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Preface to ”New Training Strategies and Evaluation
Methods for Improving Health and Physical
Performance”

Physical activity is among the most effective methods for improving health, body composition,

and physical function, and its practice is suitable for every population. Its benefits are known

for sedentary individuals who, by initiating sport, improve their physical condition by reducing

risk factors. Active training is also encouraged for the general population who need to maintain

an optimal level of fitness, as well as for athletes who want to achieve high performance during

competitive periods. Even young people benefit from sports practice, growing into healthy young

adults with important implications for their psychological and social development. In the last few

years, the scope of research in sports has become very wide and detailed, laying the foundations for

the development of innovative training methods and new evaluation approaches aimed at improving

health, body composition, and performance. Contemporary researchers have contributed to the

field of body composition research in the development of new measurement methods and training

strategies. The aforementioned aspects have laid the foundations for the development of innovative

techniques and new evaluation approaches aimed at improving and assessing body composition and

sports performance. In these contexts, the bioelectrical impedance analysis was proposed as a valid

method to quantify body composition elements (e.g., fat and fat-free mass, body fluids, muscle mass)

and is based on predictive equations or the qualitative interpretation of the raw data. On the other

hand, innovative training strategies aimed at improving body composition and performance have

been presented. The aim of this Special Issue was to propose, on the basis of the evidence that the

current literature provides, new training techniques and specific evaluation methods for the different

populations practicing physical activity.

Catarina Nunes Matias, Stefania Toselli, Cristina Monteiro, and Francesco Campa

Editors
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Abstract: Based on comparisons to moderate continuous exercise (MICT), high-intensity interval
training (HIIT) is becoming a worldwide trend in physical exercise. This raises methodological
questions related to equalization of exercise dose when comparing protocols. The present scoping
review aims to identify in the literature the evidence for protocol equalization and the soundness
of methods used for it. PubMed and Scopus databases were searched for original investigations
comparing the effects of HIIT to MICT. A total of 2041 articles were identified, and 169 were included.
Of these, 98 articles equalized protocols by utilizing energy-based methods or exercise volume
(58 and 31 articles, respectively). No clear consensus for protocol equalization appears to have
evolved over recent years. Prominent equalization methods consider the exercise dose (i.e., energy
expenditure/production or total volume) in absolute values without considering the nonlinear nature
of its relationship with duration. Exercises resulting from these methods induced maximal exertion
in HIIT but low exertion in MICT. A key question is, therefore, whether exercise doses are best
considered in absolute terms or relative to individual exercise maximums. If protocol equalization is
accepted as an essential methodological prerequisite, it is hypothesized that comparison of program
effects would be more accurate if exercise was quantified relative to intensity-related maximums.

Keywords: training programs; physical activity; effort; patients; athletes

1. Introduction

Exercise is both described and prescribed on the basis of two main variables: intensity
(i.e., level of muscular activity) and volume (e.g., duration, distance or number of repetitions
of an interval or set, and of the entire session) [1,2]. Notably for the interval exercise
modality, these major variables also depend on possible recovery pauses within the exercise
bout, inducing a third exercise variable, called by some authors “exercise density” (i.e.,
work/recovery ratio but also intensity level of the recovery) [1,3,4]. For quantifying and
designating the overall exercise performed, authors can use generic terms accounting for
all exercise variables, such as exercise dose in exercise-induced health studies [1] or training
load for athlete monitoring purposes [5–7]. Defining effort as what is required to achieve a
task in line with individual maximal capacities [8], exercise dose and training load might
refer to the quantity of exercise-induced effort [5,6].

The control and calibration of training protocols should be a prerequisite in exercise
and sport science studies, and insufficient consideration of this may result in confusion
regarding exercise program effects [9,10]. Manipulation of training variables (volume,
intensity and density) might ensure that the effort level generated by two protocols being
compared is similar, or in other terms, that their exercise dose is equalized. However,
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methodologically these comparisons are not easy to conduct. Targeting large populations,
recommendations for physical activity frequently use absolute values for intensity or, some-
times, exercise durations characterized by large intensity ranges (e.g., light, moderate,
vigorous) that could complicate the quantification of an individualized and unique dose
value [1]. Viana et al. suggested that conclusions about high-intensity interval training
(HIIT) remain difficult to draw because of insufficient control of the numerous exercise
variables [11]. Recently, the lack of protocol equalization in HIIT and moderate-intensity
continuous training (MICT) has been suggested to represent a possible methodological
bias limiting studies’ conclusions [12]. Comments on this paper suggest that consensus
was not reached in the methods used for equalizing protocols nor, more surprisingly, in
the necessity for equalizing them [13]. Limits and issues raised by equalization methods
based on energy expenditure, although largely recommended, have only been recently
reported [14,15]. Similar debates on adequate terms to use and on quantification methods
are currently in progress regarding the training-load concept [2,7,16]. Therefore, we suggest
that equalization of training doses should be a methodological prerequisite before com-
paring the effects of different training protocols and is therefore a major challenge facing
exercise physiologists and sport scientists.

HIIT may be defined as repeated short-to-long exercise bouts performed at an intensity
between 80% and 120% of maximum aerobic power (oxygen consumption or equivalent
heart rate) [11]. Recently, the use of HIIT has been proposed as a method for improving
quality of life of older people and for rehabilitation of patients suffering from several
pathologies, such as cardiovascular diseases. As HIIT has become a real worldwide trend
for exercise practice and sport sciences, this has increased the need for accurate equalization
of training protocol doses in order to compare their efficiency [11,17,18]. Furthermore, we
propose that HIIT studies display most of the characteristics necessary to understand
the issues of exercise dose quantification and protocol equalization: (i) high number of
studies published; (ii) changes in exercise variables; (iii) methods for equalization already
developed and discussed.

The present scoping review aims to identify in the literature the evidence for protocol
equalization and the soundness of methods used for it [19].

2. Materials and Methods

The latest methodological guidance for scoping reviews was followed, leading to
completing the checklist of the Preferred Reporting Items for Systematic Reviews for
scoping reviews (Supplementary File S1) [20–22].

2.1. Search Strategy

We analyzed published studies on electronic databases until 30 November 2020 with-
out restriction set on the publication year. PubMed and SCOPUS databases were explored
using a keyword search strategy for ‘High-intensity interval training’ with a first filter
step used for including studies that were: written in English; randomized controlled trials,
clinical trials or from journal articles; based on human subjects. A second step was based on
abstract screening to select studies comparing HIIT to another type of training program and
to retain only chronic training programs. When the information was missing in the abstract,
the authors searched for it in the whole article. Because variables measured to control
exercise do not correspond between sprint interval training and HIIT, the last step consisted
of retaining studies focusing on HIIT (80–120% of VO2max or equivalent) and excluding
sprint interval training (intensity higher than 120%) [11]. All duplicate studies and proto-
cols were excluded; if the same experimental protocol was used for several articles, only the
first published was retained. Finally, studies were sorted according to publication year and
type of subjects observed: (i) patients or older people; (ii) untrained; (iii) trained. All search
results were extracted and imported into a reference manager (Zotero, version 5.0.96.3). No
included studies were authored by any of the review authors, thereby limiting possible
conflicts of interest.
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2.2. Assessment of Reporting Quality

The reporting quality of studies was assessed using items specific to the research
field. Most of them originated from a modified version of the Downs and Black checklist,
resulting in eight assessment criteria (Supplementary File S2) [23]. Studies reporting quality
were scored on a scale from ‘0’ (unable to determine, or no) to ‘1’ (yes) for each item. Scores
were allocated on the basis of good (6–8), moderate (3–5) and poor (0–2) methodological
reporting quality.

2.3. Terms Used and Methods Applied for Protocols Equalization

Articles’ methods sections were analyzed, and the proportion of studies that equal-
ized doses of training protocols and methods used for equalizing were recorded. If any
information necessary for protocol equalization was not included in a study’s methods
section, they were considered as not equalized. In line with this search, articles were
analyzed to determine terms used to describe how exercise-induced effort was quantified
(e.g., exercise dose or exercise volume) and the equalization process (e.g., equated protocols
or matched training).

To assess the soundness of the methods used for protocol equalization, the exercise
details were extracted from the articles, specifically exercise volume (duration, distance
or number of repetitions for session and for each interval or set), intensity (varied metrics
in absolute or relative values), recovery (duration and intensity if necessary) and exercise
type (running, walking, cycling or resistance training).

2.4. Statistical Analysis

The present study is largely descriptive, and quantifies proportions (%) of studies that
equalized training protocols and identified methods used for equalization. Differences in
reporting-quality methodology between studies that equalized protocols and those that did
not, and between subject populations were assessed by using one-way analysis of variance
for total score and Pearson’s Chi-2 test for each criterion assessed. The evolution of dose
equalization over the years was observed by linear regression analysis of percentage of
studies equalizing doses. Statistical analysis was performed with R software (version 3.6.2),
and statistical significance was set at p < 0.05.

3. Results

The identification process described in Figure 1 resulted in 169 studies being included
in the review. The complete list of articles retained is presented in the Supplementary File S3.

We aimed first to document the equalization of exercise protocols in studies comparing
HIIT and other exercise types. We also aimed to highlight if protocol equalization was
associated with a better-quality study design and/or if it was specific to recent studies.

The assessment of methodological reporting quality of these articles was moderate, but
with poor quality for calculations of statistical power, and moderate for group homogeneity
and for groups matched by physical condition (Table 1). Matching by “subjects’ physical
condition” was the only criteria that led to a significant difference between types of subjects
observed by studies (p < 0.001)
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Table 1. Reporting quality expressed through positive assessment of studies according to protocol
equalization processes (middle of table) and population observed (bottom of table). Total score
expressed as mean and standard deviations.

Total
Score

Recruitment
in Same

Population
(%)

Subjects
Ramdomization

(%)

Physical
Condition
Matching

(%)

Training
Direct

Supervision
(%)

Exercise
Control

(%)

Adherence
to Training

(%)

Subjects
Follow-Up

(%)

Statistical
Power

(%)

Total (n = 169) 5.1 ± 1.5 47.6 70.8 53.0 73.8 88.7 61.3 84.5 29.8

Equalized
protocols (n = 98) 5.2 ± 1.5 46.4 71.1 51.5 75.3 91.7 61.9 89.7 28.9

Non-equalized
protocols (n = 71) 5.0 ± 1.6 49.3 70.4 54.9 71.8 84.5 60.5 77.4 31.0

Older people and
patients (n = 99) 5.1 ± 1.7 50.5 67.0 44.4 76.7 85.8 62.6 85.8 29.3

Untrained
(n = 41) 5.3 ± 1.3 52.5 85.0 47.5 75.0 92.5 57.5 87.5 32.5

Trained (n = 29) 5.0 ± 1.2 34.5 62.1 89.6 * 62.1 93.1 62.1 75.9 24.1

* significant differences with other groups of subjects (p < 0.05).

The most-frequently occurring terms used for the process of protocol equalization
(total n = 98) were as follows: matched protocols (n = 44); equalized (or equated, equal,
equivalent, n = 10); isocaloric (or isoenergetic, n = 8); The most-frequently used terms to
designate what had been equalized were: total work (or external, mechanical, n = 26);
workload (or training load, n = 29); exercise volume (or total volume, n = 13); exercise dose
(or effort, n = 4). Protocol equalization did not evolve clearly over time, but there was a
trend for a reduction in the proportion of equalizing studies (R2 = 0.21, p = 0.06; Figure 2)
and an increase in the absolute number of studies that equalized protocols (R2 = 0.59,
p = 0.01). No differences were observed in studies’ reporting quality between those that
equalized protocol doses and those that did not (p = 0.1).

The distribution of studies based on equalized and non-equalized protocols, and
associated methods for quantifying exercise doses are shown in Figure 3. Studies observing
patients and older people equalized protocols at 58.7%, compared to 62.5% in untrained
subjects and 51.7% in trained, without significant differences between groups (p = 0.09).
Training protocols differed between studies; however, typical HIIT exercises were identified
among all studies (Figure 3).
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4. Discussion

We aimed to determine whether researchers, when comparing HIIT to other types of
programs, had utilized equalized protocols. Although most studies equalized protocols, a
substantial number of studies did not. For designating what was equalized, authors mainly
focused on actual measures performed (e.g., total work, energy expenditure or exercise
volume) rather than using a more generic term (e.g., exercise dose, training load or effort).
Energy-based methods were prominently used for equalizing protocols, whereas methods
based on exercise volume and perceived exertion appeared markedly less frequently.

Among the 169 studies included in this review paper, most equalized their protocols
(58%), whilst 42% did not. Consensus for protocol equalization is not apparent, and the
protocol equalization rate has not evolved significantly since the first paper published
in 1979. In addition, data did not show differences according to populations observed.
This is in line with the assessment of reporting quality, which did not differentiate studies
according to protocol equalization or populations observed. Satisfactorily, “exercise control”
and “direct supervision” criteria of reporting quality achieved the highest assessments.
Among studies that did not equalize protocols, twenty-one compared HIIT with typical
MICT programs (Figure 3) that had been designated by previous studies to be equal based
on energy expenditure or production [24]. Therefore, although protocol equalization was
not reported in the methods section of these studies, it had possibly been achieved anyway,
thereby increasing the proportion of protocols actually equalized.

Vollard and Metcalf [13] argued that the key advantage of HIIT is time efficiency.
MICT requires more prolonged exercise duration than HIIT, and it could be presumed
as self-evident that MICT is not as effective if exercise duration is short. However, for
a given exercise duration, because of higher intensity, HIIT induces a greater exercise
dose than MICT. If the aim is to demonstrate the positive effects of HIIT despite a short
exercise duration, such demonstration could be achieved without requiring comparison
with another training program. Conversely, when comparing programs’ effects on perfor-
mance improvement or biological parameters, if the higher exercise intensity of HIIT is
not counterbalanced by a lower exercise volume, responses may have originated from the
higher intensity, but also simply from a greater exercise dose. This methodological point
was accounted for by 98 studies that attempted to equalize protocols.

In some studies, training protocols were partly equalized by prescribing similar total
exercise durations. Such a method is in line with population-based studies that quantify
physical activity through time spent in light/moderate/strenuous intensity ranges without
aiming to compare the particular effects of these intensity levels [1]. Using session durations
to equalize protocols corresponded to physical activity recommendations for health and
wellbeing (e.g., three sessions of 30–45 min per week for HIIT and moderate intensities) [1].
During HIIT, high-intensity activity itself could not account for the entire 30–45 min of the
session: 10–20 min of high-intensity exercise was paired with low-intensity exercise for
the remaining 10–20 min. Therefore, protocols equalized by similar durations compared
MICT to mixed MICT and HIIT, but studies did not describe the rationale underpinning the
selection of exercise durations for different intensities. Equalization by total volume does
not consider the slope of the relationship between intensity and duration, and even less
the nonlinearity of this relationship. Consequently, the absolute value of exercise duration
was equalized, but not the combination of the exercise variables. If expressed relative to
respective maximums, durations prescribed by HIIT programs were markedly higher than
for MICT. In these studies, responses to training might be due to changes in intensity or
to changes in exercise dose. Furthermore, by proposing similar exercise durations, these
protocols cancelled the time gains expected from HIIT [13].

The primary methods used for protocol equalization were energy-based. Most studies
measured exercise-induced energy expenditure through oxygen consumption, while some
others measured external work based on power output and exercise duration [12,24,25].
Energy expenditure methods typically incorporated both exercise and recovery periods,
while methods based on external work only considered exercise bouts. That is quite
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surprising as the typical HIIT exercise utilized in studies based on external work (i.e., 8–10 ×
1 min at 90–95% HRmax, 1–2 min recovery) were characterized by short–moderate recovery
pauses, allowing maintenance of a high level of physiological stress [26]. Furthermore,
exercise-induced excess post-oxygen consumption is largely influenced by exercise intensity
and may be prolonged for many hours [27]. Although some authors suggest that exercise-
induced energy expenditure should also account for exercise-induced excess post-oxygen
consumption, this point may require more careful attention in HIIT studies that focus on
the effects of changes in both intensity and interval volumes [1,12].

Energy-based methods for quantifying exercise consider the human ability for energy
expenditure or external work to be similar whatever the exercise intensity. For several
decades, models of the intensity–volume relationship have described a hyperbolic pattern,
with maximal exercise volumes dramatically decreasing with increases in intensity [28–30].
By extension, maximal energy expenditure/external work follows the same pattern [31].
Thanks to recovery pauses, for a given intensity level, interval exercise allows accumulation
of more exercise than continuous exercise and, consequently, greater energy expendi-
ture [26]. The typical 4 × 4 min session is likely to be performed at a higher intensity level
than a 16 min exercise performed in continuous modality [30]. Seiler et al. reported that
the maximal tolerable intensity for 4 × 4 min was 94 ± 2% of maximal heart rate when
interspersed with 2 min passive recovery [32]; in HIIT studies, an active recovery (3 min
at 70% HRmax) was added to this maximal effort. Conversely, because of the nonlinear
relationship between exercise intensity and energy expenditure, typical MICT exercise
appears to be far from the exercise dose performed during typical HIIT. In fact, in typical
MICT, 30–45 min is prescribed at 65–75% HRmax, an intensity that can be maintained for
several hours before exhaustion. It may be assumed that the typical HIIT exercise resulting
from the energy-based equalizing method reached a maximum of energy expenditure
and was exhausting, while MICT represented relatively easy training. This assumption
is supported by significantly higher ratings of perceived exertion (RPE) following HIIT
sessions [25,33,34], and some authors argued that energy-based methods for equalization
underestimate the work that athletes are able to perform at lower intensities [32,35]. Such
differences in session-induced exertion should be considered as a possible methodologi-
cal bias that is likely to become more pronounced with increases in intensity differences
between programs. HIIT-induced dose could represent the maximum tolerable (or exces-
sive) training stimulus, whereas MICT dose could be low or insufficient. Finally, despite
the popularity of equalization methods based on energy expenditure, its soundness and
relevancy are still questioned [13,15].

Finally, six studies used RPE to equalize protocols, and only one used the session-RPE-
based method for training-load quantification (i.e., duration × RPE of the session). It seems
that studies equalizing protocols by using RPE were composed of varied exercise modalities
(e.g., running, resistance exercise or skating) [36–38]. RPE is not only influenced by exercise
intensity [39], as exercise duration [40,41], interval volume [42], exercise modality [43] and
recovery periods [44] have also been reported to significantly influence RPE. Finally, RPE
appears to be influenced by all exercise variables and, consequently, might represent a
subjective assessment of the exercise dose. Previous studies have shown that it provides
similar session assessments to exercise volume expressed relative to maximum for the
considered intensity level [4,40]. Conversely, training load based on RPE might account
twice for the exercise volume (i.e., in duration and RPE itself), inflating the calculated
load for prolonged sessions [4,5]. In line with studies that have used RPE for protocol
equalization, some authors have suggested that RPE alone is therefore preferable for
exercise quantification, thereby avoiding the overexpression of volume [4,45].

We acknowledge that the present study may have overlooked some published papers,
as it was only conducted on two literature databases and only considered original experi-
mental investigations. Based on the numerous studies utilizing equalization of protocols
and researcher support for equalization, it seems that, although the need for equalization
is not debated per se, the soundness of methods for equalizing is [1,5,7,12]. In addition,
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generic terms that designate the quantity of exercise-induced effort (i.e., exercise dose,
internal training load) and associated quantification methods (e.g., RPE) may be considered
to account for individual maximal capacities in the exercise considered [5–8]. In essence,
this is not the case for energy expenditure/production or exercise volume. Finally, the
main methodological issue is whether to quantify the exercise—whatever the method—in
absolute values or relative to individual maximums for the considered exercise. Lack of con-
sideration of the slope and nonlinearity of the energy–duration or of the intensity–duration
relationship is questionable. As proposed recently for training-load quantification and by
one study among the 169 retained [4,46], we hypothesize that exercise quantified relative
to maximum energy expenditure/external work, or exercise volume, for specified intensity
levels will allow more precise program comparisons. This may also be the case when dose
is assessed via perceived exertion.

Although scoping reviews can be the first step before systematic review or meta-
analysis on the topic, and even if only equalized protocols were retained, results of studies
comparing HIIT vs. MICT should be interpreted carefully because of the uncertain accuracy
of equalization methods mainly used [19].

5. Conclusions

In HIIT studies, no clear consensus for protocol equalization appears to exist, and
there has been no evolution in practices over time. If the scientific community supports
this methodological prerequisite, it may assist with the assessment of methodology report-
ing quality.

Equalization based on exercise duration does not consider all the variables com-
posing exercise-induced effort. Primary equalization methods consider energy expendi-
ture/external work in raw values without considering the slope and the nonlinear nature
of its relationship with duration. Exercises resulting from these quantification methods
induced maximal exertion in HIIT exercises but low exertion in MICT. Evidently, the main is-
sue is whether to consider exercise dose in absolute values or relative to individual exercise
maximums. It is hypothesized that comparison of program effects would be more accurate
if the exercise (e.g., exercise volume, energy) was expressed relative to intensity-related
maximums (e.g., perceived exertion, exercise volume relative to maximum).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijerph19094980/s1, Supplementary File S1: PRISMA checklist for
scoping reviews. Supplementary File S2: Checklist for the assessment of the methodological quality
for HIIT studies, adapted from Downs and Black (1998). Supplementary File S3: Complete list of
articles retained according to dose equalization methods.
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Abstract: Background: This scoping review aims to identify sports performance tests for amputee
football players and to critically analyze the methodological quality, validation data, reliability, and
standardization of sport-specific tests to indicate the best-fitting tests. Methods: Electronic database
searches were conducted between January 2019 and October 2021. Twelve articles met the inclusion
criteria. Qualitative assessment of each study was conducted by STROBE checklist. Results: Twenty-
nine sports performance tests were identified. No sports performance test fully met all three criteria
associated with the qualitative assessment of tests. The critical appraisal of the articles demonstrates
a gap in study design, settings, and main results description. Some inconsistencies were found in the
methodological descriptions of tests assessing the same motor skill. A STROBE score of 13 points was
considered a satisfactory score for the article (it was obtained by 8 of the 12 studies). The weakest
point of the analyzed studies was the description of how the test group size was accessed and later
obtained. Conclusions: No test was found that was simultaneously presented as valid, reliable, and
standardized. The authors can recommend the use of the two-sports performance tests that are the
closest to ideal: the L test and the YYIRT1.

Keywords: field-based tests; amputee soccer; assessment; disability; impairment; athletes; adapted
sport

1. Introduction

Amputee football (amputee soccer; AF) is an impairment-specific football for people
with an amputation or limb deficiency (US Soccer Federation). The major part of AF rules is
based on regular soccer rules, while the few paragraphs consider the physical impairment
of players [1]. Accordingly, two halves are being played (2 × 25 min) on a smaller pitch
(from 60 × 30 to 70 × 55 m) by seven players (six field players, one goalkeeper). Single-
leg amputees (either above or below the knee) play without prosthesis on aluminum
wrist crutches (field players). Goalkeepers must be single-arm amputees [2]. AF is still
developing and has become a point of interest for many researchers since it is a non-
Paralympic sport discipline that is applying to enter the Paralympic Games. AF has become
greatly popular as a recreational and elite sport. It is also recommended as a continuation
of the rehabilitation process for amputees to improve the level of functional fitness, as well
as a form of physical activity that allows people to realize themselves as athletes. What
is more, AF has a positive impact on body composition and quality of life, and it gives a
sense of belonging to society [3–5].

It is assumed that AF is classified as a high-intermittent sport with periods of high-
intensity activity [6,7]. AF requires from its players a high level of many physical attributes,
such as power, speed, strength, balance, agility as well as endurance [8,9]. Short bursts
of high-intensity power production and aerobic capacity play a major role in AF per-
formance [2,9]. Some studies have confirmed this, indicating that athletes spend the
majority of their playing time in a heart rate zone above 80% of their maximum heart rate
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(HRmax) [6,7]. Given the high intensity of the game, it is important to emphasize that AF
players should be in excellent condition to easily perform the entire spectrum of activities
with and without the ball and while moving on crutches [9]. Studies underline the fact
that using crutches is quite exhausting for AF players [10]. Therefore, it can be assumed
that players should not only be well prepared technically and tactically but also, most
importantly, physically for the game, as is the case with able-bodied soccer players [11].
Coaches should be obliged to evaluate the motor performance of players to notice progress
or weaknesses in the training process.

In the literature, many different sports performance tests have been reported [2,3,9,12–20].
Moreover, by reviewing the literature and observing the various nomenclature of motor
abilities used and the different descriptions of the same tests, we decided to organize the
sports performance tests for assessing the motor performance of amputee football players to
make them transparent and understandable for researchers in the field, coaches, and people
interested in this type of sport. Considering how important the periodic assessment of athletes’
motor performance is to both sport-specific and non-sport-specific tests related to AF, the
fundamental aim of this study is to identify sports performance tests for amputee football
players in a literature review and to critically analyze the methodological quality, validation
data, reliability, and standardization of sport-specific tests to indicate the best-fitting tests.
Furthermore, the quality of the reviewed articles is checked to indicate the quality of the
studies’ descriptions.

2. Materials and Methods
2.1. Search Strategy, Study Selection, and Data Extraction

Reporting of this scoping review was guided by the Preferred Reporting Items for
Systematic Review and Meta-Analysis (PRISMA) statement standards. The review protocol
was registered with PROSPERO (CRD42021286911), and the review itself was conducted
in January–October 2019 with no restrictions on the date of study publication. It was
then regularly updated until November 2021. Electronic databases (EBSCO (SPORTDis-
cus with Full Text, Academic Search Ultimate, Teacher Reference Center, Health Source:
Nursing/Academic Edition, MasterFILE Premier), Web of Science, and PubMed (Medline))
were searched. Database settings were customized for each database (option to search all
fields, scientific journals, peer-reviewed articles). The keywords used in the search were
divided into three groups: amputee OR amputation AND physical AND soccer OR football
and were conducted by the Boolean AND/OR. More specific keywords were not needed
due to the small number of publications in the field. The keyword combinations were used
according to the databases’ capabilities and were presented in an online repository.

In the examination process, the title and the abstract were first checked for compatibil-
ity with at least one keyword. If an article met the inclusion criteria, it was carefully selected
for this review by making sure that it: was available in an online database in full text (1),
was written in English (2), was an original study (cohort, case–control, cross-sectional) (3),
involved amputee football players (4), and used sports performance tests as research tools
(5). The criteria according to which an article could not be included in the examination were
as follows: no keyword in the title and/or abstract, papers of other types (reviews, case
reports, conference reports, chapters in books), written in a language other than English,
not related to amputee football players, and did not include sports performance tests. We
used Microsoft Excel to collect the data and uploaded them to an online repository. The
PRISMA flowchart was used to describe the review process (Figure 1). Two researchers
(A.M.N., J.M.) independently conducted the process.

2.2. Studies Description

First, the studies included in the review are described in a table pointing out the type
of research conducted, the purpose of the study, and the characteristics of the study group.
A summary description of the included studies is presented in Table 1.
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Figure 1. Study selection flow diagram.

2.3. Sports Performance Tests Description

The sports performance tests identified in the literature were analyzed in terms of the
type of test and the entire procedure for conducting the test, including athlete preparation,
warm-up, how to do the test, number of repetitions, intervals between repetitions of the
test or between tests, and variables that are test results. The methodology of the identified
sports performance tests is described in Table 2.
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Table 1. General description of included studies (n = 12; studies arranged in chronological order).

Authors Type of Study Purpose SG/CG Training Experience of SG

Buckley et al., 2002 CC

To determine the balance
performance of active lower limb
amputees during quiet standing
and under dynamic conditions.

n = 6 (AF) 25.7 ± 5.8 yrs./n = 6 (AB)
24.7 ± 2.7 yrs. ND

Yazicioglu et al., 2007 CS-C

To investigate the effect of playing
football on balance, muscle

strength, locomotor capabilities,
and health-related quality of life in

subjects with unilateral
below-knee amputation.

n = 12 AF, 28.3 ± 4.6 yrs./n =12 (AMP)
29.8 ± 1.4 yrs. ≥6 mths

Ozkan et al., 2012 C

To investigate the relationship
between body composition,

anaerobic performance, and sprint
performance of AF.

n = 15 (AF) 25.5 ± 5.8 yrs. 3.3 ± 2.9 yrs.

Simim et al., 2013 C

To describe anthropometric and
physical characteristics of AF and
to compare these results, taking
into consideration the players’

tactical function, and to verify if
there are differences between HR

after maximum test and the
employment of six equations for

prediction of HRmax.

n = 12 (AF) 29.3 ± 8.6 yrs. ≥5 yrs.

Mine et al., 2014 C
To examine relationships between
quickness and speed performance

in AF.
n = 10 (AF) 25.8 ± 4.32 yrs. ND

Wieczorek et al., 2015 C
To find the relationship between

handgrip strength and sprint time
in AF.

n = 13 (AF) 26.1 ± 7.7 yrs. 30.8 ± 14.3 mths

Guchan et al., 2017 CC

To determine the effects of playing
soccer on various components of

physical performance such as
body composition, muscular
endurance, anaerobic power,

flexibility, balance, and speed of
individuals with transtibial

amputation.

n = 12 (AF) 26.67 ± 7.76 yrs./n = 12
(AMP, sedentary) 33 ± 6.7 yrs. ≥1 yr.

Simim et al., 2017 CC
To quantify the degree of

game-induced muscular fatigue
in AF.

n = 33 (AF) 31 ± 7 yrs./n = 5 (AF, not
playing all matches) ≥4 yrs.

Simim et al., 2018 C

To investigate the match demands
of amputee football and its impact

on muscular endurance and
power.

n = 16 (AF) 32 ± 5 yrs. ≥5 yrs.

Mikami et al., 2018 CC

To examine the difference in
measured CPX values among
two-legged, one-legged, and

two-armed exercises in AB, and to
preliminarily evaluate the

endurance of AF through CPX
with two-armed exercise.

n = 20 (AB) 28.3 ± 5.6 yrs./n = 8 (AF)
36.4 ± 5.7 yrs. 0.4–5 yrs.

Miyamoto et al., 2019 C

To analyze sprint motion in
outfield positioned AF using

crutches and to clarify the
relationship between sprint speed

and sprint motion.

n = 12 (AF) 42.3 ± 4.6 yrs. 3.58 ± 2.48 yrs.

Zwierko et al., 2020 CC

To examine postural control
during single-leg stance test with

progressively increased
balance-task difficulty in soccer

players with unilateral
transfemoral amputation

compared to AB soccer players.

n = 11 (AF) 27.45 ± 5.2 yrs./n = 11 (AB
football players) 21.91 ± 3.11 yrs. 8.27 ± 3.63 yrs.

AB—able-bodied; AF—amputee football players; AMP—individuals with amputation; C—cohort; CC—case–
control; CG—control group; CS—cross-sectional; CS-C—cross-sectional control; mths—months; ND—no data;
SG—study group; yrs.—years.
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2.4. Sports Performance Tests’ Quality Assessment

In this phase, we divided the sports performance tests according to their characteristics
(motor abilities), which assess balance, aerobic capacity, strength, endurance, power, sprint
performance, agility, and flexibility. Two researchers (A.M.N., J.M.) independently assessed
all the papers and then consulted the results among themselves.

All found sports performance tests were analyzed for reliability, validity, and stan-
dardization based on the authors’ descriptions in the methods section of the articles. Test
reliability and validity were recognized based on information about the reliability and
validity of the test in the study and whether test references or expert validity were used.
Expert validity implies that the researcher, based on their knowledge and experience,
selected a sports performance test to assess specific motor abilities, e.g., the 30 m sprint
test was used to assess sprint performance. Standardization means that the researchers
have written down all the information necessary to repeat the test (participant preparation,
environment, methodology, number of repetitions, intervals, outcomes). A description of
this assessment is provided below, and points were allocated for each parameter:

• validity, reliability and/or standardization information present and/or cited refer-
ences that have confirmed validity, reliability and/or standardization and/or expert
validity: “1”;

• cited references present but not available or in a language other than English or in
unavailable books; no information on validity, reliability and/or standardization or
insufficient standardization: “0”.

Table 3 presents the qualitative assessment of the sports performance tests identified
through the literature review process.

Table 3. Quality assessment of sports performance tests in the review (n = 12).

I II III IV

Physical Attribute Tested Test Name (and Tools) Authors
Sports Performance Tests Assessment

R V S

Balance

Static balance test (Kistler force platform) *

Buckley et al., 2002

0 1 0

Dynamic balance test
(modified dynamic stabilimeter) * 0 1 1

Static balance test (Biodex) Zwierko et al., 2020 0 1 1

One-leg static balance test (KAT 2000) Yazicioglu et al., 2007 0 1 0

Dynamic balance test (KAT 2000) * 0 1 1

Berg Balance Scale Yazicioglu et al., 2007,
Güçhan et al., 2017 1 1 0

Muscle strength

Isokinetic trunk strength test
(Cybex dynamometer) Yazicioglu et al., 2007 0 1 0

Handgrip test
(hydraulic hand dynamometer) Wieczorek et al., 2015 1 1 0

PUT Simim et al., 2017, 2018 0 1 0

Isotonic PUT

Güçhan et al., 2017

0 1 0

Isotonic sit-ups test 0 1 0

Isometric back extension test * 0 1 0

Isometric trunk flection test 0 1 0

Power

Vertical jump tests—CMJ, CMJs, SJ, SJs (force plate
Sport Expert TM) Özkan et al., 2012 0 1 1

CMJ (accelerometer Myotest)
Simim et al., 2017, 2018

1 1 0

MBT (medicine ball 3 kg) 0 1 0

Vertical jump test (Lewis’ formula) * Güçhan et al., 2017 0 1 1
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Table 3. Cont.

I II III IV

Physical Attribute Tested Test Name (and Tools) Authors
Sports Performance Tests Assessment

R V S

Anaerobic performance (sprint and
movement speed 1)

T10, T20, T30 Özkan et al.2012 0 1 0

T20 Simim et al., 2013 0 1 0

T30 (5 m) Mine et al., 2014 0 1 0

T30 (1, 5, 10, 15, 20, 25 m) Wieczorek et al., 2015 0 1 0

T30 (10, 20 m) Myiamoto et al., 2019 0 1 0

L test *
Güçhan et al., 2017

1 1 0

F8W test * 0 1 0

Aerobic capacity
YYIRT1 Simim et al., 2013 1 1 0

CPX two-armed exercise Mikami et al., 2018 0 1 0

Flexibility
Modified Thomas test *

Güçhan et al., 2017
0 1 1

Sit-and-reach test 0 1 1

Agility T-square Simim et al., 2013 0 1 1

V—valid; R—reliable; S—standardization; CMJ—countermovement jump; CPX—cardiopulmonary exercise test;
F8W—figure-of-8 walk; MBT—medicine ball throw; PUT—push up test; SJ—squat jump; T10, T20, T30—10, 20,
30 m sprint test; YYIRT1—the Yo-Yo intermittent recovery test—level 1; “1”—presence of validity, reliability,
standardization; “0”—absence of validity, reliability, standardization; *—test performed with prosthesis; 1—sprint
refers to tests in which movement is as fast as possible in one line, movement speed refers to tests in which
movement is as fast as possible with changing directions.

2.5. Studies’ Quality Assessment

The studies included in the review were qualitatively assessed to highlight the value
of the papers in terms of their methodological design. To accomplish this, the Strengthening
the Reporting of Observational Studies in Epidemiology (STROBE) statement was used,
which was created to improve the quality of reported observational studies, and such
studies were included in our study. The STROBE statement allows the strengths and
weaknesses of the observational studies to be identified and provides an opportunity to
generalize the results of the report [21]. The STROBE checklist consists of a checklist of
22 items that relate to the title and abstract (1 item), introduction (2 items), methods (9 items),
results (5 items), discussion section (4 items), and other information (1 item) in the articles.
One point for each item in the paper was given [22]. Some of these items originally had
sub-items. In that case, one point was awarded for more positive responses. The outcome
was the score obtained when consensus was reached (A.M.N., J.M.). Discrepancies were
resolved by consensus with a third researcher (B.M.).

3. Results

Twenty-nine sports performance tests were found in the 12 included studies to assess
AF players. They assessed motor abilities such as balance, anaerobic performance (strength,
power, sprint performance), aerobic performance (capacity), flexibility, and agility (speed
performance) (see Table 3). Despite measuring the same motor ability, the identified tests
had different methodologies. For example, the jump test was performed once with and
once without a prosthesis, and, in the second case, there was no information about it.

Through 29 sports performance tests, no test met all three quality assessment criteria.
In eight cases, participants performed tests with a prosthesis, as marked with an asterisk
and presented in Table 3.

3.1. Qualitative Assessment of Sports Performance Tests
3.1.1. Reliability

Five out of twenty-nine tests had confirmed reliability in the cited publications (hand-
grip test, CMJ, L test, YYIRT1, and Berg Balance Scale [2,3,16,19]), and the L test was tested
for reliability among amputees.
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Two tests, despite the references provided (isometric test of back extensors and trunk
flexor test), were not described as reliable or used in the cited publications [3].

3.1.2. Validity

In total, 18 sports performance tests were considered valid based on expert validity
and 11 on literature reference; 4 of the 11 cited books were not available.

3.1.3. Standardization

Although all the identified tests had a description of the procedure, only 28% of them
met the standardization criteria. Sports performance tests that had complete instructions
(subject preparation, environment, methodology, number of repetition, intervals, outcomes)
were the T-square test, modified Thomas test, sit-and-reach test, vertical jump test, static
balance test, and dynamic balance test [3,9,12,16,20]; 8 tests lacked information about
participants’ preparation, 9 tests lacked information about the warm-up, 16 tests lacked
information about the number of test repetitions, and 6 tests lacked information about
intervals between test attempts. The qualitative assessment of sports performance tests is
presented in Table 3.

3.2. Qualitative Assessment of Articles

In this scoping review, we included observational studies available in the field of
amputee football (5 case–control studies, 6 cohort studies, and 1 cross-sectional study). In
total, 10 out of 12 articles met eligibility criteria and were from the past 10 years; 50% of
the studies had a study group and a control group. Participants were AF players aged
24–32 years from local [2,9,12,15] or national teams [3,16–20]. Training experience ranged
from two months to eight or more years. Two studies did not provide information on
players’ training experience [12,14] (see Table 1 for details).

The qualitative assessment of the studies resulted in STROBE scores ranging from
5 to 17 (mean 12.9 points; 65%). Two studies had the highest score of 17 points [17,18],
while two different studies had the lowest possible score [14,19]. Six of the twelve studies
had an appropriately constructed abstract and title, with two studies indicating the study
design in the title or abstract and four studies indicating the study design in the methods
section. All studies stated specific objectives, and 11 of 12 studies sufficiently explained the
background of the study. In most cases, the participant description was correct. Simim et al.
(2018) obtained the highest and the maximum score in the methods section. Providing
information on how the study size was obtained in the methods section was the weakest
aspect of the evaluation (only 2 of 12 authors reported this data [12,18]). In the results
section, two articles met the requirements of item 13 (participants), eight articles met
the requirements of item 14 (descriptive data), six articles met the requirements of item
15 (outcome data), three articles met the requirements of item 16 (main results), and six
articles met requirements of item 17 (other analysis). In summary, in four studies, the key
results concerning the study objectives were presented in the discussion section [3,14,15,20].
The items on limitations, interpretation, and generalizability were met by most of the
included studies. Four studies provided information on the source of funding (item 22).
The qualitative assessment of the included studies is presented in Table 4.
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4. Discussion

The purpose of this scoping review was to identify sports performance tests for
amputee football (AF) players in the scientific papers and to critically analyze these tests
for reliability (i), validity (ii), and standardization (iii) to indicate the best-fitting tests.
Along this line, 29 sports performance tests used in AF were found in the current literature
(12 studies). We found no sports performance test that would fully meet all three criteria
associated with a qualitative assessment of sports performance tests.

When discussing the first parameter (i), the authors of the included studies did not
conduct a test reliability examination. The reliability of five tests (YYIRT1, L test, handgrip
test, CMJ, and Berg Balance Scale) has been confirmed by the authors of the included
studies based on the references [2,3,16,19]. The reliability of only one test, the L test, was
verified on amputees, which is an advantage of the reported study [3,23] compared to
other tests in which reliability was verified on able-bodied individuals. The authors of the
analyzed studies used reliable tools to assess muscle strength [19], lower limb power [17],
aerobic capacity [16], and balance [2,3].

The PUT, the isometric back extension test, and the isometric trunk flexion test had
inappropriate references to prove the reliability of these tests because the works cited were
off-topic [3,17,18]. Consequently, we suggest that researchers and coaches pay attention to
the reliability of sports performance tests applied to their groups of athletes.

In terms of validity (ii), from one point of view, the indispensable information was
obtained in seven sports performance tests, which included the static balance one-leg
test, dynamic balance test, handgrip test, L test, F8W test, YYIRT1, and Berg Balance
Scale [2,3,16,19]. Whereas, in the case of four tests, such as the modified Thomas test, the sit-
and-reach test, the vertical jump test by the Lewis formula, and the isometric back extension
test, we could not approve their validity due to the inability to find the reference cited by
the authors [3]. Additionally, about the PUT, it was performed differently than reported in
the original paper [24]. Consecutively, it also remains unknown whether the presented PUT
is truly valid [16]. Moreover, in articles that used static (Kistler force platform) and dynamic
balance tests, isokinetic trunk strength tests, PUT, isotonic sit-ups tests, isometric back
extension and trunk flections tests, CMJ and SJ (force plate Sport Expert TM), MBT, CPX
two-armed exercise tests, modified Thomas tests, sit-and-reach tests, T-square, and sprint
tests, there was no information on validity and reliability verification [2,3,9,12–14,16–19].
It is probably the case that the authors of included studies, when selecting tests to assess
the motor abilities of AF players, verified these tests based on their experience and general
knowledge (e.g., sprint tests to assess speed or sprint performance); therefore, we decided
to give them one point as an expert validation.

It must be admitted that in most sports performance tests, the standardization (iii) was
clearly explained. Information regarding the starting and finishing positions, the number
of repetitions and break times, and the type of movement (running, walking with or
without prosthesis) was adequately introduced. This renders them easily repeatable and,
thus, helpful for both researchers and coaches. When analyzed in detail, 8 of the 29 test
descriptions met all standardization criteria (T-square test, modified Thomas test, sit-and-
reach test, vertical jump test, static balance test, and dynamic balance test [3,9,12,16,20]).
For a test such as the YYIRT1, the only information about the number of repetitions of the
test performed was missing, but we believe that this information is not necessary in this
case because this type of aerobic capacity test is usually performed only once due to the
maximal stimulation of the aerobic system, after which a long recovery is necessary [25].
The lack of descriptions regarding the warm-up and intervals between repetitions in sprint
tests [9,14,19], in which a maximal effort is performed, deserves significant criticism since
all these elements are crucial in the assessment of anaerobic performance. In the case of
balance tests, information about the use of a familiarization session is important in the
context of repeating and comparing the test in the future, and the question of whether
and how this session affects test performance (learning process) and the final result is still
unknown [26].
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On the other hand, some of the tests might be misleading, e.g., the PUT, sprint
tests, CMJ (by Myotest), MBT, and CPX two-armed exercise tests, in which it was not
explained why and how the procedures were followed and how they were adapted for
amputees [9,13,16–18]. The PUT did not have information about the position and the
type of movement included in the description, as well as whether a prosthesis was used
during this test and other tests [13,17,18]. Because of these confusions, we expected that
performing the MBT in a seated position with or without a prosthesis might influence
the stability of the trunk position, and, consequently, the final results might be different
(athlete sits close to the wall vs. athlete performs a full backward and forward movement to
complete the task). In some locomotion tests, participants used a prosthesis (L test and F8W
test), while in others, they performed the tests on crutches without a prosthesis (T-square).
At this point, it is worth asking ourselves under which conditions we want to evaluate
the AF players, as it must be remembered that the athlete is moving on crutches during
the match. The same dilemma regarding the use of a prosthesis or not has been noted in
vertical jump tests [3,9] and balance tests [2,12]. Consequently, the reader does not know
if these tests were performed in a single-leg standing position or if the athletes had three
or four points of support. Moreover, we noted several discrepancies concerning the start
of the tests. For the T10, T20, and T30 procedures [9], there was no information about the
starting position or whether the starting signal was given by the researcher or whether
the athlete decided to start the test. Then, in the MBT, it was not clear where the starting
point was for measurement. Without such information, it is difficult to compare the results
obtained by different groups of participants and then repeat and compare the tests with
each other. The differences in results are likely due to erroneous measurements rather than
the athletes’ skills, making the ratings unreliable. Therefore, it is recommended that in
future papers, authors describe their tests accurately.

The studies included in this review have many limitations in the clarity of the names
of the motor abilities assessed in sports performance tests because of various wording. In
other words, three different groups of researchers used different terms to match tests to
the physical attribute; for instance, T30 was used to assess anaerobic performance, sprint
performance, or movement speed [9,16,19]. It would be clearer for readers to use only one
term. Surprisingly, the L test and the F8W have been classified as sprint tests, together with
the T10, T20, and T30, which are speed tests [3,14,16,19]. It becomes obvious that the sprint
tests were performed as fast as possible in a straight line, while the L test and the F8W were
performed with changes in direction, which may affect the change in running speed and
is more to assess agility than speed. Moreover, the result of the L test and the F8W may
consist of the route execution technique, which is unlikely for the sprint tests.

A similar observation was made for the vertical jump tests and the MBT. The latter
has been used as a power test, a muscle test, a neuromuscular performance test, and
an anaerobic performance test and has been positioned as a test focused on strength
assessment [3,9,17,18]. Given these achievements, we suggest classifying the MBT as a
power assessment because it is the same physical attribute that vertical jump tests assess.
We believe that future manuscripts should pay more attention to the terms and expressions
used in the sports performance tests and to the description of the physical attributes.
Maintaining this level of vocabulary clarity will be beneficial to both coaches and athletes
in understanding which motor abilities are being tested in each sports performance test.

The articles included in this review had large discrepancies in scoring in the qualitative
assessment. The authors of the current study believe that the methods and results sections
of the included studies need the most correction and attention. First, providing the study
design in the abstract and/or methods section is important because it gives the reader an
understanding of what type of research they will be dealing with. Most studies correctly
described the participants. The reader can read about: eligibility criteria and how partici-
pants were selected, outcomes, exposures, predictors, potential confounders, and details of
assessment methods. The above-mentioned description is important because it indicates
whether the study group was homogeneous and whether there were confounding factors.
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In this review, the authors of the included studies did not mention any possible
confounding factors or description of the test location (whether the tests were performed in
the same setting, such as a gym, laboratory, or outdoor soccer pitch). Different conditions
and environments can affect the results: e.g., headwind, a slippery floor in sprint tests,
and low temperatures can cause poorer results in sprint or flexibility tests. In addition,
researchers and coaches should be cautious when interpreting their results concerning the
already existing results of others, as there have been times when the results of the same test
have depended on different variables. For example, in the PUT, the duration of the test or
the number of repetitions performed within a specified time was evaluated; in the sprint
tests, the time or speed of the distance covered was evaluated; in the jump tests (vertical
jump, CMJ, SJ), the height of the jump or power was evaluated.

What is more, we were concerned about the lack of explanation of how the study
group size was obtained (only two articles reported this [12,18]). This issue is particularly
relevant when judging null results, which might indicate that there was no real difference
between the study groups or that the power of the statistical analysis was too low to detect
a real difference. It is worth noting that some studies on AF players included relatively few
participants (6–33 people). In the result section, the items were quite complex, and a study
had to meet most of the criteria for each item to receive one full point. If a sub-criterion
did not apply to the study in some cases, we did not count it. It seems worrying that most
articles do not state the key results at the beginning of the discussion section (item 18).
Another important point to indicate is if the purpose of the study was achieved in order to
lead the discussion section fluently.

Although the STROBE checklist was designed for observational studies, it is important
to keep in mind when using this tool that not all criteria are mandatory for every subtype
of study, e.g., cohort studies usually do not have any follow-ups or reduction in the number
of participants because they have only one group and the study is conducted over one or
two days. The STROBE statement is a particularly detailed tool; on one hand, it can help in
the preparation of the manuscript, but, on the other hand, it can cause difficulties in the
evaluation of the study due to its precision. Considering the presented conclusions and the
fact that most of the studies were single-case studies and that we could not give a positive
score for some criteria (not because there was an error in the article but because the criteria
did not apply to the study), we judged that 60% (13 points) was a satisfactory score, and,
thus, 8 of the 12 articles achieved it.

Limitations and Perspectives

This is the first review to bring together all the sports performance tests used in AF
and organize them in detail in terms of motor abilities and test descriptions. The available
literature lacks a “gold standard”, a battery of sports performance tests, or a compilation of
which tests are dedicated to AF players (sport-specific tests). Our study indicates that some
tests, based on their standardization, may be suitable for assessing sports performance in
AF, and coaches may use them in their practice. However, further research is needed to
investigate the tests’ validity and reliability and characterize them for AF players.

We understand that the literature search performed in this research field may be
conducted differently in future studies. This manuscript presents a structured way of
literature review (keywords, inclusion/exclusion criteria). Other authors may search the
literature using different methodology and other guidelines for reporting the main types
of studies, such as the STROBE guidelines that were used in our study. However, in our
opinion, recommendations for future studies seeking sports performance tests in a specific
sport should be structured as a research review and a presentation of the advantages
and disadvantages of the tests and research, such as was done in this study (quality of
paper, presence of validity and reliability of tests, and the completeness of description
of selected tests). A well-planned research review and manuscript organization will be
important for the next steps in AF development as a future Paralympic sport, considering
the development of sports classification based on evidence (evidence-based classification

25



Int. J. Environ. Res. Public Health 2022, 19, 4386

system) [27]. The International Paralympic Committee (IPC) has outlined the steps in this
process, and the identification of tests in this manuscript is relevant to step 2 (identifying
key activities and determinants) and step 3 (identifying appropriate tests to assess key
determinants) of the IPC classification process [28]. Authors of future research may consider
this rationale and address the need for an evidence-based classification approach as a
purpose of their work.

5. Conclusions

Our study constitutes a practical and detailed description of the sports performance
tests identified in the literature and includes a qualitative assessment of sports performance
tests and a qualitative evaluation of the included articles. The authors of the studies
included in this review have verified the reliability and validity of sports performance tests
based on results from others’ studies. Considering the final conclusions of the reviewed
studies and our evaluation of these studies, we conclude that none of the 29 tests from
the 12 research papers included in this review were simultaneously reported as valid,
reliable, and standardized. We found few tests for amputee football players, which were
only partially verified for validity and reliability; thus, we recommend verifying those
tests using, for instance, the test–retest method [29]. Despite the deficiencies in the test
descriptions, we recommend using two sports performance tests: the L test and the YYIRT1,
to assess agility and endurance, respectively.
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Abstract: In athletics sprint events, the block start performance can be fundamental to the outcome of a
race. This Systematic Review aims to identify biomechanical factors of critical importance to the block
start and subsequent first two steps performance. A systematic search of relevant English-language
articles was performed on three scientific databases (PubMed, SPORTDiscus, and Web of Science) to
identify peer-reviewed articles published until June 2021. The keywords “Block Start”, “Track and
Field”, “Sprint Running”, and “Kinetics and Kinematics” were paired with all possible combinations.
Studies reporting biomechanical analysis of the block start and/or first two steps, with track and field
sprinters and reporting PB100m were sought for inclusion and analysis. Thirty-six full-text articles were
reviewed. Several biomechanical determinants of sprinters have been identified. In the “Set” position,
an anthropometry-driven block setting facilitating the hip extension and a rear leg contribution should
be encouraged. At the push-off, a rapid extension of both hips and greater force production seems to be
important. After block exiting, shorter flight times and greater propulsive forces are the main features
of best sprinters. This systematic review emphasizes important findings and recommendations that
may be relevant for researchers and coaches. Future research should focus on upper limbs behavior
and on the analysis of the training drills used to improve starting performance.

Keywords: track and field; sprinters; sprint start; block start; block velocity; biomechanics; kinematics;
kinetics; sprint running; initial acceleration; sprint first stance; sprint first two steps

1. Introduction

The 100 m race is perhaps the highlight of the Olympic Games, as it defines who is the
fastest man and woman in the world. In this type of event, the block start performance and
the subsequent first two steps can be of critical importance since they have a direct influence
on the overall 100 m time [1–8]. Given the importance of the sprint start, a new body of
research has emerged in the past two decades that involved advanced technologies, high-
precision methods, and sprinters of a higher performance level. For this reason, several
technical (kinematic) and dynamic (kinetic) aspects are currently identified as determinant
factors for starting block phase and initial sprint acceleration performances [1,4,6,9–25].
However, the concepts, outcomes, and findings between studies are sometimes inconsistent
and difficult to interpret and conclude from. These inconsistencies may be accounted for
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by different study designs, methods, technologies of measure (e.g., external reaction forces
under or on the blocks), statistical analyses, or more importantly, the ambiguity between
samples of sprinters with different performance levels (e.g., elite, sub-elite, well-trained
or trained) and/or between-group analyses based on the overall 100 m performance
(i.e., personal best at 100 m—PB100m), and not on block performance. Although two
important narrative reviews have already been published [26,27], to our knowledge, no
previous review conducted a systematic search of literature exploring the inter-individual
variability on block start performance across different performance levels. Thus, the main
purposes of this systematic review were: (a) determine the biomechanical parameters of
greatest influence on the sprint start, including the “set” position and push-off phase, and
the first two steps of initial sprint acceleration and (b) identify the kinematic and kinetic
biomechanical variables that best differentiate sprinters of different performance levels in
each of those three phases of the sprint start. Considering the impact of the sprint in the
sports field and the absence of systematic studies on the kinematics and kinetics factors
that determine success in block starts and initial sprint acceleration, we hypothesized
that this systematic review will have a relevant impact on researchers to better design
experimental/intervention studies, as well as constituting relevant support for coaches and
athletes in the definition of efficient strategies for performance in the 100 m race.

2. Materials and Methods
2.1. Article Search, Eligibility, Inclusion, and Exclusion Criteria

The systematic search of relevant articles was conducted based on PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-analyses) guidelines [28]. PubMed, Web
of Science, and SPORTDiscus databases were searched for the following mesh terms: “Block
Start” OR “Track and Field” OR “Sprint Running” OR “Acceleration” AND “Kinetics and
Kinematics” pairing them with all possible combinations. In addition, filters for ‘English’
and ‘articles’ have been applied. The last search took place on 30 June 2021.

The inclusion criteria were: publications in English; original observational and ex-
perimental studies published in peer-reviewed journals; studies mainly focused on the
block phase and/or one or two of the subsequent stance phases concerning kinematic and
kinetic variables; and studies that included track and field sprinters with the indication of
their PB100m. The following types of records were excluded: conference abstracts; studies
focused exclusively on the acceleration phase (beyond the first two stance phases) or mainly
focused on limitations imposed by motor and neurological impairments; studies reporting
data referring to samples evaluated in previously published papers; studies not mentioning
the performance level of the sprinters through their PB100m; case reports; and studies
without reference to biomechanical variables.

The records identified from the databases with the aforementioned mesh terms were
exported to the reference manager software EndNote X8 that eliminated duplicates. All
articles’ eligibility was then assessed independently by two reviewers’ authors (JMA and
FC). The articles identified were first screened by title and abstract for relevance. Studies
that raised any uncertainty in exclusion were conservatively retained for subsequent full-
text review. The full text of the articles selected as relevant or having raised uncertainty
in exclusion was read and further scrutinized for meeting the inclusion criteria and their
quality was evaluated. Disagreements on final inclusion or exclusion of studies were
resolved by consensus, and if disagreement persisted, a third reviewer (first author, MJV)
was available for adjudication. Articles that did not meet the selection criteria or presented
a quality score below 50% were excluded.

2.2. Quality of the Studies

The study quality of each publication was evaluated according to the guidelines
of the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)
Initiative [29]. This analysis was based on 22 items. Title and abstract. Introduction: back-
ground and rationale. Methods: study design, setting, participants, variables, data sources,
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bias, sample size, quantitative variables, and statistical methods. Results: participants,
descriptive data, outcome data, main results, and other analyses. Discussion: key results,
limitations, interpretation, and generalizability. Funding. These criteria were scored on
a binary scale (1 = yes, 0 = no) independently by two of the authors, and a quality score
was then calculated for each study by adding its binary scores and dividing the result by
the maximum possible score the study could have achieved. This was then expressed as a
percentage to reflect a measure of methodological quality. The quality scores were classified
as follows (a) low methodological quality for scores < 50%; (b) good methodological quality
for scores between 50% and 75%; and (c) excellent methodological quality for scores > 75%.
The studies with a score lower than 50% [30] were excluded from the systematic review. The
inter-rater reliability analysis was evaluated by the Cohen’s Kappa for nominal variables
(2 dimensions) [31]. Standards for strength of agreement for the kappa coefficient were:
≤0 = poor, 0.01–0.20 = slight, 0.21–0.40 = fair, 0.41–0.60 = moderate, 0.61–0.80 = substantial,
and 0.81–1 = almost perfect [32].

2.3. Data Extraction

An Excel form was used for data extraction. Of each manuscript selected for review,
the following information was extracted from each included study: (a) the primary focus
of study, means the phase of sprint start, e.g., block phase, first stance, and study design;
(b) the main purpose, e.g., associations between biomechanical variables of starting blocks
and the sprint start performance, comparing athletes of different performance levels,
comparing different footplate spacing and block angles; (c) type of kinematic and kinetic
analyses systems used—two dimensional (2D) or three dimensional (3D) analysis and
starting blocks instrumented or placed on force platforms; (d) study sample—the number
per gender of participants, and per level of expertise of participants according with the
authors, and their PB100m; (e) biomechanical measurement protocols—the variables used
to characterize the biomechanical factors of sprint start, number and distance of repeated
trials; and (f) key findings of sprint start kinematic and kinetic factors.

3. Results
3.1. Search Results

The initial search identified 756 titles in the described databases. With the reference man-
ager software, 406 duplicates were eliminated automatically. The remaining 350 articles were
then screened according to title and abstract for relevance, resulting in another 289 studies
being eliminated from the database. The full text of the remaining 61 articles was read and
another 22 were rejected for not meeting the inclusion criteria defined for the current study
and 3 studies were excluded for not meeting the quality criteria (quality index < 50%). A
total of 36 studies was fully reviewed.

Studies were excluded in the screening stage due to not including track and field athletes
or sprint starts using starting blocks (n = 289). In the eligibility stage, there were several
reasons for exclusion, namely studies with results focused exclusively on the acceleration
phase (n = 8), case studies (n = 4), studies reporting data referring to samples of previously
published papers (n = 3) or mainly focused on the limitations of disability (n = 3), lack of in-
formation about the PB100m (n = 2) and studies presenting only results for electromyography
and reaction time data (n = 2). Figure 1 presents the complete flow diagram.

31



Int. J. Environ. Res. Public Health 2022, 19, 4074Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 4 of 69 
 

 

 

Figure 1. Flow diagram of the study selection process according to PRISMA guidelines. 

3.2. Quality of Studies 

In the evaluation of methodological quality, the inter-rater reliability analysis 

achieved a Kappa value of 0.91 (0.84–0.98), indicating almost perfect agreement between 

raters. The mean quality score of the included studies was 74.92%. None of the studies 

achieved the maximum score of 100% and 3 studies (excluded) scored below 50%. Sixteen 

studies were classified with good methodological quality (quality score between 50 and 

75%), while 20 studies had excellent methodological quality (quality score > 75%). The 

main deficiencies in methodological quality were related to the estimation of sample size 

and study limitations discussion. 

3.3. Basic Characteristics of Included Studies 

Fifteen studies [2,3,10–12,17,20,21,23,25,33–37] focused specifically on the block 

phase, 18 studies [1,4–8,13–16,18,19,24,38–42] on the block phase and, at least one of the 

subsequent two flight and stance phases, and 3 studies [9,22,43] on the initial acceleration 

(the first and/or the second step). A summary of all the individual studies reviewed is 

presented in Table 1. 

Figure 1. Flow diagram of the study selection process according to PRISMA guidelines.

3.2. Quality of Studies

In the evaluation of methodological quality, the inter-rater reliability analysis achieved
a Kappa value of 0.91 (0.84–0.98), indicating almost perfect agreement between raters. The
mean quality score of the included studies was 74.92%. None of the studies achieved
the maximum score of 100% and 3 studies (excluded) scored below 50%. Sixteen studies
were classified with good methodological quality (quality score between 50 and 75%),
while 20 studies had excellent methodological quality (quality score > 75%). The main
deficiencies in methodological quality were related to the estimation of sample size and
study limitations discussion.

3.3. Basic Characteristics of Included Studies

Fifteen studies [2,3,10–12,17,20,21,23,25,33–37] focused specifically on the block phase,
18 studies [1,4–8,13–16,18,19,24,38–42] on the block phase and, at least one of the subsequent
two flight and stance phases, and 3 studies [9,22,43] on the initial acceleration (the first and/or
the second step). A summary of all the individual studies reviewed is presented in Table 1.
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Study purposes included evaluation of specific block start and initial acceleration vari-
ables and their influence on block performance (14 studies) [2–4,6,10,11,14,18,23,24,33,36,40,43];
analysis of different “set” position or block configurations (11 studies): location [20] and
modulation [35] of center of pressure (COP) on the starting block surface, different block
spacing [8,12,37] and widened conditions [21], different block plate obliquities [19,25,34],
changed “set” position knee angles [41] and block pre-tension [17]; and comparisons be-
tween sprinters of different performance levels, despite the subjectivity associated with the
descriptor of the performance level of the athletes (11 studies) [1,5,7,9,13,15,16,22,38,39,42].
The ambiguity in the performance level descriptors includes categories such as: elite vs.
sub-elite or well-trained [7,16,22], world-class vs. elite [38], faster vs. slower [5], adult
well-trained vs. trained [9,15,42]; elite or well-trained senior vs. junior academy, elite junior,
U18 or young well-trained [1,39]; and top sprinters [13]. All studies comparing groups of
athletes included male sprinters, but only 4 [1,9,15,38] included women of different perfor-
mance levels. The studies included in the systematic review presented a cross-sectional
study design, except for one study that presented a follow-up design [16].

Twenty-one studies evaluated kinetic variables from blocks start placed on force
platforms (12 studies) [5,10,17–21,23,33,35,39,42] or instrumented starting blocks sensors
(9 studies) [1,4,11–13,16,24,25,34]. Twelve studies [4,6,9,14,15,18,19,22,24,39,42,43] used a
large variety of force platforms arrangements to analyze the dynamic characteristics of the
first steps of the initial acceleration.

Concerning kinematic variables, a bi-dimensional analysis, including one or two
high-speed digital cameras, was applied in 9 studies [3,12,13,18,19,25,34,37,40], and a 3D
kinematic analysis, including 3 [38], 6 [16], or 8 or more cameras [5–9,21,24,36,41] was
applied in 11 studies.

Total participants are 766 track and field sprinters, including 179 women and 587 men,
and 11 non-trained male subjects [42]. Regarding the sample size of the individual studies
selected, Chen, Wu [37] and Debaere, Delecluse [14] are those with the smallest number,
7 participants, and Schrodter, Bruggemann [25] conducted the study with 84 subjects (the
largest sample size). The sample sizes from the other studies ranged from 8 [18,36] to
67 [1] subjects, with a mean sample size of 20 participants per study. The mean age of the
participants in the selected studies ranged from 15.3 years (under 16) to 28 years. For women,
PB100m ranged from 11.10 s (world-class) to 13.10 s (university level), with more classification
terms being used, such as “elite” (11.29 to 11.95 s), “well-trained” (11.87 to 12.20 s), “trained”
(<11.90 s), or “national level” (11.45 to 12.66) sprinters. Men were classified as “world-
class” (10.03 to 10.98 s), “elite” (9.95 to 10.81 s), “sub-elite” (10.40 to 10.95 s), “well-trained”
(10.65 to 11.77 s), “trained” (10.40 to 11.37 s), “national level” (10.58 to 11.22 s), “university
level” (10.78 to 12.00 s), or just “sprinters” (10.50 to 11.24 s). Among studies, male PB100m
ranged from 9.95 s to 12.00 s.

Through the analysis of the research setup protocols, it was possible to identify a
“standard experimental setup”. Sixty-nine percent of the studies used distances between
10 and 30 m, with distances shorter than 10 m used only in 4 studies [5,24,41,43] and
distances greater than 30 m used in 7 studies [10,20,22,33,37–39]. The number of trials
performed ranged between 3 and 10 in 86% of the studies, but in 3 studies [10,20,38] the
participants performed 1 or 2 trials, and in 2 studies [40,41] more than 10 trials. Fifty-eight
percent of the studies were carried out on an indoor track, 4 studies [12,37,38,40] on an outdoor
track, 2 studies [24,41] in a laboratory context, and 9 studies [1,8,10,16,20,23,25,42,44] did not
mention the measurement location.

3.4. Data Organization and Analysis

There was a very large diversity of kinematic and kinetic variables reported among
selected studies. Since it is impossible to discuss them all, we will highlight those reported
as explicative of high levels of the sprint start performance and that best differentiate
faster from slower sprinters. Based on the main findings highlighted in Table 1, the
explanatory variables of superior performance levels were identified and systematized in a
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sequence of tables in Appendixes A–C, related to the “Set” position (Appendix A Table A1),
block phase (Appendix B Tables A2 and A3), and first two steps of the initial acceleration
(Appendix C Tables A4 and A5). With this strategy of results presentation, it is expected
that readers will have access to the primary data extracted from all the studies included in
the systematic review. Therefore, Appendix A Table A1 summarizes the kinematic variables
in the “Set” position, showing that anthropometry-driven block setting and muscle-tendon
unit (MTU) length have an important role in the block start performance. Furthermore,
faster sprinters tend to move their center of mass (CM) closer to the starting line and
closer to the ground. Concerning joint angles, the knee angular position seems to be a
greater performance predictor than any other lower limb joint. At the push-off phase
(Appendix B Tables A2 and A3, for kinematic and kinetic variables, respectively) a rear
hip extension range of motion (ROM) and a rapid extension of both hips appear to be
positively associated with block performance. Moreover, greater average force production
during the push against the blocks, especially from the rear leg and particularly the hip,
appears to be important for performance. A posterior COP location on block surfaces can
also improve sprint performance. Immediately after exiting the blocks, shorter first flight
durations and longer first stance durations (allowing more time to generate propulsive
force) are the kinematic features of best sprinters (Table A4). During the first two steps
of initial acceleration, higher levels of performance seem to be associated with shorter
flight times, longer contact times, and the ability to extend the knee throughout both stance
phases (Table A5).

4. Discussion

This paper systematically reviews the kinematic and kinetic biomechanical variables
of the block start and initial sprint acceleration phase that influence performance and best
differentiate sprinters of different levels. Despite the large number of variables reported in the
reviewed studies it was possible to identify some that effectively best describe the influential
factors of these events as they are associated with better performance outcomes or best
differentiate sprinters of different performance levels. However, notice should be made to the
difficulty in analyzing data between studies as there are still no standards for reporting the data,
such as measurement units (e.g., m vs. cm) [12,17,18,35], joint angular measurement norms
and conventions [3,4,6,12,13,36,38] and/or data normalization methodologies (e.g., for full-
height/lower limb length, body mass/body weight) [2,4,17,22,24,25]. Additionally, there is
some subjectivity associated with inconsistent descriptors of performance level [26], confirmed
by the variability of the sprinter’s classifications used (e.g., from just sprinters to well-trained
sprinters, elite sprinters, world-class sprinters, or high-level sprinters) [5,7,16,22,36,38,42].
Another critical factor that somehow may influence data variability between studies is the
period of the season in which the data collection took place (e.g., prior to the competition
phase of the indoor season vs. during the competitive indoor season or beginning of the
summer season) [18].

To better understand the determinant factors of sprint start, the findings from the
reviewed studies have been organized into three focuses: (i) the “set” position, (ii) the
push-off phase, and (iii) the first two steps of initial acceleration, according to the data
presented in Appendixs A–C.

4.1. The “Set” Position

The “Set” position is the first performance key factor in the block start performance
because it depends on block settings and the body posture assumed by sprinters. For the
question: “Is there one optimal “Set” position which should be adopted by sprinters?” the
answer seems to be no. The researched studies [3,38] showed that it is not an important
differentiating factor of performance, since it does not present any correlation with PB100m
or normalized block power [3]. However, there are some interesting aspects that sprinters
should look out for in a more effective “Set” position [5,12]. The ideal “Set” position
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depends on the individual anthropometric features [12], strength [38], and morphologic
characteristics and motor abilities [13].

4.1.1. Block Settings

The “Set” position depends largely on the anteroposterior block distance, which
defines the type of start used. There are three types of block starts based on inter-block
spacing: bunched—less than 0.30 m; medium—0.30 to 0.50 m; and elongated—greater than
0.50 m [27,37].

Studies that reported block spacing based on the individual sprinter’s
preferences [5,12,13,18,35] reported distances between 23.5 ± 1.9 cm (for female sprint-
ers; PB100: 11.97 ± 2.6 s) [13] and 32 ± 5 cm (for male sprinters; PB100m: 10.79 ± 0.21) [18].
This suggests that most sprinters adopt distances within or very close to the bunched start
type, favoring CM positioning closer to the starting line [7,38]. Slawinski, Dumas [8] have
demonstrated that elongated start settings increase the block velocity (i.e., horizontal CM
velocity at the block clearing [7]), but linked to an increase in the pushing time on the
blocks which implies a significantly worse performance at 5 and 10 m compared to the
bunched start. The same authors showed that the medium start offers the best compromise
between the pushing time and the force exerted on the blocks, allowing better times at
10 m [8]. Additionally, more recently, Cavedon, Sandri [12] have demonstrated that the
anthropometry-driven block setting based on the sprinter’s leg length has an important
role in the block start performance leading to a postural adaptation that promotes sev-
eral kinematic and kinetic advantages [12]. Adjusting inter-block spacing to the relative
lengths of the sprinter’s trunk and lower limbs (increasing 25.02% the usually bunched
start inter-block spacing), allows greater force and impulse on the rear leg and greater total
normalized average horizontal external power (NAHEP) [12], the latter one identified as
the best descriptor of starting block performance [2].

Other blocks setting features that should be considered in the “set” position are
the feet plate obliquity and the amount of pre-tension exerted on the blocks prior to the
gunshot. The block inclination (relative to the track) affects the plantar flexor muscle-tendon
units’ (MTU) initial lengths and determines the muscle mechanics and the external force
parameters during the block phase [19,25,34]. Faster sprinters presumably produce the peak
torque at longer MTU lengths and adopting a more crouched position would allow them to
produce a higher force on the block phase [38]. Research data shows that reductions in both
footplates’ inclinations (from 65 to 40◦), meaning more muscle-tendon pre-stretch, lead to
acute increases in block velocity and higher peak joint moments and powers, especially
in the ankle [19]. Reductions in front block inclination alone (from 70 to 30◦) also acutely
increase block velocity without affecting push-off phase duration [34]. In another study [25],
however, a greater mean rear block horizontal force was achieved by switching the rear
foot to a steeper position (to 65◦). This potential conflict between evidence might have
arisen from differences in the location of the COP and the length of the footplates’ surface
between studies since a better sprint start performance is accomplished with a higher and
more to the rear COP on the starting block surface [20,35]. Conversely, a pre-tensioned
start does not seem to yield a performance advantage over a conventional start, because
the increase in the propulsive force of the lower limbs is reversed by an increase in the back
force exerted through the hands during the same period [17].

4.1.2. Sprinter Body Posture

Apart from block configuration, the choice of the sprinter’s body posture also de-
termines the effectiveness of the “Set” position on the subsequent block push-off phase.
The horizontal distance between starting line and the vertical projection of the CM to
the ground in the “Set” position (XCM) [7] is a factor that differentiates sprinters with
different performance levels. As said before, faster sprinters tend to move their CM closer
to the starting line [7,38] and closer to the ground [38]. Elite (PB100: 10.27 ± 0.14 s) and
well-trained (PB100: 11.31 ± 0.28 s) male sprinters showed XCM of 22.9 and 27.8 cm, re-
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spectively [7]. Likewise, world-class (PB100: 11.10 ± 0.17 s) and elite (PB100: 11.95 ± 0.24 s)
female sprinters presented XCM of 16.2 and 24.8 cm, respectively [38]. This more crouched
position is only possible due to the high explosive strength of best sprinters, which allows
them to produce higher levels of strength in the blocks [38] and reduce the horizontal travel
distance of the CM. This body position is complemented by a more advanced shoulder
position, putting more tension on the arms, allowing greater blocking speed during the
subsequent phase [7].

Related to sprinter joint angles configuration in the “set” position, Milanese and
Bertucco [41] have shown that horizontal CM velocity at the block take-off and along the
first two steps increases significantly when the rear knee angle is set to 90◦ instead of 135◦

or 115◦. A 90◦ rear knee angle allows for a better push-off of the rear leg than larger angles,
showing such condition may be a strategy that allows some elite sprinters to maximize their
strength capacity [41]. A more flexed front knee may facilitate the optimal joint moment
production, but only in sprinters with exceptionally high levels of explosive strength [38].

4.2. The Push-Off Phase

The “block-phase” or “push-off phase” in the starting blocks initiates immediately
after the gunshot and is considered a complex motor task that helps to determine sprint
start performance [1]. Reaction time is the first factor in the time sequence of the block
phase and it is the period from the gun signal to the first measurable change of pressure
detected in the instrumented blocks [16]. While a sprinter’s ability to react is undeniably
important, it is related to the information-processing mechanisms that do not seem to
correlate with the performance level [7,45] and, therefore, is beyond the scope of our review
(for a review of factors that affect response times, see Milloz, Hayes [46]). Having reacted,
the aim of the block phase is to maximize horizontal velocity in as little time as possible.
The motion variables during the block phase are, therefore, the focus of this section.

4.2.1. Push-Off Kinematics Analysis

The efficiency of the starting action depends mainly on the compromise between horizon-
tal start velocity (or block velocity) and the block time (referring to the time elapsing from the
first movement at the “set” position to the exiting from the block [7]), resulting in the horizon-
tal start acceleration [13]. Despite the horizontal block velocity could be considered the main
parameter for an efficient sprint start [13], it cannot be used solely [2] because an increased
block velocity could be due to either an increase in the net propulsion force generated or to an
increased push-off duration [2,18]. Thus, best sprinters tend to present higher block velocity
and greater block acceleration than slower sprinters [1,5,7,13,16,22,39,42], because they are
able to produce a greater impulse in a shorter time [2,5,36] and optimize their force produc-
tion on the blocks [16,19]. In fact, if sprinters increase their anteroposterior force impulse
(FI = force × time) from a longer block time, they decrease their block acceleration [2,42] and
the performance at 5 and 10 m [8]. Studies comparing data between sprinters of different
performance levels mostly show higher block velocities (3.38 ± 0.10 vs. 3.19 ± 0.19 m·s−1;
3.48 ± 0.05 vs. 3.24 ± 0.18 m·s−1; 3.61 ± 0.08 vs. 3.17 ± 0.19 m·s−1; and 3.36 ± 0.15 vs.
3.16 ± 0.18 m·s−1) [5,7,22,33] and greater block accelerations (9.5 vs. 8.8 m·s−2; 8.2 vs.
7.9 m·s−2; 9.72 vs. 8.4 m·s−2; and 7.47 vs. 7.35 m·s−2) [1,5,7,42] for faster sprinters. Fur-
thermore, higher performance levels also appear to be slightly related to lower block vertical
velocities [38] and more horizontal CM projection angles (i.e., resultant direction from the CM
horizontal and vertical block exit velocities) [33,39].

Lower limbs joints pattern during the pushing phase (i.e., from movement onset until
block exit) is mostly associated with extension movements, especially on the hips and
knees [3,4,6,25,36]. The front leg joints typically extend through a considerable ROM in
a proximal-to-distal extension pattern [3], reaching their maximum at the beginning of
the flight phase (e.g., hip: 183.2 ± 6.8◦, knee: 177.4 ± 5.2◦, and ankle: 133.1 ± 6.7◦) [6].
Contrarily, the rear leg does not exhibit the same proximal-to-distal extension strategy, with
the knee reaching its peak angular velocity before the hip and the ankle [3,36]. This happens
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perhaps due to considerably less ROM of the rear knee compared to the front knee [3], as it
starts from a more extended angle in the “set” position (e.g., rear knee: 120.7 ± 9.7◦; front
knee: 91.0 ± 9.8◦). The movement of the ankles is more complex because it involves first
a dorsiflexion and after an extension resulting in a stretch-shortening cycle of the triceps
surae muscle [3,6,25,36]. The duration of the ankle’s flexion is greater for the rear ankle
(50% of the block phase) than for the front ankle (20% of the block phase) [36]. Experimental
manipulations on footplates’ inclinations [19,34] have shown an inverse association between
block angles and muscle-tendon lengths of the gastrocnemius and soleus, highlighting
that block angles steeper than 65◦ could have disadvantageous effects on plantar flexor
function [19]. Peak angular velocities at both hips are reached by a combination of flexion–
extension, abduction–adduction, and internal–external rotation [23,36], reinforcing the
importance of a 3D analysis of the sprint start [36]. Whilst there is a consistent trend
among sprinters in the joint angular velocity sequence during the block phase, the lack
of comparative data between sprinters of different performance levels does not allow to
highlight the technical aspects critical to success. However, a rapid hip extension should
be one of the first aspects to consider on a sprinter’s technique during the start, as peak
angular velocities at both hips and rear hip range of extension are positively associated
with block power (r = 0.49) [3].

Although upper body kinematics in the push-off phase has been the focus of a small
number of studies, some important findings are noteworthy. The action of the upper limbs
is more variable between sprinters than that observed for the lower limbs [36]. Despite
this, it is possible to recognize a 3D movement pattern for shoulders and trunk with a
combination of flexion–extension, abduction–adduction, and internal–external rotation
movements, while the elbows exhibit an extension and pronation movement [36]. The
velocity of the rear shoulder tends to be slightly greater than that of the other joints, but
the peak resultant angular velocities at the upper limb joints are comparable to those at
lower limbs during the push-off phase, particularly that of both knees and front ankle [36].
However, there is no evidence linking different upper limb kinematic patterns with any
block phase performance predictor, and further research is needed to compile relevant
recommendations for athletes and coaches.

4.2.2. Push-Off Kinetic Analysis

According to Newton’s second law of motion, horizontal CM acceleration requires net
propulsive forces to be applied to the athlete’s body in the sprinting direction. Therefore,
as said before, the horizontal force impulse, made up by the mean horizontal force and
push-off time, is the determining factor of the horizontal velocity at block exit [2,5,36,42].
The relationship between these factors (i.e., horizontal force and push-off time) shows that
the application of a greater amount of horizontal force is a key performance factor [42], as
an increase in the time action (block time) conflicts with the criterion for 100 m performance:
‘shortest time possible’. Thus, best sprinters generate greater average forces [10,22], higher
rates of force development [7,25], and larger net [7] and horizontal [5] block impulses
than their slower counterparts. Likewise, Graham-Smith, Colyer [39] comparing senior
to junior athletes also showed that sprinters with faster PB100m (senior athletes) exhibit
higher relative horizontal force during the initial block phase and higher forces during
the transition from bilateral to unilateral pushing [39]. The evident importance of the
force generated against the blocks for proficient execution of the starting block phase has
encouraged researchers to gain a deeper understanding of the kinetic determinants of
such a crucial phase of sprinting. Bezodis, Salo [2] tried to find the push-off performance
measure that was more adequate, objective, and possible to quantify in the field. From
their analysis, the NAHEP was identified as the most appropriate measure of performance
because it objectively reflects, in a single measure, how much sprinters are able to increase
their velocities and the associated length of time taken to achieve this, whilst accounting for
variations in morphologies between sprinters [2]. Later, the identification of the magnitude
of the force applied to both blocks and their optimal orientation as major determinants
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of performance encouraged researchers to gain a deeper understanding of the push-off
forces applied against each block separately. Consequently, some studies support the
importance of the force generated by the front leg for forwards propulsion [6,42] and show
that faster sprinters are able to produce higher force impulses in the front block than slower
sprinters [5,33] (for example: 221.3 ± 15.8 N·s vs. 178.3 ± 13.1 N·s for faster and slower
sprinters, respectively [5]). Colyer, Graham-Smith [33] reinforce this feature highlighting
that higher front block force production during the transition (when the rear foot leaves the
block, 54% of the block push) and a more horizontally orientated front block force vector
in the block phase (81–92%) are important performance-differentiating factors. However,
other evidence ensures that the rear block force magnitudes are the most predictive external
kinetic features of block power [10,33] and sprint performance [5,7,12,16]. For example, Coh,
Peharec [5] found that a faster group of sprinters (PB100m = 10.66 ± 0.18 s; 913 ± 89.23 N)
produced greater total forces against the rear block than a group of slower sprinters
(PB100m = 11.00 ± 0.06 s; 771 ± 55.09 N). A longer relative rear leg push (i.e., as a percentage
of the total push-off phase) is also positively associated (r = 0.53 [3]) with greater block
power [3,10] and is present in sprinters with faster PB100m [5,7,33]. Modulations of the
COP on the starting block surface showed that COP location may also be related to initial
sprint performance [20,35]. Better sprint start performance appears to be achieved with a
higher and more to the rear COP during the force production phase [20]. Thus, athletes and
coaches should keep in mind that pushing the calcaneus onto the block (posterior location)
may improve the 10 m time and/or horizontal external power for some individuals [35].

Forces under the hands have been reported in relatively few studies [10,33,42], show-
ing somewhat contradictory results. While some point to a primary support role [42],
others point out that the best athletes produced less negative horizontal impulse under
hands compared with their slower counterparts [33]. Therefore, the importance of the
hands’ kinetics during the push-off phase remains unclear and should be the subject of
future research.

In addition to external kinetic analyses, which provide valuable insight into starting
block performance, the analysis of internal kinetics (i.e., joint kinetics) helps to increase the
understanding of the segment motions that are responsible for CM acceleration. Recent
research of joint kinetics has shown that 55% of the variance in NAHEP of a group of
sprinters with a PB100m of 10.67 s was mainly accounted for by rear ankle joint moment
(23%), front hip joint moment (15%), and front knee joint power (15%). The remaining
2% was shared by the remaining lower limbs joint kinetic variables [11]. In the rear block,
the magnitude of the horizontal force produced is determined by the rear hip extensor
moment and the rear hip extensor power coupled with large ankle joint plantarflexion
moment [4,11,19], without any significant knee joint contribution [4,11]. At the front block,
a proximal–distal pattern of peak joint power is evident [4], highlighting a strategy often
adopted in power demanding tasks, with the main periods of positive extensor power
at the front ankle and knee occurring after the rear foot has left the block [4]. In a study
with 12 sprinters from the University of Tokyo team (PB100m: 10.78 ± 0.19 s), Sado,
Yoshioka [23] showed that the peak lumbosacral extension moment was significantly larger
than any other lumbosacral and lower-limb moment, being positively correlated with the
starting performance. This peak value appeared in the double-stance phase where both hip
joints exerted extension moments. The aforementioned evidence supports the findings of
Slawinski, Bonnefoy [36] who showed that the lower limbs and the head–trunk segments
are the two main segments that contribute to the kinetic energy of the total body. Upper
limbs contribute 22% to the total body kinetic energy, demonstrating that their actions in
the pushing phase on the blocks are not negligible [36].

4.3. The First Two Steps

The primary goal of the first steps is to generate a high horizontal velocity [40]. How-
ever, the transition between block start and the first steps represents a specific biomechanical
paradigm: integrate temporal and spatial acyclic movements into a cyclic action [5]. The
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efficiency of this transition depends on the biomechanical demands of the first stances after
block clearance, which are very different from the other stances during acceleration [14].
The sprinter aims to generate maximal forward acceleration during the transition from start
block into sprint running [2,14,22,42] while generating sufficient upward acceleration to
erect itself from a flexed position in the start blocks to a more extended position [6,14]. Spe-
cific technical (kinematic) and dynamic (kinetic) skills are therefore needed to successfully
achieve this transition, and they are the focus of this section.

4.3.1. First Two Steps Kinematic Analysis

The primary goal of the initial steps of a sprint running is to generate a high hor-
izontal sprint velocity, which results from the product of the length and frequency of
the sprinter’s steps [22,40]. Spatiotemporal parameters have shown that the sprinter’s
step length increases regularly during the acceleration phase, while step frequency is al-
most instantaneously leveled to the maximum possible [22]. Typically, the step frequency
reaches the maximal values very quickly (80% at the first step and about 90% after the
third step) [22], achieving around 4 Hz immediately after block exit [26,40]. The length
of the first steps is more variable between sprinters, ranging from 0.82 to 1.068 m (senior
females) [1,38] or 0.85 to 1.371 m (senior males) [1,7] on the first step, and from 1.06 to
1.30 m (senior females) [1,13] or 1.053 to 2.10 m (senior males) [7,37] on the second step.
Despite this variability, step length tends to be longer in faster sprinters, particularly in
the first step (e.g., 1.371 ± 0.090 vs. 1.208 ± 0.087 m [7]; 1.30 ± 0.51 vs. 1.06 ± 0.60 m [5];
1.135 ± 0.025 vs. 0.968 ± 0.162 m [38]), exhibiting an increase of about 14 cm for every 1 s
less in PB100m [38]. This may be a consequence of the lower vertical velocity of the CM at
the block clearing shown by faster sprinters, allowing them to travel a longer distance de-
spite shorter flight times [38]. Indeed, the kinematics of faster sprinters is also characterized
by a tendency to assume long ground contact times in the first two steps (e.g., mean first
contact duration for Diamond League sprinters is 0.210 s for males and 0.225 s for females,
which is greater than those of lower-level Italian junior sprinters: 0.176 and 0.166 s, respec-
tively), associated to short flight times (0.045 and 0.064 s, for the first flight of world-class
and elite male sprinters, respectively) [38]. This strategy allows the high-level sprinters to
optimize the time during which propulsive force can be generated, minimizing the time
spent in flight where force cannot be generated. Combined with this, best sprinters have
their CM projected further forward [7] at the first touchdown, putting the foot behind the
vertical projection of the CM [3], and minimizing the braking phase. At the takeoff of the
first and second steps, the CM horizontal position is also greater in elite than well-trained
sprinters [7]. This means that the CM resultant and horizontal velocity in the first two steps
are generally greater in high-level sprinters [7,15]. Slawinski, Bonnefoy [7], for example,
reported that elite sprinters have a CM resultant velocity 5.8% higher than well-trained
sprinters, at the end of the first step (4.69 ± 0.15 vs. 4.42 ± 0.11 m·s−1 for elite and well-
trained sprinters, respectively). Furthermore, high-level sprinters also show slightly lower
vertical velocities [7,39] and more horizontal CM projection angles at the end of the first
two support phases [39].

Lower limb joints pattern during the first two steps is associated with a proximal-to-distal
sequence of the hip, knee, and ankle of the stance leg [4,9,43]. During both first and second
steps, the ankle joint undergoes dorsiflexion during the first half of stance (e.g., 17 ± 3◦ and
18 ± 3◦ for the first and second steps, respectively [43]) and subsequently a plantarflexion
movement (e.g., 45 ± 6◦ and 44 ± 5◦ for the first and second steps, respectively [43]).

The hip performs extension for the entire stances, the knee extends until the final 5%
of stances, and the ankle is dorsi-flexed during the first half of stances before the plantar
flexing action [6]. After leaving the rear block, there is a small increase in ankle joint
dorsiflexion during the swing phase, preceding the plantarflexion that occurs just before
touchdown [6]. Although the ankle plantar-flexes slightly at the end of the flight, the ankle
is in a dorsi-flexed position at initial contact (e.g., first stance: 70.6 ± 5.8◦ and second
stance: 72.4 ± 7.1◦ [6]). During both first and second steps, the ankle joint dorsi-flexes
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during the first half of stance (e.g., 17 ± 3◦ and 18 ± 3◦ for the first and second steps,
respectively [43]) and subsequently performs a plantarflexion movement (e.g., 45 ± 6◦

and 44 ± 5◦ for the first and second stance, respectively [43]). Note that a reduction in
the range of dorsiflexion during early stance, requiring high plantar flexor moments, has
already been associated with increases in first stance power [47]. Maximal plantarflexion
occurs immediately following takeoff reaching, for example, 111.3◦ at the first stance and
107.1◦ at the second stance [6]. The extension of both knees occurs just after the block exit
and reaches its maximum at the beginning of the flight phase, with larger extension in the
front compared with the rear leg (e.g., rear: 134.9 ± 11.2◦; front: 177.4 ± 5.2◦) [6]. From
a flexed position at initial contact, the knee extensors generate power to induce extension
throughout stance and to attain maximal extension at takeoff, achieving peak extension
angles of around 160–170◦ (not full extension; e.g., first stance: 165.2 ± 20.6◦; second stance:
163.6 ± 17.7◦ [6]). This extension action of the knee during stances on its own may play
a role in the rise of the CM during early acceleration [26]. The hip joints extend during
block clearance to reach maximal extension during the beginning of the flight phase. During
stance, the hips are in a flexed position at initial contact and continue to extend through-
out stance, achieving maximal extension immediately following takeoff (e.g., first stance:
180.6 ± 20.9◦; second stance: 181.1 ± 20.0◦ [6]). There is also a considerable ROM in hip and
pelvis rotation during stance as well as abduction. Although there are detailed descriptions
of the lower limb angular kinematics during the first two stances and flight phases [3,6],
there seems to be no clear evidence about the joint kinematic features that differentiate faster
from slower sprinters. Furthermore, there is also a lack of experimental data on arm actions
during early acceleration and its relationship to performance descriptors, making necessary
future research in this area to help identify the most important performance features.

4.3.2. First Two Steps Kinetic Analysis

As said before, fast acceleration is a crucial determinant of performance in sprint
running, where a high horizontal force impulse in a short time [13] is essential to reach
high horizontal velocity [43]. Thus, as the highest CM acceleration during a sprint oc-
curs during the first stances [7,9,14] (e.g., first stance: 0.36 ± 0.05 m·s−2; second stance:
0.23 ± 0.04 m·s−2 [14]), the ability to generate during this phase greater absolute im-
pulse [7,18], maximal external power [39,42], and a forward-leaning force oriented in
the sagittal plane [21,22,24,42] is linked to an overall higher sprint performance. Larger
propulsive horizontal forces are particularly important during early acceleration, being a
discriminating factor for superior levels of performance [48]. Experienced male sprinters
(PB100m: 10.79 ± 0.21 s) can produce propulsive horizontal forces of around 1.1 body-
weight during the first stance [18]. However, a negative horizontal force has also been
reported during the first contact after the block exit, even if the foot is properly placed
behind the vertical projection of the CM [18]. During the first stance, for example, the
braking phase represents about 13% of the total stance phase and the magnitude of the
braking forces can reach up to 40% of the respective propulsive forces [18].

Furthermore, 3D analysis studies also highlight a lower body motion outside the
sagittal plane during the first few ground contact phases [6,21,22,24,36,42]. In fact, during
the first steps of a sprinter, a stance medial deviation is often observed that results from
an impulse in the transverse plane. Although the medial impulse is the smallest of the
three orthogonal stance impulses [21,22,42], the fact that it is non-zero can have an effect
on the motion of the CM and on step width. However, it has been shown that well-trained
sprinters present similar step widths in the early acceleration to those of the trained and
non-trained sprinters [42]. Moreover, manipulations of both “set” position [21] and first
step [24] widths have shown no effect on block-induced power nor braking force or net
anteroposterior impulse, showing that smaller step width is not a discriminator factor of
superior performance levels. Therefore, the perception that the adoption of a widened stance
during initial acceleration (referred to as “skating style”) is detrimental to performance is not
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at all proven, and further research is needed to clarify the joint and muscular factors that
contribute to the sprinters’ lateral motion in the initial phase of acceleration.

At joint level, the hip, knee, and ankle joints generate energy during stance leg
extension [6], although it appears that the ankle joint is the main contributor to CM
acceleration [14]. However, experimental and simulation studies highlight that the knee
plays an important role during the first stance, being decisive for forward and upward CM
acceleration [4,6,14,15]. The importance of power generation at the knee seems to be specific
for the first stance when the knee is in a more flexed position and the sprinter is leaning for-
ward. From the second stance onwards, the knee becomes less and the ankle more dominant
since the plantar flexors are in a better position to contribute to forward progression [6]. As
the knee is in a flexed position during the first step, the sprinter favors the immediate power
generation of the knee extensors rather than preserving a stretch-shortening cycle [6]. In con-
trast, a stretch-shortening mechanism can be confirmed at the hip and ankle [4,6,14,15]. Hip
extensors maximal power generation occurs near touchdown [4,6] where the hip extensors
actively pull the body over the touchdown point [6]. The hip can effectively generate large
joint moments and power [14], but only contributes minimally to propulsion and body
lift during the first two stances [14]. Ankle plantar flexors act throughout both the first
and second stances under a stretch-shortening cycle. There is therefore an initial phase of
power absorption preceding the forceful power generation at take-off [4,14]. As a major
contributor to CM acceleration, the ankle joint can generate up to four times more power
than it absorbs during the first two stances [43]. Nevertheless, the importance of ankle
stiffness during the first two stances remains unclear. While Charalambous, Irwin [49], in
a case report, found a correlation between greater ankle stiffness and greater horizontal
CM velocity at take-off (r = 0.74), Aeles, Jonkers [9] did not, still highlighting the lack of
differences between faster (senior) and slower (junior) sprinters. Future work is therefore
needed to further clarify this issue. Furthermore, it remains unclear whether ankle stiffness
is influenced by foot structure and function (e.g., planus, rectus cavus, clubfoot) as well as
other important performance variables such as greater maximal power, a forward-leaning
force oriented in the sagittal plane, or COP location during push-off.

Concerning kinetic factors differentiating senior and junior athletes, Graham-Smith,
Colyer [39] reported that, contrarily to the block phase where there are marked differences
between groups, the force and power waveforms relating to the first two steps did not differ
considerably across groups. Still, senior sprinters are able to produce greater horizontal power
during the initial part (10–19% of the stance phase) of the first and second ground contact
(first step: 25.1 ± 3.6 W·kg−1 vs. 23.1 ± 6 W·kg−1 and second step: 26.7 ± 3.6 W·kg−1 vs.
24.9 ± 4.5 W·kg−1, forsenior and junior sprinters, respectively), and also exhibit a higher
proportion of forces immediately after braking forces are reversed (from 9% to 15% and 25%
to 29% of stance phase) [39]. Furthermore, Debaere, Vanwanseele [15] also highlight that adult
sprinters are able to generate more joint power at the knee during the first step compared
to young sprinters, inducing longer step length and therefore higher velocity [15]. Younger
sprinters tend to prioritize a different technique: the hip contributes more to total power
generation, while the knee contributes far less [15]. This indicates that younger sprinters lack
the specific technical skills observed in adult sprinters, likely due to less musculature than
adults [1,9,15]. However, there is no evidence of differences in ankle joint stiffness, range of
dorsiflexion, or plantar flexor moment between young and adult sprinters [9]. This indicates
that the technical performance-related parameters of the first stances are not likely to explain
the better 100 m sprint times in adult compared to young sprinters [9].

4.4. Strengths, Limitations, and Recommendations

A strength of this review was that it allowed us to identify a body of knowledge
that provides fundamental information for athletes and coaches as relevant data that can
contribute to improving the training and/or preparation strategies for better performance,
supported by scientific evidence.
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A possible limitation of this systematic review is that it only includes studies written
in English, thereby potentially overlooking other relevant publications in other languages.
Additionally, the present article reviewed only studies with mention to sprinters’ PB100m,
eventually precluding publications with relevant samples that could also add knowledge.
Furthermore, extending the biomechanical analysis to muscular features beyond the sim-
ple kinematic and kinetic approach might have allowed a further understanding of the
discriminating factors of superior performance levels. Another obvious limitation is the
limited amount of research with female sprinters. Indeed, in the reviewed studies, there is
a clear imbalance between the amount of female and male sprinters included (179 females
vs. 587 males), questioning whether the biomechanical characteristics of the sprint start
previously associated to female sprinters are attributable to sex-related aspects, or, rather, to
aspects related to the 100 m time. Moreover, some of the studies included in this review were
based on a relatively small sample size, especially when elite or world-class sprinters were
included. This problem reflects the difficult access to high-level athletes, preventing the clear
identification of discriminatory factors of superior performance levels. Finally, the conflicting
classifications of sprinters level and the scarcity of information on effectively high-level
or world-class sprinters, makes it difficult to compare sprinters of different performance
levels. Considering entry standards for 100 m sprint event at the 2022 European Athletics
Championships (10.16 s for men and 11.24 s for women), it can be said that a very small
percentage of elite and/or world-class sprinters [50] was included in the reviewed studies.

Research on the biomechanics of the block and/or first stance phases has been the
subject of growing interest in the past few years. Nonetheless, there are some unclear
features in the studies published so far, which should be investigated in future studies for a
better understanding of: (i) the association between different upper limb patterns and the
main block start performance predictors; (ii) the influence of foot type (e.g., planus, rectus
cavus, clubfoot on sprint start performance; (iii) the association between ankle stiffness
during dorsiflexion and the horizontal CM velocity at take-off; (iv) the specificity character-
istics of training drills, utilizing temporal organization and intra-limb joint coordination
analyses, to help the process of exercise selection to enhance block starting performance;
(v) how technical and/or physical training can improve ankle and knee function during
first steps and increase horizontal velocity in the early acceleration; (vi) the influence of
sex (such as physical or muscle structures and/or anthropometric characteristics) on sprint
start performance descriptors. A major challenge for researchers is to align these research
lines with the need for greater information on world-class sprinters during competition.
Whenever possible, research based on a marker-less methodology and obtained during
official top-level sprint competitions, during which the sprinters are supposedly more
motivated to produce their best performance, should be encouraged.

It is worth mentioning two new studies [51,52] published after the date of this sys-
tematic review, which, meeting the defined inclusion criteria, could have added important
knowledge on some of the issues mentioned above.

5. Conclusions

Based on this review, some important conclusions and recommendations to help
athletes and coaches can be made, namely: (i) the choice of an anteroposterior block distance
relative to the sprinter’s leg length may be beneficial for some individuals, promoting
greater block start performance (greater normalized average horizontal external power);
(ii) the use of footplate inclinations that individually facilitate initial dorsiflexion should be
encouraged—footplate angles around the 40◦ are recommended and block angles steeper
than 65◦ should be avoided; (iii) pushing the calcaneus onto the block (posterior location)
may be beneficial for some individuals, improving the 10 m time and/or horizontal external
power; (iv) short block exit flight times and optimized first stance contact times should be
encouraged, as they maximize the time during which propulsive force can be generated;
(v) focus attention on the magnitude of force applied on the rear block, as it is considered to
be a primary determinant of block clearance; (vi) rapid hip extension during the push-off
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phase should be a priority in sprinter focus and coach feedback; (vii) the large role played
by the hips on the push-off phase and by both the knee and ankle at the early stance must
be acknowledged within physical and technical training to ensure strength and power are
developed effectively for the nature of the sprint start.
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Č
oh

,J
os

t[
13

]
Sl

ov
en

e
na

ti
on

al
sp

ri
nt

er
s

0.
69

±
0.

21

Sl
ov

en
e

na
ti

on
al

sp
ri

nt
er

s
0.

76
±

0.
19

71



In
t.

J.
En

vi
ro

n.
R

es
.P

ub
lic

H
ea

lth
20

22
,1

9,
40

74

Ta
bl

e
A

2.
C

on
t.

B
lo

ck
Ph

as
e

K
in

em
at

ic
s

St
ud

y
M

al
e

Fe
m

al
e

M
ix

ed

Bl
oc

k
ac

ce
le

ra
ti

on
(m

·s−
2 )

C
oh

,P
eh

ar
ec

[5
]

Fa
st

er
sp

ri
nt

er
s

7.
47

±
1.

34
Sl

ow
er

sp
ri

nt
er

s
7.

35
±

0.
90

O
ts

uk
a,

K
ur

ih
ar

a
[2

1]
N

or
m

al
co

nd
it

io
n

9.
65

±
0.

72
W

id
en

ed
co

nd
it

io
n

9.
73

±
0.

59

O
ts

uk
a,

Sh
im

[4
2]

W
el

l-
tr

ai
ne

d
9.

72
±

0.
36

Tr
ai

ne
d

8.
41

±
0.

49
*

A
er

en
ho

ut
s,

D
el

ec
lu

se
[1

]
El

it
e

Se
ni

or
s

8.
2
±

0.
9

El
it

e
Ju

ni
or

s
7.

9
±

0.
7

El
it

e
Se

ni
or

s
7.

3
±

0.
7

El
it

e
Ju

ni
or

s
7.

0
±

0.
8

Be
zo

di
s,

Sa
lo

[2
]

U
ni

ve
rs

it
y-

le
ve

ls
pr

in
te

rs
9.

14
±

0.
99

Sl
aw

in
sk

i,
Bo

nn
ef

oy
[7

]
El

it
e

9.
5
±

0.
4

W
el

l-
tr

ai
ne

d
8.

8
±

0.
8

M
au

ld
er

,
Br

ad
sh

aw
[4

0]
N

at
io

na
la

nd
re

gi
on

al
le

ve
ls

pr
in

te
rs

8.
00

±
0.

80

G
ui

ss
ar

d,
D

uc
ha

te
au

[3
4]

Bl
oc

k
an

gl
e

30
◦

9.
03

±
0.

91
Bl

oc
k

an
gl

e
50

◦

8.
36

±
1.

17

Bl
oc

k
an

gl
e

70
◦

7.
46

±
1.

42

Ta
ke

-o
ff

an
gl

e
(◦

)(d
)

M
ila

ne
se

,
Be

rt
uc

co
[4

1]
R

ea
r

kn
ee

an
gl

e
@

90
◦

40
.4

2
±

2.
74

@
11

5◦

40
.2

3
±

2.
13

@
13

5◦

39
.7

7
±

2.
50

Sl
aw

in
sk

i,
Bo

nn
ef

oy
[7

]
El

it
e

34
.7
±

1.
4

W
el

l-
tr

ai
ne

d
34

.3
±

2.
0

M
au

ld
er

,
Br

ad
sh

aw
[4

0]
N

at
io

na
la

nd
re

gi
on

al
le

ve
ls

pr
in

te
rs

42
±

4

Č
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Abstract: The military are selected on the basis of physical standards and are regularly involved in
strong physical activities, also related to particular sports training. The aims of the study were to
analyze the effect of a 7-month military training program on body composition variables and the
suitability of specific ‘bioelectrical impedance vector analysis’ (spBIVA), compared to DXA, to detect
the changes in body composition. A sample of 270 male Brazilian cadets (19.1 ± 1.1 years), composed
of a group practicing military physical training routine only (MT = 155) and a group involved in a
specific sport training (SMT = 115), were measured by body composition assessments (evaluated by
means of DXA and spBIVA) at the beginning and the end of the military routine year. The effect of
training on body composition was similar in SMT and MT groups, with an increase in LST. DXA
and spBIVA were correlated, with specific resistance (Rsp) and reactance (Xcsp) positively related
to fat mass (FM), FM%, LST, and lean soft tissue index (LSTI), and phase angle positively related to
LST and LSTI. Body composition variations due to physical training were recognized by spBIVA:
the increase in muscle mass was indicated by the phase angle and Xcsp increase, and the stability of
FM% was consistent with the unchanged values of Rsp. Military training produced an increase in
muscle mass, but no change in FM%, independently of the sample characteristics at baseline and the
practice of additional sports. SpBIVA is a suitable technique for the assessment of body composition
in military people.

Keywords: bioelectrical impedance; vector analysis; lean soft tissue; fat mass; muscle mass; phase angle

1. Introduction

The military paradigm is associated with healthy appearance, athletic bearing, and
high-level physical performance. Indeed, the military are selected based on physical
standards and are regularly involved in strong physical activities, also related to sports
training, which requires monitoring for variations in body composition variants [1].

There are various methods usable to evaluate body composition, including anthro-
pometry; bioimpedance; and more accurate techniques, such as potassium 40 counting,
water isotope dilution, underwater weighing, imaging techniques, and dual energy X-ray
absorptiometry (DXA) [2].

Due to the high suitability and low cost, the anthropometric techniques are the most
used in many fields of application, including the routine military practice [3–5]. These
methods, however, are not very accurate in detecting the main body compartments. For
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example, body mass index does not distinguish lean mass from fat mass [6–8] and so is
incapable of evaluating muscle mass gain concomitant to fat weight loss (as generally
occurs with intense military training) [9]. Accordingly, Pierce et al. [10] have recently
demonstrated that BMI is not associated with performance on military relevant tasks in
U.S. Army soldiers. Further, waist circumferences, largely used among the military [3–5]
due to the associations with intra-abdominal fat and the related morbidity outcomes [11],
are subject to intra- and inter-observer errors of measurement [12] and the need for a
strong standardization because of the different possible measurement sites. Research
results in military members are discordant, showing both a good and a poor agreement
between the circumference measurement body composition method and dual-energy X-ray
absorptiometry (DXA) [5,13].

Bioelectrical impedance analysis (BIA) is a non-invasive, low cost, and easy to operate
technique, which needs a very short time compared to the more sophisticated body com-
position methods [14]. BIA has been rarely applied to research in the military showing a
good agreement with DXA results [13,15,16]. The traditional two-component approach of
BIA uses predictive equations, including bioelectrical values (generally resistance), and
considers other variables (age, sex, and height) for the evaluation of fat mass and fat-free
mass [17]. However, the application of predictive equations in samples differing from those
where they have been calibrated can introduce a source of error. Otherwise, the use of
population/group-specific equations reduces the comparability of results.

Alternative approaches, that have been proposed to avoid the use of equations and
possible related errors, are based on the analysis of raw bioelectrical data of resistance
(R, ohm) and reactance (Xc, ohm). The phase angle (arctan Xc/R 180/π, degrees) is an
indicator of nutritional status related to body cell mass and cell membrane integrity, that is
largely used in clinical practice [18,19]. Phase angle has also been analyzed in relation to
resistance training, and an increasing trend of its values has been registered [20]. However,
as shown by Mereu et al. [21], the analysis of body composition based on the phase angle
only can be inaccurate and is significantly improved if the information given by the vector
length (R2 + Xc2)0.5 is also considered.

Such a vectorial approach has been proposed by Piccoli et al. [22], who conceived
the bioelectrical impedance vector analysis (BIVA). The classic BIVA procedure analyzes
the bioelectrical values of resistance and reactance, standardized for body height (a proxy
of conductor length). A BIVA variant defined as ‘specific bioelectrical impedance vector
analysis’ (spBIVA) implies the standardization of resistance and reactance by length and by
cross-sections of the body as well [22–24]. SpBIVA has been shown to be effective in the
evaluation of fat mass percentage [23–25] and skeletal muscle mass [9,23,26,27]. Specific
reference values have been proposed for 50 different populations, such as Italian-Spanish,
U.S. young adults, and Italian healthy elderly [22,27,28]. The classic BIVA approach has
been sporadically used in relation to sport and exercise [29], and specific BIVA even
less [29–32]. Neither classic nor specific BIVA has been applied to the military samples.

The aims of the present study were two-fold: (1) to analyze the effect of a 7-month
military training program on body composition variables, and (2) to analyze the correlation
between the changes in body composition measured by spBIVA and DXA in a Brazilian
military sample.

2. Materials and Methods

In accordance with the Helsinki Declaration, a written informed consent was obtained
from all participants. The research was approved by the Ethics Committee of the School of
Medical Sciences, University of Campinas. All procedures followed Resolution No. 466 of
2012 of the National Health Council of the Ministry of Health of Brazil.

2.1. The Sample

A sample of 270 young men (19.1 ± 1.1 years) from all the regions of Brazil (South,
Southeast, Midwest, North, and Northeast) enrolled in the Preparatory School of Army
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Cadets (EsPCEx) of the city of Campinas, SP, Brazil, was selected. Data were collected over
two years (2013 and 2014), in two periods: at the beginning (March/April) and the end
(October/November) of the military routine year.

The sample was divided into two groups: (1) the cadets who were involved in the
military physical training routine only (MT, n = 155); (2) the cadets who were involved, by
their own choice, in the military physical training routine plus a specific sport training for
military competition (SMT, n = 115): track and field (n = 25), basketball (n = 16), fencing
(n = 3), soccer (n = 18), judo (n = 3), swimming (n = 13), trekking (n = 4), shooting (n = 2),
triathlon (n = 11), volleyball (n = 15), or chess (n = 5).

All cadets were included in the sample, except those who did not sign the consent
form, who did not attend the day of the evaluations (even if only the second ones), who
had a history of musculoskeletal injury at the time of the assessments, or were disconnected
from the school.

2.2. Military Physical Training

Military physical training was performed 5 days/week during 90 min/day for 34 weeks,
according to the academy military physical training manual, where the cadets were sup-
posed to undergo a physical training that consisted of: (a) 2–3 sessions/week of continuous
or interval running, with a weekly increased load; (b) 1 session/week of calisthenics ex-
ercises (7–15 repetitions of push-up, push-up/stand-up, sit-up, squat with hands on hip,
lunge with hands on hip, and jumping jacks); (c) 1–2 sessions/week of circuit resistance
training (2 sets of bench press, sit-up and its variations, half squat, barbell curl, pull-up,
stair jumps, jump rope, and wrist roller, with 30 s of each exercise and 30 s of rest interval);
(d) 1 session/week of swimming; and (e) 2 sessions/week of sports training. Before each
session, all participants went through ~8 stretching exercises, ~7 neuromuscular warm-up,
and ~7 general warm-up exercises. For sports training, each participant performed specific
training for each modality [32,33].

2.3. Measurements

All subjects underwent anthropometric, BIA and DXA assessments, in the same
sequence, in the morning.

Anthropometric measurements were performed following standard procedures [34],
by an accredited International Society for the Advancement of Kinathropometry (ISAK)
technician. Body weight (kg) and height (cm) were measured using a digital scale with
precision of 0.1 kg (Filizola, São Paulo, Brazil) and a Harpenden stadiometer with precision
of 1 mm (Holtain Limited, Crosswell, UK), respectively. Relaxed upper arm, waist and
calf girths were measured using an anthropometric tape (precision of 1 mm). Body mass
index in kg·m−2 was calculated by the ratio between body weight, in kilograms, and height
squared, in meters (BMI).

A fan beam equipment model iDXA (GE Healthcare Lunar, Madison, WI, USA),
enCoretm 2011 software (version 13.6), was used to determine body composition. Total
body composition was measured with the subject lying in the supine position, with the
scanning time for the full length of approximately seven minutes. Total fat mass (FM, kg),
fat percent (%FAT), lean soft tissue (LST, kg), and bone mineral content (BMC, kg) were
measured. LSTI (kg·m−2) was calculated as LST/height squared in meters. To determine
the reproducibility of the variables estimated by the equipment, coefficient of variation
(CV%) and the technical error of measurement (TEM) were determined, based on the
testing and retesting conducted with 23 subjects, and retested within 24 h. The values of
CV% were 0.74%, 0.28%, and 0.26% for FM, BMC, and LST, respectively, and TEM were
0.25 kg (FM), 0.02 kg (BMC), and 0.25 kg (LST).

Bioelectrical measurements (resistance (R), ohm; reactance (Xc) ohm; at 50 kHz and
425 µA) were taken following the standard procedure [14]. With a Bioelectrical Body
Composition Analyzer, tetrapolar device, single frequency (50 kHz), and model Quantum
II (RJL Systems, Detroit, MI, USA). Specific bioelectrical impedance vector analysis was
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applied [24]. Specific bioelectrical values (resistivity (Rsp) ohm cm; reactivity (Xcsp) ohm
cm) were obtained by multiplying resistance and reactance by a correction factor (A/L),
where area (A, cm2) and length (L, cm) were estimated as follows: A = (0.45 upper arm
area + 0.10 waist area + 0.45 calf area) and L = 1.1 stature (in cm). The segment areas were
calculated as C2/4π, where C (cm) is the girth of the upper arm, waist, or calf. The phase
angle (degrees) was calculated as arctan (Xc/R 180/π) and the impedivity vector (Zsp, ohm
cm) as (Rsp2 + Xcsp2)0.5.

All participants should have fasted for at least 4 h, not ingest caffeinated foods or
alcoholic beverages 24 h prior to the test, not perform strenuous physical activity less
than 12 h before the test, not use any diuretics for at least 7 days before the test, urinate
about 30 min before the test, and remove all metals (bracelets, watch, chains, etc.). During
the assessment, the volunteers remained in the supine position, on a stretcher isolated
from electrical conductors, in the supine position, with the legs abducted at an angle of
approximately 45 degrees [35]. The values of CV% were 0.35% and 0.33% for R and Xc,
respectively, and TEM were 3.54 Ω and 0.49 Ω, respectively, for R and Xc, for the same
23 subjects retested for DXA. Gonzalez et al. [36] validated the same equipment used in
this study in a Brazilian sample, also using DXA as a reference method.

The within-sample variability was investigated by considering the distribution of
bioelectrical values in the tolerance ellipses, representing the bivariate percentiles of the
reference population. At this purpose, the tolerance ellipses for the Italo-Spanish adults
(18–30 years) [28] have been used. The major axis of the ellipses refers to variations of FM%
(higher values towards the upper pole) and the minor axis to variations of skeletal muscle
mass and ECW/ICW (lower values on the left side).

2.4. Statistical Analyses

Bioelectrical values of MT and SMT groups were compared by mean of tolerance and
confidence ellipses, using a two-sample Hotelling’s T2 test.

The consistency of the results obtained with specific BIVA and DXA was evaluated
by means of Pearson’s correlation between bioelectrical and DXA variables at baseline
and comparing the trend of longitudinal body composition variations described by the
two techniques. The effect of training (pre- vs. post-training) in the two sub-samples of
SMT and MT was analyzed using two-way ANOVA (anthropometric, DXA output and
bioelectrical values) and paired one-sample Hotelling’s T2 (confidence ellipses).

Statistical analyses were performed using IBM SPSS Statistics 19 (IBM SPSS Statistics
for Windows, Version 19.0. Armonk, NY: IBM Corp) and the specific BIVA software (freely
available at the website: http://specificbiva.unica.it/ (accessed on 17 August 2018).

3. Results

On average, at baseline, the sample of military people was in the normal weight BMI
category and had a percent fat mass within the normal range for men (Table 1).

Table 1. Descriptive statistics for body composition of Brazilian Military (N = 270) at the beginning
of the routine year.

Variables Mean SD 95% IC
(Lower–Upper Limits)

Weight, kg 69.9 8.9 68.9–71.0
Height, cm 175.7 6.4 174.9–176.4

BMI, kg·m−2 22.6 2.4 22.4–22.9
Waist crf, cm 76.2 4.8 75.7–76.8
LSTI, kg·m−2 17.9 1.6 17.7–18.0

FM, kg 12.2 3.7 11.7–12.6
LST, kg 55.2 6.4 54.4–55.9

BMC, kg 3.0 0.4 2.9–3.0
FM% 17.1 3.8 16.6–17.5
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Table 1. Cont.

Variables Mean SD 95% IC
(Lower–Upper Limits)

Rsp, ohm·cm 313.0 28.8 309.8–316.8
Xcsp, ohm·cm 40.9 5.7 40.2–41.6

Phase Angle, degrees 7.4 0.8 7.3–7.5
Legend: SD = standard deviation; BMI = body mass index; LSTI = lean soft tissue index; FM = fat mass;
LST = lean soft tissue; BMC = bone mineral content; FM% = fat mass percent; Rsp = specific resistance;
Xcsp = specific reactance.

Bioelectrical values were quite totally within the reference tolerance ellipses, but
slightly shifted toward the lower pole, indicative of low FM% (Figure 1).
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Figure 1. Distribution of bioelectrical values of Brazilian Military onto tolerance ellipses representing
Italian-Spanish young adults, at the beginning of the routine year.

DXA and specific BIVA were correlated (Table 2). In fact, Rsp and Xcsp were positively
related to FM, FM%, LST, and LSTI, while phase angle was positively related to LST
and LSTI.

Table 2. Matrix of correlation between bioelectric and DXA variables (N = 270) at baseline.

Rsp Xcsp PA
r p r p r p

FM, kg 0.582 0.000 0.406 0.000 0.030 0.627
FM% 0.556 0.000 0.326 0.000 −0.049 0.418

LST, kg 0.229 0.000 0.300 0.000 0.189 0.002
LSTI, kg·m−2 0.292 0.000 0.497 0.000 0.400 0.000

Legend: r = Pearson correlation coefficient; p = p value; FM = fat mass; FM% = fat mass percent; LST = lean soft
tissue; LSTI = lean soft tissue index; Rsp = specific resistance; Xcsp = specific reactance; PA = phase angle.
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Military people practicing sport activities (SMT) showed body composition differences
with respect to those practicing military training only (MT). In fact, SMT group had higher
values of LST and BMC, and lower values of FM and FM% (Table 3). The bioelectrical
values of specific reactance and phase angle were significantly higher in SMT than in MT,
indicating higher muscle mass (Table 3, Figure 2).

Table 3. Descriptive and comparative statistics.

SMT (N = 115) MT (N = 155)

Pre Post Pre Post

Mean Sd Mean Sd Mean Sd Mean Sd Fg Ft Fgxt

Weight, kg 71.0 8.7 73.0 8.7 69.1 9.0 70.8 8.2 0.006 0.018 0.826
Height, cm 176.4 6.3 176.7 6.2 175.1 6.5 175.3 6.5 0.023 0.521 0.979

BMI, kg·m−2 22.8 2.1 23.3 2.1 22.5 2.5 23.0 2.2 0.147 0.014 0.868
Waist crf, cm 77.2 4.9 78.5 5.1 75.5 4.6 77.2 4.3 0.000 0.000 0.581

FM, kg 11.5 3.2 12.2 3.1 12.6 4.0 12.7 3.3 0.011 0.253 0.305
LST, kg 56.9 6.6 58.1 6.6 53.9 5.9 55.5 5.8 0.000 0.009 0.671

LSTI, kg·m−2 18.3 1.6 18.6 1.5 17.6 1.5 18.0 1.4 0.000 0.004 0.541
BMC, kg 3.1 0.4 3.1 0.4 2.9 0.4 3.0 0.4 0.000 0.118 0.991
FM%, % 16.0 3.3 16.5 3.1 17.9 3.9 17.6 3.3 0.000 0.720 0.199

Rsp, ohm 314.8 27.6 312.7 26.5 311.7 29.6 310.8 28.3 0.316 0.544 0.816
Xcsp, ohm 41.9 5.5 45.7 6.5 40.1 5.7 44.0 6.1 0.001 0.000 0.911
PA, degree 7.6 0.8 8.3 0.9 7.3 0.7 8.1 0.8 0.001 0.000 0.966

Legend: SMT: Sports and Military Training; MT: Military Training only; F, F test of two-way ANOVA for group
(Fg), training (Ft), and group-training interaction (Fgxt); BMI = body mass index; FM = fat mass; FM% = fat mass
percent; LST = lean soft tissue; LSTI = lean soft tissue index; Rsp = specific resistance; Xcsp = specific reactance;
PA = phase angle.
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4. Discussion

In this sample of military personnel, DXA and specific BIVA showed a consistent
scenario of body composition variations related to physical training. In fact, specific
bioelectrical variables were correlated with DXA (FM, FM% and LST, and LSTI), and both
the techniques showed: (a) different body composition in the military practicing physical
training routine only (MT) or a specific sport training as well (SMT); (b) an increase in
fat-free mass and a steady percentage of fat mass in relation to training, in both SMT and
MT groups.

The sample, especially the SMT group, showed body composition characteristics
adequate to the military standard, as suggested by the BMI indicative of normal weight [37],
and the percentage of fat mass, which was lower than the body fat limits of approximately
20%, desirable for the U.S. army men [4]. The values of fat-free mass were higher in SMT
than MT. The period of over ~7 months of military training induced, in both MT and SMT
groups, a gain of lean soft tissue that contributed to the higher value of weight and BMI.
However, the absolute and relative quantity of body fat did not change.

The observed differences of body composition are consistent with the effects of physical
training described in the general population, and in the military [38,39]. Aerobic, stretching
and resistance training are among the main interventions that can affect fat mass, fat free
mass, and skeletal muscle mass, especially in young adults. These effects can be achieved in
adults in a period of 3 to 12 months, depending on the characteristics of the sample and the
volume of training, as well as other influent factors, such as daily habits and, particularly,
alimentary style [40].

Research focused on military training has shown in general an increase in fat-free
mass [15,16,34,41–43], but not in Margolis et al. [44], while the results on fat mass are less
consistent among the studies. Mikkola et al. [16], in Finnish military performing regular,
rather high-intensity, physical activity, over a period from 6 to 12 months, observed an
increase in fat mass (in normal weight individuals), but a decrease in visceral fat. Indeed,
intense physical activity promotes a greater reduction of visceral than subcutaneous adipose
tissue, even if weight increases [45].

As previously presented, despite the inability of indicators such as BMI and waist
circumference to validly identify lean and fat mass in physically active soldiers [6–12], there
is still a gap in studies with DXA, for example, to test the agreement with the bioimpedance
technique [5,13].

From a methodological point of view, similarly to the present research, previous
studies realized in U.S. adults [9,23] and elderly Italians [24] detected a high correlation
between DXA and specific BIVA variables. In particular, Rsp and Xcsp showed a positive
correlation with FM% (especially Rsp; [9,24]) and with FFMI (especially Xcsp; [9]), while
phase angle was positively related to FFMI only [9]. It is noteworthy that such convergent
results have been obtained in samples characterized by different geographical provenience
(Brazil, present study; US and Italy) [9,23,24], age class (Young adults, adults, and elders),
and lifestyle (military, general population, and retirees). Indeed, the observed relationships
are expected. In fact, resistance is negatively related to total body water and electrolytes,
and hence, in normal-hydrated individuals, increases with the proportion of low conductive
tissues, such as fat mass [9,24]. On the other side, the capacitive component (reactance) and
phase angle are associated with the polarization produced by cell membranes and tissue
interfaces and are positively related with body cell mass [22]. In this study, the correlation
between DXA and spBIVA is shown by the trajectory of vector migration in relation to
training, that, in both MT and SMT groups, is associated with increased values of reactance
and phase angle (increasing muscle mass), but quite unchanged Rsp values (stable FM%).
Such results can be comparable to those of Campa et al. [46], who analyzed three different
sports modalities (volleyball, soccer, and rugby) and observed higher PhA values in athletes
with a high mesomorphic component, which means, higher skeletal muscle component.

However, inconsistent results between DXA/spBIVA and waist circumference have
been observed. In fact, SMT group showed higher values of waist circumferences, increas-
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ing in time, with respect to MT, but lower FM% levels, which remained stable after the
military training. A similar disagreement between DXA and the circumference methods has
already been described in the military [5]. In our research, we have also observed that sp-
BIVA results, similarly to DXA, were not consistent with the pattern of waist circumference
differences. However, compared to DXA, spBIVA did not recognize a lower percentage
of fat mass in SMT with respect to MT. The observed gaps between abdominal circumfer-
ence and DXA or spBIVA are noteworthy, considering the particular emphasis given to
circumference measurement to calculate body fat percentage among the military [42]. The
inconsistencies can be likely related to the different distribution of body components in the
central and peripheral regions of the body and maybe to the greater effect of training on
visceral than on subcutaneous fat, discussed above.

Despite the fact that the present study analyzed cadets who practiced 11 different
sports, approximately 85% of the total SMT group practiced either teams’ sports or in-
dividual sports, such as cyclical sports (swimming, athletics, or triathlon), therefore, the
physiological characteristics were not so different when comparing practitioners of sports
modalities, such as basketball, with practitioners of judo or fencing. In this way, the varia-
tions in the subjects’ body composition, especially in the SMT group, are partly explained
by training in some sports that total almost 90% of all the modalities practiced.

Considering, for example, the practice of team sports, such as soccer and volleyball,
as was verified in different studies [47,48] that the longer the training time, the greater the
phase angle and the lower the resistance values, indicating higher lean body mass values
and, consequently, higher musculoskeletal mass. Micheli et al. [47] demonstrated that elite
Italian professional football players (Series A and B) trained 9 weeks more throughout
the year, with three more training sessions per week and one more game per week than
amateur players, and consequently presented 7% higher and 8% lower phase angle and
resistance values, respectively, indicating better body compositing status. In contrast, in our
study, the differences between the phase angle (MT × SMT) were due to the greater values
of reactance for those who practice sports activities. Such a situation can be explained by the
amount of military training of both groups, which naturally provides good physical fitness,
with lower resistance values. The SMT group, with specific sports training, presented
higher values of phase angle, explained by higher reactance values, influenced mainly by
greater amount of cell mass.

The main strengths of the present research are related to the application of a stan-
dardized protocol with cross-sectional and longitudinal measures, the use of reference
techniques for body composition assessment in association with specific BIVA, and a well-
controlled sample. However, some limitations are also present and are related to the poor
representation of cases in the different disciplines, characterized by different training pro-
tocols, which made it impossible to recognize possible differences in body composition
changes and in the underlying physiological mechanisms. Further, there was some dis-
agreement between methods (anthropometry, DXA, and specific BIVA), likely related to
regional differences of body components, which should be better analyzed by means of
localized body composition analysis.

5. Conclusions

In conclusion, this research showed that spBIVA is a suitable technique for the as-
sessment of body composition in the population studied. The effect of training on body
composition was independent of sample characteristics or type of physical exercise: muscle
mass increased, while the percentage of fat mass remained unchanged.
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Abstract: The present study sought to investigate if faster upper body oxygen uptake (VO2) and
hemoglobin/myoglobin deoxygenation ([HHb]) kinetics during heavy intensity exercise were asso-
ciated with a greater upper body repeated-sprint ability (RSA) performance in a group of judokas
and in a group of individuals of heterogenous fitness level. Eight judokas (JT) and seven untrained
healthy participants (UT) completed an incremental step test, two heavy intensity square-wave
transitions and an upper body RSA test consisting of four 15 s sprints, with 45 s rest, from which the
experimental data were obtained. In the JT group, VO2 kinetics, [HHb] kinetics and the parameters
determined in the incremental test were not associated with RSA. However, when the two groups
were combined, the amplitude of the primary phase VO2 and [HHb] were positively associated with
the accumulated work in the four sprints (ΣWork). Additionally, maximal aerobic power (MAP),
peak VO2 and the first ventilatory threshold (VT1) showed a positive correlation with ΣWork and an
inverse correlation with the decrease in peak power output (Dec-PPO) between the first and fourth
sprints. Faster VO2 and [HHb] kinetics do not seem to be associated with an increased upper body
RSA in JT. However, other variables of aerobic fitness seem to be associated with an increased upper
body RSA performance in a group of individuals with heterogeneous fitness level.

Keywords: VO2 kinetics; muscle oxygenation; judo; upper body; arm crank; near-infrared spec-
troscopy; repeated sprint ability

1. Introduction

Judo is a technically and tactically demanding sport, involving several intermittent
efforts of high-intensity activity, interceded by short rest periods [1]. An official, senior-
level match may last up to 4 min, and judokas may perform up to seven matches during
a tournament, including preliminary rounds, main rounds and finals, all in the same day.
This sport is reported to rely heavily on upper body strength and power [2], and it has also
been suggested that the high-intensity efforts that occur throughout a match are mainly
supported by anaerobic energy systems, while the oxidative energy system may be crucial
to the recovery process in between high-intensity efforts and between matches [2].

It has been shown that at the elite level, judo contest winners have a higher activity
profile over the course of a match, performing more offensive actions per match (56 offen-
sive actions/match in gold medalists vs. 49 offensive actions/match in silver medalists) [3].
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These results highlight that for high-level judo athletes, the ability to perform multiple
high-intensity actions over time may be a crucial aspect in determining a contest winner.
Therefore, the study of the factors underlying the ability to perform more high-intensity
actions over the course of a match in this group of athletes seems to be of relevance.

Many sport activities rely on the ability to repeat several efforts over time. The
ability to perform these activities seems to be dependent on the ability to quickly restore
phosphocreatine (PCr) stores, ensuring that high rates of muscular work can be sustained
over the course of several high-intensity bouts [4]. The ability to restore PCr stores back to
near-resting level seems to be dependent on muscular oxidative capacity [5]. Moreover, as
these short-duration efforts are repeated over time, the contribution of the oxidative energy
system seems to increase [6]. The ability to quickly attain a high rate of ATP resynthesis
from oxidative phosphorylation, as expressed by the rate at which oxygen uptake (VO2)
rises, seems to be an important aspect in delaying the onset of fatigue [7]. As this quick
rise is associated with a reduction in oxygen deficit [8], it can contribute to an increased
high-intensity exercise tolerance.

The speed at which VO2 rises to attain a given value necessary to support the exercise
workload can be characterized by the time constant of the primary component of VO2
kinetics (τphase II), which represents the time necessary for 63% of the final oxygen uptake
response to be complete [9–11]. In response to moderate-intensity workloads, the VO2
response is characterized by three phases [12,13]: Phase I is the cardiodynamic phase,
and corresponds to the phase during which VO2 rises as a consequence of increased
pulmonary blood flow. Phase II corresponds to the primary component, where VO2 rises in
an exponential manner, until a steady-state VO2 is achieved, corresponding to phase III. The
profile of VO2 response during phase II seems to closely reflect muscle VO2 profile [13–15].
During heavy-intensity constant load exercise, the attainment of a steady-state VO2 is
delayed due to the rise in VO2, which exceeds the expected values of VO2 based on the
VO2–exercise intensity relationship established during submaximal (moderate intensity
domain) workloads, coinciding with the emergence of a VO2 slow component (VO2SC).

Faster VO2 kinetics, characterized by shorter values for τphase II, have been observed
in trained individuals [16–20] and have been associated with a smaller decrease in speed
over a repeated-sprint ability test (RSA) in a group of soccer players [21]. Moreover, a
shorter τ has been associated with longer high-speed running distances in a group of
young high-level soccer athletes [22]. Trained individuals have also been shown to have a
smaller VO2SC at a given workload compared to untrained individuals [23,24], which has
been associated with an increase in the ability to sustain high-intensity exercise workloads
over time at a given absolute workload [25]. Some studies have also shown that upper
body trained individuals have faster VO2 kinetics compared to untrained subjects [18,19].
To our knowledge, no study to date has sought to understand the characteristics of the
response of VO2 kinetics during heavy-intensity upper body exercise, nor attempted to
establish a relationship between VO2 kinetics variables and upper body high-intensity
exercise performance in a group of judo athletes.

Near infrared spectroscopy (NIRS) has been used to examine the relative matching
of O2 delivery with tissue oxygen utilization during constant-workload exercise transi-
tions [26]. The hemoglobin/myoglobin deoxygenation ([HHb]) signal derived from NIRS
measurements is reported to reflect the balance between O2 delivery and O2 utilization
and has been used as a non-invasive index of O2 extraction from muscle capillaries during
exercise [27,28].

Given that several variables of aerobic fitness, such as maximal aerobic speed [29] and
τphase II [21], have been associated with increased RSA, we hypothesized that participants
with faster upper body VO2 and [HHb] kinetics would achieve a higher upper body RSA
performance. Therefore, the present study sought to understand if faster VO2 and [HHb]
kinetics were associated with a higher performance, expressed as a lower decrease in peak
power output (PPO) and mean power output (MPO), as well as a higher accumulated work
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(ΣW), over the course of an upper body RSA test in a group of judo athletes and in a group
of healthy individuals of heterogenous fitness level.

2. Materials and Methods

Eight male judo athletes (JT) (age 21.1 ± 3.0 years, height 172.3 ± 4.5 cm, body mass
71.5 ± 7.1 kg, triceps skinfold thickness 4.5 ± 0.7 mm) and seven male untrained healthy
participants (UT) (age 22.6 ± 1.0 years, height 172.7 ± 4.5 cm, body mass 64.3 ± 5.8 kg,
triceps skinfold thickness 6.6 ± 1.6 mm) volunteered to participate in the study. The JT
were all black belts, of national (placed in 1st–7th place in the national championships)
and international (placed 3rd–9th place in European and World cups) level and had been
training (13.1 ± 2.8 year) and competing regularly (6.0 ± 1.3 competitions in the previ-
ous year) for at least three years; the UT were not involved in any upper body exercise
modalities, although they were all healthy, active (at least 150 min. of physical activity/wk)
individuals [30].

None of the participants were suffering from any upper body injuries at the time
of testing or recovering from any major upper body injury that had occurred in the past
12 months, nor taking any medicine. None of the individuals of JT were cutting weight nor
preparing for a major competition at the time that the testing sessions were undertaken.

In order to determine the sample size for the present study, a priori statistical power
analysis was performed with G-Power [31] based on the studies of Dupont [21] and
McNarry [32], aiming for a power of 85% (alpha = 0.05, two-tailed). The sample size
suggested was of 10 individuals for correlations and 7 for each group for the comparisons.
Given the strenuous nature of the tests that were undertaken, and that participants could
drop out of the study at any time, additional participants were recruited for a total sample
of 15 individuals.

All the participants were fully informed of any risks before giving their written
informed consent to participate in the study, in accordance with the requirements outlined
by the Ethics Committee of the Faculty of Human Kinetics of the University of Lisbon
(approval code 42/2021) and in accordance with the Declaration of Helsinki [33].

The participants were required to report to the laboratory on three occasions. To
avoid circadian rhythm effects, testing occurred at the same time of day, with each session
separated by at least 48 h and all testing sessions were completed within 2 weeks. All
subjects were required to present themselves in the laboratory with comfortable clothes, in
a rested and hydrated state, to refrain from drinking any sort of alcoholic beverages at least
24 h prior to each testing session, and from eating or taking caffeine 3 h prior to each test.

All tests were performed on an electronically braked arm crank ergometer (Lode Angio,
Groningen, Netherlands). In their first session, participants performed an incremental step
test to determine maximal aerobic power (MAP), peak oxygen uptake (peak VO2), first
ventilatory threshold (VT1) and its respective workload (W_VT1). In the second session,
participants performed two heavy-intensity square-wave exercise transitions to determine
VO2 kinetics and [HHb] kinetics of triceps brachii. Each transition began with 3 min of
baseline cranking at 0 W, following which the transition workload was imposed. Each
square-wave transition was separated by 1 h of passive recovery. In the third session,
participants completed a standardized warm-up, followed by an RSA test, consisting of
four 15 s upper body all-out sprints, each interceded by 45 s of passive recovery in between.

2.1. Gas Exchange and Muscle Deoxygenation Measurements

Gas exchange variables were collected breath-by-breath with a gas analyzer (Meta-
Max 3B, Cortex Biophysik, Leipzig, Germany), after calibration according to the
manufacturer’s instructions.

The changes in the [HHb] signal in the local circulation of the long head of the triceps
brachii were monitored using a continuous-wave tissue oximeter (NIMO, Nirox, Brescia,
Italy) using the NIRS technique. In order to reliably collect the NIRS signal, the local skin
of each participant’s upper arm was initially shaved and cleaned. A probe consisting of a
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photon emitter and a photon receptor, emitting and detecting near-IR beams with three
different wavelengths (685 nm, 850 nm and 980 nm), was attached to the skin surface, and
secured with tape and then covered with an optically dense elastic bandage in order to
minimize movement, prevent loss of near-IR signal and stray light interference, and also
to constrain the signal emission-reception site. The signal was sampled at a frequency
of 40 Hz. To account for the effects of adipose tissue thickness on the NIRS signal, the
skinfold thickness at the site where NIRS probes were placed was measured with a caliper
(Slim Guide Caliper, Creative Health, Ann Arbor, MI, USA) and a correction factor was
used in the analysis software (Nimo Data Analysis Peak). All NIRS measurements were
conducted on the right limb, and [HHb] was monitored during the second and third testing
sessions (square-wave transitions and RSA test, respectively). The validity and limitations
associated with the measurements obtained via this oximeter have been reviewed by Rovati
and associates [34].

2.2. Incremental Step Test

Participants performed an incremental exercise test for determination of MAP, peak
VO2, VT1 and W_VT1. Participants performed a 3 min step of baseline cranking at 0 W,
following which the power was increased 15 W each min (step) until participants reached
voluntary exhaustion. The participants were instructed to crank the wheel at the rate of
70 rotations per minute (rpm), grabbing the handles of the ergometer in a standard position,
in which they stood upright with their feet shoulder width apart, flat on the floor, and
with their shoulder joint levelled with the pedal crank axle. Handle height and ergometer
configuration were recorded and reproduced in subsequent tests. The present incremental
test protocol’s characteristics were based on the protocols of Koppo and associates [20] and
Schneider and associates [35], which also studied upper body VO2 kinetics of a group of
heterogenous fitness level. Breath-by-breath pulmonary gas-exchange data were collected
continuously during the incremental step test. The peak VO2 was taken as the highest 30 s
average value attained before the participants reached volitional exhaustion. The MAP was
defined as the minimal workload which elicited peak VO2.

The VT1 was estimated by monitoring the ventilatory equivalents for oxygen (VE/VO2)
and carbon dioxide (VE/VCO2), determined by inspection to define the point at which an
increase in VE/VO2 was observed, with no concomitant increase in VE/VCO2 [36]. The
workload over which these responses were observed was defined as the W_VT1. Through-
out the test, heart rate (HR) was monitored continuously (ONRHYTHM 500, Kalenji,
France) and the highest HR value observed in the last stage of exercise was registered as
peak HR. The workload associated with VT1 was used to determine the intensity for the
square-wave transitions, which was set at 20%∆, calculated as W_VT1 plus 20% of the
difference between the W_VT1 and the MAP.

2.3. Square-Wave Transitions

The participants performed two square-wave constant workload transitions for the
determination of VO2 and [HHb] kinetics, with a workload of 20%∆, corresponding to
a heavy-intensity workload. After a 3 min period of baseline cranking at 0 W, the target
workload was imposed. Each square-wave transition lasted 6 min and the transitions were
separated by 1 h of passive rest. Given the lower exercise tolerance associated with upper
body exercise, a 20%∆ workload was chosen, to ensure that the subjects were working
in the heavy-intensity exercise domain without incurring excessive fatigue, which would
compromise performance in the subsequent square-wave transition, for both groups, and
therefore confound the underlying physiological response.

The VO2 data were collected breath-by-breath from each transition and were examined
to exclude errant breaths and values lying more than 4 standard deviations from the local
mean (based on 5 breaths), and subsequently linearly interpolated to provide 1 s values. The
data from the two transitions were then time aligned to the start of exercise and averaged to
reduce signal noise and enhance the underlying physiological response characteristics [37].
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VO2 kinetics parameters were calculated by an iterative procedure, minimizing the
sum of the residuals, according to the following bi-exponential model:

VO2 (t) = VO2baseline + A [1 − e−(t−TDp)/τp] + Asc [1 − e−(t−TDsc)/τsc]

where VO2 (t) represents the absolute VO2 at a given time t, VO2baseline represents the mean
VO2 under unloaded conditions 30 s prior to the work transition; A, TDp, and τ represent
the amplitude, time delay, and time constant, of the phase II of the increase in VO2 after the
onset of exercise, and Asc, TDsc, and τsc represent the amplitude of the slow component,
time delay before the onset of, and time constant of the slow component phase of VO2
kinetics, respectively [38].

The end-exercise VO2 was defined as the mean VO2 value obtained in the last 30 s
of the 6 min constant workload transitions. The first 20 s of VO2 data were excluded
from the analysis to remove the influence of the cardiodynamic phase on the subsequent
response [39]. Because the asymptotic value of the second function is not necessarily
reached at the end of the exercise, the amplitude of the slow component was defined as

A′SC = Asc [1 − e−(te−TDsc/τsc)]

where te was the time at the end of the exercise bout [20].
Throughout each square-wave transition, the [HHb] signal was monitored in order

to provide a non-invasive surrogate of the changes in O2 saturation of the hemoglobin/
myoglobin in the local circulation of the long head of the triceps brachii.

The [HHb] data were normalized to resting values, considering the average of the
3 min rest before the unloaded pedaling, and the [HHb] response was characterized accord-
ing to a monoexponential model, with a timed-delay (TD) at the onset of exercise, followed
by an exponential increase [27] until the end of the exercise period:

[HHb] (t) = [HHb]baseline + AHHb [1 − e−(t−TDHHb)/τHHb]

where [HHb] (t) represents the [HHb] at a given time t, [HHb]baseline represents the 60 s
average [HHb] prior to the participant gripping the handles, and A [HHb] and τ [HHb]
correspond to the amplitude and time constant of the exponential phase of [HHb] kinetics,
respectively. The TD was defined as the time between the onset of exercise and the time
at which a first increase in the [HHb] signal was observed [40], which was determined by
visual inspection. [HHb] data were fit from the time of initial increase in [HHb] to 180 s.
The exponential-like phase of the [HHb] kinetics was also characterized by an “effective”
time constant (τ′), which corresponded to the sum of TD and τ [40].

2.4. Repeated Sprint Exercise

The upper body RSA test consisted of four 15 s all-out sprints, each separated by 45 s
of passive rest. Participants performed a 6 min warm-up at 30 W with a cadence of 70 rpm,
with three brief sprints (<5 s duration) during the last 3 min of the warm-up. Participants
were then given 2 min of rest before commencing the upper RSA test. Thirty seconds before
the start of the test, the participants were asked to grip the ergometer handles. Throughout
the whole test, the participants were verbally encouraged to give their maximum effort.

The exercise workload was set at 5% of the body mass of each individual [41]. The
peak power output (PPO) and mean power output (MPO) attained during each sprint were
monitored, and the total work performed (Work) during each sprint was derived as the
integral of power output over the 15 s period.

The 15 s work period was chosen by considering the data reported by Soriano and
associates [42] based on the sum of average time it took male judokas to come to grips
(8.4 ± 3.1 s), establish a grip and control their opponent (6.1 ± 3.5 s) and execute a throw
(1.3 ± 0.5 s). The 45 s rest period duration was chosen as a compromise between what is
observed in a typical judo match (2:1 work-to-rest ratio) [1,2], and the typical work density
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that has been reported in several RSA studies (1:6-8 work-to-rest ratio) [4,6], to ensure that
the work period matched what typically occurs throughout a match, as exercise intensity
and duration are the main determinants of energy system specificity [43], while allowing
participants to sustain the power output over the course of several high-intensity bouts.

A set of variables were computed, in order to characterize overall RSA performance:

Dec-PPO (Decrease in PPO) = PPO 1st sprint − PPO 4th sprint

Dec-MPO (Decrease in MPO) = MPO 1st sprint −MPO 4th sprint

ΣWork (Accumulated work) = ∑4th sprint
1st sprint Work performed

Throughout each sprint, the [HHb] signal was monitored, and the data collected were
used to compute the maximal [HHb] attained in each sprint (Max. A [HHb]).

2.5. Statistical Analysis

The results are presented as means ± SD. The Shapiro–Wilk test was used to verify the
normal distribution of the data for each variable [44]. Unpaired t-tests were used to compare
the differences between groups regarding each variable. Pearson product correlations were
used to determine the correlation between variables. In order to determine if a linear
relationship could be established between a variable of interest and other independent
variables, a stepwise regression analysis was performed, using Peak VO2, MAP, VT1_VO2,
Aphase II, τphase II, the effective slow component amplitude (A’SC), A [HHb], τ’ [HHb], Max.
A [HHb] 1, Max. A [HHb] 2, Max. A [HHb] 3 and Max. A [HHb] 4 as independent
variables, and Σ Work as the dependent variable. The collected data regarding each
individual variable were analyzed as a whole, considering all participants as a single
heterogeneous group, and were analyzed separately by groups. The effect size for the
differences between groups was calculated based on the ratio between the difference in
the mean values and the weighted pooled SD. The threshold values for Hedges’ effect size
(ES, g) statistics were characterized according to the following scale [45]: <0.20 = negligible
effect, 0.20–0.49 = small effect, 0.50–0.79 = moderate effect, ≥0.80 = large effect.

3. Results
3.1. Incremental Step Test

Mean and standard deviation of the variables obtained by each group of participants
in the incremental test are depicted in Table 1.

Table 1. Physiological responses attained by UT and JT participants in the incremental step test.

Variables UT JT p

Peak VO2 (mL·kg−1·min−1) 32.3 ± 5.1 40.4 ± 3.7 0.004 *
MAP (W) 101.4 ± 13.8 149.3 ± 17.4 <0.001 *

VT1_VO2 (mL·kg−1·min−1) 11.9 ± 1.1 16.9 ± 1.3 0.289
W_VT1 (W) 42.9 ± 20.2 69.4 ± 11.2 0.007 *
20%∆ (W) 57.1 ± 18.5 86.5 ± 11.7 0.003 *

Peak HR (beats/min) 172.4 ± 11.4 177.0 ± 6.4 0.349
UT, untrained participants; JT, judo athletes; Peak VO2, peak oxygen consumption; MAP, maximal aerobic power;
VT1_VO2, oxygen consumption rate at the onset of the first ventilatory threshold; VT1_W, workload at the onset of
the first ventilatory threshold; 20% ∆W, Workload corresponding to the sum of VT1_W plus 20% of the difference
between the MAP and VT1_W; Peak HR, Peak heart rate achieved during the incremental test; * Significant
differences between groups for p < 0.05.

The JT group displayed higher Peak VO2, MAP, W_VT1 and 20%∆ than the UT group.
A large effect size was observed for Peak VO2 (g = 1.8), MAP (g = 3.0), W_VT1 (g = 1.7) and
20%∆ (g = 1.9). VT1 _VO2 and peak HR were not different between groups.
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3.2. Square-Wave Transitions

Table 2 shows the VO2 kinetics variables obtained by the two groups of participants in
the heavy-intensity square-wave transitions.

Table 2. VO2 kinetics parameters in the heavy-intensity square-wave transitions for each group.

Variables UT JT p

VO2baseline (mL·kg−1·min−1) 9.4 ± 1.2 9.1 ± 1.1 0.627
Aphase II (mL·kg−1·min−1) 11.5 ± 5.5 15.1 ± 2.8 0.128

TDphase II (s) 11.4 ± 9.2 10.5 ± 8.0 0.850
τphase II (s) 61.6 ± 8.2 47.5 ± 13.4 0.032 *

A’SC (mL·kg−1·min−1) 2.6 ± 0.7 4.9 ± 3.4 0.097
TDSC (s) 204.4 ± 74.9 175.6 ± 49.0 0.388
τSC (s) 53.6 ± 26.5 102.2 ± 52.1 0.045 *

EE VO2 (mL·kg−1·min−1) 23.9 ± 6.1 28.4 ± 3.4 0.094
A’SC/EE VO2 0.1 ± 0.1 0.2 ± 0.1 0.191

Sum of residuals 533.2 ± 222.9 369.0 ± 185.6 0.141
UT, untrained participants; JT, judo athletes; VO2baseline, baseline oxygen consumption rate; Aphase II, Amplitude
of the primary phase; τphase II, Time constant of the primary phase; TDphase II, Time delay of the primary phase;
Asc, Amplitude of the slow component phase; A’sc, Effective amplitude of the slow component; TDSC, Time
delay of the slow component phase; τsc, Time constant of the slow component phase; EE VO2, oxygen uptake rate
observed at the end of the square-wave transitions; A’SC/EE VO2, Effective amplitude of the slow component
relative to the oxygen consumption rate observed at the end of the square-wave transitions; Sum of residuals,
Discrepancy in a dataset that is not explained by the model. * Significant differences between groups for p < 0.05.

The JT group presented significantly lower τphase II and higher τSC than UT. None of
the other VO2 kinetics parameters were different between groups. Large effect sizes were
observed for τphase II (g = 1.2) and τSC (g = 1.2).

The normalized parameters of the response of [HHb] in the heavy-intensity exercise
transitions for the two groups are presented in Table 3.

Table 3. Observed [HHb] kinetics during the heavy-intensity exercise square-wave transitions.

Variables UT JT p

τ’ [HHb] (s) 36.6 ± 17.1 36.2 ± 10.7 0.587
A [HHb] (A.U.) 18.5 ± 13.8 35.4 ± 15.9 0.049 *

τ’ [HHb], Effective time constant of [HHb] kinetics; A [HHb], Amplitude of response of hemoglobin/myoglobin
deoxygenation. * Significant differences between groups for p < 0.05.

The JT group presented significantly higher A [HHb] than the untrained participants,
whereas τ’ was not significantly different between groups. A large effect size was observed
for A [HHb] (g = 1.1)

3.3. Upper Body RSA Protocol

The Dec-PPO, Dec-MPO and ΣWork of the RSA test obtained for each group are
shown in Table 4.

Table 4. Variables of RSA for the two groups of participants.

Variables UT JT p

Dec-PPO (W) 42.6 ± 8.8 22.1 ± 14.4 0.006 *
Dec-MPO (W) 14.2 ± 12.0 9.4 ± 9.6 0.406

ΣWork (KJ) 163.0 ± 5.5 175.8 ± 4.8 <0.001 *
Dec-PPO, decrease in the peak power output between the first and fourth sprint, Dec-MPO, decrease in mean
power output between the first and fourth sprint; ΣWork, accumulated work in the RSA test. * Significantly
different from UT values for p < 0.05.

There were significant differences between groups in the Dec-PPO, with the JT group
displaying a lower Dec-PPO over the course of the upper body RSA protocol. Significant
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differences were also observed between groups in the ΣWork, with a larger mean value
of ΣWork being observed in the JT group. A large effect size was observed for Dec-PPO
(g= 1.7) and ΣWork (g = 2.5).

3.4. Correlations between RSA and the Physiological Variables Obtained in the Square-Wave
Transitions and Incremental Step Test

Analysis considering the separate groups did not show any correlation between the
performance parameters in the upper body RSA protocol and the parameters determined
in the incremental test or square-wave transitions, neither in the JT group nor in the UT
group. However, considering the heterogeneous group consisting of the whole sample of
participants, significant correlations were found between MAP, peak VO2 and VT1_VO2
and Dec-PPO or ΣWork (Figure 1).
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Figure 1. Relationships (correlations) between maximal aerobic power (MAP), peak oxygen con-
sumption (peak VO2) and oxygen consumption at the first ventilatory threshold (VT1_VO2) achieved
in the incremental test and the decrement in peak power output (Dec-PPO) and accumulated work
(ΣWork) over the course of the upper body repeated sprint (RSA) test, observed in the group of
heterogeneous fitness level (whole sample).
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Additionally, for the UT, a significant correlation was found between Aphase II and
Dec-PPO or ΣWork and between A [HHb] and ΣWork, as highlighted in Figure 2.
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Figure 2. Relationships (correlations) between A of the phase II VO2 kinetics, A [HHb] observed dur-
ing the square-wave transitions and the decrement in peak power output (Dec-PPO) or accumulated
work (ΣWork) over the course of the upper body RSA test, observed in the group of heterogeneous
fitness level (whole sample).

No other significant correlations were observed between any of the performance vari-
ables and the VO2 kinetics and [HHb] kinetics variables, whether when we consider each
group separately or when we analyze the whole sample as a single heterogeneous group.

3.5. Predictive Model for ΣWork over the Course of the RSA Protocol

Considering the whole sample as a single heterogeneous group, a significant regression
equation was found (F (2.12) = 12.737; p < 0.001) with an r2 of 0.68, presented in Table 5,
for which the main predictors were Peak VO2 and Max. A [HHb] 4. The model had a
y-intercept at 132.9 kJ, with the ΣWork increasing 0.8 kJ per each unit of increase in Peak
VO2 and increasing 0.16 kJ per each unit of increase in Max. A [HHb]. These two variables
were found to explain 68% of the ΣWork during the RSA protocol.

Table 5. Predictors of accumulated work over the course of the upper body repeated sprint test for
the whole group of participants.

Accumulated Work over the Course of
the Upper Body RSA Protocol (kJ) R R2 Adj. R2 SEE p

ΣWork (kJ) = 132.9 + 0.8 Peak VO2 + 0.16
Max. A [HHb] 4 0.82 0.68 0.63 5.1 0.001

Peak VO2, the highest 30 s average VO2 attained over the course of the incremental test, Max. A [HHb] 4, the
maximal [HHb] achieved in the fourth repetition of the upper body RSA test. All other variables were excluded
from the model.
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When each group was analyzed separately, no significant regression equation to
predict ΣWork was found.

4. Discussion

To our knowledge, this was the first study to date which analyzed the relationship
between parameters of aerobic fitness and upper body RSA performance, both in a hetero-
geneous sample consisting of trained and untrained participants, and more specifically, in
a group of trained judo athletes. The present study revealed that a shorter τphase II and τ’
[HHb] were not correlated to a lower decrease in PO over the course of an upper body RSA
protocol, nor with a higher ΣWork. However, other variables of aerobic fitness, namely
Peak VO2, MAP, VT1_ VO2, and A of the phase II of VO2 kinetics, were inversely correlated
with the decrease in PO and directly correlated with the ΣWork over the course of the
upper body RSA protocol, in the sample comprising both UT and JT groups. A [HHb]
was also directly correlated with a higher ΣWork over the course of the upper body RSA
protocol, in the sample comprising both UT and JT groups.

It has been proposed that VO2 kinetics influences high-intensity exercise perfor-
mance [46–49]. Several authors proposed that faster VO2 kinetics, as expressed by a
shorter τphase II, are associated with the ability to support a given workload without tap-
ping into O2 deficit-related metabolic processes [7] and that faster VO2 kinetics are related
with faster [PCr] recovery kinetics following exercise [48], two potential aspects that may
determine exercise tolerance during repeated high-intensity exercise.

The results observed in the current study indicate that there is no significant correlation
between pulmonary τphase II and upper body RSA performance, namely between τphase II
and the Dec-PPO, Dec-MPO or ΣWork over the course of the four sprints, either when we
consider the sample of participants as a single heterogeneous group, or when we analyze
the JT separately. These results contradict our main hypothesis, in which we proposed that
a shorter τphase II, would be associated with improved RSA performance variables, namely
a higher ΣWork and smaller Dec-PPO and Dec-MPO.

Dupont and associates [21] have previously reported a significant direct correlation
between τphase II and relative decrease in speed and total work performed over the course
of an RSA protocol in a group of soccer players. Rampini and associates [49] also found
a direct and significant (r = 0.62; p < 0.05) association between τphase II and the relative
decrease in sprint speed over the course of six 40 m (20 m run-and-back) shuttle sprints
separated by 20 s of passive recovery.

However, in line with our results, Buchheit [50] found no correlations between RSA
performance and τphase II, reporting that stepwise multiple regression analysis showed
that mean repeated-sprint time, best sprint time and maximal aerobic speed were the only
significant predictors of RSA performance. Accordingly, Christensen and associates [51]
also found that τphase II was not associated with better RSA performance in a group of
soccer players, although the changes in τphase II after a speed-endurance training program
were associated with changes in RSA performance.

The studies mentioned above [21,50,51] involved running activities, utilizing a dif-
ferent set of muscle groups, in a different set of participants, exposed to very different
training regimens compared to the individuals involved in the present study. However,
they allow us to make some assertions regarding the observed results. The protocol used in
the study by Dupont and associates [21] involved significantly more volume, and involved
active recovery periods between sprints (15 × 40 m sprints, interceded with 25 s of active
recovery), which may have biased the contribution of the aerobic energy system to the
total work performed, and therefore the degree of association between RSA performance
and τphase II, while Buchheit [50] using a set of lower volume RSA protocols (10 × 30 m;
6 × 2 × 15 m; 6 × 16 m; 6 × 16 m; 20 × 15 m; 6 × 25 m) did not find such correlations. It
is possible that an association may only be found between τphase II and RSA performance
involving a high volume of RSA activity, given the increased contribution of the aerobic
system as the number of sprints increases [6]. It is possible that an association between
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τphase II and RSA performance would be found if a protocol involving a higher volume of
sprints had been used. Moreover, the possibility that upper body VO2 kinetics variables
may play a more important role in judo contests that drag over a longer period of time
should also be considered.

The results of the present study indicate that there is an inverse correlation between
the MAP attained in the incremental step test and the Dec-PPO for the whole group of
participants. Given that MAP is associated with training status [52], these results reveal that
participants who are “aerobically” trained to a greater extent display an increased ability to
resist decreases in PO over the course of repeated high-intensity exercise. Interestingly, this
association was not observed for the JT group. It may be that the MAP of the individuals of
the JT group was too similar (low range or spread of values) for any significant correlation
to be established. It seems that there is a certain fitness threshold for which this association
is valid, and that above this fitness threshold, other variables are more important in
determining upper body RSA performance.

An inverse correlation was also found between the peak VO2 and the Dec-PPO and a
direct correlation between peak VO2 and ΣWork. Similar findings have been reported by
other authors [4,6]. The importance of peak VO2 to RSA performance seems to be two-fold:
(1) Across multiple sprints, aerobic ATP provision progressively increases such that aerobic
metabolism may contribute as much as 40% of the total energy supply during the final
repetitions of an RSA protocol [53]; (2) Enhanced oxygen delivery to muscles post-exercise
potentially accelerates the rate of PCr resynthesis, an oxygen-dependent process [53,54],
facilitating a faster recovery from high-intensity exercise.

Bishop and associates [55] observed a significant negative correlation (r = −0.50;
p < 0.05) between VO2max and % decrease in work over the course of 5 x 6 s sprints in
a group of female basketball athletes. The authors proposed that athletes with greater
VO2max would be able to achieve a higher VO2 rate throughout each sprint, reducing the
contribution of substrate-level phosphorylation to ATP resynthesis, and therefore allowing
more work to be done over the course of the RSA protocol [56]. Aguiar and associates [57]
also reported a significant negative correlation (r =−0.58, p < 0.05) between VO2max and the
decrease in performance over the course of an RSA protocol (10× 35 m sprints, 20 s recovery
between sprints) in a heterogeneous group composed of endurance runners, sprinters and
healthy individuals. Collectively, these results seem to emphasize the relationship between
VO2max and the ability to maintain a high power output over the course of several RSA
efforts. This observed association between VO2max and the decrease in work capacity over
the course of an RSA task may also be associated with a higher cardiac output (Q) and
subsequent increase in muscle blood flow, which may aid post-exercise recovery [58].

Furthermore, since a positive correlation was found between A [HHb] and ΣWork,
it seems that repeated sprint performance is enhanced in individuals with higher oxygen
extraction during heavy intensity exercise. The NIRS-derived [HHb] signal has been
considered to reflect the ratio between muscle O2 delivery and demand, and therefore has
been considered an index of muscle O2 extraction [27,59]. A higher A [HHb] has been
associated with a greater muscle oxygen extraction following the onset of exercise [60,61]
and has been shown to increase following training [62]. This indicates that a greater oxygen
extraction at the onset of exercise and in repeated sprints may have an important role
in the ability to maintain a constant performance over the course of several upper body
high-intensity efforts.

Moreover, peak VO2 and maximal [HHb] achieved in the fourth sprint were found
to be significant predictors of ΣWork over the course of the four sprints, which seems to
indicate that these aerobic fitness variables contribute to performance in repeated sprints.
Specifically, both central and peripheral determinants of oxygen uptake contribute to
performance during high intensity efforts where the anaerobic component is predominant.
These associations were not observed when we consider the JT group separately, probably
due to the more homogeneous response in these parameters in this restricted sample. In
light of the observed results, it seems that aerobic fitness variables are associated with and
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increased upper body RSA performance in a group of individuals of heterogenous fitness.
However, it is possible that once a certain level of upper body aerobic fitness is attained,
other physiological and fitness variables may play a more important role in determining
upper body RSA performance.

Complementary to this, the present study seems to indicate that there are significant
differences between JT and UT participants in regard to upper body VO2 kinetics parame-
ters. No previous study has reported upper body VO2 kinetics parameters in a group of JT.
The τphase II values observed in this group of athletes are similar to those found by Koppo
and associates [20] in a group of physically active males (τphase II = 48 ± 12 s). The values of
VO2 kinetics parameters for the group of UT participants observed in this study are similar
to those reported by Schneider and associates [35] in a group of untrained participants
(τphase II = 66 ± 3 s). Both mentioned studies analyzed the VO2 kinetics response across
the same exercise intensity range that was used in the present study. By comparison, the
τphase II values observed by Invernizzi and associates [18] in a group of specifically upper
body trained participants (elite competitive swimmers; τphase II = 34.3 ± 8.5 s), determined
in an arm crank ergometer test, were much shorter than those which were observed in the
JT group.

It is possible that judo-specific training may have induced sufficient training adap-
tations that resulted in a faster VO2 kinetics response to exercise relative to untrained
participants. However, given that judo-specific drills involve a different skeletal muscle
function regimen, where isometric muscular actions of the upper body are emphasized,
and muscle actions are performed in an intermittent way, the physiological adaptations
that occur may involve very different mechanisms than those which are associated with
the performance of high-volume, continuous exercise training of moderate–heavy exer-
cise intensity, typical of swimming. This may also explain the similar results observed
in the upper body VO2 kinetics in the JT group compared to a group of physically active
males [20].

Several studies have observed that different training programs, performed at differ-
ent training intensities have the potential to induce adaptations compatible with shorter
τphase II of VO2 kinetics. Studies have observed improvements in VO2 kinetics with train-
ing protocols ranging from low-intensity work at 60% VO2 max. [62] to sprint-interval
training performed at supramaximal intensities [60]. Nevertheless, these observations have
been reported for studies involving dynamic, running or cycling exercise, which involve
a different set of muscle groups and muscle action regimen compared to judo-specific
training. As it has already been noted, judo-specific modalities seem to rely more on
upper body musculature [2]. Given that upper body exercise has been associated with
different hemodynamic [63] and metabolic responses [64], physiological adaptations may
vary considerably compared to other forms of exercise.

McNeil and associates [65] have observed that performing isometric dorsiflexions
at 100% of the maximal voluntary contraction (MVC) resulted in significant decreases in
NIRS-derived tissue oxygenation compared to performing isometric dorsiflexions at 30%
of MVC. Even though these authors reported no significant changes in tibial artery mean
blood flow during the course of 60 s of sustained contraction, they suggested that the
capillary mean blood flow might have been severely compromised over the course of the
sustained exercise, and that this may have compromised tissue oxygenation dynamics
throughout the 100% MVC exercise periods [66]. Given that, over the course of judo
training and competition drills, athletes are likely to be exposed to similar conditions,
muscle oxygen uptake dynamics might be compromised, and in turn, this may influence
the type of physiological adaptations that take place.

The current study presents some limitations, which may limit the degree to which
we can generalize the observations that were made. The sample size was relatively small,
which affects the statistical meaningfulness of the observed results, as well as the degree
to which we can extrapolate our conclusions. Nonetheless, it satisfies the requirements of
statistical power determined a priori. Moreover, the athletes that participated in the present
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study were mostly national-level athletes, although it included some international-level
athletes, and was therefore quite heterogenous. It is possible that different associations
may have been found if the study had included judo athletes with a higher performance
level, and therefore, further conclusions might be drawn regarding the physiological and
fitness parameters which may be associated with upper body RSA performance in this
group of athletes.

Furthermore, accessing body composition variables (% fat and fat-free mass), and
other physical fitness variables (maximal upper body strength, anaerobic power) could
have provided further insight regarding the determinants of upper body RSA performance
and help explain the differences observed between groups. Although we designed the RSA
test according to the observations reported by Soriano and associates [42], where the sum
of time to kumi kata (8.4 s), kumi kata (6.1 s) and throwing time (1.3 s) corresponded to
approximately 15 s, the duration chosen for the working periods, we recognize that the
number of sprints may have been insufficient to match the number of sequences of attacks
observed in more prolonged judo matches. It should also be noted that these tests were
undertaken in an arm-crank ergometer, which is a general form of upper body dynamic
exercise, and therefore the observed performance achieved by each individual in this task
bears little resemblance to what actually happens over the course of a judo match. However,
given that judo, as a grappling sport, relies heavily on the upper body musculature, a greater
ability to preserve the work capacity of these muscle groups throughout a match seems
to be a relevant aspect for potentially achieving a greater performance in the context of
a judo match.

No studies to date had attempted to study the fitness variables underlying upper
body RSA performance, particularly involving judo athletes. Therefore, the present study
provides valuable information for further research regarding the variables that determine
upper body RSA performance, particularly in this group of athletes, which may shed light
regarding the factors that contribute to maintaining a high activity/attack profile over the
course of a match.

Future research should consider using different repeated-sprint protocols with more
repetitions and possibly a different work:rest period in order to reveal which factors may
be associated with improved repeated-sprint ability under different match conditions.
Moreover, future studies should include a larger sample of individuals, whether in a
group of judokas of heterogenous fitness level/competitive status or in specific groups
(international/elite vs. national level athletes), in order to better understand the factors
that may determine RSA performance capacity in different groups. Future studies should
also seek to include female individuals, in order to understand if different fitness variables
influence upper body RSA performance for both sexes.

Practical Applications for Coaches

In lower-level athletes, developing a higher upper body aerobic fitness through higher
volume general or specific exercises/drills would benefit their ability to maintain a higher
performance over the course of the several high-intensity sequences of activity that take
place during a match. However, for higher level athletes who already have reasonable
upper body aerobic fitness, it may be more pertinent to devote time to developing other
fitness variables in order to improve the ability to sustain a higher performance over the
course of a judo match. The variables that ought to be developed in order to improve upper
body RSA ability in higher-level judo athletes warrant further investigations.

5. Conclusions

The main conclusions of the present study are the following: (1) There seems to be
no significant correlation between τphase II or τ’ [HHb] and upper body RSA performance
in a group of judokas or in a group of subjects with a heterogeneous fitness level; (2) No
significant correlations seem to exist between peak VO2, MAP or VT1_VO2 and upper body
RSA variables in a group of trained judokas; (3) Judokas displayed significantly faster VO2
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kinetics and higher muscle oxygen extraction in heavy-intensity exercise than untrained
participants and; (4) There seems to be a positive association between MAP, peak VO2,
VT1_VO2, Aphase II and A [HHb] and ΣWork over the course of an upper body RSA task in
a group of participants of heterogeneous fitness level. Therefore, aerobic fitness variables
seem to play an important role in upper body RSA performance in individuals with a
heterogenous fitness level.
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Abstract: The purpose of this study was to verify if a conditioning activity was effective to elicit
postactivation performance enhancement (PAPE) and to increase the performance in vertical jump
(VJ) in elite female volleyball players. Eleven national Superliga-2 volleyball players (22.6 ± 3.5 years)
were randomly assigned to an experimental and control group. Countermovement jumps (CMJ)
were performed on eight occasions: before (Pre-PAPE) and after activation (Post-PAPE), after the
match (Pre-Match), and after each of the five-match sets (Set 1 to 5). ANOVA showed significantly
increased jump performance for the experiment between baseline (Pre-PAPE) and all the following
tests: +1.3 cm (Post-PAPE), +3.0 cm (Pre-Match), +4.8 cm (Set 1), +7.3 cm (Set 2), +5.1 cm (Set 3),
+3.6 cm (Set 4), and +4.0 cm (Set 5), all showing medium to large effect size (0.7 < ES < 2.4). The
performance of the control group did not show significant increases until Set 3 (+3.2 cm) and Set 5
(+2.9 cm), although jump heights were always lower for the control group than the experimental. The
use of conditioning activity generates increased VJ performance in Post-PAPE tests and elicited larger
PAPE effects that remain until the second set of a volleyball match.

Keywords: back squat; countermovement jump; sports performance; PAP; RM; training

1. Introduction

Vertical jump (VJ) is a good prognosticator of performance in numerous sports that
involve explosive actions, including volleyball [1]. The jump height reached by players can
be considered a key factor in volleyball. An improvement in height in VJ allows obtaining
enhancements in technical actions such as sets, hits, services, or blocks [2] which are
decisive to achieve success in a volleyball game [3]. Service, attack, and block effectiveness
are the skills more correlated with winning games in volleyball [4–6].

In addition, jumping capacity is correlated to muscular strength [7] since greater
muscular strength can lead to modifications in force–time profile resulting in better VJ
performance. Numerous strength training methods have been used to improve VJ per-
formance in volleyball, being most of them strength-based methods such as plyometrics,
combined training methods as contrast and complex training [8], or routines based on
weightlifting and powerlifting [9].

While these VJ improvement methods are long-term effect procedures, other practices
are aiming at achieving acute effects on performance, on certain occasions during the
competition, (e.g., warm-up). One of these short-term methods to enhance VJ performance
is the Postactivation Performance Enhancement (PAPE) [10–12]. This concept has recently
been proposed to be used when high-intensity voluntary conditioning contractions lead
to enhancement in voluntary muscular performance, and therefore activation is produced
in different ways as with postactivation potentiation (PAP) [10,11]. Although PAP and
PAPE are related, they can be considered as a different phenomenon, since the mechanisms
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that produce PAP are different from those for PAPE. PAP implies an enhancement in the
effectiveness of contraction due to a better pairing of actin and myosin, and is generated
by electrostimulation. On the other hand, PAPE is related to phenomena such as muscle
temperature, the proportion of water in the muscle fibers, and the number of activated
motor units among other causes [12]. Therefore, their effects may appear at different times
and intensities [13]. The presence of PAP does not have to imply that PAPE is generated [14],
even so, PAPE could be evoked by PAP, or occur simultaneously [12], and there have also
been cases where PAPE is produced without PAP, which confirms that the mechanisms that
generate these phenomena are different [13].

From an ecological point of view, it seems more precise to use PAPE than PAP to
refer to the performance improvement in volleyball, since the dependent variables used to
verify its existence are directly related to performance, such as force, speed, or jump [12].
Furthermore, its possible effects last longer and are more applicable to real volleyball
match conditions, where, due to the game’s rules [15], it is not possible to generate 8-min
strength-related pre-activity before the start of the match, but activations before starting
the warm-up that could elicit greater PAPE during the match are plausible. On the other
hand, the effects of PAP can also increase sports performance, and in volleyball, this could
be achieved by including PAP in resistance workouts that allow obtaining improvements
in strength through complex training [16,17].

Since the magnitude of PAPE depends on the levels of fatigue and potentiation [18],
the magnitude of the activation will depend on this relation, and therefore, the performance
will be increased if the effect of the potentiation is larger than fatigue [19]. This relationship
is influenced by other individual factors such as individual physiological characteristics
of the subject, experience, age, type of muscular fibers’ distribution (i.e., fast-twitch vs.
slow-twitch fibers), maximum strength, strength to power ratio, level of training, among
others [20].

The design of the activation protocols will greatly affect the result of the enhance-
ment achieved. A resting period between activation and potentiation elicits better per-
formance [21,22]. Similarly, other determining factors of PAPE are the intensity, volume,
and protocols of the activation loads and the intensity of jumps or displacements after the
potentiation [23].

It has also been suggested that the best increases in VJ are obtained with strength
exercises such as the squat, with protocols of 1 to 3 sets of 1 to 5 repetitions and loads greater
than 80% of 1RM, obtaining the best results in between 1 to 9 min after activation [24,25].
In the review carried out on vertical jump improvement, Suchomel et al. (2016) arrive at
similar conclusions adding the cumulative fatigue of the athlete as individual factors to
those already mentioned.

All of these studies have used both trained and untrained subjects as a sample [26]. In
this meta-analysis, it was observed that the greatest effects of PAPE occur between 3 and
7 min in trained subjects, obtaining better results than studies for less than 3 min. Also,
for studies carried out between 3 and 12 min or more, always for loads greater than 80%
of 1RM and in trained subjects, the same authors noted that the longer times included in
other meta-analysis are suitable for untrained subjects with smaller loads, where the effect
of fatigue is greater.

However, contradictory results were found in the reviewed literature: the improve-
ments in VJ found by Dobbs et al. (2018) were not statistically significant. In addition,
some authors did not find effects on jumping performance after a PAP protocol [14,26–30].
Furthermore, the persistence of PAP is significant only for a limited period of time from
28 s to less than 3 min [31], obtaining the performance peak improvement (PAPE) at
6–20 min [25,32].

After reviewing the studies of PAPE protocols applied to volleyball players, it was
found that the samples in all the studies are mostly composed of university or college
players [22,33–36], with most of them being male players. The physiological difference
between sexes [37] may elicit different responses to PAPE. In general, male players have
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greater type II fibers cross-sectional area and shorter twitch contraction times, whereas
female players show more fatigue resistance [38]. Therefore, the outcomes of PAPE may
be different depending on gender [38]. Thus, there is a lack of studies on female athletes,
particularly in elite female players [39]. Furthermore, none of the studies in the literature
has been conducted in real game conditions with volleyball players.

Therefore, the purpose of this study was to observe the effects of PAPE throughout a
match in professional female volleyball players. The initial hypothesis was that squat-based
pre-activation can trigger PAPE which is displayed as an improvement of VJ height 8 min
after the application of the activation and that PAPE lasts for several minutes in a volleyball
match of female national Spanish Superliga 2 players.

2. Materials and Methods
2.1. Subjects

Twelve Superliga 2 players of University of Alicante volleyball team volunteered to
participate in this study (Table 1). Informed consent was obtained from all subjects involved
in the study, who read and signed the document before any action in the study was taken.
The study was conducted according to the guidelines of the Declaration of Helsinki [40],
and approved by the Ethics Committee of University of Alicante (UA-17 November 2018).

Table 1. Characteristics of the subjects aggregated by group (mean ± SD).

Experimental (n = 6) Control (n = 5) Total

Age (years) 21.33 ± 3.0 23.2 ± 3.8 22.2 ± 3.3
Height (cm) 171.3 ± 7.0 172.4 ± 8.7 171.8 ± 7.8

Body mass (kg) 64.0 ± 5.3 63.0 ± 3.8 63.5 ± 4.5
BMI (kg/m2) 21.8 ± 5.3 21.3 ± 2.0 21.6 ± 1.6

Volleyball Experience (years) 8.8 ± 2.7 11.0 ± 2.6 9.8 ± 2.7
Strength Experience (years) 3.2 ± 1.8 3.2 ± 2.0 3.2 ± 1.9

BMI: body mass index, n: number of subjects, Volleyball experience: years the subjects have been playing
volleyball; strength experience: time that subjects have been doing specific workouts.

The inclusion criteria were to have 4 years of experience minimum in the practice
of volleyball in a national competition and to have previous knowledge in both strength
training and half-squat exercise. The exclusion criteria were not to participate in all the
tests involved in the study or to suffer injury or illness that prevents the performance of
the tests. A control group participant suffered an injury during the experimental process,
therefore, she was excluded from the experimental procedure and subsequent analysis.

2.2. Instruments

For the determination of the force–velocity profile and the vertical jump height, a linear
encoder was used (Chronojump-Boscosystem, Barcelona, Spain). To estimate the vertical
jump height, a jump mat was used (Chronojump-Boscosystem, Barcelona, Spain), from
which to measure the flight time and, thus, estimate the jump height [41]. Both instruments
worked at 1000 Hz.

2.3. Procedure

The experimental design shown in Figure 1 consisted of three phases: individualiza-
tion, activation, and match, which are described in more detail as follows.
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PAPE: Post-activation performance enhancement FIVB: Fedération Internationalle de Volleyball.

2.3.1. Estimation of 1RM in the Half-Squat Exercise

In order to determine the load corresponding to the 1RM percentage in the half-squat
exercise for the PAP protocol, the relationship between force and velocity was analyzed,
since the speed of execution and the percentage of 1RM are proportional to each other [41].
An incremental loading test was carried out, in which the initial load was established at
30 kg and was gradually increased in 10 kg steps until mean barbell velocity was below
0.50 m/s (i.e., around 80% of 1RM). Afterward, the load was increased from 5 kg and at the
end of the test, with speeds close to 0.30 m/s, increments of 1 kg were made to reach 1RM
in the most precise way [42,43]. The value of 1RM was considered the load interpolated
in the force–velocity profile with the average acceleration velocity value for the half-squat
exercise of 0.30 m/s [44]. The players were refrained from performing physical activity
48 h previous to the test to ensure the absence of fatigue.

2.3.2. Vertical Jump

To determine the possible effect of the activation on PAPE in the lower train, counter-
movement jump (CMJ) heights were measured using a jump mat [45]. CMJ was performed
starting from the standing position, with their feet in the center of the jump mat and hands
positioned at the hips in akimbo position. After an auditory signal, subjects performed a
knee flexion before jumping vertically to maximum height and were instructed to land in
the center of the jump mat. A video camera monitoring players in sagittal plane was used
to control that knee flexion reached the right joint angle. Three attempts were carried out
with a 60-s resting time [44] and the highest value was considered for data analysis [45].

2.3.3. Activation Protocol

Considering that the sample were players with four years of minimum experience
in volleyball training, they can be considered as trained subjects, so the guidelines set by
Dobbs et al. (2018) in their meta-analysis were observed, as well as the corresponding
3-repetition activation protocol at 90% intensity of 1RM [35,46] with a resting time of 8 min.
Such a protocol follows the margins indicated by these authors [26] and also the rest of the
studies consulted [23,24,32,34,45].

Prior to activation, a standardized warm-up was performed for both groups, con-
trol and experimental, consisting of 4 min of soft running followed by 4 min of dynamic
stretching; then 2 min of speed and changes of rhythm and direction inside the play-
ground, and 5 consecutive CMJ jumps to finish [23]. After the warm-up, 2-min rest
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period was performed, followed by an initial evaluation of jump height before activation
(Pre-PAPE test).

The experimental group performed the activation protocol, consisting of an approach-
ing phase (12 repetitions with 20 kg, 3-min rest, 5 repetitions at 50% of 1RM, 3-min rest),
followed by a conditioning phase (3 repetitions at 90% of 1RM). The control group exe-
cuted the same approaching phase as the experimental group, but when the experimental
group performed the conditioning phase control group executed a maintenance workout,
consisting of smooth running interspersed with slight changes of direction and 3 vertical
jumps. After 8 min, CMJ was measured (Post-PAPE test) to both groups with an identical
methodology to that of the Pre-PAP data collection.

2.3.4. PAPE Monitoring during a Volleyball Match

After warm-up was finished, both groups performed a CMJ test before starting the
match (Pre-match) and also just at the end of every set of the match (Set 1 to Set 5). This
procedure allows describing the evolution in the height reached for volleyball players in a
match, as well as to check whether the experimental group shows enhancement derived
from PAPE and how much this condition lasts.

2.4. Statistical Analysis

Descriptive data are presented as mean and standard deviation. Due to the small
sample size, the Shapiro–Wilk normality test was used, which resulted in a normal distri-
bution. The differences in jump height between Pre-PAPE, Post-PAPE, Pre-match, Set 1,
Set 2, Set 3, Set 4, and Set 5, in regards to experimental and control groups were evalu-
ated using a repeated-measures ANOVA, including the different tests in time points as an
intragroup variable and group as a between-subjects factor. Variance homogeneity and
homogeneity of the error variances were verified via the Mauchly’s test (p = 0.304) and the
Levene’s Test of Equality of Error (p range between 0.192 and 0.892 for all comparisons).
In addition, a t-test for independent samples was conducted to compare differences on
improvement percentage between experimental and control groups. The level of signifi-
cance was set at p < 0.05. The d index was analyzed to determine the magnitude of an effect
independent of sample size [47] and to classify the effect size, the criteria of Rhea for elite
trained athletes were applied (d < 0.25 trivial; 0.25 ≤ d > 0.50 low; 0.50 ≤ d > 1.0 moderate;
d ≥ 1.0 Large) [48]. In this quasi-experimental study, the sample is composed of volley-
ball elite players competing at a national level. Power analysis conducted with G*Power
(v3.1.9.7, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany) indicated a mini-
mum sample size of n = 11 subjects in order to detect an effect size of Cohen’s d = 1.6 with
80% power (α = 0.05, two-tailed) [49].

3. Results

Table 2 shows the compared results between control and experimental groups for
CMJ. There were no significant differences between groups in Pre-PAPE tests in the height
reached for both groups (p-value > 0.05), indicating that before the intervention the groups
were homogeneous. Furthermore, significant intergroup differences and large ES can be
observed in CMJ in Post-PAPE, Pre-Match, Set 1, Set 2, and Set 5 always being greater for
the experimental group, therefore, the behavior is different for the groups until Set 2 and
return to be different in Set 5 but with a reduced ES, Set 3 and Set 4 did not show significant
differences. As well, there was a significant difference in the improvement percentage (∆%)
between the control and experimental groups from Post-PAPE until Set 2 test, but in the
tests Set 3, Set 4, and Set 5 no differences were found (p-value < 0.05).
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Table 2. Vertical jump height performance (mean ± SD).

CMJ Experimental (cm)
n = 6

CMJ Control (cm)
n = 5 p ES (d)

Pre-PAPE 34.08 ± 3.98 31.35 ± 4.28 0.302 0.66 [Moderate]
Post-PAPE 35.40 ± 3.69 * 29.61 ± 4.10 0.036 1.49 [Large]
Pre-Match 37.10 ± 4.09 *# 31.38 ± 3.99 0.045 1.41 [Large]

Set 1 38.84 ± 4.74 *# 31.22 ±2.61 0.011 1.94 [Large]
Set 2 41.37 ± 4.91 *# 32.75 ±4.47 0.015 1.83 [Large]
Set 3 39.15 ± 4.19 # 34.60 ± 4.43 # 0.115 1.05 [Large]
Set 4 37.66 ± 3.98 # 32.76 ± 2.44 0.073 1.23 [Large]
Set 5 38.11 ± 5.40 *# 34.32 ± 3.26 # 0.205 0.83 [Moderate]

* Significant difference between control and experimental groups at the same time point (p < 0.05); # Intragroup
significant difference between Pre-PAPE and the other post-intervention tests.

As it can be observed in Table 3 the ES for the comparison between the pre-intervention
and all post-intervention tests always are larger in the experimental group than in control,
except in the Pre-PAPE test where both groups have moderate effect sizes, being slightly
higher in the control group. However, in the control group, these values are negative,
which occurred in a decrease in vertical jump performance.

Table 3. Effect size of intragroup differences in CMJ for Pre-PAPE and Pre-Match vs. the rest of the
tests for control and experimental groups.

Experimental Control

p ES (d) p ES (d)

Pre-PAPE vs. Post-PAPE 0.147 0.70 [Moderate] 0.127 0.87 [Moderate]
Pre-PAPE vs. Pre-Match 0.005 1.94 [Large] # 0.922 0.04 [Trivial]

Pre-PAPE vs. Set 1 0.002 2.31 [Large] # 0.903 0.05 [Trivial]
Pre-PAPE vs. Set 2 0.004 2.08 [Large] # 0.069 1.10 [Large]
Pre-PAPE vs. Set 3 0.002 2.40 [Large] # 0.009 2.14 [Large] #
Pre-PAPE vs. Set 4 0.012 1.60 [Large] # 0.313 0.51 [Moderate]
Pre-PAPE vs. Set 5 0.013 1.53 [Large] # 0.046 1.28 [Large] #

Pre-Match vs. Set 1 0.106 0.62 [Moderate] 0.834 0.09 [Trivial]
Pre-Match vs. Set 2 0.022 1.50 [Large] # 0.050 0.74 [Moderate]
Pre-Match vs. Set 3 0.057 0.79 [Moderate] 0.003 1.76 [Large] #
Pre-Match vs. Set 4 0.508 0.01 [Trivial] 0.268 0.76 [Moderate]
Pre-Match vs. Set 5 0.503 0.36 [Low] 0.015 1.61 [Large] #

# Intragroup Significant difference between Pre-PAPE and Pre -Match with the rest of post-intervention tests.

In Table 3, intragroup differences in CMJ can be appreciated for experimental and
control groups. The control group presents lower values for CMJ in the Post-PAPE, Pre-
Match, and Sets one to five tests, whereas the experimental group increases the jump
height in comparison with Pre-PAPE (baseline) values in all tests. On the other hand,
another baseline at the beginning of the match (Pre-Match) allows for the analysis of jump
performance in the five sets of the match, which showed different behaviors between both
groups. The experimental group showed significant differences with the second set, while
the control group did in the third and fifth sets.

Therefore, the improvement percentage values are lower in the control group than
the experimental group as observed in Figure 2. There are significant differences between
groups until Set 2. Also, it could be an increase in the values of improvement percentage
in the experimental group up to Set 2, where there is a drop in performance until the end
of the intervention, Set 5. On the other hand, the control group does not show significant
improvement percentages until Set 3.
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4. Discussion

The aim of this study was to analyze the effects of PAPE for professional female
volleyball players during a match. In general, the results highlighted that squat-based
pre-activation stimulates higher levels of PAPE shown as improvements in VJ height after
activation, these improvements in VJ remained for several minutes during the match. To
our knowledge, this is the first study of this kind with elite volleyball players.

PAP is an electrically evoked mechanism that produces an increase of muscle strength
and twitch forces, as a result of its contractile history [12,47]. According to this, PAP
produces improvements in the rate of force development (RFD) and maximal voluntary
contractions (MVC) for a specified level of neural activation [12]. PAP is induced by
the rise in the phosphorylation of regulatory light chains, which renders actin-myosin
more sensitive to submaximal Ca2+ concentrations [48]. This activation occurs with more
intensity in the fibers with the isoform II, which are involved in high intensity and short
duration actions such as the VJ [19]. Other factors, such as the reduction in the pennation
angle after a maximal voluntary contraction, are also suggested as possible mechanisms
of PAP.

On the other hand, PAPE is associated whit an intensification in force production
induced by previous muscle activity (i.e., voluntary contraction), and its presence is con-
firmed by performance outcomes [10,12]. Mechanisms proposed for PAPE are different
from PAP, nevertheless, there are not well defined yet, but PAPE may be associated whit
more lasted processes such as an increase in muscle temperature [49,50]. Also, the Muscle
flow or/and water content and muscle activation (Partly through motivation) are mech-
anisms proposed for PAPE [12]. Finally, the increase in plasma catecholamines induced
by exercise [51], and intensification in excitability of high order motor units [48,52,53]
are proposed as mechanisms of PAPE, their effects may be observed until 20 min af-
ter Pre-activation at least. However, more investigation is needed in order to confirm
those effects.

Most studies showed that PAPE protocol increased the performance in VJ in volleyball
players [35,52–55]. Similar results can be found in our study with elite players as the
experimental group showed improvements in VJ performance, while the control group has
an opposite trend. Nevertheless, these differences between Pre-PAP and Post-PAPE tests
are not statistically significant (p > 0.05). These results are in concordance with the study
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by [26,36] in which improvements in VJ were found, although not statistically significant.
Due to the difficulty of access to elite athletes, the low sample size in our study may limit the
statistical power to show differences between measures taken before and after activation.
However, a moderate effect size of the VJ performance was observed, confirming the jump
improvement tendency observed.

Volleyball players usually perform a typical explosive strength workout [56]. Those
workouts include intensity loads ranging from 40 to 70% of 1RM, which are far from 90%
of 1RM, and therefore, the classification as trained subjects [26,57] must be questioned.
intensity loads of 90% of 1RM could produce an excess of fatigue in volleyball players and,
as a result, the subjects could become non-responders, according to the criteria of [21,58].
Under these circumstances, the load may not fully adjust to the characteristics of the group,
and therefore the response obtained is a smaller quantity than expected. Therefore, it
is necessary to individualize the PAPE very carefully in order to adjust the activation
intensity and volume loads to the individual characteristics of female volleyball players.
Previous studies comparing routines based on peak strength and hypertrophy find that
explosive-based workouts generate less fatigue [59].

On the other hand, if the improvement percentage values of both groups are compared,
as shown in Figure 2, there are significant differences between control and experimental
groups in the improvement reached in the post-PAPE tests. Positive improvement per-
centage values were observed for the experimental group (4.12%) while the control group
showed an opposite trend (−5.37%). In addition, these statistically significant results are
consistent with their moderate effect sizes, as depicted in Table 3, showing practical sig-
nificance for the improvement percentage and the jump height reached in the CMJ in the
Post-test. Hence, our study suggests that a conditioning activity would generate a positive
effect on VJ performance, i.e., PAPE, as a result of an increase in muscle strength obtained
8 min after activation protocol [29,31,47,52,56,59].

The jumps distribution profile during the match was clearly different for control and
experimental groups, which suggests that the effect of the activation could be one of the
causes of this difference. After the peak of PAPE had occurred in the Post-PAPE test for the
experimental group, the CMJ heights still progress, as shown in Table 2, peaking at Set 2
and reaching the end of the match with values similar to those at the start. These results
agree with studies in which CMJ is used to evaluate fatigue after using loads and intensities
higher than those used in our study (3 sets of 3 repetitions, 90% 1 RM) [59], in the analyzed
study a decrease of 6% is observed immediately after the load, but an increase of 2% is
observed in the CMJ 24 h after workout. Significant differences and large effect sizes were
observed for all test occasions compared to the Pre-PAP test. However, the control group
showed a different trend: all VJ heights were lower than the experimental, only Set 3 and
Set 5 showed significant differences in regards to the Pre-PAPE test, and peaking at Set 3,
later than experimental. This trend can also be analyzed through improvement percentage,
shown in Figure 2. The experimental group achieved larger values and, again, showed a
peak in Set 2, followed by a decrease in improvement percentage. The control group did
not show improvement until Set 3.

The difference between groups could be explained by the presence of PAPE in the ex-
perimental group, which effect would extend beyond the time window of 7–12 min [25,26],
increasing the jump performance, and also making the athlete more sensitive to future
stimulus. Therefore, if PAP is combined with more explosive actions in warm-up routines,
a summative effect may occur and therefore a performance improvement. As a result, the
effect of PAPE combined with a standard volleyball warm-up, in which numerous jumps
are executed [60], may be effective for elicited VJ enhancements.

The effects of PAPE last longer than those of PAP [12], but as in PAP, these effects will
depend on the relationship with accumulated fatigue [11]. For the experimental group,
the effects of PAPE could be largest than fatigue until Set 2 and consequently, a better
improvement in jump performance than in the control group is observed The possible
effects of PAPE were evaluated from activation at times ranging from 2 to 20 min maximum
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in other protocols [30,36]. In our study, CMJ tests were taken in longer time spans: after
activation (8 min), at the beginning of the match (23 min), and in Sets 1 to 5 (46, 68, 95,
120, and 123 min, respectively). The experimental group peaked at Set 2 that occurred at
45 min from the beginning of the match and 68 min from activation, while the control group
peaked at 90 min after activation. From Set 3 onwards, both groups appear to have similar
conditions, and the values for improvement percentage are similar. The possible effect of
accumulated fatigue, in addition to the dissipation of activation, causes the behavior of
both groups to be more similar, which could be understood as the effect of PAPE is no
longer present in the experimental group from Set 3 to the end of the match (i.e., from 90
to 130 min). Performance improvements are probably not mostly due to PAPE, but it is
intuited that PAPE helps to generate a summation effect that produces an increase in the
performance in VJ of volleyball players.

However, attributing the improvement percentage exclusively to the effect of PAPE
generated by an initial conditioning activity and warm-up would not be entirely correct.
Numerous physical and cognitive factors can affect the final performance, which is very
difficult to control in a real game situation. For these reasons, the individualization of
stimuli is very important. Despite this, the two groups in this study were in similar
situations and only the group that performed a previous potentiation obtained a better
improvement percentage in all sets with a greater effect size magnitude, and therefore,
sports performance will be greater in this group.

The main limitation of this study is the sample size due to limited access to elite players
in match conditions. The restricted statistical power because of the sample size in this study
may have influenced the significance of some of the statistical comparisons conducted. A
post hoc power analysis revealed that, for the lowest effect size of interest observed in the
present study (d = 0.7), the number of players would have been approximately 25 for each
group to obtain statistical power at the recommended 80% level. The results of this study
serve as a basis that can be generalized to larger populations. Thus, more investigation
with larger samples is needed to determine the effects of PAPE in volleyball female players
and related sports.

5. Conclusions

The use of conditioning activity consisting of three repetitions of 90% of 1RM in the
back half-squat exercise generates differences in the increase in CMJ heights between control
and experimental group in Post-PAPE tests and elicited larger PAPE effects that remain until
the second set of a volleyball match. The results of this study suggest that, if the activation
is fitted individually on the correct form, and combined with an optimal warm-up, PAPE
may be used to improve vertical jump performance, a key feature in volleyball and other
related sports. Therefore, the inclusion of such protocols in volleyball warm-ups should
be considered by coaches and physical trainers of volleyball teams. However, further
investigation should be carried out, following different warm-up strategies with a wider
sample in order to generalize the results achieved in the present study.
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Abstract: Microcurrent electrical neuromuscular stimulation (MENS) is believed to alter blood
flow, increasing cutaneous blood perfusion, with vasodilation and hyperemia. According to these
physiological mechanisms, we investigated the short-term effects of MENS on constant-load exercise
and the subsequent recovery process. Ten healthy subjects performed, on separate days, constant-load
cycling, which was preceded and followed by active or inactive stimulation to the right quadricep.
Blood lactate, pulmonary oxygen, and muscle deoxyhemoglobin on-transition kinetics were recorded.
Hemodynamic parameters, heart rate variability, and baroreflex sensitivity were collected and used as
a tool to investigate the recovery process. Microcurrent stimulation caused a faster deoxyhemoglobin
(4.43 ± 0.5 vs. 5.80 ± 0.5 s) and a slower VO2 (25.19 ± 2.1 vs. 21.94 ± 1.3 s) on-kinetics during
cycling, with higher lactate levels immediately after treatments executed before exercise (1.55 ± 0.1 vs.
1.40 ± 0.1 mmol/L) and after exercise (2.15 ± 0.1 vs. 1.79 ± 0.1 mmol/L). In conclusion, MENS
applied before exercise produced an increase in oxygen extraction at muscle microvasculature. In
contrast, MENS applied after exercise improved recovery, with the sympathovagal balance shifted
toward a state of parasympathetic predominance. MENS also caused higher lactate values, which may
be due to the magnitude of the muscular stress by both manual treatment and electrical stimulation
than control condition in which the muscle received only a manual treatment.

Keywords: MENS; oxygen consumption; deoxyhemoglobin kinetics; near-infrared spectroscopy;
lactate; cycling

1. Introduction

Microcurrent electrical neuromuscular stimulation (MENS) involves series of stimuli
delivered superficially, in the microampere range, through special transducer gloves that
allow managing microcurrent signals through manipulation techniques. It is a key com-
ponent for many medical and sport applications, and it is largely used for rehabilitation,
training, and recovery purposes [1].

Nowadays, interest in the use of low-intensity current such as MENS is increasing,
as its effects take place at the cell level (protein synthesizing activity; increased ATP
generation), with sub-sensory application (i.e., painless), besides the absence of collateral
effect, low cost, and easy utilization [2]. The utilization of electric field and currents
comparable to different cells results in the stimulation of growth and tissue restoration [3]
and diminution of edema [4]. Electric stimulations ranging from 10 to 1000 µA increase ATP
levels and protein synthesis of rat skin, without having an impact on DNA metabolism [2].
The consequences on ATP production are described by proton actions [5], whereas the
amino acids transport through the cell are facilitated by the alterations of the electrical
gradients across the membranes [2]. Throughout stimulation of damaged muscles, MENS
manages the modified membrane function by various processes, such as the preservation
of intracellular Ca2+ homeostasis and with the augmented production of ATP levels [6].
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Prior studies demonstrated that muscle damage treatment through microcurrent at low
amperage (<500 µA) can decrease the severity of muscle symptoms [7] and a quicker
regrowth of atrophied animals leg muscles [8]. In addition, microcurrents tone up the
smooth muscles of blood vessels, improve skin turgor and tissue temperature, with an
increase in blood flow through area treated [9]. All these characteristics are associated
with vasodilation, then stimulating the metabolism of waste and toxins from the blood,
therefore increasing healing and decreasing pain [2].

Based on these health-related cellular effects, a combination of stimulation plus exer-
cise might improve exercise performance, and it might also be valuable to accelerate the
subsequent recovery, thanks to the increased muscle blood flow that accelerates muscle
metabolites removal [10]. One of the most physiological variables used to evaluate the
recovery process is the heart rate variability (HRV). At the end of exercise, HRV returns
exponentially to control value, and its increment is functionally related to athletes’ training
status and to the exercise intensity previously executed. HRV is the tool used to analyze
the cardiac autonomic responses in combination with the baroreflex sensitivity (BRS),
which is a reflex that adapts the heart period in response to variations in systolic blood
pressure. These parameters have been used to evaluate the different adaptations to exercise
and the recovery times after exercise [11–15]. Regardless of several research and medical
applications, few studies have investigated the MENS effect before or after endurance
exercise [7,16]. To date, only one study has investigated MENS effects in combination
with aerobic exercise in reducing abdominal fat [16]. Authors found that microcurrent
application with a frequency range of 25–50 Hz, combined with aerobic exercise, led to a
significant decrease in subcutaneous abdominal fat thickness through the lipolysis stimula-
tion [16]. Furthermore, the majority of studies performed with MENS reported a significant
reduction of delayed onset muscle soreness after strength exercise [7,17,18]. In elderly
people, Kwon et al. [19] found that MENS, after 40 min of short-term application, has an
effect on muscle function, enhancing handgrip strength and single leg heel-rise.

Considering the influence of MENS on microcirculation, vascularization, and cellular
energy production described above, and that endurance exercise stimulates the microvascu-
lar oxygenation following the onset of contractions [20], it could be interesting to investigate
the effect of MENS stimulation on muscle tissue oxygenation and its influence on pul-
monary oxygen kinetics during cycling. The rapid increase of the pulmonary oxygen
kinetics at the transition between rest and exercise is a determinant of aerobic performance
and an indicator of a well-done state of oxidative energetic system activity [21]. Addi-
tionally, the faster rise in VO2 after the onset of exercise indicates a higher muscle oxygen
utilization, which is a characteristic of elite athletes and trained subjects [22].

Until now, to our knowledge, no studies have investigated the effects of MENS at the
human muscle tissue level, and more precisely, on factors of endurance capacity that are
related to performance, such as faster oxygen kinetics, higher muscle oxygen release, or
reduced blood lactate level at higher aerobic intensity. Thus, it is possible to hypothesize
that the instantaneous and short-term effects of MENS might enhance the individual’s
capabilities on exercise at submaximal intensities and to accelerate the subsequent recovery
process. Therefore, the aim of our study was to evaluate the acute effects of MENS on the
muscle endurance capacity and subsequent recovery in sport. The results could be of great
importance for elucidation of the O2 release to acute, localized MENS exposure and the
development of efficacious performance and recovery modalities.

2. Materials and Methods
2.1. Participants and Inclusion Criteria

Experiments were performed in 10 healthy subjects (2 females, 8 males; mean ± SD:
age 27.2 ± 3.6 years; body mass index (BMI) 23.4 ± 2.5 Kg/m2; VO2peak
49.9 ± 7.9 mL/kg/min). The subjects were recreationally active but not highly trained. All
subjects were volunteers, healthy, non-smokers, and none of them were taking medications
or supplements. None of the subjects reported physical deficit or injuries during the study.
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All participants received a verbal explanation of experimental procedures, and informed
consent was obtained before the beginning of recordings. In agreement with the Declara-
tion of Helsinki, the experimental protocol was approved by our University Institutional
Ethic Committee.

2.2. Study Design and Test Protocol

The study design was a cross-sectional, single-blind, randomized controlled trial. For
the realization of this study, the participants visited our laboratory five times, with at
least three days between each visit, in which we performed different recordings. In the
first visit, the participants performed an incremental test on a cycle-ergometer (H-300-R
Lode), to determine ventilatory threshold (VT), respiratory compensation point (RCP),
and peak oxygen consumption (VO2peak) to identify their individual workload for the
succeeding four recording sessions. Expirated gases were analyzed using a Quark b2

breath-by-breath metabolic system (Cosmed, Rome, Italy). After the incremental session,
the subjects came to our laboratory and performed two repetitions of each conditions of ON
(MENS stimulation) and OFF (sham stimulation). The cycling exercise protocol consisted of
1 min of unloaded exercise followed by 5-min of heavy-intensity exercise. On the following
days, the four recordings were performed in random order, and the participants were never
informed about the status of stimulation, because it was not perceived by the subjects at
the cutaneous level (single-blind).

The incremental test consisted of one minute of unloaded pedaling, followed by a
warm-up of 5 min at 50 W. Then, at a constant cycling frequency of 75 rpm, the power output
started at 80 W and was increased of 20 W/min until volitional exhaustion was reached
or the required pedal rate could not be maintained [23]. Ventilatory and gas exchange
variables were measured continuously breath by breath throughout the test. The highest
VO2 averaged over a 20 s interval was taken as VO2peak. The LT and RCP were estimated
from gas exchange measurements using the V-slope method, ventilatory equivalents, and
end-tidal gas tensions [24]. Briefly, VT was determined from a different measurement,
such as (i) the first unbalanced increase in CO2 production (VCO2) with respect to VO2;
(ii) an increase in expired ventilation (VE/VO2) with no increase in VE/VCO2; and (iii) an
increase in end-tidal oxygen tension with no fall in end-tidal carbon dioxide tension. RCP
was determined from a number of measurements including (i) an increase in VE/VCO2;
and (ii) an increase in end-tidal CO2 tension.

Then, participants come to our laboratory for the exercise sessions. The procedure
followed 4 stages: baseline; MENS-pre-exercise; exercise; and MENS-post-exercise, as
illustrated below (Figure 1).
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= hemodynamic parameters, MENS = microcurrent electrical neuromuscular stimulation, RPE = rate of perceived exertion, 
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Figure 1. Graphical overview of the experimental protocol. HRV = heart rate variability, BRS = baroreflex sensitivity,
Hp = hemodynamic parameters, MENS = microcurrent electrical neuromuscular stimulation, RPE = rate of perceived
exertion, VO2 = oxygen consumption, HHb = deoxyhemoglobin value. Gloves black and white represent active (ON) and
inactive (OFF) stimulation, respectively.

Baseline. Participants stayed in a supine position in a quiet room, with a comfortable
temperature (22–25 ◦C), for 10 min. They underwent noninvasive continuous blood
pressure monitoring using servo-controlled infrared finger plethysmography (Portapres
device; TNO/BMI, Amsterdam, the Netherlands) for analysis of heart rate variability
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(HRV) and baroreflex sensitivity (BRS). HRV is the amount of heart rate fluctuations
around the mean heart rate, and it reflects the cardiorespiratory control system. The BRS is
an established tool for the assessment of the sympathetic and parasympathetic role of the
autonomic nervous system [25]. Tests were performed under a standardized procedure at
the same time of the day (9:00–12:00) to prevent circadian effects. Then, we took a blood
sample at ear lobe for lactate measurement (Lactate Scout, SensLab, Leipzig, Germany).
The reliability of the portable blood lactate analyzer was <0.5 mM for concentrations in the
range of ≈1.0–10 mM [26].

MENS pre-exercise. Participants, in the same supine position, after the baseline pro-
cedure and before exercise, were manipulated with MENS (Electra Microlab, LED, Via
Selciatella, Italy). The operator, one of the authors, applied electric pulses through the
machine using special transducer gloves to manage microcurrent signals over the most
common manipulation techniques, which is necessary to massage and stimulate the quadri-
ceps of the right leg. During sham stimulation (MENS OFF), the operation followed the
identical procedure used during the real stimulation, except for the fact that the instrument
was turned off. It was possible because the electric pulse was not perceived by the subjects
at the cutaneous level (single-blind). The entire massage and stimulation had a duration
of 20 min with a Faradic current with rectangular waveform (1 s of impulse duration; fre-
quency of 256 Hz; amplitude of 400 µA; Positive/Negative polarity with change direction),
with the intention to stimulate hyperemic vasodilation. After stimulation, we took a second
blood sample for lactate measurement; then, participants were ready for the exercise test.

Exercise. The data collected during the incremental test were used to calculate the
work rates used during the subsequent constant-load exercise tests. Specifically, the
individualized workload for each athlete (mean ± SD: 311.4 ± 70.1 watt) corresponded
to ~ ≈50% of the difference between power (watt) reached at VT and at the RCP (≈50% ∆
RCP-VT). Pedaling frequency was kept at about 70–80 revolutions/min. On-transitions
were from unloaded pedaling to the imposed load, which was attained in about 3 s.
Pulmonary ventilation (VE), oxygen consumption (VO2), and carbon dioxide output (VCO2)
were determined with a Quark b2 breath-by-breath metabolic system (Cosmed, Rome,
Italy) previously calibrated according to the manufacturer’s guidelines (included room air
calibration, reference gas calibration, and turbine calibration with a 3-L syringe).

The changes in the vastus lateralis muscle oxygenation were evaluated by near-
infrared spectroscopy (NIRS). A portable NIRS single-distance continuous-wave pho-
tometer (NIMO, Nirox Srl, Brescia, Italy) was utilized for the present study. In brief, the
procedure is based on the changes of oxygen absorption with near infrared light, and it
includes an emission probe that emits 3 wavelengths (685, 850, and 980 nm) and a photon
detector. The transmitted light was recorded continuously at 40 Hz and utilized to quantity
deoxygenated myoglobin and hemoglobin levels [27]. The deoxygenated value is less con-
ditioned by the variations of the blood flow, and it is considered as a measure of fractional
oxygen extraction inside the microvascular tissue [28]. After that, we had carefully shaven
the skin, we attached the probe on it, covering, about 10–12 cm above the knee joint, the
lower extremity of the right leg vastus lateralis muscle [29]. Then, the probe and the skin
were wrapped with black cloth to prevent corruption from ambient light.

At the third minute of effort, we took a third blood sample for lactate measurement.
At the end of the cycling, rate of perceived exertion was recorded with 6–20 Borg scale.
Participants were asked how hard they felt the exercise [30]. The constant load exercise
had a duration of about 10 min.

MENS-post-exercise. Immediately after exercise, participants were back positioned in a
supine position, in the same room used before the exercise. To assess the effect of MENS on
recovery, we stimulated the quadriceps of the right leg for 20 min with the same protocol
described for MENS-pre-exercise. After that, in order to quantify the recovery level, we
took a fourth blood lactate and a second continuous blood pressure monitoring using the
same plethysmography used before exercise (Portapres device) for HRV and BRS analysis.
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2.3. Data Analysis

VO2 and HHb Kinetics. Breath by breath VO2 and muscle oxygenation (from this point
forward identified as HHb, expressed in µM) data obtained in the different repetitions of
the exercise protocol (ON; OFF) were time aligned, interpolated on a second-by-second
basis, and then superimposed for every athlete. Average values (every 1 s) were calculated
and utilized for kinetics analysis. Data equivalent to the “cardiodynamic phase”, recorded
during the first 20 s of the on-transition were not included from the analysis [31]. To
evaluate mathematically the VO2 and HHb on-transition kinetics, data were fitted with
two-exponential terms (primary and slow component of Equations (1) and (2)):

VO2(t) = VO2(b) + AP * (1 − e − (t-TDp/τp) (phase 2) (primary component) +
As * (1 − e − (t-TDs/τs) (phase 3) (slow component)

(1)

and

HHb(t) = HHb(b) + AP * (1 − e − (t-TDp/τp) (phase 2) (primary component) +
As * (1 − e − (t-TDs/τs) (phase 3) (slow component).

(2)

In Equations (1) and (2), Ap, As, TDp, TDs, and τp and τs denote the amplitude,
time delay, and time constant, respectively, of the primary and slow component phases.
Equations (1) and (2) were used on the basis of which equations yielded the lowest sum of
squared residuals. We calculated also the percent contribution of the slow component with
respect to the total amplitude of the response. Moreover, the gain of VO2, as the increase in
VO2 above baseline to the reached steady state, and corrected for individualized workload
(WL), was also calculated according to this equation (Equation (3)):

Gain = (VO2 [150 s − 180 s] − VO2 bas)/WL. (3)

Heart rate variability. Time and frequency domain parameters were calculated regard-
ing the HRV task force guidelines [25]. For the time domain, the square root of the mean
squared differences of successive R-R intervals (RMSSD), and the standard deviation of
successive R-R intervals (SDRR) were examined. Spectral analysis provides two main
frequency parts: low frequency (LF) ranging between 0.04 and 0.15 Hz and high frequency
(HF) positioned at the breathing frequency of 12 breath/minute. It has been revealed
that HF is an index of the vagal tone, whereas LF reflects both sympathetic and vagal
activities. Both indices (variables with skewed distributions) were log transformed (Ln).
The LF/HF ratio provide quantitative markers of the cardiac sympathetic and the vagal
modulation [25].

Baroreflex sensitivity. It was evaluated with Beatscope version 1.1 a (TNO/BMI, the
Netherlands) with a BRS add-on module based on cross correlation analysis [13,14]. The
slope of the regression line between SBP (systolic blood pressure) and R-R interval (all
intervals between adjacent QRS complexes resulting from sinus node depolarizations)
variations are considered as an index of BRS modulation of HR.

Hemodynamic parameters. The pulse contour method of Wesseling (the Modelflow
method) was used to evaluate cardiac output (CO), stroke volume (SV), ejection time (EJT),
and total peripheral vascular resistance (TPR) from the blood pressure waveform [32].

2.4. Statistical Analysis

All data are shown as means ± SD. All dependent parameters (VO2; HHb; HRV;
BRS; hemodynamic and lactate values) were compared between conditions (ON; OFF)
with the paired sample t-test, in which means were considered significantly different at
p < 0.05. To determine the magnitude of the stimulation effects, effect sizes (Cohen’s d)
were calculated as the mean difference standardized by the between-subject standard
deviation and interpreted according to the thresholds: <0.20; small, >0.20–0.60; moderate,
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>0.60–1.20; large, >1.20–2.00; very large, >2.00–4.00; extremely large, >4.0 [33]. Data were
analyzed with SPSS v22.0 (IBM, New York, NY, USA). Regression analysis was done by the
least squared residuals technique. Even though several powerful and dedicated software
have been commercialized for regression analysis, we used the Solver add-in bundled of
Microsoft Excel [34].

3. Results

All participants completed the protocol. Individualized oxygen uptake at maximal
and submaximal level, with personalized workload obtained at exhaustion during the
incremental exercise are shown in Table 1. VT occurred at 63% of the VO2peak and at
56% of the maximum workload; consequently, during constant-load exercise, participants
pedaled at a mean workload of ~65% (±5) of their maximum.

Table 1. Oxygen uptake and workload characteristics.

Athletes VO2peak
(mL/kg/min)

RCP
(mL/kg/min)

VT
(mL/kg/min)

VO2peak
(Watt) RCP (Watt) VT (Watt) ∆50% RCP +

VT (Watt)

1 38.63 33.68 25.57 200.00 160.00 114.00 137.00

2 49.66 39.99 33.75 223.00 160.00 139.00 150.00

3 47.08 37.91 26.74 300.00 220.00 126.00 173.00

4 55.56 43.44 34.08 380.00 279.00 218.00 248.50

5 41.60 26.65 21.46 280.00 170.00 130.00 150.00

6 44.68 37.60 24.90 340.00 260.00 162.00 211.00

7 61.97 47.10 42.91 405.00 305.00 274.00 290.00

8 47.46 37.09 30.10 257.00 193.00 140.00 166.50

9 50.61 39.04 32.83 360.00 253.00 220.00 236.50

10 61.75 48.84 41.64 369.00 274.00 220.00 247.00

Mean 49.90 39.13 31.40 311.40 227.40 174.30 200.95

SD 7.80 6.40 7.10 70.10 53.90 54.30 52.60

SEM 2.50 2.00 2.20 22.20 17.10 17.20 16.60

Abbreviations: VO2peak, peak oxygen consumption; RCP, respiratory compensation point; VT; ventilatory threshold.

Oxygen uptake kinetics. Figure 2 shows VO2 on-kinetic analysis, in both conditions, for
a typical subject. A slow component was observed in both experimental conditions, with
non-significant slightly higher value during OFF than the ON condition (4.3% vs. 3.7%).
Mean oxygen kinetic parameters for the exponential curve fitting are shown in Table 2.
Analysis showed a slower primary component (t(9) = −3.38; p = 0.004; mean diff. = 3.25;
d = 0.60), with a slower mean response time (t(9) = −2.57; p = 0.015; mean diff. = 4.88;
d = 0.66) and a shorter time delay of the slow component (t(9) = 1.90; p = 0.045; mean diff. =
−29.83; d = −0.70) during ON in comparison to the OFF condition. Moreover, VO2 at
the steady-state level was higher during ON than it was in the OFF condition (t(9) = 2.90;
p = 0.010; mean diff. = 0.14; d = 0.26). We did not find any significant differences for the
increase in VO2 per unit increase in work rate (the gain of the primary phase), with values
corresponding to 9.14 ± 0.5 and 9.05 ± 0.5 mL/min/W during the OFF and ON condition,
respectively.
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Figure 2. Characteristics of the two-component exponential model describing oxygen uptake (VO2)
during the on-transient of heavy intensity. Data refer to transition (at time 0, vertical dashed line) from
unloaded pedaling to constant-load exercise during OFF (�) and ON (N) experimental condition.
Data points are average values calculated over 1 s. Horizontal dashed line represents baseline. Data
obtained during the first 20 s of the transition were excluded from analysis.

Table 2. Pulmonary VO2 on-kinetics parameters from unloaded pedaling to constant-load exercise across conditions (OFF; ON).

VO2(b)
(L/min)

VO2(ss)
(L/min)

Ap
(L/min) TDp (s) τp (s) As

(L/min) TDs (s) τs (s) MRTp
(s) MRTs (s) Sc

(L/min)

OFF 0.70 ±
0.10

2.44 ±
0.20

1.80 ±
0.10

17.58 ±
0.90

21.94 ±
1.30

0.20 ±
0.04

171.70 ±
11.30

140.85 ±
19.40

39.52 ±
1.80

312.55 ±
27.03

0.12 ±
0.02

ON 0.79 ±
0.05

2.58 ±
0.20 *

1.79 ±
0.10

19.21 ±
0.90

25.19 ±
2.10 *

0.19 ±
0.04

141.87 ±
15.50 *

159.61 ±
26.10

44.40 ±
2.80 *

301.48 ±
25.90

0.10 ±
0.03

Values are mean ± SD. VO2(b), oxygen consumption at baseline level; VO2(ss), oxygen consumption at steady-state level; Ap, amplitude of
response for primary component; TDp, time delay for primary component; τp, time constant for primary component; As, amplitude of
response for slow component; TDs, time delay for slow component; τs, time constant for slow component; MRTp and MRTs, mean reaction
time for primary and slow component; Sc, slow component. Bold values with asterisk indicate significant differences between conditions at
p < 0.05.

Muscle oxygenation parameters. HHb on-kinetics analysis, in both conditions, for a
representative subject are shown in Figure 3. Time values of HHb were significantly lower
during ON than OFF conditions both at the primary, with faster τp (t(9) = 2.96; p = 0.008;
mean diff. = −1.37; d = −0.88) and mean response time (t(9) = 2.65; p = 0.013; mean diff. =
−1.39; d = −0.82), and at the secondary component with faster mean response time (t(9) =
2.35; p = 0.022; mean diff. = −32.75; d = −0.63) from rest-to-exercise transition (see Table 3).
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Figure 3. Characteristics of the two-component exponential model describing deoxyhemoglobin
(HHb) during the on-transient of heavy intensity. Data refer to transition (at time 0, vertical dashed
line) from unloaded pedaling to constant-load exercise during OFF (�) and ON (N) experimental
condition. Data points are average values calculated over 1 s. Data obtained during the first 20 s of
the transition were excluded from analysis.

Table 3. Deoxygenated hemoglobin on-kinetics parameters from unloaded pedaling to constant-load exercise across
conditions (OFF; ON).

HHb(b)
(µM)

HHb(ss)
(µM) Ap (µM) TDp (s) Tp (s) As (µM) TDs (s) Ts (s) MRTp

(s) MRTs (s) Sc (µM)

OFF 23.99 ±
3.50

50.40 ±
6.10

24.54 ±
4.10

9.56 ±
0.20

5.80 ±
0.50

9.96 ±
2.20

113.22 ±
16.40

110.69 ±
17.60

15.36 ±
0.50

223.91 ±
20.40

2.47 ±
0.40

ON 23.95 ±
3.30

43.08 ±
5.90

19.13 ±
2.80

9.54 ±
0.20

4.43 ±
0.50 *

9.34 ±
2.20

90.61 ±
2.60

100.54 ±
11.70

13.97 ±
0.50 *

191.15 ±
11.40 *

2.11 ±
0.60

Values are mean ± SD. HHb(b), deoxyhemoglobin at baseline level; HHb(ss), deoxyhemoglobin at steady-state level; Ap, amplitude of
response for primary component; TDp, time delay for primary component; τp, time constant for primary component; As, amplitude of
response for slow component; TDs, time delay for slow component; τs, time constant for slow component; MRTp and MRTs, mean reaction
time for primary and slow component; Sc, slow component. Bold values with asterisk indicate significant differences between conditions at
p < 0.05.

Hemodynamic, cardiac autonomic variables. Table 4 shows all hemodynamic and auto-
nomic variables investigated. Significant differences were found for systolic (t(9) = 2.67;
p = 0.013; mean diff. = 7.48; d = 0.70) and mean arterial pressure (t(9) = 2.43; p = 0.024;
mean diff. = 3.23; d = 0.51), with greater values during ON than OFF conditions. Time
and frequency domain analysis showed significant differences for RMSSD (t(9) = 1.75;
p = 0.047; mean diff. = 4.86; d = 0.28), HF (t(9) = 2.56; p = 0.015; mean diff. = 0.30; d = 0.37),
and LF/HF ratio (t(9) = 1.95; p = 0.044; mean diff. = 0.42; d = 0.62) between ON and OFF
conditions, respectively. It appeared that during stimulation (ON), participants recovered
faster than during placebo condition (OFF).

Lactate and the rate of perceived exertion. Figure 4 shows lactate trends, analyzed at
baseline; after the first MENS treatment that preceded the exercise; during the third minute
of exercise; and after the second MENS treatment that has followed the exercise. A T-test
revealed significant differences for comparison between ON and OFF conditions done
before (t(9) = 1.65; p = 0.048; mean diff. = 0.16; d = 0.51), and after (t(9) = 1.89; p = 0.046;
mean diff. = 0.36; d = 0.70) cycling. Rate of perceived exertion showed not significant
difference between conditions (12.45 ± 2 vs. 11.25 ± 1.8 for ON and OFF, respectively).
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Table 4. Hemodynamic and autonomic variables.

OFF ON

∆SAP (mmHg) −4.98 ± 2.10 2.50 ± 2.00 *

∆DAP (mmHg) 0.01 ± 1.50 2.72 ± 2.10

∆MAP (mmHg) −1.35 ± 1.50 1.88 ± 2.00 *

∆CO (L/min) 0.16 ± 0.20 0.31 ± 0.30

∆SV (mL/min) −8.35 ± 1.60 −5.41 ± 3.40

∆HR (beat/min) 7.12 ± 1.70 7.00 ± 1.50

∆EJT (s) −0.02 ± 0.01 −0.02 ± 0.01

∆TPR (mmHg s/mL) −0.04 ± 0.05 −0.03 ± 0.10

∆HRV (ms) −140.30 ± 30.10 −132.25 ± 28.80

∆SDRR (ms) −4.32 ± 4.10 −1.60 ± 4.20

∆RMSSD (ms) −12.97 ± 5.80 −8.10 ± 5.20 *

∆LF (Ln/ms2) 0.02 ± 0.20 0.07 ± 0.30

∆HF (Ln/ms2) −0.43 ± 0.20 −0.13 ± 0.20 *

∆LF/HF 0.59 ± 0.20 0.17 ± 0.10 *

∆BRS (ms/mmHg) −2.75 ± 1.20 −2.15 ± 1.80
Delta values (mean ± SD) are obtained subtracting the recovery values from the baseline values. SAP, systolic
arterial pressure; DAP, diastolic arterial pressure; MAP, mean arterial pressure; CO, cardiac output; SV, stroke
volume; HR, heart rate; EJT, ejection time; TPR, total peripheral resistance; HRV, heart rate variability; SDRR
standard deviation of the R-R intervals; RMSSD, root mean square of the successive differences; LF, low frequency;
HF, high frequency; BRS, baroreflex sensitivity; Ln, logarithm. Bold values with asterisk represent significant
differences at p < 0.05.
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Figure 4. Mean (±SD) lactate values recorded at the baseline, after the first MENS treatment (MENS-
pre-Ex) before exercise, at the third minute of the constant-load exercise (Exercise), and after the
second MENS treatment (MENS-post-Ex), subsequently to exercise performance. Black dashed line
represents OFF, the gray dashed line represents ON condition. Asterisks showed mean significant
differences at p < 0.05.
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4. Discussion

Different studies have discovered that the application of electric fields through the
human body can significantly enhance cell metabolism [35] and injury restoration [36]
when applied following exercise. The rationale behind the application of MENS is based
on its efficacy to generate ATP at the cellular level and other health-related benefits, such
as the increase in mitochondrial numbers [16], protein synthesis [7], and the activation of
hormone-sensitive lipase, which increases the lipolysis process [16]. According to these
different physiological mechanisms found in MENS treatment, our intention was to investi-
gate the short-term effects of MENS on constant-load exercise at submaximal intensities and
to the subsequent recovery process. The key results of our study are that MENS stimulation
applied before exercise produced an increase in oxygen extraction at muscle microvascula-
ture, while when applied after exercise, improved recovery through faster parasympathetic
reactivation with respect to control condition. Moreover, electrical stimulation caused
higher lactate levels, which may be due to the magnitude of the muscular stress by both
manual treatment and electrical stimulation with respect to the control condition in which
the right quadricep received only a manual treatment.

VO2 and HHb kinetics. The main finding of the present study was the faster HHb
on-transition kinetics during exercise executed after MENS stimulation, and surprisingly,
by slower VO2 on-transition kinetics. After the onset of exercise, a delay has been re-
ported before an increase in muscle O2 consumption [37], suggesting that the activation of
mitochondrial respiration does not increase immediately, but rather, it has been delayed
relative to the start of exercise. It could be argued that combining MENS with exercise
might have been increased vasodilation and stimulated hyperemia, which could have,
consequently, released nitric oxide, with the effect of accelerating O2 availability at the
muscle level. Nitric oxide represents an important component of the metabolic inertia to
the VO2 kinetics during supra-maximal exercise [38]. The precise mechanism by which
nitric oxide contributes to the metabolic inertia at exercise onset is unclear but, in vitro,
it has been demonstrated its role in inhibiting several mitochondrial enzymes, as it is a
competitive inhibitor of oxygen consumption in the mitochondrial respiratory chain [39].
MENS treatment has received more widespread attention in the last years, as it not only
relieves pain but also has a positive effect on reparative processes in the skin [1]. Microcur-
rents penetrate in the body’s cells, normalize the biochemical processes, such as improving
metabolism, increasing enzyme activity, ATP synthesis, proteins, lipids, and other vital
substances [2]. In addition, microcurrents tone up the smooth muscles of blood vessels as
well as improve skin turgor and tissue temperature, with an increase in blood flow through
area treated [9]. They are associated with vasodilation, then stimulating the metabolism
of waste and toxins from the blood, therefore increasing healing and decreasing pain [2].
Vasodilation and hyperemic processes might have stimulated NO release, even if, to the
best of our knowledge, studies are lacking to support this hypothesis.

As shown in previous studies [40,41], the NIRS-derived HHb signal provides a con-
tinuous, noninvasive measurement of changes in muscle deoxygenation and reflects the
balance between local muscle O2 delivery and utilization. Our results have shown an
immediate increment in muscle fractional O2 extraction after a few seconds of delay (≈10 s)
following the onset of contraction. The rate of adaptation of muscle deoxygenation was
faster than the adaptation of the primary phase of the VO2, reflecting an accelerated O2
extraction in the active muscle microvasculature as a consequence of microstimulation.
Our results are in agreement with other studies that investigate increasing the availability
of muscle O2; through hyperoxia, adenosine, or drug administration to the O2–hemoglobin
dissociation curve, which facilitated O2 release at the working muscle, the primary compo-
nent of pulmonary VO2 does not accelerates, even during high-intensity exercise [42,43].
This is in accordance with the hypothesis that VO2 during the transition from rest-to-
exercise is not managed by the rate of adjustment of convective oxygen delivery to the
exercising muscles [42]. After the time delay, during the ON condition, HHb increased
more rapidly toward a “steady-state” level, suggesting that oxygen delivery in the on-
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transition was more adequate to meet the metabolic demand of the muscle, thus requiring
a rapid increase in O2 extraction [41]. The slightly lower but not significantly different
muscle HHb value exhibited by MENS stimulation at steady-state level, in concomitant
with the significantly higher value of VO2 consumption at the same working rate, suggests
that our procedure may have improved oxygen availability/distribution within the muscle
microvasculature. The cause of the slower phase II of VO2 kinetics is unclear, although it is
known that this parameter is sensitive to a number of factors, including the high percentage
of type II fiber distribution in the working muscles [44]. However, it is difficult to see how
MENS stimulation could alter muscle fiber recruitment patterns, although this should not,
of course, be excluded yet.

Autonomic nervous system parameters. A second purpose of the present investigation
was to examine the different physiological recovery responses to MENS exposure after
exercise. The common physiological variable used to evaluate recovery time is the heart
rate variability. At the end of exercise, HRV returns exponentially to control value, and its
increment is functionally related to the athlete’s training status and the exercise intensity
previously executed. HRV is the tool used to investigate the cardiac autonomic responses
in combination with the baroreflex sensitivity, which is a reflex that adapts the heart period
in response to variations in systolic blood pressure. These parameters have been used to
evaluate the different adaptations to exercise and the recovery times after exercise [11–14].
With a transition from exercise to passive recovery, there is a loss of central command and
activation of the arterial baroreflex, resulting in a decrease in heart rate toward its pre-
exercise level [45]. The vagal system plays a main role in reducing heart rate immediately
after the cessation of exercise, and its further decrease is mediated by both the vagal and
sympathetic system [13]. In the present study, we found significantly different effects on
the autonomous nervous system parameters, with higher increase in vagal reactivation
(RMSSD and HF band of the HRV frequency spectrum) after MENS compared to sham-
exposure. Moreover, sympathovagal balance, assessed by LF/HF ratio, was shifted toward
a state of parasympathetic predominance, revealing a faster recovery after stimulation
treatment than in the control condition. A possible explanation of the microcurrent effects
on faster recovery after exercise could be related to its effect on muscle metaboreflex. Until
now, no study has investigated the effect of MENS on metaboreflex activity. One study
found that the transcutaneous electric nerve stimulation, a technique similar to MENS (both
are accepted mode of electrotherapy) [1], augments peripheral blood flow by reduction of
the muscle metaboreflex, increasing oxygen supply to stimulated muscles, with a decrease
in sympathetic activity evaluated with the heart rate variability [46]. These findings support
the idea that the acute application of electrotherapy improves sympathovagal balance,
which could be linked to an intense peripheral vasodilatation response, contributing to a
faster recovery process.

Lactate and rate of perceived exertion. Hyperlactatemia is observed during exercise
and severe inflammation [47], as well as in muscle cells subjected in vitro to electrical
pulse stimulation [48]. In the present study, lactate levels were significantly higher after
MENS treatments, both before and after exercise, whereas during constant-load cycling,
participants produced the same lactate values in both experimental conditions. We can
speculate that higher lactate values could have caused vasodilation at muscle level, through
the changes in osmolarity and acidity, which are necessary to speed-up HHb on-transition
kinetics but not higher enough to accelerate VO2 on-kinetics. The finding that the lactate
values increased with respect to inactive stimulation is somewhat surprising. We could
assume that MENS increased the magnitude of muscular activity, which may be due to
both manual and electrical stimulation with respect to a sham condition in which the right
quadricep received only a manual treatment. Moreover, the lactate is crucial for muscle to
make cytosolic NAD+, which is necessary to ATP regeneration from glycolysis, protecting
muscles from acidosis. Lactate utilizes two protons, which is necessary to promoting
proton elimination from muscles. Moreover, MENS efficacy on blood lactate values could
be influenced by parameters used (pulse duration, frequency, amplitude, and muscles
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stimulated) [1,9], target population [49], and the type of fatiguing exercise or duration of
recovery [9,10]. Finally, the RPE was not significantly different between conditions, and
this result is similar to that of Barcala-Furelos et al. [10], in which electrical stimulation did
not alter the RPE values when compared with the passive recovery in lifeguards following
a water rescue.

Limitations of the study. Some limitations to the current investigation warrant dis-
cussion. Although we know that NIRS has several limitations, most of them have been
prevailed by recent technological developments. For example, when the probe is applied
on the skin overlying the muscle that we want to investigate, NIRS can measure only a
relatively small and superficial volume of skeletal muscle tissue. However, the method
has also important strengths and can give valuable and noninvasive useful insights into
skeletal muscle oxidative metabolism in vivo during exercise [50].

Furthermore, the main limitation of the whole-body pulmonary oxygen consumption
measurements is the difficulty to differentiate between the exercising muscles and the rest
of the body, or between different muscles involved in the exercise. Moreover, the presence
of O2 stores between the location of measurement (the mouth) and the sites of gas exchange
at the skeletal muscle level complicate data interpretation during metabolic transitions [50].

The sample size was in line with the most important articles published in this area,
in which the number of participants is under 10 units and unbalanced between male
and female. Although we have applied it on athletes, it could be important to direct
future studies on patients and aged, in which their agility and life quality are limited for
impairment in oxygen delivery and utilization.

We have also highlighted the fact that exercise duration, rate of increased in work
rate, blood sampling location, instrument utilized, and measurement error are all potential
sources of variability in measuring lactate values. However, the reliability of our portable
blood lactate analyzer was <0.5 mM for concentrations in the range of ≈1.0–10 mM,
with a measurement error of ≤3% [26]. Further investigations are needed, in terms of
stimulation parameters (e.g., time, frequency, amplitude, duration) and with different
exercise protocols.

5. Conclusions

In summary, we found that MENS stimulation causes a faster HHb and a slower
VO2 on-transition kinetics during exercise, with higher lactate levels immediately after
the treatments. Sympathovagal balance was shifted toward a state of parasympathetic
predominance, revealing a faster recovery after stimulation executed following cycling.
These results could be due to the increased vasodilation and hyperemia, which are a
consequence of stimulation. It seems plausible to consider MENS as an electrotherapy
useful for improving recovery through faster parasympathetic reactivation following
exercise. The absence of any positive effect on VO2 on-transition kinetics could be partly
imputed to methodological procedures such as the arbitrary choice of stimulation intensity
and duration. Nevertheless, additional studies are needed to approve or discard this
hypothesis and to shed light on the correlation of these consequences with a short period
of training program with concurrent MENS stimulation.
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Abstract: Accumulation of adipose tissue in specific body areas is related to many physiological and
hormonal variables. Spot reduction (SR) is a training protocol aimed to stimulate lipolysis locally,
even though this training protocol has not been extensively studied in recent years. Thus, the present
study sought to investigate the effect of a circuit-training SR on subcutaneous adipose tissue in
healthy adults. Methods: Fourteen volunteers were randomly assigned to spot reduction (SR) or to a
traditional resistance training (RT) protocol. Body composition via bioimpedance analysis (BIA) and
subcutaneous adipose tissue via skinfold and ultrasound were measured before and after eight weeks
of training. Results: SR significantly reduced body mass (p < 0.05) and subcutaneous abdominal
adipose tissue (p < 0.05). Conclusions: circuit-training SR may be an efficient strategy to reduce in a
localized manner abdominal subcutaneous fat tissue depot.

Keywords: spot reduction; body composition; resistance training; adipose tissue

1. Introduction

Regular physical activity can impact body composition, reducing fat mass and there-
fore positively improving health status. Accumulation of adipose tissue (AT) in specific
areas of the body can be influenced by lifestyle behavior, such as working for most of the
time in a sitting position or using only the upper body. Adipose tissue does not develop
regularly but normally spread in distinctive anatomical depots [1]. Approximately 10–20%
of total fat mass is contained in the visceral adipose tissue (VAT), located centrally and
surrounds the internal organs [2]. The majority of total body fat is represented by the
subcutaneous AT (SAT) positioned immediately below the skin: SAT normally accumulates
in the gluteal, femoral and abdominal region and its distribution are regulated by different
physiological and/or hormonal variables [3]. A small portion of AT consists in the ectopic
AT and is localized around vital organs, such as the liver, heart and kidney.

The total amount of fat mass is considered a risk factor for several cardiometabolic
diseases [4,5]; however, the location of lipids storage seems also to be critical for car-
diometabolic consequences [6–8]. If central obesity is associated with metabolic dysfunc-
tion and hypertension [9,10], lower-body fat accumulation appears to have a protective
effect and seems to be negatively correlated with cardiovascular disease and type 2 diabetes
mellitus development [11,12]. The reduction of total body fat can be achieved through
diet and/or exercise intervention [13,14]. While it has been widely demonstrated that an
adequate amount of physical activity can have a favorable impact on the weight loss pro-
cess [15], the existence of a “localized fat loss” is still on debate. As a matter of fact, for more
than 60 years, the possibility of a localized removal of AT has raised interest in the scientific
and social community. Even the “father” of the Mediterranean diet, Ancel Keys, admitted
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the possibility of a localized fat reduction, although not in a scientific journal, but rather on
Vogue in 1956 [13]. Later, in the ‘50s, some researchers reported that certain sports, such as
gymnast [16], basketball [17] or running [18], promoted greater loss of fat mass in those
parts of the bodies that were vigorously exercised. Since then, different strategies have
been developed to advance the localized loss of SAT with exercise, and all those protocols
have been termed “spot reduction”. More recently, Stallknecht and coll. [19], hypothesized
that exercise on specific muscles may induce “spot lipolysis” via an increased blood flow
and release of fatty acids in the SAT nearby the contracting muscle regardless of exercise
intensity. However, most of the studies found conflicting conclusions: some authors found
a positive effect of spot reduction on localized lipolysis [20–22], while others were incon-
clusive [23–26]. The discrepancy between results can be found on the several exercise
modalities employed, on the different body areas examined and, on the technique used for
measuring SAT [27]. On the latter, most of the studies used skinfolds to evaluate changes
after training [20–25]; recent comparative studies indicated that skinfold measurements
do not permit accurate evaluation of SAT thickness because it is operator-dependent and
influenced by anatomical site and skin thickness [28,29]. Regarding training modalities, it is
well known that combining in the same training session endurance and strength exercises
may exert a greater effect on total body fat loss [30] and, as recently demonstrated, and it
might also have some positive effects on regional fat loss [31]. However, the effects of an
alternation of strength and endurance training (mixed circuit training: MCT) has, until now,
not been investigated. As a matter of fact, we demonstrated that a MCT induces greater
total body fat loss and an improvement of metabolic variables compared to endurance
training [32,33] but, except for our pilot trial in the 90′s [34] no one analyzed the effects of a
MCT on regional fat loss.

In the light of the above, the purpose of the present study was to reconsider the spot
reduction approach using a modified MCT protocol. MCT protocols usually alternate
various total body strength exercises with short bouts of aerobic training. In the present
study, we aimed to emphasize the positive effect of MCT by streamlining the order of
proposed exercise to focus the major metabolic stress on the target body areas. To our best
knowledge, this strategy has not been explored yet. We hypothesized that an MCT protocol
concentrated on specific muscle would have exerted a great local lipolytic effect compare
to a non-circuit mixed training. We tested our hypothesis on a group of healthy adults,
using skinfolds and a modern ultrasound technique to measure SAT before and after eight
weeks of training targeting abdominal and triceps.

2. Materials and Methods

This study is a randomized controlled parallel study. The study was approved by
the ethical committee of the Department of Biomedical Sciences, University of Padova
(HEC-DSB 05/17, 22 March 2017), according to the current Declaration of Helsinki. All
participants read and signed a written informed consent form before enrollment.

Subjects were evaluated in a single visit before and after eight weeks of intervention.
During the visit, height and body mass were measured, body composition was assessed
via bioimpedance analysis (BIA) and skinfolds, and ultrasound was used to quantify the
thickness of the adipose panicle. All measurements were taken by the same operator before
and after the study. After the first screening visit, participants were randomized into two
different groups: spot reduction (SR) or traditional resistance training (RT) and started the
supervised training program.

2.1. Subjects

Eighteen volunteers (9 female and 9 male) aged between 20 and 46 years took part
in the study. To be included in the protocol, subjects had to pass a medical interview and
be aged 18–50 years old. Exclusion criteria were more than 1 year of training experience,
chronic use of medication, metabolic disorders or any other clinical problems that could
be aggravated by the study procedures or engagement in weight loss dietetic regimen.
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During the intervention, participants were allowed to continue their recreational physical
activity, but were instructed not to perform any structured, high-impact training. Four
subjects (two from each group) were excluded from the final analysis due to noncompliance
with the training schedule. To be considered for the analysis, subjects had to complete all
sessions and maintain a frequency of 3 training per week. Table 1 shows the anthropometric
characteristics at baseline.

Table 1. Baseline characteristics of spot reduction (SR) and resistance training (RT) groups.

SR (N = 7) RT (N = 7) Difference between
Group (p-Value)

Age (y) 23.29 ± 1.89 26.57 ± 9.14 0.37
Weight (kg) 69.24 ± 6.90 75.93 ± 12.47 0.24
Height (cm) 170.64 ± 5.73 175.57 ± 12.02 0.35

BMI (kg/m2) 23.78 ± 2.11 24.67 ± 3.54 0.58
Body fat (%) 24.69 ± 10.32 28.03 ± 7.44 0.50

All values are means ± SD.

2.2. Measurements

Body mass index (BMI) was calculated in kg/m2, obtained from body mass and height
measurement using a Wunder stadiometer (Holtain Ltd., Crymych, UK) with a precision
of 0.1 kg and 1 cm, respectively.

Before proceeding with the measurements of the adipose panniculus by skinfolds
and ultrasound, specific detection points were traced on the right portion of the body. For
skinfolds, the 4 points described by the Durnin protocol [35] were used: bicipital, triceps,
suprailiac and subscapularis. With regard to ultrasound scans, to standardize the procedure
and detection points between subjects, we employed the protocol described by Muller
et al. [36], and 8 regions were selected for the analysis: upper abdomen, lower abdomen,
spinal erectors, distal triceps, brachioradialis, front thigh, medial calf, lateral thigh.

A mechanical caliper (GIMA, Gessate MI, Italy) was used to determined skinfolds to
the nearest 1 mm. Each skinfold was measured 3 times, and the arithmetic means were used
as the final value. Test–retest reliability for skinfold analysis was ICC = 0.96. Test–retest
intra-observer reliability for fat adipose tissue thickness in our lab was ICC = 0.96, similar
to previous findings [28,37].

Using the points previously marked, the skin fold was “pinched” between thumb and
forefinger one centimeter above the measurement site, perpendicularly for the triceps and
bicipital folds, and at a 45◦ angle to the longitudinal axis for the suprailiac and subscapular
fold. All measurements were taken with the subject in an upright position and with the
arms relaxed at the sides, while for the suprailiac point, the subject’s right arm was placed
over the operator’s shoulder. Successively, body density was determined with Durnin–
Womersley method [38], according to the methods Equation (1) was used to estimate body
dansiy in male, whilst Equation (2) was used in female volounteers:

Male BD = 1.1765 − (0.744 × log10 Σ skinfolds); (1)

Female BD = 1.1567 − (0.0717 × log10 Σ skinfolds). (2)

Ultimately, body density from Equation (1) and (2) was used in Equation (3) to estimate
body fat percentage using the Siri formula [39]:

FAT% = ((4.95/BD) − 4.5) × 100 (3)

Ultrasound measurements were performed using Xario 100 ultrasound (TOSHIBA,
Tustin, CA, US) with a surface probe set on MSK 1. The probe was equipped with a spirit
level to maintain the same inclination in all readings. During acquisition, no pressure was
ever exerted on the probe placed on the subject’s skin, except for the natural one resulting
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from the weight of the probe itself, by keeping the probe by the cable. For each detection
point 3 snapshots were taken, following Muller’s procedures:

• Upper abdomen and Lower abdomen: subjects were positioned supine and asked to
inhale and then to stop breathing at mid-exhalation to take the 3 photographs without
movement of the abdominal wall;

• Brachioradialis: subjects were positioned supine, arms at the sides, right-hand with
thumb up;

• Front thigh: subjects were positioned supine and asked to stay relaxed;
• Spinal erectors: subjects were prone, with the chin resting on the edge of the bed and

arms extended at the sides;
• Distal triceps: subjects were prone, arms at the sides with right palm upwards;
• Lateral thigh: subject in lateral decubitus on the left side and legs at a 90◦ angle at

the knee;
• Medial calf: subject in lateral decubitus on the right side, right leg with a 90◦ angle at

the knee.

Body composition, total body water (TBW), extracellular (ECW) and intracellular
(ICW) water, body cell mass (BCM) and phase angle (PA) were measured via bioelectrical
impendence analysis (Akern, Body Pro, Pontassieve, Italy). Subjects were asked to empty
their bladder and rest for ~3–5 min in a supine position, while four electrodes were placed
on their hands and feet to start the analysis. Test–retest reliability for body composition
analysis using bioelectrical impendence was ICC = 0.99.

2.3. Training Protocols

Subjects were required to perform the prescribed exercise protocol 3 times per week
for a total of 8 weeks. The training was supervised by a certified trainer whose task was to
check adherence to the study and the correct execution of training protocols.

Training protocols were comparable for the type of exercise, intensity, and volume but
differed for the order of execution. The SR protocol was an alternation between endurance
strength exercise (MCT) in which, specifically, abdominal, triceps and aerobic exercise
were performed in a circuit (as described in Table 2) while the other muscular area (back,
shoulders, arms, and lower limbs) were trained through RT exercises at the end of the
circuit. RT group completed first all the aerobic exercises, and in the second part, the
resistance exercises. Aerobic exercise intensity was settled at 65% of max HR using Cooper
formula, while resistance load was assessed based on the previous training schedule and
during a preliminary familiarization session.

2.4. Statistical Analysis

Results are presented as mean ± SD. The sample size was calculated based on pre-
liminary data from our laboratory, assuming within-subject variability of 25% and a fixed
power of 0.8 and an alpha risk of 0.05 for the main variables (skinfolds). Initially, the
analysis revealed that 9 subjects per group were needed to achieve the above parameters.
However, only 7 participants were included in the final evaluation; we thus perform a post
hoc analysis and the achieved power with the real sample size was 0.75. An independent
t-test was performed on baseline characteristics to ensure no difference between groups.
After checking for normal distribution via the Shapiro–Wilk W test, a two-way ANOVA
for repeated measures was performed to compare the effect of training modalities through
a “time x training” analysis. The post hoc Bonferroni test was used to identify specific
intragroup differences when suitable. For each group, Cohen’s d effect size was assessed by
dividing the difference between mean values by the pooled SD. The p-value was set at 0.05.
Data analysis was performed using GraphPad Prism software version 8.4.3 (GraphPad
Software, San Diego, CA, USA).
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Table 2. Training protocols.

SR RT

Exercise Set × Reps/Time Rest Exercise Set × Reps Rest

Treadmill 5 min - Treadmill 5 min -
Crunches 20 reps - Bike 5 min -

Dumbbell overhead extension 15 reps - Step 5 min -
Bike 5 min - Treadmill 5 min -

Crunches 20 reps - Bike 5 min -
Dumbbell overhead extension 15 reps - Dumbbell bench press 3 × 10 1 min

Step 5 min - Lat pulldown 3 × 10 1 min
Crunches 20 reps - Shoulder press 3 × 10 1 min

Dumbbell overhead extension 15 reps - Arm curl 3 × 12 45 s
Treadmill 5 min - Dumbbell overhead extension 4 × 15 45 s
Crunches 20 reps - Leg press 3 × 10 1 min 30 s

Dumbbell overhead extension 15 reps - Leg extension 3 × 12 1 min
Bike 5 min - Crunches 4 × 20 45 s

Dumbbell bench press 3 × 10 1 min - - -
Lat pulldown 3 × 10 1 min - - -

Shoulder press 3 × 10 1 min - - -
Arm curl 3 × 12 45 s - - -

Leg press 3 × 10 1 min
30 s - - -

Leg extension 3 × 12 1 min - - -

SR, Spot Reduction group; RT, Resostance Training group.

3. Results

Body mass significantly decreased (F(1,12) = 14.304; p = 0.003) in the SR group (from
69.24 ± 6.90 kg to 67.74 ± 6.34 kg; p = 0.01, d = −0.32), but not in the RT group (from
75.93 ± 12.47 kg to 74.96 ± 12.08 kg, p > 0.05, d = −0.11). As a consequence, also the
BMI was significantly reduced (F(1,12) = 14.605; p = 0.002) only in the SR group (from
23.78 ± 2.11 kg/m2 to 23.27 ± 1.93 kg/m2, p = 0.01, d = −0.36) compare to RT group (from
24.67 ± 3.54 kg/m2 to 24.36 ± 3.44 kg/m2, p > 0.05, d = −0.13) as shown in Figure 1.

Figure 1. (A) body mass and (B) body mass index (BMI). RT resistance training group; SR, spot reduction group. * signifi-
cantly different from pre-value (p < 0.05); ** significantly different from pre-value (p < 0.01).

No differences in skinfolds were detected after RT protocol; while SR resulted partic-
ularly effective on suprailiac (−13.29%; p = 0.02, d = −0.56) and subscapularis (−7.59%,
p = 0.04, d = −0.44) skinfold. In both sites, the two-way ANOVA analysis revealed a signif-
icant main Time effect (suprailiac: F(1,12) = 6.993; p = 0.01; subscapularis: F(1,12) = 5.822;
p = 0.01). Furthermore, body fat percentage estimated with Siri equation presented a sig-
nificant main effect of time (F(1,12) = 7.776; p = 0.02), with a significant decrease observed
only in the SR group (p = 0.01, d = −0.21). Data on skinfolds results are shown in Table 3.
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Table 3. Skinfold results of spot reduction (SR) and resistance training (RT) groups.

SR (N = 7) RT (N = 7)

Pre Post Pre Post

Bicipital (mm) 11.66 ± 9.04 9.68 ± 5.09 8.50 ± 4.85 9.02 ± 6.14
Triceps (mm) 18.75 ± 9.31 18.65 ± 9.31 19.87 ± 5.36 19.81 ± 5.14

Suprailiac (mm) § 20.43 ± 6.01 17.99 ± 6.37 * 19.33 ± 6.39 18.85 ± 6.36
Subscapularis (mm) § 16.94 ± 5.74 15.36 ± 4.25 * 18.25 ± 6.47 17.17 ± 5.61

Body fat (%) § 28.83 ± 8.92 27.52 ± 8.97 * 27.74 ± 6.81 27.49 ± 6.91
All values are means ± SD. * significantly different from pre-value (p < 0.05); § significant time effect (p < 0.05).

We observed a significant main time effect on ultrasound measurements of adipose
panicle for upper abdomen (F(1,12) = 6.888; p = 0.02), spinal erectors (F(1,12) = 10.209;
p = 0.01) and front thigh (F(1,12) = 5.855; p = 0.03) (Table 4). Post hoc test revealed a signif-
icant reduction only in the SR group for upper abdomen (−18.89%, p = 0.05, d = −0.66),
spinal erector site (−19.45%, p = 0.04, d = −0.55).

Table 4. Ultrasound results of spot reduction (SR) and resistance training (RT) groups.

SR (N = 7) RT (N = 7)

Pre Post Pre Post

Upper abdomen (mm) § 15.09 ± 6.08 12.35 ± 5.65 * 19.43 ± 10.34 18.13 ± 10.11
Lower abdomen (mm) 17.88 ± 7.44 17.30 ± 7.06 22.99 ± 9.23 22.33 ± 8.07
Spinal erectors (mm) § 9.96 ± 6.25 7.79 ± 4.83 * 10.77 ± 2.83 9.31 ± 3.28

Distal triceps (mm) 5.40 ± 3.95 6.21 ± 4.71 5.72 ± 2.13 5.19 ± 2.05
Brachioradialis (mm) 2.72 ± 1.37 3.24 ± 2.59 3.59 ± 2.12 3.66 ± 2.00
Front thigh (mm) § 8.46 ± 4.35 9.40 ± 5.17 * 11.56 ± 4.26 12.40 ± 3.29
Medial calf (mm) 4.87 ± 3.17 4.73 ± 2.90 5.90 ± 2.99 6.05 ± 2.49

Lateral thigh (mm) 18.44 ± 9.09 15.64 ± 7.08 24.10 ± 11.97 23.92 ± 11.08
All values are means ± SD. * significantly different from pre-value (p < 0.05). § significant time effect (p < 0.05).

Results from the body composition analysis via BIA are shown in Table 5. A significant
time effect (F(1,12) = 5.776; p = 0.03) was observed only in the Intracellular body water,
where RT resulted in a significant reduction (−7.89%, p = 0.04, d = −0.76). No other
detectable differences were found.

Table 5. Bioimpedance analysis (BIA) results of spot reduction (SR) and resistance training
(RT) groups.

SR (N = 7) RT (N = 7)

Pre Post Pre Post

Total body water (L) 38.15 ± 6.09 36.74 ± 5.33 39.22 ± 6.22 38.36 ± 5.52
Extracellular water (L) 14.76 ± 1.97 13.93 ± 2.49 14.51 ± 2.76 14.41 ± 1.76

Intracellular water (L) § 23.38 ± 4.39 22.82 ± 3.79 24.71 ± 4.10 22.65 ± 3.63 *
Fat mass (kg) 17.13 ± 7.82 16.26 ± 6.57 21.42 ± 7.43 20.46 ± 8.12

Fat-free mass (kg) 52.15 ± 8.64 51.17 ± 7.27 54.58 ± 9.66 54.39 ± 9.45
Body cellular mass (kg) 28.85 ± 6.04 28.15 ± 5.53 30.91 ± 8.26 29.40 ± 6.85

Phase angle (◦) 5.94 ± 0.56 5.91 ± 0.57 5.94 ± 1.17 5.66 ± 0.75
All values are means ± SD. * significantly different from pre-value (p < 0.05); § significant time effect (p < 0.05).

4. Discussion

The study aimed to revisit the spot reduction training in the light of new methods to
analyze SAT. We observed a significant general reduction of body mass and abdominal
SAT, measured both with skinfold and ultrasound after 12 weeks of spot reduction training.
Skinfold measurements also showed a reduction on the subscapularis site, while ultrasound
revealed a decrease in the spinal erectors SAT.
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Compared to ultrasounds, the skinfolds’ technique measures SAT within a compressed
double layer of skin. Skin thickness may vary substantially among body area, for example,
is lower in the upper arm compared to the abdomen [28,36], reducing the accuracy between
measurements. A recent analysis revealed that ultrasound might overcome the problem
linked to the compressibility and viscoelasticity of adipose tissue and thus represents a
better tool to estimate SAT [36,40]. Despite the limitation mentioned, we decided to include
skinfolds measurements to be consistent with most of the studies that have analyzed spot
reduction protocols. It is also worth mentioning that the ultrasound technique relies on the
operator performing the measurements as much as skinfolds. Despite trying to comply
with all the standard procedures to reduce variability during measurements, we observed
relatively large standard deviations of up to 5–6 times the observed difference. Overall,
the pre-post analysis revealed a relative medium effect size (as suggested by the observed
Cohen’s d > 0.5 for most measures) which may slightly weaken the validity of our findings.

Spot reduction is a training protocol aimed to reduce subcutaneous fat on a particular
part of the body. The first protocols of spot reduction were created based on the assump-
tion that the accumulation of fat in a specific body area is related to the activity of the
adjacent muscles [20,22,41]. However, a better understanding of the mechanism of adipose
accumulation/oxidation has revealed that this assumption might not be completely correct.
Fatty acids taken from the diet are deposited in the adipose tissue based on hormonal and
receptor action [42,43], like energy storage. During physical activity, muscle contraction
demands energy; if the energy request is not solved with glycogen store, fats are mobilized
from adipose tissue, released into the bloodstream, and carried to target cells to be oxidized.
Lipolysis is mediated by hormonal fluxes (catecholamines, insulin and autocrine/paracrine
factors), which reach adipose tissue passing through the circulatory network [42,43]. Circu-
lating fatty acids can be provided from any body district, which does not necessarily must
be involved with muscular effort; therefore, performing countless series only of a specific
exercise may not be sufficient to promote lipolysis in that specific site. However, it was
recently observed that lipolytic activity is associated with an increase of blood flow in the
adipose tissue and, thus, to the oxygenation of the adipocyte, suggesting that “blood flow
and lipolysis are generally higher in subcutaneous adipose tissue adjacent to contracting
than adjacent to resting muscle irrespective of exercise intensity. Thus, specific exercises
can induce “spot lipolysis” in adipose tissue” [19]. Based on these premises, the goal
of spot reduction training should be to increase blood perfusion in the areas where it is
most needed, which are where the adipose tissue is located; and sequentially promote fat
oxidation. For this reason, the SR protocol we have employed in the present study was
composed by a circuit training, in which the localized SAT mobilization was stimulated
by target exercises (crunches for the abdomen and dumbbell overhead extension for the
triceps), while fat oxidation was induced by the aerobic phases. Apart from our previous
pilot study [34], this is the first attempt to use an MCT in an SR protocol.

We observed a significant reduction in the suprailiac skinfold and in the upper ab-
domen measure via ultrasound. These data are in accordance with others [20,21] and
support the idea that spot reduction protocol can improve local lipolysis in the abdomen.
We also observed a significant SAT reduction in the spinal erector site, which was adjacent
to the subscapularis skinfold site, while we did not observe any direct effect on the triceps
measurements. This was an unexpected result, as our hypothesis was that the specific
triceps exercise included in the circuit training would have reduced the local SAT. We
included tricipital exercise into our protocol because this is one of the areas in which sub-
cutaneous adipose tissue can concentrate and also because triceps brachii can be exercised
with several specific exercises. It is possible that, due to their inexperience, participants
had involved more the shoulder and scapula-stabilizing muscles than the triceps brachialis
during the execution of the dumbbell overhead extension exercise, reducing the effect on
the specific site. It is also worth noting that, although not significantly, the front thigh SAT
increased in the SR group. This result may be explained with a greater effort expressed
from the participant during the first MCT part, which might have tired them out before
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facing the second part of the workout. It is, therefore, possible that lower limbs were not
successfully trained. Although this is only speculation, and these results raise interesting
future questions on the SR approach.

Overall, we found that SR reduced total body mass, while any significant difference
was obtained after a traditional resistance training protocol. However, body compositional
analysis via BIA was unable to detect any significant changes in total fat mass or lean
body mass. We observed a significant decrease in the intracellular water after RT, which
normally indicates alteration of the number and size of muscle cells; however, this did not
reflect on lean body mass value. Using the Siri equation to estimate body fat percentage,
we found a significant decrease in the SR group compared to the RT group. However, the
Siri formula is dependent on the precision of skin-fold measurements, and generally, the
error of this method is approximately 5% [44].

The two protocols contained the same exercises and were comparable for duration and
volume. This implicates that to reduce body mass, training intensity is a more important
variable than the type of exercise. Training intensity could be manipulated in several
ways: by increasing loads or oxygen consumption level, but also reducing rest intervals
or altering movement velocity. In the initial MCT part of the spot reduction protocol,
subjects did not rest between exercises, which increased the overall training metabolic
demand. This is in contrast with other studies comparing the general and localized type of
exercise training [21,45], which found similar effects on body composition. However, in
the mentioned studies, the two protocols did not match the intensity of training modalities;
for example, Noland and coll. Compared a general aerobic training with a localized
calisthenic-type exercise [21]; while Schade concentrated one protocol only in the hip and
abdominal areas and expanded the generalized training adding exercises on the upper and
lower body [45]. Finally, we hypothesized that the alternation of endurance and strength
exercises, or put another way, the insertion of a strength training exercise for specific
muscles inside an endurance training might enhance the reduction of the fat tissue adjacent
to the exercising muscles.

A limitation of the present study was the reduced number of participants. Due to the
variability between subjects, it would be important to increase the sample size in future
studies to determine the effectiveness of spot reduction in a larger population.

5. Conclusions

Spot reduction training, conducted in a mixed circuit-training format (triceps and
abdomen inside an endurance training), seems to be efficient in promoting adipose tissue
reduction in the subcutaneous abdominal region, but was not efficient on the triceps site.
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Abstract: The present study investigated the activation of gluteal, thigh, and lower back muscles in
different squat variations. Ten male competitive bodybuilders perform back-squat at full (full-BS)
or parallel (parallel-BS) depth, using large feet-stance (sumo-BS), and enhancing the feet external
rotation (external-rotated-sumo-BS) and front-squat (FS) at 80% 1-RM. The normalized surface
electromyographic root-mean-square (sEMG RMS) amplitude of gluteus maximus, gluteus medius,
rectus femoris, vastus lateralis, vastus medialis, adductor longus, longissimus, and iliocostalis was recorded
during both the ascending and descending phase of each exercise. During the descending phase,
greater sEMG RMS amplitude of gluteus maximus and gluteus medius was found in FS vs. all other
exercises (p < 0.05). Additionally, FS elicited iliocostalis more than all other exercises. During the
ascending phase, both sumo-BS and external-rotated-sumo-BS showed greater vastus lateralis and
adductor longus activation compared to all other exercises (p < 0.05). Moreover, rectus femoris activation
was greater in FS compared to full-BS (p < 0.05). No between-exercise difference was found in
vastus medialis and longissimus showed no between-exercise difference. FS needs more backward
stabilization during the descending phase. Larger feet-stance increases thigh muscles activity, possibly
because of their longer length. These findings show how bodybuilders uniquely recruit muscles
when performing different squat variations.

Keywords: EMG; quadriceps; gluteus maximus; adductor longus; weight training; strength training;
front squat; back squat; feet stance

1. Introduction

The squat is one of the most popular exercises used to elicit lower-limb strength,
hypertrophy, and power [1–3]. It consists of a simultaneous flexion-extension of the hip,
knee, and ankle joints, with the important role of the lower back muscles that stabilize the
upper body, and consequently the whole movement [4,5]. Particularly, the gluteal, thigh,
and lower back muscles are strongly activated during both the ascending and descending
phase [6–9].

The squat can be performed in a multitude of variations, depending for example on
the place where the barbell is located, the squatting depth, the feet stance, and/or feet
rotation. Consequently, we may have back-squat (BS) or front-squat (FS) when the barbell
is placed over the shoulders or in front of the clavicular line, respectively [10]. Alternatively,
the squatting depth may lead to parallel or full squat, where the descending phase ends
when the thighs are parallel to the ground or below this line, respectively [7]. Furthermore,
the feet stance may be regular or wide, leading in the latter case to a so-called sumo-squat,
where the direction of the feet can be parallel or rotated externally [11]. Obviously, all
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these independent parameters can be miscellaneously used to create many combinations
of squatting techniques and exercises. Among these, full-BS, parallel-BS, FS, sumo-BS, and
external-rotated-sumo-BS are widely performed in practice.

A number of studies have investigated the difference in muscle activation when
different squat variations are performed. Overall, squatting depth was shown to affect
gluteus maximus activation with inconsistent results, with greater activation recorded in
partial vs. full squat performed by young resistance-trained men [12], greater activation
in full vs. partial performed by experienced lifters [7], or no difference when performed
by resistance-trained women [13]. Additionally, quadriceps activation was overall greater
in full vs. partial squat [14]. Interestingly, no difference in muscle activation was found
comparing BS vs. FS performed with 70% 1-RM by healthy men [10], while larger stance
specifically activates medial thigh muscles in experienced lifters [15], although no difference
was found in gluteal muscles activation [11].

Bodybuilders have a unique capacity to perform exercises with a profound consistency
of their technique, and were recently used to investigate the differences in muscle activation
when bench press [16] or shoulder raise variations [17] are performed. Additionally,
examining the muscle activation during both the concentric and the descending phase may
help practitioners to characterize the strength and the hypertrophic stimuli, given both the
short-term [18,19] and long-term unique responses following traditional or eccentric-based
exercise training [2,20–22]. Therefore, the present study investigated the differences in
the gluteal, thigh, and lower back muscles’ activation in bodybuilders when varying the
squatting technique. Particularly, the exercises selected were full-BS, parallel-BS, sumo-
BS, external-rotated-sumo-BS, and FS, and the gluteal, thigh, and lower back muscles’
activation were recorded during both the ascending and descending phase.

2. Materials and Methods
2.1. Study Design

The present investigation was designed as a cross-over, repeated-measures, within-
subject study. The participants were involved in seven different sessions. In the first five
sessions, the 1-RM was measured in full-BS, parallel-BS, sumo-BS, external-rotation-sumo-
BS, and FS in random order. In the sixth session, the participants were familiarized with the
selected loads and the electrodes placement. In the seventh session, the muscles’ maximum
activation was first measured, i.e., the activation during a maximum voluntary contraction.
Then, after a minimum of 30 min of passive recovery, the participant performed a non-
exhausting set for each exercise performed in a random order, with an inter-set pause
of 10 min. Each session was separated by at least three days, and the participants were
instructed to avoid any further form of resistance training for the entire duration of the
investigation.

2.2. Participants

The present investigation was advertised by the investigators during some regional
and national competitions, and to be included in the study, the participants had to compete
in regional competitions for a minimum of 5 years. Additionally, they had to be clinically
healthy, without any reported history of upper-limb and lower back muscle injury and
neurological or cardiovascular disease in the previous 12 months. To avoid possible
confounding factors, the participants competed in the same weight category (Men’s Classic
Bodybuilding <80 kg, <1.70 m), according to the International Federation of Body Building
Pro-League. The use of drugs or steroids was continuously monitored by a dedicated
authority under its regulations, although we could have not checked for it. Thereafter,
10 male competitive bodybuilders (age 29.8 ± 3.0 years; body mass 77.9 ± 1.0 kg; stature
1.68 ± 0.01 m; training seniority 10.6 ± 1.8 years) were recruited for the present procedures.
The participants were asked to abstain from alcohol, caffeine, or similar beverages in
the 24 h preceding the test. After a full explanation of the aims of the study and the
experimental procedures, the participants signed a written informed consent. They were
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also free to withdraw at any time. The current design was approved by the Ethical
Committee of the Università degli Studi di Milano (CE 27/17) and performed following
the Declaration of Helsinki (1975) for studies involving human subjects.

2.3. Maximum Voluntary Isometric Activation

The maximum voluntary isometric activation of gluteus maximus, gluteus medius,
rectus femoris, vastus lateralis, vastus medialis, erector spinae longissimus, and erector
spinae iliocostal was assessed in random order. The electrodes were placed on the dominant
limb, defined as the one preferred to kick a ball [2]. The participants were required to
exert their maximum force against manual resistance. Each attempt lasted 5 s and three
attempts were completed for each movement separated by 3 min of passive recovery [16,17].
The operators provided strong standardized verbal encouragements to push as hard as
possible against the resistance exerted. The surface electromyography (sEMG) electrodes
were placed following the SENIAM recommendations [23]. To check for appropriate
electrodes placement previous procedures were followed [17]. For example, if the electrode
shifted over the innervation zone during part of the movement, the EMG amplitude was
underestimated. Therefore, to check for any consequence due to a possible shift of the
surface electrode over the innervation zone, a Fast-Fourier Transform approach was used,
as suggested in a previous investigation [24]. Briefly, the electrode placement on each
muscle was checked during the warm-up phase of each exercise, analyzing the power
spectrum profile of the sEMG signal recorded at the starting-, middle-, and endpoint of
each exercise in all muscles. The correct electrode placement results in a typical belly-
shaped power spectrum profile of the EMG signal, while noise, motion artifacts, power
lines, and electrodes placed on the innervation zone or myotendinous junction generate
a different power spectrum profile [24]. If the power spectrum did not match with the
typical belly-shaped power spectrum profile in any of the temporal points, the electrodes
were repositioned, and the procedures repeated so to have a clear EMG signal from all the
muscles throughout the movement. The same experienced operator placed the electrodes
and checked the power-spectrum profile. This approach was shown to provide very high
reliability in sEMG data [16,17].

For gluteus maximus, the participants laid prone with the flexed knee and the electrode
was placed below the line between the posterior-superior iliac spine and the trochanter
major [13]. The participants were then asked to extend the hip against a manual resistance
on the distal thigh [13]. For gluteus medius, the participant laid on a side and the electrodes
were placed at 50% on the line from the crista iliaca to the trochanter. The participant was
then asked to abduct the limb against manual resistance [23]. For rectus femoris, vastus
lateralis, and vastus medialis, the participants sat on a table with the knees in slight flexion
and the trunk slightly bent backward. The electrode were respectively placed at 50% and
2/3 on the line between the anterior-superior iliac spine and the lateral side of the patella
and at 90% on the line between the anterior-superior iliac spine and the joint space in
front of the anterior border of the medial ligament [23]. The participant were then asked
to extend the knee against manual resistance [23]. The adductor longus belly was found
midway between the origin at the pubic tubercle and the insertion at the medial linea
aspera of the femur [25]. To ensure electrode placement, the test leg was passively abducted
and the adductor longus muscle belly was palpated just distal to the muscle’s tendon,
traced from the pubic tubercle on the medial side of the leg, and the participant was then
asked to actively adduct the leg against resistance [25]. For erector spinae longissimus and
iliocostalis, the participant laid prone and the electrodes were respectively placed at 2-finger
width lateral from the processus spinalis of L1 and 1-finger width medial from the line
from the posterior-superior iliac spine to the lowest point of the lower rib, at the level of
L2 [23]. The participant was then asked to extend the trunk against manual resistance [23].

The electrodes were equipped with a probe (probe mass: 8.5 g, BTS Inc., Milano, Italy)
that permitted the detection and the transfer of the sEMG signal by wireless modality.
sEMG signal was acquired at 1000 Hz, amplified (gain: 2000, impedance and the com-
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mon rejection mode ratio of the equipment are >1015 Ω//0.2 pF and 60/10 Hz 92 dB,
respectively), and driven to a wireless electromyographic system (FREEEMG 300, BTS Inc.,
Milano, Italy) that digitized (1000 Hz) and filtered (filter type: IV-order Butterworth filter;
bandwidth: 10–500 Hz) the raw sEMG signals.

2.4. 1-RM Protocol

The squat 1-RM was assessed following previous procedures [26] using an Olympic
bar (Vulcan Standard 20 kg, Vulcan Strength Training System, Charlotte, NC, USA). Briefly,
after a standardized warm-up consisting of 30 weight-free squats, the 1-RM attempts
started from 80% of the self-declared 1-RM and additional 5% or less was added until
failure [27]. Each attempt was separated by at least 3 min of passive recovery. A standard
time under tension (2 s for the ascending and descending phase, 0.5 for the isometric
phase) was used and the participants had to lower the bar until the thighs were parallel
to the ground. A metronome was used to pace the intended duty cycle and a camera was
used to provide a feedback about the squatting technique and depth. Strong standardized
encouragements were provided to the participants to maximally perform each trial.

2.5. Exercises’ Technique Description

The selected exercises are shown in Figure 1, and described here from left to right, first
the upper and then the lower row. In parallel-BS, the bar was placed over the shoulder and
the participants were required to descent until the thighs were parallel to the ground, with
a regular feet stance. In full-BS, the bar was placed over the shoulder and the participants
were required to descent below the parallel thighs, with a regular feet stance. In FS, the bar
was placed in front of the clavicular line and sternum, and the participants were required to
descent until the thighs were parallel to the ground, with a regular feet stance. In sumo-BS,
the bar was placed over the shoulder, and the participants were required to descent until
the thighs were parallel to the ground, with a two-fold feet stance compared to the previous
exercises. In external-rotated-sumo-BS, the participants received the same instructions as
for sumo-BS, with the exception of the feet that were rotated externally. Six non-exhaustive
repetitions were performed for each exercise.

Figure 1. The squat variations are shown. From the left to the right, in the upper row: full-back squat
(BS), parallel-BS, and front squat (FS). In the lower row: sumo-BS and external-rotated-sumo-BS.
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2.6. Data Analysis

The sEMG signals from both the peak value recorded during the maximum voluntary
isometric activation and from the ascending and descending phases of each exercise were
analyzed in time-domain, using a 25-ms mobile window for the computation of the root
mean square (RMS). For the maximum voluntary isometric activation, the average of the
RMS corresponding to the central 2 s was considered. During each exercise, the RMS was
calculated and averaged over the 2 s of the ascending and descending phase. To identify
the ascending and the descending phase, the sEMG was synchronized with an integrated
camera (VixtaCam 30 Hz, BTS Inc., Milano, Italy) that provided the duration of each phase.
Such a duration was used to mark the start and the end of each phase while analyzing the
sEMG signal. The sEMG data were averaged excluding the first repetition of each set, to
possibly have more consistent technique during the following repetitions. After, the sEMG
RMS of each muscle during each exercise was normalized for its respective maximum
voluntary isometric activation [16,17,27] and inserted into the data analysis.

2.7. Statistical Analysis

The statistical analysis was performed using a statistical software (SPSS 22.0, IBM,
Armonk, NY, USA). The normality of data was checked using the Shapiro–Wilk test and all
distributions were normal. Descriptive statistics are reported as mean (SD). The differences
in the normalized EMG RMS were separately calculated for each exercise (5 levels) and
phase (2 levels) using a two-way repeated-measures ANOVA. Multiple comparisons were
adjusted using the Bonferroni’s correction. Significance was set at p < 0.05. The differences
are reported as mean with 95% of confidence interval (95%CI). Cohen’s d effect size (ES)
with 95% confidence interval (CI) was reported and interpreted according to the Hopkins’
recommendations: 0.00–0.19: trivial; 0.20–0.59: small: 0.60–1.19: moderate; 1.20–1.99: large;
≥2.00: very large [28].

3. Results

The 1-RM were as follows: 215(28) kg for full-BS, 238(31) kg for parallel-BS, 255(36) kg
for sumo-BS, 258(41) kg for external-rotated-sumo-BS, and 176(33) kg for FS.

The results for gluteus maximus are shown in Figure 2. No phase x exercise interaction
(p = 0.197) was found for the normalized RMS of gluteus maximus. A main effect was found
for factor phase (p < 0.001), but not exercise (p = 0.097). With the exception of FS (11.1%,
−6.5% to 28.8%, p = 0.11; ES: 0.48, −0.43 to 1.48), greater normalized RMS was found
during the ascending vs. descending phase in all exercises (16.0% to 41.1%, p < 0.05; ES:
1.55 to 3.99). During the ascending phase, no between-exercise difference was observed.
During the descending phase, greater normalized RMS was found in FS vs. full-BS (46.6%,
8.4% to 84.8%, p = 0.017; ES: 2.94, 1.58 to 4.05), parallel-BS (40.9%, 14.0% to 67.9%, p = 0.005;
ES: 2.58, 1.31 to 3.63), sumo-BS (40.1%, 7.1% to 73.0%, p = 0.017; ES: 2.38, 1.16 to 3.41), and
external-rotated-sumo-BS (44.9%, 10.3% to 79.5%, p = 0.012; ES: 2.83, 1.49 to 3.92).

The results for gluteus medius are shown in Figure 2. No phase x exercise interaction
(p = 0.157) was found for the normalized RMS of gluteus medius. A main effect was found
for factor phase (p = 0.002), but not exercise (p = 0.125). Greater normalized RMS was
found during the ascending phase in full-BS (12.0%, 9.1% to 15%, p < 0.001; ES: 2.92, 1.56
to 4.02) and external-rotated-sumo-BS (12.9%, 4.2% to 21.7%, p = 0.010; ES: 1.57, 0.51 to
2.49). During the ascending phase, no between-exercise difference was observed. During
the descending phase, greater normalized RMS was found in FS vs. full-BS (19.0%, 4.9%
to 33.1%, p = 0.010; ES: 2.16, 0.98 to 3.16), parallel-BS (13.6%, 0.4% to 26.8%, p = 0.016; ES:
1.35, 0.10 to 2.70), sumo-BS (17.5%, 5.4% to 29.6%, p = 0.006; ES: 1.90, 0.78 to 2.86), and
external-rotated-sumo-BS (19.4%, 7.3% to 31.5%, p = 0.003; ES: 2.10, 0.93 to 3.08).
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Figure 2. The surface electromyographic root-mean-square (sEMG) RMS amplitude of gluteus maximus and gluteus medius
is shown. BS: back squat. *: p < 0.05 ascending vs. descending phase. a: p < 0.05 vs. full-BS. b: p < 0.05 vs. parallel-BS. c:
p < 0.05 vs. sumo-BS. d: p < 0.05 vs. external-rotated-sumo-BS.

The results for rectus femoris are shown in Figure 3. Phase x exercise interaction
(p = 0.038) was found for the normalized RMS, and no main effect was found for factor
phase (p = 0.417) and exercise (p = 0.231). Greater normalized RMS was found during
the ascending compared to the descending phase in FS (30.1%, 7.8% to 52.3%, p = 0.015;
ES: 1.35, 0.33 to 2.25). During the ascending phase FS showed greater normalized RMS
than full-BS (24.0%, 1.9% to 46.0%, p = 0.032; ES: 1.21, 0.21 to 2.11). No between-exercise
difference was found during the descending phase.

The results for vastus lateralis are shown in Figure 3. Phase x exercise interaction
(p = 0.026) was found for the normalized RMS, and a main effect was found for factor
phase (p = 0.011), but not exercise (p = 0.457). Compared to the descending phase, greater
normalized RMS was found during the ascending phase in full-BS (22.1%, 6.1% to 38.1%,
p = 0.013; ES: 1.60, 0.54 to 2.53), sumo-BS (28.8%, 8.4% to 49.1%, p = 0.012; ES: 1.64, 0.57
to 2.58), and external-rotated-sumo-BS (30.0%, 14.6% to 45.5%, p = 0.002; ES: 1.26, 0.25 to
2.16). During the ascending phase, both sumo-BS (19.8%, 0.8% to 38.8%, p = 0.040; ES: 0.97,
0.01 to 1.85) and external-rotated-sumo-BS (23.0%, 3.8% to 42.1%, p = 0.019; ES: 0.88, −0.07
to 1.76) had greater normalized RMS than FS. No between-exercise difference was found
during the descending phase.

The results for vastus medialis are shown in Figure 3. No phase x exercise interaction
(p = 0.133) was found for the normalized RMS, and a main effect was found for factor
phase (p < 0.001), but not exercise (p = 0.102). Compared to the descending phase, greater
normalized RMS was found during the ascending phase in full-BS (25.2%, 11.8% to 38.5%,
p = 0.003; ES: 1.06, 0.08 to 1.94) and sumo-BS (25.9%, 10.6% to 41.2%, p = 0.005; ES: 1.27,
0.26 to 2.17). No between-exercise difference was observed during both the ascending and
descending phase.

The results for adductor longus are shown in Figure 3. Phase x exercise interaction
(p = 0.032) was found for the normalized RMS, and a main effect was found for factor phase
(p < 0.001) and exercise (p = 0.021). Compared to the descending phase, greater normalized
RMS was observed during the ascending phase in all exercises (ES: 2.25 to 5.39). During
the ascending phase, greater normalized RMS was found in external-rotated-sumo-BS than
full-BS (17.9%, 1.7% to 34.0%, p = 0.029; ES: 2.01, 0.86 to 2.98), parallel-BS (16.7%, 3.0% to
30.3%, p = 0.017; ES: 1.47, 0.43 to 2.39), and FS [26.9%, 7.3% to 46.5%, p = 0.009; ES: 2.64,
1.35 to 3.70). Greater normalized RMS was also found for sumo-BS than FS (19.7%, 5.6% to
33.9%, p = 0.008; ES: 2.15, 0.98 to 3.14).
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Figure 3. The surface electromyographic root-mean-square (sEMG) RMS amplitude of rectus femoris, vastus lateralis, vastus
medialis and adductor longus is shown. BS: back squat. *: p < 0.05 ascending vs. descending phase. a: p < 0.05 vs. full-BS. b: p
< 0.05 vs. parallel-BS. e: p < 0.05 vs. parallel front squat.

The results for erector spinae longissimus are shown in Figure 4. Phase x exercise
interaction (p = 0.004) was found for the normalized RMS, and a main effect was found for
factor phase (p = 0.015), but not exercise (p = 0.477). Compared to the descending phase,
greater normalized RMS was found during the ascending phase in full-BS (39.6%, 16.0%
to 63.1%, p = 0.005; ES: 1.76, 0.67 to 2.71). No between-exercise difference was observed
during both ascending and descending phase.

Figure 4. The surface electromyographic root-mean-square (sEMG) RMS amplitude of erector spinae longissimus and erector
spinae iliocostalis is shown. BS: back squat. *: p < 0.05 ascending vs. descending phase. a: p < 0.05 vs. full-BS. b: p < 0.05 vs.
parallel-BS. c: p < 0.05 vs. sumo-BS. d: p < 0.05 vs. external-rotated-sumo-BS.
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The results for erector spinae iliocostalis are shown in Figure 4. Phase x exercise interac-
tion (p = 0.020) was found for the normalized RMS, and a main effect was found for factor
exercise (p = 0.040), but not phase (p = 0.431). Compared to the descending phase, the
normalized RMS was greater during the ascending phase in full-BS (9.4%, 4.5% to 14.3%,
p = 0.003; ES: 1.91, 0.78 to 2.87) and lower in FS (−10.4%, −18.6 to −2.3, p = 0.019; ES: −1.14,
−2.03 to −0.15). During the descending phase, FS showed greater normalized RMS than
full-BS (22.9%, 14.6% to 31.2%, p < 0.001; ES: 3.29, 1.84 to 4.46), parallel-BS (18.1%, 0.5% to
35.7%, p = 0.043; ES: 2.37, 1.14 to 3.39), sumo-BS (18.2%, 12.1% to 24.3%, p < 0.001; ES: 2.14,
0.97 to 3.13), and external-rotated-sumo-BS (19.2%, 7.1% to 31.2%, p = 0.004; ES: 2.43, 1.19
to 3.46). No between-exercise difference was found during the ascending phase.

4. Discussion

The current study examined how different squat variations influence the activation
of the main muscles involved in these exercises. Both gluteus maximus and gluteus medius
were more active during the descending phase of FS compared to all other exercises. Rectus
femoris was more active during the ascending phase of FS compared to full-BS compared
to all other exercises, while no between-exercise difference was visible for vastus medialis.
Vastus lateralis and adductor longus were more active during the ascending phase of sumo-BS
and external-rotation-sumo-BS compared to all other exercises. Lastly, while no between-
exercise difference was observed for erector spinae longissimus, erector spinae iliocostalis was
more active during the descending phase of FS elicited compared to all other exercises. As
such, varying the squatting technique seems to affect selectively the muscle activation.

4.1. Gluteal Muscles

FS showed very large increases in the gluteus maximus activation compared with all
other exercises during the descending phase, with no between-exercise difference recorded
during the ascending phase. A direct comparison with the literature is challenging, since
few previous studies used similar design. When recording the sEMG RMS amplitude of
gluteus maximus and distinguishing the ascending from the descending phase, no difference
in FS vs. BS was found [29]. However, the load was maximal and performed by healthy men
that limits the inference towards the present population. Additionally, we found that the
gluteus maximus activation recorded here is much greater compared to the aforementioned
study (e.g., 70% vs. 30% of the maximum activation during the descending phase of
FS), which underlines the capacity of bodybuilders to increase muscle activation while
training [30]. Moreover, no difference in gluteus maximus activation was found comparing
FS, full-BS, and parallel-BS in trained women [13]. However, the authors did not specifically
state which phase (ascending or descending or both) was examined, since it leads to argue
that these findings are consistent with the no between-exercise difference recorded here
during the ascending phase. Additionally, FS vs. BS was previously investigated, but no
gluteal muscle was examined [10]. Lastly, the effect of stance does not seem to play a key
role in gluteus maximus activation, which contrasts with the greater activation reported
at greater stance [11,15]. Again, it is possible that the present bodybuilders population
may have cancelled such a difference, since they were able to recruit the gluteus maximus
more than just experienced lifters irrespectively of the stance. Similarly, gluteus medius
resulted in greater activation during the descending phase of FS compared to all other
exercise, with no between-exercise difference during the ascending phase. In a previous
study, no difference in gluteus medius activation was observed when increasing the feet
stance, confirming the present findings [11]. Taking all together, gluteal muscles seem to be
particularly involved during the descending phase of FS. This may derive from the need to
maintain an adequate trunk extension to avoid the barbell slipping forward (i.e., gluteus
maximus), and to avoid a medial collapsing of the knees (i.e., gluteus medius), particularly
when controlling the descending phase. As such, a frontal barbell placement seems to be a
good option to increase the stimuli towards gluteal muscles while squatting.

176



Int. J. Environ. Res. Public Health 2021, 18, 772

4.2. Thigh Muscles

Rectus femoris showed greater activation in FS compared to full-BS during the ascend-
ing phase, with no other between-exercise differences. The lack of differences between
full-BS and parallel-BS agrees with the no-difference found previously in powerlifters
or weightlifters [31] or in healthy resistance-trained men [12]. Similarly with previous
results, no difference in rectus femoris activation was reported when varying the squatting
stance [11]. The reduced activation in full-BS vs. FS can be possibly explained by the
greater rectus femoris length forced by the more vertical trunk in FS, which agrees with
the greater work performed by the aforementioned gluteal muscles. Indeed, since rectus
femoris acts as hip flexor, a more extended trunk corresponds to a longer length throughout
the whole movement, thus increasing its activation as previously shown for deltoids [17]
and triceps [32]. Both the sumo squats showed greater activation in vastus lateralis vs. FS.
As suggested previously, larger stance makes hip and knee joint to exert more force to lift
the load due to the non-favorable less vertical lever, thus increasing their recruitment [15].
Indeed, larger stance was shown to increase the vastus lateralis activation [33], rather than an
external feet rotation alone, as previously reported [34]. Moreover, vastus medialis showed
no between-exercise difference, with all exercises highly recruiting it. This may depend
by the role of profound stabilizer of the patella across all movements, that enhances its
activation when high loads have to be lifted. Lastly, larger stance and feet external rotation
increased the adductor longus activation. This may depend on the need to stabilize the
thigh position and keep the trajectory as vertical as possible in conjunction with the thigh
external rotators, and on the longer muscle length at which adductor longus act at larger
squat stance [11,15,35]. Taking together, larger feet stance may be used as an effective
stimulus to increase the thigh muscles activity and could be implemented in the training
practice accordingly.

4.3. Lower Back Muscles

Erector spinae longissimus showed no between-exercise difference, displaying a great
activation across all exercises and during both the ascending and descending phase. In line
with our results, no difference was found between BS and FS in experienced lifters [10],
not even at different squatting depth in resistance trained men [12]. The study that in-
vestigated the effects of feet stance did not examine any lower back muscle [11,15,36], so
a direct comparison cannot be made. However, given the high load and the consistent
squatting technique, it is possible that the feet stance does not play a role in the erector
spinae longissimus activation. Intriguingly, the activation of erector spinae iliocostalis was
greater in FS compared with all other exercises during the descending phase. This may
imply that FS needs additional balance control by mean of the trunk extensors to avoid
any possible forward unbalancing. However, it should be noted that the net activation
was much lesser than what observed in longissimus, meaning that the whole trunk and not
only the lower back is involved in stabilizing the body. Lastly, both erectors’ activation
was greater during the ascending vs. descending phase in full-BS. This may be accounted
for the very closed joint angles that could need an additional backward action to start the
movement from a non-favorable body position. In practice, in conjunction with the greater
stimulus for the gluteal muscles, FS might be recommended to enhance the work of the
lower back muscles.

4.4. Limitations

A number of limitations should be acknowledged. First, there is no information of
any rear thigh muscle (e.g., biceps femoris) that could have deepened the between-exercise
differences. Second, similarly, the stabilizer role of any anterior trunk muscle (e.g., rectus
abdominis) was not examined. Third, we selected a group of squat variations among several
possible different combinations, that cannot be examined in a single study, so further
research is needed to widen these aspects. Fourth, adding kinematic data would deepen
the knowledge and should be considered in future research. Last, it is acknowledged that
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the present results are specific for the present populations, and different sport background
may result in different muscle activation.

5. Conclusions

In conclusion, the present study showed different muscle activation depending on the
squat variation in competitive bodybuilders. A front vs. back bar position led to greater
gluteal and lower back muscles activation compared to all other exercises. Additionally,
larger feet stance increases the thigh muscles activation, particularly rectus femoris, vastus
lateralis, and adductor longus. Lastly, squatting depth does not seem to promote any specific
difference in muscle activation, with the exception of the greater rectus femoris activation
in FS vs. full-BS. These findings could be used in resistance training practice to vary the
training stimuli when performing the squat exercises depending on the muscle group
needed to be highlighted. Additionally, the specific differences observed during the
ascending or descending phase may increase the specificity of the training-induced effects.
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Abstract: Environmental heat stress poses significant physiological challenge and impairs exercise
performance. We investigated the impact of wrist percooling on running performance and
physiological and perceptual responses in the heat. In a counterbalanced design, 13 trained males
(33 ± 9 years, 15 ± 7% body fat, and maximal oxygen consumption, VO2max 59 ± 5 mL/kg/min)
completed three 10 km running time trials (27 ◦C, 60% relative humidity) while wearing two cooling
bands: (1) both bands were off (off/off), (2) one band on (off/on), (3) both bands on (on/on). Heart rate
(HR), HR variability (HRV), mean arterial pressure (MAP), core temperature (TCO), thermal sensation
(TS), and fatigue (VAS) were recorded at baseline and recovery, while running speed (RS) and rating
of perceived exertion (RPE) were collected during the 10 km. Wrist cooling had no effect (p > 0.05) at
rest, except modestly increased HR (3–5 ∆beats/min, p < 0.05). Wrist percooling increased (p < 0.05)
RS (0.25 ∆mi/h) and HR (5 ∆beats/min), but not TCO (∆ 0.3 ◦C), RPE, or TS. Given incomplete trials,
the distance achieved at 16 min was not different between conditions (off/off 1.96 ± 0.16 vs. off/on
1.98 ± 0.19 vs. on/on 1.99 ± 0.24 miles, p = 0.490). During recovery HRV, MAP, or fatigue were
unaffected (p > 0.05). We demonstrate that wrist percooling elicited a faster running speed, though
this coincides with increased HR; although, interestingly, sensations of effort and thermal comfort
were unaffected, despite the faster speed and higher HR.

Keywords: exercise; cooling; recovery; fatigue; thermal; environment; endurance

1. Introduction

Environmental stress, specifically heat stress, increases demand placed on the cardiovascular
system [1,2]. Exercise also induces stress on the cardiovascular system, and the combination of heat
stress with exercise can lead to a physiological challenge where demands for blood flow begin to
challenge the maximal output of the heart, eventually leading to fatigue, exhaustion, and/or a decline
in performance [1–7].

Accordingly, researchers have been developing strategies to prevent heat stress associated
declines in exercise performance. One such approach has been the use of precooling, or reducing
body temperature prior to exercise in the heat [4,8,9]. A review suggested that precooling via
cold water immersion likely benefits performance, where ingestion of crushed ice/water ice slurry
does not likely benefit performance [4]. Although the benefits of precooling, such as with cold
water immersion, are not to be ignored, the issue of practicality raises concern over feasibility of
implementation, and thus alternative methods ought to be explored. Strategies of attempting to cool
during exercise, termed percooling, have demonstrated a positive effect on exercise performance, on
par with precooling [8,9], though studies of percooling are far less abundant.
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Recently, a company has developed a wearable, active cooling method (dhamaSPORTtm,
DhamaUSA, Scotts Valley, CA, USA) that is light weight (115 g, 6 cm wide) and can be worn
on the wrist during activity while posing minimal disruption or burden to the athlete (e.g., ice vest).
While we have demonstrated that this wrist cooling device improved physiological recovery and
reduced fatigue from an occupationally relevant model of exercise-induced heat stress [10], it has yet
to be determined whether wrist percooling is capable of improving endurance performance in the
heat, and if this might impact post-exercise recovery. Aside from the obvious potential to provide
cooling, mitigating exercise-induced elevations in core temperature, surface percooling might activate
the transient receptor potential melastatin 8 (TRPM8) “cold receptor”, which might alter thermal
sensation and/or exercise performance [11]. Further, recent work by Phillips et al. [7] suggests that
cooling can modulate prefrontal cortex activation, perceptions of muscle fatigue or effort, and partially
mitigate declines in local muscle performance. However, the impact of wrist percooling on perceptual
responses during exercise in hypothermia is unknown.

Therefore, the purpose of this study was to investigate whether the wrist cooling improves
exercise performance in the heat or lessen physiological strain, and if this effect is “dose-dependent.”
We hypothesized that wrist percooling would reduce perceptions of effort and thermal stress, reduce
heart rate, and/or improve performance on a 10 km running time trial, and these effects would be
greater with the active cooling of both wrists. Second, use of the cooling bands would improve recovery
as assessed by heart rate, heart rate variability, core temperature, and reduce fatigue and thermal
sensations, all of which would also be greater with the active cooling of both wrists.

2. Materials and Methods

2.1. Subjects

Fourteen exercise-trained healthy male volunteers between the ages of 18 and 54 years were
recruited for this study (Figure 1). To participate in this study, all participants must have been regularly
exercise training for more than one hour at least three times a week for the past four months, have a
maximal oxygen consumption (VO2max) of >45 mL/kg/min, and >1 year of experience in competing in
running events (e.g., 5 km, 10 km, half-, full-, ultra-marathon, half-, full-ironman, etc.). Participants were
screened, via health history, and those with cardiovascular, pulmonary, musculoskeletal, or metabolic
disease, those taking regular medication, or presenting contraindications to the ingestible telemetry
pill (n = 1) were excluded. Methodologically, women were excluded to avoid the long periods of time
that would be necessary (up to 3 months) to ensure adequate recovery with parallel desire for testing
to occur in a singular phase of the menstrual cycle, thus reducing the impact of hormonal fluctuations.
All participants provided written informed consent prior to any testing. The protocol was approved by
the Institutional Review Board of Skidmore College (IRB # 1612-568) and was conducted in accordance
with the most recent revisions to the Declaration of Helsinki.
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2.2. Study Overview

The current study was conducted in a single blind, counterbalanced, crossover design to investigate
the potential impact of wrist cooling on performance in, and recovery from, exercise in the heat (Figure 1).
As the number of participants did not equal or equally multiply by the number of possible sequences
of three trials, we used a Latin square approach to counterbalance. All testing was conducted in
the Environmental Physiology Laboratory at Skidmore College. For each visit, participants were
asked to avoid strenuous exercise for 24 h prior and alcohol/caffeine use 12 h prior to each study visit.
Participants were instructed to maintain a similar diet and sleep regimen throughout the duration of
the study. Participants were asked to wear shorts and t-shirt and to dress similarly across trials. Finally,
participants were instructed to arrive each day fueled and hydrated as if preparing for a race, which
included drinking the proper amount of fluids prior to each experimental visit (e.g., ~500 mL 2–3 h
prior and 250 mL within 15 min of the visit). All participants reported to the laboratory on four separate
occasions: a screening day and three experimental trials. While wearing two cooling bands, the three
trials were conducted as follows: (1) both bands were off (off/off), (2) one band on (off/on), (3) both
bands on (on/on). In the off/on condition, the right wrist was always activated. All experimental
trials for a subject were completed at the same time of day to reduce impact of diurnal variation. In a
thermoneutral (21 ± 1 ◦C, 29 ± 12% relative humidity) and normobaric (~750 mmHg) environment,
the first screening visit assessed participant characteristics, which included anthropometrics (height,
weight), body composition using air displacement plethysmography (BodPod, Cosmed, Chicago, IL,
USA), and aerobic fitness via graded exercise testing on a treadmill (PPS Med, Woodway, Waukesha,
WI, USA). A running protocol (modified McConnell) [12,13] was used to determine maximal oxygen
consumption (VO2max) using open circuit spirometry and gas analysis (TrueOne 2400, Parvomedics,
Sandy, UT, USA) [14]. Prior to each experimental trial, participants were given an FDA approved core
temperature telemetry pill (HQ Inc, Palmetto, FL, USA), which was taken 8–12 h prior to the study
visit [15,16].

2.3. Procedures

Upon arrival, a urine sample was collected and hydration status was confirmed via urine specific
gravity (USG < 1.020) as described previously [17]. If USG was >1.020, participants were given
500 mL of water and USG was retested thereafter (though as the participants were familiar with race
preparations, this only occurred once out of 39 total visits). Participants were then instrumented with a
heart rate monitor (H7, Polar USA, Lake Success, NY, USA), and the presence of the core temperature
telemetry pill was confirmed (CorTemp Recorder, HQ Inc, Palmetto, FL, USA). Participants were then
seated and were outfitted with two wrist cooling bands (Dhama Sport Pro, Dhama USA, Scott’s Valley,
USA) (Figure 2). In the “on” condition, the bands were activated and set to the coolest setting (7.2 ◦C).
While we attempted to avoid investigator cues and reduce possible anticipatory responses by single
blinding and not making the participants’ aware of which condition they were receiving, when the
band was active, participants’ were able to detect the cooling, but when the band was off (off/off

condition) they were unsure. The device elicits cooling through a one-inch square ceramic cooling
plate placed over the anterior vascular portion of the wrist, which dissipates heat via Peltier effect
over a larger heat sink area on the exterior portion of the device. The heat transfer rate for this
device ranges from 0.2 to 200 watts, with typical values of 0.5–50 watts, depending upon ambient
conditions. After 10 min of quiet rest, a one minute [18], breathing frequency paced [19], recording of
heart rate (HR) and R-R intervals were obtained via HR monitor, sent to a mobile device (IPad Pro,
Apple, Cupertino, CA, USA) via Bluetooth™ and analyzed by a mobile device application (Elite HRV,
Gloucester, MA, USA). The Elite HRV application performs artifact correction and has been shown
to be valid [20] and has been used in previous studies [10,20–22]. Specifically, along with mean HR,
R-R intervals were analyzed for the standard deviation of R-R intervals, SDNN; root mean square of
successive differences, RMSSD; and the log transformed RMSSD, LnRMSSD. HRV was measured to
assess potential impacts of wrist cooling on recovery as it is an increasingly recognized method to assess
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or monitor athlete acute and chronic physiological response to training, or recovery and readiness
to train [22–26]. After HR and HRV were obtained, to further characterize potential impacts of wrist
cooling on recovery, blood pressure (BP) was measured via oscillometric cuff method (Mobilograph,
GmbH, Stolberg, Germany) [27–29], after which thermal sensation/comfort via thermal sensation (TS)
scale (0 “unbearably cold” to 8 “unbearably hot”), and fatigue via a visual analog scale (0 “no fatigue”
to 10 “severe fatigue”) were recorded.
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Figure 2. Raw performance data for all trials (n = 13): (A) average run time, including incomplete trials
across condition; (B) number of incomplete trials across condition; and (C) average time to incompletion
across conditions. Data are means ± Standard Error.

Participants were then allowed to warm up for a maximum of 5 min outside the chamber in the
thermoneutral laboratory, typically followed by use of the restroom to void their bladder. Subsequently,
participants entered the heated environmental chamber (26.7 ◦C, 60% relative humidity, heat index of
28 ◦C, “caution”) and were instructed to complete the 10 km time trial (~6.2 miles, since the treadmill
was in English units) as fast as possible at 0% grade. Thus, participants were able to see their speed and
allowed direct control of the treadmill speed. Verbal encouragement was provided to all participants
in a consistent manner between subjects and across trials. Participants were allowed to drink water,
ad libitum, during all trials, but were asked to consume fluid in a similar volume and manner across
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trials, matched for their first trial completed. During exercise, participants were asked to report their
thermal sensation, rating perceived exertion using standardized visual scales every 5 min, while HR
and core temperature (TCO) were monitored continuously and recorded every minute. Due to safety
concerns, and institutional restrictions, in effort to avoid heat related injury, if core temperature reached
two consecutive measures of 39.1 ◦C, or a single measure of 39.2 ◦C or higher, the trial was ended
and the participant was immediately removed from the chamber and into a cool-down period in the
thermoneutral laboratory. In such case, post-measures were obtained in an identical manner as if they
had completed the trial.

Once the 10 km trial was completed, participants were escorted from the chamber and completed
a 5 min cool-down, walking on a treadmill in the thermoneutral laboratory. HR and TCO were
continuously monitored for safety reasons. Fifteen minutes after the cessation of the exercise,
a post-exercise assessment of the baseline measures, except USG, was performed, namely: VAS,
thermal sensation, core temperature, HR, HRV, and BP. The timing of the post-exercise measurements
was maintained for all trials, including those that were ended due to core temperature reaching our
institutional safety threshold. Once post-exercise measures were obtained, the wrist cooling units were
turned off and removed. Participants reported back to the laboratory to complete the other two trials
in a randomized counterbalanced order as described above. Visits were completed with a minimum of
48 h in between (average time between visits ~72 h).

2.4. Statistical Analysis

Data were analyzed using commercially available software (SPSS v26, IBM, Armonk, NY, USA)
As the number of athletes who reached our institutional safety cutoff turned out to be larger than
anticipated, additional analyses were conducted to compare the number of incomplete trials between
wrist percooling conditions using a chi square test, and pairwise comparisons were used to determine
if the time to incompletion differed between conditions. Further, a Kaplan–Meier survival curve
analysis was conducted to compare the rate and time of incompletion using a log rank test. Again, due
to athletes’ core temperatures reaching our institutional safety cutoff, to allow direct time-matched
pairwise comparisons between trials, all trial data were analyzed to the point at which we had complete
data for all participants (16 min), as well as the final data point for each participant. The final data
point was either the final data at incompletion due to reaching the temperature cutoff or the final value
at the end of the 10 km time trial. Thus, data were analyzed and plotted to the longest common time,
plus each athlete’s final data point, and only for one athlete in one condition were 16 min and final the
same. Further, to estimate effects of wrist percooling on 10 km time trial performance, if the trial was
incomplete for reaching core temperature cutoff (see Figure 2), trial performance was estimated using
average running speed for the trial.

Prior to analysis, any anomalous individual data points presenting as an outlier (>2 SD) were
removed from the data set, and where appropriate, interpolated using a linear function. Accordingly,
heart rate, core temperature, and speed were analyzed using a 3 (condition) by 17 (time, 16 min + final)
repeated measures ANOVA. For RPE and TS, a 3 (condition) by 4 (time) repeated measures ANOVA
was completed. To compare the pre- and post-measurements, a 3 (condition) by 2 (time) repeated
measures ANOVA was completed for HR, core temperature, RMSSD, MAP, SDNN, LnRMSSD, diastolic
blood pressure (DBP), systolic blood pressure (SBP), VAS, RPE, and TS Significance was established at
p < 0.05. Data are presented as means ± standard deviation (SD), unless indicated otherwise.

3. Results

3.1. Participant Characteristics

The participant characteristics are presented in Table 1. Most participants (n = 10 of 13) were
active triathletes, having competed in half or full distance Ironman events as well as running events,
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but all had road and/or trail running racing experience. Participants were fit, with an average VO2

max of 59 mL/kg/min (range 50–71), particularly considering their average age of 33 years.

Table 1. Subject characteristics (n = 13).

Variable Means ± SD

Age (years) 32.6 ± 8.9
Height (cm) 178.6 ± 9.1
Weight (kg) 76.9 ± 8.0
Body Mass Index (kg/m2) 24.1 ± 2.1
VO2Max (mL/kg/min) 59.1 ± 5.2
Body Fat % 14.8 ± 6.8
Fat Free % 80.5 ± 15.3
Body Fat Mass (kg) 11.5 ± 5.4
Body Fat Free Mass (kg) 65.4 ± 7.4

3.2. Effects of Wrist Cooling on Baseline Parameters

No significant differences were found in resting core temperature, indicators of heart rate variability,
blood pressure, thermal sensation, rating of perceived exertion, or in reported fatigue using a visual
analog scale between conditions (Table 2). However, use of the bands tended to affect heart rate
(p = 0.05), where HR was elevated by ~5 beats/min in the off/on condition (Table 2).

Table 2. Pre- and post-measurements for all three conditions (n = 13).

Variable Off/Off Off/On On/On

HR (beats/min) Pre 56.0 ± 7.0 61.0 ± 8.0 # 59.0 ± 6.5
Post 86.0 ± 6.0 87.0 ± 6.0 87.0 ± 6.8 *,†

Core Temperature
(◦C)

Pre 37.0 ± 0.5 37.2 ± 0.6 37.1 ± 0.7
Post 38.0 ± 1.0 37.3 ± 1.6 37.8 ± 1.0

MAP (mmHg) Pre 106 ± 11 109 ± 11 106 ± 10
Post 101 ± 6 104 ± 8 99 ± 11 *

SBP (mmHg) Pre 124 ± 13 125 ±13 120 ±12
Post 119 ± 10 120 ± 9 113 ± 16

DBP (mmHg) Pre 85 ± 12 85 ± 12 86 ± 10
Post 81 ± 8 80 ± 10 80 ± 10*

LnRMSSD (a.u.) Pre 4.6 ± 0.4 4.5 ± 0.4 4.56 ± 0.5
Post 3.4 ± 0.5 3.5 ± 0.7 3.4 ± 0.6 *

SDNN (ms) Pre 159.0 ± 65.4 133.8 ± 36.3 146.5 ± 45.6
Post 59.6 ± 28.2 64.1 ± 45.1 64.5 ± 29.1 *

TS (0–8) Pre 3.4 ± 0.6 3.2 ± 0.4 3.5 ± 0.6
Post 4.6 ± 0.9 4.2 ± 1.2 4.5 ± 0.8*

RPE (1–10) Pre 2.0 ±1.0 1.5 ± 0.7 2.0 ± 0.6
Post 4.5 ± 1.6 5.0 ± 2.0 4.0 ± 2.0 *

Fatigue (VAS 1–10) Pre 1.4 ± 1.3 1.7 ± 1.1 1.2 ± 1.0
Post 6.2 ± 1.8 6.4 ± 1.6 5.3 ± 2.5 *

HR, heart rate; MAP, mean arterial pressure; SBP, systolic blood pressure; DBP, diastolic blood pressure; LnRMSSD,
natural log transformed root mean squared of successive differences; A.U., arbitrary units; SDNN, standard deviation
of normal R-R intervals; Msec, milliseconds; TS, thermal sensation; RPE, rating of perceived exertion; VAS, visual
analog scale. * main effect of time; † main effect of condition, # vs. off/off, p < 0.05. Note: all time effects were
p < 0.05 pre vs. post. Means ± SD.

3.3. Ten km Time Trial Performance

Raw running time, including any incomplete trials, tended to decrease with the use of the bands
(Figure 2A, off/on p = 0.14 and on/on p = 0.08 vs. off/off). However, due to participants reaching our
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institutionally mandated core temperature safety cut off, and importantly not of volitional means, this
aforementioned time is tainted by a number of incomplete trials that tended to increase with the use of
the bands (Figure 2B), and trended to an earlier incompletion time (Figure 2C). Chi squared analysis
found that the proportion of incomplete trials did not significantly differ by condition (p = 0.16),
nor were times to incompletion also not different between trials (pairwise comparisons, p = 0.51–0.81).
Additionally, Kaplan–Meier survival curve analysis using a log rank test revealed no significant
differences in survival distribution between wrist percooling conditions (p = 0.14, Figure 3).
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Figure 3. Kaplan–Meier survival curve across time (seconds) between wrist cooling conditions during
the 10 km time trial.

There was a significant interaction of wrist percooling condition and time on running speed,
where RS tended to increase more over time with wrist percooling (Figure 4A), though there was no
main effect for condition (p = 0.13). Focusing on the time to which all participants had completed,
the distance achieved at 16 min was not different between conditions (off/off 1.96 ± 0.16 vs. off/on
1.98 ± 0.19 vs. on/on 1.99 ± 0.24 miles, p = 0.490, Figure 4B). Using both actual or projected 10 km times,
there was no statistically significant effect of the bands (off/on p = 0.49 on/on p = 0.77 vs. off/off), despite
a tendency for an approximate 30 s improvement in 10 km time for the off/on condition and a 10 s
improvement in 10 km time in the on/on condition (off/off: 50:14.6, off/on: 49:45.9, on/on: 50:04.2 min:s).
Using only those with complete trials, within a condition, the trend is less clear (off/off: 49:17.4, off/on:
50:02.3, on/on: 48:51.3 min:s).
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Figure 4. Running performance across wrist percooling condition. (A) Self-selected running speed
during the 10 km time trial in the heat. Results of two-way ANOVA are presented (inset). Note: due to
safety tolerance in core temperature trials were ended early and plotted to the shortest time, plus each
athlete’s final data point (with SE for time). (B) Distance to 16 min across wrist percooling condition
(n = 13). This time was chosen as it was the longest point to which all participants completed at least
16 min for all 3 trials. Data are means ± Standard Error.

3.4. Physiological Response to 10 km Time Trial in the Heat

A significant interaction between condition and time was found for heart rate (p = 0.00, Figure 5A).
Expectedly, a main effect for time was found for heart rate throughout the trial (p = 0.00). No significant
differences were found for heart rate between conditions (p = 0.39).

There was no significant interaction of condition by time for core temperature during the 10 km
time trial (TT) (p = 0.15, Figure 5B). No main effect of condition was found during the 10 km time trial
for core temperature (p = 0.88). Expectedly, however, there was a significant effect of time on core
temperature during the trial (p < 0.001, Figure 5B).

3.5. Perceptual Measures during 10 Km Time Trial in the Heat

There was no significant interaction between condition and time for thermal sensation during the
10 km (p = 0.96, Figure 6A). A significant main effect was found for time, where the participants’ TS
increased over time (p = 0.00), though no significant differences were observed between conditions for
TS (p = 0.47).
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Figure 5. Physiological responses to 10 km time trial in the heat across wrist percooling condition.
(A) Heart rate and (B) core temperature during 10 km time trial. Note: due to safety tolerance in core
temperature, trials were ended early and plotted to the shortest time, plus each athlete’s final data
point. Data are means ± Standard Error (n = 13).

No significant interaction of condition and time was found for RPE (p = 0.38, Figure 6B). Naturally,
a main effect for time was found (p = 0.000). However, RPE did not significantly differ between
conditions (p = 0.93).

3.6. Impact of Wrist Cooling on Recovery

Pre- and post-measurements are shown in Table 2. No significant interaction (p = 0.58) was found
between condition and time for core temperature, though core temperature was on average 0.2 to
0.7 ◦C cooler in recovery with use of the bands. Although core temperature approached significance,
there was not a significant effect of time (p = 0.05); core temperature was not different from baseline
and had recovered. However, there was no effect of condition on core temperature (p = 0.64).

There was no significant interaction between condition and time for heart rate (p = 0.36, Table 2).
There was a significant main effect for time (p = 0.00) on heart rate with elevations post-exercise. Heart
rate significantly differed between conditions, where heart rate tended to increase with the use of
the bands (condition effect p = 0.03). To measure heart rate variability, the root mean square of the
successive differences (RMSSD) was measured. No significant interaction effect for condition by time
(p = 0.23) and no main effect of condition was found (p = 0.97). A significant main time effect was
found for RMSSD (p = 0.000, Table 2) with a significantly reduced RMSSD post-exercise. In addition,
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there was no significant interaction effect for condition by time (p = 0.43) and no difference between
conditions (p = 0.96) for log transformed RMSSD (LnRMSSD). Expectedly, similar to RMSSD, there was
a main time effect for LnRMSSD (p = 0.00, Table 2) with lower HR variability post-exercise. Lastly,
SDNN had no significant condition effect (p = 0.41) or condition by time effect (p = 0.15). Corresponding
to the other heart rate variability variables, there was a main time effect for SDNN (p = 0.00) with lower
HR variability post-exercise.
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Figure 6. Perceptual measures during 10 km TT. (A) Thermal sensation (TS) and (B) Rating of perceived
exertion. Note: due to safety tolerance in core temperature, trials were ended early and plotted to the
shortest time, plus each athlete’s final data point. Data are means ± Standard Error, (n = 13).
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No significant interaction for condition by time was found for mean arterial pressure, MAP
(p = 0.90, Table 2). During the recovery process, a main effect of time was found for MAP (p = 0.01) with
lower MAP in recovery, though no significant differences between conditions were found (p = 0.08).
Systolic blood pressure, SBP, showed no significance for main time effect, condition by time, or condition
(all p > 0.05, Table 2). Diastolic blood pressure, DBP, had no significant interaction of condition by time
(p = 0.28) or effect of condition (p = 0.11). In contrast to SBP, DBP had a significant main time effect
(p = 0.02) with a reduction in diastolic pressure post-exercise.

During recovery, there was no significant interaction between condition and time for RPE (p = 0.08)
and TS (p = 0.72). There was a significant main effect of time for RPE and TS (both p = 0.000, Table 2).
No significant differences between conditions were present for RPE (p = 0.43) and TS (p = 0.33). There
was no significant interaction between condition and time for the fatigue visual analog scale (p = 0.47,
Table 2). Expectedly, a main effect of time was present during the recovery process for VAS (p = 0.00),
showing higher reported levels of fatigue, but no significant difference was found between conditions
in the recovery process (p = 0.10).

4. Discussion

The intent of this study was to ascertain whether percooling via wrist cooling bands would
improve 10 km running time trial performance in the heat, or lessen the physiological strain, and
enhance recovery. The main finding of this study was that the use of the bands seemed to promote the
participants to run at a faster speed over time. Thus, when using the bands, there was a corresponding
increase in heart rate over time as a result of this increased speed and energy demand. On average,
core temperature, thermal sensation, and rating of perceived exertion were not different when using
the bands. Use of the bands did not appear to alter baseline or enhance physiological or perceptual
indicators of recovery from the 10 km running bout. There was also no clear evidence that two bands
were more advantageous than one, in terms of the physiological and perceptual responses to exercise,
performance, or recovery. Thus, athletes considering use of wrist percooling, wearing one band is likely
sufficient and possibly optimal. In conclusion, the cooling bands elicited a faster running speed over
time; however, this comes at a physiological cost, but surprisingly not a perceptual one. Further work
in the field or in unrestricted settings are needed to ultimately demonstrate efficacy of wrist percooling.

4.1. Ten km Time Trial Performance

In the present study, we observed that wrist percooling through the use of wrist cooling bands
seemed to elicit a faster running speed in the participants over time (interaction effect, Figure 4).
The faster self-selected running speed over time could be interpreted as an increase in performance
because, all else held constant, would be expected to lead to a faster 10 km time trial. Focusing on
distance covered at a common time, the distance covered by the athletes was not statistically higher at
16 min, a critical time point in our study. Using completed and estimated 10 km times, wrist percooling
via use of the band’s lead to times that were on average ~20 s faster, but were not significantly different
from control. The faster running speed, as an indicator of performance, agrees with prior research
using precooling, which also observed an increase in performance [9,30–34].

Previous reviews indicated that the magnitude of the effect of precooling likely depends upon
the modality of precooling (e.g., water immersion, and depth, ice slurry, cooling garment, etc.) and
how performance is assessed (i.e., time to exhaustion, and prescribed intensity, time trial, distance trial,
etc.) [4,9]. Specifically, cold water immersion elicits an effect size (Cohens d) of 0.4 to 2 on performance
vs. control, whereas precooling garments elicit an effect size of 0.1 to 0.5 (small to medium) [4], the latter
more reflecting the magnitude effect in the current study (Cohens d effect size of 0.2, small effect,
in off/off vs. off/on). Although the trend for a positive effect on actual or estimated 10 km time was
not statistically significant, it should not be interpreted necessarily as useless. A 10–30 s effect on
10 km performance could have practical implications. To put this modest effect into perspective, when
looking at the professional men’s results of the 2016 AJC Peachtree road race, one of the nation’s largest
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10 km events, run in Atlanta, GA, during July (similar environmental conditions at race start to those
in our study), a 20 s boost in performance could mean being on the podium or not. For the Bolder
Boulder 10 km race, one of the largest 10 km races in the world, first place through sixth place in the pro
division was separated by 20 s. Again, further field testing is needed to support this notion, though as
climatic temperatures rise and running events are held in hot environments (e.g., Tokyo 2021 Olympic
games), developing viable methods of supporting athlete’s performance is increasingly paramount.

4.2. Impact of Wrist Percooling on Physiological Responses to 10 km TT in the Heat

In the current study, core temperature during the 10 km time trial was unaffected by percooling via
wrist cooling bands (Figure 5). The present findings are in contrast to previous work using precooling,
which demonstrated reduced core temperature particularly during initial stages of exercise [31,32,35,36].
For example, in a study by Lee and Haymes [32], 30 min of precooling reduced core temperature at rest
and during exercise, though final core temperatures were not different between precooled and control.
In agreement, when using a mix-method of ice bags and a cooling vest, Duffield et al. [31] saw a decrease
in core temperature during warm up and the first sprinting periods; however, there was no significant
difference in the final core temperature. Precooling is thought to reduce core temperature, creating a
larger reservoir or tolerance for core temperature increases, postponing increases in temperature to
the latter stage of exercise. In the current study, it was hypothesized that the use of the bands would
blunt the rise of core temperature and lower it during the 10 km time trial, but this was not observed.
However, given the running speed was increased over time, further challenging the cooling capacity
of the unit due to the additional metabolic heat load, in already loaded condition, observing such an
effect may not be possible. The cooling power of the device, maximally 200 watts, is simply not capable
of ablating human heat production, estimated at over 1000 watts [37], but whether it might attenuate
the rise in core temperature in individuals warrants further study.

Concordant to the increased running speed over time seen with wrist percooling, heart rate also
was elevated over time during the 10 km time trial (Figure 5). These results somewhat support one
previous study done by Duffield et al. [31], where they found no significant difference in heart rate
during the exercise. However, previous research found with various models of precooling that HR
was suppressed [30,32,33,35,38], at least during the initial stages of exercise, as final HR often was not
different between conditions. However, some of these protocols used steady state exercise models [35],
others incremental [33,38], or time to exhaustion [30,32], where speed or work load were matched.
Thus, the higher heart rate over the trial with the use of the bands, while perhaps in disagreement with
previous studies and not supporting the hypothesis, makes physiological sense in the context of the
increased running speed.

4.3. Impact of Wrist Percooling on Perceptual Measures during 10 km TT in the Heat

The current study found no significant difference between conditions and no interaction effect for
RPE (Figure 6). In support of the present data, Duffield et al. [31,36] also found no significant difference
between the precooling and control conditions for RPE during the performance trial. However,
other studies showed that RPE decreased with the use of precooling methods during the exercise
performance [35,39]. However, in both of these studies walking/running speed was fixed.

Similar to RPE, in the present study, thermal sensation or perception during the 10 km time trial
was not different between conditions and did not see an interaction effect with the use of the bands
(Figure 6). Only one previous study supports the present data that showed no significant difference
between conditions during the performance [31]. Other research has proven that with the use of
cooling, the TS decreases during exercise [35,39,40].

Thus, while the present data does not support the hypothesis that the use of the cooling bands
would have lowered RPE and TS, the present data are to be considered in the context of altered running
speed over time. Recent meta-analysis suggests that topical or ingestion of menthol, a known agonist
of the “cold receptor,” TRPM8, can alter thermal sensation and/or exercise performance [11], perhaps
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independent of core temperature [41]. Relatedly, work by Phillips et al. [7] suggests that precooling
might modulate the prefrontal cortex and/or its processing of afferent feedback regarding perceptions
of effort, fatigue, or skin temperature, which might support greater exercise tolerance, and ultimately
an attenuation of muscle fatigue. Thus, while it is tempting to speculate that RPE and TS might have
been expected to increase in response to the increased running speed, and that the cooling bands
mitigated the expected increase in perception of effort and thermal strain, further work is needed to
confirm this hypothesis and explore the potential psychophysiological effects of wrist percooling.

4.4. Impact of Wrist Percooling on Physiological Recovery

In contrast to our initial hypothesis, core temperature did not significantly differ between conditions
during recovery (Table 2). A prior meta-analytical review demonstrated that more aggressive cooling
methods, such as whole body cooling likely help to recover performance [42], though few studies have
focused on recovery of core temperature. Much of this work has been done in occupational models,
such as firefighting, using multiple interventions, some invasive, to induce cooling and recovery of
heart rate after firefighting [43–47]. Accordingly, our previous work using this wrist cooling device to
induce cooling after an occupational model of exercise-induced heat stress via exercise in encapsulating
clothing, revealed a significant positive impact of wrist cooling on recovery of temperature and heart
rate [10]. However, in that study the exercise was necessarily more modest (walking) and shorter,
thus the rise in core temperature was lower, all only increasing by 1 ◦C or less, potentially creating
multiple differentials between the present and the aforementioned study. Interestingly, heart rate
was found to be significantly impacted by wrist cooling at rest, and agrees with previous work that
demonstrated skin cooling to 7 ◦C resulted in a modest 5 beat/min increase, likely the result of activating
sensory afferent neurons [48]. This resting difference, we believe, contributed to a main effect of
condition when exploring rest and recovery, as post-exercise HR values were not actually different
between conditions. In support of no difference in heart rate during recovery between conditions,
Edmonds et al. [40] using the wrist cooling device also found no significant difference in heart rate
after high intensity physical activity. Thus, wrist cooling may be insufficient to hasten recovery of HR
after high intensity activity in the heat.

4.5. Impact of Wrist Percooling on Recovery of Perceptual Measurements

During the recovery period, there was no significant difference in TS. However, TS during the
recovery period was recorded highest in the off/off condition (4.6) and the lowest in the on/on condition
(4.2). In support of this, Edmonds et al. [40] found a significant decrease during the recovery period, at
the 10 min marker. The present data do show a lower value with the use of the bands; however, due to
the time to incompletion decreasing with the bands, and the number of incomplete trials increasing,
perceptual cues could be altered due to the decrease in performance. In recovery, RPE, or perhaps
more appropriately the fatigue visual analog scale values after the exercise did not significantly differ,
which does disagree with our prior work [10] using wrist cooling. Although for the reasons mentioned
above, this may be expected. Future studies should explore the potential impact of wrist cooling
on recovery in the field or athletic setting where immediate cooling applications may not be readily
available and thus wrist cooling could perhaps be a bridge from or to more powerful cooling methods,
such as cold-water immersion.

4.6. Experimental Considerations

The 10 km time trial took place in a controlled environment during the winter months and therefore
the athletes were not acclimated to running in hot and humid environments. Institutional safety
mandated cessation of exercise just above 39 ◦C (Figure 2), impairing our ability to determine whether
performance would have truly been affected; indeed, previous work has suggested that high-level
athletes are capable of tolerating such core temperatures or higher, perhaps even to 41.5 ◦C [49].
Anecdotally, none of the participants exhibited any heat-related illness signs or symptoms, suggestive
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of a greater tolerance, and this may have underestimated potential performance effects as the athletes
were unable to fully execute their individual race plan (e.g., negative splits or sprint at the end).
Nonetheless due to this cutoff, in trials where the athlete reached this threshold we estimated or
projected their performance. Future studies are needed to determine possible effects in a relatively
unrestricted or field environment to observe fully the potential effects on performance. Although
ingestible temperature telemetry pills have been demonstrated valid and able to track changes over
time with heating or cooling [15,16], there was some variability in core temperature measurements with
the telemetry pill and future studies might consider using more invasive measures such as esophageal
or rectal thermistors. It was impossible to conduct the study in a fully blinded or placebo-controlled
manner, though the research team sought to minimize eliciting any anticipatory responses, and
participants wore both bands during all three trials. Measures of skin temperatures and/or localized
thermal sensations would have enhanced the study, and future studies using this cooling method
should include these measures, as well as pulmonary measures (e.g., VO2, ventilation, respiratory
exchange ratio).

5. Conclusions

In the present study, wrist percooling during a 10 km TT in the heat resulted in a faster self-selected
running speed and higher heart rates, though thermal sensation or perceptions of effort were unaffected.
The increased running speed over time with wrist percooling might be practically meaningful, but
further work is needed to determine the potential impacts of wrist cooling on performance, particularly
in the field.
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Abstract: The objectives were to analyze the effect of a gerontogymnastics program on functional
ability and fitness on overweight and obese older woman and to understand if sarcopenia mediates its
effect. This randomized controlled trial involved 216 overweight and obese women. The experimental
group (EG) carried out 12 weeks of a gerontogymnastics program. The assessment was of gait
speed, cardiorespiratory fitness, functional capacity, and muscle strength. EG showed significant
improvements in almost every test. When the effect of training was adjusted by gait speed,
the improvement of the 6 min walk test (MWT) for the trained group was no longer significant
(p = 0.127). The improvement of the 6 MWT was significantly and positively associated with
the 10 m test (β = −10.087). After including the 10-m test in the equations, the association between
the 6MWT and carrying out the training program decreased but remained significant (β = −19.904).
The mediation analysis showed a significant, direct and indirect effect with a significant Sobel test
value (z = 6.606 ± 7.733; p = 0.000). These results indicate that a gerontogymnastics program improves
functional capacity and fitness; and the effect of a gerontogymnastics program on CRF is mediated by
sarcopenia in older women who are overweight and obese.

Keywords: Sarcopenia; gait speed; cardiorespiratory responses; walking; physical fitness; older people

1. Introduction

Sarcopenia is a progressive disease that involves the loss of muscle mass and strength [1].
It is associated with aging and causes a decrease in functional capacity, increasing the risk of
falls and negatively affecting the quality of life, and in many cases may require hospitalization or
rehabilitation [2,3]. Sarcopenia affects about 5 to 13% of individuals in their 60s and 70s, and 11 to 50%
of octogenarians [4]. From the age of 40, there is a decline of muscle mass of approximately 8% per
decade, which around the age of 70 can reach up to 15% per decade [5]. Besides, older women are
more susceptible to present sarcopenia, as opposed to young women and men [6].

Age is associated with loss of mass, strength, and muscle power [7–9]. The loss of muscle
mass and strength increases the risk of falls and potential fractures and contributes to the loss of
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functionality, impedes the older individual’s ability to live independently [10], and results in a worse
quality of life of a person [11–13]. The ability of the leg muscles to produce strength is a key factor
in maintaining the older person’s balance and walking speed [14]. According to the definition by
the European Working Group on Sarcopenia in Older People (EWGSOP) [3,15], the diagnosis of
sarcopenia can be made by assessing the low muscle mass, plus low muscle strength or low physical
performance. The most commonly used parameters to measure muscle mass loss are dual energy
x-ray absorptiometry (DEXA) and bioelectrical impedance analysis (BIA), to measure muscle strength
it’s handgrip strength, and to measure physical performance it’s short physical performance (SPPB)
and gait speed (GS) (Table 1).

Table 1. Sarcopenia: measurable variables and cut-off points [15].

Criterion Measurement Method Cut-off Points by Gender

Muscle mass DEXA

Skeletal muscle mass index (SMI)
(Appendicular skeletal muscle

mass/height2)
Men: 7 kg/m2

Women: 5.5 kg/m2

BIA

SMI using BIA predicted skeletal
muscle mass (SM) equation

(SM/height2)
Men: 8.87 kg/m2

Women: 6.42 kg/m2

Muscle strength Handgrip strength Men: <27 kg
Women: <16 kg

Chair stand >15 s for five rises

Physical performance

SPPB
SPPB score is a summation of scores on

three tests: Balance, Gait Speed
and Chair Stand. Each test is weighted

equally with scores between 0
and 4—quartiles generated from

Established Populations for
Epidemiologic Studies of the Older

people (EPESE) data (n = 6534).
The maximum score on the SPPB is 12

SPPB ≤ 8
SPPB 0–6 Low performance

SPPB 7–9 Intermediate
performance

SPPB 10–12 High Performance

GS GS ≤ 0.8 m/s

The EWGSOP suggests the gait speed test as an easy and valid method for assessing physical
performance [3,15,16]. Gait speed has been performed to evaluate various health-related factors such
as physical functions, health status [17–19], and quality of life [20]. A well-known meta-analysis of
2888 older people set the minimum health threshold for gait speed at ≥ 0.8 m/s [21]. The promotion of
physical exercise programs can prevent or even reverse the loss of functional capacity associated with
sarcopenia if they emphasize improving the gait speed of the older population [22].

The increased fat mass associated with sarcopenia has been linked with a higher incidence of
chronic diseases in older people [5,23,24], and developing sarcopenia contributes to the development of
cardiovascular and metabolic diseases [25]. Being sedentary or not very physically active contributes to
sarcopenia, as shown by research result, which have also linked age to the development of sarcopenia.
The ICD-10 code for sarcopenia in 2016 was established by the World Health Organization to promote
effective therapeutic strategies that include physical exercise to prevent loss of muscle mass and function
with aging [26].

Recent research suggests effective intervention strategies to combat sarcopenia that include
physical exercise, and more specifically, strength training [27–31]. Also, maximum oxygen consumption
(VO2max) is a measurement of cardiorespiratory fitness (CRF), which can predict longevity in older
adults [32]. People who have a higher risk of cardiovascular disease (CVD) and mortality are those
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who have a lower CRF [33]. For older individuals, regular aerobic exercise helps them to attain better
VO2 values [34]. With age, exercise that includes long-term aerobic exercise can help combat the effects
of sarcopenia [35].

Being overweight and obese, coupled with a poor physical condition, are related to aging
and are also associated with the risk of death from chronic diseases. Therefore, strategies are
needed to encourage changes in body composition and physical condition [36,37]. Exercise programs,
such as gerontogymnastics, which include resistance and aerobic training, are an optimal strategy
for maintaining muscle mass and its protective effects against a variety of chronic diseases [38–42].
However, older adults with low functional capacity may not be able to develop resistance programs
leading to improved CRF, due to their low fitness [43]. Besides, the improvement of CRF could also be
influenced by improved strength [44].

Therefore, the objectives of the study were the following: a) to analyze the effect of a
gerontogymnastics program with overweight and obese older women (≥65 years old) on functional
ability and fitness, and b) to understand if sarcopenia mediates the effect of a gerontogymnastics
program on cardiovascular fitness. We hypothesized that the older women who participate in
the trained group will show improvements in all the tests, whereas the control group will not show
changes, and that sarcopenia will mediate the effect of the program on cardiorespiratory capacity.

2. Materials and Methods

2.1. Design

The study was conducted from September to December 2019, with a total of 12 weeks of training.
This is a randomized controlled trial study that investigates the effect of gerontogymnastics program
with overweight and obese older women on functional ability and physical fitness. This study trial
followed the Consolidated Standards of Reporting Trials (CONSORT) guidelines. Older women
were informed of the study and signed an informed consent to participate, according to the process
approved by the local ethics committee (CE111908) of the San Antonio Catholic University of Murcia
(Spain) and in accordance with the Declaration of Helsinki. This study was conducted at a women’s
association and sport science laboratory from Region de Murcia (Spain).

2.2. Participants

Participants were recruited through advertisements in women’s associations, senior centers,
and presentations in the local community. Recruitment was done before registration for convenience
and accessibility to the sample, but the intervention did not begin until the registration was completed.
Inclusion criteria were: (a) at least 1 year not engaged in a structured exercise program, (b) having
a body mass index between 25 and 29.9 (overweight) or between 30 and 34.9 (obese), (c) women
aged between 65 and 90 years old, and (d) being physically independent. The exclusion criteria were:
(a) having musculoskeletal injuries or limitations that could affect the person’s health and physical
performance; (b) being under a doctor’s prescription for taking medication that could influence physical
performance; (c) no regular attendance at the proposed sessions.

Sample size and power were established in connection with the 10-m walk test in a previous
study [45]. An estimated error of 0.045 s and a significance level of α = 0.05 were utilized. A valid
sample size for a confidence interval of 95% was 207.84. Based on previous research, a dropout rate of
10% was assumed; therefore, 230 participants were recruited.

Participants were divided to a trained group (TG) and a control group (CG). Thus, the experimental
sample of the study consisted of 230 women, being electronically randomized [46] into the TG
(115 subjects) and the CG (115 subjects). A researcher who was not involved in participant recruitment
performed the randomization.
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Two-hundred-and-sixteen older women aged between 65 and 88 years old volunteered
(mean ± standard deviation [SD]; age = 68.26 ± 4.19 years, body mass = 71.11 ± 10.66 kg,
height = 1.55 ± 0.07 m; BMI = 29.97 ± 3.86) and completed the study (TG = 114; CG = 102).
The CONSORT 2010 flow diagram is shown in Figure 1.
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Figure 1. Flow diagram of the sample.

Anthropometric measurements were recorded. Weight (kg) was evaluated in light clothing
without footwear to the nearest 0.1 kg by using an electronic scale, and height (cm) was measured using
a stadiometer to the nearest millimeter (Seca 763 digital scale, Birmingham, UK). Body mass index
(BMI) was calculated by dividing their weight in kilograms by their height in square meters (kg/m2).
All anthropometric measurements were completed by experienced and well-trained persons (ISAK
level 1 and 2 certificate). The same researchers performed all the measurements in a single session
between the hours of 9:00 and 13:00 without warming up and allowing for a 5-min break between tests.

2.3. Procedure

2.3.1. Trained Group

The gerontogymnastics program was implemented following the recommendations of the Otago
Exercise Program (OEP) [47], as it is a renowned exercise program with widespread use at
the international level that aims to improve strength and mobility to help in the prevention of
falls. The gerontogymnastics program was planned principally to help prevent the risk of falls
with exercise training that improves muscle strength, power, and balance in the lower extremities
and cardiorespiratory endurance. A professional Sports Physical Educator directed the training.
The total training group was divided into subgroups of a maximum of 20 subjects for security
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and the correct direction by the trainer. The participants in the TG trained for 1 h, three times a
week for the 12 weeks of intervention (36 sessions). The training session consisted of: (a) 10 min of
warm-up, consisting of joint mobility and stretching of the main muscle groups involved; (b) 30 min
of an exercise circuit (three sets of 15 repetitions in each exercise, with 2 min rest between sets).
The exercise circuit consisted of 12 exercises, of which, seven focused on strength: knee extension,
squat, knee curl, leg press, elbow curl, chest press, and shoulder overhead press using the OMNI
resistance exercise scale [48]; five focused on balance: walking on marked lines on the floor, walking
on tiptoes, walking sideways, walking on heels, and walking from heel to toe; and (c) 20 min of
cardiovascular exercises. The cardiovascular exercise consisted of walking at maximum speed without
running to maintain a moderate to hard level of perception of exertion [49]. The training sessions were
held on non-consecutive days to facilitate recovery.

2.3.2. Control Group

The CG participants were asked to carry out their normal life and not to alter their habits during
the study period, and they did not practice any physical activity or exercise program.

2.3.3. Assessment of gait speed

Gait speed was assessed with a 10-m test. The time in seconds that the person took to walk
10 m was analyzed, with the person walking at their usual pace. This test has been widely used in
large epidemiological studies, showing high concurrent and predictive validity [45,50–53]. The results
of previous studies [45] indicate an excellent relationship between the 4-m test and the 10-m test
(ICC = 0.959 and 0.976, respectively), with a good average between both tests (ICC = 0.867). The 10-m test
proved to be somewhat better. This test is a valid method for predicting sarcopenia [54]. The reference
value for gait speed in the 10-m test is 0.8 m/s [55]. In the present study, in order to obtain reliable
measurements, two photocells were placed at the beginning and the end of a 10-m lane, and through
a connection to a computer, recorded the time spent in carrying out the test (MuscleLab, Ergotest,
Langesund, Norway). The older women were asked to stand at the starting line mark and walk at
their usual pace at the sound signal. Two attempts were made and the average value between the two
repetitions was recorded.

2.3.4. Assessment of Cardiorespiratory Fitness Level

Aerobic endurance was assessed using the 6-min walk test (6 MWT). The 6 MWT has been
shown to be a valid, reliable, objective, inexpensive, and easy test used to evaluate cardiorespiratory
capacity [56–60]. It is a simple test to perform and is better related to the person’s daily life activities
than other tests [58,59]. It is used to measure an individual’s sub-maximum aerobic capacity while
walking for 6 min.

It is suggested that this test should be performed on a flat surface that allows walking for 20 to
30 m. The subject should be relaxed and wear comfortable clothing and shoes and the heart rate of
each subject was recorded with a POLAR 400 heart rate monitor just before the start of the test and just
after the end. The route was marked every 5 m and cones were placed at the turning area. The subject
was walking at a pace appropriate to his/her condition, being able to stop or slow down if he/she is
fatigued and resume as soon as possible. The trainer can motivate the subjects with phrases such
as “You are doing well”, and the total meters walked is recorded [61]. This test has good reliability
(ranging from 0.95 to 0.97) [62].
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2.3.5. Assessment of Functional Capacity

The Latin American Group for Maturity (GDLAM) protocol is used to evaluate the functional
capacity in older adults [27,63,64]. The battery consists of five tests: walking 10 m; rising from a sitting
position; standing up from a prone position on the floor; getting up from a chair and moving around;
and the putting on and taking off a T-shirt test. These tests were to calculate the GDLAM functionality
index (GI) using a mathematical formula. The material needed for carrying out the tests consisted of
a standard chair with a height of 48 cm from the seat to the floor, a digital chronometer, four cones,
a sports mat, and a metal measuring tape. The magnitude of the statistical significance demonstrated
high reliability (r = 0.9; p < 0.001) and validity [63].

2.3.6. Assessment of Muscle Strength

Two tests from the “Senior Fitness Tests” (SFT) battery [59,65] were used to assess strength
variables: extension flexion elbow test and lift chair 30 s test. The extension flexion elbow test measures
the muscle strength of the upper extremity. The subject, while sitting on a chair, was asked to perform
the maximum number of repetitions for 30 s with a dumbbell (2.3 kg for women). The lift chair 30 s
test reflects lower body strength. The participant was asked to sit on a chair with his arms across his
chest and perform the most sitting and standing repetitions for 30 s. Reliability and validity indicators
for the standards ranged between 0.79 and 0.97 [66].

2.4. Data Analysis

The normality of the data was evaluated using the Kolmogorov–Smirnov test, and Mauchly’s
W-test was used to analyze the normality and the sphericity of the data. The inter- and intra-groups
differences and the interaction between groups and time were analyzed with a two-way ANOVA with
repeated measurements of one factor (time). Also, an ANCOVA (adjusted for gait speed) with repeated
measurement of one factor (time) was used. To check intra-groups change, the post-hoc Bonferroni
test and the Wilcoxon signed-rank test were used to evaluate the statistical significance of parametric
and non-parametric variables, respectively. The Mann–Whitney test was used to check for inter-group
differences for non-parametric variables. The partial eta-squared (η2p) for variance analysis was used
to calculate the size effect, and this was defined as small: ES ≥ 0.10; moderate: ES ≥ 0.30, large: ES ≥ 1.2;
or very large: ES ≥ 2.0, with an error of p ≤ 0.05 utilized [67].

To determine if the effect on the 6MWT test was mediated by the change in the 10-m test,
the analysis of the mediation variables was performed using the Process macro for SPSS (SPSS Inc,
Chicago, Illinois). A resample procedure of 10,000 bootstrap samples for non-parametric variables
was utilized, [68] and the classical Baron and Kenny step regression method was used for parametric
ones. [69]. In order to analyze the statistical significance of the mediation effect, the Sobel test was
used [70]. If after the mediation, the independent variable was no longer associated with the dependent
variable, it was considered complete mediation. However, if after the mediation, the independent
variable was reduced but was still significant, it was considered partial mediation. The statistical
analysis was performed using IBM SPSS Statistics (version 24.0), and an error of p ≤ 0.05 was set for
the analysis.

3. Results

The characteristics of the participants are shown in Table 2. The TG showed significant
improvements in the 10-m test (p < 0.000), the 6 MWT (p = 0.001), stand from siting test (p < 0.000),
the rising from sitting test (p < 0.000), the rise from the floor test (p < 0.000), the t-shirt test (p < 0.000),
the GDLAM index (p < 0.000), the extension and flexion elbow test (p < 0.000), and the lift chair 30 s test
(p < 0.000). TG did not show changes in the stand-up and go test (p = 0.150) and showed an increase of
BMI (p = 0.021) but with a very low effect size (ES = 0.03).
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The CG experienced a significant decrease in the 10-m test (p < 0.000), 6 MWT (p = 0.011), rise from
the floor test (p = 0.032), stand-up and go test (p < 0.000), and extension flexion elbow test (p < 0.000),
and showed a significant improvement in the rise from the floor test (p = 0.032), although they did
not show changes in the rest of the tests. Although both groups showed a significant improvement in
the rise from the floor test, the effect size was small for the CG (ES = 0.12), whereas the effect size for
the TG was large (ES = 0.72) (Table 3).

Table 2. Characteristics of the participants.

M ± SD

Age 68.03 ± 4.03

Weight (kg) 69.59 ± 11.28

Height (m) 1.55 ± 0.07

BMI (kg/m2) 29.97 ± 3.86

10-m test (s) 7.29 ± 1.51

6MWT (m) 460.29 ± 78.02

Stand from siting (s) 13.13 ± 3.31

Rise from the floor (s) 8.47 ± 3.64

Stand and go (s) 42.83 ± 5.03

T-shirt (s) 15.92 ± 6.16

GDLAM index 33.11 ± 5.18

Ex Flex Elbow 30 s (rep) 14.54 ± 4.16

Lift chair 30 s (rep) 10.98 ± 2.78

Legend: s = seconds; m = meters; rep = repetitions; M = Mean; SD = Standard Deviation; 6 MWT = 6 min walk test.

Table 3. Differences pre- to post-test (intra-groups) for functional and fitness test.

Pre-Test
(M ± SD)

Post-Test
(M ± SD)

Difference Post-Pre
(M ± SD) p CI 95%

(Mpost–Mpre) ES

10-m test (s)
TG 6.93 ± 1.14 6.05 ± 0.94 0.878 ± 0.14 0.000 0.601; 1.155 0.77

CG 7.59 ± 1.70 8.40 ± 1.68 −0.811 ± 0.15 0.000 −1.103; −0.518 0.47

6MWT (m)
TG 473.54± 70.42 491.06± 74.00 −17.528 ± 5.36 0.001 −28.083; −6.973 0.25

CG 448.30± 79.33 433.70± 79.49 14.601 ± 5.66 0.011 3.442; 25.760 0.18

Stand from siting (s)
TG 13.56 ± 3.15 11.29± 2.69 2.272 ± 0.37 0.000 1.535; 3.010 0.72

CG 12.96 ± 3.62 13.08± 3.70 −0.123 ± 0.4 0.756 −0.903; 0.657 0.03

Rise from the floor (s)
TG 8.92 ± 3.80 6.18 ± 3.27 2.740 ± 0.2 0.000 2.357; 3.124 0.72

CG 8.44 ± 3.71 8.00 ± 3.92 0.444 ± 0.21 0.032 0.039; 0.850 0.12

Stand and go (s)
TG 41.07 ± 3.57 40.51± 4.04 0.566 ± 0.39 0.150 −0.206; 1.338 0.16

CG 44.41 ± 5.44 46.36± 5.02 −1.950 ± 0.41 0.000 −2.766; −1.134 0.36

T-shirt (s)
TG 16.46 ± 6.94 11.73± 4.41 4.721 ± 0.37 0.000 3.999; 5.444 0.68

CG 15.85 ± 5.66 15.36± 4.81 0.489 ± 0.39 0.208 −0.275; 1.252 0.09

GDLAM index
TG 33.20 ± 5.92 27.75± 4.50 5.448 ± 0.34 0.000 4.777; 6.118 0.91

CG 33.52 ± 4.68 34.01± 3.83 −0.489 ± 0.36 0.176 −1.197; 0.220 0.10

Ex Flex Elbow 30 s (rep)
TG 14.59 ± 4.25 17.46± 4.55 −2.868 ± 0.28 0.000 −3.417; −2.320 0.67

CG 14.63 ± 4.09 13.34± 3.64 1.284 ± 0.29 0.000 0.704; 1.865 0.31

Lift chair 30 s (rep)
TG 10.81 ± 2.46 13.09± 2.70 −2.281 ± 0.21 0.000 −2.699; −1.863 0.92

CG 11.26 ± 3.17 11.15± 3.07 0.118 ± 0.22 0.600 −0.324; 0.560 0.04

BMI (kg/m2)
TG 31.13 ± 4.15 31.26± 4.13 0.13 ± 0.54 0.021 0.020; 0.242 0.03

CG 28.68 ± 3.04 28.59± 3.17 −0.09 ± 0.66 0.125 −0.209; 0.026 0.02

Legend: TG = trained group; CG = control group; M = Mean; SD = Standard Deviation; ES = Effect Size; s = seconds;
m = meters; rep = repetitions.
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Table 4 shows the differences between groups in the changes pre- and post-test. The results show
a difference between groups for all the functional and fitness tests in favor of TG.

Table 4. Differences pre to post-test (intergroups) for functional and fitness test.

Group Difference Post-Pre
(M ± SD) F p ES

10-m test (s) TG 0.878 ± 0.14
68.220 0.000 0.242CG −0.811 ± 0.15

6MWT (m) TG −17.528 ± 5.36
17.000 0.000 0.074CG 14.601 ± 5.66

Stand from siting (s) TG 2.272 ± 0.37
19.354 0.000 0.083CG −0.123 ± 0.4

Rise from the floor (s) TG 2.740 ± 0.2
65.676 0.000 0.235CG 0.444 ± 0.21

Stand and go (s) TG 0.566 ± 0.39
19.489 0.000 0.083CG −1.950 ± 0.41

T-shirt (s) TG 4.721 ± 0.37
63.004 0.000 0.227CG 0.489 ± 0.39

GDLAM index
TG 5.448 ± 0.34

143.774 0.000 0.402
CG −0.489 ± 0.36

Ex Flex Elbow 30 s (rep) TG −2.868 ± 0.28
105.018 0.000 0.329CG 1.284 ± 0.29

Lift chair 30 s (rep) TG −2.281 ± 0.21
60.373 0.000 0.220CG 0.118 ± 0.22

Legend: s = seconds; m = meters; rep = repetitions; M = Mean; SD = Standard Deviation; 6 MWT = 6 min walk test;
ES = effect size.

When the effect of training was adjusted according to gait speed, the improvement of the 6 MWT
for TG was no longer significant (TG = difference post-pre (M ± SD): −9.476 ± 6.178; p = 0.127; CI 95%
(Mpost–Mpre): −21.653;2.702; CG = difference post-pre (M ± SD): 5.601 ± 6.633; p = 0.399; CI 95%
(Mpost–Mpre): −7.473;18.675).

The improvements in the 6 MWT (β = −32.129) and 10-m test (β = 1.689) were significantly
associated with carrying out the training program (TG). The improvement in the 6 MWT was
significantly and positively associated with the 10 m test (β = −10.087). After including the 10 m
test in the equations, the association between the 6MWT and carrying out the training program (TG)
decreased, although it remained significant (β = −19.904). The mediation analysis showed significant,
direct and indirect effects with a significant Sobel test value (z = 6.606 ± 7.733; p < 0.000). These results
indicate that gait speed (10 m test) acts as a mediator on the effect of the exercise program on the 6 MWT
(Figure 2).
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4. Discussion

The first objective of this randomized controlled trial was to analyze the effect of a
gerontogymnastics program for overweight and obese older women on functional ability and fitness.
Significant improvements in functional capacity (10-m test, rise from sitting test, rise from the floor
test, t-shirt test, and GDLAM index), CRF (6MWT) and muscle strength and endurance (extension
and flexion elbow and lift chair 30 s test) were reported by the group that carried out the intervention
program. The CG showed a significant decrease in the 10-m test, 6MWT, rise from the floor test,
stand-up and go test, and extension flexion elbow test; and did not show changes in the rest of the tests.
In connection with the stand-up and go test, the TG did not show any changes; however, the CG
experiment showed a significant decrease. This could be interpreted as the intervention program
preventing the physical decline due to age. Although both groups showed a significant improvement
in the rise from the floor test, the effect size was small for the CG (ES = 0.12), whereas the effect size for
the TG was large (ES = 0.72); and there was also an inter-groups difference that indicated that the TG
significantly improved more than the CG.

Other studies that implemented a similar exercise program also reported improvements in
functional capacity and fitness [42,47,71–73]. These studies implemented their programs from 8 to
18 weeks, with a frequency of three times per week and a session duration ranging from 50 min to
60 min. Related to this, our study included different sets of exercises for strength training, balance,
and cardiovascular endurance. This exercise program is adapted to older women who are overweight
and obese.

A 12-week, low-to-moderate-intensity at maximal fat oxidation intensity (FATmax; 37–54%
VO2max) exercise program for overweight and obese older women resulted in favorable changes in
body composition and functional capacity in the exercise (training) group, compared with the outcomes
of the control group [74]. Another study revealed that 12 weeks of elastic resistance training
exerted positive effects on functional mobility outcomes of older women with sarcopenic obesity [75].
No prevalence of obesity, a higher level of physical activity, and baseline grip strength were associated
with better mobility performance among the older population [76]. Physical activity mitigated
the deleterious effects of the loss of functional capacity and muscle strength in obese individuals,
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highlighting its importance in the creation of strategies for the preservation of physical function
with age [77]. These results support the evidence that a 12-week gerontogymnastics program that
included endurance and strength training exercises improves functional capacity, CRF, and strength
and endurance of musculature of overweight and obese older women; and could thus delay the harmful
effects of aging.

The second objective of this study was to understand if sarcopenia mediated the effect of a
gerontogymnastics program on cardiovascular fitness. The major finding of our study was that
an improvement in CRF was associated with an improvement in gait speed, in consonance with
the decrease in sarcopenia. Our results are in agreement with a previous study, showing a connection
between CRF and gait speed and sarcopenia [78]. In our study, sarcopenia acted as a partial mediator
on the association between carrying out a gerontogymnastics program and improved CRF. To the best
of our knowledge, this is the first randomized controlled trial with an analysis of the mediation that
assesses how sarcopenia influences the effect of an exercise program on CRF.

A recent study [79] assessed 527 women aged 75 years and older (79.7 ± 3.5) in a cross-sectional
study. The objective of this study was to investigate if the connection between physical activity
and gait speed was mediated by strength and weight. These authors reported that the association
between physical activity and gait speed was partially mediated by the absolute and relative strength
of the lower limbs and that muscle mass partially mediated the relationship between physical activity
and muscle strength.

On the other hand, it has been demonstrated that there is a connection between walking balance
and strength [80] and that sarcopenia influences walking balance [81]. A study with older adults
with mild to moderate frailty improved their CRF but at a modest level [82]. This suggests that it
will be necessary to increase leg strength to further increase walking speed, in order to improve CRF.
In this sense, a study was performed to determine the mechanisms responsible for the effect of exercise
training on CRF in older adults, utilizing a strength training program before an endurance training
program, with a sample of 22 older adults, to improve their functional capacity [44].

In agreement with another study [43], older adults with declined functionality were not able
to participate in endurance training until they improved their neuromuscular capacity. Therefore,
endurance training for older women should be performed with previous strength and resistance
training to achieve the highest CRF adaptations.

It has also been reported that gait speed, muscle mass, and sarcopenia are strongly associated
with functional capacity [17–19]. However, our study expands this finding by showing that sarcopenia
is not just a predictor, but also an important mediator of the effect of an exercise program on another
important factor for the health such as CRF.

Strong research methodologies, such as a randomized clinical trial with a blinded examiner, is one
of the strengths of the present study. Also, to minimize the risk of bias, a large sample size was utilized.
However, our study is not without limits. This research was developed with older women who were
overweight and obese, and thus, we are not able to generalize the result to other populations of interest.

5. Conclusions

A gerontogymnastics program improves the functional capacity and fitness of older women who
are overweight and obese. Sarcopenia acts as a mediator of the effect of a gerontogymnastics program
on CRF in overweight and obese older women.

In this sense, the results support the new interest in changing the type of intervention and could
be used to suggest that the improvements in strength, gait speed, and reduction of sarcopenia at
the start of the exercise program could be needed to secure or improve the effects of the program on
CRF and help improve the health of overweight and obese older people.
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Abstract: This study aimed to examine the relationships between activity restriction, quality of
life (QoL), and hematopoietic profile in breast cancer survivors according to exercise modality.
The subjects in this study were 187 female breast cancer survivors among a total of 32,631 participants
in the Korea National Health and Nutrition Examination Survey, which was conducted from 2016 to
2018. The selected subjects participated in a questionnaire survey and blood analysis. A cross-analysis
was conducted to determine the relationship between participation in various modality of exercise
(e.g., aerobic exercise, resistance exercise, walking exercise). The phi coefficients or Cramer’s V value
for activity restriction and QoL were calculated; an independent t-test was conducted to evaluate the
differences between hematopoietic profiles based on the modality of exercise. Statistically significant
correlations were seen between obesity and aerobic exercise and walking frequency, as well as between
diabetes and aerobic exercise and activity restriction. With respect to QoL, there was a statistically
significant correlation between participation in aerobic exercise and exercise ability, participation in
aerobic exercise and anxiety/depression, participation in resistance exercise and subjective health
status, participation in resistance exercise and exercise ability, and participation in weekly walking
exercise and self-care ability. Regarding hemodynamic changes, red blood cells increased significantly
in breast cancer survivors who participated in weekly resistance exercise compared to in those
who did not. In conclusion, exercise participation had a positive effect on activity restriction, QoL,
and hematopoietic profile in breast cancer survivors; in particular, some modalities of aerobic exercise
were more effective.

Keywords: aerobic exercise; obesity; resistance exercise; subjective health status; walking

1. Introduction

Breast cancer is the most common cancer among Korean women. According to a report from
the Korea Central Cancer Registry under the Ministry of Health and Welfare, the age-adjusted cancer
incidence rate in 2016 was 62.6 out of 100,000 women, which is significantly higher than 54.7 in 2014
and 56.1 in 2015. When noted according to age group, breast cancer is most common among women in
their 40s (44.3%), followed by those in their 50s (30.2%) and 60s (16.1%) [1]. The Korea Ministry of
Health and Welfare reported that, while the number of patients with cancer who survived for more
than 5 years after cancer diagnosis exceeded 1 million in 2017, and the cancer survival rate reached
70%, 40% of patients with breast cancer developed depression [1,2]. Breast cancer survivors experience
many activity restrictions because of sexual problems, infertility, fatigue, appearance, separation or
divorce from their spouses, fear of cancer recurrence and death, etc. [2–6].
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Because of these psychological stresses, those with breast cancer tend not to actively participate in
many activities, which leads to the deterioration of cardiovascular health, muscle strength, and bone
health, thus increasing the risk of osteoporosis and cardiovascular disease [7]. These diseases
eventually cause activity restrictions for breast cancer survivors, including discomfort in daily life
and absenteeism due to concurrent diseases [8]. In fact, 48.4% of breast cancer survivors in Korea are
obese, which increases the risk of breast cancer recurrence and mortality to 35–40%, and may cause
insulin resistance, metabolic syndrome, and type 2 diabetes [9]. Since obesity and diabetes also increase
the risk of other cancers, more care is required [10]. In recent studies, the expression and activity of
iron-related proteins (ferritin, hepcidin, and ferroportin) in breast cancer cells affected the prognosis
of breast cancer [11]. In particular, poor iron metabolism (anemia) in patients with breast cancer is
a common phenomenon based on tumor stage and anticancer treatment used, and about 43–47%
of patients with breast cancer develop anemia [12,13]. In addition, patients with cancer experience
inflammatory reactions in their bodies due to obesity, as their level of activity decreases because of
fatigue [14,15].

The prevention of cancer is of primary importance; however, women who already have
cancer need proper physical and emotional care to maintain their quality of life (QoL). For cancer
survivors, the ongoing management of lifestyle (nutrition, physical activity, sleep, stress) is important.
Among lifestyle factors, physical activity is widely recognized as an effective non-pharmacological
treatment for patients with cancer [16–18]. In order to manage or prevent breast cancer, various
modalities of exercise are used. Therefore, this study, utilizing the Korea National Health and Nutrition
Examination Survey (KNHANES) conducted from 2016 to 2018, aimed to examine the relationships
between participation in various modalities of exercise and activity restriction, QoL, and hemodynamic
changes in breast cancer survivors, and to determine which modality of exercise is more effective for
breast cancer survivors.

2. Materials and Methods

2.1. Study Design and Participants

The KNHANES is a national survey conducted by trained experts every year under the supervision
of the Korea Centers for Disease Control and Prevention. This study was conducted with 187 live
female patients with breast cancer of 32,631 participants who participated in the KNHANES for 3 years.
The mean age of the subjects and mean age at diagnosis were post-menopausal. For more information
about the physical characteristics of the subjects, please see Table 1.

Table 1. The characteristics of the study subjects.

Variables Mean ± Standard Deviation

Breast cancer survivor (n) 187

Age (years) 60.8 ± 11.1

Breast cancer diagnosis age (years) 54.5 ± 11.3

Menarche age (years) 14.3 ± 1.8

Menopause age (years) 48.00 ± 4.9

Height (cm) 155.8 ± 6.1

Weight (kg) 57.5 ± 8.3

2.2. Physical Activity Assessment

The KNHANES physical activity levels were measured using 3 exercise categories: (1) aerobic
exercise only (medium intensity aerobic activity of 150 min per week or high-intensity aerobic activity
for 75 min per week); (2) resistance exercise only (>1 time per week); (3) walking exercise only
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(1–2/times per week, 3–5/times per week, 6–7/times per week). Each participant could belong to
multiple exercise categories.

2.3. Activity Restriction

The questions asked during the health interview survey regarding activity restrictions consisted of:
the presence of activity restriction, causes of activity restriction, diseases, and experience of absenteeism.
To ascertain activity restriction, 5 questions (discomfort in the last 2 weeks, disease in the past month,
disease in the last year, absenteeism in the last month, absenteeism in the last year) were asked,
and were designed to be answered with a “yes” or ”no.” In addition, the causes of activity restriction,
the presence of obesity, diabetes, and anemia (dizziness), which are closely associated with breast
cancer, were examined.

2.4. Subjective Health Status and QoL

For subjective health status, the question “How do you think your health is in normal times?”
was asked, and answers were scored from 1 point for “Very Bad” to 5 points for “Very Good” using
a 5-point Likert scale. The higher the score, the better the perceived health status by the subject.
The EuroQoL-5 dimension (EQ-5D) developed by the EuroQoL Group was used to measure QoL
related to overall health. It consists of 5 multiple-choice questions concerning exercise ability, self-care,
daily activities, pain/discomfort, and anxiety/depression. Each of the 5 questions can be answered with
1 of 3 responses: “No problem at all”, “There are some problems”, and “There are serious problems”.
In this study, Cronbach’s alpha for the instrument was 0.78.

2.5. Blood Analysis

Fasting blood samples from all participants in the Korea National Health and Nutrition
Examination Survey were collected; white blood cells, red blood cells (RBCs), hemoglobin, platelets,
hematocrit, and hs-C-reactive protein (CRP) levels were analyzed. For diabetes, stage 3 diabetes
(normal, impaired glucose tolerance (IGT) and diabetes) was based on blood glucose after fasting for
more than 8 h. Anemia was determined based on a hemoglobin level <12 g/dL.

2.6. Ethics Statement

The KNHANES was conducted as an interview survey in which the investigators interviewed
the subjects and collect responses to the questions. In this study, the raw data from the seventh
survey (2016–2018) that met the criteria of the study were downloaded from the KNHANES website
(http://knhanes.cdc.go.kr/). In order to use the data, protocols for using the raw data from the
KNHANES website were followed. Since the KNHANES is considered a public welfare study
conducted by the Korean government, this study was conducted without the prior approval of the
Research Ethics Review Committee.

2.7. Statistical Analysis

Phi coefficients or Cramer’s V value were calculated using cross-analysis to determine whether
there was a relationship between exercise participation, activity restriction, subjective health status,
and QoL by exercise modality. An independent t-test was conducted to examine the differences between
exercise modality participation by hematopoietic profile, and alpha (α) was set to 0.05. The reasons for
the different case numbers for each variable is due to missing data from those who did not respond
to the questionnaire. All analyses were conducted using SPSS version 18.0 (IBM Corp., Armonk,
NY, USA).
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3. Results

This study examined the relationships between exercise modality, activity restriction, subjective
health status, QoL, and hematopoietic profile in breast cancer survivors who participated in the
2016–2018 KNHANES. The results of the cross-analysis, conducted to determine the correlation
between exercise participation and activity restriction-related variants by exercise modality (aerobic
exercise, resistance exercise, walking exercise) in the breast cancer survivors, are presented in Table 2.
There were no statistically significant correlations between participation in various modalities of
exercise and activity restriction (discomfort in the past 2 weeks, disease in the last month, disease in
the last year, absenteeism in the last month, absenteeism in the last year) in the breast cancer survivors.

Among activity restriction due to disease, there was a statistically significant correlation between
obesity and aerobic exercise participation (p < 0.046) and walking exercise frequency (p < 0.029).
However, there was an exception; one subject who participated in aerobic and resistance exercises had a
higher obesity rate than those who did not participate. There was also a significant correlation between
diabetes and aerobic exercise participation at the level of p < 0.038. The subjects who participated in
aerobic exercise showed a lower prevalence of diabetes compared to those who did not participate in
aerobic exercise.

The results of the cross analysis, conducted to examine the correlation between subjective health
status and QoL by exercise modality (aerobic exercise, resistance exercise, walking exercise) in breast
cancer survivors, are shown in Table 3. There was a statistically significant correlation between
subjective health status and resistance exercise participation at the level of p < 0.180. There was a
statistically significant correlation between mobility, aerobic exercise participation, and resistance
exercise participation at the levels of p < 0.028 and p < 0.026. There were also a statistically significant
correlation between self-care and walking exercise frequency, and anxiety/depression and aerobic
exercise participation at the levels of p < 0.037 and p < 0.017.

The independent t-test conducted to examine the effect of exercise participation on the
hematopoietic profile by exercise modality in breast cancer survivors is presented in Table 4. The RBC
was significantly higher at the level of p < 0.028 for those who participated in resistance exercise
compared to those who did not.
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4. Discussion

Breast cancer is affected by genetic and environmental factors, such as menarche, menopause,
childbirth, and lactation experience; it is reported that a Western diet and inactive lifestyle increase the
incidence [19]. Women who have undergone surgery because of the development of breast cancer,
ovarian cancer, and uterine cancer may develop depression because they feel deprived of femininity,
which may lead to family or social problems. In addition, it has been reported that the risk of myopathy,
osteoporosis, and cardiovascular disease increases in breast cancer survivors [7].

Cancer survivors are recommended to participate in various modalities of exercise to prevent
daily fatigue and cancer recurrence. In this study, there was no significant correlation between exercise
participation and activity restriction-related discomfort or disease, and absenteeism for the last 2 weeks;
however, there was a correlation between obesity and diabetes and activity restriction. Specifically,
obesity and diabetes were significantly correlated with aerobic exercise participation and walking
exercise frequency in breast cancer survivors. In this study, aerobic exercise and walking exercise
showed a significantly positive correlation. It is suggested that aerobic exercise and walking (6–8
repetitions per week) are good solutions for obesity in breast cancer survivors. In addition, diabetes
showed a correlation with aerobic exercise, showing that participation in aerobic exercise has a lower
prevalence of diabetes compared with no participation in aerobic exercise. A meta-analysis conducted
by Protani et al. [20], reported that the risk of cancer recurrence or death was 30% higher in breast cancer
survivors who were obese than in breast cancer survivors of normal weight. It has also been reported
that excess fat tissue caused by obesity increases the recurrence rate of breast cancer [21], and aerobic
exercise (walking exercise) reduces the size of fat cells [22] and improves immune function [23].
However, increased fatigue due to a rapid increase in the level of activity may lower the immunity in
patients with cancer, so care must be taken during exercise [24]. In addition, patients with breast cancer
tend to lose muscle strength because of changes in body composition during anticancer treatment;
resistance exercise has a positive effect on maintaining body composition and strength [25], indicating
that breast cancer survivors need to participate in various modalities of exercise to further reduce
cancer-related risk factors and prevent concurrent diseases.

In this study, there was a significant correlation between resistance exercise participation and
subjective health status in breast cancer survivors. With respect to QoL, mobility and anxiety/depression
were significantly correlated with aerobic exercise participation self-care, and walking exercise frequency.
These results are similar to those of a study that reported a significant increase in QoL, fatigue,
and depression symptoms after cancer survivors participated in exercise [26].

Regarding the examination of the relationship between exercise modality and the hematopoietic
profile of the breast cancer survivors in this study, RBC significantly increased depending upon weekly
resistance exercise participation; thus, those who participated in resistance exercise had higher RBC
counts than those who did not. An increase in RBC count is closely associated with the prevalence
of anemia. The blood cells of patients with cancer do not pass through blood vessels because of the
deformation of red blood cells, which forms congestion and causes anemia. This phenomenon has been
reported in more than 40–64% of patients with cancer [27,28]. Anemia can cause dizziness, weakness,
and fatigue in everyday life, which may, in turn, deteriorate the QoL and restrict the activities of breast
cancer survivors [29]. Although not statistically significant, it was found that the prevalence of anemia
was higher in those who participated in all modality of exercise than in those who did not, as shown
in Table 1, which is considered to be closely associated with increased RBCs, even though they were
within the normal range. Mohamady et al. [30] and Drouin et al. [31] reported that participation in a
7-week exercise program prevented the increase in RBC and hemoglobin in patients with breast cancer
who were undergoing radiation therapy. It has also been reported that exercise improves systemic
inflammation in cancer survivors [32–35].

However, in this study, the inflammatory index hs-CRP was within the normal range for all
exercise modality, and there was no difference. The results of this study found that participation in
physical activities (aerobic exercise, resistance exercise, walking exercise) lowered the prevalence of
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obesity and diabetes affecting patients with breast cancer. Physical activity participation improved
subjective health status and exercise ability, and reduced depression and anxiety, thus improving the
quality of life of breast cancer survivors in Korea. Among the modalities of exercise assessed, aerobic
exercise had a greater positive correlation, indicating that it may be more effective.

There are several limitations to this study. First, the amount of exercise participation was not
directly measured by objective observance, but surveyed indirectly by using a questionnaire. Second,
there was a lack of a methodological approach for measuring the proper amount of exercise according
to the grade of breast cancer and cancer therapy method, suggesting the necessity of a follow-up study.
Third, this study was conducted only with patients with breast cancer; thus, the findings cannot be
generalized to other cancer patients. Fourth, additional physical activity evaluations, such as activities
of daily living or instrumental activities of daily living, were not conducted, suggesting the necessity
for a further study with additional variables. However, combining resistance exercise and aerobic
exercise to lessen muscle weakening is recommended. The habit of performing exercise on a regular
basis is considered most important for breast cancer survivors for the prevention of cancer recurrence
and for cancer recovery.

5. Conclusions

This study found that, for breast cancer survivors, participation in physical activity, such as
aerobic exercise, resistance exercise, and walking exercise may lower the prevalence of diseases such as
obesity and diabetes. Furthermore, physical activity can reduce depression and anxiety and improve
subjective health status, exercise ability, and quality of life. In particular, aerobic exercise was shown to
be effective in positively affecting a number of variables, but resistance training is also recommended
to prevent muscle loss. The effort to establish regular exercise habits, regardless of modality, seems to
be important for the mental and physiological health of breast cancer survivors.
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Abstract: Background: Bioimpedance vector analysis (BIVA) is a widely used method based on
the interpretation of raw bioimpedance parameters to evaluate body composition and cellular
health in athletes. However, several variables contribute to influencing BIVA patterns by militating
against an optimal interpretation of the data. This study aims to explore the association of
morphological characteristics with bioelectrical properties in volleyball, soccer, and rugby players.
Methods: 164 athletes belonging to professional teams (age 26.2 ± 4.4 yrs; body mass index (BMI)
25.4 ± 2.4 kg/m2) underwent bioimpedance and anthropometric measurements. Bioelectric resistance
(R) and reactance (Xc) were standardized for the athlete’s height and used to plot the vector in the
R-Xc graph according to the BIVA approach. Total body water (TBW), phase angle (PhA), and
somatotype were determined from bioelectrical and anthropometric data. Results: No significant
difference (p > 0.05) for age and for age at the start of competition among the athletes was found.
Athletes divided into groups of TBW limited by quartiles showed significant differences in the mean
vector position in the R-Xc graph (p < 0.001), where a higher content of body fluids resulted in a
shorter vector and lower positioning in the graph. Furthermore, six categories of somatotypes were
identified, and the results of bivariate and partial correlation analysis highlighted a direct association
between PhA and mesomorphy (r = 0.401, p < 0.001) while showing an inverse correlation with
ectomorphy (r = −0.416, p < 0.001), even adjusted for age. On the contrary, no association was
observed between PhA and endomorphy (r = 0.100, p = 0.471). Conclusions: Body fluid content
affects the vector length in the R-Xc graph. In addition, the lateral displacement of the vector,
which determines the PhA, can be modified by the morphological characteristics of the athlete.
In particular, higher PhA values are observed in subjects with a high mesomorphic component,
whereas lower values are found when ectomorphy is dominant.
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1. Introduction

In recent years, the bioimpedance vector analysis (BIVA) has been widely used in the sports field for
the assessment of body composition and cellular health in athletes [1]. This is because BIVA is not subject
to errors related to prediction equations since it interprets the raw bioimpedance values [resistance (R)
and reactance (Xc)], and it is an easy to use and non-invasive method. Its application is based on the
bivariate interpretation of R and Xc standardized for height on a graph. Vector displacements identify
increases or losses in total body water (TBW) or in the ratio between intra (ICW) and extracellular
(ECW) fluids for which increases or decreases correspond to shifts to the left or to the right of the
R-Xc graph, respectively [2]. In addition, it is possible to obtain an immediate analysis of the subject’s
body composition by comparing the vector position with tolerance ellipses built from the data of the
reference population [3–6].

Recent studies have focused on evaluating factors influencing the vector position of athletes,
including maturity status, [7–10] dehydration [11–14], and fitness level [15]. Since the bioelectric
properties of body tissues depend on body fluids and cells’ membrane integrity [16], the main
determinant of the vector position in the R-Xc graph is the TBW and the distribution of the fluids
among the two compartments (ICW and ECW). In fact, the vector length is inversely proportional
to TBW, while the lateral displacements of the vector are directly correlated with the ICW/ECW
ratio [17–20]. In addition to these body composition variables, Campa et al. [21] have recently
suggested that the somatotype also influences vector position in the R-Xc graph, where athletes with
higher mesomorphic and endomorphic components are positioned more to the lower-left than athletes
with a dominant ectomorphy. However, as the content of total body fluids is greatly associated with the
vector, correct discrimination in the R-Xc graph based on somatotype categories may be compromised.
Indeed, athletes with high body weight can still be located at the bottom of the graph regardless of
their morphology.

The bioelectric values and the vector position reflect body composition; in particular, the phase
angle (PhA), obtained as the arctangent of Xc/R, correctly mirrors the ICW/ECW ratio [17–20]. In fact,
athletes with a high PhA are positioned to the left portion in the R-Xc graph [21,22], and increases
in muscle mass, body cell mass, and, therefore, ICW lead to vector shifts further to the left over
time [23,24]. A high muscularity is observed in subjects with a high PhA or in those whose somatotype
shows a dominant mesomorphic component [21,22], as mesomorphy characterizes skeletal muscle
features [25]; moreover, both PhA and somatotype can be modified with nutrition and exercise [23,26].
However, to the best of our knowledge, no study has explored the associations between somatotype
and PhA, while analyzing the influence of morphology on the vector position for similar TBW values
in athletes.

Therefore, this study aimed to analyze the associations of morphological characteristics with
bioelectrical properties using the BIVA approach, according to different levels of body water content
in male volleyball, soccer, and rugby players. Our hypothesis was that PhA was associated with
morphological characteristics in the athletes.

2. Methods

2.1. Subjects

This was a cross-sectional observational study conducted in 164 athletes engaged in 7 professional
Italian teams participating in Series A2, Series B, and Series A divisions of volleyball, soccer, and rugby,
respectively (age 26.2 ± 4.4 yrs; body mass index (BMI) 25.4 ± 2.4 kg/m2; age at start competition
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14.2 ± 1.3 yrs). The following inclusion criteria were used: (i) A minimum of 10 h of training per week;
(ii) tested negative for performance-enhancing drugs; and (iii) not taking any medication. The athletes
were tested in the morning (9:00 AM) in the facilities of the teams. All measurements were performed
under resting conditions in the second off-season period. All participants gave informed consent after
receiving a detailed description of the study procedures. The project was conducted in accordance
with the guidelines of the Declaration of Helsinki and was approved by the local Bioethics Committee
of the University of Bologna. (Ethical Approval Code: 25027).

2.2. Procedures

All athletes were tested to ensure a well-hydrated state using the urine specific gravity test
(refractometer Urisys 1100; Roche Diagnostics), according to Armstrong et al. [27]. A urine specific
gravity value < 1.022 for the first urine was used to identify an euhydration state.

The anthropometric traits were body mass, height, humerus and femur breadths, contracted arm
and calf girths, and 4-skinfold thicknesses (triceps, subscapular, supraspinal, and medial calf).
All anthropometric measurements were taken by a certified anthropometrist according to standard
methods in the literature [28], whose technical error was 5% and 1.5% for skinfolds and all other
measurements, respectively. Height was recorded to the nearest 0.1 cm using a stadiometer
(Raven Equipment Ltd., Great Donmow, UK) and body mass was measured to the nearest 0.1 kg
using a high-precision mechanical scale (Seca, Basel, Switzerland). BMI was calculated as the ratio of
body weight to height squared (kg/m2). Girths were taken to the nearest 0.1 cm using a tape measure
(GMP, Zürich, Switzerland). Breadths were measured to the nearest 0.1 cm using a sliding caliper
(GMP, Zürich, Switzerland). Skinfold thicknesses were measured to the nearest 0.1 mm using a Lange
skinfold caliper (Beta technology Inc., Cambridge, MD, USA).

Bioimpedance analysis (BIA) was performed by a phase-sensitive single-frequency bioimpedance
analyzer (101 Anniversary, Akern, Florence, Italy), which applied an alternating current of
400 microamperes at 50 kHz. Vector length (VL) was calculated as (adjusted R2 + adjusted Xc2)0.5 and
PhA as the arctangent of Xc/R × 180/π. BIVA was applied to normalize V, R, and Xc for height (H) in
meters [29]. TBW was calculated from bioimpedance values, according to specific equations developed
for athletes using a 4-compartment model as a criterion method [30] then the athletes were divided
into quartiles.

Somatotype components were calculated according to the Heath and Carter method [25] as follow:
Endomorphy = − 0.7182 + 0.1451 (X) − 0.00068 (X 2) + 0.0000014 (X 3), where X = (sum of triceps,

subscapular and supraspinal skinfolds) multiplied by (170.18/H in cm);
Mesomorphy = 0.858 × humerus breadth + 0.601 × femur breadth + 0.188 × corrected arm girth +

0.161 × corrected calf girth − H 0.131 + 4.5;
Ectomorphy = 0.732 HWR − 28.58, where HWR = (height divided by the cube root of weight).
From the 13 initial proposed categories by Heath and Carter [25], the athletes were grouped in 6

somatotype categories:

- Endomorphic mesomorph (EnM): Mesomorphy is dominant and endomorphy is greater
than ectomorphy.

- Balanced mesomorph (BM): Mesomorphy is dominant and endomorphy and ectomorphy
are equal.

- Ectomorphic mesomorph (EcM): Mesomorphy is dominant and ectomorphy is greater
than endomorphy.

- Mesomorph-ectomorph (M-Ec): Mesomorphy and ectomorphy are equal, and endomorphy
is smaller.

- Mesomorphic ectomorph (MEc): Ectomorphy is dominant and mesomorphy is greater
than endomorphy.

- Balanced ectomorph (Bec): Ectomorphy is dominant and endomorphy and mesomorphy are equal.
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2.3. Statistical Analysis

To verify the normality of the data, the Shapiro-Wilk test was applied. The athletes were divided
into groups limited by quartiles of TBW and the one-way ANOVA was performed to evaluate the
difference in BIVA patterns (PhA and VL/H). When a significant F ratio was obtained, the Bonferroni
post hoc test was used to assess the differences between the 4 groups, setting the significance at p < 0.008.
The two-sample Hotelling’s T2 test was used to compare the mean impedance vectors among the
athletes grouped according to quartiles of TBW. Bivariate and partial (controlling for age) correlations
were performed to evaluate the associations between PhA and the somatotype components. The mean
standard deviation was calculated for each variable. Data were analyzed with IBM SPSS Statistics,
version 24.0 (IBM Corp., Armonk, NY, USA).

3. Results

No significant difference (p > 0.05) for age and for age at start of competition among the athletes
was found. The soccer, volleyball, and rubgy players showed an average EcM (endomorphy: 1.6 ± 0.3;
mesomorphy: 4.7 ± 0.9; ectomorphy: 2.9 ± 0.8), EcM (endomorphy: 2.0 ± 0.7; mesomorphy: 4.0 ± 1.3;
ectomorphy: 3.2 ± 1.1), and EnM (endomorphy: 2.1 ± 0.7; mesomorphy: 6.0 ± 1.1; ectomorphy:
0.9 ± 0.3) somatotype, respectively (Figure 1).
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Figure 1. Representation of the athletes’ somatotype.

Descriptive body fluids and bioelectrical characteristics are presented in Table 1, while the
mean impedance vectors of the athletes divided according to quartiles of TBW are shown in Figure 1.
Forty-two athletes were included in the first group (Q1) (endomorphy: 1.8± 0.6, mesomorphy: 4.4± 1.1,
ectomorphy: 2.9 ± 1.0), 40 in the second group (Q2) (endomorphy: 2.2 ± 0.7, mesomorphy: 4.6 ± 1.5,
ectomorphy 2.8 ± 1.3), 41 in the third group (Q3) (endomorphy: 2.2 ± 0.7, mesomorphy: 4.3 ± 1.4,
ectomorphy 2.8 ± 1.3) and 41 in the fourth group (Q4) (endomorphy: 2.4 ± 0.7, mesomorphy: 5.2 ± 1.6,
ectomorphy 2.0 ± 1.5). Six somatotype categories were identified, and their absolute frequencies for
each group are presented in Figure 2. The results of the two-sample Hotelling t2 test showed significant
differences between all the groups (Q1 vs. Q2, t = 21.1, p < 0.001; Q1 vs. Q3, t = 105.8, p < 0.001; Q1 vs.
Q4, p < 0.001; t = 201.6, p < 0.001; Q2 vs. Q3, t = 39.4, p < 0.001; Q2 vs. Q4, t = 98.1, p < 0.001; Q3 vs. Q4,
t = 22.7, p < 0.001) indicating that the athletes with higher TBW were positioned to the lower left in the
R-Xc graph than those with a lower TBW, as displayed in Figure 2. In addition, significant differences
(p < 0.008) were found between the 4 groups for VL/H but not for PhA, as reported in Table 2.

Figure 3 illustrates the mean vectors of the athletes subdivided by somatotype in each TBW group.
For each TBW group, somatotype categories with a dominant mesomorphy (EnM, BM, and EcM)
showed a vector tending to be positioned more to the left than those with a greater ectomorphy
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(MEc and BEc). Moreover, as displayed in Figure 4, PhA was directly correlated with the mesomorphic
component (r = 0.401, p < 0.001; Panel A) and inversely with the ectomorphic component (r = −0.416,
p < 0.001; Panel B), even when corrected for age (p < 0.001). On the contrary, no association was
observed between PhA and endomorphy (r = 0.100, p = 0.471; Panel C).
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4. Discussion 
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4. Discussion

The aim of this study was to analyze the associations of morphological characteristics with
bioelectrical properties in volleyball, soccer, and rugby players. An important finding has emerged
from our results regarding the role of body fluids on vector length. In addition, this study has shown,
for the first time, the associations between the somatotype components and PhA. As hypothesized,
when considering subjects with a similar TBW, the differences in vector position may reflect
morphological peculiarities; this was possible to observe due to the data analysis carried out in
this study, in which the athletes were divided into separate groups limited by quartiles of TBW.

We observed that body fluids content was a determining factor for vector length, extending
the findings of previous research studies [17,20]. In particular, athletes with a higher TBW (Q4)
showed a mean vector positioned lower than the other athletes (Figure 2). This is in line with
previous studies that observed vector length and its changes to accurately reflect changes in TBW
using dilution techniques to assess water and its compartments [17,20,21]. In addition, when the
mean vectors for each somatotype category were plotted on the R-Xc graph, it was possible to observe
how athletes with a higher mesomorphic component showed a vector tending to be more left in the
graph. Conversely, athletes with a dominant ectomorphy presented a vector displacement to the right.
In this regard, our results have shown that PhA correlates directly with the mesomorphic component,
while an inverse association was observed with the ectomorphic component of the somatotype.
These findings are in line with previous investigations that observed in athletes with a higher muscle
mass, including bodybuilders, a vector position at the limits of the 95th percentile to the left of the
reference ellipses of the normal population [3,22].

The athletes belonging to the six identified somatotype categories were distributed among the four
groups of TBW except for the first group where mesomorph ectomorph, and mesomorphic ectomorph
athletes, were not present. As a result, it was possible to explore the association between PhA
and morphological features. The endomorphic mesomorph, balanced mesomorph, and ectomorphic
mesomorph somatotypes are characterized by a dominant mesomorphy, due to a muscular related body
shape. On the contrary, mesomorphic ectomorph and balanced ectomorph categories imply a dominant
ectomorphy, and therefore, athletes tend to be taller with a lower muscle mass than the other somatotype
categories [25]. Rakovi’c et al. [32] showed how mesomorphic features are linked to individual sports
that require higher muscle strength, while ectomorphy is predominant in runners [33], especially those
involved in long distance. In previous research [21], it was highlighted how R/H and Xc/H were
able to discriminate somatotypes. However, if we consider this new and more individual approach,
considering the TBW values, probably some of those athletes needed to be revised, since body fluids
have a great influence on the vector position. For this reason, the athletes’ somatotypes were analyzed
according to groups of body fluids to reduce the differences attributed to TBW, and consequently,
to better understand how somatotype is associated with the vector position. Due to this approach,
it was possible to observe how the vector position changes based on the morphological features.
Indeed, when the athletes were divided into TBW groups, significant differences were found in vector
length, but not for PhA, which instead represents the lateral displacement of the vector. This suggests
that athletes with a similar PhA could have a greater TBW and, therefore, a different vector position
and body composition characteristics. In fact, when comparing the four groups, athletes with a shorter
mean vector were those with a higher TBW. A recent literature review on PhA in sports [34] concluded
that it was not clear whether PhA differs among athletes engaged in different sports. On the contrary,
studies on athletes practicing the same sports, but at different competitive levels, have shown that
elite athletes show a higher PhA than those engaged in lower-level categories [4–6]. In particular,
Micheli et al. [6] suggested that this is due to a lower R/H in relation to Xc/H and reflects a condition of
greater muscularity and body cell mass content in the athletes that compete in the higher levels. In this
study, it was shown how the interpretation of the vector position in the R-Xc graph overcomes the
limits linked to the interpretation of the PhA alone. In this regard, Reis et al. [35] recently showed that
the bioimpedance vector position varied in response to changes in the macrocycle training load in
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swimmers of both sexes. The authors identified an accumulation of fluids and, therefore, a shortening
of the vector following a first phase characterized by a high training load, and then a subsequent shift
of the vector position to the left side as a result of muscle adaptations that occurred after a recovery
period. Similarly, Mascherini et al., in 2014 [24], for the first time studied vector changes over the
competitive season in soccer players and showed that PhA decreased during the preparatory phase and
then increased near the beginning of the competition. In line with this, Nabuco et al. [36] highlighted a
moderate and inverse association between PhA and the values obtained from a fatigue assessment test.

The results of the present study add important and useful information for a correct interpretation of
BIVA. The careful evaluation and monitoring of body composition allow the athlete to be predisposed
to achieving high peak performance [37]. Through BIVA, it is possible to evaluate the progress
in the athlete’s physical condition during the season [38] in response to a training program or a
nutritional intervention [37], avoiding incurring decreases in physical performance. This method,
in addition to monitoring body fluids, also allows information about other body composition variables
at a whole-body level [39]. In fact, it is not always possible to collect the various anthropometric
measures that allow the evaluation of the somatotype; in this regard BIVA, if correctly interpreted,
can provide important information, minimizing the need for skinfolds and girths collection by a certified
anthropometrist. While this method requires further study, especially concerning monitoring the
bioimpedance parameters in the short term, the innovation of this study lies in the fact that it provides
useful information for the correct interpretation of the vector position in the R-Xc graph, specifically the
role of body water as a mediator of the morphological associations with bioelectrical parameters.

Some limitations of this study need to be addressed. First of all, our results are only generalized
for male athletes. Secondly, the findings of this study are only applicable to single-frequency BIA
equipment. In fact, different results in measuring raw BIA parameters are obtained using devices
that work on single- or multi-frequency [40]. On the other hand, the fact that it was ensured that
the athletes were in a state of euhydration is a strength of the present work. Future research should
study the potential of BIVA patterns as a biomarker of physical condition during the training process,
as in specific microcycles. Indeed, as bioimpedance analysis (BIA) equipment provides an easy,
simple, and low-cost application, it allows for a frequent assessment to optimize monitoring of the
athlete’s physical condition.

5. Conclusions

BIVA provides meaningful information on body composition assessment in athletes. This study
showed that body fluid content affects the vector length in the R-Xc graph, while the lateral displacement
of the vector can be modified by the morphological characteristics of the athlete. In particular,
the mesomorphic component of the somatotype is related to higher PhA, an important marker of
cellular integrity and overall physical function.
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Abstract: Sixteen female soccer players (age = 20.19 ± 1.52 years; body mass = 56.52 ± 4.95 kg;
body height = 164.81 ± 4.21 cm) with no history of lower extremity injury participated in the
study. The Biodex SD Balance system was used to determine the non-dominant single-leg stability.
In anaerobic exercise, each subject performed four maximal cycling efforts against a resistance
equivalent to 0.075 kg/body mass for 30 s with three-minute rest intervals. In aerobic exercise, subjects
performed the Bruce protocol on a motorized treadmill. After each exercise, subjects subsequently
performed a single-leg stability test and then repeated the same test for four times with five-minute
passive rest periods. In accordance with the results, it was found that the impairment observed
right after the aerobic loading was higher (p < 0.001) compared to the anaerobic one. However,
the time-related deterioration in both aerobic and anaerobic loadings was similar. The B-pre value
was lower than Bpost and B5 (p < 0.01) and B10 (p < 0.05) in both conditions. Subjects could reach the
initial balance level at B15 after aerobic and anaerobic loadings. The lactate level did not reach resting
value even after 20 min of both fatigue protocols. Although the fatigue after aerobic and aerobic
exercise negatively affects a single-leg dynamic balance level, single leg balance ability returns to the
baseline status after 10 min of passive recovery duration.

Keywords: balance; fatigue; female; support leg; recovery

1. Introduction

The popularity of soccer among females is increasing each passing day. It is estimated that
around 30 million females are actively playing licensed soccer in more than 100 countries around
the world. Studies indicate that as the participation of females in soccer increases, the incidence of
injury increases at a high rate [1–3]. In a soccer match, soccer players engage in many moves such as
high-intensity acceleration, deceleration, sudden change of direction, bounce, and other soccer-oriented
movements. Along with these moves, soccer players often experience various injuries when using
one leg for stopping and cutting during pressure, while using the other leg to tackle the ball [4].
In addition to these, injuries in soccer are caused by sudden acceleration and deceleration without
impact, rapid disorientation, and exposure to high loads while maintaining the stability of the knee joint
in unpredictable movements [5–8]. When the injuries experienced in soccer were evaluated according
to sex differences, It was reported that female athletes had a higher incidence of anterior cruciate
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ligament (ACL) experience in lower extremity injuries due to biomechanical and neuromuscular
differences [5,6] than males [9].

Furthermore, previous studies indicate that female soccer player has the risk of ACL injury nine
times greater than males [10]. Several risk factors cause these injuries in female soccer players. These risk
factors in female soccer players include a previous history of injury [11], as well as a decline in hip
strength [12] due to accumulated fatigue [11] and deterioration of lower extremity dynamic balance [13].
Epidemiological studies have pointed out that 50% of the injuries occur at the end of competitions or
sports activities, and 58% of these injuries are due to non-impact conditions. That fatigue is an essential
element of sensory-motor changes associated with injury [14,15]. Ekstrand et al. [9] report in their
study that traumatic injuries occur more often in the last minutes of both halves of a soccer match [9].
In addition to these, it was reported in another study that lower extremity injuries were commonly seen
at the last minutes of competition in sports such as soccer, which includes high-intensity moves and
multi-directional sprints [9,16]. Therefore, it can be stated that non-contact injuries caused by fatigue
occurred in the last fifteen minutes of play in both the first and second half of games. In non-contact
injuries, neuromuscular fatigue is seen as a risk factor [17–20]. Neuromuscular fatigue is divided
into two, according to the intensity and duration of exercise, like peripheral and central nervous
system fatigue. Long-term activities affect the central nervous system, while short-term high-intensity
activities cause peripheral fatigue [21,22]. Peripheral fatigue arises when there is not adequate energy
provided to the muscles, despite the increasing energy need [22].

Moreover, it has been reported that muscle fatigue affects both peripheral and central
proprioceptive processes [23–25]. Balance is defined as being able to hold the body center of gravity
within the center of support [26]. In order to maintain balance visual, vestibular, and proprioceptive
systems play a crucial role, and these systems are affected by many factors [27–32]. The proprioceptive
system consists of the Golgi tendon organ, the muscle spindle, the Pacini corpuscle, free nerve endings,
and the receptors in the joint capsules and skin [32–34]. It ensures maintenance of the balance with
the information collected from these structures [32,34]. The proprioceptive system is affected by
fatigue, aging, sarcopenia, neurological disease fibromyalgia, cancer, and rheumatological diseases and
may result in impaired balance [35–38]. Many researchers have shown that fatigue negatively affects
dynamic postural control [39–42]. Fatigue is an essential factor that acutely affects balance ability.
In a study in which the center of pressure (COP) was measured before, in halftime and immediately
after a soccer match, it was determined that the balance skill of the support leg was impaired in the
post-match measurement [41]. The return of balance ability to average values after fatigue depends
on many factors. The return of post-fatigue balance ability to initial level depends on the duration,
intensity, and type of intensity of the fatigue protocol performed [43]. Deficits in dynamic postural
control is a risk factor in experiencing falls and lower extremity injuries [13,42,44–47]. The deterioration
of dynamic balance is associated with reactive and compensating movements, and it is stated that
this impairment has been linked to falling risk and lower extremity injuries [18,48,49]. Since fatigue
increases the rate of injury in athletes [9,16], and the lack of postural control is a lower extremity injury
risk factor [13,50,51], it can be expected that the rate of injury as a result of fatigue-induced postural
control (fatigue-induced balance deficits) may increase.

Soccer is classified as both an aerobic and an anaerobic sport. In the game, players may experience
fatigue from time to time as a result of aerobic and anaerobic activities. There are studies in the
literatüre on the effects of anaerobic fatigue on balance performance in soccer players. However, up to
date, no previous studies have examined the effects of both types of fatigue in soccer players. Besides,
many activities such as passing, kicking, and jumping in soccer are carried out on the support leg.
This research will be the first to examine the effects of fatigue on support leg balance performance.
Therefore, this study aims to determine the effects of different fatigue protocols on balance performance
of the support-leg in female soccer players and to understand the time required for the balance to
recover after loading.

242



Int. J. Environ. Res. Public Health 2020, 17, 6273

2. Materials and Methods

Sixteen sub-elite female soccer players (with mean age of 20.19 ± 1.52 years, body mass
56.52 ± 4.95 kg, body height 164.81 ± 4.21 cm, percent body fat 22.63 ± 2.42%, and maxVO2

52.33 ± 5.74 mL.kg.−1min−1) participated in the study voluntarily. Players who suffered lower
extremity injuries for the last six months were not included in the study. Participants were instructed
not to perform exercises that may cause exhaustion 48 h before the tests and not to use stimulants such
as alcohol, caffeine, or drugs in the last 24 h before the study. The study was conducted according to the
Declaration of Helsinki and was approved by the Ethics Committee of Ankara University, Approval
code 21-1300-17, released in December 2017.

2.1. Balance Test

The participants were invited to participate in the Biodex SD Balance System (Biodex, Shirley,
NY, USA) athletic single-leg testing protocol [52]. As noted, the Biodex Balance System (BBS) uses a
circular platform that is free to move in the anterior-posterior and medial-lateral axes simultaneously.
The BBS measures, in degrees, the tilt about each axis during dynamic conditions and calculates an
overall stability index (OSI). A high score in the OSI indicates poor balance. The platform stability
ranges from 1–12, with 1 representing the most significant instability.

The familiarization protocol was implemented before the experiments. All participants were
instructed to perform the balance test on five different days of the targeted week.

The athletic single leg test protocol consisted of 3 trials of 20 s of upright stance on support-leg
with 10 s of rest intervals between trials. Participants were asked to place their feet with the malleolar
axis aligned with the midpoint of the platform over the center dot of the platform in a comfortable
position. An athletic single-leg test was conducted on BBS with the platform set at level 4. Balance tests
were carried out on the non-dominant leg. The same test protocol was performed before (Bpre) and
right after (Bpost) both aerobic and anaerobic fatigue protocols, and repeated at the 5th (B5), 10th (B10),
15th (B15), and 20th (B20) minutes. The participants were allowed to rest passively during the 5 min of
recovery periods. There was a 2-day period between aerobic and anaerobic fatigue protocols (Figure 1).

2.2. Aerobic Fatigue Protocol

The Bruce protocol was performed on a motorized treadmill (Cosmed, Rome, Italy) in order
to create aerobic fatigue in soccer players [53]. The participants continued the test until they were
exhausted. At the end of the test, the maxVO2 consumption values of the participants were calculated
and recorded. Rating of perceived exertion (RPE) was obtained using the 6–12 point Borg scale at
the end of every load [54]. MaxVO2 was defined as the highest 30 s average in oxygen uptake and
maximal heart rate (HRmax) as the highest every 10 s average during the Bruce protocol. A test was
considered maximal when four of the following criteria were completed: VO2 plateau at peak exercise,
respiratory exchange ratio ≥ 1.10 greater age-predicted maximal heart rate (220-age), and an indication
of 18–20 rating on the Borg RPE scale [55].

2.3. Anaerobic Loading Protocol

Anaerobic fatigue protocol was performed using a bicycle ergometer (Monark Erogomedic 894
E Peak Bike Vansbro Sweden). The Wingate test protocol was used for anaerobic fatigue. In the
Wingate protocol, participants were asked to pedal at maximal speed for 30 s. As the intensity of the
training, a weight equivalent to 7.5% of the participants’ body mass was placed on the load scale.
Once the participants started pedaling, the scale dropped when the bike’s wheel revolution went up to
150 rpm and the maximal pedaling for 30 s. Soccer players were verbally motivated during training.
Participants repeated the Wingate test protocol a total of 6 times with intervals of 4 min.
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2.4. Lactate Testing

Participants’ blood lactate values were determined immediately after the fatigue protocol and
during the recovery period (Lpre) just before the balance tests at 0th (Lpost), 5th (L5), 10th (L10), 15th (L15),
and 20th (L20) minutes. During the lactate test, participants’ fingertips were wiped with alcohol-based
tissue paper, and their capillary blood samples were taken with a lancet pen. Blood lactate levels
of the participants were determined by an Accutrend Plus lactate device (Roche Diagnostics, Basel,
Switzerland).

2.5. Statistical Analysis

In all statistical analyses, SPSS version 20 was used (SPSS Inc., Chicago, IL, USA). First, because
the number of participants was below 50, the normality of the data was analyzed with the Shapiro-Wilk
test. Depending on the distribution, lactate and balance values obtained at different times following
aerobic and anaerobic fatigue protocols were compared by the Paired Sample t-Test or Wilcoxon Test.
For the intergroup analyzes, either the Repeated Measurements Analysis of Variance (Aerobic Lpre,
L5, L10, L15, L20; Bpre, B5, B15, B20; Anaerobic Lpost, L5, L10, L15, L20; Bpre, B5, B15, B20) or the
Friedman test (Aerobic Lpost, Bpost, B10; Anaerobic Lpre, Bpost, B10) was used again depending
on the distribution. In the case of the dataset exhibited both non-normally distributed and norma
distributed data, we proceeded with the non-parametric analysis. In all statistical analyses, the alpha
value was considered to be 0.05.
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3. Results

The following variables were shown to be not normally distributed (Aerobic Lpost, Bpost, B10;
Anaerobic Lpre, Bpost, B10).

The lactate values obtained from the participants before, during, and after aerobic and anaerobic
fatigue protocols are shown in Table 1.

Table 1. Mean comparisons of participants with lactate and balance, which vary depending on aerobic
and anaerobic loading. In horizontal, the repeated measures p values, in vertical the p values for aerobic
vs. anaerobic comparisons.

Fatigue
Protocol Lpre Lpost L5 L10 L15 L20 p_

Aerobic 1.20 ± 0.36 11.70± 2.53 11.81 ± 2.51 9.86 ± 2.58 7.84 ± 2.15 6.93 ± 1.87 0.000 **
Anaerobic 1.18 ± 0.33 15.43± 2.40 15.09 ± 2.27 13.76 ± 2.50 11.25 ± 2.14 9.49 ± 2.51 0.000 **

p_ 0.823 0.001 ** 0.000 ** 0.000 ** 0.000 ** 0.001 ** -

Fatigue
Protocol Bpre Bpost B5 B10 B15 B20 p_

Aerobic 0.89 ± 1.39 2.29 ± 1.04 1.35 ± 0.29 1.08 ± 0.35 1.01 ± 0.24 1.04 ± 0.26 0.000 **
Anaerobic 0.90 ± 1.40 1.58 ± 0.57 1.16 ± 0.21 1.02 ± 0.28 0.95 ± 0.15 0.98 ± 0.18 0.000 **

p_ 0.745 0.001 ** 0.014 * 0.308 0.410 0.509 -

L: Lactate; B: Balance; * p < 0.05; ** p < 0.01.

According to the results, there was no significant difference between participants’ resting lactate
concentration values obtained before aerobic and anaerobic loading (p > 0.05). However, the lactate
values obtained immediately after, 5th, 10th, 15th, and 20th min were statistically significant (p < 0.01)
according to the fatigue conditions. After anaerobic loading, lactate values were found to be higher.
Besides, it was understood that 20 min was not sufficient for the recovery, regardless of the type
of loading.

Lactate values obtained at six different phases of the aerobic fatigue protocol were significantly
different (p < 0.01). The resting lactate value was determined to be lower than all others reached after
loading. Also, a significant difference was found between Lpost and L10, L15 and L20; L5 and L10, Lpost

L15, and L20; L10 and L15 and L20 (p < 0.01); and with L5 and L20 (p < 0.05).
In lactate values measured after anaerobic loading, the resting value was determined to be

significantly lower than in all other measurements. The difference between Lpost and L5 was not
significant, similar to the aerobic one. However, a significant difference at the level of p < 0.01 was
found between Lpost and L10, L15, and L20, between L5 and L10, L15, and L20 and between L15 and L20.

When the results related to the balance were examined, a significant difference was found at the
level of p < 0.01 between the balance values obtained immediately after aerobic and anaerobic loading
and at the 5th minute. It was understood that there is more deterioration in the balance after aerobic
loading. No significant difference was observed in the values obtained after 10th, 15th, and 20th min,
depending on the type of loading (Figure 2).

When the values obtained due to aerobic loading are taken into account, it was understood that the
differences between Bpre and Bpost, B5 (p < 0.01), and between Bpre and B10 were (p < 0.05) statistically
significant. However, there was no significant difference with the values reached between B15, B20,
and Bpre. Accordingly, it can be stated that recovery takes place after aerobic load in the state of balance
between 10th and 15th minutes. In the other results, on the other hand, a significant difference was
found between Bpost and B5, B10, B15, and B20 (p < 0.01). The measurement of B5 was found to be
significantly higher than the measurements of B10, B15 and B20 (p < 0.01).
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4. Discussion

This study aimed to investigate the acute effects of aerobic and anaerobic exercises on dynamic
balance skill and recovery time in female soccer players. In order to control the fatigue level,
lactate concentrations of the subjects were also collected. According to the lactate test results, both
fatigue protocols were found to be successful in creating fatigue. Although it was higher after the
anaerobic exercise, the lactate level did not return to the initial level within 20 min after both fatigue
conditions. Besides, as a result of strenuous aerobic or anaerobic exercise, female soccer players’
ability to balance the support leg was affected negatively. After both aerobic and anaerobic loading,
the recovery time of balance skill lasted about 10 min. The deterioration in the athletic single-leg
stability test was observed to be higher after the aerobic fatigue protocols in all of the measurements.
Furthermore, the difference was statically significant in Bpost (p < 0.01) and B5 (p < 0.05) values.
In the literature, many studies suggest that aerobic and anaerobic fatigue negatively affect balance
ability [41–43,56–61]. There are similar studies on this subject in the literature. In a study in which both
aerobic and anaerobic fatigue protocol was implemented, and the balance level was determined with
the Balance Error Scoring System (BESS), no difference was found between the balance performance
and its time of recovery after both fatigue protocols. However, athletes returned to their initial balance
performance values within 8–13 min after both fatigue protocols [58]. Steinberg et al. investigated the
balance level after a Yo-Yo test with the Interactive Balance System (Tetrax) device and reported that
balance skill returned to the initial level within 10 min after fatigue [62]. In the current study, balance
skills returned to the initial level after approximately 10–15 min after both aerobic and anaerobic fatigue.
Moreover, the present study found no difference between balance levels during the recovery time after
aerobic or anaerobic fatigue. In a study conducted on a bicycle ergometer, participants performed
two maximal Wingate tests lasting 30 s with a rest interval of 2 min. At the end of high-intensity
activation, it was determined that balance skill was affected negatively and returned to the baseline
level within 10 min [63]. Ishizuka et al. applied the functional fatigue protocol to 14 male and 9
female college-level soccer players and determined the balance with the Biodex Limit of Stability
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Test. As a result, the subjects were found to have returned their initial level within 10 min after the
fatigue [59]. In a study by Matsuda et al., a functional fatigue protocol was applied to 100 recreationally
active college students. After the functional fatigue protocol, it was reported in the measurements
made with the balance error score system that the balance performance returned to its initial level
within approximately 20 min [64]. Although a similar fatigue protocol was implemented, different
balance performance recovery times were observed between the study mentioned above and our study.
This difference is thought to be since soccer players have a better balance skill than other athletes and
sedentary people. Contrary to the result of the current study, it is reported in some studies that the
recovery time of balance ability lasts longer than 10 min, while in some studies, it is reported that
balance ability is not affected after fatigue. In a study where the fatigue protocol involving sports
activities was applied, it was reported that the participants’ balance values returned to their initial
values after 20 min as a result of the balance test conducted with the balance error score system [56].
In another study, in which balance measurements were made after a 25-min treadmill run, it took
approximately 15 min for the athletes participating in the study to return their balance performance to
its initial level [65]. In another study, where balance measurement was performed with the biodex
balance system before and during a soccer match, it was determined that the dominant leg balance
performance of the players was impaired while no change was observed in the support leg balance
performance [66]. In contrast to this, soccer players’ support leg balance skills were found to be
negatively affected following the fatigue protocol in the present study. The reason for the difference is
thought to be due to the degree of difficulty differences between the protocols of balance tests. In the
literature, some studies did not observe any changes experienced in balance performance after fatigue.
After soccer-specific fatigue [67] and after soccer training [68], balance measurements made with the
Biodex Balance System have reported that the balance performance of soccer players is not affected by
fatigue. Paillard reported that the return of post-fatigue balance ability to initial values depends on the
duration, density, and intensity of the fatigue protocol performed [43]. In these studies, it is thought
that the reason why there is no difference after fatigue is due to insufficient density and intensity of the
fatigue protocol for impaired balance ability. In addition, longer times to return to initial values of
balance performance were reported in these studies compared to the current study. The reason for
these varied results may have been the difference between the branches of the athletes participating in
the studies or the difference in balance measurement methods.

5. Conclusions

As a result of this study, it was clearly observed that balance performance is impaired in soccer
players after both aerobic and anaerobic fatigue. The impairment of fatigue and balance performance
are seen as significant risk factors. Although there is not enough data on the effects of fatigue on
balance ability in soccer players, it is stated in several studies that fatigue increases the incidence of
injury experienced [69] and that deterioration in balance performance may increase ankle injuries [70].
Many researchers also suggest that balance training should be performed to prevent injuries [1,71,72].
Therefore, trainers should give importance to balance training in order to prevent non-contact injuries
caused by loss of balance. In future studies, it is suggested to investigate the effects of fatigue on the
balance ability in athletes performing balance training.

The study was performed exclusively on healthy young adult female soccer players (who suffer
from a higher prevalence of non-contact ACL injuries). A limitation of the study could be seen as a lack
of control of the menstrual cycle. In addition, in this study, anaerobic fatigue protocol was performed
with a bicycle ergometer and aerobic fatigue with a treadmill. The measurement of balance performance
after a real soccer match is thought to provide a clearer picture of the effects of soccer-specific fatigue
mechanisms on balance performance.
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