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Preface to ”Advanced Methods of Power Load

Forecasting”

Advanced societies are characterized by the intensive use of energy produced, distributed and

consumed in an uninterrupted, reliable and safe manner. The liberalization of the markets has meant

that the entities participating in the electricity system do not have a vertical structure, differentiating

in this way between the entities that produce energy from the sellers, all going to an energy pool.

Consequently, price competition has increased. In other words, energy systems aim to produce and

consume energy efficiently and economically.

A case of special importance is the electricity obtained as a result of a combination of fossil,

nuclear and renewable energy sources. The current trend at a global level is to have more and more

resources of clean and non-polluting, renewable energy, but with the limitations that this entails,

since on many occasions, production does not depend exclusively on human planning, but also on

environmental conditions. Both planning, programming and the cost of energy are based on a correct

estimate of the electrical load, both in the short term (STLF) and in the medium and long term (MTLF

and LTLF).

For the proper functioning of the energy system within today’s liberalized energy markets,

predicting the energy load has therefore become a crucial task. Improving the accuracy of forecasting

energy load, as well as peak loads to ensure energy supply from the energy system to final consumers,

has been of increasing interest to researchers in recent years. Responsibility for the system rests with

the transmission system operators (TSO). The system works based on the work carried out by the

TSO, which manages the transmission of energy in the countries (and the continents, like the ENTSO),

and is therefore in charge of making the predictions that the electricity market will use to establish

not only the price of energy, but also the units of production.

This concept of forecasting is not exclusive to the TSO. Production units, lower systems such

as local and domestic, or any entity participating in the electrical system must have a good load

forecasting system. Even industries with high energy needs. The perception of a consumer who

is oblivious to electricity prices, and whose consumption is established, has changed radically.

High-energy consumers pay much more attention to their consumption and the way they consume.

Their studies allow consumption to be improved while accompanying contracts with electricity

marketers, with planning according to anticipated energy consumption and needs.

The prediction methodology for power load used in the literature has been advancing over time.

From the use of the simplest methods to the most modern ones based on artificial intelligence, always

going through statistical methods. Their evolution has always been gradual, and in general with few

advances in strategies to deal with the problem of accuracy and safety in predictions. However, as

a result of deregulation, the system has radically changed for everyone, from the generator to the

consumer. Monitoring consumption and prices is necessary for better management of resources. This

has caused an explosion of proposals that try to channel efforts to improve the ways of predicting and

achieve more accurate predictions for both the STLF and the LTLF.

The objective of this Special Issue is to present new emerging methodologies that improve the

traditional tools used in load forecasting. Artificial intelligence, machine learning, deep learning and

hybrid models are some of the new methods that can help improve decision-making in today’s energy

markets, characterized by high uncertainty and volatility.

The articles presented here are very interesting and innovative. We have made a brief summary

of the most important points of all of them.
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Cai et al. present a prediction method based on multi-layer stacked bidirectional LSTM for the

STLF. The proposed methodology uses a typical Deep Learning structure such as the LSTM neural

network. It introduces the combination of two layers, one to compute the hidden vector from front

to back, and one in the opposite direction combined, in order to reduce the accumulated error. This

structure is repeated in multiple layers connected sequentially that allow information to be filtered

and predictions to be made. The efficiency of the predictions is checked using data from an AC power

station in southwest China and is measured in terms of MAPE, RMSE and MAE. The results show

efficiency around 0.45% of MAPE.

Helsenmeyer and Grzegorzek present an application for electricity load forecasting (STLF) at the

NYISO. They use LSTM neural networks with the SESDA architecture (sequential encoder-stacked

decoder architecture). The encoder-decoder structure is especially suitable for time series prediction,

where the encoder shows a compressed representation of the input information that the decoder will

later use to make predictions. The results of the predictions are compared with other methods, and

the MAPE reported is 1.52%.

Andriopoulos et al. present a new prediction method based on convolutional neural networks,

where the use of statistical methods allow to optimize the obtaining of the hyperparameters of the

network. It makes its application to three different types of load (household demand, from a local

electricity company in northern Italy, and from an office) with different frequencies. The results

show that the use of the LSTM-CNN models improve the results with respect to the LSTM, of proven

efficiency.

Trull et al. present Holt-Winters models with discrete moving interval seasonalities (DIMS)

applied to a forecast of electricity demand with irregular seasonality. Specifically, it is the demand

for a galvanized steel production factory located in Spain. The use of DIMS makes it possible to

circumvent existing problems by not having regular seasonality. A comparison is made with other

common methods, such as neural networks, ARIMA models, exponential smoothing models. The

results show that the prediction efficiency is better than all of them, and that it is at the same level as

those made by NARX neural networks.

Almazrouee et al. proposes the use of Facebook’s Prophet method for the prediction of long-term

electricity load in Kuwait. In his paper, he describes the Prophet method and applies it to electricity

demand data from the Kuwait National Control Center. It uses a seasonality of P=365.25 days and

uses the holiday function h(t)=Z(t)κ with the matrix of regressors Z(t)=[1(t infoNumberD1),. . . ,1(t

infoNumberD L ) ] considering D as the holidays, κ N(0, ˆ2) , where is the holiday smoothing

parameter and t measured in days.

Almazrouee et al. uses the Prophet method to determine the maximum long-term peak electrical

load, and applies it to the consumption data. It uses 354.25 days as annual seasonality and 7 days for

weekly seasonality. He then compares the results with a Holt-Winters model with annual seasonality.

The comparison is made using different indicators (MAPE, MAE, RMSE, CVRMSE and R2). In all

cases, it is observed that the new proposal improves the results, which are in the order of 1.75% in

ASM.

The results shown by the articles presented here contribute to the improvement of electricity

load predictions in many areas, and encourage research in all the areas worked on. In addition,

the coexistence between modern methods, based on artificial intelligence, with methods considered

traditional is verified. With the publication of this Special Issue, a new range of possibilities opens up

that the electricity load forecaster can use.

Future research will be more focused on combining the fundamental aspects of traditional
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models with artificial intelligence models, creating a symbiosis between both models. One of

the fundamental aspects to take into account is the volatility of demand due to the introduction

of renewable energies, as well as the need for a fast calculation that can deal with sudden and

unexpected changes in the power load. This aspect will be developed in future editions of this Special

Issue.

We want to thank all the authors who have contributed to this Special Issue and congratulate

them for their good work.

J. Carlos Garcı́a-Dı́az and Óscar Trull

Editors
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Abstract: Accurate load forecasting guarantees the stable and economic operation of power systems.

With the increasing integration of distributed generations and electrical vehicles, the variability and

randomness characteristics of individual loads and the distributed generation has increased the

complexity of power loads in power systems. Hence, accurate and robust load forecasting results are

becoming increasingly important in modern power systems. The paper presents a multi-layer stacked

bidirectional long short-term memory (LSTM)-based short-term load forecasting framework; the

method includes neural network architecture, model training, and bootstrapping. In the proposed

method, reverse computing is combined with forward computing, and a feedback calculation

mechanism is designed to solve the coupling of before and after time-series information of the power

load. In order to improve the convergence of the algorithm, deep learning training is introduced

to mine the correlation between historical loads, and the multi-layer stacked style of the network

is established to manage the power load information. Finally, actual data are applied to test the

proposed method, and a comparison of the results of the proposed method with different methods

shows that the proposed method can extract dynamic features from the data as well as make accurate

predictions, and the availability of the proposed method is verified with real operational data.

Keywords: bidirectional long short-term memory; multi-layer stacked; neural network; short-term

load forecasting; power system

1. Introduction

A reliable and accuracy short-term load forecasting system is the basis of energy
trade between the customers and electrical utility companies [1,2]. With the increasing
penetration of distributed generations and consumer energy systems, the randomness and
variability of load profiles bring more challenges for short-term load forecasting systems.
Researchers around the world have focused on short-term load forecasting in recent years
and tried to get a more accuracy forecasting result using variable new technologies.

The traditional load forecasting method uses statistics [1,3,4], which has appeared
in former studies. However, large amounts of precise historical data are needed, which
increases the challenges of accurate prediction. Artificial neural network-based methods
are the most popular among the data-driven methods due to their strong capability of
nonlinear approximation and self-learning. Different types of neural networks such as
back propagation (BP) [5], radial basis function (RBF) [6], and extreme learning machines
(ELM) [7,8] have been proposed and applied in short-term load forecasting. Furthermore, a
regularizing term and the combination of multiple ELM is added to reduce the randomness
of traditional ELM in photovoltaic power forecasting in [8]. However, low convergence
speed is always an obstacle to the large-scale application of neural networks.

The rapid development of a deep learning framework and artificial intelligence (AI)
technology brings more choices for the power system load forecasting. In recent years,
convolutional neural network (CNN) [9,10], deep belief network (DBN) [11–13], and deep
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residual networks (DRN) [14] have been developed and applied in load forecasting, which
shows a promising prospect in load forecasting areas. These methods can extract the key
elements of the load profile. A multiple-input deep convolutional neural network (CNN)
model is proposed and applied in the short-term photovoltaic power forecasting in [9], in
which solar radiation and ambient temperature combined with the historical output power
of a PV system are collected as the input data of the forecasting model. In [10], a deep
convolutional neural network-based forecasting method is proposed for the short-term PV
power forecasting; here, the original meter data are decomposed into a two-dimensional
timescale by convolution kernels and refined into advanced features by a CNN model.
Deep belief network is applied in photovoltaic power forecasting in [11]; the proposed
methodology is focused on real data capturing to establish the optimum architectural of
deep belief network. An improved deep belief network is applied in load forecasting consid-
ering demand-side response in [12]; three aspects of the DBN are optimized to dispose the
predictive accuracy. The deep belief network method is incorporated into a feed-forward
neural network in [13], in which the layer-by-layer unsupervised training procedure is
combined with parameters’ fine-tuning based on a supervised back-propagation training
method. In [14], a two-stage ensemble strategy of deep residual network is formulated to
enhance the generalization capability of load forecasting.

Due to its advantages to solve the vanishing gradient issues, LSTM is more effective
than a recurrent neural network to deal with industrial problems that are highly related
to time series [15–17]. A LSTM neural network has been successfully deployed in many
practical applications; it can learn longer-term dependencies due to the associated memory
units [18–20]. An LSTM architecture-based method is used in a distributed network in [18],
in which the LSTM-based structure is used for the linear regression of each node and
receives a variable length data sequence with its neighbors to train the LSTM architecture.
A video-captioning method based on adversarial learning and LSTM is proposed in [19];
it is used to handle the temporal nature of video data exponential error accumulation.
In [20], an attention-based LSTM model with semantic consistency is used to transfer
videos to natural sentences. An LSTM neural network is used in multimodal ambulatory
sleep detection in [21], and the proposed method can synthesize temporal information
accuracy. In [22], nonuniformly sampled variable length sequential data are classified,
which is followed by regression by LSTM.

The LSTM neural network also shows significant potential in the prediction field. The
authors in [23,24] proposed an LSTM-based framework for the single energy customer
load forecasting. In [25], a multi-layer bidirectional RNN based on LSTM and a gated
recurrent unit (GRU) is proposed for short-term load forecasting; the proposed method can
match different types of load data and is shown to be more accurate. In [26], a forecasting
model based on LSTM-DNN is proposed for the photovoltaic power output, available
temperature data, and statistical features extracted from the historical photovoltaic output
data using stationary wavelet transform. An LSTM neural network is proposed for the
prediction of solar irradiance one hour in advance and one day in advance [27,28]; the
clearness index was used to classify the type of weather by k-means. A k-means LSTM
network model for wind power spot prediction is proposed in [29]; the wind power factors
are clustered to generate a new LSTM sub-prediction model.

In [30], the authors proposed five LSTM-based forecasting methods for photovoltaic
power prediction, and the prediction capacity is improved by stacking LSTM layers on
top of each other. In [31] a one-dimensional convolutional stacked LSTM for load disag-
gregation is proposed; the deep learning framework is created by stacking several LSTM
layers within the hidden layers. The hidden layers are joined reconnections in the LSTM
cell. There is no gradient disappearance or gradient explosion problem in the prediction
model of the stacked LSTM neural network. However, the long-distance data transmission
will cause data loss, which will result in accumulated errors in the process prediction. In
order to solve this problem, reverse computing combined with forward computing are in-
troduced to solve the unidirectionality of the memory process in the process of training the

2
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data. A feedback mechanism is introduced to improve the front and back association. Com-
bined with the reverse computing, the LSTM neural network has the ability of bidirectional
computing, which can overcome the defection of data loss in long-distance transmission.
Furthermore, forward and backward propagation prediction make data more dependent
and reliable. A multi-layer stacked deep learning style is built for the data training process
to improve the information communication between the dataset sequentially.

The main contributions of this paper are as follows: (1) A bidirectional LSTM short-
term load forecasting framework model is proposed in this paper, in which reverse comput-
ing is combined with forward computing to retrieve the important information hidden in
the load profiles and improve the forecasting ability of the time-series problem. (2) A multi-
layer stacked bidirectional LSTM prediction structure based on deep learning technology
is proposed. The advantages of the multi-layer structure are applied to analyze the load
profiles and extract the data essential features. (3) Last, the multi-layer stacked bidirectional
LSTM prediction model is approved by using real operational cases, and the evaluation
results are compared with other methods.

2. LSTM Neural Network

2.1. LSTM Neural Network

The LSTM neural network was proposed in 1997, which is a time-domain deep
learning neural network. Compared with traditional recurrent neural network, there are
two special parts: the forget gate and the memory unit in the hidden layer of the LSTM
neural network. A long-term information stream from the input to output can improve
the memory capacity of the neural network in the process of training. The structure of the
LSTM cell is shown in Figure 1. It consists of four computing units: namely, the output
gate, forget gate, memory unit, and input gate, respectively.

Figure 1. LSTM cell structure.

Based on the output ht−1 of the last hidden layer and the current input xt, a new value
of ft is generated based on the activation function “Sigmoid”, which determines whether
to let the information Ct−1 learned in the last moment pass through; that is, how much of
the last cell state Ct−1 is saved to the current time Ct. The function between ht−1,xt and ft

can be written as:
ft = σ

(
W f · [ht−1, xt] + b f

)
(1)

3



Appl. Sci. 2021, 11, 8129

where σ is the “Sigmoid” function, and the range of the output value of the “Sigmoid”
function is [0,1]. W f is the weight matrix of the forget gate, b f is the bias of the forget gate,
ft is the value of the forget gate which decides the forgetting factor of long-term memory
information. The value of ft is between [0,1].

The threshold of LSTM consists of a sigmoid activation function and dot multiplication
operation. After the hidden layer of the previous moment enters the forget gate, the
function gives the judge information about whether it is updated or not. However, the cell
state rolls continuously and runs in the horizontal direction.

It = σ(Wt · [ht−1, xt] + bi) (2)

C̃t = tanh(Wc · [ht−1, xt] + bc) (3)

Ct = ft ∗ Ct−1 + It ∗ C̃t (4)

where tanh is the hyperbolic tangent activation function, C̃t is the temporary unit state of
Ct, Wc is the weight matrix of the memory unit, bc is the bias of the memory unit, and It is
the output value of the input gate. The current cell state Ct is the sum of the original state
and the updated state.

ot = σ(Wo · [ht−1, xt] + bo) (5)

ht = ot ∗ tanh(Ct) (6)

where Wo is the weight matrix of the output gate, ot is the output value of the output gate,
and bo is the bias of the output gate. The initial output ht is obtained through the sigmoid
layer, tanh(Ct) is between −1 and 1.

The signal passes through the input gate, output gate, and forget gate in turn, and
it realizes information storing and maintaining in the current time period. The LSTM
structure of the neural network shows that the input variable is transmitted horizontally
from input to output directly. Hence, the prediction error will accumulate continuously
and suddenly swell in direct proportion with the previous time in the prediction model.
Figure 2 shows the LSTM prediction accumulation error in the power load forecasting in
one day. The short-term load forecasting method usually takes a day or a week as the
training dataset. Three days’ data are taken as sample forecast in Figure 2. The error
accumulation occurs in the LSTM prediction results with the increase in the step of the
prediction data, and the error will become larger and larger as time goes on.

Figure 2. Accumulate error of the forecasting model.

4
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2.2. Bidirectional LSTM Neural Network

In order to overcome the accumulative error problem, a bidirectional LSTM is pro-
posed here, which is shown in Figure 3. The bidirectional LSTM neural network consists of
two layers of LSTM structure; one is used to calculate the hidden vector from the front to
the back, and the other is used to calculate the hidden vector from the back to the front.
The output of the bidirectional LSTM neural network is determined by these two layers.
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Figure 3. Basic structure of bidirectional LSTM.

The bidirectional LSTM neural network is different from the traditional feed-forward
mechanism neural network. The internal nodes in each layer do not connect with each
other in bidirectional LSTM. A directional loop is introduced in the connection of hidden
layers, foregoing information; results are memorized and stored in the memory unit, which
can improve the association of single pieces of information in different time series. The
current output of the neural network is determined bycombining the previous output and
the current input. However, with the increasing amount of input data in the time series,
there will be gradient disappearance and gradient explosion problems due to the lack of
delay window width.

Based on the traditional LSTM model, the bidirectional LSTM neural network will
fully consider the front and back correlation of the load data in time series and improve the
model performance for the sequence classification problem especially. During the training
process, the input data sequence of the forward layer is the training data, and the backward
layer is the reverse copy of the input data sequence. The results of bidirectional structure
prediction are determined by the previous input and the latter input, which increases the
dependence between the training data to avoid the forgetting of the order information.

Figure 3 shows that the forward layer calculates the forward direction from 1 to t,
and it saves the output of the forward hidden layer at each moment. The backward layer
calculates the reverse time series and saves the output of the backward hidden layer at
each moment. Finally, the output of the bidirectional LSTM neural network is calculated
by combining the corresponding output results of the forward layer and backward layer at
each time point. The bidirectional LSTM neural network can be written as:

st = f (Uxt + Wst−1) (7)

5
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s′t = f
(
U′xt + W ′s′t+1

)
(8)

ot = g
(
Vst + V′st

)
(9)

where st is the state variable of the hidden layer at time t, ot is the state variable of the
output layer at time t, s′t is the state variable of the reverse hidden layer at time t, xt is the
input vector, g and f are activation functions, V, W, and U are the weight matrix from the
hidden layer to the output layer, the hidden layer, and the input layer to the hidden layer,
and V′, W ′, and U′ are the corresponding reverse weight matrix. The state weight matrix
of the forward layer and the backward layer is not shared information between the two.
The forward layer and backward layer are calculated in turn and give the result of each
time. The final output ot depends on the sum of the forward calculation result st and the
reverse calculation result s′t.

3. Multi-Layer Stacked Bidirectional LSTM Neural Network for Short-Term Load Forecasting

The power load profile is affected by the residential electricity behavior, temperature,
humidity, etc. It is a multi-dimension nonlinear problem. The bidirectional LSTM neural
network solves the accumulated error problem in the training process. Furthermore, the
multi-layer bidirectional LSTM neural network is the fusion of a bidirectional neural
network based on a deep learning mechanism. A multi-layer forward structure and reverse
structure constitute the multi-layer stacked bidirectional LSTM. The multi-layer stacked
bidirectional LSTM neural network expands the depth of the bidirectional LSTM neural
network. The input data can be learned repeatedly to get an in-depth understanding of the
data characteristics and improve the accuracy of load forecasting.

3.1. Multi-Layer Stacked Bidirectional LSTM Neural Network

The system structure of the multi-layer stacked bidirectional LSTM is shown in
Figure 4. In the multi-layer stacked structure, every two layers of the LSTM neural network
are composed of forward and reverse LSTM networks. The second layer receives the sum
of the output results of the first layer of forward and reverse LSTM.

Figure 4 specifies the multi-layer bidirectional LSTM neural network system structure;
the output of the multi-layer stacked bidirectional LSTM neural network is determined by
the forward and backward results of each layer, and its model can be expressed as follows.

ot = g
(

V(j)s
(i)
t + V(i)s

(i)
t

)
(10)

ot = g
(

V(j)s
(i)
t + V(i)s

(i)
t

)
(11)

s
(i)
t = f

(
U∗(i)st

′(−1)
+ W(i)s′t+1

)
(12)

s
(1)
t = f

(
U(1)xt + W(1)st−1

)
(13)

st
′(1) = f

(
U′(1)xt + W ′(1)s′t−1

)
(14)

where si
t and si

t−1 are the state variables of the ith hidden layer at t − 1 and t time, respec-

tively. The forward and reverse calculations do not share the weight information. V(i), U(i),
and W(i) are the weight matrix between the input layer, hidden layer, and output layer. In
the reverse calculation, V′(i), U′(i), and W ′(i) are the corresponding inverse weight matrix,
respectively. i is the number of bidirectional LSTM layers, and i = 0, 1, 2 · · ·∞ represents
the value of the output layer.
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Figure 4. Multi-layer stacked bidirectional LSTM neural network.
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3.2. Multi-Layer Stacked Bidirectional LSTM Based Load Forecasting

The essential concept of the proposed improved LSTM neural network consists of
obtaining the statistical analysis of the power load by reconstructing the training sample
data. The multi-layer stacked bidirectional LSTM network is trained to perform the forecast
of the power load for the next 24 h. The prediction process of the proposed model can be
divided into the follow steps and shown in Figure 5.

Figure 5. The framework of the proposed method for load forecasting.

Step 1: Data preparation. Historical data of the power load profiles are collected and
pre-processed to remove any outlier or incorrect data before the training process. However,
the original data are not standard enough to use directly. Normalization is a common
method to normalize original data structures in system modeling, and the original data
become dimensionless after normalization, which can increase the convergence speed of
the neural network. After normalization, the value of the original data is between the
range of [0,1]. There are many normalization methods such as min–max scaling, Z-score
standardization method, and decimal scaling. In this paper, a linear normalization method
based on min–max scaling is used, which can be written as follows:

x∗ =
x − xmin

xmax − xmin
. (15)

xmax and xmin are the maximum and minimum values of the sample data of power
load, x is the original value of the sample data, and x∗ is the normalized value of the
original data.

Step 2: Network training. The forward value of input at t = 1 and the reverse state
value of input at t = T (T is the last sampling time of the training dataset) are unknown,
which are generally set to a fixed value (0.5) in the training process. Additionally, the
derivative of the forward value of input at T = t and the original value of the reverse
state of t = 1 are generally set to zero. It is assumed that the later information is not very
important for the current information updated. The process of network training contains
the following:

(1) Forward transfer. With the time sequence of 1 < t <= T, training data are input from
the cell of the bidirectional LSTM, and the predicted outputs are determined. Forward
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passes are only for forward states (from t = 1 to t = T) and backward states (from t = T to
t = 1). The output cells were transferred forward, and the n-th layer forward predicted
output is calculated.

(2) Backward transfer: The derivative of the partial objective function is calculated for
the forward transfer time period with 1 < t <= T. The backward LSTM cells are calculated
based on the forward value of 1 < t <= T and the reverse value of 1 < t <= T. The reversed
prediction output is calculated.

(3) Weight matrix updating. Based on the loss function of the neural network during
the training process, the weight matrix is calculated and updated.

(4) Result output. Based on the bidirectional calculation, the parameters of the predic-
tion model of LSTM neural network are estimated.

3.3. Evaluation Index

In this paper, the mean absolute error (MAE), root mean square error (RMSE), and
mean absolute percentage error (MAPE) are used to evaluate the error of prediction
results. MAPE, RMSE, and MAE are common indicators to evaluate the accuracy of the
proposed model based on the measurement value and estimated value. The definition
of the indicators is shown in Equations (16)–(18). MAE is the estimated indictor, which
is used as the measurement value. RMSE is used to evaluate the deviation between the
observed value and the true value; it is sensitive to outliers. MAPE is used to evaluate the
relative errors between the average observed value and the true value on the test. MAE
can reflect the error distribution during the time series, while MAPE normalizes the error
at different points and reduces the effect of the absolute errors of the outliers.

MAPE =
1
n

n

∑
i=1

|xi − x̂i|

xi
× 100% (16)

RMSE =

√
1
n

n

∑
i=1

|xi − x̂i|
2 (17)

MAE =
1
n

n

∑
i=1

|xi − x̂i| (18)

n is the number of sample data, xi is the real value, and x̂i is the predicted value.

4. Simulation and Experimental Analysis

In this section, we evaluate the performance of the proposed multi-layer stacked
bidirectional LSTM neural network for short-term load forecasting, and the key parameters
of the model are discussed as well. Moreover, the comparison between the proposed
method and previous work are also assessed. All models were executed in a computer
with a CPU clock speed of 3.0 GHz and 8 GB of RAM. The hidden layer of the proposed
model is 100, the hidden node is 8, the initial value of training learning rate is 0.01, and the
number of model training iterations is 100.

4.1. Dataset for Load Forecasting

The databases used in the paper were obtained from the station in the southwest of
China with an AC power voltage of 35 kV. The dataset contains a 3-year power load profile
with the sampling time of 15 min. The dataset is a mixed dataset that contains different
types of loads such as resident load, commercial load, and industrial load. The dataset was
pre-processed in order to separate the relevant data and select the predictive features in
the models. Here, we separated the dataset into different types for the load forecasting
based on days and season characteristics. The pre-processing of the dataset is shown in
Section 3.2, and the forecasting models were trained and tested using a 1-year sample
dataset where the first 80% is used for model training and the remaining 20% is used to
test the performance of the proposed model.
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4.2. Neural Network Structure Determine

Prediction accuracy has a significant relationship with the depth of the bidirectional
LSTM neural network. The dynamic characteristics of the load data will be extracted based
on the interaction of the different layers of the neural network. The internal relevance
information of the load profiles will be deep learned with the different stacked layers,
and the nonlinearity of the load sequence can be described in different dimensions. The
parameters of the input units, forget units, and output units of the proposed model are
shown in Table 1.

Table 1. The parameters of the equivalent model.

Input Gate

0.023 0.020 0.120 0.127 0.033 0.975 0.044 0.037 0.579 0.035

0.044 0.049 0.017 0.012 0.034 0.025 0.041 0.001 0.043 0.037

0.027 0.025 0.135 0.128 0.070 0.975 0.049 0.043 0.540 0.007

0.025 0.047 0.042 0.029 0.034 0.025 0.048 0.043 0.005 0.040

Forget Gate

0.024 0.006 0.030 0.008 0.032 0.015 0.050 0.016 0.024 0.005

0.012 0.015 0.013 0.046 0.013 0.045 0.041 0.048 0.050 0.019

0.049 0.044 0.046 0.005 0.000 0.023 0.015 0.046 0.019 0.037

0.007 0.014 0.030 0.007 0.043 0.016 0.044 0.025 0.047 0.037

Output Gate

0.030 0.002 0.043 0.038 0.005 −0.033 0.049 0.001 0.012 0.014

0.006 0.024 0.012 0.001 0.046 0.043 0.049 0.036 0.039 0.014

0.008 0.048 0.029 0.037 0.038 −0.044 0.023 0.012 0.002 0.035

0.021 0.045 0.002 0.017 0.006 0.048 0.019 0.020 0.023 0.012

The prediction accuracy of the different layers of the LSTM neural work is shown in
Figure 6. It can be seen that the proposed multi-layer bidirectional LSTM neural network is
an effective method and is accurate enough for the load forecast problem. Furthermore,
with the increasing numbers of layers, the prediction result will be more accurate. However,
when there are four layers, the prediction accuracy will increase, on the contrary. It is
said that three layers is suitable for the prediction of the load sequence data in this paper.
Table 2 shows the prediction errors of MAPE between the different layers of the different
neural network model.

Figure 6. The load forecasting of different layers of LSTM.

10



Appl. Sci. 2021, 11, 8129

Table 2. Error of different stacked layers of bidirectional LSTM.

Bi-LSTM Layers 1 2 3 4 5

MAPE (%) 0.51 0.465 0.405 0.41 0.41

4.3. Method Comparison

In order to show the high performance of the multi-layer stacked bidirectional LSTM
neural network in short-term load forecasting, different methods that contain a BP neural
network, ELM, traditional LSTM, and multi-layer stacked bidirectional LSTM model are
discussed in this paper. The prediction results all the methods tested in this paper followed
the same trend with the real load power shown in Figure 7. It can be seen that the multi-
layer stacked bidirectional LSTM neural network will be more competitive, and the error
comparison of those methods is shown in Table 3, where the MAPE, RMSE, and MAE
index are calculated and compared for one day over 24 h. From Table 3, the average MAPE
of the proposed method prediction model is 0.4137%; however, the average MAPE values
of the BP, LSTM, and ELM models are 1.485%, 1.030%, and 0.77%, respectively. The average
RMSE of the proposed method prediction model is 0.706, and those of the BP, LSTM, and
ELM models are 2.95, 1.921, and 1.369, respectively.

Figure 7. Load power of different forecasting methods.

Table 3. Error comparison of different prediction models.

Prediction Model BP LSTM ELM Proposed Method

MAPE (%) 1.485 1.03 0.77 0.405
RMSE 2.95 1.921 1.369 0.706
MAE 33.564 23.236 17.07 9.341

Different time interval errors are calculated between ELM, LSTM, BP, and the proposed
method in Table 4. The two-hour interval forecasting results fluctuate in different evaluation
indexes. However, the total evaluation indexes of the proposed method are at the minimum
in one day, and the quantitate analysis forecasting errors are calculated and shown in
Figure 8. Here, it can be seen that proposed method based on the multi-layer bidirectional
LSTM prediction model better grasps the prediction sample information and has a more
competitive forecasting performance. The multi-layer stacked bidirectional LSTM neural
network model can retain the original characteristics of the load sequences and reduce
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the data error by incorporating errors in unsupervised training, which can enhance the
robustness of the predictive model.

Table 4. Error comparison of different prediction models in a two-hour interval.

Forecast
Time Interval

BP [6] LSTM [21] ELM [8] Proposed Method

MAPE% RMSE MAE MAPE% RMSE MAE MAPE% RMSE MAE MAPE% RMSE MAE

0–2 h 0.73 28.53 14.76 0.59 15.94 11.79 0.58 14.21 11.58 0.35 9.36 7.13

2–4 h 0.92 33.16 17.71 1.18 26.11 22.66 1.11 25.33 21.56 0.49 10.8 9.39

4–6 h 1.62 40.76 30.47 1.01 23.14 19.18 1.08 23.17 20.49 0.41 9.09 7.7

6–8 h 1.71 40.38 35.08 1.03 25.62 21.21 0.92 23.4 18.96 0.52 12.96 10.66

8–10 h 2.67 90.05 60.54 1.22 38.12 28.11 1.26 41.67 28.95 0.49 14.95 11.43

10–12 h 1.1 30.61 27.58 0.79 24.86 19.93 0.65 21.26 16.38 0.39 11.89 9.96

12–14 h 1.27 36.6 30.36 0.66 22.32 15.65 0.57 18.78 13.51 0.43 12.9 10.41

14–16 h 1.05 32.59 25.15 0.56 18.35 13.4 0.61 17.76 14.67 0.39 11.73 9.51

16–18 h 0.95 28.58 23.3 0.78 23.36 19.12 0.43 13.44 10.37 0.27 7.96 6.54

18–20 h 1.09 33.3 27.2 1.0 30.51 25.11 0.56 17.02 14.01 0.32 9.82 8.03

20–22 h 2.27 78.7 57.12 1.85 65.6 46.68 0.93 31.81 23.52 0.48 16.9 11.99

22–24 h 2.42 73.32 54.88 1.57 41.71 35.33 0.48 13.01 10.8 0.42 12.76 9.56

Figure 8. Comparison of different prediction mode.

Different samples of training data will significantly affect the robustness of the load
forecasting model. The load will be more accurate with a smaller sample in the training
dataset. With 48 or 24 measurement points, the training dataset will be more random,
which will increase the difficulty of the load prediction. In this paper, a sample dataset
with 48 measurement points is used for the training of the proposed method to verify the
robustness of the proposed method and compare it with other methods. Figure 9 shows the
comparison of the load forecasting results with a half-hour training dataset; the proposed
method is accurate enough to track the load profiles based on deep learning, which
can extract the internal characteristics of the discrete sample load data and improve the
robustness of the proposed method with the multi-layer bidirectional training mechanism.
The MAPE of the proposed method is 2.39%, as shown in Table 5.
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Figure 9. Load forecasting of different methods.

Table 5. The error between different methods.

Prediction Model BP LSTM ELM Proposed Method

MAPE (%) 6.77 5.44 5.61 2.39
RMSE 91.9627 64.244 67.237 50.827
MAE 69.535 51.158 56.03 23.763

Furthermore, in order to verify the generalization ability of the proposed method for
the more complex environments on special days such as the weekend or a holiday, study
cases are tested with the historical day based on different measurement points; these are
shown in Figures 10 and 11. It can be seen that the prediction results of the load profile can
track the measurement data accuracy in different sample time intervals, and the sampling
time will influence the prediction results. The results in Figures 10 and 11 show that
the proposed multi-layer stacked bidirectional LSTM method is more accurate than the
other methods mentioned such as the BP neural network, ELM, and traditional LSTM
neural network.

Figure 10. The load forecasting for a weekend with a 0.5 h sample training dataset.
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Figure 11. The load forecasting for a weekend with a 1 h sample training dataset.

5. Conclusions

Accurate short-term load forecasting is a huge challenge due to the complexity of the
electrical load composition in modern power systems. In this paper, based on the traditional
LSTM neural network, a multi-layer stacked type short-term load forecasting method is
proposed. Reverse computing combined with forward computing is designed to solve the
unidirectionality of the memory process during the training period. The output gate can
collaborate the implied information in the historical load series. Furthermore, a multi-layer
stacked deep learning style for the neural network is proposed to perceive a low-level
features form of power load and form a more abstract high-level representation of load
characteristics. At last, a load forecasting frame based on the multi-layer bidirectional LSTM
neural network is proposed that contains neural network model construction, historical
load profile training, and load forecasting. In the experiments, the real operational load
data of a substation are tested, and the performance of the proposed method is tested and
evaluated. The results show that the proposed multi-layer stacked bidirectional LSTM
neural network method has high performance and is more accurate than the others. The
proposed method can retain the original information as much as possible and has a strong
memory function to extract the relevant information from historical load sequences.

However, with the increase in the sequence length of the problem, the efficiency of the
proposed method will reduce because the capacity of the memory units is limited. There
are four fully connected layers in each cell in the LSTM neural network; it needs a lot
of computing time in a deep stacked LSTM neural network. Future works will focus on
the industrial application of the proposed method with a more complex dataset. (1) We
built an online load forecasting system. The application of load forecasting is employed
for the dispatch of the power system, which is working all the time. Hence, an online
and rolling load forecasting system using the historical load data is the basis of this work.
(2) We corrected the load forecasting results. If the load forecast results deviate greatly, the
forecast points are corrected based on the data before and after time points.
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Abstract: The paper presents a new approach for the prediction of load active power 24 h ahead

using an attended sequential encoder and stacked decoder model with Long Short-Term Memory

cells. The load data are owned by the New York Independent System Operator (NYISO) and is

dated from the years 2014–2017. Due to dynamics in the load patterns, multiple short pieces of

training on pre-filtered data are executed in combination with the transfer learning concept. The

evaluation is done by direct comparison with the results of the NYISO forecast and additionally

under consideration of several benchmark methods. The results in terms of the Mean Absolute

Percentage Error range from 1.5% for the highly loaded New York City zone to 3% for the Mohawk

Valley zone with rather small load consumption. The execution time of a day ahead forecast including

the training on a personal computer without GPU accounts to 10 s on average.

Keywords: short-term load forecast; Artificial Neural Network; deep neural network; recurrent

neural network; attention; encoder decoder; online training

1. Introduction

Load forecasts are substantial in several areas of power network operation indepen-
dently of the voltage level. With the increasing number of renewables and thus more
volatility and dynamics in the network, the task of load forecasting becomes even more
important. Errors in forecasts have direct financial consequences on the utilities and in the
long-term on their customers. They also may lead to an inexcusable waste of the green
power in the case it has to be curtailed due to network congestions.

Load forecasts are usually subdivided into three categories concerning the length of
the prediction horizon:

• short-term: from a few minutes until one week ahead
• mid-term: from one week until one year ahead
• long-term: from one year until several years ahead

Short-term load forecasts are used to guarantee a safe and optimal real-time network
operation (prevention of network violations, unit commitment, and economic dispatch).
Mid-term load forecasts are more important for planning maintenance tasks, load re-
dispatch, and securing a balanced load and generation. Long-term forecasts are mainly
relevant for network reassembling and expansion.

In the area of short-term load forecasting, two basic groups of methods have been
established, i.e., methods based on statistics and so-called intelligent approaches [1]. Sta-
tistical methods are usually easy to implement and provide quick results. A standard
method from the group of statistical approaches is multiple regression [2,3]. It can cope
with changes in the load data due to trending or seasonal impacts and it can include in the
forecast model different kinds of independent variables such as weather and calendar or
the load data from previous time instances. To guarantee good prediction results, training
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data from at least one year before the forecast begins is required. Other well-established
statistical forecast methods are General Exponential Smoothing with inclusion of seasonal-
ity (Holt-Winters) [4] and autoregressive integrated moving average (ARIMA) [5,6] and
combination of ARIMA and Artificial Neural Networks [7]. They can consider influences
resulting from changing trends, seasonal differences and irregularities in load data and
work well with a limited amount of training samples. However, external variables such as
weather cannot be included in their models.

Statistical methods expect an exact mathematical model of load and its influencing
factors. Parameters of the model are estimated from the historical data samples. Fuzzy
logic approaches from the class of intelligent techniques get along with a high-level model
specification expressed with the “IF”-“THEN” statements [8,9]. Another group of intelli-
gent approaches are Artificial Neural Networks (ANNs) [10,11]. They require the definition
of the neural network to be used and pairs of input and output data. Since they can
approximate any function hidden in the data, they are very well suited for tasks where
an explicit model description is too complicated or the underlying function undergoes
frequent changes which are difficult to capture such as for example in load forecasting in
electric power networks with a high number of renewable sources.

With the advances in the research and the application of neural networks, the classical
multi-perceptron networks (MPN) [12,13] are more and more replaced by recurrent or
convolutional networks or combinations of these. Recurrent neural networks can repre-
sent time dependency by sharing the hidden layers of subsequent time steps. From this
category, especially Gated Recurrent Units (GRU) [14] and the even more powerful Long
Short-Term Memory (LSTM) networks [15] and their combined usage with convolutional
networks [11,16], the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for
hyperparameter search [17,18] shall be mentioned. Different than simple recurrent net-
works, these architectures do not experience the so-called gradient vanishing or exploding
problems [19] and are to some extent able to memorize longer time series sequences and
provide therefore superior results over MPLs or simple recurrent architectures.

Lately, originated from the research on machine translation problems also encoder-
decoder architectures are being applied to the load forecast problem. Ref. [20] used it for
the prediction of the load heat. The basic idea is to encode the information required for
the forecast execution before passing it to the actual forecast model. This decoupling is
crucial for machine translation and shows however good effects while applied to time
series prediction problems. An extension of this architecture is the incorporation of the
attention mechanism as introduced by Bahdanau in [21] in the area of natural language
processing. The attention approach allows for choosing those encoder states which may be
most influential for the prediction of the next decoder state. Ref. [22] applied the attention
model with Bahdanau attention [21] to the load forecasting using Vanilla, GRU, and
LSTM cells achieving in general superior results over non attended sequence to sequence
models. In [23] multi-headed attention together with a seasonal decomposition and trend
adjustment is used. Ref. [24] uses the classic combination of attended encoder-decoder
model with GRU cells as proposed by [21]. Additionally, to simplify the choice of the
hyperparameters the Bayesian optimization is applied.

The goal of the presented approach is the development of an improved attended
encoder-decoder architecture and its application to the problem of short-term load forecast-
ing considering the increasing number of renewable sources. Before passing to the model,
the inputs of the encoder and decoder are weighted using a one-dimensional convolutional
neural network. This operation allows for filtering out features that have a temporarily
lower correlation with the load power to predict. Additionally, a novel online training
based on its core of the concept of transfer learning is presented [25–27].

The scientific contribution of the presented paper is therefore an improved attended
sequential encoder-stacked decoder model applied to the problem of short-term load
prediction with:

• a novel and simplified definition of the attention scoring function
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• a novel online training procedure for sequence data on the base of transfer learn-
ing. This training procedure is especially important in the field of very dynamically
changing load patterns.

• a high accuracy achieved on real data provided by NYISO
• an evaluation with different methods including linear regression, Hidden Markov

Models and different recurrent neural network architectures

In the next Section 2.1, the data set is discussed along with the feature selection. In
Sections 2.2 and 2.3 the definitions of a recurrent network, an LSTM, encoder-decoder
model and attention are compiled. Using these definitions, the method is described in
Section 2.4. The results obtained by the proposed approach are evaluated together with the
results available from NYISO and with additional benchmark methods in Section 3. The
conclusions can be found in the final Section 4.

2. Materials and Methods

2.1. Data Used

The data used for training and evaluation of the approach is owned by the New York
Independent System Operator (NYISO) and can be freely accessed [28]. It has been already
used in [29] and therefore it will be possible to compare the results of both approaches.
NYISO’s data consists of integrated hourly load forecasts and corresponding measurements
of active load power. Moreover, load information, NYISO additionally offers time series
representing the price for power delivery, losses, and congestion in USD and forecasts of
ambient and wet bulb temperature in Fahrenheit produced by different weather stations.

The NYISO data set is almost complete (with a few missing inputs) for all eleven
zones. Because it includes also the forecast results of the utility, it is very adequate for
research purposes.

The training, test, and evaluation data used in the presented approach contain load,
temperature, and wet bulb time series from the years 2013 until 2015, 2016, and 2017
respectively. The decision to not consider price information was motivated by the very low
correlation between load and price data. More details related to the data set are in [29].

The most strongly correlated features are the load power and the ambient temperature.
However, this relationship differs concerning the season as described in [29] and varies
strongly depending on the temperature range. Figure 1 shows daily load curves for
subsequent working days in May 2017 in the New York City data. Remarkable are strongly
different daily peak values causing different load curve shapes. The peak values increase
from 6 [GW] on 15.05.17, over 6.5 [GW] on 16.05.17 until 8 [GW] on 17.05.17.

The corresponding daily temperature curves shown in Figure 2 document the same
order of increase of the peak values from 15.05.17 until 17.05.17 indicating a relationship
between both variables.

Figure 3 shows this relationship which is non-linear and differs strongly for each day
discussed. Because of this fact, the conclusion is self-evident, which is that the commonly
used sliding window approach for the choice of the training data such as for example
in [24] cannot be successful here. Instead, the choice of the training is based on similar-
day approach [12,30]. The reason is that following days can have strongly differing load
patterns due to changing weather conditions. Therefore, the similar day approach seems to
be superior.
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Figure 1. Load curves on subsequent days in May 2017 for the New York City data.
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Figure 2. Temperature curves on subsequent days in May 2017 for the New York City data.
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Figure 3. Correlation between temperature and load on subsequent days in May 2017 for the New
York City data.

Before the training, time series with missing entries or outlier values are excluded
from the data set. The training, test, and evaluation are executed on the z-score normalized
data according to Equation (1) with µ the feature mean and σ feature standard deviation.
For the calculation of the accuracy of the method, the data are however transformed back
to the original value space.

zi =
xi − µ

σ
. (1)

2.2. Recurrent Network with Long Short-Term Memory Cell

Recurrent networks are a group of neural networks which is developed to support
the dealing of the temporal aspects in the data [31]. This is achieved while conditioning
the hidden state from a time instance t not only on the input for time t but also on the
hidden state at the time instance t − 1. In simple recurrent networks also called Elman
networks, three matrices are shared over all time instances. A matrix W which stores
weights connecting input xt and hidden state ht, a matrix U containing the weights between
the hidden states of subsequent time instances and the matrix V which transforms the
hidden states to the network output. Accordingly, the hidden state ht is obtained from the
application of an activation function g on the weighted input and previous hidden state (2).
The network output yt is calculated using an activation function f on the weighted hidden
state ht as specified in (3).

ht = g(Uht−1 + Wxt) (2)

yt = f (Vht) (3)

One of the problems of Elman networks is that information inserted early time in-
stances may become lost at later ones. A solution to that problem is Long Short-Term
Memory (LSTM) cells which can filter out information not required at further time steps
and keep the one that may be needed later on. This is achieved by adding a recurrent
context layer and several weight matrices and gates in combination with the usage of the
sigmoid activation function as presented in Figure 4.
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Figure 4. A Long Short-Term Memory cell.

A Long Short-Term Memory cell consists of the forget gate (4), the input gate (5), the
cell update gate (6) and the output gate (7). The context Ct is obtained from the sum of
the pointwise multiplication (⊗) of the context from time instance t − 1 and the forget
gate and the cell update gate and the input gate (8). The output for the time instance yt is
calculated through the pointwise multiplication of the context at time instance t and the
output gate (9).

ft = σ(U f xt + W f ht−1) (4)

it = σ(Uixt + Wiht−1) (5)

Ĉt = tanh(Ugxt + Wght−1) (6)

ot = σ(Uoxt + Woht−1) (7)

Ct = σ(Ct−1 ⊗ ft + Ĉt ⊗ it) (8)

ht = yt = tanh(Ct ⊗ ot) (9)

2.3. Encoder-Decoder and Attention

The encoder-decoder architecture developed in the domain of machine translation is
constructed of two separated mostly recurrent networks called the encoder and the decoder.
Figure 5 shows an example of such architecture using LSTM networks. The goal of the
encoder network is to provide a compressed representation of the input sequence which is
then passed to the decoder as the initial state. The decoder creates the output sequence
subsequently one by one using the output from the preceding time instance as the input at
the following one. Because of this, the encoder-decoder architecture is very well suited for
time series problems.

Figure 5. An example of the encoder-decoder architecture with Long Short-Term Memory cells.

The encoder-decoder model is very powerful but has however one significant limita-
tion. While encoding the input sequence, often the information relevant for the creation of
a correctly decoded output becomes lost. This is solved using the attention mechanism. At
its core, the attention concept evaluates the similarity score between each encoder output
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and the currently produced decoder output. The goal is to draw attention to those encoder
sequence parts which are most significant for the current decoder output. In [21] first the
similarity score between each encoder state stored in hj and the previous decoder output
st−1 is calculated (10). The softmax function is applied to the similarity coefficients (11).
From that, the context vector is calculated (12) which is then concatenated with the decoder
hidden state of the time instance t − 1.

eij = vT
a tanh(Wast−1 + Uahj) (10)

αij =
exp(eij)

∑
Tx
k=1 exp(eik)

(11)

ci =
Tx

∑
j=1

αijhj (12)

Using these equations, the attention is drawn to those parts of the encoder which are
most significant while decoding the ith element of the sequence.

2.4. Application of the Attended Encoder-Decoder to the Short-Term Load Forecasting

2.4.1. Training Data

As mentioned in Section 2.1, the training data consists not of n recent days like it
is established through the sliding window approach. It contains n most similar days
to the day under forecast. The similarity of two days dayi and dayj is expressed by the
Equation (13) and it considers the weighted Euclidean distance d(dayi, dayj) between the
features measured at that days. Most similar days have the smallest distance between the
respective features.

d(dayi, dayj) =

√√√√
N

∑
k=0

wk

(
fi,k − f j,k

)2
(13)

The weight allows for larger differences in features that are wider spread and for
smaller differences in those which are contained within a narrow interval.

wk =
1

| f max
k − f min

k |
(14)

The feature set used for filtering of the most similar days consists of:

• daily minimum ambient temperature and wet bulb
• daily maximum ambient temperature and wet bulb
• daily minimum next day ambient temperature and wet bulb
• load power one hour before the intended forecast start before forecast start
• the type of the day (working day, weekend or holiday)
• the length of the day
• the type of the day concerning the ambient temperature (hot, cold, regular day)

To predict the hourly load curve for the next day, data of 96 most similar training days
is used.

2.4.2. Application of Encoder-Decoder Architecture

The encoder accepts inputs for the last 24 h before the forecast day as shown in Figure 6.
The decoder is fed with hourly chunks of the time-series data related to hourly ambient
temperature, hourly wet bulb, the type of the day, etc. at the forecast day and the output of
the decoder cell at the previous time instance (except the first decoded time step).
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Figure 6. Artifitial neural network architecture for load forecasting.

Each encoder and decoder input consists of:

• the hour h,
• the load power from hour h − 1 (for decoder the previous predicted value),
• the ambient temperature and wet bulb from hour h,
• the day of the week (0–6),
• the type of the day concerning the temperature (hot, cold, regular),
• the type of the day concerning holiday or working day,
• the length of the day

The usage of the load power alone as encoder input as done in [24] increased the
prediction error, therefore it was not applied here. The encoder and decoder input is
processed with a 1D convolutional filter to account for changing relevance of the input
data depending on temperature and day type.

The encoder is used as a sequential model, the decoder as a stacked architecture as
shown in Figure 6. During the test, it turned out that it is beneficial concerning the forecast
error to apply a separate convolution and attention layer for each decoded instance. This
might be related to the varying correlation between the encoder outputs and the decoder
output at time t.

2.4.3. Attention Score Function

During the development of the algorithm, a simplified score function showed slightly
better results. In Equation (15), the absolute difference between the encoder output h of the
dimension N and the last decoder output st−1 adjusted to the dimension of the encoder
is calculated. Afterwards the softmax function is applied twice (16) and (17). The first
time, to map the differences obtained from Equation (15) to the interval [0, 1]. The second
time, to assign small differences between the decoder and encoder output to the upper
part of the interval [0, 1] and larger differences to the lower part (17). The final context
vector is obtained in (18) as a sum over the time dimension. The decoder state for which
the attention is applied is concatenated with the context vector. Finally, a dense layer is
used to adjust the size of the concatenated vector to the output produced by the LSTM cell.

eij = |h − st−1×N | (15)

αij =
exp(eij)

∑
Tx
k=1 exp(eik)

(16)
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βij =
exp(1 − αij)

∑
Tx
k=1 exp(1 − αik)

(17)

ci =
Tx

∑
j=1

βijhj (18)

In this formulation, only one weight matrix is required instead of three matrices
as specified in (10). The forecast error while using both formulations of attention is
however similar.

2.4.4. Online Training—A Piecewise Learning of the Underlying Function

The standard training approach as applied for example in natural language processing
consists of a choice of representative training and validation data. The goal is to learn
the approximation of the underlying function in one training procedure and to use the
model for a longer period. The validation data are used to control the progress and the
quality of the training. Such holistic training procedures can be quite a time-consuming
one depending on the complexity of the function to be learned expressed in the network
architecture and the number of training data required. Additional problems arise if there
is not enough representative training data available or there is a sudden change in the
underlying function which is not captured in the chosen training data. In load forecasting,
holidays and abnormal days (very cold or very hot) are usually underrepresented and there
is no simple method to create artificial data without prior knowledge of the underlying
function. Due to the increasing number of renewables and prosumers, load patterns are
subject to further unexpected changes. Therefore, there must be a possibility to train the
network fast with a limited amount of training data.

In the presented approach, transfer learning [25,26] in combination with online train-
ing is being used to cope with time-consuming training procedure, the insufficient amount
of training data especially for weekends and hot days, and changing load patterns. Figure 7
shows an overview of the training and inference procedure.

Figure 7. Overview of the applied algorithm for training and inference.
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The preprocessed training data are loaded. If the forecast for the next day’s load
power shall be executed, the most similar days are picked. If available, the weights from
the previous day are loaded into the model. The encoder-decoder model is trained for
50 epochs in one batch using the ADAM optimizer. Each training data related to the day
dayj is weighted according to the Euclidean distance to the time series under prediction
dayi as calculated by Equation (13) shown in (19).

wtrain
j = 100 ∗ |

max(d(dayi, day1:n))− d(dayi, dayj))

max(d(dayi, day1:n))
| (19)

No validation data are used but an early stopping criterion is applied if the value
of the loss function falls below the threshold of 0.0001. The approximated piece of the
underlying function follows the data in the training data set. The prediction results are
decoded and returned. The weights are stored so that they can be reused as a starting
point for the next training. The data of the forecasted day is added to the training data
set. Using this approach, the training time is distributed in small chunks on each day to
be forecasted. Additionally, the most recent data can be easily included in the training
procedure capturing the most recent changes in the load pattern.

3. Results

The evaluation of the approach has been executed on the data from 2017 and it includes
all NYISO zones. Table 1 compiles the name, the abbreviation, and the average load for
each zone. The power consumption is varying because the zones differ concerning the size
of the area, the number of residents, and the type of housing (cities, villages, rural areas).
New York City is the zone with the highest number of residents. The power consumption
for that area is accordingly high. Mohawk Valley on the other side, has a relatively large
area, a small number of residents and therefore a significantly smaller load [28].

Table 1. NYISO load zones.

Zone Name Zone ID Average Load [MW]

Capital CAPITL 1450
Central CENTRL 1900

Dunwoodie DUNWOOD 780
Genese GENESE 1200

Hudson Valley HUD VL 1200
Long Island LONGIL 2500
Millwood MILL VD 770

Mohawk Valley MHK VL 980
New York City NYC 6000

North NORTH 590
West WEST 1800

The results obtained from the sequential encoder-stacked decoder with attention
(SESDA) are evaluated together with the results of three other methods. First of them is
the Hidden Markov Model approach from [29]. The Hidden Markov Models used there
were created online using the data directly without any training procedure. Additionally,
the results of the NYISO are taken into account [28,32]. The third benchmark is a linear
regression method from [3] and is named Tao’s Vanilla Benchmark. It already has served
as a benchmark for the GEFCom2012 load forecast competition and was under the first
25% best results of that competition [33].

The prediction error is measured by the Mean Absolute Percentage Error (MAPE) which
is specified by Equation (20), with M as measured value and P as the predicted value.

MAPE =
100%

n

n

∑
t=1

∣∣∣∣
Mt − Pt

Mt

∣∣∣∣ (20)
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Figure 8 compiles the forecast error for 2017 delivered by all considered methods
for each NYISO load zone. The attended sequential encoder-stacked decoder (SESDA)
achieves the best results for all zones. It is, however, closely followed by the Hidden
Markov Model with no training. The NYISO approach which combines regression with the
usage of neural networks outperforms Tao’s Vanilla Benchmark but seems to have some
problems with the low load zone MHK VL. For this zone, all approaches deliver relatively
high error which may be related to quite a wide area (15,230 square kilometers) and a small
population of that zone.

Figure 8. Evaluation of the 24 h ahead forecast error in 2017.

Figure 9 compares the daily MAPE for 2017 in New York City calculated using the
two best approaches: SESDA and HMM. The SESDA approach returns a smaller error. The
largest MAPE value for HMM is around 20% around 139th day of the year. Generally, the
highest HMM errors are concentrated between May and September. The highest attended
sequential encoder-stacked decoder error is around 10%. It occurs on holidays, on 4 July
2017 and 25 December 2017. Moreover, the higher forecast error on average, the HMM
approach delivers also more and higher error peaks on problematic days.

Figure 9. Daily MAPE of a 24 h ahead forecast in NYC for 2017.

Figure 10 compiles the results of SESDA and HMM evaluated for each day of 2017
in the load zone Mohawk Valley (MHK VL). The highest error delivered by the SESDA
approach is around 10% and occurs on around the 165 and the 275th day of the year. The
HMM produces the highest error of around 20% also around 165. day of the year. On
several days of the year, the MAPE returned by the HMM exceeds the 10% limit. The SESDA
approach delivers therefore more stable results with significantly smaller error peaks.
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Figure 10. Daily MAPE of a 24 h ahead forecast in MHK VL for 2017.

Figure 11 shows forecast errors in New York City according to the hour of the
day. For each hour the SESDA model outperforms the HMM reducing significantly the
forecast errors.

Figure 11. Hourly MAPE of 24 h ahead forecast in NYC for 2017.

Table 2 shows the evaluation of different ANN approaches on the NYC data set.
Among all approaches, the best results are achieved with the sequential encoder and
stacked decoder architecture. Sequential encoder-decoder with attention performs only
a little better than the sequential encoder-decoder without attention because it shares
the attention layer for all time instances. Sequential encoder-decoder without attention
performs only slightly better than the LSTM network. The reason is too strong context
vector compression in a 24 instances encoder. The LSTM network used for the evaluation
consists of 24 inputs. The 24th input is the predicted one. The model is trained for each
prediction hour separately. The Nonlinear Autoregressive Network with Exogenous inputs
(NARX) [19] shows the worst results. It has been implemented using 24 dense networks
for every prediction hour each.

The encoder-decoder method has been evaluated on a personal computer with Intel
Core i5-6300U CPU@2.40 GHz and 32 GB RAM. For the implementation, the Python
programming language along with the Tensorflow [34] and Keras libraries [35] has been
used. An average execution time for 24 h ahead forecast took around 10 s (including loading
test data, picking the most similar data, loading the weights into the model, training, and
inference). The required amount of time is around 5 times larger in comparison to the
HMM approach [29].
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Table 2. Results of different ANN approaches for NYC zone.

Method Name MAPE

Sequential Encoder Stacked Decoder with Attention 1.52
Sequential Encoder-Decoder with Attention 1.66

Sequential Encoder-Decoder 1.72
LSTM 1.75
NARX 2.16

4. Conclusions

The presented approach uses a sequential encoder-stacked decoder architecture in
combination with attention (SESDA) to predict load power 24 h ahead. The training data are
collected using the smallest Euclidean distance between the daily features of the forecasted
day and the days in the past. For each forecast day, a fast online training is executed
using the filtered most similar past data. The features included in the encoder-decoder
model range from hourly weather parameters, calendar data to the load demand from the
previous hour.

The algorithm achieves the best results in comparison with the benchmark methods
which include Linear Regression, a combination of Linear Regression and the usage of
Neural Networks, and the Hidden Markov Model approach. Although the difference
between the MAPE values of HMM and the encoder-decoder model is not as large as
the difference between HMM and Linear Regression, the HMM seems less stable than
the proposed architecture. However, the error reduction comes at a cost of the increased
forecast execution time.

One of the limitations of the algorithm is the requirement of the availability of pairs of
consecutive daily data for the training due to the network architecture (encoder-decoder
model). For data with many gaps related to whole days, the algorithm may perform less
successfully. Additionally, the algorithm requires on average 96 historical time series in-
cluding the previous days for the training. If the requirement is not fulfilled, the prediction
error will increase depending on the number of data provided. However, today’s utilities
have mostly access to the required amount of data.

The approach can be extended to support longer time horizons. However, in this
case some modifications of the architecture must be applied. First of all, the length of the
encoded sequence must be adjusted to the length of the forecast sequence. Additionally,
the self-attention mechanism inside of the decoder has to be used to consider the impact of
the preceding predicted values on the following ones due to the longer time horizon.

In future work, the authors will draw their attention to the application of reinforcement
learning to the area of short-term load forecasting.
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Abstract: Electrical generation forecasting is essential for management and policymakers due to the
crucial data provided for resource planning. This research employs the Prophet model with single
and multiple regressors to forecast the electricity generation in Kuwait from 2020 to 2030. In addition,
multiple seasonality Holt–Winters models were utilized as a benchmark for comparative analysis.
The accuracy, generalization, and robustness of the models were assessed based on different statistical
performance metrics. The triple seasonality Holt–Winters model achieved superior performance
compared with the other models with R2 = 0.9899 and MAPE = 1.76%, followed by the double
seasonality Holt–Winters model with R2 = 0.9893 and MAPE = 1.83%. Moreover, the Prophet model
with multiple regressors was the third-best performing model with R2 = 0.9743 and MAPE = 2.77%.
The forecasted annual generation in the year 2030 resulted in 92,535,555 kWh according to the
best performing model. The study provides an outlook on the medium- and long-term electrical
generation. Furthermore, the impact of fuel cost is investigated based on the five forecasting models
to provide an insight for Kuwait’s policymakers.

Keywords: prophet model; multiple seasonality; Holt–Winters model; long-term forecasting

1. Introduction

Accurate electrical generation forecasting is essential for the management and policymakers of
local and national power plants. Electric power generation is one of the complex processes where many
parameters are involved and need to be optimized to deliver the electricity continuously and efficiently
to the whole population [1]. On the other hand, power generation is faced with many challenges,
such as environmental legislation, fluctuations in fuel prices, and the need to optimize the available
resources. Moreover, different sources for power generation are used nowadays. These sources include
nuclear energy, fossil fuel such as coal, natural gas, crude oil, other gasses, and renewable energy such
as hydropower, solar, wind, municipal solid waste, and geothermal. Therefore, appropriate forecasting
is a need for these power plants in order to support continued prosperity.
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Forecasting horizons vary from short-term to mid-term and long-term horizons [2–6]. Long-term
forecasting is the most complex and critical due to the different parameters involved [6,7]. Parameters
include population, gross domestic product (GDP), consumer behavior, the advancement of technology,
and weather temperature. Long-term forecasting is facilitated to predict the future maximum peak
loads and/or annual demand and generation [3]. The forecast of maximum peak loads helps make
significant decisions such as constructing new power plants and/or any expansion. On the other hand,
forecasting the annual electrical generation provides critical data to define future power needs and
assess logistics, such as fuel and personnel needed for the specified generation. Accurate forecasting
guarantees efficient resource planning for the growing population and increasing demand for electricity
that avoids over or underestimating the procurement of resources such as fuel.

Different kinds of approaches are employed for electrical load demand forecasting in the literature
with several parameters in various complexity degrees to attain the best electricity demand forecasting
accuracy. The methods can be categorized into two main categories: conventional models and
artificial intelligence (AI) models [2–6]. Conventional methods include time series models, exponential
smoothing, regression models, and gray models [2,3,8]. In contrast, artificial intelligence models include
models such as machine learning (ML) models, deep learning (DL) models, genetic algorithm (GA)
models, artificial neural networks (ANN) based models, and support vector regression (SVR) [2,3,8].

Various studies investigated the long-term forecasting of electricity demand from different angles
using multiples approaches. Perez-Garcia and Moral-Carcedo [9] developed long-term forecasting for
electricity demand in Spain until 2030, based on a simple growth decomposition scheme to identify
other key factors. Torrini et al. [10] used a fuzzy logic approach to forecast Brazil’s long-term annual
electricity demand and extract rules from the input variables. Pessanha and Leon [11] decomposed
the total electricity residential consumption in Brazil into three variables: the number of households,
the average consumption of customers, and the electrification rate, and found the forecast by the
product of the forecast of the three variables. Mohamed and Bodger [12] used multiple linear regression
analyses to investigate the electricity consumption correlation of GDP, population, and the average
price of electricity during the period 1965–1999 of New Zealand. Ardakani and Ardehali [13] developed
an artificial neural network (ANN) and optimized regression models with improved particle swarm
optimization (IPSO) to forecast electrical energy consumption of Iran and the U.S. for 2010–2030.
Bianco et al. [14] presented different regression models based on co-integrated or static data using
historical data from 1970 to 2007 to develop a long-term consumption forecasting model for Italy.
Chen and Wang [15] implemented a collaborative principal component analysis and fuzzy feed-forward
neural network (PCA-FFNN) methodology in addition to the partial-consensus fuzzy intersection
and radial basis function network (PCFI-RBF) approach to forecast the electrical loads of Taiwan.
Silva et al. [16] presented a methodology that associates hierarchical models with the bottom-up
approach and the inclusion of the Bayesian inference to develop forecasting of electricity consumption
for the pulp and paper industry in Brazil ranging from 2015 until 2050.

A relatively new methodology is introduced by researchers from Facebook called Prophet
model [17]. It is a simple yet robust for estimation because of its structure of adjusting parameters
without investigating the original model’s details. It contains a decomposable time series model with
three main model components: trend, holidays, and seasonality. In a recent study [18], the Prophet
model outperformed the well-established Holt–Winters model in Kuwait’s long-term peak load
forecasting. The use of this method in forecasting is expected to spread due to its robustness
and accuracy. On the other hand, recent advances are employed on the Holt–Winters model [19],
which probably improves its accuracy. A recent study by Jiang et al. [20] predicted the electricity
consumption of a city in China by proposing a hybrid forecasting model and using the fruit fly
optimization algorithm to select the optimum smoothing parameters.

One of this study’s main contributions is to explore the use of the Prophet forecasting model,
with single and multi-regressors, and the multi-seasonality Holt–Winters model for the long-term
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forecasting of electricity generation. The dataset is based on the State of Kuwait as a case study with a
historical dataset from January 2015 to May 2020.

Kuwait is a country in the Middle East, and its economy is dependent on oil. The major
commodities in Kuwait, such as electricity, are supported financially and owned by the government,
aiming to keep them as low as possible for customers. Kuwait has eight conventional power plants
located in different cities with a total installed 19,673 megawatts [21]. Electricity peak demand in
Kuwait varied dramatically in the last 70 years with a generally decreasing trend. The average annual
increase in the fifties was around 32%, then it decreased to 26% in the sixties to 15% in the seventies
and reached around 8% in the nineties. The annual increase rate has decreased during the last twenty
years and reached around 3.68% in 2019 [22–24]. There is a dramatic increase in the population and
consumption per capita, as depicted in Table 1 below. The increase in electricity generation is attributed
to population growth and economic development [25]. The annual energy use per capita in 2018 is
14,235 kWh, which is considered very high and among the world’s highest. [21–24,26]. The average
household in Kuwait consumed is reported [27] in 2014 to be about 38 MWh, which is the highest
globally. The severe hot weather in summer and historically low prices are considered the main reasons
for this increase. However, other factors, such as people’s lifestyles, inefficient construction practices,
and installed equipment, might also contribute [26].

Table 1. The growing population and per capita consumption in three decades [21].

Year Population
Per Capita Consumption

kWh/Person
Mean Annual Rate of

Growth during 10 Years %

1989 2,048,000 10,295 -
1999 2,148,032 12,552 3.87%
2009 3,484,881 13,372 0.65%
2019 4,776,407 14,002 0.51%

One of the main points proposed [28] for fixing the high generation’s need is to tackle the
subsidized energy prices, which inspire greater electricity. Another viable idea is the use of dynamic
pricing [29], which can change the pattern or reduce the quantity of people’s electricity consumption.
Increasing electricity tariffs is expected to be a significant contributor to change the consumption pattern
of people. However, there are some difficulties in implementing these reforms due to their political
nature [28]. Alajmi [30] used energy audit techniques and implemented non-retrofitting and retrofitting
on a two-story educational facility that results in more than 50% annual total saving for governmental
buildings. The Ministry of electrical and water, especially with the need to mitigate climate change,
aims to reach a generation of 15% of renewable energy by 2035 [31]. Moreover, the government is
encouraging people to use renewable energy and new technology, which might lead to decentralize
the power systems and might also reduce the effect on government [22]. The introduction of new
sustainable buildings and cities that implement renewable energy and efficiently use the electricity,
especially with new residential cites in Kuwait, is feasible and efficient [22]. Digitalization through
the use of smart meters and smart grid is also believed to provide more reduction and sustainable
use of the electricity and are discussed by the Ministry of electrical and water and should come into
action [22]. However, remedies for the increase in the generation and their consequences are out of this
study’s scope.

The continuous increase in electricity generation and the different plans of government necessitate
carrying out more studies in forecasting. Studies are needed to estimate the total electricity generation
for the coming years to assist the policymakers in achieving the proper decisions regarding the future.
Several studies were carried out regarding long-term forecasting for Kuwait. However, most of them
were about peak load forecasting [18,32–37]. Alajmi and Phelan [32] used a bottom-up approach to
create a baseline for the residential sector’s end-use energy profile in Kuwait until 2040. Recently,
Alhajeri et al. [35] investigate the effects of COVID-19 on electrical consumption from 1st March to 30th
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May. Atalla and Hunt [37] studied high residential electricity demand drivers in the Gulf Cooperation
Council countries (GCC) using the time series model and suggested some recommendations to reduce
the demand.

To the best of authors’ knowledge, limited studies have investigated the Prophet model’s
use in forecasting the electricity generation. The originality of this study is that it explores the
performance of prophet model with multi-regressors in long-term forecasting of electricity generation.
The multi-regressors are the historical daily maximum and minimum load, temperature and population.
In addition, comparative quantitative analyses with multi-seasonality Holt–Winters model is presented
to assess the forecasting performance. Furthermore, the generalizability and robustness of the Prophet
and Holt–Winters methods for forecasting long-term electricity generation are explored and presented.
Various factors of the future are changing, such as population, weather temperatures, and peak
loads, directly or indirectly related to electricity generation were taken into account in the forecasting.
The study also provides and discusses the estimation of the expected future fuel consumption cost
until 2030.

The paper is structured as follows. Section 2 presents a description of the Prophet and the
multi-seasonality Holt–Winter models. Section 3 illustrates the results and analyses based on the
performance indicators. In addition, Section 3 provides insight for policymakers on the implications of
electrical generation on fuel costs.

2. Methodologies

The electrical generation’s real data between January 2015 and July 2020 was attained from the Ministry
of Electricity and Water (MEW) is used in this research. The data is plotted in Figure 1, showing the daily
generation for approximately six years. A vivid seasonality of the data is observed with an annual maximum
generation in the hot summer, especially June to August. There is an increasing trend of the generation,
as noticed from Figure 1, due to the growth of population, the building of new cities, as well as economic
development, and this is expected to continue in the upcoming years.

Figure 1. The actual data of generated daily loads data in Kuwait between January 2015–May 2020.

The data consists of five years with daily observations for electrical generation from January 2015
to May 2020 with 1978 data points. Taking a closer look at Figure 1, a yearly seasonality occurring
within July–August, can be observed. During these months, the high electricity demand is due to
Kuwait’s hot summer, with temperatures reaching 55 ◦C. The data also reveals a weekly seasonality
with low demand on Fridays and Saturdays each week due to the factories’ and industries’ closure on
weekends. Furthermore, the third seasonality corresponds to the year’s meteorological seasons and
will be addressed hereafter as quarters to avoid the confusion with methods’ seasonality patterns.
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In this study, long-term forecasting for electrical generation for the coming ten years is aimed.
Therefore, a search for models that comprise data with time-series nature with different seasonality
resulted in choosing the relatively new Prophet model from Facebook and the Holt–Winters model for
this work.

The relatively new Prophet model possesses some features such as tunable parameters by an expert
during the analysis, which allows for fine-tuning and the ability to reach robust forecasting. The model’s
automatic tuning does not require a full understanding of the underlying model, making it easier to
use. Limited studies are reported to use this model and proved to achieve vigorous results [18,38].
Whereas the Holt–Winters model, with different variations, is used extensively for long-term forecasting
and providing excellent results [39,40].

One of the Prophet model’s points of superiority is its ability to deal with missing data and
reach outstanding results. The Prophet model’s flexibility for complex data can be achieved using an
analyst-in-the-loop feature by integrating multiple-seasonality of different periods. The availability of
single and multivariate forecasting in a straightforward manner adds a new strength for the Prophet
model. On the other hand, Holt–Winters deals only with univariate forecasting. There exist different
Holt–Winters model variations in the literature where it was generalized to include double and triple
seasonalities [41,42]. The Holt–Winter model was then generalized and introduced in literature to
include n-seasonalities and was therefore known as nHWT [38]. Initialization methods of nHWT were
proven to have a crucial impact on the accuracy of the forecast [19].

In this research, the multivariate Prophet forecasting model is utilized to forecast the annual load
generation needed in Kuwait for the upcoming 10 years and is compared with the univariate nHWT
forecasting model with initialization methods. In the next sections, the implementation of the various
Prophet and Holt–Winters forecasting methods is presented in detail.

2.1. Prophet Forecasting Method

A Prophet model is used with simple or complicated time-series data that includes single or
multiple seasonality, holidays, and data trends. Multiple seasonality can include different patterns,
such as days, weeks, months, and years. As reported by Taylor and Letham [17], the mathematical
representation of the decomposed time series model:

y(t) = g(t) + s(t) + h(t) + εt (1)

where g(t) denotes the data trend function, s(t) denotes the seasonality, and h(t) denotes holidays effect
that can be added within specific points of the data and as an extra regressor. The error term, εt,
denotes any distinctive features of the data that are not fitted by the model.

Prophet trend function, g(t), can be signified by a piecewise linear growth model or a saturating
growth model. Since the electrical generation does not exhibit a saturating growth, a piecewise linear
growth model is utilized as:

g(t) = (k + a(t)T
δ)t + (m + a(t)T

γ) (2)

where k represents the growth rate, δ represents adjustment rate, m represents the offset parameter,
and γ is the trend changepoints, s j, and is set as −s jδ j, with a(t) defined as:

a j(t) =

{

1 i f t ≥ s j

0 otherwise
(3)

The change points allow the analyst in the loop to adjust the resulting forecast based on a previous
experience. Therefore, the trend of the forecast can be hence fine-tuned and results in an enhanced
forecast. The seasonality function s(t) can be modelled by Fourier series to represent daily, weekly,
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and yearly seasonality as well as to incorporate more complex seasonality patterns by higher order
Fourier series. The seasonality function is hence written as:

s(t) =
N
∑

n=1

(

an cos
(2πnt

P

)

+ bn sin
(2πnt

P

))

(4)

where P is assumed to be 365.25 for yearly seasonality pattern. Furthermore, Prophet model allows adding
extra regressors to enhance the forecast results. The holiday effects, as example, can be incorporated using
h(t) function and define a list of holiday dates as a matrix of regressors Z(t) defined as:

Z(t) = [1(t ǫ D1), . . . , 1(t ǫ DL)] (5)

h(t) = Z(t)κ (6)

with D as the set of holiday dates, κ ∼ Normal
(

0, v2
)

with v as the holiday smoothing parameter.
In this work, additional regressors were utilized and defined as the temperature, the maximum load,
the minimum load, and the population to result in a more reliable forecast that reflects the growth in
population and Kuwait’s average temperatures.

2.2. Holt–Winters Forecasting Model

Holt–Winters models are well-established models that have two seasonal variations: additive and
multiplicative types. The additive method is appropriate for fitting a time series data with a constant
seasonal variation. Whereas multiplicative method is appropriate for a time series with an increasing
seasonal pattern relative to the data level. The generalized Holt–Winters model was reported in
literature [19,41,43]. In this research, the generalized Holt–Winters model with multiple seasonality
and initialization methods is used for forecasting the electrical generation of Kuwait until 2030.

The Holt–Winters model consists of forecast equation and smoothing equations of the level, trend,
and seasonality of the time series. Assuming that St represents the seasonality, Tt to represent the trend
and that It corresponds seasonality, the additive trend multiplicative seasonality HW model can be
defined as:

St = α















Xt
∏

Ii
t−si















+ (1− α)(St−1 + Tt−1) (7)

Tt = γ(St − St−1) + (1− γ)Tt−1 (8)

Ii
t = δ
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Xt

St
∏

j,1 Ii
t−s j

















+
(

1− δi
)

Ii
t−si

(9)

X̂t(k) = (St + kTt)
∏

i

Ii
t−si+k

+ ϕk
AR(Xt − (St−1 + kTt−1)

∏

i

Ii
t−si

) (10)

where St represents the level, Tt as the trend, Ii
t to correspond to multiple seasonality and X̂t(k) is the

k-step ahead forecast. The smoothing parameters are defined as α for the level smoothing, γ as the
trend smoothing parameter, and δi as the smoothing parameters of each seasonal pattern with cycle
length of Si. The term ϕk

AR
is an adjustment for the first autocorrelation error.

There exist various initialization methods for the level, trend, and seasonality in order to enhance
the forecast accuracy [19]. The trend is initialized as T0 = 0 for an additive trend. Whereas the level
equation is initialized by the moving average value of the dataset and is obtained by:

S0 =
1

Sm
[
X1+sm −X1

sm
+

X2+sm −X2

sm
+ · · ·+

X2sm −Xsm

sm
] (11)
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The seasonality is initialized by the method presented by Brockwell and Davis [39] and adopted by
the National Institute of Standards (NIST) which depends on calculating the weights of the data series
against the multiple seasonality pattern values. The proposed method is presented in the following steps:

Step 1: Compute the yearly average as Ai
m for each seasonality of length sm and has a pattern of nq

times in the dataset

Ai
m =

∑si

j=1 X(m−1)si+ j

si
form = 1, 2, . . . , nq

Step 2: Divide the observations by the yearly averages as:

index 1 2 . . . q

1 X1

Ai
1

Xsi+1

Ai
2

. . .
Xsi+1

Ai
q

. . . . . . . . . . . . . . .

si
Xsi1

Ai
1

X2si

Ai
2

. . .
Xm1si+1

Ai
mi

Step 3: Write each seasonality as:

I
∗(i)
1−si

=

X1

Ai
1
+

Xsi+1

Ai
2

+ · · ·+
X(mi−1)si+1

Ai
mi

mi

I
∗(i)
1−si

=

X1

Ai
1
+

Xsi+1

Ai
2

+ · · ·+
Xmisi+1

Ai
mi

mi

Step 4: Write the seasonal indices as:

I
∗(i)
1−si

=



























I
∗(i)
t−s1

i = 1, t = 1, . . . , si

I
∗(i)
t−s1

∏i−1
j=1 I

∗(i)
t−sj

i > 1, t = 1, . . . , si

The simulation parameters are presented in Table 2 with the values of level, trend and seasonality
smoothing parameters as α, γ, δi respectively. The seasonality smoothing parameters are presented as
δy, δq and δw that corresponds to the yearly, quarterly, and weekly seasonality smoothing parameter values.

Table 2. Multi-seasonality Holt-Winter parameters.

Method and Seasonality α γ δi

HWSS—yearly 0.048 0.023 δy = 0.3

HWDS—weekly, yearly 0.039 0.029
δy = 0.32
δw = 0.28

HWTS—daily, weekly, yearly 0.042 0.025
δy = 0.3
δq = 0.29
δw = 0.35

2.3. Performance Indicators

In order to evaluate the performance of each model in terms of accuracy, various statistical metrics
were adopted, such as root mean square error (RMSE), the mean absolute percentage error (MAPE),
coefficient of determination (R2), mean absolute error (MAE), and coefficient of variation of root mean
square error (CVRMSE) that can be expressed as in the following equations:
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RMSE =

√

∑n
i=1(ŷi − yi)

2

n
(12)

CVRMSE =

√

∑n
i=1(ŷi − yi)

2

y̆
(13)

MAE =
1
n

n
∑

i=1

∣

∣

∣yi − ŷi

∣

∣

∣ (14)

MAPE =
1
n

n
∑

i=1

∣

∣

∣

∣

∣

ŷi − yi

yi

∣

∣

∣

∣

∣

× 100% (15)

R2 = 1−

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y̆)2

(16)

where y, ŷ, and y̆ represent the measured, predicted, and averaged values respectively.

3. Results and Discussion

Different models are employed to forecast the electrical generation for Kuwait up to 2030 using
real data from the Kuwait Ministry of electrical and water. The simulations were carried out within
Rstudio and Matlab software environments. The period between January 2015 to December 2018 was
used for estimation and adjustment, while the period from January 2019–May 2020 was used for the
validation, and the forecasting horizon is between June 2020 to December 2030.

Single (PSR) and multiple (PMR) regressors were used for Prophet model, and three methods of
seasonality Holt–Winters models: single (HWSS), double (HWDS), and triple (HWTS). Each model’s
performance is assessed from different angles by accuracy indicators. The future electrical generation
forecasting of Kuwait until the year 2030 using the five models is plotted in Figure 2a,b. The models are
assessed in the following section and then discussed, and different fuel cost scenarios are investigated.

MAPE =  1𝑛 𝑦 − 𝑦𝑦 100%  𝑅  =  1 − ∑ (𝑦 − 𝑦 )  ∑ (𝑦 − 𝑦)  𝑦, 𝑦, 𝑦

 
(a) 

 
(b) 

 

Figure 2. The generation of daily loads data in Kuwait: the trained, predicted, and forecasted data using
the five models of (a) two types of the Prophet model and (b) three types of the Holt-Winters model.
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3.1. Model Assessments

Several performance indicators were employed to investigate the reliability of the forecasting of
the used models. These indicators are discussed in this section to assess the accuracy and generalization
of the used models. Five accuracy performance statistical metrics were employed in this study.
These metrics include MAPE, MAE, RMSE, CVRMSE, and R2. Each of the metrics shed light on one
angle of the accuracy of the data. MAPE can be considered one of the utmost used tools for evaluating
the accuracy of models. MAE reveals the difference between the estimated value and the real value
using the absolute error. RMSE assesses the variability of model response regarding variance and
sensitivity to large errors. CVRMSE standardizes the forecasted error and provides a unit-less metric
that evaluates the variability of the errors between predicted and real values.

Table 3 presents the calculated values of various statistical performance metrics (MAPE, MAE,
RMSE, CVRMSE, and R2) for the used models. Five different models were used: The single Prophet,
multiple Prophet models, single, double, and triple seasonality Holt–Winters models. Abbreviations are
used to denote the different models used: PSR denotes a Prophet single regressor model. PMR denotes
Prophet multiple regressors model, HWSS denotes Holt–Winters with single seasonality model,
HWDS denotes Holt–Winters with double seasonality model, and HWTS denotes Holt–Winters with
triple seasonality model. The triple seasonality Holt–Winters model achieved a superior value of
accuracy in comparison with other model’s performance metrics. The double seasonality Holt–Winters
model was the second with all performance measures comparable to the triple seasonality model.
MAPE was proposed as a reference indicator for assessing energy forecasting performance at different
horizons [2]. All models achieved a low MAPE value of less than 5%, which indicates the models’
high accuracy. It is benchmarked [40] that When MAPE is less than 10%, it is considered a highly
accurate model. Highly accurate models were then categorized into four levels, with the best model
denoted by I level when MAPE is ≤1.2%. Other levels are as follows: II (1.2–2.8%), III (2.8–4.6%),
and IV (4.6–10%) [2]. Three of the used models, namely the multiple Prophet model and the double
and triple seasonality of Holt–Winters models, fall in the II level of this rating, whereas the other two,
namely single Prophet and single seasonality of Holt–Winters model, fall in the III level. The triple
seasonality Holt–Winters model outperforms all the other models in MAPE value. Superiority is also
observed for both double and triple seasonality Holt–Winters models in MAPE values compared to
other models. The MAPE values were 1.76% and 1.83% for triple and double seasonality Holt–Winters
models, respectively.

Table 3. The calculated values of different performance statistical metrics for the used models.

Indicator PSR PMR HWSS HWDS HWTS

MAPE 3.18% 2.77% 3.29% 1.83% 1.76%
MAE 120.10 78.23 127.82 54.01 46.82
RMSE 153.81 104.38 165.08 75.09 67.05

CVRMSE 22.92 16.26 24.50 11.22 10.45
R2 0.9709 0.9743 0.9641 0.9893 0.9899

The coefficients of determination, R2, of the five models are plotted with excellent values in
Figure 3, showing small differences among the forecasted and real data values. The best-fitting was for
the Holt–Winters model’s triple seasonality with R2 = 0.9899, then to the Holt–Winters model’s double
seasonality R2 = 0.9893 followed by multiple Prophet model with R2 = 0.9743. The least values of R2

were 0.9709 and 0.9641 for the single Prophet model and single seasonality of the Holt–Winters model,
respectively. The MAE of the best model, which is the triple seasonality of Holt–Winters, was found to
be 47.82, whereas the value of MAE for the least model, which was the single seasonality Holt–Winters
model, was 127.82, which is approximately three times of the triple model.
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Figure 3. The coefficient of determination R2 and the fitting characteristics of real and simulated data
for all the models.

The RMSE value of the Holt–Winters model’s triple seasonality was also the lowest with a value
of 67.05 among the other models, followed by the double seasonality with a value of 75.09, whereas the
single seasonality of the Holt–Winters model was the maximum with a value of 165.06. Similarly,
the CVRMSE percentage of the Holt–Winters model’s triple seasonality was the least compared to other
models, followed by the double seasonality. Therefore, based on the statistical performance metrics,
it is vividly clear that the triple seasonality of the Holt–Winters model has a superior fitting and better
accuracy compared to other used models followed by the double seasonality of the Holt–Winters model.

A model’s generalization is measured by a model’s capability to estimate samples beyond the
training zone. The five models’ relative error variations are shown in Figure 4 with a maximum relative
error value of less than 40% for all models. The triple seasonality of the Holt–Winters model values was
less than 21%, and the maximum was for the single seasonality of the Holt–Winters model. The worst
relative error was for the single seasonality of the Holt–Winters model.

 

Figure 4. Relative errors percentage for the five models.
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The models’ robustness is assessed by incorporating different Gaussian white noise intensities into
the real tested data similar to relevant previous studies [44–46]. The data were divided into a training
dataset and several testing sets with each set corresponding to a different noisy intensity. Four different
intensities of 20%, 40%, 60%, and 80% were utilized to investigate the robustness of the five models.
The models’ robustness was evaluated through the accuracy of the coefficient of determination R2

by studying the random distributed Gaussian white noise on the training dataset. Table 4 shows the
variance of R2 affected by different noise intensities.

Table 4. The accuracy reduction in coefficient of determination for different models under various
noise intensities.

Noise Intensity PSR PMR HWSS HWDS HWTS

0% 0.9709 0.9743 0.9641 0.9893 0.9899
20% 0.9697 0.9710 0.9619 0.9853 0.9872
40% 0.9671 0.9705 0.9592 0.9847 0.9867
60% 0.9670 0.9684 0.9587 0.9820 0.9858
80% 0.9667 0.9682 0.9552 0.9798 0.9816

The effects of different noise intensities are also plotted in Figure 5 to show the effects of noise
on the five models’ overall trends. The general trends showed an association between the increase in
noise intensity and a reduction in the determination coefficient’s value as expected. High robustness is
noticed by the low variance of R2 of the triple seasonality of the Holt–Winters model with the least
value of 0.9816 at 80% noise intensity. The Holt–Winters model’s single seasonality showed the least
robustness among the other models with a minimum value of 0.9552. The other models showed
excellent robustness across the different noise intensities. These results drive to the same previous
conclusion that the triple seasonality then double seasonality of the Holt–Winters model outperformed
the other models in terms of accuracy, generalization, and robustness.

 

Figure 5. Variations of the coefficient of determination at different noise intensities for the five models.
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3.2. Future Generation Forecasting

Long-term electricity forecasting studies can include the peak load forecasting as well as electricity
generation forecasting as in the current study [18]. Each of the two forecasting approaches contributes to
providing different information for the experts and reveals a comprehensive overview of the electricity
grid. One of the common misconceptions is that the generated electricity’s annual peak occurs on the
same day as the annual peak load. However, this may not be true for all datasets and case studies
due to several factors. These factors can be attributed to the nature of the annual peak load date,
resulting from the high consumer consumption at a specific time due to temperature, the time during
the day, and consumption pattern. The annual peak generation is associated with these factors during
the whole day and not at a specific time. As a result, the annual peak load dates are not identical
with the annual peak generation dates. Table 5 provides a comparison between the peak load dates,
from [18], and the peak generation of this study in Kuwait between 2015–2020. It is evident that
forecasting the peak load and the peak generation would be advantageous to policymakers to prepare
for the expected loads in terms of logistics needed for the electrical generation. Moreover, it would
help in making decisions for expanding the electricity grid and to assess the need for boosting from the
current interconnected GCC power grid.

Table 5. The annual peak load and the matching generation and the annual peak generation and date.

Year Date Peak Load
Generation of
the Same Date

Peak
Generation

Date

2015 30 August 2015 12,810 279,228 279,228 30 August 2015
2016 15 August 2016 13,390 288,058 290,304 2 August 2016
2017 26 July 2017 13,800 290,288 299,694 14 August 2017
2018 10 July 2018 13,910 284,718 300,231 12 July 2018
2019 27 June 2019 14,420 318,531 318,531 27 June 2019
2020 30 July 2020 14,960 317,677 326,437 31 July 2020

The long-term electric generation forecasting for the year 2020–2030 of the five models, and the
actual data are tabulated in Table A1. The forecasted data of the annual electrical generation of the five
models are plotted in Figure 6.

Figure 6. The long-term annual electrical generation forecasting of the five models.
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According to the forecast of the triple seasonality of the Holt–Winters model, the annual electric
generation in Kuwait will reach about 92,535,555 kWh by the year 2030. This forecasted value is
around 23% higher than the actual generation in 2019. The other models are higher in the forecasted
annual electrical generation, which reaches up to 102,262,507 kWh in single seasonality of Holt–Winters
models, which is higher by 36% than the generation of 2019. The management needs to assess the
needed facility or equipment needed for such a generation to be established and prepared.

The forecasted monthly consumptions of the coming two years for different models are depicted
in Table A2 and Figure 7. In addition to the study’s primary aim, analyzing the monthly electrical
generation can provide mid-term information for the logistics needed for this generation. The highest
generation is clearly in two months, July and August, where Kuwait has its harshest weather
temperature and humidity. Moreover, the higher electrical generation period of each year is between
May and September. The maximum monthly electrical generation in 2021 is July for all the models,
whereas August is the maximum in 2022 for the PSR, PMR, and HWSS models, and July 2022 is
the maximum for the HWDS and HWTS models. Such information provides management and
policymakers with vital tools to reach the right decision for the proper generation of electricity and
planning for major maintenance or shutdowns.

 

Figure 7. Monthly total generation of electricity for Kuwait between 2021 and 2022.

The monthly electrical generation introduces useful information to determine a map of electrical
demand and associated maintenance program. In contrast, the long-term annual electrical generation
forecasting help in estimating the fossil fuel power plants’ fuel budget. Therefore, addressing fuel
costs evaluation constitutes a positive addition in the current research and reflects the primary goal of
electrical generation prediction for all-electric power entities.

3.3. Implications of Elecrical Generation on Fuels Cost

The long-term annual electrical generation forecasting can be used to estimate the fuel cost of the
future till 2030. Since Kuwait is dependent on oil export as the primary source for the country’s revenue,
the electricity generation directly relates to the country’s economy, especially with the depletion
of oil due to burning fossil fuel as a fuel in electricity generation. Kuwait’s power plants use four
different types of fossil fuel: natural gas, gas oil, crude oil, and heavy fuel oil (HFO). The rate of
increase in electricity consumption has significant effects on the stability of the country’s economy.
Therefore, the long-term forecasting of electrical generation is essential for policymakers to keep
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Kuwait’s prosperous future. The sharp increase in electrical generation can deplete the oil resources
capacity and is critical to Kuwait’s economic future. The total cost of fuel consumed in the electrical
generation between 2012 and 2019 is tabulated in Table 6 to illustrate the fuel cost change.

Table 6. The consumption of fuels and the total cost of fuel consumption between years 2012–2019
[21–24].

Year
Natural Gas (KSCF)
Standard Cubic Feet

Gas Oil
(Barrels)

Crude Oil
(Barrels)

Heavy Oil
(Barrels)

Total Cost
(KD)

2012 264,080,165 11,913,629 16,566,894 38,557,558 2,423,012,351
2013 253,461,108 9,237,306 11,323,855 46,967,101 2,327,992,356
2014 313,936,191 11,153,661 14,409,093 37,954,682 2,435,107,934
2015 350,979,921 8,570,450 4,849,437 46,722,496 1,288,525,905
2016 378,535,102 5,731,758 4,057,944 48,460,342 1,010,903,300
2017 374,964,177 5,196,552 9,194,665 41,591,383 1,297,642,956
2018 403,438,524 3,623,846 6,236,988 42,956,365 1,694,031,251
2019 433,605,520 5,376,675 3,439,839 39,107,701 1,442,738,912

It is clear from Table 6 that the total cost of fuel is fluctuating and associated with world fuel
prices. Assessment of the power and desalination plants’ fuel future requirements is vital to secure
power generation and water supply stability. However, this may require thorough investigations to
address all the parameters and be examined in the future. Instead, the analysis of possible simplified
estimation of the total cost of fuel associated with the long-term electrical generation forecasting is
introduced to address the uncertainties of fuel prices. The fuel cost represents the first source of
expenses based on the life cycle assessment for the whole plant lifespan, which exceeds the capital
investment cost. Fossil fuel constitutes about 99.6% of the total energy supply sources to the Kuwait
power sector [21–24], and the high percentage level of dependency is typical in most oil countries.

There are two natural gas sources in Kuwait, local and imported liquefied natural gas (LNG).
However, each type of fossil fuel has its own chemical and physical characteristics, and the price
fluctuates according to several factors such as source, quality of the fuel, and demand-supply bases.
The percentage of fuel consumptions map are varied year per year in power generation sectors
and mainly governed by the strategies of Kuwait Petroleum Corporation (KPC), which is oriented
economically. The fixed baseline of fuel price was selected throughout this work, as illustrated in
Table 7, based on the average values extracted from the past five years data to evaluate the fuel budget
for the next ten years using the five models’ extracted outcomes.

Table 7. Average prices of the different fossil fuels used in power generation in Kuwait.

Fuel
Price

Unit
Low Average High

Natural Gas 0.294 0.375 0.456 KD/MSCF
Gas Oil 11.846 18.904 25.963 KD/bbl

Crude Oil 8.084 14.085 20.085 KD/bbl
H.F.O. 6.496 13.398 20.300 KD/bbl
LNG 1.265 2.626 3.987 KD/MSCF

Single and triple seasonality Holt–Winters models are the two models that cover the upper and
lower band of the estimated cost of the forecasted annual electricity generation for Kuwait from
2020–2030 as it can be observed in Figure 8. Estimating the fuel budget is not limited only to the
economic criteria but also to technical factors, such as type of unit, heat rate, degradation, and fuel
quality. For the sake of simplicity, the average degradation value for the unit heat rate was assumed
1% as per registered and proposed by the manufacturers at standard conditions. Figure 8 shows the
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forecasted fuel budget for the Kuwait power and desalination plants in millions of Kuwaiti Dinars up
to 2030 using all proposed models.

 

 

Figure 8. Forecasted fuel budget in millions of Kuwaiti Dinars for the upcoming ten years based on the
power generation prediction of all proposed models.

All models elucidate consistent trend through the gradual increase in fuel cost due to increasing
power generation. The gap between the upper model (HWSS) and lower model (HWTS) outcomes,
as it can be noticed in Figure 8, increases at the end of the tested period compared to the beginning
because of the rise in expected power generation difference, which exceeds 9 million kWh total annual
production. The moderate growth of the fuel budget might be attributed to the rising dependency
on natural gas on other liquid fossil fuels. Relying more on natural gas as a significant fuel source is
evident in the electricity value between them.

The primary contribution of fuel to the total fossil fuel budget comes from natural gas with LNG,
followed by Heavy fuel oil, gas oil, and crude oil for the year 2020, while gas oil and crude oil have the
same contribution by 5% in the year 2030 as illustrated in Figure 9.

 
Figure 9. Fuel contribution cost as a percentage of total fossil fuel cost for the years 2020 and 2030.
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The fuel distribution estimation was determined based on the actual fuel scenarios over the last
five years, which do not depend on fuel price only but govern by fuel availability and type of available
units. The distribution pattern shows that the natural gas share increases over the examined period by
10.9%, whereas the liquid fossil fuel reduces by 8.1%. The present study has confirmed the advantage
of securing more natural gas on fuel future map by cost-effectively selecting new energy systems.
The MEW’s future fuel budget can be reduced by securing more local natural gas and implementing
large-capacity renewable energy projects.

4. Conclusions

Long-term forecasting of electrical generation in Kuwait was investigated using five models to
predict the electrical generation until 2030. Different statistical performance metrics were employed to
assess the accuracy, generalization, and robustness of the models. The Holt–Winters model’s triple
seasonality outperformed the other models in terms of the MAPE, RMSE, CVRMSE, MAE, and R2.
According to the different performance indicators, the double seasonality of the Holt–Winters model
was the second-best performing model with superior accuracy. The Prophet model, with multiple
regressors, has shown comparable performance to the Holt–Winters double seasonality model.
In contrast, the least performing models were the single regressor Prophet model followed by the
single seasonality Holt–Winters model. The estimated annual electrical generation for the year 2030 of
the Holt–Winters models’ triple and single seasonality models were 92,535,555 and 102,262,507 kWh,
respectively. The generation of electricity in Kuwait during the upcoming ten years was then presented
and discussed. The results reveal that the higher electrical generation period occurs between May
and September of the upcoming two years. The five models’ long-term electrical generation forecast
was then used to estimate the fuel’s total cost to provide an overview for policymakers to support the
execution of planning decisions.
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Nomenclature

GDP Gross domestic product
AI Artificial intelligence
ML Machine learning
DL Deep learning
GA Genetic algorithm
ANN Artificial neural networks
SVR Support vector regression
IPSO Improved particle swarm optimization
PCA-FFNN Principal component analysis and fuzzy feed-forward neural network
PCFI-RBF Partial-consensus fuzzy intersection and radial basis function network
RMSE Root mean square error
MAPE Mean absolute percentage error
R2 Coefficient of determination
MAE Mean absolute error
CVRMSE Coefficient of variation of root mean square error
PSR Single regressor for Prophet Model
PMR Multiple regressors for Prophet Model
HWSS Single seasonality Holt-Winters model
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HWDS Double seasonality Holt-Winters model
HWTS Triple seasonality Holt-Winters model
HFO Heavy fuel oil
LNG Liquefied natural gas
KPC Kuwait Petroleum Corporation

Appendix A

Table A1. The real data and the forecasted annual generation of electricity for Kuwait from 2015–2030.

Annual Total Electrical Generation (kWh)

Actual PSR PMR HWSS HWDS HWTS

2015 68,286,350 70,208,828 68,449,290 68,935,381 68,299,370 68,047,664
2016 70,084,727 71,309,681 69,977,535 71,082,353 70,008,887 69,798,293
2017 72,787,590 73,359,898 72,903,860 72,910,975 72,810,502 72,665,778
2018 74,430,304 74,872,001 74,156,996 76,173,631 74,432,331 74,326,541
2019 75,069,410 76,179,317 75,040,336 77,113,949 75,008,034 74,916,365
2020 80,036,707 78,329,573 81,683,193 77,607,284 76,441,652
2021 85,131,998 81,893,161 83,971,685 79,070,098 77,576,721
2022 87,184,615 83,945,450 87,453,223 80,757,167 78,803,803
2023 88,888,944 84,818,623 89,208,193 83,518,864 80,801,914
2024 90,819,983 86,916,798 92,262,607 85,265,977 83,624,082
2025 91,833,231 88,556,264 93,165,837 85,770,309 85,417,389
2026 92,878,920 89,406,883 93,465,256 86,293,807 85,933,949
2027 94,350,541 90,451,648 95,353,865 88,667,276 86,469,671
2028 95,636,495 91,515,320 96,037,295 90,582,478 88,899,766
2029 97,623,149 94,049,623 98,668,062 92,751,443 90,860,715
2030 99,677,375 95,421,752 102,262,507 94,313,533 92,535,555

Table A2. The forecasted monthly generation of electricity for Kuwait between 2021 and 2022.

Monthly Total Generation (kWh)

PSR PMR HWSS HWDS HWTS

21 January 4,719,195 4,506,418 4,723,899 4,154,973 4,160,775
21 February 4,265,083 4,085,284 4,253,269 3,812,010 3,819,632

21 March 5,407,054 5,148,962 5,413,977 4,797,070 4,828,850
21 April 6,207,547 5,940,924 6,196,026 5,609,673 5,679,516
21 May 8,150,344 7,765,217 8,169,369 7,655,697 7,802,910
21 June 9,445,881 9,051,420 9,446,366 8,798,820 8,997,350
21 July 10,276,964 9,856,725 10,275,340 9,567,496 9,791,745

21 August 10,152,294 9,738,065 10,157,051 9,287,612 9,500,731
21 September 9,048,569 8,676,132 9,050,778 8,229,272 8,404,845

21 October 7,912,560 7,534,398 7,904,534 6,922,840 7,040,503
21 November 5,160,468 4,926,339 5,163,376 4,584,972 4,613,376
21 December 4,884,369 4,663,277 4,878,559 4,186,849 4,194,054

22 January 4,841,008 4,639,763 4,849,182 4,240,582 4,251,986
22 February 4,423,749 4,236,537 4,423,660 3,890,423 3,903,769

22 March 5,532,091 5,310,500 5,534,806 4,884,470 4,934,148
22 April 6,248,921 5,960,376 6,239,217 5,639,118 5,802,449
22 May 8,455,250 8,067,020 8,473,173 7,812,368 7,970,160
22 June 9,582,494 9,164,224 9,567,936 8,978,583 9,189,225
22 July 10,355,563 9,995,653 10,348,046 9,762,630 10,000,339

22 August 10,534,098 10,092,835 10,528,398 9,414,655 9,637,299
22 September 9,431,675 9,043,116 9,461,242 8,355,913 8,540,640

22 October 7,942,639 7,593,484 7,936,245 7,039,516 7,165,731
22 November 5,376,527 5,160,420 5,371,959 4,683,238 4,718,244
22 December 4,912,699 4,681,523 4,909,340 4,271,941 4,285,130
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Abstract: The continuous penetration of renewable energy resources (RES) into the energy mix

and the transition of the traditional electric grid towards a more intelligent, flexible and interactive

system, has brought electrical load forecasting to the foreground of smart grid planning and operation.

Predicting the electric load is a challenging task due to its high volatility and uncertainty, either

when it refers to the distribution system or to a single household. In this paper, a novel methodology

is introduced which leverages the advantages of the state-of-the-art deep learning algorithms and

specifically the Convolution Neural Nets (CNN). The main feature of the proposed methodology is

the exploitation of the statistical properties of each time series dataset, so as to optimize the hyper-

parameters of the neural network and in addition transform the given dataset into a form that allows

maximum exploitation of the CNN algorithm’s advantages. The proposed algorithm is compared

with the LSTM (Long Short Term Memory) technique which is the state of the art solution for electric

load forecasting. The evaluation of the algorithms was conducted by employing three open-source,

publicly available datasets. The experimental results show strong evidence of the effectiveness of the

proposed methodology.

Keywords: short-term electrical load forecasting; machine learning; deep learning; statistical analysis;

parameters tuning; CNN; LSTM

1. Introduction

Load forecasting has always been a challenging task that triggers the interest of both
academia and the industrial sector. Since the 1960s, auto-regressive (AR) models have
been widely used for designing and implementing predictive load forecasting models.
These were based on the assumption that the system/substation load at any given time
can be satisfactorily described as a linear combination of past load values and other values
of a set of exogenous variables. Therefore, they were either plain AR models or AR models
with exogenous variables (ARX) and/or AR models with moving average components
(ARMA and ARMAX). Such models and variants thereof were used extensively for electric
load forecasting [1,2].

The linearity assumption was relaxed with the development of machine learning-
based models such as neural networks [3,4] and kernel-based methods (e.g., support vector
machines [5]). Neural networks are nowadays the most widely used machine learning tool
for nonlinear regression in electrical load forecasting. At the same time, support vector
regression is gaining popularity in this area [6].

In this paper we focus on the state-of-the-art Artificial Neural Network (ANN) deep
learning algorithms, namely the Convolution Neural Nets (CNNs) in order to perform load

53



Appl. Sci. 2021, 11, 158

prediction. Currently the most successful and popular algorithm in literature for addressing
this issue is the use of Long Short Term Memory (LSTM) [7] method, which belongs
to the Recurrent Neural Network (RNN) architectural type and exploits the short and
long term relationships that exist in a data series in order to build a predictive model.
LSTM algorithms are considered to be the most suitable choice for electric load forecasting
compared to other neural network architectures. CNNs, on the other hand, are considered
to be the preferred choice for image processing related tasks, like image recognition, due to
their ability to take advantage of the inherent stationarity usually observed in the pixel
data, thus resulting in more accurate models. Nevertheless, it will be shown that CNN-
based models can also provide efficient solutions for the electric load forecasting problem
and under certain conditions, such as applying proper data preprocessing and analysis,
they could even outperform the LSTM-based models.

Despite the black box nature of ANN solutions, there is considerable freedom for
differentiating model selection choices and parameter tuning, such as the number of
epochs, batch size or hidden dimensions and filters (i.e., the number of output filters in the
convolution) for the CNN-based models. The proposed approach offers a comprehensive
methodology for model selection and parameter tuning resulting in significantly lower
forecasting errors compared to the LSTM model. Furthermore, the data transformation
which was performed after extensive statistical analysis allows optimal input selection
for our models. The most common input in such cases is the previous state (t-1) of the
forecasted variable. This leads to higher accuracy for uni-step forecasting applications,
but at the same time it lowers the performance of the multi-step ones by introducing
several defects. In our case, the input value is derived directly from the results of statistical
analysis. It is important to mention that this paper does not focus on the CNN algorithm
itself, but rather on the proper statistical analysis (pre-processing) which facilitates the
data transformation based on data features (i.e., stationarity) and achieve best possible
performance of the algorithm. The methodology and the different techniques employed
will be thoroughly described in Section 2.

According to the time horizon used for prediction, load forecasting can be classified
into very short-term load forecasting (VSTLF), short-term load forecasting (STLF), medium-
term load forecasting (MTLF), and long-term load forecasting (LTLF). The forecasting
horizon varies from 5 min, to one day, to two weeks or to three or more years; depending
on the planning or operational function it supports [8].

Across literature a wide range of methodologies and models have been proposed to
improve the accuracy of load forecasting, yet most of them are based upon aggregated
power consumption data at the system (top) level with little to no information regarding
power consumption profiles at the customer class level. This approach was acceptable
till now, since the operational focus until recently had been on the bulk transmission
system and the wholesale energy markets. Since the interest now is shifted towards the
distribution system and the efficient integration of Distributed Energy Resources (DERs)
connected close to the edge of the grid, this approach is not sufficient anymore. Hence,
distribution substation load forecasting becomes a necessity for the Distribution System
Operators (DSOs). Forecasting on distribution feeder has not been widely examined across
literature. Low Voltage (LV) distribution feeders are more volatile compared to the high
voltage (HV) ones, since they consist of low aggregations of consumers [9]. One approach
is to adopt the forecasting techniques and models that are currently employed at higher
voltage levels. The main forecasting research in these areas has been presented in [10,11],
that apply both ARIMAX and ANN methods to a single LV transformer (consisting of
128 customers) for forecasting the total energy and peak demand. In their method they
take into account historical weather data and they achieve MAPEs of 6–12%. In [12] a three-
stage methodology, which consists of pre-processing, forecasting, and post-processing,
was applied to forecast loads of three datasets ranging from distribution level to transmis-
sion level. A semi-parametric additive model was proposed in [13] to forecast the load of
Australian National Electricity Market. The same technique was also applied to forecast
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more than 2200 substation loads of the French distribution network in [14]. Another load
forecasting study on seven substations from the French network was performed in [15],
where a conventional time series forecasting methodology was utilized. In [16], the au-
thors proposed a neural network model to forecast the load of two French distribution
substations, which outperformed a time series model. It is focused on developing a method-
ology for neural network design in order to obtain a model that has the best achievable
predictive ability given the available data. Variable selection and model selection was
applied to electrical load forecasts to ensure an optimal generalization capacity of the
neural network model.

Exponential smoothing model and its variations, such as double and triple seasonal
exponential smoothing ones, have also showcased good results [17] but are less popular in
real-life applications due to their inability to accommodate exogenous variables. Another
popular approach, denoted as hybrid, is to combine different models as in [1] where
Principal Component Analysis (PCA) and Multiple Linear Regression (MLR) are combined
for daily load predictions.

For LV networks accurate load forecasting can be employed to support a number
of operations, including demand side response [18], storage control [19,20] and energy
management systems [21,22]. Load forecasting for low scale consumers, such as residential
loads, is valuable for home energy management systems (HEMS) [23] while house level
load forecasting can play a significant role in the future Local Energy Markets (LEM) which
will facilitate the energy transactions among participants [24]. Load forecasting has been
implemented for either the HV or system level and typically consists of the aggregated
demand of hundreds of thousands or millions of consumers. Such demand is much less
volatile than the LV demand, and hence, is easier to predict. Load forecasting at this level is
very mature research-wise and there is a great volume of literature describing and testing
a number of methods and algorithms, including ANNs, Support Vector Machine (SVM),
ARIMA, exponential smoothing, fuzzy systems, and linear regression. Recent methods
upon load forecasting can be found in [25].

However, the loads of a house, a factory, and a feeder are more volatile than HV level
loads. Therefore, developing a highly accurate forecast at lower consumption levels is
nontrivial. Although the majority of the load forecasting literature has been dedicated
to forecasting at the top (high voltage) level, the information from medium/low voltage
levels offers a promising field of research. The highly volatile nature of house load time
series makes it particularly difficult to achieve very accurate predictions. In [26] the au-
thors showed that the “double peak” error for spiky data sets means that it is difficult to
measure the accuracy of household-level point forecasts objectively introducing traditional
pointwise errors. Similar methods have been applied at the household level as at the HV
level, including ANNs [27,28] ARIMAs, wavelets [29], Kalman filters [30] and Holt-Winters
exponential smoothing [31]. The prediction errors of these methods are much higher
compared to those reported at the HV level, with MAPEs ranging from 7% up to 85% in
some cases.

Regardless the voltage level and the load scale, load forecasting problems share
certain common factors that may affect the prediction accuracy of energy consumption.
These are the energy markets, the variables affected by the weather and the hierarchical
topology of the grid. In competitive energy retail markets, the electricity consumption is
largely driven by the number of customers. Since the number of customers is uncertain,
the load profile is consequently characterized by high stochasticity. In [32] the authors
propose a two-stage long-term retail load forecasting method to take customer reduction
into consideration. The first stage forecasts each customer’s load using multiple linear
regression with a variable selection method. The second stage forecasts customer attrition
using survival analysis. Then, the final forecast results from the product of the two
forecasts. Another issue regarding the energy market is the demand response programs
which pose another challenge in load forecasting, since some consumers are willing to
alter their consumption patterns according to price signals, while others are not. In [33]
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the authors detect the price-driven customers by applying a non-parametric test so that
they can be forecasted separately. Across literature, many papers have shown strong
correlations between weather effects and demand. A weather variable investigated in
literature is humidity [34], where the authors discovered that the temperature-humidity
index (THI) may not be optimal for load forecasting models. Instead, more accurate load
forecasts than the THI-based models were performed when the authors separated relative
humidity, temperature and their higher order terms and interactions in the model, with the
corresponding parameters being estimated by the training data. In [35] the load of a root
node of any sub-tree was forecasted first. The child nodes were then treated separately
based on their similarities. The forecast of a “regular” node was proportional to that of
the parent node, while the “irregular” nodes were forecasted individually using neural
networks. In [36] the authors exploit the hierarchical structure of electricity grid for load
forecasting. Two case studies were investigated, one based on New York City and its
substations, and the other one based on Pennsylvania-New Jersey-Maryland (PJM) and its
substations. The authors demonstrated the effectiveness of aggregation in improving the
higher level load forecast accuracy.

The availability of data from Advanced Metering Infrastructure (AMI) systems en-
ables the use of novel approaches to the way load forecasting is performed, ranging from
the distribution level to even the residential scale. In existing literature, researchers have
focused on: (1) longitudinal and (2) cross-sectional grouping methods trying to handle
efficiently load data. Longitudinal grouping refers to identifying time periods with similar
load patterns, which are derived from statistical analysis based on historical data. On the
other hand, cross-sectional grouping refers to the aggregation of customers with similar
consumption characteristics. In [37] the authors examined six methods which are usu-
ally employed in large-scale energy systems to predict a load similar to that of a single
transformer. The models that were investigated were ANNs, AR, ARMA, autoregressive
integrated moving average, fuzzy logic, and wavelet NNs for day-ahead and week-ahead
electric load forecasting in two scenarios with different number of houses. In [38] a clus-
tering based on AMI data is performed among customers to identify groups with similar
load patterns prior to performing load forecasting, in favor of forecasting accuracy. In [39],
the authors implemented a neural network (NN)-based method for the construction of pre-
diction intervals (PIs) to quantify potential uncertainties associated with forecasts. A newly
introduced method, called lower upper bound estimation (LUBE), is applied and extended
to develop PIs using NN models. In [40] a new hybrid model is proposed. This model
is a combination of the manifold learning Principal Components (PC) technique and the
traditional multiple regression (PC-regression), for short and medium-term forecasting of
daily, aggregated, day-ahead, electricity system-wide load in the Greek Electricity Market
for the period 2004–2014. PC-regression is compared with a number of classical statistical
approaches as well as with the more sophisticated artificial intelligence models, ANN and
SVM. The authors have concluded that the forecasts of the developed hybrid model outper-
forms the ones generated by the other models, with the SARIMAX model being the next
best performing approach, giving comparable result.

The advantages that smart meters bring to load forecasting are two-fold. Firstly,
smart meters offer the opportunity to distribution companies and electricity retailers to
better understand and forecast the load of small scale consumers. Secondly, the high
granularity and volume of load data provided by smart meters may improve the forecast
accuracy of the models on the grounds that the training dataset will be more representative
and will capture the highly volatile demand patterns that describe the load behavior of
households or buildings. Therefore, the traditional techniques and methods developed for
load forecasting at an aggregate level may not be well suited. Many different approaches
are currently examined, all attempting to leverage the large volume of data derived from
the numerous operating smart meters so as to improve the forecasting accuracy. In [41]
seven existing techniques, including linear regression, ANN, SVM and their variants were
examined. The case study was conducted on two datasets, one comprising of two com-
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mercial buildings and the other of three residential homes. The study demonstrated that
these techniques could produce forecasts with high accuracy for the two commercial loads,
but did not perform well for the residential ones. In [29] a self-recurrent wavelet neural
network (SRWNN) was proposed to forecast the load for a building within a microgrid.
The proposed SRWNN was shown to be more accurate than its ancestor wavelet neural net-
work (WNN) for both building level and higher level load cases. Deep learning techniques
for the household and building-level load forecasting are also employed across literature.
In [42] a pooling-based deep RNN was proposed to learn spatial information shared be-
tween interconnected customers and to address the over-fitting problems. The proposed
method outperformed ARIMA, SVR, and classical deep RNN on the Irish CER residential
dataset. In [43] a spatio-temporal forecasting approach was proposed to leverage the
sparsity which is a valuable element in small scale load forecasting. The proposed method
combined ideas from compressive sensing and data decomposition to exploit the low-
dimensional structures governing the interactions among the nearby houses. The dataset
upon which the method was examined was the Pecan Street dataset.

Additional categorization among the different load forecasting methods in the litera-
ture can be summarized as follows: (1) Physics principles-based models and (2) Statisti-
cal/Machine learning-based models. In [44] ANNs were used to perform load forecasting
in buildings. Finally, in [45] a short-term residential load forecasting based on resident
behavior learning was examined. RNNs, such as LSTM, seem as a reasonable selection
for time series applications since they are developed explicitly to handle sequential data.
In [46] a custom Deep Learning model that combines multiple layers of CNNs for feature
extraction is presented, where both LSTM layers (prediction) and parallel dense layers
(transforming exogenous variables) are proposed. Finally in [47] a novel method to forecast
the electricity loads of single residential households is proposed based on CNNs (combined
with a data-augmentation technique), which can artificially enlarge the training data in
order to face the lack of sufficient data.

This work focuses on a statistical learning-based approach by examining and leverag-
ing the special statistical features of each given dataset [48] and thereafter transforming
the dataset into a form according to the statistical analysis performed for that purpose.
Our framework is based on the employment of a CNN architecture. CNNs are among
the most popular techniques for deep learning, mainly for image processing tasks [49],
where they leverage the spatial locality of pixels. There have been recently presented
remarkable efforts of using CNN models for electrical load forecasting [50]. CNNs choice is
based on the fact that in load time series, two neighboring points do not exhibit significant
deviation. Therefore, load time series are characterized by temporal locality which can be
exploited by CNNs. In this paper, we demonstrate that LSTMs for load forecasting under
certain conditions can be outperformed; this finding is supported by experimental evidence.
To prove our point, we furthermore compare our CNN model with three other machine
learning techniques, namely LSTM, ANN and Multilayer Perceptron (MLP). The main
contributions of the paper can be summarized in the following:

1. We introduce a method for properly tuning the model’s parameters by taking into
account the time series statistical properties and especially its auto correlation.

2. We offer a valid alternative to the load forecasting problem in the case of low scale
energy deployments where it is derived that our CNN based approach is more efficient
than other methods.

3. We identify the conditions under which the CNN outperforms the other widely
used forecasting solutions such as high temporal relationship between time series
observations, lack of historical data and low scale load consumption.

4. We offer a solution to times series forecasting in cases where there is shortage of
training data, since in our experiments the historical data available for training
were limited.

The rest of the paper is organized as follows: In Section 2 the proposed methodology
is analyzed in detail, in Section 3 the results of our investigation is given and in Section 4
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we present the discussion and the conclusions of our work and suggest possible future
research extensions.

2. Proposed Methodology

2.1. Convolutional Neural Networks (CNN)

CNN is a class of deep neural networks, most commonly applied to analyzing visual
imagery. They are also known as shift invariant or space invariant artificial neural networks
(SIANN), based on their shared-weights architecture and translation invariance charac-
teristics [51,52]. CNNs are regularized versions of multi-layer perceptron but they take a
different approach towards regularization, since they take advantage of the hierarchical
form in data and assemble more complex patterns using smaller and simpler patterns.
Therefore, on the scale of connectivity and complexity, CNNs are functioning on the lower
extreme. CNNs use relatively little pre-processing compared to other image classification
algorithms. This means that the network trains the filters that in traditional algorithms
were hand-engineered. This independence from prior knowledge and human effort in
feature design is a major advantage.

As presented in Figure 1, a CNN consists of an input and an output layer, as well as
multiple hidden layers. These layers perform operations that alter data with the intent of
extracting features specific to the data. Three of the most common layers are: convolution,
activation or ReLU, and pooling. The hidden layers of a CNN typically consist of a series
of convolutional layers that convolve through multiplication or other dot product each of
which activates certain image features.

Figure 1. CNN architecture [53].

The input layer reads an input image into the CNN. It consists of various low-level
image-processing functions to pre-process the input image as an appropriate data type
for the minimal CNN. Practically, the size of the input image is preferably on the order of
power of 2 so that to ensure computation efficiency for a CNN. However, input images
with uneven row-column dimensions can also be used. The convolution layer extracts
pixel-wise visual features from an input image [54–56]. The trainable convolution kernels
in this layer adjust their (kernel) weights automatically through back-propagation to
learn the input image features [56,57]. Image features learned by the convolution layer
allow the successive algorithmic layers to process the extracted image features for other
computational operations. The convolution layer is the dot product of the input image I
and the kernel used, K. The result is a convolved feature map, fc which is derived by the
Equation (1).

fc = conv(i, j) = (I ⊗ K)(i, j) = ∑
m

∑
n

I(m, n)K(i − m, j − n) (1)
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Here ⊗ denotes a two-dimensional discrete convolution operator. Equation (1) shows
that the convolution kernel K spatially slides over the input image I to compute the
element-wise multiplication and sum to produce an output, a convolved feature map
fc. Convolution provides weights sharing, sparse interaction (and local connectivity),
and equivariant representation for unsupervised feature learning. More in depth technical
details on these convolution properties can be found in [54,55,57–60]. The activation
function is commonly a Rectified Linear Unit (ReLU) layer. ReLU allows for faster and
more effective training by mapping negative values to zero and maintaining positive
values. This is sometimes referred to as activation, because only the activated features are
carried forward to the next layer. The objective of the ReLU layers is to introduce a point-
wise nonlinearity to a CNN, which allows it to learn through a nonlinear input function.
ReLU has also proven to be an effective solution to resolve vanishing gradient problems
when training a CNN using the backpropagation algorithm [55,56]. The mathematical
structure of the ReLU function is a piecewise nonlinear operator with a max output
indicative function [54,58]. The output of a ReLU is a rectified feature map, fr that can be
obtained by Equation (2).

fr = ReLU(xi) = max(0, xi) (2)

Equation (2) produces zero for negative inputs and linearly conveys the input for
positive inputs. The activation layer is followed by pooling layers which simplify the
output by performing nonlinear down-sampling, thus reducing the number of parameters
that the network needs to learn, controlling the overfitting by progressively reducing
the spatial size of the network and reducing the computational burden in the network.
Those layers are referred to as hidden layers because their inputs and outputs are masked by
the activation function and final convolution. The final convolution, in turn, often involves
backpropagation in order to more accurately weight the end product.

Though the layers are colloquially referred to as convolutions, this is only by con-
vention. Mathematically or technically, it is a sliding dot product or cross-correlation.
This is significant for the indices in the matrix, in the sense that it affects how the weight is
determined at a specific index point.

This special design of CNNs renders them capable to successfully capture the spatial
and temporal dependencies in an image through the application of the relevant afore-
described filters. The architecture shows a better fitting to the image dataset due to the
reduction in the number of parameters involved and reusability of weights. In other
words, the network can be trained to understand the sophistication of the image better.
In this context, a CNN-based methodology is analyzed to evaluate its performance for
forecasting applications with short period datasets with the motivation behind the CNN-
based approach being its wide usage for image recognition applications. More specifically,
the CNN models exploit the spatial locality of the pixel data in order to recognize an
image. Similarly, in load time series, time locality, expressed by data stationarity and
autocorrelation, forms the main motivation for utilizing CNN-based models in load
forecasting applications. In our approach we transform the time series data into image-like
data, taking advantage of the autocorrelation excibited by time series. Therefore, the first
step is to perform statistical analysis and test the data for stationarity. If the data are not
stationary then a second step of stationarity analysis is conducted by deploying a Unit
Root Test, in order to capture more complex forms of stationarity, which is the case in
most datasets.

2.2. Load Time Series Formulation and Statistical Analysis

The time-varying nature of both residential and community electrical load datasets
is modeled by deploying smaller auto-regressive data models. An autoregressive model
depicts that the output variable depends linearly on its own previous values and on a
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stochastic term, therefore the model is in the form of a stochastic difference equation.
Specifically, an autoregressive model of order p is defined as in Equation (3):

Xt = c +
p

∑
i=1

φi + Xt−1 + et (3)

Here φi are the parameters of the model, c is a constant, and et is the error, where E(et) = 0
and Var(et) = σ2.

The stationarity of the load time series is explored by deploying the unit root test [61].
A linear stochastic process has a unit root, if 1 is a root of the process’ characteristic
equation. Such a process is non-stationary but does not always have a trend. If the other
roots of the characteristic equation lie inside the unit circle—that is, have a modulus
(absolute value) less than one—then the first difference of the process will be stationary;
otherwise, the process will need to be differentiated multiple times to become stationary.
Due to this characteristic, unit root processes are also called difference stationary. Unit root
processes may sometimes be confused with trend-stationary processes; while they share
many properties, they are different in many aspects. It is possible for a time series to
be non-stationary, yet to have no unit root and be trend-stationary. In both unit root
and trend-stationary processes, their mean average may be increasing or decreasing over
time; however, in the presence of a shock, trend-stationary processes are mean-reverting.
The previous discrete-time stochastic process can be rewritten as an autoregressive process
of order p:

Xt = α1xt−1 + α2xt−2 + . . . + αpxt−p + et (4)

and

E(Xt|Xt−1, . . . , Xp) =
p

∑
i=1

αiXt−i (5)

The time series is a serially uncorrelated, zero-mean stochastic process with constant
variance σ2. If m = 1 is a root of the characteristic Equation (6) then the stochastic process
has a unit root.

mp − mp−1α1 − mp−2α2 − . . . − αp = 0 (6)

The stochastic process has a unit root or, alternatively, is 1st order integrated. If m = 1
with a root of multiplicity r, then the stochastic process is rth integrated, denoted I(r).
There are various tests to check the existence of a unit root. In this paper we use the
Augmented Dickey Fuller (ADF) [62] test which is widely used in statistics and econo-
metrics. This analysis tests the null hypothesis that a unit root is present in a time series
sample. If the unit root is not present then we cannot determine whether the time series
is stationary. The ADF test is suitable for a large and more complicated set of time series
models. The ADF index (γ) is a negative number; the more negative it is, the stronger
the rejection of the hypothesis of non-stationarity for the observed level of significance is.
As can be seen from Table 1, for all datasets the null hypothesis for non-stationarity has
been rejected at the 0.01 significance level. Therefore it is quite likely that the electric load
measured in all these cases displays the characteristic of trend or differential stationarity.
The testing process of the ADF test is similar to the Dickey Fuller test but it is applied to
the following model Equation (7).

∆xt = α + βt + γt−1 + δ∆xt−1 + · · ·+ δp−1∆xt−p+1 + et (7)

2.3. Stationarity Analysis

The CNN structure is based on image as an input and for this reason the first step
of our methodology is to transform the time series-sequential data into an appropriate,
image-like form in order to be processed by the CNN. Image data can be more efficiently
processed by CNNs because of their ability to handle the local stationarity of the respective
pixels. Image data, namely pixels are characterized as highly stationary and this is the
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feature that our investigation will leverage. By detecting such behavior in our data we will
accordingly transform our time series into “image” like structures. Electrical load data,
as mentioned before, appear to have time stationarity.

In order to determine the stationarity of each dataset we calculate their sample means
(Mean in Table 1) and standard deviations (STD in Table 1). In a stationary process the
unconditional joint probability distribution (and consequently its mean and standard
deviations) does not change when shifted in time, so we split each dataset into two sets
of equal size and we check how close their corresponding mean and standard deviations
values are. Table 1 contains the results of this analysis.

Table 1. Stationarity analysis results.

Dataset Trento Household Office

Mean 1 44.58 235.73 1.25
Mean 2 61.43 215.45 1.15
STD 1 18.97 298.70 1.30
STD 2 17.14 218.62 1.07

Stationary NO NO YES

As it can be seen, only the office dataset display a clearly stationary behavior, while the
Trento and Household data need further investigation. For these two datasets the second
step of the stationary analysis, the Unit Root ADF test is performed. Those results are
presented in Table 2.

Table 2. ADF Test results.

Dataset p-Value (ADF Test) ADF Stationary

Trento 0.01 −3.40 YES
Household ≪0.01 −18.4 YES

Apparently, the results of the ADF test indicate that both datasets can be assumed to
be stationary, based on their corresponding p-values. Therefore the CNN model can now
be further exploited.

2.4. Time Interval Selection

After examining stationarity, the next step would be to partition the dataset and
transform it into an image-like matrix. For this step a deep statistical analysis is necessary,
in order to determine the autocorrelation coefficients of the given datasets by applying the
Auto-Correlation Function (ACF) test. The majority of multi-step forecasting strategies
introduce errors, which are directly dependent on the forecasting horizon; the longer the
forecasting horizon, the higher the errors. Consequently, reduced precision is inevitable
as the horizon grows. To alleviate the absence of data stationarity, a novel technique is
proposed that leads to a performance closer to uni-step forecasting methods. Specifically,
we introduce a technique that manages to shorten the forecasting horizon so as to mimic a
uni-step forecasting method. This is achieved by choosing the inputs of our model in an
alternative way, which is explained below.

Despite that the method of determining the inputs of NN for STLF still remains an
open question. The most common technique is to use as input the immediately preceded
value. So, if we want to predict n we will have as input the n − 1 value. This achieves
great results in uni-step forecasting but for multi-step it introduces some errors, since the
forecasted errors are accumulated and the final predicted value will not be accurate. In our
case, the inputs are determined based on the experience or an-priori knowledge about the
behavior of the system. A rather intuitive guess in load forecasting is that there must be
instants in the past homologous to the current period, either during the same period on the
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previous day (24 h ago) or during the same period on the previous week, or previous two
weeks, and so on.

In this paper, the inputs for the neural networks are determined after examining the
ACF; the assumption regarding homologous instants is analyzed in the second part of
our proposed methodology. Based on this analysis it was derived that the most recent
24-h data exhibit the highest correlation with the forecasts and as such they form the
basic input of the proposed methodology. In this way, the day ahead forecast problem
is transformed into a uni-step problem. The first part of the analysis deals with the
development of the auto-correlation plot of observations starting at time t and for two days
duration. Figures 2–4 present the correlation analysis and auto-correlation plots for Trento,
household and office datasets. The vertical axis shows the ACF value, which ranges from
−1 to 1. The horizontal axis of the plot shows the size of the lag between the elements of
the time series. For instance, the autocorrelation with lag 4 is the correlation between the
time series elements and the corresponding elements observed four periods earlier.

Figure 2. Autocorrelation plot for Trento data . The vertical axis shows the ACF value. The horizontal
axis of the plot shows the size of the lag between the elements of the time series.

Figure 3. Autocorrelation plot for the single household data. The vertical axis shows the ACF value.
The horizontal axis of the plot shows the size of the lag between the elements of the time series.
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Figure 4. Autocorrelation plot for the office data. The vertical axis shows the ACF value. The hori-
zontal axis of the plot shows the size of the lag between the elements of the time series.

As it can be seen, the highest correlation values are derived at the same time the
previous or next day (every 24 h), which confirms the assumption of stationarity of Table 1.
According to these results, the highest correlated value, always for after one day, is the:

1. t-144 for Trento
2. t-144 for Household dataset
3. t-288 for the Office dataset

The first step of data transformation is then performed, since these results determine
the one of the two dimension of our matrix, namely the columns. The following step is
linked with the examination of the datasets in terms of these columns; more precisely we
are trying to define a B (batch size) ×I (highest correlated value) matrix. Additionally, it is
evident that the highest correlated value, determined above will be the input for out model.

3. Results

Batch Size (Hyper-Parameters Tuning) and Data Transformation

Hyper-parameters tuning can enhance the effectiveness of the ANN-based models.
The most common method for tuning the model parameters is trial and error. Regarding
the number of epochs, there is no general rule or special procedure, since this parameter
expresses only the times the dataset is parsed.

On the other hand, the batch size is a much more complex parameter. It determines the
number of samples that will be propagated through the network, while the model updates
the weights after each propagation instance. The batch size is a very important parameter
because it can accelerate or slow down the training process of the model. In this paper,
we study the effects that batch size has on the accuracy of the proposed model and an
optimal batch size tuning method is proposed. After the correlation analysis is concluded,
a time interval is selected which is used as input for our models. Our method ensures that
the optimal batch size must correspond to the chosen time interval. When the batch size
is randomly selected or the classic trial and error method is employed, the weights are
updated in randomly chosen time periods, considering groups of observations that do not
match the statistical analysis of the dataset. As a result, the updated weights are incorrect.
On the contrary, if the batch size is determined consistently with the chosen time interval,
the model reviews a specific time period with proven inclusion of the relevant observations.
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In this way, the proposed methodology leads to a more efficient tuning process and in most
cases to better performances.

Regarding the CNN architecture it comprises of three elements involved in the con-
volution operation: the input pattern (image), the feature detector (kernel or filter) and
the feature map. The feature detector (filter) takes into consideration the parameter that
is expressed through its length. In image recognition applications the CNN parses the
image into groups determined by the filter length. For example an image of 256 pixels
determines a filter length of 256. In our case, as mentioned before, the full time series
dataset is separated into smaller groups which express a specific time period with high
correlation. Those smaller groups are handled as different images, of different pixel size
and the filter length is chosen accordingly. If the statistical analysis concludes that the
highest correlated interval is that corresponding to the same time the day before, we have
an 1-D image or if it corresponds to that of the same time two days ago, we have a 2-D
image of n (observations per day) × 2 (days ago). The n × 2 multiplication implies the
resulting filter length following the same reasoning as with the batch size tuning (filter
length should be equal to batch size or a derivative of that).

The proposed algorithm was tested on metering data from three different publicly
available datasets. For the household use case the measurement site refers to a single family
housing with four family members. The sampling period is 10 min. spanning from 12 July
2012 to 26 July 2012. For the office use case the sampling period is 50 min. spanning from
2 July 2014 to 17 July 2014. The energy consumption dataset for Trento is provided by
the local energy company, SET, that manages almost the entire electrical network over the
Trentino territory [63]. SET uses around 180 primary (medium voltage) distribution lines
to bring energy from the national grid (high voltage) to Trentino’s consumers. The dataset
was collected from 1 November 2013 to 10 November 2013 over a territory of 6000 km2

in Northern Italy, the province of Trento. The dataset comprises 50 thousand records for
energy consumption and the sampling period consists of 10 min. intervals. The main
criterion for the use cases selection was the diversity of the examined datasets. Hence,
we test our methodology with different time periods, level/magnitude of demand,
consumption patterns and specific characteristics such as demand volatility. By doing
so, its applicability is expanded and its advantages are verified. The size of the examined
datasets is summarized in Table 3.

Table 3. Datasets Results.

Dataset Trento Household Office

Size (days) 9 14 15
Dataset size

(observations)
1296 2016 4320

For each dataset, the results of the proposed method are compared with the corre-
sponding results from algorithms which are among the most employed methods across
literature. To evaluate the forecasting accuracy, we estimate the Mean Absolute Error
(MAE) and the Root Mean Square Error (RMSE) [64] as follows:

MAE =
∑

n
i=1|At − Ft|

n
, RMSE =

√√√√ 1
T

T

∑
t=1

|At − Ft| (8)

where At are the actuals and Ft the corresponding forecasted values. Another metric that
is also very popular across literature is the Mean Absolute Percentage Error (MAPE) [65]
which is defined as:

MAPE =
100
n

∑
n
i=1|At − Ft|

At
% (9)
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MAPE gives a percentage, so it is useful for comparison purposes. Moreover, per-
centages are in general, more understandable to people and thus MAPE provides initial
information regarding the accuracy of the forecasted time series. Like all percentage errors,
MAPE has the advantage of being scale-independent hence it is often employed when we
need to compare different time series. On the other hand, MAPE as a percentage, has the
disadvantage of being undefined or infinite in case of At = 0, or having extreme values
when At is close to zero. Some software tools ignore actual values that are equal to zero,
however this aggravates the aforementioned issue since MAPE cannot take into account
the forecasts when the actual value is zero. Another issue with percentage metrics is the
assumption that At has a scale based on quantity. However, this is not the case with time
series like temperature or energy demand since they are not measuring quantity. Moreover,
MAPE value can be over 100% or even negative. A MAPE over 100% means that the errors
are “much greater” than the actual values. Based on the above limitations, MAPE, which is
a very common accuracy metric, should be used in conjunction with other metrics in order
to have a clear indication and better understanding of the examined forecasting models.
Because of the nature of load time series and the shortcomings of MAPE, in order to evalu-
ate the performance of our proposed method, we employed only metrics that are related
to the absolute values or squared differences of the examined time series, namely Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE).

In order to determine the optimal batch sizes for our model, we need to examine the
results of the trial and error method applied. The batch sizes examined were multiples of
the highest correlated values above. For example for the Trento dataset we experimented
with batch sizes of 144, 288 (144 × 2), 432 (144 × 3), but also with a number of randomly
chosen ones like 231 or 216 for the office dataset in order to strengthen our assumption.
In Figures 5–7 the achieved values of MAE and RMSE are presented for different batch sizes
for the Trento, household and office datasets respectively. Each dataset is split in two parts,
namely the training (80%) and the testing (20%) datasets. Those three datasets present
the most interesting scenarios, because the availability of data is very limited and the
investigated datasets present higher volatility on their consumption patterns, since they are
small scale examples. Therefore, the proposed method offers a solution to the forecasting
problem, when data shortage is present and small scale cases are employed.

Figure 5. Metrics for the Household case: Household MAE and Household RMSE.
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Figure 6. Metrics for the Office case: Office MAE and Office RMSE.

Figure 7. Metrics for Trento case: Trento MAE and Trento RMSE.

The household and office datasets are the most challenging ones, since they exhibit low
auto-correlation and higher volatility/stochasticity compared to the rest. In the household
case, the minimum MAE corresponds to batch sizes (144 observations/day) of 288 and 864
observations respectively (both multiples of 144). Since the minimum RMSE corresponds to a
forecasting period of 864 observations, experimental data with different batch sizes indicated
that the batch size should be chosen to be 864. Similarly, for the Trento dataset the batch size
is chosen at 144 (144 observations per day). The batch size for the office dataset is chosen
accordingly. The selected batch sizes for each dataset are summarized in Table 4. The best
RMSE and MAE values are derived as a multiple of the number of the batch observations for
each dataset. This is derived as a result of the ACF analysis. In Table 5–7, the summarized
results of MAE and RMSE for all models and for every dataset are presented.
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Table 4. Parameters Selection.

Dataset Trento Household Office

Batch size 144 (144 × 1) 864 (144 × 6) 288 (288 × 1)
Input t-144 t-144 t-288

At this point we have a clear picture of the dataset transformation. As shown in
Figure 8, we started from a sequential time series dataset and transformed it accordingly
into a matrix. The transformed data are then ready to be fed into the CNN model. If the
statistical analysis concludes that the interval with the highest correlation is that corre-
sponding to the same time the day before, we have an 1D image. If it corresponds to that of
the same time two days ago, we have a 2D image n (observations per day) × 2 (days ago)
image. The n × 2 multiplication implies the resulting filter length following the same
reasoning as with the batch size tuning (the filter length should be equal to batch size or to
a derivative of that).

Figure 8. Data transformation.

The proposed methodology was developed and tested in Python with Keras library
the backend of which is Tensorflow. Based on the experimental results shown in Tables 5–7
the methodology appears to have good performance and the model selection approach,
works satisfactorily even for datasets that exhibit high variability. Our approach was
compared against a number of other well reputed AI algorithms such as LSTM, ANN and
MLP. These models were chosen due to the fact that are widely accepted in literature and
are considered to be suitable for time series forecasting applications, like load forecasting,
thus forming a valid candidate for the problem under examination. Regarding ANN we
have chosen one hidden layer while for MLP, CNN and LSTM the hidden layers were 5.
Such choices were made by trial and error, i.e., adding more hidden layers did not enhance
the prediction accuracy. The activation function used was ReLU and the number of epochs
was 150 for all models; the optimizer was RMS-Prop and the additional parameters for
CNN were the following: size of filter 3 × 3, number of input filters 24, maximum pooling
size 3 × 3, and size of strides 1. The batch size was settled based on the methodology
explained earlier for all models.

The forecast chosen is the “Day ahead” one as defined by the electricity market.
The “Day ahead” market is essential for the operation of the power system since a better
forecasting tool means that a market participant (i.e., an aggregator, balance responsible
party, local energy market operator etc) will make better choices for the next day operation
and will minimize the costs that low-accuracy forecasts would bring (high deviations from
the forecasted load would mean higher cost in order to balance the system). In our case
study the forecast horizon was restricted by the limited availability of historical data.

Table 5. Results (Trento).

Models LSTM CNN MLP ANN

MAE 4.58 3.93 5.27 7.58
RMSE 5.3 4.67 4.56 6.63
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Table 6. Results (Household).

Models LSTM CNN MLP ANN

MAE 0.66 0.55 0.58 0.78
RMSE 1.1 0.93 0.96 1.25

Table 7. Results (Office).

Models LSTM CNN MLP ANN

MAE 114.8 108.29 140.55 172.38
RMSE 189.38 180.54 224.96 236

In Tables 5–7 the results of the investigated models (LSTM, CNN, MLP and ANN)
for each one of the datasets are presented. The metrics utilized are the Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE) which are shown in the left column
of each table. The CNN-based model outperforms the other ones for all three datasets.
CNN achieves better results both in terms of MAE and RMSE, with the only exception
being the Trento’s dataset where the RMSE result of MLP is slightly better than that of
CNN. The performance of CNN regarding MAE is better than that of MLP and this fact
can compensate the RMSE difference while CNN also outperforms the rest of the models.
The relatively small RMSE and MAE values justify the claim that the proposed batch size
tuning method and the time interval input selection strategy substantially improve the
performance of our methodology.

Figures 9–11 present the plots of the best forecasts for Trento, household and office
datasets. We have chosen to present only the last 20% of all observations from each
examined load time series. This was due to two main reasons. Firstly, this part of the
dataset is used for testing the algorithm and measuring accuracy of each methodology.
Secondly, if we presented all observations and load time series it would be difficult for the
reader to drive any conclusions. Also, we present graphically only the CNN algorithm
performance since it outperforms all other solutions tested with respect to forecasting
accuracy. In Figures 9–11 the actual load is depicted with red color line while the blue line
represents the forecast for specific observation numbers (X axis). Y corresponds to the total
load either actual or forecasted. As shown in Figures 9 and 10 the proposed model follows
the actual load successfully with the exception of one spike for each dataset (where our
forecast could not predict it successfully). In the household dataset, (in Figure 9) for 1900
observations our model provides a much higher value of the electric load compared to
the real one. We observe the same behaviour for the office dataset ( Figure 10). For the
Trento dataset (Figure 11), the CNN model performs adequately well and follows quite
precisely the value of real, expected load. In general, the results indicate that our model
was accurate for all datasets.

Apparently, our model in all three forecasted time series exposes sufficiently good
accuracy and follows satisfactorily the actual load time series. Of course, CNN cannot
predict the spikes that occur randomly and are the results of sudden disturbances without
any pattern and thus very difficult to be predicted. As explained earlier, CNN exploits
the temporal stationarity of the load time series, hence it is not possible to predict future
observations with high variability. In case of load spikes the temporal stationarity is
distorted, therefore CNN cannot provide an accurate prediction.
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Figure 9. Actual and forecasted load (household). The actual load is depicted with red color and the
forecasted time series with blue color.

Figure 10. Actual and forecasted load (office). The actual load is depicted with red color and the
forecasted time series with blue color.
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Figure 11. Actual and forecasted load (Trento). The actual load is depicted with red color and the
forecasted time series with blue color.

4. Discussion

In this work we present a methodology that is based on statistical analysis and
involves the preprocessing of the time series data before addressing the problem of short
term electric load forecasting. The methodology employs statistical learning and proper
data transformation in an image-like format in order to benefit from the CNN-based models,
which exploit stationarity and time locality. While the superiority and the efficiency of
LSTM (based on the importance of the inherent memory in load time series) are widely
accepted, we showed that CNN-based models present a credible alternative for short
term forecasting problems when compared to LSTM algorithms (leveraging the temporal
locality of load time series by analogy with image processing where space locality is
exploited). The achieved accuracy, based on MAE and RMSE, indicates that the proposed
CNN algorithm’s performance was improved compared to the LSTM model. CNNs seem
to achieve better accuracy when we lack of historical data, the scale of the energy entities
is small and the forecast horizon is short (day -ahead forecast). Since the efficiency of
the LSTM for long term dependencies is unquestionable, a hybrid LSTM-CNN model is
worth examining in future research work, especially for multi-step method considerations.
The presented methodology performs demand forecasting at low scale level and thus the
forecasted time series can be used as input to various energy management algorithms at
microgrid or house level, providing a useful tool for optimizing the operation of the energy
entities at the grid edge. Even though LSTM is the most common model to tackle the
load forecasting problem, we have proven here that CNN can outperform LSTM in cases
where the number of the observations and the energy deployment are limited (loads in
a household or in a small energy community) and the load patterns change dynamically.
We conclude that if AMI and the relevant communications infrastructure exist, the CNN
model is more suitable for forecasting loads of a house, office, building or even of an
energy community.
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The following abbreviations are used in this manuscript:
RES Renewable Energy Systems
CNN Convolution Neural Network
LSTM Long Short Term Memory
AR Autoregressive
ARX Autoregressive with Exogenous Variables
ARMA Autoregressive Moving Average
ANN Artificial Neural Network
RNN Recurrent Neural Network
VSTLF Very Short Term Load Forecasting
STLF Short Term Load Forecasting
MTLF Medium Term Load Forecasting
LTLF Long Term Load Forecasting
DER Distributed Energy Resources
DSO Distribution System Operator
LV Low Voltage
HV High Voltage
PCA Principal Component Analysis
MLR Multiple Linear Regression
HEMS Home Energy Management Systems
LEM Local Energy Markets
THI Temperature-Humidity Index
PJM Pennsylvania-New Jersey-Maryland
AMI Advanced Metering Infrastructure
PI Prediction Intervals
LUBE Lower Upper Bound Estimation
SSA Singular Spectrum Analysis
PC Principal Components
SVM Support Vector Machine
WNN Wavelet Neural Network
SRWNN Self-Recurrent Wavelet Neural Network
CRBM Conditional Restricted Boltzmann Machine
FCRBM Factored Conditional Restricted Boltzmann Machine
CKD Conditional Kernel Density
MLP Multilayer Perceptron
SIANN Space Invariant Artificial Neural Networks
ReLU Rectified Linear Unit
ADF Augmented Dickey Fuller
STD standard deviation
ACF Auto-Correlation Function
MAE Mean Absolute Error
RMSE Root Mean Square Error
MAPE Mean Absolute Percentage Error
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Featured Application: The method described in this document makes it possible to use the tech-

niques usually applied to load prediction efficiently in those situations in which the series clearly

presents seasonality but does not maintain a regular pattern.

Abstract: Distribution companies use time series to predict electricity consumption. Forecasting tech-

niques based on statistical models or artificial intelligence are used. Reliable forecasts are required

for efficient grid management in terms of both supply and capacity. One common underlying feature

of most demand–related time series is a strong seasonality component. However, in some cases,

the electricity demanded by a process presents an irregular seasonal component, which prevents

any type of forecast. In this article, we evaluated forecasting methods based on the use of multiple

seasonal models: ARIMA, Holt-Winters models with discrete interval moving seasonality, and neural

networks. The models are explained and applied to a real situation, for a node that feeds a galva-

nizing factory. The zinc hot-dip galvanizing process is widely used in the automotive sector for the

protection of steel against corrosion. It requires enormous energy consumption, and this has a direct

impact on companies’ income statements. In addition, it significantly affects energy distribution

companies, as these companies must provide for instant consumption in their supply lines to ensure

sufficient energy is distributed both for the process and for all the other consumers. The results show

a substantial increase in the accuracy of predictions, which contributes to a better management of the

electrical distribution.

Keywords: time series; demand; load; forecast; DIMS; irregular; galvanizing

1. Introduction

Demand management is a primary process in the development of industrial activity.
Distribution companies must ensure a supply is provided at a reasonable cost, and for this
reason, they need to manage resources efficiently. The use of electrical prediction models
contributes to their management of the distribution lines by offering tools to estimate future
demand with great precision. The techniques allow for forecasting based on time series
using statistical models or artificial intelligence (AI).

The most widely used univariate forecasting tools for electricity demand can be
classified into three broad groups [1]: fundamental models, statistical models, and compu-
tational models. There is growing interest in the use of computational models, although the
most widely used models are statistical models, both exponential smoothing models and
autoregressive integrated moving average (ARIMA) models.

The fundamental models are made up of hybrid models that introduce all the possible
physical variables, adopting a complex relationship between them and also using the
techniques of statistical models.

Computational models are based on AI and emulate natural behaviors through the
use of mathematical models. These are algorithms whose learning is automatic and are

75



Appl. Sci. 2021, 11, 75

part of the science of Machine Learning [2]. At present, deep learning techniques represent
an evolution and have found applications in demand forecasting, especially in areas where
prediction is difficult, such as renewable energies [3]. The most widely used techniques for
electricity demand are artificial neural networks (ANN) [4], particularly non-linear autore-
gressive neural networks with exogenous variables (NARX) [5,6]. Support vector machines
(SVM) [7] and bagged regression trees (BRT) [8] also stand out, and these occasionally
apply fuzzy logic [9].

Electricity demand series show stochastic behavior, and they have traditionally been
modeled using statistical methods. The ARIMA models are considered to be the econo-
metric models par excellence. The Box–Jenkins methodology [10] is used to determine
which ARIMA model to use, although some authors [11] state that simpler methods are
better than this methodology at providing forecasts. The application of ARIMA models
to demand is usually carried out in a general way in Seasonal Autoregressive Integrated
Moving Average Exogenous (SARIMAX) models [12–14] in which exogenous variables
are included to improve demand. The introduction of two seasonalities allows substantial
improvement in the predictions of these models [15].

State-space models (SSM) are a form of exponential smoothing representation. They are
commonly applied to demand [16], especially since the introduction of the Kalman filter
(see [17]). They also allow the introduction of various seasonalities in a complex way [18]
and with covariates [19]. De Livera and Hyndman include modifications that include
adjustment of the error using autoregressive moving average (ARMA) models and with
Box-Cox transformations (BATS [20]) and trigonometric seasonality (TBATS [18]).

Other very common smoothing techniques are the Holt-Winters models [20].
These models are excellent predictors for time series with marked seasonality [1,21].
The inclusion of more seasonality [22–24] improves their forecasts, leading to the de-
velopment of multiple seasonal Holt-Winters models (nHWT). Trull et al. [25] introduce dis-
crete seasonality that takes into account seasonalities whose occurrences are not regular
(nHWT-DIMS models).

The current trend is to create hybrid models in which traditional techniques are
combined with machine learning [26,27]. An example can be found in [28], which applies
an exponential smoothing method and neural networks to divide the forecasting process
between a linear part and a non-linear part.

The use of wavelets for irregular series has been combined with ARIMA models [29],
Holt-Winters models [30], or ANN [31].

Regularization techniques have also been applied to prevent over- and under-fitting is-
sues, based on a Least Absolute Shrinkage and Selection Operator (LASSO) [32],
and have been applied to short-term load forecasting models based on multiple linear re-
gression [33]. Banded regularization is also used to estimate parameters without overfitting
in autoregressive models [34].

Newer methods use an anti-leakage least-squares spectral analysis (ALLSSA)
to simultaneously estimate the trend and seasonal components before making a regulariza-
tion and make forecasts [35]. The ALLSSA method determines the statistically significance
of the components preventing under- and over-fitting issues. The least-squares wavelet
analysis (LSWA) is a natural extension of the least-squares spectral analysis and allows
the forecaster to obtain spectrograms for equally and unequally spaced time series and
identify statistically significant peaks in the time series [36].

One common feature of most demand-related time series is their strong seasonality
components [37]. In some cases, the electricity demanded by a process could present an
irregular seasonal component that seriously distorts the behavior of the series in a way that
the models cannot deal with.

The zinc hot-dip galvanizing process is a process that is widely used in the automotive
sector to protect steel against corrosion [38,39]. It requires an enormous consumption
of energy, and this has a direct impact on companies’ income statements. However,
the process also significantly affects energy distribution companies, since they must foresee
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the instantaneous consumption in their lines in order to ensure the distribution of energy
both for the process and for the other consumers. A characteristic of the demand in this
process is the presence of seasonal patterns that resemble seasonality but, because of their
irregular behavior, are difficult to assimilate to seasonality.

The structure shown by the series in this study means that it is more suitable to
work with time series models rather than frequency or signal analysis. We have therefore
considered it convenient to preferably use traditional time series models with seasonality.

In this article, we present several solutions to this problem based on the use of
ARIMA models, multiple seasonal Holt-Winters models with and without discrete interval
moving seasonalities (DIMS), state space models, and neural network models. To verify
the effectiveness of the techniques described, they are applied to the industrial process of
hot-dip galvanizing.

The article is organized as follows: Section 2 conducts a review of the forecasting
methods as well as an explanation of the production process; Section 3 demonstrates
the results and their analysis; Section 4 discusses the results; and finally, in Section 5,
the conclusions are summarized.

2. Materials and Methods

2.1. Study Area

The study has been applied to the consumption node of a hot-dip galvanizing company.
The process is carried out by coating extruded steel strips with a zinc foil that forms an alloy
with the steel and gives the desired properties. This process is continuous and produces
high-quality products [40].

Figure 1 shows a general scheme for the galvanizing process, where the greatest
consumption is in the zinc bath. In the annealing furnace, the steel strip is preheated,
and then it is immersed in a bath of molten zinc at 460 ◦C. Subsequently, the galvanized
steel strip goes through the skin-pass process [41–43] after it has cooled down.

of energy, and this has a direct impact on companies’ income statements. However, the 

–

 

Figure 1. Representation of a hot dip galvanizing process.

The zinc bath consists of a molten alloy of Zn in a bath, which is kept at 460 ◦C by the
action of two heating inductors located at the bottom of the bath. Figure 2 schematically
shows the operation of the zinc bath. The bath temperature is measured as an average of
the local temperatures provided by the thermocouples Ta, Tb and Tc. The inductors heat
from the bottom of the bath and a natural flow inside the bath is produced so that the bath
achieves the targeted temperature.
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Figure 2. Galvanizing section (hot dip zinc bath). Pretreated steel goes into the zinc pot, which is
filled with an Al–Zn solution at 460 ◦C. Thermocouples Ta, Tb and Tc measure the local temperatures
in the bath. Induction heaters located at the base of the bath keep the temperature as targeted.
After the bath, the steel is coated with Zn.

The electrical consumption associated with the process can be seen in Figure 3.
This graph shows the consumption for eight working days, measured every six minutes.
It begins on 14th November, 2009 at 00:00 am and ends on 22nd November, 2009 at 08:00 am.
There are in total 2000 measurements. The oscillations shown in the time series are pro-
duced by the action of induction heaters that keep the bath at the targeted temperature.
The big peaks in consumption are produced when the bath needs to be recharged, and new
Zn (dropped in ingots) is added into the bath. At this moment, the heaters must be put
into full operation. From this dataset, the first 1800 observed values are used for training
purposes, and the last 200 ones are used for validation.

–

 

(460 ºC)

Figure 3. Electricity demand for the hot-dip galvanizing. The ticks represent the beginning of each day. The blue dataset
designates the data used for training, whereas the red one represents the data used for testing and validation.
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A series of cyclical patterns can be observed (oscillations) that are repeated through-
out the series, with a short–length pattern that is repeated continuously throughout
the series clearly standing out. There are other patterns that are repeated irregularly,
with differentiated behaviors. A closer view of the series is shown in Figure 4. In graph (a)
and graph (b), a common underlying pattern can be identified, with a length of around
ten time units (which means an hour, as the temperature is measured every six minutes).
This first pattern is repeated regularly over the whole time period, and it is considered as
a seasonality.

–

 

Figure 4. Close-up version of Figure 3, where different seasonal patterns can be located: a first pattern along the whole
series, with sort oscillations as shown in (a,b); and a second pattern covering the consumption peaks, as shown in (c,d).
This second pattern has a different length on every appearance.

Figure 4, graph (c) and (d) show the time series after removing the first seasonal
pattern. It can also be seen that other patterns develop throughout the series in such
a way that the time of their appearance or their length are not constant. Technically,
this non-regular behavior cannot be considered as a seasonality, since it is not possible
to predict the fluctuation pattern that will develop in the future. To make consumption
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predictions, it is necessary to take into account this seasonal behavior, even though it is
not regular.

2.2. Forecasting Methods

In this section, we describe the forecasting methods applied to the time series un-
der study. The most common methods applied to short-term electricity demand forecasting,
using both AI and statistical methods, have been chosen. First, the methods used
with regular seasonal behavior are described, and then we describe the models with
discrete seasonality.

2.2.1. Artificial Neural Networks

Neural networks are computational models structured in the form of layers with
nodes interconnected as a network. They are named because of their resemblance to the
human brain structure. The nodes, called neurons, perform simple operations in parallel
and are located in each of the layers of the network. The layers are of three different types:
the input layer, where neurons receive direct information from the inputs; hidden layer (s),
whose neurons use the information from the neurons of previous layers and feed the next
layers; and the output layer, where neurons use the information from the hidden layers to
produce an output. Thus, there is an input layer, one or more hidden layers, and an output
layer. The connections between the different layers are made through the connection of
their neurons, which are called synapses. The strength of the connection between neurons
is determined by a weighting established at the synapse.

The most suitable structure for forecasting time series is the NARX type
structure [44,45]. It is a recurrent dynamic neural network, with feedback connections.
Figure 5 shows a close-loop representation of the NARX structure [46]. Neurons receive
information from exogenous input variables in addition to the target series itself and the
feedbacks. In order to improve forecasts, it can be used the past predicted and observed
values delayed through a tapped delay line (TDL) memory. The circles after the input
layers denote the TPL delay (e.g., one to two delays in the figure).

 

𝑥𝑡 𝑥𝑖 𝑦𝑡𝑤𝑖
that is integrated with an aggregation function Σ. The output �̂�𝑡+1𝑏

creases or decreases the neuron’s processing capacity.𝑥𝑡 𝑦𝑡 �̂�𝑡+1𝐷𝑥 𝐷𝑦�̂�𝑡+1 = 𝑓 [𝑥𝑡 , 𝑥𝑡−1, … , 𝑥𝑡−𝐷𝑥+1, 𝑦𝑡 , 𝑦𝑡−1, … , 𝑦𝑡−𝐷𝑦+1]

Figure 5. NARX neural network schema. There is an input layer with variables, one hidden layer and one output layers.
Circles represent tapped delay line (TDL).

The input variables xt are exogenous variables used in the model. Both xi and yt are
connected by axioms to which weights wi are assigned, and with an activation function f
that is integrated with an aggregation function Σ. The output ŷt+1 provides future forecasts
after the network has been trained. b stands for the bias whose presence increases or
decreases the neuron’s processing capacity.
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The mathematical and non-linear representation that governs the network is shown in
(1), where xt represents the inputs and yt the objective function, while ŷt+1 represents the
prediction. Dx and Dy are the time delays applied in the network.

ŷt+1 = f
[

xt, xt−1, . . . , xt−Dx+1, yt, yt−1, . . . , yt−Dy+1

]
. (1)

The NARX neural network maps the function through the multilayer perceptron,
using the time delays for both the input variables and the output feedback [47].

An alternative to this neural network is a function fitting neural network. This is a
type of shallow neural network based on multilayer perceptron (MLP) with which we
can make adjustments to non-linear functions (non-linear regression, NLR). The use and
application of such a network for the prediction of electricity demand has been discussed
previously [48]. The mathematical representation that governs this network is shown in
(2).

ŷt+1 = f [xt, xt−1, . . . , xt−Dx+1]. (2)

Here xt are the predictors, which are several variables (including the observed values
of the time series) used to feed the model. A representative schema for this neural network
is shown in Figure 6.

�̂�𝑡+1 = 𝑓[𝑥𝑡 , 𝑥𝑡−1, … , 𝑥𝑡−𝐷𝑥+1]𝑥𝑡

 

Figure 6. Function fitting neural network schema. 
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𝑦𝑡  𝜆𝑦𝑡(𝜆)
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Figure 6. Function fitting neural network schema.

By training the network, weights are assigned to the synaptic connections, minimizing
an error criterion. The ANNs used in this work are trained using the Levenberg-Marquardt
algorithm [49], and minimizing the mean squared error (MSE). After the training process,
to give the predictions, a closed loop network is performed, and forecasts are provided.

2.2.2. ARIMA Models

ARIMA models were introduced by Box and Jenkins [50] to model non–stationary
series and allow predictions to be made. A description and in-depth analysis can be found
in [51] and in the book by Brockwell and Davis [52]. Seasonal ARIMA models are usually
denoted by ARIMA(p, d, q)x(P, D, Q)S. S indicates the length of the seasonal pattern under
consideration. The compact representation of the ARIMA model is usually, as shown in (3),
a function of autoregressive polynomials and polynomials of moving means, and of the
difference operators.

φp(B)ΦP

(
BS
)
∇d∇D

S

(
y
(λ)
t − c

)
= θq(B)ΘQ

(
BS
)
εt,

{εt} ∼ N
(
0, σ2

)
.

(3)

{yt, t = 0,±1,±2, . . .} are the observed data of the univariate series. If the variability
in the data grows with time, it is necessary to transform the data to stabilize the variance.
The Box-Cox power transformation family is a general class of variance-stabilizing trans-
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formations. The Box-Cox transformation of yt with power parameter λ to the transformed

data y
(λ)
t is defined by (4).

y
(λ)
t =

{
yλ

t −1
λ ; i f λ 6= 0,

ln yt; i f λ = 0 .
(4)

The power parameter λ is estimated by the maximum–likelihood method. The poly-
nomials φp(B) = 1 − φ1B − φ2B2 − · · · − φpBp and θq(B) = 1 − θ1B − θ2B2 − · · · − θqBq

represent the regular or non–seasonal autoregressive and the moving averages compo-
nents, respectively, and the polynomials ΦP

(
BS
)
= 1 − Φ1BS − Φ2B2S − · · · − ΦPBPS

and ΘQ
(

BS
)
= 1 − Θ1BS − Θ2B2S − · · · − ΘQBQS represent the seasonal autoregres-

sive and the moving averages components, respectively, with B as the lag operator.
∇ is the is the backward difference operator, [Byt = yt−1; BSyt = yt−S; ∇ = (1 − B);

∇d = (1 − B)d; ∇D
S =

(
1 − BS

)D
]. d and D are the number of differencings required

to make the time series stationary (d, D ≤ 2). {εt} is a Gaussian white noise process,
[{εt} ∼ N

(
0, σ2

)
]. c is the model constant.

The orders of the polynomials {p, d; P, Q} are selected using the Akaike’s Informa-
tion Criterion (AIC, AICc) or Schwarz’s or the Bayesian Information Criterion (SIC or
BIC). The model coefficients

{
φ1, φ2, . . . , φp; θ1, θ2, . . . , θq; Φ1, Φ2, . . . , ΦP; Θ1, Θ2, . . . , ΘQ

}

and σ2 are estimated by the maximum likelihood method.
ARIMA models can present more than one seasonality, as indicated in (5). To do this,

the models are expressed as ARIMA (p, d, q)x(P1, D1, Q1)S1
x(P2, D2, Q2)S2

where S1 and S2
indicate the two seasonalities to which they refer.

φp(B)ΦP1

(
BS1
)

ΩP2

(
BS2
)
∇d∇D1

S1
∇D2

S2

(
y
(λ)
t − c

)
= θq (B)ΘQ1

(
BS1
)

ΨQ2

(
BS2
)

εt. (5)

The polynomials ΩP2

(
BS2
)

and ΨQ2

(
BS2
)

represent the second seasonal autoregressive
and the moving averages components, respectively.

2.2.3. Multiple Seasonal Holt-Winters Models

Exponential smoothing uses information from the past through weighted averages to
make predictions. The weight decreases as newer values are entered into the time series,
giving more importance to newer data over older. A smoothing parameter determines
this weight. The introduction of these models dates back to the 1960s with the work
of Holt [53] and Brown [54]. Winters [20] presented the Holt-Winters models, in which
exponential smoothing techniques are performed on the three components of the series:
level (lt), trend (bt) and seasonality (st). The model includes a series of structured equations,
called smoothing equations, the information from which is compiled by a forecast equation
to provide forecasts. The equations can be combined with additive or multiplicative trends
and seasonality.

Gardner and McKenzie [55] introduced a damping factor for the trend, and their
model outperforms the previous models when the trend shows high variations [56].
Taylor broke down seasonality into two or three nested components so that the models
can capture the series that present more than one seasonality, such as series for short-term
demand [22,23]. Taylor also included in the model an adjustment using the one-step-ahead
error as proposed by Chatfield [57]. This adjustment adds an AR(1) model for the residuals,
obtaining the parameter at the same time as the smoothing parameters are obtained. In the
same way, García-Díaz and Trull [24] generalized the model including the way the initial
values are obtained, to n seasonalities. The nHWT models are shown in Equations (6)–(9).

lt = α


 yt

∏ s
(i)
t−si


+ (1 − α)(lt−1 + ̺bt−1), (6)
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bt = γ(lt − lt−1) + (1 − γ)̺bt−1, (7)

s
(i)
t = δ(i)


 yt

lt ∏j 6=i s
(j)
t−sj


+

(
1 − δ(i)

)
s
(i)
t−si

, (8)

ŷt+k =

(
lt +

k

∑
j=1

̺jbt

)

∏
i

s
(i)
t−si+k + ϕk

ARεt. (9)

The smoothing equations include the smoothing parameters α, γ and δ(i) for smooth-
ing the level, the trend and the different seasonal indices (i) of length si. The equation
ŷt+k provides the k–future prediction values from the observed values of the series yt.
Here, εt is the one–step–ahead error, and the parameter ϕAR is the parameter for the AR(1)
adjustment. The damping parameter for the trend is denoted by ̺ [58].

The equations of the model are recursive, and therefore they need initial values so that
they can fit the model. Several methodologies for initialization have been documented [56,57].
To be able to use the models, it is necessary to estimate the smoothing parameters by minimizing
the error using non-linear algorithms [59,60]. The Nelder-Mead [61,62] simplex method has
been used, which minimizes the root of mean squared error (RMSE).

2.2.4. State Space Models

The SSM refers to a form of graphical–probabilistic representation [63] to describe
the dependence between an observed measurement and a series of latent state variables
through equations called state equations that describe its evolution. Taking into account the
fact that a time series can be decomposed into components of level, seasonality and trend,
this terminology applied to time series would be understood as the model that interprets
the evolution of the relationship of the observed variables (yt) with the latent unobservable
variables (level, trend, and seasonality).

SSMs have a great variety of formulations. In this paper, the formulation indicated by
Durbin and Koopman [64] and Hyndman et al. [16] applied to univariate stochastic time
series is used. These models are structured through a formulation of two matrix equations,
as shown in (10)–(11):

yt = µt + rxt−1 + εt, (10)

xt = fxt−1 + gεt. (11)

Equation (11) is known as the state transition equation, and Equation (10) is known
as the observation equation. Here xt−1 is known as the vector of states, yt is the vector of
observations, while εt is a vector of Gaussian white noise and is known as the innovation
process. r, f and g are matrices and vectors of coefficients with appropriate dimensions.
f explains the evolution of xt and g provides the innovation correction of εt. The term µt is
the one step ahead forecast, and r is a term to include the error additively.

De Livera [18] introduced modified models, based on the exponential smoothing
methods, in which a Box-Cox transformation is applied to the data, and the residuals are
modeled using an ARMA process and include the damping factor for trend and multiple
seasonalities. The acronym for this method is BATS (Box-Cox transform ARMA errors
Trend and Seasonal Components). This model is described in (12)–(16).

y
(λ)
t = lt−1 + ̺bt−1 +

ns

∑
i=1

s
(i)
t−si

+ dt, (12)

lt = lt−1 + ̺bt−1 + αdt, (13)

bt = (1 − ̺)b + bt−1 + γdt, (14)

s
(i)
t = s

(i)
t−si

+ δidt, (15)
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dt =
p

∑
i=1

ϕidt−i +
q

∑
i=1

θiεt−i + εt. (16)

In these equations, y
(λ)
t indicates the value of the observed data after the Box-Cox

transformation with the value λ, described in (4). lt, bt and s
(i)
t are the values of the level,

trend and seasonalities with smoothing parameters α, γ and δi. The subscript i denotes the
seasonality under consideration, of seasonal length si, and ns is the number of seasonalities.
dt is an ARMA (p, q) process with residuals whose coefficients are determined by ϕi and
θi. ̺ is the damping factor for trend. The term bt stands for a long–run trend term. εt is a
Gaussian white noise process N

(
0, σ2

)
. The nomenclature for BATS includes the following

arguments (λ, ̺, p, q, s1, . . . , sns).
Additionally, De Livera et al. [18] presented the same model but with seasonality

based on trigonometric models. The seasonality Equation (16) is replaced by the set of
Equations (17)–(20), a seasonal component based on Fourier series. These are known as
TBATS (Trigonometric seasonal BATS).

s
(i)
t =

(ki)

∑
j=1

s
(i)
j,t , (17)

s
(i)
j,t = s

(i)
j,t−1 cos

(
ωj,i
)
+ s

∗(i)
j,t−1 sin

(
ωj,i
)
+ δ

(i)
1 dt, (18)

s
∗(i)
j,t = −s

(i)
j,t−1 sin

(
ωj,i
)
+ s

∗(i)
j,t−1 cos

(
ωj,i
)
+ δ

(i)
2 dt, (19)

ωj,i = 2π j/si. (20)

Every seasonal component of the model s
(i)
t results from the sum of the ki stochastic

levels s
(i)
j,t of period i. s

∗(i)
j,t is the stochastic growth for each period. δ

(i)
1 and δ

(i)
2 are the

smoothing parameters. The nomenclature for TBATS includes the following arguments
(λ, ̺, p, q, {s1, k1}, . . . , {si, ki}).

Obtaining the values of the previous matrices and vectors requires the application of
an algorithm based on the Kalman filter and the maximum likelihood function using the
sum of squared errors (SSE) as the minimization criterion. This algorithm carries a high
computational load and manages to obtain these parameters iteratively. The reference [18]
explains in detail the process to be carried out in order to use the BATS and TBATS methods.

2.2.5. Multiple Seasonal Holt-Winters Models with Discrete Interval Moving Seasonalities

nHWT models are robust to variations in the series, but sometimes special situations
occur in which it is interesting to take these anomalies into account. One of the clearest
examples is the influence of the calendar effect on electricity demand [65]. These anomalous
and specific situations can sometimes be modeled as a discrete seasonality, if they follow a
repetitive pattern. Despite being seasonal, since they are discrete, they have the particular
quality that they are not located at fixed moments in the time series; therefore, they are
not linked to a deterministic appearance, as would be the case for regular seasonality.
These seasonalities are called discrete interval moving seasonality (DIMS).

Trull et al. [25] include the use of discrete seasonality in their model, so that the model
seen in (6)–(9) now results in (21)–(25), which is named nHWT–DIMS:

lt = α


 yt

∏ s
(i)
t−si

∏ D
(m)
t∗h−s∗m


+ (1 − α) (lt−1 + ̺bt−1), (21)

bt = γ(lt − lt−1) + (1 − γ)̺bt−1, (22)
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s
(i)
t = δ(i)


 yt

lt ∏j 6=i s
(j)
t−sj

∏m D
(m)
t∗h−s∗m


 +

(
1 − δ(i)

)
s
(i)
t−si

, (23)

D
(h)
th

∗ = δ
(h)
D


 yt

lt ∏j s
(j)
t−sj

∏m 6=h D
(m)
th

∗−s∗m


+

(
1 − δ

(h)
D

)
D

(h)
th

∗−s∗h
, (24)

ŷt+k =

(
lt +

k

∑
v=1

̺vbt

)

∏
i

s
(i)
t−si+k ∏

j

D
(h)
t∗h−s∗h+k + ϕk

ARεt. (25)

Here the term D
(h)
th

∗ is included, which represents the discrete seasonal indices,
for each DIMS (h) considered up to nDIMS. DIMS are only defined in the time inter-
vals in which the special event takes place. These time intervals are designated using
t∗h for each DIMS (h). This nomenclature is chosen in order to distinguish this from the
continuous time interval t.

The great difference between this model and other methods of modeling special
situations is that the effect produced by the anomaly in the series is modeled as an internal
part of the model, as one more seasonality, and is smoothed with each new appearance,
unlike the use of models with dummy variables and/or modifications of the original series.

In the nHWT models, the seasonality equation shows a fixed recurrence for each
seasonal pattern (si) being considered. With DIMS, this is not possible, since the occurrences
of special events are not subjected to a deterministic pattern in the series. Therefore,
the use of the variable s∗h indicates, for each DIMS and each occurrence, which is the
recurrence to consider.

One possible situation with special events is the simultaneous occurrence of two
events. In such a case, the forecaster should consider the option of using only one of the
DIMS that occur at that time, or using both, if the effects produced by the two special
events add up.

An important aspect to consider is the initialization of the DIMS. A DIMS may have
few occurrences in the time series and, therefore, its seasonal indexes must be calculated in
such a way that it converges rapidly to the desired effect.

The initialization method consists in first obtaining the initial values of the level,
the trend, and the seasonal indices for the regular seasonality. Subsequently, a decompo-
sition of the series is carried out using trend and multiple seasonality. It is common to
use the multiple STL method (Seasonal–Trend decomposition procedure using Loess [66],
where Loess is a method to estimate linear relationships).

From the decomposition, the series can be reconstructed without including the irregu-
lar part, which is where the information necessary to obtain the desired indices is found.
The initial values are obtained by weighting the time series against the reconstructed series.

The adjustment of the parameters is carried out following the same procedure as
for the nHWT, with the exception that, if necessary, this adjustment can be carried out
in two steps—first adjusting the parameters of the regular model and then adjusting the
parameters associated with the DIMS. Adjusting all the parameters simultaneously obtains
models with more reliable predictions, while the second option is faster. Thus, the first
option is chosen for this work.

3. Results

The approach proposed for the work described below has the following scheme. First,
a study of the series is carried out to determine the seasonal periods. The study is carried
out using continuous seasonality models and discrete seasonality models, all as described
in the previous section. Although it is preferable to use an error minimization criterion for
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each technique when fitting the models, the RMSE—defined in (26)—is used to standardize
and compare the fitted results.

RMSE =

√√√√ 1
N

N

∑
t=1

(yt − ŷt)
2 . (26)

Here N stands for length of the dataset used for the training. The final comparison
will be made according to the forecasts made in the validation set.

3.1. Analysis of the Seasonality of the Series

The series shown in Figure 3 clearly presents a seasonality with periodicity of one
hour. However, to study the following seasonal patterns it is necessary to perform an
analysis on the frequency domain. To investigate the appreciable frequencies in the time
series, a spectral density analysis is carried out, the result of which is shown in Figure 7 in
the form of a smoothed periodogram. A smoothed periodogram is the preferred tool here
as the periodic cycles do not show a regular periodicity [67].

RMSE = √1𝑁 ∑(𝑦𝑡 − �̂�𝑡)2 𝑁
𝑡=1 .

Figure 7. Smoothed periodogram obtained from the time series shown in Figure 3.

Analyzing the figure, the presence of a clearly dominant frequency is observed,
which corresponds to the periodicity of ten units of time (one hour). Also, the presence of
another dominant frequency can be observed. This corresponds to a second seasonality
with a period of 106 time-units. However, this is the second seasonality and is associated
with a greater variability around its value, which confirms what is seen in Figure 3.

To confirm these hypotheses, an ALLSSA analysis is performed. This method is
robust against unequally spaced time series, estimating trend and seasonal components
simultaneously, and providing statistically significant components in the time series [35].
The analysis shows three main and significant frequencies at periodicities of 10, 118,
and 203 time-units. This disagreement between the two methods suggests that, despite var-
ious seasonalities clearly coexisting, non-dominant seasonalities do not occur continuously
and may influence the analysis.

In contrast to this result, an analysis based on the use of wavelets is also carried out.
The advantage of using wavelets to analyze the spectral content of the series is that we
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obtain a map in the time-scale plane. The concept of frequency in spectral analysis is
now replaced by the scale factor, and therefore, instead of using a periodogram, we use
a scalogram. The scale measures the stretching of the wavelets, being directly related
to frequency, as the greater the scale is, the higher the frequency of the series, which is
related to the inverse of a frequency, that is, to a period [68]. This map allows the non–
stationary characteristics of the signal, including changes in periodicity, to be studied,
which is the objective.

Figure 8 shows the average wavelet power graph. This graph shows the means of
the powers developed over time for each period or frequency. Although the results are
similar to those shown in the previous graph, a greater variability is observed in the longer
periods. Three main periods are located at 10, 94, and 196 time units. The results are very
close to the previous one.

–

 

–

0.05

0 0.2 0.4 0.6 0.8

average wavelet power

1

2

4

8

16

32

64

128

256

512

1024

p
e

ri
o
d

Figure 8. Plot of wavelet power averages across time. The red bullets show the significance level
(0.05).

The need for a robust analysis using the time and frequency domain motivates the
use of LSWA [35,69]. The software LSWAVE [70] in MATLAB® is an easy and intuitive
tool for performing this analysis. This software computes the least square wavelet spec-
trum (LSWS) for the series, with no need for preprocessing, transforming, or detrending.
LSWA considers the correlations of the sinusoidal functions and constituents and the noise
at the same time. We apply LSWA to the training set, with the results shown in Figure 9.

The abscissa axis indicates the time scale used, while the ordinate axis shows the
cyclical frequencies (as 1/period). The level of variance explained is reflected by colors,
according to the scale to the right of the graph.

The first conclusion is clear from the graph: the one–hour seasonality remains practi-
cally throughout the series as the predominant seasonality (with a percentage of variance
greater than 90%), but discontinuously. In the sections where this does not occur, a series of
sawtooth-shaped formations stand out from the rest, although the percentage of variance
that it reflects does not exceed 30%. Some areas are shaded with more than 40% of the
variation within high frequencies areas. This graph is shown in closer detail of in Figure 10.
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Figure 9. Least-squares wavelet analysis (LSWA) applied to the training set of electricity consumption.

 
Figure 10. Detail in 3D for the lowest cyclic frequencies in the LSWA analysis.

We decided to use a 3D representation because it is then easier to appreciate the
lowest cyclic frequencies. Between 14 November and 15 November and later between
19 November and 21 November, two frequencies with a percentage of variance of over
40% appear. This corresponds to a period of 100 time-units. In the middle, between the
two intervals, some peaks with 30% of the variance are also located. This corresponds to a
periodicity of 200-time units.
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The conclusion from this analysis is that there is clearly one seasonality that occurs
every hour (ten-time units), and a second pattern with unregular behavior over time and a
periodic length that has been established at between 94 and 118 units. Although it is not
strictly a seasonality, it can be modeled as a second seasonality. A marginal seasonality can
be obtained for long cycles but will not be taken into account as it seems that its influence
on the time series is very small compared to the previous one.

3.2. Application of Models with Regular Seasonality

Given this disparity of values for the determination of the length of the seasonal
periods, we choose to carry out one analysis with the models using a single seasonality
(ten-time units) and another using two seasonalities.

For the models with regular seasonality, the second seasonality to be tested will be for
a range of periods of between 90 and 110 time-units.

3.2.1. Application of ANN

One of the most powerful tools for working with neural networks is the MATLAB®

Deep Machine Learning toolbox. This toolbox includes a great variety of possibilities and
different neural networks. From this range of possibilities, the NARX network and the NLR
network are used. These two networks have been proven to be efficient in predicting future
electricity demand values. The method of working with them is described in Figure 11.
Here, it can be seen that it is first necessary to use the historical information about demand.

 

 Previous hour’s average electricity consumption.



Figure 11. Working scheme with neural networks using the Deep learning machine tool from MATLAB.

To address the observed seasonality, the series is additionally given a delay,
according to the seasonality. In this case, the seasonality of one hour corresponds to
ten units of time of six minutes, so a delay of ten units is introduced to the series.
Additional variables are added to the information provided by the time series. The exoge-
nous information supplied to the model is:

• Previous hour’s average electricity consumption.
• Consumption of electricity from the previous hour.
• Timestamp (only in NARX model).
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The networks used are described in Table 1. The NARX model includes a single
hidden layer and a TDL of three time units. It was checked that greater TDL did not
improve the results. NLR model also include a single hidden layer.

Table 1. Neural network parameters and RMSE for fitted results.

Neural Network Parameters Fit RMSE

NARX

1 input layer
1 hidden layer with 20 neurons

1 output layer
TDL = 3

33.95

NLR
1 input layer

1 hidden layer with 20 neurons
1 output layer

33.21

The training process is performed by minimizing the MSE and using the Levenberg-
Marquardt algorithm. The training result is displayed as the RMSE in Table 1.

In the same way as the first seasonality was introduced, the second seasonality is
added, following what we have seen in Section 3.2. The result of adding a new seasonality
does not improve the result. The chosen model has only one seasonality.

3.2.2. Application of ARIMA Models

To apply the ARIMA models, MATLAB® is the chosen platform, using Econometrics
Toolbox and SSMMATLAB [71] for double seasonal ARIMA. R is also tested with the
‘forecast’ package, but the MATLAB® results outperformed the R results. Like the previous
models, models with one and two seasonalities according to Section 3.2 are tested. The best
results are found using a single seasonality of one hour (ten-time units). The best model is
ARIMA (4,2,4) × (4,1,4)10, for which the parameters are shown in Table 2.

Table 2. ARIMA parameters and RMSE for fitted results.

Parameters Fit RMSE

AR
φ1 =−0.145; φ2 = −0.472;
φ3= − 0.190; φp = 0.170

50.42
MA

θ1 = 0.861; θ2 =−0.601;
θ3 =0.443; θ4= 0.174

SAR
Φ1 =−0.487; Φ2 =0.067;

Φ3 =−0.260; Φ4 =−0.067

SMA
Θ1 =0.142; Θ2 =0.069;

Θ3 =−0.292; Θ4 = −0.065

3.2.3. Application of nHWT Models

To perform the analysis using the nHWT models, a proprietary tool developed in
MATLAB ® is used. This tool comes in the form of a toolbox, but it has not been published
yet. Models with one and two seasonalities are tested.

The results show that the model that best adapts to this series presents a single
seasonality, with the parameters α = 0.0001, γ = 0.0001, δ10 = 0.4856 and ϕAR = 0.9286.
The damping factor ̺ is set to 0. Models including this parameter were tested, but results
were not improved, thus it was removed from the model. The RMSE of the fit process
is 54.93.

The result is not surprising since the nHWT models are structural and do not allow
for a relaxation of seasonality. Once seasonality is established, the model will continue to
develop the same pattern, even though this is not really reflected in the series. When using
a single seasonality, the information provided by the second seasonal pattern is lost, but it
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has less influence than the error caused by a second seasonality that does not coincide with
the real seasonality of the series.

3.2.4. Application of SSM Models

To work with the state spaces, the ‘forecast’ library is used in R [72]. Models with
a single seasonality are tested, as well as models that include several seasonalities as
indicated in Section 3.1. Here again, the use of the trend damping parameter did not
provide better results and was removed from the model.

As in the previous cases, the models with several seasonalities do not show better
results than the models with a single seasonality. Table 3 shows the models used—including
their arguments—in the first column, the parameters obtained after the adjustment process
in the second column, and the RMSE value of the adjustment in the third column.

Table 3. SSM models, their parameters, and fit RMSE for fitted results.

Model Arguments Parameters Fit RMSE

BATS (0.717,0, 5,2, 10)

λ = 0.717, α = 0.120, γ = 0.206,
δ = − 0.004,

φ1= 0.945, φ2 = − 0.625, φ3 = 0.022,
φ4 = 0.104, φ5 = − 0.500,
θ1 = − 0.153, θ2 =0.515.

46.77

TBATS (0.756,0, 5,2, {10,1})

λ = 0.756, α = 0.862, γ = 0.105, δ1 = − 0.0004,
δ2 = 0.0001,

φ1= 1.293, φ2 = – 0.552, φ3 = − 0.359, φ4 = 0.227,
φ5 = – 0.1968,

θ1= −1.358, θ2 = 0.783.

45.44

3.3. Application of Discrete Seasonality Models (nHWT-DIMS)

The application of discrete seasonality carries with it a differentiated strategy.
The use of nHWT-DIMS models makes it possible to model localized seasonality at specific
instants of time, independently of other seasonality. In Figure 12, we show two differ-
ent periods for the series. In addition to the seasonal pattern described at the beginning
(of one hour), a new pattern can also be observed in Figure 12a, whose length is established
at 27 time units (2 h and 42 min). This pattern is framed between two dashed lines including
the demand peaks. Figure 12b shows another seasonal pattern that has the same length,
but a different behavior. These two patterns will be called DIMS a and DIMS b.

The appearance of each discrete seasonality does not occur on a regular basis.
This situation causes the recursion required in the Holt-Winters models to be variable.
This is indicated in Figure 12 by the lines with arrows. The solid lines indicate the recur-
sion for the DIMS a, and the dashed lines indicate it for the DIMS b. The information
regarding the DIMS is organized in Table 4. This table includes the locations of the discrete
seasonalities on every appearance (starting and ending time when the DIMS is defined,
used in the variable t∗h) and the associated recursivity in minutes, which corresponds to s∗h.
As an example, the time interval when the second appearance of DIMS a is defined starts at
04:00 pm on the 14th and ends at 06:42 pm on the 14th. The recursivity s∗h during this
interval is 618 min.
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To work with the state spaces, the ‘forecast’ library is used in R [7

—
—

𝜆 = 𝛼 =  𝛾 =  𝛿 = −𝜙1 𝜙2  = − 𝜙3  = 𝜙4  = 𝜙5  = −𝜃1  = − 𝜃2 =𝜆 = 𝛼 = 𝛾 = 𝛿1 = −𝛿2 = 𝜙1 𝜙2  = – 𝜙3  = − 𝜙4  = 𝜙5  = –𝜃1 − 𝜃2  = 

 

Figure 12. Discrete interval moving seasonality (DIMS) locations and recursion design. Two additional seasonal patterns
are located, the first mostly appears in (a) while the second pattern appears in (b). Vertical dashed lines delimitate the DIMS
period length. The appearance number of each DIMS is numbered at the bottom of the figure in red. Lines with arrows
represent the recursivity of the DIMS, with full lines for the DIMS in (a) and dashed lines for the DIMS in (b). The time span
of the previous appearance is shown in minutes over the line.

Table 4. Location in the time series of the discrete seasonalities (DIMS) and their recursivity. The column Nr. indicates the
order of appearance of the corresponding DIMS. ‘Time starts’ and ‘Time ends’ reflect the moving interval in which DIMS is
defined, and ‘Recursivity’ shows the length of time since the previous appearance.

DIMS Nr. Time Starts Time Ends Recursivity

DIMS a 1 14th November at 05:42 am 14th November at 08:24 am —————-
2 14th at 04:00 pm 14th at 06:42 pm 618 min.
3 15th at 00:18 am 15th at 03:00 am 498 min
4 15th at 07:30 am 15th at 10:12 am 432 min
5 15th at 06:42 pm 15th at 09:24 pm 672 min
6 16th at 07:24 pm 16th at 10:06 pm 1482 min
7 17th at 10:42 am 17th at 01:24 pm 918 min
8 18th at 06:06 am 18th at 08:48 am 1164 min
9 19th at 02:30 am 19th at 05:12 am 1224 min
10 19th at 08:48 pm 19th at 23:30 pm 1098 min
11 21th at 06:06 pm 21th at 20:48 pm 2718 min

DIMS b 1 16th November at 07:06 am 16th November at 09:48 am —————-
2 20th at 05:06 am 20th at 07:48 am 5640 min
3 20th at 05:24 pm 20th at 08:06 pm 738 min
4 21th at 02:36 am 21th at 05:18 am 552 min
5 22th at 02:24 am 22th at 05:06 am 1428 min

The general model described by Equations (21)–(25) now results in the Equations
shown in (27)–(32), with one seasonality of length ten time units and two DIMS as described
in Table 4.

lt = α


 yt

I
(10)
t−s10

D
(a)
t∗a−s∗a

D
(b)
t∗b−s∗b


+ (1 − α) (lt−1 + bt−1), (27)

bt = γ(lt − lt−1) + (1 − γ)bt−1, (28)
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s
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D
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)
D
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, (31)

ŷt(k) = (lt + kbt)s
(10)
t−s10+kD

(a)
t∗a−s∗a+kD

(b)
t∗b−s∗b+k + ϕk

ARεt. (32)

Here, s
(10)
t is the seasonal equation for the regular seasonality of ten-time units with

smoothing parameter δ(10). D
(a)
ta
∗ and D

(b)
tb
∗ are the DIMS as described in Table 4 with

smoothing parameters δ
(a)
D and δ

(b)
D defined only in time t∗a and t∗b . The recursivity s∗a and

s∗b is defined in Table 4.
To use the model, the procedure described in [25] is carried out. Initially, the initial

values for the level are obtained as the moving average of the first period of one hour;
for the trend as the slope between the first and second cycle of one hour; and for the seasonal
indices, the weighting of the series in the first cycle on the moving average. Subsequently,
the seasonal indices of the DIMS are obtained. The time series is decomposed into its
trend, seasonality, and irregular components using STL decomposition with the period
length of one hour. From these components, the series is rebuilt, but without the irregular
component being included. The seasonal indices are obtained by weighting the original
series over the reconstructed one.

Once the initial values of the model have been determined, the model is fitted by
minimizing the RMSE, and the smoothing parameters are obtained. The tool for this anal-
ysis is software developed in MATLAB (R) for this purpose. The obtained RMSE is 58.65.
The smoothing parameters of the model obtained are α =0.0001, γ =0.0001, δ(10) = 0.4853
for the first regular seasonality, δ(a) =0.0005 for DIMS type a (see Figure 12a), δ(b) = 0.0652
for DIMS type b (see Figure 12b) and ϕAR =0.9056. Here again, it has is decided not to use
the damping parameter for trend. The RMSE of the fitted model is 58.65.

3.4. Model Fit Comparison

A benchmark summary is reported in Table 5, where the RMSE in the fit process is
summarized. The RMSE used to compare the models while fitting shows that the ANN fits
better than the other models to the time series. The worst case seems to be nHWT-DIMS.
The comparison shows that the state space models and the ARIMA models fit the observed
data better than the nHWT and nHWT–DIMS models. Similar behavior is expected in
the forecasts.

Table 5. Main benchmarking results. RMSE used to compare fitted results. MAPE used to compare
forecasts accuracy.

RMSE on Fit Average MAPE for Forecasts

NARX 33.95 26.63%
NN-NLR 33.21 13.94%
ARIMA 50.42 24.03%
nHWT 54.93 18.55%
TBATS 46.77 37.60%
BATS 45.44 37.61%

nHWT-DIMS 58.65 16.00%
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3.5. Forecasts Comparison

The greatest interest is in forecast reliability. To compare the results of the forecasts
given by the different methods, the mean absolute percentage error (MAPE) as a percent-
age is used, as indicated in (33). This is a common indicator used to compare forecasts
of demand [73].

MAPE(h) =
1
h

h

∑
t=1

∣∣∣∣
yt − ŷt

yt

∣∣∣∣. (33)

Here, h is the forecast horizon to evaluate. As the forecasts are made one hour ahead
(ten units) throughout the validation subset, h can take values from one to ten time units.
From the forecasts of one hour ahead, the MAPE is obtained by comparing these with the
real values of the validation set, using the procedure described in [74]. The benchmark
summary in Table 5 includes the average of the MAPE. The average is obtained as the
mean of the MAPE(h) with h = 1,2, . . . ,10. The best forecasts, on average, are produced
by the NLR. The nHWT-DIMS models are revealed as a competitive method against the
regular seasonal models, outperforming the other models.

Figure 13 shows the MAPE of these forecasts as a function of the forecasting horizon.
It is clear from the results obtained that traditional models with one seasonality are not
capable of working with this type of series. The BATS and TBATS models of state spaces do
not drop below 30% MAPE. The ARIMA model starts by making very short-term forecasts
that have MAPE of below 15%, but beyond three time units it is not capable of making
good predictions. The nHWT models improve the forecasts with respect to the previous
ones, although the use of the DIMS allows the level of the predictions to be always kept
below 20%. However, the method that produces the best results is NN–NLR. These models
give forecasts that remain almost constant with an accuracy of about 14% of MAPE.

1,2,…,10. The best forecasts

–
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Figure 13. Mean absolute percentage error (MAPE) comparison of one hour-ahead forecasts.

4. Discussion

The results obtained in the previous exercise show that the fact that having irregu-
larities in the series has an enormous influence on the result in statistical models used
in this article. The models that use regular seasonalities require that they appear with
a regular length, regardless of whether the pattern varies. When dealing with series
whose seasonality is not completely defined, the models cannot overcome these variations.
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The use of models with discrete seasonality allows for progress in this problem, since it is
capable of introducing seasonality only where it occurs.

Though the periodicity of 200-time units did not show a consistent pattern over time
in this data set, having a longer time series more than seven days (e.g., two-month record
or more) may reveal discontinuous patterns repeating themselves at that low frequency,
which may help to better train the model for forecasting such signals. This requires further
investigation and research.

However, the best tool for this series is the use of AI to address these irregularities.
Curiously, the NARX neural network does not offer good results, but the NLR neural
network manages to improve the results. This situation responds to the fact that the
previously described models require seasonal stability if they are to make predictions,
since they are based on linear or structural models. The neural network model is not
subject to these restrictions and uses these irregularities to make forecasts.

Future studies in this area should aim to ensure that the structural models are ca-
pable of introducing an ambiguity between their seasonal processes produced by the
inconsistency of the series in terms of seasonality.

5. Conclusions

In this article, we have analyzed time series forecasting methods applied to a pattern
of electricity demand that has an irregular periodicity, so that the seasonality is not well
defined. We have analyzed models of neural networks, ARIMA, multiple seasonal Holt-
Winters models and state spaces using regular seasonalities, and multiple seasonal Holt-
Winters models with discrete interval moving seasonalities.

To compare the behavior of all the models discussed, they were applied to the situa-
tion of a connection node with a hot-dip galvanizing company, where the time series of
electricity consumption due to the heating of the bath causes seasonalities. A frequency
analysis using spectral density and least square wavelets with the series showed that a
first seasonality of one hour could be easily located; some other seasonalities could be
considered, but their period was not clear. The problem with irregular seasonality is that
the models need to use patterns that constantly repeat themselves, so the pattern must
be defined for the entire time series. Nevertheless, the use of Holt-Winters models with
discrete seasonality (nHWT-DIMS) allows these seasonalities to be separated efficiently
and reliable predictions to be made.

The results showed that the use of nHWT–DIMS models improves the results com-
pared to the rest of the models. This is an interesting proposal for companies because
of the simplicity of its application and good results—the MAPE obtained is around 16%.
However, NLR (ANN) showed better predictions, with a MAPE of 14%.

Our study contributes to the improvement of forecasting systems with time series
by including discrete seasonality in the model. This allows for an efficient method of
prediction to be applied in situations of electrical demand with marked seasonality but
non–regular periodic appearances.
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Abbreviations

AI Artificial intelligence
Al Aluminum
AIC, AICc Akaike’s information criterion
ALLSSA Anti-leakage least-squares spectral analysis
ANN Artificial neural networks
AR(1) Auto regressive model of order 1
ARIMA Autoregressive integrated moving average
ARMA Autoregressive moving average

BATS
Exponential smoothing state space model with Box-Cox transformation,
ARMA errors, trend and seasonal components

BIC Bayesian information criterion
BRT Bagged regression trees
DIMS Discrete interval moving seasonalities
LASSO Least absolute shrinkage and selection operator
LSWA Least-squares wavelet analysis
LSWS Least square wavelet spectrum
MSE Mean squared error
MAPE Mean absolut percentage error
MLP Multilayer perceptron
NARX Non-linear autoregressive neural networks with exogenous variables
nHWT Multiple seasonal Holt-Winters
nHWT-DIMS Multiple seasonal Holt-Winters with discrete interval moving seasonalities
NLR Non-linear regression
RMSE Root of mean squared error
SARIMAX Seasonal autoregressive integrated moving average exogenous model
SIC Schwarz’s information criterion
SSM State-space models
STL Seasonal–trend decomposition procedure using Loess
SVM Support vector machines

TBATS
Exponential smoothing state space model with Box-Cox transformation,
ARMA errors, trend and trigonometric seasonal components

TDL Tapped delay line
Zn Zinc
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Abstract: The rapidly increasing population growth and expansion of urban development are
undoubtedly two of the main reasons for increasing global energy consumption. Accurate long-term
forecasting of peak load is essential for saving time and money for countries’ power generation
utilities. This paper introduces the first investigation into the performance of the Prophet model in the
long-term peak load forecasting of Kuwait. The Prophet model is compared with the well-established
Holt–Winters model to assess its feasibility and accuracy in forecasting long-term peak loads. Real
data of electric load peaks from Kuwait powerplants from 2010 to 2020 were used for the electric
load peaks, forecasting the peak load between 2020 and 2030. The Prophet model has shown more
accurate predictions than the Holt–Winters model in five statistical performance metrics. Besides, the
robustness of the two models was investigated by adding Gaussian white noise of different intensities.
The Prophet model has proven to be more robust to noise than the Holt–Winters model. Furthermore,
the generalizability test of the two models has shown that the Prophet model outperforms the
Holt–Winters model. The reported results suggest that the forecasted maximum peak load is expected
to reach 18,550 and 19,588 MW for the Prophet and Holt–Winters models by 2030 in Kuwait. The
study suggests that the best months for scheduling the preventive maintenance for the year 2020 and
2021 are from November 2020 until March 2021 for both models.

Keywords: Prophet model; Holt–Winters model; long-term forecasting; peak load

1. Introduction

Electricity power is an essential part of today’s life, and it is the backbone of modern civilization [1].
The generation of power for daily life is crucial in every country. Different challenges worldwide in
economics, environment, and growing populations require electrical systems that operate efficiently
and continually all around the year. Therefore, electrical load forecasting is one of the critical tools
for policymakers to make the right decision in expanding and managing the electric grid and for the
management of the existing powerplants. Energy forecasting provides vital information for generating
capacity, control and planning, system management, distribution, and maintenance scheduling.
Accurate forecasting assures an efficient capacity planning for the growing population and increasing
demand for electricity that avoids over or underestimating of utility expansion plans. In addition,
it would allow proper and data-driven economic and environmental management and planning.
Different planning horizons of electrical load forecasting are investigated in various publications, which
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are traditionally categorized into short-term, medium-term, and long-term forecasting [2–6]. First, the
short-term forecasting investigates the sub-hourly, hourly, daily, and weekly predictions. Second, the
medium-term forecasting that includes weekly, monthly, and quarterly forecasting. Lastly, long-term
forecasting contains periods of a year or beyond. Each one of these planning horizons is important;
however, the long-term forecasting can be considered the most critical horizon due to the consequences
of the strategic and costly decisions, such as the expansion of utility plants. An overestimation of
electricity demand, especially in the long-term forecasting, will result in a significant increase in the
construction of unnecessary electricity generation plants. In contrast, an underestimation of electricity
demand forecasting will result in a shortage of electricity production and customer dissatisfaction.
Therefore, the study of this research will focus on long-term electricity demand forecasting and the use
of models that give the most accurate predictions.

An enormous number of research in electrical load forecasting is found in the literature that tackles
the different challenges faced by the power industry and provides a superior forecasting method
for predicting the demand of the electrical load. Various types of models and methodologies are
implemented for electrical load forecasting in the literature with several parameters in a range of
complexity degrees to achieve the best load forecasting accuracy. The methods can be categorized
into several groups, but for simplicity, it can be divided into two main groups, namely the group of
conventional models and the group of artificial intelligence (AI) models [1–6]. Conventional methods
include models, such as regression models, time series models, exponential smoothing, and gray
models [2,4]. In contrast, artificial intelligence models include models such as artificial neural network
(ANN)-based models, support vector regression (SVR), genetic algorithm (GA) models, machine
learning (ML) models, and deep learning (DL) models [1–4]. These models were used as simple
or hybrid models or as a combination of more than one method, whether conventional or artificial
intelligence models. Generally, the artificial intelligence models are more complex than conventional
models. During the last two decades, the application of the AI models in the forecasting processes was
rapidly increasing compared to the conventional models, and that can be attributed to the development
of different AI models and the advancement of the computers [2]. However, a relatively recent
review [3] depicted that the conventional methods, such as regression and/or multiple regression, are
still widely efficiently used, especially for long-term forecasting despite their simplicity.

Researchers globally tackled the long-term forecasting challenges by using different models and
methodologies to achieve superior and accurate forecasting. For example, Dudic et al. [7] used a linear
regression model to forecast the monthly and yearly electricity consumption for the German market,
taking into account some factors, especially the higher efficiency of electricity usage from year to
year. Filik et al. [8] proposed a nested combination of three subsections for modeling to reduce the
forecasting error and can be used for several years ahead. Mohammed [9] examined the correlation of
actual load supply with factors, such as population, gross national product, consumer price index, and
weather temperature of Iraq using linear logarithmic and ANN models. García-Díaz and Trull [10]
presented multiple Holt–Winters models to improve the forecasting electricity demand of the Spanish
national electricity market for very short-term forecasting. Taylor [11] showed the superiority of
triple seasonal methods of Holt–Winters and auto regressive moving average (ARMA) models for
Short-Term Electricity Demand Forecasting. Recently, Trull et al. [12] proposed a new method to
initialize the level, seasonality, and trend in multiple seasonal Holt–Winters models. Bianco et al. [13]
used a trigonometric grey model with a rolling mechanism and Holt–Winters smoothing method to
predict long-term non-residential electricity consumption for ten years up to the year 2020 and showed
low average deviation. Hussain et al. [14] employed Holt–Winters and Autoregressive Integrated
Moving Average (ARIMA) models using real data from the year 1980 to 2011 to forecast the electricity
consumption for Pakistan up to the year 2020 and showed better results for the Holt–Winters model
than ARIMA model. Ali et al. [15] employed a fuzzy logic model for long-term load forecasting of
one year based on temperature and humidity in addition to historical load data. Ouedraogo [16]
developed a scenario-based model for the African power system using the Schwartz methodology
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in this context and showed an increase in electricity demand of 4% by 2040. Liu et al. [17] proposed
a least squares support vector machine optimized by two different models to forecast the demand
of electric load in the multi-energy coupling mode. More examples can be found in several reviews
carried out by Kuster et al. [3], Wei et al. [4], Ahmad et al. [5], Deb et al. [18], Khuntia et al. [19], Runge
and Zmeureanu [20], and Su et al. [21]. A relatively new method called Prophet is introduced by Taylor
and Letham [22] for forecasting, which has a high potential to be used in electric load forecasting.
Different implementations were found for this model in recent years. For example, Yenidogan et al. [23]
compared two models: ARIMA and Prophet in Bitcoin forecasting. The results show that Prophet
had an accuracy of about 94.5%, which was much better than ARIMA, which had an accuracy of
only 68%. In addition, Ashwini Chaudhari [24] used three models: ARIMA, Prophet, and long-short
term memory (LSTM) recurrent neural networks in forecasting the prices of cryptocurrencies: Bitcoin,
Ethereum, and Litecoin. The results show that the application of LSTM and Prophet led to very high
accuracy between 93% and 99% for the three currencies, while the accuracy of the ARIMA model ranges
between 82% and 66% only. In addition, Bianchi et al. [25] carried a comparative for heat short-term
demand forecasting methods using the Autoregressive Model (ARM), Non-Autoregressive Model
(NARM), and Prophet based on real data of an Italian utility company. The ARM was superior to the
other models in short-term forecasting. A thorough recent study carried out by Das [26] where five
different forecasting models (Simple Exponential Smoothing, ARIMA, Dynamic Harmonic Regression,
Neural Network, and Prophet) were used for prediction of wind speed in two states in India (Tamil
Nadu and Maharashtra). The neural network model provided the best results. However, the Prophet
model showed promising results, and it was recommended to be used in the future.

Different studies about long-term forecasting for Kuwait were carried out. Almeshaiei and
Soltan [27] proposed a methodology to be used as a guide for constructing electric power load
forecasting models based on segmentation and decomposition of the load time series and used real
daily load data from the Kuwaiti electric network and a model with a mean absolute percentage
error (MAPE) value of 3.84% was reported. Al-Rashidi and El-Naggar [28] employed the particle
swarm optimization to minimize the error associated with the estimated model parameters for annual
peak load forecasting for Kuwaiti and Egyptian powerplants using the least error squares estimation
technique to forecast the annual peak load for the years 2006 to 2010. Alhajeri et al. [29] used the
cuckoo search algorithm to minimize the error associated with the estimated parameters of three
long-term forecasting methods used to forecast the annual peak demands. Al-Hamad and Qamber [30]
presented long-term forecasting for peak loads of Gulf Cooperation Council (GCC) countries using
Multiple Linear Regression (MLR) and Adaptive Neuro-Fuzzy Inference System (ANFIS) methods. A
recent study for the residential sector in Kuwait was carried out by Alajmi, and Phelan [31] created a
baseline using a bottom-up approach for the end-use energy profile for the residential sector in Kuwait
until 2040.

With reference to the aforementioned relevant literature, research to date has not yet investigated
the performance of the Prophet model in long-term forecasting of maximum load. In this paper, real
recorded data from the National Control Center (NCC) in Kuwait were used for long-term electric
load forecasting using the Prophet model. The proposed method is simple yet powerful in prediction
because of its features of adjusting parameters without exploring the specifications of the underlying
model [22]. It consists of a decomposable time series model with three main model components:
seasonality, trend, and holidays. The model is compared with a well-established Holt–Winters model
for evaluation and to obtain the best forecasting model.

This study aims to contribute to the literature by investigating long-term maximum peak load
forecasting performance of Kuwait peak loads using the Prophet method based on comparative
quantitative analysis with the Holt–Winters forecasting method. To the best of our knowledge, no prior
study has investigated the use of Prophet model in long-term forecasting of the maximum electricity
load either in Kuwait’s electrical national grid or elsewhere. Furthermore, the generalizability and
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robustness of the Prophet and Holt–Winters methods for the long-term electric peak loads forecasting
are explored and presented.

2. Methodologies

A dataset of the maximum load of Kuwait between January 2010 and May 2020 was acquired from
the Ministry of Electricity and Water (MEW) to support this research. Figure 1 presents the maximum
load (MW) of Kuwait for the past ten years. With reference to Figure 1, a yearly seasonality of the
maximum load can be clearly observed. The maximum load peaks are within the summer period
between June and August each year due to the subtropical weather nature of Kuwait with extreme
temperatures in summer and cold winter seasons. In addition, the maximum load takes an increasing
trend. The gradual and steady trend increase is likely to continue for the upcoming years due to the fact
of the increasing population, increased factories, and the expansion of the urban and residential areas.

 

Figure 1. Actual maximum load of Kuwait between January 2010 and May 2020.

In order to forecast the maximum load of Kuwait for the upcoming years, forecasting models that
incorporate seasonality and trends are required to ensure a well-fitted model to the actual data. In this
work, Facebook’s Prophet and Holt–Winters forecasting models have been utilized in this research for
the long-term forecasting of the maximum load in Kuwait.

The Prophet forecasting model that is used for forecasting the maximum load is a relatively new
modular forecasting method based on various tunable parameters by analyst-in-the-loop, as shown in
Figure 2. One of the Prophet forecasting method’s strengths is that it was designed to have intuitive
tuning of the parameters and does not require knowledge of the underlying model. However, to date,
long-term maximum load forecasting using Prophet has not been reported in the literature. Whereas,
the Holt–Winters model, or else known as triple exponential smoothing, has been excessively reported
in the relevant literature and was proven to be effective in forecasting energy consumption with high
accuracy [32–34]. In addition, unlike the Holt–Winters method, the Prophet forecasting method is
robust to missing data and does not require data interpolation. Furthermore, seasonality with multiple
periods can be incorporated in the Prophet forecasting method to provide flexibility in modeling
complex data using an analyst-in-the-loop experience. The Prophet method also enables the user to
use extra regressors to present multivariate forecasting to explore the effects of different variables with
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a very fast-fitting procedure. In the next sections, the implementation of the Prophet and Holt–Winters
forecasting methods is presented in detail.

𝑦 𝑡 𝑔 𝑡 𝑠 𝑡 ℎ 𝑡 𝜀
ε

𝑔 𝑡 𝑘 𝑎 𝑡 𝛿 𝑡 𝑚 𝑎 𝑡 𝛾𝑘 𝛿 𝑚 𝛾𝑠 𝑠 𝛿 𝑎 𝑡𝑎 𝑡 1           𝑖𝑓 𝑡 𝑠0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑠 𝑡

Figure 2. Modelling flowchart with analyst-in-the-loop.

2.1. Prophet Forecasting Method

Prophet forecasting model incorporates data trends, seasonality, and holidays that allow the
possibility of modeling complicated time-series features. Multiple seasonality can be fitted as daily,
weekly, and yearly patterns. The mathematical representation of the decomposed time series model is
hence described as:

y(t) = g(t) + s(t) + h(t) + εt (1)

where g(t) represents the data trend function, s(t) represents the seasonality, and h(t) represents holidays
effect that can be added within specific points of the data. The error term, εt, represents any distinctive
features of the data that are not fitted by the model.

Prophet trend function, g(t), can be represented by a piecewise linear growth model or a saturating
growth model. Since the maximum load data do not exhibit a saturating growth, a piecewise linear
growth model is utilized as:

g(t) =
(

k + a(t)T
δ
)

t +
(

m + a(t)T
γ
)

(2)

where k is the growth rate, δ is adjustment rate, m is the offset parameter, and γ represents the trend
changepoints, s j, and is set as −s jδ j, with a(t) defined as:

a j(t) =

{

1 i f t ≥ s j

0 otherwise
(3)

The change points allow the growth model to change the trend and can be utilized by the
analyst-in-the-loop to fit the model better and produce reliable data forecasts. The Prophet model
allows the user to specify the flexibility of the trend by the adjustment rate. It can also automatically
detect the change points, or the data analyst can manually adjust them to describe trend-altering events
in the time series.
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For the seasonality function, s(t), the time series’ multiperiod seasonality can be modeled using
the Fourier series to represent the daily, weekly, and yearly seasonality. The seasonality function is
hence written as:

s(t) =
N
∑

n=1

(

an cos
(2πnt

P

)

+ bn sin
(2πnt

P

))

(4)

with P = 354.25 for yearly seasonality or P=7 for weekly seasonality. Lastly, to include holiday effects
by the holiday function, h(t), the user can define a matrix list of holidays with dates to be incorporated
into the time series as a matrix of regressors, Z(t), defined as:

Z(t) = [1(t ǫ D1), . . . , 1(t ǫ DL)] (5)

h(t) = Z(t)κ (6)

with D as the set of holiday dates, κ ∼ Normal
(

0, v2
)

with v as the holiday smoothing parameter.

2.2. Holt–Winters Forecasting Model

There are two variations of the Holt–Winters forecasting method: the additive and multiplicative
models of the seasonal variations. The multiplicative model is suitable for a time series with an
increasing seasonal pattern that is proportional to the data level. In contrast, the additive model is
suitable for fitting a time series with a constant seasonal variation. In this work, the multiplicative
method is utilized for forecasting the maximum load of Kuwait.

The Holt–Winters model consists of forecast equation and smoothing equations of the level, trend,
and seasonality of the time series. Assuming that st represents the seasonality, bt to represent the
trend and that lt corresponds to the level with smoothing parameters of α, β, and γ. Therefore, the
Holt–Winters multiplicative forecast model can be expressed as:

ŷt+h|t(k) = (lt + hbt)st+h−m(k+1) (7)

lt = α
yt

st−m
+ (1− α)(lt−1 + bt−1) (8)

bt = β
∗(lt − lt−1) + (1− β∗)bt−1 (9)

st = γ
yt

(lt−1 + bt−1)
+ (1− γ)st−m (10)

where m denotes the seasonality period and the smoothing parameters defined as:

0 ≤ α ≤ 1, 0 ≤ β ≤ 1, and 0 ≤ γ ≤ (1− α)

In the Holt–Winters multiplicative method, the seasonality component is expressed relatively,
and the time series can be seasonally adjusted by dividing through by the seasonality component.
Equation (8) corresponds to the level, and it is expressed as a weighted average between the seasonal
term and the non-seasonal term (lt−1 + bt−1). While Equation (9) corresponds to the trend of the time
series, which is expressed as a weighted average of the trend between the level and previous slope bt−1.
Equation (10) corresponds to the seasonality and is calculated by the weighted average between the
current and previous seasonal components of the time series.

2.3. Validation Approach

In order to validate the performance of the prediction of the models, a simulated historical forecast
(SMH) approach is conducted. SMH is based on the rolling origin cross-validation approach, or
otherwise known as forward chaining, where the data are split into training and testing sets and
each day is tested based on the prior training data. However, this method would be computationally
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intensive due to conducting tests each day and would result in more forecasts that are likely to have
correlated estimates of errors. While with SMH, fewer forecasts can be defined at cut-off dates and the
total error can be evaluated based on all the forecast horizons. Figure 3 illustrates the process of the
rolling origin cross-validation. This approach would allow the models to train on a dataset and test on
another unseen dataset of the time series. Moreover, the SMH approach could be used as an indicator
of the models’ generalizability in forecasting the maximum load.

 

𝑅𝑀𝑆𝐸 ∑ 𝑦 𝑦𝑛𝐶𝑉𝑅𝑀𝑆𝐸  ∑ 𝑦 𝑦𝑦
𝑀𝐴𝐸 1𝑛 |𝑦 𝑦 |

𝑀𝐴𝑃𝐸 1𝑛 𝑦 𝑦𝑦 100%
𝑅 1 ∑ 𝑦 𝑦∑ 𝑦 𝑦𝑦, 𝑦 𝑦

Figure 3. Rolling origin cross-validation process.

In addition, to assess the performance of each model in terms of accuracy, various statistical
metrics were adopted, such as root mean square error (RMSE), the mean absolute percentage error
(MAPE), coefficient of determination (R2), mean absolute error (MAE), and coefficient of variation of
root mean square error (CVRMSE) that can be expressed as in the following equations:

RMSE =

√

∑n
i=1(ŷi − yi)

2

n
(11)

CVRMSE =

√

∑n
i=1(ŷi − yi)

2

y̆
(12)

MAE =
1
n

n
∑

i=1

∣

∣

∣yi − ŷi

∣

∣

∣ (13)

MAPE =
1
n

n
∑

i=1

∣

∣

∣

∣

∣

ŷi − yi

yi

∣

∣

∣

∣

∣

× 100% (14)

R2 = 1−

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y̆)2

(15)

where y, ŷ and y̆ represent the measured, predicted, and averaged values respectively.

3. Results and Discussion

The Prophet and Holt–Winters models are implemented in R and Python, using real data of
electrical daily peak load from Kuwaiti powerplants from 2010 to 2020. The two models’ outputs are
plotted in Figures 4 and 5, along with the real electrical peak of daily loads. The data include Kuwait’s
peak loads from 2010 to 2020. Moreover, the forecasted from 2020 to 2030, along with a 99% confidence
interval, are included. The forecasted region of this period is enlarged and presented in Figure 6, along
with the 99% confidence interval for both models.

The graphs in the previous figures demonstrate that there has been a steady increase in the values
of daily peak loads with a yearly seasonality for both models. The two models share several key
features, such as trend similarity of the forecasted maximum and minimum peaks. However, the
Holt–Winters model generally shows a higher magnitude of the forecasted maximum and minimum
peaks than the Prophet model. The superiority of the models is assessed from different aspects by

105



Appl. Sci. 2020, 10, 5627

three indicators: accuracy, generalization, and robustness. Also, the future peak loads forecasting for
Kuwait is discussed, and the maximum capacity needed by 2030 is investigated.

 

Figure 4. The measured peaks of daily loads data in Kuwait: the trained, predicted, and forecasted
data using the Prophet model with a 99% confidence interval.

 

Figure 5. The measured peaks of daily loads data in Kuwait: the trained, predicted, and forecasted
data using the Holt–Winters model with a 99% confidence interval.
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≤

Figure 6. Enlarged forecast portion for both models along with the 99% confidence interval for the
years 2020–2030.

3.1. Model Accuracy

Various accuracy and statistical performance metrics were used in this study, which include
MAPE, MAE, RMSE, CVRMSE, and the coefficient of determination R2. MAE demonstrates the
gap between the estimated value and the real value using the absolute error. RMSE assesses the
instability of model response regarding variance and sensitivity to large errors. CVRMSE normalizes
the forecasted error and provides a unitless metric that evaluates the variability of the errors between
real and predicted values. The advantage of using these statistical indicators is to explore various
aspects of the presented models.

Table 1 presents the calculated values of five statistical performance metrics (MAPE, MAE, RMSE,
CVRMSE, and R2) for both the Prophet and Holt–Winters models using the equations aforementioned
in the methodology section. MAPE is one of the most used tools for measuring the accuracy of
models [35]. MAPE is proposed in [4] as a reference range for evaluating the performance of energy
consumption forecasting at different horizons. Highly accurate models are considered when the MAPE
is less than 10%, as benchmarked in [36]. The highly accurate models were divided into levels into
four sublevels for each planning horizon. For example, the long-term forecasting is divided into these
sublevels: I (≤1.2%), II (1.2–2.8%), III (2.8–4.6%), and IV (4.6–10%) [4].

Table 1. The calculated values of different performance statistical metrics for both models.

Criteria Prophet Holt–Winters

MAPE 1.75% 4.17%
MAE 147.89 343.33
RMSE 205.64 475.76

CVRMSE 7.61% 17.59%
R2 0.9942 0.9694

Accurate values of MAPE were achieved by the Prophet and Holt–Winters methods with
superiority by the Prophet model. The values of MAPE were 1.75% and 4.17% for Prophet and
Holt–Winters models, respectively. Both values indicate an accurate prediction of the values of both
models with relatively low MAPE values. Based on the sublevels of accuracy mentioned above and
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in [4], the Prophet model falls within sublevel II, whereas the Holt–Winters model falls within sublevel
III accuracy.

Figure 7 depicts the coefficient of determination, R2, and illustrates the variations between the
forecasted and real data values for both the Prophet and Holt–Winters models. Both models achieved
high values of the coefficient of determination R2 equal to 0.9942 and 0.9694 for the Prophet and
Holt–Winters models, respectively. The MAE of the Prophet model is reported as 147.89, whereas
the value of MAE for Holt–Winters model is 343.33, which is approximately more than the double
of the Prophet model MAE. In addition, the Prophet model results in a better RMSE value than the
Holt–Winters model with a value of 205.64. Moreover, the CVRMSE percentage of the Prophet model
is less than the Holt–Winters model with values of 7.61% and 17.59%, respectively.

Figure 7. The coefficient of determination R2 and the fitting characteristics of real and simulated data
for both models.

It is clear that the Prophet model has a superior fitting to the real data and has better performance
and accuracy than the Holt–Winters model. From the five different statistical metrics, both the Prophet
and Holt–Winters models show high accuracy with the superiority of the Prophet model over the
Holt–Winters model.

Another measure to assess the accuracy of the models is to use the simulated historical forecast
(SHF) [22,37], as depicted in Figure 8. The Prophet model forecasts have a considerably lower prediction
error than the Holt–Winters model. The Prophet model’s MAPE values are limited within the range
between 1.3 and 2.1 approximately, and there is no clear trend of MAPE with the forecast window. The
MAPE values of the Holt–Winters model across the different forecasting periods were generally good
but higher than the Prophet model. The Holt–Winters model showed a generally increasing trend of
MAPE values with the increase in the forecast horizon. These results are evidence that both models
exhibit a great extent of accuracy in long-term energy forecasting.
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Figure 8. Smoothed mean absolute percentage errors for the Prophet and Holt–Winters models.

3.2. Model Generalization

The model’s generalization is assessed by the model’s ability to forecast samples beyond the
training range. Figure 9 depicts the relative error variation in each of the Prophet and Holt–Winters
models. The relative error percentage of the Prophet model outperforms the Holt–Winters model. The
percentage of maximum relative error in the Prophet model is less than 16%, whereas the Holt–Winters
model’s relative error reached 30%. Besides, the SHF results can be used to show the generalizability
of both models. The Prophet model shows better generalizability than the Holt–Winters model, as
suggested by the MAPE values and the relative error percentage.

Figure 9. Relative errors percentage for Prophet and Holt–Winters models.
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3.3. Model Robustness

To test the model robustness, Gaussian white noise with different intensities is utilized and added
into testing data sets of actual data. This approach has been utilized by relevant literature, such as
in [38,39]. The data is split into training dataset and multiple testing sets with each set corresponding
to a defined noisy intensity. Gaussian white noise is generated with four different intensities of 20%,
40%, 60%, and 80% to assess the robustness of the Prophet and Holt–Winter models. The generated
Gaussian white noise samples are distributed randomly at each testing data set, with the corresponding
noise intensity, and model robustness is evaluated by the effect of the noise intensity over the accuracy
of the model, measured by the coefficient of determination R2. Low variance in R2 indicates high
robustness where high variance indicates low robustness. Table 2 presents the results of the R2 of both
models under various noise intensities.

Table 2. The accuracy reduction of different models under various noise intensities.

Noise Intensity Prophet Holt–Winter

0% 0.9942 0.9694
20% 0.9892 0.9483
40% 0.9795 0.9275
60% 0.9708 0.9014
80% 0.9604 0.8883

A reduction in the coefficient of determination is associated with the increase in the noise level, as
depicted in Figure 10. The Prophet model showed high R2 values across the different noise intensities
with a minimum value of 0.9604 at 80% noise intensity. On the other hand, the Holt–Winters model
showed high values of R2 but relatively lower than the Prophet model. The minimum value of R2 for
Holt–Winters was 0.8883 at 80% noise intensity. The results indicate that the Prophet model is more
robust than the Holt–Winters model under various Gaussian white noise intensities.

 

Figure 10. Variations of the coefficient of determination at different noise intensities for both models.

3.4. Future Peak Loads Forecasting

According to the assessment of the two models, the Prophet model outperforms the Holt–Winters
model and, therefore, should provide more reliable forecasting. The real data of daily peak loads
consumption from 2010 to the end of May 2020 are used to forecast the daily peak load from June
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2020 to 31-12-2030, with results plotted in Figures 4 and 5. The forecasting plots also provide essential
information about the yearly maximum peak demand. Estimating the maximum peak demand is
crucial for long-term strategic decisions in terms of electricity capacity expansion plans to withstand
the foreseen maximum loads. Soares et al. [40] reported that the electric peak demand is expected to
reach 30,000 MW by 2030. Al-Hamad and Qamber [30] applied the Adaptive Neuro-Fuzzy Inference
System (ANFIS) and Multiple Linear Regression (MLR) methods to forecast the peak loads for Kuwait
in three scenarios according to the expected growth rates of the gross domestic product (GDP) for the
years 2014–2024. The three sceneries were associated with high, average, and low growth of GDP. The
high, average, and low growth of GDP models were increasing in different rates reaching maximum
forecasted loads of 18,700, 27,300, and 44,500 MW, respectively, for the year 2024. Alhajeri et al. [41]
showed that the expected demand in Kuwait is increasing by an average of 2.8% annually by 2030, and
the installed capacity should be higher than 21.8 GW. Past studies [30,40–43] about the maximum peak
loads forecasting showed a clear increasing trend for peak loads in the coming years, reaching about
30 GW by 2030. On the other hand, the recent study and the new forecast of MEW show a similar
trend but lower in magnitude.

The long-term forecasting provides daily, monthly, and annual maximum peaks. Table 3 presents
a comparison between actual maximum peak load data and forecasted demand from the MEW in
different years (2017–2019) [42–44], Prophet, and Holt–Winters models. The MEW forecasting showed
variations in the percentage increase in annual maximum load from 2017 to 2019 with a decreasing
trend. In the year 2017, there was a yearly increase in the maximum peak load by an average of 5.4%.
The average increase was reduced in the forecast for 2018 to reach 4.7% annually. However, the growth
became more conservative in the statistical book of the year 2019 and reached 1% only. The forecasting
for years between 2020 and 2030 by the Prophet and Holt–Winters models showed an increasing trend
with varying percentages for each year, reaching a maximum peak load of 18,550 and 19,588 MW by
the year 2030, respectively. The magnitude of the increase in the Prophet model is between the value of
the maximum peaks of MEW in the year 2019 and the Holt–Winters model that suggests the Prophet
model is more reliable when compared with the actual data. It is a common practice to have a capacity
reservoir to withstand any sharp increase in the daily consumption of electricity. Accordingly, the
99% confidence interval can be used to be the capacity reservoir. As a result, the capacity reservoir
should reach up to 22.1 and 23.3 GW for the Prophet and Holt–Winters models to tolerate any failure
or disruption of the electrical system during the maximum peak load time by 2030.

On the other hand, Table 4 presents the monthly forecasted maximum load peaks for 17 months
from August 2020 to December 2021. The data provided in Table 4 are essential for monthly planning in
the powerplants. It offers a clear vision for the expected maximum consumption of power by proposing
the monthly maximum load peaks, which is essential for planning activity in powerplants, such as
maintenance scheduling. Optimum planning for the maintenance schedule is vital for unit availability
and avoiding any unexpected failures or shutdowns. Preventive maintenance is a cost-effective option
that can be implemented when planning is accurate. The monthly maximum load peaks indicate
that the best months for scheduling maintenance are from November 2020 until March 2021 for both
models. Even with 99% confidence interval, the maximum peaks do not exceed 10,000 MW and 10,500
MW for the Prophet and Holt–Winters models. Additional months can be alternatives, such as October
2020 and April 2021 but with some low risk.
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Table 3. Comparison between the maximum load of actual data, forecasted maximum peaks from
Ministry of Electricity and Water and the Prophet and Holt–Winters models.

Year Actual MEW [44] Prophet Max 99% CI Holt–Winters Max 99% CI

2010 10,890 10,648 12,817 10,195 12,123
2011 11,220 10,925 13,057 11,050 13,146
2012 11,850 11,618 13,996 11,278 13,521
2013 12,060 11,700 13,995 11,882 14,164
2014 12,410 11,982 14,233 11,662 14,015
2015 12,810 12,617 15,048 12,393 14,725
2016 13,390 13,214 15,979 12,933 15,420
2017 13,800 13,646 16,482 13,500 16,088
2018 13,910 13,866 16,634 13,834 16,570
2019 14,420 14,049 14,235 17,197 14,438 17,314
2020 14,190 14,727 17,561 15,758 18,894

2021 14,331 14,900 17,771 15,943 19,026
2022 14,475 14,975 17,875 16,024 19,200
2023 14,620 15,431 18,538 16,511 19,860
2024 14,766 15,978 19,157 17,096 20,547
2025 14,913 16,184 19,208 17,316 20,858
2026 15,063 16,451 19,751 17,602 21,188
2027 16,746 20,240 17,918 21,594
2028 17,446 21,084 18,668 22,485
2029 17,836 21,372 19,085 22,972
2030 18,550 22,061 19,558 23,305

Table 4. Comparison between the monthly maximum load of forecasted maximum peaks from the
Prophet and Holt–Winters models.

Month/YY
Prophet Holt–Winters

Max Upper 99% CI Max Upper 99% CI

Aug-20 14,727 15,887 15,758 17,292
Sep-20 13,744 15,036 14,706 16,031
Oct-20 10,951 11,813 11,718 12,552
Nov-20 8771 9568 9384 10,313
Dec-20 6930 7619 7415 8034
Jan-21 6828 7534 7306 7823
Feb-21 6866 7504 7347 7962
Mar-21 8095 8684 8661 9424
Apr-21 10,079 11,120 10,785 11,814
May-21 12,821 13,873 13,719 14,743
Jun-21 14,571 15,986 15,591 16,836
Jul-21 14,899 16,263 15,942 17,436

Aug-21 14,628 16,002 15,652 16,779
Sep-21 14,173 15,180 15,165 16,363
Oct-21 11,500 12,375 12,305 13,528
Nov-21 9190 10,028 9834 10,861
Dec-21 6972 7492 7460 8122

4. Conclusions

Long-term energy forecasting plays a pivotal role in providing insights for policymakers’ decisions,
such as the need to expand the electrical power utilities. In this study, two forecasting models were
utilized for long-term maximum electrical load forecasting of Kuwait; the Prophet and Holt–Winters
forecasting models. Both models performed outstandingly in three performance metrics: accuracy,
generalization, and robustness and provided essential knowledge for planning as follows:

1. The Prophet model achieved excellent values for MAPE, MAE, RMSE, CVRMSE, and R2 with
values of 1.75%, 147.89, 205.64, 7.61, and 0.9942, respectively. The Holt–Winters model performance
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metrics were 4.17, 343.33, 475.76, 17.59%, and 0.9694 for MAPE, MAE, RMSE, CVRMSE, and R2,
respectively. The superiority of the Prophet model in these values indicates higher accuracy when
compared to the Holt–Winters model.

2. The Prophet model exhibits better generalizability than Holt–Winters, as suggested by the
simulated historical forecast investigation.

3. The robustness of the two models was assessed by adding white noise and found that the Prophet
model is more robust than the Holt–Winters.

4. The forecasted maximum peak load reached 18,550 and 19,588 MW for the Prophet model and
Holt–Winters model, respectively, by 2030. An additional capacity reservoir should be available
to tolerate any failure or disruption of the electrical system.

5. The study suggests that the best months for scheduling the preventive maintenance for the years
2020 and 2021 are from November 2020 until March 2021 for both models.

It is believed that the insights concluded from this study would be of assistance to policymakers
in estimating the future electricity demands and the strategic development plan of the State of Kuwait
in addition to the maintenance schedule.
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