in Figures 14–16 are based on 5 measurements, whose mean values
are shown. Error bars are not provided in the figures due to better visibility, although
sigma ranges for the whole pool of data varied between σmin = 0.004 and σmax = 0.196 with
a mean value of σmean = 0.005.
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Figure 14. (a) Friction coefficient μ as function of the relative velocity vr for the eight different rubber specimens and (b) the
corresponding friction variation Δμ in relation to the untextured rubber sample 8, for contact pressures of pc,max = 0.5 MPa.

Figure 15. (a) Friction coefficient μ as function of the relative velocity vr for the eight different rubber specimens and (b) the
corresponding friction variation Δμ in relation to the untextured rubber sample 8, for contact pressures of pc,max = 0.7 MPa.

Each figure visualises the measurement results for one of the three different contact
pressures levels pc considered. In addition, the friction variations of the different rubber
samples are presented in relation to the untextured reference rubber specimen 8. Under
all operating conditions, friction-reducing, as well as friction-increasing textures, can be
identified. Positive values of friction variation indicate a texture-related reduction of
friction, while negative friction variation values describe a friction increase compared to
the untextured reference sample 8, see also Equation (4). Besides a texture related vertical
shift of the friction characteristic, a horizontal shift of the minimum can be observed as
well. Hence, surface texturing modifies friction in all regimes, which will be discussed in
another publication.

In the following, the textures with the highest and lowest friction are discussed for
each contact pressure level pc,max. For pc,max = 0.5 MPa rubber specimens 2 and 4 exhibit
the lowest friction when considering the entire velocity range, while sample 1 reveals the
highest friction level. Samples 2 and 4 have the highest area densities of 39% and 55%,
respectively, while sample 1 has the lowest area density of 9% within all textures examined.
Therefore, a clear trend is evident for pc,max = 0.5 MPa, where the largest area densities
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analysed lead to the lowest friction levels, while the lowest area density leads to the highest
friction level. The aspect ratio does not appear to have a major influence in this pressure
condition as it fluctuates for samples 1, 2, and 4 between 0.11, 0.05, and 0.10, so that no
clear trend is apparent.

Figure 16. (a) Friction coefficient μ as function of the relative velocity vr for the eight different rubber specimens and (b) the
corresponding friction variation Δμ in relation to the untextured rubber sample 8, for contact pressures of pc,max = 0.9 MPa.

For pc,max = 0.7 MPa and pc,max = 0.9 MPa rubber sample 1 and 3 exhibit the lowest
friction level over the entire range of velocities. In contrast, specimen 7 shows the highest
friction. Despite this agreement for both pressure levels, no clear trend can be derived in
terms of dimple dimensions, area density, or aspect ratio. For example, sample 3 and 7
have similar area density values of 28% and 25%, respectively, as well as aspect ratios of
0.04 and 0.06. However, as mentioned above, the measured friction results of both textures
differ greatly from each other.

Since there is no clear trend for dimple texture, it is concluded that the texture needs
to be individually adapted to the existing operating conditions to minimize friction. For
this purpose, ROM is an extremely efficient tool. In order to demonstrate the benefits of
the ROM in vivid examples, four exemplary use cases were defined. The first theoretical
use case is a friction contact intended to operate at the lowest contact pressure level
pc,max = 0.5 MPa and the highest velocity vr = 251 mm/s within the operational conditions
experimentally analysed. During the friction measurement procedure, a maximum friction
reduction of 37% was already achieved with sample 4. However, the theoretical customer
requires a further enhanced friction reduction of at least 60%. By using the ROM, a friction
reduction of 63% can be predicted with the texture parameters given in row 1 of Table 5.

Table 5. Dimple dimensions predicted by the ROM, which further reduce friction based on the use cases.

Use Case
Relative Max Contact Dimple Dimple Dimple

Aspect
Textured Predicted

Num.
Velocity Pressure Diameter Distance Depth

Ratio
Area Friction Reduction

vr [mm/s] pc,max [MPa] [μm] [μm] [μm] [%] [%]

1 251 0.5 270 100 10 0.04 42 63
2 31 0.7 300 186 11 0.04 30 81
3 6 0.9 274 111 11 0.04 39 72
4 100 0.6 300 140 11 0.04 36 79

The second use case is an application that operates at a contact pressure pc,max = 0.7 MPa
and a velocity of vr = 31 mm/s. Friction measurements reveal a maximum friction reduction
of 63% for sample 1. Again, the friction can be further reduced by a suitable texture, which is
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predicted by the ROM. The ROM indicates a friction reduction of 81% compared to reference
seal 8 for the values specified in row 2 of Table 5.

The third use case is an imaginary technical requirement for a seal, which operates
under the highest contact pressure level of pc,max = 0.9 MPa and the lowest velocity of
vr = 6 mm/s within the considered conditions. The experimental friction results show a
maximum friction reduction of 48% for seal sample 1. With the use of the ROM, a reduced
friction of 72% can be predicted in relation to the untextured case with the values given in
row 3 of Table 5.

Based on the ROM results, one additional data point, indicated by a triangle, is added
to each of the three plots of Figures 14–16.

In addition to friction predictions, considering the experimentally analysed operating
conditions, one of the major advantage of the ROM is the ability to freely interpolate within
the parameter space of the operating conditions. This is why the fourth use case shows
the ROM prediction for experimentally untested working conditions, i.e., pc = 0.6 MPa
and velocity of vr = 100 mm/s, where the friction reduction is about 79%, for the texture
parameters shown in row 4 of Table 5.

The resulting aspect ratio for all four use case textures is equal to 0.04, while the
textured area ranges from 30% to 42%. Compared to the experimentally analysed dimple
textures given in Table 3, the dimple diameters are rather at the upper edge of the inves-
tigated texture dimensions, while the dimple distances and the depths are found in the
lower range of the dimple dimensions. However, the dimple values are not similar. Thus,
again it is obvious that a surface texture has always to be determined as a function of the
operating conditions in order to achieve a maximum friction reduction. For each distinct
application and individual technical requirement, textures have to be identified which
result in an optimum friction with respect to a defined reference. These ROM results are
not experimentally confirmed within the scope of this paper, as it would be necessary to
re-produce rubber samples with appropriate textures, which was not part of MouldTex
project [39].

4. Discussion

As can be concluded from Section 3.5, large texture-induced friction reductions, of up
to 70%, could already be found experimentally inside the investigated parameter range of
textures, velocities, and contact pressures. However, within the physical available samples,
it is not always possible to identify clear trends for dimple dimensions that explain a high
friction reduction compared to the untextured reference. Based on this finding, it is inferred
that the surface texture dimensions need to be individually adapted to the given operating
condition, in order to ensure a low friction level.

One possibility to identify optimal surface textures is the examination of a great num-
ber of dimple textures, which is significantly larger than the experimentally analysed set.
However, this approach would be time-consuming and expensive due to TDM production
requirements. The use of additional methods based on AI, such as ROM, are therefore
advantageous. In this context, ROM is an effective method for finding the most suitable
textures for specific operating conditions, as shown in Section 3.5, where the ROM is used
to predict friction reduction values for both experimentally tested and untested working
conditions, see Table 5 rows 1–3 and 4, respectively. Within this paper, ROM models have
been used to predict and explore friction behaviour of surface textured rubber specimens
by training the model on the experimental friction measurement results. Moreover, the
model is able to quantify the measured friction variations that occur when deviations from
nominal surface texture values are observed (Figures 9, 10a,b, 11a,b and 12a,b). ROM is
extremely useful for simulating and predicting a system behaviour, especially when the
physics behind its phenomenology are completely unknown or difficult to solve. Thanks
to the ROM algorithms, users can predict the behaviour of their system in real-time, and
specifically seal manufacturers can assess the parametric conditions that show the desired
optimised results and select them before the rubber seal production. The efficiency of a
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data-driven ROM, as it is for Twinkle [23], is particularly dependent on the collected data,
i.e., their associated error and their resulting manifold coverage.

With a thoroughly planned DoE it is possible to achieve an optimal space coverage,
which leads to a reliable ROM’s prediction result. The promising results, presented in
Section 3.3 for the 2-ROM error propagation (Figure 7) strongly support ROM’s accuracy
on the given dataset. Nevertheless, if larger amounts of data were available, the computed
ROM could be even more reliable in those space regions where less information was
collected and, hence, confidently retrieve the best texture that allow minimising friction,
according to friction variations computed in Equation (4). Moreover, if a ROM model
was computed using simulation data, a higher sample space coverage and hence better
reliability in the results could be achieved.

In addition, a ROM model allows verifying that the introduction of a statistical
noise on nominal surface texture values affects friction, as shown in Figures 11a,b, where
the two-tailed t-Student test showed a statistically significant difference between the
experimental friction distribution (orange) and the ideal one (green) for dimple diameter-
distance variations, see Figures 12a,b, were the difference on friction measurement are
linked to manufacturing deviations in the nominal values of dimple textures. These
variations were later compared to the effects obtained from an ideal PDF for dimple values
experimental variations, i.e., mean value centred on nominal surface texture values and
standard deviation σ = 0.01, as shown in Figures 13a,b, opening the way to potential surface
texture manufacturing quality and tolerance investigations.

5. Conclusions

Within the scope of this paper, a pin-on-disc tribometer was used to measure dynamic
friction in the contact of surface textured rubber specimens that were manufactured by
texturing during moulding (TDM). The operating conditions, defined by relative velocity
(vr ranging from 6 to 251 mm/s) and contact pressure level (pc,max ranging from 0.5 to
0.9 MPa), were chosen to correspond to the operating conditions of pneumatic seals. Based
on the different experimentally tested texture dimensions, a maximum friction reduction
of 70% was determined compared to the untextured reference, with a dimple diameter of
100 μm, a dimple depth of 10 μm and an area density of 9%.

However, since no global surface texture optimum could be found experimentally
that exhibits the lowest friction under all operating conditions, it is concluded that a
surface texture needs always to be determined individually, based on the prevailing
operating conditions, in order to achieve maximum friction reduction. For this purpose, a
novel methodology was applied, combining friction measurements with Reduced Order
Modelling (ROM). The objective of the ROM was the computation of optimal surface texture
parameters that provide the highest friction reduction within the given parameter space
of textures and operating conditions. By feeding the ROM with microscope-based texture
measurements, it also takes into account deviations of the real dimple dimensions from the
nominal dimple values for the output friction value. In summary, friction measurements
are suitable as input parameters for the ROM so that the use of ROM for friction prediction
has been proven successful. For demonstration, exemplary use cases were defined, from
which it can be concluded that ROM enables the identification of optimal surface texture
parameters that were not available for experiments, obtaining friction reductions from 63%
to 81%, which are significantly higher than the experimentally tested surface textures for
the same operating conditions. In addition, the value of ROM was further highlighted, as it
is also able to freely interpolate between tested operating conditions to determine optimal
textures for each operating condition within the range considered, resulting in a predicted
friction reduction of 79%.

Moreover, ROM applicability has been extended further, showing that the method can
be also used for statistical analysis, to evaluate the impact of manufacturing uncertainties,
observed on surface texture nominal values, on friction measurements. Thus, ROM is not
only an extremely powerful technique for scientific users to compute the friction reduction
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of surface textured components but also for industrial manufacturers of rubber compo-
nents, to design rubber surfaces and evaluate the impact of manufacturing deviations on
dynamic friction.
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Abstract: Convolutional Neural Network (CNN) has been widely used in bearing fault diagnosis in
recent years, and many satisfying results have been reported. However, when the training dataset
provided is unbalanced, such as the samples in some fault labels are very limited, the CNN’s
performance reduces inevitably. To solve the dataset imbalance problem, a Generative Adversarial
Network (GAN) has been preferably adopted for the data generation. In published research studies,
GAN only focuses on the overall similarity of generated data to the original measurement. The
similarity in the fault characteristics is ignored, which carries more information for the fault diagnosis.
To bridge this gap, this paper proposes two modifications for the general GAN. Firstly, a CNN,
together with a GAN, and two networks are optimized collaboratively. The GAN provides a more
balanced dataset for the CNN, and the CNN outputs the fault diagnosis result as a correction term in
the GAN generator’s loss function to improve the GAN’s performance. Secondly, the similarity of
the envelope spectrum between the generated data and the original measurement is considered. The
envelope spectrum error from the 1st to 5th order of the Fault Characteristic Frequencies (FCF) is
taken as another correction in the GAN generator’s loss function. Experimental results show that
the bearing fault samples generated by the optimized GAN contain more fault information than the
samples produced by the general GAN. Furthermore, after the data augmentation for the unbalanced
training sets, the CNN’s accuracy in the fault classification has been significantly improved.

Keywords: fault data generation; Convolutional Neural Network (CNN); Generative Adversarial
Network (GAN); bearing fault diagnosis; unbalanced datasets

1. Introduction

As an indispensable component in rotating machines, bearing health status directly
affects or even determines the equipment service life. However, in practice, a bearing
usually works under extreme and harsh conditions, which makes the bearing prone to
faults [1]. Therefore, the timely and accurate fault diagnosis is crucial to reduce the
maintenance costs and avoid serious accidents.

In recent years, the data-driven fault diagnosis has been attracting more and more
attention from both academia and industry. Among the various data-driven methods,
Convolution Neural Network (CNN) and Long Short Term Memory (LSTM) are the most
widely used due to their powerful abilities in the complex feature extraction and nonlinear
mapping. CNN was first employed in the bearing fault diagnosis by O. Janssens in 2016 [2],
and, since then, many improvements have proposed to enhance the CNN’s performance,
such as 1D-CNN, 2D-CNN, multiscale CNN, and adaptive CNN [3–6]. Russell Sabir
adopted LSTM for the bearing fault diagnosis based on the motor current signal and
obtained a classification accuracy of 96% [7]. L. Yu and D. Qiu proposed the stacked LSTM
and the bidirectional LSTM, respectively, and both LSTMs obtained an accuracy of more
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than 99% on the bearing fault diagnosis [8,9]. H. Pan combined 1D-CNN and 1D-LSTM
into a unified structure by using the CNN’s output into LSTM, achieving a satisfactory test
accuracy up to 99.6% [10].

Although many sound results have been reported in the deep learning-based fault di-
agnosis, there are still many challenges to be solved. For example, all the studies mentioned
above assume that there are plenty of high quality data for the deep network training.
However, in many applications, the available history or experimental data is very limited
or data provided is severely unbalanced. For example, the sample size under some fault
classes is extremely smaller compared with the others. Either insufficient or unbalanced
data will cause the serious performance reduction of deep networks. According to D.
Xiao’s work, when the training set samples were reduced from 1000 to 150, the CNN’s
accuracy declined correspondingly from 97.2% to 83.9% [11]. When the imbalance ratio
increased from 2:1 to 40:1, the fault classification accuracy for the outer ring fault based on
the GAN-SAE dropped sharply from 97.79% to 20.95% [12].

To address this problem, scholars have proposed diverse methods. Oversampling was
first proposed to solve the data imbalance, where the direct replication was used to generate
more samples for such labels that had very few ones [13,14]. Although this method is
simple and efficient, it easily causes overfitting since no new information is incorporated.
As another prospective method for data generation, GAN has been already used for
new sample generation in the fault diagnosis. Both W. Zhang and S. Shao employed
GAN to learn the mapping between the noise distribution and the actual machinery
vibration data to expand available dataset. The results confirmed that the diagnosis
accuracy could be improved once the imbalanced data was augmented by GAN [15,16].
However, when building and evaluating the GAN, published research studies only focus
on the overall similarity between the generated data and the original one, which inevitably
brings problems in the data quality. Small loss function in the general GAN only means that
the generated data has a high similarity to the original signal, but it does not guarantee that
the generated signal has captured the important characteristics of the original signal. When
generating more samples for the unbalanced datasets in the fault diagnosis, it is important
to ensure that the generated sample carries the same or nearly the same fault information as
the original one, which includes both time and frequency domain characteristics. For this
reason, an improved GAN is proposed in this paper and applied to generate samples for an
unbalanced experimental dataset which is further used in the CNN-based fault diagnosis.

The main innovations of this paper include: (1) A GAN, together with a CNN, and
two networks are optimized in cooperation. The GAN generates a more balanced dataset
for the CNN, and the CNN evaluates the quality of the GAN’s data generation. Both
networks contribute to each other in performance improvement. (2) The fault characteriza-
tion information is used to improve the general entropy-based loss function in the GAN.
The amplitude and frequency errors in the envelope spectrum between the experimental
and generated samples are taken as a correction term in the GAN’s loss function to enable
the GAN to produce samples with higher fidelity and identify more fault information.

The remaining part of this paper is organized as follows. Section 2 details the theory
and methodology of the GAN, CNN, and loss function improvement. Section 3 describes
the test bench and experimental dataset. Section 4 discusses and analyzes the results.
Section 5 concludes the whole paper.

2. Methodology

2.1. Theory of the GAN

A GAN generates new data without any prior knowledge of the probability density
function of original data. It mainly consists of a generator and a discriminator. The dis-
criminator determines whether a sample comes from the original or generated dataset.
On the contrary, the generator tries to produce data similar to the original one so that the
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discriminator can hardly make right decisions. In the general GAN, the loss functions of
generator and discriminator are defined as Equations (1) and (2), respectively [15]:

LG = − 1
K

K

∑
i=1

log
(

D
(

xi
f ake

))
, (1)

LD = −1
J

J

∑
m=1

log(D(xm
real))−

1
K

K

∑
i=1

log
(

1 − D
(

xi
f ake

))
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where J is the number of real samples, and K is the number of generated samples. xm
real

represents the data samples coming from the real training dataset, and xi
f ake denotes the

data samples from GAN generator. D(xm
real) designates the output of discriminator D with

the input data sample xm
real .

Based on the loss function LG and LD, the GAN can be trained as a minmax two-player
game until the global optimum, D(xreal) = D(x f ake) = 0.5, is reached. This indicates that
the generated data from the generator is so similar to the real one that the discriminator
cannot tell the difference.

2.2. Fault Data Generation Based on GAN and CNN

The direct task of a GAN is to generate more samples for the labels with limited
measurements. However, the ultimate goal is to improve the data-driven fault-diagnosis
method performance when it deals with the imbalanced datasets. Therefore, it is reasonable
to take the final fault-diagnosis results into consideration when constructing a GAN so that
the data generated can indeed sharpen the algorithm’s fault-diagnosis ability. In this paper,
to facilitate research, a CNN is selected as a representative of the data-driven fault-diagnosis
methods, and the diagnosis task is focused on the fault classification, so its performance is
evaluated by the cross-entropy, as shown in Equation (3). The CNN’s result is introduced
as a correction term in the GAN’s generator loss function as formulated in Equation (4):

LCNN = −
N

∑
i=1

xi log(pi), (3)

LG′ = LG + βLCNN , (4)

where N is the number of bearing fault types. xi = 1, if the input sample belongs to
the bearing fault type i; otherwise, xi = 0. pi is the output of softmax function, which
represents the probability that the input data belongs to the bearing fault type i. The
formulation for pi is given in Equation (5), and it satisfies ∑N

i=1 pi = 1 [17]. β is a scale
factor to keep the loss functions of the GAN and CNN at the same range.

pi =
eai

∑N
i=1 eai

. (5)

2.3. Improvement of Loss Function with Envelope Spectrum

The general GAN can produce data with high similarity to the original measurement,
as stated in the last sub-section. In theory, the data fidelity can be even improved when
a CNN is employed to collaboratively optimize a GAN. However, until now, all the data
points in a sample are treated equally, and the GAN’s target is to keep the generated
data as similar to the original one as possible. However, in the fault diagnosis, some
data points contain more information than others. For example, once a fault occurs on a
certain component, such as the outer and inner ring or the balls, the corresponding fault
characteristic frequencies (FCF) will appear in the acceleration spectrum. Compared with
the overall similarity, the frequency and amplitude at the fault characteristic frequencies
contain much more information about the bearing health condition. Therefore, the error of
amplitudes and frequencies between the original signal and the generated one at the fault
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characteristic frequencies is defined as another correction term in the frequency domain as
follows:

L f requency =
N

∑
i=1

(∣∣∣Mi
real − Mi

f ake

∣∣∣+ ∣∣∣Fi
real − Fi

f ake

∣∣∣), (6)

where N denotes the maximum order of FCF, and N = 5 in this study. Mi
real and Mi

f ake

stand for the i-th order FCF amplitude from the real and generated sample. Fi
real and Fi

f ake
represent the i-th order FCF frequency from the real and generated sample. In addition,
due to different value ranges of frequency and amplitude, in this study, the most widely
used normalization method, MinMaxScaler [18], is applied to normalize the amplitudes
and frequencies within the 5th-order FCF to the range of [0, 1].

Finally, L f requency is combined with LCNN to construct the final loss function of the
GAN’s generator. As shown in Equation (7), the sum of LCNN and L f requency is taken as a
modification term in the general GAN’s loss function LG to ensure the generated data from
GAN has a high similarity and captures the important information in detail at the same
time. α is a weight factor.

LG” = LG + α
(

LCNN + L f requency

)
. (7)

To obtain L f requency, the first step is to calculate the theoretical FCF. The XJTU-SY
dataset [19] introduced in the following section includes only three kinds of faults, namely
the outer race fault, the inner race fault, and the cage fault. The theoretical FCFs for
the aforementioned 3 fault types are the BPFO (Ball Passing Frequency on Outer race),
BPFI (Ball Passing Frequency on Inner race), and FTF (Fundamental Train Frequency),
respectively. Their formulations are listed as follows [20]:

BPFO =
n fs

2
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)
, (8)
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n fs

2
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d
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)
, (9)

FTF =
fs

2

(
1 − d

D
cos α

)
, (10)

where n is the number of rolling elements, and fs means the shaft frequency. d represents
the ball diameter, and D denotes the pitch diameter. α is the bearing contact angle.

After calculation of the theoretical FCF, the second step is to capture the actual FCF
around corresponding theoretical values. The actual FCF can be affected by many factors,
such as the shaft speed, external load, friction coefficient, raceway groove curvature, and
the defect size [21,22]. Therefore, there exists bias between the theoretical FCF and the
actual FCF in most cases. Besides, some harmonics of FCF influenced by modulation of
other vibrations may not be detected in the test bench [22]. Thus, in this paper, the i-th order
actual FCF is determined as the maximum peak in the interval of [0.95, 1.05]× FCF1st × i,
where FCF1st is the first order theoretical FCF, and i is the current frequency order. The
actual FCF of both the real measurement sample and generated sample are determined
by above two steps. Once actual FCF is identified, the L f requency can be obtained by
Equation (6).

2.4. Collaborative Training Mechanism of the GAN and CNN

Once the modification for the GAN loss function has been determined, the next
step is to train a GAN in cooperation with a CNN. The collaborative training process is
demonstrated in Figure 1. Generally, a GAN provides a more balanced dataset for CNN to
improve its fault diagnosis accuracy. Whereas CNN evaluates the GAN’s generated dataset
and outputs its fault classification result as a correction term in the generator’s loss function
to improve the GAN’s data-generation quality, under the collaborative training structure,
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both CNN and GAN performance can be enhanced. Specifically, as shown in Figure 1,
the CNN is firstly built based on the unbalanced dataset, and its classification error is
supposed to be high. Meanwhile, the discriminator, as well as the generator, of the GAN
are established. Initially, the generator does not work so well, and the generated samples
are not so similar to the original ones. The next step is to optimize the CNN and GAN
collaboratively. During the optimization process, the GAN’s generator learns to generate
samples similar to the original signal. The newly generated samples are immediately added
to the training dataset of the CNN so that the dataset imbalance can be reduced. When the
Nash equilibrium is reached, which is defined as D(xreal) = D(x f ake) = 0.5, the optimiza-
tion process stops. Lastly, the GAN’s generator is used to extend the original dataset and
fine-tune the CNN with the extended dataset. The architecture of the GAN proposed in
this paper is detailed in Figure 2. Tables 1 and 2 summarize the hyperparameters of the
GAN and CNN, respectively.
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Figure 1. Collaborative training structure of the GAN and CNN.
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Figure 2. Architecture of generator and discriminator in the GAN.

Table 1. Hyperparameters of the GAN.

Hyperparameters Values

Initial learning rate of generator 0.0001
Initial learning rate of discriminator 0.0001
Kernel size of discriminator’s 1st layer 8 × 8
Kernel size of discriminator’s other layers 4 × 4
Number of filters in discriminator’s n-th layer 16 × 2n−1

Kernel size of generator’s last layer 8 × 8
Kernel size of discriminator’s other layers 4 × 4
Number of filters in generator’s n-th layer 512/2n−1

Max epochs 2000

Table 2. Hyperparameters of the CNN.

Hyperparameters Values

Initial learning rate 0.0002
Max epochs 1000
Batch size 20
Kernel size of 1st layer 7 × 7
Kernel size of other layers 3 × 3
Number of filters in n-th layer 16 × 2n−1

3. Experimental dataset

3.1. Introduction of Bearing Test Bench and Dataset

Experimental data for validation comes from the Xi’an Jiaotong University (XJTU-SY)
bearing test bench [19]. As shown in Figure 3, the bearing accelerated life test bench
consists of an alternating current induction motor, motor speed controller, supporting shaft,
supporting bearing, hydraulic loading system, and test bearing. The test bearing type is
LDK UER204, and its basic parameters are summarized in Table 3. The bearing works
under 3 different conditions, as specified in the first column of Table 4, where fs stands for
the shaft frequency, and Fr the radial loading force. Both the axial and radial accelerations
are measured at a sampling frequency of 25.6 kHz, and the sampling interval between
any two measurements is defined as 1 min, and each sampling lasts for 1.28 s. Under each
condition, 5 bearings are tested, such as bearing 1_1–1_5 under condition 1. As each test
bearing has a different lifetime, the measurement sample size of each test bearing varies
from one to another.
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Figure 3. XJTU-SY experimental setup [19].

Table 3. Specifications of bearing parameters.

Parameters Values Parameters Values

Inner raceway
diameter 29.30 mm Ball diameter 7.92 mm

Outer raceway
diameter 39.80 mm Number of balls 8

Pitch diameter 34.55 mm Initial contact angle 0°

Due to the inherent micro-anisotropy and different working conditions, the lifetime
and failure location of the test bearing differ from each other. For a single fault, there
are 3 fault types in total, namely the outer race fault, the inner race fault, and the cage
fault. Moreover, there are two datasets, bearing 1_5 and bearing 3_2, containing the
measurements of compound fault. To simplify the labeling process, only a single fault is
considered in this paper. As summarized in Table 4, the number of total samples is large
enough for CNN training. However, the dataset is extremely unbalanced. For the most
test bearings under all 3 conditions, the failure occurs on the outer ring, with very limited
samples on the inner ring and the cage.

Table 4. Data specification of XJTU-SY bearing dataset.

Condition Test Bearing Measurement Sample Size Fault Location

(1)
bearing 1_1 123 outer ring

fs = 35 Hz
bearing 1_2 161 outer ring

Fr = 12 kN
bearing 1_3 158 outer ring
bearing 1_4 122 cage
bearing 1_5 52 outer ring & inner ring

(2)
bearing 2_1 491 inner ring

fs = 37.5 Hz
bearing 2_2 161 outer ring

Fr = 11 kN
bearing 2_3 533 cage
bearing 2_4 42 outer ring
bearing 2_5 339 outer ring

(3)
bearing 3_1 2538 outer ring

fs = 40 Hz
bearing 3_2 2496 inner ring & element & cage &

outer ring

Fr = 10 kN
bearing 3_3 371 inner ring
bearing 3_4 1515 inner ring
bearing 3_5 114 outer ring
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3.2. Data Preprocessing

The XJTU-SY bearing dataset has recorded the bearing acceleration during the whole
life cycle. The test bench runs continuously until the acceleration amplitude exceeds
10 × Anormal , which is defined as the failure point. Here, Anormal is the maximum amplitude
of the horizontal or vertical vibration signals when the bearing runs in the normal operating
stage. The fault location in Table 4 stands for position where the fault happens when bearing
finally fails. In order to extract the sufficient measurement data for the fault classification
while maintaining the correct labels, the signals with acceleration amplitude between
2 × Anormal and 10 × Anormal are regarded as the fault signals, as shown in Figure 4. All the
measurement samples in the fault period are labeled with the corresponding final failure
position, such as 1 for the cage fault, 2 for the inner race fault, and 3 for the outer race fault.
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Figure 4. Complete life cycle of bearing 1_1.

After preparation for the valid source data and labels, the next step is the data prepro-
cessing. At first, the original measurement is denoised by 3-level wavelet decomposition,
with Symlet4 as the mother wavelet. After the noise cancellation for the high-frequency
components, the data is normalized by z-score. Finally, the normalized data is trans-
formed from 1D to 2D, which means that the acceleration series are sliced into fragments
with the same length and then stacked row by row to build a matrix, as illustrated in
Figure 5. In each sample, there are a total of 32,768 points of data in each sample. Therefore,
the size of 2D matrix is determined as 181 × 181, and the reshaped 2D matrix is fed into
GAN and CNN as images. All the work in this study is conducted in MATLAB Deep
Network Designer.

Figure 5. Illustration of data reshape.

4. Results and Analysis

4.1. Fault Data Generation Based on Optimized GAN

According to Table 5, there are significantly more samples for the outer race fault than
for the inner race fault and the cage fault. Consequently, generating more samples for the
inner race fault and the cage fault is paramount to reduce the dataset imbalance. It should
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be noticed that the inner race fault samples consist of data from bearing 2_1, bearing 3_3,
and bearing 3_4, while the cage fault samples consist of data from bearing 1_4 and bearing
2_3. This means both the inner race and cage faults have measurement samples collected
from different working conditions that define different data distributions. Furthermore,
each test bearing has totally different aging dynamics, which can be deduced from their
full life cycle trajectories [19]. As a result, the GANs for these datasets need to be trained
individually. Bearing 1_4 has only one sample and is, hence, not feasible for the fault
diagnosis. In total, 4 GANs need to be established for bearing 2_1, bearing 2_3, bearing
3_3, and bearing 3_4.

Table 5. Sample size of different fault types.

Fault Location Test Bearing Measurement Sample Size Training Sets Test Sets

Outer race

bearing 1_1 58

518 130

bearing 1_2 108
bearing 1_3 69
bearing 2_2 77
bearing 2_4 12
bearing 2_5 173
bearing 3_1 55
bearing 3_5 106

Inner race
bearing 2_1 26

110 28bearing 3_3 28
bearing 3_4 84

Cage bearing 1_4 1 167 42bearing 2_3 208

The data samples generated by a general GAN and an optimized GAN are illus-
trated in Figure 6 and compared with the original ones after normalization. Specifically,
Figure 6(a1) stands for the original signal of a measurement sample from bearing 2_1,
Figure 6(a2) is the corresponding sample generated by the general GAN, and Figure 6(a3)
shows the sample generated by the optimized GAN. Likewise, Figure 6(b1–b3) are the
result for bearing sample 2_3, and Figure 6(c1–c3) for bearing sample 3_3. Take the inner
race fault bearing 2_1 as an example; both GANs produce the samples with high similarity
to the original ones measured in time domain, and even the peaks are accurately rebuilt.
It can be further noticed that the optimized GAN generates a much more accurate peak
amplitude than the general GAN. In order to evaluate the GAN’s data-generation quality
in time domain, every sample is regarded as a vector �x (�x ∈ RD), and every sampling point
xi as an element in the vector.

The similarity between the generated sample and the original one can be measured by
the angle between two corresponding vectors. Therefore, cosine similarity is adopted as a
time domain similarity metric, which is defined as follows:

cos θ =
�m ·�n

|�m| · |�n| , (11)

where �m and �n stand for the acceleration series from the original measurement and the
generated sample, respectively, with �m = {x1, x2, · · · , xL} and �n =

{
x
′
1, x

′
2, · · · , x

′
L

}
. |�m|

and |�n| identify the 2-norm of �m and�n, respectively.
The cosine similarity results are summarized in Table 6. For all 3 cases, the sample

generated by the optimized GAN has higher cosine similarity to the original one than
that produced by the general GAN, which proves the superiority of the optimized GAN
in the high-quality data generation. Additionally, the reason why the cosine similarity is
relatively small can be explained as the acceleration values change within a big range of
[−5, 5], and the signal length is up to 32,761, which means any difference in acceleration
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amplitude or direction or time lag between counterpart points will bring big accumulative
deviation. Besides, the assumption by taking the acceleration signal as 1D vector may not
be so feasible when it contains too many elements, which needs further exploration in the
future, such as using the Fréchet distance to replace the cosine similarity [23].
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Figure 6. Comparison between original sample and generated sample in time domain; (a), (b) and (c) represent bearing 2_1,
bearing 2_3 and bearing 3_3 respectively, while (1), (2) and (3) represent the original sample, general GAN and optimized
GAN respectively.

Table 6. Cosine similarity of samples in time domain.

Generated Sample
Cosine Similarity

GAN Optimized GAN

bearing 2_1 0.3214 0.3739
bearing 3_3 0.3374 0.3408
bearing 2_3 0.2009 0.2675

Apart from the overall similarity in time domain, the signal characteristics in the
frequency domain are the same or even more important for the fault diagnosis. In this
study, the envelope spectrum is processed on the original and generated samples. As only
the 1st to 5th FCFs are considered in this study, the signal is first filtered by a low-pass filter
of 1000 Hz, and then the envelope spectrum is extracted by Hilbert transform and Fast
Fourier Transform. The results are displayed in Figures 7–9. Take Figure 7 as an example,
which gives the envelope spectrum of bearing 2_1, where the black line is the result of the
original measurement, the blue line stands for the sample generated by the general GAN,
and the red line symbolizes the sample from the optimized GAN. The theoretical BPFI is
also provided by the green dash line. We can find that the envelope spectrum of samples
generated by the optimized GAN is similar to the original one, while it appears clearly
different from that of the samples generated by the general GAN, especially the amplitudes
at the real fault characteristic frequencies. Two locally enlarged views in Figure 7 show that
the amplitude from the sample generated by the optimized GAN is much closer to that of
the original sample, compared with the sample from the general GAN. The phenomenon
is the same for the inner race fault (bearing 3_3), as well as the cage fault (bearing 2_3),
which confirms that the optimized GAN can efficiently promote the generated signals to
capture more accurate fault characteristics in the frequency domain. As for the other peaks
besides fault characteristic ones, especially for the inner race fault, we can find that most of
them are caused by the modulation from the shaft frequency and its harmonics, which is
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consistent with the previous research [24]. Additionally, the deviation between the actual
FCFs and the corresponding theoretical values can be explained by many factors, such as
the frequency resolution of 0.7814 Hz, the occurrence of rolling element sliding, and the
transient contact angles under high external load.

Figure 7. Envelope spectrum comparison: inner race fault of bearing 2_1.

Figure 8. Envelope spectrum comparison: inner race fault of bearing 3_3.
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Figure 9. Envelope spectrum comparison: cage fault of bearing 2_3.

Tables 7–9 summarize the sample frequencies and amplitudes at the corresponding
FCF and harmonics, as well as the relative error percentage of these two features between
the generated and original samples. The comparison in Table 7 shows that, for all the 1st–
5th order BPFIs, the frequencies and amplitudes of samples generated by the optimized
GAN are much closer to the original ones than those of samples produced by the general
GAN. For the sample generated by the optimized GAN, the frequency error percentage
under all five orders of BPFI is zero, while the sample generated by the general GAN
cannot fully capture the actual BPFI in the original ones, even though the deviation error
is 0.34% and only exists in the 5th order BPFI. However, if we focus on the amplitudes
under BPFI, the optimized GAN shows much more superiority over the general one.
The amplitude errors under all 5 orders of BPFI from the samples generated by the opti-
mized GAN are much smaller than those from the general GAN. Take the 2nd BPFI as an
example; the actual amplitude from the original samples is 0.062, while the corresponding
amplitudes of the samples from the general GAN and the optimized GAN are 0.023 and
0.047, respectively. The relative error percentage of amplitude drops from 62.0% to 23.8%.
The above analysis confirms that the modification term L f requency in the GAN’s generator
loss function can enable the GAN to capture the fault information in the frequency domain.
The same conclusion can be also drawn based on the results in Tables 8 and 9.

Table 7. Amplitudes and frequencies of bearing 2_1 at 1st–5th BPFI.

Sample Source Parameter 1st—BPFI 2nd—BPFI 3rd—BPFI 4th—BPFI 5th—BPFI

Original sample Frequency (Hz) 178.944 357.889 536.833 715.788 931.449
Amplitude 0.176 0.062 0.124 0.072 0.020

Frequency (Hz) 178.944 357.889 536.833 715.788 928.323
Sample from
general GAN

Error (%) 0 0 0 0 0.34

Amplitude 0.117 0.023 0.086 0.053 0.011
Error (%) 33.3 62.0 30.1 26.1 44.1

Frequency 178.944 357.889 536.833 715.788 931.449
Sample from
optimized GAN

Error (%) 0 0 0 0 0

Amplitude 0.149 0.047 0.106 0.060 0.018
Error (%) 15.3 23.8 14.2 16.5 9.4
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Table 8. Amplitudes and frequencies of bearing 3_3 at 1st–5th BPFI.

Sample Source Parameter 1st—BPFI 2nd—BPFI 3rd—BPFI 4th—BPFI 5th—BPFI

Original sample Frequency (Hz) 192.229 384.457 576.686 808.767 994.744
Amplitude 0.127 0.168 0.104 0.015 0.013

Frequency (Hz) 192.229 384.457 576.686 808.767 990.055
Sample from
general GAN

Error (%) 0 0 0 0 0.5

Amplitude 0.104 0.131 0.088 0.019 0.006
Error (%) 18.0 22.1 15.9 26.0 49.5

Frequency (Hz) 192.229 384.457 576.686 808.767 961.143
Sample from
optimized GAN

Error (%) 0 0 0 0 0

Amplitude 0.124 0.143 0.096 0.020 0.011
Error (%) 2.2 14.7 7.9 26.7 14.4

Table 9. Amplitudes and frequencies of bearing 2_3 at 1st–5th FTF.

Sample Source Parameter 1st—FTF 2nd—FTF 3rd—FTF 4th—FTF 5th—FTF

Original sample Frequency (Hz) 14.847 28.912 42.978 57.825 71.890
Amplitude 0.069 0.043 0.064 0.022 0.031

Frequency 14.066 28.131 42.978 57.043 71.890
Sample from
general GAN

Error (%) 5.3 2.7 0 1.4 0

Amplitude 0.018 0.019 0.019 0.020 0.014
Error 73.3 55.4 70.6 10.7 54.1

Frequency (Hz) 14.066 28.912 42.978 58.606 71.890
Sample from
optimized GAN

Error (%) 5.3 0 0 1.4 0

Amplitude 0.082 0.028 0.057 0.021 0.033
Error (%) 17.5 35.3 10.9 4.6 6.4

In summary, data generation results show that both the general GAN and the op-
timized GAN can generate similar samples compared to the original ones. However,
the samples generated by the optimized GAN have higher similarity to the original one
than that generated by the general GAN, especially at the FCF and harmonics in the
frequency domain. More specifically, data generation for one fault type under different
working conditions, such as bearing 2_1 and bearing 3_3, proves that the optimized GAN
method can be applied to the bearings under the different working conditions. Further-
more, the results of bearing 2_1 (inner race fault) and bearing 2_3 (cage fault) demonstrate
that the optimized GAN method adapts to the bearings with different defect types.

4.2. Fault Diagnosis Based on CNN_GAN

As introduced in Section 3, there are 648 outer race fault samples, 138 inner race fault
samples, and 209 cage fault samples. In other words, the imbalance ratio of XJTU-SY
bearing datasets is nearly 5:1:1.5 (outer race fault samples: inner race fault samples: cage
fault samples). Besides, 80% of these samples are divided into the training set, with the
remaining 20% as the test set. To fully evaluate the positive effect that the GAN has on CNN
when dealing with the unbalanced datasets, two more training sets with the imbalance
ratios of 10:1:2 and 20:1:2 are built by randomly selecting fewer inner race fault and cage
fault samples from the XJTU-SY bearing datasets (the training dataset in Table 5), while the
test set is fixed the same as the test set in Table 5. The sample composition of three training
sets with different imbalance ratios and the test sets is illustrated in Figure 10.
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Figure 10. Composition of training sets and the test set.

Before validating the test set, on the one hand, CNN is trained on the training sets
with the different imbalance ratios, in which the outer race fault has much more samples
than the inner race fault and the cage fault. On the other hand, the unbalanced training
sets are extended with the optimized GAN by generating more inner race fault and cage
fault samples. After data generation, all 3 fault types in the extended training sets have the
same sample size, with 518 samples individually. In other words, the ratios between the
outer race fault samples, the inner race fault samples, and the cage fault samples become
balanced. The general CNN and CNN_GAN mentioned above are validated with the same
testing set. The difference between these two CNNs is that the former is trained with the
imbalanced training set and then directly validated with the testing set, while the latter is
trained with the extended dataset that has been balanced with the collaboration of the GAN
and CNN and then validated with the testing set. The CNNs’ performance comparison on
the testing set is displayed in Table 10.

Table 10. Comparison of fault diagnosis performance between CNN and CNN_GAN.

Imbalance Ratio
CNN CNN_GAN

Accuracy Cross-Entropy Error Accuracy Cross-Entropy Error

Training set 1 (5:1:1.5) 98% 0.6071 100% 0.5645
Training set 2 (10:1:2) 88% 0.7013 90% 0.6642
Training set 3 (20:1:2) 68% 0.8478 88% 0.7012

For the general CNN, the fault diagnosis accuracy decreases from 98% to 88% when
the imbalance ratio of training set increases from 5:1:1.5 to 10:1:2, and it sharply drops to
68% when the imbalance ratio further raises to 20:1:2. This confirms that the imbalance
ratio of training datasets has a great influence on the CNN’s performance. On the contrary,
if a CNN is trained on the extended datasets that have been augmented with the generated
samples from the optimized GAN, the CNN’s performance can be significantly improved.
For instance, when CNN_GAN is trained with the training sets 1 and 2 that have been ex-
tended and balanced, its fault classification accuracy on the testing sets achieves up to 100%
and 90%, respectively. Even when the imbalance ratio raises up to 20:1:2, the CNN_GAN’s
fault classification accuracy still maintains 88%. Under all 3 training sets, the CNN_GAN
has a smaller average cross-entropy error compared with the general CNN, which proves
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that the GAN can efficiently improve the CNN’s fault diagnosis performance by generating
new samples when dealing with the unbalanced datasets. Additionally, Table 10 shows that
a training set with a higher imbalance ratio brings lower CNN classification accuracy, even
after being balanced by data generation with a GAN. Though CNN_GAN performs better
than CNN, the change tendencies of both two networks over increasing imbalance ratios
are consistent, which indicates there exists an imbalance ratio limitation of the training set
that CNN_GAN can handle with, especially for a predefined CNN’s performance index.
For example, in this case, if the target of the CNN’s classification accuracy on the fixed
imbalanced dataset is set as 90%, then, the CNN_GAN can deal with the training set with a
maximum imbalance ratio of 10:1:2.

Besides the accuracy and cross-entropy, the confusion matrix gives more details of
the classification for each label. As presented in Table 11, all these 3 cases are validated
on the same dataset as the testing set in Figure 10 but trained with one of the three
training sets with different imbalance ratios in Figure 10. Specifically, the general CNN
is trained with the original unbalanced datasets, and the CNN_GAN is trained with the
extended datasets that have been balanced by the optimized GAN. In these confusion
matrices, the misclassified samples mainly come from the inner race fault and the cage
fault because the outer race fault samples are dominant in each training set. Moreover,
the higher the imbalance ratio is, the higher the prediction error is. With further comparison
between the CNN and CNN_GAN, it can be found that the CNN_GAN achieves higher
overall accuracy than the general CNN. In addition, the fault classification accuracy of
both the inner race fault and the cage fault can be improved if the optimized GAN is
employed to generate the inner race and cage fault samples. For example, under set 1
and set 2, the CNN’s classification accuracy on the inner race fault increases from 85.7%
to 100% and from 14.3% to 28.6%, respectively. With respect to the cage fault, the CNN’s
diagnosis accuracy increases remarkably from 4.8% to 90.5% under set 3. The result can be
explained as: in the unbalanced dataset, the dominant fault type samples have much more
influence on the loss function, which, therefore, push the CNN forward to extract more
local features that are only shared by the dominant fault type, with CNN’s ability lost to
extract more general and robust features that can distinguish different fault types. This
means that CNN has dropped into overfitting. While, for the CNN_GAN, the imbalanced
data has been balanced, which means there are no dominant fault types in the training set.
Therefore, the trained CNN_GAN can avoid overfitting and have the capability to capture
fault features that can be used to recognize the fault types and be simultaneously robust
enough. Based on the above analysis, it can be concluded that the balanced training dataset
can effectively enhance the CNN’s fault classification performance, and the optimized
GAN can efficiently transform the unbalanced dataset into the balanced one by generating
samples for the fault types that have limited data.

Table 11. Fault diagnosis confusion matrix under three training sets.

Diagnosis
Network

Confusion Matrix on Testing Set

Training with Set 1 Training with Set 2 Training with Set 3
Unbalance Ratio (5:1:1.5) Unbalance Ratio (10:1:2) Unbalance Ratio (20:1:2)

CNN
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Table 11. Cont.

Diagnosis
Network

Confusion Matrix on Testing Set

Training with Set 1 Training with Set 2 Training with Set 3
Unbalance Ratio (5:1:1.5) Unbalance Ratio (10:1:2) Unbalance Ratio (20:1:2)

CNN_GAN

Target label: CF-cage fault, IRF-inner race fault, ORF-outer race fault; prediction label: CF’-cage fault, IRF’-inner race fault, ORF’-outer race
fault.

5. Conclusions

To solve the CNN’s performance reduction problem under the unbalanced datasets,
an improved GAN is proposed to generate new data for the fault class with limited samples.
The work can be summarized as follows:

• A collaborative network GAN_CNN is developed. The GAN generates an almost
balanced dataset with data augmentation for the inner ring and the cage fault samples.
Once the generated samples are added, the CNN evaluates the extended dataset
quality and outputs the fault classification result to modify the loss function of the
GAN’s generator.

• Besides the overall similarity, the similarity on the envelope spectrum is considered
when building the GAN. The envelope spectrum error from the 1st-5th order FCF
between the experimental data and the generated data is taken as a correction term to
the general cross-entropy based loss function of the GAN’s generator.

Experimental validation is carried on the XJTU-SY bearing dataset. Results confirm the
effectiveness of an optimized GAN and the collaborative structure of the CNN_GAN.
The following are the main conclusions:

• When constructing the loss function for a GAN, the GAN performance can be im-
proved by considering the envelope spectrum error. The generated samples have
higher fidelity and contain more accurate fault information, which, in turn, contribute
to the CNN’s accuracy improvement.

• The collaborative network CNN_GAN performs better than the GAN or the CNN.
The GAN generates more accurate data if the CNN’s classification results are con-
sidered into the GAN’s loss function. The CNN’s fault classification accuracy can be
significantly enhanced after the GAN generates more data for the unbalanced training
dataset.

Though only the idea is validated with CNN_GAN in this paper, it can be extended
with other methods. For example, the fault characteristic spectrum can be replaced by
other metrics characterizing bearing fault status. With regard to the outlook, we will focus
on the extension of this method and try to develop a physics-guided GAN. Validation with
more experimental data and application cases will also be addressed in the future.
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Abstract: Within the domain of tribology, enterprises and research institutions are constantly working
on new concepts, materials, lubricants, or surface technologies for a wide range of applications. This
is also reflected in the continuously growing number of publications, which in turn serve as guidance
and benchmark for researchers and developers. Due to the lack of suited data and knowledge bases,
knowledge acquisition and aggregation is still a manual process involving the time-consuming review
of literature. Therefore, semantic annotation and natural language processing (NLP) techniques can
decrease this manual effort by providing a semi-automatic support in knowledge acquisition. The
generation of knowledge graphs as a structured information format from textual sources promises
improved reuse and retrieval of information acquired from scientific literature. Motivated by this,
the contribution introduces a novel semantic annotation pipeline for generating knowledge in the
domain of tribology. The pipeline is built on Bidirectional Encoder Representations from Transform-
ers (BERT)—a state-of-the-art language model—and involves classic NLP tasks like information
extraction, named entity recognition and question answering. Within this contribution, the three
modules of the pipeline for document extraction, annotation, and analysis are introduced. Based on
a comparison with a manual annotation of publications on tribological model testing, satisfactory
performance is verified.

Keywords: tribo-testing; tribo-informatics; machine learning; artificial intelligence; natural language
processing; tribAIn; BERT

1. Introduction

The emergence of efficient and sustainable technologies represents a major challenge
for the 21st century. While renewable energy sources are increasingly replacing fossil fuels
in order to reduce CO2 emissions, the influence of friction and wear on the energy efficiency
of a wide range of technical processes has hardly reached public awareness. However,
these offer considerable potential for saving CO2 and resources. Holmberg and Erdemir [1]
estimated that roughly 23% of the global primary energy is consumed to overcome friction
and to repair/replace worn components in tribo-technical systems. The authors predicted
that these energy losses could be reduced by up to 40% through tribological advances.
Accordingly, companies and research institutions are focusing on new concepts, materials,
lubricants, or surface technologies in a wide range of applications. This is also reflected in
the continuously growing number of publications related to the domain of tribology, which
in turn serve as inspiration, guidance, and benchmark for researchers and developers,
but which are almost impossible to keep up with due to their vast quantity and the
associated complexity and diversity. Thereby, profound data bases in combination with
machine learning (ML) and artificial intelligence (AI) approaches can support sorting
through the complexity of patterns and identifying trends [2]. Therefore, they are more
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and more employed in the analysis, design, optimization, or monitoring of tribological
systems in various fields [3], ranging from composite materials [4], drive technology [5,6],
manufacturing [7], surface engineering [8,9], or lubricant formulation [10,11]. As pointed
out by Marian and Tremmel [12], novel findings and additional value in the domain of
tribology can especially be created by extracting knowledge from available literature and
drawing higher-level conclusions. For example, Kurt and Oduncuoglu [13] trained artificial
neural networks (ANNs) with data from literature to study the influence of normal load,
sliding speed as well as the type and weight fraction of various reinforcement phases within
a polyethylene matrix on the resulting friction and wear behavior. Similarly, Vinoth and
Datta [14] utilized 153 data sets from literature to predict mechanical properties of carbon
nanotube or graphene reinforced polyethylene in dependency of composition, particle
size, and bulk properties by means of an ANN. Subsequently, multi-objective optimization
by genetic algorithms and corresponding experimental validation actually demonstrated
improved tribological properties compared to the references. Using 80 data sets from
four-ball-tests and 120 data sets from pin-on-disk experiments with varying base oils and
friction modifiers as reported in literature as well as an ANN and a genetic algorithm,
Bhaumik et al. [15] optimized the lubricant formulation and experimentally validated their
results. The aforementioned studies indicate the potential through leveraging knowledge
from the available literature. However, the data acquisition and processing still are very
manual in the field of tribology, involving the review of publications and the extraction of
relevant (most frequently textually/descriptive) information, which limits the generation
of sophisticated and broad databases and thus the further use of ML/AI [12].

High manual efforts to acquire and curate information and knowledge for further
processing are not limited to the domain of tribology and is known as “knowledge ac-
quisition bottleneck” [16]. Although the latter has been discussed since the rise of expert
systems in the 1980s [17], for instance with the purpose of tribological design decisions [18]
or failure diagnosis [19] to mention two examples from the tribological domain, knowledge
acquisition and thus knowledge engineering are still quite manual and time-consuming
tasks. Studer et al. [20] argue that knowledge engineering is a modeling activity, which goes
beyond the simple transfer of directly accessible knowledge into an appropriate computer
representation towards a model construction process [21]. In consequence, knowledge
structuring and modeling plays an important role in the knowledge acquisition process.
Hoekstra [22] therefore refers to a “knowledge reengineering bottleneck”, which highlights
the general difficulty of continuously reusing existing generic and assertional knowledge.
The latter refers to data-level or object knowledge, while generic knowledge concerns
schema-level describing conceptual knowledge and is represented as a domain theory to
structure the respective domain. This includes the decision on used vocabulary to describe
the domain and a representation form to formalize the model. Chandrasegaran et al. [23],
as well as Verhagen et al. [24], emphasized the importance of semantic interoperability for
knowledge reuse and sharing, which is frequently dealt with ontological models repre-
sented in formal logics. According to Gruber [25], an ontology is an “explicit specification
of a conceptualization”. This means that an ontology can be used to explicitly define a
domain model for sharing and reusing structured knowledge by humans and machines. In
other domains, e.g., bioinformatics, ontologies are widely used for knowledge structuring,
data integration and decision support systems [26]. One successful example is the Gene On-
tology (GO) [27], which provides broadly accepted vocabulary for annotating gene product
data from different databases and sources. Exploiting ontologies for accessing and reusing
experimental knowledge has also been pursued in the domain of tribology. One example
is the “OntoCommons” project (https://ontocommons.eu/industrial-domain-ontologies,
accessed on 14 December 2021), where a tribological use case aimed at reducing efforts
in tribological experiments by reusing existing knowledge. Thereby, Esnaola–Gonzalez
and Fernandez [28] argue, that semantic technologies, and more specifically ontologies
propose a suited representation for the vaguely documented results of experiments. Within
the domain of materials science, the “European Materials Modelling Ontology” (EMMO,
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https://emmc.info/emmo-info/, accessed on 14 December 2021) provides a represen-
tational ontology based on materials modelling and characterization knowledge. Fur-
thermore, we recently introduced the tribAIn ontology [29] for reusing knowledge from
tribological experiments. The domain ontology was built for the purpose of providing a
common and machine-readable schema for structuring tribological experiments intending
to improve reuse and shareability of testing results from different sources. Since this contri-
bution relies on the tribAIn ontology, more detailed information is provided in Section 2.2.
In addition to schema-level generic knowledge, assertional knowledge refers to specific
knowledge objects, e.g., results from individual experiments. As mentioned before, as-
sertional knowledge from experiments in the domain of tribology is usually published
in natural language, thus publications are a well-suited knowledge source for acquiring
the current state of tribological findings. Dealing with natural language sources is usually
problematic since it is ambiguous and unstructured. Moreover, textual descriptions may be
incomplete in the sense of formal models. Due to the time-consuming process of acquiring
and structuring knowledge from textual sources in systematic literature studies or man-
ual database construction, those knowledge bases are not suited for long-term reuse and
continuous extension. A successful example for generating structured information from
textual sources is the DBpedia project [30], which extracts structured data from Wikipedia
content using templates and pattern matching techniques. The structured format then
allows querying the vast content in a sophisticated way instead of searching articles by
keywords and processing the information manually. In terms of the results from tribological
experiments, publications—similar to Wikipedia—contain structured (e.g., operational pa-
rameters, wear rate, coefficient of friction, etc.) and unstructured knowledge (for example
interpretive description and discussion of results). By extracting the information from text
in a structured way, the knowledge can be queried, processed, and compared. Thus, one
could query for tribological experiments on desired materials and testing conditions, for
example dry-running pin-on-disk model tests with various reinforcement phases within
composites or deposited coatings on the specimen surfaces.

A large-scale employment of aforementioned knowledge extraction approaches, how-
ever, strongly demands for strategies for (semi-)automatically streamlining data acquisition.
Therefore, this contribution aims at the introduction of a semantic annotation pipeline
based upon natural language processing (NLP) methods in order to overcome the “knowl-
edge reengineering bottleneck” in the domain of tribology. The motivation behind this
contribution is mainly inspired by the current practice in biomedical research, where a
massive growth in published research articles led to increasing attention for automated
information extraction methods to support human researchers [31,32]. Regarding similar
challenges, like sharing research outcomes via natural language publications, semantic
ambiguity and interdisciplinary nature of the domain, this contribution is a first attempt to
apply (semi-)automatic knowledge acquisition techniques within the domain of tribology.
Therefore, while the methods used within this contribution have already shown potential
in similar knowledge acquisition and structuring issues within the biomedical domain,
this paper aims at the effective use of these methods in tribology. The contribution is
structured as follows: First, the applied methods for the acquisition pipeline are introduced,
containing a description of the underlying domain theory of tribological test methods as
a generic schema as well as the relevant semantic web and NLP techniques, especially
named entity recognition and question answering under the use of the BERT language
model [33]. The semantic annotation pipeline and packages used for implementation are
summarized in Section 3. Subsequently, the access-level and performance of the pipeline
are demonstrated in Section 4, including a description of the Web-User-Interface and a
technical evaluation of the single modules of the pipeline. Finally, we discuss the potentials
and limitations of the pipeline, as well as connections and outlooks to further approaches
in Section 5.
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2. Theory and Methods

2.1. Domain Theory from Tribology

As mentioned before, generic knowledge builds a domain theory, which can be repre-
sented as a formal ontology. In terms of semantic annotation, the domain theory is used
as structured metadata, the unstructured resource is enriched with. Therefore, relevant
concepts and relations from established methodologies of tribological testing are used to
build the schema for the semantic annotation pipeline. Generally, a tribological system
can be described by its system structure, input and output variables and their functional
conversion within the open or closed system boundary [34] (Figure 1). The system structure
consists of the relatively moving body and counter-body, which are rubbing against each
other and may be completely or partially separated by an intermediate medium (liquid or
gaseous). Operational input variables, such as loads, kinematics, duration, and tempera-
tures, can be summarized in the stress collective. Depending on the latter, as well as any
disturbance variables and the system structure, the body and counter-body physically and
chemically interact at temporally and spatially varying locations. On the one hand, this
results in loss variables such as friction and wear, which cause changes in the surface, loss
of material and energy dissipation. On the other hand, this results in the actual functional
variables of the tribological system. The mechanisms and applications of tribology extend
over several size scales. This ranges from processes on the nano- or micro-level in the field
of physics, chemistry, and material sciences, such as the formation of boundary layers or the
shearing of nanoparticle layers and ends with machine elements and assemblies as well as
multiple tribological contacts in the engineering sciences in the micrometer to meter range,
for example in rolling bearings or gears. Accordingly, tribometry, i.e., tribological measur-
ing and testing technology, covers all dimensional ranges of tribology determining friction
and wear parameters of tribological systems. The significance of various quantifiable mea-
sured variables, e.g., a friction coefficient averaged over time or a wear coefficient, usually
depends on the underlying mechanisms, the measurement method, and the objective of
the study. Given the function and structure of tribological systems, tribological testing can
be divided into six categories according to the simplification of the system structure, the
stress collective or the environmental conditions. While original and complete systems are
tested under real operating and environmental conditions in field tests (category I), this is
carried out under laboratory conditions with merely practical operating conditions in test
bench tests (II). In aggregate (III) and component tests (IV), this is further reduced to the
investigation of original aggregates or components. Specimen tests (V) are conducted with
specimens that are similar to the components and subjected to similar stresses as in the
target application. Finally, model tests (VI) involve fundamental analyses of friction and
wear processes with simplified specimens under defined loads. Typical representatives
of the latter are disk-on-disk, cylinder-on-cylinder, ball-on-disk or pin-on-disk tribometer
tests. The advantages of the individual test categories can be combined by a suitable test
chain [34].

2.2. The TribAIn Ontology

Kügler et al. [29] introduced the tribAIn ontology as a schema for structuring, reusing
and sharing experimental knowledge within the tribological domain. The ontology was
modelled highly relying on existing tribological test methods (see Section 2.1 and [34]). The
presence of a common and shared methodology as well as terminology are vital assump-
tions for specifying a formal ontology of a domain, since those build a strong and accepted
conceptualization, the formal specification relies on. Furthermore, the ontology is based
on the EXPO ontology (ontology of scientific experiments) introduced by Soldatova and
King [37], which is a generic formal description of experiments. Since tribAIn shares the
same purpose of efficient analysis, annotation and sharing of results from scientific experi-
ments, EXPO concepts were reused and further specified for the domain of tribology. The
tribAIn ontology is formalized in OWL (Web Ontology Language) [38], which is a common
ontology language based on description logics (DLs) [39]. Knowledge formalized with an
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ontology language is expressed in form of triples: <subject> <predicate> <object>, which
means the ontology can be visualized as a directed graph with named relations between
two classes (concepts). In the following, we will use Turtle Syntax [40] for streamlining
triples of tribAIn. Since every object within an OWL ontology has a unique identifier, the
prefix tAI is used for the tribAIn IRI (Internationalized Resource Identifier), thus concepts
and relations of the tribAIn namespace can be identified by this prefix. The ontology
provides concepts to describe the three main working areas “Experimental Design”, “Pro-
cedure” and “Experimental Results” (Figure 2). The concepts from these areas structure
the information about a specific experiment, with the tribological system (tAI:TriboSystem)
investigated, pre-processing procedures (tAI:IndustrialProcess and subclasses) as well as the
test procedure (tAI:TribologicalTesting) itself and links that information with the outcome
of the investigation (tAI:OutputParameter and subclasses). Due to the close relation to the
underlying methodology (cf. Section 2.1), the concepts refer to common terms within the
domain of tribology. Parameters or variables, for instance loads or temperatures, are de-
scribed using a pattern containing the two triples: Parameter hasValue xsd:float and Parameter
hasUnit Unit. The first triple links a value of the datatype float to an instance of the class (or
some subclass of) Parameter, while the other triple links a unit to the same instance. In this
manner, measurement series are generated in a consistent fashion, which can be compared
and analyzed.

Due to the design of the tribAIn ontology, a knowledge base (KB) which uses the
ontology as schema, can be queried in terms of the following example questions (cf. [29]):

• Which tribological systems were investigated under dry-running conditions using a
solid lubricant coating?

• Which variables were tested regarding their influence on the behavior of a material pairing?
• Which wear rate was calculated of sample XY?

Figure 1. Overall representation of a tribological system, its target function, and interactions in
tribological contacts. Redrawn and adapted from [29,34–36].
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Figure 2. Excerpt of relevant tribAIn concepts. Redrawn and adapted from [29].

2.3. Ontologies, Knowledge Graphs and Semantic Annotation

As Gruber [41] states, within ontologies, definitions associate names of the entities
within a universe of discourse. Therefore, the schema provided by an ontology can be
shared among different knowledge graphs, which hold the actual data. This is referred to
as ontological commitment and is a guarantee for consistency, even for incomplete knowl-
edge, since there are agreements to use a shared vocabulary [41]. Those commitments to
a specific vocabulary (or terminology) are also implicitly made within natural language
communication. Within the domain of tribology, they exist for instance for the description
of a tribological system (cf. Figure 1). Since tribological testing should enable reproduce-
able and comparable results, experiments must be built upon a common methodology,
which defines the system structure as well as input- and output parameters. Describing
experiments as well as results within a scientific publication under the use of a common
terminology is a first step of knowledge formalization (Figure 3).

Figure 3. Different degrees of formalization from natural language text to logical constraints. Re-
drawn and adapted from [42].

Nevertheless, the challenge with sharing knowledge among natural language pub-
lications is the vague or even insufficient description, since often knowledge about the
domain theory is assumed to be present to the human reader. An example is the following
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description from the materials section of an experimental study on Ti3C2Tx nanosheets
(MXenes) [43–45] investigated as solid lubricant for machine elements [46]:

“Commercially available thrust ball bearings 51201 according to ISO 104 [ . . . ] con-
sisting of shaft washer, housing washer and ball cage assembly were used as substrates
(Figure 1a).”

With background knowledge of the tribological domain, it becomes clear, that the
studied tribological system here is a certain thrust ball bearing and with the information
given by the referenced figure, the coated parts can be identified by a human reader. How-
ever, within the textual description, the link to the underlying methodology is not stated
explicitly. Thus, the documentation of the experiment is incomplete and ambiguous from a
formalization perspective. In other words, a semantic gap between textual descriptions
from publications and the general knowledge models with a higher degree of formalization
(Figure 3) prevents machine-supported processing of existing tribological knowledge from
publications. In order to bridge such a gap, semantic annotation is the process of joining
natural language and formal semantic models (e.g., an ontology) [47]. A semantic anno-
tation of the example cited above associated with ontological concepts from the tribAIn
ontology [29] is shown in Figure 4. In this example, the string “thrust ball bearings 51201” is
recognized as referring to the instance tbb_51201, which is a tribological system (“tbb_51201
a tAI:TriboSystem” in the triple notation of Figure 4). Furthermore, the components of the
thrust ball bearing are referred to the instances sw_51201 (shaft washer), hw_51201 (housing
washer) and as_bc_51201 (ball cage assembly) and are annotated as parts of the tribological
system within the triple notation. Annotating text snippets semantically to instances of an
ontology enriches the natural language text with machine-readable context. For example,
the instance “tbb_51201” may not only be referred to the experimental testing described in
the publication, but also be linked within the knowledge graph to information from the
ISO 104 mentioned within the text snippet. Therefore, the semantic annotation process
links mentions of entities from different sources to knowledge objects within a knowledge
graph, which are further semantically defined by an ontological schema.

Figure 4. Example of a semantic annotation of a text excerpt from [46] with concepts from the tribAIn
ontology [29] graphically visualized and in triple notation (Turtle format).

Furthermore, some semantic annotation systems perform ontology population, which
means not only annotating documents with respect to an existing ontology resulting in
semantic documents but creating new instances from the textual source [47]. For example,
the ball bearing from the example above is instantiated as a new knowledge object within a
knowledge graph. One advantage of building knowledge graphs from textual sources is
the direct link between mentions of knowledge objects within a source and the capability
of generating structured data from those mentions, even if the facts about a knowledge
object origin from different sources. A schematic architecture of a semantic knowledge base,
which consists of a domain ontology on schema-level, as well as a knowledge graph that
holds the data about knowledge objects, is shown in Figure 5. An example of structured
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information is given for the knowledge object “thrust ball bearings”, once as its use in a
tribological test setup and once as a rolling bearing with its specification.

Figure 5. Schematic architecture of a semantic knowledge base, consisting of schema-level ontologies
and a knowledge graph containing knowledge objects as structured data and mentions of knowledge
objects from semantic documents.

Thus, different information from various sources is linked for an object of the knowl-
edge graph. Moreover, the original textual sources are also linked nodes within the
graph. Semantic annotation can be performed manually, semi-automatically, or auto-
matically. Thereby, the semi-automatic approach is preferred since manual annotation is
time-consuming and automatic approaches can lead to unreliable information within the
resulting knowledge graph [47].

2.4. Natural Language Processing

A semi-automatically semantic annotation process is often conducted by methods
from NLP. The main challenge of NLP is the representation of contextual nuances of
human language, since the same matter can be described utilizing different wording and
the same word can be used for different meanings depending on the context. Therefore,
enabling machines to understand and process natural language demands the provision of
a machine-readable model of language. However, Goldberg [48] describes a challenging
paradox in this context: Humans are excellent in producing and understanding language
and are capable to express and interpret strongly elaborated and nuanced meaning of
language. In contrast, humans struggle at formally understanding and describing the
rules, which govern our language [48]. Rules in this context are not only referred to syntax
and grammar, but also to contextual concerns. For example, considering a classic NLP
task of document classification into one of the four categories metals, fluids, ceramics, or
polymers. Human readers categorize documents relatively easy into those topics guided
by the words used within a publication but writing up those implicitly applied rules for
categorization is rather challenging [48]. Therefore, machine learning models are trained to
learn vectorized text representations from examples, which are suited input formats for
NLP downstream tasks (e.g., document classification). The classic preprocessing steps for
generating those text representations from a document corpus are summarized in Figure 6.
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Almost any analysis of natural language starts with splitting the documents (e.g., plain
text, charts, figures), removing noise (e.g., references, punctuation) and normalization of
word forms [49]. Subsequently, the plain text is further split into minimal entities of textual
representation, the tokens, on word- or character-level. Since ML models assume some
kind of numerical representation as input, the tokens are replaced by their corresponding
IDs [50]. If a text is split into tokens on word level, the question arises, what counts as a
word. To answer this question, morphology deals with word structures and the minimal
units a word is built from, such as stems, prefixes and suffixes. Those minimal units are
important, if a tokenizer has to deal with unknown words (meaning words, which were
not within the training corpus) [48]. Tokenizers like WordPiece [51] represent words as
subword vectors [49], e.g., “nanosheets” can be separated in the subwords “nano” and
“sheet” and the plural-ending “- s”. However, the tokens are further transferred in so-called
embeddings, which are an input representation a ML or deep learning architecture can
handle for NLP tasks. An embedding is a representation of the meaning of a word; thus,
they are learned under the premise, that a word with the same meaning has a similar vector
representation [49]. A distinction is made between static embeddings and contextualized
embeddings. One quite popular static word embedding package is Word2Vec [52,53]. A
shortcoming of those static embeddings is that polysemantic is not properly handled since
one fixed representation is learned for each word in the vocabulary even if a word has a
different meaning in different contexts [49,54].

Figure 6. Preprocessing steps to generate embeddings from text as input to NLP downstream task.
Redrawn and adapted from [50].

Therefore, contextualized (dynamic) embeddings provide different representations
of each word based on other words within the sentence. State of the art representatives
are ELMO (Embeddings from Language Models) [55], GPT & GPT2 (Generative Pre-
Training) [56] and BERT (Bidirectional Encoder Representations from Transformers) [33],
which are also referred as pre-trained language models. BERT is a multi-layer bidirectional
transformer encoder [33,57], which is provided in a base version with 12 layers and large
version with 24 layers. Most of the recent models for NLP tasks are pre-trained on lan-
guage modeling (unsupervised) and fine-tuned (supervised) with task-dependent labeled
data [58]. Thus, those models are trained to predict the probability of a word occurring in
a given context [48]. BERT is pretrained on large amount of general-purpose texts from
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BooksCorpus and English Wikipedia, which resulted in a training corpus of about 3300 M
words [33]. Devlin et al. [33] differentiate BERTs pre-training from the other mentioned
models, consisting of two unsupervised tasks: masked language modeling (LM) and next
sentence prediction (NSP) (see also [59] for further information on BERTs pre-training).
Fine-tuning BERT for downstream tasks, like Question Answering (QA) or Named Entity
Recognition (NER), the same architecture is used apart from the output layer (see Figure 7).
The input layer consists of the tokens (Tok 1...Tok n). The special token [CLS] signs the
starting point of every input and [SEP] is a special separator token. For instance, question
answering pairs can thus be separated within the input [33]. The contextual embeddings
(E1 . . . En) further result in the final output (T1 . . . Tn), after being computed through
every layer resulting in different intermediate representations (Trm). For more information
on Transformer architectures, the interested reader is referred to [60]. There are different
extensions of the original model of BERT, which are specialized for certain downstream
tasks or domain terminologies. The SciBERT model [61] is pre-trained on scientific papers
improving the performance of downstream tasks with scientific vocabulary. BioBERT [32]
is pre-trained on large-scale biomedical corpora and improves the performance of BERT
especially in biomedical NER, relation extraction and QA. Furthermore, SpanBERT [62]
is a pre-training approach, which is focused on a representation of text spans instead of
single tokens. Both pre-training tasks from the original BERT are adapted for predicting
text spans instead of tokens, which is especially useful in relation extraction or QA.

Figure 7. BERT pre-training and fine-tuning procedures using the same architecture for both. Only
the output layer differs depending on the downstream task e.g., NER, QA. Redrawn and adapted
from [33].

2.5. NLP Downstream Tasks

Information Extraction (IE) is a task of obtaining structured data from unstructured
information, e.g., embedded in textual sources, by recognizing and extracting occurrences of
concepts and relationships among them [49,63]. IE is often used to build knowledge graphs
from textual representations (e.g., DBpedia), since those can be queried and are a common
way of presenting information to users [49]. IE and semantic annotation (see Section 2.3)
are often combined, since both share the subtask of NER. NER is a sequence-labeling task
to recognize and tag words or phrases usually like “Person” (B-PER), “Location” (B-GEO)
or “Organization” (B-ORG) within textual data. A named entity can be anything, which has
a proper name, thus can be distinguished from other objects [49]. Therefore, NER is often
based on a specific domain vocabulary, e.g., in biomedicine [32,64]. Moreover, relation
extraction is also a subtask of IE in the context of building knowledge graphs and mainly
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deals with the extraction of binary relations like child-of or part-whole relationships used
within taxonomies, ontologies and knowledge graphs [49]. IE can be used for template
filling, meaning recognizing and filling a pre-defined template of structured data from the
unstructured sources (cf. Figure 5) [49]. Question Answering (QA) is a task of information
retrieval, but with a query, which is a question in natural language and a response as
an actual answer [63]. QA is often used within Chatbots of customer services or within
virtual speech assistants (e.g., Amazon Alexa or Apple Siri). The main difference from
classic retrieval operations is the form of asking questions in natural language instead of
formal database queries and the retrieval of a precise answer to the question instead of
document retrieval. Therefore, QA can be exploited for generating structured data and
template filling.

3. Semantic Annotation Pipeline

The developed semantic annotation pipeline consists of three separate modules and
a graphical user interface (GUI). The modules communicate via REST API. Due to the
modular architecture, the single module can be exchanged and thus the pipeline can be
adapted to particular applications. The pipeline is trained for annotating and extracting
information from tribological publications with the scope of model tests (cf. Section 2.1).

3.1. Document Extraction

The first module (Figure 8) performs the preprocessing step introduced in Section 2.4
(Figure 6). Since the source format (PDF) is not suited for further processing, plain text is
extracted. By parsing through the documents, elements like figures, charts or tables are
also detected.

Figure 8. Document extraction module.

Besides detecting non-textual elements, the document is segmented into its paragraphs
(e.g., abstract, introduction etc.), since–depending on the IE purpose–the relevant informa-
tion may be provided mainly in a certain paragraph. For example, the introduction section
usually contains information about the aim of the investigation, while the results section
further provides a description of the outcome. Parsing is performed based on syntactical
rules and pattern matching, e.g., indentations, blank spaces or different fonts, can be used
as indicators for the detection process. Besides the content of the publication, meta data
about the document (e.g., author, DOI, date, publishing information) is extracted. The
last step is the aggregation of the previously segmented elements into JSON (Java Script
Object Notation), which is a common and platform independent data sharing format. The
document extraction module is implemented using the PyMuPDF Library [65].

3.2. Document Annotation

The document annotation module (Figure 9) performs the actual annotation process.
The module expects the files in JSON format from the document extraction module as input
and is capable of annotating plain text and table data. The annotation module uses the
Flair library [66] and the embeddings of the NER model are trained on the tribological
annotation categories displayed in Figure 10. Within a parameter study, embeddings from
BERT (Base), SciBERT and SpanBERT were tested against each other. Thereby, SpanBERT
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were chosen, since those have shown the best results with an F1 (micro) score of 0.8065 and
an F1 (macro) score of 0.8012.

Figure 9. Document annotation module.

Figure 10. Example of semantic annotation and knowledge object generation within the document
annotation module and annotation categories for example sentences from [67].

The annotation step within the module recognizes entities of the tribological categories.
An example is shown in Figure 10. The inputs are three different sentences (plain text),
which are parsed. Then, entities of the different categories are annotated. In a second
step, the annotations are aggregated to knowledge objects, thus for instance the two recog-
nized entities MXene and Ti3C2Tx refer to the same knowledge object (Figure 10). Due to
the knowledge object generation, different terms used to describe the same entity within
a text are aggregated to a single object. The generation of knowledge objects is mainly
based on identifying acronyms and synonyms. The identified character strains are then
compared. For character strains, which go beyond four, a fuzzy comparison using the Fuzzy-
Wuzzy Library (https://pypi.org/project/fuzzywuzzy/, accessed on 14 December 2021)
is conducted, which calculates the Levensthein distance to compare two-character strains.
Output data from the document annotation module is again streamlined in JSON format
and contains the annotated text and table data as well as the aggregated knowledge objects.

3.3. Document Analysis

The document analysis module (Figure 11) is a QA system that extracts answers from the
text to questions about tribological model tests to create triples from the document. The QA sys-
tem is built on the PyTorch framework (https://pytorch.org/, accessed on 14 December 2021)
using a SciBERT-Model from the Hugging Face library (https://huggingface.co/, accessed
on 14 December 2021).
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Figure 11. Document analysis module.

The BERT model is fine-tuned by question-answer pairs. Question templates (Figure 12)
are generated, which contain the questions for extracting knowledge objects from the text.
Those templates determine the structure of the information, which should be extracted
from the text. This means, the question templates can be customized depending on the
extraction task. The decision maker is an intermediate aggregation step containing multiple
redundancies, which ensures higher reliability of an extracted answer. Therefore, the
question template contains the same question rephrased several times. Furthermore, the
answer space is restricted by using regular expressions (Regex) to define an expected
answer pattern and by specifying an entity type (tribological category) of the extracted
answer. The final result is an ID of a knowledge object and its textual annotation, for the
case a knowledge object can be assigned. Otherwise, the textual passage is extracted as
answer to the question.

Figure 12. Question template example for the extraction of the testing duration of an experiment.

4. Implementation and Evaluation

4.1. Web-Application

For testing the capability, the pipeline can be assessed through a web interface (see
Data Availability Statement). The three modules communicate via REST API with the GUI.
Publications have to be provided in PDF-format and can be delivered by drag and drop
to the first module (1). As indicated in Figure 13, a manual control and adaptation step is
integrated between the three separate modules. Thus, the acquisition of structure works in
a semi-automatic manner with human supervision.
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Figure 13. Process of document annotation via the web-interface.

The output from the first module is the extracted text and other entities (e.g., figures,
tables, metadata) from the PDF. The text itself is split into chapters, paragraphs and
sentences, which serve as input to the next modules. The user check enables adaptation
and correction of the automatically generated output from the module (e.g., adaption
of the paragraph separation). Subsequently, the pipeline can be continued via the GUI
and the JSON-data produced by the first module forwarded to the document annotation
module (2), which performs NER and knowledge object generation. The output from
the second module can also be checked by the user after the automatic annotations are
generated. The NER process thereby performs the annotation part while the knowledge
objects are the semantic output of the annotation pipeline (see Figure 5 in Section 2.3 for
the role of knowledge objects within a semantic knowledge base). The check especially
contains proof of annotations and the aggregation to knowledge objects. Next, the pipeline
is continued to the final context analyses via the document analysis module, which performs
the QA and generates the structured data as final output.

4.2. Resulting Knowledge Graph

The output from the document annotation module is a linked data structure, contain-
ing the aggregated knowledge objects related to the mentions within paragraphs and tables
of the publication. Therefore, the output can be visualized as a knowledge graph contain-
ing the structured data annotated within the respective publication. This is exemplified
in Figure 14 for a representative publication [67]. The generated knowledge graph is a
complex network of nodes and relationships. Thereby, the size of the nodes corresponds to
the number of mentions of a knowledge object within the publication. This means that a
knowledge object with only one mention has the minimum size while the size increases
with the number of mentions. In this way, the important knowledge objects within the
publication can be easily identified within the graph.

While the output graph from the document annotation module is particularly suited
to identify the main topics of the analyzed publication in form of the most often mentioned
knowledge objects, the output from the document analysis module is a graph generated
from the question templates (Figure 15). The knowledge graph contains the identified
and correctly classified answers (triangles) given by the decision maker. Thereby the
triples are generated from the schema provided by the tribAIn ontology [29]. Thereby, the
excerpts of the knowledge graph in Figure 15 refer to the example questions introduced in
Section 2.2 regarding the tested variables (1) and the calculated wear rate (2). The generated
linked data combined with an ontology provides a formally and semantically unambiguous
representation which can be queried, filtered and further processed.
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Figure 14. Schematic visualization of the resulting knowledge graph from the document annotation
module for the processed representative publication [67].
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Figure 15. Schematic of the resulting knowledge graph from the document analysis module for the
processed representative publication [67] with a detailed view on the varied operational parameters (1)
and the outcome measurements of the wear rate (2).

4.3. Evaluation

For evaluation, five documents from a pool of existing publications on model-tests
were used for an initial performance test of the pipeline:

• Doc#1: Marian et al., 2020 [67]
• Doc#2: Mekgwe et al., 2019 [68]
• Doc#3: Li & Xu 2018 [69]
• Doc#4: Wang et al., 2018 [70]
• Doc#5: Byeong-Choon & In-Sik 2017 [71]

The documents differentiate in length and format, for instance number of columns.
Furthermore, Doc#5 is kind of defect since the PDF contains invisible text overlaps. Thereby,
the three modules were evaluated separately depending on the evaluation aim. Since
semantic annotation is not a common task within the domain of tribology, standard test
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documents, which are widely accepted for performance measurement of NLP tasks, do
not exist. Therefore, the test documents were manually annotated for the special purpose
of evaluating the pipeline introduced within this contribution. The document extraction
module was analyzed with respect to its quality in extracting and separating text and other
elements like figures and tables from the PDF documents. This resulted in a comparison
of the data from the extraction module against the ground truth (GT) for text, figures and
tables. This shows if the system works as it is intended. The smaller the deviations from
GT, the more reliable is the PDF extraction. Within Table 1, the reliability of text extraction
is assessed against the criteria, if chapters, paragraphs, sentences, words and chars are
correctly detected and separated. The deviations from GT are relatively small for Doc#1
(chapter −12.5%; paragraph −8.6%, sentence −7.3%, word −7.3%, char −9.8%), Doc#2
(chapter 37.5%; paragraph −26.7%, sentence −3.0%, word −10.0%, char −18.2%, Doc#3
(chapter 7.1%; paragraph 11.5%, sentence −2.4%, word −1.3%, char −5.4%) and Doc#4
(chapter 27.3%; paragraph −22.2%, sentence 23.6%, word −5.0%, char −10.9%), while the
deviation is substantially higher for Doc#5 (chapter 240%; paragraph 400%, sentence 149%,
word 132%, char 118%). Those high deviations can be attributed to the defect PDF, which
contains embedded textual and other elements, which overlap the intended content of the
document. The results of the figure extraction analysis are shown in Table 2. Almost all
figures within the test set were correctly detected. Only one figure was partly incorrect
extracted in Doc#2 and two figure areas were incorrectly recognized in Doc#4. However, all
figures were correctly extracted within the defect PDF Doc#5. Thereby, 14 additional figures
were identified, which is due to the overlayed elements within the PDF. The extraction of
tables seems also reliable since the majority of tables are correctly recognized (see Table 3).
An exception is within Doc#1, which can be attributed to the table being rotated within the
publication. This shows that the first module depends on the quality and regularity of the
input files. Since the module provides a manual check, small deviations from the expected
output can easily be fixed via the GUI.

Table 1. Quality of text extraction regarding the extracted chapters, paragraphs, sentences, words,
chars and if an abstract was detected (true/false). The GT is given in the brackets.

Document Doc#1 Doc#2 Doc#3 Doc#4 Doc#5

Chapter 14 (16) 11 (8) 15 (14) 14 (11) 31 (9)
Paragraph 32 (35) 11 (15) 29 (26) 14 (18) 40 (18)
Sentence 179 (193) 65 (67) 124 (127) 68 (55) 237 (95)

Word 4213 (4547) 1304 (1449) 2898 (2937) 1205 (1276) 5192 (2241)
Char 26,127 (28,881) 7497 (9160) 17,119 (18,089) 6998 (7759) 30,928 (14,198)

Abstract true true true true true

Table 2. Quality of figure extraction regarding detected figures, incorrectly detected figure area and
additional extractions. The GT is given in the brackets.

Document Doc#1 Doc#2 Doc#3 Doc#4 Doc#5

Figure 12 (12) 5 (5) 12 (12) 5 (5) 12 (12)
Incorrect area 0 1 0 2 0

Additional Figure 0 0 0 0 14

Table 3. Quality of tables extraction regarding detected tables, additional extractions and correct
number of cells. The GT is given in the brackets.

Document Doc#1 Doc#2 Doc#3 Doc#4 Doc#5

Table 0 (1) 1 (1) 0 (0) 0 (0) 1 (1)
Additional Table 0 0 0 0 0

Incorrect cells - 0 - - 0
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The document annotation module was evaluated with respect to the ability of NER
and knowledge object generation. Three language models (BERT, SciBERT and SpanBERT)
were trained with the hyperparameters shown in Table 4, which were an outcome of a
previously conducted parameter study. Thereby, an RNN (recurrent neuronal network)
architecture was used with one layer and a hidden size of 128. Dropout [72,73] is a method
to reduce overfitting by deactivating a number of neurons randomly from the neural
network. The learning rate defines the step size of the optimization and thus controls
how quickly the model learns the given problem. The batch size specifies the number
simultaneously evaluated examples. Since the used language models have already been
pre-trained on large-scale general language data (cf. Section 2.4), the training includes only
fine-tuning, which is computationally less expensive. The training of the models took about
20 to 30 min each on a NVDIA RTX 2070 and 8 GB RAM.

Table 4. Hyperparameters for training language models.

Language
Model

RNN Layers Hidden Size
Dropout

Rate
Learning

Rate
Mini Batch

Size

BERT 1 128 0.0479 0.1 32
SciBERT 1 128 0.0020 0.1 32

SpanBERT 1 128 0.1454 0.15 32

Micro and Macro F1 scores were calculated to select the best of the three models for
the recognition task. Therefore, the five documents were manually annotated due to the
tribological annotation model categories. For every category the precision, recall and F1
score were calculated three times for each of the trained language models with regard to
the manual annotations (see Table 5). The test set contained 986 annotated sentences for the
tribological annotation model categories already introduced in Figure 10.

Table 5. Precision (P), Recall (R) and F1 score for each tribological annotation model category.

Category Score
BERT SciBERT SpanBERT

1 2 3 1 2 3 1 2 3

P 0.8000 0.7037 0.7692 0.7037 0.6667 0.7097 0.7600 0.7600 0.7241
R 0.8333 0.7917 0.8333 0.7917 0.8333 0.9167 0.7917 0.7917 0.8750Body

structure F1 0.8163 0.7451 0.8000 0.7451 0.7407 0.8000 0.7755 0.7755 0.7924

Composite
element

P 0.7833 0.7241 0.7272 0.7846 0.7286 0.7429 0.7576 0.8030 0.7812

R 0.7833 0.7000 0.8000 0.8500 0.8500 0.8667 0.8333 0.8833 0.8333

F1 0.7833 0.7118 0.7619 0.8160 0.7846 0.8000 0.7936 0.8412 0.8064
P 1.0000 0.8000 1.0000 1.0000 1.0000 1.0000 0.8333 0.8333 1.0000
R 0.8000 0.8000 0.8000 0.8000 0.6000 0.6000 1.0000 1.0000 0.8000Environmental

medium F1 0.9000 0.8000 0.9000 0.9000 0.8000 0.8000 0.9167 0.9167 0.9000

Geometry

P 0.9375 0.8824 0.8750 0.7500 0.8235 0.8235 0.8824 0.8889 0.8325

R 0.7895 0.8950 0.7368 0.6316 0.7368 0.7368 0.7895 0.8421 0.7368

F1 0.8572 0.8887 0.8000 0.6857 0.7777 0.7777 0.8334 0.8649 0.7817
P 0.8462 0.7143 1.0000 0.9286 1.0000 0.8571 1.0000 1.0000 1.0000
R 0.6111 0.5556 0.6111 0.7222 0.7222 0.6667 0.6667 0.6667 0.6667Intermediate

medium F1 0.7097 0.6250 0.7586 0.8125 0.8387 0.7500 0.8000 0.8000 0.8000

Kinematic
parameter

P 0.6667 0.6667 0.6364 0.7273 0.6923 0.6923 0.8000 0.8000 0.7273

R 0.8000 0.8000 0.7000 0.8000 0.9000 0.9000 0.8000 0.8000 0.8000

F1 0.7273 0.7273 0.6667 0.7619 0.7826 0.7826 0.8000 0.8000 0.7619
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Table 5. Cont.

Category Score
BERT SciBERT SpanBERT

1 2 3 1 2 3 1 2 3

P 0.6250 0.5000 0.6250 0.8182 0.6923 0.7143 0.7143 0.7500 0.6667
R 0.4545 0.5455 0.4545 0.8182 0.8182 0.9091 0.4545 0.5455 0.5455

Manufacturing
process

F1 0.5263 0.5218 0.5263 0.8182 0.7500 0.8000 0.5555 0.6316 0.6000

Operational
parameter

P 0.7222 0.7571 0.7647 0.7656 0.7937 0.8197 0.7059 0.7500 0.7424

R 0.8525 0.8689 0.8525 0.8033 0.8197 0.8197 0.7869 0.8361 0.8033

F1 0.7820 0.8092 0.8062 0.7840 0.8065 0.8197 0.7442 0.7907 0.7717
P 0.7143 0.7500 0.7368 0.6842 0.8235 0.7647 0.6190 0.7778 0.7778
R 0.7895 0.7895 0.7368 0.6842 0.7368 0.6842 0.6842 0.7368 0.7368Specification
F1 0.7500 0.7692 0.7368 0.6842 0.7777 0.7222 0.6500 0.7567 0.7567

Test
method

P 0.8947 0.8571 0.8571 0.8500 0.8095 0.8182 0.8889 0.8421 0.8497

R 0.8947 0.9474 0.9474 0.8947 0.8947 0.9474 0.8421 0.8421 0.8497

F1 0.8947 0.9000 0.9000 0.8718 0.8500 0.8781 0.8649 0.8421 0.8497

The resulting F1 scores are summarized in Table 6 for BERT, SciBERT and SpanBERT,
which were each calculated in triplicate. As mentioned before, SpanBERT featured the
best scores within the second run, which may be due to the annotated entities referring
to the tribological categories, that are often spans of words instead of single tokens (e.g.,
“Scanning electron microscopy”).

Table 6. Evaluation and selection of the NER model. F1 scores for BERT, SciBERT and SpanBERT.

BERT SciBERT SpanBERT

1 2 3 1 2 3 1 2 3

F1 (micro) 0.7823 0.7570 0.7782 0.7847 0.7905 0.7992 0.7702 0.8065 0.7879
F1 (macro) 0.7736 0.7443 0.7645 0.7868 0.7859 0.7880 0.7726 0.8012 0.7851

The annotations generated through NER were further aggregated to knowledge objects
within the document analysis module. The resulting number of aggregations is shown
in Table 7. Annotations are considered incorrectly aggregated if at least two annotations
are assigned to the same knowledge objects, although they do not belong together (false
positive). Furthermore, if at least two annotations which belong to a knowledge object
are not aggregated, they count as false negative. This criterion captures the reductivity of
the knowledge object generation while the counts of correctly and incorrectly aggregated
annotations provide an insight into the precision of the generation. A precision of 89.5% is
reached for the test pool while the recall is about 84.4%. This can be considered as sufficient
for the quality of knowledge object generation.

Table 7. Evaluation of knowledge object generation containing the number of annotations, of all
knowledge objects as well as correctly aggregative (true positive), incorrectly aggregated (false
positive) and not aggregated (false negative) knowledge objects.

Document Annotations
Knowledge

Objects
Correctly

Aggregated
Incorrectly
Aggregated

Not
Aggregated

Doc#1 944 236 59 12 11
Doc#2 296 68 21 1 11
Doc#3 609 98 57 4 2
Doc#4 323 75 32 5 0
Doc#5 400 70 36 2 14

∑ 2572 547 205 24 38
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Finally, the document analysis module was evaluated due to its quality of answering
the questions from the templates. The criteria for assessing the quality were grouped to the
quality of question answering itself and if the decision maker prefers the right answer. The
final results over all questions are shown in Table 8. The GT is counted, if at least one answer
within the text can be given to the question. The criteria for question answering itself are
split into the cases if the expected answer is found in text and/or if at least one additional
answer was found independent of the expected answer. The need for the decision maker
can be seen from the fact that additional answers besides the expected one were found for
all documents. The criteria for the decision maker were thereby split into the cases if the
correct answer was preferred by the decision maker, if an incorrect answer was preferred,
or if no answer was found or preferred. When the text contains at least one correct answer
(GT), the question answering itself found the correct answer with a probability of 60.4%.
The decision maker found the correct answer with a probability of 62.3%. At this point it
should be noted that the quality of answers is highly influenced by the question templates.
This means what questions are asked of the publication to get a desired answer.

Table 8. Evaluation results of all answers to question templates regarding the input parameters (e.g.,
kinematical parameters), structural information of the tribological system (e.g., geometry) and output
parameters (e.g., friction and wear).

Question Answering Decision Maker

Document GT
Answer
Found

Additional
Answers

Correct
Answer

Incorrect
Answer

No
Answer

Doc#1 26 16 15 13 1 10
Doc#2 20 13 18 7 11 9
Doc#3 20 9 13 7 4 13
Doc#4 16 8 8 7 4 16
Doc#5 24 12 14 9 6 8

∑ 96 58 68 43 26 56

5. Discussion

In the context of the “knowledge reengineering bottleneck”, we introduced a semantic
annotation pipeline to semi-automatically streamline the knowledge aggregation from
publications within the domain of tribology. The inputs for the pipeline are publications of
experimental investigations from the domain of tribology and in particular experiments
of the category model test. The output is structured and linked data in form of json-files,
which can be visualized as graphs (cf. Section 4.2). The pipeline is built on state-of-
the-art language models and NLP techniques and was evaluated on five representative
documents. Since NLP is not in common use within the domain of tribology, there are no
datasets and standard documents for training and evaluating language models. This limits
the significance of the performance test conducted within this contribution since a Gold
Standard accepted by the community is missing and the pipeline cannot be compared to
similar projects. However, as we work with standard language models, which are approved
to be reliable within NLP communities and we conducted a first evaluation of our fine-
tuned models by manually annotating five representative documents, some assertions can
still be made about the current performance. Thereby, the document extraction (module 1)
has shown reliable performance on different structured and formatted publications under
the premise that the provided PDFs are not defect. This was substantiated by one tested
PDF document, which contains invisible overlays and therefore shows high deviations
from the GT in comparison to the other documents. The PDF extraction is always a critical
step within NLP processes as it depends on the quality of the PDF and accessibility of
the textual and other entities within the PDF. This is one reason for the modular structure
of the pipeline. The PDF extraction is only required if the input publications are in the
form of PDF format (which is a common format for textual documents). Since nowadays
publications are frequently available online as well, the accessibility of textual data from
HTML-Websites via an API is easier when the access is provided by publishers. Therefore,
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PDF extraction is a pragmatic approach to access the textual information from publications.
The annotation process (module 2) is performed using the SpanBERT language model,
which shows remarkable high F1 scores. The NER model introduced within this publication
is currently limited to publications on model tests (without claiming completeness), since
those are well structured and mostly standardized. To our best knowledge, NER tagsets or
language models itself as available for example in the domain of biomedicine (e.g., BioBERT)
so far do not exist for the domain of tribology. In the future, the development and training
of tribological language models can therefore improve the performance of applications in
NLP within the domain of tribology. Furthermore, knowledge object generation is only a
first step in named entity linking.

We discussed the role of knowledge objects within semantic knowledge bases within
Section 2.3. The knowledge objects here are an aggregation of annotations from the docu-
ment extracted by the pipeline. However, successful semantic knowledge sharing is usually
community driven within a domain (e.g., OBO foundry). An established knowledge graph
within the domain of tribology containing knowledge objects can therefore be extended
with aggregated objects from the annotation module. Further established knowledge ob-
jects can also be enriched by the annotations. Thus, information about entities of interest
in the domain of tribology can be semi-automatically acquired. Within the last module,
we exploited QA to generate structured output from the unstructured and annotated data.
The templates contain questions referring to tribAIn-ontology (e.g., questions about input
parameters, the tribological system structure and output parameters). Overall, the QA
system showed plausible answers to the tested question templates. During evaluation, we
recognized a frequently appearing misconduct of the decision maker, which often could
not differentiate the properties of the body and the counterbody. On the one hand, this
can be attributed to an insufficient differentiation within the textual description and on
the other hand to the question generation process within the QA system. The experiences
with the QA module further led to two major perceptions in the context of extracting
information from tribological publications. First, analyzing publications by a QA system
can be exploited for a quality check and improvement of standardization of the description
of experimental studies and outcomes. Thereby, question templates can be specified as a
check list, what a sufficient description of experimental studies and results should contain
to enable understanding and reproduction of the results. Second and relating thereto, the
question templates itself have to be carefully designed to gain an answer and aggregate
structured data from texts. Therefore, analyzing the publication practices and further the
research practices of tribologists can give interesting insights for improving knowledge
and data aggregation within the domain. However, the pipeline is intended to be human
supervised, since trust is a critical issue especially within neural NLP processes which
generate output without explanations of the process itself. This is the second reason for the
modular architecture. The output from every module can be checked and adapted before
continuing with the pipeline. This is especially important if automatic extraction is used
to extend semantic knowledge bases or aggregate structured data for further processing.
Besides the quality and trust of the results from the pipeline, another important issue is
the computational costs. As mentioned within Section 4.3, the training of the language
models took less than an hour (20 to 30 min) for each model. The low computational costs
are due to the currently available pre-trained language models, which merely must be
fine-tuned to be tailored to a specific domain. The execution of the annotation further only
takes a few seconds. Therefore, the pipeline can be considered as very efficient compared
to manual annotation.

6. Conclusions

Sharing knowledge in publications has a long tradition in scientific research since this
is the elemental way of consuming and communicating information and knowledge by
human scientists. Within the domain of tribology, the vast amount of available information
overcomes the cognitive capacity of humans in terms of efficient aggregation and processing.
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Therefore, AI provides a lot of potential to support scientists by handling this flood of
information. Nevertheless, the way of knowledge sharing within tribology is still mainly
based on publications and thus human focused. Descriptions in natural language are vague
and insufficient from a formalization perspective. This phenomenon is due to an intended
human consumer, for whom the provision of formal sufficient information would result
in far too long publications and re-reading the same information over and over again.
In contrast, machines need a formal and explicit model for aggregating and processing
information. Therefore, if the available amount of information overwhelms the capacity
of human processability, the question arises if we better should create representations
for sharing information with an AI instead of humans in the future? The answer is: Not
necessarily. As pointed out by Gruber [74], “the purpose of AI is to empower humans
with machine intelligence". This is referred to as “humanistic AI”, an artificial intelligence
designed to meet human needs by collaborating with and augmenting people. In terms of
an AI empowered tribological knowledge sharing, we introduced a semantic annotation
pipeline towards generating knowledge graphs from natural language publications to
bridge the gap between a human-understandable and a machine-processable knowledge
representation. The pipeline is built upon state-of-the-art NLP methods and is inspired by
similar challenges from the biomedical domain. Although we demonstrate the potential
of the approach (NER and QA show reliable computational performance scores), further
validation of the approach to ensure practical usability is recommended. This includes
especially the definition of the specific objective of the extracted information, e.g., for trend
studies or identifying research gaps and contradictions within the domain of tribology.
Furthermore, the annotation model is currently limited to model tests and is not validated
to suit the practical information needs of tribologists. Therefore, user studies for analyzing
the capability of information extraction compared with human experts provide possibilities
to improve the performance of the approach.
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Abstract: In recent years, an increasing number of machine learning applications in tribology and
coating design have been reported. Motivated by this, this contribution highlights the use of Gaussian
processes for the prediction of the resulting coating characteristics to enhance the design of amorphous
carbon coatings. In this regard, by using Gaussian process regression (GPR) models, a visualization of
the process map of available coating design is created. The training of the GPR models is based on the
experimental results of a centrally composed full factorial 23 experimental design for the deposition
of a-C:H coatings on medical UHMWPE. In addition, different supervised machine learning (ML)
models, such as Polynomial Regression (PR), Support Vector Machines (SVM) and Neural Networks
(NN) are trained. All models are then used to predict the resulting indentation hardness of a complete
statistical experimental design using the Box–Behnken design. The results are finally compared, with
the GPR being of superior performance. The performance of the overall approach, in terms of quality
and quantity of predictions as well as in terms of usage in visualization, is demonstrated using an
initial dataset of 10 characterized amorphous carbon coatings on UHMWPE.

Keywords: machine learning; amorphous carbon coatings; UHWMPE; total knee replacement;
Gaussian processes

1. Introduction

Machine Learning (ML) as a subfield of artificial intelligence (AI) has become an
integral part of many areas of public life and research in recent years. ML is used to create
learning systems that are considerably more powerful than rule-based algorithms and
are thus predestined for problems with unclear solution strategies and a high number of
variants. ML algorithms are used from product development and production [1] to patient
diagnosis and therapy [2]. ML algorithms are also playing an increasingly important role
in the field of medical technology, for example, in coatings for joint replacements.

Particularly in coating technology and design, the use of ML algorithms enables the
identification of complex relationships between several deposition process parameters on
the process itself as well as on the properties of the resulting coatings [3,4]. From this view
on the complex relationships between the deposition process parameters, coating designers
can base their experiments and obtain valuable insights on their coating designs and the
necessary parameter settings for coating deposition.

This contribution looks into the application of a possible ML algorithm in the coat-
ing design of amorphous carbon coatings. It first provides an overview of the necessary
experimental setup for data generation and the concept of machine learning and its al-
gorithms. Likewise, the deposition of amorphous carbon coatings and their properties
are presented. Subsequently, the capabilities of the selected supervised ML algorithms:
Polynomial Regression (PR), Support Vector Machines (SVM), Neural Networks (NN),
Gaussian Process Regression (GPR) are explained and the resulting data visualization is
shown. Afterwards, the obtained results are discussed, with the GPR being the superior
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prediction model. Finally, the main findings are summarized and an outlook is given as
well as further potentials and applications are identified.

2. Related Work and Main Research Questions

2.1. Amorphous Carbon Coating Design

An example of a complex process is the coating of metal and plastic parts, as used
for joint replacements, with amorphous carbon coatings [5]. In the field of machine
elements [6,7], engine components [8,9] and tools [10,11], amorphous carbon coatings are
commonly used. In contrast, amorphous carbon coatings are rarely used for load-bearing,
tribologically stressed implants [12,13]. The coating of engine and machine elements has so
far been used with the primary aim of reducing friction, whereas the coating of forming
tools has been used to adjust friction while increasing the service life of the tools. There-
fore, the application of tribologically effective coating systems on the articulating implant
surfaces is a promising approach to reduce wear and friction [14–16].

The coating process depends on many different coating process parameters, such as
the bias voltage [17], the target power [18], the gas flow [19] or the temperature, which
influence the chemical and mechanical properties as well as the tribological behavior of the
resulting coatings [20]. Therefore, it is vital to ensure both the required coating properties
and a robust and reproducible coating process to meet the high requirements for medical
devices. Compared to experience-based parameter settings, which are often based on
trial-and-error, ML algorithms provide clearer and more structured correlations.

However, several experimental investigations focus on improving the tribological
effectiveness of joint replacements [21–23] and lubrication conditions in prostheses [24–26],
some experimental investigations are complemented with computer-aided or computa-
tional methods to improve the prediction and findings [27–29]. Nevertheless, the exact
interactions of coating process parameters and resulting properties are mostly qualitative
and only valid for certain coating plants and in certain parameter ranges.

2.2. Coating Process and Design Parameters

The use of ML algorithms is a promising approach [30] to not only qualitatively
describe such interactions, which have to be determined in elaborate experiments, but
also to quantify them [21]. Using ML, the aim is to generate reproducible, robust coating
processes with appropriate, required coating properties. For this purpose, the main coating
properties, such as coating thickness, roughness, adhesion, hardness and indentation
modulus, of the coating parameter variations have to be analyzed and trained with suitable
ML algorithms [31].

Within this contribution, the indentation modulus and the coating hardness are ex-
amined in more detail, since these parameters can be determined and reproduced with
high accuracy and have a relatively high predictive value for the subsequent tribological
behavior, such as the resistance to abrasive wear [32,33].

2.3. Research Questions

Resulting from the above-mentioned considerations it was found that existing solu-
tions are solely based on a trial-and-error approach. ML was not considered in the specific
coating design in joint replacements. So, in brief, this contribution wants to answer the
following central questions. The first one is can ML algorithms predict resulting properties
in amorphous carbon coatings? Based on this, the second one is how good is the resulting
prediction of resulting properties in terms of quality and quantity? And lastly, can ML
support in visualizing the coating properties results and the coating deposition parameters
leading to those results? When ML can be used in these cases, the main advantages would
be a more efficient approach to coating design with fewer to none trial-and-error steps and,
lastly, the co-design of coating experts and ML. The following sections are to present the
materials and methods used in trying to answer the stated research questions and provide
an outlook on what would be possible via ML.
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3. Materials and Methods

First, the studied materials and methods will be described briefly. In this context,
the application of the amorphous carbon coating to the materials used (UHMWPE) as
well as the setup and procedure of the experimental tests to determine the mechanical
properties (hardness and elasticity) are described. Secondly, the pipeline for ML and the
used methods are explained. Finally, the programming language Python and the deployed
toolkits are described.

3.1. Experimental Setup
3.1.1. Materials

The investigated substrate was medical UHMWPE [34] (Chirulen® GUR 1020, Mit-
subishi Chemical Advanced Materials, Vreden, Germany). The specimens to be coated were
flat disks, which have been used for mechanical characterization (see [35]). The UHMWPE
disks had a diameter of 45 mm and a height of 8 mm. Before coating, the specimens
were mirror-polished in a multistage polishing process (Saphir 550-Rubin 520, ATM Qness,
Mammelzen, Germany) and cleaned with ultrasound (Sonorex Super RK 255 H 160 W
35 Hz, Bandelin electronic, Berlin, Germany) in isopropyl alcohol.

3.1.2. Coating Deposition

Monolayer a-C:H coatings were prepared on UHMWPE under two-fold rotation using
an industrial-scale coating equipment (TT 300 K4, H-O-T Härte- und Oberflächentech-
nik, Nuremberg, Germany) for physical vapor deposition and plasma-enhanced chemi-
cal vapor deposition (PVD/PECVD). The recipient was evacuated to a base pressure of
at least 5.0 × 10−4 Pa before actual deposition. The recipient was not preheated before
deposition on UHMWPE to avoid the deposition-related heat flux into UHMWPE. The
specimens were then cleaned and activated for 2 min in an argon (Ar, purity 99.999%)+-ion
plasma with a bipolar pulsed bias of −350 V and an Ar flow of 450 sccm. The deposition
time of 290 min was set to achieve a resulting a-C:H coating thickness of approximately
1.5 to 2.0 μm. Using reactive PVD, the a-C:H coating was deposited by medium frequency
(MF)-unbalanced magnetron (UBM) sputtering of a graphite (C, purity 99.998%) target
under Ar–ethyne (C2H2) atmosphere (C2H2, purity 99.5%). During this process, the cathode
(dimensions 170 × 267.5 mm) was operated with bipolar pulsed voltages. The negative
pulse amplitudes correspond to the voltage setpoints, whereas the positive pulses were
represented by 15% of the voltage setpoints. The pulse frequency f of 75 kHz was set
with a reverse recovery time RRT of 3 μs. A negative direct current (DC) bias voltage was
used for all deposition processes. The process temperature was kept below 65 ◦C during
the deposition of a-C:H functional coatings on UHMWPE. In Table 1, the main, varied
deposition process parameters are summarized. Besides the reference coating (Ref), the
different coating variations (C1 to C9) of a centrally composed full factorial 23 experimental
design are presented in randomized run order. In this context, the deposition process
parameters shown here for the generation of different coatings represent the basis for the
machine learning process.
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Table 1. Summary of the main deposition process parameters for a-C:H on UHMWPE.

Designation Coating
Sputtering
Power/kW

Bias
Voltage/V

Combined Ar and
C2H2 Flow/sccm

Ref

a-C:H

0.6 −130 187
C1 0.6 −90 187
C2 2.0 −170 91
C3 1.3 −130 133
C4 2.0 −90 187
C5 0.6 −170 91
C6 2.0 −170 187
C7 0.6 −170 187
C8 0.6 −90 91
C9 2.0 −90 91

3.1.3. Mechanical Characterization

According to [36,37], the indentation modulus EIT and the indentation hardness HIT
were determined by nanoindentation with Vickers tips (Picodentor HM500 and WinHCU,
Helmut Fischer, Sindelfingen, Germany). For minimizing substrate influences, care was
taken to ensure that the maximum indentation depth was considerably less than 10% of the
coating thicknesses [38,39]. Considering the surface roughness, lower forces also proved
suitable to obtain reproducible results. Appropriate distances of more than 40 μm were
maintained between individual indentations. For statistical reasons, 10 indentations per
specimen were performed and evaluated. A value for Poisson’s ratio typical for amorphous
carbon coatings was assumed to determine the elastic–plastic parameters [40,41]. The
corresponding settings and parameters are shown in Table 2. In Section 3, the results of
nanoindentation are presented and discussed.

Table 2. Settings for determining the indentation modulus EIT and the indentation hardness HIT.

Parameters Settings for a-C:H Coatings

Maximum load/mN 0.05
Application time/s 3

Delay time after lowering/s 30
Poisson’s ratio ν 0.3

3.2. Machine Learning and Used Models
3.2.1. Supervised Learning

The goal of machine learning is to derive relationships, patterns and regularities from
data sets [42]. These relationships can then be applied to new, unknown data and problems
to make predictions. ML algorithms can be divided into three subclasses: supervised,
unsupervised and reinforced learning. In the following, only the class of supervised
learning will be discussed in more detail, since algorithms from this subcategory were used
in this paper, namely Gaussian process regression (GPR). Supervised ML was used because
of the available labelled data.

In supervised learning, the system is fed classified training examples. In this data, the
input values are already associated with known output data values. This can be done, for
example, by an already performed series of measurements with certain input parameters
(input) and the respective measured values (output). The goal of supervised learning is to
train the model or the algorithms using the known data in such a way that statements and
predictions can also be made about unknown test data [42]. Due to the already classified
data, supervised learning represents the safest form of machine learning and is therefore
very well suited for optimization tasks [42].

In the field of supervised learning, one can distinguish between the two problem types
of classification and regression. In a classification problem, the algorithm must divide the
data into discrete classes or categories. In contrast, in a regression problem, the model is to
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estimate the parameters of pre-defined functional relationships between multiple features
in the data sets [42,43].

A fundamental danger with supervised learning methods is that the model learns the
training data by role and thus learns the pure data points rather than the correlations in data.
As a result, the model can no longer react adequately to new, unknown data values. This
phenomenon is called overfitting and must be avoided by choosing appropriate training
parameters [31]. In the following, basic algorithms of supervised learning are presented,
ranging from PR and SVM to NN and GPR.

3.2.2. Polynomial Regression

At first, we want to introduce polynomial regression (PR) for supervised learning. PR
is a special case of linear regression and tries to predict data with a polynomial regression
curve. The parameters of the model are often fitted using a least square estimator and the
overall approach is applied to various problems, especially in the engineering domain. A
basic PR model can lead to the following equation [44]:

yi= β0+β1xi1+β2xi2+ . . . + βkxik+ei for i = 1, 2, . . . , n (1)

with β being the regression parameters and e being the error values. The prediction targets
are formulated as yi and the features used for prediction are described as xi. A more
sophisticated technique based on regression models are support vector machines, which
are described in the next section.

3.2.3. Support Vector Machines

Originally, support vector machines (SVM) are a model commonly used for classi-
fication tasks, but the ideas of SVM can be extended to regression as well. SVM try to
find higher order planes within the parameter space to describe the underlying data [45].
Thereby, SVM are very effective in higher dimensional spaces and make use of kernel
functions for prediction. SVM are widely used and can be applied to a variety of problems.
In this regard, SVM can also be applied nonlinear problems. For a more detailed theoretical
insight, we refer to [45].

3.2.4. Neural Networks

Another supervised ML technique is neural networks (NN), which rely on the concept
of the human brain to build interconnected multilayer perceptrons (MLP) capable of
predicting arbitrary feature–target correlations. The basic building block of such MLP
are neurons based on activation functions which allow the neuron to fire when different
threshold values are reached [46]. When training a NN, the connections and the parameters
of those activation functions are optimized to minimize training errors; this process is called
backpropagation [31].

3.2.5. Gaussian Process Regression

The Gaussian processes are supervised generic learning methods, which were devel-
oped to solve regression and classification problems [43]. While classical regression algo-
rithms apply a polynomial with a given degree or special models like the ones mentioned
above, GPR uses input data more subtly [47]. Here, the Gaussian process theoretically
generates an infinite number of approximation curves to approximate the training data
points as accurately as possible. These curves are assigned probabilities and Gaussian
normal distributions, respectively. Finally, the curve which fits its probability distribution
best to that of the training data is selected. In this way, the input data gain significantly
more influence on the model, since in the GPR altogether fewer parameters are fixed in
advance than in the classical regression algorithms [47]. However, the behavior of the
different GPR models can be defined via kernels. This can be used, for example, to influence
how the model should handle outliers and how finely the data should be approximated.
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In Figure 1, two different GPR models have been used to approximate a sinusoid. The
input data points are sinusoidal but contain some outliers. The model with the lightblue
approximation curve has an additional kernel extension for noise suppression compared to
the darkblue model. Therefore, the lightblue model is less sensitive to outliers and has a
smoother approximation curve. This is also the main advantage when using GPR compared
to other regression models like linear or polynomial regression. GPR are more robust to
outliers or messy data and are also relatively stable on small datasets [47] like the one
used for this contribution. That is why they were mainly selected for the later-described
use case.

Figure 1. Gaussian process regression for the regression of a sinusoid.

3.2.6. Python

The Python programming language was chosen for the present work, as it is the
de-facto standard language for ML and Data Science. This programming environment is
particularly suitable in the field of machine learning, as it allows the easy integration of
external libraries. In order to use machine learning algorithms in practice, many libraries
and environments have been developed in the meantime. One of them is the open-source
Python library scikit-learn [48]. For the above-described methods, the following scikit-
learn libraries were used: the scikit-learn module Polynomial Features for the modeling
of the PR models, which was combined with the Linear Regression module to facilitate
a PR model for prediction of coating parameters. For modeling via SVM, the SVR or
support vector regressor module of scikit-learn was used. The NN were modeled via the
MLP Regressor module and lastly the GPR were implemented using the Gaussian Process
Regressor module of scikit-learn. All models were trained using the standard parameters,
and only for the GPR model was the kernel function smoothed via adding some white
noise; this was necessary because the GPR of scikit-learn has no real standard parameters.

4. Use Case with Practical Example in a-C:H Coating Design

4.1. Data Generation

The average indentation modulus and indentation hardness values are presented
in Figure 2 Obviously, elasticity and hardness differed significantly between the various
coated groups. A considerable influence of the sputtering power on the achieved EIT and
HIT values was revealed. For example, C2, C4, C6 and C9, which were produced with
a sputtering power of 2.0 kW, had indentation modulus between 13.3 and 16.4 GPa and
indentation hardness between 3.7 and 5.1 GPa. In contrast, specimens Ref, C1, C5, C7 and
C8 exhibited significantly lower EIT and HIT values, ranging from 3.6 to 4.9 GPa and 1.2 to
1.5 GPa, respectively. Compared to the latter, the central point represented by C3 did not
indicate significantly higher elastic–plastic values. The variation of the bias voltage or the
combined gas flow did not allow us to derive a distinct trend, especially concerning the
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standard deviation. In general, increased sputtering power could increase EIT and HIT by
more than a factor of three. Accordingly, the higher coating hardness is expected to shield
the substrates from adhesive and abrasive wear and also to shift the cracking towards
higher stresses [28,35]. At the same time, the relatively lower indentation modulus leads to
an increased ability of the coatings to sag without flowing [33]. As a result, the pressures
induced by tribological loading may be reduced by increasing the contact dimensions [49].
Thus, it can be considered that the developed a-C:H coatings enable a very advantageous
wear behavior [28,50].

Figure 2. Averaged values of indentation modulus EIT and indentation hardness HIT and standard
deviation of the different a-C:H coatings (n = 10).

4.2. Data Processing
4.2.1. Reading in and Preparing Data

After the coating characterization, the measured values were available in a stan-
dardized Excel dataset, which contains the plant parameters and the resulting coating
characteristics for each sample. It could also be possible that the relevant measurements are
already in a machine-readable format, for example the tribAIn ontology [51], but for our
case we focused on the data handling via Excel and Python. To facilitate the import of the
data into Python, the dataset had to be modified in such a way that a column-by-column
import of the data was possible. Afterwards, the dataset needed to be imported into our
Python program via the pandas library [52]. To facilitate further data processing, the plant
parameters sputtering power, bias voltage and combined Ar and C2H2 were combined in
an array of features and the coating characteristic such as the indentation hardness as a
target for prediction.

4.2.2. Model Instantiation

The class Gaussian Process Regressor (GPR) of the scikit-learn package class allows the
implementation of Gaussian process models. For the instantiation in particular, a definition
of a kernel was needed. This kernel is also called covariance function in connection with
Gaussian processes and influences the probability distributions of the Gaussian processes
decisively. The main task of the kernel is to calculate the covariance of the Gaussian
process between the individual data points. Two GPR objects were instantiated with
two different kernels. The first one was created with a standard kernel and the second one
was additionally linked with a white noise kernel. During the later model training, the
hyperparameters of the kernel were optimized. Due to possibly occurring local maxima,
the passing parameter n_restarts_optimizer can be used to determine how often this
optimization process should be run. In the case of GPR, a standardization of the data
was carried out. This standardization was achieved by scaling the data mean to 0 and the
standard deviation to 1.

4.2.3. Training the Model

As described before, one of the main tasks of machine learning algorithms was the
training of the model. The scikit-learn environment offers the function fit(X,y), with the
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input variables X and y. Here, X was the feature vector, which contains the feature data of
the test data set (the control variables of the coating plant). The variable y was defined as
the target vector and contains the target data of the test data set (the characteristic values of
the coating characterization). By calling the method reg_model.fit(X,y) with the available
data and the selected regression model (GPR, in general reg_model) the model was trained
and fitted on the available data.

Particularly with small datasets, there was the problem that the dataset shrank even
further when the data was divided into training and test data. For this reason, the k-fold
cross-validation approach could be used [31]. Here, the training data set was split into k
smaller sets, with one set being retained as a test data set per training run. In the following
runs, the set distributions change. This approach can be used to obtain more training
datasets despite small datasets, thus significantly improving the training performance of
the model.

4.2.4. Model Predictions

After the models were trained on the available data, the models can compute or predict
corresponding target values for the feature variables that were previously unknown to
the model. Unknown feature values are equally distributed data points from a specified
interval as well as the features of a test data set. For the former, the minima and maxima of
the feature values of the training data set were extracted. Afterwards, equally distributed
data points were generated for each feature in this min-max interval.

For predicting the targets, the scikit-learn library provides the method predict(x),
where the feature variables are passed as a vector x to the function. Calling the method
reg_model.predict(x) then returns the corresponding predicted target values. The predic-
tions for the test data were further evaluated in terms of the root mean squared error, the
mean absolute error and the coefficient of prognosis (CoP) [53] and showed good quality,
especially for the GPR model (see Table 3).

Table 3. Prediction quality of the models based on the initial dataset.

Model
Root Mean

Squared Error
Mean Absolute

Error
Coefficient of

Prognosis

Gaussian Process Regressor 540 MPa 474 MPa 91%
Polynomial Regression 699 MPa 653 MPa 45%

Support Vector Machine 955 MPa 677 MPa 29%
Neural Network 3405 MPa 3307 MPa 16%

From Table 3, it follows that the GPR model is the most suitable model for further
evaluation in our test case since it shows the highest coefficient of prognosis. Therefore, we
selected the GPR model for the demonstration and visualization of our use case.

4.2.5. Visualization

The Python library matplotlib was used to visualize the data in Python. This allowed
an uncomplicated presentation of numerical data in 2D or 3D. Since the feature vector
contained three variables (sputter power P sputter, gas flow ϕ and bias voltage Ubias), a
three-dimensional presentation of the feature space was particularly suitable. Here, the
three variables were plotted on the x-, y- and z-axis and the measurement points were
placed in this coordinate system. For the presentation of the corresponding numerical
target value, color-coding serves as the fourth dimension. The target value of the measuring
point could then be inferred from a color bar.

This presentation was especially suitable for small data sets, e.g., to get an overview
of the actual position of the training data points. For large data sets with several thousand
data points, a pure 3D visualization is too confusing, since measurement points inside the
feature space were no longer visible. For this reason, a different visualization method was
used to display the results of ML prediction of uniformly distributed data.
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This visualization method is based on the visualization of computer tomography (CT)
data set using a slice-based data view. Here, the 3D images of the body are skipped through
layer-by-layer to gain insights into the interior of the workings level-by-level. Similar to
this principle, the feature space was also traversed layer-by-layer.

Two feature variables span a 2D coordinate system. The measured values were again
colored and displayed in the x–y plane analogous to the 3D display.

The third feature vector served as a run variable in the z-axis, i.e., into the plane.
Employing a slider, the z-axis can be traversed, and the view of the feature space was then
obtained layer-by-layer.

5. Results and Discussion

5.1. Gaussian Process Regression and Visualization

For the above-described initial dataset created from a design of experiments approach,
different GPR models were trained. Before training the different models, the dataset was
scaled to only contain values between 0 and 1. This was especially useful for GPR, to reduce
training effort and stabilize the optimization of the model parameters. The main difference
between the different GPR models was the used kernel function for the gaussian processes.
The used GPR supports a variety of different kernel functions which were optimized during
the training of the GPR model. It was found that with a dot product kernel with some
additional white noise the prediction capabilities of the model were enhanced to reach
a mean absolute error of around 440 MPa. Moreover, the root mean squared error was
around 387 MPa. This results in an CoP of around 90%, which means that the prediction
quality and quantity is acceptable to classify this model for a prediction model. For model
training, a train-test-split of 80–20% was used and the training data was shuffled before
training. The overall prediction quality is a notable finding since the dataset used for
training is relatively small. Here also GPR with little white noise show their strengths on
sparse datasets. However, model performance can further benefit from more data. This
prediction model is also capable of visualizing the prediction space, see Figure 3.

kW

U

In
de

nt
at

io
n 

H
ar

dn
es

s

MPa

91 sccmCombined Ar and C2H2 ow 

Figure 3. Predicted space in a 20-color colormap for better differentiation between the different areas
of resulting hardness for minimum combined gas flow.

The striped pattern emerges from the usage of a 20-color-based colormap for drawing.
This is done to further show the different sections of the predicted data. The whole plot
can be viewed as a process map. In order to find the ideal coating properties, the tribology
experts need to look for their color in indentation hardness and then easily see the bias
voltage and sputtering power needed. For tuning purposes, the gas flow can be changed
via the slider at the bottom. The plot for the maximum combined gas flow is depicted in
Figure 4.
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Figure 4. Predicted space for maximum combined gas flow.

The space for lower indentation hardness is getting bigger and the highest indentation
hardness of around 4.2 GPa vanished. This correlates with the experience made from
initial experimental studies. It was expected that the gas flow—especially the C2H2 gas
flow [15]—influenced the hydrogen content and thus the mechanical properties and further
affected the tribologically effective behavior. Based on these visualizations, it can be
easily seen which parameters lead to the desired indentation hardness. This visualization
technique benefits the process of where to look for promising parameter sets for ideal
indentation hardness.

For validation of our model, we performed another experimental design study based
on a Box–Behnken design with 3 factors and two stages (see Table 4). Initially, the in-
dentation hardness was predicted using our GPR model. Subsequently, the GPR model
was evaluated—after coating the specimens—by determining the indentation hardness
experimentally. For illustrative purposes, the prediction of the central point, which was
deposited at a sputtering power of 3 kW, a bias voltage of 200 V, and a combined gas flow
of 108 sccm, is shown in Figure 5. In this context, it should be noted that the prediction
space included a significant extension of the training space and thus could be influenced
by many factors.
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Prediction of central point: 4576 MPa

Figure 5. Predicted extended space for probe points.
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Table 4. Summary of main deposition process parameters and predictions for a-C:H on UHMWPE,
prediction of HIT by the GPR model as well as experimental determination of HIT based on the
average values and standard deviations of the different a-C:H coatings (n = 10).

Designation Coating
Sputtering
Power/kW

Bias
Voltage/V

Combined Ar and
C2H2 Flow/Sccm

GPR Model
Prediction of

HIT/MPa

Experimentally
Determined

HIT/MPa

P1

a-C:H

2 −230 108 3397 3040 ± 223
P2 2 −170 108 3355 2441 ± 537
P3 2 −200 125 3363 3069 ± 401
P4 2 −200 91 3389 2965 ± 328

P5.1 3 −200 108 4576 4699 ± 557
P5.2 3 −200 108 4576 4577 ± 731
P5.3 3 −200 108 4576 4837 ± 634
P6 3 −170 125 4542 4180 ± 399
P7 3 −170 91 4568 4256 ± 622
P8 3 −230 125 4584 4627 ± 1055
P9 3 −230 91 4610 4415 ± 675

P10 4 −170 108 5755 5081 ± 1361
P11 4 −200 91 5789 5476 ± 1637
P12 4 −230 108 5797 4313 ± 1513
P13 4 −200 125 5763 6224 ± 1159

As shown in Figure 5 and Table 4, the HIT values of the previously performed predic-
tion of the GPR model largely coincided with the experimentally determined HIT values.
Especially with regard to the standard deviation of the experimentally determined HIT
values, all values were in a well-usable range for further usage and processing of the data.
Despite a similar training space, the prediction for the coating variations P1–P4 showed
a slightly lower accuracy than for the coating variations beyond the training space, but
this could be attributed to the difficulty of determining the substrate-corrected coating
hardness. Thus, during the indentation tests, the distinct influence of the softer UHMWPE
substrate [54,55] was more pronounced for the softer coatings (P1–P4), which were coated
with lower target power than for the harder coatings (P5–P13). However, the standard
deviation of the hardness values increased with hardness, which could be attributed to
increasing coating defects locations and roughness. In brief, the predictions match with
the implicit knowledge of the coating experts. This is the only physical conceivable con-
ceptual model that can be considered when looking at the results presented, as the coating
deposition is a complex and multi-scale process.

Though the visualization of the prediction space in Figure 5 differed slightly from the
prediction spaces in Figure 3 and in Figure 4 due to steeper dividing lines, the prediction
space in Figure 5 spanned larger coating process parameter dimensions.

Generally, the prediction quality and especially the quantity of the model was very
good, so the model can be used for further coating development processes and adjustments
of the corresponding coating process parameters. An extension of the GPR model to other
coating types, such as ceramic coatings, e.g., CrN, or solid lubricants, e.g., MoS2, or different
coating systems on various substrates is conceivable.

5.2. Comparison to Polynomial Regression, Support Vector Machines and Neural Network Models

For the purpose of comparing our results and trained models with the other models
described previously, Table 5 shows the different predictions generated by the models for
the previously unknown dataset in our test study.
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Table 5. Comparison of the predictions of the different models used in this contribution.

Designation
Experimentally

Determined
HIT/MPa

GPR Model
Prediction of

HIT/MPa

PR Model
Prediction of

HIT/MPa

SVM Model
Prediction of

HIT/MPa

NN Model
Prediction of

HIT/MPa

P1 3040 ± 223 3397 3861 4220 1402
P2 2441 ± 537 3355 3566 4218 1153
P3 3069 ± 401 3363 3567 4219 1346
P4 2965 ± 328 3389 4101 4219 1209

P5.1 4699 ± 557 4576 4863 4219 1281
P5.2 4577 ± 731 4576 4863 4219 1281
P5.3 4837 ± 634 4576 4863 4219 1281
P6 4180 ± 399 4542 4548 4217 1225
P7 4256 ± 622 4568 4850 4218 1088
P8 4627 ± 1055 4584 5063 4219 1475
P9 4415 ± 675 4610 5376 4220 1336
P10 5081 ± 1361 5755 4912 4218 1160
P11 5476 ± 1637 5789 5447 4219 1216
P12 4313 ± 1513 5797 5659 4220 1409
P13 6224 ± 1159 5763 5366 4219 1354

It is shown that only the GPR model is capable of producing meaningful outputs,
while the other models are not able to achieve a prediction quality close to the GPR model.
When comparing the training results on root mean squared error, mean absolute error and
coefficient of prognosis set, the story becomes even more clearer (see Table 6).

Table 6. Comparison of the prediction qualities of the models on the unknown data set.

Model
Root Mean

Squared Error
Mean Absolute

Error
Coefficient of

Prognosis

Gaussian Process Regressor 551 MPa 415 MPa 78%
Polynomial Regression 720 MPa 587 MPa 71%

Support Vector Machine 991 MPa 781 MPa 0.1%
Neural Network 3156 MPa 2999 MPa 1%

The results show that the GPR model was the best model compared to PR, SVM and
NN. It is worth noting that we have used polynomial degree of 2 for the PR models, as
this produced the best prediction results, a higher polynomial degree of 3 to 5 led to a
decrease in RMSE, MAE and CoP. This also shows that especially the SVM and NN are
not capable of producing meaningful prediction output. The PR fitting overall shows
acceptable prediction quality of around 70%, however the GPR has better RMSE and MAE
values, so it would be selected for further consideration. Furthermore, GPR provided better
results on the training dataset. It is important to always evaluate RMSE, MAE and CoP
together, as all three values allow a thorough evaluation of the prediction model. In brief,
RMSE and MAE characterize the spread predictions better than the CoP, the CoP returns
an overall performance score of the model. The weak performance of SVM can possibly be
explained by the small dataset used for training, since SVM need way more training data,
as the model only scores around 30% CoP on the training dataset. For extrapolation on the
test dataset the trained SVM model was not feasible. The same could be the case for the
NN, as NN rely on big datasets for training and show weaker extrapolation capabilities.

6. Conclusions

This contribution evaluated the use of Gaussian processes and advanced data visu-
alization in the design of amorphous carbon coatings on UHMWPE. This study focused
on elaborating an overview of the required experimental setup for data generation and
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the concepts of ML, and also provided the corresponding ML algorithms. Afterwards, the
deposition and characterization of amorphous carbon coatings were presented.

The use of ML in coating technology and tribology represents a very promising ap-
proach for the selective optimization of coating process parameters and coating properties.
In particular, this could be demonstrated by the GPR models used to optimize the mechani-
cal properties of the coatings and, consequently, the tribological behavior, by increasing the
hardness and thus the abrasive wear resistance. However, further experimental studies
and parameter tuning are needed to obtain better predictive models and better process
maps. The initial results of these visualizations and the GPR models provide a good basis
for further studies. For our approach the following conclusions could be drawn:

• The GPR models and the materials used showed the potentials of the selected ML
algorithms. One data visualization method using the GPR was detailed;

• The usage of ML looked very promising in this case, which can benefit the area of ML
in coating technology and tribology. The prediction accuracy of the hardness values
with our approach showed a high agreement with the experimentally determined
hardness values;

• The used data visualization (see Figures 3 and 4) is a neat feature for coating process
experts to tune their parameters into the desired parameter space. The plotted process
maps can further enhance the coating design or other coating types.

For our use case we implemented a four-step process, mainly consisting of data
generation via design of experiments to create the initial dataset. This initial dataset was
then analyzed via Python-based scripting tools, to create meaningful prediction models via
GPR. Those GPR models are then used for the presented visualization approach. To put it all
together one Python script was created to lead through the process. This Python script can
be configured to look into different values, however we focused on indentation hardness.

Based on this work, further experimental studies will be conducted, and the proposed
models will then be re-trained using the available data. The dataset generated for this article
was considered as a starting point for the ML algorithms used and will be supplemented
with future experimental data and thus grow. When more data is available, maybe different
ML models like neural networks will come into perspective.
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Abstract: Rolling bearings have to meet the highest requirements in terms of guidance accuracy,
energy efficiency, and dynamics. An important factor influencing these performance criteria is the
cage, which has different effects on the bearing dynamics depending on the cage’s geometry and
bearing load. Dynamics simulations can be used to calculate cage dynamics, which exhibit high
agreement with the real cage motion, but are time-consuming and complex. In this paper, machine
learning algorithms were used for the first time to predict physical cage related performance criteria
in an angular contact ball bearing. The time-efficient prediction of the machine learning algorithms
enables an estimation of the dynamic behavior of a cage for a given load condition of the bearing
within a short time. To create a database for machine learning, a simulation study consisting of
2000 calculations was performed to calculate the dynamics of different cages in a ball bearing for
several load conditions. Performance criteria for assessing the cage dynamics and frictional behavior
of the bearing were derived from the calculation results. These performance criteria were predicted
by machine learning algorithms considering bearing load and cage geometry. The predictions for
a total of 10 target variables reached a coefficient of determination of R2 ≈ 0.94 for the randomly
selected test data sets, demonstrating high accuracy of the models.

Keywords: rolling bearing dynamics; cage instability; regression; machine learning; neural networks;
random forest; gradient boosting; evolutionary algorithms

1. Introduction

The use of dynamics and noise behavior as criteria to assess the performance of a
rolling bearing are coming into increasing focus besides the lifetime and energy efficiency.
In addition to potentially negative health consequences of noise pollution [1], one reason
for this is the increasing electrification of passenger cars and the associated sensitivity re-
garding disturbing and unpleasant noise of all machine elements contained in the technical
system [2]. Besides unpleasant noise caused by bearing dynamics, in precision applications
such as the bearing assembly of the main spindle of machine tools, vibration of the bearing
can lead to a negative influence on manufacturing accuracy [3].

The vibrations emitted by a rolling bearing may have various causes. Due to the
rotation of the rolling element set, the force transmitting points between the inner and
outer ring differ. This leads to a changing stiffness and to unavoidable vibrations of the
rolling bearing caused by the design itself and is known as variable compliance [4]. The
characteristics of these vibrations differ depending on the rolling bearing type (geometry,
number of rolling elements, and pitch diameter) and load conditions (operating contact

Lubricants 2022, 10, 25. https://doi.org/10.3390/lubricants10020025 https://www.mdpi.com/journal/lubricants

129



Lubricants 2022, 10, 25

angle and load zone). In addition to the geometry-related causes of vibrations in rolling
bearings, production-related geometric deviations of the bearing rings or rolling elements,
such as roughness, waviness, or surface damage (scratches and inclusions in the material),
influence the radial displacement of the rings and can cause undesired vibrations [5]. Thus,
depending on the frequency of vibration occurring, isolated surface deviations can be
assigned to the inner or outer bearing part based on the respective ball-pass frequency [6].

The cage of the rolling bearing can also be a source of vibrations and noise. An
example are highly dynamic cage movements, which are called “cage rattling” or “cage
instability” in the literature and are associated with strong noise generation [7–9]. The
normal and frictional forces at the guiding surfaces accelerate the cage, so that certain
operating conditions lead to a high-frequency motion and severe deformation of the
cage [10,11]. These cage dynamics lead to a sharp increase in frictional torque [8,9,12] and
temperature in the rolling bearing [8] and can have a negative effect on cage life due to
severe deformations and component stresses. Cage dynamics depend on many influencing
factors; an overview of previous research papers is provided in Table 1.

Table 1. Influencing parameters on the cage dynamics that have been investigated in research papers.

Group Parameter

Bearing and cage properties

Internal clearance [13]
Rolling element size [13]

Rolling element profile [13]
Pocket clearance [13–15]

Guidance clearance [14,15]
Pocket shape [9]

Bearing load
Load ratio [14,16]

Rotational speed [7,13–16]
External vibrations [8]

Friction
Coefficient cage/rolling elements [7,14,15,17]

Coefficient cage/raceway [17]
Rolling element/raceway traction [18]

Lubrication
Viscosity [8,19]

Temperature [8,19]
Oil injection [8]

The dynamic behavior of the cage depends on the bearing and cage properties as
well as the operating conditions of the bearing. As the cage is (besides the rib contact)
accelerated by the rolling elements contact, the dynamic behavior of the rolling elements
has an influence on the cage motion. The kinematics of the rolling elements is affected
by various factors, such as the bearing load and speed, the friction in the contact to
the raceway, the rolling element geometry and the bearing clearance. However, these
parameters are determined depending on the intended application with focus on bearing
lifetime and accuracy of shaft guidance. The influence of the bearing design and load
on the cage dynamics during the application is not usually in the focus in the bearing
selection. Therefore, the cage dynamics must be adjusted by adapting the cage geometry in
the available design space of the selected bearing. By varying the cage geometry, properties
such as the pocket and guidance clearance, the mass inertia and stiffness, and the shape of
the cage pocket are affected. By defining the cage properties, the dynamics can be adjusted,
for example, to avoid unstable cage movements or to minimize the friction loss caused by
the cage as well as the robustness against shock loads.

The influencing parameters on the resulting cage dynamics can be named in gen-
eral, but the quantification of their effects is only partially known so far. There are two
primary reasons for this. First, the calculation using numerical computer simulations
or the measurement of the cage dynamics (motion, forces, or deformation) on a test rig
are time consuming and complicated. In particular for experimental tests, the range of
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influencing parameters that can be investigated is usually limited. Second, the interaction
of the influencing variables is complex, so that it is not possible to determine the influence
of the individual effects directly on the basis of the observed dynamics. Cage instability, for
example, is caused by high frictional forces in the cage contacts and high rotational speeds
of the bearing [14]. If one of the two parameters is low, the probability that highly dynamic
movements will be excited is reduced. In addition to this example, other interactions
can be found, making it more difficult to determine the cage dynamics depending of the
influencing factors such as cage geometry and bearing load.

Machine learning methods are suitable for identifying complex patterns and relation-
ships in the data provided. The application of machine learning algorithms in the field of
tribological problems is increasing, especially in recent years. A comprehensive overview
of the use of machine learning for tribological problems was provided by Marian and
Tremmel [20]. Based on experimental test results, calculations, or information collected
from the literature, regression methods are used to predict typical tribological behavior in
the form of temperature, specific wear, or coefficient of friction. In addition to applications
at the nano or micro scale, machine learning methods are also used at the macro scale, such
as in bearing technology. Schwarz et al. used an ensemble classification model to determine
the dependence between geometric parameters and load of a rolling bearing and the result-
ing dynamics of a cage. The result of the classification was one of the classes “unstable”,
“stable”, or “circling” that were used to assess the qualitative behavior of the cage [21]. By
extending this approach with a regression algorithm, not only the cage motion class but
also the resulting forces on the cage or the acceleration of the cage can be estimated.

In previous research investigations [21], it was possible to quantify the dynamics of
the cage for different operating conditions, but this was usually completed in isolated
cases within the framework of complex numerical calculations or tests. A method for the
time-efficient estimation of the quantitative dynamic behavior of rolling bearing cages
for certain cage properties and rolling bearing loads is not yet available. The aim of this
paper is to present a procedure for predicting the dynamics of a rolling bearing cage
in an angular contact ball bearing using dynamics simulations and regression machine
learning algorithms. This enables time-efficient estimation of the dynamics for the intended
application during the development and selection of rolling bearing cages and also for
operating conditions that are not directly included in the training data.

2. Materials and Methods

2.1. Methodology

The application of machine learning regression methods to predict the dynamics
of a rolling bearing cage requires data representing the correlation between the varied
parameters and the calculated cage dynamics. The starting point was the multi-body
simulation model defined in the software Caba3D [22,23]. The calculation parameters of
the model such as initial and boundary conditions, friction models, and elastic modeling of
the cage are described in Section 2.2. The geometry of the cage as well as the bearing load
and rotational speed were modified with the help of a comprehensive simulation plan using
the design of experiment, see Section 2.3. A Latin hypercube sampling was used to ensure
that the varied parameters are distributed uniformly in the entire mathematical space
defined by previously specified boundaries [24]. The limits of the simulation plan were
chosen so that the operating conditions prevailing in reality are mainly covered. On the
basis of the uniformly distributed parameter values in the simulation plan, the correlations
between the parameters can be efficiently learned by the algorithm. After performing the
calculations, the simulation results were used to determine the input and output parameters
and thus the data sets for machine learning, see Section 2.4. Characteristic values such
as the Cage Dynamics Indicator (CDI) defined by Schwarz et al. [21] were derived from
the calculated time series, which can be used for the assessment of the cage dynamics
and as target values for machine learning. Artificial neural networks (ANN) [25], random
forest (RF) [26], and XGBoost [27] were applied to predict the target variables based on the
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varied calculation parameters, see Section 2.5. The optimization of the hyperparameters of
the used algorithms was performed as part of the training process using an evolutionary
algorithm (EA) [28]. Finally, the predictions of the optimized models for test data sets
were compared so that the most suitable algorithm could be selected. Figure 1 illustrates
the procedure for generating a regression model for the prediction of characteristic values
representing cage dynamics.

Figure 1. Procedure in this study, starting with the dynamics simulation and the design of exper-
iments, followed by the creation of a database, the training of the machine learning models, and
analysis of the predictions.

2.2. Calculation of Bearing Cage Dynamics

The multi-body simulation software Caba3D [29] developed by SCHAEFFLER Technolo-
gies AG & Co. KG was used to determine the rolling bearing dynamics. This tool allows the
calculation of the dynamics of all rolling bearing components for a previously defined time
step and simulation time using a Runge–Kutta-method for performing the numerical time
step integration. The results of the multi-body simulation include the kinematics (position,
velocity, and acceleration in all degrees of freedom) of the rolling bearing components as
well as contact results (pressures, relative velocities, etc.) and node displacements of the
elastically modeled cage [23].

The discretization of the contacts rolling element/raceway as well as cage/ring was
achieved by means of slices. Contact results such as pressure or forces were calculated for
each of the slices and thus resolved locally [22]. For the contact calculation between rolling
element and cage pocket, the ’node-to-surface model’ was used. This approach determines
the contact results using the surface nodes of the finite element (FE) model of the cage
and the slices of the rolling element. This allowed the elastic deformations of the cage and
their effects on the contact conditions to be determined during the calculation [22]. An
elastohydrodynamic model with consideration of mixed friction and the surface roughness
was used for the calculation of the friction between rolling elements and raceways. The
lubricant film thickness was calculated according to Dowson–Higginson [30]. Coulomb’s
friction law was used to calculate the frictional force in the contact between the cage and
the other bearing elements.

The calculation of the node displacements of a FE model of the rolling bearing cage
with several thousand degrees of freedom would be too computationally intensive in the
context of a multi-body simulation. Therefore, a model order reduction according to Craig
and Bampton [31] was performed to consider the node displacements of the FE model
during the dynamics simulation. This allows the number of degrees of freedom to be
significantly reduced without a meaningful degradation in accuracy [29]. For the reduction
in the FE model, eigenfrequencies up to 20 kHz and a maximum of 100 eigenmodes were
considered. The deviation of the eigenfrequencies from the original model and thus the
quality of the reduced FE model was verified using various quality criteria (e.g., modal
assurance criteria and normalized relative eigenfrequency difference [29,32]).
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The modeling considered the angular contact ball bearing without adjacent machine
elements consisting of two bearing raceways, the rolling elements, and the outer ring
guided cage, see Figure 2.

Figure 2. (a) Cross-section of the angular contact ball bearing as typically used in machine tools.
(b) Exploded view of the three-dimensional dynamics simulation model consisting of two raceways,
19 rolling elements, and the outer ring-guided window cage.

The degrees of freedom of the outer ring were disabled, while the other rolling bearing
components could move along all six degrees of freedom. The angular contact ball bearing
was loaded axially (Fx) and radially (Fy) by a force on the inner ring. Further parameters
important for the calculation can be found in Table 2.

Table 2. Calculation information of the simulation model.

Group Property Value

Integration
Integration method Runge–Kutta

Output time step 0.0001 s
Calculation time 1.0 s

Cage properties Cage guidance type rib
Cage material fibre reinforced phenolic resin

Bearing properties

Inner diameter 90 mm
Outer diameter 140 mm

Pitch diameter dp 115 mm
Rolling elements 19 balls

Rolling element diameter 15.875 mm
Ring and ball material 100 Cr6

Contact angle α 15°
Static load capacity C0,r 51 kN

The data-driven approach to employ machine learning methods for cage dynamics
prediction requires a high-quality set of data. The source of the data is the multi-body
simulation software Caba3D, for which a high correlation with the real cage motion has
already been found several times [10,14,21] and is therefore considered as a reliable source
for the generation of datasets. Schwarz et al. used a test rig specially developed for testing
cages of rolling bearings and high-speed cameras for optical measurement of cage dynamics.
As in the calculations, cage instability could be observed in the experiment. For the shape,
amplitude, and frequency of the cage deformation, high agreement was found with the
measurement results [21].
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2.3. Simulation Plan for the Cage Geometry and Bearing Load

Twenty cage variants were generated for the angular contact ball bearing, and their
dynamic behavior was calculated for 100 different operating conditions using multi-body
simulations as described in Section 2.2. In total, 2000 dynamics simulations were performed.
Figure 3 illustrates the geometry parameters used to generate different cage designs. The
chosen parametrization of the cage geometry enables the shape to be represented as
generically as possible by 7 parameters. This allows cages with different properties to be
created in the given design space and their dynamic behavior to be investigated. Using
the parameter dg, the clearance between the cage and the outer ring and thus the guidance
clearance can be influenced, see Figure 3a. The cross-section of the cage is defined by
the height hc and width of the cage bc, see Figure 3a. Both parameters affect important
properties such as mass, moment of inertia, and stiffness of the cage. The shape of the
cage pocket was varied using the parameters c0, c1, c2, and c3, which represent the pocket
clearance along the circumference, see Figure 3b.

By choosing the pocket shape parameters, the pocket clearance of the cage on the one
hand and the contact point between cage and the rolling element on the other hand can
be influenced. The pocket clearance has a significant effect on the cage dynamics, as the
number of contacts to the rolling elements increases with decreasing pocket clearance and
can cause highly dynamic cage movements [21]. The contact point between the rolling
element and the cage defines the direction of the normal and frictional force vector in the
contact and finally the direction of the cage acceleration.

Figure 3. (a) Cross-section of the angular contact ball bearing cage. (b) Three-dimensional view of
cage pocket and a rolling element. The blue area represents the geometry of the cage pocket and
shows an exemplary shape defined by four parameters c0, c1, c2, and c3.

Using the geometry parameters, a total of 20 different cage variations were created
using Latin hypercube sampling. The boundaries for the sampling shown in Table 3 were
chosen in such a way that there are no dependencies between the cage design parameters.
For the smallest guidance diameter dg and largest cage height hc, the clearance cage/inner
ring is greater than the clearance cage/outer ring, and the same guidance type is provided.

Besides the modifications of the cage geometry, the load on the rolling bearing was
also modified using an additional Latin hypercube sampling. The forces acting on the
inner ring were varied using the load ratio R and the equivalent dynamic bearing load P.
Based on the two parameters in Equations (1) and (2), the forces Fx and Fy to be defined in
the simulation can be calculated. In addition to the forces, the inner ring was also loaded
by the torque Tz acting around the z-axis, see Figure 2. The frictional force in the rolling
element/cage contact was varied via the coefficient of friction μc.

P = X · Fx + Y · Fy (1)

R =
Fx

Fy
(2)
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The speed of the inner ring ni was also taken into account in the sampling. The
kinematic speed of the rolling elements nr and the cage nc at the beginning of the simulation
were determined for the initial time step by the Equations (3) and (4) depending on the
defined inner ring rotational speed [33].

nr = −ni

2
·
(

dp

dre
− dre · cos2(α)

dp

)
(3)

nc =
ni

2
·
(

1 +
dre · cos(α)

dp

)
(4)

A simulation plan consisting of a total of 100 operating conditions (inner ring rotational
speed, force and torque on the inner ring, and friction coefficient in the rolling element/cage
contact) was created using the boundary values in Table 3 and Latin hypercube sampling.
Simulation models were generated for each of the 20 cage variants according to the same
operating conditions defined by the created simulation plan, so that a total of 2000 dynamics
simulations were performed.

Table 3. Minimum and maximum values of the parameters for the Latin hypercube sampling.

Parameter Minimum Maximum

Load ratio R 0.25 10
Equivalent dynamic bearing

load P in N 1000 10,000

Torque on inner ring Tz in Nm 10 50
Rotational speed inner ring ni

in rpm 1000 9000

Friction coefficient rolling
element/cage μc

0.05 0.35

Pocket shape parameters
c0, c1, c2, c3 in mm 0.1 0.35

Cage width bc in mm 19 23
Cage height hc in mm 4 8
Guidance diameter dg 122 124.2

2.4. Features and Targets for Machine Learning

The input and output parameters for machine learning were derived from the calcula-
tion models and results and formed the database. The input parameters were structured
by mechanical and geometrical properties of the cage as well as the loading parameters
and the resulting class of the cage motion (according to Schwarz et al. [21]), see Table 4.
Stiffness as a mechanical property is defined using a weighted area moment of inertia and
cross-sectional area of the cage as input parameters. The weighting of the cross-section
properties in the pocket and in the bar is based on a nonlinear function that provides a
disproportionate amount of the area moment of inertia and the cross-sectional area in the
cage pocket according to Schwarz et al. [21]. The cage mass and the mass moments of inertia
complement the mechanical properties. The geometrical properties consist of the pocket
shape parameters and the pocket and guidance clearance of the cage. The mechanical
and geometrical parameters represent the essential properties that can be derived from a
given cage geometry. The axial and radial loads, as well as the torque acting on the inner
ring, were defined as relative quantities in relation to the basic static load rating C0,r and
the pitch diameter dp as input parameters. Thus, the database can be supplemented by
calculation results of other bearing sizes in the future. The cage motion class is represented
by one of the basic observable cage motion types, “unstable”, “stable”, or “circling”, and
was determined using Quadratic Discriminant Analysis based on the simulation results.
The movement types differ in their dynamic behavior and can be classified based on their
kinematics [34]. The cage motion type can also be predicted with high reliability by the
classification algorithm AdaBoostM1 using the input parameters of the simulation [21].
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However, the cage motion class provides information about the dynamics of the cage in a
qualitative level. By extending the prediction using a regression algorithm, the relevant
kinematic results can be specified more precisely.

Table 4. Features for the machine learning model.

Group Property Symbol

Mechanical and material properties

Weighted area moment of
inertia Ĩ

Weighted cross-sectional
area Ã

Cage mass m
Cage moment of inertia Jx, Jy

Geometric properties
Pocket shape parameters c0, c1, c2, c3

Pocket clearance
circumferential cc

Pocket clearance axial ca
Guidance clearance cg

Load parameter

Axial Force Fx/C0,r
Radial Force Fy/C0,r

Torque Tz/(C0,r · dp)
Rotational speed inner

ring ni

Coefficient of friction μc

Predicted cage motion Cage motion class C

The Cage Dynamics Indicator (CDI) defined by Schwarz et al. [21] contains all neces-
sary parameters for the assessment of the cage dynamics and was used as the target of the
regression task. The median (med) and the quantile distance (qd) indicate the distribution
of the motion quantities contained in the CDI and were determined from the calculated time
series. For the evaluation of the cage motion, the Ω-ratio, the cage coordinates normalized
to the guidance or pocket clearance x̃c, ỹc, and z̃c, the rotational ratio ñc, and the equivalent
deformation force Fe were used.

In addition to the CDI, the output parameters include the median of the frictional
torque Tf, the median of the contact forces on the cage |Fc| and the median of the trans-
lational acceleration |ac| of the cage. In total, the output parameters for the regression
algorithm consist of 10 parameters, which can be used to assess the cage dynamics as well
as the energy efficiency of the bearing. In previous research papers, the CDI has been used
as a key figure to assess the cage motion calculated by the dynamics simulation [14,21,34].
In this contribution, machine learning methods will be used to predict the CDI in order to
accurately assess cage dynamics.

A strong scatter of the target variables reduces the prediction accuracy of the algo-
rithms. Therefore, an anomaly detection for each motion class identified outliers of the
target variables and removed them from the database. A density-based approach devel-
oped by Breunig et al. was used for anomaly detection. The local outlier factor (LOF)
determines the degree of isolation of a data set compared to the immediately neighboring
data sets [35].

2.5. Regression Algorithms and Hyperparameter Optimization

In this paper, the prediction accuracy of three different regression algorithms (Random
Forest, XGBoost, and Artificial Neural Networks) used to estimate rolling bearing cage
dynamics are compared. The hyperparameters of the models were determined by an EA as
part of an optimization of the prediction accuracy [28].

RF is an ensemble method based on the ‘wisdom of the crowd’ paradigm. According
to this, a prediction made by a large number of different persons/models achieves better
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results than the prediction of a single person/model. Accordingly, an RF regressor contains
multiple regression trees that learn the regression problem using different sub-sets of the
original training data. These sub-sets are regenerated by bagging for each regression tree.
The degree of randomness is further increased by using only a random selection of features
for training the decision trees. Random components (bagging or feature selection) reduce
the model’s tendency to overfit the training data [36].

Gradient boosting is another ensemble method developed by Friedman [37]. In an
iterative process, multiple regression trees are trained. The training process of a decision
tree depends on predictions and loss of the already trained decision trees in the ensemble.
One implementation of gradient boosting is XGBoost (extreme gradient boosting) [27],
which was used for predicting cage dynamics in the present case. As the regression
algorithm in XGBoost is designed to predict only a single value, one model was trained for
each output parameter. However, this allows interactions of the targets to be represented
less effectively than with the random forest regressor.

ANNs are widely used algorithms for classification and regression in the field of
machine learning. The input value of a neuron results from the weighted sum of the
output values of the neurons of the previous layer and a so-called constant bias value.
The neuron’s input value is converted into the output by a nonlinear activation function.
During the training of the ANN, the weights as well as the bias values are optimized so that
the relationship in the training data between the input values and the output values can
be predicted as accurately as possible [38]. For the prediction of the cage dynamics in this
paper, an ANN consisting of a total of five layers was trained using the training algorithm
Adam [39]. The target variable of the optimization procedure is the mean square error
(MSE) between the ANN’s predictions and the target values contained in the training data.

For the ML algorithms, hyperparameters such as the ANN’s number of neurons per
layer need to be specified. With the help of an EA, the hyperparameters were determined
so that the prediction accuracy of the models were optimized. The remaining parameters
of the models are listed in Appendix A. The EA uses mechanisms of biological evolution
such as selection, recombination and mutation to improve the fitness (metric for assessing
regression results, e.g., coefficient of determination R2) of the individuals (set of hyperpa-
rameters) contained in a population (amount of individuals) for a predefined number of
generations, see Figure 4. Starting from an initial population generated by Latin hypercube
sampling, the fitness of each individual is determined. The fitness of the individuals and
target value of the EA was represented by the mean R2 according to Equation (5). Using a
K-fold (K = 5) cross-validation, a total of K validation data sets were generated from the
training data for fitness evaluation. The data set was randomly split so that 85% is used
for hyperparameter optimization as well as the cross-validation contained within the loop
and 15% for subsequent testing of model predictions. R2 was calculated by evaluating the
arithmetic mean of the R2 for each validation data set and target variable. The prediction
accuracy for the validation data is an indicator of the generalization capability of the model,
which can be finally evaluated after training by the test data sets.

R2 =
1
K
· 1

N
·

K

∑
i

N

∑
j

R2
ij (5)

The R2 of each output parameter was calculated by Equation (6) using the predictions
of the algorithm ŷi, the target parameter according to the test data yi, and its arithmetic
mean y. Thus, R2 can reach a maximum value of 1 in case of an error-free prediction of
the algorithm.

R2 = 1 − ∑i(yi − ŷi)
2

∑i(yi − y)2 (6)

After calculating the fitness of the initial population, the evolutionary process con-
sisting of selection, recombination, mutation, and evaluation of fitness was repeated in a
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given number of generations. Individuals for recombination were selected by the fitness
proportional method stochastic universal sampling. Each individual received an area
proportionate to its fitness value on a wheel. By spinning the wheel once and with n
arrows equally distributed around the circumference, n individuals were selected by the
pointers. Recombination was performed in pairs for the selected individuals. The list
of hyperparameters of two individuals for mating were separated at two points and the
new resulting individuals were defined by alternating the combination of the sections, see
Figure 4. After recombination, mutation was performed for each parameter contained in
the individual by a uniformly distributed random variable. Mutation served to generate
new parameter specifications in the population and was performed with a previously
defined probability. The individuals produced by recombination and mutation, as well as
the best individual from the previous population (elite), formed the new population for the
following generation.

Figure 4. Steps of the EA used for hyperparameter optimization of the regression models.

After a predetermined number of generations, the model with the highest fitness
and best prediction accuracy for the test data was returned by the EA. The parameters
controlling the behavior of the EA can be taken from Table 5.

Table 5. Parameters of the EA for the optimization of the hyperparameters of the regression algorithms.

Parameter Value Parameter Value

Number of
generations 30 Population size 50

Elite individuals 1 Crossover probability 0.8
Mutation probability 0.15

Table 6 shows the hyperparameters of the algorithms and components of the individ-
uals as well as the range of the parameters considered during optimization. The ranges
of the hyperparameters were chosen to be comparatively large in order to provide as
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many parameter combinations as possible. Large ranges of the hyperparameters increase
the risk of overfitting (e.g., large number of neurons contained in the ANN). However,
overfitting was avoided, including in the training methods of XGBoost and ANN, by using
evaluation datasets. Based on the predictions for the evaluation datasets that were not used
directly for training, it is determined whether overfitting is present in the current state
of the training process. No evaluation dataset was used for Random Forest, because the
algorithm generally has a low tendency to overfit the training data [36].

Table 6. Hyperparameters of the regression models optimized using the EA.

Model Parameter Minimum Maximum

XGBoost

Max depth 20 200
Number of estimators 100 1500

Learning rate 0.0001 0.01
L1 regularization 0.0001 0.9
L2 regularization 0.0001 0.9

Minimum loss reduction for tree split 0.00001 0.2

Random Forest

Max depth 20 200
Number of estimators 100 1500

Minimum samples required for a leaf 2 10
Maximum number of features for a split 10 17

Maximum number of leaf nodes 10 500
Minimal cost-complexity pruning 0 0.5

ANN

Number of neurons in layer 1 100 600
Number of neurons in layer 2 100 600
Number of neurons in layer 3 100 600
Number of neurons in layer 4 100 600

Learning rate 0.0001 0.9
Activation function ELU, RELU, Leaky_RELU

3. Results

3.1. Dynamics Simulation Results

The results of the dynamics simulations contain time series that include dynamics of
the cage as well as the rolling elements. Figure 5 shows an example of the dynamic behavior
of a cage for different operating conditions of the bearing. In the qualitative assessment of
cage dynamics, a fundamental differentiation is made between “unstable”, “stable”, and
“circling” cage motions [21,34]. These types of movements could also be observed for the
cages investigated. Figure 5a–c illustrates an example of an unstable cage motion (loading
conditions μc = 0.21, Fx = −8058 N, Fy = 1077 N, ni = 8263 rpm Tz = 48 Nm), that is
characterized by high dynamics as well as severe and high-frequency cage deformations.
The cage was pressed against the outer ring and strongly deformed. This led to the diameter
of the circular center of gravity trajectory being significantly larger than in the other two
calculations. In addition, high contact forces caused frictional losses, which significantly
impair the energy efficiency of the rolling bearing. In the case of stable cage motion
(loading conditions μc = 0.26, Fx = −15,126 N, Fy = 1636 N, ni = 4407 rpm Tz = 14 Nm),
no significant deformations occurred and the dynamics of the cage were generally low,
see Figure 5d–f. The contact forces between the cage and the rolling element and outer
ring were also significantly reduced compared to an unstable motion, and therefore the
frictional losses were also lower. The circling cage motion (loading conditions μc = 0.12,
Fx = −3030 N, Fy = 377 N, ni = 6844 rpm Tz = 12 Nm) is characterized by a circular
motion of the cage center of mass that exhibits small variations in the rotational speed. The
rotational speed of the cage center of mass corresponds to the speed of the rolling element
set. The cage is pressed in a radial direction due to the centrifugal force acting, so that the
number of contacts to the guidance rib and the contact force acting in the contact increase.
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Figure 5. Dynamic behavior of a cage for different operating conditions: an unstable (a–c), stable
(d–f), and circling (g–i) cage motion. The three-dimensional deformation of the cages, the center of
gravity trajectory, and the amplitude spectrum of the node displacement are illustrated.

In addition to the load on the bearing, the geometry of the cage can also influence the
dynamic response of the bearing. Figure 6 shows the cage dynamics for a load situation
(μc = 0.16, Fx = −9655 N, Fy = 3718 N, ni = 6844 rpm Tz = 16 Nm) and three different
cage geometries. The first cage variant performed a highly dynamic cage motion with
severe deformations and a high rotational speed of the cage center of mass, see Figure 6a–c.
A modification of the cage geometry (cross-section and shape of the cage pocket) for the
other two variants and the same operating conditions led to circling cage motions in
both cases. The amplitudes of the deformations were significantly smaller compared to
the first cage variant and the larger amplitudes were shifted to the low frequency range,
see Figure 6d–i.
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Figure 6. Dynamic behavior of three different cage variants for the same loading conditions. The
three-dimensional deformation of the cages (a,d,g), the center of gravity trajectory (b,e,h), and the
amplitude spectrum of the node displacement (c,f,i) are illustrated.

An overview of the simulations performed and the resulting cage motion types is
shown in Figure 7. Certain cage geometries (ID 02 or 05) had a high proportion of unstable
cage motions, while other cage variants exhibited a much lower tendency to unstable cage
motions (ID 14 or 10). In addition, differences in the proportion of circumferential and stable
cage movements were also evident for the different cage variants. The dynamic behavior of
the cage variants illustrates the potential of the geometry parameters to positively influence
the dynamics of the cage. A clear influence could also be identified in the loading conditions,
as was found, for example, by Schwarz et al. [14]. However, as the operating conditions
often cannot be influenced, these serve only as a reference for comparing the dynamic
behavior of the cage geometries.
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Figure 7. Overview of the results of the dynamics simulation. (a) Number of motion types “unstable”,
“stable”, and “circling” for each cage variant. (b) Motion type as a function of cage geometry and
bearing load. (c) Number of motion types for each bearing load in the experimental design.

The simulation results were further processed so that the influence of cage geometry
and bearing load was represented by a database consisting of input and target variables
and could be used for machine learning.

3.2. Preprocessing of Calculation Results and Data Analysis

The calculated time series were the starting point for determining the targets for
machine learning. For the evaluation of the cage dynamics, the time range t = 0.5...1 s
was analyzed to avoid unrepresentative cage motions due to the initial conditions at the
beginning of the calculation.

In addition it was checked whether the simulation results are suitable to be integrated
into the database. Especially for simulations with high friction coefficients, a severe defor-
mation of the cage occurred, which led to a termination of the simulation. Nonphysical
results as the automatically generated inputs are out of a reasonable range for this applica-
tion and were removed from the database. Using the density-based LOF approach, outliers
in the database could be identified and removed. The LOF approach was applied to each
of the classes “unstable”, “stable” and “circling”. Outliers with respect to the dynamic
behavior typical for the respective classes were thereby identified. Figure 8 illustrates the
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outliers (red) and the remaining datasets (blue). Outlier detection reliably removed atypical
cage movements, ensuring a high-quality database for machine learning. After preparing
the simulation results, the database for machine learning contained a total of 1362 data sets.

Figure 8. Distribution of target regression variables (a) med(Ω) and qd(Ω) as well as (b) qd(Fe) and
qd(ñ) in the database. The data sets marked in red are identified as outliers using the LOF approach
and not considered for training the regression models.

Figure 9 shows the correlation matrix for determining the qualitative relationship
between input and output parameters. The mechanical properties of the cage (area moment
of inertia Ĩ, mass m, area cross section Ã, and moment of inertia J) had similar values
for the correlation coefficient and thus a related influence on the target parameters, see
Figure 9a. A mathematical negative correlation existed between the mechanical properties
and the center of mass acceleration of the cage |ac|. Accordingly, lower accelerations
occur at higher masses of the cage, which can be justified by the inertia of the geometry.
There is also a positive correlation between the cage mass and the equivalent force Fe
representing the deformation of the cage. Thus, for the cages with larger masses, the
equivalent deformation force tend to be larger. With respect to the bearing speed ni and
friction coefficient μc, a mathematical positive correlation to cage acceleration, contact
forces, and finally a highly-dynamic cage movement could be clearly determined. This is
due to the increased relative velocity and frictional force in the contact between the cage
and the other components, which leads to a stronger excitation of the cage and an increased
tendency to highly dynamic movements.

Based on the matrix in Figure 9b, a mutual correlation of the output parameters was
also evident. Highly dynamic cage movements are characterized by strong deformations of
the cage, high accelerations, and a high frictional torque, for which reason these parameters
exhibited a strong correlation. Due to the opposite movement of the center of mass in the
case of unstable cage dynamics, there is a mathematical negative relationship between the
median of the Ω-ratio and the other parameters. The weak relationship of the normalized
x̃c-coordinate of the cage to the other target quantities is also noticeable. The contact forces
between the cage and the rolling element/rib point primarily in radial direction, which is
the direction of the resulting acceleration. Therefore, the correlation between the quantile
distance of the two non-axial coordinates is more significant, especially in the case of an
unstable cage motion. The quantile distance of the Ω-ratio also indicates a slightly lower
correlation to the other parameters, but still stronger than the quantile distance of the
x̃c-coordinate of the cage center of mass.
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Figure 9. Matrix with correlation coefficients for determining the relationship between (a) the input
and output parameters and (b) the output parameters among each other.

Although there were trends based on the correlation matrix that suggest the resulting
dynamic behavior of the cage, the relationship is highly nonlinear due to interactions
between the parameters. Therefore, the regression algorithms are trained in the following
to learn the relationship between input and output parameters.

3.3. Evaluating Optimization and Regression Results

The EA determined the hyperparameters of the models to maximize the average
coefficient of determination for the validation data sets. The best individuals or parameter
combinations are shown in Table 7. A large number of neurons, or many estimators in the
ensemble methods, increase the adjustable model parameters, the risk of overfitting to the
training data, and poor prediction accuracy for test data. However, the hyperparameters
causing overfitting were not chosen by the optimization to maximize the number of model
parameters to reach high values for the prediction accuracy based on the training data. In
general, this is a first indication that a generalization capable model was created by the
training and optimization.
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Table 7. Optimized parameters of the regression models.

Model Parameter Minimum Maximum Value

XGBoost

Max depth 20 200 52
Number of estimators 100 1500 832

Learning rate 0.0001 0.01 0.045
L1 regularization 0.0001 0.9 0.865
L2 regularization 0.0001 0.9 0.791

Minimum loss reduction for tree split 0.00001 0.2 0.021

Random Forest

Max depth 20 200 46
Number of estimators 100 1500 812

Minimum samples required for a leaf 2 10 2
Maximum number of features for a split 10 17 17

Maximum number of leaf nodes 10 500 441
Minimal cost-complexity pruning 0 0.5 0.0009

ANN

Number of neurons in layer 1 100 600 447
Number of neurons in layer 2 100 600 568
Number of neurons in layer 3 100 600 577
Number of neurons in layer 4 100 600 455

Learning rate 0.0001 0.9 0.003
Activation function ELU, RELU, Leaky_RELU Leaky_RELU

The hyperparameters optimized by the EA were used for training the algorithms.
Afterwards, the models were evaluated using the coefficient of determination R2 for test
and training data, see Figure 10. For the training data, acceptable values for R2 were
obtained for all algorithms. The quantile distance for the normalized x̃c-coordinate of the
cage reached R2 ≈ 0.41 in the case of the random forest regressor, which is to be assessed as
a medium correlation. The excitation of the cage, as well as the translational center of mass
movement, occurs both for the contact of the cage to the rolling elements and to the rib in
the radial direction. The relationship between the geometry and load parameters as well
as the axial center of mass movement and finally the R2 of the predictions were therefore
lower compared to the other center of mass coordinates. Random forest regressor predicted
very well for all target values, but reached a slightly lower R2 compared to XGboost and the
neural network for training data. The random components in the random forest algorithm
(e.g., feature selection) prevent possible overfitting to the training data and led to slightly
inferior prediction. The coefficients of determination R2 ≈ 1 for XGBoost were very high
and indicate a significant fit to the data sets.

The test datasets generally showed a lower coefficient of determination than the
training datasets but were within an acceptable range apart from the quantile distance of
the normalized x̃c coordinate of the cage. qd(x̃c) exhibited the worst values of R2 ≈ 0.41
for the random forest and R2 ≈ 0.6 the ANN. Thus, while qd(x̃c) is suitable for assessing
cage dynamics when derived from calculated time series, there is no strong correlation
to bearing load or cage geometry. The difference in prediction accuracy for training and
test data was lowest for random forest, which indicates a generalization of the model.
However, the difference for XGBoost and the ANN was also in an acceptable range, which
is also a sufficient generalization capability. All models reached comparable values for the
coefficient of determination R2 based on the test data sets and thus can be used equally
for the prediction of cage dynamics. The best prediction values for R2 based on the test
data sets were obtained for the quantile distance of the equivalent deformation force
Fe, the median of the Ω-ratio and the median of the friction torque Tf in the range of
R2 ∈ [0.90 . . . 0.94]. For the remaining target parameters, with the exception of qd(x̃c), at
least one of the models investigated achieved a coefficient of determination R2 > 0.8 and
sufficient prediction accuracy.
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Figure 10. Coefficient of determination R2 for the target variables of the regression algorithms
Random Forest, XGBoost, and Neural Network for training (a) and test data (b).

The scatter plot in Figure 11 shows, representative of the trained models, the predic-
tions of the ANN compared to the true values in the training (blue) and test (red) data. As
can be seen from the correlation matrix and the coefficient of determination, the predictions
for the quantile distance of the axial coordinate of the cage qd(x̃c) were considerably more
scattered than the other target variables. For the quantile distance of the omega ratio, the
deviation of the predictions from the test data sets was smaller, but a stronger, though still
acceptable, scatter was also present here. For the remaining parameters, a good correlation
was present, analogous to the R2. The deviations are within a tolerable range, as can be
seen by the intervals containing 90% of the errors determined for the test data (blue area).

The hyperparameters obtained from the optimization by the EA were used to perform
a 10-fold cross-validation. This allowed us to determine how strong the predictions of the
algorithm differ depending on the used training and test data set, see Figure 12. Based
on this, the sensitivity of the prediction results for different training and test data sets
could be investigated. Figure 12 exhibits the distribution of the average prediction of
the target values for the training data and a 10-fold cross-validation including (a) and
excluding (b) the quantile distance of the cage coordinate x̃c as regression target. For all
three models, omitting the normalized coordinate improves the average prediction quality,
as lower R2 values are obtained for qd(x̃c) than for the other values in all iterations of the
cross-validation. The minima and maxima of R2 for the three models without considering
x̃c in the cross-validation were very similar and differ only slightly. As no obvious favorite
could be identified based on the prediction accuracies, all three algorithms were suitable
for predicting the cage dynamics with a comparable error tolerance.
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Figure 11. Scatter plot of the target parameters for training (blue) and test (red) data sets and the
predicted values by the neural network. The colored area represents the range where 90% of the
errors for the test data sets are located.

Figure 12. Distribution of R2 values for all target variables (a) and without the normalized x̃c-
coordinate (b) for a 10-fold cross-validation. Besides the minimum and maximum, the distribution of
the values is also illustrated.
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4. Discussion

The results of the dynamics simulation illustrate the strong influence of the bearing
load and cage geometry on the resulting cage dynamics, see Figure 7. Depending on the
geometry, the tendency of a cage to highly dynamic and unstable cage movements varies
significantly. However, the relationship between the geometry parameters and the resulting
cage dynamics is very complex and difficult to determine using conventional methods of
descriptive statistics, as can be seen from the covariance matrix in Figure 9. The complex
relationship between the input and output parameters can basically be determined with
the help of the investigated algorithms. Analyzing the prediction results for test data, it
can be seen that for the quantile distance of the normalized center of mass coordinate x̃c of
the cage, mediocre prediction values could be obtained. As the frictional forces acting in
contact between the cage and the other components accelerate the cage primarily in the
bearing plane, the physical relationship between the input parameters of the model and
the resulting axial cage motion is less than for the other parameters. The normalized x̃c
coordinate of the cage is thus less suitable for predicting the cage dynamics. Though, as a
component of the multivariate metric CDI, which can be derived from calculated time series
representing cage dynamics, x̃c is a contribution to improve the classification performance.

The algorithms Random Forest, XGBoost, and ANN achieved similar values for the R2

of the different target variables for the test data sets, see Figure 10. A 10-fold cross-validation
exhibited that the differences between the models are small, and thus all algorithms are
suitable for the prediction of the cage dynamics. The robustness of the predicted targets for
a given cage geometry with respect to deviations from the true values can be improved
by a large number of predictions by the regression algorithm with a subsequent statistical
analysis. This reduces the influence of single incorrect predictions and improves the
comparability of the dynamic behavior of different cage variants.

A transfer of the predictions to other rolling bearing sizes is possible in general. For
this purpose, new training data must be generated and the existing database expanded.
However, a similar effect on the cage dynamics can be expected, especially for the load
conditions as shown, for example, by Schwarz et al. for various bearings [14,21]. Therefore,
the amount of training data for the same bearing type and similar cage shapes can probably
be lower than for the investigated angular contact ball bearing. In addition to the extension
to other bearing types, other parameters can also be added as input variables, so that
depending on the existing application, the model can also be designed flexibly. As with
the geometry parameters, new data sets must be created for the training, but the database
established so far serves as an initial starting point for further investigations.

5. Summary and Conclusions

The aim of this paper was to present a procedure for predicting the dynamics of
cages in an angular contact ball bearing using dynamics simulations and machine learning
regression methods. To achieve this aim, the approach in this paper is structured as follows:
starting with a comprehensive simulation study, a database was created to represent
the relationship between the input (cage geometry and bearing load) and output (cage
dynamics and bearing friction) parameters for the regression models. As part of the training,
the hyperparameters of the random forest, XGBoost, and artificial neural network models
were optimized using an evolutionary algorithm. The optimized hyperparameters were
used to train the regression models. The prediction accuracy of the models was compared
using the coefficient of determination R2 and regression plots. Based on the models and
their predictions, the dynamics of the cage represented by the target variables can be
predicted with high accuracy. The following conclusions can be drawn from the results of
this paper:

• The cage geometry has a significant influence on the resulting cage dynamics. The
occurrence of unstable cage movements can be significantly reduced by changing the
geometry of the cage.
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• The influence of the geoemtric parameters is non-linear and characterized by strong
alternating effects and can therefore hardly be assigned to single parameters.

• There is a low correlation between the axial movement of the cage and the influencing
factors such as bearing load and cage geometry. The reason for this is that the contact
forces acting on the cage point mostly in radial or circumferential direction. The forces
acting on the cage are influenced by the parameters such as cage mass, cage speed, etc.

• In this study, all regression algorithms achieved acceptable values for the coefficient
of determination in the range of R2 ∈ [0.75 . . . 0.94] for the target variables except for
the quantile distance of the normalized axial center of mass coordinate of the cage.
Therefore, the models appear to be suitable to compare the performance (dynamics,
friction) of different cages.

• The use of machine learning algorithms allows prediction even for new data sets of
the analyzed bearing for which no dynamics simulation has been performed. The
duration of the prediction is less than one second, while the computation time for a
simulation is about 10 h.
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Appendix A

Table A1. Parameters of the machine learning models, that were not optimized. The literature
reference for each model is the implementation of the algorithms.

Random Forest [26] XGBoost [27] ANN [25]

Parameter Value Parameter Value Parameter Value

Split criterion MSE Importance
type gain Weight

initializer
HeNormal/

Glorot

Minimum samples
for split

2 Objective MSE Slope coefficient for
Leaky ReLu activation

0.01

Use out of
bag score

False Subsampling False Bias initializer None

Bootstraping when
building trees

True Booster gbtree Regularizer None
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Abstract: Rolling bearings are frequently subjected to high stresses within modern machines. To
prevent bearing failures, the topics of condition monitoring and predictive maintenance have become
increasingly relevant. In order to efficiently and reliably maintain rolling bearings in a predictive
manner, an estimate of the remaining useful life (RUL) is of great interest. The RUL prediction quality
achieved when using machine learning depends not only on the selection of the sensor data used
for condition monitoring, but also on its preprocessing. In particular, the execution of so-called
feature engineering has a major impact on prediction quality. Therefore, in this paper, various
methods of feature engineering are presented based on rolling–bearing endurance tests and recorded
structure-borne sound signals. The performance of these methods is evaluated in the context of a
regression-based RUL model. Furthermore, the way in which the quality of RUL prediction can be
significantly improved is demonstrated, by adding further processed, time-considering features.

Keywords: rolling bearings; remaining useful life; machine learning; feature engineering; condition
monitoring; structure-borne sound; random forest; regression

1. Introduction

Modern machines with rotating components tend to use rolling bearings for their
bearing arrangements. For reasons of energy efficiency and limited design space, the
bearings are laid out as small as possible, which can lead to them being operated at the
limits of their durability. An unforeseen failure of a bearing can cause considerable damage
to the entire machine and its environment. Especially in the case of safety-relevant systems,
an unforeseen failure must be avoided in any case. In order to prevent such unforeseen
failures, condition monitoring and predictive maintenance are becoming increasingly
important [1]. Condition monitoring involves using suitable sensors to record measurement
data during operation, which is then processed to draw conclusions about the condition of
the component [2]. If the condition is judged to be critical in this process, corrective actions
such as maintenance can be planned. To be able to carry out such planning with as little
risk as possible, it is essential to estimate the remaining useful life (RUL) of components [3].

Rolling bearing damage can occur in various ways. The damage can be caused by lack
of lubrication, short-term overload or material fatigue due to long-term stress. Material
fatigue usually manifests itself in the form of propagating pitting within the raceway sur-
faces [4]. Recently, for bearing damage detection, traditional condition monitoring methods
have been increasingly combined with Artificial Intelligence (AI). Machine learning (ML),
as a subfield of AI, plays an essential role here. ML algorithms can be used to recognize
complex structures in data and to evaluate these structures [5]. This offers the possibility of
automated inference from the data. Applied to the challenge of RUL prediction, these are
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approaches to automatically draw conclusions about the RUL from the data measured at
the component. Among the machine learning algorithms used for RUL predictions there
are different variants of neural networks, such as convolutional neural networks (CNN) [6],
recurrent neural networks (RNN) [7], long short-term memory (LSTM) [8], and generative
adversarial networks (GAN) [9]. Furthermore, there are contributions to state detection
using random forest algorithms [10]. Machine learning is therefore becoming increasingly
relevant, not least in the field of tribology [11].

When using machine learning, the achievable prediction quality is highly dependent
on the type and quality of the data as well as the preprocessing used. Targeted data
preprocessing has a significant impact on both the achievable prediction accuracy and the
computational speed of the implemented algorithms [12,13]. In the context of rotating
machinery, the measurement of structure-borne sound has proven particularly useful for
drawing conclusions about the components’ condition [14–16]. Therefore, the present
article will also use structure-borne sound measurements to investigate the condition of
rolling bearings and to predict their RUL.

Recent approaches for predictive maintenance based on electrical impedance mea-
surements of rolling bearings can complement or even replace structure-borne sound
measurements with in situ information [17]. The quality of the underlying model is con-
tinuously increased by considering unloaded rolling elements and modeling the detailed
rolling contact geometry [18]. ML approaches are used to further enhance the predictive
capabilities [19].

In a previous paper presented by the present authors, the influence of feature engi-
neering on condition monitoring of rolling bearings was shown using a random forest
regressor [20]. A feature engineering approach is presented in the previous work, which,
compared to features from Lei et al. [21], achieves particularly good results in structure-
borne sound-based condition detection. Based on these results, the feature-engineering
approach is optimized and extended in this study regarding the prediction of remaining
useful life. The aim is to develop a methodology that leads to a RUL prediction model
with high accuracy and good traceability. Therefore, the investigations are focused on
feature engineering and the consideration of information from the temporal past. In order
to predict the RUL of rolling bearings, a methodology based on a random forest condition
regression is presented.

2. Materials and Methods

To evaluate the developed feature engineering methods in the context of RUL predictions,
a methodology in which all other model components and their parameters remain constant
as boundary conditions is used. The approach used for this purpose is illustrated in Figure 1.
The individual model parts are described in more detail within the subsequent sections.

Figure 1. Overview of the methodology used.

154



Lubricants 2022, 10, 67

2.1. Experiments

The investigations are based on structure-borne sound measurement data, which is
recorded on a rolling bearing test rig. The concept of the FE9 test rig used was originally
designed for testing rolling bearing greases. An electric motor drives the test head shaft via
a belt. On one side of the shaft, an ancillary bearing is mounted, which is provided with
circulating oil lubrication. The grease-lubricated test bearing, the wear of which is to be
examined, is located on the other side of the shaft. In order to accelerate grease aging and
thus, its wear, the test bearing is heated. An axial load is applied with the aid of a spring
preload. The test head of the FE9 test rig can be seen in Figure 2.

Figure 2. Test head of the FE9 test bench, adapted with permission from [22].

In the case of the tests evaluated in this work, the test bearings used are of type 6206-
C-C3 (Schaeffler AG, Herzogenaurach, Germany) and lubricated with a low-temperature
grease. The grease is used beyond the limits of its specification due to the applied thermal
load, which is why the operating life is greatly reduced. A constant speed of 6000 rpm is
present at the test head shaft. The axial load is 1500 N and the temperature of the heater on
the test bearing is set to 140 ◦C. The sensor used is a three-axis piezo accelerometer of type
PCB-356A15 (PCB Piezotronics, Depew, NY, USA). The sensor is mounted close to the test
bearing, as shown in Figure 3.

Figure 3. Placement of the accelerometer on the test bench, adapted with permission from ref. [20].
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For the investigations carried out here, only data from the sensor’s X-axis, which is
aligned radially to the bearing, is analyzed. The data is acquired at a sampling rate of
20 kHz. An imc CRONOSflex (imc Test & Measurement GmbH, Berlin, Germany) data
acquisition system is used in the measuring chain with an 8th order Cauer LP anti-aliasing
filter having a cut-off frequency of 8 kHz. The amplitude is resolved with 24 bits. The
measurement data is recorded at intervals of 1 s with intervening pauses of 59 s. A total
of nine endurance runs are investigated. A threshold value in the power consumption of
the driving electric motor is defined as a termination criterion for the experiments. This
leads to test run times ranging from 10 h to 20 h. At the end of the tests, the test bearings
show very similar damage patterns in the form of pitting. Figure 4 shows an example of
the inner ring of one bearing after endurance testing.

Figure 4. Pitting on a ball bearing inner ring after its test run, reprinted with permission from ref. [20].

2.2. Data and Labeling

The aim of the procedure used here is to directly infer the bearings remaining useful
life from the trained ML model. Therefore, a supervised learning approach in terms of a
regression is used. The label must represent the progressive bearing damage. As already
shown in [20], a label that linearly increases from 0 to 1 is used for this purpose. A similar
labeling approach has also been presented in [23]. Figure 5 shows the label based on the
structure-borne sound signals of a single test run. From a mathematical point of view, the
label can be described as the normalized test run duration. The value 0 represents the
original condition of the bearing, while 1 indicates the end of its useful life.

Figure 5. Measurement and assigned label for an exemplary test run.
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2.3. Feature Engineering

A wide variety of feature-engineering methods have already been described in the
literature [13,24]. The focus of the research conducted here is on the comparison of
different feature-engineering methods that consider the temporal past in the context
of feature generation. As a basis, the so-called averaged-frequency-band (afb) features
are used, which have already been shown in [20] to be particularly performant and
computationally efficient compared to the features proposed by Lei et al. [21]. The studies
in [20] were based on the same data set also used for the present work. Starting from the
afb features, additional features are now to be generated, which contain the information
of the temporal past. The influence of these processed features on the RUL prediction is
to be investigated.

2.3.1. Averaged-Frequency-Band Features

As base features, the so-called averaged-frequency-band features are used, the cal-
culation method of which is visualized in Figure 6. To calculate the afb features for each
1 s measurement interval, the data of the interval is first transformed into the frequency
domain by means of an FFT. The resulting amplitude spectrum is divided into frequency
bands of equal width. Finally, the average values of the amplitudes within the formed
frequency bands are used as features. Thus, an afb feature describes the average value of
the amplitudes within a frequency band.

Figure 6. Determination of the averaged-frequency-band features, adapted with permission from
ref. [20].

Based on preliminary investigations and in order to keep the total number of features
and thus the model complexity at a moderate level, the number of frequency bands in this
case is set to 8.

2.3.2. Rolling Mean Features

In order to utilize information from the temporal past, rolling means can be used. In
the case presented here, these rolling means were calculated from the afb features presented
previously. To be able to represent the short-term dynamics as well as the long-term
behavior, several averages are formed over different time spans. Progressively increasing
time spans seem to make sense for this use, which was confirmed in preliminary studies.
The progressive staggering of rolling means is shown in Figure 7 for three rolling mean
durations using the time course of afb1(8).
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Figure 7. Progression of an averaged-frequency-band and three associated rolling means.

2.3.3. Cumulative Features

Another way to account for temporal information is to use accumulated quantities.
Already in [25], the cumulative sum of values was proposed to generate features with
monotonic behavior. These accumulated features provide long-term trends, which helps
the ML algorithm in its decision making. In the case presented here, the afb features are
used for accumulation. Each afb feature is summed up cumulatively from the beginning of
the experiment.

2.4. Machine Learning

The goal of the machine learning is to approximate an unknown function, which maps
the input features to the label. Since the label is defined in the form of a continuous variable,
this is supervised learning in terms of a regression [26]. In the field of machine learning,
there is a wide variety of regression algorithms [5]. A comprehensive overview of the
available Deep Learning methods can be found in [27]. In [10], a random forest approach
has already been used to detect the state of journal bearings. The aim of the present work
is to show the influence of targeted feature engineering on RUL prediction performance.
Therefore, traceability shall be as good as possible. For this reason, deep learning algorithms
are not used here, instead, a random forest regressor is chosen. A random forest is an
ensemble method based on decision trees [28]. It is considered to be very robust and to
provide continuously good results compared to other regression algorithms.

In the workflow used here to investigate feature engineering, the machine learning
algorithm is considered as a constant boundary condition. Therefore, the parameters of
the random forest are kept fixed. Based on preliminary studies, the number of trees is
set to 500, and the maximum tree depth is limited to 20. The models used in this work
are implemented in Python using the numpy, pandas, scipy, and matplotlib libraries.
Additionally, the library Scikit-learn is used for the implementation of the random forest
and metrics for result evaluation.

To evaluate the models built with the different feature engineering methods, a 9-fold
cross-validation is used. Out of the total nine endurance test runs available, eight endurance
tests are used for training. The remaining test run is used for the test data set, which means
that the test data is always completely separated from the training data. This is repeated a
total of nine times so that the data from each test is used as independent test data once.

The quality of the prediction is evaluated using metrics. For this purpose, the MAE
and the R2 are chosen. The MAE (Mean Absolute Error) provides a directly interpretable
result of the regression quality in the context of the label used here. For example, an MAE
of 0.05 means that the prediction of the current bearing condition is on average 5 % from
the true value. Consequently, the MAE tends to 0 in case of a perfect model. In addition,
the R2, which is called the coefficient of determination, provides a general measure of the
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quality of a regression. It tends towards a maximum value of 1 for optimal predictions. The
smaller the value, the worse the prediction [29]. For the overall evaluation in the results
section below, the average value of the nine metrics calculated during cross-validation is
considered. This ensures an evaluation of the model quality based on the entire data set.

2.5. RUL Prediction

To infer the predicted remaining useful life RULpred based on the predictions of the
label within the regression, the following equation is used:

RULpred =
t

ypred
·
(

1 − ypred

)
(1)

Here, t is the current operating time and ypred is the label predicted at the correspond-
ing time. The described mathematical relationship results from the background of the
selected label, which corresponds to the normalized test-run time. At the beginning of
the measurement, where the predicted label ypred is close to zero, RUL prediction is not
practical due to large inaccuracies, which can be directly justified by Equation (1). Dividing
by small ypred then leads to very large fluctuations in the RUL prediction, caused by only
slight variations in the predicted label. For this reason, RUL prediction is evaluated exclu-
sively for the second half of the test runs. The result evaluation by means of the RUL-based
MAE is also performed exclusively on the second half of the test runs.

In order to compare the predicted with the true remaining useful life RULtrue, the
latter must also be calculated. This is performed using the total operating time until bearing
failure T and the true label at the respective time ytrue:

RULtrue = T·(1 − ytrue) (2)

3. Results

The previously presented feature engineering approaches are now compared to each
other. In detail, the three approaches listed in Table 1 are considered.

Table 1. Feature engineering approaches used.

Abbreviation Description No. of Features

afb(8) Averaged-frequency-band features
using 8 frequency bands 8

rollingmeans(10, 80, 600)
Time domain rolling means calculated
based on the afb(8) with window sizes

of 10, 80 and 600 min
24

cumsum Cumulative sum of the afb(8) 8

The first feature set is denoted as afb(8). No temporal past information is used with
this feature set. It therefore serves as a reference. For the second feature set, the afb(8)
approach is combined with the rollingmeans(10, 80, 600) approach. The third feature set is
a combination of the reference features afb(8) and the cumsum approach.

To compare the three feature sets mentioned above, the workflow shown in Figure 1
is used, keeping the boundary conditions constant. The resulting regression and RUL
predictions are shown in Figure 8 using a single test data set. While the plots on the left
show the regression results of the trained machine learning algorithm, the plots on the right
visualize the RUL prediction derived from it. The metrics MAE and R2 of the visualized
results are entered within Figure 8.
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Figure 8. Results of regression (a,c,e) and RUL prediction (b,d,f) visualized based on the cross-
validation run of test bearing No. 1 for the three different feature sets.
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The prediction scatters strongly when using only afb(8) features, see Figure 8a. Several
states can be identified in the predicted label, between which the prediction changes
quite abruptly. In the case of an ideal prediction, all prediction points (blue) would be
exactly on top of the reference line. Thus, the vertical deviation of the predictions from
the reference line visualizes how inaccurate the prediction is. The same applies to the
mapping of the RUL. Here, with optimal prediction, the test data points would align with
the orange line, representing the true RUL. The corresponding RUL prediction using the
afb(8) features is very inaccurate due to the large prediction spread of the regression results
and poorly represents the true RUL, as can be seen in Figure 8b. A significant improvement
in prediction quality is achieved by adding the rolling-means, as shown in Figure 8c,d.
On average, the forecast shows similar trends, but is much less scattered. This is evident
not only in the predicted label, but also within the resulting RUL prediction. Further
improvement of the results is achieved with the combination of the afb(8) and cumsum
features, which is visualized in Figure 8e,f. The steps visible with the other two feature sets
disappear almost completely here. These improvements of the results can be determined
not only visually, but also based on the metrics calculated. Smaller MAEs and larger R2s
represent the prediction improvements.

Since Figure 8 only illustrates one of the total of nine cross-validation runs, the overall
cross-validation results are summarized in Table 2. For this purpose, the average of
the regression MAE and the regression R2 calculated via cross-validation are entered.
Additionally, the averaged MAE of the RUL prediction as well as the relative deviation of
the MAE with respect to the test run times are evaluated in the last two rows.

Table 2. Results of cross-validated regression and RUL prediction.

Cross-Validated Metrics
of Regression

afb(8)
afb(8) + Rollingmeans

(10, 80, 600)
afb(8) + Cumsum

∅ MAE of Regression 0.0892 0.0753 0.0506

∅ R2 of Regression 0.841 0.875 0.95

Test
Bearing No.

Experiment
Runtime
in min

MAE of RUL Prediction in min

afb(8)
afb(8) + Rollingmeans

(10, 80, 600)
afb(8) + Cumsum

1 927 100.7 62.4 52.1
2 1073 197.6 75.7 86.5
3 808 91.1 68.1 47.8
4 824 155.3 224.1 107.6
5 1011 123 94.9 48.2
6 882 73.5 70.9 48.7
7 1191 146.7 79 117.9
8 746 92.4 47.3 60
9 668 132.9 154.5 133.8

∅ 903.3 123.7 97.4 78.1

∅ relative error of RUL
prediction 13.8 % 11.4 % 8.9 %

Looking at the averaged metrics from cross-validation, the results already obtained in
Figure 8 are supported. Adding the rolling mean features to the afb(8) yields a significant
improvement, with the cumulative features performing even better compared to the rolling
mean features. In the MAE of the individual test bearings’ RUL, it is noticeable that this
sequence of model performance does not apply quantitatively in the same way for each
test bearing. Consequently, there is a non-negligible dispersion of the individual test data
sets. A possible explanation for this dispersion is the different physical wear behavior of
the various bearing endurance test runs used.
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4. Discussion

Based on the experimental data used, the results presented show that a clear improve-
ment in RUL prediction is possible with the help of temporal information, implemented
by means of time-considering features. By using a well-defined workflow where only
the feature sets are changed, the impact of the different features on the RUL prediction
performance is evaluated. For the RUL prediction, a random forest regression approach is
used. Comparing the two presented ways of incorporating temporal past information in the
form of extended feature sets, the approach of cumulatively generated features performs
particularly well. By using this extended feature set, the averaged MAE of RUL predictions
can be reduced by 37% in comparison to the use of base features only. Calculating rolling
means with progressively staggered window widths also adds value in terms of predictive
accuracy, although the results are slightly worse than those obtained with the cumulative
approach. In the case presented here, the base features are formed from the so-called
averaged-frequency-bands, which have already been shown to perform particularly well
on the data used in [20]. The authors assume that the methodology presented here will lead
to improved RUL predictions for other base features in an analogous manner. A validation
of this hypothesis is still pending at this point.

It should be noted that the evaluations carried out here are based on test data obtained
on a rolling bearing test rig under constant operating conditions. Limitations are to be
expected when implementing the methodology proposed here in a real application, with
varying boundary conditions such as speeds, loads or temperatures. In particular, the
formation of accumulated features could be error-prone, since each individual point in
time has an influence on the entirety of the following time span. Thus, continuous and
reliable measurement data acquisition is indispensable for the correct determination of
accumulatively formed features.

Future work can investigate further approaches of feature engineering and the possi-
bilities of considering temporal information. The implementation of further RUL prediction
methods and the possibilities of deep learning algorithms have been omitted here in or-
der to focus on the integration of temporal information via extended feature engineering
approaches. For comparison purposes, it seems reasonable to also consider deep learning
methods, such as CNNs, RNNs or LSTMs, which natively offer the possibility to take
temporal information into account. However, with these methods, the comprehensibility of
decision making is lost. Furthermore, with regard to hybrid models, it seems promising to
motivate the development of novel features by physical backgrounds. The investigations
should also be extended to additional data that are recorded at non-constant bearing operat-
ing conditions. In order to achieve satisfactory RUL prediction results even at non-constant
operating conditions, the methods may have to be extended.
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Abstract: Machine learning (ML) and artificial intelligence (AI) are rising stars in many scientific
disciplines and industries, and high hopes are being pinned upon them. Likewise, ML and AI
approaches have also found their way into tribology, where they can support sorting through the
complexity of patterns and identifying trends within the multiple interacting features and processes.
Published research extends across many fields of tribology from composite materials and drive
technology to manufacturing, surface engineering, and lubricants. Accordingly, the intended usages
and numerical algorithms are manifold, ranging from artificial neural networks (ANN), decision
trees over random forest and rule-based learners to support vector machines. Therefore, this review
is aimed to introduce and discuss the current trends and applications of ML and AI in tribology. Thus,
researchers and R&D engineers shall be inspired and supported in the identification and selection of
suitable and promising ML approaches and strategies.

Keywords: tribology; machine learning; artificial intelligence; triboinformatics; databases; data
mining; meta-modeling; artificial neural networks; monitoring; analysis; prediction; optimization

1. Introduction

Tribology has been and continuous to be one of the most relevant fields in today’s
society, being present in almost aspects of our lives. The importance of friction, lubrication
and wear is also reflected by the significant share of today’s world energy consumption [1].
The understanding of tribology can pave the way for novel solutions for future technical
challenges. At the root of all advances are multitudes of precise experiments and advanced
computer simulations across different scales and multiple physical disciplines [2]. In the
context of tribology 4.0 [3] or triboinformatics [4], advanced data handling, analysis, and
learning methods can be developed based upon this sound and data-rich foundation and
employed to expand existing knowledge. Moreover, tribology is characterized by the fact
that it is not yet possible to fully describe underlying processes with mathematical terms,
e.g., by differential equations. Therefore, modern Machine Learning (ML) or Artificial Intel-
ligence (AI) methods provide opportunities to explore the complex processes in tribological
systems and to classify or quantify their behavior in an efficient or even real-time way [5].
Thus, their potential also goes beyond purely academic aspects into actual industrial ap-
plications. The advantages and the potential of ML and AI techniques are seen especially
in their ability to handle high dimensional problems and data sets as well as to adapt to
changing conditions with reasonable effort and cost [6]. They allow for the identification
of relevant relations and/or causality, thus expand the existing knowledge with already
available data. Ultimately, through analyses, predictions, and optimizations, transparent
and precise recommendations for action could be derived for the engineer, practitioner, or
even the potentially smart and adaptive tribological system itself. Nevertheless, compared
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to other disciplines or domains, e. g. economics and finances [7], health care [8], or manu-
facturing processes [6], the applicability of ML and AI techniques for tribological issues is
still surprisingly underexplored. This is certainly also due to the interdisciplinarity and the
quantity of heterogenous data from simulations on different scales or manyfold measure-
ment devices with individual uncertainties. Furthermore, friction and wear characteristics
do not represent hard data, but irreversible loss quantities with a dependence on time and
test conditions [9].

To help pave the way, a more detailed analysis of the available ML/AI techniques
as well as their applicability, strengths and limitations with regard to the requirements of
the respective tribological application scenario with its specific, theoretical foundations
is essential. Therefore, this contribution aims to introduce the trends and applications
of ML algorithms with relevance to the domain of tribology. While other reviews were
more generic [10], had a more concise scope [5], or focused on a specific technique (i.e.,
artificial neural networks [11]), this review article is also intended to cover a wider range
of techniques and in particular to shed light on the broad applicability to various fields
with tribological issues. Thus, the interested reader shall be provided with a high-level
understanding of the capabilities of certain methods with respect to the tribological applica-
tions ranging from composite materials over drive technology or manufacturing to surface
engineering and lubricant formulations. This article is therefore structured in such a way
that first the theoretical background is introduced, and the results of a quantitative meta-
literature analysis are presented (Section 2). Thereby, the published work on ML in the field
of tribology is clustered according to the level or intention, the scale under consideration,
the nature of the database and the area of application. Organized according to the latter,
the work and progress reported in literature is then discussed in detail (Sections 3.1–3.6)
before the main trends are summarized and concluded (Section 4).

2. Background and a Quantitative Survey on Machine Learning in Tribology

ML is part of AI [12] and thus originally a sub-domain of computer science. AI and
ML are formed by logic, probability theory, algorithm theory, and computing [13]. In
a first step, ML involves designing computing systems for a special task that can learn
from training data over time and develop and refine experience-based models that predict
outcomes. The system can thus be used to answer questions in the given field [12]. There
are a number of different algorithms that can be used for ML, whereby the suitability
is strongly task-dependent. Generally, algorithms can be categorized as “supervised
learning” or “unsupervised learning” [12]. For the former, algorithms learn a relation from
a given set of input and output data vectors. During learning, a “teacher” (e.g., an expert)
provides the correct inputs and outputs. In unsupervised learning, the algorithm generates
a statistical model that describes a given data set without the model being evaluated by a
“teacher”. Furthermore, reinforcement learning features different characteristics, although
it is sometimes classified as supervised learning. Instead of induction from pre-classified
examples, an “agent” “experiments” with the system and the system responds to the
experiments with reward or punishment. The agent thus optimizes the behavior with
the goal of maximizing reward and minimizing punishment. While the classification
of the three learning types mentioned above is common and widely accepted, there is
no consensus on which algorithms should be assigned to which category. One possible
allocation following [6] is illustrated in Figure 1.
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Figure 1. Classification of machine learning techniques. Redrawn from [6] with permission by CC BY 4.0 (Taylor and Francis).

The basic idea of support vector machines (SVM) is that a known set of objects is repre-
sented by a vector in a vector space. Hyperplanes are introduced into this space to separate
the data points. In most cases, only the subset of the training data that lies on the boundaries
of two planes is relevant. These vectors are the name-giving support vectors [14]. To ac-
count for nonlinear boundaries, kernel functions are an essential part of SVM. By using the
kernel trick, the vector space is transformed into an arbitrarily higher-dimensional space, so
that arbitrarily nested vector sets are linearly separable [15]. Decision trees (DT) are ordered,
directed trees that illustrate hierarchically successive decisions [12]. A decision tree always
consists of a root node and any number of inner nodes as well as at least two leaves. Each
node represents a logical rule, and each leaf represents an answer to the decision problem.
The complexity and semantics of the rules are not restricted, although all decision trees can
be reduced to binary decision trees. In this case, each rule expression can take only one of
two values [16]. A possibility to increase the classification quality of decision trees is the use
of sets of decision trees instead of single trees, this is called decision forests [17]. If decision
trees are uncorrelated, they are called random forest (RF) [18]. The idea behind decision
forests is that while a single, weak decision tree may not provide optimal classification, a
large number of such decision trees are able to do so. A widely used method for generating
decision forests is boosting [19]. In rule-based learners, the output results from composing
individual rules, which are typically expressed in the form “If–Then”. Rule-based ML
methods typically comprise a set of rules, that collectively make up the prediction model.
K-Nearest-Neighbor algorithms (kNN) are classification methods in which class assignment is
performed considering k nearest neighbors, which were classified before. The choice of k
is crucial for the quality of the classification [16]. In addition, different distance measures
can be considered [20]. Artificial neural networks (ANN) are essentially modeled on the
architecture of natural brains [21]. They are ‘a computing system made up of a number
of quite simple but highly interconnected processing elements (neurons), which process
information by their dynamic state response to external inputs’ [12]. The so-called transfer
function calculates the neuron’s network input based on the weighting of the inputs [22].
Calculating the output value is done by the so-called activation function considering a
threshold value [12,22]. Weightings and thresholds for each neuron can be modified in a
training process [16]. The overall structure of neurons and interconnections, in particular
how many neurons are arranged in a layer and how many neurons are arranged in parallel
per layer, is called topology or architecture. The last layer is called the output layer and
there can be several hidden layers between the input and the output layer (multilayer
ANN) [21]. While single-layer networks can only be used to solve linear problems, multi-
layer networks also allow the solution of nonlinear problems [12]. Feedforward means, that
neuron outputs are routed in processing direction only. Recurrent networks, in contrast,
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also have feedback loops. Commonly, ANNs are represented in graph theory notation,
with nodes representing neurons and edges representing their interconnections.

Already rather early works in the field of tribology from the 1980s can be assigned to
the current understanding of ML. For example, Tallian [23,24] introduced computerized
databases and expert systems to support tribological design decisions or failure diagnosis.
Other initial studies were concerned, for example, with the prediction of tribological
properties [25–27] or classification of wear particles [28,29]. Between 1985 and today,
almost 130 publications related to ML in tribology were identified within a systematic
literature review (see Prisma flow chart in Figure 2a), whereas the number of papers
initially increased slowly and more rapidly within the last decade (Figure 2b). During the
latter period, the number of publications has more than tripled, which represents a faster
growth than the general increase in the number of publications in the field of tribology
(the numbers of Scopus-listed publications related to tribology grew by a factor of 2.3
between 2010 and today). It can therefore be highly expected that this trend will continue
and that ML techniques will also become increasingly prominent in the field of tribology
due to technological advances and decreasing barriers and preconceptions. Therefore, the
analysis of the publications with respect to the fields of application is of particular interest,
which is illustrated in Figure 2c. Especially in the areas of composite materials, drive
technology, and manufacturing, numerous successful implementations of ML algorithms
can already be found. Yet, some studies can also be found for surface engineering, lubricant
formulation or manufacturing. As depicted in Figure 2d, ML techniques are applied for
monitoring tribo-systems or for pure analytical/diagnostic purposes, but especially for
predicting and optimizing the tribological behavior with respect to the friction and wear
behavior. The scales under consideration are mainly on the macro and/or micro level,
see Figure 2e. However, a few works also show the applicability down to the nano scale.
Finally, it could be observed that the database for training the ML algorithms can also be
generated based on numerical or theoretical fundamentals from simulation models or on
information from the literature. However, the vast majority (roughly three quarters) of the
published work is based upon experimentally generated data sets (Figure 2f).

 

Figure 2. Systematic protocol (Prisma flow chart) for the paper collection/screening (a), and number
of publications per year (b) and clustered by the area of application (c), level (d), scale (e) and
database (f).
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3. Results

As illustrated in the previous section, there is a wide variety of implementations of
different ML/AI approaches. In order to give a more detailed overview of applications for
ML to solve tribological issues, various cases are presented and discussed in the following.
Since the aim is to address interested readers from the field of tribology and to show how
ML can be used effectively in their respective fields, this is organized according to the area
of application in descending order of the number of published works.

3.1. Composite Materials

ML and AI algorithms are already widely used in the field of composite materials for
tribological applications. Generally, there has been a remarkable growth in the large-scale
use of materials made from two or more constituent materials with different physical or
chemical properties, for example a fiber and/or filler reinforced polymer (PMC), ceramic
(CMC) or metal (MMC) matrix composites. The advantages of these materials lie especially
in the high strength-to-weight as well as stiffness-to-weight ratios [30]. For a general
overview of tribological properties of different composites in dependency of contact and/or
environmental conditions, the interested reader is referred to various review articles [31–33].
A major field which already exploited ML approaches to a greater extent have been
wear-resistant composites with polymer matrix, for example thermosets such as epoxy
or polyester [34] as well as thermoplastics [35], e.g., polyamide (PA), polyphenylene
sulfide (PPS), polytetrafluoroethylene (PTFE), polyethylene (PE), polyether ether ketone
(PEEK) [36,37], or polypropylene (PP) [38].

3.1.1. Thermoset Matrix Composites

In this way, Padhi and Satapathy [39] applied a Taguchi experimental design of ex-
periments (DoE, 16 data points) in combination with a back propagation ANN to train
multi-layered feed-forward networks, predicting the tribological behavior of epoxy com-
posites with short glass fibers (SGF) and/or micro-sized blast furnaces slag (BFS) particles.
Based on data obtained from tests in a pin-on-disk setup under dry sliding conditions
against a hardened ground steel counter-body and divided into training, test and validation
categories and operational and material parameters with significance for the resulting wear
rate were thus identified. Thereby, the ANN was able to predict the specific wear rate
with low errors between 2.5% and 6.9% for composites without BFS and between 0.9%
and 5.1% for composites with BFS. Epoxy composites were also investigated recently by
Egala et al. [40] with newly developed natural short castor oil fibers (ricinus communis)
as unidirectional reinforcements of different lengths and at a constant volume fraction of
40%. The database consisting of 36 data points was acquired from experiments utilizing
a flat pin-on-disk tribometer under dry sliding conditions against a hardened steel disk
as a counter-body. Besides fiber lengths, the normal force as well as the sliding distance
were varied and the influence on gravimetric wear, interfacial heat, and COF were studied
within a full factorial DoE. The experiments were carried out in duplicate and averaged
values were used in further data processing. Thereby, the relationships between variation
parameters and target values were expressed by linear regression as well as by hidden
layer ANNs. For the training of the latter, the data set was randomly split into training
(60%), validation (20%), and test (20%) data. To find the best prediction, 73 different ANNs
(cascade forward back propagation, feed forward back propagation and layer recurrent)
with Levenberg-Marquardt (LM) training function and a varying number of hidden layers
(1–4), number of neurons (7–15), and different transfer functions (Logsig, Purelin) were
tested stepwise (see Figure 3a–d). It was found that the linear regressions were able to
describe the results within errors of ±8%. The best predictions however were provided
by a cascade forward back propagation network as well as a feed forward back propa-
gation ANN with architectures as illustrated in Figure 3e,f using Trainlm and Purelin as
training and transfer functions. Thereby, the errors were ±5% and ±4.5%, respectively,
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indicating higher efficiency and reliability in predicting the tribological behavior of studied
composites than common regression models.

 
Figure 3. Average total errors for the wear prediction of different ANN architectures when optimizing the transfer function
(a), the network type and the number of neurons in the single-hidden layer ANN (b) as well as the network type and the
number of layers (c) and the number of neurons in the multi-hidden layer ANN (d). Illustration of the architectures of the
single- (e) and multi-hidden layer ANN (f) with least errors. Redrawn from [40] with permission by CC BY 4.0 (Springer).

Nirmal [41] attempted to predict the friction coefficient of treated betelnut fiber re-
inforced polyester composites by an ANN trained with data from 492 experimental sets
of a block-on-disk tribometer against stainless steel under dry sliding conditions with
varying normal loads, sliding distances and three different fiber orientations (parallel, anti-
parallel and normal). In trial-and-error variations of neuron, layer, and transfer function,
an ANN consisting of two hidden layers with 30 and 20 neurons, respectively, trained
by LM function and utilizing logsig transfer functions between the hidden layers and a
pure linear transfer function to the output layer was found as most capable of predicting
the COF based upon the inputs. Albeit other training algorithms (gradient descent back
propagation, with momentum and adaptive learning rate, with adaptive learning rate and
conjugate gradient back propagation with Powell-Beale restarts) resulted in significantly
faster convergence, the LM function featured the lowest errors compared to the test data,
especially after repeated training. Thus, sum squared errors (SSE) of less than 10−2 were
obtained. Similarly, Nasir et al. [42] identified the LM function as most suitable compared to
others when training ANNs to predict the COF from 7389 data sets attained in experiments
on multi-layered glass fiber reinforced polyester resin rubbing against stainless steel using
a disk-on-flat tribometer under different fiber orientations, loads, sliding speeds, and test
durations. The prediction model was able to reproduce the trends of the experiments
well and accuracies up to 90% were achieved. It was stated, however, that performance
was lower compared to other studies due to the large amount of input data as well as
larger deviations and fluctuations in the experimental results, especially during running-in
periods. Furthermore, it was emphasized that the number of layers as well as neurons have
a decisive influence on the results. While multi-hidden layer ANNs mapped partial areas
of the input data (e.g., only one fiber orientation) very well, the entire data area was best
represented by a single-hidden layer ANN with comparatively many neurons.

3.1.2. Thermoplastic Matrix Composites

Already in the early 2000s, Velten et al. [43,44] evaluated the ability of ANNs to predict
tribological properties of short fiber thermoplastic matrix (PA) composites and aid in the
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material design. Here, the decisive role of the data sets as well as the ANN architecture
was emphasized as well. Later, Gyurova et al. [45] modeled the tribological behavior
of PPS composites with short carbon fibers (SCF), graphite, PTFE, and titanium dioxide
(TiO2) fillers with over 90 data sets obtained from dry-running pin-on-disk tribometer tests
at constant test duration and varied loads and sliding speeds. The data were split into
80% training and 20% testing data and included the material composition (matrix volume
fraction, filler, reinforcing agents and lubricants), testing conditions (pressure and sliding
speed), as well as characteristic thermo-mechanical properties (tensile and compressive
properties) as inputs and the specific wear and the friction coefficient as outputs. For the
latter, separate ANNs were trained by a gradient descent back propagation algorithm with
momentum and adaptive learning rate to minimize the mean relative error (MRE). These
consisted of two hidden layers with 9 and 3 (wear rate) as well as 3 and 1 (COF) neurons,
respectively. Thus, most significant inputs could be identified, and it was observed that
the MRE for the wear rate (0.60–0.78) was higher than for the sliding friction (0.10–0.12),
which was attributed to the rather small database. Furthermore, a so-called optimal brain
surgeon (OBS) method was used to prune the ANN through the identification and removal
of irrelevant nodes (weight elimination). The architectures as well as exemplary 3D profiles
for predicting the wear rate in dependency of the SCF and the TiO2 content before and
after pruning are illustrated in Figure 4. Apparently, both cases matched adequately
with the experimental data. Besides higher computational efficiency, the pruned network
featured superior prediction accuracy in some areas of the parameter space. Finally,
optimal compositions with higher SCF and lower TiO2 concentrations around 10–15%
as well as 3–5%, respectively, could be derived with considerably reduced experimental
efforts, which corresponded well to the observations from Jiang et al. [46]. Gyurova and
Friedrich [47] evaluated the influence of the data set size on the prediction capabilities
of trained ANNs. Utilizing a newly measured database consisting of 124 independent
pin-on-disk dry sliding wear tests on PPS matrix composites, the mean relative errors
were reduced from above 0.72 to below 0.55 (specific wear rate) and from above 0.11 to
beneath 0.10 (COF) compared to previous studies [45,48]. Later, the approach was further
enhanced by Busse and Schlarb [49] using the same data, most notably by utilizing a
LM training algorithm with mean squared error regularization as performance function,
which significantly improved the computational efficiency and, in particular, the accuracy.
Independently of the inputs, the wear rate prediction quality was found to be six times
higher compared to the comparative studies [45,47].

Zhu et al. [50] also emphasized the crucial role of data set size and reported better
agreement of experimental data with the prediction of the friction coefficient than with the
volumetric wear losses when applying an ANN to carbon fiber and TiO2 reinforced PTFE.
12 Different compositions were therefore investigated in block-on-disk dry sliding tests
under varying sliding velocities and normal loads. A network trained by gradient search
and consisting of three hidden layers (15, 10, and 5 neurons) and tan-sigmoid transfer
functions between the input and the hidden layers as well as pure linear transfer functions
to the output layer was found to deliver the least mean square errors. Li et al. [51] applied
a Monte Carlo-based ANN to predict the tribological behavior of PTFE resin with aramid
pulp, potassium titanate whisker (PTW), mica, copper (Cu) as well as silicon dioxide
(SiO2) for ultrasonic motors and compared the performance to a back propagation ANN.
The database, an orthogonal table by variation of the composition, was generated from
experiments conducted in triplicate on a quasi-static test rig where the specimens were
fixed on a dynamic rotor and slid against a phosphor bronze stator at constant speed and
load. In combination with a grey relational analysis, it was shown that especially mica and
SiO2 exerted significant roles for friction and wear improvements. The Monte Carlo-based
ANN was particularly suitable for predictions with more limited amount of data due
to repeated random sampling and the utilization of combinations of different transfer
functions (sigmoid, polynomial, tanh, and gauss functions). The authors reported that, in
the context of the variation and volatility of the underlying data, the Monte Carlo ANN
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performed better than the conventional back propagation ANN with root mean squared
errors of 0.97 (specific wear rate) and 0.007 (COF) compared to 2.08 and 0.019.

Figure 4. ANN architecture as well as 3D profiles for the specific wear rate in dependency of the SCF and the TiO2

concentration without (a) and with (b) pruning. Redrawn from [45] with permission (Elsevier).

Kurt and Oduncuoglu [52] utilized 125 data sets extracted from established literature
sources to study the effects of normal load and sliding speed in dry sliding experiments
as well as the type and weight fraction of various reinforcements in ultrahigh molecular
weight PE (UHMWPE) composites by a feed forward back propagation ANN. This in-
volved zinc oxide (ZnO), zeolite, carbon nanotubes (CNT), carbon fibers (CF), graphene
oxide (GO), and wollastonite additives, leading to a total number of 11 inputs, whereas
the volumetric wear loss was considered as target/output value. In a trial-and-error
search, an ANN with a single-hidden layer consisting of 12 neurons and logistic sigmoid
transfer functions trained by a LM algorithm was selected. With R2 values for training
and testing above 0.8 as well as mean absolute errors not exceeding 4.1%, it was thus
shown that sliding speed and load determined the wear losses more significantly than the
particle types and fractions. Recently, Vinoth and Datta [53] also used 153 experimental
data sets from literature to predict mechanical properties of UHMWPE composites with
multi-walled carbon nanotubes (MWCNT) and graphene reinforcements in dependency of
seven input variables comprising composite composition, particle size, and mechanical
bulk properties. A feed forward ANN with scaled conjugate gradient back propagation,
hyperbolic tangent transfer functions and 3 (for Young’s modulus) or 5 (for the ultimate
tensile strength) hidden layers were utilized, achieving correlation coefficients for the
outputs of 0.93 and 0.97, respectively. Subsequently, a multi-objective (pareto) optimization
of the input variables was performed with a non-dominated sorting genetic algorithm.
On this basis, samples (pins) of UHMWPE composites with MWCNT and graphene filler
ratios considered as optimal were fabricated accordingly and characterized mechanically
as well as in tribological tests under dry sliding conditions against cobalt chromium alloy
disks. It was actually possible to demonstrate improved properties compared to references
and, in particular, excellent wear behavior due to the formation of wear-protecting transfer
films on the counter-body.

3.1.3. Metal Matrix Composites

Some successful studies using ML and AI can also be found for composites with
soft metals as matrix [54], for example aluminum, copper or zinc and their alloys [55–59].
As such, Stojanović et al. [60] investigated the friction and wear behavior of aluminum
hybrid composites with Al-Si alloy matrix and 10 wt.% silicon carbide (SiC) as well as 0, 1,
and 3 wt.% graphite. The data sets were generated in lubricated block-on-disk tribometer
tests at three sliding speeds, the normal loads and at constant sliding distance with the
application of Taguchi’s robust orthogonal array design method (27 data points). This was
reported to be a simple and efficient methodology. Besides performing ANOVA factor vari-
ance analysis and the fitting of a linear regression model, a feed forward back propagation
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ANN was developed. Therefore, 70% of the data were used for training, 15% for testing
and 15% for validation. The model was trained by LM optimization and consisted of two
hidden layers of 20 and 30 neurons, respectively, as well as logarithmic sigmoid and pure
linear transfer functions. The values predicted by the ANN provided sufficient agreement
with the experiments and were more precise than those provided by the statistical meth-
ods used. Similarly, Thankachan et al. [61] compared the performance of a feed forward
back propagation ANN with statistical regression analysis when investigating the wear
behavior of hybrid copper composites with aluminum nitride and boron nitride particles
in dry-running pin-on-disk tribometer tests at different volumetric fractions, loads, sliding
speeds and sliding distances by applying Taguchi’s orthogonal array. The ANN featured
the 4 inputs, one hidden layer with 7 neurons, the specific wear rate as output and was
trained by the LM function to optimize the mean absolute error. Thus, the neural network
reached higher accuracy than the reference regression model.

Gangwar and Pathak [62] introduced a novel improved bat algorithm (IBA) to train
an ANN for predicting the wear behavior of marble dust reinforced zinc-aluminum (Zn-Al)
alloy by optimizing the weights, biases and neurons as well as finding minimum mean
squared errors, see Figure 5a). The main advantage of the IBA compared to other training
algorithms (e.g., back propagation, genetic algorithms or particle swarm optimization) was
in the flexibility and stable training through the introduction of a new velocity, position
search equation and sugeno inertia weights. This overcame local optima stagnation and
enhanced the convergence speed. The evaluation of the specific wear rate was based on data
from pin-on-disk experiments with varied filler content, normal load, sliding velocity and
distance, as well as ambient temperature (5 levels each) by means of a Taguchi orthogonal
array (25 data sets). Thereby, an ANN with 7 neurons in the single-hidden layer was found
to be optimal, with a mean squared error of 0.26 and an average prediction accuracy of
97%. Exemplary 3D plots of the wear rate as a function of the variation parameters are
shown in Figure 5b). Obtained results and the suggested IBA-ANN approach can thus
help to save resources when searching for beneficial stress or material combinations with
limited experimental database.

Figure 5. Schematic representation of encoding bat individuals to train the ANN (a) as well as 3D response surfaces of
influencing factors on the specific wear rate (b). Redrawn from [62] with permission (Elsevier).

Very recently, Hasan et al. [63,64] compared five different ML techniques when predict-
ing the friction and wear behavior of aluminum base alloys and graphite composites: ANN,
kNN, SVM, gradient boosting machine (GBM), and RF. The 852 data sets were obtained
from experimental studies in literature. It was shown that basically all ML approaches
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were able to adequately describe the tribological behavior from material and tribological
test data. Thereby, RF outperformed the other algorithms in predicting the wear behavior,
while GBM and KNN had the highest accuracy for the friction behavior for the base alloy
and the composite, respectively. This underlines that the right choice of the ML approach
is highly dependent on the respective problem formulation.

The works in the area of composite materials are summarized in Table 1 according to
the subject, the database, the inputs and outputs, and the ML approach.

3.2. Drive Technology

In the field of drive technology, there are several areas of application for using ML for
rolling and sliding bearings, seals, brakes, and clutches, which are involved in systems for
motion generation and power transmission.

3.2.1. Rolling Bearings

Rolling bearings are among the most important machine elements, locally transmitting
large forces via several rolling contacts. The bearing components are also exposed to
complex dynamics and friction occurs in numerous contacts influencing the operation.
Bearing failures can be of very different nature. Mostly, they are longer lasting processes
between first occurrence of damage and fatal failure. However, damage to rolling bearing
components can be quickly observed in the operating behavior of machines and systems,
for example in the form of increasing friction, heat, vibration, and noise. Therefore, one
possible application for ML is condition monitoring and damage detection [65,66]. Most
published work was related to vibration theory rather than tribology [67,68], which is why
only some representative examples shall be introduced.

Table 1. Overview of ML approaches successfully applied in the area of composite materials.

Subject

Database, Number of
Data Sets (If

Applicable Divided
in

Train/Test/Validation)

Inputs Outputs ML Approach Prediction Ref.

SGF and
BFS

reinforced
epoxy

experimental
(pin-on-disk) Taguchi

DoE, 16

BFS content, sliding
velocity, normal load,

sliding distance

spec.
wear
rate

back
propagation
ANN (4:7:1)

Errors < 6.9% [39]

unidirectional
short castor

oil fiber
reinforced

epoxy

experimental
(pin-on-disk) full
factorial DoE, 36
(60%/20%/20%)

fiber length, normal
load, sliding distance

wear,
temper-
ature,
COF

various ANNs,
best results for

back
propagation

ANN (3:9:3 &
3:9:12:9:3)

averaged total
errors < 5% [40]

treated
betelnut

fiber
reinforced
polyester

experimental
(block-on-disk), 492

fiber orientation,
normal load, sliding

distance
COF ANN

(3:30:20:1) SSE < 1% [41]

glass fiber
reinforced
polyester

experimental
(disk-on-flat), 7389

fiber orientation,
rotational speed,
normal load, test

duration

COF ANN (4:40:1) SSE < 15% [42]

SCF,
graphite,

PTFE, and
TiO2

reinforced
PPS

experimental
(pin-on-disk), 90

(80%/20%)
matrix vol. fraction,

filler, reinforcing agent
and lubricant, contact

pressure, sliding
speed, tensile strength,
compressive strength

spec.
wear
rate,
COF

various
gradient

descent back
propagation

ANNs (7:9:3:1
for wear, 7:3:1:1

for COF)

MRE < 0.78 (wear),
MRE < 0.12 (COF) [45]

experimental
(pin-on-disk), 124

(80%/20%)

MRE < 0.55 (wear),
MRE < 0.10 (COF) [47]

MRE < 0.14 (wear),
MRE < 0.03 (COF) [49]
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Table 1. Cont.

Subject

Database, Number of
Data Sets (If

Applicable Divided in
Train/Test/Validation)

Inputs Outputs ML Approach Prediction Ref.

CF and
TiO2

reinforced
PTFE

experimental
(block-on-ring), 30–105
(10–98%/2–90%), best

results for largest
database

PTFE content, carbon
fiber content, TiO2

content, sliding speed,
normal load, hardness,
compressive strength

vol.
wear
loss,
COF

various ANNs,
best results for
gradient search

ANN
(7:15:10:5:1)

CoD > 90% [50]

aramid
pulp, PTW,
mica, Cu,
and SiO2

reinforced
PTFE

experimental
(rotor/stator test-rig)
in orthogonal table
DoE, 18 (80%/20%)

aramid pulp content,
PTW content, mica
content, Cu content,

SiO2 content

spec.
wear
rate,
COF

back
propagation

ANN

RMSE < 2.08
(wear),

RMSE < 0.019
(COF)

[51]

Monte
Carlo-based

ANN

RMSE < 0.97
(wear),

RMSE < 0.007
(COF)

ZnO,
zeolite,

CNT, CF,
GO, and

wollastonite
reinforced
UHMWPE

experiments from
literature, 125

UHMWPE content,
ZnO content, Zeolite
content, CNT content,

CF content, GO
content, wollastonite
content, normal load,

sliding speed

vol.
wear
loss

back
propagation

ANN (11:12:1)

R2 > 0.8, mean total
error < 4.1%

[52]

MWCNT
and

graphene
reinforced
UHMWPE

experiments from
literature, 153

MWCNT fiber
diameter, MWCNT

fiber length, MWCNT
content, graphene

sheet length, graphene
sheet thickness,

graphene content,
UHMWPE molecular

weight, UHMWPE
tensile strength,

UHMWPE Young’s
modulus

Young’s
modu-

lus,
tensile

strength

scaled
conjugate

gradient back
propagation

ANN (7:3:1 for
Young’s

modulus and
7:5:1 for tensile

strength)

R2 > 0.93 (Young’s
modulus), R2 > 0.97

(tensile strength)
[53]

graphite
reinforced
Al-Si alloy

experimental
(block-on-disk) in

Taguchi’s orthogonal
array DoE, 27

(70%/15%/15%)

graphene content,
normal load,

sliding speed

vol.
wear
rate,
COF

back
propagation

ANN (3:20:30:2)
R2 > 0.98 [60]

aluminum
nitride and

boron
nitride

reinforced
copper

experimental
(pin-on-disk) in

Taguchi’s orthogonal
array DoE, 27

(90%/10%)

volume fraction,
normal load, sliding

velocity, sliding
distance

spec.
wear
rate

back
propagation
ANN (4:7:1)

errors < 3.4% [61]

marble dust
reinforced

Zn-Al alloy

experimental
(pin-on-disk) in

Taguchi’s orthogonal
array DoE, 25

(60%/20%/20%)

filler content, normal
load, sliding velocity,
sliding distance, amb.

temperature

spec.
wear
rate

IBA trained
ANN (5:7:1)

MSE < 0.26,
accuracy > 97% [62]

175



Lubricants 2021, 9, 86

Table 1. Cont.

Subject

Database, Number of
Data Sets (If

Applicable Divided in
Train/Test/Validation)

Inputs Outputs ML Approach Prediction Ref.

Graphite
reinforced
aluminum

alloy

experiments from
literature, 852

graphite content,
hardness, ductility,

processing procedure,
heat treatment, SiC

content, yield strength,
tensile strength,

normal load, sliding
velocity, sliding

distance,

vol.
wear
rate,
COF

back
propagation

ANN
(11:10:10:10:2)

MSE < 0.003 wear)
RMSE < 0.06 (wear)

R2 > 0.74 (wear)
MSE < 0.004 (COF)
RMSE < 0.06 (COF)

R2 > 0.86 (COF)

[63,64]

kNN

MSE < 0.002 wear)
RMSE < 0.04 (wear)

R2 > 0.85 (wear)
MSE < 0.007 (COF)
RMSE < 0.08 (COF)

R2 > 0.76 (COF)

RF

MSE < 0.001 wear)
RMSE < 0.04 (wear)

R2 > 0.88 (wear)
MSE < 0.004 (COF)
RMSE < 0.06 (COF)

R2 > 0.86 (COF)

SVM
MSE < 0.006 (COF)
RMSE < 0.08 (COF)

R2 > 0.76 (COF)

GBM

MSE < 0.002 wear)
RMSE < 0.04 (wear)

R2 > 0.86 (wear)
MSE < 0.003 (COF)
RMSE < 0.05 (COF)

R2 > 0.89 (COF)

As such, Subrahmanyam and Sujatha [69] investigated the suitability of two differ-
ent ANNs, namely multilayered feed forward neural network trained with supervised
error back propagation (EBP) technique and an unsupervised adaptive resonance theory-2
(ART2) based neural network, for the diagnosis of local defects in deep groove ball bearings.
The input vector consisted of eight parameters that were used to describe the vibration
signal and the output was a condition rating for the bearing (good/bad) and, if the con-
dition was classified bad, the defect was pinpointed. The authors concluded from their
work that the performance of the ANN with EBP was excellent for recognizing ball bearing
states. They reported that defective bearings were distinguished from good ones with 100%
confidence, while the ANN had a success rate of over 95% in diagnosing localized defects.
The results of the ANN with ART2 were ambivalent: The learning process was about
100 times faster than that of the ANN with EBP and defective bearings also were distin-
guished from good ones with 100% reliability. Yet, the estimation of localized defects was
not satisfactory. Furthermore, Kanai et al. [70] presented a condition monitoring method for
ball bearings using both, model-based estimation (MBE) and ANN, to guess the vibration
velocity and the defect frequency of the rotor-bearing-system. The authors based their
study on a three-layered feed forward neural network trained with EBP, where the input
vector consisted of 5 parameters (speed, load, defect volume, radial clearance, number of
balls) obtained from rig tests on a self-aligning deep groove ball bearing. According to the
authors, the ANN shows satisfactory results compared to MBE and experimental tests.

Apart from condition monitoring, ML approaches have recently been utilized for
designing rolling bearing components. Schwarz et al. [71] used different ML methods to
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classify possible cage motion modes of rolling bearings and to predict application-related
undesired cage instabilities, see Figure 6. The data set was generated from sophisticated
rolling bearing dynamics simulations, which were confirmed by means of experimental
investigations on a test rig. Based on the simulations, the authors determined metrics
that, in combination, reliably characterize the state of the cage condensed in three classes
“stable”, “unstable” and “circling”. They used these metrics to classify cage motion us-
ing quadratic discriminant analysis (QDA). QDA is a method of multivariate statistics to
separate different classes on the basis of characteristics [16]. It is interesting to note that
we could not discover this method in any other article within our literature survey. To
predict the class of cage motion, Schwarz et al. applied decision trees as weak learners
within an ensemble classification model based on AdaBoostM1 [72] to achieve good results.
Furthermore, Wirsching et al. [73] aimed at tailoring the roller face/rib contact in tapered
roller bearings. Geometric parameters were sampled by a Latin hypercube sampling (LHS)
and the tribological behavior was predicted by means of elastohydrodynamic lubrication
(EHL) contact simulations. Key target variables such as pressure, lubricant gap and fric-
tion were approximated by a so-called metamodel of optimal prognosis (MOP) [74] and
optimization was carried out using an evolutionary algorithm (EA). The MOP fully auto-
matically filtered non-significant variables and various approaches (polynomial regression,
moving least squares, isotropic or anisotropic kriging) were trained to derive the most
suitable approximation. The applied ML approach provided very good prediction for most
geometries and target values, which was reflected in the high prediction coefficients (CoP)
in most cases above 90% and the low errors in mostly below 2% of the optimized pairing
between the prediction and verification calculations.

 
Figure 6. Global scheme for classifying and predicting rolling bearing cage motion modes based on
dynamics simulations and ML following [71].

3.2.2. Sliding Bearings

Since the operating behavior of sliding bearings is highly non-linear and depending
on numerous parameters, ML methods have been utilized for the analysis and synthesis of
the tribosystem. Canbulut et al. [75] analyzed the frictional losses of a hydrostatic slipper
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bearing using an ANN fed by experimental test data. Input parameters were the average
roughness of the rubbing surfaces, relative velocity, supply pressure, hydrostatic pocket
ratio, and capillary tube diameter. Three-layered feed forward neural networks containing
10 neurons in the hidden layer trained with EBP were to be found as suitable. The predictive
performance of the ANN was evaluated using six operation cases for the bearing, where an
exact match of the ANN predictions with the experimental results was reported. Further,
using ANNs, Ünlü et al. [76] analyzed the friction and wear behavior of a radial journal
bearing (bronze CuSn10/steel SAE 1050 pairing) under dry and lubricated conditions. The
ANN with EBP technique was featured a 3:5:5:3 multilayer architecture for the dry case and
3:4:4:3 for the lubricated case. The input vector was described by time, applied load and
rotational speed and the outputs were coefficient of friction, journal and bearing weight loss.
Input data were collected from previously published experiments. The ANN predictions
show high agreement to the experimental data and the authors stated that such ANNs
can effectively reduce the number of future experiments. Furthermore, Moder et al. [77]
showed that supervised ML algorithms can be used to predict the lubrication regime
of hydrodynamic radial journal bearings based on given torques. Therefore, the torque
time series were first analyzed using Fast Fourier Transformation (FFT) and manually
assigned to lubrication regimes. Two ML algorithms were used for the classification
task: Logistic regression and deep neural networks. Based on their results, the authors
concluded that even shallow neural networks as well as logistic regressions are able
to reach high accuracy for the given problem. It was indicated that data scaling was
essential, while feature scaling, which is often applied in data analysis, was not suitable
for the FFT classification. Prost et al. [78] investigated the feasibility of classifying the
operating condition (running-in, steady, pre-critical, critical) of a translationally oscillating
self-lubricating journal bearing using an ensemble learning algorithm. To this end, the
authors applied a semi-supervised random forest classifier (RFC), which was based on
the aggregation of a large number of independent decision trees. The RFC was trained
with high-resolution force signals from experiments and showed a very high classification
accuracy in validation experiments. The authors pointed out, that labeling the data is
essential and requires expert knowledge. As this step is very tedious and time-consuming,
they suggested a semi-automated process based on principal components analysis and
k-means clustering algorithms. Francisco et al. [79] studied how far ML can be used to
optimize connecting rod big-end bearings. They combined sophisticated finite element
(FE) simulations with a nondominated sorting genetic algorithm, which allowed them to
minimize the frictional losses and functioning severity of the bearing by optimizing 10
parameters. The authors concluded that metamodels based on previous simulations and
including all relevant parameters allow the optimization of a tribological system in a very
time and resource saving way.

3.2.3. Seals

Seals play an important role in mechanical drive technology as they separate lubricants
or operating fluids and the environment of the drive train from each other. Contact seals
frequently affect the friction behavior in the whole drive train, and they are exposed
to wear. Increasing requirements demand more precise descriptions of the tribological
behavior of contact seals in design phases as well as condition monitoring [80,81]. Logozzo
and Valigi [82] suggested ANNs as an alternative for analytical models to predict friction
instabilities and critical angular speeds of face seals during shaft decelerations. The
authors studied different feed forward neural networks with 2:x:1 architecture (x = 6,
8, 10, 12, 15, 16), trained with supervised EBP technique. Thereby, 10 neurons in the
hidden layer showed the best training convergence. Input data were collected from
experimentally validated tribo-dynamics simulations based on a lumped parameter model
with 2 degrees of freedom. The input vector of the ANNs consisted of two parameters
(axial and torsional stiffness). The authors pointed out that unlike deterministic models, the
ANNs were not able to explain the phenomena of frictional instability but provided a smart
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way to define parameters in the design phase for the avoidance of frictional instabilities.
Yin et al. [83] used a SVM regression to monitor the status of a gas face seal based on
acoustic emissions (AE). Input data as well as validation data were collected from rig tests.
To generate the representative vectors with satisfactory experimental agreement, the AE
power concentration in several key bands within certain durations were used.

3.2.4. Brakes and Clutches

Brakes and clutches are safety-relevant components and have to work reliably even
under extreme conditions. They are usually integrated in closed loop control systems,
which makes it necessary to describe and optimize the braking and coupling behavior,
involving complex squealing and wear phenomena. Accordingly, ML approaches have
been applied in this area as well [84,85]. For example, Aleksendrić et al. [86,87] applied
an ANN to model the speed-dependent cold performance of brakes They considered
18 material composition parameters, five manufacturing parameters and three operating
condition parameters as inputs. Friction data was collected from test rig experiments. Since
it is not known a priori which model provides the best prediction quality, the authors
investigated 18 different architectures with five different learning algorithms (LM, Bayesian
regulation, resilient back propagation, scaled conjugate gradient and gradient decent).
The best prediction results were provided by a 26:8:4:1 double-hidden-layer architecture
trained by a Bayesian regulation algorithm. The authors stated that their ANN has shown
sufficient flexibility to generalize the influences of unknown types of friction material on
their cold performance. The methodology was later extended to predict materials recovery
performance [88] and brake wear [89] by the same authors. Basically, the procedure was
similar to the work described above and the best prediction results were attained from
a single hidden layer ANN (25:5:1) trained by a Bayesian regulation algorithm. Timur
and Aydin [90] investigated whether the friction coefficient of brakes can be predicted by
means of ML based upon experimental training data (1050 points). Comparing different
regression methods (linear, least median squared linear, Gaussian processes, pace, simple
linear, isotonic, SVM) and 10-fold cross-validation, they noted that all algorithms showed a
correlation coefficient larger than 0.99 and a root mean squared error below 0.01. However,
isotonic regression allowed the fastest model building.

The prediction of friction coefficient for automobile brake as well as clutch materials
against steel using ML algorithms was also addressed by Senatore et al. [91], who showed
how to obtain a comprehensive view on the influence of the main sliding parameters. Based
upon experimental data from pin-on-disk tests with varying sliding speed, acceleration and
contact pressure (200 data sets), the authors trained two different supervised feed-forward
double-hidden-layer EPB ANNs with a 3:6:3:1 architecture for braking and 3:6:7:1 for the
clutch material, respectively. The authors concluded that ANNs have confirmed suitability
for valid prediction of friction coefficients, with utility being enhanced by significance as
well as sensitivity analysis of input parameters. A possible application could be in more
accurate friction maps for electronic control purpose. However, the authors also discussed
the limitations of the approach, in particular pointing out extrapolation errors. Comparable
findings were obtained by Grzegorzek and Scieszka [92], who used a similar methodology
(in this case feed-forward EPB ANN with 6:12:1 architecture) to investigate the friction
behavior of industrial emergency brakes from 408 data sets. The authors self-described their
work as being at a preliminary stage, yet they were able to demonstrate the performance of
ANN against various models of multiply regression analysis.

The works in the area of drive technology are summarized in Table 2 according to the
subject, the database, the inputs and outputs, and the ML approach.
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Table 2. Overview of ML approaches successfully applied in the area of drive technology.

Subject

Database, Number of
Data Sets (If

Applicable Divided in
Train/Test/Validation)

Inputs Outputs ML Approach Prediction Ref.

groove ball
bearing defect

diagnosis

experimental (bearing
test-rig), 108
(90%/10%)

peak value of
amplitude, average of
top five peak values of
amplitude, peak value

of auto-correlation
function, standard
deviation, kurtosis

bearing
state

EBP ANN success
rate > 95% [69]

ART2 ANN success
rate = 100%

ball bearing
condition

monitoring

experimental (bearing
test-rig), 145
(75%/25%)

speed, load, defect
volume, radial

clearance,
number of balls

vibration
velocity

back
propagation
ANN (5:12:1)

errors < 14% [70]

cage motion
mode

classification in
rolling bearings

numerical (dynamics
simulation)
LHS, 4000

cage mass, cage
bending stiffness,
pocket clearance,

guidance clearance,
bearing type, COF,

axial force, radial force,
bending moment,
rotational speed

CDI QDA and DT accuracy > 91% [71]

TRB roller/face
rib contact
geometry

design

numerical (EHL
simulation) in LHS, 370

(70%/30%)

roller face radius,
eccentricity, rib radius

max.
pressure,
min. film

height,
COF

MOP CoP > 90%,
errors < 2% [73]

frictional power
losses of

hydrostatic
slipper bearings

experimental
(hydrostatic slipper

test-rig)

average roughness,
relative velocity,
supply pressure,

hydrostatic pocket
ratio, capillary
tube diameter

frictional
power

loss

back
propagation

ANN
errors < 1.9% [75]

dry and
lubricated

journal bearing
behavior

experimental (journal
bearing test-rig), 4

time, load,
rotational speed

COF,
bearing
weight

loss,
journal
weight

loss

EBP ANN
(3:5:5:3 for dry
and 3:4:4:3 for

lubricated case)

mean errors < 4%
(dry), mean

errors < 5.3%
(lubricated),

[76]

journal bearing
lubrication

regime
prediction

experimental (journal
bearing test-rig), 888

(80%/20%)
frictional torque lubrication

regime

FFT+ back
propagation

ANN
(1:256:128:64:

32:16:8:1)

accuracy > 99% [77]

journal bearing
operating
condition

classification

experimental (journal
bearing test-rig), 9

(75%/25%)
time, lateral force operating

state RFC (DT) accuracy > 94% [78]
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Table 2. Cont.

Subject

Database, Number of
Data Sets (If

Applicable Divided in
Train/Test/Validation)

Inputs Outputs ML Approach Prediction Ref.

connecting rod
big-end bearing

design

numerical (elastic HL
simulation) in CCF

DoE, 9

oil viscosity at ref.
temperature, oil
viscosity at ref.

pressure, oil
thermo-viscosity

coefficient, oil
piezo-viscosity
coefficient, oil

piezo-viscosity index,
oil supply pressure,

lemon shape, shell bore
relief depth, shell bore

relief length, barrel
shape, radial clearance

pressure
times

velocity
product,
power

loss

nondominated
sorting genetic

algorithm
R2 > 0.99 [79]

face seal friction
instability
prediction

numerical (dynamics
simulation), 40

(90%/10%)

axial stiffness torsional
stiffness

critical
speed

various ANNs,
best results for

EBP ANN
(2:10:1)

R2 > 0.97 [82]

disk brake
performance

experimental (inertial
dynamometer), 275

(70%/10%/20%)

applied pressure,
initial speed, number

of braking events,
phenolic resin, iron

oxide, barites, calcium
carbonate, brass chips,
aramid, mineral fiber,
vermiculite, steel fiber,

glass fiber, brass
powder, copper

powder, graphite,
friction dust,
molybdenum

disulphide, aluminum
oxide, silica,

magnesium oxide, spec.
molding pressure,

molding temperature,
molding time, heat

treatment temperature,
heat treatment time

brake
factor

various ANNs,
best results for
Bayesian ANN

(26:8:4:1)

sufficient (not
quantified)

[86,
87]

brake materials
experimental (inertial
dynamometer), 408

(34%/33%/33%)

sliding speed, contact
pressure, temperature,
binder resin, premix

masterbatch, residuum

COF EPB ANN
(6:12:1) errors < 4% [92]

clutch materials
experimental

(pin-on-disk), 200
(50%/25%/25%)

sliding speed, sliding
acceleration,

contact pressure
COF

EPB ANN
(3:6:3:1) sufficient within

the data range
(not quantified)

[91]

EPB ANN
(3:6:7:1)

3.3. Manufacturing

ML approaches were also employed in the area of manufacturing technology, for
example, for process monitoring or in quality control/image recognition [6]. There are also
some studies related to tribology, particularly regarding friction stir welding [93–95], but
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also for forming or machining [96]. Sathiya et al. [97] modeled the relationship between
friction welding process parameters as heating pressure, heating time, upsetting pressure
as well as upsetting time and output parameters (tensile strength and metal loss) when
joining similar stainless steel by means of a back propagation ANN with 9 neurons in the
single-hidden layers. The database (14 data points) was generated from corresponding
experiments. Subsequently, different optimization strategizes based upon the ANN’s pre-
diction were compared: Genetic algorithm, simulated annealing algorithm, and particle
swarm optimization. Among them, the genetic algorithm was reported to be most suit-
able and good agreement was found between the prediction of tensile strength and metal
loss for optimized process parameters with respective validation experiments. Similarly,
Tansel et al. [98] and Atharifar [99] applied and confirmed the suitability of ANNs for
optimizing friction stir welding processes. However, the latter further introduced an opti-
mization of the back propagation ANNs using a genetic algorithm (genetically optimized
neural network systems) to maximize the prediction quality. Anand et al. [100] com-
pared the performance of an ANN (4:9:2) with a response surface methodology approach
(quadratic polynomial models) when optimizing friction welding with respect to tensile
strength and burn-off length. The data (30 data sets) were generated with experiments
within a five-level, four variable centrale composite DoE (CCD). It was observed that the
ANN featured higher accuracy by a factor of two compared to the response surface. In turn,
Dewan et al. [101] compared back propagation neural networks with adaptive neuro-fuzzy
interference systems (ANFIS) [102] when predicting tensile properties in dependency of
spindle speed, plunge force and welding speed from a rather small database (73 data
points). Here, 1200 different ANFIS models were developed with varying number and type
of membership functions as well as input combinations. It was reported the optimized
ANFIS provided lower prediction errors than the ANN.

In addition to process optimization, ML approaches have also been used for moni-
toring friction stir welding. Baraka et al. [103] made use of process signals (traverse and
downward tool force) to predict the weld quality. This was based upon frequency analysis
by FFT, and an interval type 2 radial base function (RBF) neural network trained by an
adaptive error propagation algorithm that effectively provided continuous feedback to the
operator with an accuracy above 80%. Das et al. [104] also used real-time process signals
(torque) for internal defect identification in friction welding. The experimentally obtained
signals were analyzed by discrete wavelet transformation, statistical features (dispersion,
asymmetry, excess) as well as general regression models and ML methods, namely SVM
and back propagation ANN (3:5:1, log-sigmoid transfer functions) trained by the gradient
descent method to predict tensile strength. It was reported the prediction performance of
the SVM (0.5% error) was superior to regression (13.6%) and the ANN (3.1%).

Regarding other manufacturing processes, Fereshteh-Saniee et al. [105] trained a
feedforward back propagation ANN with 21 neurons in the single hidden-layer (tan-
sigmoid transfer function) from over 700 FE simulations to determine material flow and
friction factors in one-step ring forming. Thereby, obtained load curves showed good
agreement with experimental validation tests, featuring an accuracy of 99% and 97% for
grease lubricated and dry conditions, respectively. The difference was traced back to
higher variations of friction for unlubricated forming. Furthermore, Bustillo et al. [106]
attempted to predict surface roughness and mass loss during turning, grinding, or electric
discharge machining based upon surface isotropy levels and different ML approaches:
Artificial regression trees, multilayer perceptions (MLP), RBF networks, and random forest.
The most accurate approach for predicting the loss of mass was found to be RBF, while
the MLP most precisely predicted the arithmetic mean roughness. However, the model
parameters of both approaches had to be tuned very carefully and even small changes led
to a substantial increase of errors. In contrast, satisfactory accuracy without any tuning
stage could be obtained using the random forest ensembles. It was also reported that the
prediction quality was comparatively sound even outside the training record as well as for
smaller data sets.
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The works in the area of manufacturing technology are summarized in Table 3 accord-
ing to the subject, the database, the inputs and outputs, and the ML approach.

Table 3. Overview of ML approaches successfully applied in the area of manufacturing technology.

Subject

Database, Number of
Data Sets (If Applicable

Divided in
Train/Test/Validation)

Inputs Outputs ML Approach Prediction Ref.

friction stir
welding

process opti-
mization

experimental (friction
stir welding), 14 heating

pressure,
heating time,

upsetting
pressure,

upsetting time

tensile strength,
metal loss

back
propagation
ANN (4:9:2)

MSE < 0,01% [97]

experimental (friction
stir welding), 30

RMSE < 0.98
(tensile

strength),
RMSE < 0.05

(tensile
strength),

[100]

experimental (friction
stir welding), 73
(60%/20%/20%)

rotational
speed, welding
speed, plunge

force, empirical
force index

tensile strength

various ANNs,
best results for

back
propagation
ANN (3:5:1)

mean absolute
error < 7.7%

[101]

ANFIS mean absolute
error < 10.1%

friction stir
welding
process

monitoring

experimental (friction
stir welding), 25

(80%/20%)

rotational
speed, welding

speed

weld threshold
for downward

force, weld
threshold for
traverse force

RBF trained
ANN

accuracy > 80% [103]

experimental (friction
stir welding), 64
(60%/25%/15%)

rotational
speed, welding
speed, shoulder

diameter
tensile strength

SVM error < 0.5%

[104]
back

propagation
ANN

error < 3%

ring
forming

numerical (FE
simulation), 700

polynomial
regression

factors to fit
load-

displacement
curves

strain
hardening
exponent,
strength

coefficient, COF

ANN (8:21:3:3) accuracy > 97% [105]

3.4. Surface Engineering

Approaches to enhance the tribological behavior of components by modifying their
surfaces can be subsumed under the term surface engineering [107]. This involves ad-
justing the surface topography with and without compositional changes through as well
as the application of coatings. Examples include, among others, tailoring the roughness
and/or statistically distributed or discrete micro-textures, carburizing, nitriding, anodizing,
electroplating, weld hardfacing, thermal spraying, chemical, or physical vapor deposition
(CVD, PVD) [107]. Some studies have also applied ML approaches to better understand or
design the surface modifications.

3.4.1. Coatings

Cetinel [108] used a single-hidden layer feed forward ANN to predict the COF and
wear loss of thermally sprayed aluminum titanium oxide (Al2O3-TiO2) coatings. The
database was created by reciprocal pin-on-block tribometer tests under dry as well as acid
conditions different loads. In the ANN, the test conditions were the inputs and—after
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trial-and-error testing of different configurations—the hidden layer consisted of 80 neurons.
Furthermore, the ANN provided 63 outputs in the form of the COF and linear wear progress
at different times of the experiments. Thus, the tribological behavior over the test period
could be mapped very well. Sahraoui et al. [109] analyzed the friction and wear behavior
of high-velocity oxy-fuel (HVOF) sprayed Cr-C-Ni-Cr and WC-Co coatings as well as
electroplated hard chromium by means of a feed forward ANN. The database consisted
of 180 training and 180 test data sets from dry-running pin-on-disk tribometer tests of
the coated test specimens against brass disks at various normal loads and sliding speeds.
An ANN with sigmoid transfer functions as well as two hidden layers (6 and 4 neurons)
was found to be suitable for predicting the COF within variabilities between 5.8% and
10.8%. The main advantage of the model in this study was that the friction coefficients
could be predicted comparatively well for a range of parameters up to 7 times larger than
those contained in the training data. Upadhyay and Kumaraswamidhas [110,111] applied
a back propagation ANN to optimize multilayer nitride coatings on tool steel deposited
by unbalanced reactive PVD magnetron sputtering. The input parameters comprised bias
voltage and gas flow rate as well as time, velocity and load within pin-on-disk sliding
tests. The data was split into 70% training, 15% validation, and 15% test data. Training
was based on the LM function and the most favorable ANN consisted of 20 neurons in the
hidden layer. Thus, the wear rate as well as the COF could be predicted within errors of
less than 10%.

3.4.2. Surface Texturing

Otero et al. [112] attempted to optimize surface micro-textures fabricated by pho-
tolithography and chemical etching processes in order to reduce the COF of EHL contacts
by means of an ANN. The data was obtained from tests on a mini-traction machine (steel
ball-on-micro-textured copper disk) at various loads, total speeds and slip conditions. The
ANN consisted of 7 inputs (average velocity, SRR, load, minor and major axis dimensions,
depth and texturing density), 20 neurons in the hidden layer, and the COF as output. Thus,
load case-dependent ranges for beneficial texture parameters could be derived. Addi-
tionally, referring to tests on samples with pores or micro-textures on a lubricated mini
traction machine at different test conditions, Boidi et al. [113] applied an RBF to predict the
wear behavior of sintered components. The database included 1704 experimental sets with
different sum velocities and slip, as well as geometric or statistical characteristics of the
dimples, grooves and pores, respectively. A Hardy multiquadric RBF was found to provide
an excellent fit with an overall correlation of 0.93, especially with regard to the standard
deviations of the tribological experiments. Mo et al. [114] utilized statistical methods as
well as a back propagation ANN with 60 neurons in the single-hidden layer to investigate
the role of micro-texture shape deviations and dimensional uncertainties on the tribological
performance. The database was founded on physical modeling approaches in the form
of simulations of parallel, hydrodynamically lubricated (HL) contacts and randomly split
into 70% training and 30% validation data. The trained ANN was able to predict the
relationships between geometric micro-texture parameters (e.g., dimple diameter, depth,
area density etc.) and the frictional force as well as the load carrying capacity with an
accuracy of 99.7% and 97.5%, respectively. Thus, the influences of statistical deviations
(e.g., roundness errors, standard deviations of the dimensional parameters, etc.) could
be estimated and optimal, robust optima could be retrieved by means of a genetic algo-
rithm. Similarly, Marian et al. [115,116] utilized a MOP [74] to model the influence of
micro-textures in EHL contacts as well as an EA to optimize the micro-texture geometry
and distribution. Based upon a LHS (70 data sets) and contact simulations, the contact
pressure, lubricant film height, and frictional force were predicted with CoPs larger than
82%, allowing subsequent optimization with an EA. Zambrano et al. [117] used reduced
order modeling (ROM) to predict and optimize the frictional behavior of surface textures
in dynamic rubber applications under different operating conditions. It is noteworthy that
this was based on a limited number of experimental measurements and the ROM was
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fed with microscope-based texture measurements. In this sense, besides nominal texture
parameters, the real geometries as well as their deviations and uncertainties have been
evaluated with good accuracy.

The works in the area of surface engineering are summarized in Table 4 according to
the subject, the database, the inputs and outputs, and the ML approach.

Table 4. Overview of ML approaches successfully applied in the area of surface engineering.

Subject

Database, Number of
Data Sets (If

Applicable Divided in
Train/Test/Validation)

Inputs Outputs ML Approach Prediction Ref.

thermally
sprayed

Al2O3-TiO2
coatings

experimental
(pin-on-disk), 8

load, environment
(dry or acid)

linear wear,
COF at

different
time steps

back
propagation

ANN (2:80:63)

sufficient (not
quantified) [108]

HVOF sprayed
Cr-C-Ni-Cr and

WC-Co
coatings and
electroplated

hard chromium

experimental
(pin-on-disk), 360

(50%/50%)

material type,
normal load,

sliding velocity,
sliding distance

COF
back

propagation
ANN (4:6:4:1)

errors < 11% [109]

multilayer
nitride PVD

coatings

experimental
(pin-on-disk), 246
(70%/15%/15%)

time, normal load,
sliding velocity, lap,

bias voltage, gas
flow rate

spec. wear
rate, COF

back
propagation

ANN (6:5:5:2)
errors < 1% [110,

111]

surface texture
design for EHL

contacts

experimental (mini
traction machine), 2000

(90%/5%/5%)

average velocity,
slide-to-roll ratio,

normal load, minor
axis, major axis,
texture depth,

texture density

COF

various ANNs,
best results for

back
propagation
ANN (7:20:1)

MSE < 0,1%,
R2 > 0.99 [112]

experimental (mini
traction machine), 1704

entrainment speed,
slide-to-roll ratio,

surface feature ball,
surface feature disk

COF
Hardy

multiquadric
RBF

R2 > 0.935 [113]

numerical (EHL
simulation) in LHS, 70

(70%/30%)

texture diameter,
texture depth

texture distance

max.
pressure,
min. film

height, COF

MOP CoP > 83% [115,
116]

surface texture
design for HL

contacts

numerical (HL
simulation)

dimple diameter,
depth, area density,

and various
statistical
deviations

COF, load
carrying
capacity

various ANNs,
best results for

back
propagation

ANN (41:20:2)

accuracy >
99.7% (COF),

accuracy >
97.5% (load

carrying
capacity)

[114]

3.5. Lubricants

ML/AI approaches have also been used in the development and formulation of
lubricants [118] and their additives [119] intended for the use in tribological systems.
As such, Durak et al. [120] analyzed the effects of PTFE-based additives in mineral oil
onto the frictional behavior of hydrodynamic journal bearings (252 data sets) by the aid
of a feed forward back propagation ANN. An architecture with three inputs as studied
in respective experiments (load, velocity, additive concentration), two hidden layers of
5 and 3 neurons, and the COF as output resulted in an accuracy of 98%. Therefore,
optimal concentrations depending on the load case could be identified with rather little
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experimental effort. Humelnicu et al. [121] applied an ANN to investigate the tribological
behavior of vegetable oil-diesel fuel mixtures. The data were generated in pin-on-disk
tests at constant conditions, whereas the concentration of rapeseed and sunflower oil was
varied and the averaged COF values of five repetitions of each combination was used for
further processing. The neural network was trained with a back propagation algorithm and
tangential transfer functions and the architecture considered as most suitable with relative
deviations between 0.2% and 2.3% was built of three hidden layers with 2, 6, and 9 neurons,
respectively. Bhaumik et al. [122,123] also applied a multi-hidden layer feed forward ANN
to design lubricant formulations with vegetable oil blends (coconut, castor and palm
oil) and various friction modifiers (MWCNT and graphene) based upon 80 data sets
obtained from four-ball-tests as well as 120 data sets from pin-on-disk tests as reported
in various literature. The respective material and test conditions were also included as
influencing factors. For building the ANN, hyperbolic tangent transfer functions and
a scaled conjugate gradient back propagation algorithm were used. Good prediction
quality was thus achieved for the 11 and 13 inputs in the four-ball- and pin-on-disk tests,
respectively, with accuracies over 92%. In addition to the influences of the lubricant and
material properties, significant differences were also revealed due to the test setup. In
an optimization based on the ANN using a genetic algorithm, it was also possible to
derive ideal lubricant formulations, the suitability of which was actually demonstrated
by subsequent preparation and corresponding experimental validation. Lately, Mujtaba
et al. [124] utilized a Cuckoo search algorithm to optimize an extreme learning machine
(ELM) and a response surface methodology (RSM) in predicting the tribological behavior
of biodiesel from palm-sesame oil in dependency of ultrasound-assisted transesterification
process variables. Based on a Box-Behnken experimental design, the biodiesel yield was
predicted, whereby the ELM featured a better performance than RSM, and optimized.
In tribological experiments on a four-ball-tester, improved friction and wear behavior
compared to reference lubricants was also demonstrated with the derived blend.

In addition to these more macro-tribological approaches, some studies can also be found
that tend to target even smaller scales [125]. For example, Sattari Baboukani et al. [126] em-
ployed a Bayesian modeling and transfer learning approach to predict maximum energy
barriers of the potential surface energy, which corresponds to intrinsic friction, of various
2D materials from the graphene and the transition metal dichalcogenide (TMDC) families
when sliding against a similar material with the aim of application as lubricant additives.
The input variables for the model in the form of different descriptors (structural, elec-
tronic, thermal, electron-phonon coupling, mechanical and chemical effects) were extracted
from density function theory (DFT) and molecular dynamics (MD) simulation studies
in literature. The applied Bayesian model accommodated the sparse and noisy data set
and estimated the maximum energy barrier as target variable as well as its uncertainty
and potentially missing data. The predictions were validated against MD simulations,
whereas excellent agreement with mean squared errors mostly below 0.25 were found.
Thus, the application of the ML approach not only allowed for the prediction estimation of
the applicability for tribological purposes of ten previously underexplored 2D materials,
but also initiated discussion on novel empirical correlations and physical mechanisms.

The works in the area of lubricant formulation are summarized in Table 5 according
to the subject, the database, the inputs and outputs, and the ML approach.

186



Lubricants 2021, 9, 86

Table 5. Overview of ML approaches successfully applied in the area of lubricant formulation.

Subject

Database, Number of
Data Sets (If

Applicable Divided in
Train/Test/Validation)

Inputs Outputs
ML

Approach
Prediction Ref.

PTFE-based
additives in
mineral oil

experimental (journal
bearing test-rig), 252

(80%/20%)

load, velocity, additive
concentration COF

back
propagation

ANN (3:5:3:1)
accuracy > 98% [120]

vegetable oil-
diesel fuel
mixtures

experimental
(pin-on-disk), 135

sunflower
concentration,

rapeseed concentration
COF

back
propagation

ANN
(2:2:6:9:1)

RMSE < 0,1% [121]

lubricant
formulations

with vegetable
oil blends and

friction
modifiers
(MWCNT,
graphene)

literature (pin-on-disk,
four-ball-tests), 200

speed, normal load,
temperature,

ball/pin/disk
hardness, coconut oil

content, castor oil
content, palm oil
content, MWCNT

content, MWCNT size,
graphene content,

graphene dimensions

COF

scaled
conjugate

gradient back
propagation

ANN

accuracy > 92% [122,
123]

biodiesel
formulation

experimental
(transesterification), 30

time, catalyst
concentration,

methanol-to-oil ratio,
duty cycle

biodiesel
yield

RSM
R2 > 0.994,

MSE < 0.023,
RMSE < 0.151

[124]

Cuckoo ELM
R2 > 0.996,

MSE < 0.024,
RMSE < 0.117

lubricant
additives

literature and
numerical (DFT and

MD simulation)

lattice constant, c/a
ratio, bond angle,

interlayer space, M-X
length, X-X length,
M-radii, hexagonal

width, in-plane
stiffness, cohesive

energy, binding energy,
bandgap energy,

thermal conductivity,
average mass

maximum
energy
barrier

Bayesian
model MSE < 0.25 [126]

3.6. Others/General

Apart from aforementioned areas, a wide variety of studies can be found in fields
which also related to tribology, but that were not assigned to the traditional core and
are therefore not included in more detail in this review. The tribology of driven piles
in clay [127], plate tectonics and earthquakes [128], or motion control [129,130] can be
mentioned as examples. Nevertheless, some selected research shall be presented that
did not necessarily fit into one of the upper categories but had a rather general scope.
As such, already in 2002, Ao et al. [131] introduced an ANN to predict the evolution
of surface topography during the wear process. The proposed approach utilized sur-
face measurements at a finite number of time intervals during tribological experiments
in a conformal block-on-ring configuration. The back-propagation ANN with sigmoid
transfer functions was trained with the LM algorithm and statistical surface parameters
(RMS roughness, skewness, kurtosis, and autocorrelation). Together with initial surface
parameters, the corresponding 3D topography in worn conditions could be estimated
by surface synthesis. Thereby, good prediction quality could be achieved, especially if
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the autocorrelation function did not experience stronger changes. So, this was not just
about predicting and optimizing target variables but was rather already a step towards
semi-physical modeling. Thereby, the usage of ML/AI in the field of tribology may not
be limited to forward approaches, which predict the tribological behavior based on some
input data sets in the context of an experimental design. Accordingly, Haviez et al. [132]
later developed a modified ANN model, which was used to solve actual physical equations
describing the phenomena of fretting wear. Interestingly, this eliminated the necessity for
iterative learning, e.g., by back propagation, or other regularization techniques. Thus, the
fretting wear damage could be predicted with higher efficiency and accuracy than by a
conventional back propagation ANN trained with experimental data, highlighting the
ability of generalization albeit the rather low level of complexity. Similarly, Argatov and
Chai [133] suggested an ANN-based modeling framework for analyzing the dry sliding
wear during running-in from pin-on-disk tribometer tests. The authors attempted to de-
rive the true wear coefficient instead of the specific wear rate at given conditions, contact
pressures and sliding velocities. This was based upon the integral and differential forms of
the Archard’s wear equation as well as single-hidden layer ANN with sigmoid transfer
functions. They applied their approach to various data from the literature ranging from
cermet coatings, zirconia reinforced aluminum hybrid composites to nickel–chromium
alloys and reported good efficiency and agreement. Very recently, Almqvist [134] derived a
physics informed neural network (PINN) to solve the initial and boundary value problems
described by linear ordinary differential equations and to solve the second order Reynolds
differential equation. Thereby, comparable results to analytical solutions were obtained.
The advantage of the present approach is not in accuracy or efficiency, but in the fact that it
is a mesh-free method that is not data-driven. The author hypothesized that this concept
could be generalized in the future and lead to a more accurate and efficient solution of
related but nonlinear problems than the currently available routines.

Finally, two papers shall be highlighted that addressed other approaches than ANNs
and/or other scales as well. Bucholz et al. [135] used a dataset from dry sliding pin-on-disk
tests with different ceramic pairings having different intrinsic properties and inorganic
minerals to develop a predictive model. The latter was generated by the recursive parti-
tioning method, resulting in a graphical expression of the classification of observations
according to similarities determined by variable importance in projection and the error
some of squares. The obtained regression tree as illustrated in Figure 7a) demonstrated a
satisfactory coefficient of determination above 0.89 when comparing prediction and experi-
ment (Figure 7b). Finally, Perčic et al. [136] recently trained various ML/AI approaches
to predict the nanoscale friction of alumina (Al2O3), titanium dioxide (TiO2), molybde-
num disulphide (MoS2), and aluminum (Al) thin films in dependency of several process
parameters, including normal forces, sliding velocities, and temperature. The data were
acquired by lateral force microscopy (LFM) within a centroidal Voronoi tessellation (CVT)
design of experiments, whereas 2/3 of the data were generally used for training and 1/3 for
validation. The study employed MLP ANN, random DT and RF, support vector regression
(SVR), age-layered population structure (ALPS), grammatical evolution (GE), and symbolic
regression multi-gene programming (SRMG). The suitability for predicting the frictional
force for these approaches was further evaluated with respect to the mean absolute error,
the root mean squared error and the coefficient of determination. Thereby, the SRMG
model showed the best performance with prediction accuracies (determination coefficient)
between 72% and 91%, depending on the sample type. This allowed to derive simple
functional descriptions of the nanoscale friction for studied variable process parameters.
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Figure 7. Dendrogram for the COF estimation from recursive partitioning (a) and comparison between experimental and
predicted values (b). Redrawn from [135] with permission (Springer).

4. Summary and Concluding Remarks

Tribology naturally involves multiple interacting features and processes, where ma-
chine learning and artificial intelligence approaches are feasible to support sorting through
the complexity of patterns and identifying trends on a much larger scale than the human
brain is capable of. Computers are able to fit thousands of properties, which enables
for a much wider search of the available solution space and allows quantitative fits to a
broad range of properties. Predictions do not have to be limited to averaged or global
values/outputs but could also cover locally and timely resolved evolutions and bridge
the gap between different scales. Therefore, ML and AI might change the landscape of
what is possible going beyond the mere understanding of mechanisms towards designing
novel and/or potentially smart tribological systems. As is also evident from the quantified
survey, ML has hence already been employed in many fields of tribology, from composite
materials and drive technology to manufacturing, surface engineering, and lubricants. The
intent of ML might not necessarily be to create conclusive predictive models but can be
seen as complementary tool to efficiently achieve optimum designs for problems, which
elude other physically motivated mathematical and numerical formulations. We assume
that, besides the availability of larger amounts of experimental data, this is the reason for
the comparatively large number of investigations on composite materials.

The challenge is that a ML approach does not necessarily guide towards the specific
problem solution and the selection as well as optimization of a qualified algorithm is
of decisive importance. Accordingly, there is a wide variety of approaches that have
already been successfully applied to answer tribological research questions. A summary is
provided in Table 6, which is—together with Tables 1–5—intended to support researchers
in identifying initial selections.
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Table 6. Overview of ML approaches successfully applied in various areas of tribology.
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ANN [39–42] [43–53] [60–64] [69,70] [75–77] [82] [86–89,
91,92]

[97–
101,103,104] [105] [106] [108–

111]
[112,
114]

[120–
123]

[131–
134,
136]

ANFIS [101]

Bayesian [126]

DT [63,64] [60] [106] [135,
136]

KNN [63,64]

MOP [73] [115,
116]

QDA [71]

RF [63,64] [78] [106] [136]

RBF [106] [113]

SVM [63,64] [83] [90] [104] [136]

Apparently, a large share of the research discussed in this article (roughly three quar-
ters) was based on ANNs. However, even still, there are manifold possibilities concerning
architecture, training algorithms, or transfer functions. Other ML approaches are still less
commonly used for tribological issues but are justifiably coming more into focus and can be
more effective for some problems. The reproducibility and comparability of the prediction
quality from the various approaches and studies is frequently hampered by the sometimes
ambiguous underlying database and the lack of information on the implementation of ML
approaches withing publications as well as the use of different error/accuracy measures.
Most of the works also comprised forward ML models, which were developed to predict
the tribological behavior as output based on various input parameters such as material or
test conditions. In principle, however, inverse models to characterize the materials and
surfaces [54] or physics-informed ML approaches [134] can also be applied. With a closer
assessment of the intentions and objectives of the studies, as well as the overrepresentation
of ANNs, one might get the impression that ML is in many cases being used to serve its
own ends. The added value compared to physical modeling or statistical evaluation based
on more classical regressions is not always evident. A few studies, however, manage to
extract real insights and thus additional knowledge from a large and broad database. The
comprehensive works in the field of composite materials from Kurt and Oduncuoglu [52],
Vinoth and Datta [53], and Hasan et al. [63,64] utilizing literature-extracted databases
may be highlighted here and can serve as excellent examples. The current showstopper
is still the availability of sufficient and comparable datasets as well as the handling of
uncertainties regarding test conditions and deviations. In this respect, we would like
to encourage authors to also publish the underlying databases and the corresponding
models in appendices or data repositories. Moreover, there is great potential to automatize
and optimize the data acquisition and processing, which is presently still very manual
in the field of tribology, in order to unfold the knowledge already available in institutes,
enterprises or in the literature by means of machine learning.
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Abbreviations

AE acoustic emission
AI artificial intelligence
ALPS age-layered population structure
ANFIS adaptive neuro-fuzzy interference system
ANN artificial neural network
ART adaptive resonance theory
BFS blast furnaces slag
CCD centrale composite design
CDI cage dynamics indicator
CF carbon fiber
CMC ceramic matrix composite
CNT carbon nanotube
CoD coefficient of determination
COF coefficient of friction
CoP coefficient of prognosis
CVT centroidal voronoi tessellation
DFT density function theory
DoE design of experiments
DT decision tree
EA evolutionary algorithm
EBP error back propagation
EHL elastohydrodynamic lubrication
ELM extreme learning machine
FE finite element
FFT fast fourier transformation
GBM gradient boosting machine
GE grammatical evolution
GO graphene oxide
HL hydrodynamic lubrication
HVOF high-velocity oxy-fuel
IBA improved bat algorithm
kNN k-nearest neighbor
LFM lateral force microscopy
LHS latin hypercube sampling
LM levenberg-marquardt
MBE model-based estimation
MD molecular dynamics
ML machine learning
MLP multilayer perception
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