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Editorial

A Preface for the Special Issue “Economics of Conflict
and Terrorism”

João Ricardo Faria 1,* and Daniel Arce 2

1 Department of Economics, Florida Atlantic University, Boca Raton, FL 33431, USA
2 Economics Program, University of Texas at Dallas, Richardson, TX 75080, USA; darce@utdallas.edu
* Correspondence: jfaria@fau.edu

The current Special Issue presents an interesting collection of seven articles that
expand the existing literature on the subjects of terrorism and conflict. The papers present
significant empirical, methodological, and theoretical contributions.

Two papers from the present collection use game-theoretic foundations in order to
examine the empirical issues in relation to the notion of conflict. The first, by George and
Sandler [1], uses two-step GMM estimates of the demands of E.U. members for defense
spending based on alternative spatial-weight matrices. They found that the consistent
and robust estimates of E.U. military spending during the post-Cold War differs from
past non-spatial and spatial E.U. defense spending estimates. Most notably, free riding,
indicative of strategic substitutes, characterizes E.U. members’ military expenditure. In the
second paper, Bang, Basuchoudhary, and Mitra [2] use machine learning to empirically
shift between competing models of terrorism or nonlinear patterns. Machine-learning
algorithms focus on predictive accuracy instead of tests of significance; in this sense, they
can identify whether a variable is predictive or not, even if it is endogenous with the
target variable, terrorism. Second, game-theoretic approaches often predict the nonlinear
relationships between variables, where equilibria switch in comparative static scenarios.
They found that models predicting economic opportunity, development assistance, and
ethnic tensions may not be predictively salient. In contrast, those that predict a more
formidable target would elicit more terrorist attacks and are predictively salient.

There are two papers that present methodological innovations. Balcaen, Du Bois and
Buts [3] use prospect theory to study the uncertainty of conflicts between a State challenger
and a defender. The article raises awareness with regard to cognitive bias associated with
conflict choices. The article yields two specific recommendations. First, future research
could confront test subjects (e.g., decision makers, such as politicians, or regular citizens)
with hybrid threat scenarios that involve hypothetical policy responses and different
outcomes. Second, as hybrid attacks occur frequently, we can conduct large-N statistical
analyses. The article written by Ganzfried [4] studies a new algorithm for approximating
Nash equilibrium strategies in continuous games, which are difficult to solve since the
pure strategy space can be infinite. He implements the algorithm in the Blotto game. His
algorithm converges quickly and is the first algorithm to solve the continuous case of
the game.

Last but not least, three theoretical articles exist. Faria and Arce [5] studiy a dynamic
game in discrete space and find a number of new results, namely, the fact that counter-terror
is limited; defensive counter-terror limits the worst-case scenario, while proactive counter-
terror reduces the capacity of terrorists; proactive counter-terror is the most effective of
the two, however it is underprovided; and, finally, cyclical attacks are independent of
counter-terror policy and depend on the terrorist’s time preferences and tactic adjustment
costs. Oliveira and Silva [6] study the incentives produced as a result of retaliation for
the formation of an international counter-terror coalition. The benefits of joining such a
coalition are the relatively lower spillover benefits as a result of the retaliation. The cost

Games 2022, 13, 29. https://doi.org/10.3390/g13020029 https://www.mdpi.com/journal/games
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of joining a coalition is the anticipated backlash from retaliation. Boudreau, Matthews,
Sanders, and Bagchi [7] examined the momentum in conflict, where victory in the initial
stage can provide an advantage in the final stage. They discovered that the impact of
elasticity of effort on levels of effort has no bearing on the value of momentum itself.
Instead, momentum helps a player by enhancing the marginal chance for victory in the
second-stage contest. This concept provides a theoretical foundation for Pyrrhic victories.

Funding: This research received no external funding.
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Informed Consent Statement: Not applicable.
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Article

Conflicts with Momentum

James W. Boudreau 1, Timothy Mathews 1,*, Shane D. Sanders 2 and Aniruddha Bagchi 1

1 Department of Economics, Finance, and Quantitative Analysis, Kennesaw State University,
Kennesaw, GA 30144, USA; jboudre5@kennesaw.edu (J.W.B.); abagchi@kennesaw.edu (A.B.)

2 Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, NY 13244, USA;
sdsander@syr.edu

* Correspondence: tmmathews@gmail.com

Abstract: Take the fort, then take the city. In a two-stage, two-party contest, victory in the initial stage
can provide an advantage in the final stage. We examine such momentum in conflict scenarios and
investigate how valuable it must be to avoid a Pyrrhic victory. Our main finding is that although the
elasticity of effort—which we allow to vary between the two stages—does impact the contestants’
effort levels, it has no bearing on the endogenously determined value of momentum itself. Further,
rent dissipation in the two-stage conflict is equal across party whether or not an individual obtains
first-stage momentum. Thus, momentum helps a player solely by enhancing marginal ability for
victory in the second-stage contest. It does not, however, change the player’s net calculus of second-
stage contest spending. Such contestable advantage is also found to be more rent-dissipative than
innate/uncontestable advantage. Therefore, Pyrrhic victories should be more common for contests
with an intermediate stage or stages in which advantages can be earned, ceteris paribus. While
intermediate targets appear as useful conflict benchmarks, they dissipate additional expected contest
rents. This additional rent-dissipative toll exists even for backward-inductive equilibrium behavior in
a complete information setting. Whereas the quagmire theory suggests parties can become involved
in problematic conflicts due to incomplete information, the present paper finds that the setting of
conflict—namely, contestable intermediate advantage—can alternatively generate rent-dissipative
tolls. Similarly, contestable advantage can lead parties to optimally forego contest participation (i.e.,
if conflict parameters do not meet the participation constraint). This is in contrast to a one-stage
simultaneous contest with second-stage parametric values of the present contest.

Keywords: conflict; contests; momentum

JEL Classification: C72; D74

1. Introduction

The premise of our model is an intuitive one: Take the fort, then take the city. The concept
is that many conflicts are not one-shot scenarios, but rather involve an initial stage in which
one party can gain an advantage that improves its relative position in the ultimate stage.

More specifically, we set up a two-stage model of conflict in which the winner from
the first-stage gains momentum in the sense that it has a reduced unit cost of effort in the
second stage. One party gains an advantageous position or elevation through a first stage
of conflict, so it is less costly in the second stage for that party to produce conflict inputs.
One interpretation could be that one needs fewer soldiers to put forth an effective force
when at an elevation gained earlier. The Battle of the Alamo, for example, had an ultimate
5-to-1 casualty ratio in favor of the advantaged side.

Our work is most similar to contest models that emphasize “head starts” in the sense of
giving one party or another a cost advantage of some kind, as studied in [1–3]. These papers,
however, focus in particular on the optimal setting of cost advantages (or disadvantages)
in order to maximize effort expenditures by contestants, as if set by the contest designer.

Games 2022, 13, 12. https://doi.org/10.3390/g13010012 https://www.mdpi.com/journal/games
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Furthermore, refs. [1,3] uses contest success function formats that differ importantly from
ours and one-stage settings, while [2] focuses on a multi-stage setting in which some
participants are disqualified from later stages. Ref. [2] also uses a classic [4] lottery-form
success function. (Ref. [5] also study the role of cost asymmetries in conflict outcome). The
two-stage nested conflict approach has been used to study aspects of conflict other than
momentum (see, e.g., [6]).

Here, we assume that two parties in conflict exert efforts at a cost in a two-stage
game with a more generalized contest success function of the Tullock variety, but more
akin to the version generalized by works such as [7,8]. (The results obtained may in some
ways depend upon the assumed functional form of the contest success function. We feel
that a ratio-form success function—for which each party has a strictly positive probability
of victory so long as a positive amount of effort is exerted—is appropriate for the types
of conflict that we have in mind as the primary motivators for the analysis (e.g., multi-
stage armed conflict between combatants).) Our model assumes that there is some cost
advantage to be achieved by winning the first stage, but that the first stage’s sensitivity to
effort spending may differ from that of the second stage. Ultimately, we find that while
the overall size of the (exogenous) cost advantage in the second stage—which we term
momentum—does matter for the ultimate probability of victory and spending by parties in
the second stage, the sensitivity to effort in either stage does not matter for how valuable
that advantage is in a crucial sense. Although the elasticity of effort—which we allow
to differ between the two stages of conflict—does impact the contestants’ effort levels, it
has no bearing on the endogenously determined value of momentum itself. Further, rent
dissipation in the two-stage conflict is equal across party whether or not an individual
obtains momentum in the first stage. Thus, momentum helps a player solely by enhancing
the player’s marginal ability for victory in the second-stage contest. It does not, however,
change the player’s net calculus of second-stage contest spending. Contestable advantage
in conflict is also found to be more rent-dissipative than innate or otherwise incontestable
advantage. Similarly, contestable advantage can lead parties to optimally forego contest
participation (i.e., if conflict parameters do not meet the participation constraint). This is
in contrast to a one-stage simultaneous contest that takes on the second-stage parametric
values of the present contest.

Therefore, we expect Pyrrhic victories to be more common, ceteris paribus, for contests
that feature an intermediate stage or stages in which subsequent advantages can be earned.
While intermediate targets may appear as useful benchmarks in conflict, they in fact
dissipate additional expected contest rents to each party. This additional rent-dissipative
toll exists even given a backward-inductive (equilibrium) behavior in a setting of complete
information rather than one characterized by “fog of war” effects. The quagmire theory
suggests that countries can become involved in problematic (i.e., rent-dissipative) conflicts
due to incomplete information. The present paper finds that the setting of conflict—namely,
the contestibility of intermediate, momentous advantage in a conflict—can effectively
substitute for incomplete information in generating rent-dissipative tolls.

2. A Model of Conflicts with Momentum

2.1. Model Setup

Consider two parties, i = {1, 2}, in a two-stage conflict. The ultimate winner of the
final conflict in the second stage of the game is awarded a prize commonly valued at V by
both parties. But winning the first stage of the game provides a cost advantage of 0 < α < 1
to the first-stage winner in terms of competing in the second stage.

Solving backwards, in the second stage of the game, one party has already won the
first stage, making their objective function for that stage

sr2
w

sr2
w + sr2

�

V − αsw − s1

4
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where sw is the expenditure by the first-stage winner in the second stage, s� is the expendi-
ture by the first-stage loser in the second stage, and s1 is the expenditure of each party in
the first stage. The expenditure by both parties is equal in the first stage since we assume
symmetric valuations of V.

The r2 parameter represents the sensitivity of the second-stage contest success function
(CSF) to the relative expenditures chosen by the conflicting parties in that stage (see [7,9]
for axiomitizations of CSFs). We initially impose the restriction 0 < r2 ≤ 2 as is standard in
the literature (e.g., [10]), but will both verify this assumption and explore the more detailed
joint restrictions on this parameter and α necessary for the participation of both parties in
the next subsection.

The party that loses the first stage has a similar objective function in the second stage
to that of the first-stage winner but without the cost advantage of α,

sr2
�

sr2
w + sr2

�

V − s� − s1.

These objective functions lead to the first order conditions

r2sr2−1
w sr2

�

(sr2
w + sr2

� )
2 V = α

and
r2sr2−1

� sr2
w

(sr2
w + sr2

� )
2 V = 1,

which imply s� = αsw, allowing the conditions to be solved to determine the equilibrium
efforts of

s∗w =
r2αr2−1V
(1 + αr2)2

and
s∗� =

r2αr2 V
(1 + αr2)2 .

These then lead to probabilities of victory (which are the same as they would be as in
the case of the classic Tullock CSF)

P∗
w =

1
(1 + αr2)

and
P∗
� =

αr2

(1 + αr2)

and the corresponding expected payoffs

π∗
w =

V
(1 + αr2)

− αs∗w − s1

and
π∗
� =

αr2 V
(1 + αr2)

− s∗� − s1.

We then refer to the value of the momentum as the difference between the winner’s and
loser’s expected payoffs,

π∗
w − π∗

� =
(1 − αr2)

(1 + αr2)
V.

The first stage of the contest is then a battle for this value of momentum.

5
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Assuming a different degree of elasticity for the contest success function in this initial
stage, denoted r1, the objective functions in this first-stage contest between players I and
I I are

uI =
sr1

I
sr1

I + sr1
I I

(1 − αr2)

(1 + αr2)
V − sI

and

uII =
sr1

I I
sr1

I + sr1
I I

(1 − αr2)

(1 + αr2)
V − sI I

which lead to the standard equilibrium efforts of

s∗I = s∗I I = s∗1 =
r1V

4
(1 − αr2)

(1 + αr2)

The equilibrium (second-stage) expected payoffs are then

π∗
w =

1
(1 + αr2)

V − r2αr2 V
(1 + αr2)2 − r1V

4
(1 − αr2)

(1 + αr2)

(because of the α-reduction in cost in the winner’s payoff), and

π∗
� =

αr2

1 + αr2
V − r2αr2 V

(1 + αr2)2 − r1V
4

(1 − αr2)

(1 + αr2)
.

Before moving on to considerations of rent dissipation, we first must consider whether
or not the parties will find it in their own best interests to participate in the conflict at each
stage, which is the topic of the next subsection.

2.2. Participation, Parameter Restrictions, and Pyrrhic Victories

Though we have seemingly solved for the model’s equilibrium, we must still verify
that the positive resource expenditure by each party is better than the option of sitting
out the conflict and not spending at all. (We restrict our attention to pure-strategy Nash
equilibria, since the mixed strategy equilibria that would result from one (or both) players
not spending would simply involve parties mixing between the original game’s equilibrium
spending levels and zero, as per [11,12]).

To show why participation may be an issue for some parameter configurations, we
present three-dimensional graphs of π∗

w and π∗
� as r1 and r2 range from just over zero to

two (our previously assumed ranges, and the ranges for unique interior solutions to exist
in standard contest models). We provide three graphs for the equilibrium expected payoff
of each party, one with α = 0.75, one with α = 0.5, and one with α = 0.25, to show how
the relationship with the CSFs’ parameters changes with a lower reward to the first-stage
winner (higher α) vs. a higher reward (lower α).

Figures 1–3 illustrate the ∂π∗
w/∂r1 ≤ 0 relationship, and how the negative relationship

gets stronger as r2 increases for given α. They also show that overall, for given (r1, r2), a
lower alpha (a bigger second-stage advantage to the first-stage winner) means a higher
expected payoff: ∂π∗

w/∂α < 0.
The ∂π∗

w/∂r2 relationship is more nuanced. For larger α (e.g., α = 0.75), ∂π∗
w/∂r2 < 0 ∀r1.

For mid-range α (e.g., α = 0.5), ∂π∗
w/∂r2 < 0 for large enough r1, since the increased ef-

fort cost effect of r2 dominates. But for small r1, ∂π∗
w/∂r2 begins negative but eventually

becomes positive for larger r2 as the improved probability of victory from increased r2
dominates. This goes to the extreme for small α (e.g., α = 0.25), when the ∂π∗

w/∂r2 > 0 ∀r2
at low levels of r1 and is still “U-shaped” (negative at low r2, then becoming positive as r2
gets closer to 2) when r1 is closer to 2.

6
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Figure 1. Equilibrium Payoff to the First−Stage Winner with α = 0.75, V = 1, as r1 and r2 Vary.

Figure 2. Equilibrium Payoff to the First−Stage Winner with α = 0.5, V = 1, as r1 and r2 Vary.

Figures 4–6 illustrate the first-stage loser’s equilibrium expected payoffs for the three
example values of α ranging over r1 and r2. These relationships are similar to those for π∗

w
but are easier to visualize, as ∂π∗

� /∂r2 < 0 for all α ∈ (0, 1) and r1 ∈ (0.2], and ∂π∗
� /∂r1 < 0

for all α ∈ (0, 1) and r2 ∈ (0, 2]. The bigger issue revealed by these graphs is that π� can be
negative for a variety of parameter combinations, which brings into question whether or
not the parties will necessarily want to participate in the conflict.

We begin by considering second stage and assume that a party will not spend at all if
their equilibrium expected payoff from that stage is lower than simply dropping out of the
conflict and spending zero in the second stage. Since π∗

w > π∗
� , we know that if the losing

party from the first stage is willing to expend effort, the winning party will be willing to as
well, so we only need to check the necessary condition for the first-stage losing party.

7
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Figure 3. Equilibrium Payoff to the First−Stage Winner with α = 0.25, V = 1, as r1 and r2 Vary.

Figure 4. Equilibrium Payoff to the First−Stage Loser with α = 0.75, V = 1, as r1 and r2 Vary.

Since spending from the first stage is sunk, the necessary participation constraint for
the second stage is π� + s∗1 ≥ 0. That is, if a party spends nothing in the second stage, they
simply lose the battle with certainty and the sunk effort cost with it, so only the portion of
the party’s expected payoff that is relevant to the second stage must be positive.

π∗
� + s∗1 =

αr2

1 + αr2
V − r2αr2 V

(1 + αr2)2 ≥ 0

which simplifies to the following condition.

Participation Constraint (i) (PC (i)): αr2 ≥ (r2 − 1).

This restriction could of course be simplified a step further to isolate α in terms of r2,
but we keep it as in PC(i) for the purposes of illustration since the relationship is nonlinear.

8
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Figure 5. Equilibrium Payoff to the First−Stage Loser with α = 0.5, V = 1, as r1 and r2 Vary.

Figure 6. Equilibrium Payoff to the First−Stage Loser with α = 0.25, V = 1, as r1 and r2 Vary.

Figure 7 graphs the left- and right-hand sides of PC(i) in terms of α and r2. All areas
where αr2 > (r2 − 1) represent combinations of the two relevant parameters that result in
second-stage conflict, with positive equilibrium expenditure by both parties as described in
the previous section. All areas where αr2 < (r2 − 1) represent those combinations of α and
r2 that lead the losing party of the first stage to choose zero expenditure and abstain from
conflict in the second stage. Intuitively, the participation constraint becomes more constrictive
in terms of the allowable range of r2 as the advantage to the first-stage winner increases (i.e., as
α decreases) and vice versa. The larger the reward for winning the first stage, the less sensitive
the second stage can be to effort without making it so much of an advantage that it completely
deters the first-stage loser from continuing. The boundary of the maximum-allowable r2 for
given α can be traced along the curve of the intersection in Figure 7.

Our second participation constraint concerns the first stage of the conflict, when both
parties have the option to either: expend effort seeking the advantage gained by the value

9
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of momentum or spend nothing and proceed to the second stage without that advantage
with certainty (assuming the other party spends positively). In the latter case, of course,
they also have zero sunk costs from the first stage. Thus, we compare the equilibrium
expected payoff to a party—making positive equilibrium expenditures in each stage, since
we assume PC(i) is satisfied—to the expected payoff they would receive if they spend
nothing in the first stage and competed only in the second stage at a disadvantage.

Figure 7. Participation Constraint (i): αr2 vs. (r2 − 1).

Since the parties are equal in the first stage, the positive-effort equilibrium is symmetric,
and each has an equal probability of victory or loss. Their expected payoff if they participate
in the first-stage (again, assuming participation in the second stage) is 1

2 π∗
w + 1

2 π∗
� . If they

choose to opt out of the first stage with certainty and sacrifice their chance at momentum,
their equilibrium expected payoff is P∗

� V − s∗� . The participation constraint is therefore

1
2

π∗
w +

1
2

π∗
� ≥ P∗

� V − s∗� . (1)

But since
π∗

w = P∗
wV − αs∗w − s∗1 = P∗

wV − s∗� − s∗1,

we have
1
2

π∗
w +

1
2

π∗
� =

1
2

P∗
wV +

1
2

P∗
� V − s∗� − s∗1,

so (1) becomes
(P∗

w − P∗
� )V ≥ 2s∗1

or
(1 − αr2)

(1 + αr2)
V ≥ r1V

2
(1 − αr2)

(1 + αr2)
,

which simplifies to the following condition.

Participation Constraint (ii) (PC (ii)): 2 ≥ r1.

This makes sense given that the first stage is essentially a standard contest with the
value of momentum as its prize, leading to the usual restriction for r1 as our participation
constraint for the first stage (assuming PC(i) is satisfied).

10
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The sensitivity of the first stage (or the initial “battle for momentum”) to the expendi-
tures of the conflicting parties is thus relatively unrestricted (so long as we are interested
in pure-strategy equilibria), while the second stage must be permissible enough to vie
for should a party lose the first stage. A second stage that is more sensitive to effort only
enhances the advantage gained by momentum.

Even with these parameter constraints satisfied and both parties acting rationally
according to backward induction, what is interesting is that Pyrrhic victories are still
possible. In particular, note that in the game’s first stage each party has an equal chance
of victory and, so long as PC(i) is satisfied, the loser of that stage will still compete in the
second stage. But although PC(i) ensures that positive spending is better than none at that
point, it does not guarantee a net-positive overall expected payoff.

Consider π∗
� = P∗

� V − s∗� − s∗1. As long as � competes (i.e., spends a positive amount)
in the second-stage conflict, P∗

� > 0, meaning they have a positive probability of victory.
But their expected payoff (including their effort expenditure from the first stage, s∗1) may be
negative. The condition π∗

� < 0 simplifies to P∗
� V − s∗� < s∗1 or

Pyrrhic Victory (PV): αr2(1 + αr2)− r2αr2 < r1
4 (1 − α2r2).

For example, consider r1 = r2 = 1, for which PC(i) and PC(ii) are each satisfied for
all 0 < α < 1 (so that both parties compete in both stages of the conflict). Condition PV is

satisfied, for all α <
√

1
5 . So, for α <

√
1
5 , the combatant who ends up losing the first-stage

battle for momentum is set up to realize an expected Pyrrhic victory, in that his overall
expected payoff is negative.

The condition under which such an expected Pyrrhic victory arises depends upon
the values of all three parameters (i.e., r1, r2, and α). Figure 8 provides a plot of the left-
and right-hand sides of condition PV as functions of r1 and r2 for α = 1

3 . Condition PV is
satisfied—so that the first-stage loser realizes an expected Pyrrhic victory—when the black
surface lies above the multi-colored surface.

Figure 8. Pyrrhic Victory Conditions, α = 0.33.

2.3. Rent Dissipation

Total rent dissipated across the two stages is

2r2αr2 V
(1 + αr2)2 +

r1V
2

1 − αr2

1 + αr2

11
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such that total post-conflict rents are

V − 2r2αr2 V
(1 + αr2)2 − r1V

2
1 − αr2

1 + αr2
.

Hence, the rent dissipation across the two players is equal, though the winner of the
first stage does benefit from its win in terms of a higher likelihood of victory. What is
perhaps interesting is that the elasticity of the contest success function does not determine
that likelihood, but rather only the effort expenditure of the two contestants. Thus, momen-
tum helps a player solely by enhancing the player’s ability for victory in the second-stage
contest. It does not, however, change the player’s calculus of second-stage contest nor
create any welfare changes therefrom.

From the second-stage objective functions, it is straightforward to see that the present
contest is more rent-dissipative than a one-stage contest that features the same level of cost
asymmetry, α, and noise parameter, r2, as observed in the second round of this two-stage
contest. Specifically, such an alternative contest would be less rent-dissipative by 2 · s∗1
units of input expenditure. We know this because objective functions for each party in
this alternative one-shot contest would be the same as the second-stage objective functions
observed herein, but would exclude the (−s1) term from each function, where this term is
not marginal to the decision calculus of that stage. Therefore, this term exactly measures ad-
ditional rent-dissipation for each party in the two-stage game with contestable momentum.
To check this reasoning, we can reconsider total rent-dissipation in the present contest:

2r2αr2 V
(1 + αr2)2 +

r1V
2

1 − αr2

1 + αr2

The second term in the sum above is simply 2 · s∗1. Then, we expect the first term
in the sum above to represent total rent dissipation for the alternative one-shot contest
discussed previously. It is straightforward to verify that this is the case. That is, we find
that 2 · s∗1 = r1V

2
1−αr2
1+αr2 . From this result, we conclude that, ceteris paribus, contestable advan-

tage in conflict is more rent-dissipative than innate or otherwise incontestable advantage.
Therefore, we expect Pyrrhic victories to be more common for contests that feature an
intermediate stage or stages in which subsequent advantages can be earned, ceteris paribus.
This additional rent-dissipative toll exists even given a backward-inductive (equilibrium)
behavior in a setting of complete information rather than one characterized by “fog of
war” effects. The quagmire theory suggests that countries can become involved in prob-
lematic (i.e., rent-dissipative) conflicts due to incomplete information. The present paper
finds that the setting of conflict—namely, the contestibility of intermediate, momentous
advantage in a conflict—can effectively substitute for incomplete information in generating
rent-dissipative tolls.

3. Discussion and Conclusions

In this study, we have examined the role of momentum in conflict outcome. We model
momentum as an “intermediate target”. For example, one might take the fort before taking
the city. By taking the fort, one then faces a lower unit input cost of contesting for the city.
We model this as a two-stage contest in which the first stage is a conflict for the (value of)
momentum, and the second stage is a battle for the ultimate conflict prize. The intermediate
target is simply an instrument by which to gain an advantage toward the ultimate prize.

Our main finding is that although the elasticity of effort—which we allow to vary be-
tween the two stages of conflict—does impact the contestants’ effort levels, it has no bearing
on the endogenously determined value of momentum itself. Further, rent dissipation in the
two-stage conflict is equal across party whether or not an individual obtains momentum in
the first stage. Thus, momentum helps a player solely by enhancing the player’s marginal
ability for victory in the second-stage contest. It does not, however, change the player’s net
calculus of second-stage contest spending. Contestable advantage in conflict is also found
to be more rent-dissipative than innate or otherwise incontestable advantage. Therefore,

12
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we expect Pyrrhic victories to be more common for contests that feature an intermediate
stage or stages in which subsequent advantages can be earned, ceteris paribus.

An alternative version or extension of the model could incorporate additional pa-
rameters, for example giving the winner of the first stage a different elasticity of effort as
compared to the first-stage loser in the second stage. In other words, an extra impact of
momentum. Letting rw and r� denote the second-stage elasticities, the results are qualita-
tively similar to the original model, but efforts would then be modified by those elasticities.
Rather than s� = αsw as in the model analyzed, we would instead have rw

r�
s� = αsw. We

chose to focus on the simpler model in this paper, with momentum as just a cost advantage,
for clarity of presentation.

While intermediate targets may appear as useful benchmarks in conflict, they in fact
dissipate additional expected contest rents to each party. This additional rent-dissipative
toll exists even given a backward-inductive (equilibrium) behavior in a setting of com-
plete information rather than one characterized by “fog of war” effects. That is, rather
than countries becoming involved in problematic (i.e., rent-dissipative) conflicts due to
incomplete information, the present paper finds that the setting of conflict—namely, the
contestability of intermediate, momentous advantage in a conflict—can effectively sub-
stitute for incomplete information in generating rent-dissipative tolls. Similarly, we find
that contestable advantage can lead parties to optimally forego contest participation (i.e.,
if conflict parameters do not meet the participation constraint). This is in contrast to a
one-stage simultaneous contest that takes on the second-stage parametric values of the
present contest.

An alternative application for our model could be a conflict between not military
parties but business organizations—particularly a union organization versus management.
Businesses may be very willing to invest early on to prevent workers’ organizations from
gaining any advantage going forward. And this may be true regardless of how hard the
first-stage struggle is to prevent that advantage, or the degree of difficulty going forward.
An additional example may be in the area of attack and defense of information networks,
in which players engage in a first-stage battle over network access and alteration (e.g.,
undetected installation of a “backdoor” access point), sometimes followed by a second-
stage battle over control of the network. In this case, undetected access can help an attacker
gain knowledge about the architecture of the network. In turn, this knowledge will raise
the attacker’s effectiveness in stage 2 of the contest.
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Abstract: Motivated by recent examples of collective effort on the war on terror, we examine the
incentives that retaliation may produce for the endogenous formation of an international counterterror
coalition. We show that there are quite reasonable circumstances under which any nation that is
a target of a terrorist attack finds it desirable to be a member of the international counterterror
coalition, holding the choices of all other nations as given. The incentives to join the coalition are
the group-specific benefits from retaliation enjoyed by each coalition member, the relatively lower
spillover benefit from retaliation enjoyed by each stand-alone nation, and the inability of pre-emptive
measures to avert terrorist attacks. The disincentive to join is the anticipated backlash from retaliation,
which targets coalition members only.

Keywords: retaliation; counterterror; coalition; backlash
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1. Introduction

Governments often retaliate after some citizens they represent become victims of
terrorist attacks (see, e.g., Crenshaw [1], Merari [2], Lee [3], Lee and Sandler [4], Kydd
and Walter [5], Benmelech et al. [6], Carter [7], and Gaibulloev and Sandler [8]). The U.S.
bombed targets in Tripoli and Benghazi, Libya, on 15 April 1986 as retaliation for the Libyan
sponsored terrorist attack in Berlin that killed two and injured sixty-two U.S. citizens on
4 April 1986 (Lee and Sandler [4]). Since 1967, Israel has demolished houses in areas
occupied by Palestinians as retaliation for Palestinian terrorist attacks (Benmelech et al. [6]).
In response to the 9/11 attacks, the United States and Britain conducted airstrikes on
October 2001 and, later, together with many other allies in Operation Enduring Freedom,
engaged in other military operations, as retaliation against the Taliban and al-Qaeda in
Afghanistan. In coordination with the United States, France bombed ISIS targets in Raqqa,
Syria, on 15 November 2015, following a number of ISIS terrorist attacks in Paris on
13 November 2015.

Terrorists, however, may respond to retaliatory actions with further attacks (see e.g., Lee
and Sandler [4], Jacobson and Kaplan [9], Argomaniz and Vidal-Diez [10], Benmelech
et al. [6], Gaibulloev and Sandler [8], Matthews et al. [11], and Kattelman [12]). The U.S.
retaliatory strikes in Libya in 1986, which received partial support from Britain, produced
several terrorist attacks against U.S. and British interests soon after the airstrikes (Lee and
Sandler, [4]). The Israeli policy of demolishing houses as retaliation against Palestinian
terrorists generated an increase in terrorist attacks after precautionary house demolitions
in 2004 and 2005, because properties of some non-terrorists (i.e., neutrals) were demolished
(Benmelech et al. [6]). Both examples reveal that terrorist attacks following retaliation are
likely if retaliation generates large or nondiscriminatory collateral damages. Airplane and
drone strikes, for example, are prone to cause collateral damages owing to inaccuracy of
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information about precise location or signatures of terrorist targets (see, e.g., Gaibulloev and
Sandler [8] and Allen et al. [13]). Owing to negative publicity, moral outrage, and the desire
for vengeance, counterterror proactive policies, of which retaliation is an example, may
facilitate a terrorist group’s acquisition of resources as well as induce neutrals to become
leaderless jihadists (see, e.g., Enders, Sandler and Cauley [14], Enders and Sandler [15],
Pape [16], Kaplan et al. [17], Faria and Arce [18,19], and Sageman [20]). With a larger
resource endowment, the terrorist organization may supply a greater amount of terrorist
attacks in response to retaliatory actions.

In this paper, we consider the pros and cons of collective retaliation effort against
a terrorist organization. As the paragraphs above reveal, retaliation for terror attacks is
common even though there is evidence that it causes backlash—the phenomenon that
counterterror policies expand the resources available to terrorists (Faria and Arce [19]).
Motivated by Lee [3], Lee and Sandler [4], Cárceles-Poveda and Tauman [21], de Oliveira
et al. [22], Kattelman [12], and the recent examples of collective effort on the war on terror,
we examine the incentives that retaliation may produce for the endogenous formation of an
international counterterror coalition. Lee [3] notes that retaliation against transnational ter-
rorists yields country-specific and international benefits. An example of a country-specific
benefit is the increased security level enjoyed by citizens of a retaliating nation whenever
retaliation reduces the incidence of terrorist attacks. In addition, a nation’s retaliation
effort generates international benefits whenever it leads to a subsequent overall reduction
in terror attacks produced by the targeted terrorist organization. Lee and Sandler [4]
characterize retaliation against transnational terrorists as an action that produces country-
specific and global, purely public, benefits. Unlike Lee [3], they argue that retaliation yields
global consumption benefits that are both nonrival and nonexcludable. This purely public
characteristic motivates free-riding behavior, which makes voluntary cooperation in the
provision of retaliation effort difficult, if not impossible. More recently, Cárceles-Poveda
and Tauman [21] point out that proactive counter-terror measures generate group benefits
from cooperation to members of an international counter-terror coalition, which are not
enjoyed by non-coalition members. Examples of group benefits from cooperation are inter-
national recognition and trade benefits enjoyed by trading agreements among members
of the coalition only. Another important contribution to the study of the effectiveness
of collective counterterror effort is provided by de Oliveira et al. [22]. They show that a
coalition containing three nations is stable if the nations are symmetric and utilize defensive
measures to prevent terrorist attacks promoted by a common terrorist organization.

In our analysis, the coalition engages in defensive and proactive measures. The latter
include pre-emptive actions, which occur prior to terrorist attacks and are observed by the
terrorist organization, and retaliatory actions, which occur after the counterterror coalition
observes terrorist attacks. Coordinated retaliatory actions are desirable because pre-emptive
actions are unable to completely deter attacks from a terrorist organization. Retaliation af-
fects the terrorist organization as a pecuniary externality, yielding a monetary increase in its
resources. As retaliation is known to cause substantial backlash, which subsequently may
lead to an increase in the terrorist organization’s available resources, we include this effect
in the model. For the perpetrators of retaliatory actions, we postulate that retaliation, per se,
may yield group-specific benefits originating from at least three sources: (1) an interna-
tionally coordinated tough position on terrorist attacks in order to deter future terror from
the attacker or other terrorist organizations (i.e., reputation for counterterror leadership);
(2) the sense of increased safety, being avenged (i.e., retribution), well represented by their
elected officials (i.e., politics), or globally empowered (i.e., global prestige) felt by citizens
of coalition members (as in Lee [3]); and (3) as in Cárceles-Poveda and Tauman [21], the
possibility of exclusive trade deals among coalition members. As retaliation effort carried
out by the coalition should produce future global benefits in terms of reduced terrorist
activity, it yields a positive spillover to non-coalition nations. This is in line with the view
advanced by Lee and Sandler [4] that retaliation generates purely public global benefits.
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All nations and the terrorist organization play a sequential game of complete, but
imperfect information as follows. In stage 0, each nation makes a choice to join or not
to join an international counterterror coalition, taking the choices of all other nations as
given. The choices are observed by all nations and the terrorist organization prior to the
subsequent stage of the game. After being formed, the coalition represents its members and
makes choices to maximize the sum of its members’ payoffs. In stage 1, the coalition and
the stand-alone nations choose their pre-emptive activities, taking each other’s actions as
given. In stage 2, the coalition and the stand-alone nations choose their defensive measures,
taking each other’s choices as given. In stage 3, the terrorist organization makes its choices
concerning terrorist attacks. In stage 4, the coalition decides on the level of retaliation. The
equilibrium concept is subgame perfect equilibrium.

We show that there are quite reasonable circumstances under which each nation in the
globe, holding the choices of all other nations as given, finds it desirable to be a member
of the international counterterror coalition. The incentives to join the coalition are the
group-specific benefits from retaliation enjoyed by each coalition member, the relatively
lower spillover benefit from retaliation enjoyed by each stand-alone nation, and the inability
of pre-emptive measures to avert terrorist attacks. The disincentive to join is the anticipated
backlash from retaliation, which targets coalition members only.

To the best of our knowledge, this is the first paper in the game-theoretic terrorism
literature that explicitly separates retaliatory actions from other proactive actions and
examines the incentives associated with retaliation to the endogenous formation of a
counterterror coalition.

From this point on, the paper is organized as follows. Section 2 presents the simple
model. Section 3 examines the solution to the game played from stages 1 to 4. Section 4
considers the choice made by each nation of whether to join the coalition. Section 5 offers
concluding remarks.

2. Model

We consider a complete information coalition formation game with five stages, one
terrorist organization, and I nations. In the coalitional stage (stage 0), nations decide
whether or not to join a coalition. A generic coalition is denoted by S and has cardinality
(# of members) |S| ≡ s. In stage 1, the coalition chooses the preemptive measures of its
members and non-coalition members decide their pre-emptive measures independently.
Stage 2, where each nation decides the level of its defensive measures, is followed by the
terrorist organization’s selection of a set of countries to attack as well as the magnitudes
of the attacks, in stage 3. Finally, in stage 4, the coalition chooses whether to carry out
retaliatory measures. We call this game a retaliation game.

Pre-emptive measures are actions that increase the costs of or reduce the resources
available to a terrorist organization, reducing the terrorist threat for all potential targets.
In our model, decisions about pre-emptive actions precede those about defensive actions.
The latter can be thought of as measures that improve the nation’s homeland security.

The terrorist organization derives benefits from its attacks according to the function

b(t) =
I

∑
i=1

biti, where t = (t1, t2, . . . , tI) is the vector of attacks (damage inflicted) on

countries i = 1, . . . , I and bi is the marginal effect of an attack on nation i. It incurs a
specific cost ci(ti, di) =

1
2 (di + ti)

2 when it carries out an attack of magnitude ti on country

i, whose defensive effort is di. It also sustains a (common) cost cc(p) =
(

I
∑

i=1
ti

)
ξ(u), where

ξ(u) = αu, α ∈ (0, 1] and u =
I

∑
i=1

pi (In addition to reducing the burden of notation, the

advantage of specifying the common cost this way is that it makes clear how our findings
would change with the specification of ξ(u)), which is imposed on the organization by
the pre-emptive measures p = (p1, p2, . . . , pI) chosen in stage 1. The parameter α can
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be interpreted as the sensitivity rate of the terrorist organization’s common cost to pre-
emptive actions.

The objective of the terrorist organization is to maximize

πT(t, d, p) =
I

∑
i=1

biti −
I

∑
i=1

1
2
(di + ti)

2 −
(

I

∑
i=1

ti

)
ξ(u) (1)

where d = (d1, d2, . . . , dI). The impact of retaliatory actions by the coalition on the terrorist
organization happens through the marginal benefit parameters. We define the marginal ben-

efit of attacking nation i as bi =

{
b + ωR, if i ∈ S

b, if i /∈ S
, where ωR is the pecuniary externality

caused by retaliation. The parameters ω ∈ [0, 1] and R are the marginal external gain and
the magnitude of the retaliation carried out by the coalition, respectively. Retaliation gener-
ates a gain (positive ω) for the terrorist organization when it attacks a coalition member
because backlash leads to an increase in the terrorist organization’s available resources1.

The terrorist organization knows the size and composition of the counterterror coali-
tion when it makes its choices, as well as the identities of stand-alone nations and the
pre-emptive and defensive actions p and d undertaken by all nations. In addition, it knows
how the pecuniary externality associated with retaliation affects its resources and fully
anticipates the amount of retaliation that it will face if it attacks the counterterror coalition.

The payoff of nation i is given by

π(ti, r, di, pi) = βR − 1
2 r2

i − θti − 1
2
(
d2

i + p2
i
)
, if i ∈ S

π(ti, r, di, pi) =
γ
2 βR − θti − 1

2
(
d2

i + p2
i
)
, if i /∈ S

(2)

where R =
I

∑
i=1

ri, ri is the retaliatory effort of nation i, β > 0 is marginal benefit of retaliation,

γ ∈ [0, 2] is a scale parameter that controls how the benefit of retaliation to stand-alone
nations compares to that of coalition members, and θ > 0 is the marginal damage from a
terrorist attack suffered by each nation. The first two terms in a member nation’s payoff
comprise the benefit it gets from retaliatory actions and a variable cost that includes
monetary expenditures. For simplicity, we assume that stand-alone nations do not find
it desirable to carry out retaliatory actions—thus, only the coalition retaliates, implying
ri = 0 for i /∈ S and R = ∑

i∈S
ri.

The coalition faces different scenarios in stages 1 and 4 of the game. Its objective
function in the first stage is to maximize the sum of its members’ payoffs, that is,

ΠC(r, d, p, t) = ∑
k∈S

π(tk, r, dk, pk) = ∑
k∈S

[
βR − 1

2
r2

i − θtk − 1
2

(
d2

k + p2
k

)]
(3)

given the optimal values of r =
(
ri1 , ri2 , . . . , ris

)
, p and t, where i1, i2, . . . , is are the mem-

bers of coalition S. In the last stage, the coalition chooses ri, i ∈ S, which maximizes

∑
k∈S

[
βR − 1

2 r2
i

]
= sβR − 1

2 ∑
k∈S

r2
i if ∑

k∈S
tk > 0, and R = 0 otherwise.

To finalize the description of our model, we need to take a closer look at the coalition
formation stage 0. Nations simultaneously choose whether they want to join a coalition S,
|S| ≡ s ≤ I, or play the game independently. To test which coalitions are stable, we follow
D’Aspremont et al. [23] and apply the internal and external stability criteria:

Internal stability : π∗
m(S) ≥ π∗

m(S\{m}), ∀m ∈ S

External stability : π∗
n(S) ≥ π∗

n(S ∪ {n}), ∀n /∈ S
(4)
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3. Equilibrium Analysis

Our equilibrium concept is subgame perfection. Utilizing backward induction, we
start the analysis with an examination of the last stage of the game. In the last stage,
the coalition chooses ri, i ∈ S, in order to maximize sβR − 1

2 ∑
k∈S

r2
i if ∑

k∈S
tk > 0, and

R = 0 otherwise. If ∑
k∈S

tk > 0, which is the case under our assumptions, the first-order

condition yields
sβ − ri = 0 ⇒ ri = sβ, (5)

which implies R = ∑
i∈S

ri = s2β. The optimal retaliation level for each coalition member is

equal to the sum of the marginal benefits of retaliation enjoyed by the entire coalition. As the
objective function of the coalition is strictly concave, the unique solution is a maximum.

In stage 3, the terrorist organization chooses the attack levels that maximize its payoff
under the constraint that the retaliation of the coalition follows the formula above. It will
thus solve the maximization problem below:

maxπ(t, d, p) = ∑
i∈S

(
b + s2ωβ

)
ti + ∑

i/∈S
bti −

I

∑
i=1

1
2
(di + ti)

2 −
(

I

∑
i=1

ti

)
ξ(u) s.t. ti ≥ 0, ∀i (6)

The Lagrangean function is

L(t, μ) = ∑
i∈S

(
b + s2ωβ

)
ti + ∑

i/∈S
bti −

I

∑
i=1

1
2
(di + ti)

2 −
(

I

∑
i=1

ti

)
ξ(u) +

I

∑
i=1

μi ti, (7)

where μ = (μ1, μ2, . . . , μI) is the vector of Lagrange multipliers. Before we look at the first-order
conditions, we show that this Lagrangean is concave. All the terms of L(t, μ) that depend on the

ti’s are linear, with the exception of − I
∑

i=1

1
2 (di + ti)

2, so it suffices to show that the latter is a concave

function of t. It is easy to see that this is the case, as its Hessian matrix is negative definite:⎡⎢⎢⎢⎣
−1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1

⎤⎥⎥⎥⎦ (8)

The necessary and sufficient first-order conditions are as follows:

(i) ∂L
∂ti

= b + s2ωβ − di − ti − ξ(u) + μi = 0, if i ∈ S

(ii) ∂L
∂ti

= b − di − ti − ξ(u) + μi = 0, if i /∈ S

(iii) ti ≥ 0, μi ≥ 0 and μi ti = 0 ∀i

(9)

We assume that the terrorist organization chooses a positive level of attack for every nation (and later
check if this assumption is satisfied in equilibrium). Then, μi = 0 ∀i and

b + s2ωβ − di − ti − ξ(u) = 0 ⇒ ti = b + s2ωβ − di − ξ(u), i ∈ S

b − di − ti − ξ(u) = 0 ⇒ ti = b − di − ξ(u), i /∈ S
(10)

Note that the sole difference in attack levels is a function of the pecuniary externality that
retaliation produces. As the externality is non-negative, the amount of terrorist activity in a nation
that is a member of the counterterror coalition is at least as large as the activity in a stand-alone nation.

In stage 2, nation i maximizes its payoff with respect to di. It knows that the terrorist organization
will behave according to the reaction functions derived above. The other arguments in its payoff
functions are given. Therefore, we can rewrite their payoff functions as follows:

π(di) =
s2 β2

2 − θ
[
b + s2ωβ − di − ξ(u)

]− 1
2
(
d2

i + p2
i
)
, if i ∈ S

π(di) =
γs2 β2

2 − θ[b − di − ξ(u)]− 1
2
(
d2

i + p2
i
)
, if i /∈ S

(11)
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As the payoff functions are strictly concave, the necessary and sufficient conditions for a unique
maximum are as follows:

∂π

∂di
= θ − di = 0 ⇒ di = θ, ∀i (12)

Each nation finds it optimal to set its level of defensive effort equal to its marginal damage
from terrorism.

In stage 1, the coalition and stand-alone nations choose their pre-emptive measures. Let us start
with a non-member nation. It chooses its pre-emptive measure pi to maximize

π(pi) =
γ

2
s2β2 − θ[b − θ − ξ(u)]− 1

2

(
θ2 + p2

i

)
=

γ

2
s2β2 +

θ2

2
− θ[b − ξ(u)]− p2

i
2

(13)

Clearly, this is a concave function of pi for any ξ(u), such that ∂2ξ(u)/∂p2
i = 0 (which is the

case under the functional form of ξ(u) in our model). The first-order conditions give us, for all i /∈ S,

∂π

∂pi
= θ

dξ(u)
du

− pi = 0 ⇒ pi = αθ, (14)

where we used the facts that ∂ξ(u)/∂pi = dξ(u)/du, because ∂u/∂pi = 1 and dξ(u)/du = α. Each
stand-alone nation sets its amount of pre-emptive effort equal to its marginal effective damage from
terrorism avoided with pre-emptive action. The latter is proportional to the terrorist organization’s
sensitivity rate to pre-emptive actions.

The coalition wishes to maximize

ΠC
(
r, t−i/∈S, d−i/∈S, p−i/∈S

)
= ∑

k∈S

[
βR − 1

2
r2

i − θtk − 1
2

(
d2

k + p2
k

)]
(15)

subject to the expressions for the optimal levels of t−i/∈S, d−i/∈S, and r. After some algebra, the
objective function becomes

ΠC(p) = ∑
k∈S

[
s2β2

2
− θ

[
b + s2ωβ − θ − ξ(u)

]
− 1

2

(
θ2 + p2

k

)]
(16)

The coalition wants to maximize the expression above with respect to pk, k ∈ S. Notice that the
objective function is concave. The first-order conditions are

∂ΠC(p)
∂pk

= sθ
dξ(u)

du
− pk = 0 ⇒ pk = sαθ, k ∈ S (17)

As externalities within the coalition are internalized, each coalition member provides pre-
emptive effort equal to the sum of effective marginal damages. As pre-emptive efforts are a global
public good, stand-alone nations “easy ride” on the higher provision levels of coalition members.
This is a disincentive to join the counterterror coalition.

The proposition below summarizes the equilibrium of the retaliation game for ξ(u) = αu.

Proposition 1: The unique pure strategy subgame-perfect Nash equilibrium of the retaliation game
is given by the following:

i. Retaliation: r∗i = sβ.
ii. Defensive measures: d∗i = θ, ∀i.
iii. Preemptive measures: p∗i = αθ, i /∈ S; p∗i = sαθ, i ∈ S
iv. Terrorism activities:

t∗i = b + s2ωβ − θ − α2θ
(

I − s + s2) = b + s2ωβ − θ
[
1 + α2(I − s + s2)], i ∈ S

t∗i = b − θ − α2θ
(

I − s + s2) = b − θ
[
1 + α2(I − s + s2)], i /∈ S

Before we proceed, we need to check under what conditions our assumption that the terrorist
organization chooses a positive level of attack for every nation is valid. It is easy to see from part (iv)
of Proposition 1 that t∗i > 0 ∀i if b > θ + α2θ

(
I − s + s2). As I − s + s2 reaches a maximum at s = I,

this condition is satisfied if b > θ + α2θ I2, which depends only on model parameters. In words, the
benefit the terrorist organization enjoys when it attacks a non-member nation needs to be sufficiently
high. This condition, which we assume holds true, does not affect the coalition stability results of the
next section, where the parameter b, as it turns out, plays no role.
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We will now highlight some important features of the equilibrium allocation. First, note that an
increase in ω, the marginal external transfer from retaliation, increases terrorist attacks on nations
that are members of the counterterror coalition, but does not affect attacks on stand-alone nations.
The impact of ω is augmented by the size of the coalition because the larger the number of coalition
members attacked, the larger the effects of retaliation on the terrorist organization. An increase in b,
the marginal benefit of a terrorist attack, increases the terrorist organization’s attacks on both coalition
members and stand-alone nations at the same rate. As one expects, terror attacks decrease with
the effectiveness of pre-emptive measures (i.e., α) and with the marginal damage caused by terror
(higher θ) owing to defensive and pre-emptive measures. As pre-emptive and retaliatory measures
are members of a family of proactive measures, they are naturally competing measures to achieve the
same goal—namely, to reduce the terrorist organization’s available resources. The key difference is
the timing at which they occur. Pre-emptive actions occur before attacks and retaliatory actions occur
afterwards. A necessary condition for retaliation is the failure of pre-emptive actions to completely
deter terrorist attacks, because retaliation occurs only if coalition members are attacked. The incentive
to retaliate and thus to join the counterterror coalition is higher the lower the effectiveness of pre-
emptive actions. We will clearly demonstrate this connection below in our analysis of coalitional
stability and size.

An increase in β, the marginal benefit to a member nation of retaliatory actions, increases
the amount of retaliation and increases terrorist attacks on a member nation. Terrorist attacks on
stand-alone nations are not affected by changes in β.

4. Stable Coalitions

We start this section with a proposition providing the conditions for internal and external stability.

Proposition 2: The internal and external stability conditions are as follows, where |S| ≤ I:
Internal stability:(

β[β(1 − γ)− 2θω]− α2θ2)s2 + 2
(

β2γ + 2α2θ2)s − (
β2γ + 3α2θ2) ≥ 0 for all i ∈ S.

External stability:(
β[β(1 − γ)− 2θω]− α2θ2)s2 + 2

[
β(β − 2θω) + α2θ2]s + β(β − 2θω) ≤ 0 for all i /∈ S.

Proof. See Appendix A. �

This proposition has important implications for the size of stable coalitions. For instance,
it implies that full cooperation in the form of a grand coalition is possible under certain conditions.
We will establish these conditions momentarily, but first, we introduce new notation.

Define the internal and external stability functions, respectively, as

ψ(s|β, θ, ω, α ) =
(

β[β(1 − γ)− 2θω]− α2θ2)s2 + 2
(

β2γ + 2α2θ2)s − (
β2γ + 3α2θ2)

and
ϕ(s|β, θ, ω, α ) =

(
β[β(1 − γ)− 2θω]− α2θ2)s2 + 2

[
β(β − 2θω) + α2θ2]s + β(β − 2θω)

(18)

Both functions are quadratic in s, and thus can be written in the generic form ax2 + bx + c.
We define

a = aint = aext = β[β(1 − γ)− 2θω]− α2θ2

bint = 2
(

β2γ + 2α2θ2)
cint = −(

β2γ + 3α2θ2)
bext = 2

[
β(β − 2θω) + α2θ2]

cext = β(β − 2θω)

Δint = b2
int − 4acint

Δext = b2
ext − 4acext

s−int = smallest root of ψ(s|β, θ, ω, α )

s+int = largest root of ψ(s|β, θ, ω, α )

s−ext = smallest root of ϕ(s|β, θ, ω, α )

s+ext = largest root of ϕ(s|β, θ, ω, α )

(19)

To better understand how ψ(s|β, θ, ω, α ) and ϕ(s|β, θ, ω, α ) behave, we generate a few pictures
for different values of the parameters, shown in Figure 1. In the first two, α = θ = 1 and γ = ω = 0.5,
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with β = 3 in Figure 1A and β = 1 in Figure 1B. The values of the parameters in Figure 1C are
α = θ = 1, ω = 0.5, γ = 1.5, and β = 10. The graphs of the internal and external stability functions
are shown in red and blue, respectively. For a coalition to be stable, the red curve needs to be on or
above the x axis, and the blue curve needs to be on or below the x axis.

Figure 1. Graphs of stability conditions. (A) Grand coalition is stable, (B) Coalition of size 2 is stable,
(C) Coalition of size 4 is stable.

In Figure 1A, the grand coalition is stable (The blue, external stability curve is not shown because
the grand coalition satisfies external stability by default). In Figure 1B,C, coalitions of sizes 2 and 4,
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respectively, are the only stable coalitions. This shows that there is a variety of possible scenarios as
far as coalition stability is concerned. The size of a stable coalition can be quite small or as large as the
total number of nations, depending on specific combinations of values of the parameters. It is also
possible for parameter values to be such that no coalition of any positive size is stable (these cases
will be identified and discussed at the end of this section).

The corollaries below systematize our findings in this regard, starting with the grand coalition.

Corollary 1: The grand coalition is stable under the following conditions:

(i) a ≥ 0.
(ii) a < 0, Δint ≥ 0, and s−int ≤ I ≤ s+int.

Proof. See Appendix A. �

Before we explore scenarios where conditions (i) and (ii) hold, it is important to stress that the
findings in the corollary depart from the results frequently obtained in the literature on internal and
external stability of coalitions, which Barrett [24] refers to as the “paradox of cooperation”: Stable
coalitions are either small or, if they are large, the full cooperation aggregate payoff is not much larger
than the no cooperation aggregate payoff. The reason for this phenomenon is the positive externality
generated by players’ actions. As coalitions become larger, the payoffs of outsiders increase, making
it more difficult to sustain stability.

Barrett [24] studies a pollution abatement game with identical countries with independent cost
functions and shows, through simulations, that large coalitions are only stable when the cost of abate-
ment is relatively small compared with its benefit. However, when this is true, coalitions with many
countries do not increase net benefits by very much compared with the non-cooperative outcome.
Cooperation would increase net benefits considerably when the cost and benefit of abatement are
both large, but in this case, large coalitions are not stable. Yi [25] also analyses a game with identical
countries, but considers a more general framework where several coalitions of different sizes can be
formed. He considers a variety of endogenous coalition formation rules and shows that the grand
coalition is usually not an equilibrium outcome in the presence of positive externalities. More recently,
Finus and McGinty [26] show analytically that the largest stable coalition in a pure public good game
with no transfers and where coalition members have identical individual benefit and cost functions is
comprised of three nations.

Our findings show that the grand coalition is stable under a variety of conditions. Condition (i)
in the corollary requires γ < 1, which means that the marginal benefits generated by the coalition’s
retaliatory actions are substantially larger for coalition members. That is not sufficient for a ≥ 0
though, which can be written as β[β(1 − γ)− 2θω] ≥ α2θ2. According to this inequality, the marginal
benefit of retaliation β has to be high enough with respect to factors that measure sensitivity to
terrorist activities (θ), backlash (ω), and the impact of pre-emptive measures on terrorist costs (α).

The fact that the grand coalition is stable for high enough β (modulated by γ) is surprising.
A high β is associated with strong positive externalities, in which case nations have a strong incentive
to free ride, typically leading to a violation of internal stability. What is happening here is that
retaliation also has a private good component, measured by γ. When the private benefit to coalition
members is high enough (γ is low enough), it pays to stay in the coalition.

Put differently, part (i) of Corollary 1 states that, when the benefit stand-alone nations enjoy
from retaliation is relatively small compared with that of coalition members (γ < 1), the internal
stability condition will be satisfied for any coalition size if β is large enough. The rationale is that, if a
coalition member stays in the coalition, it stands to benefit substantially from the retaliatory actions
of the coalition, whereas as a stand-alone nation, it still benefits from retaliation, but to a considerably
smaller extent2.

The condition a ≥ 0 can also be satisfied when θ, ω, and α are sufficiently low. The parameter
θ measures the marginal damage suffered by a nation when it is attacked. When θ is low enough,
coalition members do not care much about the fact that retaliation increases the likelihood they will
suffer a terrorist attack, making internal stability easier to satisfy. A similar reasoning applies to the
parameter ω, which captures the marginal external gain (due to backlash) from retaliation enjoyed by
the terrorist organization3. A smaller ω translates into fewer attacks (or attacks of smaller magnitude)
on member nations, which makes them less sensitive to the negative effects of retaliation. Finally,
the impact of the parameter α on the possibility of full cooperation (and thus maximal coordinated
retaliation effort) is also reasonable. As this parameter measures the sensitivity rate of the terrorist
organization’s common cost to preemptive actions, a decrease in α means that pre-emptive actions
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become less effective as deterrence instruments, generating weaker positive externalities enjoyed by
free riders.

Full cooperation is also feasible when condition (ii) in Corollary 1 is satisfied. Let us assume that
Δint ≥ 0, which can be shown to be true, with a little bit of algebra, when β > 2θω4. One scenario
where condition (ii) may hold is γ < 1 and yet a < 0. In this case, it can be shown that there is a β > 0
such that s−int ≤ I ≤ s+int (see proof in the Appendix A). The interpretation is similar to that of part (i)
of Corollary 1; that is, if the positive spillover of retaliation on stand-alone nations is limited (γ < 1),
full cooperation is possible when the marginal benefit of retaliation (β) is high enough in relation to
the following: (a) factors that channel potential negative effects of retaliation on coalition members,
namely, the marginal damage caused by terrorist attacks (θ) and backlash (ω), which increase terrorist
attacks in member nations; and (b) the effectiveness rate of pre-emptive measures in making the
terrorist activities costly (α).

Figure 2 below illustrates this scenario. We set α = θ = 1 and γ = ω = 0.5, and let β vary from
0.5 to 2.7325 in increments of 0.05. The graph shows how the maximum number of stable coalitions
depends on β.

Figure 2. Maximum size of stable coalition as a function of β—condition (ii).

The maximum number of stable coalitions is an increasing function of β, and it is always possible
to find a β such that the grand coalition is stable.

Another scenario under which condition (ii) of Corollary 1 may be satisfied is γ ≥ 1, for it
implies a < 0. However, in this case, the number of nations I cannot be too high. In fact, as s+int has a
limit as β increases without bound (see Appendix A), it is possible for I > s+int, and then the grand
coalition is not stable. In sum, even if the marginal benefit of retaliation becomes larger and larger
compared with the other parameters, there is a limit to the size of stable coalitions. If the total number
of nations is higher than that limit, full cooperation will not be possible. It is important to point out
that this result is driven by the fact that the spillover effect of retaliation on stand-alone nations is
relatively high in this case (γ ≥ 1), making it harder to satisfy internal stability.

A possible combination of parameters in this scenario is shown in Figure 3 below. We again
set α = θ = 1 and ω = 0.5, but now γ = 1.5. β varies from 1.5 to 10 in increments of 0.1. The graph
shows how the maximum number of stable coalitions depends on β.

Now that we are done discussing the stability of the grand coalition, we shift gears and focus
on situations where only smaller coalitions or even no coalitions are stable.

Corollary 2: When a < 0 and Δint ≥ 0, a coalition of size |S| = s < I is stable if s+ext ≤ s ≤ s+int < I.

Proof. See Appendix A. �
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Figure 3. Maximum size of stable coalition as a function of β—condition (iii).

The importance of Corollary 2 is that it shows it is possible to obtain different degrees of
cooperation between nations depending on how large the marginal benefit of retaliation β is in
comparison with the potential negative effects of retaliation on coalition members, measured by θ

and ω, and the effect of pre-emptive measures on the terrorist’s common cost, measured by α6. As
mentioned in our discussion about stability under γ < 1 and a < 0, larger values of β, all else the
same, increase the maximum size of a stable coalition. We can always ensure full cooperation for
large enough β, but, given β, only coalitions smaller than the grand coalition will be stable if the
number of nations is such that s+int < I.

A similar reasoning applies to the case γ ≥ 1, but now there is a limit to the maximum size of a
stable coalition. It is still possible for the grand coalition to be stable, but only if the total number of
nations is relatively small.

Our last corollary establishes conditions under which there are no stable coalitions with more
than one nation. In this case, only the non-cooperative solution is viable.

Corollary 3: There is no stable coalition with size |S| = s > 1 if one of the following conditions is
satisfied: (i) a < 0 and Δint < 0; (ii) a < 0, Δint ≥ 0 and s+int < 2.

Proof. See Appendix A. �

Once again, stability hinges on the relationship between the benefit of retaliation parameter
β, the “cost” of retaliation (from the perspective of coalition members) parameters θ and ω, and
the effectiveness of pre-emption parameter α. When β is not large enough with respect to the other
parameters, no coalition is stable. Figure 4 illustrates this scenario.

In Figure 4, the parameters were set at α = θ = 1, γ = 1.5, ω = 0.5, and β = 0.5. Notice how
internal stability is not satisfied for any s greater than approximately 1.7.

Table 1 collects all the results of this section.
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Figure 4. Only the grand coalition is stable—Corollary 3.

Table 1. Summary of stability conditions.

Condition Internally Stable Externally Stable Stable

a ≥ 0 All coalitions
Only the grand coalition (by default).
No other coalition is externally stable

because s+ext < s+int < 1.
Only the grand coalition

a < 0, Δint < 0 No coalition This case was not investigated. No coalition

a < 0, Δint ≥ 0, s+int < 2 No coalition Grand coalition (by default) and
coalition of size s < I if s ≥ s+ext.

No coalition

a < 0, Δint ≥ 0, s+int ≥ 2
Coalition of size
s−int ≤ s ≤ s+int.

Grand coalition (by default) and
coalition of size s < I if s ≥ s+ext.

Grand coalition,
if s−int ≤ I ≤ s+int,

or a coalition of size
s < I if s+ext ≤ s ≤ s+int.

If we take a closer look at the scenarios where stable coalitions are possible, we realize there are
two possibilities: (1) only the grand coalition is stable (when a ≥ 0); (2) either the grand coalition or a
coalition of size s < I is stable, but not both (when a < 0, Δint ≥ 0, and s+int ≥ 2). If the stable coalition
in this scenario is of size s < I, there are no stable coalitions of other sizes s′ < I (this follows from
the fact that s+int − s+ext = 1).

To summarize, we have shown how coalition formation in the retaliation game depends on the
intricate relationship between the overall and private marginal benefits of retaliation, the marginal
damage caused by a terrorist attack, the backlash after retaliation, and the impact of pre-emptive
measures on terrorist’s costs. The key aspect of our findings is that, despite being members of the
same category of proactive measures, retaliatory and preventive actions have differentiated effects on
the incentives to join a coalition.

5. Conclusions

We build a simple model to capture key factors that influence potential strategic coalitional
counterterror retaliatory effort by multiple nations that fight a common, strategic, terrorist organiza-
tion. The key factors that we consider are as follows: (i) the sequential nature of strategic moves, with
retaliation occurring at the last stage; (ii) the group-specific and internalized public benefits from
retaliation enjoyed by coalition members; (iii) the external public benefit from retaliation enjoyed by
stand-alone nations; (iv) the external backlash benefit produced by retaliation and enjoyed by the
terrorist organization; and (v) the effective rate of pre-emptive counterterror measures in producing
a cost to terrorist activities. Motivated by various observations of joint international retaliation
triggered by terrorist attacks, we focus on retaliation by a potential counterterror coalition only.
Stand-alone nations do not engage in retaliation.
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Because retaliation and pre-emptive measures are members of the same family of proactive mea-
sures, retaliation becomes a viable and necessary additional weapon in the combat of terrorism when
it proves to be a sufficiently different product if compared with pre-emptive measures. Retaliation
is a desirable differentiated product in any of the various circumstances under which counterterror
coalitions, including the grand coalition, emerge in equilibrium. We demonstrate that the grand
coalition is stable depending on the factors that yield a positive net gain to any nation of being a
member of the counterterror coalition relative to being a single free rider. In such circumstances, the
group-specific marginal benefit from retaliation enjoyed by coalition members and the lower private
marginal benefit from retaliation enjoyed by each stand-alone nation as a spillover are fundamentally
important. For example, the subgame perfect equilibrium involves full cooperation whenever the
group-specific marginal benefit from retaliation enjoyed by each coalition member is sufficiently large,
while the external marginal benefit from retaliation enjoyed by a stand-alone nation is sufficiently
small. The factors that may hinder the emergence of the grand coalition in equilibrium are backlash
and the effectiveness rate of pre-emptive measures in making terrorist activities costly to the terrorist
organization. The lower the effectiveness of pre-emptive measures, the more desirable retaliation
becomes as a collective instrument to fight terror.
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Appendix A

Proof of Proposition 2. In order to check the internal stability of a coalition, we compare the payoff
of a member m of the coalition S when it stays in the coalition:

s2β2

2
+

θ2

2
− θ

(
b + s2ωβ − αuS

)
− 1

2
(sαθ)2 (A1)

to its payoff when it leaves:

γ

2
(s − 1)2β2 +

θ2

2
− θ

(
b − αuS\{m})− 1

2
(αθ)2 (A2)

Therefore, a nation stays in the coalition if

s2 β2

2 + θ2

2 − θ
(
b + s2ωβ − αuS)− 1

2 (sαθ)2 ≥ γ(s−1)2 β2

2 + θ2

2 − θ
(
b − αuS−1)− 1

2 (αθ)2

⇒ β2
[
s2 − γ(s − 1)2

]
− 2θ

(
b + s2ωβ − αuS)− s2α2θ2 + 2θ

(
b − αuS−1)+ α2θ2 ≥ 0

⇒ β2
[
s2 − γ(s − 1)2

]
− 2βθωs2 + 2αθ

(
uS − uS−1)− α2θ2(s2 − 1

) ≥ 0

(A3)

Now, we turn to external stability. The payoff of a stand-alone nation is

γ

2
s2β2 +

θ2

2
− θ

(
b − αuS

)
− α2θ2

2
(A4)

and its payoff if it joins the coalition is

(s + 1)2β2

2
+

θ2

2
− θ

(
b + (s + 1)2ωβ − αuS+1

)
− (s + 1)2α2θ2

2
(A5)
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External stability requires

γ
2 s2β2 + θ2

2 − θ
(
b − αuS)− α2θ2

2 ≥ (s+1)2 β2

2 + θ2

2 − θ
(

b + (s + 1)2ωβ − αuS+1
)
− (s+1)2α2θ2

2

⇒ (s + 1)2β2 − γs2β2 − 2θ
(

b + (s + 1)2ωβ − αuS+1
)
− (s + 1)2α2θ2 + 2θ

(
b − αuS)+ α2θ2 ≤ 0

⇒ β2
[
(s + 1)2 − γs2

]
− 2βθω(s + 1)2 + 2αθ

(
uS+1 − uS)− α2θ2

[
(s + 1)2 − 1

]
≤ 0

(A6)

In order to evaluate the stability conditions, we need to find uS =
I

∑
i=1

p∗i . We plug in the optimal values of

the pi’s to obtain the following:

uS = ∑
i/∈S

pi + ∑
i∈S

pi = (I − s)αθ + s(sαθ) = αθ
(

I − s + s2
)

(A7)

Given these expressions, we can write

uS − uS−1 = αθ
(

I − s + s2)− αθ
(

I − (s − 1) + (s − 1)2
)

= αθ
(

I − s + s2 − I + s − 1 − s2 + 2s − 1
)
= 2(s − 1)αθ

and, similarly,

uS+1 − uS = αθ
(

I − (s + 1) + (s + 1)2
)
− αθ

(
I − s + s2)

= αθ
(

I − s − 1 + s2 + 2s + 1 − I + s − s2) = 2sαθ

(A8)

Plugging the expressions above into the internal and external stability conditions, we obtain

β2
[
s2 − γ(s − 1)2

]
− 2βθωs2 + 2αθ[2(s − 1)αθ]− α2θ2(s2 − 1

) ≥ 0

⇒ β2(s2 − γs2 + 2γs − γ
)− 2βθωs2 + α2θ2(−s2 + 4s − 3

) ≥ 0

⇒ β2s2 − β2γs2 − 2βθωs2 + 2β2γs − β2γ − α2θ2s2 + 4α2θ2s − 3α2θ2

⇒ (
β[β(1 − γ)− 2θω]− α2θ2)s2 + 2

(
β2γ + 2α2θ2)s − (

β2γ + 3α2θ2) ≥ 0

(A9)

and
β2

[
(s + 1)2 − γs2

]
− 2βθω(s + 1)2 + 2αθ(2sαθ)− α2θ2

[
(s + 1)2 − 1

]
≤ 0

⇒ β2(s2 + 2s + 1 − γs2)− 2βθω
(
s2 + 2s + 1

)
+ α2θ2(−s2 + 2s

) ≤ 0

⇒ β2s2 + 2β2s + β2 − β2γs2 − 2βθωs2 − 4βθωs − 2βθω − α2θ2s2 + 2α2θ2s ≤ 0,

⇒ (
β2 − β2γ − 2βθω − α2θ2)s2 +

(
2β2 − 4βθω + 2α2θ2)s +

(
β2 − 2βθω

) ≤ 0

⇒ (
β[β(1 − γ)− 2θω]− α2θ2)s2 + 2

[
β(β − 2θω) + α2θ2]s + β(β − 2θω) ≤ 0

(A10)

respectively, which are expressions on the parameters only. �

Proof of Corollary 1. First, it is helpful to recall that α ∈ (0, 1], β > 0, γ ∈ [0, 2], θ > 0, and ω ∈ [0, 1].

(i) Notice that, for s ≥ 1,

as2 ≥ 0

bints + cint = 2sβ2γ + 4sα2θ2 − β2γ − 3α2θ2

= (2s − 1)β2γ + (4s − 3)α2θ2 > 0

(A11)

which implies ψ(s|β, θ, ω, α ) > 0. This means that internal stability is satisfied for all s ≥ 1. As the grand coalition
is externally stable by default, we conclude that it is stable.

(ii) If a < 0, the quadratic function ψ(s|β, θ, ω, α ) is concave. If its discriminant Δint is negative, then it has no
real roots, and thus is everywhere below the x axis. In this case, no coalition is internally stable, including
the grand coalition.

If Δint ≥ 0, we have, for s ≥ 1:

as2 < 0

bints + cint = 2sβ2γ + 4sα2θ2 − β2γ − 3α2θ2

= (2s − 1)β2γ + (4s − 3)α2θ2 > 0

(A12)

This means that the first term in ψ(s|β, θ, ω, α ) is negative and quadratic in s, while the sum of the second
and third terms is positive and linear in s. Thus, ψ(s|β, θ, ω, α ) < 0 for large enough s. Given that ψ(s|β, θ, ω, α )

is concave, internal stability will be satisfied for s−int ≤ s ≤ s+int
7. Therefore, the grand coalition will be stable if

s−int ≤ I ≤ s+int. �

Proof of Corollary 2. We have already seen in the proof of Corollary 1 that (a) when the discriminant Δint is
negative no coalition is internally stable, so Δint ≥ 0 is required; (b) under the conditions a < 0 and Δint ≥ 0,
internal stability holds for s−int ≤ s ≤ s+int.
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External stability, on the other hand, is satisfied for large enough s, because(
β[β(1 − γ)− 2θω]− α2θ2)s2 < 0

2
[
β(β − 2θω) + α2θ2]s + β(β − 2θω)

= (2s + 1)β(β − 2θω) + α2θ2s >
=
<

0

(A13)

implies that, even if the sum of the two last terms in ϕ(s|β, θ, ω, α ) is positive, that is, 2
[
β(β − 2θω) + α2θ2]s +

β(β − 2θω) > 0, ϕ(s|β, θ, ω, α ) will be negative for large enough s. Moreover, as ϕ(s|β, θ, ω, α ) is concave when
a < 0, external stability is satisfied for s ≤ s−ext and s ≥ s+ext.

Next, we need to show that s+ext < s+int, for then there will exist an s between s+ext and s+int. The algebra to
obtain this result looks very complicated, but the result is incredibly simple. Using Sympy, a Python library for
symbolic mathematics, we calculated the difference between s+ext and s+int, obtaining s+int − s+ext = 1. Therefore,
there exists a stable coalition s, and if s+int < I, this coalition is smaller than the grand coalition. �

Proof of Corollary 3. We already know from Corollary 1 that there are no internally stable coalitions when a < 0
and Δint < 0. When a < 0 and Δint ≥ 0, we know from the proof of Corollary 2 that a coalition of size s will be
stable if s+ext ≤ s ≤ s+int. Thus, if s+int < 2, there is no stable coalition larger than a singleton. �

Proof of implications of condition (ii) of Corollary 1.

Consider a as a function of β, i.e.,

a(β) = β[β(1 − γ)− 2θω]− α2θ2

= (1 − γ)β2 − 2θωβ − α2θ2 (A14)

This quadratic function in β has the following roots:

β+ =
2θω+

√
4θ2ω2+4(1−γ)α2θ2

2(1−γ)
=

2θω+
√

4θ2[ω2+(1−γ)α2]
2(1−γ)

=
θ
(

ω+
√

ω2+(1−γ)α2
)

(1−γ)

β− =
θ
(

ω−
√

ω2+(1−γ)α2
)

(1−γ)

(A15)

Under the assumption that γ < 1, the discriminant is positive, so there are two real roots. Moreover, a(β) is
convex and a(β) < 0 when β− < β < β+.

When Δint ≥ 0 (see proof of Corollary 1), it is clear that s+int =
(−bint −

√
Δint

)
/2a ≥ −bint/2a. Because

lim
β→β+

a = 0 (remember the constraint that a < 0) and bint increases with β, we can always find a β such that

s−int ≤ I ≤ s+int.
If γ ≥ 1, a(β) is always negative. Notice that s+int =

(−bint −
√

Δint
)
/2a can be written as s+int = p(β)/q(β),

where

p(β) = −2
(

β2γ + 2α2θ2)− [
4
(

β2γ + 2α2θ2)2
+ 4

(
β[β(1 − γ)− 2θω]− α2θ2)(β2γ + 3α2θ2)]1/2

and

q(β) = 2β[β(1 − γ)− 2θω]− α2θ2

(A16)

are polynomials of degree 2 in β. Therefore, s+int is a rational function in β whose limit is equal to the ratio of the
leading coefficients of p and q. �

Notes

1 The parameter ω captures the differential benefit of attacking a nation that belongs to the coalition. If ω is negative, non-coalition
members will have less incentive to free ride, making cooperation easier. By assuming a non-negative ω, we are making it harder
for cooperation to take place, which increases the robustness of our coalition stability results.

2 We can show that the impact of a larger β on external stability is similar. Because the (positive) impact of retaliation on the payoff
of coalition members is substantially higher than that on the payoff of stand-alone nations, it is impossible to prevent entry into a
coalition smaller than the grand coalition.

3 In this paper, we do not consider the possibility that retaliation will lead to a reduction of terrorist attacks in nations that are
members of the coalition.

4 The condition β > 2θω is not necessary for Δint ≥ 0. In fact, Δint > 0 in all the numerical simulations we carried out.
5 β+ = 2.73205 . . . in this case (see Appendix A for definition of β+).
6 Notice first that, if γ < 1 and a ≥ 0, only the grand coalition is stable.
7 If s−int = s+int = s∗int, ψ(s|β, θ, ω, α ) has a unique real root (Δint = 0) and the grand coalition is stable only when I = s∗int.
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Abstract: Revisionist actors are increasingly operationalising a broad number of non-violent threats
in their quest to change the status quo, popularly described as hybrid conflict. From a defensive
point of view, this proliferation of threats compels nations to make difficult choices in terms of
force posture and composition. We examine the choice process associated with this contemporary
form of state competition by modelling the interactions between two actors, i.e., a defender and a
challenger. As these choices are characterised by a high degree of uncertainty, we study the choice
from the framework of prospect theory. This behavioural–economic perspective indicates that the
defender will give a higher weight and a higher subjective value to conventional threats, inducing
a higher vulnerability in the domain of hybrid deterrence. As future conflict will increasingly
involve choice dilemmas, we must balance threats according to their probability of occurrence and
their consequences. This article raises awareness regarding our cognitive biases when making
these choices.

Keywords: hybrid threats; state competition; prospect theory; grand strategy

1. Introduction

The re-emergence of long-term, strategic competition by so-called revisionist actors
(i.e., states that are dissatisfied with the current distribution of power and that aim to
reshape the world in their favour) such as China and Russia, constitutes one of the main
contemporary security challenges [1]. Russia’s aggressive actions in Ukraine in 2014
are generally seen as a tipping point, initiating an increase in the North Atlantic Treaty
Organization’s (NATO) budgets and putting great power competition back on top of the
security agenda. The nature of this strategic competition is becoming increasingly complex.
In addition to traditional conventional means, these revisionist actors are challenging
the West by making use of a wide and varied range of threats across all operational
domains. The competition in the informational (e.g., cyber and disinformation) and non-
military domains, popularly known as ‘hybrid threats’, has created a grey zone where the
traditional physical boundaries of conflict are eroded so that countries can be destabilised
without a single soldier crossing the (physical) border [2–4]. These threats give rise to a
number of challenges. While conventional conflict rarely takes place, hybrid threats occur
continuously; they are more difficult to attribute to a perpetrator (who can always resort
to the excuse of plausible deniability), and it is more difficult to assess the effects and the
consequences associated with these types of threats.

From a defensive stance, the deterrence of this increasing number of threats gives
rise to choice problems, as not only force posture but also force structure will have an
impact on the national defence [5]. As power continues to diversify, political calculations
must not only consider the classic trade-off between ‘guns’ and ‘butter’, as nations might
have a limited number of resources available or other non-military spending priorities, but
must also account for complements and trade-offs between ‘guns’ and ‘guns’ [5]. Hence,
studying this form of state competition requires a shift in thinking.
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As a more differentiated portfolio of options makes trade-offs more difficult, we
venture in the strategic question: “How do we decide on allocating available budgetary
means across different domains when striving to deter the wide range of threats we are
confronted with?”

We study this broad research question by means of a traditional game theoretical
deterrence model, resembling the interactions between a defender and a challenger that
wishes to revise the status quo. Linked to today’s international environment, the challenger
represents a revisionist state such as Russia, China or North Korea [4,6,7]. The defender
represents a liberal democracy, being a single individual state or an alliance of states such
as NATO. The article is written from the point of view of the defender, which needs to
decide upon the distribution of resources across domains. This strategic question involves
a decision-making dilemma, as this choice could have large (political) consequences if
deterrence in one of the domains should fail. We are therefore brought into the realm of
prospect theory, standing as the leading framework for how people make choices under
risk [8,9]. The subsequent integrating of elements of prospect theory into our game theoretic
model therefore constitutes a good methodology to reveal how the defender will prioritise
defensive capabilities when facing a wide series of threats.

Originating in the field of economics, a vast literature applies prospect theoretic
findings to study several forms of conflict (see Section 3.2), serving as an alternative to the
expected-utility theory. We are, however, the first to bridge the literature on hybrid conflict
and the behavioural–economic literature on prospect theory. Moreover, we contribute to
the growing literature on cross-domain deterrence (CDD), as our model incorporates the
interactions between different domains (conventional and hybrid). This field of research
focuses on the deterrence of asymmetric [10] and hybrid [11,12] threats, the use of threats in
one domain to prevent actions in other domains (such as cyberspace) and the increasingly
intertwined interactions between military threats and the growing portfolio of non-military
threats in today’s competitive environment [13].

The remainder of the article is structured as follows. Section 2 summarises the main
characteristics of hybrid conflict. Section 3 recapitulates the main findings of prospect
theory. Section 4 offers a prospect theoretic perspective on hybrid threats. Section 5 offers a
preliminary (quantitative) discussion by analysing the U.S. budget composition. Section 6
summarises our findings and provides scope for follow-up research.

2. The Contemporary Nature of State Competition

Notions such as ‘hybrid threats’, ‘non-linear warfare’ [14] and ‘grey zone conflict’ [2]
have received growing attention in recent years, especially following the events in Crimea
in 2014. This article does not enter the semantic discussion of whether the changing way
of state competition, rendered possible by an increase in technological progress (e.g., the
‘internet of things’ and the evolutions in artificial intelligence) and interconnectedness,
can actually be described by a single definition. We use this umbrella term to cover a
range of threats, because we believe they have some common characteristics that require
further analysis in order to gain more insights into the dynamics of contemporary state
competition. We refer to the terminology of hybrid threats as it has been adopted by NATO
and the EU in their official strategic documents [15,16].

2.1. Characteristics of Hybrid Threats

First, hybrid threats refer to the combined and simultaneous use of a wide range
of ambiguous, and often non-violent, means [17–19]. The most known and debated
examples of hybrid threats are the spreading of disinformation (e.g., the Chinese and
Russian spreading of disinformation during the COVID-19 health crisis), the foreign
interference in elections, the use of cyber-attacks (e.g., the Solarwinds or Hafnium cyber-
attacks targeting thousands of U.S. private firms), the targeting of critical infrastructure
(e.g., the drone strikes by Iran’s Houthi allies on Saudi Arabian refineries in 2019), the
use of Special Forces to wage unconventional warfare (referring to the use of operations
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conducted by special forces to advise and assist foreign resistance movements to conduct a
resistance warfare against their host nation or occupying force [20]), the support of extreme
political parties of one’s opponent with the aim of increasing political polarisation (e.g.,
the Russian support to EU extreme right political parties) and the use of a wide range
of economic instruments to exploit interdependencies (e.g., manipulating energy prices,
economic aid, the use of economic sanctions such as the Russian embargoes of Ukrainian
goods during the 2014 war). The seminal work ‘unrestricted warfare’ by the Chinese
strategists Liang and Xiangsui contains a further extensive list of tools that can be used
to destabilize one’s adversary [21]. The effects and consequences stemming from these
tools vary widely, which immediately brings us to the second characteristic associated with
these types of threats.

Revisionist actors are resorting to the aforementioned means with the aim of staying
below the threshold that the attacker believes would trigger an armed response. This
blurs the traditional dichotomy of peace and war and is often described as fighting in the
grey zone [22] or liminal warfare [8]. These threats hence enable the revisionist to inflict
losses while evading a powerful international response [19,22]. This relative reluctance of
Western states to respond fiercely to hybrid threats remains partly a puzzle and is often
explained by referring to the difficulty of attributing the attacks to a perpetrator with
sufficient certainty [2,8]. By incorporating behavioural–economic insights, our modelling
provides another innovative explanation why hybrid adversaries proceed carrying out
these types of intrusions, considering Western deterrent signals as incredible.

Third, the intellectual debate on hybrid conflict requires a shift from the traditional
goals of conflict. Hybrid conflict is non-linear in nature and does not involve the conquest
or physical control of the opponent’s territory. These threats aim to create distrust towards
politicians, to polarise the public debate and to weaken the sentiment of unity. This could
in the longer-term lead to a gradual change of the status quo and the balance of power [23].
Our model expounds how this deterioration in the status quo can occur.

Hybrid threats clearly constitute an attractive complement to conventional capabilities,
as they have a high cost-benefit efficiency. Furthermore, the increased interconnectivity
and the advances in technology continue to increase the reach, efficiency and the potential
to achieve substantial effects. While the aforementioned explanatory factors for resorting
to these types of threats are important, they are not the subject of this article. We argue
that they are also capable of exploiting the defender’s cognitive pitfalls that are associated
with the psychological game of deterrence [24]. Broadening the range of threats, both
conventional and hybrid, forces the defender to make allocative choices, distributing
available budgetary means across defence capabilities. As this allocative choice process
constitutes a decision-making dilemma, we study this question from a prospect theoretic
perspective, standing as the leading framework for how people make choices under
risk [9,10]. We discuss the main elements of prospect theory in the following section.

3. Prospect Theory and Decision Making under Risk

Section 3.1. highlights the main findings stemming from the empirical research
on prospect theory, focusing on the seminal work of Kahneman and Tversky [25,26].
Section 3.2. briefly presents the use of prospect theory within the field of international
relations.

3.1. An Introduction to Prospect Theory

Prospect theory emerged as an alternative for expected utility theory when evaluating
different hypothetical choices under risk, following the seminal work of Kahneman and
Tversky [25,27]. Prospect theory describes a choice process, in which available options
are edited in a first phase. During the subsequent evaluation phase, the option with the
highest weighted value ‘V’ is chosen. This value is expressed as follows and depends on
two distinctive functions:

V =
n

∑
i=1
π(pi)·v(xi) (1)
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π(pi) represents the weighting function (see Figure 1) and measures the impact of the
probability of an event on the desirability of prospects. This implies that possible outcomes
are weighted by a subjective decision weight π(pi) instead of their objective probability
(pi). Hence, this function does not necessarily represent the objective likelihood of events
but rather introduces subjective probabilities. The decision weights can consequently be
influenced by other factors such as ambiguity, uncertainty and risk. The weighting function
bears several properties.

Figure 1. A hypothetical weighting function. Note: p represents the objective probability, π(p) reflects
the decision weight associated with an event. Source: Kahneman and Tversky (1979).

First, the function is not well-behaved around the endpoints, reflecting the observation
that individuals face difficulties when evaluating extreme probabilities. The difference
between high probabilities and certainty is therefore often neglected or exaggerated. Ex-
tremely likely but uncertain outcomes are consequently often treated as being certain,
also called the pseudo certainty effect. Second, sharp increases can be observed in re-
gions with low and high probabilities. This implies that people in general tend to over-
weight low probability events (π(pi) > pi) while underweighting high probability events
(π(pi) < pi). Third, Figure 2 shows that probabilities are lower than unity over a large range
of the weighting function, leading to the principle of subadditivity, or π(pi) + π(1 − pi) < 1,
implicating that decision weights do not sum to 1 when comparing two options.

v(xi) represents the value function (see Figure 2) and assigns a value to each potential
outcome, reflecting the subjective value of that outcome. This function bears some distinct
characteristics. First, values are measured in terms of gains and losses that stem from
deviations from a reference point. In this way, people are more sensitive to changes in
wealth, rather than final asset positions. The reference point often depicts the status quo
but can also be a measure of the aspiration level [28]. Second, the value function is concave
for gains and convex for losses, reflecting risk averse behaviour when operating in a
domain of gains and a risk acceptant behaviour with respect to losses. This implies that
individuals will prefer the certain outcome instead of a gamble when operating in a gains
frame, even when the gamble has a higher expected utility. Individuals operating in a loss
frame will on the contrary prefer a gamble in an effort to avoid certain losses, even if the
expected loss is larger. Moreover, the shape of the value function reflects the characteristic
of diminishing sensitivity, indicating a decreasing marginal value of both gains and losses
in terms of their magnitude. Third, the value function is steeper in the domain of losses,
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reflecting the characteristic of loss aversion. The pain of loss is greater than the pleasure
of gaining. Recent experiments in the field of neuroscience [29] indeed show that distinct
neural circuits and activation patters are used when encoding and assessing gains or losses
hereby confirming the asymmetric value function [30].

Figure 2. A hypothetical weighting function. Source: Tversky and Kahneman (1991).

3.2. The Application of Prospect Theory within the Field of International Relations

Although most of the initial research on prospect theory focuses on choices between
monetary outcomes, the theory has later been applied to a wide range of decision-making
problems, including the field of international relations and conflict. Next to case studies,
explaining specific policy choices [31–35], the theory has been incorporated into theoretic
modelling to study strategic interaction. The theory supports the revision of traditional
outcomes associated with deterrence frameworks such as the chicken game [35,36], the
study of great power deterrence and power cycles [37], the sequential analysis of a tradi-
tional deterrence game [38] and bargaining and ultimatum games [39]. While the list of
applications of prospect theory in the field of international relations continues to grow, we
are, to the best of our knowledge, the first to use the framework of prospect theory to study
hybrid threats and how states respond to them.

4. Studying the Contemporary Conflict Environment from a Prospect Theoretic
Perspective

We apply prospect theory to contemporary state competition, in which a defender
faces a broad range of threats. Section 4.1 conceptualises this threat environment by means
of a model in which the defender must deal with conventional and hybrid threats. This
visualisation enables us to assess threats in terms of alternative courses of action as well
as the associated outcomes and the probabilities they will occur. As these elements form
the basis of ‘framing’ a choice problem in prospect theory [40], we heavily draw on this
theory to analyse the decisions. Where Section 4.2 puts emphasis on the findings from
the weighting function, Section 4.3 discusses the value function. Both functions provide
corroborative insights regarding the way decision makers cope with a wide range of threats
that differ strongly according to their probability of occurrence and impact. Section 4.4
discusses the challenges associated with deterring hybrid threats, by applying our findings
from prospect theory.
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4.1. Modelling Contemporary State Competition: The Joint Analysis of Conventional and Hybrid
Threats

We present the multi-domain strategic competition between two players in Figure 3.
The model is based on Balcaen et al. [41] and presents a defender (player 1) facing a
challenger (player 2) that wishes to revise the status quo. We assume a unitary decision
maker, in line with previous research on prospect theory within the international relations
literature [9,35,38]. Further extensions such as the impact of group polarisation [42] on the
decision-making process would add a further order of complexity to the model [43] and are
beyond the scope of this article. It is similar to a traditional deterrence model [38,44], but
allows for a variety of instruments to challenge the status quo, i.e., a combination of hybrid
and conventional threats. We assume a number of simplifications. First, we differentiate
between two broad categories of threats: hybrid and conventional ones, each depicted by a
single branch tree. Both categories could be further expanded. The conventional domain
for example could be further subdivided, making the distinction between naval, land and
air forces. The hybrid branch tree could be further expanded by making a distinction
between the different types of hybrid threats, e.g., disinformation campaigns, cyber-attacks,
supporting proxy-forces or destabilising an opponent by means of economic coercion. We
resort to this simplification because we argue that each category bears a number of similar
characteristics that form the basis of the prospect theoretic analysis. Second, the deterrence
game is limited to two stages and does not include retaliatory actions of the defender. We
will incorporate this possibility of retaliation in Section 4.4.

Figure 3. Interactions between a defender and a challenger (Extensive form representation). Source:
simplified representation of the model presented in Balcaen et al. (2021).

The interactions between the defender and the challenger are as follows. The defender
moves first and decides on the level of deterrence, making a choice between conventional
deterrence D(θC) and capabilities that aim to deter hybrid threats D(θHT). The latter can
be represented as a form of deterrence by denial by investing in intelligence services, cyber
specialists and the detection of disinformation. We specifically assume this strategy of
deterrence by denial when analysing the deterrence of hybrid threats following the nature
of these threats as discussed in Section 2.1, i.e., they are designed to inflict harm without
justifying or provoking an armed response (i.e., punishment). We further venture in the
particular discussion of deterring hybrid threats by means of a strategy of deterrence
by punishment in Section 4.4. The levels of D(θHT) and D(θC) in turn determine the
challenger’s perceived probabilities of failure (θC and θHT). These deterrence costs augment
at an increasing rate in function of the failure probability. The challenger then moves and
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decides how to defy his opponent, with probabilities pConv (demonstrating a conventional
attack) or pHT (representing the use of a hybrid threat). This probability function is
assumed to be continuous with ∂pi/∂θj > 0, i.e., target transference implies that efforts to
counter a certain type of threat increases the probability that the challenger will revert to a
different type of threat to challenge the defender. The model has four potential outcomes,
i.e., a failed/successful conventional attack or a failed/successful hybrid attack. The
defender strives to minimise his costs, which are composed of the foregone deterrence
costs D(θC) and D(θHT) and the costs incurred as a result of an attack. Despite the fact
that hybrid attacks also have the potential to inflict severe damages (e.g., by attacking
vital infrastructure, shutting down the opponent’s national economy), the hybrid actor
generally strives to remain under the threshold that would provoke an armed response
by only inflicting limited losses. If the hybrid attack fails, the defender incurs a small cost
of ‘f’ whereas a successful hybrid entails a cost of ‘a’. Conventional conflict, on the other
hand, generally results in significant human, economic and material losses. Losing the
conventional attack entails a large cost ‘A’, winning a cost ‘F’, with F < A. The final ordering
of the potential costs for the defender are A > F > a > f.

The focus of our analysis is not on the absolute outcomes of hybrid or conventional
offensives. Instead, we focus on the choice dilemma stemming from the strong contradic-
tion between the probabilities and outcomes that characterise these two strategies. This
discrepancy between the ‘probabilities’ and ‘impacts’ associated with conventional and
hybrid threats is illustrated in Figure 4. Whereas the occurrence of large-scale conventional
wars between two major states constitutes a HILP event (High Impact, Low Probability),
hybrid attacks occur with a high probability but entail smaller effects.

Figure 4. Probability-intensity relations across the continuum of conflict. Source: Monaghan (2019).

The defender will try to minimise his expected costs by choosing the level of deterrence
D(θC) and D(θHT). According to expected utility theory, assuming rational decision-making,
the defender will balance the outcomes that are obtained by multiplying the probabilities
of the different scenarios with the associated costs (the impact). However, according to
prospect theory, heuristics and biases will influence the choices of the decision maker,
leading to a violation of expected utility theory. The following sections incorporate the
findings from prospect theory to the choice process of the defender, demonstrating the
difficulty to assess the diverging prospects of conventional and hybrid conflict.

4.2. Insights from the Weighting Function

Incorporating prospect theory, the defender replaces the probabilities pConv and pHT
by subjective decision weights: π(pConv) and π(pHT). These decision weights measure
the impact of events on the desirability of prospects rather than the perceived likelihood
that these events will occur [25]. This has some important implications for the weighting
function.
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First, as the function is assumed not to be well behaved around the endpoints, decision
makers face difficulties when evaluating and responding to events that are highly likely or
very unlikely. Hence, being faced with a series of threats at the extremes of the continuum
of conflict complicates the decision-making process and the defining of priorities.

Second, the properties of the weighting function partially explain how we will pri-
oritise the threats we are facing, based on the probability of occurrence. More precisely,
the defender will instinctively tend to overweight low probability threats such as large-
scale conventional conflict while underweighting high probability events such as the
occurrence of cyber-attacks or the distribution of disinformation, or: π(pConv) > pConv
and π(pHT) < pHT. The overweighting of low-probability conventional conflict is further
reinforced by the availability heuristic. Examples and consequences stemming from conven-
tional conflict are widely available and come easily to mind, e.g., the images of wounded
people, death or the destruction of infrastructure. They are consequently perceived as
more likely than they truly are [8]. Moreover, the challenger can magnify this availability
heuristic as he continues to organise nuclear tests and/or large-scale conventional exercises,
by bringing its troops in a higher state of readiness and by regularly probing borders (e.g.,
by means of reconnaissance flights or movements of submarines). Russia, for example,
gathered over 100.000 troops along the border of Ukraine and in Crimea in April 2021,
signalling Putin’s readiness to commit aggressive actions [45]. This signalling game further
increases the subjective decision weight π(pC).

Third, social experiments show that the nonlinearity of the weighting function leads
to a different evaluation of the complete elimination of risk as compared to the reduction
of risk [25]. More specifically, individuals are willing to pay more to reduce the low
probability of an event to ‘0’ rather than obtaining the same reduction when the probability
of occurring is higher. Specifically applied to our choice problem, this means that we
will be more inclined to devote a higher budget to eliminate specific threats with a low
probability (e.g., conventional war), while the similar reduction of threats with a higher
probability (e.g., hybrid threats) is characterised by a lower ‘willingness to pay’.

4.3. The Use of Hybrid Threats in Contemporary State Competition: Insights from the Value
Function

In the first place, the framework of prospect theory explains why the challenger is still
resorting to ‘risky’ actions (since the waging of hybrid attacks still entails the possibility
of provoking a response that might inflict losses on behalf of the perpetrator), despite
observing the deterrent measures. The challenger will defy the defender by using hybrid
threats with a probability of pHT since he is dissatisfied with the current status quo and
perceives himself as being in a domain of losses. This motivates the challenger to risk
defection as long as there is a chance that these actions will improve its situation (i.e., the
benefits nHT the challenger obtains). In our example, the defender can be seen as a state
being satisfied with the status quo while the challenger represents a revisionist state (such
as Russia, China, Iran and North Korea) that strives to change the balance of power in his
favour [1,23]. Following prospect theory, deterrence becomes more difficult when potential
adversaries operate in the domain of losses [35,38], as they are more willing to accept risk
and to pursue confrontation. Applied to our model, this implies that higher levels of D(θC)
and D(θHT) are needed, if the defender wishes to deter the challenger across all domains.
This comes at a high cost.

We now discuss how the defender assesses the different potential outcomes of the
deterrence game (cfr. Figure 3). From a prospect theoretic perspective, the defender does
not evaluate each outcome (A, F, a, f) as a net asset position. Instead, he assigns a subjective
value to each potential outcome, i.e., the magnitude of change in relation to the asset
position that serves as a reference point (in this case the status quo) [25]. We introduce the
following mathematical representation of this subjective value [27,39] as it includes the
variables that affect the defender’s assessment of the threat environment, i.e., its degree of
loss aversion (α), the degree of risk propensity (β) and the deviation from the reference
point as the attack occurs (Δ). Equation (2) describes how this assessment differs upon
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whether the defender perceives himself as being in a domain of gains or losses, illustrating
the concave (domain of gains) and the convex (domain of losses) area of the value function
(cfr. Section 3.1).

Vi(Δ)

{
Δβ for Δ ≥ 0

−α(−Δ)β for Δ ≤ 0
(2)

Succumbing to a conventional attack involves a large negative deviation (Δ << 0) from
the reference point. Following Equation (2), the subjective outcome ‘A’ is even further rein-
forced (exponentially) by the factors ‘α’ and ‘β’. Consequently, the defender experiences a
great (subjective) disutility of loss when being confronted with the consequences associated
with conventional conflict. This might incite the defender to reckless actions, driven by
loss aversion. A challenger that resorts to hybrid threats specifically aims to avoid these
reckless responses. By pursuing actions that remain below the threshold that would trigger
an armed response, he refrains from provoking a substantial negative deviation (Δ ≈ 0)
from the reference point. In doing so, he strives to avoid being confronted with a reckless
defender that attempts to recover its suffered losses.

While the effects ‘a’ of a single hybrid attack may be small (e.g., one single piece
of disinformation), the cumulative value of the losses stemming from a high number of
attacks may be substantial (e.g., the long-term effects of a well-coordinated disinformation
campaign such as the Russian campaign during the 2016 U.S. elections). The feeling of
loss therefore depends on the framing of the reference point: do we compare our gains
or losses with respect to an initial asset position prior to a series of events (i.e., a certain
number of periods ago), or do we compare our situation prior to each new individual
event (i.e., the period t-1)? Comparing the status quo with a reference point in the past
might reveal a greater than expected (perceived) loss. Therefore, the defender’s choice
of reference point and prior experiences with hybrid intrusions might have an impact
on the way he evaluates the outcome of a hybrid attack. There may furthermore be a
difference in evaluation between the different threats. In the U.S., where the Russian
electoral interference in 2016 caused a lot of turmoil, might, for example, give a higher
subjective value in future similar attempts to interfere, assigning a higher value to this
particular threat.

As we depart from the model of Balcaen et al. [41], we examine whether the incorpo-
rating of prospect theory leads to diverging outcomes. Overall, we find the outcomes of
the original model to be strengthened. Following Equation (2), we expect the defender to
assign a higher subjective value to the outcomes of conventional conflict, whereas this holds
less for outcomes associated with hybrid attacks. This further magnifies the overweighting
of conventional conflict we discussed in Section 4.2, encouraging the defender to maintain
(or even improve) high levels of conventional deterrence. This finding has a number of
implications. First, organising a high level of conventional and nuclear deterrence is costly,
absorbing large budgetary resources. As stated by Kilcullen [7] (p. 140), when referring to
Russia’s strategy towards the West:

They (strategic nuclear weapons), not incidentally, served as shiny objects to
distract Western intelligence analysts in an area where Western countries were
then obligated to continue spending money, soaking up attention and resources
even as Russia’s true transformation took place in the realms of asymmetric and
conventional warfare.

Furthermore, this paradoxically reduces the probability that the challenger will resort
to conventional war, as the failure rate of conventional conflict becomes high. As stated by
the Chinese strategists Liang and Xiansui [21], the U.S. has created a trap for itself by its
dominance in the conventional domain. Confronting the U.S. in a conventional conflict
would be committing suicide, leading their adversaries to resort to the use of asymmetric
threats. Applied to our model, the challenger will rather increase its use of hybrid threats
to challenge the opponent, as the latter has a higher likelihood of success (1 − θHT). This
high frequency of attacks poses numerous challenges to the defender, the most important
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of which is the question: “Can these attacks be deterred?” We discuss this challenge in the
following section.

4.4. The Credibility of Cross-Domain Deterrence by Punishment

As CDD essentially deals with the use of threats in one domain to deter an opponent
from taking actions in another domain [13], we wonder whether high levels of conventional
deterrence (cfr. Sections 4.2 and 4.3) could also serve to deter hybrid threats by means
of ‘deterrence by punishment’. We do so by extending the game with an additional
round, giving the defender the possibility to respond as he encounters a hybrid attack. We
examine the prospects of these response strategies by replacing the outcome ‘successful
hybrid attack’ in Figure 3 with a new decision node. The defender could choose to simply
accept the consequences of this attack (‘no retaliation’) or decide to ‘retaliate’. This choice
process is presented in Figure 5. Besides the sure losses of giving in (outcome ‘a’), we
include the potential outcomes of the retaliatory action and the associated payoffs for
the defender.

Figure 5. Retaliate or not? Choosing between two negative prospects. Source: author’s own analysis.

There are two possible outcomes associated with the choice of retaliation. On the one
hand, the retaliatory action could fail (taking the launching of an air raid as an example
of retaliation, failing corresponds to fighter jets being intercepted or shot down), or the
conflict could deteriorate even more as the challenger responds by launching counterattacks.
Following Schelling [46], each act of escalation carries a degree of risk, i.e., the chance that
a military action could lead to an unbearable catastrophe. This leaves the defender with
the negative payoff ‘r’. On the other hand, the defender’s retaliatory attack could succeed,
leading to gains ‘i’. These gains could be interpreted as the establishment of a reputation of
toughness [47], deterring future attempts to interfere in a defender’s domestic country by
means of hybrid threats. The defender’s potential outcomes of this subgame are ordered as
follows: i > 0 > a > r.

This represents a decision-making situation under risk, where the defender needs to
make a choice between two negative prospects: (1) he does not retaliate and accepts the
certain loss ‘a’ stemming from the hybrid attack or (2) he decides to retaliate and takes a
gamble. He now has a (1 − ψ) probability to improve its situation with the outcome ‘i’ and
a (ψ) probability of losing even more ‘r’. In an expected utility framework, the defender
would retaliate if the following holds (in terms of expected utility):

ψ·r + (1 −ψ)·i > a (3)

According to prospect theory, the probability of pursuing the risky option of retaliating
will depend upon the defender’s degree of risk propensity. The latter is, in turn, strongly
influenced by the extent to which he perceives himself in a frame of loss (Equation (2)).
When states perceive themselves in a domain of loss, loss aversion might lead them to
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become risk acceptant. This could result in risking open conflict in an attempt to recover
the suffered losses and to restore the old status quo [36,48]. However, there appears to be
disagreement in the literature regarding the magnitude of decline required before an actor
perceives himself in a frame of losses, leading to risk-taking behaviour. Whereas a number
of authors state that only substantial losses or serious deterioration of the status quo push
an actor in the loss frame [37,49], others argue that limited losses already suffice to incite
states to defect [29,34,36]. Hence, the choice for ‘retaliation’ or ‘giving in’ will depend upon
the defender’s evaluation of the outcome, i.e., V(a). Similarly, Berejikian [35] reasons that
deterrent threats over territorial disputes are not always carried out, especially when the
object of dispute has limited strategic value. Under these conditions, losing this territory
will not provoke retaliation as the actor that loses the territory remains in a gains frame.
Following the discussion in Section 4.3, we argue that the limited losses of hybrid attacks
do not suffice to incite the defender to become so risk-acceptant that he is willing to pursue
retaliatory actions that could escalate and lead to catastrophic outcomes. Consequently, the
defender rather evaluates the situation as follows:

V(ψ·r + (1 −ψ)·i) < 0 < V(a) (4)

Applied to our model, the defender will therefore remain risk averse and will prefer
the certain benefits from continuous cooperation to the risks associated with the scenario of
retaliation which might produce even larger losses ‘r’. This consequently undermines the
credible communication of deterrent threats. The failure of hybrid deterrence can be easily
illustrated by real world examples. The authoritarian interference tracker [50] lists a long
series of hybrid attacks that occurred since 2000, making a distinction between information
manipulation, cyber operations (For example the recent ‘Solarwinds’ and ‘Hafnium’ cyber-
attacks that were able to target thousands of customers and public or private firms), malign
finance, civil society subversion, and economic coercion. Responses to this growing list of
foreign state intrusions remain limited to economic sanctions or the expulsion of diplomats
at best. NATO intended to boost its deterrence posture by claiming that article 5 can be
provoked in the event of a cyber-attack [51]. Despite numerous intrusions, this has not
yet occurred [52].

5. Discussion

As noted in the introduction, two broad allocative decisions (that affect the allocation
of means across domains) should be taken into consideration: (1) security budgets could
be increased, providing additional means to invest in complementary hybrid deterrence
(i.e., implying a shift from ‘butter to guns’); or (2) decision makers could, given a fixed or
limited budget, decide to change the defence structure (i.e., substituting ‘guns by guns’.
A better terminology in the framework of our model would even be to speak in terms of the
allocation between ‘shields’, as we are looking to defend ourselves against a wide array of
distinct threats). The latter trade-off implies making priorities between domains. Insights
from our modelling, including the perspective of the weighting function (Section 4.2) and
the value function (Section 4.3), both indicate that a defender will value conventional
deterrence more. Confirming these hypotheses empirically proves, however, to be a
daunting task, as there is no (declassified) granular panel data (e.g., for all NATO countries)
that provides a clear overview of the break-up of military expenditures across domains.

We therefore explored this allocative question by looking at data published by one
specific country, i.e., the U.S. yearly DoD request [53]. This yearly report contains an
overview of the major capital expenditures across a series of categories. These categories
reflect the traditional conventional domains and certain ‘new’ domains such as cyber. The
analysis is worthwhile, as the U.S. is the country with the highest defence expenditures [54].
We do, however, readily admit that our analysis is coarse for (at least) three reasons. First,
the U.S. does not merely assume the role of a defender, but also pursues other strategic
objectives. Second, we are looking at input metrics, i.e., budgetary resources devoted to
security. Approaching this issue through output metrics poses even greater challenges
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in terms of data (it is moreover difficult to assess the ‘output’ of capabilities that aim to
deter hybrid threats). Third, deterring hybrid threats is not a sole task for the military. In
recent years, NATO and its allies have made significant efforts to provide responses to
hybrid threats by establishing specialised institutions such as national cyber centres, by
developing a whole of government approach (In which several agencies and ministries
within a nation-state work together to counter e.g., hybrid threats [55] or by contributing
to multinational centres such as the Hybrid Centre of Excellence [56]. Unfortunately,
budgetary data associated with these efforts are unavailable. Hence, looking at military
expenditures data only provides a partial part of the picture.

Figure 6 provides an overview of these major categorical capital expenditures over
the period 2015–2021. The data shows that the conventional domains have certainly not
been neglected or substituted by other domains in recent years. Both the land, air and
naval domains have seen, despite the small decline in the request of 2021, a continuous
increase of capital expenditures over the period 2014–2020. The maintaining of missile
defence programs and tactical and strategic missiles also continues to absorb large bud-
getary resources. Moreover, nuclear deterrence modernisation remains a priority, costing
14 billion $ in 2020 and 28.9 billion $ in 2021. New domains such as space and cyber are
however not neglected and are also steadily increased over time. This overall increase is
accommodated by the increase in military expenditures.

Figure 6. Major US capital expenditures by category over the period 2015–2021. Note: Values for expenditures within the
cyber domain are not available for the fiscal years 2018 and 2019. Source: Own visualisation based on data from the U.S.
DoD yearly budgetary request (2015–2021).

6. Conclusions and Suggestions for Future Research

The re-emergence of state competition that is being waged in an increasing number
of (non-military) domains, entails difficult choices in terms of organising (cross-domain)
deterrence. Not only the decision on force posture, but also on force structure could have
considerable consequences upon the success rate and credibility of a nation’s deterrence.
We study this decision-making process by means of a deterrence model, opposing a
defender and a challenger. As the defender faces a choice dilemma involving potential
large strategic consequences, we incorporate findings from the leading theory of choice
under risk [48], i.e., prospect theory. Both the value as the weighting function provide
more insights why the defender struggles to simultaneously assess a broad range of threats
that diverge strongly in terms of probability and impact. Both functions indicate that the
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defender will give a higher weight and a higher subjective value to HILP events. This
implies that conventional deterrence remains the above-all priority. We depart from our
model to offer insights with regards to one of the main research lines within the literature
on cross-domain deterrence, i.e., “Can we resort to threats in one domain (in this case the
conventional domain) to deter threats that are taking place in other domains (in this case
hybrid threats)?” The incorporating of prospect theoretic insights within our deterrence
model provides an innovative perspective why high degrees of conventional deterrence
are not credible in deterring hybrid threats.

There is no counter evidence that countries are substantially depleting their conven-
tional capabilities to make a shift to other domains (i.e., a substitution of conventional
means by hybrid deterrence). States that acknowledge the consequences associated with
hybrid threats (illustrated in this article by looking at the U.S.) respond by increasing their
security expenditures. This does not necessarily constitute the most optimal response
strategy. As the challenger expands the competition to a larger number of domains, the
defender is forced to increase its security expenditures, entailing high opportunity costs.
Moreover, the increasing efforts made to face hybrid challenges remain currently insuffi-
cient. This deterrence failure can be easily illustrated by looking at the large number of
(successful) hybrid intrusions that continue to occur [50,57], inflicting societal unrest and
economic damages. We account the low cost and limited resources required to launch
certain hybrid threats as one of the main reasons why the challenger can keep the frequency
and magnitude of intrusions very high. The ‘Dark Web Price Index 2020’ [58] provides,
for example, an overview of the cost of executing certain types of cybercrimes, estimating
the cost of a DDoS attack at $10 per hour. At the same time, the cost of putting a small-to
medium-sized country down for an hour is estimated at $5600 per minute. We assess
that this will render it more and more difficult for the defender to remain superior in all
domains and to fend off all attacks at an acceptable (societal) cost. It remains to be seen
who will prevail in this competitive race. As the defender must make difficult choices, this
article raises awareness of our cognitive biases.

Taking the theoretic model proposed in this article as a starting point, we acknowledge
that further qualitative and quantitative research is required to test and improve our
understanding of hybrid threats and to optimise our policy responses. We offer two
specific recommendations, in line with previous empirical research on prospect theory
in a context of conflict. First, future research could confront test subjects (e.g., decision
makers such as politicians, or regular citizens if we want to assess how the public evaluates
these threats) with hybrid threat scenarios that involve hypothetical policy responses and
different outcomes. This methodology, in line with earlier research on other forms of
conflict [9,42,59], allows to identify the degree of loss aversion and the types of events that
trigger a response, i.e., which events produce a subjective feeling of loss that makes us more
risk acceptant? It might be particularly interesting to compare policy responses against
various reference points that are framed differently, i.e., with respect to the asset position at
the beginning of a series of choices (going back in time) or with respect to the asset position
at each individual choice. Second, as hybrid attacks occur frequently, we can conduct large-
N statistical analyses [29]. This is, however, resource and time consuming. Although a (non-
exhaustive) list of hybrid attacks can be easily obtained (e.g., the authoritarian interference
tracker), this is not the case for the policy responses. Identifying these responses requires
additional qualitative research such as the analysis of policy documents, statements and
interviews. A particular challenge lies in the identification of the reference point prior to
being exposed to hybrid threats [43]. These findings can help to increase the credibility of
our resolve towards hybrid threats and the delineation of red lines in current great power
state competition.
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Abstract: There are many competing game-theoretic analyses of terrorism. Most of these models
suggest nonlinear relationships between terror attacks and some variable of interest. However, to
date, there have been very few attempts to empirically sift between competing models of terrorism or
identify nonlinear patterns. We suggest that machine learning can be an effective way of undertaking
both. This feature can help build more salient game-theoretic models to help us understand and
prevent terrorism.

Keywords: machine learning; terrorism; game theory

1. Introduction

Game-theoretic models of terrorism are a useful tool in understanding the interactions
between states and terrorist groups, the organization of terror groups, and the coordination
of counterterrorism efforts [1]. These models provide insights and testable hypotheses. Yet,
far too often, many of these hypotheses remain untested. Even when model-generated
hypotheses are tested, the focus is on the effect of a particular theory-generated variable
on, say, the likelihood of terrorism. This testing may explore causal channels. However,
because empirical evidence using traditional econometric channels is not organized to
check for relative salience, the importance of a correlation or even causal effect relative to
other such effects is unknown. This inability of traditional econometric techniques to check
for relative salience in an organized way makes it hard to sift among competing theoretical
models. This sort of sifting is essential for policy. A nation plagued by terrorist attacks
needs to know which theoretical model provides the largest counterterrorism impact.

Further, it is essential to know how a particular variable may affect terrorism. Game-
theoretic models have a key strength. They show comparative static or even dynamic
(particularly in evolutionary models) equilibrium shifts. Thus, variables that affect terror-
ism may do so in nonlinear ways. Traditional econometric tests focused on parametric
point estimates are not built to pick up these equilibrium shifts. Nonlinearity, of course,
can often be imposed in econometrics. However, this forces the researcher to guess where
these nonlinearities may be (squaring the variable, for example, defines a particular shape
on a relationship that may or may not be accurate).

Data problems also plague traditional econometric tests of game-theoretic models.
Terrorism is, thankfully, rare. However, empirically, this requires heroic assumptions
about the distribution of data when making inferences. Even without the rarity aspect,
hypotheses testing for significance requires assumptions about the underlying distribution
of data that are swept under the rug. Game theoretic models highlight strategic interaction
between agents, which are often endogenous. Thus, assumptions about the distribution of
data are necessary to estimate efficient and unbiased estimators. Then, there is the issue
of model specification. Model specification is often subject to a researcher’s explicit and
implicit biases. All of this contributes to charges of p hacking in academic research [2].
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We suggest that the full power of game theoretical insights can be validated by machine
learning. This is particularly important for science in cases such as the study of terrorism,
where randomized control trials are impossible or unethical. Therefore, a key contribution
of this paper is to introduce the emerging methodology of machine learning to the game-
theoretic study of terrorism that can, to a great extent, overcome the limitations of classical
regression-based methods [3].

This paper will identify a methodology to identify a robust list of factors that contribute
to an increased risk of terrorism and would inform the government on precisely what
information to monitor in order to be able to anticipate terrorist events before they occur
and would hence contribute to the design of counterterrorism policy at the strategic level.
This set of variables can be the starting point for further causal analysis [4]. Our approach
will rank variables by predictive importance. Counterterrorism policy is by definition
something whose effect happens in the future. Thus, more predictively important variables
can be better candidates for policy.

Predictively important variables are not necessarily causal. However, all causal
variables should predict. We can identify variables that do not predict well. This reduces
the likelihood that these variables are causal. Thus, theoretical models that suggest such
variables matter for terrorism are less likely to be explanations for terrorism. To the best of
our knowledge this sort of approach is new in the literature on terrorism.

Game-theoretic models predict such nonlinear relationships in comparative static
settings. We use machine learning technology to develop partial dependence plots that
let the data reveal how predictive variables affect terrorism. This feature makes machine
learning an essential vehicle for exploring nonlinear relationships between a policy variable
of interest and its effect on the likelihood of terrorism. Moreover, because our algorithms
are theory-agnostic, we can let the data speak to actual relationships that can iteratively
help us build better game-theoretic models.

We lay down some conceptual foundations about terrorism in Section 2. Section 3
describes the machine learning techniques we use. We describe our data in Section 4. We
report our results in Section 5. In Section 6 we provide examples of how our results can be
helpful for validating game theoretic models. Section 7 concludes.

2. Conceptual Foundations

The game-theoretic approach to terrorism tries to identify and deter terrorists through
a cost–benefit lens that highlights the deep interaction between attacker and defender.
Terrorism is a choice for successful rebellions (e.g., in Algeria, Israel, and Cyprus; ) [5,6].
Deterrence involves greater policing/punishment and policies to increase the opportunity
costs of terrorism at the tactical level [7,8]. However, the very act of deterrence elicits a
response [9]. For example, attackers’ and defenders’ efforts may be complementary, which
implies that improving military defense may be counterproductive [10].

The choice of terrorism is also a consequence of the nature of the target. Terrorists
will substitute away from hard targets, suggesting that piecemeal policies that focus on
some targets at the expense of others may be unproductive [11]. The nature of the target
drives even the type of terrorist attack, such that harder targets elicit more suicide attacks
in the context of a club goods model [12]. Moreover, increased military aid creates a moral
hazard problem in recipient countries who now have an incentive to have terrorists attack
them [13].

These lines of research show that terrorism is not a thing in itself; it is a tactical
choice driven by context. Further, the relationship between attackers and defenders is
constantly changing. A priori, there is no reason to believe that these changes have a
linear pattern: Enders and Hoover, for example, empirically show a nonlinear relationship
between income and terrorism [14]. However, despite the nonlinear relationships predicted
by game-theoretic attacker–defender models, most empirical tests, if any, only provide
information on the significance of point estimates. This is insufficient for policymakers
since potential underlying nonlinearities may make average point estimates unhelpful. A
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deer hunter shooting a foot to the left of the deer and a foot to the right of the deer but
claiming he shot the deer on average is correct but will go hungry.

Current empirical research has tended to identify the “correlates” of terrorism and
has largely failed to identify a consistent set of such correlations. Thus, predicting terrorist
attacks has so far mainly been speculative. Machine learning algorithms can provide
scientifically cross-validated predictions of the likelihood of a terrorist attack to provide
national security agencies with an abbreviated, cross-validated list of variables (i.e., policy
levers) that can best identify and hopefully deter terrorism. Machine learning techniques
identify the most predictive variables among those. These algorithms then identify vali-
dated data-driven relationships between a predictively important covariate of terrorism
and the likelihood of terrorism. This approach helps develop better models because they
are theoretically agnostic. This agnosticism can help sift between theoretical models—a
good model should be able to predict robustly. At the same time, predicting the likelihood
of terrorist attacks provides meaningful intelligence for preventing terrorism.

3. Machine Learning

Machine learning (ML) methods are a growing set of methods for predicting and
classifying various outcomes. These approaches have two applications: validating policy
recommendations and testing theory [15]. Policymakers need to understand the potential
effect of a policy before it is implemented, by definition, a matter of prediction. A theory,
too, must be able to predict behavior. Machine learning is not a silver bullet, but it can help
with these issues.

Further, the machine learning techniques we use do not require assumptions about the
underlying distributions of the variables and the error terms. Thus, statistical issues arising
out of problems such as endogeneity may be less relevant in these prediction models. For
example, say we can identify a highly predictive variable, say X, for terrorism. The predic-
tive value alone, shorn of endogeneity considerations, suggests that policy and academic
research should focus on understanding the relationship between X and terrorism. This
investigation would include how other variables may influence X as well. Thus, machine
learning is a good place to start an investigation as well. Just because X predicts terrorism
does not mean it is causal. However, if it is a good predictor then there must be something
about X that deserves further scrutiny. By the same token, variables that do not predict
terrorism can hardly be causal. A causal variable, by definition, should be predictive. Theo-
retical models that highlight variables that fail to predict are therefore unlikely to be good
explanations for terrorism. This logic allows us to eliminate nonpredictive variables from
consideration as casual factors. This process of reasoning provides a path for eliminating
theoretical models that are unlikely to causally explain terrorism.

From a policy perspective, predictive analysis has a more direct affect. Say the predic-
tive variable X is, upon further econometric analysis, is also found to be causal. Then, X
can potentially be a policy lever because we know X predictably causes terrorism. There-
fore, manipulating X can potentially reduce terrorism. Thus, machine learned prediction
analysis can supplement econometric techniques for policy analysis.

Everything we noted above can be done using econometrics. However, econometrics
requires assumptions about the underlying distribution of the variables. The concomitant
endogeneity and specification problems and potential solutions are both susceptible to bias
and a source of competing explanations for terrorism. For example, a particular theoretical
model might suggest an empirical link between a variable and terrorism that can be tested.
Such a test may even reveal a causal link with the right instrument. Yet, without a sense
of the predictive salience of this link relative to other competing links we can have no
idea whether this causal link is good explanation for terrorism. This is particularly an
issue for game theoretic models because these by definition highlight endogenous strategic
interactions. Machine learning models, by focusing on accurate prediction even in the
presence of endogeneity are particularly suited for the empirical investigation of game
theoretic models.
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This paper suggests that validated ML techniques can help determine whether a
particular theoretical model of terrorism has predictive salience relative to others. In the
process, we address some problems inherent in interpreting machine-learned results.

We will build an empirical model using several parametric and nonparametric ML
techniques (classical regression, Poisson regression, artificial neural network, regression
tree, bootstrap aggregating, boosting, and random forest) to measure how and how well
publicly available economic, geographic, and institutional variables predict the frequency
and severity of terror attacks [16]. The first step in this process will be to identify the
machine learning approach that best predicts terrorism.

Next, using the best technique, we will identify the most important variables for
predicting terrorism. This process can help validate the predictive salience of a theoretical
model relative to others.

Finally, we plot the partial dependency plots for terrorism to show how each vari-
able impacts terrorism across the distribution of its values. This technique is important
because game-theoretic analysis gives us reason to believe that many of the correlates of
terrorism have nonlinear impacts. Partial dependence plots also help us interpret results
more meaningfully.

ML techniques identify tipping points in the range of a particular variable that may
place a country at a lower or higher risk of terrorism. We illustrate these tipping points
using partial dependence plots, which show how the incidence and severity of terror attacks
fluctuate across each variable’s observed values. Further, by identifying the variables that
have the most predictive power, we could help develop a framework to distinguish between
competing theoretical explanations of terrorism. Suppose, for instance, political models of
terrorism may suggest that terrorism may be a tactic employed by disenfranchised groups
with little or no voice in government. In contrast, economic models may suggest that groups
employ terrorism as a signal of credibility to gain a seat at the negotiating table against
the regime when it divvies up rents from resource wealth. Suppose ML methodologies
rank democracy as a better predictor of terrorism than primary commodities exports, for
example. In that case, we can assume that the political model may be a better explanation
of terrorism than the economic model, or vice versa. Moreover, this approach can eliminate
correlates of conflict that do not predict terrorism. Presumably, correlates that do not
predict well cannot be considered as variables that cause terrorism. Such culling also helps
build better specified and more precise models.

Our ML approach will help us better understand causal patterns explaining terrorism.
Moreover, we offer a better understanding of how to predict terrorism, which will help
policymakers design counterterrorist policies. The remainder of this section outlines the
prediction algorithms we use to predict the aggregate terror risk for a country. Readers
who are familiar with these algorithms—or will be bored by a technical description of
them!—may skip to the results section. Those looking for a more detailed description of
the algorithms may consult their coverage by [16].

3.1. Classical and Other Regression Analysis

Using given data from a learning sample, L = {(y1, x1), . . . (yN, xN)}, any prediction
function, d(xi), maps the vector of input variables, x, into the output variable (the number
of terror attacks), y. An effective prediction algorithm seeks to define parameters that
minimize an error function such as the mean absolute deviations or mean squared error,
over the predictions. In linear regression models, d(xi) is simply a linear function of the
inputs. A linear model with the MSE error function yields the ordinary least squares (OLS)
regression model:

ROLS(d)=
1
n ∑N

i=1(yi − d(xi))
2,

where d(xi) = xiβ is a linear function of the inputs.
Although OLS can sometimes yield good predictions (on average, the best prediction

among all linear models, in fact), it has some undesirable properties in the case of predicting
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terror attacks. Specifically, since a large number of cases in our sample experience no terror
attacks at all, while some of them experience very large numbers of attacks, we will expect
the OLS model to predict negative numbers of terror attacks for some observations—which
is nonsense.

As an alternative, one corrects this problem by estimating a Poisson regression, which
will estimate the average number of terror attacks conditional on the inputs, x, to be an
exponential function of a linear combination of the inputs expressed as:

λ = E(y|x) = eβx.

This means that the probability of observing a specific number of terror attacks will be:

p(y|x) = eyxβe−exβ

y!
.

The Poisson model then proceeds by estimating the parameters to maximize the
likelihood function for this Poisson probability distribution.

While these more sophisticated regression methods successfully purge the bias from
the individual parameter estimates that might result from overdispersion, they do so to
the detriment of the model’s overall predictive accuracy. Alternative approaches, which
ensure a relatively high degree of accuracy while also avoiding nonsensical predictions, use
nonparametric tree methods or combinations of trees to predict the number of terror attacks.

3.2. Artificial Neural Networks (ANNs)

A feedforward artificial neural network is a series of binary regression models con-
necting each of the K input variables to M hidden nodes, over which, in the case of a
regression problem such as ours (as opposed to a classification problem in the case of a
binary target variable), a linear regression connects the hidden nodes to the output we hope
to predict in the final layer. The logistic function is the usual activation function in the first
layer, but in general any sigmoid function will have the desired properties. In a regression
problem such as ours, the final layer usually contains only one output; the same is true for
classification problems involving a binary output. For classification problems involving
multinomial outputs, there can be any number of outputs. Thus, this methodology is quite
flexible. Hence, with one output node, an ANN estimates K·M parameters.

We present a diagram of a simple ANN for predicting terror attacks in Figure 1. In the
figure, each connection corresponds to a weight for each input variable (I1, . . . , I5) and bias
(constant) terms (B1 and B2) into the hidden nodes (H1 and H2), or into the output node
(O1). In the diagram, we show a two-layer neural network (the inputs do not count as a
layer) with five inputs, two hidden nodes, and a constant. The link function connecting the
hidden layer to the outputs, and which is not explicitly shown, is linear.

Figure 1. ANN Diagram Example.
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Using a least-squares objective, the estimation of the ANN minimizes:

R(α, β; x) = ∑N
i=1(yi − f (α, β; xi))

2,

where f (α, β; xi) = Zβ connects the hidden layer to the output, and Z = 1
1+exp(xα)

is the
logit function connecting the inputs to the hidden layer. Using the first order conditions
with respect to the parameters for the hidden layer, α, and the parameters to the output
layer, β, the estimation finds the solution according to a gradient descent rule:

βr+1
m = βr

m − ∑N
i=1

∂R
∂βr

m
− λβr

m,

where l is called the “weight decay” and acts as a penalty on the parameter and ef-
fectively restricts the parameters towards zero to avoid “overfitting” the model to the
learning sample.

ANNs often perform well in situations where the interplay between input components
is more important than any of their values. As such, they are often used in image and pat-
tern recognition problems. We estimate the network using the nnet package implemented
in R [17]. This implementation uses a single hidden layer (in which we used 100 nodes and
100 iterations). This work used all default options, save for specifying that the final layer
should be linear. The initial weights were chosen randomly, and the goal function was the
sum of the squared errors.

3.3. Regression Trees

Classification and regression trees (CART) diagnose and predict outcomes by finding
binary splits in the input variables to optimally divide the sample into subsamples with
successively higher levels of accuracy in the output variable, y. Therefore, unlike linear
models, where the parameters are linear coefficients on each input variable, the parameters
of the tree models are “if–then” statements that split the dataset according to the observed
values of the inputs. We provide only a brief summary of tree construction as it pertains to
our objectives [18].

More specifically, a tree, T, has four main parts:

1. Binary splits to splits in the inputs that divide the subsample at each node, t;
2. Criteria for splitting each node into additional “child” nodes, or including it in the set

of terminal nodes, T*;
3. A decision rule, d(x), for assigning a predicted output value to each terminal node;
4. An estimate of the predictive quality of the decision rule, d.

The first step is achieved at each node by minimizing a measure of impurity. The most
common measure of node impurity, and the one we use for our tree algorithms, is the mean
square error, denoted R̂(d)= 1

n ∑N
i=1(yi − d(xi))

2. Intuitively, this method searches for the
cutoff in each input that minimizes errors, then selecting which input yields the greatest
improvement in node impurity using its optimal splitting point.

Then, a node is declared to be terminal if one of the following conditions is met:
(1) that the best split fails to improve the node impurity by more than a predetermined
minimum improvement criterion; or (2) the split creates a “child” node that contains fewer
observations than the minimum allowed (Note that there is a tradeoff here: setting lower
values for the minimum acceptable margin of improvement or the minimum number
of observations in a child node will lead to a more accurate prediction (at least within
the sample the model uses to learn). However, improving the accuracy of the algorithm
within the sample may lead to overfitting in the sense that the model will perform more
poorly out-of-sample). At each terminal node, the decision rule assigns observations with
a predicted outcome based on some measure of centrality. In the case of count (number of
terror attacks or fatalities) or continuous (amount of property damage) outcomes, centrality
is usually the mean of the observations conditional on reaching that node.
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The predictive quality of the rule is also evaluated using the mean square error,
R̂(d)= 1

n ∑N
i=1(yi − d(xi))

2. This misclassification rate is often cross-validated by split-
ting the sample several times and re-estimating the misclassification rate each time to
obtain an average misclassification of all of the cross-validated trees.

3.3.1. Boosting Algorithms

Iteratively re-estimating or combining ensembles of trees by averaging their predic-
tions can often improve the accuracy of a tree algorithm. Boosting algorithms, bootstrap
aggregating (bagging), and random forests all predict outcomes using ensembles of classifi-
cation trees. The basic idea of these algorithms is to improve the predictive strength of a
“weak learner” by iterating the tree algorithm many times by either modifying the distri-
bution by reweighting the observations (boosting), randomly resampling a subset of the
learning sample (bagging), or randomly sampling subsets of the input variables (random
forest). These approaches then either classify the outcomes according to the outcome of
the “strongest” learner once the algorithm achieves the desired error rate (boosting), or
according to the outcome of a vote by the many trees (bagging).

Boosting has been proposed to augment the strength of a “weak learner” (an algorithm
that predicts poorly) [19,20]. Specifically, for a given distribution D of importance values
assigned to each observation in L, and for a given desired error, R̃, and failure probability,
ϕ, a strong learner is an algorithm that has a sufficiently high probability (at least 1 − ϕ)
of achieving an error rate no higher than R̃. A weak learner has a lower probability (less
than 1 − ϕ) of achieving the desired error rate. Boosting algorithms for classification create
a set of M classifiers, F = (f 1, . . . , fM) that progressively reweight the importance of each
observation based on whether the previous classifier predicted it correctly or incorrectly.
Modifications of the boosting algorithm for classification have also been developed for
regression trees [21,22].

Starting with a D1 = (1/N, . . . , 1/N), suppose that our initial classifier, f 1 = T (single-
tree CART, for example), is a “weak learner” in that the misclassification rate, R̂(d) is greater
than the desired maximum desired misclassification rate, R̃. Next, for all observations in
the learning sample, recalculate the distribution weights for the observations as:

D2 =
D1(i)

Z2
×

⎧⎨⎩
R̂1(d)

1−R̂1(d)
i f d1(xi) = yi

1 otherwise
,

where Zm is a scaling constant that forces the weights to sum to one.
The final decision rule for the boosting algorithm is to categorize the outcomes ac-

cording to d(x) = argmax
y∈Y

∑m:dm(x)=y log
(

1−R̂m(d)
R̂m(d)

)
. Using this decision rule and its corre-

sponding predictions, we calculate the estimate of the misclassification rate in the same
way as in step (4) of the single tree algorithm.

3.3.2. Bootstrap Aggregating (Bagging)

The bagging method proposed by [23] takes random resamples, {L(M)}, from the
learning sample with replacement to create M samples using only the observations from
the learning sample. Each of these samples will contain N observations—the same as the
number of observations in the full training sample. However, in any one bootstrapped
sample, some observations may appear twice (or more), others not at all. Note that the
probability that a single observation is selected in each draw from the learning set is
1/N. Hence, sampling with replacement, the probability that it is completely left out of
any given bootstrap sample is (1 − 1/N)N. For large samples this tends to 1/e. The
probability that an observation will be completely left out of all M bootstrap samples, then,
is (1 − 1/N)NM. The bagging method then adopts the rules for splitting and declaring
nodes to be terminal described in the previous section to build M classification trees.
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To complete steps (3) and (4), bagging needs a way of aggregating the information
of the predictions from each of the trees. The way that bagging (and, as we will soon
see, a random forest) does this for class variables is through voting. For classification
trees (categorical output variables), the voting processes each observation through all of
the M trees that was constructed from each of the bootstrapped samples to obtain that
observation’s predicted class for each tree. Note that the observations under consideration
could be from the in-sample learning set or from outside the sample (the test set). The
predicted class for the entire model, then, is equal to the mode prediction of all of the trees.
For regression trees (continuous output variables), the voting process calculates the mean of
the predicted values for all of the bootstrapped trees. Finally, the bagging calculates the
redistribution estimate in the same way as it did for the single classification tree, using the
predicted class based on the voting outcome.

3.3.3. Random Forests

Like bagging, a random forest is a tree-based algorithm that uses a voting rule to
determine the predicted class of each observation. However, whereas the bagging random-
izes the selection of the observations for each tree, a random forest may randomize over
multiple dimensions of the classifier [24]. The most common dimensions for randomizing
the trees are selecting the input variables for the node of each tree and the observations
included for constructing each of the trees. We briefly describe the construction of the trees
for the random forest ensemble below.

A random forest is a collection of tree decision rules, {d(x, Θm), m = 1, . . . , M}, where
Θm is a random vector specifying the observations and inputs that are included at each
step of the construction of the decision rule for that tree. To construct a tree, the random
forest algorithm takes to following steps:

i Randomly select n ≤ N observations from the learning sample;
ii At the “root” node of the tree, select k ∈ K inputs from x;
iii Find the split in each variable selected in (ii) that minimizes the mean square error at

that node and select the variable/split that achieves the minimal error;
iv Repeat the random selection of inputs and optimal splits in (ii) and (iii) until some

stopping criteria (minimum improvement, minimum number of observations, or
maximum number of levels) is met.

The bagging method described in the previous subsection is in fact a special case of a
random forest where, for each tree, Θm, of a random selection of n = N observations from
the learning sample with replacement (and each observation having a probability of being
selected in each draw equal to 1/N) and sets the number of inputs to select at each node, k,
equal to the full length of the input vector, K so that all of the variables are considered at
each node.

3.4. Validation and Testing of Predictive Accuracy

Once we have built our learning algorithm, the next issue is to evaluate the validity
of our error estimates and the predictive strength of our models. Error estimates (R[d])
can sometimes be misleading if the model we are evaluating is overfitted to the learning
sample. These error estimates can be tested out-of-sample or cross-validated using the
learning sample.

To test the out-of-sample validity, we simply split the full dataset into two random
subsets of countries: the first, known as the learning sample (or training sample) contains the
countries and observations that will build the models; the second, known as the test sample,
will test the out-of-sample predictive accuracy of the models. The out-of-sample error rates
will indicate which models and specifications perform best, and will help reveal if any of
the models are overfitted.

To validate the error rates, machine learning uses either hold-out validation or cross-
validation. In our study, we have used hold-out validation, which involves training the
models using one portion (in our case 70% selected at random) of the dataset. The algorithm
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then tests the learned model by measuring the mean square error between the predicted
value and the actual value in the 30% of the data unseen by it. A model with an acceptably
low error rate in the sample unseen by it is presumably a good predictive model. This out
of sample test also guards against overfitting. An overfitted model may be highly accurate
in the learning sample but it would be unlikely to predict well in the test sample.

4. Data

As a first step in analyzing some preliminary data on terrorism, we have predicted the
number of terror attacks using each of the seven models described above (OLS regression,
Poisson regression, regression tree, random forest, bagging, and boosting). For our specifi-
cation, we have included 69 input (or explanatory) variables that cover most of the ones
discussed in Gassebner and Luechinger’s survey of the empirical literature on conflict [25].

We measure our output (or “dependent”) variable, Terror Attacks, as the total number
of terror attacks in a country in the last five years. This variable comes from the Global
Terror Database published by the University of Maryland and covers 1970–2014. When we
combine all of the variables, our sample covers 1975–2014, since some entire data sources,
such as the Database of Political Institutions, do not become available until 1975. To
maintain the spirit of “prediction” in our model, we then consider our input (“explanatory”)
variables as five-year lagged averages of the preceding five years. Moreover, we only
consider the variables at nonoverlapping five-year intervals so that none of the same
information is contained in consecutive time intervals in our sample. In this sense, at
any given point in time, policymakers will be able to use our model to predict whether a
country will likely experience a greater or lesser number of terror incidents in the next five
years. Moreover, this approach reduces the risk of endogeneity; the past can potentially
affect the future, but it seems unlikely that the future can affect the past. In addition, this
lagging reduces the risk of collider bias among the potential predictors if one were to
interpret partial dependence plots causally. Collider bias happens when the target variable
(Y, terrorism here) and a variable of theoretical interest (say T) affects a third variable, say
X, in the model. In that case, if the researcher is interested in justifying a causal relationship
between T and Y, X should be taken out of the model specification. Placing the target
variable in the future helps justify that there can be no such relationship. We do not interpret
our partial dependence plots causally.

From the Cross-National Time Series [26] we take the numbers of assassinations,
demonstrations, government crises, guerrilla warfare incidents, purges, riots, and strikes
as measures of underlying low-level social instability. We also take the number of cabinet
changes and executive changes as measured of political instability, and the effectiveness of
the legislature as a measure of political legitimacy.

From the Database of Political Institutions [27] we take the number of checks on
power; executive and legislative indices of electoral competition; legislative, government,
and opposition fractionalization indices; government Herfindahl index; and government
polarization index as measures of the concentration (or not) of power and accountability (or
not) within the government. We then include the changes in veto players, the existence of
electoral fraud, executive tenure, the presence of a military executive, and political stability
and executive power measures. Finally, we include plurality voting and proportional
representation as indicators of structural differences in electoral rules.

Next, we take several indices of government quality from the International Country
Risk Guide [28]. It is important to remember that, for each of the ICRG indices, a higher
value always coincides with “better” outcomes on this dimension of institutional quality.
For example, in the case of the “internal conflict” (or “external conflict”) index, a higher
value for the index somewhat counterintuitively corresponds to less conflict. The same can
be said for “ethnic tensions”, “religious tensions” and “military in politics”—in each of
these cases, higher values relate to less of the (bad) thing that the variable name implies.
That being said, we include the following indices from the ICRG: the bureaucratic quality
and corruption indices as measures of the transparency of government; ethnic tensions,
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external conflict, internal conflict, law and order, and religious tensions as measures of
the levels of latent (or open) social hostility, and the government’s ability to ease those
hostilities; government stability and investment profile indices as measures of the govern-
ment’s credibility in carrying out stated policies and refraining from expropriation; and
democratic accountability and military in politics indices as a measure of the legitimacy
and responsiveness of the regime to the public’s preferences. We also add the Polity2
index and regime durability from the Polity IV Project as additional measures of legitimacy
and responsiveness.

As measures of economic and cultural divisions within society, we include measures
of income inequality and ethnic and religious fractionalization. The former comes from the
Standardized World Income Inequality Database [29]. The latter come from [30], which in
turn come from the Atlas Naroda Mira [31].

Finally, we include numerous measures of economic human development from the
World Development Indicators from the World Bank. They are: aid and development
assistance; arms exports and imports; public education and health spending; female labor
force participation; foreign direct investment (FDI); fuel exports; gross domestic product
(GDP) per capita; government consumption; the stock of foreign born immigrants; infant
mortality; the inflation rate in consumer prices; life expectancy; literacy; military expendi-
tures; military personnel; population and its rate of growth; portfolio investment; primary,
secondary, and tertiary school enrollment rates; social contributions; telephones per 100,000
people; the unemployment rate; urban population; and the youth dependency ratio.

Rather than exhaustively describing the distributional characteristics and justifying the
inclusion of each variable, we kindly refer the reader to visit Gassebner and Luechinger’s
survey and the references therein to the various studies that have already provided such a
description and justification [25]. For readers interested in some of the characteristics of the
observed data in our sample, we have included the descriptive statistics for all 69 variables
in Table 1.

We can see from the table that each of our explanatory variables has omitted values
to varying degrees. The tree-based methods (single trees, boosting, bagging, and random
forest) can automatically exploit the full information available by using surrogate infor-
mation or using the median or mode at that branch of a tree as a best guess the value of
a missing data point. Standard parametric methods (in our case Poisson regression and
neural networks) do not do this automatically, and regression methods that do (such as
full-information maximum likelihood), might do so in ways that give different imputations
of the missing data.

To resolve this, we preprocess our data using random forest imputation. The basic
idea is that we consider a covariate that does not have missing data (in our case conflict),
and perform a random forest model to predict that variable (instead of the true variable
of interest since that would be “cheating” for running the full model). Next, whenever
the algorithm encounters a missing value at any tree node, the imputation substitutes the
median or mode for that variable and continues with the subsequent splits. Therefore, the
imputed values in each tree exploit the full complement of conditional distribution for
that variable based on that tree. Averaging over all of the trees, we obtain imputed values
for missing data points that uses as much relevant data about the conditional distribution
of the variable as possible. It also has the advantage of creating imputed values that are
naturally bounded by the domains of the observed data. Parametric methods such as
multiple imputation estimate parameters based on an assumed distribution for the missing
variables, and depending on the sensitivity of the parameters and the distributions of the
covariates, may lead to extreme values outside of the logical bounds for a given variable
(e.g., negative income).
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Table 1. Variables and descriptive statistics.

Variable Source Obs Mean Std. Dev. Min. Max.

Terror Attacks GTD 6411 86.88 375.81 0 10,701
Assassinations CNTS 5318 0.21 0.84 0.00 18.50

Cabinet Changes CNTS 5310 0.44 0.37 0.00 3.50
Demonstrations CNTS 5318 0.52 1.15 0.00 14.00

Effectiveness of Leg. CNTS 5297 1.74 0.94 0.00 3.00
Executive Changes CNTS 5310 0.19 0.28 0.00 3.00
Government Crises CNTS 5318 0.13 0.27 0.00 2.67
Guerrilla Warfare CNTS 5318 0.12 0.32 0.00 2.60

Purges CNTS 5318 0.03 0.13 0.00 2.50
Riots CNTS 5318 0.31 1.05 0.00 18.20

Strikes CNTS 5318 0.12 0.34 0.00 3.40
Changes in Veto Players DPI 4838 0.12 0.15 0.00 1.00

Checks on Power DPI 4831 2.52 1.60 1.00 17.00
Exec. Electoral Comp. DPI 4850 5.15 2.08 1.00 7.00

Executive Years in Office DPI 4859 7.93 7.68 1.00 45.00
Electoral Fraud DPI 4214 0.14 0.32 0.00 1.00

Government Frac DPI 4428 0.19 0.25 0.00 1.00
Government Herfindahl DPI 4428 0.82 0.25 0.02 1.00
Government Polarization DPI 4673 0.36 0.69 0.00 2.00

Legislative Frac. DPI 4419 0.46 0.30 0.00 1.00
Leg. Electoral Comp. DPI 4855 5.41 2.00 1.00 7.00

Military Executive DPI 4856 0.21 0.39 0.00 1.00
Opposition Frac DPI 3362 0.45 0.27 0.00 1.00
Plurality Voting DPI 3877 0.68 0.46 0.00 1.00

Proportional Rep. DPI 3474 0.58 0.49 0.00 1.00
Bureaucratic Quality ICRG 3376 2.11 1.19 0.00 4.00

Corruption ICRG 3376 3.08 1.35 0.00 6.00
Democratic Accountability ICRG 3376 3.64 1.62 0.00 6.00

Ethnic Tensions ICRG 3376 3.91 1.44 0.00 6.00
External Conflict ICRG 3376 9.48 2.22 0.00 12.00

Government Stability ICRG 3376 7.45 2.10 1.00 11.50
Internal Conflict ICRG 3376 8.61 2.62 0.03 12.00

Investment Profile ICRG 3376 6.94 2.34 0.08 12.00
Law and Order ICRG 3376 3.60 1.48 0.25 6.00

Military in Politics ICRG 3376 3.66 1.80 0.00 6.00
Religious Tensions ICRG 3376 4.54 1.35 0.00 6.00

Polity2 Polity IV 4520 1.16 7.26 −10.00 10.00
Regime Durability Polity IV 4569 23.99 28.73 0.00 198.00

Ethnic Fractionalization Reynal-Querol 4749 0.45 0.28 0.01 0.96
Religious Fractionalization Reynal-Querol 4749 0.28 0.23 0.00 0.78
Income Inequality (Gini) SWIID 3350 38.52 9.87 16.49 69.35

Area WDI 6110 682,865 1,717,163 2 16,400,000
Off. Aid & Dev. Assistance WDI 4045 0.08 0.11 −0.01 0.76

Arms Exports WDI 1703 0.01 0.08 0.00 1.50
Arms Imports WDI 3976 0.04 0.12 0.00 3.32

Education Spending WDI 3436 4.45 2.32 0.59 44.30
Foreign Direct Investment WDI 4602 2.80 4.72 −32.30 72.50
Female Labor Force Part. WDI 3293 50.12 17.55 9.20 90.80

Fuel Exports WDI 3875 16.82 28.33 0.00 100.00
GDP per Capita WDI 4807 9560.35 16,016.19 65.64 141,000.00

Government Consumption WDI 4538 16.47 6.87 3.37 84.50
Health Spending WDI 2647 3.48 2.21 0.01 18.36
Immigrant Stock WDI 4975 8.07 13.75 0.03 86.80
Infant Mortality WDI 5103 48.11 40.72 2.18 174.00

Inflation WDI 4168 32.94 254.00 −17.60 6522.40
Life Expectancy WDI 5074 64.79 10.58 24.30 82.50

Literacy Rate WDI 1549 73.42 23.01 10.90 100.00
Military Expenditures WDI 2995 2.74 3.03 0.09 48.60

Military Personnel WDI 3092 1.88 2.23 0.06 35.80
Population WDI 5190 30.94 116.87 8.82 1316.00

Population Growth WDI 5190 1.80 1.44 −4.84 15.50
Portfolio Investment WDI 4000 0.01 0.16 −0.02 4.88
Primary Enrollment WDI 4763 97.05 22.35 15.80 208.00

Secondary Enrollment WDI 4407 60.84 33.35 2.13 155.60
Social Contributions WDI 1203 17.11 15.02 0.00 59.97

Telephones WDI 5127 14.70 18.58 0.01 103.42
Tertiary Enrollment WDI 4135 18.62 19.36 0.00 99.20

Unemployment WDI 3007 9.03 6.78 0.20 59.50
Urban Population WDI 5190 50.33 24.51 4.18 100.00

Youth Dependency WDI 5000 62.07 23.94 19.44 114.40

5. Results

5.1. Predictive Quality

Table 2 reports the predictive quality of each of the models using the 70 variables. The
best models we see to predict the overall number of terror attacks are the single regression
tree, random forest, and bagging predictors, which reduce the overall MSE in the learning
sample by about 64%, and 63%, and 59%, respectively, compared to the unconditional
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sample mean. An average of all of the models’ predicted values (which sometimes provides
a better prediction, especially in cases of classification) improves the MSE by about 49%.
In comparison, OLS regression improves the MSE by about 26%. However, as we might
expect, the trees that use random bootstrapping (bagging and random forest) predict
considerably better out of sample, with a test sample MSE reduction of 71% and 70% of
the total MSE, respectively. Of particular interest here is the fact that these models achieve
a significant reduction in the MSE despite the exclusion of the lagged number of terror
attacks in our model since the pre-existing level of violence has been shown to be one of the
strongest predictors of current and future violence in studies of conflict [32]. We exclude
lagged terror attacks because we are partly looking to predict (a reason to include), but also
looking to select a model to build theories and test causal effects (subsequent analyses).
Lagged attacks would improve the prediction but would explain so much of the variation
that we are not left with much to select a model on

Table 2. MSEs for the various learning models.

Learning Sample Test Sample

MSE % Decrease MSE % Decrease

OLS Regression 107,708.05 25.71% 98,119.17 26.12%
Poisson

Regression 151,539.85 −4.52% 139,385.78 −4.96%

Neural Network 144,695.12 0.20% 132,389.28 0.31%
Regression Tree 52,038.41 64.11% 80,182.62 39.62%

Boosting
Predictor 141,677.19 2.28% 129,790.58 2.27%

Bagging
Predictor 59,866.71 58.71% 40,202.12 69.73%

Random Forest 54,271.19 62.57% 38,504.85 71.01%
Average of All

Predictors 74,564.39 48.57% 76,391.30 42.48%

Total MSE 144,987.24 132,802.82

It is worth noting that the Poisson regression model, which tends to yield more
valid estimates of causal effects, actually increases the MSE of the predictor compared to
a prediction based on the simple sample mean. This is not quite the case for the neural
network model, but we can see that the neural network and boosting models predict
relatively poorly both in and out of sample.

5.2. Variable Importance

Table 3 reports the variable importance levels (measured as the percentage of the total
reduction in MSE that is attributed to that variable) based on the single regression tree,
boosting, bagging, and random forest models, which predicts conflict the best, although
different algorithms or different runs of the same algorithm may identify different sets of
predictors [15]. Theoretically agnostic algorithms may choose a predictive variable one
time and another at a different time if they are predictive substitutes. The risk for this
happening is reduced for algorithms such as random forests, bagging, or boosting because
the algorithm learns by taking multiple subsamples and averaging the results. We take this
one step further by averaging the variable importance results across several algorithms to
give us a sense of confidence in the stability of the variable importance ranking.
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Table 3. Variable importance rankings.

Variable Tree Bagging Boosting Forest Average

Assassinations 7.618 24.930 62.966 12.388 14.979
Guerrilla War 2.677 10.735 30.698 9.436 7.616

Military Personnel 15.482 4.166 0.000 2.555 7.401
Religious Frac 12.386 4.761 0.000 3.218 6.788

Military Politics 12.682 1.913 1.082 3.529 6.042
Health Spending 3.765 4.390 2.499 3.548 3.901

Year 1.882 5.704 0.000 3.888 3.825
Population 0.947 3.568 0.394 5.562 3.359

Exec Yrs in Office 6.441 1.940 0.000 1.315 3.232
Fuel Exports 6.193 1.455 0.000 1.227 2.958

Dem Accountability 5.222 1.243 0.000 1.411 2.625
Effectiveness of Leg 0.000 3.104 0.000 3.041 2.048

Aid & Assistance 2.528 0.973 0.000 1.826 1.775
Gini 0.981 2.106 0.000 2.083 1.723

Tertiary Enrollment 2.053 0.752 0.000 2.023 1.609
Female LFPR 0.000 1.226 2.361 3.213 1.480

Portfolio Investment 0.000 2.695 0.000 1.600 1.432
Area 1.858 1.194 0.000 0.837 1.297

Arms Imports 1.425 1.402 0.000 1.009 1.279
Strikes 0.662 1.369 0.000 1.711 1.247

Ethnic Tension 0.733 0.467 0.000 2.409 1.203
Checks 1.702 1.248 0.000 0.615 1.188

Internal Conflict 0.969 0.125 0.000 2.257 1.117
Telephones 1.882 0.435 0.000 0.697 1.005
Law Order 1.322 0.560 0.000 0.966 0.950

GDP pc 0.235 0.842 0.000 1.736 0.938
Urban Population 1.710 0.404 0.000 0.645 0.920

Ethnic Frac 0.469 1.336 0.000 0.885 0.897
Polity 2 0.000 1.355 0.000 1.244 0.866

Investment Prof 0.321 1.019 0.000 1.169 0.836
Legislative Frac 1.425 0.532 0.000 0.549 0.835

Riots 0.307 0.729 0.000 1.382 0.806
Primary Enrollment 1.425 0.170 0.000 0.687 0.761

Arms Exports 0.000 1.233 0.000 0.950 0.728
Demonstrations 0.179 0.464 0.000 1.511 0.718
Unemployment 0.000 0.813 0.000 1.310 0.708

Religious Tension 0.000 0.300 0.000 1.601 0.634
Infant Mortality 0.000 0.773 0.000 1.046 0.606

Secondary Enrollment 0.000 0.848 0.000 0.765 0.537
Immigrant Stock 0.016 0.672 0.000 0.816 0.501
Reg Durability 0.248 0.547 0.000 0.609 0.468

Gov Consumption 0.000 0.369 0.000 0.824 0.398
Gov Stability 0.618 0.089 0.000 0.441 0.383
Corruption 0.075 0.472 0.000 0.584 0.377

Life Expectancy 0.000 0.242 0.000 0.889 0.377
Youth Dependency 0.000 0.286 0.000 0.842 0.376

FDI 0.000 0.372 0.000 0.719 0.363
Fraud 0.346 0.106 0.000 0.421 0.291

Opposition Frac 0.000 0.304 0.000 0.560 0.288
Inflation 0.207 0.326 0.000 0.300 0.278

External Conflict 0.259 0.140 0.000 0.428 0.276
Bureaucratic Qual 0.000 0.277 0.000 0.501 0.259
Leg. Elec. Comp. 0.248 0.192 0.000 0.295 0.245
Exec. Elec. Comp. 0.000 0.262 0.000 0.465 0.242

Literacy Rate 0.000 0.143 0.000 0.574 0.239
Population Growth 0.000 0.394 0.000 0.302 0.232
Proportional Rep 0.000 0.368 0.000 0.326 0.231

Social Contributions 0.000 0.173 0.000 0.515 0.229
Military Expend 0.167 0.212 0.000 0.277 0.219

Purges 0.331 0.051 0.000 0.179 0.187
Education Spending 0.000 0.243 0.000 0.304 0.182

Military Exec 0.000 0.085 0.000 0.316 0.134
Government Herfindahl 0.000 0.082 0.000 0.235 0.106

PluralityVoting 0.000 0.093 0.000 0.196 0.096
Gov Polarization 0.000 0.063 0.000 0.198 0.087
Government Frac 0.000 0.093 0.000 0.087 0.060
Cabinet Changes 0.000 0.028 0.000 0.085 0.038

Changes in Vetoes 0.000 0.065 0.000 0.018 0.028
Executive Changes 0.000 0.020 0.000 0.044 0.021
Government Crises 0.000 −0.050 0.000 −0.191 −0.080

Here, we see that the first five variables in the list account for close to one-third (about
31 percent) of the overall improvement in the random forest model’s MSE. We also see that
the single strongest predictor of current levels of terrorism is a history of assassinations in
that country, which accounts for about 12% of the total reduction in the MSE in the random
forest model, and 25% of the reduction for the bagging model and 63% of the reduction for
the boosting model. The second strongest predictor, guerrilla war, accounts for about 10%
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of the MSE reduction for the bagging and forest models and over 30% of the decrease for
the boosting model.

After regime-directed violence, two of the following three strongest predictors involve
the extent to which the military engages with everyday life and politics. Military personnel
and the military in politics index account for almost 15% of the reduction in MSE combined,
on average (slightly more in the single tree, somewhat less in the bagging and forest models,
and not in the boosting algorithm). In between these measures of military engagement,
we see religious fractionalization to account for about 7% of the variation on average.
Rounding out the top ten predictors are health spending (3.9% of the MSE), time trend
(3.8%), population (3.6%), executive tenure (3.2%), and fuel exports (2.6%).

At this point, our algorithmic approach suggests we have a group of variables that
predict terrorism quite well. Moreover, we have identified the top predictors of terrorism.
The reader will note that many of the variables identified by the literature do not have
predictive salience [25]. Indeed, many of the variables highlighted in the literature, such as
investment profile, bureaucratic quality, or religious tensions, have very little predictive
salience. This culling helps us identify the kinds of theoretical models that can help us
better understand terrorism. For example, the joint importance of guerilla war and military
personnel is quite high and suggests that terrorism may be best understood as a tactical
choice in asymmetric warfare rather than an outcome of institutional deficiencies in bu-
reaucratic quality or lack of economic opportunity. This sort of explanation lends credence
to the argument that a war on terror is strategically empty—just as a war on the blitzkrieg
or the pincer movement, both tactical choices, would be strategically empty. However,
such explanations are also predicated on the nature of the relationships between the top
predictors and terrorist attacks. We turn to identify just such relations next, highlighting
a methodological approach that is particularly in tune with the nonlinear relationships
predicted by game-theoretic models.

5.3. The Nonlinear Relationship between Greater Security and Terrorism

The next step is to analyze how each of the variables impacts aggregate terror risk. To
do this, we use a partial dependence plot mapping the possible values of the input variable
of interest onto the observed incidence of terror attacks. Partial dependence plots display
the marginal effect of variable xk conditional on the observed values of all of the other
variables, (x1,−k, x2,−k, . . . xn,−k). Specifically, it plots the graph of the function:

f̂ (x) =
1
n

n

∑
i=1

f (xk, xi,−k),

where the summand, f (xk, xi,−k), is simply the observed outcome of the number of ter-
ror attacks.

This section focuses on three partial dependence plots that highlight game-theoretic
models of terrorism that suggest that any fundamental understanding of terrorism should
be understood as a tactical choice by rebel organizations.

Figure 2 shows that guerrilla warfare increases terrorism. While there may be some
overlap between guerrilla warfare and terrorism, agencies that make national security
policies tend to define them as distinct phenomena. Hence, in some cases, we might think
of terrorism and guerrilla warfare as different tactics employed by rebel groups towards
similar ends [33]. Moreover, guerilla warfare predicts terrorism five years out.
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Figure 2. Partial dependence plot: guerrilla warfare.

Thus, in Figure 3, more military personnel also translate into more terror attacks
on average, though these averages mask a u-shaped relationship. Last, in Figure 4, we
notice that increased military involvement in politics reduces aggregate terror risk. Taken
together, and in the absence of the predictive salience of such institutional variables such
as bureaucratic quality and investment profile that capture elements of state capacity, we
can grope toward a model of terrorism rooted in the understanding of a specific kind of
state capacity. The nonlinear relationships embedded in this understanding suggest that
game-theoretic models where equilibrium switching is possible due to interactions between
agents are better suited than traditional neoclassical utility maximization approaches.

Figure 3. Partial dependence plot: military personnel.
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Figure 4. Partial dependence plot: military in politics.

State capacity (or the lack thereof) is a reasonably standard explanation for conflict [34].
The theoretical basis for an empirical understanding of this relationship lies in three
concepts: military capacity, administrative quality, and institutional coherence.

Ref. [35] suggests that military personnel and expenditures, bureaucratic quality
measures, and popular institutional measures such as polity or those reported by ICRG
have construct and theoretical validity as a measure of the three elements of state capacity.
We have all these variables as part of our predictive algorithm. Nevertheless, of these
three, it appears that military capacity is most salient for understanding terrorism. Thus,
our algorithm has been pretty specific about what kind of theoretical models are more
likely explanations for terrorist attacks. This suggests that models better understand why
terrorism happens [13]. The how matters as well.

There is a clear equilibrium switch in the number of terrorist attacks as guerilla warfare
intensifies. However, there is an optimum level of intensity beyond which the number of
terrorist attacks is stable. Again, this is the result suggested by game-theoretic models where
equilibrium switches can be, for example, a consequence of changes in the payoffs. An
econometric point parametric estimate would never capture these breakpoints unless, out
of sheer coincidence, the researcher imposes the assumption of such a breakpoint. However,
point estimates can be particularly misleading, for example, in the case of military personnel.
An average effect captured in a point estimate would merely show a positive relationship,
rather than the nuance where (initially at least) increasing military personnel reduces
terrorism, thus suggesting a cost-minimizing optimum amount of military personnel.
Nevertheless, we also have the somewhat counterintuitive but ultimately plausible result
that hardening targets by increasing the number of military personnel elicits more terrorist
attacks than substitute attacks away from these targets. This sort of result is reminiscent of
security dilemmas rather than Beckerian policing models.

On the other hand, we cannot completely throw out institutional coherence as a
predictor of terrorism. Military dictatorships can control terrorist attacks better. This
result provides an interesting counterpoint to the argument that military regimes are more
vulnerable to terrorism [36].

6. Game-Theoretic Model Validation

Others have suggested that machine learning can help validate theoretical models
because they are designed to test whether a model is predictive or not [15,37]. A good
theoretical model should be able to predict behavior.
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Standard econometric approaches to testing models are particularly fraught when it
comes to testing game-theoretic models because endogeneity is a feature rather than a bug
in game-theoretic models. For example, terrorists respond to counterterrorism by changing
their behavior, which in turn suggests changes in counterterrorism. Thus, any econometric
approach to terrorism must be cautious to avoid endogeneity-driven estimation biases.
Many of these methods reduce the predictive value of a model (for example, many causal
studies have very low R-squares). Yet, as we noted above, a good theoretical model should
also be able to predict. Predictive machine learning can help determine whether a causal
variable is also predictive. A causal variable that is also predictive can help convince
academics and policymakers of the salience of a theoretical model.

Partial dependence plots can capture equilibrium shifts to capture comparative static
effects of game-theoretic models. We discuss this aspect quite extensively in the previous
section. However, variable importance can help us sift through models of terrorism to
identify more predictive variable specifications. We highlight three examples within subsets
of the game-theoretic literature to emphasize this point.

One strand of the game theoretic literature focuses on group cohesion. Future un-
certainty generated by increased counter terrorism can lead to rebel group splintering,
thereby increasing the risk of terrorism as these splinter groups jockey for survival [38].
Figure 3 highlights just such a result; an increase in military personnel does indeed pre-
dict an increase in the number of terrorist attacks. Further, the first two most predictive
variables, guerrilla warfare and assassinations, also predict an increase in the number of
terrorist attacks. Guerrilla warfare and assassinations also point to significant political
uncertainty. This suggests that political uncertainty may be an important predictor of
terrorist attacks, possibly by affecting group cohesion. These findings would suggest a
deeper, and causal, dive into understanding how rebel group splintering in the face of
political uncertainty may affect terrorism. That is to say, machine-learning can be a first
step toward finding explanations of terrorism in conjunction with game-theoretic models
and causal econometric analysis.

Counterterrorism efforts require global coordination. For example, destroying a
terrorist training ground may require the US to take action in North Africa or the Middle
East. Theoretically, military aid to a country that hosts a terrorist organization creates a
disincentive to remove the terrorist problem [13]. In addition, terrorism is a tactical choice
for a rebel group when facing a formidable state that the rebels do not want to provoke too
much [33].

Both these models suggest that military strength should be a predictor of terrorist
attacks. Our algorithm identifies the size of the military as one of the most important
predictors of terrorism. As noted in Figure 3, an increase in the size of the military predicts
an initial rise in terrorist acts as expected by both the game-theoretic modelsthat predict
an increase in the intensity of terrorist attacks, particularly suicide attacks, when targets
harden [12]. Nevertheless, further increases in the size of the military keep the risk of terror
attacks elevated without increasing terrorist attacks, a potential benefit for a host country
receiving military aid. That is, military size increases terrorism at first and then levels off,
tracking the prediction from Bapat’s model (see Figure 2, p. 311 in [13]).

Equilibrium may also shift from guerrilla warfare to terrorism as a function of the
accuracy of a state’s military action [33]. If terrorist tactics are more provocative, the
probability of a terrorist attack increases. On the flip side, if guerrilla action is more
provocative then the probability of guerilla warfare increases. The point is that as the degree
of provocation changes there is an equilibrium switch from guerilla warfare to terrorism.
Our result in Figure 3 identifies just such an equilibrium switch to increased terrorism as
the intensity of guerilla warfare increases. First of all, this means that equilibrium switches
to more terrorism are related to guerilla warfare. Thus, our result in Figure 3 supports
Carter’s model prediction. However, our result also suggests that, if Carter’s model is a
true reflection of reality, then as guerilla warfare intensifies there is some change in the
underlying parameters in a way that makes terrorist action more provocative. Thus, our
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results suggest that there may be a relationship between guerilla action and provocation that
changes the likelihood of terrorism. This space may bear further theoretical investigation.

Terrorist organizations need to survive to achieve their goals. A strand of the game-
theoretic literature is devoted to understanding how terrorist organizations recruit and re-
tain members while overcoming incentive compatibility problems when secrecy is essential.

De Mesquita’s game-theoretic model suggests that counterterrorism efforts that re-
duce economic opportunity can increase terrorist mobilization [39]. In any case, terrorist
organizations will put more resources into terrorism (presumably leading to more suc-
cessful attacks) when they recruit and retain higher-ability terrorists. Therefore, the BDM
(2005) model would suggest that, empirically, countries with better economic opportunities
would have fewer terrorist attacks. Moreover, he notes that his model suggests, among
other things, that ethnically divided societies would see more terrorist attacks and that
development aid may reduce terrorism (presumably by increasing economic opportunity).

Our results fails to validate many of the predictions of this model [39]. For example, the
variable investment profile includes contract enforcement and risk of expropriation by the
state. These variables are components of economic freedom or opportunity. For example,
the risk of expropriation reduces the likelihood of economic growth [40]. However, this
variable is not an important predictor of terrorism. Moreover, neither ethnic divisions (as
measured by the ethnic tensions variable) nor development aid are important predictors
of terrorism.

Presumably terrorist organizations mobilize to perpetrate terrorist attacks. However,
while factors such as the lack of economic opportunity may indeed affect mobilization,
it seems highly unlikely that they affect terrorist attacks. If economic opportunity was
important for mobilization it should be able to predict terrorism since terrorism is the
purpose for mobilization. This brings into question the role of economic opportunity in
explaining mobilization.

Our examples in this section suggest that some game-theoretic models generate val-
idated predictions while others do not. Now all of these models may be causal. Our
algorithms make no claims for causality. Yet, if a model is a generalizable explanation of
reality, then its predictions should be validated empirically. On this criterion, all models
cannot be treated equally. Further, we show how partial dependence plots, by highlight-
ing nonlinear relationships, can help validate game theoretic models that very typically
generate hypotheses with nonlinear patterns. Further, these results are data-driven and
therefore unbiased by assumptions about any particular theoretical concern. Consequently,
empirical results that are consistent with theoretical consequences provide an unbiased
validation. Last, once again because our results are data-driven rather than based on theo-
retical assumptions, they can give us hints about what areas need a theoretical structure.
Of course, empirical validation of this new theory should give rise to even more spaces
that need theory in an iterative process that slowly erases gaps in knowledge.

7. Conclusions

In this paper, we highlight two aspects of machine learning that can supplement game-
theoretic analysis. First, we can sift among competing theoretical models in a theoretically
agnostic way to identify those models which have the most predictive salience. A good
theoretical model should be able to make predictions. Here, our algorithm suggests that
models predicting economic opportunity, development assistance, and ethnic tensions may
not be predictively salient. In contrast, those that predict a more formidable target would
elicit more terrorist attacks so are predictively salient.

Game-theoretic models, by their very nature, highlight endogenous relationships
driven by strategic interactions. Machine learning algorithms, by focusing on predictive
accuracy instead of tests of significance, can identify whether a variable is predictive or
not even if it is endogenous with the target variable, terrorism. To the extent that causal
variables should be predictive, identifying predictive variables can help jumpstart the
search for causal links. This process is made more efficient because we can eliminate
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variables that are unlikely to be causal because they are not predictive in an empirical
framework that is unbiased by endogeneity problems.

Second, game-theoretic approaches often predict nonlinear relationships between vari-
ables where equilibriums switch in comparative static scenarios. The partial dependence
plots generated by machine learning algorithms can identify these nonlinearities and equi-
librium switches in a theoretically agnostic way. Partial dependence plots are, therefore, a
particularly suitable testing methodology for game-theoretic comparative statics.

Thus, machine learning techniques can reduce bias and help find better explanations
for terrorism. This is important for formulating better counterterrorist policies. These
techniques have other benefits as well. For example, they can impute missing data and
predictively validate the imputation, and they do not require heroic assumptions about the
underlying distribution of data.
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Abstract: Successful algorithms have been developed for computing Nash equilibrium in a variety
of finite game classes. However, solving continuous games—in which the pure strategy space is
(potentially uncountably) infinite—is far more challenging. Nonetheless, many real-world domains
have continuous action spaces, e.g., where actions refer to an amount of time, money, or other resource
that is naturally modeled as being real-valued as opposed to integral. We present a new algorithm for
approximating Nash equilibrium strategies in continuous games. In addition to two-player zero-sum
games, our algorithm also applies to multiplayer games and games with imperfect information. We
experiment with our algorithm on a continuous imperfect-information Blotto game, in which two
players distribute resources over multiple battlefields. Blotto games have frequently been used to
model national security scenarios and have also been applied to electoral competition and auction
theory. Experiments show that our algorithm is able to quickly compute close approximations of
Nash equilibrium strategies for this game.

Keywords: continuous game; national security; Blotto game; imperfect information

1. Introduction

Successful algorithms have been developed for computing approximate Nash equilib-
rium strategies in a variety of finite game classes, even classes that are challenging from a
computational complexity perspective. For example, an algorithm that was recently applied
for approximating Nash equilibrium strategies in six-player no-limit Texas hold’em poker
defeated strong human professional players [1]. This is an extremely large extensive-form
game of imperfect information. Even solving three-player perfect-information strategic-
form games is challenging from a theoretical complexity perspective; it is PPAD-hard1 to
compute a Nash equilibrium in two-player general-sum and multiplayer games, and it is
widely believed that no efficient algorithms exist [2–4]. Strong algorithms have also been
developed for stochastic games, even with multiple players and imperfect information [5].
Stochastic games have potentially infinite duration but a finite number of states and actions.

Continuous games are fundamentally different from finite games in several important
ways. The first is that they are not guaranteed to have a Nash equilibrium; Nash’s theorem
only proved the existence of a Nash equilibrium in finite games [6]. A second challenge is
that we may not even be able to represent mixed strategies in continuous games, as they
correspond to probability distributions over a potentially (uncountably) infinite pure
strategy space. So even if a game has a Nash equilibrium, we may not even be able to
represent it, let alone compute it. Equilibrium existence results and algorithms have been
developed for certain specialized classes; however, there are still many important game
classes for which these results do not hold. Even two-player zero-sum games remain a
challenge. For example, the fictitious play algorithm has been proven to converge to Nash
equilibrium for finite two-player zero-sum games (and certain classes of multiplayer and
nonzero-sum games), but this result does not extend to continuous games [7].

1 PPAD stands for “Polynomial Parity Arguments on Directed graphs”.
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A strategic-form game consists of a finite set of players N = {1, . . . , n}, a finite set of
pure strategies Si for each player i, and a real-valued utility for each player for each strategy
vector (aka strategy profile), ui : S1 × . . . × Sn → R. A two-player game is called zero sum if
the sum of the payoffs for all strategy profiles equals zero, i.e., u1(s1, s2) + u2(s1, s2) = 0
for all s1 ∈ S1, s2 ∈ S2.

A mixed strategy σi for player i is a probability distribution over pure strategies, where
σi(si′) is the probability that player i plays si′ ∈ Si under σi. Let Σi denote the full set of
mixed strategies for player i. A strategy profile σ∗ = (σ∗

1 , . . . , σ∗
n ) is a Nash equilibrium if

ui(σ
∗
i , σ∗

−i) ≥ ui(σi, σ∗
−i) for all σi ∈ Σi for all i ∈ N, where σ∗

−i denotes the vector of the
components of strategy σ∗ for all players excluding i. It is well known that a Nash equilib-
rium exists in all finite games [6]. In practice, all that we can hope for in many games is the
convergence of iterative algorithms to an approximation of Nash equilibrium. For a given
candidate strategy profile σ∗, define ε(σ∗) = maxi∈N maxσi∈Σi

[
ui(σi, σ∗

−i)− ui(σ
∗
i , σ∗

−i)
]
.

The goal is to compute a strategy profile σ∗ with as small a value of ε as possible (i.e.,
ε = 0 indicates that σ∗ comprises an exact Nash equilibrium). We say that a strategy profile
σ∗ with value ε constitutes an ε-equilibrium. For two-player zero-sum games, there are
algorithms with bounds on the value of ε as a function of the number of iterations and
game size, and for different variations ε is proven to approach zero in the limit at different
worst-case rates (e.g., [8]).

If σ1
i and σ2

i are two mixed strategies for player i and p ∈ (0, 1), then we can consider
mixed strategy σ′

i = pσ1
i + (1 − p)σ2

i in two different ways. The first interpretation, which
is the traditional one, is that σ′

i is the mixed strategy that plays pure strategy si ∈ Si with
probability pσ1

i (si) + (1 − p)σ2(si). Thus, σ′
i can be represented as a single mixed strategy

vector of length |Si|. A second interpretation is that σ′
i is the mixed strategy that with

probability p selects an action by randomizing according to the probability distribution σ1,
and with probability 1 − p selects an action by randomizing according to σ2. Using this
interpretation implementing σ′

i requires storing full strategy vectors for both σ1 and σ2,
though clearly the result would be the same as in the first case.

In extensive-form imperfect-information games, play proceeds down nodes in a game
tree. At each node x, the player function P(x) denotes the player to act at x. This player can
be from the finite set N or an additional new player called Chance or Nature. Each player’s
nodes are partitioned into information sets, where the player cannot distinguish between
the nodes at a given information set. Each player has a finite set of available actions at
each of the player’s nodes (note that the action sets must be identical at all nodes in the
same information set because the player cannot distinguish the nodes). When play arrives
at a leaf node in the game tree, a terminal real-valued payoff is obtained for each player
according to utility function ui. Nash equilibrium existence and computational complexity
results from strategic-form games hold similarly for imperfect-information extensive-form
games; e.g., all finite games are guaranteed to have a Nash equilibrium, two-player zero-
sum games can be solved in polynomial time, and equilibrium computation for other game
classes is PPAD-hard.

Randomized strategies can have two different interpretations in extensive-form games.
Note that a pure strategy for a player corresponds to a selection of an action for each of
that player’s information sets. The classic definition of a mixed strategy in an extensive-
form game is the same as for strategic-form games: a probability distribution over pure
strategies. However, in general the number of pure strategies is exponential in the size of
the game tree, so a mixed strategy corresponds to a probability vector of exponential size.
By contrast, the concept of a behavioral strategy in an extensive-form game corresponds to
a strategy that assigns a probability distribution over the set of possible actions at each
of the player’s information sets. Since the number of information sets is linear in the size
of the game tree, representing a behavioral strategy requires only storing a probability
vector of size that is linear in the size of the game tree. Therefore, it is much preferable to
work with behavioral strategies than mixed strategies, and algorithms for extensive-form
games generally operate on behavioral strategies. Kuhn’s theorem states that in any finite
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extensive-form game with perfect recall, for any player and any mixed strategy, there exists
a behavioral strategy that induces the same distribution over terminal nodes as the mixed
strategy against all opponent strategy profiles [9]. The converse is also true. Thus, mixed
strategies are still functionally equivalent to behavioral strategies, despite the increased
complexity of representing them.

Continuous games generalize finite strategic-form games to the case of (uncountably)
infinite strategy spaces. Many natural games have an uncountable number of actions; for
example, games in which strategies correspond to an amount of time, money, or space.
One example of a game that has recently been modeled as a continuous game in the AI
literature is computational billiards, in which the strategies are vectors of real numbers
corresponding to the orientation, location, and velocity at which to hit the ball [10].

Definition 1. A continuous game is a tuple G = (N, S, U) where

• N = {1, 2, 3, . . . , n} is the set of players
• S = (S1, . . . , Sn), where each Si is a (compact) metric space corresponding to the set of

strategies of player i
• U = (u1, . . . , un), where ui : S1 × . . . × Sn → R is the utility function of player i

Mixed strategies are the space of Borel probability measures on Si. The existence of a
Nash equilibrium for any continuous game with continuous utility functions can be proven
using Glicksberg’s generalization of the Kakutani fixed point theorem [11]. The result is
stated formally in Theorem 1 [12]. In general, there may not be a solution if we allow non-
compact strategy spaces or discontinuous utility functions. We can define extensive-form
imperfect-information continuous games similarly to that for finite games, with analogous
definitions of mixed and behavioral strategies.

Theorem 1. Consider a strategic-form game in which the strategy spaces Si are nonempty compact
subsets of a metric space. If the payoff functions ui are continuous, there exists a (mixed strategy)
Nash equilibrium.

While this existence result has been around for a long time, there has been very
little work on practical algorithms for computing equilibria in continuous games. One
interesting class of continuous games for which algorithms have been developed is separable
games [13]; however, this imposes a significant restriction on the utility functions, and many
interesting continuous games are not separable. Additionally, algorithms for computing
approximate equilibria have been developed for several other classes of continuous games,
including simulation-based games [14], graphical tree-games [15], and continuous poker
models [16]. The continuous Blotto game that we consider does not fit in any of these
classes, and in fact has discontinuous utility functions, so we cannot apply Theorem 1 or
these algorithms.

2. Continuous Blotto Game

The Blotto game is a type of two-player zero-sum game in which the players are
tasked to simultaneously distribute limited resources over several objects (or battlefields).
In the classic version of the game, the player devoting the most resources to a battlefield
wins that battlefield and the gain (or payoff) is then equal to the total number of battlefields
won. The Blotto game was first proposed and solved by Borel in 1921 [17] and has been
frequently applied to national security scenarios. It has also been applied as a metaphor
for electoral competition, with two political parties devoting money or resources to attract
the support of a fixed number of voters: each voter is a “battlefield” that can be won by
one party. The game also finds application in auction theory where bidders must make
simultaneous bids [18].

Initial approaches derived analytical solutions for special cases of the general problem.
Borel and Ville proposed the first solution for three battlefields [19], and Gross and Wagner
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generalized this result for any number of battlefields [20]. However, they assumed that
colonels have the same number of troops. Roberson computed optimal strategies of the
Blotto games in the continuous version of the problem where all of the battlefields have
the same weight, for models with both symmetric and asymmetric budgets [21]. Hart
considered the discrete version, again when all battlefields have equal weight, and solved
it for certain special cases [22]. It was not until 2016 that the first algorithm was provided to
solve the general version of the game. Initially a polynomial-time algorithm that involved
solving exponential-sized linear programs was presented [23], which was later improved
to a linear program of polynomial size [24]. These polynomial-time algorithms are for
the discrete version of the game; however, no general algorithm has been devised for
the original continuous Blotto game. As described earlier, there are many challenges
present for solving continuous games that do not exist for finite games, even for two-player
zero-sum games.

Most of the prior approaches solve perfect-information versions of the game in which
all players have public knowledge of the values of the battlefields. Adamo and Matros
studied a Blotto game in which players have incomplete information about the other
player’s resource budgets [25]. Kovenock and Roberson studied a model where the players
are subject to incomplete information about the battlefield valuations [26]. In both of these
works, all players are equally uninformed about the parameters. Recently some work has
provided analytical solutions for certain settings with asymmetric information, in which
both players know the values of the battlefields but one player knows their order while the
other player only knows a distribution over the possible orders [27,28]. This model is an
imperfect-information game in which player 1 must select a strategy without knowing the
order, while player 2 can select a different mixed strategy conditional on the actual order.
We study and present an algorithm for the asymmetric imperfect-information continuous
version of the Blotto game, which is perhaps the most challenging variant. Note that our
approach also applies to the perfect information version as well.

A continuous Blotto game is a tuple G = (N, F, O, p, v, B, S, δ, u):

• Set of players N = {1, 2}
• Set F = {1, 2, . . . , |F|} of battlefields
• Set of slots Q = F
• Set O of outcomes, which is a subset of the set of permutations of elements of F, where

o(q) denotes the battlefield in slot q for o ∈ O, q ∈ Q. Let M = |O|.
• Probability mass function p with p(o) for each o ∈ O
• Positive real value v f for each battlefield f ∈ F
• Positive real-valued budget Bi for each player i ∈ N
• Pure strategy space of player 1 S1 is {(xq) ∈ R

|Q||∑q xq = B1, xq ≥ 0 ∀q ∈ Q}. Let
s1(q) denote the probability of selecting slot q for s1 ∈ S1.

• Pure strategy space of player 2 S2 is {(xo,q) ∈ R
|O||Q||∑q xo,q = B2, xo,q ≥ 0 ∀o ∈

O ∀q ∈ Q}. Let s2(o, q) denote the probability of selecting slot q under outcome o for
s2 ∈ S2.

• δ ∈ R > 0
• Utility function u1(s1, s2) = ∑o p(o)∑q C1(s1(q), s2(o, q)) for s1 ∈ S1, s2 ∈ S2, where

– C1(s1(q), s2(o, q)) = vo(q) if s1(q) ≥ s2(o, q) + δ,
– C1(s1(q), s2(o, q)) = −vo(q) if s1(q) ≤ s2(o, q),
– C1(s1(q), s2(o, q)) = 0 otherwise

• Utility function u2(s1, s2) = ∑o p(o)∑q C2(s1(q), s2(o, q)) for s1 ∈ S1, s2 ∈ S2, where

– C2(s1(q), s2(o, q)) = −vo(q) if s1(q) ≥ s2(o, q) + δ,
– C2(s1(q), s2(o, q)) = vo(q) if s1(q) ≤ s2(o, q),
– C2(s1(q), s2(o, q)) = 0 otherwise

Each player must select a real-valued amount of resources to put on the battlefield in
slot q ∈ Q, subject to the constraint that the total does not exceed the player’s budget Bi.
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Player 1 does not know the outcome o, which defines the order of the battlefields; they only
know that the outcome is o ∈ O with probability p(o). Player 2 knows the order and is able
to condition their strategy on this additional information. For each slot q, if player 1 uses an
amount of resources s1(q) that exceeds player 2’s amount s2(o, q) by at least δ, then player
1 “wins” the battlefield o(q) in slot q and receives its value vo(q) (and player 2 receives
−vo(q)); if s2(o, q) ≥ s1(q) then player 2 wins vo(q) and player 1 loses vo(q); otherwise, both
players get zero. This game is clearly zero sum because player 1 and player 2’s payoff sum
to zero for each situation.

Note that the utility function is discontinuous: payoffs for a given slot can shift
abruptly between vo(q), 0, and −vo(q) with arbitrarily small changes in the strategies. This
means that Theorem 1 does not apply, and the game is not necessarily guaranteed to have
a Nash equilibrium. The game does also not fall into the specialized classes of games
such as separable games for which prior algorithms have been developed. Note that often
the Blotto game is presented without the δ term; typically player 1 wins the battlefield if
s1(q) > s2(o, q), and player 2 wins if s2(o, q) ≥ s1(q). We add in the δ term because our
algorithm involves the invocation of an optimization solver, and optimization algorithms
typically cannot handle strict inequalities. We can set δ to a value very close to zero.

3. Algorithm

Fictitious play is an iterative algorithm that is proven to converge to Nash equilibrium
in two-player zero-sum games (and in certain other game classes), though not in general
for multiplayer or non-zero-sum games [7,29]. While it is not guaranteed to converge in
multiplayer games, it has been proven that if it does converge, then the average of the
strategies played throughout the iterations constitute an equilibrium [30]. Fictitious play
has been successfully applied to approximate Nash equilibrium strategies in a three-player
poker tournament to a small degree of approximation error [5,31]. More recently, fictitious
play has also been used to approximate equilibrium strategies in multiplayer auction [32,33]
and national security [34] scenarios. Fictitious play has been demonstrated to outperform
another popular iterative algorithm, counterfactual regret minimization, in convergence to
equilibrium in a range of multiplayer game classes [35].

In classical fictitious play, each player plays a best response to the average strategies
of his opponents thus far. Strategies are initialized arbitrarily (typically they are initialized
to be uniformly random). Then each player uses the following rule to obtain the average
strategy at time t:

σt
i =

(
1 − 1

t

)
σt−1

i +
1
t

σ′t
i ,

where σ′t
i is a best response of player i to the profile σt−1

−i of the other players played at time
t − 1. The final strategy output after T iterations σT is the average of the strategies played
in the individual iterations (while the best response σ′t

i is the strategy actually played at
iteration t).

The classical version of fictitious play involves representing two strategies per player;
the current strategy σt

i and the current best response σ′t
i . Note that once we compute the

next round strategy σt+1
i from σt

i and σ′t+1
i , we no longer need to maintain either σt

i or σ
′t1
i

in memory. We interpret σt
i as a single mixed strategy that selects action sj with probability(

1 − 1
t

)
σt−1

i (sj) +
1
t σ′t

i (sj).
An alternative, and seemingly nonsensical, way to implement fictitious play would be

to separately store each of the pure strategies that are played σ′t
i , rather than to explicitly

average them at each step. Using this representation, the best response can be computed
by selecting the pure strategy that maximizes the average (or sum) of the utilities against
σ′0
−i, . . . , σ′t−1

−i . This method of implementing fictitious play seems nonsensical for several
reasons. First, it involves picking a strategy that maximizes the sum of utilities against t
different opponent strategies as opposed to maximizing the utility against a single strategy.
And second, it involves storing t pure strategies for each player, which would require
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using significantly more memory than the original approach when t exceeds |Si|. Despite
these clear drawbacks, nonetheless it is apparent that this approach is still equivalent to
the original approach and results in the same sequence of strategies being played. When
the algorithm is applied to an imperfect-information game, we can view it as operating
with mixed as opposed to behavioral strategies (in contrast to prior algorithms for solving
imperfect-information games). We refer to this new approach as “Redundant fictitious
play” due to the fact that it “redundantly” stores all of the strategies played individually
instead of storing them as a single mixed strategy. Redundant fictitious play is depicted in
Algorithm 1.

Algorithm 1 Redundant fictitious play for two-player games
Inputs: Number of iterations T

Initialize strategy arrays S1[T], S2[T]
S1[0], S2[0] ← InitialValues()
v∗1 [0] ← u1(S1[0], S2[0])
v∗2 [0] ← u2(S1[0], S2[0])
for t = 1 to T do

S1[t] ← BestResponse1(Mix(S2, 0, t − 1))
S2[t] ← BestResponse2(Mix(S1, 0, t − 1))
ε1[t] ← u1(S1[t], Mix(S2, 0, t − 1))− v∗1 [t − 1]
ε2[t] ← u2(Mix(S1, 0, t − 1), S2[t])− v∗2 [t − 1]
ε[t] ← maxi εi[t]
v∗1 [t] ← u1(Mix(S1, 0, t), Mix(S2, 0, t))
v∗2 [t] ← u2(Mix(S1, 0, t), Mix(S2, 0, t))

In Algorithm 1, we store T strategies for each player, where T is the total number
of iterations. We can initialize strategies arbitrarily for the first iteration (e.g., to uniform
random). For all subsequent iterations the strategy Si[t] is a pure strategy best response
to a strategy of the opponent.2 The notation Mix(Si, 0, t − 1) refers to the mixed strategy
for player i that plays strategy Si[u] with probability 1

t , for 0 ≤ u ≤ t − 1; that is, it mixes
uniformly over the strategies Si[0], . . . , Si[t − 1]. The algorithm then computes the game
value to player i under the current iteration strategies as well as the exploitability of each
player (difference between best response payoff and game value). This determines the
maximum amount that each player can gain by deviating from the strategies; we can
then say that the strategies computed at iteration t − 1 constitute an εt-equilibrium, where
εt = maxi εi[t].

Now, suppose that G is a continuous game and no longer a finite game. Assuming
that we initialize the strategies Si[0] to be pure strategies, all of the strategies Si[t] are now
pure strategies and the algorithm does not need to represent any mixed strategies. This is
very useful, since for continuous games a mixed strategy may be a probability distribution
that puts weight on infinitely many pure strategies and cannot be compactly represented.
However, pure strategies can typically be represented compactly in continuous games.
For example, if the strategy spaces are compact subsets of Rn, then each pure strategy
corresponds to a vector of n real numbers, which can be easily represented assuming that
n is not too large. For example in continuous Blotto player 1 must select an amount of
resource to use for each of |F| battlefields, and therefore storing a pure strategy requires
storing |F| real numbers, which is easy to do. Thus, Redundant Fictitious Play can be
feasibly applied to continuous games, while the classical version cannot.

The only remaining challenge for continuous games is the best response computation,
which may be challenging for certain complex utility functions. However, for the com-
mon assumptions that the pure strategy spaces are compact and the utility functions are
continuous, this optimization is typically feasible to compute.

2 Note that there always exists at least one pure-strategy best response to any mixed strategy.
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For the continuous Blotto game, we present optimization formulations for computing
player 1 and 2’s best response below. Both of these are mixed integer linear programs (with
a polynomial number of variables and constraints). Note that we are able to construct
efficient best response procedures for this game despite the fact that the utility function
is discontinuous.

Player 1’s best response function is the following, where Xq is a variable denoting the
amount of resources put on slot q, and Yt,o,q is the amount of resources put on slot q under
outcome o by player 2’s fixed strategy at iteration t:
Maximize ∑t ∑o ∑q

(
p(o) · bt,o,q · vo(q)

)
subject to:

bt,o,q = 1 → Xq ≥ Yt,o,q + δ for all t, o, q (1)

∑
q

Xq = B1 (2)

0 ≤ Xq ≤ B1 for all q (3)

bt,o,q binary in {0, 1} for all t, o, q (4)

The constraints in Equation (1) are called indicator constraints and state that if the
binary variable bt,o,q has value equal to 1, then the linear constraint Xq ≥ Yt,o,q + δ must
hold. Indicator constraints are supported by many integer-linear program optimization
solvers, such as CPLEX and Gurobi. We could additionally impose indicator constraints
bt,o,q = 0 → Xq ≤ Yt,o,q; however, these are unnecessary and would significantly increase
the size of the problem. To see the correctness of the procedure, suppose that Xq ≥ Yt,o,q + δ
and ∑q Xq = B1 but that bt,o,q = 0. Then the objective clearly increases by setting bt,o,q = 1
instead to include the additional term p(o) · bt,o,q · vo(q). So there cannot exist another
solution satisfying the budget and indicator constraints with higher objective value.

While player 1 must assume that the outcome is distributed according to p, player 2 is
aware of the outcome and therefore can condition their strategy on it. Therefore, player 2
solves a separate optimization for each value of o ∈ O to compute the best response to the
strategy of player 1.

Player 2’s best response function given outcome o ∈ O is the following, where Yq is a
variable denoting the amount of resources put on slot q and Xt,q is the amount of resources
put on slot q according to player 1’s fixed strategy at iteration t:
Maximize ∑t ∑q

(
bt,q · vo(q)

)
subject to:

bt,q = 1 → Yq ≥ Xt,q for all t, q (5)

∑
q

Yq = B2 (6)

0 ≤ Yq ≤ B2 for all q (7)

bt,q binary in {0, 1} for all t, q (8)

Correctness of player 2’s best response function follows by similar reasoning to that of
player 1’s. Player 1’s best response optimization has T′M|Q| binary variables bt,o,q, where
T′ is the current algorithm iteration and M = |O| denotes the number of outcomes, and |Q|
continuous variables Xq. Since the number of indicator constraints is also T′M|Q|, the size
of the formulation is O(TM|Q|) = O(TM|F|), which is polynomial in all of the input
parameters. Similarly, player 2 must solve M optimizations, each one with size O(T′|Q|).
Note that in practice this algorithm could be parallelized by solving each of these M + 1
optimizations simultaneously on separate cores as opposed to solving them sequentially (in
our implementation we solve them sequentially). However, since player 1’s optimization is
much larger than each of player 2’s, the bottleneck step is player 1’s optimization, and such
a parallelization may not provide a significant reduction in the runtime.

Note that as we run successive iterations of Algorithm 1, the size of these optimization
problems becomes larger, since the opponent’s strategy is a mixture over t pure strategies,
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where t is the current algorithm iteration. We have seen that the number of variables and
constraints scales linearly in t. Therefore, we expect earlier iterations of the algorithm to run
significantly faster than later iterations. We will see the exact magnitude of this disparity
in the experiments in Section 4. A potential solution to this issue would be to include an
additional parameter K in Algorithm 1. Instead of computing a best response to the mixture
over all t of the opponent’s pure strategies, a subset of K of them is selected by sampling
and a best response is computed just to a uniform mixture over the pure strategies in the
sampled subset. This sampling would occur for each iteration, so a potentially different
subset of size K would be selected at each iteration. This would ensure that the complexity
of the best response computations remains constant over all iterations and does not become
intractable for later iterations. This approach would be unbiased and produces the same
result in expectation over the sampling outcomes. However, it may lead to high variance
in results and lead to poor convergence in practice. Perhaps this could be mitigated by
performing multiple runs of the sampling algorithm in parallel and selecting the run with
lowest value of ε.

Note that Algorithm 1 can be applied to extensive-form imperfect-information games
in addition to simultaneous strategic-form games (in fact the continuous Blotto game that
we apply it to has imperfect information for player 1, since player 1 does not know the value
of o while player 2 does). As long as pure strategies can be represented and best responses
can be computed efficiently (which are both the case for imperfect-information games),
the algorithm can be applied. Also note that while we presented the algorithm just for a two-
player game, it can also be run on multiplayer games (just as for standard fictitious play).
The best response computations are still just a single agent optimization problem given
fixed strategies for the opposing players. In fact, fictitious play has been demonstrated to
obtain successful convergence to Nash equilibrium in a variety of multiplayer settings [35],
despite the fact that it is not guaranteed to converge to Nash equilibrium in general for
games that are not two-player zero-sum.

We can compute v∗1 [t] and ε1[t] for Algorithm 1 in the continuous Blotto game using
the procedures depicted in Algorithms 2 and 3 (and analogously for v∗2 [t] and ε2[t]).

Algorithm 2 Procedure to compute v∗1 [t] in continuous Blotto

v∗1 [t] ← 0
for t1 = 0 to t do

for t2 = 0 to t do
for o ∈ O do

for q ∈ Q do
if S1[t1](q) ≥ S2[t2](o, q) + δ then

v∗1 [t] ← v∗1 [t] + p(o)vo(q)
else if S1[t1](q) ≤ S2[t2](o, q) then

v∗1 [t] ← v∗1 [t]− p(o)vo(q)

v∗1 [t] ←
v∗1 [t]
(t+1)2

return v∗1 [t]
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Algorithm 3 Procedure to compute ε1[t] in continuous Blotto

ε1[t] ← 0
for t2 = 0 to t − 1 do

for o ∈ O do
for q ∈ Q do

if S1[t](q) ≥ S2[t2](o, q) + δ then
ε1[t] ← ε1[t] + p(o)vo(q)

else if S1[t](q) ≤ S2[t2](o, q) then
ε1[t] ← ε1[t]− p(o)vo(q)

ε1[t] ← ε1[t]
t

ε1[t] ← ε1[t]− v∗1 [t − 1]
return ε1[t]

4. Experiments

We experimented on a game with three battlefields f1, f2, f3, with values v1 = 0.7,
v2 = 0.2, v3 = 0.1, and three outcomes (each with probability 1

3 ):

• Outcome 1 has f1 in slot 1, f2 in slot 2, f3 in slot 3.
• Outcome 2 has f3 in slot 1, f1 in slot 2, f2 in slot 3.
• Outcome 3 has f2 in slot 1, f3 in slot 2, f1 in slot 3.

We assume that player 2 observes the outcome while player 1 does not. We used a
budget B1 = 10 for player 1 and B2 = 7 for player 2. We used δ = 0.0001. We used the
default feasibility tolerance in Gurobi, which is 1.0 × 10−6. We ran our algorithm for 5000
iterations and computed εi for each player every 10 iterations. Recall that we defined the
exploitability of the computed strategies at iteration t as ε[t] = maxi εi[t]. The experiments
did not use any sampling and computed the best response against the opponent’s full
mixed strategy at each iteration using the mixed-integer linear programs described in
Section 3. We used the parallel version of Gurobi’s mixed integer linear programming
solver [36] with six cores on a laptop.

The results are shown in Figure 1. It took slightly under 25,000 s (around 6.9 h) to
run 5000 iterations of our algorithm. The final strategies had an exploitability of 0.0307 for
player 1 and 0.0292 for player 2, indicating that the strategies constitute an ε-equilibrium for
ε = 0.0307. (After 5000 additional iterations ε decreased further to 0.021.) The exploitability
values are not monotonically decreasing, and the lowest value in these experiments was
actually obtained with ε = 0.0259 at iteration 4480. The expected value for player 1 in the
final strategies is −0.10969. The exploitability fell below 0.05 for the first time after 1759.4 s
(29.3 min), obtaining ε = 0.0494 on iteration 1400. From the figure we can also see that the
runtimes varied for the different iterations, as expected (nearly half of the 5000 iterations
were completed in the first 5000 s).
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Figure 1. Exploitability (ε) vs. runtime (seconds) and algorithm iteration for continuous imperfect-
information Blotto game.

5. Conclusion

We presented a new algorithm for computing Nash equilibrium in a broad class of
continuous games. The algorithm is based on integrating a novel variant of fictitious play
in which the strategies from all iterations are stored with custom best response functions.
Solving continuous games is particularly challenging as a Nash equilibrium is not even
guaranteed to exist and mixed strategies may put weight on infinitely many pure strategies;
yet for many realistic games it is more natural to model strategies as subsets of real numbers
than as integers. We implemented our algorithm on a continuous imperfect-information
model of the Blotto game, a well-studied model of resource allocation with applications
to national security. We created a new mixed-integer linear program formulation for the
best response function. We demonstrated that the algorithm converged quickly to an
ε-equilibrium for ε equal to 0.03 after 5000 iterations of the algorithm (several hours),
which corresponds to 30% of the minimum battlefield value. While the Blotto game has
been studied analytically and efficient algorithms have been developed for the discrete
case, this is the first algorithm for solving the continuous case.
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Abstract: This paper derives a dynamic path of ongoing terror attacks as a function of terrorists’
capacity and a target government’s counterterror capacity. The analysis provides several novel
insights and characterizations. First, the effect of counterterror policy is limited. Second, proactive
counterterror policy affects the depreciation (fatigue) of terrorists’ capacity, and defensive counterter-
ror policy limits the worst-case scenario. Third, fluctuations in the time path of attacks are a function
of terrorists’ time preferences and adjustment costs of changing tactics, which are policy invariant.
Indeed, in our model, the oscillations of terror attacks occur irrespective of the government’s countert-
error stance. Fourth, collective action inefficiencies associated with the underprovision of proactive
counterterror policies and overprovision of defensive ones are further exacerbated by our finding
that proactive counterterror policy is the more effective of the two. Hence, the more effective policy
is underprovided.

Keywords: terror cycles; terror paths; counterterror policy; conflict dynamics; asymmetric conflict

1. Introduction

Terrorist attacks follow cyclical paths, in terms of both tactics used and measurable
consequences such as casualties (e.g., Enders et al. [1] (1992); Enders and Sandler [2] (2000);
Feichtinger et al. [3] (2001); Faria [4] (2003); Das [5] (2008); Feichtinger and Novak [6]
(2008)). Knowledge of the path’s determinants is essential for designing efficient countert-
error policies, since it identifies both the main variables and parameters associated with
government counterterror tactics, and the terrorists’ rational use of resources, and gives a
time horizon for terror campaigns and the duration of terror organizations. We introduce
and analyze a game-theoretic dynamic model generating an explicit cyclical path of terror
attacks and the time adjustment for changing tactics.

The stocks of terror and counterterror capacities co-determine the outcome of the
necessarily asymmetric conflict between terrorists and target government (The concept
of an organization’s stock of terror capacity abstracts from issues regarding recruitment
and training of militants explicitly examined in Faria and Arce [7,8] (2005, 2012a), Calkins
et al. [9] (2008), Udwadia, Leitman, and Lambertini [10] (2006), and Faria [11] (2014).
Following Kaplan et al. [12] (2005), the stock of terror capacity is a broad notion constituting
the human, physical, and monetary resources used to launch terror attacks. “A terror
organization’s stock of terror capacity can usefully be viewed as an accumulation of the
potential to plan and carry out terror attacks” (Keohane and Zeckhauser [13] (2003, p. 204)).
Terrorists’ threat capacity includes anything of value to the terrorist, including, but not
limited to, its organization, its possessions, a physical or nonphysical commodity, and an
information set (Hausken [14] (2008)).

The targeted government’s interests lie not so much in terrorists’ capacity as in elimi-
nating its effects. In Keohane and Zeckhauser [13] (2003), the analysis of terror capacity
is multi-period; however, only the government acts, as the stock of terror capacity is as-
sumed to follow Brownian motion with positive drift. In Hausken’s [14] (2008) analysis of
terrorists’ resource capacity, both terrorists and the government interact strategically, albeit
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for two periods. Here, the interaction between terrorists and government is both strategic
and ongoing.

Terrorism is a form of asymmetric conflict, with asymmetry appearing in our model in two
ways. First, we adopt a Stackelberg or leader–follower framework where the government leads
and terrorists follow. Consequently, the target government maximizes its payoff, understanding
terrorists’ strategy will be a best reply to its counterterror policy. Second, the costs of terror and
counterterror actions respect Richardson–Lanchester line-of-fire (in)efficiencies associated with
asymmetric dynamic conflict (e.g., Avenhaus and Fichtner [15] (1984); Strickland [16] (2011);
MacKay [17] (2015); Kress [18] (2020)). Specifically, terrorists’ costs of investing in capacity
are a function of their investment only, because terrorists have no problems in identifying
or locating the target government. That is to say, the interdependence between terrorists
and government does not arise on the cost side of terrorists’ payoffs. Instead, government
counterterror policy affects the benefit side of terrorists’ payoffs by partially determining
the probability and consequences of a successful attack. By contrast, the government’s costs
are proportional to the product of its level of investment and terrorists’ capacity because
the clandestine nature of terror operations creates an asymmetry in the terrorists’ favor. In
particular, terrorists must be found before their capacity for terror can be targeted.

2. The Model

The model is essentially a stock of (counter)terror capacity competition between the
terrorists and targeted government; therefore, the natural framework is dynamic game
theory. Define k as the stock of terror capacity and K the stock of counterterror capacity.
The stock of terror capacity includes resources terrorists accumulate to support their cause:
“a network of supporters; financial capacity; weapons, explosives, and materiel; destructive
know-how; a communications network; the tacit approval or even active encouragement of
a state or states; trained personnel; and a sufficient number of recruits willing to risk prison
or death. The mix of resources may vary greatly from organization to organization, but
some accumulated capacity is essential for terror activity” (Keohane and Zeckhauser [13]
(2003, pp. 203–4).

For failed states (e.g., Barros et al. [19] (2008) and George [20] (2016)), such as Somalia,
K < k holds, while for poor and disorganized regions (e.g., Faria [21] (2008)), such as
Russia’s interaction with Chechenia, K ≈ k; for Europe and North America, K > k. We focus
on the asymmetric case where K > k.

2.1. Deriving the Path of Terrorists’ Capacity

Our solution concept for each period of our infinite horizon game is Stackelberg
equilibrium. Dockner et al. [22] (2000, pp. 135–141) provide an overview of this solution.
As the follower, in each state, t, terrorists observe the government’s counterterror strategy.
As such, the leader (government) anticipates that the follower selects its best reply to the
leader’s strategy and the leader maximizes its payoff accordingly. Therefore, we start by
analyzing the terrorists’ problem first in order to derive the terrorist’s best reply to the
government’s strategy at time t.

The terrorists rationally employ their resources to efficiently attack the target gov-
ernment. Function A(·) measures the consequence of terror attacks, including the logis-
tical likelihood of success. Arce [23] (2019) provides measurements of A(·) in terms of
disability-adjusted lives lost to terror tactics ranging from suicide bombings to combined
firearms/explosives attacks to vehicular assaults. Moreover, the target government’s invest-
ment in counterterror capacity in the previous period, ΔKt−1, reduces the number or lethal-
ity of terror attacks in the current period; i.e., A(·) decreases in ΔKt−1. The benefit portion
of the terrorists’ payoff therefore takes the form A(ΔKt−1)kt, where A′(ΔKt−1) < 0, and kt
is the attack resources stockpiled by terrorists (e.g., Hausken and Zhuang [24,25] 2011a, b).
Coefficient A(ΔKt−1) on kt indicates the efficacy of the terrorists’ stock is a negative func-
tion of the government’s counterterror policy (Berman and Gavious [26] (2007) analyze
a model in which the government chooses cities in which to maximize security, through
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the location choice of facilities that provide support in case of a terrorist attack.). As such,
strategic interdependence arises on the benefit side of terrorists’ payoffs.

Turning to the terrorists’ costs, they face increasing costs of adjusting their stock of
terror capacity, an assumption present in dynamic models of capital investment dating
back to at least Gould [27] (1968). Hence, c(it), c′(it) > 0, and c′′ (it) > 0, where it is the
gross investment in k. Adjustment costs correspond to the implicit opportunity costs of
foregone terrorism owing to the use of an organization’s resources to alter its terror capacity.
Such a cost structure implies investment in terror capacity can result in a spectacular attack,
but the size or number of terrorist attacks is not unlimited. From the perspective of
Richardson’s [28] (1939) dynamics of conflict, terrorists cannot engage in an arms race
with governments.

The rate of change of the stock of terrorists’ capacity is given by

Δkt ≡ kt+1 − kt = it − δkt (1)

where δ < 1 is the terrorists’ rate of capacity depreciation (“fatigue” in the parlance of
Richardson’s (1939) conflict dynamics).

We assume the purchase price of a unit of stock of terrorism capacity is constant
and equal to 1. The terrorists’ payoff at a point in time is A(ΔKt−1)kt − it − c(it). As
foreshadowed in the introduction, asymmetric conflict is captured by terrorists’ costs being
a function of the terrorists’ investment, it, and not the counterterror investment of the
government, It, or the government’s stock of counterterror capacity, Kt. Moreover, in
Richardson–Lanchester approaches to asymmetric dynamic conflict, government targets
are “in the open” for terrorists (e.g., MacKay [17] (2015)). By contrast, the government’s
cost structure, given below, reflects the fact that terrorists are rarely in the open.

The present value of the terrorists’ payoffs is

∑∞
t=0

1

(1 + τ)t [A(ΔKt−1)kt − it − c(it)] (2)

where τ is the terrorists’ rate of time preference or its impatience. Terrorists choose the
level of investment over time, it, to maximize (2) subject to (1), taking the path of the
government’s counterterror capacity, Kt, as given. The Lagrangian, L, for the terrorists’
maximization problem is

L = ∑∞
t=0

1

(1 + τ)t {A(ΔKt−1)kt − it − c(it) + qt[it + (1 − δ)kt − kt+1]} (3)

where the qt
′s are the Lagrange multipliers corresponding to the identity in Equation (1)

for the evolution of the stock of terror capacity, Δkt, given it for t = 0, 1, 2, . . . , ∞. We
denote the Lagrange multipliers by the lower-case q, rather than the more common λ or μ,
owing to their relationship to Tobin’s (marginal) q. Tobin’s q measures the internal value
capacity generates for an organization relative to its replacement cost. When q > 1, the
returns on investment in capacity exceed its costs. Here, qt is the value to the terrorists of
an additional unit of capacity at time t; qt is the shadow price of Δkt at the end of period
t. Note that the constraint is contained within the braces of L, implying shadow prices,
qt, t = 0, 1, 2, . . . , ∞, are measured in t-period values rather than in present values. Each
qt is discounted by 1

(1+τ)t in L.

The first-order conditions for the terrorists with respect to it are

∂L
∂it

= 0 =⇒ qt = 1 + c′(it) (4)

For period t + 1 this is
qt+1 = 1 + c′(it+1). (5)

81



Games 2021, 12, 35

Equations (4) and (5) are Tobin’s q for terrorists’ investment in terror capacity. In the
steady state, the value of q corresponds to the cost of acquiring a unit of capacity (fixed at
1) plus marginal adjustment costs. Given the prices of a unit of capacity, Pkt and Pkt+1 , the
investment rule associated with Tobin’s q is as follows: investment takes place, it > 0, if
qt/Pkt > 1 (similarly, it+1 > 0 if qt+1/Pkt+1 > 1). With prices Pkt and Pkt+1 normalized to
1, Equations (4) and (5) are consistent with the terrorists’ positive level of investment in
capacity.

The first-order condition for the path of terror capacity is

∂L
∂kt+1

= − 1

(1 + τ)t qt +
1

(1 + τ)t+1 [A(ΔKt) + (1 − δ)qt+1] = 0 (6)

Inserting the values of qt and qt+1 from (4) and (5) into this relationship yields

1 + c′(it) =
A(ΔKt) + (1 − δ)[1 + c′ (it+1)]

(1 + τ)
(7)

Equation (7) is the Euler equation for terrorists’ capacity investment, capturing the op-
timal choice between investment today and investment tomorrow when both investments
are interior. The terrorists equate the cost of an additional unit of terror capacity in the
current period, which is fixed at 1, plus the adjustment costs, to the discounted value of the
sum of (i) the return on increased capacity in the next period, A(ΔKt), and (ii) the fatigued
(depreciated) unit of additional capacity in the next period, along with the associated
savings in adjustment costs. The term A(ΔKt) reflects the strategic interdependence of the
value of an attack, as it is a function of the government’s counterterror policy, ΔKt.

Assuming a simple convex adjustment cost function, c(it) = 0.5ci2t , from Equations
(4), (5), and (7) we have

1 + cit+1 = (1 − δ)−1[(1 + τ)(1 + cit)− A(ΔKt)] (8)

Inserting Equation (1) for it = kt+1 − kt(1 − δ) into (8) yields

kt+2 − kt+1 = [τ + δ − δc(1 − δ)kt+1 + (1 + τ)c(kt+1 − (1 − δ)kt)− A(ΔKt)] (9)

Equation (9) characterizes the optimal path of terrorists’ capacity as a function of the
government’s counterterror policy, ΔKt.

2.2. Examining the Government’s Counterterror Policy

We now address the government’s problem. Safety from terrorism is a public good,
and a government’s constituents often hold it accountable for the provision of this public
good or lack thereof (Müller [29] (2011); Arce [30] (2020)). Consequently, the government
maximizes society’s net safety, given by the difference between total safety, S(Kt), and cost
term kt It. The product kt It captures governments’ difficulties in targeting terrorists. As
terrorists are clandestine by definition, the cost of targeting terrorists is proportional to the
stock of terror capacity. Terrorists must be found prior to being targeted, as is the case in
models of dynamic conflict where governments “fire blindly” into an “area” defined by
kt. Kress [18] (2020) calls it, “firing into the brown.” By contrast, government targets have
to be in the open for terrorism to influence an audience beyond the immediate victims, in
agreement with the objective of terrorism in standard definitions of the phenomenon.

The present value of the government’s objective function is

∑∞
t=0

1

(1 + γ)t [S(Kt)− kt It] (10)

where γ is the government’s rate of time preference (impatience).
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In a Stackelberg solution, in each state, t, the government takes the terrorists’ best
reply function, given by Equation (9), and the rate of change of its stock of counterterror
capacity:

Kt = It − δKt (11)

as dynamic constraints. Where, δ is the depreciation rate (fatigue) of the government’s
stock of counterterror capacity.

The Lagrangian, Γ, for the government’s maximization problem is

Γ = ∑∞
t=0

1

(1 + γ)t {S(Kt)− kt It + Qt[It +
(
1 − δ)Kt − Kt+1]+μt[(1 + τ)(1 + cit)− A(ΔKt)− (1 + δ)(1 + cit+1)

]} (12)

where the Qt
′s are the Lagrange multipliers corresponding to the value to the government

of an additional unit of counterterror capacity formation at time t, as given in Equation (11).
The use of the letter Q for the Lagrange multipliers for the capacity formation constraints in
Equation (12) is again as an indicator of the relationship between these Lagrange multipliers
and Tobin’s marginal q for government investment in counterterror capacity. The μt

′s are
the Lagrange multipliers measuring the effect on the government of an additional unit of
terrorists’ capacity formation by terrorists at time t, as given in in Equation (8). As such, the
μt

′s are expected to take negative values because additional terror capacity is detrimental to
safety. Once again, the Lagrange multipliers, Q0, Q1, Q2, . . . ; μ0, μ1, μ2, . . . , and associated
constraints are measured as t-period values (i.e., contained within the braces of Γ). They
are discounted each period by 1

(1+γ)t .

The first-order condition for the government’s maximization problem with respect to
It is

∂Γ
∂It

= 0 ⇒ Qt = kt (⇒ for period t + 1 : Qt+1 = kt+1) (13)

Unlike Tobin’s q for terrorists, Tobin’s q for the government, Qt, exhibits strategic
interdependence because it is a function of terrorists’ current capacity, kt. Intuitively, from
Equation (13), if kt = 0 then Qt = 0 and, by Tobin’s q, the government does not in-
vest in counterterror capacity: It = 0. This is similarly the case for kt+1, Qt+1, and It+1.
Moreover, by the investment rule for Tobin’s q, investment takes place only if Qt > 1.
Consequently, if kt is nominal, i.e., kt < 1, then the government does not invest in coun-
terterror capacity either (kt < 1 ⇒ Qt < 1 ⇒ It = 0), because the government’s (shadow)
cost of reducing terror capacity exceeds terrorists’ current capacity. As a result, small terror
groups/capacities fly below the government’s radar as they do not trigger a government
response. Continuing:

∂Γ
∂it

= 0 ⇒ μt+1 =
(1 − δ)(1 + γ)

(1 + τ)
μt; and (14)

∂Γ
∂Kt+1

= 0 ⇒ S′(Kt+1 ) + Qt+1
(
1 − δ

)
+ μt+1

(
A′(ΔKt+1)

)
= (1 + γ)[Qt + μt A′(ΔKt)] (15)

To simplify, we assume safety function S(Kt) = SKt
σ. The properties of adjustment

costs, c(it), allow for spectacular terror attacks, but asymmetry precludes terrorists from
engaging in an arms race with the government. As such, let A be the maximum potential
effect of a terrorist attack, and the parameter g the marginal efficiency of the growth of
government’s counterterror capacity in curbing terror attacks. It follows that A(ΔKt) =
A − gΔKt and A′(ΔKt) = −g. Equation (15) becomes

σSKσ−1
t+1 + Qt+1

(
1 − δ

)− μt+1g = (1 + γ)[Qt − μtg] (16)

2.3. Elimination of Terrorists’ Threat

Equation (16) can be further reduced by applying Qt = kt and Qt+1 = kt+1 from
Equation (13) and steady-state conditions Kt+1 = Kt = K∗; μt+1 = μt = μ∗. As discussed
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above, μ∗ must be negative, since an increase in the terror capacity must decrease the
optimal value of the government’s objective function. Without loss of generality, let
μ∗ = −1.

Our first major result is highlighted by the following proposition:

Proposition 1. Only governments who are more impatient than terrorists (i.e., γ > τ) find it in
their interests to attempt to fully eliminate terrorists’ capacity.

Proof of Proposition 1. The long-run equilibrium level of K∗ necessary to fully eliminate
terrorists’ capacity, i.e., the value of K∗ yielding k = 0, is obtained from Equation (16) in the
steady state and is given by:

K∗
k=0 =

(
σS
gγ

) 1
1−σ

(17)

For an interior solution, K∗
k=0 > 0, by Equation (14), the steady state where μt+1 =

μt = μ∗ yields 1+τ
1+γ = 1 − δ < 1. Consequently, only governments who are more impatient

than terrorists (i.e., γ > τ) find it in their interests to attempt to fully eliminate terrorists’
capacity. �

Yet, it unlikely that targeted governments are less impatient than terrorists because the
lifespan of terrorist organizations is relatively short (Vittori [31] (2009; Faria and Arce [32]
(2012b); Gaibulloev and Sandler [33] (2013)). Consequently, when governments are the
more patient of the two, they do not find it optimal to set K∗ such that k = 0. Instead,
patient governments treat terrorism as an ongoing phenomenon. The ongoing interaction
between governments and terrorists is the subject of the following section.

3. Ongoing Terrorism and the Dynamic Path of Terror Capacity

An ongoing terrorist threat occurs when the government is more patient than terrorists.
In order to characterize the dynamic path of terror capacity, we analyze the terrorists’
(follower’s) response by substituting Equation (17) into Equation (9). From Equation (11),
when It �= K∗

k=0, terrorists’ capacity follows the following dynamic path:

kt+2 − kt+1 = [c(1 − δ)]−1[τ + δ − δc(1 − δ)kt+1 + (1 + τ)c(kt+1 − (1 − δ)kt)− A + g(It − δK∗)
]

(18)

The presence of terms kt+2, kt+1, and kt in Equation (18) implies the path of terror-
ists’ capacity is a second-order linear difference equation. Solving the equation involves
dividing it into two parts: a particular solution and a homogenous solution. We begin
by deriving a solution particular to the steady state: kt+2 = kt+1 = kt �= 0. The particular
solution, kp, is

kp =

(
A − g(It − K∗)− τ − δ

cδ(τ + δ)

)
(19)

The second part of the solution to Equation (18) is the homogenous solution, so named be-
cause it corresponds to the case where the constant term in Equation (18), A − g(It − K∗)−
τ − δ, is zero. The trivial solution takes the form kt+2 = kt+1 = kt = 0. The nontrivial solu-
tion is typically derived by assuming the homogenous solution takes the same form as the
solution to a first-order difference equation: kt = λt, where λ �= 0 is an unknown constant
interpreted as an eigenvalue (characteristic root). Setting A − g(It − K∗)− τ − δ = 0 and
substituting kt = λt into Equation (18) gives the following:

λt
[

λ2 −
(

1 − δ +
1 + τ

1 − δ

)
λ + (1 + τ)c

]
= 0 (20)
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where the term in brackets is the characteristic equation for Equation (18). The homoge-
neous solution has two roots:

λ1 =

(
1 − δ + 1+τ

1−δ

)
+

√(
δ − 1 − 1+τ

1−δ

)2 − 4(1 + τ)c

2
(21)

λ2 =

(
1 − δ + 1+τ

1−δ

)
−

√(
δ − 1 − 1+τ

1−δ

)2 − 4(1 + τ)c

2
(22)

As δ is the rate of terror capacity depreciation (fatigue), it follows that δ < 1 and both
roots are complex. The complex roots can be written as conjugate pairs λ1 = α + iβ and

λ2 = α − iβ, where, from Equation (20), α =
(δ−1− 1+τ

1−δ )
2 and β =

√
4(1+τ)c−(δ−1− 1+τ

1−δ )
2

2 . The
complex conjugate pairs correspond to the solutions kt = λt

1 = (α + iβ)t and kt = λt
2 =

(α − iβ)t. Adopting polar representations, λ1 = α + iβ =
√

α2 + β2·(cos θ + i sin θ) and
λ2 = α − iβ =

√
α2 + β2·(cos θ − i sin θ), where sin θ = β√

α2+β2
and cosθ = α√

α2+β2
.

For these complex roots, the two corresponding homogenous solutions, k(1)h and k(2)h ,
are

k(1)h =

(√
(1 + τ)c

)t
(cos θt + i sin θt) and k(2)h =

(√
(1 + τ)c

)t
(cos θt − i sin θt) (23)

By the superposition principle, if k(1)h and k(2)h are solutions to a homogenous difference
equation, then so is

kh = C1k(1)h + C2k(2)h (24)

where C1 and C2 are arbitrary constants.
Since kt must be a real number, the homogenous solution must be a real number. As

k(1)h and k(2)h are imaginary, then it must be the case that C1 and C2 are imaginary as well.
Hence, C1 and C2 can also be expressed as complex conjugates:

C1 = α̂ + iβ̂ =
√

α̂2 + β̂2·(cos θ + i sin θ); C2 = α̂ − iβ̂ =
√

α̂2 + β̂2·(cos θ − i sin θ) (25)

By substituting these values for C1 and C2 into Equation (24), Goldberg [34] (1986, p.
140) provides the steps for reducing Equation (24) to

kh = 2Ĉ1

(√
(1 + τ)c

)t
cos(θt + Ĉ2), (26)

where Ĉ1 and Ĉ2 are arbitrary real constants and θ is the same as before. Interestingly, the
homogenous solution depends only on the terrorists’ impatience, τ, and adjustment costs, c.

We now present the main result characterizing the dynamic path of terrorists’ capacity
accumulation. The complete solution for the path of terrorists’ capacity requires combining
the homogenous solution, kh, with the particular solution, kp (Intuitively, if kt and kp are
solutions to a difference equation with nonzero constant term, then kt − kp is a solution to
the homogenous version of the difference equation). That is, kt = kh + kp, yielding

kt = 2Ĉ1

(√
(1 + τ)c

)t
cos(θt + Ĉ2) +

(
A − g(It − K∗)− τ − δ

cδ(τ + δ)

)
︸ ︷︷ ︸

kp

(27)

As the cosine function oscillates, the path of terror capacity exhibits a fluctuating
pattern periodic in nature. The path is a stepped fluctuation of discrete points (it is
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only smooth for continuous time), oscillating between values above and below kp =(
A−g(It−K∗)−τ−δ

cδ(τ+δ)

)
. What matters in our context is convergence, as determined by the term(√

(1 + τ)c
)t

. Three possibilities emerge.

Case 1:
√
(1 + τ)c > 1. Here, kt oscillates with ever-increasing amplitude, implying

a divergent and explosive path of terrorists’ capacity accumulation. Such an outcome is
not possible because terrorists’ limited resources are the defining feature of terrorism as
asymmetric conflict; i.e., Kt � kt. Alternatively, for the situation of failed states, Kt < kt,
this case identifies when terrorists win.

Case 2:
√
(1 + τ)c = 1. The solution is an equilibrium solution. Here, kt oscillates

(about kp) with constant amplitude.
Case 3:

√
(1 + τ)c < 1. Here, kt oscillates with monotonic-decreasing amplitude and

converges to kp as t → ∞. This holds iff c < 1
1+τ .

Cases 2 and 3 are relevant for the present study because terrorists generally do not
have the resources to engage in an arm’s race with targeted governments. Several novel
observations arise from the characterization of the dynamics of the capacity accumulation
path given in Equation (27). First, c ≤ 1

1+τ relates terrorists’ adjustment (opportunity) cost
of investing in new terror capacity (foregone terrorism) to terrorists’ discount factor. In
particular, patient terrorists can exhibit a variety of tactics over their lifespan because their
patience (low τ) allows for the associated higher adjustment costs. By contrast, impatient
terrorists will not forestall attacks in order to accommodate the adjustment costs associated
with a portfolio of tactics. No direct counterterror policy prescription follows from the
c ≤ 1

1+τ characterization, as neither τ nor c are policy variables. They are, instead, the
terrorists’ primitives. Impatience term τ stems from the terrorists’ time preferences, and
counterterror policy has no effect on adjustment costs, c, which are measured in terms of
the attacks terrorists are willing to forgo to adjust their stock of terror capacity.

Second, a lull in terror activity need not be indicative of successful counterterror policy.
Instead, it can be due to patient terrorists undergoing the adjustment costs associated
with a forthcoming wave of new tactics. For example, Enders and Sandler [2] (2000,
p. 323) employ time series analysis to show that “authorities should focus on anticipating
upturns in incidents involving casualties following fairly length lulls of greater than two
years”. Moreover, the authors identify the period immediately prior to the yet-to-occur
events of September 11, 2001 as being the longest lull on record. The tactical innovation of
simultaneous coordinated skyjackings to employ airliners as weapons during 9/11 reveals
Al Qaeda’s willingness to undertake the adjustment costs stemming from its meticulous
preparations prior to the attacks. By contrast, the spate of vehicular assaults incited by ISIS
during the late 2010′s required little in the way of adjustment costs; as instructions were
distributed online, many of the vehicles were stolen or rented, and the operatives were at
arms-length (Siqueira and Arce [35] 2020).

Proposition 2. Fluctuations in the time path of attacks are a function of terrorists’ time preferences
and adjustment costs of changing tactics, which are policy-invariant.

Proof of Proposition 2. The government has no control over the oscillatory component of
the time path of terrorism, as the terms surrounding the cosine function in Equation (27),
c and τ, are the terrorists’ primitives.

Fourth, the time path characterized in Equation (27) is akin to a time-variant system
with kp as the input and kt the output. This begs the question as to the government’s degree
of control (over kp). In the steady state (i.e., ΔKt = 0 ⇒ It = K∗), kp reduces to

k∗p =
A − τ − δ

cδ(τ + δ)
(28)
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Counterterror policies traditionally fall into two broad categories: proactive and
defensive (e.g., Frey [36] (2004); Arce and Sandler [37] (2005); Sandler and Siqueira [38]
(2006); Bandyopadhyay and Sandler [39] (2011); Bier and Hausken [40] (2011)). Proactive
policies include attacking terrorists’ training grounds and freezing the assets of supporting
organizations. Proactive policies directly target the stock of terror assets, i.e., they increase
fatigue term δ. By contrast, defensive policies, such as hardening targets and controlling the
inflow of potential terrorists’ immigrants or refugees, limit the upper bound on terrorists’
capacity, A (For alternatives to defensive strategies see (Frey and Luechinger [41] 2003)).
Moreover, the literature on the collective action problems associated with proactive and
defensive policies most often treats terrorists as a passive third party. Equation (28) provides
the direct link between proactive and defensive counterterror policies and the actions of
terrorists themselves. In particular, kp = 0 when the mix of defensive and proactive
counterterror policies satisfies A − δ = τ. Counterterror policy is formulated with reference
to terrorists’ impatience. Under these circumstances, terrorists’ capacity is not zero but
instead oscillates about kp = 0 if the government has the requisite winningness, resources,
intelligence, etc., to set A − δ = τ by decreasing A via defensive policy and increasing δ
via proactive policy. �

Fifth, in the absence of the requirements sufficient to set A − δ = τ , government
control over the time path of terror capacity via counterterror policy is characterized by

∂k∗p
∂A

=
1

cδ(τ + δ)
(29)

∂k∗p
∂δ

=
−cδ(τ + δ)− (

A − τ − δ
)
[c(τ + δ) + cδτ]

[cδ(τ + δ)]2
(30)

An increase in defensive counterterror policy decreases A, leading to a decrease in
the stock of terror capacity given by Equation (29). Similarly, an increase in proactive
counterterror policy increases δ, leading to a decrease in the stock of terror capacity given
by Equation (30).

Sixth, from the perspective of international collective action and the coordination of
counterterror policy (e.g., Faria et al. [42] 2020), defensive counterterror policies are strate-
gic complements and proactive ones are strategic substitutes (Sandler and Siqueira [38]
(2006); Faria et al. [43] (2017).) Accordingly, governments overuse defensive policies and
underprovide proactive ones. The characterizations given in Equations (29) and (30) shed
further light on these inefficiencies, giving rise to the following proposition.

Proposition 3. Proaction is both underprovided and more effective compared with defensive
counterterror policy.

Proof of Proposition 3. From Equations (29) and (30),
∣∣∣ ∂k∗p

∂δ

∣∣∣ > ∣∣∣ ∂k∗p
∂A

∣∣∣. �

Corollary. At the same time, neither proactive nor defensive counterterror policies affect the ebb
and flow of terrorists’ actions; the amplitude of terrorism is determined by terrorists’ primitives c
and τ. Hence, the fluctuations in our model are consistent with terrorists deliberately undertaking
what appear to be uncertain (time-variant) actions on their part.

4. Conclusions

This paper considers a dynamic game of terror and counterterror capacity accumula-
tion between terrorists and a target government in order to provide a full characterization
of their ongoing asymmetric conflict in terms of the time path of terrorists’ capacity. The
term “ongoing conflict” is used because the necessary condition for governments’ will-
ingness to attempt to fully eliminate terrorists’ capacity is for the government to be more
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impatient than the terrorists. As it is well known that terrorist groups are short-lived rela-
tive to their target governments (excluding failed or organizationally disadvantage states),
the necessary condition on relative time preferences is unlikely to be met. Consequently,
targeted governments purposefully treat terrorism as an ongoing phenomenon.

Within this context, an advantage of dynamic models producing time paths of terror
activity is they can be “tested, evaluated, and improved upon through the use of actual
field data” (Strickland [16] (2011, p. 161)). While such an exercise is a future research
direction, it is beyond the scope of the present analysis.

At the same time, the analysis provides several novel insights. For example, govern-
ments’ resignation to terrorism’s persistence is not akin to an “optimal negative externality”
argument, such as occurs for pollution abatement. In the case of pollution abatement, the
presence of diminishing marginal social benefits and increasing marginal social costs leads
to a positive level of (optimal) pollution (Mishan [44] 1974). By contrast, only the base
accumulation of terror capacity around which oscillations occur is determined by policy.
We characterize how proactive counterterror capacity affects the depreciation (fatigue) of
terrorists’ capacity and how defensive counterterror policy limits the worst-case scenario.
The effectiveness of such policies is a function of terrorists’ primitives (time preferences
and adjustment costs of changing tactics), which are policy-invariant.

Accordingly, the effect of counterterror policy is limited. Oscillations in the time path
of terror capacity are a function of terrorists’ primitives. Consequently, the amplitude
of terrorism only converges to zero in the long run. Once again, such dampening is
determined by terrorists’ primitives, rather than counterterror policy. As such, terrorists’
willingness to make the impatience–adjustment cost tradeoff is the root determinant of
their longevity.

Counterterror policy is therefore plagued by inefficiencies and paradoxes. The ebb and
flow of terror tactics results from terrorists trading impatience for improved tactics and their
associated adjustment costs. Such lulls in activity and changes in tactics are observationally
equivalent to terrorists substituting tactics in response to defensive counterterror policies
(e.g., security screening in airports) and yet they may have absolutely nothing to do
with counterterror tactics. Indeed, in our model, the oscillations occur irrespective of the
government’s counterterror stance. In addition, collective action inefficiencies associated
with the underprovision of proactive counterterror policies and overprovision of defensive
ones are further exacerbated by our finding that proactive counterterror policy is the more
effective of the two. Hence, the more effective policy is underprovided. This is a novel
characterization of counterterror policy relative to the extant literature.
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Abstract: For 1990–2019, this study presents two-step GMM estimates of EU members’ demands for
defense spending based on alternative spatial-weight matrices. In particular, EU spatial connectivity
is tied to EU membership status, members’ contiguity, contiguity and power projection, inverse dis-
tance, and arms trade. At a Nash equilibrium, our EU demand equations are derived explicitly from
a spatially based game-theoretical model of alliances. Myriad spatial linkages among EU members
provide a robust free-riding finding, which differs from the spatial and non-spatial literature on EU
defense spending. Even though the EU applies common trade policies and allows for unrestricted
labor movement among members, members’ defense responses adhered to those of a defense alliance.
Moreover, EU defense spending exhibits positive responses to GDP and transnational terrorist attacks,
and a negative response to population. During the sample period, EU members did not view Russia
as a military threat.

Keywords: European Union (EU), spatial autoregression and connectivity; alliance; strategic free
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1. Introduction

First introduced by Olson and Zeckhauser [1], the economic theory of alliances is a
game-theory-based representation that continues to exert major influences on empirical
studies of the demand for military expenditure (ME) (see, e.g., Douch and Solomon [2];
Dudley and Montmarquette [3]; Hilton and Vu [4]; Kim and Sandler [5]; McGuire and
Groth [6]; Smith [7,8]). That theory emphasizes the nonrival and nonexcludable benefits
that one ally’s defense provision confers on other allies. Defense is nonrival among allies
because one ally’s consumption of defense-derived deterrence of potential adversaries does
not detract, in the least, from the deterrence gained by other allies from each ally’s defense
provision. Non-excludability of benefits characterizes defense since, once provided, all
allies receive the associated benefits when allied countries are united through common
interests (e.g., joint infrastructure, resident citizens, resource supply lines, trade, and foreign
direct investment). The two publicness properties of defense result in alliance free riding in
which allies do not fully reveal their true preferences for defense by relying to some extent
on the defense provision (spillovers) of their allies [1,9]. Consequently, free riding motivates
an ally to reduce its defense spending in response to collective increases in that of the other
allies [10,11]. This negative relationship between defense spending and defense spillovers
provides an easy-to-implement test of the free-riding prediction. The more one ally views
its defense as a substitute for the ME of its allies, the greater is the downward slope of the
defense reaction curve in terms of spillovers. Another theoretical prediction of alliance
theory is that large, rich allies carry a disproportionately large defense burden for poor
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allies in terms of their GDP devoted to defense (i.e., ME/GDP) [1,12]. If, however, defense
spending gives rise to alliance-wide and country-specific, jointly produced outputs, then
the anticipated negative reaction to defense spillovers and the expected disproportionate
burden sharing may be curbed or even reversed [13–15]. In the former case, free riding
is reduced.

The primary purpose of the current study is to present spatial-based, two-step gener-
alized method of moments (GMM) estimates for European Union (EU) members’ demands
for ME during 1990–2019 and a post-2007 subperiod. Our spatial autoregression (SAR) esti-
mates correspond to seven spatial-weight matrices that capture EU membership, members’
contiguity with one another, members’ contiguity with Russia, inverse distance between
countries’ capitals, arms trade among countries, and two alternative power projection repre-
sentations. Even though the EU is not a traditional defense alliance that commits members
to view an attack on one as an attack on all with the pledge of a collective response as does
Article 5 of North Atlantic Treaty Organization (NATO), the EU faces concerns that may
evoke a coordinated response to a security threat. Hence, EU members’ defense possesses
publicness properties made more poignant by the nearness of countries that raise free-rider
concerns and justifies the economics of alliances as a theoretical foundation for defense
demands [16]. Previous nonspatial investigations of European countries’ defense spending
do not uncover free riding due to quite different modeling assumptions, especially in
regard to defense spillovers (e.g., [2,17,18]).

The current study is most similar to Xiaoxin and Bo [19] who also apply a spatial
approach to a sample of European countries for 2000–2018. Like the current study, Xiaoxin
and Bo [19] consider spatial connectivity in terms of contiguity, inverse distance, and arms
trade. However, crucial differences distinguish the two investigations. First, the current
study has ME, and not ME/GDP, as its dependent variable. As a consequence, we uncover
evidence of EU free riding in terms of ME, while they find defense burdens responding
positively to the defense burdens of other European countries, consistent with defense
burden convergence. Second, the current analysis accounts for US defense spending and
power projection, which is not the case for Xiaoxin and Bo [19]. Third, unlike Xiaoxin and
Bo [19], we only include EU members in the sample after they join the EU. We are interested
in the EU members’ behavior and not that of European countries in general, since we view
the EU institution as an important driver of defense responses. Our set of countries during
each year differs from that of Xiaoxin and Bo [19] because non-EU countries, not part of
NATO, such as Belarus, Ukraine, and others, are excluded from all runs in the current
study. Fourth, the threat variables greatly differ between the two studies. Fifth, we present
strong evidence of free riding that is not solely based on arms trade as in Xiaoxin and
Bo [19]. The current study is complementary to their interesting analysis; both analyses
have different insights to offer.

The present study possesses some noteworthy findings about EU members’ defense
spending. Based on seven measures of spatial linkage, there is robust evidence of defense
free riding among EU members during the last three decades. Free riding is particularly
strong after 2007. Additionally, free riding characterizes EU countries when augmented by
some non-EU NATO allies. For alternative threat measures involving Russia, EU countries
are not viewing Russia as a threat. EU defense spending generally responds negatively
to population, consistent with social welfare spending crowding out defense spending as
population size increases. Transnational terrorist attacks against EU assets (i.e., people
and property) consistently increase EU defense spending when Russian ME is included as
a threat variable. We also show that US power projection supports EU free riding, even
though the United States does not belong to the EU.

The remainder of the paper contains six sections. A brief literature review is con-
tained in Section 2. Section 3 presents some relevant background on the EU, including
how it expanded over the years and its security concerns. In Section 4, we indicate the
game-theoretic model behind our EU defense demand equations. Section 5 offers our
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empirical methodology and data sources, while Section 6 interprets the empirical findings.
Concluding remarks and policy implications are gathered in Section 7.

2. Literature Review

In recent years, spatial econometric techniques are fruitfully applied to the estimation
of defense demand in alliance and non-alliance settings. For instance, Flores [20], Gold-
smith [21], and Skogstad [22] investigate spatial-based defense demands for 168, 120, and
124 countries, respectively, while George and Sandler [23] examine defense demands for
the NATO alliance. The first three studies use ME/GDP as the measure of defense demand,
while the fourth study casts ME as its measure of defense demand. Another noteworthy
spatial analysis of defense demand is by Yesilyurt and Elhorst [24] who investigate the de-
terminants of defense burdens (ME/GDP) for 144 countries using four spatial econometric
models and eight different spatial-weight matrices.

The studies employing ME/GDP as the dependent variable generally find a positive
response of one country’s defense burden to those of other spatially tied or neighboring
countries—a result in potential opposition to free riding. By contrast, George and San-
dler [23] estimate a robust negative relationship between an ally’s ME and the aggregate
ME of other spatially linked allies, consistent with free riding. Their approach and the
one applied here derive the set of allies’ defense demand equations from a constrained
optimization that accounts for resources, defense spillovers, and other strategic considera-
tions, so that ME is implicitly defined by the first-order conditions (FOCs) of each country’s
decision maker. By contrast, articles with ME/GDP as the dependent variable replace
ME/GDP for defense spending without clearly showing how this switch follows from
the underlying theory—e.g., what utility function or modeling assumptions are consistent
with defense burden, not ME, being the dependent variable.

The literature’s estimated positive relationship among countries’ defense burdens
may arise from the tendency for these burdens to converge to a common value [25,26].
Once converged or nearing convergence, defense burdens are apt to rise and fall in sync,
making for a positive burden-sharing relationship among allies. That positive relationship
may also arise from an alliance mandating allies’ adherence to having a set percentage of
GDP devoted to ME—e.g., the 2014 Wales Summit two percentage of GDP rule for NATO.
Additionally, a country’s defense burden is affected by its defense spending and GDP,
which can mask the causal determinants of ME demand. Our methodology is to stay with
the more traditional approach of casting ME as the dependent variable and GDP as one of
the independent variables [4,6].

Spatial econometric representations of defense demand permit a variety of spatial
connectivities. For a 1991 cross section, Goldsmith [21] includes contiguity among coun-
tries and the inverse distance between countries’ capitals as the key measures of spatial
connectivities. With inverse distance, a larger separation between countries’ capitals results
in smaller weights being placed on their defense efforts because one country’s forces would
take longer to be redeployed to defend the other country’s assets, resulting in less defense
spillovers. Flores [20] allows for spatial weights based on contiguity, alliance membership,
and set distances, while Skogstad [22] includes spatial weights based on contiguity, inverse
distance, and power projection. Both of these empirical analyses involve cross sections. For
a panel of European countries, Xiaoxin and Bo [19] employ spatial connectivity based on
contiguity, inverse distance, and arms trade. For NATO, George and Sandler’s [23] spatial
weights stem from contiguity, inverse distance, and power projection for a panel covering
1968–2015 and select subperiods.

3. On the EU

In 1951, the Treaty of Paris established the European Coal and Steel Community (ECSC)
to regulate some industrial outputs in its six members (Belgium, France, Italy, Luxembourg,
the Netherlands, and West Germany). ECSC was the first supranational organization to
link sovereign European states to foster economic coordination. European integration
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progressed further with the Treaty of Rome in 1957 and the creation of the European
Economic Community (EEC) with its six inaugural members being those of the ECSC [27]
(The background facts for this paragraph come from the EU Enlargement Factsheet [27].
Unified Germany replaced West Germany in 1990). From EEC’s outset, enlargement was
allowed for European countries that respect the rule of law, the principles of democracy, the
preservation of civil liberties, the protection of human rights, the furtherance of equality,
and the rights of minorities. Until 2019, there have been seven enlargement waves that
raised membership from 6 to 28 countries. Denmark, Ireland, and the UK joined in 1973;
Greece entered in 1981; Spain and Portugal became members in 1986; Austria, Finland, and
Sweden joined in 1995; Cyprus, the Czech Republic, Estonia, Hungary, Latvia, Lithuania,
Malta, Poland, Slovakia, and Slovenia enlisted in 2004, Bulgaria and Romania entered in
2007; and Croatia joined in 2013. The UK left the EU in 2020, but was a member during the
years covered by our empirical study. Another eight countries are in the accession process,
but were not members in 2019. For the purposes of the baseline empirical analysis, we
consider 28 member countries according to their accession date if admitted after 1990.

The EEC was initially intended to promote greater economic and political coopera-
tion in Europe among members. Economic cooperation involves the elimination of trade
barriers within the EEC and the establishment of a common trade policy with non-EEC
members, which meant that the EEC started as a customs union. At first, political coopera-
tion took the form of a common agricultural policy. The Treaty on European Union (also
known as the Maastricht Treaty) was enacted in 1991 and entered into force in Novem-
ber 1993 when the EEC changed its name to the EU. Political union within the EU was
enhanced over time by supranational infrastructure in the form of the Council of the EU,
the European Commission, European Court of Justice, and the European Parliament. The
latter’s legislators are elected by member countries’ voters. Within the EU, political policy
stances are taken with respect to the environment (e.g., climate change), human rights,
employment practices, justice, foreign affairs, and security. When the Schengen Agreement
of 1985 allowed for the unrestricted movement of EU citizens, the EU transformed itself
from a customs union to a common market.

Since 1990, the EU faces many common security challenges including nearby internal
conflicts in Bosnia and Herzegovina during 1992–1995 among Serbs, Croats, and Muslims,
and an armed conflict in the late 1990s between ethnic Serbs and Albanians. If those conflicts
had not been quelled, they could have spread to neighboring countries and affected EU
commerce and other interests. Even the Chechen conflict spilled over to the EU in the form
of transnational terrorist attacks (e.g., Belgium, France, Germany, Spain, and the UK), which
raised security issues in terms of efforts to coordinate counterterrorism policies and to share
intelligence. Coordination is needed because enhanced counterterrorism actions taken by
one EU member may transfer a planned attack to a less-secure neighbor country [28].

Starting in 2011, civil wars in Libya and Syria brought security externalities to the EU
through refugee flows, disrupted resource flows, and transnational terrorism. In the case
of Libya, NATO-led operations to depose Muammar Qaddafi resulted in a failed state that
continues to pose security threats to EU interests. To address nearby internal conflicts in the
Middle East, Africa, and Central Asia, the EU must engage in and support peacekeeping
operations (PKOs) through the United Nations and other regional organizations.

The rising nationalism of the Putin regime poses an external threat, especially for
EU countries near or adjoining Russia. The threat is more poignant in light of Russia’s
annexation of Crimea in 2014, after which Russian-based rebel incursions in eastern Ukraine
added to EU security worries. However, the question remains whether the most at-
risk EU countries are responding appropriately to this potential threat with increased
defense pending.

4. Spatial-Based Theoretical Model of EU Member’s Defense Demand

We formulate a theoretical model for an EU member’s demand for defense spending
based on the aggregate ME of other members, threat proxies, and other country-specific
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exogenous considerations. When relating a country’s ME to those of other countries, we
primarily consider the members of a particular common market such as the EU. The EU’s
Common Security and Defense Policy (CSDP) is tied integrally to internal and external
security threats of member states [29] in which the CSDP promotes EU military coordi-
nation, EU-supported peacekeeping activities, EU-NATO cooperation, defense industrial
development, counterterrorism cooperation, and other EU security policies. EU peace-
keeping activities may involve the deployment of forces drawn from member states or
the funding of peacekeeping operations by other regional organizations (e.g., the African
Union) [30]. Although the EU is not a defensive alliance, EU members’ security is joined
by geography, similar security interests, economic concerns, and common threats. That
connectivity means that an EU member’s defense demand is dependent, in part, on other
members’ ME, so that EU membership is a basis for specifying members’ strategic defense
demands, analogous to a military alliance.

We present an underlying theoretical model for an EU member’s defense demand that
is sufficiently general to allow for alternative spatial considerations arising from members’
geographical location vis-à-vis one another and that of a potential adversary [20,22,23,31,32].
Additionally, the model permits EU members’ ME to be influenced by non-EU NATO allies
(e.g., Norway, Turkey, and the United States), transnational terrorist attacks, and arms-trade
connectivity. Alternative spatially weighted defense spillovers allow the defense demand
representation to be particularized to myriad connectivity scenarios.

We commence with an N-member common market scenario where each member’s
ME decision is made by a unitary entity (i.e., the country’s executive decision maker), who
maximizes country i’s social welfare, Ui, by allocating i’s national income, Ii, between real
defense spending, qi, and real consumption, ci, in country i. The unit price of defense is
given by p, while that of consumption is normalized to equal 1. Thus, each common market
member faces a resource or budget constraint,

Ii = ci + pqi (1)

where national income is equated to gross domestic product, GDP.
Defense spending within the common market implies a degree of publicness in which

one member’s ME may augment the security of other members, not unlike a defense
alliance [1,3,7,8,11,33]. However, those defense benefits may vary based on the providing
country’s location relative to the benefit-recipient country or countries, so that nearer
recipients obtain more defense spillovers than more distant ones. That anticipation is
particularly true of conventional land forces, which can be deployed more quickly among
nearby countries.

A key component of the defense demand model is security spillovers or spill-ins,
stemming from the ME of the other N − 1 common market countries. Defense spillovers,
Q−i, of member i are denoted by

Q−i =
N

∑
k �=i

δkqk (2)

where k = 1, . . . , N and k �= i, so that the spatially weighted defense provision of the other
member countries is included. The δk weights can assume many alternative forms [20–24].
If only membership in the common market determines defense benefit spillovers, then
δk = 1 for all members, and 0 for nonmembers. In that scenario, location is not driving
spillovers and each member’s defense provision is perfectly substitutable, consistent with
purely public defense spending [34]. If border contiguity determines defense spillovers
among common market members, then δk = 1 for member countries sharing a land or
water border with country i, and δk = 0 for members not contiguous with member i. Like
Skogstad [22], we can expand the contiguity measure of spillovers to assign a weight of
1 to noncontiguous allied countries with a marked ability to project their power. Within
the EU, such countries may include the UK, France, and Germany. Outside the EU, a unit
weight may be given to the United States given its massive ability to project power and its
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security commitment to many EU members. If, instead, spillovers are dependent on spatial
propinquity, then δk may equal the inverse distance between the capitals of countries i and k.
The inverse-distance weight allows closer countries to derive more defense spillovers from
one another [21]. Alternatively, the defense spillover weight may be tied to the extent of
arms trade among market members, where larger arms trade flows between two countries
enhance their derived defense spillovers [19]. Those flows may, in part, lift spillovers
owing to countries’ military forces becoming more interoperable, thereby bolstering joint
defense deployment. Such arms trade linkages also tie the security interests of the trading
members together.

To complete the Nash-equilibrium demand derivation, we consider i’s social welfare function
(To ensure sufficiency, the social welfare function is assumed to be strictly quasi-concave.),

Ui = Ui
(

ci, qi + Q−i, Xi, Ti
)

,
i = 1, . . . , N,

(3)

where i’s decision maker’s perceived welfare rises at a diminishing rate with private con-
sumption and the common market’s aggregate defense spending, Q = qi + Q−i. Thus,
we assume that Ui

c = ∂Ui/∂ci > 0, Ui
Q = ∂Ui/∂Q > 0, Ui

cc = ∂2Ui/∂ci2 < 0, and
Ui

QQ = ∂2Ui/∂Q2 < 0, which are common economic assumptions. To ensure the sat-
isfaction of second-order conditions (SOCs), we assume that Ui

cQ > 0 so that private
consumption and aggregate defense are Edgeworth-Pareto complements enhancing one
another’s marginal utility. We also note that

∂Ui/∂qk = Ui
qk = δkUi

Q > 0, (4)

when δk �= 0, indicating that the defense spending of other common market members are
plain complements [35,36]. In (3), the vector Xi contains exogenous determinants of country
i’s defense spending that include the country’s population and trade openness. The threat
vector Ti reduces social welfare and includes transnational terrorist attacks against country
i’s interests as well as proxies for an enemy’s defense spending. The latter may assume the
form of i’s contiguity with the enemy.

By substituting the budget constraint in (1) and the spillover constraint in (2) into the
social welfare function in Equation (3), we can express the representative EU member’s
maximization problem as:

max
qi

Ui

(
Ii − pqi, qi +

N

∑
k �=i

δkqk, Xi, Ti

)
, i = 1, . . . , N, (5)

for which each member treats the defense spillovers as a parameter, consistent with Nash-
equilibrium levels of defense demand for the collective of member countries. (Unlike
Douch and Solomon [2] or Smith [7,8], we do not assume an intermediate security function,
because doing so will not affect the reduced-form demand for defense). In (5), each common
market ally is choosing its best response defense spending in relationship to those of the
other common market countries, thereby constituting a Nash equilibrium from which no
country would unilaterally change its defense spending decision. The resulting FOCs
associated with (5) are:

−pUi
c + Ui

Q = 0, i = 1, . . . , N. (6)

By implicitly differentiating (6), we have:

∂qi

∂qk = − −pδkUi
cQ + δkUi

QQ

p2Ui
cc − 2pUi

cQ + Ui
QQ

< 0, i, k = 1, . . . , N, i �= k, (7)
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which indicates strategic substitutes [35–37] so that each country reacts negatively to
increases in the defense spending of another common market country when δk �= 0. The
denominator is negative by the SOCs, while the numerator is positive when multiplied by
the minus sign. A trade-off between qi and the aggregate defense spending of the rest of the
common market, Q−i, is also negative with −pUi

cQ + Ui
QQ in the numerator of dQ−1/dqi

and the SOCs in the denominator, again indicating strategic substitutes. In the aggregate
case, the only running variable is i = 1, . . . , N.

The FOCs in (6) can be transformed into the following set of implicitly defined defense
demands for the common market members:

qi = qi

(
Ii, p,

N

∑
k �=i

δkqk, Xi, Ti

)
, i = 1, . . . , N. (8)

There are a number of issues to highlight with respect to these defense demands. First,
they correspond to a static Nash-equilibrium set of demands for the EU countries or a
suitably defined subset based on the spatial weights. Second, given the explicit theoretical
framework for defense demand above, defense corresponds to ME and not to a defense
burden (i.e., ME/GDP). Third, if defense is a normal good with a positive income elasticity
as generally believed and found in the literature, then defense demand responds positively
to GDP [34]. Fourth, by necessity, the relative price of defense is normalized to equal 1
because of a lack of defense price data [2,7,8]. Any bias from this normalization disappears
provided the prices of defense goods inflate at the same rate as those of civilian goods,
which was the case in a Stockholm International Peace Research Institute (SIPRI) [38] study.
However, Solomon [39,40] finds a greater relative inflation rate for Canadian defense goods
compared to non-defense goods, where price data were available. Nevertheless, we must
drop p because of lack of relative defense price data for EU member countries. Fifth, given
similar security concerns of EU members, we anticipate that country i’s defense spending
responds negatively to defense spillovers (i.e., dQ−1/dqi < 0), indicative of strategic-
substitute-driven free riding. Sixth, as a country-specific factor in vector Xi, population
may increase country i’s defense demand when its decision maker places great importance
on protecting the people from external threat. If, instead, larger populations create the
need for more social spending that siphons off funds from defense, then defense demand
may respond negatively to population [41]. A larger population may also reduce defense
demand by allowing the country to substitute relatively cheaper manpower for defense
capital [42]. The true or net influence of population on defense demand is an empirical
question owing to opposing forces. As another country-specific factor, trade openness
(imports and exports as a share of GDP) is likely to have a negative influence on defense
spending when greater trade augments linkages among countries that reduce the gain
from conflict given greater interrelated interests [19]. Finally, threat factors—transnational
terrorist attacks, Russian ME, or proximity to Russia—may increase defense demand. On
the contrary, transnational terrorist attacks may not induce a larger defense spending
response in the presence of other non-military means for countering terrorism through law
enforcement, intelligence, homeland security spending, or the counterterrorism actions
of INTERPOL [43]. In the case of Russia, this may not be true if EU members do not view
Russia as a security threat.

5. Data and Methodology

5.1. Empirical Methodology

Based on our theoretical model, a country’s ME is a function of the aggregate ME
of other countries in an implicit or explicit alliance. This means that the spillover term is
an important explanatory variable in the demand equation for ME. However, a straight-
forward inclusion of the spillover term in an ordinary least squares (OLS) regression can
cause estimation problems due to endogeneity [44,45]. To address this concern, we use
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SAR models, a class of spatial models, used in the empirical literature to account for the
spillover terms [23,24,30].

The SAR representation of the demand for ME can be depicted as:

Yit = ρ∑
k �=i

wiktYkt + βXit + μi + τt + εit, (9)

where Yit is the log of ME for country i during year t. In (9), ∑k �=i wiktYkt represents defense
spillovers, corresponding to the spatially weighted sum of ME of other EU countries.
Additionally, Ykt is the log of ME for country k in year t, and wikt is the spatial weight
representing the relative connectivity between countries i and j in year t. In spatial models,
the spillover term is also called the spatial lag of the dependent variable because it is
comparable to the time-lagged variable in a time-series model. While the time-lagged
term captures the temporal dependence between two time periods, the spatial-lagged term
represents the spatial dependence between a given geographical unit and other units in the
dataset. The relative strength of the spatial dependence among units is captured by the
spatial weight, wikt. Xit is the vector of time-varying controls that influence country i’s ME,
including its GDP, population, and trade openness. In (9), ρ and β represent the estimated
spatial spillover and control coefficients, respectively. μi and τt correspond to country- and
year-level fixed effects, respectively. Finally, εit is the idiosyncratic error term.

Generally, spatial weights (wikt) could be geographical (e.g., distance between mem-
bers), political (e.g., alliance or common market membership), or economic (e.g., trade
between two members) connectivity measures. In our study, we initially utilize five such
weights. First, we assign a weight of 1 to all EU members. Second, we use contiguity,
which assigns a value of 1 to member k’s ME if members i and k share borders, and 0
otherwise. Third, we employ the inverse of the distance between the capital cities of
two members. Fourth, we consider arms trade as a spatial weight where δk denotes the
value of all transfers of major conventional weapons between members i and k. Members
might place more importance on the ME of other members with whom they have an active
military trade relationship. Fifth, we allow for a spatial weight measure that assigns a value
of 1 to each EU member that shares its borders with Russia. Given the recent geo-political
tensions between Russia and the EU, an EU member may view the ME of allies contiguous
to Russia as a sign of an emerging security threat. Following Neumayer and Plümper [31],
and George and Sandler [23], we do not row-standardize the spatial weights. Under row-
standardization, for each year, the spatial weight of a given country is divided by the sum
of spatial weights of all other sample countries. As explained in George and Sandler [23],
row-standardization imposes implicit assumptions that are theoretically undesirable for
the study of any military alliance or common market that changes its membership size
over time. With row-standardization, EU expansion would diminish the ME influence of
key EU members that spend more on defense as the membership expands.

Because of endogeneity concerns, we estimate our SAR models using the two-step
efficient GMM estimator, where the spatial lags of the explanatory variables (except ME
spillovers) are used as external instruments for the spatial lag of the ME variable [46].
All regressions are estimated using standard errors that are robust to heteroskedasticity
and autocorrelation.

5.2. Data

For the empirical analysis, we include all EU countries for 1990–2019, based on
their year of accession to the EU if after 1990. Our time frame choice coincides with the
formation of the Russian federation, which EU countries may view as a military threat.
Early 1990s also witnessed the emergence of religious fundamentalist terrorism and an
associated wave of transnational terrorism that influenced national security policies of
many EU countries [47].

Our dependent variable, the log of ME, is drawn from the SIPRI [48] Extended Military
Expenditure Database, which records consistent ME time series data for most countries dur-
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ing 1949–2019. To foster its reliable and consistent country-level ME estimates, SIPRI [48]
relies on government documents, international statistics, journals, and news reports. In the
current study, ME is measured in constant 2018 US dollars. Independent variables include
GDP, population, and trade openness, drawn from the World Development Indicators
(WDI) [49]. Like ME, GDP is measured in constant 2018 US dollars. We use the GDP
deflator variable provided by WDI to calculate GDP values in constant US dollars. In
particular, WDI relies on the World Bank and OECD National Accounts data to calculate
the deflator values. The trade openness variable corresponds to the sum of total imports
and exports as a share of GDP. The number of transnational terrorist attacks is drawn
from the International Terrorism: Attributes of Terrorist Events (ITERATE) data set [50]
(Mickolus et al. 2020), which records observations on transnational terrorist events by
venue country during 1968–2019.

As discussed earlier, the construction of the spatial-lagged variables requires data
on various measures of spatial weights. The data on distance between capital cities are
from Gleditsch and Ward [51]; data on the contiguity relationships between countries
are obtained from Correlates of War (COW) Direct Contiguity Dataset [52,53]. Finally,
spatial weights, representing the value of arms trade between countries, are drawn from
the SIPRI Arms Transfer Database [54], which contains information on all transfers of
major conventional weapons from 1950 to 2019. Specifically, we apply the trend-indicator
value (TIV), a measure intended to represent the transfer of military resources based on
the known unit production costs of a core set of weapons [54]. During the sample period,
the average TIV between two countries, which engaged in some form of military trade, is
73.23 million dollars. In the absence of row-standardization, the straightforward inclusion
of such large TIV values as spatial weights results in very large spillover terms with small
difficult-to-interpret coefficients. Hence, for the purpose of spatial weighting, we divide all
TIV values by 1,000,000, thereby representing the arms-trade spatial weights in millions
of dollars.

6. Empirical Results

Tables 1–5 report two-step GMM estimates of the determinants of the demand for ME
of EU countries from 1990 to 2019. Country and year fixed effects are included, except
when EU membership weights are used to construct the spatial-lagged term (In that
model, we omit the year fixed effects because their inclusion, when equal weights (e.g., EU
membership) are applied, renders the estimates inconsistent). In each of the models, we
display the adjusted R2, Kleibergen-Paap LM statistic for testing instrument strength, and
Hansen J-statistic for testing the overidentifying restrictions for instruments.

Table 1 reports five models where the only difference involves the type of spatial-
lagged (SL) variables included. For all SL of ME terms in Table 1, the coefficients are
spillover elasticities, given the log of the dependent variable and the log of the spillover
measures. The coefficients of the five spatial-lagged terms depict a significant and negative
influence on the log of ME, indicating that EU countries reduce their defense spending
in response to increases in the weighted MEs of other EU members. That result holds for
Model 1 where equal unit weights are assigned to EU members. Despite EU not being a
traditional defense alliance, its members show clear evidence of free riding with regard to
their military spending decisions. Since EU members are quite politically homogenous,
geographically close, and confront similar international security threats, EU countries
apparently view their fellow members’ ME as strategic substitutes for their own ME.

The spatial-lagged term in Model 2 captures how an EU country’s percentage change
in ME responds to percentage changes in the ME of other EU members with which it shares
land or water borders. The negative coefficient of that spillover term, albeit at 10 percent
significance level, suggests the presence of free riding among contiguous EU members. A
similar finding is reported for an inverse-distance-weighted spatial-lagged term in Model
3, further supporting the free-riding outcome among EU members. The defense-spending
responsiveness to inverse distance is greater than for the previous two models.
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Table 1. EU military expenditure (ME), 1990–2019.

Variable (1) (2) (3) (4) (5)

SL of ME (EU membership) −0.0005 ***
(−4.06)

SL of ME (contiguity) −0.00107 *
(−1.92)

SL of ME (inverse distance) −0.165 **
(−2.54)

SL of ME (contiguity with Russia) −0.745 ***
(−7.80)

SL of ME (arms trade) −0.00000344 **
(−2.11)

Ln (GDP) 0.856 *** 0.875 *** 0.907 *** 0.580 *** 0.500 ***
(7.81) (6.57) (7.38) (4.80) (2.81)

Ln (Population) −1.080 *** −1.180 *** −1.042 *** −0.295 −1.080 **
(−2.63) (−3.02) (−2.83) (−1.05) (−2.37)

Terrorist attacks 0.00125 * 0.000216 0.0000260 0.000233 0.000780 *
(1.83) (0.49) (0.06) (0.63) (1.72)

Trade Openness −0.00104 −0.0001 −0.00008 0.0003 −0.0045 ***
(−1.42) (−0.13) (−0.11) (0.53) (−3.92)

Year FE NO YES YES YES YES
Adjusted R2 0.994 0.994 0.995 0.997 0.389

Kleibergen-Paap LM test statistic 106.0 25.57 22.45 37.06 17.94
Hansen J statistic (prob > χ2) 0.344 0.0425 0.0406 0.996 0.272

N 628 612 628 628 277

Significance levels (SL): * p < 0.10, ** p < 0.05, and *** p < 0.01. t-statistics in parentheses. All models include country fixed effects.
Italics: variables.

Table 2. EU military expenditure, 2008–2019.

Variable (1) (2) (3) (4) (5)

SL of ME (EU membership) −0.00264 **
(−2.28)

SL of ME (contiguity) −0.009 ***
(−3.44)

SL of ME (inverse distance) −1.917 ***
(−3.66)

SL of ME (contiguity with Russia) −0.643 ***
(−4.91)

SL of ME (arms trade) 0.0000008
(0.06)

Ln (GDP) 1.469 *** 1.211 *** 1.149 *** 0.889 *** 1.052 ***
(8.05) (5.06) (5.59) (4.33) (6.48)

Ln (Population) −1.398 * −1.558 ** −1.623 ** −0.485 −0.988 *
(−1.90) (−1.99) (−2.36) (−0.79) (−1.93)

Terrorist attacks −0.00240 −0.007 ** −0.007 ** −0.005 ** −0.0015
(−0.73) (−2.37) (−2.47) (−2.35) (−0.34)

Trade Openness −0.00208 −0.00167 −0.00102 −0.000312 −0.00213
(−1.55) (−1.05) (−0.67) (−0.29) (−1.60)

Year FE NO YES YES YES YES
Adjusted R2 0.994 0.994 0.995 0.712 0.631

Kleibergen-Paap LM test statistic 72.04 9.500 18.99 26.24 7.874
Hansen J statistic (prob > χ2) 0.00103 0.348 0.0489 0.0894 0.892

N 331 319 331 331 138

Significance levels: * p < 0.10, ** p < 0.05, and *** p < 0.01. t-statistics in parentheses. All models include country fixed effects.

100



Games 2021, 12, 13

Table 3. EU and non−EU NATO countries’ military expenditure, 1990–2019.

Variable (1) (2) (3) (4) (5)

SL of ME (EU membership) −0.0004 ***
(−3.46)

SL of ME (contiguity) −0.001 **
(−2.28)

SL of ME (inverse distance) −0.391 ***
(−3.19)

SL of ME (contiguity with Russia) −0.656 ***
(−6.29)

SL of ME (arms trade) −0.000005 ***
(−4.04)

Ln (GDP) 0.590 *** 0.638 *** 0.600 *** 0.523 *** 0.514 ***
(4.91) (5.80) (5.23) (4.51) (4.45)

Ln (Population) −0.197 −0.204 −0.249 0.114 −0.658
(−0.50) (−0.58) (−0.68) (0.36) (−1.55)

Terrorist attacks 0.000783 −0.000605 −0.000578 −0.000398 0.000489
(1.54) (−0.95) (−0.91) (−0.61) (1.10)

Trade Openness −0.00126 * −0.000894 −0.000454 −0.000479 −0.00547 ***
(−1.89) (−1.28) (−0.71) (−0.83) (−4.74)

Year FE NO YES YES YES YES
Adjusted R2 0.994 0.995 0.995 0.996 0.538

Kleibergen-Paap LM test statistic 131.3 44.06 22.74 35.64 17.42
Hansen J statistic (prob > χ2) 0.297 0.773 0.0627 0.290 0.376

N 796 780 796 791 338

Significance levels: * p < 0.10, ** p < 0.05, and *** p < 0.01. t-statistics in parentheses. All models include country fixed effects.

Table 4. EU military expenditure, 1990–2019 (Alternate spatial weights).

Variable (1) (2) (3) (4) (5) (6)

1990–2019 2008–2019 1990–2019 (EU and non-EU
NATO countries)

SL of ME (US + contiguity) −0.001 ** −0.01 *** −0.001 **
(−2.00) (−3.70) (−2.28)

SL of ME (US + UK +
France + contiguity) −0.001 ** −0.01 *** −0.001 **

(−2.00) (−3.70) (−2.27)
Ln (GDP) 0.876 *** 0.876 *** 1.462 *** 1.458 *** 0.637 *** 0.636 ***

(7.03) (7.02) (8.33) (8.26) (5.88) (5.87)
Ln (Population) −1.172 *** −1.171 *** −2.165 *** −2.095 *** −0.215 −0.213

(−3.14) (−3.14) (−3.15) (−3.02) (−0.62) (−0.62)
Terrorist attacks 0.000217 0.000220 −0.005 ** −0.005 ** −0.0006 −0.000604

(0.50) (0.51) (−2.03) (−2.05) (−0.94) (−0.94)
Trade Openness −0.000134 −0.000131 −0.0009 −0.0008 −0.0008 −0.000839

(−0.20) (−0.19) (−0.61) (−0.55) (−1.31) (−1.31)
Year FE YES YES YES YES YES YES

Adjusted R2 0.995 0.995 0.995 0.995 0.995 0.995
Kleibergen-Paap LM

test statistic 26.00 25.97 10.11 10.11 44.09 44.13

Hansen J statistic (prob > χ2) 0.0418 0.0382 0.00652 0.00674 0.769 0.781
N 628 628 331 331 796 796

Significance levels: ** p < 0.05 and *** p < 0.01. t-statistics in parentheses. All models include country fixed effects.
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Table 5. EU military expenditure, 1990–2019 (alternate threat measure).

Variable (1) (2) (3) (4) (5)

SL of ME (EU membership) −0.0004 ***
(−2.85)

SL of ME (contiguity) −0.0017 ***
(−3.08)

SL of ME (inverse distance) −0.25 ***
(−3.45)

SL of ME (US + contiguity) −0.002 ***
(−3.11)

SL of ME (US + UK +
France + contiguity) −0.002 ***

(−3.11)
Ln (GDP) 0.908 *** 0.799 *** 0.879 *** 0.807 *** 0.802 ***

(7.73) (7.67) (7.70) (7.82) (7.75)
Ln (Population) −1.113 *** −1.287 *** −1.144 *** −1.235 *** −1.234 ***

(−2.67) (−2.98) (−2.73) (−2.91) (−2.91)
Terrorist attacks 0.00116 ** 0.00130 ** 0.00135 ** 0.00131 ** 0.00130 **

(2.47) (2.11) (2.32) (2.06) (2.04)
Trade Openness −0.00123 −0.000792 −0.00114 −0.000948 −0.0009

(−1.64) (−0.89) (−1.45) (−1.21) (−1.20)
Russian ME −0.0173 −0.0566 ** −0.0421 −0.0574 ** −0.0562 **

(−0.61) (−2.08) (−1.47) (−2.10) (−2.06)
Year FE NO YES YES YES YES

Adjusted R2 0.994 0.993 0.994 0.994 0.994
Kleibergen-Paap LM

test statistic 92.94 21.55 40.30 21.67 21.79

Hansen J statistic (prob > χ2) 0.0723 0.853 0.0216 0.817 0.714
N 604 588 604 604 604

Significance levels: ** p < 0.05 and *** p < 0.01. t-statistics in parentheses. All models include country fixed effects.

In Model 4, the spillover term represents how an EU member’s ME responds to
percentage changes in the ME of other EU members that share their borders with Russia.
If EU countries perceive Russia as a major security threat, they are expected to react
positively to the ME of EU members in close proximity to Russia. In contrast to that
prior, the significant and negative coefficient of the spatial-lagged term in Model 4 implies
that EU members actually reduce their ME in response to an increase in the ME of EU
members contiguous to Russia. This suggests that EU countries do not consider Russia as
a major security threat for the sample post-Cold War period, at least in terms of their ME
response. This appears true despite Russia’s annexation of Crimea in 2014, its conflict in
Chechnya and elsewhere, and the recent rise of Russian nationalism. Finally, in Model 5,
we use the value of arms trade among EU members to capture spatial spillovers, based
on the assumption that an EU member places more weight on the ME of its EU arms-
trading partners. The spillover term’s coefficient is again negative and significant, thereby
increasing the confidence in our previous free-riding results. Apparently, larger arms trade
within the EU cements military ties or connectivity. That is, EU members can more readily
view other members’ arsenals as substitutable to their own arsenal if they share similar
types of armaments that are interoperable and of a more current vintage.

Next, we consider the estimated coefficients of the control variables in Table 1. Con-
sistent with the theoretical expectations, the log of GDP shows a significant and positive
association with the log of ME in all models. That positive income elasticity indicates
that defense is a normal, but inelastic, good with values that range from 0.5 to 0.9 over
the five models. The population elasticity is significant and negative in all models except
Model 4, with values less than –1. As discussed earlier, more populous countries need to
allocate more money to domestic social welfare programs, thereby redirecting resources
away from their military budgets. A population elasticity of less than –1 reflects a robust
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reallocation to social welfare concerns as population increases, consistent with EU countries
wanting to cash in on the peace dividend after the Cold War. The number of transnational
terrorist attacks has no significant association with ME, except in Models 1 and 5, where
the anticipated positive coefficients are marginally significant at the 10 percent level. Trade
openness does not significantly influence the demand for ME except in Model 5, where
the negative coefficient suggests that greater trade openness limits the need for defense,
as countries are more dependent on one another. The large values of the Kleibergen-Paap
LM test statistic indicate that the instruments are strong. Moreover, the Hansen J-statistic
rejects the null hypothesis of overidentifying restrictions at the 5 percent level, except for
Models 2 and 3.

The global financial crisis of 2007–2008 had significant impacts on the defense spending
trajectories of most EU countries. In the post-crisis years, many EU countries had to spend
greater sums on various economic stimulus packages and social welfare programs, thereby
diverting resources away from their military budgets. In 2009 alone, European defense
expenditure fell by about 3 percent and continued to decline steadily until 2013 [48]. To test
whether this decline in defense spending influenced EU members’ free-riding behavior, we
re-estimate the demand determinants of ME during 2008–2019, the post-crisis years, using
the same five spatial weights.

As shown in Table 2, four of the five spatial-lagged ME spillover terms, the excep-
tion being the arms-trade-weighted spatial-lagged term, display negative and significant
influences on the log of EU members’ ME, indicating that defense free-riding behavior
characterized the post-crisis years. The fall in arms trade among EU members may be
behind the insignificance of the arms-trade spatial-lagged term in Table 2. The four signifi-
cant spatial spillover elasticities are similar in values to the corresponding elasticities for
1990–2019. To test whether similar behavior characterized the pre-crisis period, we also
estimate EU defense demand equations for 1990–2007. We could not, however, uncover any
evidence of free riding in that earlier period, thus suggesting that EU members’ free-riding
behavior during the entire sample period was primarily driven by the post-2007 years
(The results are available upon request). Turning to the control variables, we see that GDP
and population variables generally display more elastic results than for the entire period
covered by Table 1. In particular, income is now elastic with values greater than 1 in four
of the five models. Additionally, population is generally tied to a larger negative response
after 2007, consistent with the greater need to turn to social welfare programs after the
financial crisis. Unlike the results for 1990–2019, the number of transnational terrorist
attacks has a significant negative effect on EU members’ ME. The direction of that effect
is unanticipated since transnational attacks on an EU members’ assets at home or abroad,
both of which are measured in the data set, should raise their defense spending. This unan-
ticipated finding may be driven by declines in transnational terrorist incidents in Europe
and throughout the world as borders were made more secure following 9/11. Transnational
terrorist attacks became more prevalent in countries hosting terrorist groups [47]. Such
foreign-venue attacks are likely to elicit a smaller proactive response than home attacks,
which pose a larger existential threat to the country. The unanticipated result may follow
from counterterrorism measures by law enforcement, intelligence agencies, and INTERPOL
assuming a greater importance, thus making the need for counterterrorism military actions
less relevant.

Next, we estimate the ME demand equations for EU and non-EU NATO countries
combined. The non-EU NATO countries included in the analysis are Albania, Montenegro,
Macedonia, Norway, Turkey, and the United States. For the first three countries, we account
for when they joined NATO. Since both NATO and EU have many common member
countries and share various geo-political characteristics and threats, this pooling is justified.
Moreover, we explore how EU members’ free-riding behavior changed in response to the
largest military spender in NATO—the United States—being included during the sample
1990–2019 period. As shown in Table 3, the free-riding behavior associated with the spatial
lags of ME is amazingly consistent after adding non-EU NATO countries to the sample.
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The only quantitative difference concerns the inverse-distance, spatial-lagged ME term,
which displays a smaller free-riding elasticity. This may be due to greater distance between
allies with the addition of the United States. A noteworthy change with the larger sample is
that the population variable is no longer significant. That suggests that for non-EU NATO
countries, there is no evidence of population size affecting social welfare crowding out ME
spending. Both Turkey and the United States are populous countries that have, relative to
EU countries, maintained their defense spending, which may have weakened the earlier
influence of population on ME. In Table 3, the coefficients of transnational terrorist attacks
and trade openness are mostly insignificant, similar to Table 1.

In Table 4, we use alternative spatial weights for 1990–2019 to capture how EU allies
respond to power projections by the US and contiguous allies, and by the US, the UK,
France, and contiguous allies. Even though the US is separated by an ocean from Europe,
the US’ huge power-projection capabilities in terms of aircraft carriers and transport planes
make it similar to a contiguous country. The relatively high ME of those three powerful
countries means that they are uniquely capable of exerting influence on the ME decisions
of EU countries, particularly in terms of free riding. Models 1 and 2 report estimates for
EU countries for 1990–2019, while Models 3 and 4 present estimates for EU countries for
2008–2019. Results for EU and non-EU NATO countries combined are reported in Models
5 and 6 for 1990–2019. Across all models, the spatial-lagged spillover terms are significant
and negative, further supporting free riding and strategic substitutes. Those findings
highlight that the EU relies partly on US power-projection abilities. The coefficients for
the control variables are generally consistent with those from Tables 1–3, implying that
defense spending is income normal and that population exerts a negative social welfare
trade-off for Models 1–4. Transnational terrorist attacks are negative and significant for just
2008–2019, and trade openness is not significant.

Table 5 contains results for spatial regressions where Russian ME replaces Russian
contiguity-weighted, spatial-lagged term as a threat measure. In addition, the two spatial-
lagged power-projection ME terms are applied instead of the spatial-lagged arms-trade
term. Unlike Model 4 in Tables 1–3, the threat measure (Russian ME) is a control in addition
to five designated spillover terms. In Table 5, all five spillover elasticities are negative
and significant, indicative of free riding. In Models 2, 3, and 5, EU members reduce their
ME in response to an increase in Russian ME, which provides further evidence that EU
countries are not apparently perceiving Russia as a major security threat. Other findings
are consistent with the previous results—namely, GDP displays a robust positive elasticity
and population shows a robust negative elasticity less that –1. A notable difference in the
runs concerns transnational terrorist attacks, which indicate a significant positive influence
on EU defense spending in all five models as originally predicted. As in earlier runs, trade
openness has an insignificant effect on EU defense spending.

Up to this point, standard controls for the estimation of defense demand are used.
At the urging of a reviewer, we estimate a set of robustness runs, displayed in Table 6,
that allows for additional controls, such as the presence of a military industry, the number
of armed conflicts, and the extent of globalization. The dummy variable measuring the
presence of a military industry is constructed using the SIPRI Arms Industry Database [55].
That database provides information on both public and private arms-producing and
military services companies in a sample country. For 1990–2019, we also allow for the
number of armed conflict incidents that a sample country participated in, drawn from
the Uppsala Conflict Data Program/Peace Research Institute Oslo (UCDP/PRIO) armed
conflict dataset [56,57]. Finally, we add the KOF Globalization Index, which measures the
economic, social, and political dimensions of globalization from 1970 to 2019 [58,59].
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Table 6. EU military expenditure, 1990–2019 (robustness checks).

Variable (1) (2) (3) (4) (5)

SL of ME (EU membership) −0.000252 **
(−2.36)

SL of ME (contiguity) −0.000724 *
(−1.84)

SL of ME (inverse distance) −0.118 *
(−1.82)

SL of ME (contiguity with Russia) −0.830 ***
(−10.70)

SL of ME (arms trade) −0.00000381 **
(−2.14)

Ln (GDP) 0.787 *** 0.793 *** 0.791 *** 0.512 *** 0.511 ***
(7.55) (6.74) (6.84) (5.42) (2.78)

Ln (Population) −1.189 *** −0.776 ** −0.494 0.0662 −1.085 **
(−3.32) (−2.08) (−1.35) (0.25) (−2.43)

Terrorist attacks 0.000886 ** 0.000434 0.000251 0.000473 0.000880 **
(1.97) (1.29) (0.77) (1.64) (2.07)

Presence of military industry −0.0342 −0.0444 −0.0414 −0.0148
(−0.69) (−0.90) (−0.82) (−0.35)

No. of conflicts 0.0295 −0.0246 −0.0235 −0.0293 −0.0341
(0.44) (−0.55) (−0.54) (−0.70) (−0.63)

KOF Globalization Index −0.0103 *** 0.0159 *** 0.0140 *** 0.0112 *** 0.0173 *
(−2.77) (3.59) (3.10) (2.81) (1.75)

Year FE NO YES YES YES YES
Adjusted R2 0.278 0.421 0.417 0.659 0.401

Kleibergen-Paap LM test statistic 9.535 5.233 5.295 35.62 5.913
Hansen J statistic (prob > χ2) 0.339 0.0902 0.00727 0.749 0.372

N 600 585 600 600 267

Significance levels: * p < 0.10, ** p < 0.05, and *** p < 0.01. t-statistics in parentheses. All models include country fixed effects.

In Table 6, we introduce the three new determinants of the demand for ME and check
whether their inclusion changes the results for the five spillover terms. Those new controls
are added to the baseline models in Table 1. As shown in Table 6, the ME of EU members
shows clear evidence of free riding (i.e., negative spillover values) even after the inclusion
of additional controls, thereby increasing confidence in our initial results. Moreover, ME
remains income normal, while population generally reduces ME, consistent with crowding-
out. The KOF Globalization Index shows a significant and negative association with ME
in Model 1. However, when we include year fixed effects to control for temporal shocks
(Models 2–5), the globalization coefficient is significant and positive, suggesting that EU
members with high degrees of economic, social, and political globalization tend to spend
more on ME. That result is not surprising since countries that are more globalized show
very high rates of economic growth [58]. Armed conflicts and the presence of a military
industry have no significant effect on the ME of EU countries.

7. Concluding Remarks

Based on myriad spatial-linkage measures, our spatial estimates of EU military spend-
ing during the post-Cold War era provide a consistent, robust message that differs from
past non-spatial and spatial EU defense spending estimates [2,17–19]. Most notably, free
riding, indicative of strategic substitutes, characterizes EU members’ ME for all seven
spatial connectivity measures of this study. Free riding is particularly strong in the post-
2007 period following the great recession, as social welfare programs assume a greater
importance. The inclusion of non-EU NATO members, especially the United States, in
the sample bolsters free riding under various empirical formulations. Even though the
EU does not pledge its members to come to one another’s defense in times of exigency as
in a traditional military alliance, common market members act like allies who consider
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other members’ ME substitutable for their own ME, leading to the prevalence of free riding.
Additionally, we find that defense is an income normal good whose elasticity generally
exceeds 1 during 2008–2019. Moreover, population displays an elasticity less than –1,
indicative of social welfare demands crowding out defense as population increases. EU
members’ defense spending for threat measures is consistent with Russia not being viewed
by members as a threat under alternative empirical specifications during 1990–2019. Finally,
transnational terrorist attacks indicate a robust threat only when Russian ME is a control.

Our findings suggest some policy conclusions. First, if NATO were to dissolve or to
decrease in importance, the EU appears to be in no position to rectify the alleged free-riding
problem in Europe because EU members are content, like NATO members, to view other
EU members’ defense spending as strategic substitutes under a wide range of spatial
connectivity assumptions. Thus, NATO’s mission to protect Europe from external threats
cannot be readily replaced by the EU. Second, since 1990, the EU appears more focused
on cashing in on the post-Cold War peace dividend and on diverting defense spending
to social welfare expenditure following the great recession. In the post-COVID period,
this diversion of defense spending to social welfare is anticipated to continue for EU
members as they address the economic downturn. If common defense is to assume a
greater role in the EU, then members must change their thinking about threats facing them.
Despite Russian aggression in Ukraine and elsewhere, this change in mindset has not yet
occurred. Any such change must come from within the EU, perhaps motivated by even
more aggressive actions by Russia. Third, if the EU were to assume a greater importance as
a military alliance, then France, Germany, and the UK would need to raise their defense
provision greatly to replace the dominant defense spending of the United States. However,
our study still shows EU free riding on the United States, a non-EU member. As long as
this reliance on the United States persists, the EU is unlikely to change its defense spending
patterns. Fourth, with civil wars in North Africa, sub-Saharan Africa, and the Middle East,
the EU faces unrest elsewhere that causes disruptions in terms of refugee flows, trade,
and resource supply lines. To confront such challenges, the EU must begin to address
its endemic free-riding problem, which may well require increased pledges of defense
spending, like the recent 2 percent rule adopted by NATO in terms of defense burdens.
Fifth, those civil wars mean that the EU must better coordinate its efforts at peacekeeping
in nearby conflict-challenged regions. Such coordination has a long way to go, indicated
by the eventual need to rely on US air power and munitions during a NATO-supported
ouster of Qaddafi during 2011. Sixth, to be equipped to address peacekeeping outside of
Europe, the EU members must build up their capacity to project power through greater
transport aircraft and ships (e.g., aircraft carriers).
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