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Marcin Chybiński and Łukasz Polus
Mechanical Behaviour of Aluminium-Timber Composite Connections with Screws and Toothed
Plates
Reprinted from: Materials 2021, 15, 68, doi:10.3390/ma15010068 . . . . . . . . . . . . . . . . . . . 113

Berta Suarez, Luisa M. Muneta, Gregorio Romero and Juan D. Sanz-Bobi
Efficient Design of Thin Wall Seating Made of a Single Piece of Heavy-Duty Corrugated
Cardboard
Reprinted from: Materials 2021, 14, 6645, doi:10.3390/ma14216645 . . . . . . . . . . . . . . . . . . 133

Saewhan Kim, Laszlo Horvath, Jennifer D. Russell and Jonghun Park
Investigation of the Effect of Pallet Top-Deck Stiffness on Corrugated Box Compression Strength
as a Function of Multiple Unit Load Design Variables
Reprinted from: Materials 2021, 14, 6613, doi:10.3390/ma14216613 . . . . . . . . . . . . . . . . . . 165

Tomasz Garbowski, Anna Knitter-Piatkowska and Aleksander Marek
New Edge Crush Test Configuration Enhanced with Full-Field Strain Measurements
Reprinted from: Materials 2021, 14, 5768, doi:10.3390/ma14195768 . . . . . . . . . . . . . . . . . . 181
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Preface to ”Mechanics of Corrugated and Composite

Materials”

One of the challenges in research by modern engineers is the acquisition of new materials for

the creation of various constructions in order to improve their properties, including mechanical ones.

One possible way to achieve this goal is through composite materials. Moreover, the use of such

materials in various real constructions leads to material, cost, energy and environmental savings,

e.g. by reducing the weight of the products, significant reductions in fuel consumption, exhaust

emissions and costs during transport can be achieved. Therefore, composite materials are of great

practical importance, as seen in various applications in the automotive and aerospace industries,

building construction and many other fields.

Composite materials are inhomogeneous materials consisting of at least two various materials

of different properties. Considering the construction of the composites, one can distinguish some

typical examples, e.g., fibrous composites, when one component of the composite is made of fibers

and the other is called a matrix. Another kinds of composite materials are sandwich or layered plates,

in which their components are arranged in layers. Both of them have a wide range of applications

in various engineering fields. On the other hand, there are multiple methods for analyzing the

mechanical properties of these composites, including experimental, analytical or numerical studies.

Corrugated cardboard, commonly used in the packaging industry, is a special type of corrugated

material. In the case of corrugated cardboard boxes, the key is to obtain a durable and stable structure

with a relatively low weight.

Another important issue is the modeling of structures made of composite or corrugated

materials. Their specific design and heterogeneity make it very expensive to build a complete model

while maintaining all the details and is thus also very time-consuming. Therefore, both the material of

individual components (layers) and the cross-sectional geometry are usually a priori homogenized to

simplify and speed up the calculations. The simplification should not, however, distort the results that

would be obtained using the full model. Therefore, the selection of an appropriate homogenization

method is often a key issue when analyzing structures made of corrugated or composite materials.

This Special Issue is devoted to the mechanics of composite materials, particularly corrugated

materials, e.g., corrugated cardboard or multilayer boards with a soft core. In addition, the

articles published in this Special Issue of Materials present different approaches to the research

and application of various computational methods and the homogenization of selected composite

materials.

Finally, we take this opportunity to express our most profound appreciation to the MDPI Book

staff; the editorial team of Materials, especially Ms. Daisy Liu, the managing editor of this Special

Issue; all of the authors; and all of the professional reviewers.

Tomasz Garbowski, Tomasz Gajewski, and Jakub Krzysztof Grabski

Editors
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Editorial

Mechanics of Corrugated and Composite Materials

Tomasz Garbowski

Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering,
Poznan University of Life Sciences, Wojska Polskiego 50, 60-627 Poznan, Poland;
tomasz.garbowski@up.poznan.pl

The main aim of this Special Issue in Materials was to collect interesting and innovative
works on the mechanics of corrugated and composite materials. Corrugated core materials
are increasingly used as structural materials or load-bearing elements in a variety of
lightweight engineering structures. Due to the specific composition of the composite
layers of corrugated materials, the ratio of their load capacity to the weight of sections
is much higher than in the case of traditional solid sections. In addition, the geometries
of corrugated structures proposed by scientists from around the world are constantly
modified to improve their mechanical properties. Composite materials, due to their unique
design properties, can be used in many areas to solve difficult problems where traditional
materials often fail.

In this Special Issue, the most interesting research papers on various aspects of this
broad research field have been collected. From theoretical issues related to the influence of
transversal shear on the parameters of corrugated cardboard, to experimental and numer-
ical analysis of an aluminum structure protecting against the effects of an explosion. By
enabling scientists and engineers to present the latest knowledge on advances in theoretical,
experimental and computational approaches for corrugated and composite materials, it
was possible to present a very comprehensive set of research papers.

In research work [1], the authors were focused on the numerical homogenization of
plates with a periodic core. The periodicity of the soft core in this case was related to the
sinusoidal shape of the middle layer of the multilayer structure made of cardboard. In
these types of plates, the transversal shear has a very large influence on their mechanics. A
traditional assumption based on the Kirchhoff–Love theory fails and the Reissner–Mindlin
theory must be used. The authors presented an extension of the existing homogenization
method based on the elastic equilibrium of the strain energy by including the effects related
to transversal shear. This method uses the principles of finite element modeling; how-
ever, it does not require any formal numerical analysis. The heart of this approach is the
matrix linking the effective strains with displacements in the outer nodes of the represen-
tative volumetric element (RVE), and the stiffness matrix of the entire RVE condensed to
these nodes.

In article [2], the authors were focused on the mechanics of corrugated cardboard. The
aim of the work was to derive simplified predictive models to identify the total stiffness
and compressive strength of corrugated board samples. The authors used a non-contact
method of measuring deformation on the sample surface, based on virtual optical strain
gauges, thus eliminating the unreliable measurement of displacement in the standard edge
crush test. Video extensometry was used to collect measurements from the outer surfaces
of the sample on both sides. As a representative example in this study, an unsymmetrical
five-layer sample with two corrugated layers was used. Reliable determination of the
stiffness of multilayer structures made of thin panels is not an easy task because buckling
of the panels quickly occurs in this type of section and must be taken into account in the
calculations. The authors proposed a very effective analytical model for determining the
compressive strength of corrugated board based on video extensometric measurements
and taking into account preliminary buckling.
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The edge compression response was also analyzed in paper [3], which investigated
a composite structural insulating panel (CSIP) with magnesium oxide plate facings. The
authors studied a novel multifunctional sandwich panel introduced into residential con-
struction as part of wall, floor and roof assemblies. The study was conducted to build a
computational tool for the reliable prediction of CSIP failure modes subjected to various
axial loads, both concentric and eccentric. The paper proposed an advanced numerical
model (based on the finite element method), which takes into account geometric and mate-
rial nonlinearities, and also takes into account the effect of bimodularity of the material.
Additionally, the model was verified by means of laboratory tests on small-scale CSIP sam-
ples with three different slenderness ratios and full-size panels loaded with three different
eccentricity values.

Numerical homogenization was also used in [4]. Since homogenization allows for
a significant simplification of the computational models [1] and, at the same time, for a
very accurate representation of complex plate cross-sections [1], the application of such
techniques to the corrugated cardboard packaging becomes a very urgent task. As soon as
the homogenized models begin to take into account the creases, cuts and other local effects
of the plates, this technique begins to take on a very practical character. The authors used a
very practical application of homogenization (already presented in work [1]) extended by
also modeling cases containing all local effects resulting from production and processing.
The presented approach can be successfully used to model the smear degradation in a finite
element or to define the deterioration of stiffnesses on the crease or perforation line.

On the other hand, article [5] presented the important issue of thin facing wrinkling
in sandwich panels with a soft core. The local loss of stability in thin facings obviously
reduces the load-bearing capacity of the composite panels. Therefore, it is very important
to correctly define under what conditions and for what loads this effect is activated in real
structures. The paper compares the classic solutions to the problem of facing instability
based on an eluted homogeneous and isotropic half-space (i.e., the soft core of the plate).
The paper also discusses the use of an orthotropic core, in line with the classic solution of
an isotropic core.

Corrugated board was analyzed again in [6]. The authors focused on the load-bearing
capacity of corrugated cardboard packaging in a specific configuration of packaging flaps.
The raised problem is particularly important in the corrugated board packaging industry,
where more and more advanced numerical tools are used to design and estimate the load
capacity of its products. Therefore, numerical analyses are becoming a common standard in
this branch of production. Because the experimental results showed a significant reduction
in the static load-bearing capacity of the package in the case of shifted flap creases, the
study investigated the impact of the specific flap configuration on the strength of the box.
An updated analytical and numerical approach was used to predict package strength with
different flap offsets. The results obtained by the model presented in this paper were also
verified with satisfactory compliance with the experimental data.

Paper [7] presented an issue that was partially discussed already in previous works
in this series, namely plate edge crushing [2,3] and the use of optical extensometers [2] to
measure displacements and deformations on the external surfaces of the tested samples.
As is known in the plate edge crush tests, the biggest obstacle is obtaining a reliable
measurement of displacements and deformations in the sample. Therefore, the use of video
extensometry allowed the authors to develop a method that not only allows the reliable
measurement of displacements, but also the identification of the full orthotropic stiffness
matrix of the material. This was achieved through the innovative use of two samples:
(a) traditional and cut across the wave direction of the corrugated core, and (b) cut at an
angle of 45◦. The obtained results were finally compared with the results obtained in the
homogenization procedure [1,4] of the corrugated board cross-section.

Corrugated cardboard was also analyzed in two further studies [8,9]. In work [8], the
authors focused their attention on the palletization of corrugated cardboard packaging,
while in [9], on a rather unusual corrugated cardboard product, i.e., furniture. The first

2
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article examined the effect of the stiffness of the top deck of the pallet on the compressive
strength of a corrugated board box as a function of the initial thickness of the top deck,
the wood grade of the pallet, the size of the box and the grade of the cardboard. The
second article focused on optimizing the stool structure by removing material zones in
places where the fewest stresses occur. Interestingly, the work [9] also used homogenization
methods similar to those presented in [1,4]. The presented results demonstrate the utility
of homogenization techniques as an aid in the design process of whole structures made of
corrugated cardboard.

A slightly different issue was presented in [10], where the authors focused on the
construction of connections in a composite beam made of aluminum and wood. The load
capacity, the type of failure and the load slip reaction of reinforced and unreinforced screw
connections were examined. It has also been proven that the tested stiffness and strength
of connections can be practically used for the correct design and numerical modeling of
aluminum–wooden composite beams with reinforced bolted connections.

The topic related to the mechanics of paper and cardboard also appeared in [11],
where the authors presented the effect of impregnation of the paper core with acetylated
starch on the mechanical properties and energy absorbed in the three-point bending test
of wood-based honeycomb panels, under changing temperature and relative air humidity
conditions. The paper presented the results of extensive research on materials, various
combinations of coatings, core cell geometry and different qualities of cardboard. The
results of the experiment and their statistical analysis showed a significant relationship
between the impregnation of paper with modified starch and its mechanical properties.
In general, this observation obviously allows for the optimization of furniture boards and
their further lightweighting.

Selected homogenization methods used for corrugated core materials presented in
previous studies [1,4,9] have been systematically summarized in [12]. The homogenization
methods presented in this work refer to materials with a lattice core, but their use for
materials with a corrugated core is also possible. In both cases, structures made of plates
containing structural cores are both light and very stiff. Without the use of homogenization,
only conventional methodologies remain based on numerical approaches such as FEA
(finite element analysis) and high-performance computational tools, including ANSYS and
ABAQUS. However, they require a high computational power in each case of modeling
complex core geometries. That is why it is so important to correctly apply the appropri-
ate homogenization method to simplify the model and speed up the calculations, while
maintaining the maximum fidelity of the simplified model in relation to the real model.

Last but not least, article [13] in our Special Issue presented the method of modeling
the combustion of a popular material—aluminum. The authors conducted a study of
aluminum powder in order to isolate the aluminum combustion process and determine an
adequate representation of this process. The charges of various masses were investigated,
determining the size of the cloud and previously unpublished results of the component
ratio in the Al and air mixture. The obtained results of the numerical analysis as well as
those obtained from the experimental tests were in good agreement.

To summarize, the problems related to the mechanics of corrugated and composite
materials discussed in this Special Issue do not exhaust the topic but are only a small part of
this broad topic. All the presented works follow the trend of modern scientific research on
materials with a soft core (corrugated, lattice, etc.) and composites, as well as the practical
use of homogenization techniques of structures made of these materials.

Funding: This research received no external funding.

Acknowledgments: The guest editors would first like to thank the in-house editor for her inex-
haustible diligence and constant support in the creation of this Special Issue. We would like to express
our gratitude to all the authors who contributed to the creation of the Special Issue through their
valuable scientific research, as well as to the reviewers whose constructive comments and thoughtful
suggestions made the quality of the presented works of the highest level.
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Abstract: Risk management and uncertainty models are practised in all branches of transport.
Although unmanned aerial vehicles (UAVs) constitute a branch of the industry rather than transport
as a whole, their development is oriented toward increasingly more serious applications involving
the transport of goods and people. The constantly growing number of operations employing UAVs
requires not only identification of hazard sources or risk assessment recommended by the applicable
regulations, but also comprehensive risk management. In order to develop a systematic approach
to risk management for air operations of UAVs, the classic risk management method can be used.
This work proposes a novel multi-criteria risk model that may serve as the basis for further activities
aimed at developing a risk management method for this domain. The model was based on six criteria
and validated using a virtual route to risk assessment and valuation.

Keywords: air operation safety; flying risk; risk management; unmanned aerial vehicles

1. Introduction

Due to their characteristics, the use of UAVs is increasingly common in industry,
agriculture, construction, photography, and many other areas of human activity [1–5]. The
use of UAVs in the energy production industry is also becoming more and more common.
UAVs can be used, for example, to measure the amount of coal extracted in opencast
mines, to study the composition of smoke emitted by power plants, and to monitor the
technical condition of electricity transmission lines. In this context, the UAV is a platform
for transporting the measuring device. Such a device can be an RGB camera, LIDAR, or an
air quality measuring device.

An example environment that includes selected threads during use of UAVs is shown
in Figure 1.
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Every transport system functions in conditions of uncertainty that threaten the ac-
complishment of its objectives related to infrastructure and transport organisation. Risk
management is aimed at identifying events that may affect the accomplishment process [5].
Risk management has been practised in an unofficial manner for a very long time; events
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such as transportation, industrial, and economic disasters contributed to its systematisation,
and then risks started to be dealt with in an organised and consistent manner in different
areas of human activity [6]. This has led to the development and application of various
methods, techniques, procedures, and tools classified under a common name: ‘risk manage-
ment’ [7]. Many studies have examined risk management in chemical plants, nuclear power
plants, and transport systems; this reflects that these areas generate a considerable number
of hazards [7]. Generating hazards in various systems is one of the reasons why safety and
risk management procedures were developed by entities involved in process execution
in transport systems. Risk management models in transport systems can be found in
studies [6–17], among others. Risk management should be treated as one of the tools of
safety management systems [16]. Every entity managing elements of a transport system
should also provide traffic safety management, ensuring observation and assessment of the
number of accidents, casualties, and persons injured in accidents. Moreover, such entities
should provide the possibility of completing a transport operation with the lowest risk
possible. The path to such a state of safety leads to the development and skilful application
of risk management methods [18–20]. Unmanned aerial vehicles (UAVs), i.e., multirotors,
planes, and helicopters, are devices that—due to their functional characteristics—are used
on an increasingly wide scale in different areas of human activity. Potential uses of UVAs
were presented in [21–23].

The growing number of air operations that use UAVs entails a growing number of
adverse events involving such vehicles. For this reason, work is underway to increase
safety levels whilst operating UVAs. In study [24], the authors suggested a methodology
for computing the probability of impact on 3D infrastructures, such as buildings, in the
event of a UAV failure during flight. The generation of impact probability maps on the
infrastructures is based on Monte Carlo simulations involving a dynamic model of a fixed-
wing UAV. In another study, we find an integrated risk assessment method that considers
probability and severity models of a UAV impacting people and vehicles on the ground.
By introducing the gravity model, density of population and traffic are estimated on a
finer scale, which enables more accurate risk assessment. The 3D risk-based path planning
problem is first formulated as a special minimum-cost flow problem [25]. Study [26]
proposes a framework for computing the risk of collision with an obstacle based on a UAV’s
predicted trajectory, proximity to static and dynamic obstacles, sub-system state-of-health,
and external wind conditions. The problem of safety in UAV operation was described in
works [27–30], among others. In addition to scientific studies, there are also legal provisions
that apply to UAVs, which are presented below.

The purpose of the article is to present a component of risk management for UAV
flights, multi-criteria proposal, and a risk model developed based on a generalised risk
model in the context of the applicable regulations.

2. Flight Categories and Assumed Risk Level

Within the European Union, flights of each UAV type take place based on the following
EU regulations:

• Commission Delegated Regulation (EU) 2019/945 [31],
• Commission Delegated Regulation (EU) 2020/1058 [32],
• Commission Implementing Regulation (EU) 2019/947 [33].

These regulations define UAV classes and stipulate the rules and procedures related
to the operation of these aircraft. According to [31,32], we distinguish seven UAV classes
(C0–C6), depending on their equipment, weight, and forward speed in level flight. The
categories on which the manner of risk management depends are [34]:

1. OPEN,
2. SPECIFIC,
3. CERTIFIED.
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Air operations in the OPEN category may be conducted with an aircraft with maximum
take-off mass (MTOM)—understood as the sum of the platform mass and the load mass—of
less than 25 kg. The flight takes place within the visual line of sight (VLOS) and within
120 m from the closest point of the surface of the earth. The task of the remote pilot is to
keep a safe distance from people [33].

The OPEN category is a non-significant or widely acceptable risk area that does not
require risk-mitigating actions [33]. This is due to the low take-off mass, which does not
exceed 250 g and 4 kg for subcategories A1 and A2, respectively. The low take-off mass
generates low kinetic energy (e.g., for A1, EK = 1/2 mv2) during an adverse event such as
the UAV striking a person’s head. Moreover, in subcategory A2, flights may take place at
a distance of 30 m from uninvolved persons or, in the case of low-speed-mode flights, at
a distance of 5 m from them. Subcategory A3, which is also part of the OPEN category,
is characterised by high take-off mass, but the pilot must conduct air operations over an
area where it can reasonably be expected that, under normal circumstances, no uninvolved
persons will be endangered, and at a distance of at least 150 m from residential, commercial,
industrial, or recreational areas. According to the applicable regulations, the operator is
not required to perform a risk assessment in this category of flights [33].

In the case of the SPECIFIC category, the risk related to the performance of the flight is
tolerable, i.e., the transport aircraft may be operated, but under certain conditions [33]. This
means that an authorisation is required for the performance of such flights, which must
take place in accordance with the restrictions included in the operational authorisation
or in the standard scenario defined by the legislative body. Flights may take place in
compliance with other rules, provided that the UAV holds a light UAS operator certificate
(LUC) with appropriate privileges. Authorisation to execute a mission can be obtained from
the competent aviation authority in the given country [31]. In Poland, this authority is the
Civil Aviation Authority. There are three ways of obtaining an operational authorisation.

The first consists in the pilot making a declaration that they will conduct flights in
compliance with the principles of conducting flights stipulated in the so-called standard
scenarios. It is assumed that if the pilot conducts the flight in compliance with the prin-
ciples defined in the standard scenario, the risk related to the performance of the flight is
acceptable. Currently, two standard scenarios have been formulated within the European
Union. Additionally, in Poland, so-called “national standard scenarios” apply, which are
valid for flights conducted in VLOS and BVLOS (beyond visual line of sight), for aircraft
masses of up to 4 kg and 25 kg, and for the following UAV types: multirotors, planes, or
helicopters. The remote pilot has a total of eight scenarios, i.e., eight different variants of
conducting the flight, at their disposal.

The second method of obtaining the operational authorisation is to obtain the ap-
propriate certificate (in the case of the EU, an LUC). The certificate is granted to the
operator—understood to be a natural or legal person operating an aircraft—after they pass
an inspection by the competent aviation authority in the given country. The certificate
authorises the operator to make independent decisions about conducting a flight based on
risk assessment.

The third way of obtaining the authorisation, in the case of executing flight missions
in a manner not described in the standard scenarios, is to submit a request to the competent
aviation authority to issue the authorisation, along with the terms of conducting the flight
based on a risk assessment performed independently by the operator. The currently
recommended risk assessment method is that developed by the Joint Authorities for
Rulemaking of Unmanned Systems (JARUS). The method is called the Specific Operations
Risk Assessment (SORA) [34]. It is a very complex and time-consuming process that also
requires access to a broad spectrum of technical information to which only the unmanned
platform manufacturer has access.

The SORA method is a multi-stage method UAV flight risk assessment method. This
assessment requires, inter alia: description of the concept of the operation (CONOPS), in
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which the drone operator, preparing for the mission, must describe all the details related to
the flight, such as:

• List of UAVs used for the planned operation,
• Competences of the personnel involved in the operation,
• List of names of pilots and support staff,
• Procedures that will be applied in performing the mission,
• Indication of health requirements, which must be met by the personnel performing

the mission,
• Declaration of the type of operation, including the purpose, method of performing the

operation, restrictions due to environmental or legal conditions, scope of the operation
(VLOS or BVLOS), indication of the area over which the operation will be performed
together with the population density assessment, description of the so-called risk
buffers, and description of the measures taken to ensure safety during the operation,

• Description of the aircraft technical data such as: aircraft size, mass, on-board equip-
ment in the subsystem ensuring flight safety, limitations due to communication range
or weather conditions, resistance to precipitation, conditions of minimum visibility,
and conditions related to ambient temperature,

• Information regarding to the method of controlling UAV, including the method of
controlling the ship and technical parameters of the Ground Control Station,

• Indication of the communication methods with air traffic control,
• Indication of the ways of avoiding collisions with other aircraft, including description

of the systems used to achieve this, such as for example ADS-B,
• Description of the ground equipment and description of the fallback procedures.

The second step is to determine the intrinsic Ground Risk Class (GRC). This coefficient
is determined on the basis of the assessment of the characteristic dimensions of the aircraft,
such as its size, mass, and kinetic energy of potential collision with the ground. The next
step is to define the so-called Final GRC of the impact hazard on the ground. In some cases,
the GRC value, determined in step 2, may be so high that the resulting safety objectives
to be achieved are too demanding for the operator. Therefore, to lower the GRC, one can
either change the CONOPS or implement mitigation strategies. Consideration of measures,
methods, and features of the system and mission that can positively affect the final GRC
value can reduce the actual GRC value. For the reduction of GRC, for example, a parachute
system can be used. The fourth step of the SORA assessment is the Determination of
the Initial Air Risk Class (ARC). The airborne risk class depends on the determination
of the chance of a collision with a manned aircraft. There are four classes, which can be
distinguished from one with no risk of collision to one where the probability of collision is
high. Another step in the SORA analysis is the application of measures at the strategic level
and the definition of the end-risk ARC. Someone must use this step if the risk assessed in
step 4th is too high. At this point, strategies, procedures, and constraints are applied to
reduce the likelihood of a potential collision before the UAV takes off. The sixth step in the
SORA analysis is the definition of the Tactical Mitigation Performance Requirement (TMPR)
or the definition of Robustness Levels. In order to minimize the risk of an airborne collision
with another aircraft, it is possible to apply tactical measures to reduce this risk. This stage
defines the goals to be achieved at different levels of solidity so that a potential meeting
in the air does not end in a collision. The seventh step is to organize the Final Specific
Assurance and Integrity Levels (SAIL). The SAIL parameter consolidates the GRC risk with
the ARC risk and allows to define the requirements for the operation. SAIL is a measure
of the level of control over the security of a mission. SAIL is a requirement for a specific
concept of operation. SAIL represents the level of confidence in the control of operations.
The eighth step of the SORA assessment is the identification of safety objectives at the
operational level; the so called Operational Safety Objectives (OSO). This step uses SAIL
to assess the safety barriers and to determine their robustness. There are four grades of
quality: optional, low robustness, medium robustness, and high robustness. The next step
is to address the risk of losing control of the operation, resulting in the violation of adjacent
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areas on the ground and in the adjacent airspace. These areas may vary according to the
different phases of flight. Accurately defining the adjacent area is the job of the operator.
The adjacent area is assessed on the basis of whether the failure of the UAV could lead to
the collapse of the UAV outside the operational area, assessment of the UAV systems in
terms of their reliable maintenance of the UAV in the area of operation, or other threats,
the activation of which may lead to the UAV’s escape outside the operational area. Once
the assessments have been made in accordance with the procedure outlined above, the
analysis document must be reviewed by the aviation authority, who can authorize the air
operation. Regardless of the fact that this method is recommended by the Polish airspace
authorities, the described level of complication of the SORA method and the evaluation
model proposed by the authors described in the paper clearly show that the method
proposed in the work is easier, does not require the assessment of so many parameters,
and is much less time-consuming, which in the case of frequent unmanned missions is
extremely important for the operator of aviation.

Article 11 of Regulation 2019/947 presents the procedure for risk assessment and
allows for the development of a new, different operational risk assessment model. That
model must include the following elements [33]:

• Description of the characteristics of the planned air operation,
• Description of the proposed adequate operational safety measures,
• Identification of the risks of operation on the ground and in the air,
• Risk-mitigating measures.

Flights in the CERTIFIED category occur with the use of UAVs certified based on
Article 40 of Commission Delegated Regulation (EU) 2019/945. This category includes
flights over assemblies of people, flights by UAVs designed for transporting people, and
flights for transporting dangerous goods.

Regardless of the flight category, the risk level should be monitored. Control of the
assessment area reduces the likelihood of the occurrence of adverse events (events which
may lead to losses), but also facilitates rapid response if such an event does indeed occur.
This is why the authors propose a risk model that makes it possible to assess the risk level
for each type of flight.

In just the same manner as any other user of a transport system, a UAV operator should
assess their physical and mental state before each air operation, and should also check
and identify obstacles as well as potential sources of radio signal interference. Moreover,
they should ensure an adequate safety level at the take-off and landing sites, including a
reserve landing site. Therefore, from the point of view of safety engineering, the operator is
responsible for assessing the risk [35]. The principles of the integrated risk management
method based on the classical approach integrate two phases:

• Risk assessment, and,
• Responding to risk.

3. A New Risk Assessment Model

The nature of the organization and the goal it wants to achieve are factors that deter-
mine the choice of a risk management method. Within the framework of the classic risk
management method, which the authors modelled, their components can be distinguished.
There are two components in the risk assessment phase:

• Risk analysis,
• Risk evaluation.

The first component—risk analysis—is the systematic use of all available information
in the indicated area of analysis, in order to:

• Identify threats—this is a process of systematic procedure to identify threats, which,
as a result of their activation, may cause losses in the indicated area of analysis,

• Estimate and prioritize the risks identified in the analysis area—defining the value of
the risk measure and assigning it to one of the risk levels of the model used.
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As part of the risk assessment phase, the UAV operator should analyse the risk by
characterizing the area and identifying potential hazard sources [33]. Next, they should
assess the level of risk for the air operation by selecting the appropriate model and measures.
The choice of the risk models and measures depends on the degree of complexity, detail, and
the amount of information required and used [35–39]. In transport systems, the selection
of the method depends on a number of factors, the scope of the process to be executed
(e.g., transportation, infrastructure management, and maintenance), the availability of
information on possible adverse events, and the experience of the people performing the
assessment. An air operation must be preceded by an analysis of potential hazards that
could lead to an air accident. There are five sources of potential hazards that, if activated,
may cause a loss of control over the UAV, which may result in a UAV striking a person or
object on the ground, or even another flying an unmanned or manned aircraft [39]. The
five categories of hazard sources, as well as their respective contributing factors, are:

(1) Human error (i.e., human factors in aviation). This problem has been known and
studied since the Second World War. Contributors to human error include:

(a) Communication errors that could lead to a flight team not having full situa-
tional awareness;

(b) Routine errors resulting from long-term aviation practice combined with loss
of awareness of existing hazards, caused by frequently repeated activities;

(c) Inappropriate or insufficient training of personnel;
(d) Distraction resulting from disruption, confusion, or chaos, etc.;
(e) Lack of team cooperation due to the lack of a sense of community purpose or

communication style;
(f) Fatigue caused by excessive working hours;
(g) Lack of an appropriate tool to perform the task, i.e., inadequate aircraft to

perform the planned mission;
(h) Pressure from supervisors to fly in inappropriate conditions;
(i) Insufficient assertiveness to refuse to perform a potentially hazardous task;
(j) Stress caused by inadequate preparation for flight;
(k) Carelessness, incorrect assessment of the situation, or incorrect assessment of

the possible consequences of an air accident; and

(2) Failure to comply with procedures.
(3) UAS failure. Each aircraft is subject to pre-flight inspection in accordance with the

procedures. However, each aircraft, as a technical facility, may fail during flight. The
consequence of a failure in flight is almost always the fall of the craft to the ground.

(4) The appearance of another manned or unmanned aircraft on a collision course. An-
other aircraft may appear in the airspace in which flight operations are performed.
An unexpected event may lead to errors in piloting and, consequently, to the fall of
the aircraft.

(5) Rapid deterioration of weather conditions during the flight.
(6) Deterioration in the performance of systems used in steering or navigation, such as

GPS. Solar activity is a source of high-intensity electromagnetic radiation emissions.
The radiation emitted towards the Earth is usually absorbed by the atmosphere.
Therefore, this radiation does not pose a threat to the operation of electronic systems
used on board aircraft. However, if an electromagnetic pulse is too intense to be
absorbed by the atmosphere, it will reach the Earth and may disrupt the operation
of electronic systems. The consequence would be the loss of the ability to read the
position of the aircraft from the navigation system, which may lead to an air accident.
Electronic systems’ performance may also deteriorate as a result of flying in the
vicinity of devices emitting electromagnetic radiation. Such devices include BTS
stations used in mobile telephony and high-voltage lines.

The schematic diagram of the risk analysis and assessment using the developed model
is presented in Figure 2.
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In managing the risk of threats, there are detailed procedures, models, and risk
measures dedicated to the areas of transport: road, rail, air, water, and urban. Currently,
there is no model dedicated to the UAV transport system for risk assessment. Filling the
research gap, an original risk assessment model for UVAs was proposed.

When developing the models and measures of hazard risks identified within the
assessment areas, a generalised risk model presented in [36,37] may be adopted.

Based on the generalised model presented in [38], for the assessment area of UAV
flights in built-up areas, authors have developed the model for assessing risk levels. For the
model, the set of hazards has the form (for this model, hazards are marked as h1, h2 . . . hn):

HUAV = {h1, h2,..., hn} (1)

The risk model for each hazard from set HUAV is a function of components ri(hk)
(i = 1, 2,..., m, k = 1, 2,..., n). Decisions are made based on the assessment according to
6 criteria Ki (i = 1, 2, ..., 6) and the measures of significance ai (i = 1, 2,..., 6) of these risk
assessment criteria comprising the following set:

A = {a1,a2,...,a6} (2)

The importance measure for each criterion was defined with values from 1–6. In the
risk model for UAV flights in a built-up area, 6 criteria with the following names and
meanings were assumed:

K1: safety level criterion SL. The most important criterion a1 = 6. The measure of risk
component r1(hk) according to this criterion is determined depending on the value of the
safety level indicator (SL):

• Low when SL ≤ 4 × 10−4,
• Medium when 4 × 10−4 < SL < 2 × 10−2,
• High when SL ≥ 2 × 10−2.

The safety level indicator is expressed as follows:

SL = LI/LH (3)

where:
SL—safety level indicator for UAV flights conducted in a built-up area,
LI—number of recorded incidents, and,
LH—number of flight hours logged.
The value of the SL indicator was determined based on analyses of the frequency of

adverse events recorded by the entity performing the flight operations. The values of the
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SL indicator were presented in Table 1. In the analysis, the assumed annual flying time
logged was 2688 h. The values included in the table were proposed based on the experience
gained during remote pilot training conducted at the Poznań University of Technology.

Table 1. Safety level indicators.

Frequency SL

1/1 1
1/8 0.125

1/56 0.018
1/224 0.0045

1/2688 0.0004
Source: Authors’ own elaboration.

K2: loss occurrence reach criterion. Criterion of importance measure a2 = 5. The
criterion takes into consideration the type of material losses that may be caused by hazard
activation. The losses concern the following subareas: infrastructure (subarea 1), natural
environment (subarea 2), and people (subarea 3). According to this criterion, the measure
of risk component r2(hk) is determined by the following principle:

• Low when the losses occurred in only one of the subareas,
• Medium when the losses occurred in two subareas, and,
• High when the losses occurred in all subareas.

K3: material loss criterion for material losses resulting from incidents involving UAVs.
According to this criterion, the measure of risk component r3(hk) depends on the extent of
material losses:

• Low when the losses do not exceed USD 2500,
• Medium when the material value of the losses exceeds USD 2500, but does not exceed

USD 125,000, and,
• High when the value of material losses exceeds USD 125,000.

The values provided are based on the subjective assessment of the authors of the
model. Measure of importance for this criterion was assumed at the level of a3 = 4.

K4: loss criterion based on the type of incident. Importance measure a4 = 3. The
measure of risk component r4(hk) depends on the object with which the UAV collided:

• Low when UAV collides with another unmanned or manned aerial vehicle during flight,
• Medium when UAV collides with an obstacle on the ground, and,
• High when UAV collides with a person on the ground.

K5: hazard activation history criterion. Criterion of importance measure (a5 = 2). It is
assumed that if a hazard was activated once, it is likely that it will be activated again. The
measure of hazard activation r5(hk) is determined depending on hazard activation within a
year preceding the assessment:

• Low when the event was recorded no more than 5 times,
• Medium when the event occurred no more than 10 times, and,
• High when the event occurred more than 10 times.

K6: hazard activation potential criterion. The criterion depends on the UAV type,
competency certificates held, and flight location. The measure of risk component r6(hk) for
this criterion is determined based on three elements (K6.1, K6.2, K6.3) characterising the
flights performed.

Element K6.1—UAV type. This element of risk component r6(hk) indicates the potential
for hazard activation depending on the UAV type (weight):

• Low when the UAV weight does not exceed 5 kg,
• Average when the UAV weight ranges between 5 and 25 kg, and,
• High when the UAV weight exceeds 25 kg.
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Element K6.2—competency certificates. This element of risk component r6(hk) makes it
possible to make the hazard activation potential dependent on the operator’s qualifications
according to the following principle:

• Low if the operator holds a certificate with additional privileges,
• Average if the operator holds a certificate with basic privileges, and,
• High if the operator has no privileges.

In compliance with the provisions of the law, each remote pilot conducting a UAV flight
is required to have formal qualifications and privileges for flights in the given category.

Element K6.3—distance from buildings. The measure of this element of risk component
r6(hk) makes it possible to make the hazard activation potential dependent on the building
density within the area where the flights are conducted:

• Low when there are no buildings within a 100-m radius,
• Average when there are buildings within a 30-m radius, and,
• High when there are buildings within a radius less than 30 m.

The measure of risk component r6(zk) is determined in accordance with the following
principle:

• Low when a maximum of one element of criterion K6 was rated as average,
• Medium when a maximum of two elements of criterion K6 were rated as average, and,
• High when more than one element of criterion K6 was rated as high.

Importance criterion a6 = 1.
The measures of risk component ri(hk) for each of the six risk model criteria for UAV

flights assume the levels from set:

Ω = {low, medium, high} (4)

The elements of set Ω (Formula (4)) of the measures of risk components are assigned a
set of risk measure values. Therefore, the result of risk calculation for each hazard from set
ZUAV (Formula (1)), according to criterion Ki (i = 1, 2..., 6) is the level of risk for component
ri(zk) from the set of risk measure values. The function enabling estimation of the total risk
measure taking into consideration the results of risk calculation according to the six criteria
and significance measures of risk assessment criteria assumes the following form:

RUAV =
6

∑
i=1

ai × ri (5)

The risk measures were selected subjectively following the principle of a starting
wetness more important than the probability of their occurrence.

The next step should be risk evaluation, i.e., checking (by evaluation and by compari-
son) to which risk category (class) the estimated risk belongs (i.e., acceptable, tolerable, or
unacceptable) [16].

The values of risk measures were determined, assuming an equal division for the
adopted maximum and minimum.

The proposed risk acceptability classification for UAV operations was developed on
the basis of the data from Table 2:

• Acceptable risk: no need to take actions to reduce the risk, but the control by the UAV
operator should be below 49,

• Tolerable risk: the occurrence of personal or economic losses is medium or unlikely
(the level of risk should be monitored); risk level is in the range of 49–78, and,

• Unacceptable risk: area where flight should not be allowed under any circumstances;
risk level above 78.

The presented risk tolerability limits constitute only a proposal developed as a result
of the work performed. Nevertheless, they can be shifted depending on the area in which
BSP operations are performed and their nature.
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Table 2. Classification of risk acceptability in UAV operations.

Criterion
Qualitative

Measure
Quantitative

Measure

Criterion
Importance

Measure

Risk
Component

Value
Total Level

zn—hazard when all measures of threat activation are low (minimum risk level)
K1 low 1 6 6

21

K2 low 1 5 5
K3 low 1 4 4
K4 low 1 3 3
K5 low 1 2 2
K6 low 1 1 1

zm—hazard when all measures of threat activation are high (maximum risk level)
K1 high 5 6 30

105

K2 high 5 5 25
K3 high 5 4 20
K4 high 5 3 15
K5 high 5 2 10
K6 high 5 1 5

Source: Authors’ own elaboration.

4. Results

The possibilities of using the model for the analysis areas related to drone operations
located within Poznań were indicated. In order to show an example of an analysis using
the model described in the work, a route between real points located in the Polish city of
Poznań was proposed (Figure 3). The task that has been programmed before take-off on the
drone’s computer is to take a photo at the locations indicated by the pilot. The purpose of
taking pictures is to control the number of people in places popular among tourists. Such
a control may be performed by the police, who need to know where to send patrols to
maintain law and order. The flight occurs in conditions where there is no terrorist threat
and in a situation where the state is not involved in an armed conflict. The drone does
not carry any dangerous cargo, and the only useful cargo that has been mounted on the
platform is a camera. The UAV will return to the place of take-off and land after completing
the task. The UAV’s task will be to take photos in the places indicated by the pilot.
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Figure 3. Flight route in Poznań [40].

Assumptions:

1. The flight takes place at a fixed altitude above the rooftops of city buildings.
2. The cruising speed is 30 km/h, (8.3 m/s).
3. The ambient temperature is 24 degrees Celsius, the wind speed is 0 km/h.
4. LiPo battery works for 20 min.
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Calculations: S = V × t, therefore we have about 9960 m for the cruise.
Route:

1. The flight begins in the parking lot of the Poznań University of Technology (PUT); the
destination is the Old Market Square. Distance approx. 1.7 km.

Threat sources:

- Students,
- PUT service personnel,
- People passing on the street,
- Cars,
- Trees,
- Cables disconnected in space,
- Chimney on Grobla Street,
- Buildings along the flight route,
- Antennas on buildings.

2. Lowering the flight on Old Market Square to take a photo.
3. A flight from the Old Market Square to another location among the buildings of the

PUT. Distance about 2.2 km.

Threat sources:

- People,
- Buildings,
- Trees,
- Antennas on roofs,
- The tower of the Church of Mary Queen in Wilda, approx. 45 m high,
- Rector’s office building, approx. 40 m high,

4. Lowering the flight over the PUT parking lot in order to take a photo.
5. Flight from the car park in front of the PUT to the Imperial Castle on Św. Marcin street.

Distance approx. 1.7 km.

Threat sources:

- People,
- Buildings,
- Trees,
- Antennas on roofs.

6. Lowering the flight over Mickiewicz Square in order to take a photo.
7. Flight from Mickiewicz Square to the Cathedral. Distance approx. 2.0 km.

Threat sources:

- People,
- Buildings,
- Trees,
- Antennas on roofs,
- Okrąglak building,
- Przemysl Castle.

8. Lowering the flight over the Cathedral in order to take a photo.
9. Flight from the Cathedral to the place of the drone take-off and landing. Distance 1.5 km.

Sources of threats:

- People,
- Trees,
- Cars.

The flight takes place at an altitude of 90 m above ground level. Lowering the altitude
to take a photo means flight at an altitude of 20 m above ground level.

15



Materials 2022, 15, 2448

Risk assessments of threats identified on the flight route in Poznań have been achieved
by following the principles of the risk model for UVAs, good engineering practice, and the
knowledge of the authors. Table 3 shows risk assessment results for two selected threats.

Table 3. Summary of the results of the risk assessment of selected threats generated during the flight
in Poznań.

Criterion
Qualitative

Measure
Quantitative

Measure

Measure of
Criterion

Importance

Risk
Component Value

Total
Level

Risk

z1—possibility of hitting a car parked on the premises of PUT
K1 low 1 6 6

35 acceptable

K2 low 1 5 5
K3 low 1 4 4
K4 medium 3 3 9
K5 medium 3 2 6
K6 high 5 1 5

z2—possibility of loss of health in the event of a UVA impact
K1 low 1 6 6

49 tolerable

K2 low 1 5 5
K3 medium 3 4 12
K4 high 5 3 15
K5 medium 3 2 6
K6 high 5 1 5

Source: Authors’ own elaboration.

5. Conclusions

The risk model indicates the algorithms and parameters of risk assessment and evalu-
ation procedures. The original model is based on six criteria analysis with the possibility
of taking into account the validity risk components obtained on the basis of each of the
analysis criterion.

Meeting social expectations related to the operation of unmanned aerial vehicles
largely depends on the effectiveness of risk management processes for hazards generated
in this area of human activity. Currently, UAVs take off, fly up, and automatically cover
their routes along the set flight paths. In order to operate without collisions, it is necessary
not only to conduct a risk analysis, but also to introduce comprehensive risk management
procedures—as in the case of all modes of transport—and the most important of these is to
indicate the method or model of risk assessment.

Regulations recommend taking actions aimed at risk assessment. The methods devel-
oped for the purposes of such analysis for unmanned flights are far from sufficient.

The risk model presented in the paper is part of the risk management process. Risk
estimation is preceded by the selection of the risk model and risk measurement model of
threats identified in these analysed areas. The paper proposes a six-criteria risk model
for unmanned aerial vehicles, which allows for the presentation of risk in a measurable
manner. The criteria relate, inter alia, to the number of losses that may occur during the
process being conducted in the human–technology–environment system, the probability of
adverse events, and the history. Measures of criteria validity from 1–6 were adopted. For
the criteria mentioned, qualitative measures of risk analysis were defined as low, medium,
and high, which can be replaced by quantitative risk measures; for example, 1, 3, and 5 for
this model. An exemplary UAV flight route in Poznań was developed and the risk for
selected identified threats was estimated.
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Survey of Localizing Gradient Damage in Static and Dynamic
Tension of Concrete
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Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland;
adam.wosatko@pk.edu.pl; Tel.: +48-12-628-2561

Abstract: The continuum damage model should be regularized to ensure mesh-insensitive results in
simulations of strain localization, e.g., for concrete cracking under tension. The paper confronts the
conventional gradient damage model with its upgrade including a variable internal length scale. In
these models, the Helmholtz free energy depends additionally on an averaged strain measure and its
gradient. In the formulation for dynamics the equations of motion are discretized simultaneously
with an averaging equation. If gradient regularization is employed with a constant internal length
parameter, then an artificially expanded damage zone can occur in the strain softening analysis. This
broadening effect can be inhibited by a gradient activity function. The localizing character of the
gradient activity has physical motivation—the nonlocal interactions in the fracture zone are reduced
with the damage growth. The internal length can decrease exponentially or as a cosine function.
After presentation of the theory, including the free energy definition, the finite element analyses of
three different examples connected with tensile cracking in concrete are discussed: static tension
of a double-edge-notched specimen, dynamic direct tension for a configuration without or with a
reinforcing bar and tension of an L-shaped specimen under static and dynamic loading.

Keywords: localizing gradient damage; gradient activity function; tension; concrete cracking; impact
load; dynamics; finite element method

1. Introduction

Continuum damage mechanics in the most basic version [1] introduces the idea of
scalar damage measure reducing the elastic stiffness. A modelling of softening in quasi-
brittle materials such as concrete without any regularization leads to results dependent
on the introduced discretization. The (initial) boundary value problem—(I)BVP becomes
ill-posed when the onset of strain localization occurs in the analysis, cf. [2]. In the finite
element method (FEM) a simulation of cracking in concrete is represented by the localization
zone limited to a band of one-element width; hence, the density of finite element (FE) mesh
erroneously decides about the numerical solution. This deficiency can be partly overcome
if the FE size is connected with a certain width derived from the fracture energy, see [3,4].
A regularization should be taken into account in proper modelling of composites, especially
of quasi-brittle materials as concrete. There are many concepts to make the concrete model
regularized, but in this paper a higher-order theory including a gradient term is employed,
according to the fundamentals given in [5].

The scalar damage model with a gradient enhancement was first proposed in [6].
Based on [7,8], the Helmholtz free energy for the damage model with the presence of
averaged strain measure is shown in the paper. In the formulation for dynamics an extra
averaging equation is added to the equation of motion. The gradient damage model after
discretization has independent interpolations of the displacement and averaged strain
fields. The gradient activity related to the internal length scale influences the zone of
nonlocal interactions, i.e., the width of the crack band is not governed by the density of the
FE mesh. It is proved that this model in the implicit version for static as well as dynamic
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problems (i.e., for wave propagation problems) is truly nonlocal (see [9]). A wide overview
of gradient-enhanced and other nonlocal models for concrete is performed in [10,11].

When the internal length scale in the conventional gradient damage model (CGD)
is assumed to be constant as, e.g., in [6,12], then the issue of an artificially expanded
damage zone can occur. In fact, the intensity of averaging is the same during the whole
localization process and it induces nonlocal mapping of the active damage zone into its
enlarged neighbourhood. This shortcoming of the CGD model was first observed by
Geers [13,14]. Gradient models can be upgraded by the so-called over-nonlocal formulation
presented, e.g., in [15,16]. This approach comes from [17] and it is applied over the years in
integral nonlocal models (see, e.g., [18–20]). A linear combination of local and nonlocal state
variable (e.g., equivalent strain measure) is used and, moreover, its proportion may change
during the loading history, cf. [21,22]. Another upgrade is suggested in [23], where the
internal length scale is not represented by a scalar variable, but using a second order tensor
as a function of principal stresses at a material point. The idea is known from the CGD
model, where in two dimensions the region of averaging determined by a circle transforms
into an area specified by an ellipse oriented according to the principal stresses. When
the directions of nonlocality are distinguished that way, the modelling of the localization
zone becomes anisotropic. Some modification of this approach is the so-called smoothing
gradient damage model, where the averaging region depends additionally on a coefficient
related to the equivalent strain and smoothly decreasing interaction [24,25].

The constant value of the internal length scale can be replaced by a function of gradient
activity. It was first proposed in [13,14], where apart from the averaging equation, one
more extra continuity equation for damage or gradient activity variable was introduced.
It means that the formulation includes three fields and additional degrees of freedom are
present in the finite element. The third field is interpolated to stabilize the iteration process
during the computations. This approach can be called the transient gradient damage model
(TGD) and it can be modified according to [26]. The gradient activity function is shifted
to the denominator in the averaging equation and because of that two primary fields are
preserved in the FE interpolation. In [26], the gradient activity increases with the equivalent
strain. Another concept is the so-called localizing gradient damage model (LGD) originated
in [27,28], where the damage zone is controlled through a reduction of the gradient activity
and at the same time the averaging region. An overview of different damage formulations
with constant or variable internal lengths, based on the benchmark of one-dimensional
tensile bar, is shown in [29]. A comparison and generalization of TGD and LGD models
is widely discussed in [30]. Based on [27,31], Figure 1 depicts the idea of a change of the
interaction domain in the specimen under uniaxial tension. It is seen that the averaging
region narrows when diffuse microcracks progress to the formation of a macrocrack. The
decreasing function of gradient activity seems to be more physical, i.e., the influence of
nonlocality should be reduced together with the increase of damage.

Formation

Coalescence

Interaction domain

Diffuse
microcracks

of microcracks

of macrocrack

ǫ

σ

Figure 1. Idea of localizing interaction domain for microcracks in tensile specimen.
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The averaging equation given in [27,28] has a different form from the one commonly
known and written originally in [6]. The gradient operator is also applied to the function of
evolving length scale, not only to the averaged strain. The LGD model has been intensively
explored in recent years. Extensive research of this model is presented in [31], also in the
context of verification using different examples, not only for concrete, but also for other
composite materials. As shown in [32], the model is able to reproduce the size effect. The
Ottosen equivalent strain measure as an alternative loading function [33] can be applied
in the LGD model to simulate properly a mixed-mode concrete cracking. A so-called
micro inertia effect can be considered in the formulation to analyze cracking in dynamic
problems (see [34,35]). Moreover, the LGD model can be used in an advanced multi-field
analysis [36], where the mechanical problem is coupled to water transport and thermal
problems. Different methods of mesh adaptation for this model are suggested in [37].

In this paper, a formulation for dynamics, but without the micro inertia effect, is taken
into account. The results for the CGD and LGD models are confronted. Both of them are
implemented by the author in the FEAP package [38]. When the LGD model is used, two
different functions can decide about the decrease of the gradient activity. The first one
has the exponential character and it is known from [27,28], while the second one changes
according to the cosine function.

In the paper, the finite element (FE) analysis focuses on the modelling of the cracking
phenomenon in concrete for tension tests. Based on the experiments of uniaxial tension
for different composite materials, not only the tensile strength can be estimated, but
also the fracture energy when the post-peak response is observed. Direct tension can
be experimentally investigated using symmetric specimens with two rectangular (see,
e.g., [39]) or triangular (see, e.g., [40]) notches as well as dog-bone shaped specimens (see,
e.g., [41]). Typically, specimens in the experiments are gripped on opposite flat sides and
pulled on one or both sides. Mode I fracture is obtained. It is also possible to examine
concrete cracking using large-scale specimens as for example in [42]. However, it is known
that the size effect can be validated using direct tension tests, cf. [41]. Another type of
a experimental test is compact tension of a composite specimen, e.g., [14,43]. The first
benchmark in the current paper is a double-edge-notched specimen under direct static
tension according to [39]. In addition, based on the numerical analysis presented in [44],
a study of the LGD model is performed for a dynamic direct tension test of plain and
reinforced concrete bar. A slightly different investigation refers to fracture in an L-shaped
concrete specimen. The final example presented in this paper for the CGD and LGD models
is based on the experiment in [45]. A similar experimental study of L-specimen under
different loading rates is shown in [46]. The induced tension in the L-shaped specimen
is still direct, but the character of failure can evolve from mode I to mixed mode. Next,
a separate group are indirect tests. The splitting test was carried out experimentally
and reported by many researchers (see, e.g., [47–49]). The compression between the
platens activates a perpendicular tension in the middle of the cylinder, hence primary and
secondary cracks are generated. This experiment is able to provide the tensile strength for
quasi-brittle materials. The split in the concrete cylinder under a static as well as an impact
loading can be reproduced using different regularized models, cf. [44,50–53]. The tensile
strength is also determined for notched or unnotched beams under three-point bending.
The size effect for such beams has been examined in many papers (see, e.g., [54–57]). Quite
a broad overview of experimental and numerical tension tests is described in [58].

The content of the paper is as follows. After introduction, Section 2 describes the the-
ory connected with the gradient damage model, in sequence: consequences of postulating
a gradient-dependent free energy, the formulation with its discretization and juxtaposition
of functions employed in the computations. Section 3 shows three examples: static uniaxial
tension of a notched bar, dynamic tension of an unnotched bar without and with reinforce-
ment and finally static and dynamic tension of the L-shaped configuration. Sections 4 and 5
summarize the work and the results presented in the paper.
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2. Fundamentals of Implemented Model

2.1. Thermodynamic Analysis

The description of the theory starts by defining an internal variable ǭ which is related
to deformation and will turn out to be an averaged (nonlocal) strain measure. It is postu-
lated that the Helmholtz free energy depends on this variable and its gradient as follows,
cf. [7,8,27,28,59]:

Ψ(ǫ, ǭ,∇ǭ, ω) = Ψ1(ǫ, ω) + Ψ2(ǫ, ǭ) + Ψ3(∇ǭ) (1)

Absolute tensor notation is used in this subsection. The individual components on the right
side of this equation are defined as:

Ψ1(ǫ, ω) =
1
2
(1 − ω) ǫ : De : ǫ, Ψ2(ǫ, ǭ) =

1
2

H (ǫ̃ − ǭ)2, Ψ3(∇ǭ) =
1
2

A ∇ǭ · ∇ǭ (2)

where ǫ is the strain tensor, ω ∈ [0, 1] is the scalar damage parameter, De is the fourth
order tensor of elastic stiffness, ǫ̃(ǫ) is an equivalent strain measure, H is a constant and
A is proportional to the square of an internal length scale. In [8,59] an alternative form
of the free energy is written in terms of damage and its gradient. A more complex form
of the Helmholtz free energy can be postulated for a coupled gradient damage-plasticity
model [60].

For a nonlocal continuum formulation the use of the global form of the Clausius–
Duhem dissipation inequality for isothermal processes is needed:

Ḋ =
∫

B
(σ : ǫ̇ − Ψ̇)dV ≥ 0 (3)

where Ḋ denotes the time rate of dissipation and σ is the stress tensor. It is defined
for a certain domain B, occupied by the material body. Next, the time derivative of Ψ

is calculated:
Ψ̇ =

∂ Ψ

∂ ǫ
: ǫ̇ +

∂ Ψ

∂ ǭ
: ˙̄ǫ +

∂ Ψ

∂∇ǭ
· ∇ ˙̄ǫ +

∂ Ψ

∂ ω
: ω̇ (4)

and further:
∂ Ψ

∂ ǫ
= (1 − ω)De : ǫ + H (ǫ̃ − ǭ) s, s =

∂ ǫ̃

∂ ǫ
(5)

∂ Ψ

∂ ǭ
= −H (ǫ̃ − ǭ),

∂ Ψ

∂∇ǭ
= A∇ǭ,

∂ Ψ

∂ ω
= −1

2
ǫ : De : ǫ = −Y (6)

where Y is the damage energy release rate. Substituting Equation (4) into inequality (3) gives:

Ḋ =
∫

B

[
(σ − ∂ Ψ

∂ ǫ
) : ǫ̇ − ∂ Ψ

∂ ǭ
: ˙̄ǫ − ∂ Ψ

∂∇ǭ
· ∇ ˙̄ǫ − ∂ Ψ

∂ ω
ω̇

]
dV ≥ 0 (7)

The first term provides the definition of stress:

σ =
∂ Ψ

∂ ǫ
= (1 − ω)De : ǫ + H (ǫ̃ − ǭ) s (8)

and, to retrieve the classical form of σ, it has to be assumed that the second component
of the above definition is very small in comparison with the first one. This is obvious
for elasticity (H ≪ E, E is Young’s modulus) and doubtful close to failure when ω → 1,
but this term is consequently neglected. Upon substitution of Equations (6) and (8) into
inequality (7) it reads:

Ḋ =
∫

B
[H (ǫ̃ − ǭ) ˙̄ǫ − A∇ǭ · ∇ ˙̄ǫ + Y ω̇]dV ≥ 0 (9)

Next, the second term is integrated by parts:
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∫

B
−A∇ǭ · ∇ ˙̄ǫ dV =

∫

B
∇(A∇ǭ) ˙̄ǫ dV −

∫

∂B
A∇ǭ · N ˙̄ǫ dS (10)

where N is the normal to the domain surface ∂B. As noted in [7] the formulation is in fact
nonlocal already in the elastic state, since if it is assumed there is no damage growth (i.e.,
ω̇ = 0) and the dissipation must be equal to zero, then:

Ḋ =
∫

B
[H (ǫ̃ − ǭ) +∇(A∇ǭ)] ˙̄ǫ dV −

∫

∂B
A∇ǭ · N ˙̄ǫ dS = 0 (11)

The sufficient conditions for Equation (11) to hold are the following equations:

H (ǫ̃ − ǭ) +∇(A∇ǭ) = 0 in V (12)

∇ǭ · N = 0 on S (13)

Assuming H > 0 all terms in Equation (12) can be divided by H. Therefore, a gradient
scaling factor ϕ = A/H can be introduced to obtain the averaging equation for the CGD
model in the following form:

ǭ −∇(ϕ∇ǭ) = ǫ̃ (14)

When damage grows (i.e., ω̇ > 0), the dissipation is:

Ḋ =
∫

B
Y ω̇ dV > 0 (15)

which proves the second law of thermodynamics is satisfied. It is also pointed out that
in [35,61] an interpretation of the model as a special case of two-scale micromorphic
gradient-enhanced continuum is provided, where Equation (14) couples macro- and micro-
morphic variables.

Next, the case when the gradient activity function depends on damage is taken into
account, i.e., A = A(ω). The Helmholtz free energy becomes:

Ψ(ǫ, ǭ,∇ǭ, ω) = Ψ1 + Ψ2 +
1
2

A(ω)∇ǭ · ∇ǭ (16)

so that:
∂ Ψ

∂ ω
=

∂ Ψ1

∂ ω
+

1
2

dA

dω
‖∇ǭ‖2 (17)

and the gradient norm now influences the dissipation:

Ḋ =
∫

B
(Y − 1

2
dA

dω
‖∇ǭ‖2) ω̇ dV > 0 (18)

This inequality is satisfied provided that:

dA

dω
≤ 2 Y

‖∇ǭ‖2 (19)

The averaging equation for the LGD model is as follows:

ǭ −∇(ϕ(ω)∇ǭ) = ǫ̃ (20)

while Equation (13) holds.
In the conventional gradient-enhanced damage model one assumes the loading fun-

ction which satisfies:

F = ǭ − κd ≤ 0, κ̇d ≥ 0, F κ̇d = 0 (21)
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where κd = max(κo, ǭ) and κo is the damage threshold. Damage ω is a function of the
history variable κd and hence for the active process ω is a function of ǭ. Then the Helmholtz
free energy depends only on ǫ, ǭ and ∇ǭ and one can derive:

∂ Ψ

∂ ǭ
= −Y

dω

dǭ
− H(ǫ̃ − ǭ) +

1
2

dA

dω

dω

dǭ
‖∇ǭ‖2 (22)

and express the dissipation as:

Ḋ =
∫

B
(Y − 1

2
dA

dω
‖∇ǭ‖2)

dω

dǭ
˙̄ǫ dV > 0 (23)

which is equivalent to Equation (18).
Following [8], the potential energy functional for dynamic problems can be written as

a difference between the potentials of internal and external forces:

Π = Πint − Πext =
∫

B
Ψ dV +

∫

B
u · ρü dV −

∫

B
u · b dV −

∫

∂B
u · t dS (24)

where u is the displacement vector, b is the body force vector, ρü defines inertia forces
with the density ρ and the acceleration vector ü, t is the traction vector on boundary ∂B.
Minimization of the above functional leads to the weak form of the equation of motion:

∫

B
δǫ :

∂Ψ

∂ǫ
dV +

∫

B
δu · ρü dV =

∫

B
δu · b dV +

∫

∂B
δu · t dS ∀ δu (25)

On the other hand, the weak form of the averaging Equation (20) can be obtained by
multiplication of this equation by a variation of the averaged strain δǭ and integration
over domain B. Next, integration by parts according to Green’s formula is applied to the
gradient term:

∫

B
δǭ[∇(ϕ ∇ǭ)]dV = −

∫

B
∇δǭ · ϕ ∇ǭ dV +

∫

∂B
δǭ ϕ∇ǭ · N dS (26)

Knowing that the homogeneous natural boundary condition (13) holds, the weak form of
the averaging equation is:

∫

B
δǭ ǭ dV +

∫

B
∇δǭ · ϕ ∇ǭ dV =

∫

B
δǭ ǫ̃ dV ∀ δǭ (27)

Notice that Equation (27) has the same nature regardless of whether the gradient activity is
constant or is a function of ω. Equations (25) and (27) are the starting point for interpolation
and linearization.

2.2. System of Matrix Equations

Henceforth, Voigt’s notation (also called matrix-vector notation) is used. The formu-
lation for the LGD model has two primary fields, hence independent interpolations of
displacements u and of the averaged strain measure ǭ are introduced:

u = N a and ǭ = hTe (28)

where N and h contain appropriate shape functions. Small strains are assumed for the
(I)BVP. The secondary fields ǫ and ∇ǭ can be computed as:

ǫ = B a and ∇ǭ = gTe (29)

where B = L N and gT = ∇hT. Matrix L consists of differential operators. The correspond-
ing variations are also interpolated, respectively. Equations (25) and (27) in a discretized
form are as follows:
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δaT
∫

B
BTσ dV + δaT

∫

B
NTρN ä dV = δaT

∫

B
NTb dV + δaT

∫

∂B
NTt dS (30)

δe

∫

B
h hTe dV + δe

∫

B
g ϕ gTe dV = δe

∫

B
h ǫ̃ dV (31)

Tractions and body forces do not depend on deformation.
The IBVP is linearized and equilibrium has to be achieved at each time step. The

detailed derivation for the LGD model can be found in [30]. It finally leads to the following
system of the matrix equations for dynamic problems:

[
Maa 0

0 0

][
ät+∆t

ët+∆t

]
+

[
Kaa Kae

Kea Kee + KLGD
ee

][
∆a

∆e

]
=

[
f t+∆t

ext − f t
int

f t
ǫ − f t

e

]
(32)

The incremental nodal displacements ∆a and the incremental averaged strain ∆e are
solved for in each time step. Equilibrium is retrieved after iterations in subsequent time
steps. The consistent mass matrix is determined in a standard way:

Maa =
∫

B
NTρN dV (33)

Obviously, this matrix is not taken into consideration for static problems. The subma-
trices given in Equation (32) are defined as follows:

Kaa =
∫

B
BT (1 − ω) D B dV, Kae = −

∫

B
G BT D ǫ hT dV (34)

Kea = −
∫

B
h sTB dV, Kee =

∫

B

(
h hT + ϕ g gT

)
dV (35)

KLGD
ee =

∫

B
g gTe ϕ, ω G hT dV (36)

where D is the elastic stiffness matrix. Additionally, the following notation has been introduced:

G =
∂ω

∂κd
∂κd

∂ǭ
and ϕ, ω =

∂ϕ

∂ω
(37)

It should be noted that KLGD
ee does not exist for the CGD model (where ϕ is constant).

The subvectors on the right-hand side in Equation (32) are defined below, the subscript t
is skipped:

f t+∆t
ext =

∫

B
NTbt+∆t dV +

∫

∂B
NTtt+∆t dS, f int =

∫

B
BTσ dV (38)

f ǫ =
∫

B
h ǫ̃ dV, f e = Kee e (39)

2.3. Applied Functions

In the computations included in the paper, the equivalent strain measure is determined
by the modified von Mises definition [62]:

ǫ̃(ǫ) =
(k − 1)Iǫ

1
2k(1 − 2ν)

+
1
2k

√(
(k − 1)Iǫ

1
1 − 2ν

)2

+
12kJǫ

2
(1 + ν)2 (40)

where k = fc/ ft is the ratio of uniaxial compressive and tensile strengths, ν is Poisson’s
ratio, Iǫ

1 and Jǫ
2 are the strain tensor invariants.

In the literature, there are different functions representing the damage growth (see,
e.g., [13]). According to the experiment [39] uniaxial softening for tension in concrete can
be approximated by an exponential function. The damage history parameter κd, after
exceeding the threshold κo, causes damage ω to grow asymptotically to 1 [12,63]:
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ω(κd) = 1 − κo

κd

(
1 − α + αe−η(κd−κo)

)
(41)

where the parameters η and α are respectively associated with material ductility and
residual stress which tends to (1 − α)Eκo (in one dimension). Hence, the latter parameter
prevents the complete loss of material stiffness for α < 1 and makes the numerical response
more stable. The former one is related to fracture energy G f of concrete.

The third recalled function decides about the gradient activity. Function ϕ = ϕ(ω) is
able to change the averaging region during the damage process. When the CGD model [6]
is considered, then the gradient activity remains constant:

ϕ0 = cmax > 0 (42)

The parameter cmax is related to the internal length scale l as shown in [64], i.e., cmax = 0.5 l2.
When the LGD model [27,28] is taken into account, the gradient activity is reduced together
with the damage growth:

ϕ1(ω) = cmax
(1 − R) exp (−n ω) + R − exp (−n)

1 − exp (−n)
(43)

where cmax is still the half of maximum internal length scale squared, R is the residual
level of interaction between microprocesses within the localization band and n is the
power which changes the intensity of the gradient activity. The character of this function
is localizing, because the gradient activity can only decrease. The derivative of function
ϕ1 equals:

∂ϕ1

∂ω
= cmax

(R − 1) n exp (−n ω)

1 − exp (−n)
(44)

In this paper, an alternative definition of the gradient activity function is also used. The
relation ϕ = ϕ(ω) and its corresponding derivative can be determined by cosine and
sine functions:

ϕ2(ω) = cmax [0.5 (cos(πωn) + 1)(1 − R) + R] (45)

∂ϕ2

∂ω
= 0.5 π cmax n (R − 1)ω(n−1) sin(πωn) (46)

The character of function ϕ2 is also decreasing. Functions ϕ1(ω) and ϕ2(ω) as well as their
derivatives are depicted in Figure 2. Values cmax = 8.0 mm2 and R = 0.01 refer to first
computed benchmark, discussed in the next section. The function ϕ1 is compared for two
cases of the intensity parameter, i.e., n = 1.0 or n = 5.0, while for ϕ2 this is n = 1.0. It is
seen for all cases that non-increasing functions ϕ corresponds to derivatives ∂ϕ/∂ω which are
negative or zero at most. More details on gradient activity functions can be found in [30].
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Figure 2. Gradient activity functions with different intensity n, cmax = 8.0 mm2, R = 0.01.

3. Numerical Examples of Direct Tension

3.1. Static Tensile Cracking on Double-Edge-Notched Specimen

The first example is connected with the experiment presented in [39] for specimens
with different dimensions, subjected to direct tension. In [65], the gradient plasticity model
was verified using this test to show the size effect and different responses for configurations
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of direct tension without or with admissible rotation of the free edge. The CGD model
was analyzed in [12,66], where the results for symmetric and asymmetric behaviour are
obtained and the size effect is demonstrated.

In this paper, only a symmetric response is simulated for one selected set of dimensions.
Attention is focused on the mesh-objectivity study and highlighting the difference between
results for CGD and LGD models. The plain lightweight concrete bar is notched on both
longer edges. The length of the specimen is L = 250 mm, the height is H = 60 mm, the
thickness is T = 50 mm. Plane stress conditions are assumed. In the numerical analysis
the specimen is set horizontally, see Figure 3. Suitable boundary conditions constrain
the displacements on the left, while a uniform static load acts on the right. The total
elongation is measured at point E, but indirect displacement control is monitored at point
C. The red points, which are adjacent to this point in one line, are linked to have the same
horizontal displacement. In other words, all marked points on the right of the zone of mesh
densification control the symmetric deformation of the specimen. In the computations four
meshes (named A–D) with eight-noded finite elements (FEs) are employed with double
densification in the middle, as depicted in Figure 3 for mesh B. Quadratic interpolation of
displacements a and linear interpolation of averaged strain e together with 2 × 2 Gauss
integration is applied in FEs. Mesh A includes 2401 nodes and 536 FEs, mesh B—7113 nodes
and 1976 FEs, mesh C—13,199 nodes and 3816 FEs and mesh D—24,321 nodes and 7328 FEs.
The elasticity data of the concrete model are: Young’s modulus E = 18,000 MPa, Poisson’s
ratio ν = 0.2. The modified von Mises definition of the equivalent strain in Equation (40) is
applied with the ratio k = 10. The tensile strength is initially established as ft = 3.4 MPa,
but actually the threshold κo is adjusted to the maximum stress from the experiment [39]
with the corresponding value captured for mesh B. In a similar way the values of parameters
α and η defined in Equation (41) are fitted to reproduce the experimental diagram as close
as possible. All computed cases for this benchmark are listed in Table 1. The maximum value
for the gradient activity function is adopted as cmax = 8.0 mm2. This is the constant internal
length parameter for the CGD model. The LGD model is used with the minimum level of
gradient interaction R = 0.01. The results for this model are compared considering functions
ϕ1 (with n = 1.0 or n = 5.0) and ϕ2 (n = 1.0). These functions are depicted in Figure 2a.

Table 1. Computational cases for static tension test on double-edge-notched specimen (in order of
appearance in figures).

Acronym Model Type of ϕ Mesh κo ×10−4 α η n

CGD-A CGD ϕ0 A 1.845 0.96 720
CGD-B CGD ϕ0 B 1.845 0.96 720
CGD-C CGD ϕ0 C 1.845 0.96 720
CGD-D CGD ϕ0 D 1.845 0.96 720
LGD-A LGD ϕ1 A 1.975 0.95 90 5.0
LGD-B LGD ϕ1 B 1.975 0.95 90 5.0
LGD-C LGD ϕ1 C 1.975 0.95 90 5.0
LGD-D LGD ϕ1 D 1.975 0.95 90 5.0

LGD-n1-A LGD ϕ1 A 1.835 0.95 100 1.0
LGD-n1-B LGD ϕ1 B 1.835 0.95 100 1.0
LGD-n1-C LGD ϕ1 C 1.835 0.95 100 1.0
LGD-n1-D LGD ϕ1 D 1.835 0.95 100 1.0

LGD-c-A LGD ϕ2 A 1.805 0.95 90 1.0
LGD-c-B LGD ϕ2 B 1.805 0.95 90 1.0
LGD-c-C LGD ϕ2 C 1.805 0.95 90 1.0
LGD-c-D LGD ϕ2 D 1.805 0.95 90 1.0

Figures 4 and 5 show the results for the CGD model. In Figure 4a, the diagrams of
total force at the right edge versus total bar elongation measured at point E are compared
for all meshes; hence, the global response is inspected. A so-called ligament stress versus
average strain is plotted in Figure 4b. The concept of the ligament stress can be introduced
as follows:

σlig =
F

Blig T
(47)
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where F is the force and Blig is the ligament width, i.e., the width of the bar minus the depths
of both notches. The average strain is the average extension of the measurement length
over Lm. The measurement base Lm (see Figure 3) is in accordance with the experiment.
The placement of extensometers is distinguished by the red points. The average extension
is calculated as a difference between the mean of horizontal displacements on the right (in
one line with point C) and the mean of horizontal displacements observed analogically on
the left. Therefore, Figure 4b presents the diagrams of nominal values. It is clearly seen
that mesh-objective results are obtained. The equilibrium paths depicted in both figures
overlap, however the softening branch for the coarsest mesh A marginally deviates in
the middle of the descent. Figure 5 illustrates contour plots of average strain measure ǭ
and damage ω prepared for the final stage of the loading. The range of view is limited
to the area in the vicinity of the notches. There are presented the results for only the two
utmost cases CGD-A and CGD-D, i.e., for the coarsest mesh A and for the finest mesh D.
It is confirmed that the solution is insensitive to the adopted mesh. The localization zone
appears between the notches as expected. Nevertheless, a shortcoming is noticeable. The
distribution of active damage in Figure 5c,d in comparison to the distribution of averaged
strain in Figure 5a,b widens excessively sideways in the ligament area.

Lm

C E

Figure 3. Configuration of static tension test together with mesh B, indirect displacement control at
point C, elongation measured at point E.
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Figure 4. Static tension test, diagrams for CGD model, mesh-sensitivity study.

(a) ǭ, mesh A (CGD-A). (b) ǭ, mesh D (CGD-D). (c) ω, mesh A (CGD-A). (d) ω, mesh D (CGD-D).

Figure 5. Static tension test, CGD model, distribution of averaged strain ǭ and damage ω for two
utmost cases.

28



Materials 2022, 15, 1875

Next, the results for the LGD model are presented. Figure 6 shows diagrams analogical
to those presented in Figure 4, but here the LGD model with exponential function ϕ1 and
intensity n = 5.0 is used. Both subfigures, with force-bar elongation diagrams as well as
with ligament stress-average strain diagrams, indicate that this model seems to be mesh-
dependent. The load-carrying capacity for mesh A is clearly larger than for the other three.
However, together with an increasing density of the mesh, differences between subsequent
diagrams vanish and finally the solutions for meshes C and D almost overlap, cf. cases
LGD-C and LGD-D in Figure 6. Furthermore, in this test the snapback effect is observed
and it is stronger for the solution obtained for the LGD model than for the CGD model, cf.
Figures 4a and 6a. Figure 7 depicts diagrams where for function ϕ1 the intensity parameter
is five times smaller, i.e., n = 1.0. There are cases from LGD-n1-A to LGD-n1-D. It is visible
in Figure 7a that the snapback is delayed if n = 1.0. Just after the peak the equilibrium
paths run down, but forward and only then backward. The convergence of solutions for
subsequent denser and denser meshes has the same character as for the case when the
power n = 5.0.
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Figure 6. Static tension test, diagrams for LGD model using function ϕ1 with n = 5.0, mesh-sensitivity study.
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Figure 7. Static tension test, diagrams for LGD model using function ϕ1 with n = 1.0, mesh-sensitivity study.

The contour plots in Figures 8–10 illustrate the results for the LGD model with function
ϕ1, but the distributions of damage ω in Figures 9 and 10 differ if the intensity parameter
n = 5.0 or 1.0, analogically to the diagrams presented above. It is common that the crack is
initiated near the notch. It should be noticed that the width of the notch has the width of
one FE for mesh A and next it is divided into two (mesh B), three (C) or four (D) FEs along
the notch width. The active localization zone for the averaged strain measure ǭ in the case
of the CGD model (see Figure 5a,b), is smeared and insensitive to the size of the notch. In
reality, the shape and the size of the notch can influence the initiation point of the crack (see,
e.g., experimental results in [39,40]). Moreover, due to the presence of the notches and the
fact that concrete exhibits softening in the tension regime, the snapback effect is possible in
this test. The solution for the LGD model is influenced by the division of the notch width.

29



Materials 2022, 15, 1875

Cracking starts in the left corners for mesh A (case LGD-A) (see Figure 8a). It should be
recalled that the left edge of the specimen is constrained in the analysis. For mesh B (case
LGD-B) as shown in Figure 8b, the dominant averaged strain runs along the symmetry axis
between the notches. For meshes C and D (cases LGD-C and LGD-D) cracking is observed
along the nearest line adjacent to the symmetry axis. Hence, the solutions for meshes C
and D seem to optimal in terms of energy release during the cracking process and can be
recognized as mesh-objective. Of course, it can be questioned that the response depends on
the division of the notch width; however, the solutions for meshes C and D are very similar.
Despite the fact that the distributions of averaged strain measure ǭ look almost the same
for the LGD model with n = 5.0 or 1.0, the distributions of damage ω are different, see
Figure 8 and then Figures 9 and 10. It is noticed that the responses for n = 1.0 and meshes
C and D (cases LGD-n1-C and LGD-n1-D) are almost identical, analogically to the solution
with n = 5.0 for meshes C and D. However, for smaller intensity n = 1.0 the distribution of
active damage ω is evidently wider than for n = 5.0. On the other hand, it is clear that the
damage zone is not spuriously broadened as for the CGD model; hence, the solution for
the LGD model with ϕ1 and the power n = 1.0 is acceptable.

(a) Mesh A (LGD-A). (b) Mesh B (LGD-B). (c) Mesh C (LGD-C). (d) Mesh D (LGD-D).

Figure 8. Static tension test, LGD model using function ϕ1 with n = 5.0, distribution of averaged
strain ǭ, mesh-sensitivity study.

(a) Mesh A (LGD-A). (b) Mesh B (LGD-B). (c) Mesh C (LGD-C). (d) Mesh D (LGD-D).

Figure 9. Static tension test, LGD model using function ϕ1 with n = 5.0, distribution of damage ω,
mesh-sensitivity study.

(a) Mesh A (LGD-n1-A). (b) Mesh B (LGD-n1-B). (c) Mesh C (LGD-n1-C). (d) Mesh D (LGD-n1-D).

Figure 10. Static tension test, LGD model using function ϕ1 with n = 1.0, distribution of damage ω,
mesh-sensitivity study.
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The results for the LGD model when the gradient activity decreases according to
the cosine function ϕ2 are presented separately. Again, Figure 11 depicts the force-bar
elongation diagrams on the left and the ligament stress-average strain diagrams on the
right. The character of all equilibrium paths is similar to the case when for the LGD model
function ϕ1 with n = 1.0 is taken into account. Again, together with increasing densification
of meshes, subsequent responses converge to a mesh-objective solution. Similarly, damage
distributions in Figure 12 for meshes A (case LGD-c-A) and B (case LGD-c-B) differ from
those obtained for meshes C and D (cases LGD-c-C and LGD-c-D). The character of the
localization zone for ω when the cosine function ϕ2 is used in the LGD model is more
diffusive for smaller damage values, but finally, for the largest values of damage (ω → 1.0),
it reminds the distribution obtained for the exponential function ϕ1 and n = 5.0. Based on
these results it can be stated that function ϕ2 can be applied in the LGD model.
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Figure 11. Static tension test, diagrams for LGD model using function ϕ2, mesh-sensitivity study.

(a) Mesh A (LGD-c-A). (b) Mesh B (LGD-c-B). (c) Mesh C (LGD-c-C). (d) Mesh D (LGD-c-D).

Figure 12. Static tension test, LGD model using function ϕ2, distribution of damage ω, mesh-
sensitivity study.

Moreover, in this test the response for the LGD model with function ϕ2 is more stable
during the iteration process. Figure 13 shows a comparison of the diagrams obtained for
the total force versus the elongation at the point E, which are zoomed when the peak is
attained during the loading process. When the gradient activity strongly decreases as for
function ϕ1 with the intensity parameter n = 5.0, an instability in the computations for the
onset of the strain localization is clearly seen. This undiserable effect is overcome for ϕ1
and n = 1.0 as shown in Figure 13b and for ϕ2 as shown in Figure 13c. In Figure 14, the
distributions of the gradient activity functions ϕ1 and ϕ2 are illustrated for mesh C. The
scale of the values is reversed, so the black colour denotes the smallest values of function ϕ,
which correspond to the weakest nonlocal interaction. These distributions reflect the active
damage zones. The range of the gradient activity is the widest for function ϕ1 with milder
intensity n = 1.0. The distribution of the gradient activity for function ϕ2 (with the cosine)
is slightly thinner. Based on this observation and taking into account the possible issue
of instability for ϕ1 with n = 5.0 as indicated by the diagrams in Figure 13a, the choice of

31



Materials 2022, 15, 1875

function ϕ2 can be an effective alternative and a reasonable compromise when the LGD
model is used.
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Figure 13. Static tension test, different options for LGD model, diagrams of force vs. bar elongation
zoomed near peak.

(a) ϕ1, n = 5.0 (LGD-C, re-
versed scale).

(b) ϕ1, n = 1.0 (LGD-n1-C,
reversed scale).

(c) ϕ2 (LGD-c-C, reversed
scale).

Figure 14. Static tension test, mesh C, distribution of gradient activity function for LGD model.

Figure 15 presents a comparison between the applied models and with reference to
the experiment [39]. The average displacement given on the horizontal axis is actually
the average extension measured over the base Lm shown in Figure 3 between marked red
points and it is consistent with the measurement performed in the experiment [39]. The
results in Figure 15a for mesh B and in Figure 15b for mesh C do not differ substantially,
but the ones for mesh C exhibit a slightly more brittle response. Only the equilibrium paths
for cases LGD-n1-B and LGD-n1-C, i.e., when the intensity parameter n equals 1.0, diverge
from the others. In subsequent analyses, this case is no longer considered.
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Figure 15. Static tension test, comparison with experiment [39], ligament stress vs average displace-
ment, diagrams for meshes B and C.

Summarizing the above considerations, the LGD model is more sensitive to the dis-
cretization than the CGD model. In this example, the solution for subsequent meshes
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approaches the final mesh-objective result. Hence, a sufficiently dense mesh should be
employed in the computations. The intensity parameter n for exponential function ϕ1,
which decides about the rate of gradient activity for the internal length scale, should be
larger than 1.0 (see also [30,31]).

3.2. Direct Tension Test under Impact Loading

3.2.1. General Data

The second example concerns a dynamic analysis of tensile wave propagation in a
concrete specimen without or with reinforcement. The results of an analogical test, but
only for one discretization, were presented in [44]. There were compared two regularized
models: Hoffman viscoplasticity and conventional gradient damage (CGD). A similar
confrontation—gradient plasticity versus gradient damage, however using only a plain
concrete bar, has been carried out in [67]. In this subsection the results obtained for the LGD
model are shown for both options: plain and reinforced concrete (RC). The presentation of
diagrams for the CGD model is given as a reference solution.

The configuration of the test is illustrated in Figure 16a. This bar is supported along
both symmetry axes and normal traction on both (left and right) edges is applied. The load
is time-dependent according to a linear-constant function which is drawn in Figure 16b.
The traction intensity pi = 2.4 MPa becomes constant for time ti = 3× 10−5 s = 30 µs. Each
time step equals 1 µs. Plane stress conditions with the thickness T = 50 mm are assumed
again. The length of the specimen is L = 240 mm, the height is H = 56 mm. This test is just
to compare dynamic responses of the models; hence, L and H are adjusted to FE meshes.
However, they are similar to the previous example, but the concrete bar is unnotched.
Three meshes are applied. Mesh A has 2811 nodes, 960 FEs for RC configuration and the
square FE size equals 4 mm. Mesh B has 10,659 nodes, 3600 FEs for RC configuration and
the square FE size is 2 mm. Mesh C has 41,475 nodes, 13,920 FEs for RC configuration and
the square FE size equals 1 mm. Mesh B with eight-noded FEs (and the same interpolation
as previously) is depicted in Figure 16a. When reinforced concrete is taken into account,
the rebar is discretized by truss elements located along the horizontal axis.

E

(a) Configuration with mesh B.

ti time t

pi

intensity p

traction

(b) Loading history.

Figure 16. Dynamic direct tension test—definition of specimen and loading history.

The material data for concrete are: Young’s modulus E = 18,000 MPa, Poisson’s
ratio ν = 0.0 and density ρ = 2320 kg/m3. Exponential damage growth function given
in Equation (41) is applied with threshold κo = 1.8889 × 10−4 (which corresponds to
ft = 3.4 MPa) and parameter α = 0.99 to keep a small residual stress. Other parameters
are juxtaposed in Table 2. The first column provides acronyms for the cases where plain
concrete is considered in the analysis. The second column informs about acronyms for
the analyses of RC models. A blank field means that only the case without reinforcement
is analyzed. The equivalent strain measure is determined by the modified von Mises
definition—Equation (40), k = 10. In the computations two or three different values of cmax
(connected with the maximum internal length scale) are compared. Both gradient activity
functions are examined as well. The data for the steel reinforcement are: E = 200,000 MPa,
ν = 0.0, ρ = 7800 kg/m3 and the yield strength is fy = 355 MPa for the perfect plasticity
model. Cross section Ar = 28 mm2 indicates that the reinforcement ratio is 1%. In the case
of RC, full bond between the concrete matrix and the reinforcement is adopted.
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Table 2. Computational cases for dynamic direct tension test.

Plain Concrete Reinforced Concrete Model
Type
of ϕ

Mesh
cmax

[mm2]
η R n

dc-CGD-C-8 rc-CGD-C-8 CGD ϕ0 C 8.0 400
dc-LGD-A-2 rc-LGD-A-2 LGD ϕ1 A 2.0 180 0.04 5.0
dc-LGD-B-2 rc-LGD-B-2 LGD ϕ1 B 2.0 180 0.04 5.0
dc-LGD-C-2 rc-LGD-C-2 LGD ϕ1 C 2.0 180 0.04 5.0
dc-LGD-A-8 rc-LGD-A-8 LGD ϕ1 A 8.0 180 0.04 5.0
dc-LGD-B-8 rc-LGD-B-8 LGD ϕ1 B 8.0 180 0.04 5.0
dc-LGD-C-8 rc-LGD-C-8 LGD ϕ1 C 8.0 180 0.04 5.0

dc-LGD-A-32 LGD ϕ1 A 32.0 180 0.04 5.0
dc-LGD-B-32 LGD ϕ1 B 32.0 180 0.04 5.0
dc-LGD-C-32 LGD ϕ1 C 32.0 180 0.04 5.0

dc-LGD-C-8-R01 LGD ϕ1 C 8.0 180 0.01 5.0
dc-LGD-C-8-R16 LGD ϕ1 C 8.0 180 0.16 5.0

dc-LGD-C-8-e400 LGD ϕ1 C 8.0 400 0.04 5.0
dc-LGDc-A-2 rc-LGDc-A-2 LGD ϕ2 A 2.0 180 0.04 1.0
dc-LGDc-B-2 rc-LGDc-B-2 LGD ϕ2 B 2.0 180 0.04 1.0
dc-LGDc-C-2 rc-LGDc-C-2 LGD ϕ2 C 2.0 180 0.04 1.0
dc-LGDc-A-8 rc-LGDc-A-8 LGD ϕ2 A 8.0 180 0.04 1.0
dc-LGDc-B-8 rc-LGDc-B-8 LGD ϕ2 B 8.0 180 0.04 1.0
dc-LGDc-C-8 rc-LGDc-C-8 LGD ϕ2 C 8.0 180 0.04 1.0

3.2.2. Results for Plain Concrete

A survey of the test results commences with the comparison of CGD and LGD models
based on the diagrams shown in Figure 17. The details for cases dc-CGD-C-8, dc-LGD-C-8
and dc-LGDc-C-8 are listed in Table 2. The parameters for them are selected to fit the
elongation-time diagrams. In particular, this concerns parameter η. It is known, based on
the comparison of CGD and LGD models for statics in [27,30] as well as in the previous
benchmark, that the value of parameter η specifying the rate of damage growth should be
much smaller for the LGD model than for the CGD model. This rule is also valid in the
dynamic analysis, hence here η = 400 for the CGD model corresponds to η = 180 for the
LGD model. The elongation history is monitored at point E, so the horizontal displacement
is observed as a function of time. The diagrams in Figure 17 intersect each other.
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Figure 17. Dynamic tension test, plain concrete, mesh C, l = 4 mm or cmax = 8 mm2, comparison of
models for elongation history.

Figure 18 juxtaposes time-elongation diagrams for all cases solved for the dynamic
direct tension test using the LGD model and exponential gradient activity function ϕ1
(see Equation (43). It is noticed that the elongation at point E goes to infinity for all
cases. It is also seen in Figure 18a,b that the results depend on the mesh, however for
larger cmax the difference between the solutions for mesh B (case dc-LGD-B-8) and C
(dc-LGD-C-8) is smaller than for cmax = 2 mm2. It should be explained here that the
assumed value of the maximum internal length scale influences in the whole change of the
gradient activity function. For example when cmax = 2 mm2, then value of ϕ1 ranges to
R × cmax = 0.04 × 2 mm2 = 0.08 mm2 corresponding to the minimum level of nonlocal
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interaction, but when cmax = 8 mm2, then ϕ1 approaches R × cmax = 0.32 mm2. Hence
for cmax = 32 mm2 (R × cmax = 1.28 mm2) the time-elongation diagrams are very close
to each other (see Figure 18c). It is observed that together with the increase of cmax and
simultaneously with more influential gradient activity function ϕ1 in the LGD model, the
diagrams get nearest to one another, but the same level of the elongation at point E is
attained slower. The parameter R connected with the residual level of averaging decides
about the elongation rate as shown in Figure 18d. Assuming the same cmax = 8 mm2, the
same mesh C and different values of R which is equal to 0.01 for case dc-LGD-C-8-R01, 0.04
for case dc-LGD-C-8 and 0.16 for dc-LGD-C-8-R16, the differences between the paths are
significant. Additionally, the diagram for case dc-LGD-C-8-e400 is drawn in Figure 18d,
where the parameter η equals 400 for the LGD model, exactly as the one introduced for the
CGD model. The comparison presented here confirms that η should be smaller, otherwise
the elongation goes to infinity the fastest of all the cases considered in this section.
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(a) cmax = 2 mm2, mesh-sensitivity.
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(b) cmax = 8 mm2, mesh-sensitivity.
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(c) cmax = 32 mm2, mesh-sensitivity.
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(d) Influence of η and R.

Figure 18. Dynamic tension test, plain concrete, elongation history for LGD model using function ϕ1.

Figures 19–23 display contour plots for the LGD model using function ϕ1. All next
contour plots in this subsection are zoomed on the same central part of the bar which is
subjected to impact on the edges. Such impact loading causes formation of two waves
which propagate from the sides to the center, then superpose and if only the elastic limit
is exceeded for the stress, the wave stops which involves strain localization. In that case
one damage zone in the middle is expected. That result is compatible with the analytical
solution for the bar with strain softening, cf. [68]. Damage distributions in Figure 19 are
made for cases with cmax = 2 mm2, subsequently for meshes A (dc-LGD-A-2), B (dc-LGD-
B-2) and C (dc-LGD-C-2). The obtained responses are different. Not only two, but even
three standing waves corresponding to localization zones occur (case dc-LGD-C-2 for mesh
C); hence, this response results from an artificial numerical effect and the FEM analysis is
mesh-dependent. When cmax is increased to 8 mm2, then one central zone of localization is
anticipated based on the results for the CGD model shown in [44], but still two damage
zones appear. The case of mesh A (dc-LGD-A-8) deviates from those of meshes B (dc-LGD-
B-8) and C (dc-LGD-C-8). Figure 20 depicts the distribution of averaged strain measure ǭ
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and Figure 21 shows damage ω at time instant t = 0.0003 s. It is visible that the localization
zones for mesh A are closer than for meshes B and C. In addition, it can also be noticed that
the relation between ǭ and ω is consistent with the results presented in Section 3.1—please
confront Figure 8 with Figure 9 and then Figure 20 with Figure 21. The results become fully
mesh-independent of the discretization for the case with cmax = 32 mm2 (see Figure 22).
One standing wave is present in the middle of the bar for each mesh (cases dc-LGD-A-32,
dc-LGD-B-32 and dc-LGD-C-32). Moreover, the width of the active damage zone is quite
narrow, despite the fact that cmax = 32 mm2 is introduced. This value would rather be
perceived as too large and causing too broad damage zone in the case of the CGD model
with l = 8 mm. Therefore, the gradient activity function can significantly reduce the
width of the damage zone. Figure 23 includes the contour plots for the additional cases of
the analysis of the direct dynamic tension test for plain concrete. It is confirmed that the
parameter R, responsible for final nonlocal interaction, truly influences the results for the
LGD model. The following cases can be investigated in a sequence: dc-LGD-C-8-R01 with
R = 0.01 in Figure 23b, dc-LGD-C-8 with R = 0.04 in Figure 21c and dc-LGD-C-8-R16 with
R = 0.16 in Figure 23c. The same mesh C and cmax = 8 mm2 are considered. For R = 0.01
and 0.04 two spurious localization zones appear. For R = 0.16 one proper zone occurs due
to the presence of the standing wave in the centre of the specimen, similar to the case with
cmax = 32 mm2 and R = 0.04. However, the distribution of active damage ω for R = 0.16
has a more diffusive character. The above remarks coincide with the description of the
elongation-time diagrams discussed in the previous paragraph, cf. Figure 18d. The contour
plot of damage ω in Figure 23a for case dc-LGD-C-8-e400 with η = 400 for the LGD model
again exhibits two zones. The value of parameter η cannot be the same as for the CGD
model. Generally, the response for the LGD model is more brittle.

(a) Mesh A (dc-LGD-A-2). (b) Mesh B (dc-LGD-B-2). (c) Mesh C (dc-LGD-C-2).

Figure 19. Dynamic tension test, plain concrete, LGD model using function ϕ1 with cmax = 2 mm2,
distribution of damage ω at t = 0.0003 s, mesh-sensitivity study.

(a) Mesh A (dc-LGD-A-8). (b) Mesh B (dc-LGD-B-8). (c) Mesh C (dc-LGD-C-8).

Figure 20. Dynamic tension test, plain concrete, LGD model using function ϕ1 with cmax = 8 mm2,
distribution of averaged strain ǭ at t = 0.0003 s, mesh-sensitivity study.
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(a) Mesh A (dc-LGD-A-8). (b) Mesh B (dc-LGD-B-8). (c) Mesh C (dc-LGD-C-8).

Figure 21. Dynamic tension test, plain concrete, LGD model using function ϕ1 with cmax = 8 mm2,
distribution of damage ω at t = 0.0003 s, mesh-sensitivity study.

(a) Mesh A (dc-LGD-A-32). (b) Mesh B (dc-LGD-B-32). (c) Mesh C (dc-LGD-C-32).

Figure 22. Dynamic tension test, plain concrete, LGD model using function ϕ1 with cmax = 32 mm2,
distribution of damage ω at t = 0.0003 s, mesh-sensitivity study.

(a) η = 400 (dc-LGD-C-8-e400). (b) R = 0.01 (dc-LGD-C-8-R01). (c) R = 0.16 (dc-LGD-C-8-R16).

Figure 23. Dynamic tension test, plain concrete, LGD model using function ϕ1 with cmax = 8 mm2,
mesh C, distribution of damage ω at t = 0.0003 s, influence of parameters η or R.

The last paragraph in this subsection describes results for the LGD model, but function
ϕ2 for variable gradient activity is introduced. This function decreases according to cosine
as defined in Equation (45). Figure 24 shows the elongation at point E as the function of
time. The diagrams in Figure 24a for cmax = 2 mm2 (cases dc-LGDc-A-2, dc-LGDc-B-2
and dc-LGDc-C-2) starting from time t ≈ 0.00017 diverge in a slightly different directions,
while the diagrams in Figure 24b for cmax = 8 mm2 (cases dc-LGDc-A-8, dc-LGDc-B-8 and
dc-LGDc-C-8) are near to one another and only the elongation rate for mesh A is a bit
smaller. It indicates that mesh-objective results can already be obtained for cmax = 8 mm2

when function ϕ2 is employed for the LGD model. Damage distributions for cmax = 2 mm2,
i.e., for dc-LGDc-A-2, dc-LGDc-B-2 and dc-LGDc-C-2 shown in Figure 25, although quite
narrow damage bands are formed, are different and the width of these bands is also
distinctive for each mesh. On the other hand, the increase of cmax to 8 mm2 provides
very similar damage distributions as illustrated in Figure 26. One active damage zone
in the middle is clearly visible. In the contrast to function ϕ1 it can be concluded that
the application of ϕ2 in the LGD model allows one to obtain results independent of the
discretization even for a smaller value of maximum internal length parameter cmax.
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(a) cmax = 2 mm2, mesh-sensitivity.
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(b) cmax = 8 mm2, mesh-sensitivity.

Figure 24. Dynamic tension test, plain concrete, elongation history for LGD model using function ϕ2.

(a) Mesh A (dc-LGDc-A-2). (b) Mesh B (dc-LGDc-B-2). (c) Mesh C (dc-LGDc-C-2).

Figure 25. Dynamic tension test, plain concrete, LGD model using function ϕ2 with cmax = 2 mm2,
distribution of damage ω at t = 0.0003 s, mesh-sensitivity study.

(a) Mesh A (dc-LGDc-A-8). (b) Mesh B (dc-LGDc-B-8). (c) Mesh C (dc-LGDc-C-8).

Figure 26. Dynamic tension test, plain concrete, LGD model using function ϕ2 with cmax = 8 mm2,
distribution of damage ω at t = 0.0003 s, mesh-sensitivity study.

3.2.3. Results for Reinforced Concrete

In this subsection the results for the RC configuration subjected to dynamic tension
are presented. The solution for the LGD model with function ϕ1 defined in Equation (43)
is illustrated in Figures 27–29. The elongation-time diagrams given in Figure 27 show
that the presence of the rebar precludes a progress to infinite displacements. Each curve
oscillates around some value of elongation. However, the diagrams for cmax = 2 mm2 in
Figure 27a are different for each mesh. The denser the mesh is, the smaller amplitude is
observed. Contour plots in Figure 28 for damage ω at the final time instant t = 0.0006 s
depict the localization zones placed near the centre analogically to the distributions when
plain concrete specimen is considered, cf. the case with ϕ1 and cmax = 8 mm2 (Figure 21)
or with ϕ2 and cmax = 2 mm2 (Figure 25). In the subsequent plots of Figure 28 these
vertical zones slightly move away from each other. In addition, the presence of the rebar
along the horizontal symmetry is seen, where damage does not activate. Actually, the
most active damage is present away from the reinforcing bar. This solution is possible
when full bond between the steel rebar and the concrete matrix is assumed. However,
composite structures of such type can also be modelled with a representation of bond-slip
by so-called interface elements, which leads to generation of many localization zones in
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the vicinity of the reinforcement, see, e.g., [69,70]. Moreover, it is possible to employ an
interface zone called an interphase as in [71,72]. It is formed by a layer (or more layers)
of FEs with non-zero thickness and represents a transition between the concrete matrix
and the reinforcement as weaker concrete. The simplifying assumption of full bond as in
the current computations is more suitable for modelling of RC structures with ribbed bars.
The diagrams in Figure 27b for the cases with cmax = 8 mm2 almost overlap and curves
oscillate around 0.019 mm. When the maximum internal length cmax is increased, then the
strain localization starts from the centre points of the horizontal edges. It is observed for
the distributions of damage ω in Figure 29. These cases are analogical to the results for
plain concrete when ϕ1 and cmax = 32 mm2 (Figure 22) or ϕ2 and cmax = 8 mm2 (Figure 26)
are assumed. The damage zones given in Figure 29 are quite narrow. Hence, it is shown
for the RC bar under the impact loading that the LGD model with the gradient activity
represented by function ϕ1 is able to ensure the mesh-objective solution together with a
proper (not too wide) distribution of active damage.
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(b) cmax = 8 mm2, mesh-sensitivity.

Figure 27. Dynamic tension test, reinforced concrete, elongation history for LGD model using
function ϕ1.

(a) Mesh A (rc-LGD-A-2). (b) Mesh B (rc-LGD-B-2). (c) Mesh C (rc-LGD-C-2).

Figure 28. Dynamic tension test, reinforced concrete, LGD model using function ϕ1 with
cmax = 2 mm2, distribution of damage ω at t = 0.0006 s, mesh-sensitivity study.

(a) Mesh A (rc-LGD-A-8). (b) Mesh B (rc-LGD-B-8). (c) Mesh C (rc-LGD-C-8).

Figure 29. Dynamic tension test, reinforced concrete, LGD model using function ϕ1 with
cmax = 8 mm2, distribution of damage ω at t = 0.0006 s, mesh-sensitivity study.

All previous results described in Sections 3.1 and 3.2.2 for the LGD model with
application of function ϕ2 defined in Equation (45) constituted a reasonable alternative for
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the gradient activity determined by ϕ1. The results for the case with ϕ2 and cmax = 2 mm2

seem to deny this possibility. The elongation history at point E, shown in Figure 30a,
strongly differs for the following meshes. In case rc-LGDc-A-2 for coarse mesh A, after the
initial extension, the response oscillates around 0.02 mm. In cases rc-LGDc-B-2 for medium
mesh B and rc-LGDc-C-2 for fine mesh C this horizontal displacement runs to infinity, but
for the latter case the elongation is more rapid. Differences are also clearly visible for the
contour plots in Figure 31. The distribution of damage ω for rc-LGDc-A-2 in Figure 31a is
as expected and its character is similar to the one presented for rc-LGD-A-8 in Figure 29a.
Active damage develops from the centre points of both horizontal edges. The damage plots
for the next meshes, i.e., for cases rc-LGDc-B-2 and rc-LGDc-C-2 depicted in Figure 31b,c,
exhibit that the solution is sensitive to the adopted discretization. Damage grows also
along the reinforcing bar, which seems to be an undesirable consequence of the full bond
assumption. This issue vanishes if larger cmax = 8 mm2 is introduced. The diagrams in
Figure 30b are the same for each mesh. Again, the reinforcement in the specimen inhibits
the displacements going to infinity. The contour plots for damage ω in Figure 32 are almost
the same for each mesh, as well. The zones of active damage are wider than for the case with
function ϕ1 and cmax = 8 mm2 (cf. Figure 29), but the solution with ϕ2 is still satisfactory.
Figure 33 compares the time-elongation diagrams for the CGD and LGD models. The case
rc-LGDc-C-8 differs slightly from the others. However, all the diagrams have a similar
character—amplitudes have a comparable range, maximum values of elongation are visible
at close time instants and the horizontal displacement at point E does not go to infinity.
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(a) cmax = 2 mm2, mesh-sensitivity.
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Figure 30. Dynamic tension test, reinforced concrete, elongation history for LGD model using
function ϕ2.

(a) Mesh A (rc-LGDC-A-2). (b) Mesh B (rc-LGDC-B-2). (c) Mesh C (rc-LGDC-C-2).

Figure 31. Dynamic tension test, reinforced concrete, LGD model using function ϕ2 with
cmax = 2 mm2, distribution of damage ω at t = 0.0006 s, mesh-sensitivity study.
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(a) Mesh A (rc-LGDC-A-8). (b) Mesh B (rc-LGDC-B-8). (c) Mesh C (rc-LGDC-C-8).

Figure 32. Dynamic tension test, reinforced concrete, LGD model using function ϕ2 with
cmax = 8 mm2, distribution of damage ω at t = 0.0006 s, mesh-sensitivity study.
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Figure 33. Dynamic tension test, reinforced concrete, comparison of models for elongation history,
mesh C, l = 4 mm or cmax = 8 mm2.

3.3. L-Shaped Specimen under Static and Dynamic Tensile Cracking

The third example is based on the experiment described in [45]. An L-shaped concrete
specimen with a fixed lower edge is subjected to tensile cracking from a corner by a vertical
load originating from a pull-up clamp. In [45] this structural member is investigated also
with different combinations of steel reinforcing bars or orthogonal grids, but the numerical
analysis presented below focuses only on plain concrete. The response of the L-specimen
can be influenced by different loading rates as shown in [73] for the numerical study
with the microplane model for concrete. Furthermore, dynamic fracture of the L-shaped
concrete specimen is meticulously reported in [46], where authors’ experimental tests
are compared with the numerical study. The gradient-enhanced damage model linked
with the microplane damage model is verified in [74] by means of a static analysis for
the L-specimen. This test for statics is analyzed using the LGD model, see [31,37]. In the
current paper, the numerical analysis is carried out for statics as well as for dynamics and
the results for the CGD and LGD models are confronted.

Figure 34 presents the L-shaped specimen together with the illustration of the fixed
edge and the place where the loading is applied. The geometry of the L-specimen is
determined by the characteristic size D = 250 mm. The area of crack pattern for the
experiment performed in [45] for plain concrete configuration is also depicted in Figure 34.
In the computations three meshes are employed. The basic mesh A shown in Figure 34 is
homogeneous and square FEs have the side of 5 mm. The number of eight-noded elements
is 7500, the number of nodes is 23,604. The next mesh B has 16,875 square eight-noded
FEs with the side of 3 1

3 mm for each element, 52,279 nodes and is also uniform. The third
mesh C is structural and divided into some regions with rectangular and square FEs. The
number of elements is 13,218. The number of nodes is 41,796. However, the region with
expected cracking is most densely discretized by FEs with the element size equal to 2.5 mm.
For the static analysis the Newton–Raphson method with the arc length control is used. For
dynamics the standard Newmark algorithm is applied. The dynamic loading is enforced
according to a linear function, but different rates are considered. The list of examined cases

41



Materials 2022, 15, 1875

is given in Table 3. The loading with average rate is 10 times slower than for the case with
the fast rate and 5 times faster than for the case with the slow rate.

Table 3. Cases of loading rates for L-shaped specimen.

Loading Rate
Time

Step [µs]
Number
of Steps

Final Time tfin [µs] Final Intensity pfin [MPa]
Slope

pfin/tfin

[MPa/s]

fast 4.0 150 600.0 24.0 40,000.0
average 5.0 300 1500.0 6.0 4000.0

slow 10.0 366 3660.0 2.928 800.0

0.16 D

D

D

D0.84 D

Q

Figure 34. Configuration of L-shaped specimen together with mesh A and area of crack pattern for
experiment with static loading performed in [45].

The elastic constants are the same for CGD and LGD models: Young’s modulus
E = 25,850 MPa and Poisson’s ratio ν = 0.18. When dynamics is analyzed the density ρ
equals 2400 kg/m3. The plane stress configuration with thickness T = 100 mm is assumed.
The damage threshold κo = 1.0445 × 10−4 corresponds to tensile strength ft = 2.7 MPa.
Exponential softening law given in Equation (41) is employed with α = 0.96 and η = 400
for the CGD model or with α = 0.95 and η = 112.5 for the LGD model. The equivalent
strain measure is introduced for both models by the modified von Mises definition (40)
with k = 11.4815, which reflects to compressive strength fc = 31.0 MPa. The constant
internal length parameter cmax is equal to 12.5 mm2 for the CGD model. The LGD model
is applied with cmax as the half of maximum internal length scale squared. Two options
are considered: the gradient activity is determined by function ϕ1 defined in Equation (43)
with R = 0.01 and n = 5.0 or function ϕ2 defined in Equation (45) with the same R and
n = 1.0, cf. Figure 2.

Figure 35 shows the diagrams for the load sketched in blue in Figure 34 versus the
vertical displacement measured at point Q. The equilibrium paths for the CGD model in
Figure 35a almost coincide and are consistent with the experimental result. It is confirmed
in Figure 36, where the zones of active damage have the same shape for each mesh and
coincide with the region of cracking illustrated in Figure 34. Excessive broadening of the
damage zone occurs as shown in Section 3.1 for the results of the CGD model. Again, it is
demonstrated that the LGD model is able to overcome this problem. Figure 37 presents
analogical contour plots for damage distributions when the LGD model is used with
function ϕ1. The width of the damage zone is much narrower in the comparison to
corresponding plots for the CGD model. On the other hand, a ragged area of damage
occurs in a part of the localized zone starting from the corner. It is visible especially for
coarse mesh A, see Figure 37a. This effect is connected with too coarse discretization for
the LGD model, despite the fact that 7500 FEs is used. The LGD model demands really
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refined meshes in the computations, see also [27,30,31]. The problem of the zone with a
non-smooth edge vanishes together with a denser mesh, cf. Figure 37b for mesh B and
Figure 37c for mesh C. Moreover, the ragged areas in the damage distributions are less
distinct when the LGD model with the gradient activity using the cosine function ϕ2 is
taken into account (see Figure 38). The zone of active damage for mesh C in Figure 38c has
fully smooth shape and this solution resembles the cracked area from the experiment, cf.
Figure 34. The load-displacement diagrams for the LGD model are depicted in Figure 35b
for function ϕ1 and in Figure 35c for function ϕ2. They are in the limit of the gray region
obtained for the experiment [45], but vary for the solutions obtained for subsequent meshes.
The difference between meshes B and C is smaller for both the functions ϕ1 and ϕ2. It can
be assumed that the density of mesh B is enough to achieve a quite objective solution. As
shown for the first example in Section 3.1 the LGD model provides the results independent
of the discretization.
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Figure 35. L-shaped test, statics, diagrams of load vs vertical displacement at point Q, mesh-
sensitivity study.

(a) Mesh A. (b) Mesh B. (c) Mesh C.

Figure 36. L-shaped test, statics, CGD model, distribution of damage ω, mesh-sensitivity study.

(a) Mesh A. (b) Mesh B. (c) Mesh C.

Figure 37. L-shaped test, statics, LGD model using function ϕ1, distribution of damage ω, mesh-
sensitivity study.
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(a) Mesh A. (b) Mesh B. (c) Mesh C.

Figure 38. L-shaped test, statics, LGD model using function ϕ2, distribution of damage ω, mesh-
sensitivity study.

The last part of this section is devoted to the analysis of the L-specimen subjected to the
dynamic loading which grows linearly. The attention is focused on the comparison of the
models, not the mesh-sensitivity study, hence only mesh B is selected in the computations.
The material data for the CGD and LGD models are the same as for statics. Three cases with
different rates (fast, average and slow) of the loading are analyzed, according to Table 3.
The diagrams of vertical displacement or velocity or acceleration at point Q versus time for
these three rates are depicted in Figure 39. It is shown that they correspond to one another
for all the applied models and vary with the loading rate. In Figure 39a the displacement
around 0.6 mm is attained for time of about 0.5 ms for the fast rate, approximately 1.3 ms
for the average rate and close to 3.6 ms for the slow rate. The acceleration can be confronted
the velocity, see Figure 39b,c. It is noticed that amplitudes of the acceleration are largest for
the fast rate and the maximum value achieved are over 1.5 × 107 mm/s2. They are strongly
reduced to around 2.0× 106 mm/s2 for the average rate and finally the acceleration becomes
very small for the slow rate. Figures 40–42 show corresponding damage distributions. It is
visible in Figure 40 that if the fast rate is investigated the damage zone is directed almost
vertically, independently of the used model. Analogically, for the average rate damage
develops diagonally for each model (see Figure 41). When the slow rate is taken into
account, the damage growth in Figure 42 has a similar direction to those obtained for static
computations, but at the end it goes up. The change of the fracture direction from extending
upwards for the fast rate to propagating horizontally for the slow rate is also observed
for the computations discussed in [46,73]. It is seen for the CGD model that the damage
zone is the widest, regardless of the loading rate. For the LGD model this zone is much
narrower, however the ragged areas still occur. This problem is reduced if function ϕ2 is
employed (see, e.g., Figure 41c). For cases with fast or average rates of the loading it can be
distinguished that the distribution of the active damage expands and forms an elliptic area
perpendicularly to the initial direction of the damage zone. It is probably connected with a
transformation of mode I to mixed mode for strain localization. Moreover, branching in
cracking of the concrete L-specimen investigated in the experiment can be simulated as
shown in [46]. Here, the gradient-enhanced model in both implemented versions (CGD
and LGD) is not able to reproduce the branching effect. This effect requires a recognition of
the crack tip and for instance an extra projection method for the strain tensor [75].
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Figure 39. L-shaped test, dynamics, response histories, comparison of models and different rates
of loading.

(a) CGD. (b) LGD, ϕ1. (c) LGD, ϕ2.

Figure 40. L-shaped test, dynamics, fast rate of loading, distribution of damage ω for
available models.
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(a) CGD. (b) LGD, ϕ1. (c) LGD, , ϕ2.

Figure 41. L-shaped test, dynamics, average rate of loading, distribution of damage ω for
available models.

(a) CGD. (b) LGD, ϕ1. (c) LGD, ϕ2.

Figure 42. L-shaped test, dynamics, slow rate of loading, distribution of damage ω for
available models.

4. Discussion

In the paper, the localizing gradient damage model (LGD) is examined in the reference
to standard version of this model, called the conventional gradient damage model (CGD).
The range of the study is limited to the analysis of tension tests. The results of simulations
are widely discussed in Section 3. A summary of performed computations is presented
in Table 4. The first part of the table shows that both versions of this nonlocal model
(CGD and LGD) are considered, but the dynamic direct tension test is carried out using
only the LGD model. Two different functions of the gradient activity are employed in this
model. The considered specimens are subjected to static or dynamic tension. The results
for double-edge-notched test are compared with the experiment performed in [39]. The
second numerical test with dynamic direct tension caused by impact loading is carried out
for the configuration without or with reinforcement and it is a continuation of the research
published in [44]. The last example concerns tension in the L-shaped specimen, for which
static or dynamic problem is solved. Computations for statics are based on the experiment
presented in [45] and they are comparable with those presented in [31,74]. The results for
dynamics have a rather similar character to those shown in [46]. In the analysis, three
or four meshes are used in order to demonstrate a reliable mesh-sensitivity study. The
same type of eight-noded FE with Serendipity shape functions for nodal displacements a

and bilinear Lagrange shape functions for nodal averaged strains e as well as 2 × 2 Gauss
integration is applied in all the computations. More details of discretization are included in
Table 4 or in the description of the model for each example. Conclusions resulting from the
survey described in Section 3 are listed below.
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Table 4. Summary of computed examples.

Section Section 3.1 Section 3.2 Section 3.3

Concrete models CGD, LGD LGD CGD, LGD
Gradient activity ϕ0, ϕ1, ϕ2 ϕ1, ϕ2 ϕ0, ϕ1, ϕ2

Specimen double-edge-notched unnotched L-shaped
Concrete plain plain reinforced plain
Analysis statics dynamics statics dynamics

Increment indirect displacement standard Newmark arc length standard
procedure control control Newmark
Loading static impact, static dynamic,

linear-constant linear

Number of meshes 4 3 3
Mesh type densified near the notches uniform uniform or structural uniform

Shape square, rectangular, square square, square
of FEs trapezoidal rectangular

Minimum size of FE 0.625 mm 1 mm 2.5 mm 3 1
3 mm

5. Conclusions

The paper contains the study of the localizing gradient damage model (LGD). The
model [27,28] is compared with its precursor [6], i.e., the conventional gradient damage
model (CGD). Both models are able to simulate cracking in quasi-brittle composite materials,
in particular concrete. When the CGD model is used, a spuriously widening zone of
damage occurs in simulations. This problem is overcome by means of the LGD model. The
theory presentation starts from the definition of the Helmholtz free energy which depends
on the strain tensor, averaged strain measure and its gradient. The averaging equation
with constant or variable gradient activity is derived from this definition, cf. [7,8]. The
formulation of the LGD model leads to the linearization and discretization of the (I)BVP.
For dynamics the mass matrix is additionally defined, but the two-field formulation known
from the CGD model holds. Both the models are implemented in the FEAP package [38].
The gradient activity in the LGD model has a localizing character, because the nonlocal
interaction domain shrinks with the damage growth (see Figure 1). The gradient activity
function is assumed to decrease exponentially as in [27,28] or according to a cosine function
as proposed in Equation (45).

When the gradient activity function has the exponential character, then the power n
called here the intensity parameter can affect the localizing process of nonlocal averaging
significantly. In the computations usually n = 5.0 is introduced, but as shown in the
example of the double-edge-notched bar it can lead to convergence disturbance at the onset
of strain localization, see Figure 13a. A smaller value n = 1.0 causes the gradient activity to
decrease slower, but then the damage zone becomes wider. In most computational cases the
exponential function ϕ1 with n = 5.0 provides mesh-objective results with an appropriately
narrow zone of active damage.

However, the gradient activity function ϕ2 can be an alternative to ϕ1. The localization
zone is then more smeared for smaller damage values, but it is similar to the distribution
obtained for ϕ1 for damage values approaching 1.0. The convergence disturbance vanishes.
Generally, function ϕ2 provides correct results in the modelling of concrete cracking using
the LGD model, unless a small value of cmax defined as the maximum internal length scale
squared is applied. For instance, poor results are obtained for cmax = 2 mm2 in the direct
dynamic tension test for the reinforced concrete (RC) configuration (see Figures 30a and 31).

The application of the LGD model removes the issue of artificially broadening damage
zone, but the results become more dependent on the discretization. In the paper static and
dynamic tension of concrete is analyzed. Based on the results for all discussed examples, it is
realized that only a reasonably refined mesh can assure a fully mesh-objective solution. As
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demonstrated for the L-specimen test, a problem of ragged areas in the damage distribution
can occur for too coarse meshes, but it disappears upon mesh densification.

The double-edge-notched test of static tensile cracking should be computed with an
extra care to keep the symmetry and proper convergence. In the dynamic direct tension
test for plain concrete one zone of active damage related to a standing wave in the center is
expected. The selection of values for the model parameters influences the correctness of the
dynamic response. The parameter cmax and even more the parameter R associated with the
residual interaction cannot be too small, because then two or more localization zones can
appear. In the dynamic analysis of the L-shaped specimen, the change of direction of the
damage growth zone is reproduced depending on different rates of loading, analogically
to [46,73]. However, branching in concrete cracking cannot be simulated using the LGD
model in this version, so in this respect it requires a further enhancement in the future.

Summarizing, the LGD model guarantees mesh-objective solution with a correct zone
of active damage for static and dynamic problems, and performs better than the CGD
model, but it calls for a careful selection of the values of its parameters and requires the use
of denser meshes.
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The following abbreviations are used in this manuscript:

CGD conventional gradient damage
FE finite element
FEM finite element method
FEs finite elements
(I)BVP (initial) boundary value problem
LGD localizing gradient damage
RC reinforced concrete
TGD transient gradient damage
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Abstract: Aluminium is a component in many energetic formulations. Therefore, its combustion is
one of the main thermochemical processes that govern the output from the energetics. Modelling
aluminium combustion is a challenging task because the process is highly complex and difficult to
measure. Here, tests of aluminium powder were conducted in an effort to isolate the burning of
the aluminium and to determine an adequate representation of this process. Charges of 100 g and
500 g were tested, and the size of the Al/air cloud and the ratio of components in the Al/air mixture
were determined, which has not been published previously. This information was used to assess
the validity of the assumption that the detonation of the mixture was representative of the event.
Parameters for the Jones–Wilkins–Lee equation of state for the explosive mixture and detonation
products were defined. Simulations of the tests were performed, and the results were consistent with
the field test data, indicating that detonation occurred when there was a mixture of 70–75% Al and
25–30% air by mass.

Keywords: aluminium powder; detonation; explosive; combustion; oxidation; equation of state

1. Introduction

The composition of an explosive is a key factor in its efficiency. Most standard military
explosives and those used in research operations are condensed explosives, such as trinitro-
toluene (TNT) and Plastic Explosive No. 4 (PE4). These substances are ideal for contact
explosions due to their brisance and high-intensity shock wave propagation. Furthermore,
they can be altered in different ways to change their explosive performances. One common
alteration is the addition of various components, such as aluminium (Al) powder [1–3].

The addition of aluminium changes the energy release process and the overall out-
put of an explosive at the microscopic level. Additionally, the ignition and combustion
properties of an explosive can be modified, as shown by Liu et al. [4], by coating it with
nanosized aluminium particles. Oxidation plays a crucial role in the combustion of alu-
minium. Gang et al. investigated the combustion and oxidation of Al nanoparticles at the
atomistic level [5]. Depending on the amount of O2 and the temperature, oxidation can be
grouped into three categories: mild, chain-like growth oxidation; moderate oxidation; and
microexplosion-accelerated oxidation. The microexplosion-accelerated oxidation mecha-
nism was investigated deeply by Gang et al. The burning of separated Al droplets in air
was studied by Karasev et al. [6], as well as the mechanisms involved in alumina aggregate
formation.

However, the microscopic level is not the only level of interest in terms of energy
release processes; the combustion of aluminium nanoparticles has also been investigated at
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the macroscopic level. For instance, Lewis et al. [7] studied hexahydro-1,3,5-trinitro-1,3,5-
triazine (RDX) explosives with three types of aluminium nanoparticles. They showed that
the addition of the nanoparticles can change the fireball temperature from 340 K to 4500 K.
Gordon et al. [8] also studied the fireball of aluminised RDX, in addition to its shock wave
energy. The authors reported that the shock energy is greater if aluminium is added to the
high explosive rather than to the liner. Other studies of aluminised high explosives were
conducted by Peuker et al. [9] and Carney et al. [10], in which optical methods were used.
In the current study, the afterburn phase was analysed.

The contribution of Al combustion to the afterburn phase of aluminised explosives
has been represented in various studies [11] using the Jones–Wilkins–Lee (JWL)–Miller
model [12]. This model alters the energy term in the JWL equation such that it has the form

P = A

(
1 − ω

R1V

)
e−R1V + B

(
1 − ω

R2V

)
e−R2V +

ω(E + λQ)

V
, (1)

where Q is the additional heat released by the aluminium particle combustion, and λ is the
progression variable indicating the degree to which the particle has reacted. The degree of
reaction equation is given by

dλ

dt
= a(1 − λ)mPn, (2)

where a depends on the particle size, and m and n are reaction rate constants. This model
represents the gradual addition of energy seen in the afterburn phase rather than the
sudden release of energy observed in the aluminium powder explosives. Here, the rate of
gasification, which is associated with the combustion rate equation, is relevant.

Other models have been introduced that also replicate the afterburn energy release
due to Al combustion, but they assume that the reaction is proportional to the gasification
of the particles [13]. This process is explicitly represented by the change in the diameter of
the particles, which can be expressed as

d

dt

[
4
3

π

(
D

2

)3
ρ

]
= 4π

(
D

2

)2
.

mv, (3)

which simplifies to

D = D0 −
2

.
mv

ρ
t, (4)

where D is the particle diameter, D0 is the initial particle diameter, and mv is the gasification
rate of the condensed material, which can be expressed as

.
mv =

√
3

2πr3

√
kTme−Ev/RT , (5)

where r is the radius of the molecule, m is the mass of each molecule, k is the Boltzmann
constant (1.38 × 10−23 J/K), T is the temperature, Ev is the gasification enthalpy, and R is
the gas constant (8.314 J/mol·K).

The afterburn combustion of Al can be used to redefine the degree of reaction, as
follows

λ = 1 −
(

1 − 2
.

mvt

ρAl D0

)3

, (6)

where
.

mv is the gasification rate, t is time, ρAl is density of aluminum, and D0 is initial
diameter.

Another group of models address the gasification of the Al particles using an empirical
quasi-steady law [14]. The particle radius (rp) rate is

drp

dt
= − rp

tb

(
1 + 0.276

√
Re
)

, (7)
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where Re is the Reynolds number, which is based on the relative velocity between the gas
and the particle, and tb is the burning time based on

tb = K(D0)
2, (8)

where K is an empirical constant. According to the literature, K is typically set equal to 4 ×
106 s/m2. The mass transfer from the solid to gaseous state is

dmp

dt
= − d

dt

(
4
3

πρpr3
p

)
, (9)

where the subscript p denotes the particle properties.
In the current study, the temperature of ignition depends on the state of the Al particles.

If an oxide coating is present and is not cracked through some sort of physical process, then
the melting point of Al2O3 would determine ignition. This melting point is approximately
2050 K. If the oxide layer is cracked, then the ignition temperature would be determined by
the melting point of Al, which is approximately 950 K.

The temperature of the particles will depend on the heat feedback from the gas phase
to the condensed phase. An investigation of aluminised explosives [15] has shown that the
feedback can be represented using Fourier’s law

qc = αg

(
1
r

)(
dT

dt

)

s

, (10)

where αg is the thermal conductivity, r is the burning rate, and s denotes the gradient at the
surface.

Hence, an understanding of the energy released during aluminium combustion is
key to optimising the design of energetic systems and would allow the quantification of
aluminium’s effect on structures. In this paper, aluminium powder was analysed at the
macroscopic level; this approach enables the straightforward development of online (fast)
tools that can predict the behaviour of aluminium powder explosives. The current objective
was to develop an adequate representation of Al combustion to provide loading predictions
for use in the analysis of the interaction between munitions and structures. From this point
of view, the robust modelling of such explosives is no trivial task.

Equations of state (EOS) are a key concept in modelling this class of energetics. Various
EOS approaches are found in the literature. They have been proposed for aluminised explo-
sive products [16], along with more popular approaches, such as the JWL formula [17–19].
The JWL approach is well known and has the broadest application; thus, it was adopted
in the current study. Here, the expansion process of the detonation products from the
composite energetics was determined to be crucial. This expansion process affects the pre-
diction of the pressure loading at a particular distance, which is an essential characteristic
in determining the effect of the explosive.

This paper analysed the combustion of Al, as this critical process affects the energy
outputs of aluminised explosives. The oxidiser that was used in the tests varied according
to the specifics of the energetics. In most explosives, the oxidiser is obtained from the
products of the organic reaction that forms CO, CO2, and H2O. It has been shown that
Al combustion is determined by the concentrations of CO2 and H2O [20]. Therefore, Al
combustion often occurs before any ambient oxidiser is introduced to the Al. Here, pure
Al was used to ensure that the oxidation process was related to the mixing of Al powder
with ambient air. This provided insights into the combustion of Al, even when the oxidiser
originated from typical detonation products.

In this study, a series of range detonation tests with pure aluminium powder mixtures
were performed, which has not been published previously. The mass of the charges varied
from 0.1 to 0.5 kg. The primary goal of the tests was to measure the pressure–time histories,
and these results were replicated using modelling tools. Seven tests were performed, and
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full data recordings were obtained at standoff distances of approximately 1 and 2 m. The
tests were replicated using a modelling tool that incorporated the effects of Al combustion.
The EOS and reaction parameters were first defined using thermodynamic codes and
analytical tools. Subsequently, as described in the final part of this paper, these values were
altered to match the test results.

The paper is structured as follows. In Section 2, the test details, computational as-
sumptions, and an explosive governing equation are presented. Section 3 identifies the
explosive parameters for the 100 g charge and presents their validation for the 500 g charge.
Section 4 presents the conclusions of the study.

2. Materials and Methods

2.1. Field Test Measurements

In this section, data from the field tests for the 100 g and 500 g aluminium powder
charge detonation are described. The experiments were conducted so as to represent a free
air blast. Data from the 100 g detonation were used to determine the aluminium modelling
parameters. The tests were performed using 6 µm of Al powder with an estimated density
of 2.2 to 2.7 g/cc. The aluminium powder is shown in Figure 1a. Photographs from the
test site are presented in Figure 1b,c, including a snapshot of the explosion (Figure 1b) and
an overview of the explosion area (framed by wooden poles), along with the high-speed
camera (Figure 1c). Figure 1d presents details of the explosive devices’ mounting scheme.
The aluminium powder was hung in a foil bag attached to a string and was located 100 cm
from the ground (L) directly between two wooden poles that were 200 cm high (H). The
distance between the poles was 500 cm (W). Blast pressure pencil probes were placed at
heights of 100 cm (b) and 200 cm (a) from the charge.

Seven detonations were conducted during the field tests. In the first two detonations,
the aluminium powder charge mass was 100 g; in the next two, the charge mass was 200 g,
and in the last three, the charge mass was 500 g. The data from the second 200 g detonation
were rejected. In this case, during aluminium combustion, the foil bag was damaged, and
the powder poured out of the bag. Thus, the data could not be considered for further
analysis. Because the 200 g case was not represented by two detonations, this charge mass
was not taken into account in the subsequent analyses.

(a) (b) 

  

Figure 1. Cont.
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(c) 

 

(d) 

 

−

Figure 1. Test set up: (a) example of tested mixture of aluminium powder; (b) snapshot of the
explosion; (c) overview of the explosion area; and (d) explosive devices’ mounting scheme.

The pressure–time histories from all tests were measured at 1 and 2 m from the
explosive simultaneously. Two ICP® blast pressure pencil probes were used simultaneously
to acquire the data—these are the same probes that were used in [21]. The maximum
pressure limit for these sensors is 345 kPa. The results are shown in Figures 2 and 3. All
measurements are presented, including those that were rejected (i.e., pressure histories no.
3 (200 g) and no. 4 (labelled as Err, i.e., error)).

The detonations were filmed with a high-speed camera to obtain deeper insights
into the reaction process to ensure adequate modelling assumptions. In these types of
experiments, a high-speed camera is typically used to assess the deformation due to the
blast wave [22] and determine the speed of projectiles and fragments, e.g., [23,24]. In
our tests, the high-speed camera was used to estimate the volume of the mixed powder.
Figure 4 shows sample images captured immediately after detonation. The time after
ignition is shown next to the sequence of images. Powder burning at the time of ignition
and thereafter can be observed.
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Figure 2. Overpressure measurements at 1 m.

Figure 3. Overpressure measurements at 2 m.

4𝐴𝑙 + 3𝑂 ⟶  2𝐴𝑙 𝑂

Figure 4. Sequence of images from the 100 g test. The time presented refers to the time after ignition.
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If a spherical charge is assumed and the Al density is 2.7 g/cc, the volume of the initial
charge would be 37.04 cc, and the charge would have a diameter of 2.07 cm. Notably, there
was an apparent spike in output at the 18.1 ms mark. The Al/air cloud at the 18.1 ms mark
had a diameter of approximately 41.4 cm and a volume of 37.15 cc. This resulted in an Al
density of 2.69 × 10−3 g/cc. Taking the air to be at atmospheric pressure, the volume of
powder and air would contain a mixture of 56% Al and 44% air considering masses. This
information was used to derive an adequate representation of the explosion process.

The overall pattern for the 500 g tests was similar to that of the 100 g tests. For the
500 g charge, the “explosion” (rapid release of energy) appeared to occur between 2.3 and
5.8 ms after ignition. The diameter of the Al/air cloud at that time varied from 40 to 54 cm.
Figure 5 shows an image taken after the “explosion” of the 500 g Al charge. More burning
particles of Al were expelled outward after the “explosion” (white arrows) of the 500 g
charge compared to that of the 100 g charge, suggesting that the 500 g charge was less
effective than the 100 g charge. The analysis of the 500 g test data allowed an adequate
representation of the Al combustion to be determined.

 

4𝐴𝑙 + 3𝑂 ⟶  2𝐴𝑙 𝑂

Figure 5. Image of the 500 g test (Test 7), in which burning Al particles (white arrows) were expelled.

2.2. Numerical Modelling Assumptions

The computational model that was developed to simulate the energetics used a Carte-
sian Adaptive Mesh (CAM) framework; this model simulates scenarios involving a blast,
explosion, and release of materials (thus, CAMBER). CAMBER is an object-oriented frame-
work that utilises a variety of material models and reaction laws. The mesh adaptation was
used to resolve structures under severe deformation, and the code maps out the locations
of gradients in properties [25]. In CAMBER, a finite-volume formulation is used. Various
flux calculation schemes have been assessed and proven to be useful in multi-material
flows [26]. The advection upstream splitting method (AUSM+) scheme was selected for its
simplicity and robustness [27]; high spatial order is achieved via a monotonic upstream-
centred scheme for conservation law (MUSCL) extrapolation with limiters. Given the small
time steps required to resolve the evolving flow field, explicit time integration was used.
The code can be applied in 2D, 2D-axisymmetric, or 3D modes.

2.3. Governing Equation for Explosions

The objective of this study was to formulate an approach to simulate explosions
involving aluminium. The energetics used in the present research were for pure aluminium,
so the reaction causing the energy release was as follows

4Al + 3O → 2Al2O3. (11)

Hence, if Al is part of the explosive composition, the oxidation could arise from the
CO2 and H2O in the detonation product. In this case, the oxidiser was the O2 in the air.
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There was clearly burning Al prior to the “explosion” at 18.1 ms (see Figure 4), but at this
time point, there was a sudden release of energy. It can be assumed that until this time
point, the percentage of Al burned was negligible. Furthermore, the assumption was made
that the explosive cloud was 56% Al and 44% air by mass (as described in Section 2.1).

A thermochemical analysis was performed as a first estimate; it was assumed that the
reaction was essentially the detonation. The Chapman–Jouguet (CJ) conditions are listed in
Table 1. A JWL EOS of the following form

P = A

(
1 − ω

R1V

)
e−R1V + B

(
1 − ω

R2V

)
e−R2V +

ωE

V
, (12)

was used for the explosive material and detonation products. The parameters used are
listed in Table 2. The JWL parameters were defined for the Al/air mixture based on the
behaviour of such mixtures under shock loading. The rate of the reaction was derived from
the detonation velocity.

Table 1. Detonation conditions assumed in the computational thermochemical code for the Al/air
explosion.

P (GPa) UCJ (km/s) V (cc/g) T (K) C (km/s) γ

0.002 1.166 192.557 3108.4 0.602 0.954

Table 2. JWL parameters assumed in the computational thermochemical code for the detonation
products.

Material ρo (g/cc) A (GPa) B (GPa) R1 R2 ω Eo (kJ/cc)

explosive 2.68 1.43 × 10−1 −5.6 × 10−4 21.875 0.33 0.3507 0

detonation products 2.68 2.86 × 10−2 2.8 × 10−3 7.0 0.50 0.3507 2.4 × 10−3 *

* This value was adjusted to 2.7 × 10−3 after initial simulations of the 100 g case to better match the test data.

3. Identification and Validation

3.1. Identification—Simulation of 100 g Tests

The parameters defined in Section 2 were used to simulate the 100 g tests and identify
a set of explosive parameters. The initial condition was that there was a 37.04 cc Al/air
cloud. Figure 6 shows the sequence of images from the simulation. The contour maps for
the concentration of reacting mixture (Al/air), the reaction products, the density, and the
pressure are shown at four selected time points. The time noted is relative to t = 0 for the
tests. Figure 7 shows a comparison between the test data for the pressure–time histories
recorded during the simulation at the 1 and 2 m locations.
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(a) Al/air mixture 

  

(b) detonation product 

(c) density (kg/m3) 

(d) pressure (Pa) 

Figure 6. Sequence of images from the 100 g test simulation: (a) Al/air mixture concentration;
(b) detonation product concentration; (c) density; and (d) pressure are shown at four time points.

The initial pulses in pressure at both locations were similar to the test data in both
magnitude and duration. The secondary pulses due to ground reflection were somewhat
lower in magnitude and were delayed compared to the test data. This difference could be
due to slight differences in the heights. There was an intermediate pulse in one of the 1 m
test recordings. While the cause of this pulse was not clear, it was not seen in the simulation
results.

These results suggest that the predominant release of energy from the combustion
of the Al/air cloud can be represented as a sudden event, or, as we label it here, the
“explosion”. It appears that the combustion event was essentially a mixing-controlled
process. The explosion did not occur until the mass of Al powder expanded to the point
where there was sufficient oxidation. Based on the size of the cloud at the time of the
explosion and the mass of the Al powder, the cloud distribution was approximately 70%
Al and 30% air by mass, providing an oxidiser-to-fuel mole ratio (moles O/moles Al) of
0.17, far below the stoichiometric ratio for the reaction in Equation (1).
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Figure 7. Comparisons between the test data and simulated values for the pressure versus time
history at the 1- and 2 m locations for the 100 g charge.

3.2. Validation—Simulation of the 500 g Tests

The 500 g tests were simulated in the validation stage. The same modelling parameters
were used in terms of EOS and the rate of reaction. First, the test imagery was used to
estimate the size of the spherical Al/air cloud at the point at which there was a noticeable
sudden release of energy (i.e., the “explosion”). Three videos were reviewed, and the time
of the explosion varied from approximately 3 to 6 ms. The size of the cloud was estimated
to be approximately 52 cm in diameter. This diameter would result in a cloud composed
of 84% Al and 16% air by mass. Although the fuel-to-oxidiser ratio changed slightly from
the 100 g case, the same parameters used in that case were applied. The pressure–time
histories predicted at the 1 and 2 m locations are shown in Figure 8. At both locations, the
peak simulated pressures were lower than the peak measured pressures.
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Figure 8. Comparison between test data and simulated values for the pressure versus time history
for the 500 g Al/air cloud with a 52 cm diameter.

Because the cloud estimated from the video produced a lower output, several cloud
sizes were applied until a good match between the measured and simulated pressure–time
histories was achieved. Figure 9 shows the results when the diameter of the Al/air cloud
was assumed to be 63 cm. The comparison is moderately good, wherein the peaks at the
2 m location are slightly lower than those in the test data. Using the assumed size of the
cloud and the mass of Al, the cloud was found to be 75% Al and 25% air by mass. This
result was similar to the ratio found for the 100 g results. The study presented shows that
combining the experimental and advanced numerical approaches creates the ability to
obtain the synergic effect for better understanding the physical phenomena, similar to [28].

Figure 9. Comparison between test data and simulated values for the pressure versus time history
for the 500 g Al/air cloud with a 63 cm diameter.
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4. Conclusions

Combustion is the key process in many energetic systems. In this paper, the combus-
tion of Al was investigated using a series of tests and simulations, which has not been
published previously in the literature. Here, the Al was isolated and allowed to react with
just oxygen in ambient air; the oxidation arose from the detonation products. The results
of the 100 g and 500 g Al charges indicated that the sudden explosions occurred when a
mixture of 70–75% Al and 30–25% air, by mass, was obtained.

Among others, the novelty of the paper is that the output from the explosions was
replicated using the JWL state equation for the product and assuming detonation of the
mixture. The detonation was modelled using a prescriptive method that set the burn rate
based on the detonation velocity. The delay from the initiation of the event until the time
of the explosion is currently under investigation. Further studies will aim to determine
whether this delay is related to the time required for the gasification of the Al or the event
is a mixing-controlled process.
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Abstract: Lattice structures have shown great potential in that mechanical properties are customizable
without changing the material itself. Lattice materials could be light and highly stiff as well. With this
flexibility of designing structures without raw material processing, lattice structures have been widely
used in various applications such as smart and functional structures in aerospace and computational
mechanics. Conventional methodologies for understanding behaviors of lattice materials take
numerical approaches such as FEA (finite element analysis) and high-fidelity computational tools
including ANSYS and ABAQUS. However, they demand a high computational load in each geometry
run. Among many other methodologies, homogenization is another numerical approach but that
enables to model behaviors of bulk lattice materials by analyzing either a small portion of them using
numerical regression for rapid processing. In this paper, we provide a comprehensive survey of
representative homogenization methodologies and their status and challenges in lattice materials
with their fundamentals.

Keywords: homogenization method; lattice materials; periodic cellular materials; multiscale mechanics

1. Introduction

Lattice material is a cellular material consisting of a periodic network of structural
elements such as rods or beams. This network of lattices exists over a wide spectrum of
scale from the nanoscale to macroscale and has been applied in a wide area of applications.
In the nanoscale spectrum, most of the CNT (Carbon Nano Tube) based sensors are made
using lattice materials [1] as shown in Figure 1a. Micro-lattices material is being developed
intensively as it offers high energy absorption capability [2,3]. On a macroscale, due to its
high stiffness and lightweight properties, lattice materials are widely used in aerospace
applications [4–8].

Lattice structures or materials could be also classified into several parameters, namely,
geometry, deformation properties, and rigidity. These determine a proper approach for un-
derstanding dynamics of lattice accurately extend to design. Geometry-based classification
is widely received in mathematics and solid-state physics and especially in 2-D, two main
categories are considered: regular and semi-regular [9]. Representatives of each group are
illustrated in Figure 1. Sub-sequentially, three types exist under the regular lattice, namely,
square lattice, triangular lattice, and hexagonal lattice. In semi-regular lattices, unit cells are
tessellated Later, eight semi-regular lattices are introduced in this paper for more details [9].
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as “lattice material”. Figure 2 sh

it is viewed as a “lattice structure”. Asymptotic Theory might be a more suitable approach 

�̅� = 𝜌∗/𝜌𝑠)

�̅� = 1

Figure 1. Examples of different lattice topologies: (a) triangular; (b) Kagome; (c) diamond; (d) snub
square [10].

In engineering applications, spatially periodic patterns of lattices can be viewed as a
material or a structure depending on its length scale. When the deformation is at a much
larger length scale than the individual beam length, such a network of a lattice is defined as
“lattice material”. Figure 2 shows such an example of lattice materials. On the other hand, if
the length scale between deformation and the individual beam is the same, then it is viewed
as a “lattice structure”. Asymptotic Theory might be a more suitable approach when we
are dealing with lattice materials [11]. Meanwhile, modeling the beam individually is a
better approach for lattice structure. This paper will more focus on lattice materials rather
than structure as it is more relevant to the homogenization method.

as “lattice material”. Figure 2 sh

it is viewed as a “lattice structure”. Asymptotic Theory might be a more suitable approach 

 
(a) (b) 

�̅� = 𝜌∗/𝜌𝑠)

�̅� = 1

Figure 2. Lattice materials formed by network of beams; (a) ultralight Nano-metal truss hybrid lattice;
(b) penta-mode lattice [12].

The other key parameter that determines a suitable approach for understanding lattices
is relative density. The relative density is defined as the density ratio of lattice material
to the solid material (ρ = ρ∗/ρs) and has a pivotal role in determining the elastostatic
behavior of a lattice. Figure 3 shows the relationship between relative density and relative
modulus. Slope 1 depicted in Figure 3 is for stretch-dominated lattice and slope 2 is for
bending-dominated lattice. As it can be seen, honeycombs, one of the commonly used
cores for sandwich panels, are extraordinarily efficient. Physically, relative density depicts
the porosity of lattice material. A low value of relative density indicates high porosity,
meanwhile, a high value of that indicates low porosity. For instance, ρ = 1 means zero
porosity as the density of the lattice is the same as one of the solid or bulk. Therefore,
it is crucial to employ a proper homogenization model or approach according to the
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value of relative density. For the low value of relative density, e.g., ρ < 0.3, applying
Euler–Bernoulli beam or Timoshenko beam elements to model the cell-wall deformation
will give an accurate result [13–16]. Furthermore, Micro-polar theory [17], Bloch Wave
Analysis and Cauchy–Born hypothesis [18] might be employed for such cases as well. For
a high value of relative density, the Asymptotic Homogenization method will give a better
and more accurate result [11].

�̅� < 0.3 –

–
–

 

(�̅�) �̅�2 �̅�1.5 �̅� = 0.01

Figure 3. Relative modulus plotted against relative density on logarithmic scales for cellular struc-
ture [19].

Lattices can also be categorized into stretching-dominated or bending-dominated
based on their rigidity [19]. Some representatives of both categories are shown in Figure 4.
A bending-dominated lattice reacts to external loads by cell-wall bending due to its low
nodal connectivity at the cell vertices. This results in a microscopic bending-dominated
failure mode, where the cell elements collapse by bending stresses [18]. On the other hand,
stretching-dominated lattices predominantly behave by stretching due to the high value of
nodal connectivity at the cell vertices. For the same porosity or relative density, stretching-
dominated lattices are stronger and have higher stiffness than bending-dominated lattices.
Gibson and Ashby [20] performed structural analysis and found that the stiffness and the
strength of lattice materials scale up with the value of relative density. The strength and
stiffness of stretching-dominated lattice scale up linearly by its relative density (ρ), whereas
the strength and stiffness of bending-dominated lattice are scaled up, respectively, by ρ2

and ρ1.5. For example, at ρ = 0.01, the stretching-dominated lattice is far more superior
than the bending-dominated lattice as it is 100 times stiffer and 10 times stronger.

�̅� < 0.3 –

–
–

(�̅�) �̅�2 �̅�1.5 �̅� = 0.01

 

Figure 4. (a) Bending dominated lattices (b) Stretching dominated lattices [11].
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2. Background

For a periodic network of lattices to be considered as material, the characteristic length
of its cells needs to be at least one or two orders of magnitude below the medium’s overall
length scale. Hence, microscale study is vital to understand the full behavior of the structure
at the global scale, which is the basic principle of the homogenization method. Numerous
analytical and numerical methods have been constructed to determine the mechanical
behavior of cellular materials [11,13,14,17,18,21–25]. All of these methods are based on
various fields of physics and mathematics ranging from asymptotic theory [11], elasticity
theory [13] to micro-polar theory [17]. Moreover, experimental work has been done as
well [13,26,27] though it is limited in design complexity due to manufacturability in the
process. However, recent advances in 3D manufacturing techniques such as 3D printing has
significantly improved the production of lattice materials in terms of accuracy with various
kind of solid materials. Nowadays the manufacturing process of lattice structure can be
conducted at a very fine scale and with lower overall cost [28–31]. This advancement allows
lattice materials to be more experimented on and be tested against existing numerical and
analytical models [26,32].

The analytical works to analyze and develop a method to obtain mechanical behaviors
and properties of cellular materials have been pioneered by several people; Gibson et al. [13],
Masters et al. [16], Wang et al. [14], and Christensen [33]. They derived an analytical closed-
form formula of mechanical properties of lattice materials for several shapes and geometry.
Their method is based on one common ground assumption, which is that the cell behaves as
Euler–Bernoulli beams. They obtain the mechanical properties by solving deformation and
equilibrium problems for a single cell, which generates some limitations to the application
of the analytical method. It could only be applied to a cell with a simple topology with
small strains and no extreme change in geometry. Furthermore, it only works in lattice
structures with small relative density value (ρ = 0.3).

In terms of computational works, several different approaches have been developed.
Asymptotic Homogenization (AH) has been extensively employed to obtain the mechanical
properties of lattice materials [11,34,35]. AH has been proven and validated to be an effec-
tive homogenization method through comparisons with other methods and experimental
verification [8]. As it does not have limits in the value of relative density. However, its
major shortcoming is the computational cost. It is more expensive than other common
approaches, especially when the problem contains a large number of variables [11,36].
Recently, a variational AH of beam-like square lattice structures has been discussed [34]
and they explain and result when the microscale of the structure is in the finest scale, i.e.,
ǫ → 0 . Another computational approach is a matrix-based multiscale method introduced
by Vigliotti et al. [24,37]. They performed a linear multiscale analysis and FEA (finite
element analysis) on a stretching and bending-dominated lattice [37]. Furthermore, they
have applied a method to develop a non-linear model for lattice materials [24].

Some homogenization approaches introduced here come from micro-polar
theory [17,38–40] and solid-state physics [18,41]. The micro-polar theory introduces a
microscopic rotation in addition to translational deformations. The micro-polar elastic
constants of the stiffness matrix can be found through either analysis of the unit cell [17] or
an energy approach [40]. From solid-state physics, the combination of Bloch’s theorem and
the Cauchy–Born hypothesis has been applied to analyze mechanical behavior of planar
lattices [18,41].

Recently, Machine Learning has been adopted to study lattice materials [36,42–45].
Koeppe et al. [36] have used a neural network on a set of simulation data to learn a
parameterized mechanical model of a lattice structure with particular geometry. Mian
et al. [42] obtained an elastic material model for lattice structure using both FEA (finite
element analysis) and NN (Neural Network) approaches. These studies have produced
results that are in good agreement with both experiment and simulation with a significant
increase in computational time and prove that the data-driven method is an effective and
efficient as well as reliable and accurate approach. In addition, Machine learning has been
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used to simulate anisotropic elastic-plastic behavior of cellular structure [45] and deep
learning for topology optimization for lattice materials [44]. As machine learning and AI
are developing in a rapid trend, data-driven methods are a rising prominent approach and
worth looking into in the future of homogenization problems.

As has been briefly summarized above, many varieties of homogenization methods
exist to analyze the behavior of lattice materials. All the methods mentioned came from
various areas of discipline such as elasticity, solid-state physics, and even computer science.
This implies the applications of lattice materials are substantial in many areas of science and
engineering disciplines. The objective of this paper is to thoroughly review all the existing
method that is relevant according to the author’s knowledge and interest. Its foundation,
methodology, strength, and limitation will be discussed comprehensively here in a concise
form. The final goal that this paper wants to achieve is for the reader to be able to carefully
select their homogenization method based on its characteristic so that it could be applied
optimally to each particular research.

3. Homogenization Methods

The fundamentals of the homogenization method are the properties of the heteroge-
neous material could be obtained from the analysis of a small portion of it [12]. The limited
portion of the entire heterogeneous material is defined as Representative Volume Element
(RVE). To obtain the effective properties, the RVE should include the main microstructural
characteristic of the heterogonous material and expand to the global medium when uni-
form strain or stress is applied as boundary condition [12,46,47]. This avoids extensive
full-scale simulations. Furthermore, it is noted that this method could be applied only if
the homogeneities exist at least a couple of orders of magnitude below the characteristic
length of the effective medium.

The concept of homogenization of lattice materials is illustrated in Figure 5 where the
RVE is applied to a square unit cell. A body Ω with a periodic lattice structure subjected to
a traction t at the traction boundary Γt, a displacement d at the displacement boundary Γd,
and a body force f is substituted by a homogenized body Ω. The mechanical properties of
RVE should be determined in such a way that the macroscopic behavior of Ω and Ω are
equivalent [12]. Below is a detailed explanation of representative homogenization methods.

the existing method that is relevant according to the author’s knowledge and interest. Its 

Ω𝑡 Γ𝑡 𝑑Γ𝑑 𝑓 Ω̅Ω Ω̅

 
Figure 5. Homogenization concept of a cellular material [12].

3.1. Beam Theory Approach

The Beam Theory approach is also known as the force-based approach [12]. It is
employed to model cell-wall deformation just for a unit cell. Then it assumes that the field
quantity obtained from the unit cell is uniform over the RVE. Over the years, analytical
closed-form formula of the mechanical properties of lattice materials for different shapes
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and geometry has been derived [13,14,16]. Christensen [33] also gives a thorough survey
on this approach.

Gibson and Ashby are pioneers in the analysis of cellular materials, in particular of
honeycomb shapes [13]. They analyzed the honeycomb shape by employing beam theory
on a single unit cell as illustrated in Figure 6. They derived a closed-form solution of
mechanical properties for honeycomb shape material and tested their formulation against
experimental measurement under two different directional forces as depicted in Figure 6a,b.
Masters and Evans [16] took it a step further where they included three mechanisms in their
model, namely, flexure, stretching and hinging. They obtained a more general analytical
expression for the mechanical properties. Wang and Mcdowell [14] investigated honeycomb
structures with seven different cell types. They evaluated in-plane shear properties which
had not been considered in most previous research.

Figure 6. Beam theory analysis on honeycomb structure [13]. (a) and (b) represents structures under
two different directional forces.

Different treatments are expected for a different type of unit cell. For bending domi-
nated lattice, the cell walls are treated as beams. Standard beam theory is employed here to
calculate effective stiffness. In this case, the linear-elastic behavior is predominantly caused
by the bending of the cell walls and edges, with minor contributions from shear and axial
deformation. For stretching dominated lattice, the cell walls are treated as trusses/columns
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where the structure is capable of sustaining residual stresses that make equilibrium equa-
tions are insufficient to determine the state of internal forces on the cell walls. Additionally,
compatibility equations should be used to find the effective elastic properties of the lattice.
If the residual stress is assumed zero, then simple truss analysis suffices.

The main advantage of this approach is that the obtained mechanical properties are
closed-form analytical formulas and they are useful to generate a chart. Assuming cell wall
as a beam limits the applications of this method as follows: First, this formulation can be
applied to only cases with low relative density (ρ < 0.3). Second, this approach cannot be
used where geometrical nonlinearities are introduced or when the geometry of a unit cell
has a complex topology as Euler’s beam formulation assume strains are small enough that
large deformation does not occur.

3.2. Strain Energy Equivalence: Surface Average Approach and Volume Average Approach

Strain energy equivalence based method employs a direct application of the RVE
concept. In this method, the performance of the macroscopic medium are determined solely
by the mechanical behavior of its RVE. The averages of particular mechanical properties
with respect to either the surface of the volume have to be equal in order to obtain the
equivalence condition of effective medium and its RVE [48]. The constitutive equation for
the effective medium and its corresponding RVE needs to be calculated in such a way that
the condition for equivalence of both volume elements is satisfied.

The first approach for this method is the surface average approach. This approach
uses the application of either stress or strain distributions to the surface of the RVE [12].
Hence, stress distribution in the RVE in assumed to be equivalent to a stress distribution in
the volume element consisting of the effective medium if

∫

Γi
RVE

TidΓRVE =
∫

Γi
RVE

T∗
i dΓRVE (1)

holds, where T∗
i is the traction vector on the surface of the RVE and Γi

RVE is a certain part
of its boundary as the part which is orientated parallel to one of the coordinate planes.
The second equivalence condition is between the strain tensor generated in the effective
medium and its RVE, which can be expressed as

ǫij = ǫ∗ij (2)

Furthermore, for a volume element of general shape, the mesoscopic strain can be
expressed by

ǫ =
1
2

1
V

∫

ΓRVE

(
uinj + ujni

)
dΓRVE (3)

wre V denotes the volume of the RVE and ni are the components of the normal vector on
ΓRVE. Equations (2) and (3) states that the surface integral of the quantity

(
uinj + ujni

)
has

to be equal for both volume elements.
Surface average approach has a certain limitation. For more complex geometry, such

as those that are nonorthotropic, the surface average method gives errors in the prediction
of the effective strain energy. This error is due to stress couples that are acting at the
intersections of the cell walls and the surfaces of the RVE. In order to avoid this problem,
a volume average approach can be used. The volume average approach is based on the
assumption that the mechanical behavior of the microscopic scale in the RVE and the
macroscopic medium can be considered equivalent if the RVE strain energy is equal to the
effective medium. This can be expressed as

w =
1
V

∫

ΩRVE

w dΩRVE =
1
V

∫

ΩRVE

w∗ dΩRVE = w∗ (4)
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where w denotes the strain energy density distribution and ΩRVE is the area of the RVE.
Thus, the strain equivalence condition can be written as

ǫij =
1
V

∫

ΩRVE

ǫij dΩRVE =
1
V

∫

ΩRVE

ǫ∗ij dΩRVE = ǫ∗ij (5)

Strain energy equivalence method has been commonly used in any kind of cellular
structure such as sand which has a corrugated structure [48–52]. The advantage of this
method is that it is directly based on the basic laws of continuum mechanics and the
conservation of energy and of. Furthermore, there is no limitation in using this method in
respect of geometries of the cellular structure and cell topology.

3.3. Micropolar Theory

Classical continuum theory is not suitable when discontinuities or high strain gradients
are observed in the domain such as crack tips or notches. Micropolar theory, also known as
Cosserat theory, is a generalization of classical continuum theory developed by E. and F.
Cosserat [53] and Eringen [54]. The micropolar theory introduces a microscopic rotation in
addition to translational deformations and its key assumption is both displacement and
rotations of a point are independent kinematic properties. In lattice material, this means
joint displacement and joint rotation contribute to the total joint displacement.

In the linear micropolar elasticity theory, the kinematic relations can be written as

ǫij = uj,i − ekijφk (6)

kij = φj,i (7)

where uj,i is the displacement gradient, ǫij is the strain tensor, φk is the microrotation, kij is
the curvature strain tensor, and φj,i is the microrotation gradient. The generalized strain
vector of a micropolar medium can be expressed as follows:

ǫ = [ǫ11 ǫ22 ǫ12 ǫ21 k13 k23]
T = [u1,1 u2,2 u2,1 − φ u1,2 + φ φ3,1 φ3,2]

T (8)

The generalized stress vector is given by

σ = [σ11 σ22 σ12 σ21 m13 m23]
T (9)

where m13 and m23 are the couple stresses in the x and y planes. The 2D constitutive
relations for anisotropic micropolar solids can be written as:

σ = Cǫ (10)

where C is the 6 × 6 matrix of the constitutive law coefficients for a micropolar medium.
In order to characterize a cellular material as a micropolar continuum, the coefficients

of the constitutive equations, C, must be obtained. The micropolar elastic constants of the
stiffness matrix can be determined through either structural analysis of the unit cell [17] or
an energy approach [40]. The analysis of the unit cell can be done using the beam theory
approach to obtain the general deformation state of the RVE, which is a unit cell in this case.
The effective stresses and strains over the RVE can be computed using constitutive equa-
tions. On the other hand, for the energy approach, the stresses of the cell can be obtained
by obtaining the derivation of the strain energy density concerning the strain vector.

Micropolar theory combined with beam theory approach or energy approach has
several limitations (1) It could only be applied to unit cells with a certain shape that
contains a single joint at the center or the unit cell, and (2) the newly introduced micropolar
variable acts as an additional degree of freedom. Hence, an additional step is required to
solve the governing equations.
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3.4. Solid-State Physics Approach: Bloch’s Theorem and Cauchy Born Hypothesis

Due to its similarity, the concept of solid-state physics can be adapted into solid
mechanics to investigate the characteristics of lattice materials. The lattice, in solid-state
physics, is defined as an infinitely periodic arrangement of points. When periods of the
unit cell are perfectly stacked in two or three dimensions, the space is considered to be
tessellated. The bases are the mathematical formulation for the physical quantities that are
repeated in every cell translation [18]. In continuum mechanics, a lattice material can be
described using the above definition.

Bloch wave analysis and the Cauchy–Born hypothesis, in particular, are methods for
solid-state physics that can be adapted into solid mechanics to investigate the behavior of
lattice materials [18,55]. Bloch’s theorem was originally developed to describe the transport
of electron particles within the crystal structure of a solid [56]. Then the Bloch’s theorem can
be applied to analyze the propagation of a wave function over to an infinite lattice structure.
On the other hand, the Cauchy–Born hypothesis [41] analyzes a macroscopic mechanism
that is induced by an applied strain [12] and states that the infinitesimal displacement
field of a periodic lattice is made up of two parts, namely, the deformation obtained by a
macroscopic strain field and the periodic displacement field of the unit cell. Bloch’s theorem
is used to define the propagation of a wave function over the infinite lattice structure. The
idea is that the nodal deformation function d(pi, ω) ∈ C2 is written as a wave function in
the form of

d(p, ω) = d(ji +
→
R, ω) = d(jl , ω)e2πiω

→
R ∀l ∈ {1, 2, . . . , J} (11)

where ω is the translational vector, p is the position vector for the joints, J is the number

of independent nodes within the unit cell, pi = ji +
→
R is the position vector of any node

throughout the lattice and
→
R is the Bravais cell vector of any unit cell through the entire lat-

tice. For bar deformation functions, the generalized bar deformation vectors e(qm, ω) ∈ C2

can be written as a wave function of the form:

e(qm, ω) = e(bm +
→
R, ω) = e(bm, ω)e2πiω

→
R ∀m ∈ {1, 2, . . . , B} (12)

where B is the number of independent bars within the unit cell and qm = bm +
→
R is the

position vector of any bar throughout the lattice. Periodic boundary conditions needs to be
applied over the unit cell to simplify the forms of the kinematic and equilibrium matrices
for both bars and joints [57,58].

Bloch’s theorem defines the deformation mechanism corresponding to periodic joint
displacement fields. The Cauchy–Born hypothesis is needed to analyze the macroscopic
strain field generated by periodic condition [59,60]. From the definition of the Cauchy–Born
hypothesis [61], the infinitesimal displacement field of a periodic joint in a lattice structure
can be expressed as:

d(jl +
→
R, ǫ ) = d(j, ǫ = 0) + ǫ·

→
R (13)

where d(jl +
→
R, ǫ ) is the periodic displacement field of joint jl . Assume that the periodic

joints described by the position vectors jl and jl +
→
R, are the two periodic joints i and j

within a lattice structure, then Equation (13) can be written as:

⌈
ui

vi

⌉
=

⌈
uj

vj

⌉
+

[
ǫ11

1
2 ǫ12

1
2 ǫ21 ǫ22

]⌈
xi − xj

yI − yj

⌉
(14)
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where u and v are the joint displacement components in the x and y directions, respectively,
and joint i is the independent joint. Notice that the formulation above is written in terms of
engineering strain. Equation (14) can be expressed as well as:

⌈
ui

vi

⌉
=

⌈
uj

vj

⌉
+

[ (
xi − xj

)
0 1

2
(
yi − yj

)

0
(
yi − yj

) 1
2
(

xi − xj

)
]


ǫ11
ǫ22
ǫ21




(15)

or in the shorter term:
di = dj + Eǫ (16)

Equation (16) is the kinematic boundary condition of the Cauchy–Born hypothesis.
Applying this boundary condition to the unit cell joint displacement vector, d, results in:

d = Tdd̃ + Eǫ (17)

Substituting Equation (17) into the kinematic system of the unit cell results in:

B
{

Tdd̃ + Ẽǫ
}
= e (18)

Equations (17) and (18) describe the application of the Cauchy–Born kinematic bound-
ary condition to the continuum kinematic system of the lattice microstructure to express
the relation between the microscopic displacements and a macroscopic strain field. The
Cauchy–Born hypothesis cannot be applied to the kinematic compatibility relation of the
unit cell without resorting to the Dummy node scheme [18]. This procedure, along with
a more detailed derivation of this method, has been extensively discussed in previous
literature [18,59–61] and will not be discussed here. This approach has been developed by
assuming cell walls as beam elements. Hence, similar to the elasticity theory approach,
these assumptions limit its application to low relative densities (ρ < 0.3).

3.5. Asymptotic Homogenization Approach

Analytical solutions have shown some limitations in the applications of more general
cases. Hence, one of the well-developed theories, with a sound mathematical foundation,
that has been successfully used to predict mechanical properties in porous materials [35]
is the Asymptotic Homogenization (AH) theory. This method has been validated with
experimental results and proven to be a reliable and accurate method among them [62].
Arabnejad et al. performed extensive work on using AH to obtain mechanical properties of
the lattice structure [11].

The pivot assumption of AH is that each physical quantity depends on two different
scales: one on the macroscopic level x, and the other on the microscopic level, y = x/ǫ
where ǫ is a ratio between RVE size and the size of the macroscopic medium means that
stress/strain will vary faster by 1/ǫ. AH also assumes that field quantities change smoothly
at the macroscopic level and have periodic condition at the microscale. Based on AH, each
mechanical variable, such as the displacement field, u, can be expanded into power series
concerning to ǫ:

uǫ = u0(x, y) + ǫu1(x, y) + ǫ2u2(x, y) + · · · (19)

u1 and u2 are perturbations in the displacement field due to the microstructure and u0
is the average value of the displacement field depend only on the macroscopic scale [35].
Take the derivative of the power series we get

du

dx
= ǫ(u) =

1
2

(
∇uT

0 +∇u0

)
x
+

1
2

(
∇uT

1 +∇u1

)
y
+ O(ǫ) (20)

ǫ(u) = {ǫ(u)}+ {ǫ∗(u)} (21)
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where ǫ(u) is the macroscopic strain and ǫ∗(u) is the fluctuating strain at the microscopic
level. Note that the terms of O(ǫ) and higher are neglected. Substitute the above equation
into the weak form of equilibrium equation for a cellular body Ωǫ:

∫

Ωǫ
Cijkl

(
ǫ0

ij(v) + ǫ1
ij(v)

)
(ǫkl(u) + ǫ∗kl(u))dΩǫ =

∫

Γ
tividΓ (22)

where Cijkl is the effective stiffness tensor of the RVE, ǫ0
ij(v) and ǫ1

ij(v) are the macroscopic
and microscopic strains, respectively, and t is the traction at the traction boundary Γt. The
displacement v is selected to be contant on the macroscopic level and vary only on the
microscopic level. Hence, this leads to:

∫

Ωǫ
Cijklǫ

1
ij(v)(ǫkl(u) + ǫ∗kl(u))dΩǫ = 0 (23)

Integrating over the RVE volume (VRVE). Equation (23) may be rephrased as:
∫

VRVE

Cijklǫ
1
ij(v)ǫ

∗
kldVRVE = −

∫

VRVE

Cijklǫ
1
ij(v)ǫkldVRVE (24)

The equation above represents a local problem defined on the RVE. For a certain
applied macroscopic strain, the material can be characterized if the fluctuating strain ǫ∗

is known. The periodicity of the strain field is guaranted by applying periodic boundary
conditions on the RVE edges; the displacements at opposite sides of the RVE are constrained
to be equal [63]. The equation can be discretized and solved via FE analysis. For this
objective, the equation needs to be simplified to obtain a relation between the microscopic
displacement field and the force vector. This step will not be explained in this article.
Instead, a simple example of solving an equation on one-dimensional domain will be
illustrated below.

Consider a composite bar consist of two materials that interchange periodically with
Young’s moduli E1 and E2 which is described in Figure 7. Section 1 of the unit cell has
material with a modulus E1 and length 1 − α. Section 2 of the unit cell has material with
modulus E_2 and length α. The RVE on the microstructure of this case is chosen to be of
unit length as is the area of the bar. Equation (24) in 1-D can be rewritten as:

∫ 1

0
E(x, y)ǫ∗ǫ(v)dy =

∫ 1

0
E(x, y)ǫ(v)dy (25)

where E(x, y) is Young’s modulus which varies at both the microscopic and macroscopic
levels. First, set E(x, y) = E and rewrite Equation (25) as

∫ 1

0
E(1 − ǫ∗)ǫ(v)dy = 0 (26)

Applying integration by parts

∫ 1

0
v

∂

∂y
E(1 − ǫ∗)dy + E(1 − ǫ∗)v |y=1

y=0 = 0 (27)

The strong form of Equation (27) is

∂

∂y
E(1 − ǫ∗) = 0 (28)
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�̅� = ∫ (1 − 𝜖∗)𝑑𝑦 =1
0 ∫ 𝑐(𝑥) 𝑑𝑦1

0 = 𝑐(𝑥) = 1∫ 1𝐸1 𝑑𝑦 1−𝛼0 + ∫ 1𝐸2 𝑑𝑦11−𝛼
�̅� = 𝐸1𝐸2(1 − 𝛼)𝐸2 + 𝛼𝐸1

Figure 7. Composite bar used for the one-dimensional analysis [63].

Integrating gives the solution

E(1 − ǫ∗) = c(x) (29)

where c(x) is constant over the microstructure. To determine c(x), the equation is integrated
over y ∫ 1

0
(1 − ǫ∗)dy =

∫ 1

0

c(x)

E
dy → 1 − u∗ |10 = c(x)

∫ 1

0

1
E

dy. (30)

Since the displacements u∗ must be equal at the cell boundaries to ensure periodicity, thus

c(x) =
1

∫ 1
0

1
E dy

(31)

Hence, the effective stiffness can be expressed as

E =
∫ 1

0
(1 − ǫ∗)dy =

∫ 1

0
c(x) dy = c(x) =

1
∫ 1−α

0
1

E1
dy +

∫ 1
1−α

1
E2

dy
(32)

Evaluating the above integral gives us:

E =
E1E2

(1 − α)E2 + αE1
(33)

Thus, for one-dimensional case, the effective stiffness obtained using AH method and
the standard mechanics approach is equal.

The notable advantage of AH is that the stress distribution in microscale can be mod-
eled accurately and thus give us a detailed analysis of the periodic materials. Furthermore,
AH has neither limitation on the cell topology nor the range of the relative density which is
a substantial gain of this method [11]. The major drawback of the AH method, however,
is its computational cost. This can be a high problem if the problem involves complex
topology and contains a significant number of variables.

3.6. Multi-Scale Homogenization Method for Lattice Materials

This approach is often called global-local analysis as it involves a two-scale process.
This method is originally applied to heterogeneous material in order to create constitutive
relationships from the analysis of the RVE. This method is developed based on the earlier
work done by Eshelby [64] which investigated the mechanics of an ellipsoidal inclusion in
an infinite matrix with homogeneous boundary conditions. The RVE features are somewhat
similar to the ones that Elsheby has studied. It consists of a bounded area of the domain
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that contains the main microstructural properties of the material and behaves as an infinite
medium if boundary conditions are imposed.

In general, this method utilizes a two-scale approach. One is the macroscopic FE
model of the homogeneous continuum where boundary conditions are defined by the
problem. The other is the microscopic level which numerically investigates the stress-strain
relationship where boundary conditions are generated by the macroscopic scale. This
approach allows the macroscopic stress to be determined as the gradient of the strain
energy density involving the components of the macroscopic gradient. This approach
results in a compact matrix formulation for the macroscopic stress as a function of the
macroscopic displacement gradient.

The method that is described here is the application multi-scale homogenization
method to develop non-linear constitutive models for lattice materials [24]. This homoge-
nization method is done using the principle of work which will be described shortly in this
section. The details and derivation of this method can be found in the previous literature
by Vigliotti et al. [24,37]. The main procedure for this method is described in Figure 8.

𝑠 𝐹(𝑠)
𝑑𝑊 = ∫ 𝑃𝑖𝑗𝑑𝐺𝑖𝑗𝑑𝑉 = 𝐹𝑇𝑑𝑠𝑉𝑅𝑉𝐸𝑃𝑖𝑗 𝐺𝑖𝑗 𝑑𝑠𝑃𝑖𝑗 𝐺𝑖𝑗
𝑃𝑖𝑗 = 1𝑉𝑅𝑉𝐸 𝜕𝑊𝜕𝐺𝑖𝑗 = 1𝑉𝑅𝑉𝐸 𝐹𝑇 𝜕𝑠𝜕𝐺𝑖𝑗  

𝑃 𝐺

tion occurs. However, unlike the AH approach, the choice of the RVE’s size might influ-

–
–

Figure 8. Multiscale scheme [24].

Let s be the vector of the nodal degree freedom of the RVE, the corresponding array of
the nodal forces, F(s), can be obtained using FE analysis of the RVE. The distribution of the
strain energy, due to macroscopic strain, can be obtained by employing the principle of the
virtual work:

dW =
∫

VRVE

PijdGijdV = FTds (34)

where Pij and Gij are the elements of the first Piola-Kirchoff (1PK) stress tensor and the
macroscopic displacement, respectively; ds is the variation of the nodal displacements. As-
suming that Pij and Gij are constant through out the RVE, the stress tensor can be obtained:

Pij =
1

VRVE

∂W

∂Gij
=

1
VRVE

FT ∂s

∂Gij
(35)

Solving the equation above will introduce the boundary conditions for the microscopic
model. Once the microscopic boundary value problem is solved, the components of P as
the derivatives of the strain energy density of the lattice concerning G can be determined.

The main advantages of this method are that it accounts for geometrical material
nonlinearity as have shown above and this approach has no restrictions in terms of relative
density and unit cell shape. This model is capable to capture the local bucking of cell
struts under multiple loading conditions and thus can predict the points where bifurcation
occurs. However, unlike the AH approach, the choice of the RVE’s size might influence the
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equilibrium equation of the lattice especially in the presence of bifurcations [24]. Hence, a
sensitivity analysis should be performed before choosing the size of the RVE.

3.7. Machine Learning Approach: Data-Driven Model

In recent years, there has been significant development of homogenization methods
using machine learning algorithms [36,42–45]. Machine learning has been proven to be a de-
pendable computational tool and employed in constitutive modeling [65–68]. As described
in the previous section, while effective and precise, theoretical and numerical approaches
each post major limitation. Theoretical approaches are limited for low relative density,
small deformation, and simple geometry. Some of these limitations can be overcome us-
ing numerical approaches but these methods, such as FEA or AH, are computationally
expensive. An alternative way is to use neural networks to do constitutive modeling based
on either experiments or homogenization results as training data. In this section, we will
discuss several strategies of implementation of this method that has been developed in
recent years.

The fundamental initial phase of using machine learning algorithms, in this case,
neural network approaches, is to generate training data. Either experimental data [65,68]
or RVE simulations can be utilized for training process [45,66,67]. Settgast et al. [45] used
the volume average method as their RVE simulation method and then used the results as
the training data which is shown in Figure 9. The constitutive functions are obtained using
neural networks instead of classic material modeling. FNET library is used to implement
the neural networks [69]. Their study is limited to small deformation cases for simplicity
but their approach can be straightforwardly extended to large deformation case. They can
obtain an accurate result with much more efficiency than a direct numerical simulation
(DNS) or FEM simulation.

Figure 9. Graphical illustration of machine learning approach by Settgast et al. [45].

The other approach is to use finite element simulation (FEA) as the training data [42].
However, instead of full simulation of finite elements, only several models of lattice
materials are simulated using FEA with a significant number of elements to compute the
mechanical properties. Mechanical properties and design parameters data are used to
train a NN to predict the equivalent properties for various cell sizes and materials with
considerably less time than a full FE analysis. The result from this approach is compared
with a full FEA simulation and experimental test. Their approach is briefly described in
Figure 10. They concluded that the NN model of lattice materials is very accurate, swift,
and efficient for use as compared to numerical FEA models. Furthermore, by using this
approach a more complicated geometry of lattice can be investigated with significantly less
computational time. It was shown that the computational time could be reduced from the
order of hours to just order of minutes.
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Figure 10. Integration of FEA model to NN model [42].

Another implementation strategy done by Koeppe et al. [36] is to combine experiments
and finite element (FE) simulations to obtain training data. Firstly, lattice materials are
created and tested under certain loading conditions. The experimental results will be
validated against a parameterized FE model. Secondly, the developed FE model is utilized
to predict the stresses considering different design variables. Finally, these deformations
and design variables are used to train a NN to predict the stresses. This approach results
in a significant increase in performance. The computation time for FE simulations is in
order of five to ten hours (wall clock time) while the NN approach takes about 0.47 s. The
obtained stresses by the neural network are in a good agreement with the FE results.

We try to point out each method’s main characteristic, its advantages, and limitation
to give a concise comparison for the reader. The summary can be seen in Table 1.
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Table 1. Summary of Homogenization Method.

Method Underlying Theory Highlights Limitation

Beam Theory Approach [13,14,16,33] Apply beam theory analysis on a single cell
and assume uniform over the RVE

• Close analytical formula.
• Relatively simple and does not need

computational power.

• Low relative density value (ρ < 0.3).
• Simple topology
• Small strain and no large deformation.

Strain Energy Equivalence [48–52]

The averages of particular mechanical
properties with respect to either the surface of
the volume have to be equal in order to obtain
the equivalence condition of effective medium
and its RVE

• Close analytical formula
• No restriction in terms of cell topology

and its geometric symmetry
• Small strain and no large deformation

Micropolar Theory [17,38–40]

Introduce a new variable, microscopic
rotation, in addition to translational
deformations and assume that both
displacement and rotations of a point are
independent kinematic quantities

• Close analytical formula
• It does not need computational power

• It needs to be combined with the beam
theory approach or energy approach

• Only feasible for unit cells with a certain
shape that contains a single joint at the
center or the unit cell

Bloch’s Theorem and Cauchy–Born
Hypothesis [18,55]

• Bloch’s theorem is used to study the
propagation of a wave function over an
infinite lattice structure at a microscopic
level.

• The Cauchy–Born hypothesis investigate
macroscopic mechanisms induced by an
applied strain.

• Able to give a description of wave
propagation over lattice structure

• Able to identify the collapse mechanism
subject to macroscopic strain

• Low relative density value (ρ < 0.3)

Asymptotic Homogenization (AH) [11,35,62]

• The main idea of AH is that each
physical variables consist of two
different scales: macroscopic and
microscopic level.

• No restriction on the unit cell geometry
• Works for all ranges of relative density
• Independent from RVE size

• The computational cost is relatively
expensive
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Table 1. Cont.

Method Underlying Theory Highlights Limitation

Multi-Scale Homogenization Method
[24,37,64]

This method utilizes a two-scale approach

• The macroscopic FE model of the
component with certain boundary
condition

• The microscopic level stress-strain
relationship where boundary conditions
are imposed by the macroscopic scale

• No restriction on the unit cell geometry
• Works for all ranges of relative density
• Capable of capturing local bucking of

cell walls under multiple loading
conditions

• The relatively expensive computational
cost

• Depends on the RVE size. Hence, an
additional convergence analysis needs to
be done before using the method

Machine Learning Approach [36,42–45]
Use neural networks to do constitutive
modeling based on either experiments or
homogenization results as training data

• Significantly low computational cost
• No limitation on cell topology and

relative density

• Needs to generate a huge amount of data
to have an accurate result
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4. Conclusions and Future Work

This paper has provided a concise review of several homogenization methods that
can be applied to the analysis and design of lattice materials. These methods came from
various areas of discipline such as elasticity, solid-state physics, and even computer science.
Relative density, cell geometry, lattice category (structure or materials), and cell element
assumptions have important roles in the behavior of lattice materials. Hence, it is critical
to employ a proper model for the lattice regarding those parameters. A summary of each
strength and weakness of each method has been shown in Table 1.

Out of all methods, due to its efficiency and accuracy, there has been a growing
interest in the homogenization method using machine learning algorithms recently as
it has proven to be a reliable computational tool and has been employed in constitutive
modeling. Furthermore, it has been shown in the previous section how the machine
learning approaches can overcome some major limitations that are posted by the classical
homogenization technique.

Other than increasing efficiency, the recent and future works of homogenization
are directed more towards the area of structure optimization. Homogenization coupled
with optimization method has proven to increase both the efficiency of the optimization
procedure and the overall performance of a lattice structure [70–73]. Stiffness [71], structural
compliance [72], structural vibration [70] and energy absorption [73] have been proved to
increase quite significantly using a homogenization method in a structural optimization
procedure. It can be observed that most of these works use asymptotic homogenization as
their method to be combined in the optimization procedure. As mentioned before, machine
learning approach has a promising future in terms of its efficiency. Hence, it will be seen
in the near future, integrated works of machine learning approach homogenization and
optimization algorithm.
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Abstract: The main objective of the study was to determine the effect of impregnation of the paper
core with acetylated starch on the mechanical properties and absorbed energy in the three-point
bending test of wood-based honeycomb panels under varying temperatures and relative air humidity
conditions. Nearly six hundred beams in various combinations, three types of facings, three core
cells geometries, and two paper thicknesses were tested. The experiment results and their statistical
analysis prove a significant relationship between the impregnation of paper with modified starch and
mechanical properties. The most effective in absorbing energy, the honeycomb panels, consisted of a
core with a wall thickness of 0.25 mm and a particleboard facing.

Keywords: honeycomb panels; starch; impregnation; climatic conditions; strength; stiffness; en-
ergy absorption

1. Introduction

Production of paper products in 2020 reached the level of 420 million tons. Compared
to 1980, this means an increase of 250% [1]. Invariably, for over 2000 years, the paper has
been produced mainly from cellulose fibers [2]. It is assumed that the life cycle of cellulose
fiber in Europe has an average of 3.5 times its use [3,4], although it is possible up to 6 times.
Each cycle of paper reuse reduces its quality [5]. Out of all known paper types, “Kraft
liner” is characterized by the best value for money. The quality of the paper means its high
mechanical strength to tearing, bending, compression, and resistance to moisture [6]. Kraft
liner is made by chem ical defibering with at least 80% virgin fibers. It is widely used as a
packaging material [7]. In the range of moisture content of the paper from 0% to the fiber
saturation point (about 23%), its mechanical properties decrease even by 50% [8–10]. The
pulp and paper industry still uses various preservation methods against hygroscopy and
shrinking of paper, including impregnation methods. Pohl [11] described the influence of
the paper’s sizing on the reduction of tensile strength.

This does not mean that waterproof paper cannot be made. However, depending on
the chosen path, the process can be more or less complicated and time consuming. The
simplest solution is lamination with petroleum-based or aluminum foils. The composite
obtained in this way is completely waterproof and has higher mechanical strength, espe-
cially for tearing and penetration [12]. Lamination is also an effective barrier against gas
penetration. However, it should be remembered that the edges of this paper composite
remain hydrophilic. Another solution is to use chemicals while still producing the paper
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web. Mainly to obtain covalent bonds between cellulose fibers. Urea-formaldehyde (UF),
melamine-formaldehyde (MF) and polyamide-epichlorohydrin (PAE) resins are used as an
additive to the pulp or preformed paper.

The most commonly used neutral sizing agents are softwood extracts and alkyl ketene
dimers (AKD), and alkenyl succinic acid anhydride (ASA) [13,14]. In recent years, efforts
have been made to develop environmentally friendly substances that increase the hydropho-
bic properties of cellulose fibers. We are talking about plant proteins or starch [15,16]. Both
cellulose and starch are homoglycans and are the most abundant polysaccharides in na-
ture [17]. Starch is the second most used improver in the pulp and paper industry, right
after clay fillers. The usual addition to pulp is in the range of 2–4% [17,18]. Its presence
increases the mechanical resistance of the paper to tearing, improves the quality of prints,
and most of all increases the resistance to moisture by filling the pores in the cellulose
fiber mesh [19]. In 2009, modified starch accounted for 66% of the total volume of starch
used against the sizing effect [18]. There are enzymatic, thermal, and chemical modifica-
tions [5,20]. In a chemical acetylation process, a hydrogen atom in the hydroxyl (OH) group
is replaced by an acetyl group. Starch has three OH groups, so its maximum degree of
substitution (DS) is 3. The higher the degree of substitution, the greater the hydrophobic-
ity [21]. However, it should be remembered that the strength of paper precisely increases
thanks to the hydrogen bonds between cellulose and starch [15]. As demonstrated by Laro-
tonda et al. [22], acetylation at the DS 1.2–1.7 level provides the best balance between paper
strength and resistance to moisture while maintaining the possibility of biodegradability.
The production of hydrophobic Kraft liner paper is, therefore, a difficult and complex task.
Serious problems are also encountered concerning obtaining water resistance of recycled
paper of the “testliner” type. It is recycled, so the cellulose pulp can contain almost all the
additives mentioned so far and many more from impurities.

As reported by European and global organizations monitoring the pulp and paper
industry, in 2018, more than half of the global paper production was constituted by test-
liner [1,23]. This paper is mainly used to produce the recycled corrugated panel, both for
a sinusoidal core, where its transversal shear properties are significant [24–28], and for
facings, where its properties are related to edge crush resistance are important [29–31].
In addition, this paper is used to produce paper fillings (honeycomb cores), used in the
production of a three-layer lightweight panel. For the same reasons why recycled paper
processing is growing dynamically, the share of light furniture panels in the furniture
industry is also growing.

Light wood-based honeycomb panels are widely used in the production of doors [32].
In the 1990s, the technology was adapted to the needs of the furniture industry [33–35].
However, a significant limitation of the widespread use of lightweight panels in the furni-
ture industry is their low stiffness and strength, compared to classic wood materials, such
as particleboard, MDF board, or plywood [36–40]. However, these panels are distinguished
by an attractive quality factor [41,42]. For this reason, more and more manufacturers of
furniture ready for self-assembly (RTA), made of honeycomb panels, dynamically develop
the e-commerce market [43–46]. For these products to be safe in terms of construction,
research was carried out on the rheology and strength of the constituent materials of light
honeycomb sandwich panels under changing climatic conditions [47–50] and the properties
of wood-based furniture panels [51–55]. Moreover, research works on methods of securing
wood-based honeycomb panels against the destructive effects of variable temperature and
air humidity [53,56–59].

Composites based on thin-walled cores are also a sought-after products by the packag-
ing industry to protect valuable loads [60]. Their task is to absorb impact energy [61,62],
an indispensable element of the global flow of goods, using diverse and complementary
means of transport by land, sea, and air. International transport of goods also means highly
different climatic conditions, so it is crucial to properly design thin-walled structures to
maintain their ability to absorb energy [63,64] throughout its life cycle. The more energy the
composite can absorb, the more effectively it can protect a product against the outside load.
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However, the authors’ best knowledge shows that the influence of the hydrophobic
impregnation of the paper core with modified starch on the mechanical properties of the
honeycomb panel has not been investigated so far. Acquiring new knowledge enables
learning about the effectiveness of securing furniture elements against the effects of variable
high temperature and air humidity. This knowledge will allow the rational design of
furniture intended for use in tropical or subtropical climates. It is also justified in the
changing demographic structure of the world. By 2050, half of the world’s population will
live in a tropical climate [65]. Until then, the number of users of honeycomb panel furniture
resistant to tropical climatic conditions will increase.

The study aimed to determine the influence of the impregnation of paper with modi-
fied starch, the shape and size of the hexagonal core cells obtained from the impregnated
paper, and the facing material on the bending of the wood-based lightweight honeycomb
panels under changing temperature and relative air humidity conditions.

2. Materials and Methods

2.1. The Shape of Honeycomb Cells

A series of scientific publications [66–68] describes in detail the method of selecting
cell geometry and its production processes. On this basis, keeping the previously used
determinations, cores with cells geometry C, E, F were selected for the tests (Figure 1). The
cores of the cells of type C and E are made of paper testliner having a thickness of 0.15 mm
and a weight of 123 g/m2, and the cores with F cells were made of 0.25 mm thick paper
with a grammage of 134 g/m2. Such a selection of papers was not left to chance. The F-cell
paper thickness was determined by static numerical optimization with the Monte-Carlo
method [66]. They were assuming that the linear modulus is maximized and the relative
cell density is minimized. C and E cores are made of the most used paper in the furniture
industry [66,69]. The decision to use cores based on C, E, F cells to create light furniture
panels results from a thorough analysis of the elastic constants of individual cores carried
out in the publication of Słonina et al. [68]. The exact dimensions of individual types of
cells and their relative density are presented in Table 1.
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                 Figure 1. The shape of cells used for research.
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Table 1. Characteristics of cells used for tests, where: ρ —relative cell density, Sy —cell width, Lx

—cell length, l—length of the free cell wall, h—length of the double cell wall, t—thickness of the cell
wall (paper), ϕ –cell wall inclination angle (Figure 1).

Cell Type
ρ Sy Lx I h t ϕ

(−) (mm) (◦)

C 0.0249 23.28 20.15 12.2 6.0 0.15 20

E 0.0249 13.33 46.48 13.0 12.0 0.15 60

F 0.0585 9.47 46.84 6.3 19.1 0.25 45

The testliner paper was produced by the HM Technology company (HM Technology,
Brzozowo, Poland). For cell formation, non-impregnated (N) and impregnated (S) papers
were prepared with a 10% aqueous solution of modified acetylated starch (S) (patent
number P.430486). Depending on their thickness and impregnation, these papers were
marked with the symbols 15N, 25N, 15S, 25S, respectively. The paper [68] presents in detail
the method of paper impregnation, forming cells, and obtaining cores. In addition, the
results illustrating the elastic properties of paper, which were determined following the
PN-EN ISO 1924-2 standard [70], are also presented. For the sake of clarity of this work,
Table 2 is summarized by providing the module of linear elasticity MOE (MPa), the module
of rupture MOR (MPa) Poisson’s ratio, and the maximum breaking force X and Y direction
of the material orthotropy, respectively. Table 2 also shows the elastic properties of the
materials used to produce the facings of the honeycomb panels. These properties were
determined following ISO 13061-6: 2014 [71].

Table 2. Physical and mechanical properties of the materials used (MOE —modulus of linear elasticity,
MOR —modulus of rupture, θ –Poisson’s ratio, Fmax —maximal destructive force, X, Y—orthotropy
directions, MC—moisture content, SD—standard deviation).

Code Statistics

Thickness MC Density MOE MOR θ Fmax

[mm] [%] [kg/m3]
X Y X Y XY YX X Y

[MPa] - [N]

15N
Mine 0.15 5.72 686 5707 2188 46 16 0.411 0.147 105 36

SD 0.01 - - 672 113 1.8 0.30 0.043 0.023 4 0.7

15S
Mine 0.16 7.05 730 5190 2642 49 20 0.308 0.109 110 45

SD 0.02 - - 374 102 3.1 0.34 0.033 0.010 7 0.8

25N
Mine 0.25 6.11 745 5372 2153 46 17 0.398 0.160 175 67

SD 0.02 - - 200 37 1.8 0.50 0.024 0.017 7 2.0

25S
Mine 0.26 6.67 825 4454 2153 45 17 0.348 0.160 170 67

SD 0.04 - - 99 37 1.1 0.50 0.021 0.017 4 2.0

P30
Mine 2.77 6.76 942 4116 3445 14 10 0.161 0.129 1539 1085

SD 0.02 - 18 276 210 2.3 1.50 0.027 0.026 269 171

H25
Mine 2.41 5.28 965 5496 5183 32 31 0.265 0.257 3080 3030

SD 0.02 - 19 253 164 2.4 2.00 0.024 0.020 228 187

H20
Mine 1.97 5.55 912 4756 4293 22 23 0.243 0.218 1730 1822

SD 0.02 - 12 324 295 3.5 1.30 0.030 0.031 279 97

2.2. Honeycomb Manufacturing and Testing

The testliner paper was produced by the HM Technology company (HM Technology,
Brzozowo, Polska). Non-impregnated papers were prepared for cell formation. The
facing material was selected from wood-based materials that retain the ability to be reused
in recycling processes. Thus, a 3.0 mm thick particleboard (P30) covered on one side
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with melamine paper (Egger, Rion-des-Landes, France) [72], a 2.5 mm thick high-density
fiberboard (H25) (IKEA Industry, Orla, Polska) [73], and high-density fiberboard with a
thickness of 2.0 mm (H20) (HOMANIT, Karlino, Polska) [74] was used for the tests. On
nondecorative surfaces of the same type of facing panel, an adhesive PVAc Woodmax
FF12.47 class D2 from Synthos Adhesives (Oswiecim, Poland) was applied in an amount
of about 110 g/m2. In the next step, along the circuit of bottom facing, a particleboard
frame with a thickness of 16.1 mm was created, and a paper core with a thickness of
16.3 mm was placed inside it. Finally, the whole sandwich was closed by the second facing
sheet. The assembly process was carried out in an Orma Macchine NPC/DIGIT 6/90
25 × 13 hydraulic press (Bergamo, Italy) for 25 min under a pressure of 0.7 MPa. For each
type of impregnated and non-impregnated paper, the cell type and the type of facing six
16 mm thick panels were made with dimensions as shown in Figure 2. A total of 54 panels
were manufactured.
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Figure 2. Dimensions and structure of the honeycomb panel sheet: 1—facing, 2—honeycomb core,
3—horizontal stile, 4—vertical stile. Panels thickness equal to 20.3 mm, 21.3 mm, 22.3 mm for H20,
H25, P30, respectively.

The panels were seasoned in laboratory conditions until a constant mass of samples
was obtained, which proved that they maintained the hygroscopic equilibrium. After
this time, the panels were cut into beams 50 mm wide and 20 times their length, plus an
allowance of 50 mm. The beams were obtained from the central part of the formed slab
so that the samples did not contain stiles. The produced beams were divided into two
groups of equal numbers. The first group of beams was stored in dry conditions (D), i.e., in
the climate of the production hall at the temperature T = 25 ◦C and relative air humidity
H = 45%, while the second group of beams was stored in a climate similar to tropical (W),
i.e., at the temperature T = 28 ◦C and relative air humidity of H = 85%, until the mass of the
samples stabilizes. The selected air temperature and relative humidity complied with EN
318 (2002) requirements and were used as variable factors in the works [68,75,76].

For the selected types of cells (3), the impregnated and non-impregnated paper (2)
used, the facings (3), the direction of X, Y orthotropy (2), climatic conditions (2), assuming
eight repetitions, in total 576 pieces of beams were prepared for testing (Figure 3). Table 3
presents exemplary determinations for individual types of samples produced. According
to the method of marking the beams made of C-type cells, the markings for the remaining
E, F-type cells were used, as exemplified in the last row of Table 3.
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Figure 3. Examples of beams selected for testing.

Table 3. Method of marking samples prepared for testing (The symbol * indicates the selected cell
type, impregnation, facing type, orthotropy direction, climate condition).

Cell Type Impregnation Facing Type
Orthotropy
Direction

Climate
Condition

Code C E F S N P30 H25 H20 X Y D W

CSP30XD * * * * *

CSP30XW * * * * *

CSP30YD * * * * *

CSP30YW * * * * *

CNP30XD * * * * *

CNP30XW * * * * *

CNP30YD * * * * *

CNP30YW * * * * *

. . .

ESH25YW * * * * *

Then the beams were subjected to three-point bending (Figure 4) according to the
EN 310 [77] standard on the Zwick Z100 testing machine (Zwick GmbH, Ulm, Germany).
During the tests, the value of the force was recorded with an accuracy of 2 N and the
deflection of the beams in the direction of the force with an accuracy of 0.01 mm. In
addition, damage to the beams was recorded using a Samsung SM20E digital camera
(SM20E, Samsung, Korea).
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Figure 4. Test stand.
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2.3. Mechanical Properties and Energy Absorption

Figure 5 shows an example of a curve expressing the relation of force and deflection
for the tested samples. Based on the measured values of the maximum forces causing the
sample failure Fmax (N) modulus of rupture MOR (MPa) was calculated following the EN
310 standard from the dependence:

MOR =
3FmaxL3

2bd3 (1)

where Fmax is the force at the fracture point (N), L = 20 d is the length of the support
span (mm), d is the thickness of the beam (mm), b is the width of the beam (mm).
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Figure 5. An example of a force-deflection relationship for examined beams made of honeycomb panels
(MOR—modulus of rupturę, MOE—modulus of elasticity, Fmax—fracture force, Ea—absorbed energy).

On the other hand, based on the relationship of force and deflection in the rectilinear
range, the linear elasticity modulus MOE (MPa) was calculated by the EN 310 standard,
from the following equation:

MOE =
(0.4Fmax − 0.1Fmax)L3

48(f0.4Fmax − f0.1Fmax)Is
(2)

where f0.4Fmax , f0.1Fmax is the beam deflection in mm for a load equal to 0.4Fmax, 0.1Fmax

(N), Is =
bd3

12 is the moment of inertia (mm4).
The individual beams were made of thin-walled elements. Therefore, it was concluded

that they should be excellent energy-absorbing structures because they can fail with rel-
atively little force. To obtain comparable calculation results, it was decided to count the
absorbed energy only to obtain the maximum breaking force of the beam.

By integrating the function expressing the dependence of force on deflection (Figure 5),
it is possible to calculate the absorbed energy from the equation [60–64]:

Ea =
∫ f2

f1
Fdf (3)

where f1 , f2 , is the lower and upper integration limits for the deflection, respectively
f. However, due to the inability to determine the exact functions describing the force
F deflection relationship f for each tested sample, it was decided to perform graphical
integration. For this purpose, the integration interval was divided < f1 , f2 > into segments
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∆f = 0.1 mm, on which it was assumed that the force F has a constant value. Therefore,
the absorbed energy for deflection equal to 10 mm was calculated from the equation:

Ea =
f2=10

∑
f1=0

F∆f (4)

3. Results and Discussion

The influence of starch impregnation on selected properties of honeycomb panels
turned out not to be obvious. Therefore, this part of the work decided to present only
the observed quantitative differences. In the other part of the study, a detailed statistical
analysis was prepared to show the qualitative relationships and the impact of all selected
variable factors on the properties of the tested honeycomb panels.

3.1. Effect of Impregnation on the Panel’s Strength

Figures 6–8 illustrate the effects of starch impregnation, type of material, the direction
of orthotropy, and climatic conditions on the MOR of honeycomb panel with a core of
different cells (C,E,F). The summary shows that the highest MOR (15.3 MPa) was observed
among the beams with starch impregnated F-cells for the X orthotropy direction in dry
conditions (FSH25XD). Conversely, the lowest MOR (0.9 MPa) occurred in the case of beams
with non-impregnated E-type cells for the Y orthotropy direction in tropical conditions
(ENH25YW).
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Figure 6. Illustration of the MOR relationship of honeycomb panels with a core of C-cells. Whiskers
represent standard deviations.
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Figure 7. Illustration of the MOR relationship of honeycomb panels with an E-cell core. Whiskers
represent standard deviations.
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Figure 8. Illustration of the MOR relationship of honeycomb panels with F-type core. Whiskers
represent standard deviations.

In the group of beams with C-cells, under all climatic conditions D, W, the starch
impregnation improves the MOR of the beams for each case of the facing used and the or-
thotropy direction (Figure 6). Only CNP30XD beams with P30 facings in dry conditions and
the X orthotropy direction show higher strength (5.0 MPa) than the corresponding CSP30XD
beams impregnated with starch (4.5 MPa). It should be noted here that the increase in
MOR for beams with impregnated cores compared to beams with non-impregnated cores
is from 2.3 to 46.7%. For beams with P30, H25, and H20 facings, in dry conditions D and for
the direction of orthotropy X, the bending strength increases by 2.3%, 4.5%, and −11.1%,
respectively, and in tropical conditions W by 33.3%, 31% and 20.8, respectively. Note that
a negative value indicates the opposite tendency to increase—i.e., decrease. For beams
with the same facings P30, H25 and H20, in dry conditions D, and for the direction of
orthotropy Y, the bending strength increases by 30.4%, 28.6%, and 34.0%, respectively, and
in tropical conditions W by 46.7%, 44.8%, and 40.0%, respectively. It is also significant that
for C-type cells, there was no clear difference in the strength of the beams in the X and
Y orthotropy directions greater by −7.0%, 4.5%, and −4.4% in relation to the strength in
the Y direction, and in tropical conditions W by 11.1%, 0.0%, and −4.2%, respectively. For
non-impregnated beams, these relationships are significantly different. For beams with
P30, H25, and H20 facings, in dry conditions D, the bending strength in the direction of
X orthotropy is respectively higher by 23.8%, 28.6%, and 38.0% concerning the strength
in the Y direction and tropical conditions W, respectively 11.1%, 20.0%, and 21.1%. Thus,
the effect of impregnation on the strength of beams with C-cells is visible, but also on the
change of this strength depending on the direction of orthotropy. After impregnation, the
influence of the direction of orthotropy on the strength of the beams decreased significantly.

For beams with E-cells, the effect of impregnation is not so pronounced (Figure 7).
Beams with P30 facing, not impregnated, in dry conditions D, and the orthotropy direction
X (6.3 MPa) show the highest bending strength. In dry conditions D, impregnation with
starch significantly reduces the MOR of beams with P30, H25, H20 facings, for the X
orthotropy direction, compared to analogous non-impregnated beams by 23.5%, 13.2%,
8.0%, respectively. In tropical conditions, W increases this strength by 13.8%, 0.0%, and
19.2%, respectively. For beams with the same facings P30, H25 and H20, in dry conditions
D, and for the direction of orthotropy Y, the bending strength increases by 4.8%, 10.0%, and
5.0%, respectively, and in tropical conditions W, by 20.0%, 18.2%, and 0.0%, respectively. It
is also noticeable that clear differences in the strength of the beams in the X and Y orthotropy
directions were observed for E-type cells, by 58.8%, 62.3% and 60.0% of the strength in
the Y direction, and in tropical conditions by 48.3%, 57.7% and 61.5%, respectively. For
non-impregnated beams, these relationships are very similar. For beams with P30, H25,
and H20 facings, in dry conditions D, the bending strength in the direction of X orthotropy
is, respectively, 68.3%, 70.0%, and 64.8% greater concerning the strength in the Y direction,

97



Materials 2022, 15, 395

and in tropical conditions W, respectively 52.0%, 65.4%, and 52.4%. Moreover, in this case,
the influence of impregnation on the strength of beams with E-cells is visible. The presented
results also illustrate the effect of large and slightly changing orthotropy of the tested beams.
It can be assumed that the effect of impregnation on the change of orthotropic properties of
the panel is significant.

The F-cell beams also show marked strength differences due to the impregnation of
the paper (Figure 8). Beams with H25 facing, impregnated, in dry conditions D, and for
the orthotropy direction X (15.3 MPa) show the highest bending strength. Beams with
H25 facing, not impregnated, in dry conditions D achieve slightly lower strength for the
same direction of orthotropy (14.4 MPa). In dry conditions D, impregnation with starch
slightly improves MOR of beams with P30, H25, H20 facings, for the X orthotropy direction,
compared to non-impregnated beams by 1.8%, 5.9%, 5.3%, respectively, and in tropical
conditions by 8.1%, respectively, 6.9% and 22.1%. Beams with the same facings P30, H25,
and H20, in dry conditions D, and for the orthotropy direction Y show greater bending
strength by 5.1%, 6.7%, and 0.0%, respectively, and in tropical conditions W by 0.0%, 12.5%,
and 3.6%, respectively. As in the case of beams with E-cells, clear differences in the strength
of the beams in the X and Y orthotropy directions were observed: 47.3%, 60.8%, and 54.9%
of the strength in the Y direction, and in tropical conditions by 52.7%, 44.4%, and 58.8%,
respectively. The relations are very similar also for non-impregnated beams. When using
P30, H25, and H20 facing, in dry conditions D, the bending strength of the beams in the
direction of X orthotropy is greater by 49.1%, 61.1%, and 52.3%, respectively, concerning
the strength in the Y direction, and in tropical conditions W, by 48.5%, 47.8%, and 49.1%,
respectively. Therefore, it can be concluded that also in this case, the effect of impregnation
on the strength of beams with F-cells is visible. Moreover, the test results illustrate the
effect of large and slightly changing orthotropy of the tested beams. Hence, it should be
concluded that the effect of impregnation on the change of orthotropic properties of the
plate with F-cells is significant.

Figure 9 shows deflections of a beam with C-type cells, H25 facings, before and after
impregnation (N, S), examined in the direction of the Y-axis in the conditions of dry D
and tropical W climate. Under tropical conditions (T = 28 ◦C/H = 85%, Figure 9b), the
beam deflection is much higher compared to beams loaded under dry climate conditions
(T = 25 ◦C/H = 45%, Figure 9a). On the other hand, the beams reduce deflections in dry
and tropical conditions after impregnating starch, respectively (Figure 9c,d).
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Figure 9. Illustration of the destruction of C-core cell plates: (a) CNH25YD beam (b) CNH25YW
beam (c) CSH25YD beam (d) CSH25YW beam.
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3.2. Effect of Impregnation on the Panel’s Stiffness

As shown above, impregnating the core paper with a 10% aqueous acetylated starch
water repellant improves the strength of the three-layer furniture panel and its stiffness.
This is illustrated in the figures below (Figures 10–12). The average increase in the modulus
of linear elasticity MOE for all tested beam combinations is approximately 7%.
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Figure 10. Illustration of the MOE relationship of honeycomb panels with a core of C-cells. Whiskers
represent standard deviations.
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Figure 11. Illustration of the MOE relationship of honeycomb panels with an E-cell core. Whiskers
represent standard deviations.
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Figure 12. Illustration of the MOE relationship of honeycomb panels with F-type core. Whiskers
represent standard deviations.
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For C-cell beams, under all climatic conditions, starch impregnation improves the
MOE for each case of a facing used and the direction of orthotropy (Figure 10). Only
CNH25XD beams with H25 facing in dry conditions and for the X orthotropy direction
show a greater modulus of elasticity (1733 MPa) compared to the corresponding beams
(CSH25XD) impregnated with starch (1649 MPa). It should be noted that for beams with
P30, H25, and H20 facings, in dry conditions D, and for the orthotropy direction X, the
MOE increases by 12.0%, −5.1%, and 14.6%, respectively, and in tropical conditions W,
respectively by 23.9%, 23.2%, and 15.2%. For beams with the same facings P30, H25 and
H20, in dry conditions D, and for the direction of orthotropy Y, the MOE increases by 9.9%,
15.1%, and 32.1%, respectively, and in tropical conditions W by 22.6%, 40.5%, and 37.7%.
It is also characteristic that, as in the case of strength changes, no significant difference in
linear elasticity modules was observed in the X and Y orthotropy directions for C-type cells.
In the orthotropy direction, X is 3.2%, 8.6%, and 10.6% lower concerning the MOE in the Y
direction, and in tropical conditions, W is lower by −4.2%, 18.8%, and 19.3%, respectively.
Note that a negative value indicates the opposite tendency to decrease, i.e., increase. For
non-impregnated beams, these relationships are significantly different. For beams with
P30, H25, and H20 facing, in dry conditions D, the MOE in the X orthotropy direction is
respectively greater by −5.7%, 12.3%, and 12.1% concerning the MOE in the Y direction,
and in tropical conditions W, by 2.6%, 8.0%, and 12.4%, respectively. Thus, the influence of
impregnation on the modulus of elasticity of beams with C-cells is visible, but also on the
change of this property depending on the direction of orthotropy. After impregnation, the
influence of the orthotropy direction on the MOE of the beams changed and diversified.
The impregnation of the paper resulted in a weakening of the modulus of linear elasticity
of the beams in the direction of the X-axis in favor of increasing the MOE in the direction
of the Y-axis. Although the differences are insignificant, they persuade the orthotropic
properties of the honeycomb panels.

In the case of beams with E-cells, the effect of impregnation on the modulus of elasticity
is also pronounced (Figure 11). The highest MOE is shown for beams with H25 facing,
not impregnated, in dry conditions D, and orthotropy direction X (1930 MPa). In dry
conditions D, impregnation with starch significantly reduces the MOE of beams with P30,
H25, H20 facings for the X orthotropy direction, compared to analogous non-impregnated
beams, by 26.2%, 11.7%, 0.9%, respectively. In tropical conditions, W increases this property
by 9.7%, 11.7%, and 25.3%, respectively. For beams with the same facings P30, H25 and
H20, in dry conditions D, and for the Y orthotropy direction, MOE also decreases by 7.4%,
47.6%, and 45.4%, respectively, and in tropical conditions W, by 2.0%, 63.6%, and 72.7%.
It is also noticeable that clear differences in the modulus of elasticity of the beams in the
X and Y orthotropy directions were observed for E-type cells, 55.5%, 70.1%, and 65.2%
concerning the MOE in the Y direction, and in tropical conditions by 66.6%, 78.3%, and
74.1%, respectively. For non-impregnated beams, these relationships are very similar. For
beams with P30, H25, and H20 facings, in dry conditions D, the modulus of elasticity in
the X orthotropy direction is respectively higher by 62.1%, 60.5%, and 49.9% concerning
the MOE in the Y direction, and in tropical conditions W, by respectively, 62.3% 51.4%,
and 40.2%. In this case, a clear influence of impregnation on the modulus of elasticity of
beams with E-cells is visible. The presented results also illustrate the effect of large and
changing orthotropy of the tested beams. The changes result both from the use of starch
as an impregnating agent and the slender shape of the cells. It is clear that in the case of
an elongated E-cell with long free walls (l = 13 mm), impregnation weakens the elastic
properties of the core in the direction of the X and Y axes, but at the same time reduces the
difference between the modulus of elasticity in these directions.

The F-cell beams also show significant strength differences due to the impregnation of
the paper (Figure 12). FSH25XD beams show the highest modulus of elasticity with H25
facing, impregnated, in dry conditions D, and for the orthotropy direction X (2994 MPa).
FNH25XD beams achieve much lower MOE with H25 facing, not impregnated, in dry
conditions D, and for the same direction of orthotropy (2455 MPa). In dry conditions D,
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impregnation with starch improves the MOE of beams with P30, H25, H20 facings for
the X orthotropy direction, compared to non-impregnated beams by 6.2%, 18.0%, 5.4%,
respectively, and in tropical conditions W, by respectively −11.3% 12.5%, and 32.9%. Beams
with the same facings P30, H25, and H20, in dry conditions D, and for the direction of
orthotropy Y also show a higher MOE by 12.0%, −23.0%, and 12.0%, respectively, and in
tropical conditions W, lower MOE by respectively, 24.0%, 17.1%, and 3.9%. There were
also visible differences in the modulus of elasticity of the beams in the X and Y orthotropy
directions to MOE in the Y direction, and tropical conditions W, by 43.1%, 54.3%, and 59.5%,
respectively. The relationships are also similar for non-impregnated beams. When using
P30, H25, and H20 facing, in dry D conditions, the MOE of the beams in the X direction is
higher by 31.9%, 39.5%, and 33.4%, respectively, concerning the MOE in the Y direction,
and in tropical conditions W, by 36.6%, respectively, 38.8% and 37.3%. Therefore, it can be
concluded that in this case, the effect of the impregnation on the strength of the beams with
F-cells is visible. The changes result both from the use of starch as an impregnating agent
and the slender shape of the cells. There is a regularity that in the case of an elongated
F cell with short free walls (l = 6.3 mm), the impregnation strengthens the elastic properties
of the core in the direction of the X-axis. On the other hand, in the direction of the Y-axis,
the paper’s impregnation contributed to the reduction of the linear elasticity modulus.

3.3. Effect of Impregnation on the Energy Absorption

The more energy the composite can absorb, the more effective it is to protect the pro-
tected charge. The research (Figures 13–15) shows that the FNH25XD and FSH25XD beams
have the highest energy absorption capacity before and after impregnation Ea = 2474 mJ i
Ea = 2823 mJ, respectively.
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Figure 13. Illustration of the Ea relationship of honeycomb panels with a core of C-cells. Whiskers
represent standard deviations.

For beams with C-cells, under all climatic conditions, impregnation with starch signifi-
cantly reduces the amount of energy absorbed for the case of a facing used and the direction
of orthotropy (Figure 13). It should be noted that for beams with P30, H25, and H20 facings,
in dry conditions D, and for the orthotropy direction X, the amount of absorbed energy
decreases by 31.2%, 16.1%, and 49.4%, respectively, and in tropical conditions W, by −19.5%,
47.7%, and 43.3%. For beams with the same facings P30, H25, and H20, in dry conditions
D, and for the direction of orthotropy Y, the amount of energy absorbed also decreases by
−12.3%, 6.8%, and 61.4%, respectively, and in tropical conditions W, by −35.5, 3.9% and
82.3%, respectively. However, clear differences in the amount of absorbed energy were
observed dependent on the X and Y orthotropy directions, 3.0% concerning the amount of
energy absorbed in the Y direction, and in tropical conditions W, respectively 109.8%, 63.5%,
and 31.9% lower. For non-impregnated beams, these relationships are significantly more
favorable. For beams with P30, H25, and H20 facings, in dry conditions D, the amount of
absorbed energy in the X direction is respectively lower by 13.4%, 17.8%, and 11.3% about
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the amount of energy absorbed in the Y direction, and in tropical conditions W, by 68.2%,
15.0%, and 67.8%, respectively. Thus, the effect of impregnation on the reduction in the
amount of absorbed energy of beams with C-type cells is visible, but also on the change
of this property depending on the direction of orthotropy. The impregnation of the paper
caused a reduction in the ability to absorb energy in the X and Y directions. The differences
illustrated are significant and convincing to the honeycomb panels’ orthotropic properties
in terms of energy absorption.
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Figure 14. Illustration of the Ea relationship of honeycomb panels with an E-type core. Whiskers
represent standard deviations.
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Figure 15. Illustration of the Ea relationship of honeycomb panels with F-type core. Whiskers
represent standard deviations.

In the case of beams with E-cells, the effect of impregnation on the amount of energy
absorbed is presented in Figure 14. The greatest amount of absorbed energy is shown
by beams with P30 facing, not impregnated, in dry conditions D, and for the orthotropy
direction X (1019 mJ). In dry conditions D, impregnation with starch significantly reduces
the amount of absorbed energy for beams with P30, H25, H20 facings, for the X orthotropy
direction, compared to analogous non-impregnated beams by 3.3%, 12.2%, 26.4%, re-
spectively. This property also reduces by 16.5%, 12.8%, and 3.2% in tropical conditions,
respectively. For beams with the same facings P30, H25 and H20, in dry conditions D, and
for the direction of orthotropy Y, the amount of energy absorbed increases by 13.3%, 37.3%,
and 24.2%, respectively, and in tropical conditions W, by 26.1%, 49.8%, and 15.6%. It is also
noticeable that for E-type cells, clear differences were observed in the amount of energy
absorbed for the beams in the X and Y orthotropy directions; it is, respectively, 2.8%, 11.6%,
and 54.1% lower concerning the amount of energy absorbed in the Y direction, and tropical
conditions by 60.5%, 40.4%, and 69.9%, respectively. These relationships are different for
non-impregnated beams. For beams with P30, H25, and H20 facings, in dry conditions
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D, the amount of absorbed energy in the X direction is 18.4%, 37.6%, and 7.6% greater,
respectively, concerning the amount of energy absorbed in the Y direction, and in tropical
conditions W, by −1.8%, 37.6% and −48.2%, respectively. In this case, a variable influence
of impregnation on the amount of absorbed energy is visible for beams with E-cells. The
changes result both from the use of starch as an impregnating agent and the slender shape
of the cells. The regularity is drawn that in the case of an elongated E cell with long free
walls (l = 13 mm), the impregnation weakens the core’s ability to absorb energy in the
X-axis direction and increases this ability in the Y direction.

F-cell beams also show marked differences in the amount of energy absorbed due
to the impregnation of the paper (Figure 15). The highest amount of absorbed energy is
shown by FSH25XD beams with H25 facing, impregnated, in dry conditions D, and for the
orthotropy direction X (2822 mJ). A much smaller amount of absorbed energy is achieved by
FNH25XD beams with H25 facing, not impregnated, in dry conditions D, and for the same
direction of orthotropy (2475 mJ). In dry conditions D, impregnation with starch improves
the amount of absorbed energy for beams with P30, H25, H20 facings, for the X orthotropy
direction, about non-impregnated beams by 15.7%, 12.3%, 33.7%, respectively, and in
tropical conditions by W, respectively, by 18.3%, 5.4%, and 19.3%. Beams with the same
facing P30, H25, and H20, in dry conditions D, and for the orthotropy Y direction, show
a reduction in the amount of absorbed energy by 14.3%, –26.0%, and −4.9%, respectively,
and in tropical conditions W, a lower amount of absorbed energy by 20.2%, −1.7% and
6.2%, respectively. There were also clear differences in the energy absorbed for the beams
in the X and Y orthotropy directions: 65.8% concerning the amount of energy absorbed
in the Y direction, and tropical conditions by 60.9%, 24.2%, and 48.2%, respectively. The
relationships are also similar for non-impregnated beams. When using P30, H25, and
H20 facing, in dry conditions D, the amount of absorbed energy for the beams in the X
orthotropy direction is, respectively, 44.7%, 61.2%, and 50.9% greater than the amount of
energy absorbed in the Y direction, and in tropical conditions W, by 42.4%, 21.2% and
31.8%, respectively. Therefore, it can be concluded that in this case, impregnation’s effect
on the amount of absorbed energy is visible for beams with F-cells. The changes result both
from the use of starch as an impregnating agent and also from the slender shape of the cells
with short free walls (l = 6.3 mm). The impregnation increases the amount of absorbed
energy, especially in the direction of the X-axis. On the other hand, in the direction of the
Y-axis, the impregnation of the paper tended to reduce the amount of absorbed energy.

The observations listed above are generally consistent with the current state of knowl-
edge. For example, Pohl [11] showed in his work that an adequately selected impregnating
agent increases the strength (MOR) and stiffness (MOE) of light boards with a paper core.
On the other hand, the climatic conditions with high air humidity have been repeatedly
quoted in the literature [53,54,58] as having a destructive effect on the mechanical properties
of furniture boards. Furthermore, the influence of the geometry, wall thickness, and the
orientation of the core cells on the stiffness and strength of lightweight three-layer panels is
also known as meaningful [42,68,78].

3.4. Statistical Analysis

In order to determine the influence of impregnation and other variable factors on the
mechanical properties of the modeled furniture panels, a statistical analysis was performed
using the Statistica 13.3 program (StatSoft Polska Sp. z oo, Kraków, Poland).

The statistical model included five factors (starch impregnation, cell type (C, E, F),
facing type (H20, H25, P30), climate condition (D, W), orthotropy direction (X, Y)) and
three features (MOR, MOE and Ea). Because panels with a paper honeycomb core are
characterized by strong orthotropy manifested by significant differences in MOR, MOE and
Ea values for the X and Y directions, the data for statistical analysis was divided into two
groups. The first group consisted of factors (starch impregnation, cell type, facing type, and
climate condition) and three features (MOR, MOE and Ea) for the direction of X orthotropy
as well as appropriate factors and features for the direction of Y orthotropy. On this basis, an
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analysis of the correlation of the analyzed features in individual experiments was prepared.
The correlation coefficients presented in Table 4 show that the features (MOR, MOE and Ea)
for the X and Y orthotropy directions, respectively, are strongly correlated with each other.
Because all the determined correlation coefficients (r) are statistically significant (p < 0.05),
it was concluded that the further application of the multiple features model to assess the
significance of the influence of individual factors on these features could be burdened with
some “redundancy”. In this situation, it was justified to use a transformation that would
allow us to analyze the influence of all factors differentiating the experiment’s results on
all features simultaneously but avoiding their mutual strong linear correlation. For this
purpose, principal components analysis was used [79,80], in which three features of MOR,
MOE and Ea were transformed into three principal components (1), (2), (3), which are their
linear combinations (Figure 16).

Table 4. The matrix of correlation of features in individual experiments.

Features

MOR MOE Ea

r r r

X Y X Y X Y

MOR 0.83 0.77 0.92 0.51

MOE 0.83 0.77 0.65 0.34

Ea 0.92 0.51 0.65 0.34
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Figure 16. Principal components of feature connected with beams orthotropy in X and Y direction.

Figure 16 shows that for further analysis of the significance of the influence of selected
factors on three features (MOR, MOE and Ea) for the direction of X orthotropy, only the first
principal component (1) should be left because it explains about 87% of the entire variability
in the model. Moreover, in the first component (1), the individual features (MOR, MOE
and Ea) are proportionally represented. In the case of the features from the experiment
for the direction of the Y orthotropy, the first two principal components (1), (2) should be
taken into account because together they explain more than 93% of the entire variability of
the model. The contribution of individual features to the main components is presented in
Table 5. It is worth noting that in the experiment for the direction of the Y orthotropy in the
second principal component (2), the feature Ea plays a fundamental role.
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Table 5. Contribution of individual features to the principal components.

Features
X Y

1 1 2

MOR 0.37 0.41 0.03

MOE 0.30 0.36 0.24

Ea 0.33 0.23 0.73

Taking into account the above considerations, the tests of the hypotheses about the
significance of differences in mean values for the first principal component (1) in the
experiment for the direction of orthotropy X (one-way and multivariate ANOVA) and the
significance of differences in mean values for the first and second principal components (1),
(2) were started, in the experiment for the direction of orthotropy Y (univariate MANOVA).
Table 6 shows that the influence of individual factors on the selected main components (1)
and (1), (2) for the directions of orthotropy X and Y, respectively, is statistically significant
(p < 0.05). The HSD Tukey test was performed on this basis, which indicated statistically
significant differences in the results for selected variable factors (Tables 7 and 8).

Table 6. The significance of the influence of individual factors on the principal components for the
directions of X and Y orthotropy.

Factors
p

X Y

Cel type 0.000000 0.000000

Facing type 0.016232 0.000000

Climate condition 0.000000 0.000000

Starch impregnation 0.035712 0.000970

Table 7. Summary of statistically homogeneous groups determined on the basis of the HSD Tukey
test for selected variable factors in the research for the direction of orthotropy X. (The symbol ****
meaning that results are not statistically different).

Variable Factor Homogeneous Group

Cel type a b

F ****

E ****

C ****

Facing type a b

H25 ****

P30 **** ****

H20 ****

Climate condition a b

D ****

W ****

Starch impregnation a b

Y ****

N ****
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Table 7 shows that similar mean values of the principal component (1) are obtained for
the X orthotropy direction. Therefore, MOR is obtained for E and C cells, and statistically
different for an F cell. These differences are clearly visible when comparing Figures 6–15.
For example, the average MOR value for CSP30XD, ESP30XD, FSP30XD is 4.3 MPa, 5.1 MPa
and 11.2 MPa, respectively. Thus, it can be seen that the mean MOR values for boards
with E and C cells are similar, and the differences are statistically insignificant. On the
other hand, for the F-type cells, the obtained values are statistically different, which also
positively and statistically significantly increases both MOR and MOE. At the same time, it
can be seen that each type of cell significantly affects the amount of energy Ea absorbed by
the panels.

Further analysis of Table 7 leads to the following observations. Similar mean values of
the principal component (1) were obtained for facing type H25 and P30, and statistically
different for facing type H20. As an example, we can give the average MOR values for
CSP30XW, CSH25XW, CSH20XW, which are equal to 2.7 MPa, 2.9 MPa and 2.4 MPa,
respectively, and for ESP30XW, ESH25XW, ESH20XW or FSP30XW, FSH25XW, FSH20XW
boards, respectively 2.9 MPa, 2.6 MPa, and 2.6 MPa, 7.4 MPa, 7.2 MPa and 6.8 MPa. Thus,
it can be seen that the average MOR values for panels with H25 and P30 facings are similar,
and the differences are statistically insignificant. Moreover, these facings have a positive
effect on increasing both MOR and MOE compared to the H20 type facings because in this
case, the average values of the principal component (1) are statistically different and lower.
The comparison of Figures 13–15 also shows that Ea for panels with H25 facing has higher
values than panels with P30 and H20 facing.

Table 7 also shows a statistically significant difference in the mean values of the
principal component (1) obtained for tropical climatic conditions (W). A similar regularity
applies to the lack of impregnation of the core cells with starch (Y). Because, in both cases,
the differences are clearly visible in Figures 6–15, it can only be concluded that under dry
conditions (D), the MOR values for the cellular plates reach the highest values, similar
to the impregnation of paper with starch (S). The beneficial effect of impregnation (S)
on the MOR of the tested boards is visible based on the results of tests in dry (D) and
tropical (W) conditions. For example, the average MOR value for CSP30XD, ESP30XD,
FSP30XD boards is 4.3 MPa, 5.1 MPa, and 11.2 MPa, respectively, and for the boards without
impregnation (N), CNP30XD, ENP30XD, FNP30XD, respectively, are 4.2 MPa, 6.3 MPa, and
11.0 MPa. On the other hand, the average MOR value for CSP30XW, ESP30XW, FSP30XW
boards is equal to 2.7 MPa, 2.9 MPa, 7.4 MPa, respectively, and for CNP30XW, ENP30XW,
FNP30XW boards, 1.8 MPa, 2.5 MPa, and 6.8 MPa, respectively. It can also be seen that
the impregnation (Y) of the core cells causes variations in the amount of energy absorbed.
Comparison of Figures 13–15 shows that Ea for plates with non-impregnated cells has
higher values compared to boards with impregnated cells.

Table 8 shows the statistical significance for the model in a multidirectional classifi-
cation, therefore taking into account many factors and their interactions. Of course, the
values of the first principal component (1) were tested here. It is clear from this table that
all factors and their interactions are statistically significant (p < 0.05).

Table 9 shows that for the direction of the Y orthotropy, different mean values of the
principal components (1), (2) were obtained, thus MOR and the linearly correlated MOE
for the selected cell types. For example, the average MOR value for CSP30YD, ESP30YD,
FSP30YD is 4.6 MPa, 2.1 MPa, and 5.9 MPa, respectively. The MOE value for the same
panels is 1472 MPa, 660 MPa, and 1290 MPa, respectively, and the Ea value is 1285 mJ,
1959 mJ, and 1031 mJ, respectively. Thus, it can be seen that the average values of MOR,
MOE, Ea for the plates are different and statistically significant.
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Table 8. Statistical significance for the model in the multidirectional classification takes into account
the X orthotropy direction.

Factors and Their Interactions p

Core 0.000000

Facing 0.000000

Conditions 0.000000

Starch 0.000000

Core*Facing 0.000000

Core*Conditions 0.000000

Facing*Conditions 0.000000

Core*Starch 0.000000

Facing*Starch 0.002824

Conditions*Starch 0.009293

Core*Facing*Conditions 0.000000

Core*Facing*Starch 0.000067

Core*Conditions*Starch 0.000000

Facing*Conditions*Starch 0.001572

Core*Facing*Conditions*Starch 0.007842

Table 9. Summary of statistically homogeneous groups determined on the basis of the HSD Tukey
test for selected variable factors in the research for the direction of orthotropy Y. (The symbol ****
meaning that results are not statistically different).

Variable Factor Homogeneous Group

Cel type a b c

E ****

C ****

F ****

Facing type a b

H20 ****

H25 ****

P30 ****

Climate condition a b

W ****

D ****

Starch impregnation a b

N ****

Y ****

Moreover, the analysis of Table 9 leads to further observations that similar mean values
of component (1) were obtained for facing type H25 and P30 and statistically different
for facing type H20. As an example, we can give the average MOR values for CSP30YW,
CSH25YW, CSH20YW which are equal to 3.0 MPa, 2.9 MPa, and 2.5 MPa, respectively, and
for ESP30YW, ESH25YW, ESH20YW or FSP30YW, FSH25YW, FSH20YW boards, respec-
tively, 1.5 MPa, 1.1 MPa, 1.0 MPa, 3.5 MPa, 4.0 MPa and 2.8 MPa. Different mean values
of the component (2) were obtained for the same facings. For example, for the CSP30YW,
CSH25YW, CSH20YW, the MOE is 907 MPa, 1026 MPa, and 828 MPa, respectively, and
for the ESP30YW, ESH25YW, ESH20YW or FSP30YW, FSH25YW, FSH20YW plates, it is
349 MPa, 242 MPa, 221 MPa, 626 MPa, 646 MPa, and 542 MPa, respectively. Thus, it can
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be seen that the average MOR values for panels with H25 and P30 facings are similar,
and the differences are statistically insignificant. In addition, these facings have a positive
effect on increasing both MOR and MOE compared to H20 facings. The comparison of
Figures 13 and 14 also shows that Ea for panels with P30 facing has higher values than
panels with H25 and H20 facings.

Table 9 also shows a statistically significant difference in the mean values of the
main component (1) obtained for dry climatic conditions (D). A similar pattern applies to
the impregnation of core cells with starch (Y). Because, in both cases, the differences are
clearly visible in Figures 6–15, it can only be concluded that under dry conditions (D), the
MOR and MOE values for the honeycomb boards reach the highest values, similar to the
impregnation of paper with starch (S). The beneficial effect of impregnation (S) on the MOR
and MOE of the tested boards is visible on the basis of the results of tests in dry (D) and
tropical (W) conditions. For example, the average MOR value for the CSP30YD, ESP30YD,
FSP30YD boards is 4.6 MPa, 2.1 MPa and 5.9 MPa, respectively, and for the boards without
impregnation (N), CNP30YD, ENP30YD, FNP30YD, respectively, are 3.2 MPa, 2.0 MPa, and
5.5 MPa. On the other hand, the average MOR value for the CSP30YW, ESP30YW, FSPand
FSP30YW boards equals 3.0 MPa, 1.5 MPa, and 3.5 MPa, respectively, and for CNP30YW,
ENP30YW, FNP30YW boards, respectively, 1.6 MPa, 1.2 MPa and 3.5 MPa. The MOE value
for the same CSP30YW, ESP30YW, FSP30YW and CNP30YW, ENP30YW, FNP30YW panels
is equal to 907 MPa, 349 MPa, 626 MPa, 701 MPa, 355 MPa and 776 MPa, respectively. The
comparison of Figures 13 and 14 also shows that Ea for panels with cells impregnated with
P30 facings has higher values compared to panels with cells not impregnated with starch.

In order to be able to assess the statistical significance of the factor interactions, only
the value of the main component was taken into account in the multidirectional analy-
sis (1). Table 10 shows the statistical significance for the model in the multidirectional
classification for the value of only the component (1). It was decided so because, for
component (1), we still maintain as much as 70% of the model’s variability (Figure 16).
This table shows that only the interactions of Conditions*Starch, Core*Facing*Conditions,
Core*Conditions*Starch, Core*Facing*Conditions*Starch are not statistically significant.

Table 10. Statistical significance for the model in the multidirectional classification taking into account
the direction of the Y orthotropy.

Factors and Their Interactions p

Core 0.000000

Facing 0.000000

Conditions 0.000000

Starch 0.000000

Core*Facing 0.000000

Core*Conditions 0.000000

Facing*Conditions 0.019208

Core*Starch 0.000000

Facing*Starch 0.014356

Conditions*Starch 0.661232

Core*Facing*Conditions 0.153976

Core*Facing*Starch 0.000074

Core*Conditions*Starch 0.057297

Facing*Conditions*Starch 0.016343

Core*Facing*Conditions*Starch 0.133444

4. Conclusions

The conducted experiments and the analysis of the results made it possible to de-
termine how the variable above-mentioned factors affect the strength of the three-layer

108



Materials 2022, 15, 395

honeycomb panels (MOR), the linear elasticity modulus (MOE), and the ability to absorb
energy (Ea). The most important conclusions and observations are listed below:

• There is a statistically proven significant relationship between the impregnation of
paper with modified starch and the mechanical properties of the produced honey-
comb panels with variable cell geometry and various types of facing, under varying
temperature and relative air humidity conditions.

• In dry conditions (T = 25 ◦C/H = 45%), the impregnation increases the flexural strength
(MOR) of the honeycomb panels by an average of 18% and the linear elasticity modulus
(MOE) by 7%. The average ability to absorb energy after starch impregnation increased
by 6%.

• In tropical conditions (T = 28 ◦C/H = 85%), the impregnation increases the flexural
strength of the honeycomb panels by an average of 22% and the modulus of linear
elasticity by 14%. The average ability to absorb energy after starch impregnation
increased by 6%.

• FSH25YD and FSP30YW lightweight panels show the highest flexural strength in dry
and tropical conditions.

• FSH25YD and FSH25YW lightweight panels are the stiffest in dry and tropical conditions.
• The most energy in dry and tropical conditions is absorbed by FSH25YD and FSP30YW

lightweight panels, respectively.
• F-shaped cells and H25 facings have the best influence on the mechanical properties

of the honeycomb panels.
• F-shaped cells and P30 facings most favorably affect the energy absorption capacity of

the honeycomb panels.
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67. Wojnowska, M.; Peliński, K.; Maslej, M.; Słonina, M.; Smardzewski, J. Elastic properties of periodic cores structures of multilayers
furniture panels. J. Adv. Technol. Sci. 2017, 6, 1249–1263.

111



Materials 2022, 15, 395

68. Słonina, M.; Dziurka, D.; Smardzewski, J. Experimental Research and Numerical Analysis of the Elastic Properties of Paper Cell
Cores before and after Impregnation. Materials 2020, 13, 2058. [CrossRef]

69. Sam-Brew, S.; Semple, K.; Smith, G.D. Preliminary Experiments on the Manufacture of Hollow Core Composite Panels. For. Prod.

J. 2011, 61, 381–389. [CrossRef]
70. ISO 1924-2; Paper and Board—Determination of Tensile Properties—Part 2: Constant Rate of Elongation Method (20 Mm/Min).

ISO: Geneva, Switzerland, 2008.
71. ISO 13061-6:2014; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 6:

Determination of Ultimate Tensile Stress Parallel to Grain. Available online: https://www.iso.org/standard/60068.html (accessed
on 13 November 2018).

72. EGGER l Mobilier l Agencement Intérieur l Design l Panneaux et Sols. Available online: https://www.egger.com/shop/fr_FR
(accessed on 25 August 2021).

73. IKEA Industry Poland—Strona Główna. Available online: https://industry.ikea.pl/ (accessed on 25 August 2021).
74. HOMANIT GmbH & Co. KG. Available online: https://www.homanit.pl/pl/ (accessed on 25 August 2021).
75. Maarof, S.; Jones, P. Thermal comfort factors in hot and humid region: Malaysia. In Proceedings of the International Conference

on Smart and Sustainable Built Environments, Delft, The Netherlands, 15–19 June 2009. Available online: http://www.irbnet.de/
daten/iconda/CIB14241.pdf (accessed on 18 August 2021).

76. Cheng, V.; Ng, E.; Chan, C.; Givoni, B. Outdoor thermal comfort study in a sub-tropical climate: A longitudinal study based in
Hong Kong. Int. J. Biometeorol. 2012, 56, 43–56. [CrossRef] [PubMed]

77. EN 310: 1993; Wood-Based Panels—Determination of Modulus of Elasticity in Bending and of Bending Strength. European
Committee for Standardization: Brussels, Belgium, 1993; pp. 1–14.

78. Hao, J.; Wu, Y.; Oporto, G.; Liu, W.; Wang, J. Structural analysis and strength-to-weight optimization of wood-based sandwich
composite with honeycomb core under three-point flexural test. Eur. J. Wood Wood Prod. 2020, 78, 1195–1207. [CrossRef]

79. Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A 2016,
374, 20150202. [CrossRef] [PubMed]

80. Kherif, F.; Latypova, A. Chapter 12—Principal component analysis. In Machine Learning; Academic Press: Cambridge, MA, USA,
2020; pp. 209–225; ISBN 9780128157398. [CrossRef]

112



Citation: Chybiński, M.; Polus, Ł.

Mechanical Behaviour of

Aluminium-Timber Composite

Connections with Screws and

Toothed Plates. Materials 2022, 15, 68.

https://doi.org/10.3390/

ma15010068

Academic Editors: Andrea Sorrentino

and Daolun Chen

Received: 18 November 2021

Accepted: 20 December 2021

Published: 22 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Mechanical Behaviour of Aluminium-Timber Composite
Connections with Screws and Toothed Plates
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Abstract: This paper presents an investigation of the load-slip behaviour of aluminium-timber
composite connections. Toothed plates with bolts are often used for connecting timber structural
members with steel structural members. In this paper, toothed plates (C2-50/M10G, C2-50/M12G
or C11-50/M12) have been used as reinforcement in aluminium-timber screwed connections for the
first time. The push-out test specimens consisted of laminated veneer lumber slabs, aluminium alloy
beams, and hexagon head wood screws (10 mm × 80 mm and 12 mm × 80 mm). Of the specimens,
12 additionally had toothed plates as reinforcement, while 8 had no reinforcement. The load carrying-
capacity, the mode of failure and the load-slip response of the strengthened and non-strengthened
screwed connections were investigated. The use of toothed plate connectors was found to be effective
in increasing the strength of aluminium-timber composite connections and ineffective in improving
their stiffness. The examined stiffness and strength of the connections can be used in the design and
numerical modelling of aluminium-timber composite beams with reinforced screwed connections.

Keywords: aluminium-timber structures; laminated veneer lumber (LVL); toothed plate; screwed
connection; shear connection; push-out test

1. Introduction

Currently, great importance is attached to civil engineering solutions being sustainable.
The use of timber and engineered wood products in the construction industry reduces the
carbon footprint. Growing trees absorb CO2 from the atmosphere. Furthermore, wood
products require less fossil fuels to be produced than other building materials, such as
steel [1]. The limitations of sawn timber were overcome after the development of engineered
wood products, such as glued-laminated timber, cross-laminated timber and laminated
veneer lumber [2]. Recent scientific studies on timber structures can be divided into four
groups: material tests (e.g., [3,4]), connections for timber elements (e.g., [5,6]), strengthening
of timber elements (e.g., [7–9]), and composite structures with timber structural members.

A composite beam consists of two or more structural elements which are perma-
nently joined [10]. Timber can be combined with non-wood building materials, e.g., with
steel [11,12], concrete [13,14], aluminium [15,16] or glass [17,18]. Furthermore, structural el-
ements made of wood-based materials can also be combined with each other [19]. Recently,
the experimental behaviour of timber-concrete and steel-timber composite structures has
been investigated in a number of studies [20–22]. However, the behaviour of aluminium-
timber composite structures has only been studied in a few tests [23–27]. The behaviour of
composite elements depends on their connections. In a simply supported composite beam,
the slab is designed to resist compression, the girder is designed to resist tension, while
shear is transferred through connectors referred to as “shear connectors”. There are many
types of shear connections used in composite beams with timber elements (see Table 1).
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Table 1. Shear connections used in composite beams with timber elements.

Composite Beam Shear Connection Example

steel-timber self-drilling screw [11]

steel-timber coach screw [21]

steel-timber coach screw [21]

aluminium-LVL hexagon head wood
screw [25]

aluminium-LVL bolt [27]

LVL-concrete
rectangular notch

reinforced with a coach
screw [28]

ach 

timber-timber coach screw [29][29] 

timber-timber fully threaded inclined
screw [30]

ρ

Screws with hexagonal heads may be used in laterally loaded connections [31]. A
large diameter of a hexagonal head wood screw maximises screw resistance against head
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pull-through. Self-tapping screws are optimised for loading in the axial direction and
they can be installed without pre-drilling [32]. The installation of self-tapping screws in
cold-formed steel beams is relatively simple. However, when composite beam girders are
made of beams with thick flanges, the installation of self-tapping screws requires the use of
additional elements to connect the slabs with the girders [33].

The results of experimental tests on aluminium-timber composite beams with screwed
connections were presented in [25]. Hexagon head wood screws were used to join an
aluminium beam with an LVL slab. The failure mode of the analysed screwed connections
was associated with the crushing of the timber, the formation of one plastic hinge within
the connector, and the hole ovalisation in the aluminium beam flange. The stiffness and
strength of the connection per one connector were relatively low (k0.4 = 5.5 kN/mm,
Pult = 15.1 kN). For this reason, the authors of this paper proposed to use a toothed plate in
the screwed connection. The main goal of this paper was to determine the stiffness and the
load-carrying capacity of the screwed connection with the toothed plate.

2. Materials and Methods

2.1. LVL

The material parameters of LVL are presented in Table 2. The engineered wood product
was fabricated from Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. H.
Karst) veneers [34].

Table 2. The material parameters of LVL [35].

Material Parameters Value

Mean value of modulus of elasticity (parallel to grain) E0,mean [MPa] 14,000
Bending strength (flatwise, parallel to grain) fm,0,flat,k [MPa] 50.0

Tension strength (parallel to grain) ft,0,k [MPa] 36.0
Compression strength (parallel to grain) fc,0,k [MPa] 40.0

Mean value of density ρmean [kg/m3] 550.0

2.2. Aluminium Alloy

The mechanical properties of the AW-6060 T6 aluminium alloy were determined in a
tensile test [36] and are presented in [37] (see Table 3).

Table 3. Mean values of Young’s modulus, the 0.2% proof strength and the tensile strength of the
AW-6060 T6 aluminium alloy [37].

Parameter Mean Value

Young’s modulus [GPa] 66.4 ± 0.51
0.2% proof strength [MPa] 181.5 ± 1.92

Tensile strength [MPa] 209.8 ± 1.05

2.3. Shear Connectors

Grade 5.8 hot dip galvanised DIN 571 [38] hexagon head wood screws 10 mm × 80 mm
and 12 mm × 80 mm were used as shear connectors (see Tables 4 and 5). The mechanical
properties of the steel used in the screws were determined experimentally in accordance
with [36]. Four round samples were created from 10 mm screws and another four round
samples were created from 12 mm screws for the purpose of the tensile tests. The thread
was removed in the middle of the screw to obtain a smooth shank and to install the
extensometer on the sample (see Figure 1).
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Table 4. Mean values, 5%-quantiles and coefficients of variation for the 10 mm screw used in the tests.

Parameter Mean Value 5%-Quantile CV [%]

Shank diameter d0 [mm] 9.43 9.39 0.38
Length L [mm] 85.34 85.07 0.29

Outer thread diameter d1 [mm] 9.47 9.23 2.41
Inner thread diameter d2 [mm] 6.95 6.88 0.88

Pitch p [mm] 4.51 4.49 0.48
Thread length Lt [mm] 59.64 59.04 0.96
Shank length Ls [mm] 16.39 16.24 0.86

Head width across flats F [mm] 16.78 16.67 0.61
Head width across corners C [mm] 19.07 18.97 0.51

Head height H [mm] 6.88 6.86 0.24

Table 5. Mean values, 5%-quantiles and coefficients of variation for the 12 mm screw used in the tests.

Parameter Mean Value 5%-Quantile CV [%]

Shank diameter d0 [mm] 11.31 11.29 0.17
Length L [mm] 88.82 88.52 0.33

Outer thread diameter d1 [mm] 11.62 11.57 0.47
Inner thread diameter d2 [mm] 8.90 8.89 0.09

Pitch p [mm] 4.81 4.78 0.45
Thread length Lt [mm] 62.13 61.94 0.29
Shank length Ls [mm] 15.63 15.27 2.18

Head width across flats F [mm] 18.66 18.62 0.19
Head width across corners C [mm] 21.22 21.18 0.19

Head height H [mm] 7.89 7.84 0.57

the extensometer on the sample (see Figure 1). 

(a) (b) 

Figure 1. A shear connector: (a) 10 mm screw; (b) 12 mm screw.

The tensile tests were conducted using an Instron 4483 machine (Instron, High-
Wycombe, Buckinghamshire, UK) and an Epsilon 3442-010M-025M-ST extensometer
(Epsilon, Jackson, WY, USA) with a 10 mm gauge. The displacement rate was kept constant
(0.05 mm/s).

2.4. Toothed Plates

Toothed-plate connectors (C2-50/M10G, C2-50/M12G or C11-50/M12) were used to
reinforce the aluminium-timber screwed connections investigated in this paper.

A toothed plate (type C2, Bulldog) is a single-sided connector made from a circular
plate. Its edges are cut and bent over to form triangular teeth projecting from one face at
90◦ to the face (see Figure 2a). Around the screw hole, there is a flange projecting from
the same face as the teeth. The dimensions of the toothed plates used in this study are
presented in Table 6. They were made from cold rolled uncoated low carbon narrow strips
of HC340LA steel (high yield strength steel for cold forming) [39]. The toothed plates were
hot dip galvanised (≥45 µm) to protect them from corrosion.
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≥ μ

(a) (b) 

Figure 2. Toothed-plate connectors: (a) type C2, Bulldog; (b) C11, Geka.

A toothed-plate connector (type C11-50/M12, Geka) is a single-sided connector made
from a round plate with spikes on one side of the plate (see Figure 2b). The spikes are
equidistant and are arranged in one circle. The toothed plate has a bolt-hole through its
centre with a flange around the bolt-hole projecting from the same face as the spikes. The
dimensions of the toothed plates used in this study are presented in Table 7. They were
made of malleable cast iron EN-GJMB-350-10 (PN-JM 1130) according to EN 1562 [40] and
galvanised (Fe/Zn12/C) to protect them from corrosion.

Table 6. Dimensions of C2 (Bulldog) connectors 1,2 [41].

Connector
Type

Diameter
dc [mm]

Height
hc [mm]

Thickness
Without

Zinc-Coating
t [mm]

Hole
Diameter
d1 [mm]

Flange
Height

h3 [mm]

Number
of

Teeth

C2-50/M10G 50 6.6 1.00 10.4 4.0 12
C2-50/M12G 50 6.6 1.00 12.4 4.0 12

1 Tolerances: thickness t in accordance with [42,43], other dimensions: ±1.50 mm. 2 Limit deviations for diameter
d1: plus 0.30 mm, minus 0 mm.

117



Materials 2022, 15, 68

Table 7. Dimensions of C11 (Geka) connectors 1 (connector type: C11-50/M12) [41].

Diameter
dc [mm]

Height
hc [mm]

Thickness
t [mm]

Diameter
of Centre Hole

d1 [mm]

Diameter
of Inner Circle

d2 [mm]

50 15 3 12.5 40

Diameter
of Spikes at Base

d4 [mm]

Diameter
of Flange
d5 [mm]

Radius
r [mm]

Height of Flange
from Face
h1 [mm]

Number
of Spikes

6 17.0 4 3 8
1 Tolerances on: height hc, thickness t, radius r and height of flange from face h1: ±0.50 mm, other dimensions:
±0.80 mm.

2.5. Push-Out Tests

The tests were carried out on twenty models using an Instron 8505 Plus machine
(In-stron, High Wycombe, Buckinghamshire, UK). Each experimental model consisted of
two timber slabs made of LVL and a beam made of the AW-6060 T6 aluminium alloy (see
Figure 3). The LVL slabs were connected with the aluminium beams using four variants of
connections. In the first variant, eight hexagon head wood screws (10 × 80 mm2) without
reinforcing toothed plates were used (specimen R10.1–R10.4). In the second variant, eight
hexagon head wood screws (10 × 80 mm2) with reinforcing toothed plates (C2-50/M10G,
Bulldog) were used (specimens 10.1–10.4). In the third variant, eight hexagon head wood
screws (12 × 80 mm2) without reinforcing toothed plates were used (specimen R12.1–R12.4).
In the four variant, eight hexagon head wood screws (12 × 80 mm2) with reinforcing toothed
plates (C2-50/M12G, Bulldog) were used (specimens 12.1–12.4). In the fifth variant, eight
hexagon head wood screws (12 × 80 mm2) with reinforcing toothed plates (C11-50/M12,
Geka) were used (specimens 12.5–12.8).

  
(a) (b) 

Figure 3. The tested specimens: (a) without reinforcing toothed plates; (b) with reinforcing
toothed plates.

The holes in the aluminium beams had the same diameter as the screws to reduce the
slip between the aluminium beams and the LVL slabs. The pre-drilling diameter in LVL was
7 mm for the 10 mm screw and 8 mm for the 12 mm screw. Pre-drilling started the course of
the screw and created pilot holes. Furthermore, the installation of the hexagon head wood
screws required less effort. In each specimen, screws were inserted in the face withdrawal
direction using a torque wrench (Sandvik Belzer, IZO-I-100, 10–100 Nm). The tread-grain
angle was 90◦. The torque level was measured during the insertion of the screws using a
torque wrench and recorded at the end of the insertion process (35 Nm for 10 mm screw,
50 Nm for 12 mm screw). The toothed plates were pressed into LVL using a hydraulic press
and a compressive force equal to 35 kN. The spaces between the screws were 50 mm in the
transverse direction and 60 mm in the longitudinal direction. The staggered spacing was
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used because of the dimensions of the toothed plates. The loading direction was parallel to
the LVL grain. Linear variable differential transformers (LVDTs) were used to measure the
longitudinal slip between the LVL slabs and the aluminium beam, and the horizontal move
of the sample (see Figures 4–6).

 

Figure 4. The location of the LVDTs on the specimen without reinforcing toothed plates: (a) screws
10 × 80; (b) screws 12 × 80.
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Figure 5. The location of the LVDTs on the specimen with reinforcing toothed plates: (a) screws
10 × 80 and toothed-plate connectors (type C2-50/M10G); (b) screws 12 × 80 and toothed-plate
connectors (type C2-50/M12G, Bulldog).

The push-out tests were performed in line with [44]. In the first part of the test, a
load control regime was applied to achieve a regular shape of the load–slip curve and
to determine the connection slip modulus for a shear force equal to 40% of Fmax. In the
second part of the test, a constant rate of displacement was used to evaluate the behaviour
of the connection once the ultimate load had been achieved. The shear force was first
increased from 0 to 40% of Fest over two minutes, and it remained at this level for the next
30 seconds. Afterwards the load was reduced from 40% to 10% of Fest and kept at this
level for additional 30 seconds. Subsequently, the load was increased from 10% to 70% of
Fest. Up to that point, the push-out tests were performed using a load control regime, and
from then on—using a displacement control regime (the piston velocity was 5.0 mm/min).
The ultimate load Fest = 130.0 kN was calculated based on Equation (8.10e) from Eurocode
5 [45]. The value of Fest was modified during the tests taking into account the previous
results. The loading procedure was also redefined.
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Figure 6. The location of the LVDTs on the specimen with reinforcing toothed plates—screws 12 × 80
and toothed-plate connectors (type C11-50/M12, Geka).

3. Results and Discussion

3.1. The Results of the Tensile Tests of the Steel Used in the Screws

The tensile strength of the steel used in the screws was 553.9 ± 23.6 MPa (4.3%) [46].
The measurement error for the tensile strength of the steel used in the screws was deter-
mined using Student’s t-distribution with 7 degrees of freedom and a confidence level
of 95%.

3.2. The Results of the Push-Out Tests

The results of the push-out tests are presented in Figures 7–9 and in Tables 8–12. The
symbols used in Tables 8–12 are as follows: Pult, ultimate load per one connector; sult, slip
corresponding to Pult; k0.4 and k0.6, slip moduli per one connector. The measurement errors
presented in Tables 8–12 were determined using Student’s t-distribution with 3 degrees of
freedom and a confidence level of 95%.
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Figure 7. The load–slip curves from the push-out tests of the shear connections with 10 mm screws
and with toothed-plate connectors (type C2-50/M10G, Bulldog) in specimens 10.1–10.4 or without
toothed-plate connectors in specimens R10.1-R10.4.

 

Figure 8. The load–slip curves from the push-out tests of the shear connections with 12 mm screws
and with toothed-plate connectors (type C2-50/M12G, Bulldog) in specimens 12.1–12.4 or without
toothed-plate connectors in specimens R12.1-R12.4.

 

Figure 9. The load–slip curves from the push-out tests of the shear connections with 12 mm screws
and with toothed-plate connectors (type C11-50/M12, Geka) in specimens 12.5–12.8 or without
toothed-plate connectors in specimens R12.1-R12.4.
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Table 8. The results of the push-out tests of the shear connections with 10 mm screws and without
toothed-plate connectors (per one connector).

Parameter
Specimen Mean

(R10.1–R10.4)R10.1 R10.2 R10.3 R10.4

Pult [kN] 17.1 16.2 17.3 16.2 16.7 ± 0.9 (5.6%)
sult [mm] 14.4 23.0 12.4 16.9 16.7 ± 7.3 (43.9%)

k0.4 [kN/mm] 4.4 8.6 9.1 4.3 6.6 ± 4.1 (62.8%)
k0.6 [kN/mm] 4.2 7.9 7.8 4.7 6.2 ± 3.1 (51.1%)

Table 9. The results of the push-out tests of the shear connections with 10 mm screws and with
toothed-plate connectors (type C2-50/M10G, Bulldog) (per one connector).

Parameter
Specimen Mean

(10.1–10.4)10.1 10.2 10.3 10.4

Pult [kN] 20.7 20.5 22.6 22.3 21.5 ± 1.7 (8.0%)
sult [mm] 11.7 12.3 14.0 13.0 12.8 ± 1.6 (12.3%)

k0.4 [kN/mm] 4.8 6.1 8.3 6.5 6.4 ± 2.3 (35.8%)
k0.6 [kN/mm] 5.0 6.0 6.9 5.6 5.9 ± 1.3 (21.6%)

Table 10. The results of the push-out tests of the shear connections with 12 mm screws and without
toothed-plate connectors (per one connector).

Parameter
Specimen Mean

(R12.1–R12.4)R12.1 R12.2 R12.3 R12.4

Pult [kN] 21.4 21.9 22.9 22.9 22.3 ± 1.2 (5.4%)
sult [mm] 13.5 27.6 26.3 28.5 24.0 ± 11.2 (46.7%)

k0.4 [kN/mm] 6.8 8.9 12.4 5.9 8.5 ± 4.6 (54.1%)
k0.6 [kN/mm] 6.0 7.6 9.0 5.8 7.1 ± 2.4 (33.6%)

Table 11. The results of the push-out tests of the shear connections with 12 mm screws and with
toothed-plate connectors (type C2-50/M12G, Bulldog) (per one connector).

Parameter
Specimen Mean

(12.1–12.4)12.1 12.2 12.3 12.4

Pult [kN] 27.1 26.4 28.4 28.3 27.6 ± 1.5 (5.6%)
sult [mm] 12.9 12.5 13.1 12.5 12.8 ± 0.5 (3.7%)

k0.4 [kN/mm] 6.2 7.7 9.2 7.0 7.5 ± 2.0 (26.9%)
k0.6 [kN/mm] 6.2 7.4 8.5 7.0 7.3 ± 1.5 (20.9%)

Table 12. The results of the push-out tests of the shear connections with 12 mm screws and with
toothed-plate connectors (type C11-50/M12, Geka) (per one connector).

Parameter
Specimen Mean

(12.5–12.8)12.5 12.6 12.7 12.8

Pult [kN] 30.8 29.7 29.7 30.0 30.1 ± 0.8 (2.8%)
sult [mm] 8.0 7.5 8.2 7.6 7.8 ± 0.5 (6.7%)

k0.4 [kN/mm] 7.0 5.2 6.5 8.1 6.7 ± 1.9 (28.6%)
k0.6 [kN/mm] 7.2 5.8 7.0 8.0 7.0 ± 1.4 (20.7%)

Taking into account the results of the specimens without the reinforcing toothed plates
and comparing them with the mean ultimate load and the mean slip modulus of the
specimens with the reinforcing toothed plates, the below conclusions were drawn.
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The use of toothed-plate connectors in aluminium-timber composite connections
can enhance their load-carrying capacity. An enhancement of 28.7% (for 10 mm screws
and C2-50/M10G toothed-plate connectors), 23.8% (for 12 mm screws and C2-50/M12G
toothed-plate connectors) or 35.0% (for 12 mm screws and C11-50/M12 toothed-plate
connectors) was achieved in the respective screwed connections. Upon comparing the slip
moduli of the tested connections, it was observed that the use of toothed plate connectors
was ineffective in improving the stiffness of the aluminium-timber composite connections.

According to Eurocode 4 [47], a connection is ductile if its characteristic slip capacity
is at least 6 mm. All the tested connections had the characteristic slip capacity exceeding
6 mm. However, the screwed connections with the C11-50/M12 toothed-plate connectors
(Geka) had a brittle mode of failure—the unthreaded part of the screw was sheared. The
screwed connections with the C2-50/M12G toothed-plate connectors (Bulldog) were more
ductile than the screwed connections with the C11-50/M12 toothed-plate connectors (Geka)
(compare Figures 8 and 9). There was a single shear plane between the toothed-plate
connectors and the aluminium beam flange. The stiffness of the Geka toothed-plate connec-
tor is higher than the stiffness of the Bulldog toothed-plate connector because the flange
height of the former (6 mm) is 1.5 times higher than the flange height of the latter (4 mm),
and the flange thickness of the former (2.25 mm) is 2.25 times higher than the thickness
of the latter (1 mm). Furthermore, the thickness of the former (3 mm) is 3 times higher
than the thickness of the latter (1 mm). In the case of the screwed connections with the
C11-50/M12 toothed-plate connectors (Geka), the screws were sheared, whereas in the case
of the screwed connections with the C2-50/M12G toothed-plate connectors (Bulldog), the
toothed-plate connectors were torn.

The load-carrying capacity of the screwed connections with the C2-50/M12G toothed-
plate connectors (Bulldog) (27.6 kN) was 1.09 times lower than the load-carrying capacity of
the screwed connections with the C11-50/M12 toothed-plate connectors (Geka) (30.1 kN).

The tested screwed connections with or without Bulldog toothed-plate connectors (C2-
50/M10G, C2-50/M12G) showed one distinctive mode of failure presented in Figures 10–13.
The authors observed the formation of two plastic hinges within the screw, the crushing of
LVL, hole ovalisation in the flange of the aluminium alloy beam, and hole ovalisation in
the toothed plate or its tearing. In the specimens where the teeth were strongly connected
with the LVL and did not allow for the movement of the toothed plates, the toothed plates
were torn (see Figure 11). Some of the screws were sheared near the end of the tests. In
Figures 10–14, the symbol ly was used to present the mean length of the yielded zone in the
aluminium flange (measured at the end of the tests). The yielded zone was caused by the
bearing of the screw to the hole wall.

The tested screwed connections with Geka toothed-plate connectors (C11-50/M12)
showed one distinctive mode of failure presented in Figure 14. The screws were sheared
and some of the plate teeth were broken. The authors also observed the crushing of LVL
and the hole ovalisation in the flange of the aluminium alloy beam. In the case of Geka
toothed-plate connectors, the mean length of the yielded zone in the aluminium flange
was shorter than in the Bulldog toothed-plate connectors. The connections with the Geka
toothed-plates had a lower slip corresponding to the ultimate load than the connections
with the Bulldog toothed-plates.
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Figure 10. The mode of failure of the aluminium-timber connection with the 10 mm screws and
without the reinforcing toothed plates.

Figure 11. The mode of failure of the aluminium-timber connection with the 10 mm screws and the
reinforcing toothed plates (C2-50/M10G, Bulldog).
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Figure 12. The mode of failure of the aluminium-timber connection with the 12 mm screws and
without the reinforcing toothed plates.

Figure 13. The mode of failure of the aluminium-timber connection with the 12 mm screws and the
reinforcing toothed plates (C2-50/M12G, Bulldog).
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𝑀 , 𝑓 , 𝑑 + ,

Figure 14. The mode of failure of the aluminium-timber connection with the 12 mm screws and the
reinforcing toothed plates (C11-50/M12, Geka).

The failure mode of the tested screwed connections with or without Bulldog toothed-
plate connectors is taken into account in Equation (8.10e) presented in [45]:

Pv,Rk = 2.3
√

My,Rk fh,kd +
Fax,Rk

4
(1)

where: Pv,Rk is the characteristic load-carrying capacity of the screw in a single shear
(13.3 kN for the 9.43 mm screw and 17.5 kN for the 11.31 mm screw) calculated from
Equation (1), fh,k is the characteristic embedment strength of the timber (40.8 MPa for
the 9.43 mm screw and 40.0 MPa for the 11.31 mm screw) calculated from [45], t is the
penetration depth (70.0 mm in this paper), My,Rk is the characteristic fastener yield moment
(54 372 N·mm for the 9.43 mm screw and 87 226 N·mm for the 11.31 mm screw) calculated
from [45], fu,k is the characteristic tensile strength of the screw (530.3 MPa—5%-quantile
from the tensile tests), and Fax,Rk is the characteristic withdrawal capacity of the fastener
(11,011 N for the 9.43 mm screw and 12 059 N for the 11.31 mm screw) calculated from [45].

The mean values of the screw shank diameters (9.43 mm for the 10 mm screw and
11.31 mm for the 12 mm screw) from Tables 3 and 4 were used in the calculations based on
Equations (1)–(4).

The characteristic load-carrying capacity of the 9.43 mm screw calculated from
Equation (1) (13.3 kN) was 1.29 times lower than the ultimate load per one screw in the
screwed connection without the reinforcing toothed plate (17.1 kN) and 1.62 times lower
than the ultimate load per one screw in the reinforced screwed connection (21.5 kN). The
characteristic load-carrying capacity of the 11.31 mm screw calculated from Equation (1)
(17.5 kN) was 1.22 times lower than the ultimate load per one screw in the screwed connec-
tion without the reinforcing toothed plate (21.4 kN) and 1.58 times lower than the ultimate
load per one screw in the reinforced screwed connection (27.6 kN). The model presented
in Eurocode 5 does not take into account the reinforcing toothed plate. For this reason,
the values obtained from Equation (1) are similar to the values obtained in the tests of the
screwed connections without the reinforcing toothed plates, and lower than the ones from
the tests with the reinforcing toothed plates.

127



Materials 2022, 15, 68

The failure mode of the tested screwed connections with Geka toothed-plate connectors
(C11-50/M12), i.e., the shearing of the unthreaded part of the screw, is taken into account
in the equation presented in Table 3.4 in [48]:

Pv,Rk =
αv fub A

γM2
(2)

where: Pv,Rk is the characteristic load-carrying capacity of the screw in a single shear
(26.7 kN for the 11.31 mm screw) calculated from Equation (2), αv is the coefficient from [48]
(0.6), A is the gross cross-section area of the connector, γM2 is the partial safety factor, fub is
the ultimate strength of the steel used in the shear connector.

The characteristic load-carrying capacity of the 11.31 mm screw calculated from
Equation (2) (26.7 kN) was 1.03 times lower than the ultimate load per one screw in
the screwed connection without the reinforcing toothed plate (27.6 kN) and 1.13 times
lower than the ultimate load per one screw in the reinforced screwed connection (30.1 kN).
The model presented in Eurocode 5 does not take into account the reinforcing toothed plate.
For this reason, the values obtained from Equation (2) are similar to the values obtained in
the tests of the screwed connections without the reinforcing toothed plates, and lower than
the values from the tests with the reinforcing toothed plates.

Hassanieh et al. [49] presented the formulae that can characterise the load-carrying
capacity of the steel-timber screwed connection (per one connector).

Pult = (5.95d − 27.2)/2 (3)

where: Pult is the ultimate load per one connector (14.5 kN for the 9.43 mm screw and
20.0 kN for the 11.31 mm screw) calculated from Equation (2), d is the screw diameter.

Steel-timber composite structures are similar to aluminium-timber composite ones.
The characteristic load-carrying capacity of the 9.43 mm screw calculated from Equation (3)
(14.5 kN) was 1.18 times lower than the ultimate load per one screw in the screwed
connection without the reinforcing toothed plate (17.1 kN) and 1.48 times lower than
the ultimate load per one screw in the reinforced screwed connection (21.5 kN). The
characteristic load-carrying capacity of the 11.31 mm screw calculated from Equation (3)
(20.0 kN) was 1.07 times higher than the ultimate load per one screw in the screwed
connection without the reinforcing toothed plate (21.4 kN) and 1.38 times lower than the
ultimate load per one screw in the reinforced screwed connection (27.6 kN). The model
presented by Hassanieh et al. [49] does not take into account the reinforcing toothed plate,
neither does the model presented in Eurocode 5. The results of the tests presented in this
article show that reinforcing LVL by toothed-plate connectors is effective in increasing the
load-carrying capacity of screwed connections. An enhancement of 23.8%, 28.7%, or 35.0%
was achieved in the screwed connections with 10 or 12 mm screws, respectively. For this
reason, the authors of this paper suggested Equation (3) be modified by adding a coefficient
of 1.24, taking into account the lowest value of the enhancements obtained from the tests,
to characterise the load-carrying capacity of the aluminium-timber screwed connection
reinforced with toothed-plate connectors:

Pult = 1.24(5.95d − 27.2)/2 (4)

The characteristic load-carrying capacity of the 9.43 mm screw calculated from
Equation (4) (18.0 kN) was 1.19 times lower than the ultimate load per one screw in
the reinforced screwed connection (21.5 kN). The characteristic load-carrying capacity of
the 11.31 mm screw calculated from Equation (4) (24.9 kN) was 1.11 times lower than the
ultimate load per one screw in the screwed connection reinforced by the C2-50/M12G
toothed plates (27.6 kN) and 1.21 times lower than the ultimate load per one screw in the
screwed connection reinforced by the C11-50/M12 toothed plates (30.1 kN).

In this paper, toothed plates were used as reinforcement. However, LVL can also be
reinforced using other steel elements. For example, Hassanieh et al. [49] used reinforcing
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nail plates. They compared the load-carrying capacity and the stiffness of steel-timber
screwed connections with and without nail plates. Hassanieh et al. [49] showed that the use
of nail plates increased the stiffness of the connection, e.g., by 22% for 16 mm screws. What
is more, reinforcing the LVL slab by nail plates enhanced the load-carrying capacity of the
connection, e.g., by 19% for 16 mm screws. They also observed that nail plates had a minor
influence on the load-carrying capacity of the steel-timber composite connections loaded in
the direction perpendicular to the grain. The influence of the toothed plates (C2-50/M10G,
C2-50/M12G, C11-50/M12) used in the tests presented in this article on the load-carrying
capacity of the aluminium-timber screwed connections was similar to the impact of the
nail plates used by Hassanieh et al. [49] on the load-carrying capacity of the steel-timber
screwed connections.

4. Conclusions

In this paper, the load-carrying capacity, stiffness, load-slip response, failure modes
and ductility of aluminium-timber screwed connections with and without toothed plates
were investigated. Push-out tests with symmetrical configurations were conducted.

Based on the results of the tests, the following conclusions can be drawn. Aluminium-
timber screwed connections can be reinforced using toothed plates. Reinforcing LVL by
toothed-plate connectors can enhance the load-carrying capacity of screwed connections.
Enhancements of 28.7% (for 10 mm screws and C2-50/M10G toothed-plate connectors),
23.8% (for 12 mm screws and C2-50/M12G toothed-plate connectors) or 35.0% (for 12 mm
screws and C11-50/M12 toothed-plate connectors) were achieved in the screwed con-
nections. However, the use of toothed plate connectors was found to be ineffective in
improving the stiffness of aluminium-timber composite connections.

The authors demonstrated that the existing design rules did not take into account the
strengthening effect of toothed plates on the connection load-carrying capacity, and they
suggested the use of a coefficient equal to 1.24 to better characterise the load-carrying ca-
pacity of aluminium-timber screwed connections reinforced with toothed-plate connectors.

Furthermore, the screwed connections reinforced with toothed plates may be used in
aluminium-timber composite beams. The tests presented in this paper make it possible to
determine the number of connectors necessary to achieve the required level of composite
action. Last, but not least, the obtained load-slip curves for the analysed connections can
be used in numerical models of aluminium-timber composite beams, to model connection
behaviour using spring elements. This method of connection modelling was used, e.g.,
in [25,27,30,50,51].
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16. Szumigała, M.; Chybiński, M.; Polus, Ł. Stiffness of composite beams with full shear connection. IOP Conf. Ser. Mater. Sci. Eng.

2019, 471, 052083. [CrossRef]
17. Furtak, K.; Rodacki, K. Experimental investigations of load-bearing capacity of composite timber-glass I-beams. Arch. Civ. Mech.

Eng. 2018, 18, 956–964. [CrossRef]
18. Kozłowski, M.; Kadela, M.; Hulimka, J. Numerical investigation of structural behavior of timber-glass composite beams. Procedia

Eng. 2016, 161, 78–89. [CrossRef]
19. Bedon, C.; Sciomenta, M.; Fragiacomo, M. Correlation approach for the Push-Out and full-size bending short-term performances

of timber-to-timber slabs with Self-Tapping Screws. Eng. Struct. 2021, 238, 112232. [CrossRef]
20. Łukaszewska, E.; Johnsson, H.; Fragiacomo, M. Performance of connections for prefabricated timber-concrete composite floors.

Mater. Struct. 2008, 41, 1533–1550. [CrossRef]
21. Hassanieh, A.; Valipour, H.R.; Bradford, M.A. Experimental and numerical study of steel-timber composite (STC) beams. J. Constr.

Steel Res. 2016, 122, 367–378. [CrossRef]
22. Vella, N.; Gardner, L.; Buhagiar, S. Analytical modelling of cold-formed steel-to-timber connections with inclined screws. Eng.

Struct. 2021, 249, 113187. [CrossRef]
23. Saleh, S.M.; Jasim, N.A. Structural behavior of timber aluminum composite beams under static loads. Int. J. Eng. Res. Technol.

2014, 3, 1166–1173.
24. Saleh, S.M.; Jasim, N.A. Structural behavior of timber aluminum composite beams under impact loads. Int. J. Sci. Eng. Res. 2014,

5, 865–873.
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Abstract: Corrugated cardboard has waved cores with small flutes that prevent the use of detailed
numerical models of whole structures. Many homogenization methods in the literature overcome
this drawback by defining equivalent homogeneous plates with the same mechanical behaviour at a
macro-mechanical scale. However, few homogenization works have considered complete structures,
focusing mainly on beams or plates. For the first time, this study explores the application of
homogenization approaches to larger structures as an aid in their design process. We also considered
triple-wall boards rather than single- and double-wall configurations commonly addressed in the
literature. To this end, we adapted the homogenization methods proposed by Talbi and Duong to
analyze thin-walled stools made of triple-wall corrugated cardboard. Using a progressive design
process, we performed an efficient stool design by removing material zones with lower stresses,
with 35% less material, 35% lower vertical deflections, and 66% lower stresses than the initial design.
Unlike other corrugated cardboard stools, this design comprises just one folded piece instead of
three, thus saving storage space. These results demonstrate the utility of homogenization techniques
as an aid in the design process of whole structures made of corrugated cardboard. Further research
will consider buckling analysis.

Keywords: composite sandwich structures; thin-walled structures; anisotropic material; corrugated
core; homogenization approach; first-order shear deformation theory; FSDT; FEM simulation; finite
element analysis; design process

1. Introduction

Finite element analysis (FEA) greatly facilitates the design process of many products,
avoiding the construction of failed prototypes. Concerning products made of corrugated
cardboard, this advantage is not so evident since it is inexpensive and easy to handle, so
that prototypes have low economic and time costs. In this paper, the authors aim to show
that FEA can also be very useful when designing products made with this material. The
main advantage is not to avoid prototyping, but to guide the design stages towards more
efficient solutions. Likewise, it could help to choose the most suitable type of cardboard
for each product, avoiding the need to gather an extensive assortment of materials to test
different prototypes.

In this work, we applied FEA to a piece of furniture made of corrugated cardboard
to achieve a more efficient design. To define the material properties, we adapted the
homogenization methods proposed by Talbi [1] and Duong [2], as described in Section 2.3.

Conventional furniture designs often rely on traditional knowledge in handicraft
manufacturing. Moreover, their structural elements are often intentionally oversized.
However, FEA becomes an essential tool when dealing with unconventional furniture
made of thin-wall structural elements. In [3–9], we can find some studies on the FEA of
wood furniture. Other previous research studies also considered other materials, such as
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laminated bamboo [10], honeycomb cardboard [11], corrugated cardboard [12] or fibre-
reinforced concrete [13].

1.1. Corrugated Cardboard

Corrugated cardboard is a material for everyday use, light, economical and sustainable.
In addition to packaging, it can have other uses, such as construction and indoor furni-
ture [14–16]. Its high strength-to-weight ratio makes it ideal for furniture manufacturing,
though a careful design is needed to ensure rigidity.

It presents a sandwich structure with small waves in the intermediate layers (Figure 1),
called fluting. Flutings are glued to flat sheets of paper, called liners, with a water-resistant
starch-based adhesive [17]. Liners support bending loads, and flutings support transverse
shear, helping to stabilize the former by resisting out-of-plane deformations [18,19]. In
this way, the mechanical properties of liners and flutings are efficiently combined [20],
providing a higher stiffness-to-weight ratio than an equivalent solid panel made of any
of the individual constituent materials [21]. Liners are usually made of softwood kraft
pulp to provide strength, with grammages ranging from 125 to 440 g/m2, while flutings
have lower grammages, from 80 to 180 g/m2 [15,17,20]. Boards can present various wall
configurations: single-sided, with only one fluting and one liner, and single-, double- and
triple-wall (Figure 1), with the strength increasing with the number of plies.

Figure 1. Board styles: (a) single-wall; (b) double-wall; (c) triple-wall. Reprinted with permission
from ref. [12]. Copyright 2021 Elsevier.

Flutings are classified by their height and the number of flutes per unit length. Table 1
shows the most common flute types, designated as A, B, C, E or F, the C flute being the
most commonly used for boxes. There are other less common flute types, such as D, with
a height of 2 mm; G, thinner than 0.55 mm; K, thicker than 5.0 mm; and even a thinner
flute, called O [15,22]. These letters were assigned according to their introduction into the
market, having no relation to their size [17]. Larger flutes provide greater vertical strength
and cushioning, while smaller flutes enhance graphic capabilities and structural integrity.

Table 1. Common flute types [15,23]. Reprinted with permission from ref. [12]. Copyright 2021 Elsevier.

Designation Picture Height (in) Height (mm) Flutes/m Pitch (mm) Take-Up Factor

A flute 1/4′′ 4.8 108 ± 10 8.0–9.5 ≈1.50

B flute 1/8′′ 3.2 154 ± 10 5.5–6.5 ≈1.40

C flute 11/64′′ 4.0 128 ± 10 6.8–7.9 ≈1.45

E flute 1/16′′ 1.6 295 ± 13 3.0–3.5 ≈1.25

F flute 1/32′′ 0.8 420 ± 13 1.9–2.6 ≈1.25
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In paperboard manufacture, cellulose fibres tend to align in the flow direction, called
machine direction (MD) [15]. The perpendicular direction on the paperboard surface is
called cross direction (CD). Corrugated cardboard has the same manufacture direction that
paperboard [24], MD being perpendicular to the principal axes of the corrugations and CD
parallel to them (Figure 2). Then, both paper and corrugated cardboard are orthotropic
materials, with better mechanical properties in MD than in CD [15,25].

Figure 2. Machine direction (MD), cross direction (CD) and through-thickness direction (ZD).
Reprinted with permission from ref. [12]. Copyright 2021 Elsevier.

Being a low-cost, lightweight, and environmentally friendly material, the use of
corrugated cardboard for packaging has steadily increased in the past decade [19,26]. The
global production of packaging paper and board increased from 193 to 256 million tons
between 2008 and 2018 [27]. This effect was also influenced by the growth of online
commerce [28]. In 2020, the global demand for containerboard was 69 million tons, 40%
of the global demand for paper [29]. In 2018, the recycling rate for paper and cardboard
packaging in the EU was 83% [30] of waste material. Waste cardboard can be used in its
original form, but it can also be used in new composite materials [28].

Due to its great strength-to-weight ratio, excellent burst strength and resistance to
crushing, corrugated cardboard is also suitable for furniture manufacture. However,
a careful design is needed to ensure rigidity [31]. Thus, a good understanding of its
mechanical behaviour is required to use it in an optimum way. Many previous studies
have focused on the properties of corrugated cardboard and how the external environment
affects its performance [20,32–36]. The mechanical properties of various types of liners and
flutings in MD and CD can be found in [1,17,24,25,33,37–49].

1.2. Thin-Wall Furniture

Based on its thickness, we can classify the structural elements of furniture as ultrathin,
below 10 mm; thin, from 10 to 15 mm; standard, from 16 to 19 mm; thick, from 20 to 40 mm;
and ultra-thick, above 40 mm [50]. Thin-wall furniture, made of thin or ultrathin structural
materials, is a current trend in furniture design [51]. It is usually made of wood composite
panels, such as plywood, particleboard, or medium-density fibreboard (MDF), which can
be laminated with other materials [50]. Due to its light weight, it can be considered a good
alternative for trade shows and conventions. It can even be a suitable option for students
or professionals with upward mobility, who will probably move often.

When dealing with the design of thin-wall furniture, a structural calculation is of
particular relevance [50]. In addition to the strength requirements imposed on the materials,
a second challenge lies in the joints between different panels [28,51]. Thin-walled structures
can also exhibit buckling and warping problems, extensively studied in the scientific
literature. Some analytical, numerical, and experimental studies on the buckling analysis
of thin-wall beams can be found in [52,53]. Other studies on the buckling of corrugated
cardboard structures can be found in [37,44,46,54,55].

In this work, our objective was to design a thin-wall furniture piece made of a different
material, such as heavy-duty corrugated cardboard, whose sandwich structure could
provide the required strength. Compared to wood composites, it has the advantage of
being foldable. Thus, it requires fewer joints. Being low-cost and easy to transport and
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mount, in addition to the applications mentioned above, it can also be considered to meet
the needs for accommodation in improvised shelters for emergencies [56].

Corrugated Cardboard Furniture

Corrugated cardboard furniture is usually made of pieces that could be flat-packed
and assembled at home, using folds, slots and tabs. In the early 1960s, Peter Murdoch
designed the Spotty chair [57], a flat-pack disposable chair that could be assembled simply
by folding it in shape. In the early 1970s, Craig Hodgetts, Robert Mangurian, and Keith
Godard designed Punch-Out [31], a low-cost furniture line made of heavy-duty corrugated
cardboard, with flat pieces that even children could assemble to form their own tables
and chairs. Today, many specialized companies [58–69] offer a great variety of corrugated
cardboard furniture (such as chairs, armchairs, tables, shelves, beds, standing desks or
podiums) [70], to be used at home, the office or trade shows. Many freelance designers also
present their designs of corrugated cardboard furniture in design and architectural social
media platforms or blogs [71–73].

As evidence of the growing interest in this type of furniture, the Japanese bedding
company Airweave [74] provided 18,000 and 8000 high-resistance cardboard beds for
Olympians and Paralympians at the 2020 Tokyo Olympics [75,76]. They were conceived as
a recycling initiative and were intended to be converted into other paper products. They
will be reused for COVID-19 patients in a temporary medical facility in Osaka [77].

Another use of waste corrugated cardboard, as part of lightweight multi-layered
panels with alternating plies of corrugated cardboard and veneer, was examined in [28].
Their study, considering different types of end corner joints between rigid panels, confirmed
the suitability of this material for furniture and interior applications.

1.3. Homogenization Techniques

Different approaches can be used to analyze the strength of corrugated cardboard
products: experimental [78]; analytical [79,80]; analytical-numerical [81–83] or purely
numerical [33,84–86]. Due to the small size of the fluting, numerical methods are inadequate
to analyze any structure made with this material on a micromechanical scale. Instead, we
may use homogenization approaches. They allow considering its sandwich structure as
a homogeneous plate [87,88], providing almost as accurate responses for homogenized
models as for real structures [89].

Some homogenization techniques use analytic methods to obtain the engineering
constants of the equivalent material [48,90–93]. Others apply the classical laminate theory
(CLT) or the first-order shear deformation theory (FSDT) [1,2,45,94,95] to obtain the stiffness
matrix of an equivalent plate [1,2,19,45,96–99]. Others use FEA of a representative volume
element (RVE) to find an equivalent homogeneous plate [43,100–104].

Most homogenization studies centre on isolated flutings or single-wall corrugated
boards, though some of them also consider double-walled corrugated panels [41,94,98,105–107].
Moreover, most of the existing literature on corrugated cardboard models focuses on
homogenization methods, with few practical applications in actual designs.

1.4. Scope of the Study

This work aims to apply FEA for the structural calculation of corrugated cardboard
furniture as an aid in its design process. As an example, we chose a stool made of this
material to show the effectiveness of this method. This paper shows the process we
followed to design the stool, performing a structural calculation of each intermediate
design to assess its validity. In a future study, we also intend to consider a buckling analysis
of the different design stages. However, this is beyond the scope of this work.
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2. Materials and Methods

2.1. Design Stages

As a starting point, we based the first design on the geometry of a commercial stool,
the so-called Kenno Stool [108,109] (Figure 3), designed by the Finnish designer Heikki
Ruoho [110,111]. We chose this model for its simplicity. It comprises three pieces assembled
perpendicularly, forming a closed structure that can be used as either a stool or a low table.
It has a trapezoidal shape, resting on the ground, indistinctly, either on the wide or narrow
part of the trapezoid. It has two vertical sidewalls with a vertical groove in the middle of
their upper side. They are placed parallel to each other and covered by a third piece, whose
ends fit into the groove of the former pieces.

Figure 3. 1st design with: (a) bottom discontinuity; (b) top discontinuity.

We slightly increased its dimensions, since the original stool was conceived for chil-
dren. We also replaced the original honeycomb cardboard with heavy-duty triple-wall
corrugated cardboard [112–115], with which we obtained excellent results in a previous
study of cardboard seating [12]. A 1970s child’s chair design from the hplusf design lab was
made with this material. It was called Punch-out [116] and was temporarily exhibited at
the MoMA [117]. Today, some contemporary furniture manufacturers, such as Chairigami
(USA) [118] or Konno Konpou (Japan) [119], also use this material.

We applied FEA to this design, using a homogenization approach to characterize the
mechanical properties of corrugated cardboard. In Section 2.3 and Appendix A, we present
a thorough description of the homogenization technique used in this work.

From the numerical analysis performed, we obtained the deflections and stresses of
this stool under some applied loads, according to the European Standards EN 1728 [120]
and EN 12520 [121], both applicable to seating designs.

We then modified this design by removing both side panels. Therefore, the second
design consisted of a single piece that the final user could fold for storage (Figure 4).

(a) 

side view 

 
(b) 

(c) 

side view 

 
(d) 

Figure 4. 2nd design with: (a,b) bottom discontinuity; (c,d) top discontinuity.

We lengthened the ends of the cardboard panel towards the opposite face and crossed
them to ensure the structural strength of the stool. To maintain the total width of the
top/bottom face, we placed the crossing point near it. We also reduced the width of one
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end to insert it into a slot made at the opposite end. The stool should also have two grooves
on the top/bottom surface for inserting both ends, preventing them from moving. We also
analyzed this design under the same load conditions.

To achieve more significant savings in material and storage space, we even opened
the stool downward by removing the lower face (Figure 5). We now crossed both ends at
an intermediate height inside the stool. However, it could rest only on the edges that limit
the open surface, having a single possible position, unlike the previous designs.

Figure 5. 3rd design: (a) perspective view; (b) front view.

Next, we modified the design by cutting both ends of the stool directly from the front
and rear walls, opening a hole in those walls and folding the cut material inward (Figure 6a).
This design saves even more material and storage space, since its ends could be placed
inside the cut walls again. The angle formed between the front/rear wall and the seating
surface should be the same as the angle between the ends and the seating surface, since both
pieces should have the same length. During preliminary simulations, high longitudinal
displacements were found at the bottom edges. Hence, we closed it on the bottom side by
extending the front/rear walls to the bottom (Figure 6b) and connecting them.

Figure 6. 4th design: (a) preliminary open design; (b) final closed design; (c) side view.

Taking into account the orthotropic behaviour of corrugated cardboard, we analyzed
each design for two material orientations: orientation I, with MD (x-axis) parallel to
the folding lines, supposed to provide higher bending stiffness, and orientation II, with
CD (y-axis) parallel to the folding lines, supposed to ease the folding process. We also
considered two different body orientations: the wide part of the trapezium facing up
and down.

The results thus obtained clearly show the utility of FEA, even for products made of
an inexpensive and easy-to-handle material such as corrugated cardboard.

2.2. Finite Element Models

To develop the FE models of the stool designs, we used commercial software that
includes a specific module for the structural analysis of composite materials.

We modelled the stool as a layered linear elastic shell. To do so, we combined the shell
elements with a layered linear elastic material suitable for orthotropic laminates. In this
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way, the program applied the FSDT formulation internally. As input data, we introduced
the stiffness matrices of the inner liners, the outer liners, and the fluting, together with
the thickness and material model of each layer of the sandwich panel. We also used solid
elements to model the loading pad used to apply loads on the seating surface.

We defined the contact conditions between intersecting panels using a mapped mesh
defined so that two intersecting panels share the shell nodes lying on their intersection line.
To define the contact between the solid elements of the loading pad and the shell elements
of the stool panels, we used a multiphysics coupling provided by the commercial software;
specifically, we used a solid-thin structure connection for this purpose.

Finally, we performed a static analysis with each model.
In the following sections, we define the FE model in more detail.

2.2.1. Geometry

All the designs considered had a seating surface 380 mm long and 400 mm wide and
a height of 400 mm (Figure 7).

Figure 7. Model main dimensions.

We built finite element (FE) models of all stool designs using homogenized shells with
a mapped mesh (Figure 8) made up of square elements approximately 5 mm long. The
number of boundary elements used in the models shown in Figure 8 ranges from 1704 for
model (f) to 3810 for model (b).

Figure 8. Mapped meshes: (a,b) 1st design with bottom/top discontinuity; (c,d) 2nd design with bottom/top discontinuity;
(e) 3rd design; (f) 4th design.
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The angle α between the top and front/rear panels was modified from 70◦ to 90◦, with
a 5◦ step, preserving the length of the seating surface. We considered the fourth design
with α = 90◦ just for comparison, since it could rotate around the edges formed by the top
and front/rear panels, thus being unstable. Figure 9 gathers the geometry variations for
the fourth design to show where the board ends intersect the seating surface.

Figure 9. Geometry variations for the 4th design.

2.2.2. Material

The material considered for all designs was a heavy-duty triple-wall A-flute corru-
gated cardboard. Its homogenized properties were defined in the FE model using a layered
material with seven layers: 1 and 7 are outer liners, 3 and 5 inner liners, and 2, 4, and
6 flutings (Figure 10). For each layer, we introduced either the liner thickness or the fluting
height, together with its homogenized stiffness matrix, previously computed as described
in Appendix A.

Figure 10. Layered material.

We used the engineering constants of the constituent materials reported in [45] to
compute the stiffness matrices, since they have high elastic moduli and would provide high
bending stiffness. Table 2 shows the engineering constants, Ei, Gij, and νij. They are given
in the lamina reference frame, with the 2-axis parallel to the CD, and the 1-axis parallel to
the MD.

Table 2. Material properties: elastic moduli, Ei, shear moduli, Gij, and Poisson ratios, νij. Reprinted
with permission from ref. [12]. Copyright 2021 Elsevier.

Parameter Unit
Heavy Duty

Outer Liner Inner Liner Fluting

E1 MPa 8250 8180 4500
E2 MPa 2900 3120 4500
E3 MPa 2900 3120 3000

G23 MPa 70 70 35
G13 MPa 7 7 3.5
G12 MPa 1890 1950 1500
ν12 - 0.43 0.43 0.40
ν13 - 0.01 0.01 0.01
ν23 - 0.01 0.01 0.01

t mm 0.75 0.40 0.25
h mm - - 4.8
P mm - - 8.5
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To model the height and period of the fluting, we took the values indicated in the
Tri-Wall Pak patent [114] for A flutes. We also took the thicknesses stated in [114] for
the liners. For the fluting, we considered the grammage of 150 g/m2 specified in [113],
corresponding to a thickness of 0.25 mm. Table 2 also shows the thickness of the liners
and fluting, t, and the height, h, and period, P, of the fluting, all taken from the references
mentioned above.

We also considered two orientations: I, with MD (red x-axis) parallel to the folding
lines, and II, with CD (green y-axis) parallel to the folding lines (Figure 11).

Figure 11. 1st design with top discontinuity (red: MD; green: CD). Ply orientation: (a) I; (b) II.

2.2.3. Loads and Constraints

We applied the load distribution defined in the Eurocode EN 1728 [120], using a
cylindrical loading pad, placed 175 mm from the front edge of the seat and centred on the
width of the seating surface (Figure 12).

Figure 12. Loads applied to the 1st design with bottom (a) and top (b) discontinuity.

We modelled the pad as a solid steel cylinder with 180 mm diameter, covered with a
10 mm layer of polyurethane foam, using a free tetrahedral mesh. We applied a vertical
force of 1300 N, according to Eurocode EN 12520 [121], for domestic seats. It was uniformly
distributed on the upper surface of the cylinder and transmitted to the shell through a
multiphysics coupling.

We applied simply supported boundary conditions at the lower edges of the folded
panels (Figure 13). We restricted the three displacements of the lower front edge, but only
the lateral, y, and vertical, z, displacements of the lower back edge (shown in blue).
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Figure 13. Boundary conditions applied to the 1st design with bottom (a) and top (b) discontinuity.

2.3. Homogenization Approach

In this study, we applied a homogenization approach based on the first-order shear
deformation theory (FSDT). It is an evolution of our previous work [12], which was in turn
based on previous research by Talbi [1] and Duong [2].

The stiffness matrix of any lamina of a laminate can be easily formulated in the lamina
reference frame, 123. However, to use a common reference system, we need to express the
stiffness matrices of all laminas in the global laminate reference frame, xyz. This process
is straightforward for liners, since they are flat, but not for flutings. Due to their waved
shape, the material parameters for each section differ from the laminate reference frame,
xyz, to the lamina reference frame, 123, in which they are known [87] (see Figure 14). Thus,
we need to change the reference system of the stiffness matrix of the flutings.

Figure 14. Corrugated lamina showing the laminate, xyz, and lamina, 123, reference frames.
Reprinted with permission from ref. [12]. Copyright 2021 Elsevier.

Berthelot [55] applied a similar method to composite materials by rotating around
the z-axis, normal to the laminate. For corrugated materials, however, the rotation has to
be performed around the y-axis, or CD. Talbi [1] and Duong [2] performed this change of
reference system to formulate their homogenization methods for single- and double-wall
corrugated cardboard panels, respectively. Once the stiffness matrix of the fluting was
transformed, they applied the FSDT to simplify the constitutive equations. Then, they
integrated the stresses through the whole laminate thickness to get the internal forces, N
and T, and the bending moments, M. After the integration, the z coordinate disappeared
from the formulation, reducing the problem’s dimensionality from 3D to 2D. Then, they
performed a second integration along the MD over a fluting period to obtain the average
values. In this way, they expressed the generalized constitutive law as follows.




N
M
T


 =




A B 0
B D 0
0 0 H


·



εm

κ
γs


 (1)

εm is the membrane strain vector, κ the curvature vector, and γs the transverse shear
strain vector. A is the extensional stiffness matrix, D the bending stiffness matrix, B the
bending-extension coupling stiffness matrix and H the transverse shear stiffness matrix.
These matrices can be used to model a homogenized shell. For small structures, such as
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beams or plates, FE analysis can be performed analytically. However, when dealing with
larger structures, an FE code is needed. Some FE packages include the FSDT formulation
and directly work with the A, B, D, and H matrices. If it is not included, we can use the
expressions found in the literature for the engineering constants of the homogenized shell
as functions of these matrices [19,122].

In a previous work [12], we also applied this homogenization method. We computed
the A, B, D, and H matrices outside the FE model and introduced them into the FE model.
However, no additional information concerning the thickness and number of laminas
was needed to perform the analysis. Since the FE model had no information to undo the
homogenization after the simulation, the results of the analyses were averaged over the
laminate thickness, and we needed to post-process them.

In this work, we used a different approach to avoid this post-processing, thus facili-
tating the graphical representation of the simulation results. As before, we changed the
reference system to express the stiffness matrices of the corrugated layers in the laminate
reference frame. Unlike before, this time, we directly introduced these matrices into the FE
model. However, since they depend on the x-coordinate, they need to be processed before
being introduced into the FE model. Thus, we performed a similar integration to that made
by Talbi and Duong, but not on the A, B, D, and H matrices, but on the stiffness matrix of
the corrugated layers. To do so, we first averaged each matrix through the z-coordinate
and then over the x-direction, or MD (see Appendix A).

We then introduced the stiffness matrix of each layer into the FE model. We used a
specialized module for composite materials that includes a layered linear elastic material
model, which internally performs a second homogenization through the thickness of the
whole laminate. It is based on the FSDT, like the methods of Talbi and Duong. This time,
the total number of laminas and their respective thickness had to be introduced into the
FE model. Then, it had the necessary information to undo the homogenization after the
simulations. In this way, the results directly show different stress fields for each lamina,
instead of just an average value, with no further post-processing.

The main drawback of this method is that it cannot be performed with basic FE
packages but only with specific modules for composite materials. In return, we could
simplify the calculation of the stiffness matrices while increasing the precision of the results
of the FE analysis. Unlike before, any change in the number of sandwich layers or their
thickness can be made directly inside the FE model, keeping the same stiffness matrices.
Only when we want to change the geometry of the corrugated layers, we would need to
recalculate their stiffness matrices outside the FE model. Using an FE module specialized
in composite materials, this methodology also allows one to change the orientation of the
corrugated panel and even to consider different orientations for individual layers inside
the panel. If desired, it is also possible to perform delamination studies.

3. Results and Discussion

3.1. Homogenized Material Properties

Table 3 gathers the nonzero elements of the stiffness matrices computed for each layer
of the corrugated board in the laminate reference frame, using Voigt notation. The fluting
has lower values than the liners, since it is mainly void.
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Table 3. Elements of the stiffness matrix for each layer, in Voigt notation.

Qij Unit Outer Liner Inner Liner Fluting

Q11 [MPa] 8824.2 8801.4 146.2
Q12 [MPa] 1334.2 1444 59.807
Q13 [MPa] 44.361 48.01 145.44
Q22 [MPa] 3102 3357.2 361.6
Q23 [MPa] 35.71 39.08 59.755
Q33 [MPa] 2900.5 3120.6 146.14
Q44 [MPa] 70 70 4.5198
Q55 [MPa] 7 7 0.90365
Q66 [MPa] 1890 1950 5.9147

3.2. Parametric Study for α = 70◦ to 90◦

For the four stool designs, we performed a parametric variation of α, from 70◦ to 90◦,
with a step of 5◦. The influence of α found in the vertical deflections for the first, second,
and third designs is very low. Similarly, its influence on the longitudinal deflections is also
low for the first design. Figure 15 shows the longitudinal deflections for the second and
third designs. For the second design, they decrease with increasing α, while for the third
design, they increase with increasing α.

2nd design. Longitudinal deflection, u 3rd design. Longitudinal deflection, u 

 
(a) (b) 

α,

The former have a minimum for α = 80° and the latter for α = 75°. However, since the 
vertical deflections are better for α = 80°, we consider this the best angle.
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Figure 15. Evolution of maximum longitudinal deflections, u, with α, for designs: (a) 2nd; (b) 3rd.

Figure 16 shows the vertical and longitudinal deflections found for the fourth design.
The former have a minimum for α = 80◦ and the latter for α = 75◦. However, since the
vertical deflections are better for α = 80◦, we consider this the best angle.

Figure 16. Evolution of maximum deflections with α, for the 4th design: (a) w; (b) u.

Figure 17 shows the stress distributions σxx and σyy in the global reference system for
the fourth design. For both orientations, σxx and σyy also present a minimum for α = 80◦.
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Figure 17. Evolution of maximum stresses [MPa] with α, for the 4th design: (a) σxx; (b) σyy.

3.3. Analysis of Designs with α = 80◦

3.3.1. First Design for α = 80◦

This paragraph shows the results obtained for the first design with α = 80◦ (see
Figure 7), considered the best angle from the parametric analysis. Deflections u, v and w,
are respectively aligned with the global x-, y- and z-axes (see Figure 13).

Figure 18 shows the vertical deflections, w, for designs with bottom and top disconti-
nuities and both ply orientations.

Figure 18. 1st design. Vertical deflection [mm] for bottom (a,b) and top (c,d) discontinuity.

For the designs with bottom discontinuity, the vertical deflections show a revolution
geometry about the vertical axis, with a flat bottom. Their maximum values for top
discontinuity are located on the seating surface panel closest to the load application area.
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For the designs with bottom discontinuity, they are 11% lower for orientation II.
However, for the designs with top discontinuity, they are 23% lower for orientation I, which
provides a higher bending stiffness. They are lower for the designs with top discontinuity.
They show an 82% reduction for orientation I from bottom to top discontinuity and a 74%
reduction for orientation II. We can explain this reduction by the span length of the seating
surface, which has a single panel for bottom discontinuity, but is divided into two panels
with half the span length for top discontinuity.

For both discontinuities, the longitudinal deflections are lower for orientation II. In
any case, the four designs analyzed show small values, below 1 mm.

Since the material is orthotropic, we should not use von Mises stresses. Figures 19 and 20
respectively show the components σxx and σyy of the stress tensor in the laminate refer-
ence frame.

Figure 19. 1st design. Stress σxx [MPa] for bottom (a,b) and top (c,d) discontinuity.

For the designs with bottom discontinuity, σxx and σyy are distributed mainly on the
seating surface. For orientation I, σyy is also transmitted to the front and rear panels. On
the contrary, for orientation II, σxx and σyy are transmitted to the side panels.

For the designs with top discontinuity, the maximum stresses were found on the
panels covering the sidewalls, specifically at the vertical ends inserted into the side panels’
slots. Figure 21 shows the stress distribution for σxx and σyy for the designs with top
discontinuity again, but now removing the front panel of the seating surface, thus revealing
the stress distribution in such central panels, with the maximum stresses shown in dark
red and dark blue.

According to the maximum stress criterion [123], applicable to orthotropic materials,
the maximum values of σxx and σyy should be lower than the tensile strength of the
constituent materials in the MD, σt,MD, and in the CD, σt,CD, respectively (see Figure 11).
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Figure 20. 1st design. Stress σyy [MPa] for bottom (a,b) and top (c,d) discontinuity.

Figure 21. 1st design. Stresses under the seating surface for top discontinuity: (a,b) σxx [MPa], (c,d) σyy [MPa].
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The tensile strength of structural paper can vary from 17 to more than 75 MPa in MD
and from 9 to 35 MPa in CD [124]. In this study, we considered as reference values the tensile
strengths found in [124] for a base paper with similar elastic moduli that the constituent
materials of the analyzed stool: σt,MD = 75.4 MPa in MD and σt,CD = 22.7 MPa in CD. For
these limit values, all the configurations analyzed meet the maximum stress criterion.
Moreover, even for other materials with tensile strengths quite close to the lower limit of
the stress ranges indicated above, the stresses obtained would be above the limit values.

3.3.2. Second Design for α = 80◦

This paragraph presents the results found for the second design with α = 80◦. Figure 22
shows the vertical deflections for designs with bottom and top discontinuities and both ply
orientations.

For orientation I, the distributions of vertical deflections show a geometry of revolution
about the vertical axis, but they have an almost cylindrical shape for orientation II.

They are lower for orientation I and top discontinuity, showing a 92% reduction (from
14.44 to 1.07 mm). The improvement due to orientation is substantially more significant
than for the first design, with 57% and 65% reductions for configurations with bottom and
top discontinuities, respectively. Regarding the discontinuity location, for the top position,
we found 82% and 78% improvements for orientations I and II, respectively.

Figure 22. 2nd design. Vertical deflection [mm] for bottom (a,b) and top (c,d) discontinuity.

Longitudinal deflections range from 0.3 to 1.4 mm. They are also lower for orientation
I and top discontinuity. For both orientations, the highest values are in the middle-upper
part of the front inner panel.

Figures 23 and 24, respectively, show the stress distributions σxx and σyy.
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Figure 23. 2nd design. Stress σxx [MPa] for bottom (a,b) and top (c,d) discontinuity.

Figure 24. 2nd design. Stress σyy [MPa] for bottom (a,b) and top (c,d) discontinuity.
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For the bottom discontinuity, the maximum stresses concentrate in the central area
of the seating panel. For orientation I, they are transmitted to the front and rear panels.
However, for orientation II they are transmitted to the lateral edges of the seating surface.

Both σxx and σyy, are below σt,MD (75.4 MPa) and σt,CD (22.7 MPa), thus complying
with the maximum stress criterion. Moreover, they would also be valid for any other
structural paper, whose tensile strengths in MD and CD are, respectively, higher than
17 and 9 MPa.

3.3.3. Third Design for α = 80◦

The stresses and vertical deflections are similar for the third design and the second
design with bottom discontinuity. However, the longitudinal displacements are somewhat
higher due to the removal of the lower panel. This effect was also shown in preliminary
studies for the fourth design, with high longitudinal displacements of the lower rear edge
(see Figure 5). Thus, we reintroduced the lower panel in the fourth design, since it prevents
relative sliding between the front and rear lower edges.

3.3.4. Fourth Design for α = 80◦

This paragraph presents the results found for the fourth design with α = 80◦.
Figure 25 shows both the vertical and longitudinal deflections for ply orientation I.

Figure 25. 4th design. Deflections for ply orientation I [mm]: (a) vertical, w; (b) longitudinal, u.

The trend showing lower vertical deflections for orientation I than for orientation II is
maintained. For orientation I, they show an almost trapezoidal shape. For orientation II,
they show an almost cylindrical shape placed on the front side of the stool, with its axis
oriented from side to side. Maximum vertical and longitudinal deflections for orientation I
are 0.6 and 1.2 mm, respectively, these being quite low.

Figure 26 shows the stress distributions σxx and σyy in the global reference system.
Besides the seating surface, there are other higher stresses at the intersection of the

inner panels with the seating surface and on the folding lines at the lower edge of the front
and rear panels, which appear to act as stress concentrators. This effect can be seen as a
consequence of using less material. However, the stresses in these zones are quite below
the tensile stresses. So, they do not pose any problem, at least from a static point of view.

Both σxx and σyy are much lower than σt,MD (75.4 MPa) and σt,CD (22.7 MPa), thus
fulfilling the maximum stress criterion. They would also be valid for any other structural
paper, whose tensile strengths in MD and CD are, respectively, higher than 17 and 9 MPa.

3.3.5. Comparative Results for α = 80◦

Figures 27 and 28 show the vertical and longitudinal deflections for all designs.
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Figure 26. 4th design. Stress for ply orientation I [MPa] (a,c) σxx; (b,d) σyy.

Figure 27. Vertical deflections, w.

Figure 28. Longitudinal deflections, u.
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The vertical deflections for orientation II are higher in the second than in the first
design due to the elimination of the side panels. In contrast, for orientation I, they are
of the same order of magnitude. In the worst case, the vertical deflections increase 206%
(from 4.7 to 14.4 mm), from the first to the second design, while in the most favourable
case, they increase by 22% (from 0.9 to 1.1 mm). We can explain this behaviour as the
combination of the antagonistic effect of two factors: on the one hand, the negative effect of
eliminating the side panels, especially in designs with orientation II, in which the stresses
of the seating surface were transmitted to that panel, and on the other hand, the positive
effect of introducing a new supporting system, with inner triangular structures. Although
this second effect is beneficial for both orientations, it cannot overcome the negative effect
of the other factor, especially in designs with orientation II.

For the best configurations of all the designs analyzed, the vertical deflections are
lower for the fourth design, being 0.6 and 1.1 mm, respectively, for orientations I and II.
Compared to the first design with top discontinuity, with vertical deflections of 0.9 and
1.2 mm, they are reduced by 33% and 8% for orientations I and II, respectively. Compared
to the second design with top discontinuity, with deflections of 1.1 and 3.1 mm, they
are reduced by 45% and 64%. Compared to the third design, with deflections of 6.0 and
13.8 mm, they are reduced by 90% and 92%. These reductions are lower with respect to the
first and second designs because it was not possible to consider any configuration with top
discontinuity in the third design.

It is remarkable that after removing a significant amount of material, the vertical de-
flections for the fourth design are even lower than for the first design with top discontinuity.
This effect is due to the high efficiency of the inner panels added when removing the side
panels from the first design, since they have a triangular structure, whose effectiveness is
well known. Additionally, the results obtained for the fourth design are even better than
those found for the second and third designs, which already included the inner panels.
This behaviour is due to a better distribution of the intersection lines of the inner panels
with the seating surface in the fourth design. The inner panels divide the seating surface
into two halves, acting as intermediate supports in the second and third designs. However,
they divide it into three zones in the fourth design, acting as two intermediate supports,
thus reducing the span and, consequently, the maximum vertical deflections.

The longitudinal deflections are higher for the fourth than for the first and second
designs. However, they are kept within reasonable limits of 1.2 mm for orientation I.

Figures 29 and 30 respectively show the stress distributions σxx and σyy.
For orientation II, σxx and σyy are lower for the fourth design than for any other

design. We can see the same trend for orientation I, except for the second design with top
discontinuity.

3.4. Summary Results

For the best configurations of each design for α = 80◦, Table 4 gathers the area, A, the
vertical, w, and longitudinal, u, deflections and the stresses along MD, σxx, and CD, σyy.

Figure 29. Stresses σxx.
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Figure 30. Stresses σyy.

Table 4. Comparative results for the best configurations found for each design, for α = 80◦.

Design Area (m2) w (mm) u (mm) σxx (MPa) σyy (MPa)

1st 0.87 0.9 0.2 15.3 8.9
2nd 0.83 1.1 0.3 1.4 2.6
3rd 0.79 6.0 1.9 3.2 8.4
4th 0.57 0.6 1.2 1.5 2.9

Figure 31 shows the variation of these parameters compared to the best results of the
first design, expressed as a percentage of the corresponding value in the first design.

Figure 31. Comparative results for the best configurations found for each design.

In terms of deflections, the best results correspond to the fourth design, with orienta-
tion I and α = 80◦, with maximum vertical and longitudinal deflections of 0.6 and 1.2 mm,
respectively. There is a noticeable improvement compared to the first design, from which
it evolved, whose best results are maximum vertical and longitudinal deflections of 0.9
and 0.2 mm, respectively. These results lead to a 33% reduction for the vertical deflections,
but a 500% increase for the longitudinal deflections. Despite the high increase for the
longitudinal deflection, its maximum value is just slightly above 1 mm for the fourth
design. Moreover, the fourth design has an area 34% lower than the first design.

We can extract the following conclusions regarding different aspects of the possible
configurations of the stool design:

• Ply orientation. The vertical and longitudinal deflections are lower for orientation I,
except for the first design, with slightly lower values for orientation I with bottom
discontinuity.
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• Discontinuity location. The vertical and longitudinal deflections are lower for designs
with top discontinuity, because the seating surface is divided into two different panels
with half the span of the whole seating surface.

• Bottom panel. We should keep the bottom panel, because it prevents longitudinal
sliding between the lower edges of the front and rear panels.

• α angle: In the first three designs, α has little influence on the vertical deflections.
However, in the fourth design, the lowest vertical deflections correspond to an inter-
mediate angle of 80◦. The best results correspond to those angles leading to a more
uniform distribution of the seating surface. That is, for those designs with the inner
panels dividing the seating surface into three zones of equal length, so that none of
them tends to present more significant deflections than the others (see Figure 8).

4. Conclusions

4.1. Main Findings

It is known that corrugated cardboard has higher bending stiffness for orientation I.
In this work, we quantified this improvement for real applications. For vertical deflections,
it ranges from 23% to 65%, finding with the best results for orientation I, except for the first
design with bottom discontinuity, with slightly better results for orientation II.

For orientation I, the first design sidewalls show low stresses and can be removed.
As expected, the triangular structures inside the stool improve its static behaviour.
In the first and second designs with top discontinuity, the seating surface is divided

into two parts with half the span of the seating surface. This division leads to a more
favourable configuration than the corresponding designs with bottom discontinuity.

We should keep the bottom panel, since it prevents any longitudinal sliding between
the lower edges of the front and rear panels.

The edges where the inner triangular structure contacts the seating panel act as
intermediate supports. The seating surface has two intermediate supports in the fourth
design, but only one in the second. Since configurations with more supports are most
favourable, the fourth design has better static behaviour than the second and third designs.

4.2. Concluding Remarks

Corrugated cardboard has a great strength-to-weight ratio, excellent burst strength
and resistance to crushing, thus being an ideal material for furniture manufacture. However,
a careful design is needed to ensure rigidity [31]. This work aimed to apply numerical
methods for the structural analysis of corrugated cardboard furniture, as an aid in their
design process, to obtain efficient designs with the best resistance-to-cost ratio.

As an example, we chose a stool made of heavy-duty triple-wall A-flute corrugated
cardboard. We performed static analyses on various stool designs, with a geometric
evolution guided by the stresses found in previous design stages. The selection of this
specific type of furniture has no particular relevance, being just a way to show the feasibility
and benefits of numerical analysis in the design practice of corrugated cardboard furniture.

To define the mechanical properties of corrugated cardboard, we used a homogeniza-
tion approach based on the first-order shear deformation theory (FSDT). It is an evolution
of our previous work [12], which was in turn based on prior research by Talbi [1] and
Duong [2]. Together with [12], a novelty of this work, is applying a homogenization
technique to the numerical analysis of whole structures made of corrugated board, thus
extending the scope of previous studies, usually limited to beams and plates. Although the
analysis of simple structures, such as beams or plates, can be performed analytically, more
complex structures, such as those considered in this work, should be studied with numeri-
cal techniques, such as FEA. A second novelty is the possibility of analyzing multiple-wall
panels of any number of layers, in addition to the single- and double-wall configurations
commonly addressed in the literature, also broadening the scope of previous works.

We computed the stiffness matrix of an equivalent homogeneous plate for each fluting,
first averaging over the laminate thickness and then along the MD. To model the whole
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board, we inserted these stiffness matrices of flutings and liners into a FE model, using a
layered material model based on the FSDT. Unlike other previous works, this methodology
provides a way to easily model multiple-wall boards, since the homogenized matrices are
independent of the number of plies of the laminate. In this way, the number of plies and
the thickness of the liners can easily be changed inside the FE model.

We then performed a static analysis. The starting design of the stool evolved to three
other designs, taking into account the deflections and stresses found in the FEA. Together,
we analyzed four different designs under the load conditions defined by the Eurocodes
EN 1728 [120] and EN 12520 [121] for seating. The first design, based on the geometry of a
commercial stool made of three panels assembled in perpendicular directions, forming a
closed structure, was chosen because of its simplicity. We found zones with lower stresses
and progressively removed some of them. We also included an inner triangular structure
to compensate for removing the side panels from the initial design.

The fourth design has higher strength than the others, showing the lowest vertical
deflections and stresses, with reductions of 44% for w, 90% for σxx, and 67% for σyy

compared to the starting design. It also requires 44% less material, thus reducing material
costs. It is also made from a single foldable piece, requiring less storage space and reducing
the possibility of losing pieces when stored. Therefore, it is significantly more efficient
than the first design, based on its static behaviour, the amount of material needed and the
required storage space. However, we do not discuss aesthetic or ergonomic aspects.

As expected, the results of this study demonstrate the utility of homogenization tech-
niques as an aid in the design process of whole structures made of corrugated cardboard.
The proposed methodology can be applied to the design process of any other piece of
furniture, such as a shelf, a bed, a desk, or any other structural element made of corrugated
cardboard. It can help to optimize its design by choosing an optimal geometry for a given
material. It can also help to choose the most suitable material for a predefined geometry, by
comparing panels with different numbers of walls. In both cases, it would lead to material
savings. FE models can also be used to analyze delamination or buckling situations and
take corrective actions when needed. These potential situations should be considered in
future research. Comparative fatigue analyses would also be interesting [3].
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Appendix A. Homogenized Stiffness Matrix

As shown in (Figure 14), in woven laminas, the 2-axis is parallel to the y-axis. For the
1- and 3-axes, they are tangent and normal to the shape of the flute, respectively.

Flutings have a sinusoidal shape with height h, period P and thickness t (see Figure 14).
Thus, in the xyz frame, the geometry of the k-th corrugated layer can be described as follows:

z =
hk − tk

2
sin

(
2π

Pk
x

)
. (A1)
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For the k-th corrugated layer, the angle θk between the local 1-axis, tangent to the flute,
and the global x-axis is given by:

θk(x) = atan

[
(hk − tk)

π

Pk
cos

(
2π

Pk
x

)]
. (A2)

We can use the angle θk to transform the material properties of the constitutive layers
from the lamina reference frame to the laminate reference frame. Thus, knowing the
material parameters in the reference frame 123, they can be transformed into the reference
frame xyz. For a rotation angle θk around the y-axis, the inverse strain transformation,
from the reference frame xyz to the reference frame 123, can be written as [1,87] (see
Appendix B.2):




ε11
ε22
ε33
γ23
γ13
γ12



=




c2 0 s2 0 −cs 0
0 1 0 0 0 0
s2 0 c2 0 cs 0
0 0 0 c 0 s

2cs 0 −2cs 0 c2 − s2 0
0 0 0 −s 0 c



·




εxx

εyy

εzz

γyz

γxz

γxy




. (A3)

where:
c = cosθk; s = sinθk. (A4)

On the other hand, we can write the stress transformation (see Appendix B.3) as
follows: 



σ11
σ22
σ33
σ23
σ13
σ12



=




c2 0 s2 0 −2cs 0
0 1 0 0 0 0
s2 0 c2 0 2cs 0
0 0 0 c 0 s
cs 0 −cs 0 c2 − s2 0
0 0 0 −s 0 c



·




σxx

σyy

σzz

σyz

σxz

σxy




. (A5)

We can write Equations (A3) and (A5) in compact form as:

ε′ = Tε·ε (A6)

σ′ = Tσ·σ, (A7)

ε and ε′ being the strain vectors in the global and local frames; σ and σ′ the stress
vectors in the global and local frames; and Tε and Tσ the strain and stress transformation
matrix, respectively.

The constitutive equations in the lamina and laminate reference frames are the following:

ε′ = S′ · σ′ (A8)

ε = S·σ, (A9)

S and S′ being the compliance matrices in the global and local reference frames,
respectively.

Substituting Equations (A6) and (A7) in Equation (A8) and then comparing with
Equation (A9), we get:

S = T−1
ε ·S′·Tσ. (A10)

Taking into account that (see Appendix B.3):

T−1
ε = TT

σ (A11)

we finally get:
S = TT

σ ·S′·Tσ. (A12)
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Equation (A12) transforms S′ from the lamina reference frame, where material proper-
ties are known, to the laminate reference frame, as a function of θ. For orthotropic materials,
S′ is given by [55]:

S′ =




1
E1

− ν12
E1

− ν13
E1

0 0 0
− ν12

E1
1

E2
− ν23

E2
0 0 0

− ν13
E1

− ν23
E2

1
E3

0 0 0
0 0 0 1

G23
0 0

0 0 0 0 1
G13

0
0 0 0 0 0 1

G12




. (A13)

Using Equations (A12) and (A13), we get the following nonzero elements for S:

S11 = c4

E1
+ s4

E3
− 2c2s2ν13

E1
+ c2s2

G13
; S12 = − c2ν12

E1
− s2ν23

E2
;

S13 = − c4ν13
E1

+ c2s2

E3
+ c2s2

E1
− s4ν13

E1
− c2s2

G13
;

S15 = − 2c3sν13
E1

+ 2cs3

E3
− 2c3s

E1
+ 2cs3ν13

E1
+ c3s

G13
− cs3

G13
;

S22 = 1
E2

; S23 = − c2v23
E2

− s2v12
E1

; S25 = 2csv12
E1

− 2csv23
E2

S33 = c4

E3
+ s4

E1
− 2c2s2ν13

E1
+ c2s2

G13
; S35 = 2c3s

E3
− 2cs3ν13

E1
+ 2c3sν13

E1
− 2cs3

E1
− c3s

G13
+ cs3

G13
;

S44 = c2

G23
+ s2

G12
; S46 = cs

G23
− cs

G12
;

S55 = c4

G13
+ s4

G13
− 2c2s2

G13
+ 4c2s2

E1
+ 8c2s2ν13

E1
+ 4c2s2

E3
;

S66 = c2

G12
+ s2

G23
.

(A14)

After the transformation, we lose the typical structure of the stiffness matrix for
orthotropic materials, with the elements of the fourth, fifth, and sixth rows and columns
that lie outside its main diagonal equal to zero. The new structure is typical for monoclinic
materials, with symmetry around y = 0 [125].

In the global reference frame, we can easily obtain the stiffness matrix, Q, by matrix
inversion. Thence:

Q = S−1. (A15)

Sij being functions of θ (through c and s), Q is also a function of θ, which is also a
function of x.

For the liners, we can directly compute Qk from Equations (A13) and (A15). However,
for the flutings, we need to average through the z-coordinate, taking into account that the
thickness of a corrugated layer, obtained by a vertical cutting, is also a function of θ:

tzk(x) =
tk

cosθk(x)
(A16)

tk being the uniform thickness of the fluting layer (see Figure 14). Thus, we can express
the averaged stiffness through the layer thickness as:

Qk,z(x) =
1
hk

∫ hk

0
Qk(x)·dz =

1
hk

Qk(x)
∫ hk

0
dz =

1
hk

Qk(x)·tzk(x) =
Qk(x)·tk

hk·cosθk(x)
. (A17)

Furthermore, to eliminate the dependence of the stiffness matrix on the x-coordinate,
a second homogenization was performed along the x-direction, computing the average
values of Qij over a fluting period [1,2,19,126]. This way, we got a constant value for each
matrix element:

Qk,zx =
1
P

∫ P

0
Qkz(x)·dx =

1
P

∫ P

0

Qk(x)·tk

hk·cosθk(x)
·dx =

tk

P·hk

∫ P

0

Qk(x)

cosθk(x)
·dx. (A18)
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Appendix B. Transformation Matrices

Appendix B.1. Coordinate Transformation of a Generic Vector

The components of a vector
→
r , in the laminate and lamina reference frames, can be

related by:
r′ = A·r, (A19)

where A is the transformation matrix:

A =




c 0 −s
0 1 0
s 0 c


, (A20)

being c = cosθ and s = sinθ.
The inverse transformation is:

r = A−1·r′ = AT ·r′. (A21)

From these relationships, the derivatives of x′, y′ and z′ with respect to x, y, and z are:

δx′

δx
= c;

δx′

δz
= −s;

δy′

δy
= 1;

δz′

δx
= s;

δz′

δz
= c;

δx′

δy
=

δy′

δx
=

δy′

δz
=

δz′

δy
= 0. (A22)

If, instead of a generic vector, we consider the displacement vector with components
u, v, w:

u = cu′ + sw′; v = v′; w = −su′ + cw′. (A23)

From these relationships, the derivatives of u, v, w with respect to x′, y′, and z′ are:

δu
δx′ = c δu′

δx′ + s δw′
δx′ ; δu

δy′ = c δu′
δy′ + s δw′

δy′ ; δu
δz′ = c δu′

δz′ + s δw′
δz′ ;

δv
δx′ =

δv′
δx′ ;

δv
δy′ =

δv′
δy′ ;

δv
δz′ =

δv′
δz′ ;

δw
δx′ = −s δu′

δx′ + c δw′
δx′ ; δw

δy′ = −s δu′
δy′ + c δw′

δy′ ; δw
δz′ = −s δu′

δz′ + c δw′
δz′ .

(A24)

Appendix B.2. Strain Transformations

By definition, the strains in the laminate reference frame, xyz, are given by:

εxx =
δu

δx
; εyy =

δv

δy
; εzz =

δw

δz
; γyz =

δv

δz
+

δw

δy
; γxz =

δu

δz
+

δw

δx
; γxy =

δu

δy
+

δv

δx
. (A25)

In the same way, strains in the lamina reference frame, 123, are given by:

ε11 =
δu′

δx′
; ε22 =

δv′

δy′
; ε33 =

δw′

δz′
; γ23 =

δv′

δz′
+

δw′

δy′
; γ13 =

δu′

δz′
+

δw′

δx′
; γ12 =

δu′

δy′
+

δv′

δx′
. (A26)

Using the chain rule, together with Equation (A22), the strains in the laminate frame
can be computed as follows:

εxx =
δu

δx
=

δu

δx′
δx′

δx
+

δu

δy′
δy′

δx
+

δu

δz′
δz′

δx
=

δu

δx′
c +

δu

δy′
0 +

δu

δz′
s = c

δu

δx′
+ s

δu

δz′
. (A27)

Replacing in these expressions the derivatives of Equation (A24), we get:

εxx = c2ε11 + csγ13 + s2ε33. (A28)
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Analogously:

εyy = ε22; εzz = s2ε11 − csγ13 + c2ε33;

γyz = cγ23 − sγ12; γxz =
(
c2 − s2)γ13 + 2cs(ε33 − ε11); γxy = cγ12 + sγ23.

(A29)

In matrix form, using the Voigt notation, which gathers the strains in a vector, we can
write: 



εxx

εyy

εzz

γyz

γxz

γxy







c2 0 s2 0 cs 0
0 1 0 0 0 0
s2 0 c2 0 −cs 0
0 0 0 c 0 −s

−2cs 0 2cs 0 c2 − s2 0
0 0 0 s 0 c



·




ε11
ε22
ε33
γ23
γ13
γ12




. (A30)

We obtained the inverse transformation by replacing θ by –θ, that is, sinθ by -sinθ:




ε11
ε22
ε33
γ23
γ13
γ12



=




c2 0 s2 0 −cs 0
0 1 0 0 0 0
s2 0 c2 0 cs 0
0 0 0 c 0 s

2cs 0 −2cs 0 c2 − s2 0
0 0 0 −s 0 c



·




εxx

εyy

εzz

γyz

γxz

γxy




. (A31)

This transformation and its inverse transformation can be written in compact form as
follows:

ε′ = Tε·ε; ε = T−1
ε ·ε′, (A32)

being Tε the strain transformation matrix [1,87]:

Tε =




c2 0 s2 0 −cs 0
0 1 0 0 0 0
s2 0 c2 0 cs 0
0 0 0 c 0 s

2cs 0 −2cs 0 c2 − s2 0
0 0 0 −s 0 c




; T−1
ε =




c2 0 s2 0 cs 0
0 1 0 0 0 0
s2 0 c2 0 −cs 0
0 0 0 c 0 −s

−2cs 0 2cs 0 c2 − s2 0
0 0 0 s 0 c




. (A33)

B.3. Stresses Transformations

Cauchy’s law [123] gives the components t1, t2, t3 of the stress vector as functions of
the stress tensor and the components n1, n2, n3 of the normal vector to the surface. In the
lamina reference frame, 123:




t1
t2
t3


 =




σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33


·



n1
n2
n3


. (A34)

In the laminate reference frame, xyz, it can also be written as:




tx

ty

tz


 =




σxx σxy σxz

σxy σyy σyz

σxz σyz σzz


·



nx

ny

nz


. (A35)

Or, in compact form:
t′ = σ′·n′; t = σ·n. (A36)

Using Equation (A21) to transform from the local to the global reference frames:

A·t = σ′·A·n ⇒ t = A−1·σ′·A·n = AT ·σ′·A·n. (A37)
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Identifying with Equation (A36), we have:

σ = AT ·σ′·A. (A38)

Thence, from Equation (A20):

σ =




σxx σxy σxz

σxy σyy σyz

σxz σyz σzz


 =




c 0 s
0 1 0
−s 0 c


 ·



σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33


 ·



c 0 −s
0 1 0
s 0 c




=




c2σ11 + 2csσ13 + s2σ33 cσ12 + sσ23
(
c2 − s2)σ13 + cs(σ33 − σ11)

cσ12 + sσ23 σ22 cσ23 − sσ12(
c2 − s2)σ13 + cs(σ33 − σ11) cσ23 − sσ12 s2σ11 + c2σ33 − 2csσ13


.

(A39)

Using the Voigt notation again, we can rewrite the above expressions as:




σxx

σyy

σzz

σyz

σxz

σxy



=




c2 0 s2 0 2cs 0
0 1 0 0 0 0
s2 0 c2 0 −2cs 0
0 0 0 c 0 −s

−cs 0 cs 0 c2 − s2 0
0 0 0 s 0 c



·




σ11
σ22
σ33
σ23
σ13
σ12




. (A40)

The inverse transformation is obtained by replacing θ by −θ, that is, substituting sinθ
by −sinθ: 



σ11
σ22
σ33
σ23
σ13
σ12



=




c2 0 s2 0 −2cs 0
0 1 0 0 0 0
s2 0 c2 0 2cs 0
0 0 0 c 0 s
cs 0 −cs 0 c2 − s2 0
0 0 0 −s 0 c



·




σxx

σyy

σzz

σyz

σxz

σxy




. (A41)

We can write in compact form this transformation and its inverse transformation as
follows:

σ′ = Tσ·σ; σ = T−1
σ ·σ′. (A42)

being Tσ the stress transformation matrix:

Tσ =




c2 0 s2 0 −2cs 0
0 1 0 0 0 0
s2 0 c2 0 2cs 0
0 0 0 c 0 s
cs 0 −cs 0 c2 − s2 0
0 0 0 −s 0 c




; T−1
σ =




c2 0 s2 0 2cs 0
0 1 0 0 0 0
s2 0 c2 0 −2cs 0
0 0 0 c 0 −s

−cs 0 cs 0 c2 − s2 0
0 0 0 s 0 c




. (A43)

As can be seen, the stiffness and strain transformation matrices satisfy the following
relations:

T−1
ε = TT

σ (A44)

T−1
σ = TT

ε . (A45)
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Abstract: Unit loads consisting of a pallet, packages, and a product securement system are the domi-
nant way of shipping products across the United States. The most common packaging types used in
unit loads are corrugated boxes. Due to the great stresses created during unit load stacking, accurately
predicting the compression strength of corrugated boxes is critical to preventing unit load failure.
Although many variables affect the compression strength of corrugated boxes, recently, it was found
that changing the pallet’s top deck stiffness can significantly affect compression strength. However,
there is still a lack of understanding of how these different factors influence this phenomenon. This
study investigated the effect of pallet’s top-deck stiffness on corrugated box compression strength as
a function of initial top deck thickness, pallet wood species, box size, and board grade. The amount
of increase in top deck thickness needed to lower the board grade of corrugated boxes by one level
from the initial unit load scenario was determined using PDS™. The benefits of increasing top deck
thickness diminish as the initial top deck thickness increases due to less severe pallet deflection from
the start. The benefits were more pronounced as higher board grade boxes were initially used, and as
smaller-sized boxes were used due to the heavier weights of these unit loads. Therefore, supposing
that a company uses lower stiffness pallets or heavy corrugated boxes for their unit loads, this study
suggests that they will find more opportunities to optimize their unit loads by increasing their pallet’s
top deck thickness.

Keywords: corrugated box; compression strength; pallet; unit load; unit load optimization

1. Introduction

Historically, the distribution packaging industry has adapted the method of unitizing
single, multiple, or bulk products on a solid platform to make the handling, storing, and
transporting of these products easier [1]. This arrangement is called a unit load. In today’s
supply chains, 80% of products are moved in unit load form [2]. The most common base
platform for unit loads is a pallet. Pallets can be made of different materials such as wood,
plastic, paper, or metal. Among these materials, wood is by far the most commonly used
to manufacture pallets. Wood is the material of choice for over 90% of companies that
use pallets in their supply chains in the United States [3]. Furthermore, approximately
804 million new and recycled wood pallets were manufactured in 2016 [4]. Just as wood
pallets have become one of the essential elements of a unit load, corrugated boxes also play
a crucial role. Corrugated boxes are the most used primary and secondary packaging; in
fact, 72% of unit loads are built using corrugated boxes [3].

When designing a unit load, accurately predicting corrugated box compression
strength is crucial to avoid package failure from the vertical compression forces during
distribution and storage. Therefore, numerous studies have investigated the factors that
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affect the compression strength of corrugated boxes, including material properties [5–10],
manufacturing methods [6,11–16], environmental condition factors [6,8,12,17], and the
palletization factor [18–26].

Wood pallet characteristics, such as pallet gaps and pallet overhang, have been in-
cluded among the main palletization factors that affect box compression strength. In
relatively recent years, researchers have endeavored to correlate pallet top-deck stiffness
to corrugated box compression strength. Baker [19] and Phanthanousy [24] examined
the relationships between the differences in stress concentrations and box compression
strength. However, their studies were inconclusive. Phanthanousy found that the stiffness
of the pallet’s top deck has no notable effect on box compression strength when the wood
pallet is designed with deck board gaps.

Meanwhile, Baker [19] found that pallet top-deck stiffness significantly affects box
compression strength when the wood pallet is designed with no deck board gaps. Their
studies only evaluated situations in which all corners of the boxes were symmetrically
supported. However, in many cases, the top deck board of a wood pallet deforms by the
weight of the top load and creates asymmetric support conditions for the loaded products.
Baker [19] highlighted that asymmetrically supported corrugated boxes are a prevalent
condition in most unit loads, and his research found that asymmetric support can decrease
corrugated box compression strength by as much as 15%.

In 2020, Quesenberry et al. [25] further investigated the effect of wood pallet top-deck
stiffness on corrugated box compression strength when box corners are asymmetrically
supported. They concluded that a stiffer top deck board could increase the compression
strength of asymmetrically supported corrugated boxes up to 37% when the unit loads are
double-stacked on the floor [25]. They also discovered that the effect of pallet top-deck
stiffness on box compression strength could be utilized to lower the cost of a unit load by
decreasing the required board grade of corrugated boxes and increasing the pallet’s top
deck thickness. However, the experimental design utilized by Quesenberry only focused on
a limited number of variables. Furthermore, the pallet design utilized for his experimental
unit load consisted of a single wood species and singular moisture content.

Additionally, the corrugated boxes were made of a single board grade, two flute
sizes, and two box sizes. In practice, many wood species with varying moisture content
are available for pallet manufacturing; meanwhile, corrugated boxes are produced in
multiple board grades and sizes. Nevertheless, there is an absence of studies investigat-
ing how these variations may change the effect of top deck stiffness on corrugated box
compression strength.

Therefore, the objective of this current paper is to investigate the effect of pallet top-
deck stiffness on the compression strength of asymmetrically supported corrugated boxes
as a function of currently under-studied variables, including initial top deck thickness,
pallet wood species, box size, and board grade.

2. Materials and Methods

This study consisted of two main sections: validation of the analytical pallet design
software and unit load scenario analysis.

2.1. Software Validation

The commercially available pallet design software Pallet Design System™ (PDS™)
v. 6.2, created by NWPCA (National Wooden Pallet & Container Association, Alexandria,
VA, USA) was utilized to replace numerous physical experiments in this study. The
box performance data predicted by PDS™ and that Quesenberry et al. [25] found were
compared to confirm that the software reproduced the results from the experiment.

2.1.1. Corrugated Box Description for Validation

The same designs of corrugated boxes used by Quesenberry et al. [25] were used to
build the unit load model in PDS™ for predictive software validation. Specified parameters
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from Quesenberry et al. [25] included: Regular Slotted Container (RSC) style with two differ-
ent external dimensions (length × width × height) 406.4 mm × 247.7 mm × 254 mm and
609.6 mm × 247.7 mm × 254 mm. Unit loads were built with four layers of boxes, and the
configuration of boxes was either 3 boxes × 4 boxes (length × width) or 2 boxes × 4 boxes.
Both sizes of boxes were built with nominal 0.57 kg/mm Edge Crush Test (ECT) value
B-flute and C-flute corrugated board.

2.1.2. Pallet Description for Validation

Quesenberry et al. [25] simulated a 1219.2 mm × 1016 mm GMA™ (Grocery Manufac-
turers Association) style pallet by using a custom-built, quarter-section pallet for testing
purposes. For software validation, a full-sized 1219.2 mm × 1016 mm stringer class, double
face, non-reversible, partial four-way, unidirectional bottom, flush, GMA™ style pallet
was modeled in PDS™ (see Figure 1). The pallet consisted of three stringers, seven top
deck boards, five bottom deck boards, and two fasteners per joint. The stringers were
1219.2 mm long, 31.8 mm wide, and 88.9 mm high. The top and bottom deck boards
were 1016 mm long and 88.9 mm wide. The four top deck board thicknesses studied
were: 9.5 mm, 12.7 mm, 15.9 mm, and 19.1 mm. All top deck boards were equally spaced
99.6 mm apart. Lead bottom deck boards were spaced 292.1 mm away from the interior
bottom deck boards, and the interior bottom deck boards were spaced 95.3 mm apart.
Number 1 & better (premium & better), kiln-dried, Spruce–Pine–Fir (SPF) lumber was used
for all pallet components.

 

Figure 1. Picture of GMA pallet used for software validation (image generated using PDS™).

2.1.3. Comparison of Box Load Factor and Box Compression Strength Factor

During software validation, the box load factors computed by PDS™ and the box
compression strength factor derived from the thesis of Quesenberry [27] were compared.
The box load factor is the ratio of the weights on worst loaded box edges to the load if it
were evenly distributed. Meanwhile, the box compression strength factor is a new term
developed by the authors and is defined as the ratio of the box compression strength when
box corners are symmetrically supported on rigid supports to the box compression strength
when its corners are asymmetrically supported on an actual pallet. Both the box load
factor and the box compression strength factor ultimately provide information about the
compression performance of the corrugated box.

Process of Computing Box Load Factor

Box load factors were computed using PDS™ following the steps described below.

Step 1: Built a unit load in PDS™ using boxes and pallets previously described in
Sections 2.1.1 and 2.1.2.
Step 2: Set the top deck board thickness to the lowest level (9.5 mm).
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Step 3: Set the weight in the box to the load that will just fail the boxes (box safety factor of
one) when the support condition is a single floor stack.
Step 4: Report current box load factor when support condition is single floor stack.
Step 5: Increased the top deck board thickness to the following levels (12.7 mm, 15.9 mm,
and 19.1 mm).
Step 6: Repeat steps 3 and 4 for each level of top deck board thickness.
Step 7: Repeat the process for two flute sizes (B and C flute) and two box sizes.

Process of Calculating Box Compression Strength Factor

The box compression strength factor from Quesenberry’s study was calculated using
Equation (1):

CSF =
SCSavg

ACSavg
(1)

where:

CSF = Box compression strength factor.
SCSavg = Average box compression strength when box corners are symmetrically supported
on a rigid platform.
ACSavg = Average box compression strength when box corners are asymmetrically sup-
ported on the actual pallet.
The unit load scenarios used to calculate the box compression strength factors were varied
by two flute sizes, two box sizes, and four thickness levels.

Statistical Analysis

The independent t-test was conducted to see whether the difference between box
load factors from PDS™ and box compression strength factors from the experiment were
statistically significant or not. To confirm the normality assumption of the independent
t-test, we also ran the Shapiro–Wilk test for each group separately. The similarities between
the box performance data from PDS™ and the experiment were also assessed using the
Pearson correlation coefficient. The Pearson correlation coefficient is a way to investigate
linear dependence between two variables. The measured correlation coefficient (r) ranges
between −1 and +1. When the r-value is −1, it indicates a strong negative correlation,
while +1 indicates a strong positive correlation, and 0 means no relation. Both statistical
analyses were conducted at a significance level of 0.05. The analyses were done using SAS
JMP Pro 15® software (SAS Enterprises, Raleigh, NC, USA).

2.2. Unit Load Scenario Analysis

The concept of a unit load cost optimization method that allows for corrugated boxes
with decreased board grades by increasing the pallet’s top deck thickness was adopted
from Quesenberry et al. [25] to modify each unit load scenario. In other words, the analysis
was done by determining how much the top deck thickness needed to increase to lower
the corrugated board grade by one level from the initial unit load scenario’s specific deck
board thickness and board grade. A total of 234 unit load scenarios were designed with
varying factors for investigation.

2.2.1. Corrugated Box Description for Unit Load Scenario Analysis

Three sizes of RSC-style corrugated boxes were investigated to explore the effect
of different box sizes. Three box sizes were chosen that would cover the entire top
surface of the 1219.2 mm × 1016 mm pallet and create asymmetrically supported cor-
ners. The external dimensions were 203.2 mm × 304.8 mm × 254 mm (small box),
406.4 mm × 254 mm × 254 mm (medium box), and 609.6 mm × 337.8 mm × 254 mm
(large box). The boxes were organized in 4 × 5, 3 × 4, and 2 × 3 arrays for small, medium,
and large boxes, respectively. Four layers of boxes were used for each unit load. Unit
load configurations using the different box sizes are depicted in Figure 2. The boxes were
built with two different flute sizes: single-wall C-flute and double-wall BC-flute. The
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C-flute and BC-flute corrugated boards were made of commonly manufactured board
grades for each flute size. C-flute boards were modeled with nominal 0.52 kg/mm.,
0.57 kg/mm, 0.71 kg/mm, and 0.79 kg/mm ECT. BC-flute boards were modeled with
nominal 0.86 kg/mm, 0.91 kg/mm, 1.09 kg/mm, and 1.27 kg/mm ECT.

 

Figure 2. Image of investigated unit load configurations (image generated using PDS™). (a) Unit load with small boxes,
(b) unit load with medium boxes, and (c) unit load with large boxes.

2.2.2. Pallet Description for Unit Load Scenario Analysis

For the unit load scenario analysis, the most common size of GMA™ style wood
pallet was used. The 1219.2 mm × 1016 mm GMA™ style stringer class wooden pallet
is the most commonly used pallet design in North America [28,29]. The specifications
were 1219.2 mm × 1016 mm, stringer class, double face, non-reversible, partial four-way,
unidirectional bottom, flush, GMA™ style pallet (see Figure 3). The pallet design had
three stringers, two lead top deck boards, five interior top deck boards, five bottom deck
boards, two fasteners per joint on the interior top deck boards and for all bottom deck
board connections, and three fasteners per joint on the lead top deck boards. The pallet
design utilized for the unit load scenario analysis (Figure 3) had 50.8 mm wider lead top
deck boards than the pallet design used for the software validation process (Figure 1).
The spacing between top deck boards has also changed accordingly. The stringers were
1219.2 mm long, 31.8 mm wide, and 88.9 mm high. The interior top deck boards and
bottom deck boards were 1016 mm long and 88.9 mm wide. The lead top deck boards
were 1016 mm long and 139.7 mm wide. The bottom deck boards were 9.5 mm thick. All
top deck boards were spaced 82.6 mm apart. The lead bottom deck boards were spaced
292.1 mm apart from interior bottom deck boards, and interior bottom deck boards were
spaced 95.3 mm apart from each other. Number 1 & better (premium & better) grade
lumber was used for all pallet components.

 

Figure 3. Picture of GMA pallet used for analysis (image generated using PDS™).
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Initial top deck thicknesses were varied by four levels to explore which changes in
deck board thicknesses would be required to reduce by one level the initial board grade
specified for the corrugated boxes. The investigated initial top deck thickness levels were
9.5 mm, 12.7 mm, 15.9 mm, and 19.1 mm. However, unit load scenarios built with kiln-
dried southern yellow pine (KD SYP) pallets were designed with 11.1 mm top deck boards,
and this thickness was increased to 17.5 mm for the optimized design. This limitation was
due to the availability of raw material sizes; only the 11.1 mm and 17.5 mm dimensions
could be manufactured effectively.

Wood species used for pallet construction were also varied. The wood species com-
monly used for pallet construction in the southeastern United States were selected. Selected
wood materials were: green, high-density hardwood (Grn HD HW); green, low-density
hardwood (Grn LD HW); green, southern yellow pine (Grn SYP); and kiln-dried, southern
yellow pine (KD SYP). Green lumber contained 25% or greater moisture content, and
kiln-dried lumber had a maximum of 19% moisture content.

2.2.3. Variable Factors

Several factors of the unit load were varied to identify the characteristics that could
change the effect of the pallet’s top deck board stiffness on box compression strength. The
factors evaluated were initial top deck board thickness, pallet wood species, box size, and
corrugated board grade. The variable factors that relate to pallets are listed in Table 1, and
Table 2 contains the variable factors relating to the boxes.

Table 1. Summary table of variable factors related to pallets.

Pallet wood species

Green high-density hardwood
Green low-density hardwood
Green southern yellow pine

Kiln-dried southern yellow pine

Initial top deck thickness for green lumber

9.5 mm
12.7 mm
15.9 mm
19.1 mm

Fixed range for KD SYP lumber thickness 11.1 mm to 17.5 mm

Table 2. Summary table of variable factors related to corrugated boxes.

Box Size (mm) Flute Size ECT Range (kg/mm)

Small (203.2 × 304.8 × 254)
C

0.57 to 0.52
0.71 to 0.57

Medium (406.4 × 254 × 254)
0.79 to 0.71

BC
0.91 to 0.86

Large (609.6 × 337.8 × 254) 1.09 to 0.91
1.27 to 1.09

2.2.4. Analysis Method
Measurement of Top Deck Thickness Increase

The unit load cost optimization method adopted from Quesenberry et al. [25] was
investigated by varying the factors introduced in Section 2.2.3. The change in top deck
thickness required to reduce by one level the corrugated board grade used, without down-
grading box performance, was measured. This analysis was done with the unit load in
the double floor stacked condition. A box safety factor of 3 was selected for the unit load
design to comply with the requirements of the ISTA 3E testing standard [30].

Required steps in the analysis were as follows:

Step 1: Construct the unit load in PDS™.
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Step 2: Set pallet material as one of the listed wood species (i.e., green high-density hardwood).
Step 3: Set the top deck board as the lowest initial top deck board thickness (9.5 mm). In
the case of KD SYP, always set the initial top deck thickness as 11.1 mm.
Step 4: Set corrugated boxes as the higher ECT values in the selected range of board grade
(i.e., Choose 0.57 kg/mm if the range was decreasing from 0.57 kg/mm to 0.52 kg/mm).
Step 5: Determine the weight of the box that works to create a box safety factor of three for
the double floor stacking condition.
Step 6: Create a new unit load with the corrugated boxes made of lower ECT value from
the selected range of corrugated board grade and apply the weight determined in step 5
(i.e., Select 0.52 kg/mm if the range was 0.57 kg/mm to 0.52 kg/mm).
Step 7: Continuously increase the top deck thickness by 1.6 mm until the unit load again
reaches the safety factor of three for safe operation. In the case of KD SYP, always increase
the top deck thickness to 17.5 mm.
Step 8: Report the total increase in the top deck board thickness required to achieve the
required safety factor of three.
Step 9: Repeat step 1 to step 8 after changing the pallet wood species.
Step 10: Repeat from step 1 to step 9 after increasing the initial top deck stiffness level.
Step 11: Repeat from step 1 to step 10 after changing the range of board grade (i.e., changing
from a range of 0.57–0.52 kg/mm to a range of 0.71—0.57 kg/mm).
Step 12: Repeat from step 1 to step 11 after changing the size of corrugated boxes (i.e.,
changing from a small to a medium size box).

Unit Load Scenario Classification System

The amount that the top deck thickness increased was categorized as one of three
grades to make it easier to identify which scenarios had smaller or larger increases in
top deck thickness: less than 12.7 mm (grade 1), 12.7 mm to 25.4 mm (grade 2), and
beyond 25.4 mm increase (grade 3). For better visualization, a color-coding system was also
applied; green for grade 1, yellow for grade 2, and red for grade 3. Grade 1 scenarios were
considered as cases with high potential to apply the unit load optimization process. Grade 2
scenarios were considered cases that may be possible to apply the optimization method
depending on the manufacturer’s circumstances. Because pallets made of deck boards
thicker than 25.4 mm are unprecedented; grade 3 scenarios were considered unrealistic
unit load designs.

3. Results and Discussion

3.1. Software Validation Results

Measurement of the box load factors and box compression strength factors on varied
top deck thicknesses, box sizes, and flute sizes are presented in Table 3. The comparison of
box load factors and box compression strength factors is plotted in Figure 4. It was observed
that PDS™ tends to overestimate the effect of top deck stiffness when compared to the
experiment results. However, the independent t-test showed that the difference between
PDS™ and the experiment was not statistically significant (t(25) = −0.85, p-value = 0.40).
The Shapiro-Wilk test confirmed that the normality assumptions were met (PDS: W = 0.927,
p-value = 0.216; Quesenberry: W = 0.919, p-value = 0.160). Furthermore, the Pearson corre-
lation coefficient revealed a strong positive correlation, r = 0.911 (p-value < 0.0001), between
box load factors from PDS™ and box compression strength factors from experiment results.
In other words, the PDS™ and Quesenberry’s [27] experiments had a similar pattern.
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Table 3. Summary table of box load and compression strength factors.

Box Load and Compression Strength Factor

Small C-Flute Box Large C-Flute Box Small B-Flute Box Large B-Flute Box

Topdeck Thickness (mm) PDS Experiment PDS Experiment PDS Experiment PDS Experiment

9.5 1.366 1.362 1.332 1.363 1.375 1.513 1.360 1.334

12.7 1.268 1.145 1.225 1.152 1.307 1.320 1.258 1.172

15.9 1.187 1.090 1.153 1.116 1.222 1.298 1.179 1.117

19.1 1.136 1.005 1.109 1.075 1.165 1.105 1.129 1.022

−

 

Figure 4. Comparison of box load factors and box compression strength factors of each type of boxes in response to pallet
top-deck thickness. (a) Small C-flute box scenarios, (b) shows large C-flute box scenarios, (c) shows small B-flute box
scenarios, and (d) shows large B-flute box scenarios.

3.2. Unit Load Scenario Analysis Results

Tables 4 and 5 report the amount of top deck board thickness increase required to
reduce the corrugated board grade by one level as a function of starting top deck thickness,
wood species, initial board grade, and box sizes for the unit loads consisting of C-flute
boxes and BC-flute boxes, respectively. A streamlined grading system has been applied, as
described in Section 2.2.4, for better visualization and identification of the level of top deck
thickness increase. The top deck thickness increase for grade 3 scenarios was reported as
N/A (not applicable) because adding an extra inch of thickness to a pallet deck board is
highly cost-prohibitive.
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Table 4. The amount of top deck board thickness required to optimize unit loads consisting of C-flute boxes.

Amount of Top Deck Thickness Increase (mm)

C-Flute 0.57–0.52 kg/mm ECT 0.71–0.57 kg/mm ECT 0.79–0.71 kg/mm ECT

Initial Top Deck
Thickness (mm)

Grn HD
HW

Grn LD
HW

Grn
SYP

Grn HD
HW

Grn LD
HW

Grn
SYP

Grn HD
HW

Grn LD
HW

Grn
SYP

C
-F

lu
te

Sm
al

l

9.5 3.2 3.2 3.2 8 6.4 8 3.2 3.2 3.2

12.7 4.8 4.8 6.4 N/A N/A N/A 4.8 3.2 4.8

15.9 15.9 9.5 N/A N/A N/A N/A 9.5 6.4 9.5

19.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A

M
ed

iu
m

9.5 4.8 4.8 4.8 22.2 22.2 12.7 3.2 3.2 3.2

12.7 12.7 8 8 N/A N/A N/A 8 6.4 4.8

15.9 N/A N/A N/A N/A N/A N/A N/A N/A 15.9

19.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A

La
rg

e

9.5 8 9.5 9.5 N/A N/A N/A 9.5 11.1 11.1

12.7 N/A 19.1 19.1 N/A N/A N/A 12.7 12.7 12.7

15.9 N/A N/A N/A N/A N/A N/A N/A N/A N/A

19.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Grade 1: less than 12.7 mm (green), Grade 2: 12.7 mm to 25.4 mm (yellow), Grade 3: beyond 25.4 mm increase (red). Note: Grn HD HW:
green high-density hardwood, Grn LD HW: green low-density hardwood, Grn SYP: green southern yellow pine.

Table 5. The amount of top deck board thickness required to optimize unit loads consisting of BC-flute boxes.

Amount of Top Deck Thickness Increase (mm)

0.91–0.86 kg/mm ECT 1.09–0.91 kg/mm ECT 1.27–1.09 kg/mm ECT

Initial Top Deck
Thickness (mm)

Grn HD
HW

Grn LD
HW

Grn
SYP

Grn HD
HW

Grn LD
HW

Grn
SYP

Grn HD
HW

Grn LD
HW

Grn
SYP

BC
-F

lu
te

Sm
al

l

9.5 1.6 1.6 1.6 4.8 4.8 4.8 4.8 4.8 4.8

12.7 3.2 1.6 1.6 19.1 6.4 6.4 8 6.4 6.4

15.9 3.2 3.2 3.2 N/A N/A N/A N/A N/A 15.9

19.1 12.7 3.2 6.4 N/A N/A N/A N/A N/A N/A

M
ed

iu
m

9.5 3.2 3.2 1.6 8 6.4 6.4 6.4 6.4 6.4

12.7 3.2 3.2 3.2 N/A 19.1 19.1 12.7 9.5 8

15.9 6.4 4.8 4.8 N/A N/A N/A N/A N/A N/A

19.1 N/A 12.7 12.7 N/A N/A N/A N/A N/A N/A

La
rg

e

9.5 6.4 9.5 8 N/A N/A N/A N/A N/A N/A

12.7 6.4 6.4 6.4 N/A N/A N/A N/A N/A N/A

15.9 9.5 9.5 9.5 N/A N/A N/A N/A N/A N/A

19.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Grade 1: less than 12.7 mm (green), Grade 2: 12.7 mm to 25.4 mm (yellow), Grade 3: beyond 25.4 mm increase (red). Note: Grn HD HW:
green high-density hardwood, Grn LD HW: green low-density hardwood, Grn SYP: green southern yellow pine.

Tables 6 and 7 present the KD SYP scenarios’ amount of top deck board thickness
increase required to reduce the corrugated board grade by one level as a function of the
different factors for the unit loads built using C-flute and BC-flute boxes, respectively.
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Table 6. The amount of top deck board thickness required to optimize unit loads consisting of KD SYP pallet and
C-flute boxes.

Amount of Top Deck Thickness Increase (mm)

0.79–0.71 kg/mm ECT 0.71–0.57 kg/mm ECT 0.57–0.52 kg/mm ECT

Initial Top Deck
Thickness (mm)

Kiln-Dried Southern Yellow Pine

C-Flute
Small

11.1
17.5 N/A 17.5

Medium N/A N/A N/A
Large N/A N/A N/A

Note: The deckboard thickness sizes available for kiln-dried southern yellow pine (KD SYP) were limited because the available raw material
size only allows the cost-effective production of 11.1 mm and 17.5 mm deckboard thicknesses.

Table 7. The amount of top deck board thickness required to optimize unit loads consisting of KD SYP pallet and
BC-flute boxes.

Amount of Top Deck Thickness Increase (mm)

0.91–0.86 kg/mm ECT 1.09–0.91 kg/mm ECT 1.27–1.09 kg/mm ECT

Initial Top Deck
Thickness (mm)

Kiln-Dried Southern Yellow Pine

BC-Flute
Small

11.1
N/A N/A 17.5

Medium N/A N/A 17.5
Large N/A N/A 17.5

Note: The deckboard thickness sizes available for kiln-dried southern yellow pine (KD SYP) were limited because the available raw material
size only allows the cost-effective production of 11.1 mm and 17.5 mm deckboard thicknesses.

To investigate how different factors such as the initial top deck board thickness, pallet
wood species, box size, and board grade effect the feasibility of optimizing the strength
of the corrugated boxes by changing the stiffness of the pallets, researchers looked at the
changes in the proportions of different grade scenarios in response to each variable factor.

Figure 5 shows how the proportions of various grade scenarios changed when different
initial top deck thicknesses were used for the pallet design. As the initial top deck thickness
increased, there was a significant reduction in the proportion of grade 1 scenarios. These
are the scenarios where it is highly feasible to reduce the corrugated board grade with
a reasonable amount of top deck thickness change. The proportion of grade 1 scenarios
started from 78% with 9.5 mm initial top deck thickness and decreased to 50%, 24%, and
4% when the initial top deck thickness was 12.7 mm, 15.9 mm, and 19.1 mm, respectively.
Correlatingly, the ratio of grade 3 scenarios was almost inversely proportional to the ratio
of grade 1 scenarios as the initial top deck thickness increased. The proportion of grade 3
increased from 17% to 31%, 70%, and 91% when the initial top deck thickness was 9.5 mm,
12.7 mm, 15.9 mm, and 19.1 mm, respectively. Unlike other grade scenarios, no consistent
trend was found in the proportion of grade 2 scenarios.

Figure 6 shows the changes in the proportions of the various unit load scenario grades
when different wood species were used to build the pallets. The percent of different grade
levels were similar for the scenarios using green low-density hardwood and green SYP
with around 40% grade 1, 10% grade 2, and 50% grade 3. KD SYP scenarios behaved
differently than the other wood species scenarios. They had a much lower number of
feasible scenarios than the others. Grade 1 scenarios of KD SYP accounted for only 28%,
while grade 1 scenarios of green lumber accounted for between 35–40%. The reduction
of feasible scenarios might be attributable to the high stiffness of the KD SYP species. A
highly stiff top deck will not bend enough to make a difference in board grade when top
deck thickness changes. In addition, the results could have been affected by the limited

174



Materials 2021, 14, 6613

availability of various KD SYP thicknesses. KD SYP lumber required a larger jump in top
deck thicknesses than the 1.59 mm increases used with green species.

 

Figure 5. Changes in the proportions of the different grade scenarios in response to the initial top
deck thickness for green wood scenarios.

 

Figure 6. Changes in the proportions of the different grade scenarios in response to the pallet wood
species. Note: KD SYP: kiln-dried southern yellow pine, Grn HD HW: green high-density hardwood,
Grn LD HW: green low-density hardwood, Grn SYP: green southern yellow pine.

Furthermore, the proportion of the grade 1 scenarios for Grn HD HW was slightly
lower (35%) than the other green lumber scenarios (40–42%). Since Grn HD HW does not
have a limit on the level of top deck thickness increase, this could provide further evidence
that the stiffness of the material affects the feasibility of the design scenario. Overall,
the results indicate that the feasibility of using increased deck board thickness to lower
the corrugated boxboard grade decreases when species with higher material stiffness are
initially used to construct the pallets.

Similar trends in the proportional changes of different unit load scenario grades were
observed from the initial top deck thickness effect and the pallet wood species effect.
Both results indicated a significant reduction in the potential to decrease board grade by
increasing top deck stiffness when the pallet was initially designed with stiffer pallet wood
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material. In other words, this unit load optimization method is more effective when the
unit load is initially designed using lower stiffness pallets.

Figure 7 displays changes in the proportions of different grade scenarios as a function
of the range of board grade reduction. It was discovered that for the scenarios where the
ECT change is greater between the consecutive board grade levels, the proportion of grade 1
scenarios decreases, and the ratio of grade 3 considerably increases. The ratio of grade 1
scenarios ranged between 41% and 82% for the cases with 0.05 kg/mm to 0.08 kg/mm ECT
reduction. On the other hand, the proportion of grade 1 scenarios ranged only between
8% and 28% when it required 0.14 kg/mm to 0.18 kg/mm ECT value reduction. These
results also show that the higher the initial board grade is, the more opportunities there
are to reduce the board material with minor changes to top deck thickness. For instance,
the proportion of grade 1 scenarios significantly increased from 41% to 49% and 82%
when the board grade reduction range was 0.57–0.52 kg/mm, 0.79–0.71 kg/mm, and
0.91–0.86 kg/mm ECT, respectively. In this analysis, higher board grade also meant that
the boxes supported more weight than lower board grade boxes. It indicates that the
effect was more prominent for scenarios that had greater unit load weight because having
more weight in the boxes causes more bending to the deck boards, which increases stress
concentrations on the boxes.

 

Figure 7. Changes in the proportions of the different grade scenarios in response to the range of
board grade reduction.

Figure 8 shows changes in the proportions of various unit load scenario grades for
the three different box sizes. The proportion of the grade 1 scenarios decreased from 57%
to 39% and 21% and the proportion of the grade 3 scenario increased from 38% to 47%
and 72% as package size increased from small to medium to large boxes. There was no
consistent trend with the proportion of grade 2 scenarios. The results indicated that the
feasibility is greater to reduce the corrugated board grade by increasing the thickness of top
deck boards for unit loads consisting of small-sized boxes rather than larger ones. Similar
to the board grade effect, this trend could be explained by weight differences per unit load.
Although each small box held a lighter weight than the medium and large boxes in this
analysis, the small box scenarios contained much heavier weight as a whole unit load than
the scenarios with larger-sized boxes because these unit loads required more of the small
boxes to create the same size load.
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Figure 8. Changes in the proportions of the different grade scenarios in response to the box sizes.

Overall, it was found that all investigated variable factors had an observable influence
on the feasibility of using an increase in pallet top-deck stiffness to lower the board grade
of the corrugated boxes. Unit load scenarios to which it was more feasible to apply the
unit load cost optimization method were observed as the initial unit load was designed
with less stiff pallet top-deck boards; either thinner top deck boards or lower density wood
species. For box-related variables, unit loads of smaller-sized boxes, unit loads with a
smaller range of board grade reduction, and unit loads with higher initial board grades all
created more favorable situations on which to apply the unit load optimization method
due to the heavier weight of these unit loads.

4. Limitations and Assumptions

1. Only a standard GMA™ style, stringer class, wooden pallet design was investigated
in the study.

2. PDS can only run analysis up to 38.1 mm top deck board thickness, so the scenar-
ios requiring top deck boards thicker than 38.1 mm were not simulated. There-
fore, the color grading system was applied to show the comparison between these
different scenarios.

3. Due to the functional limitations of PDS™ regarding top deck thickness increases, the
correlation between pallet stiffness (kg/mm top deck deflection) and the amount of
wood material that needed to be added was not investigated.

5. Conclusions

The key findings of this study were as follows:

• The benefits of increasing a pallet’s top deck thickness to reduce the corrugated board
grade diminish as the initial stiffness of the pallet increases.

• There were more opportunities to optimize unit load designs when the ECT values
between the different board grade levels were lower.

• There were more possibilities of decreasing board grade when the initial board grade
was higher, and/or when the box size was smaller, mostly due to the heavier weight
of these unit loads, which caused greater pallet bending. Pallets made of Kiln-Dried
Southern Yellow Pine are less likely to be able to be optimized using the investigated
methods because of the limited deck board thicknesses that can be cost-effectively
manufactured from the available raw materials.

Therefore, this study suggests that companies that use low stiffness pallets or have
unit loads of heavy boxes could have more opportunities to optimize their unit loads by
increasing the top deck thickness of their pallets.
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The study also revealed that changing the top deck board stiffness cannot be done
without considering the effects of other factors such as initial top deck board thickness,
pallet wood species, box size, and board grade. Therefore, the unit load optimization
process that reduces corrugated board grade by increasing top deck stiffness needs to be a
holistic process.

The next phase of the project will focus on investigating whether the increase in pallet
top-deck stiffness and the resulting reduction in corrugated boxboard grade can create an
environmentally beneficial scenario.
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Abstract: The standard edge crush test (ECT) allows the determination of the crushing strength
of the corrugated cardboard. Unfortunately, this test cannot be used to estimate the compressive
stiffness, which is an equally important parameter. This is because any attempt to determine this
parameter using current lab equipment quickly ends in a fiasco. The biggest obstacle is obtaining
a reliable measurement of displacements and strains in the corrugated cardboard sample. In this
paper, we present a method that not only allows for the reliable identification of the stiffness in the
loaded direction of orthotropy in the corrugated board sample, but also the full orthotropic material
stiffness matrix. The proposed method uses two samples: (a) traditional, cut crosswise to the wave
direction of the corrugated core, and (b) cut at an angle of 45◦. Additionally, in both cases, an optical
system with digital image correlation (DIC) was used to measure the displacements and strains on
the outer surfaces of samples. The use of a non-contact measuring system allowed us to avoid using
the measurement of displacements from the crosshead, which is burdened with a large error. Apart
from the new experimental configuration, the article also proposes a simple algorithm to quickly
characterize all sought stiffness parameters. The obtained results are finally compared with the
results obtained in the homogenization procedure of the cross-section of the corrugated board. The
results were consistent in both cases.

Keywords: corrugated cardboard; edge crush test; orthotropic elasticity; digital image correlation;
compressive stiffness

1. Introduction

The increasing consumer demands and absorptive power of the merchant market
in today’s world, resulting in the need to pack, store and securely ship more and more
various goods, in addition to growing ecological awareness, have led to the increasing
interest of manufacturers in cardboard packaging. This fact, in turn, has triggered the
inevitable, continuous, and intensive development of numerous corrugated cardboard
testing techniques over the last decades.

Assessing the load-bearing capacity of corrugated cardboard products is crucial for
their proper design, production final usage, and re-use processes. It is important to
emphasize here that corrugated cardboard comprises a few layers, and thus can be called
a sandwich structure. Its mechanical properties are directly related to two characteristic
in-plane directions of orthotropy, i.e., a machine direction (MD) that is perpendicular to
the main axis of the fluting and parallel to the paperboard fiber alignment, and a cross
direction (CD), which is parallel to the fluting.

Numerous approaches to sandwich element strength determination, including for cor-
rugated cardboard, can be found in the literature. Analytical methods, starting already in
the 1950s, were presented, e.g., in [1–5], whereas numerical methods can be found in [6–11],
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and analytical-numerical techniques in [12–16]. Analytical calculations of the edge crush
resistance of cellular paperboard, both in MD and CD, based on the paperboard’s geometric
parameters and the mechanical properties of the materials used for its production, was dis-
cussed by Kmita-Fudalej et al. [17]. Park et al. [18] investigated the edgewise compression
behavior of corrugated paperboard while applying the finite element method (FEM) as
well as experimental analysis, i.e., load vs. displacement plots, edge crush tests (ECT) and
failure mechanisms. In recent years, methods of artificial intelligence, including artificial
neural networks, have become widespread to predict the strength of composite materials,
e.g., sandwich structures as presented by Wong et al. [19].

While executing numerical simulations in examining corrugated cardboard, the com-
prehensive knowledge of each layer’s material properties is necessary. By reason of the
anisotropy of the paper-based materials, this is a demanding task. In such a case a good
solution is to implement a method called homogenization. This approach efficiently allows
us to simplify multi-layer models into single-layered model, described by the effective
properties of the composite [9,10,20]. The application of this technique has the benefits
of significant savings in computation time while maintaining the accuracy of the results.
Hohe [21] presented the strain energy approach as being applicable to sandwich pan-
els for homogenization and proposed an equivalence of a representative element of the
heterogeneous and homogenized elements for this purpose.

Another option, in addition to analytical or numerical analysis, for the estimation
of corrugated board strength is to carry out measurements from an experiment. Physical
testing is very common in the paper industry, and a number of typical tests have been
developed to unify the process of the characterization of corrugated cardboard mechanical
properties. The aforementioned ECT is used to evaluate the compressive strength, the
load during this examination is applied perpendicularly to the axis of the flutes. In the
bending test (BNT), four-point bending is executed, two supports are at the bottom of the
cardboard whereas two equal forces act on the sample from the opposite side. The shear
stiffness test (SST) involves twisting the cardboard cross-section by applying a pair of forces
to opposite corners while the other two remain supported. In the torsional stiffness test
(TST) the cardboard sample is twisted in both directions. The box compressive test (BCT)
is conducted to examine the load bearing capacity of the whole cardboard box [12–14,22].
The bursting and humidity tests should also be mentioned here.

Since ECT is standardized, four different methods have been described, i.e., the
edge-clamping method [23], the neck-down method [24], the rectangular test specimen
method [24–26] and the edge-reinforced method [27,28]. One of the major characteristics
which differentiates these tests is the shape of the samples. To assemble the measurements
from the outer surfaces of the specimen during the examination, video extensometry can
be employed. Such a procedure is based on the measurement of the relative distances
between pairs of points traced across images captured at different load values [15]. This is a
method comparable to, yet simpler than digital image correlation (DIC) which, as full-field
non-contact optical measurement method, is gaining more popularity in the field of experi-
mental mechanics since it ensures very high accuracy of data acquisition. Hägglund et al.
applied DIC while examining thickness changes during the ECT of damaged and undam-
aged panels made of corrugated paperboard [29]. The implementation of DIC for the
investigation of the strain and stress fields of paperboard panels subjected to BCT and
analysis of their post-buckling behavior was discussed by Viguié et al. in [30–32]. A dis-
tortional hardening plasticity model for paperboard was presented by Borgqvist et al. [33],
who introduced a yield surface characterized by multiple hardening variables attained
from simple uniaxial tests. The comparison between the results acquired from the model
and the experimental results received while using DIC were demonstrated as well. Com-
bined compression and bending tests of paperboards and laminates for liquid containers
while applying DIC were executed by Cocchetti et al. [34,35], who identified the material
parameters of anisotropic elastic-plastic material models of foils. For this purpose, inverse
analysis was employed while processing the results received from both the experiment
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and the numerical FEM simulations. DIC and the virtual fields method (VFM) for the
recognition of general anisotropy parameters of a filter paper and a paperboard have been
discussed by Considine [36]. Åslund et al. applied the detailed FEM for the investigation
of the corrugated sandwich panel failure mechanism while performing the ECT and com-
pared the results with the measurements obtained with the use of DIC [37]. Zappa et al.
studied the inflation of the paperboard composites which are used in the packaging of
beverages while applying DIC [38]. Paperboard boxes with ventilation holes subjected to a
compression load were investigated using DIC by Fadiji et al. [39].

It should be pointed out that in a large part of the above-mentioned studies, 3-ply
corrugated cardboard specimens were tested. In this study, 5-ply double-wall corrugated
cardboard samples were examined. While performing ECT, an optical system with digital
image correlation (DIC) is used to determine the displacements on the outer surface of the
specimen. The proposed method uses two types of samples, i.e., traditional, cut crosswise to
the direction of the wave direction of the corrugated core, and a novel procedure involving
a cut at an angle of 45◦. Such an approach not only allows for the reliable identification of
the stiffness in one direction of orthotropy, but also for the measurement of the full material
stiffness matrix, i.e., 4 independent parameters. The obtained results were verified by the
results acquired in the homogenization procedure of the cross-section of the corrugated
board. As proven, in both cases, the outcomes were very consistent.

2. Materials and Methods

2.1. Corrugated Cardboard

In the current study, a 5-ply corrugated cardboard marked as EB-650 was used. The
top liner is made of white, coated, recycled cardboard TLWC with a grammage of 140 g/m2.
The cross-section has two corrugated layers: (a) low flute (E wave) and (b) high flute (B
wave). Both the wavy layers and the flat layer between them, forming the mid liner, are
made of lightweight WB cardboard, also recycled, with a grammage of 100 g/m2. As a
bottom liner, again the white recycled test liner with a grammage of 120 g/m2 is used.
The geometry of the cross-section of the corrugated board and the configuration of the
respective layers are shown in Figure 1, where 5 samples are placed one on top of the other.
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Figure 1. Visualization of 5 samples (stacked on top of each other) of the analyzed corrugated cardboard.

Table 1 presents the geometrical parameters of both wavy layers (flutes). The second
and third columns of Table 1 shows the wave period (pitch) and the wave amplitude (height),
respectively. The take-up ratio, which defines the ratio of the length of the non-fluted
corrugated medium to the length of the fluted web, is specified in the last column of Table 1.
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Table 1. The geometrical features of both corrugated layers of EB-650.

Wave (Flute) Pitch (mm) Height (mm) Take-Up Ratio (–)

E 3.50 1.18 1.242
B 6.48 2.5 1.315

Paperboard, which is a main component of corrugated board, is made of cellulose
fibers. The orientation of fibers is not random, but rather results from the production
process, which causes that their vast majority is arranged along the web, called the machine
direction (MD). The second direction, perpendicular to the MD, is called the cross direction
(CD). Paperboard is both stronger and stiffer along the fiber direction.

In general, materials whose mechanical properties depend on fiber orientation are
called orthotropic materials. As a component of corrugated cardboard is paper, it is also
able to be considered as an orthotropic material. The orientation of the fibers, shown in
Figure 2, makes the corrugated board stronger along the direction of the wave. Thus,
the corrugated layers compensate (through the take-up factor) for the weaker mechanical
properties of the board in CD.
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Figure 2. Material orientation in the corrugated board.

Table 2 presents the material properties of the individual layers of the corrugated
board. The compressive strength in CD, SCTCD, is measured while using the short-span
compression test according to DIN EN ISO 3037 [26]. The compressive strength of the
combined corrugated board in CD, ECTCD, specified by the producer–Aquila Września–is
7.6 kN/m (±10%), while the total thickness of the EB-650, H is 4.3 mm (±0.2 mm).

Table 2. Mechanical properties of individual layers of 5EB650C3.

Layer
Name

Thickness
(µm)

EMD

(kN/m)
ECD

(kN/m)
SCTCD

(kN/m)

TLWC 140 180 725 323 2.32
W 100 160 886 328 1.76

TLW 120 170 907 313 1.81

2.2. The Edge Crush Test

The edge crush test (ECT) is a standard test to assess the compressive strength of
corrugated board. The test is performed according to FEFCO DIN EN ISO 3037 [25,26],
where a 100 mm long and 25 mm high specimen (see Figure 3a,b) is loaded between two
rigid plates along its height (see Figure 4a). In order to preserve the parallelism of the cut
edges of the sample, it should be cut on a special device, e.g., a FEMat CUT device [22] (see
Figure 4b), where the samples are pneumatically cut with one-sided ground blades. All
ECT tests were performed under controlled and standard air conditions, i.e., 23 ◦C and
50% relative humidity.
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Figure 4. Edge crush test: (a) Universal Testing Machine (Instron 5569); (b) FEMAT lab device.

As already mentioned above, the typical ECT is only used to determine the compres-
sive strength of the corrugated board in CD. Here, the new ECT test setup was also used
to determine all of the elastic orthotropic properties of the in-plane tension/compression
behavior of corrugated cardboard. For this purpose, beside the traditional method, we
also tested samples cut at an angle of 45◦ to the wave direction (see Figure 3c,d). Since
the measurement in standard testing machines is considerably affected by the clearance
and susceptibility on the crosshead, non-contact optical techniques are required to credibly
measure displacements (deformations or strains).

Additionally, measurement without direct contact does not affect the measurement
itself. In contact measurements (e.g., traditional extensometers), noise is introduced into
the measurement, which may distort the actual measured values.
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2.3. Optical Measurements of Sample Deformation

In this study, as mentioned, the specimen was tested while using optical displacement
and strain measurements, i.e., virtual extensometry and digital image correlation (DIC).
Two cameras (the stereo DIC setup) were employed to track the deformation on the front
faces to account for the out-of-plane bending produced by the non-symmetrical section,
and single a camera was employed on the back faces for standard optical extensometry,
per the test setup shown in Figure 5a. Each of the two faces of the specimen were printed
with the speckle pattern for both optical methods, i.e., DIC and video extensometry. Here,
three models of deformation measurements were used, namely:

• Crosshead from the machine.
• Stereo (2.5D) DIC on the front (see Figure 5b) plus extensometry on the back.
• Extensometry on the front and back.
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Figure 5. Setup of the optical measurements: (a) configuration of cameras on the front and back face;
(b) cameras recording the front face.

The specimen was sandwiched between two platens and aligned using 3D printed
L-brackets. Two 5 MPx cameras (Manta G504-b, Allied Vision, Stadtroda, Germany) were
used to record greyscale images during the test, see Figure 5. The video extensometry
was performed using the MatchID DIC platform (v. 2020.2.0, MatchID, Ghent, Belgium).
The cameras were calibrated while applying the MatchID calibration plate (MatchID,
Ghent, Belgium) to acquire the pixel (px) to mm conversion rate of ~50 µm/px. The
specimen was manually preloaded with a very small load (15 N) to ensure that both edges
of the specimen were touching the loading plates. Then, the measured load cell and the
displacement were zeroed, and the L-brackets supporting the sample were removed. The
load and the crosshead displacement were synchronized with the cameras. The accuracy
of the measurement was estimated using a set of 25 static images (without any movement);
the standard deviation of the measured elongation was evaluated to be 4 µm, which can be
considered the level of uncertainty. The optical displacements were averaged for each face
and compared against the crosshead displacement.

In total, 5 samples in CD and 5 samples using the 45◦ direction were tested. Unfor-
tunately, data from one of the samples in the CD experiment were not recorded properly
on the PC and were removed from the statistics. The loading rate was set to 5 mm/min
(which is different from the standard rate 12.5 mm/min) because the samples failed too
quickly for cameras to get enough data.

The following stereo DIC procedures, with camera ”Cam1“ as the main, were utilized
in this research:
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• Perform DIC on the sample’s face while using images from Cam1 and Cam0; region
of interest (ROI) visible in Figure 6b.

• Align the data coordinate system with the specimen material direction, i.e., 11 = MD,
22 = CD, yy = vertical (see Figure 6a).

• Calculate strain from the displacements.
• Select a subregion and extract the data; all data in the subregion is averaged giving

one value of desired quantities per image, namely: ε11, ε22, ε12, εyy.
• Shear strains reported as tensor shear strain component ε12, need to be doubled for

the engineering component.

Materials 2021, 14, x FOR PEER REVIEW 7 of 18 
 

 

 Select a subregion and extract the data; all data in the subregion is averaged giving 
one value of desired quantities per image, namely: ���, ���, ���, ���. 

 Shear strains reported as tensor shear strain component ���, need to be doubled for 
the engineering component. 

(a) (b) 

Figure 6. Virtual optical gauges (a) sample in CD and in 45°; (b) ROI visualization. The * denotes a material orientation 
in the sample cut in the 45°. 

On the other hand, the video extensometry main procedures utilized in this study, 
were as follows: 
 Use a speckle pattern compatible with DIC (pen marks would work equally well, per 

[15]). 
 Only perpendicular cameras were used (front = Cam1, back = Cam2). 
 Length of vertical gauges was 350 px (see Figures 6 and 7), while the length of the 

gauges in the 45° direction were chosen to be 490 px, which is × 1.4 of the vertical 
gauge (see Figures 6a and 7b). 

 The three gauges in their respective directions were averaged to produce a single 
value of strain, i.e., ���, ��� and ��� in the 45° direction tests, or ��� and ��� in the 
CD tests. 

 All membrane strain is the average of the front and back strains. Ideally, it should be 
obtained from the trapezoidal distribution of the paperboard cross-section under 
combined compression/bending. Here, it was simply averaged. 

 The shear strain can be calculated from the strain gauge rosette (see Figure 7b): ��� =��� − 0.5(��� + ���). 

(a) (b) 

Figure 7. Virtual optical gauges (a) sample in CD; (b) sample in 45°. 
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measured from each image either by averaging large region from the DIC (see Figure 6b) 
or by using virtual extensometers: 3 vertical plus 1 horizontal (see Figure 7a). The front 
and back data were averaged to remove artificial bending data. A similar methodology 
was used in case of the ECT in a 45° direction. All stiffnesses, e.g., ��� vs. ��� were cal-
culated from the linear portion of the graphs. 

2.4. Proposed Method to Identify Matrix A 

Figure 6. Virtual optical gauges (a) sample in CD and in 45◦; (b) ROI visualization. The * denotes a material orientation in
the sample cut in the 45◦.

On the other hand, the video extensometry main procedures utilized in this study,
were as follows:

• Use a speckle pattern compatible with DIC (pen marks would work equally well,
per [15]).

• Only perpendicular cameras were used (front = Cam1, back = Cam2).
• Length of vertical gauges was 350 px (see Figures 6 and 7), while the length of the

gauges in the 45◦ direction were chosen to be 490 px, which is ×1.4 of the vertical
gauge (see Figures 6a and 7b).

• The three gauges in their respective directions were averaged to produce a single value
of strain, i.e., ε11, ε22 and εyy in the 45◦ direction tests, or ε11 and ε22 in the CD tests.

• All membrane strain is the average of the front and back strains. Ideally, it should
be obtained from the trapezoidal distribution of the paperboard cross-section under
combined compression/bending. Here, it was simply averaged.

• The shear strain can be calculated from the strain gauge rosette (see Figure 7b):
ε12 = εyy − 0.5(ε11 + ε22).
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Figure 7. Virtual optical gauges (a) sample in CD; (b) sample in 45◦.

Using the tests for CD, εyy (in the CD direction) and εxx (in the MD direction) were
measured from each image either by averaging large region from the DIC (see Figure 6b) or
by using virtual extensometers: 3 vertical plus 1 horizontal (see Figure 7a). The front and
back data were averaged to remove artificial bending data. A similar methodology was
used in case of the ECT in a 45◦ direction. All stiffnesses, e.g., Fyy vs. εyy were calculated
from the linear portion of the graphs.
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2.4. Proposed Method to Identify Matrix A

The identification of matrix A is based here on two sets of tests, namely: (a) the
standard ECT, in CD and (b) the new ECT in 45◦ direction. The well-known relation
between cross-sectional forces and general strains has the form:




σ11
σ22
σ12


 =




A11 A12 0
A12 A22 0
0 0 A66






ε11
ε22
ε12


, (1)

where σij are the components of the sectional force vector, in [N/mm]; Aij are the stiffness
components, in [N/mm]; and εij are the membrane (in-plane) strains.

From Equation (1) two sets of equations can be extracted, namely in the CD test:

A12ε11 + A22ε22 = σ22,
A11ε11 + A12ε22 = 0,

(2)

and in the 45◦ direction test:

A11ε11 + A12ε22 = σ45
11 = 0.5σ45,

A12ε11 + A22ε22 = σ45
22 = 0.5σ45.

(3)

By building up a matrix of those equations from two experiments and solving it in the
least square sense (se e.g., [40]) the components of matrix A = [A11, A12, A22] can be easily
obtained. Component A66 can be obtained independently, from the ECT in the 45◦ direction.

If one uses stresses instead of sectional forces, the following equations can be derived
from the test in the CD:

[
E11

1−ν12ν21

E22ν12
1−ν12ν21

E11ν21
1−ν12ν21

E22
1−ν12ν21

]{
ε11
ε22

}
=

{
0

σ22

}
, (4)

and from the test in the 45◦ direction:
[

E11
1−ν12ν21

E22ν12
1−ν12ν21

E11ν21
1−ν12ν21

E22
1−ν12ν21

]{
ε∗11
ε∗22

}
=

1
2

{
σ45
σ45

}
. (5)

From the test in the CD only, just two constitutive components can be computed,
namely Poisson’s ratio:

ν21 = − ε11

ε22
, (6)

and the elastic modulus:
E22 =

σ22

ε22
. (7)

On the other hand, from both the CD and 45◦ tests, all orthotropic stiffness coefficients
can be obtained, namely elastic stiffness in MD:

E11 = − σ22σ45

ε11σ45 − 2ε∗11σ22
, (8)

elastic stiffness in CD:
E22 =

σ22

ε22
, (9)

Poisson’s ratio ν12 :
ν12 =

ǫ11σ45

ε11σ45 − 2ε∗11σ22
, (10)

Poisson’s ratio ν21:

ν21 = 1 − 2ε∗22σ22

ε22σ45
, (11)
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or using the symmetry principals:

ν21 = ν12
E22

E11
. (12)

The stiffness in the 45◦ direction can be computed directly from the test in 45◦ direction:

E45 =
σ45

εyy
, (13)

and is used to compute the last missing coefficient, namely the in-plane shear stiffness:

G12 =

(
2ν12

E11
− 1

E11
− 1

E22
+

4
E45

)
. (14)

3. Results

3.1. The ECT Enhanced with Optical Measurement Techniques

First, four tests of the CD are presented. Figure 8 shows the differences in the displace-
ments measured by optical techniques (solid line) and taken from the machine crosshead
(dashed line).
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Figure 8. Force-displacement curves. Optical extensometry–solid lines; from machine crosshead–
dashed lines.

Table 3 shows the elastic stiffness index, which was computed from the linear part
of the curves shown in Figure 8. It should be pointed out that the cross-sectional force
is normalized by the sample length (L = 100 mm) but not by the sample thickness. This
approach complies with the specifications of the corrugated board manufacturers and
allows the presentation of results regardless of the sample thickness.
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Table 3. Elastic stiffness index in CD computed from the displacement measurement by the optical
extensometry and from machine crosshead, as well as the edgewise compression strength in CD.

Test
ID

E—Optical
(N/mm)

E—Crosshead
(N/mm)

ECT
(N/mm)

1 1447.45 441.82 −7.548
2 1380.25 536.82 −7.151
4 1531.96 450.66 −7.609
5 1615.12 611.39 −7.640

Mean (N/mm) 1493.70 510.17 −7.487
Std (N/mm) 102.01 79.93 0.227

Cov (%) 6.829 15.668 −3.038

3.2. DIC vs. Extensometry

Then the stereo DIC and the extensometry approach were compared. For this analysis,
the selected test in the direction 45◦ was carefully analyzed. The DIC data in the zones
occupied by extensometers were averaged and compared (see Figures 9 and 10).
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Figure 9. Location of each strain gauge on the sample in the test in the 45◦ direction.

The results presented in Figure 10 are comparable, but not identical in terms of
elasticity, mainly due to a certain inhomogeneity in the deformation caused by the crushing
of the edges, which obviously affected the extensometers. However, this can be reduced,
e.g., by shortening the gauge length, which appears to be a key a priori choice. The question
of how long the extensometers should be is discussed in the next subsection.

It is known that the error in strain measurements comes from error in the measured
displacements (here it is constant at ~0.01 px) and the length of the gauge. Although it seems
that the longer the gauge, the better, but the longer the gauge, the greater the risk of taking
into account the edge effects of the sample, where (especially in the case of unwaxed samples)
the largest local deformations (i.e., crushing and wrinkling) are usually concentrated.
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3.3. Length of Virtual Extensometry

A study on the length of the optical extensometry was performed on the test number
3 data in the CD–full-field data was extracted (i.e., strains and displacements). Virtual
extensometers were generated with varied lengths at different horizontal positions and
compared against the averaged vertical strains from the DIC. For example, two points were
selected in the center of the sample: one at Y1 = +10 mm with respect to the center of the
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sample height, the other at Y2 = −10 mm and the extensometer strain was calculated from
εyy = (v1 − v2)/20.

Three horizontal positions of the virtual strain gauges were considered: (1) left at 25%
of the width; (2) mid at 50% and (3) right at 75% of the sample width. They were also
averaged. Figure 11 shows the location of the optical strain gauges. The length of each
gauge varies from 4 to 20 mm.

Materials 2021, 14, x FOR PEER REVIEW 12 of 18 
 

 

Three horizontal positions of the virtual strain gauges were considered: (1) left at 25% 
of the width; (2) mid at 50% and (3) right at 75% of the sample width. They were also 
averaged. Figure 11 shows the location of the optical strain gauges. The length of each 
gauge varies from 4 to 20 mm. 

 
Figure 11. Location of the virtual strain gauges. 

Figure 12 shows a comparison of strain calculated while using different lengths of 
virtual gauges with the DIC measurements. 

(a) (b) 

(c) (d) 

Figure 12. Comparison of strains measured by different lengths of virtual gauges with DIC measurements. (a) left set; (b) 
mid set; (c) right set; (d) averaged. 

The main observation was that for the test in the 45° direction, the extensometers 
should be arranged in a rectangular configuration (15 mm × 15 mm box, with longer 
gauges on the diagonal) or circular gauges (so as to keep the gauge length of 15 mm). 

Figure 11. Location of the virtual strain gauges.

Figure 12 shows a comparison of strain calculated while using different lengths of
virtual gauges with the DIC measurements.

Materials 2021, 14, x FOR PEER REVIEW 12 of 18 
 

 

Three horizontal positions of the virtual strain gauges were considered: (1) left at 25% 
of the width; (2) mid at 50% and (3) right at 75% of the sample width. They were also 
averaged. Figure 11 shows the location of the optical strain gauges. The length of each 
gauge varies from 4 to 20 mm. 

 
Figure 11. Location of the virtual strain gauges. 

Figure 12 shows a comparison of strain calculated while using different lengths of 
virtual gauges with the DIC measurements. 

(a) (b) 

(c) (d) 

Figure 12. Comparison of strains measured by different lengths of virtual gauges with DIC measurements. (a) left set; (b) 
mid set; (c) right set; (d) averaged. 

The main observation was that for the test in the 45° direction, the extensometers 
should be arranged in a rectangular configuration (15 mm × 15 mm box, with longer 
gauges on the diagonal) or circular gauges (so as to keep the gauge length of 15 mm). 

Figure 12. Comparison of strains measured by different lengths of virtual gauges with DIC measurements. (a) left set;
(b) mid set; (c) right set; (d) averaged.

192



Materials 2021, 14, 5768

The main observation was that for the test in the 45◦ direction, the extensometers
should be arranged in a rectangular configuration (15 mm × 15 mm box, with longer
gauges on the diagonal) or circular gauges (so as to keep the gauge length of 15 mm).

3.4. Consistency of Tests in 45 Deg Direction

The last issue was to check the data consistency of the new test in the 45◦ direction.
For all the CD tests, the force-strain data was very consistent, but unfortunately this was
not the case for the 45◦ tests. For each recorded level of the force, the measured strain
components averaged back-to-front are plotted (see Figure 13). It is visible that the tests
can be split into two, more consistent groups (see Figure 14). Group 2 had a stiffer response
in the 11 (MD) direction.
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The reasons for the difference are not fully clear. One of the observations was that
group 1 (i.e., test 6 and 8) had a high flute oriented towards the stereo DIC setup (front face
as depicted in Figure 3c). Local buckling on that face is more pronounced and that could
have affected the measured strain. However, even when using extensometers instead of
full DIC, the trend stayed the same. Group 1 had (accidentally) a different orientation of
fluting with respect to the plate than group 2 (Figure 3c,d).

3.5. Full Matrix A Identification

First, by combining tests 2 and 6 and using Equations (2) and (3) with the least square
approximation, one can identify the full A matrix (see Table 4).

Table 4. The components of A matrix.

Parameter: Test 2 and 6 Group 1 Group 2

A11 (N/mm) 2581 2583.0 3554.0
A12 (N/mm) 158 103.5 158.1
A22 (N/mm) 1674 (1500 1) 1765.0 1792.0
A66 (N/mm) 1078 1061.0 946.0

1 Results obtained directly from test 2 in the CD using Equation (7) or (9).

The Poisson’s ratio computed directly from the CD test (see Equation (6)) turned out
to be ~0.07, which is much closer to the value cited here: A12/A22 = 0.09. In all cases, force
was normalized by specimen width (100 mm). In the investigation, test number 1 was
removed from the data pool due to an artefact point.

Finally, the same procedure as above was used, but with the two separate groups
discussed in previous subsection shown in Figure 14. In total, 178 (group 1) and 204
(group 2) points were used here to calculate the in-plane stiffnesses (A11, A12, A22). This
separation made it possible to study the effects of positioning unsymmetric samples on the
ECT apparatus.

The reconstructed elastic forces from the identified parameters are shown in
Figures 15 and 16—multiple lines represent multiple tests. These data show good
model fitting.
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4. Discussion

The previous section provides the outcomes of the research, presenting, among others,
typical ECT results enriched with digital image correlation and/or optical, virtual exten-
sometry techniques. The results summarized in Table 3 clearly show that the use of the
displacements obtained from the machine crosshead introduces an error in the estimation
of the stiffness index, underestimating this value almost 3 times. The same observation can
also be found in the recent work of Garbowski et al. [15]. The compressive strength given
in Table 3 (shown in column 4) is consistent with the value provided by the manufacturer
of the corrugated board, namely 7.6 N/mm ±10%.

The comparison of strains obtained from the DIC and while using virtual extensome-
ters is presented in Figure 10. These results were comparable, but not identical. The best fit
can be observed for the vertical strain εyy. Based on the observations regarding the length
of the optical extensometer and its influence on the accuracy of the results, 15 mm segments
were used for further analyses. This can be observed in Figure 12, where the calculated
strains were compared while using DIC and extensometers of different lengths. The main
conclusion is that when applying longer gauges, the results are more stable. However, if
the optical extensometer is too long (i.e., longer than 15 mm) or too short (i.e., shorter than
8 mm), the differences can be as high as 15%.

The use of extensometers with a length of ~20 mm causes false results due to the
proximity of the measuring tip to the crushed edge of the sample (which is 25 mm high).
On the other hand, the use of short gauges of ~5 mm is affected by larger noise and causes
the measurements to have an error due to buckling from the plane of the sample (see
Figure 17b). The moment when the sample buckles is shown in Figure 12d–image number
38 (for a strain gauge 4 mm long). The influence of buckling (which manifests in the form
of an out-of-plane deformation) on the measurement of in-plane deformations can be easily
eliminated using the stereo DIC procedure. However, if optical extensometry is to be used,
a fairly large area where the results obtained with the extensometer match those obtained
with the DIC should be in the range of 8–16 mm.
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Figure 17. The ECT sample during the CD test: (a) sample during the CD test–no buckling; (b) sample during the CD
test–buckling.

Table 4 shows the identified components of matrix A. The second column shows the
results obtained during tests 2 and 6, while columns 3 and 4 show the results obtained
while using two different test groups. The groups included samples with a higher flute
from the front (on the side of the DIC stereo set) and samples with a lower flute from
the front. It is evident that the results for group 2, especially in the case of A11 and A12,
differed significantly from the results obtained in the first procedure, while considering
group 1. This was due to the asymmetric cross-section of the sample and the different
level of buckling on the sample side with the higher flute. Out-of-plane deformation
related to buckling distorts measurement and therefore introduces noise that distorts the
results. Other components of matrix A did not differ more than 10% when using different
measurement techniques, which was very promising.

In order to validate the results presented in Table 4, the numerical homogenization pro-
cedure (for details see recent works by Garbowski and Gajewski [9] or Garbowski et al. [10])
of the cross-section of corrugated board BE-650 (see Figure 18) was used. The numerical
homogenization technique used the geometrical and constitutive parameters presented in
Tables 1 and 2. The following results were obtained while employing the homogenization
technique: A11 = 2620 N/mm, A12 = 185 N/mm, A22 = 1812 N/mm, A66 = 906 N/mm.
The results are in good agreement, which proves that the use of optical techniques in con-
junction with the new setup of the ECT (samples cut at an angle of 45◦ with respect to the
direction of corrugation) can be effective in determining the stiffness of corrugated cardboard.
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5. Conclusions

The main conclusion is that stereo DIC and/or optical extensometry techniques can
be used to evaluate stiffness in a standard edge crush test. In order to determine all
the stiffness coefficients, it is necessary to use an additional, new test specimen cut at
an angle of 45◦ to the direction of the corrugation. By applying the results from the
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two samples simultaneously and using a least squares minimization approach, all of the
stiffness components can be easily identified. The only concern is proper surface selection
in unsymmetrical corrugated cardboard samples for stereo DIC measurement, especially in
the 45◦ tests. However, this is easily remedied by using a larger sample set and averaging
the results.
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Abstract: In the modern world, all manufacturers strive for the optimal design of their products.
This general trend is recently also observed in the corrugated board packaging industry. Colorful
prints on displays, perforations in shelf-ready-packaging and various types of ventilation holes in
trays, although extremely important for ergonomic or functional reasons, weaken the strength of
the box. To meet the requirements of customers and recipients, packaging manufacturers outdo
each other with new ideas for the construction of their products. Often the aesthetic qualities of the
product become more important than the attention to maintaining the standards of the load capacity
of the packaging (which, apart from their attention-grabbing functions, are also intended to protect
transported products). A particular flaps design (both top and bottom) and its influence on the
strength of the box are investigated in this study. An updated analytical–numerical approach is used
here to predict the strength of packaging with various flap offsets. Experimental results indicated a
significant decrease in the static load-bearing capacity of packaging in the case of shifted flap creases.
The simulation model proposed in our previous work has been modified and updated to take into
account this effect. The results obtained by the model presented in this paper are in satisfactory
agreement with the experimental data.

Keywords: corrugated board; box strength estimation; packaging flaps; crease line shifting

1. Introduction

The relentless increase in consumption all around the contemporary world is reflected
in the significant growth in the production of various goods. This, in turn, entails the
necessity of their packing, safe storing and transportation to any destination. Due to
growing ecological awareness and concern for the environment, the perfect choice is
undoubtedly corrugated cardboard boxes. The undeniable facts are that they are recyclable,
easy for disposal, ecological, durable under appropriate conditions and easy to store in
a flat form after manufacturing. Among their numerous advantages, one cannot fail to
mention the easy imprint of brand names on them. This is highly useful in cases of shelf-
ready packaging (SRP) or retail-ready packaging (RRP) when, after being transported to the
site, the packaged products are placed directly on the shelves. Upon opening the cardboard
boxes along the specially designed and made perforations, products are ready to purchase.
Such a solution is a huge time-saver for large companies.

In the case of individual recipients of merchandise, especially when shopping online
(which nowadays is a significant part of the sales market), a very important factor is the
possibility of smoothly returning purchased products if the consumer is not satisfied, for a
range of reasons. Retailers that offer reusable packaging to send back purchased goods
are very competitive on the market. Again, corrugated cardboard boxes are perfect in
such situations. They are easy to open thanks to well thought-out perforations and, after
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re-sealing with the built-in adhesive strip, are ready to send back. However, it must not be
forgotten that the packaging must have sufficient durability to survive the return transport.

Therefore, in view of the above, scientific research while applying analytical as well as
numerical methods and/or laboratory tests has been an inherent part of a separate branch
of industry, i.e., the production of corrugated cardboard packaging, for many years.

The proper mechanical strength of the paperboard or corrugated cardboard boxes is
directly connected with two characteristic in-plane directions of orthotropy. Machine direc-
tion (MD) is perpendicular to the main axis of the fluting and parallel to the paperboard
fiber alignment, whilst cross direction (CD) is parallel to the fluting. In order to examine
the strength of corrugated cardboard boxes, one can perform some fundamental physical
tests, i.e., compressive, tensile or bursting strength tests, which, in practical terms, are the
most significant. The most prevalent are the box compression test (BCT) and the edge crush
test (ECT) for corrugated cardboard.

A significant impact on the load-bearing capacity of packages is undoubtedly the
various perforations, openings and flap locations on corrugated cardboard boxes. The
first two issues have been meticulously discussed by Garbowski et al. in [1] and [2],
respectively. In the present study, the influence of the flap locations on the strength of
corrugated cardboard boxes, as another article in a series, is discussed. The conducting of
physical experiments usually involves a great deal of time and cost. Therefore, recently,
other methods of testing corrugated boxes have emerged to determine their strength by
physical testing only.

Alternatively, the compressive strength of boxes can be assessed based on formulae
that have been presented in numerous literatures. Their adoption, thanks to their simplicity,
results in quick and easy solutions for practical applications. Moreover, no additional
experiments are necessary. The parameters that are introduced in these formulae can be
systemized into three groups: paper, board and box parameters [3]. In the first group
one can specify: the ring crush test (RCT), Concora liner test (CLT), liner type, weights
of liner and fluting, corrugation ratio and a constant related to fluting. In the second one:
thickness, flexural stiffnesses in MD and CD, ECT and moisture content. Finally, in the
third: dimensions and perimeter of the box, applied load ratio, stacking time, buckling ratio
and printed ratio. Nearly 70 years ago, the paper (RCT, flute constant) and box (perimeter,
box constant) parameters were applied for the prediction of boxes’ compressive strength in
the formula presented by Kellicutt and Landt [4]. The dependence of critical force on paper
parameters (CLT, type of liner) and cardboard box dimensions in the BCT was presented
in [5].

Generally applicable in the packaging industry is the procedure proposed by McKee
et al. [6], in which the parameters of the paperboard (ECT, flexural stiffnesses) and the
box perimeter were introduced. Nevertheless, the provided formula is applicable only
for comparatively simple boxes. Throughout the years, many scientists endeavored to
broaden the applicability of the McKee’s analytical formulae. Allerby et al. [7] modified
the constants and exponents in the above-mentioned approach. Schrampfer et al. [8], in
turn, amended McKee’s approach by extending the possibility of implementing a broader
range of cutting methods and equipment. Batelka and Smith [9] enhanced the relationship
with the dimensions of the box and Urbanik and Frank [10] introduced the Poisson’s ratio
as well. The arbitrary chosen constant value as a parameter in the McKee’s formula limited
its applicability to simple standard boxes. Moreover, Garbowski et al. [1,2,11] examined
this approach for more sophisticated cases and modified the McKee’s formula. One cannot
forget that the compression strength of corrugated paperboard boxes [12] depends on many
factors, such as moisture content of the box [13,14], the presence of openings, ventilation
holes and perforations [1,2,15], storage time, stacking conditions [16] and numerous others.

An alternative option to compute the strength of the boxes is to implement, the
well-known in engineering, finite element method (FEM). It has been involved in a lot
of research, including the problems of numerical analysis with regard to the transverse
shear stiffness of corrugated cardboards [17–21] as well as buckling and post-buckling
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phenomena [22]. The method that efficiently allows one to simplify the examined models
is homogenization [23–27]. The result of this procedure is one single layer described by
the effective properties of the composite, rather than building the layers made out of
different materials. The advantage of this approach to the problem is a significant saving of
calculation time while maintaining the appropriate accuracy of the results. The approach
based on strain energy, applicable to sandwich panels in the issue of homogenization, was
presented by Hohe [28]. For this purpose, a representative element of the heterogeneous
and homogenized elements was proposed. Another method, using a periodic homoge-
nization technique considered by Buannic et al. [29], allows not only for an equivalent
membrane and the pure bending characteristics of period plates but also, in a modified
version, includes the transfer of shear effect in the analysis. The FEM was applied by
Biancolini [30] for the examination of a micromechanical part of the considered plate. In
the aftermath of application, the energy equivalence between the model and the equivalent
plate as well as the stiffness properties of the sandwich plate were obtained. In turn, Abbès
and Guo [31] analyzed the plate, which was decomposed into two beams in the directions
of the plate, which allowed them to find the torsion rigidity of the orthotropic sandwich
plates. The method of treating the quasi-static equilibrium of a material subjected to defor-
mation with hardening was proposed in [32]. Therefore, the experimental data obtained
in the dynamic case of deformation could be compared with the data calculated for the
quasi-static case. The laboratory tests, properly chosen and scheduled, were performed
right on the composite. Layered elements, on which effective parameters can be measured
directly, are an alternative method for homogenization. This very approach is proposed in
the present research.

An operation during which fold and perforation lines are introduced is defined
as creasing. One cannot neglect its impact on the load-bearing capacity of corrugated
paperboard. Undeniably, those lines reduce the mechanical strength of the manufactured
corrugated paperboard boxes, hence the results of extensive research can be found in
the literature. The comparison between the experimental and FEM numerical results,
performed in order to examine the creasing influence on the local strength of corrugated
paperboard, was discussed by Thakkar et al. [33]. The impact of creasing and subsequent
folding on the mechanical properties of laminated paperboard has been picked up by
Beex and Peerlings [34], who performed physical as well as numerical experiments, whilst
Giampieri et al. [35], to acquire the mechanical response of creased paperboard after
folding, used a constitutive model. Domaneschi et al. [36] and Awais et al. [37] proposed
an essential (from a practical point of view) solution for the packaging industry, basing
it on the FEM simulations of paperboard creasing. Experimental, as well as numerical,
studies on the influence of the creasing process during press forming on the paperboard
mechanical properties were conducted by Leminen et al. [38].

The particular top and bottom flaps design, which is directly related to the flap creases,
and their influence on the strength of corrugated cardboard boxes is investigated in this
study. An updated analytical–numerical approach is used to predict the strength of the
packaging with various flap offsets. Experimental results pointed out a significant decrease
in the static load-bearing capacity of packaging in the case of shifted flap creases. The
simulation model, proposed in the previous works of the authors [1,11], has been modified
and updated to take this effect into account as well. The results obtained during the
analysis of the numerical model proposed in the paper are in adequate agreement with the
experimental data. This approach by which the prediction of the strength of boxes with
offset flaps is analyzed is, to our knowledge, very pioneering and constitutes an innovative
contribution to the development of the field related to the prediction of the load capacity of
corrugated cardboard packaging.
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2. Materials and Methods

2.1. Corrugated Board Packaging with Shifted Flaps

In previous works, the authors analyzed packages with perforations [1] and open-
ings [2]. Here, the focus is on packages with offset flaps. Such packaging is becoming
standard in retail-ready packaging that is also used for shipping. The shifting of the
crease line (see Figure 1) makes the flaps more adjustable after closing. Unfortunately, the
load-bearing capacity of packaging with shifted flaps significantly diminishes.

 

Figure 1. Box with offset flaps.

The drop in box strength results from a certain sequence of loading, in which the
edges of the two shifted (elongated) walls of the package are loaded first, while the other
two are only loaded after buckling and/or crushing of the first two (see Figure 2).

 

(a) (b) 

Figure 2. Sequence of loading of the package vertical walls: (a) edges loaded in the first step; (b) edges
loaded in the second step.

In order to derive a simplified calculation algorithm for estimating the strength of
boxes with offset flaps, a series of tests was first performed in the laboratory for various
boxes made of different corrugated cardboard. All studies were carried out on the BCT
press [39] (see Figure 3). In order to be able to perform computer predictions of the
packaging load capacity, it is required in the first step to identify the material parameters
of the corrugated board, then to select the appropriate material model and finally to build
a numerical or analytical model that takes into account the geometry of the analyzed box.
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(a) (b) 

Figure 3. BCT tests: (a) BCT press; (b) packaging with the shifted offsets on the flaps.

The following sections describe the laboratory testing of corrugated board, the con-
stitutive modeling of corrugated cardboard, a numerical simulation model and a simple
analytical algorithm for estimating the load capacity of corrugated cardboard packaging.

2.2. Laboratory Testing of Corrugated Board

Laboratory tests of the corrugated cardboard were performed to determine its stiffness
and strength. The four most commonly used tests are: edge crush test, shear stiffness
testing, torsional stiffness test and 4-point bending test. The edge crush test (ECT) mea-
sures the compressive strength of a corrugated board sample. This test is performed for
relatively stocky specimens, so that the failure mechanism is the crushing of the sample,
not the loss of stability. The ECT value is often used to determine the load capacity of
the corrugated cardboard package in analytical [6], analytical–numerical [1,2,11] or purely
numerical [40,41] approaches.

The shear stiffness test (SST) is used to measure the shear stiffness of a sample by
applying two equal forces at opposite corners. The measurement of displacements and
reaction forces on the supports enables the required stiffness to be calculated. The SST is
characterized by a high sensitivity to crushing the sample, resulting in processes such as
die-cutting and laminating. The torsional stiffness test (TST) consists of twisting the sample
by 10 degrees in both directions and is performed to determine the torsional stiffness. Only
the linear part of the bending moment/angle of rotation diagram is being considered for
this purpose. The obtained TST values are valid even for highly crushed, broken and
flaccid samples.

The bending stiffness test (BNT) is used to determine the bending stiffness in the
4-point bending test. The static scheme of the tested sample allows a constant bending
moment and a shear force equal to zero between the internal supports to be obtained, which
provides more accurate measurement of the bending stiffness value. On the other hand,
the presence of a shear force between internal and external supports makes it possible to
take into account the effect of the shear stiffness as well.

2.3. Corrugated Board: Material Model and Constitutive Parameters

Since paperboard is an orthotropic material, many material parameters are needed for
its correct mathematical description. Therefore, more laboratory tests should be carried
out. In papermaking laboratories one can determine visual, functional and mechanical
properties of paperboard or corrugated board. The most popular mechanical tests include,
for example: (a) short span compression test (SCT) of paperboard; (b) tensile test of
paperboard; (c) resistance to bursting of paperboard or corrugated board; (d) edge crush
test (ECT) of corrugated board; (e) flat crush test (FCT) of single walled corrugated board;
(f) corrugated board bending stiffness (4-point bending test).

Some of these tests can be directly used for linear elastic material model calibration,
namely the plane strain Young’s modulus in two perpendicular directions, Kirchhoff’s
modulus and Poisson’s ratio. The modulus of elasticity (i.e., Young’s modulus) is a quantity

203



Materials 2021, 14, 5181

well known to designers and engineers, but less common in paper specifications in the
cardboard packaging industry. Traditionally, the stiffness modulus can be determined
while performing a uniaxial tensile test of a sample. As paperboard is an orthotropic
material, more tests are required to determine all elastic parameters (see Figure 4).

𝜀𝜀2𝜀 = 1 𝐸⁄ −𝜈 𝐸⁄ 0−𝜈 𝐸⁄ 1 𝐸⁄ 00 0 1 𝐺⁄ 𝜎𝜎𝜎 ,
𝐸 𝐸𝐺 𝜈 𝜈

𝜈𝐸 = 𝜈𝐸 .

𝑓 𝛔, 𝜅 = 𝑎 𝜎 𝑎 𝜎 − 𝑎 𝜎 𝜎 3𝑎 𝜎 − 𝜎 𝜅 0√∗ 𝜎𝑎 = 𝑎 = 𝑎 = 𝑎 = 1 𝜎 𝜅 𝜅𝜎𝑎 𝑎
𝑎 = 𝜎𝜎 ,     𝑎 = 𝜎𝜎 ,     𝑎 = 𝜎3𝜎 ,𝜎 𝜎𝜎 𝜎𝑎𝑎 = 𝑎 𝑎 3𝑎 − 4𝑎 ,

Figure 4. The load–displacement curves in MD, CD and 45 deg.

Determining the elastic parameters is an important step in the box load-bearing
capacity estimation procedure, thus the brief introduction to some basic definitions, the
constitutive description of the paperboard and the method of calibrating material constants
will be presented in the subsequent sections. For orthotropic materials in a plane stress
state, the relationship between elastic strains and stresses can be written as:




ε11
ε22

2ε12


 =




1/E1 −ν21/E2 0
−ν12/E1 1/E2 0

0 0 1/G12






σ11
σ22
σ12


, (1)

where E1 is Young’s modulus in the Machine Direction (MD); E2 is Young’s modulus in
the Cross Direction (CD); G12 is Kirchhoff’s modulus and ν12, ν21 are Poisson’s coefficients.
Due to the symmetry of the material compliance/stiffness matrix, the relationship between
the Poisson’s coefficients is as follows:

ν12

E1
=

ν21

E2
. (2)

The Hill model [42] can be successfully employed to describe the behavior of the
paper in an inelastic phase. Implementation of the Hill model requires the definition
of the elastic domain described by the plastic yield function and the description of the
material hardening:

f (σ, κ) =
√

a1σ2
11 + a2σ2

22 − a12σ11σ22 + 3a3σ2
12 − σ0(κ) ≤ 0, (3)

where
√∗ is an effective stress σe f f , which can be reduced to classical Huber-Mises criterion

for isotropic materials if a1 = a2 = a12 = a3 = 1; σ0(κ) is a yield stress function; κ is a
hardening parameter, usually related to effective plastic strains; σij are the stresses in
main orthotropic directions; ai and a12 are called anisotropic parameters, which can be
determined from simple tensile tests in the main orthotropic directions:

a1 =
σ2

0
σ2

10
, a2 =

σ2
0

σ2
20

, a3 =
σ2

0
3σ2

120
, (4)

where: σ0 is the initial yield stress in the reference direction; σ10 is the yield stress in
first direction (e.g., MD); σ20 is the yield stress in second direction; σ120 is the yield stress
in shearing.
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The remaining parameter a12 can be determined from the equation:

a12 = a1 + a2 + 3a3 − 4a45, (5)

where a45 is the anisotropic parameter determined from a tensile test in an angled direction
of 45 deg. As for most materials, only the values σ10 , σ20 and σ120 are known, in practical
applications for the coefficient a12 usually a simplified relationship is assumed, e.g.,:

a12 =
σ2

0
σ10σ20

. (6)

It is a known fact that paperboard behaves differently under tension and compres-
sion. Therefore, the chosen plasticity criterion (which is symmetric in case of tension and
compression) is not appropriate for this type of material. However, for simple strength
calculations with a stress state dominated by compression, this model is a sufficient ap-
proximation. For the correct analysis of the structure in the complex stress state, one of the
more sophisticated constitutive models should be used, e.g., [43–48].

2.4. Numerical Predictive Model

The numerical model of the box was built in the Abaqus Unified FEA software (2020,
Dassault Systèmes Simulia Corp., Providence, RI, USA.) [49]. Two types of models had
to be created: (i) the non-offset packaging and (ii) the package with flaps offset. In order
to simplify the computations and save the computing time, only 1/8 part of the box was
modeled instead of the whole packaging (see Figure 5). The material used in the model
was linear elastic orthotropic model with Hill plasticity.

𝑎 𝜎  𝜎 𝜎𝑎
𝑎 = 𝜎𝜎 𝜎 .

Figure 5. Scheme of the 1/8 part of the package.

To obtain the appropriate behavior of the numerical model, symmetry boundary
conditions were defined on each edge (see Figure 6). For the packaging model without
offset, only one computation step was defined, in which the displacement was applied
on both edges. In the case of the package with offset flaps, in the first step only the offset
edge was loaded and in the second step the load was then applied to the non-offset edge.
The 4-node quadrilaterals shell elements with full integration, named S4, were used for all
computations. For different dimensions of packaging, different values of mesh size were
assumed. For example, for the package dimensions 500 × 500 × 500 mm the approximate
global size of the element was 12 mm, which ultimately gave 882 elements, 946 nodes and
5676 degrees of freedom. To add the initial deformations (resulting from imperfections) of
the box vertical walls, a buckling analysis was performed before the main calculations. The
first buckling mode of the model found in this way was later introduced in the next step in
the form of scaled imperfections.
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(a) (b) (c) 

𝐸𝐶𝑇𝐸 = 𝐸𝐸 = 𝐸
𝑃 = 𝜋𝐵 𝑡12 𝐸 𝐸 𝑚𝐵𝐻 𝐻𝑚𝐵 , 

𝐵 𝑡 𝐻𝑚 𝑃

𝐵𝐶𝑇 = 𝛼𝐵𝐶𝑇 𝐵𝐶𝑇 , 
𝐵𝐶𝑇 = 2𝑘𝐸𝐶𝑇 𝑃 𝛾 𝛾 𝐵  
𝐵𝐶𝑇 = 2𝑘𝐸𝐶𝑇 𝑃 𝛾 𝛾 𝐵  

𝑘 𝑟 𝑟 ∈ 0,1𝛾  𝐵 𝐵𝛼

Figure 6. Boundary conditions for the case of: (a) the non-offset package; (b) the package with offset flaps (first step); (c) the
package with offset flaps (second step).

2.5. Analytical Predictive Model

The simplified procedure for estimating the compressive strength of a corrugated
cardboard box with offset flaps proposed here is based on an analytical model. The
algorithm exploits the basic constitutive parameters of a single box wall, namely: ECTCD—
compressive strength in CD, ECD = E2—compressive stiffness of corrugated boards in CD
and EMD = E1—compressive stiffness of corrugated boards in MD. Since in some cases the
instability of a single wall may occur before plasticization, it is also necessary to determine
the critical load for an orthotropic rectangular plate, e.g., from the formula [1,2,11]:

Pi
cr =

π2

Bi
2

ti
3

12

√
Ei

CDEi
MD

(
mBi

H
+

H

mBi

)2
, (7)

where Bi is the width of the i-th panel; ti is the i-th panel thickness; H is the box height; m
is the number of half-waves for which Pi

cr reaches the minimum.
The analysis of strength estimation of a box with shifted flaps, as already discussed

in the previous section, consists of two stages, in which the higher walls (i.e., the shifted
ones) are loaded first (see Figure 2a), while the lower walls are loaded only if preliminary
crushing and/or buckling of the first two walls occurs (see Figure 2b). Therefore, the overall
load capacity of the packaging is the sum of the load capacity of two pairs of opposite walls
of the box, namely:

BCT = αBCT1 + BCT2, (8)

where
BCT1 = 2kECTr

(
P1

cr

)1−r
γ1γ2B1 (9)

is the load capacity of the shifted walls, while

BCT2 = 2kECTr
(

P2
cr

)1−r
γ3γ4B2 (10)

is the load capacity of lower walls.
In Equations (9) and (10) k is a certain constant and r is an exponent, r ∈ (0, 1), and γi

are the reduction coefficients. B1 and B2 are base dimensions, which are shown in Figure 7.
The α coefficient reduces the value of the first term in Equation (8) due to the initial failure
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and/or buckling of the walls loaded in the first step (see Figure 8). This factor can be
calculated using the formula below:

α = 1 −
uo f f − u0

umax − u0
, (11)

where uo f f is an offset of higher walls; umax = H is assumed to be equal to the height of the
box; u0 is the vertical deformation corresponding to the maximum load. The latter can be
calculated from Hooke’s law considering the stiffness in the CD direction, ECD; single box
wall height, H (see Figure 7); shifted wall width, B1; board thickness, t; the compressive
strength, BCT1 (see Figure 8). Thus, finally we obtain:

u0 =
BCT1

2tB1ECD
H. (12)

𝛼 = 1 − 𝑢 − 𝑢𝑢 − 𝑢 , 
𝑢 𝑢 = 𝐻𝑢 𝐸𝐻 𝐵 𝑡𝐵𝐶𝑇

𝑢 = 𝐵𝐶𝑇2𝑡𝐵 𝐸 𝐻. 

 

𝛾 𝑟 𝛾
𝛾 = min 𝐵𝐻 , 1 , 

𝛾
𝛾 = min 𝐵𝐵 , 1 . 

𝛾
𝛾 = min 𝐵𝐻 , 1 , 

𝛾
𝛾 = min 𝐵𝐵 , 1 . 

𝑘 𝑟𝑟

Figure 7. Box dimension symbols.

 

𝑘 𝑟 𝑟 𝑟 𝑟

Figure 8. Force-displacement visualization of the proposed method.

The reduction factors γi are always less than one and depend on the ratio of the box
dimensions and the exponents ri. The γ1 factor in Equation (9) reads:

γ1 = min
[(

B1

H

)r1

, 1
]

, (13)

while γ2:

γ2 = min
[(

B1

B2

)r2

, 1
]

. (14)
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Similarly, the coefficient γ3 in Equation (10) is:

γ3 = min
[(

B2

H

)r3

, 1
]

, (15)

while γ4:

γ4 = min
[(

B2

B1

)r4

, 1
]

. (16)

All unknown factors in Equations (8)–(10), namely constant k and exponent r, and the
four exponents ri in Equations (13)–(16), can be found by calibration with experimental
data. The calibration procedure will be presented in the following section.

2.6. Calibration Procedure

The main goal of this study is to propose a reliable analytical model for the quick
estimation of the load capacity of offset packaging. Therefore, the calibration of the
coefficients in the analytical equations is particularly important. Unfortunately, the limited
number of laboratory results creates a risk that the analytical model will be valid only
for a small set. In order to extend the applicability of the proposed model, a calibration
procedure consisting of two stages was engaged: (i) in the first step, special attention was
paid to the correct mapping of experimental results into a numerical model; (ii) in the
second one, the already tuned numerical model was used to generate much larger sets of
cases, which were then utilized to identify the sought parameters in the analytical model.

In the first step, the only unknowns are the initial imperfections. Therefore, a very
simple strategy is used, in which the numerical model is calibrated with experimental data
by appropriate scaling of the initial deformations of the vertical box walls. In the second
step, the coefficients in Equations (9) and (10) are identified in the assumed order: first the
constant k as well as exponents r and r1, then r2 and r3. In both cases, simple techniques
were used to minimize the discrepancy between analytical model prediction and numerical
results with the use of the least squares method.

3. Results

3.1. Corrugated Board: Material Testing

In order to correctly determine the properties of the material, it was necessary to
examine samples of corrugated board in several typical laboratory tests. For this purpose,
a FEMat BSE device (FEMat Sp z o.o., Poznan, Poland) [50] was used. In total, seven
different types of corrugated cardboard with a grammage of 350 to 965 g/m2 were tested.
Since cardboard is a very heterogeneous material, at least 10 samples in each test were
examined for each grade in order to obtain statistically reliable results. In Table 1, the
sample results for the BC-780 grade are summarized. The first column represents a test
number, the second column shows the sample thickness and in the third to ninth columns
the results obtained from different tests in both orthotropy directions are demonstrated (all
test symbols are explained in the previous section).

Figure 9 demonstrates the force-displacement curves from all tests of the corrugated
cardboard. Since both shape of the curve and the calculated shear stiffness (SST) in the
machine and cross directions are almost identical, only the values in the MD are shown. In
Table 2, the mean values of the tests for all seven grades are presented. The first column
represents grades that were used in the packaging for which the box compression test was
carried out (details will be discussed in the next section). In the second to ninth columns,
the measured stiffnesses obtained from the BSE device are shown.
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Table 1. Test values for BC-780 corrugated cardboard grade.

Test THK ECT BNT-MD BNT-CD SST-MD SST-CD TST-MD TST-CD

1 6.49 10.77 10.79 10.47 2.96 3.05 3.10 1.79
2 6.50 10.66 10.55 9.66 3.02 2.77 3.05 1.74
3 6.49 10.93 10.53 9.20 2.90 2.99 3.08 1.79
4 6.53 11.28 10.31 10.11 2.80 2.86 3.26 1.71
5 6.53 11.15 10.29 11.24 2.95 2.91 3.20 1.70
6 6.52 11.41 11.13 11.94 2.95 2.77 3.31 1.92
7 6.52 11.85 11.06 10.92 2.95 2.77 3.29 1.85
8 6.55 10.82 11.11 11.03 2.96 2.70 3.29 1.90
9 6.53 11.44 10.42 9.05 3.10 2.90 3.45 1.88
10 6.55 11.44 10.74 10.43 3.12 2.87 3.35 1.88

 
(a) 

 
(b) (c) 

 
(d) 

 
(e) (f) 

Figure 9. Force-displacement curves for BC-780 corrugated cardboard in various tests: (a) ECT; (b) BNT–MD; (c) BNT–CD;
(d) SST; (e) TST–MD; (f) TST–CD.

Table 2. Test values for corrugated cardboard grades.

Grade THK ECT BNT-MD BNT-CD SST-MD SST-CD TST-MD TST-CD

E-350 1.49 4.68 0.36 0.80 0.19 0.24 0.18 0.18
E-380 1.59 5.41 0.49 1.16 0.26 0.31 0.23 0.23
B-400 2.80 5.50 1.50 2.94 0.55 0.57 0.60 0.38

EE-585 2.77 9.05 1.46 2.94 0.67 0.71 0.70 0.73
BC-780 6.52 11.18 10.69 10.41 2.97 2.86 3.24 1.82
EB-880 4.42 15.11 6.32 10.70 2.33 2.28 2.47 2.06
EB-965 4.55 13.69 5.68 11.39 2.24 2.26 2.42 1.89

3.2. Box Compression Test (BCT)

In the next step, the load capacity of the packaging was checked. For this purpose, the
FEMat BCT-20T20 compact press (FEMat Sp. Z o.o., Poznan, Poland) [38] was exploited
(see Figure 3a). A total number of 18 samples of various dimensions and materials were
prepared. The analysis was carried out for two types of packaging: without and with an
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offset. In Table 3, the results obtained with the box compression test are presented. In
the first column, corrugated cardboard grades are shown. The second, third and fourth
columns show the dimensions of the package (see Figure 7). For offset packaging, the edge
of the B1 dimension is the offset edge. The fifth column represents the value of the load
capacity of the package without offset. Columns six and seven are the BCT values for the
offset package: the sixth column is the value of the first extreme and the seventh column is
the value of the second extreme.

Table 3. Main dimensions and BCT values of various corrugated cardboard packaging.

Name

B1 B2 H BCT (N)

(mm) (mm) (mm)
Without
Offset

With
Offset 1

With
Offset 2

E-350-1 300 200 300 875 566 767
E-350-2 450 100 450 704 454 656
E-380 300 200 300 1003 663 1131

B-400-1 300 200 300 2048 1265 1556
B-400-2 450 100 450 1498 1104 1201
EE-585 300 200 300 2409 1452 1855
BC-780 300 200 200 4995 2989 3817
EB-880 300 200 300 5352 3404 3700
EB-965 300 200 200 4445 3124 3830

In Figure 10, the force-displacement diagrams for boxes with dimensions 300 × 200
× 200 mm, with and without offset, made of BC-780 and EB-965 corrugated cardboard
are shown.

𝐵

𝑩𝟏 𝑩𝟐 𝑯

  
(a) (b) 

Figure 10. Selected measurements from a BCT press for grades: (a) BC-780; (b) EB-965.

3.3. Prediction Results of the Numerical Model

Having the geometry of all the tested boxes and the material properties of the corru-
gated cardboards, it was possible to build numerical models and calibrate the only one
remaining component: the initial imperfections. These are especially important in the
geometrically nonlinear FE analysis. To introduce preliminary deformations into the model,
first a buckling analysis was carried out to find the first preferred buckling mode, which
was then introduced as a deformed shape of the load-bearing panels of the box.

The influence of the imperfection size on the load capacity of the box 300 × 200 × 200 mm
made of BC-780 is shown in Figure 11.
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𝑟 , 𝑟𝑟 𝑟

Figure 11. Influence of the imperfections on the load capacity of the BC-780 box.

After a successful calibration procedure, the results obtained with the numerical model
are summarized in Table 4, which also shows the differences between the calculated and
the measured values of the BCT.

Table 4. Comparison of measured and numerically determined BCT values for various corrugated
cardboard packaging.

Name

BCT (N)

Measured Values Numerical Values

First
Extreme

Second
Extreme

First
Extreme

Second
Extreme

E-350-1 566 767 520 778
E-350-2 454 656 448 648
E-380 663 1131 641 1132

B-400-1 1265 1556 1185 1540
B-400-2 1104 1201 1126 1117
EE-585 1452 1855 1468 1834
BC-780 2989 3817 2993 3690
EB-880 3404 3700 3222 3555
EB-965 3124 3830 3265 3653

3.4. Prediction Results of the Analytical Model

As already discussed, the main step was to calibrate the coefficients in the analytical
formulas for the load capacity estimation of corrugated board packaging. For this purpose,
synthetically generated results were utilized. Thanks to the use of numerical results, the
range of packaging dimensions was much wider, which resulted in a greater number of
analyzed cases and therefore made the calibration more reliable.

Table 5 shows all coefficients found in the minimization process used in Equations (9) and (10),
while in Figure 12 the discrepancy function in two-dimensional space [r3, r4] is shown.
It can be seen that in the selected range of parameters r3 and r4 there is only one local
minimum, which is also the global minimum (see Figure 12).

Table 5. Coefficients values.

k r r1 r2 r3 r4

0.55 0.50 1.00 − −
0.75 0.55 − − −1.00 0.50
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𝒌 𝒓 𝒓𝟏 𝒓𝟐 𝒓𝟑 𝒓𝟒   − −  − − −   

𝑟 𝑟Figure 12. Error function in the sought parameters (r3 and r4) space. The location of the optimal
value is marked with ‘x’.

Figure 13 shows the estimation errors obtained from the analytical model in the
calibration procedure for all offset and non-offset boxes. Table 6 presents a comparison of
the results obtained from the tuned analytical model with the experimental results.

𝒌 𝒓 𝒓𝟏 𝒓𝟐 𝒓𝟑 𝒓𝟒   − −  − − −   

𝑟 𝑟

  
(a) (b) 

Figure 13. The prediction error distribution obtained while using the analytical model: (a) first extreme; (b) second extreme.

Table 6. Comparison of measured and analytically determined BCT values for various corrugated
cardboard packaging.

Name

BCT (N)

Measured Values Analytical Values

First
Extreme

Second
Extreme

First
Extreme

Second
Extreme

E-350-1 566 767 553 752
E-350-2 454 656 471 657
E-380 663 1131 709 1135

B-400-1 1265 1556 1171 1642
B-400-2 1104 1201 1197 1323
EE-585 1452 1855 1516 1913
BC-780 2989 3817 2975 3764
EB-880 3404 3700 3360 3854
EB-965 3124 3830 3079 3877

Figures 14 and 15 show the distribution of the prediction error in the design space,
which are the main dimensions of the box (L, B, H). It can be seen that the greatest error
occurs with boxes that are short and long.
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(a) (b) (c) 

Figure 14. The prediction error distribution obtained using the analytical model for the first extreme: (a) H = 200 mm;
(b) H = 500 mm; (c) H = 800 mm.

   
(a) (b) (c) 

Figure 15. The prediction error distribution obtained using the analytical model for the second extreme: (a) H = 200 mm;
(b) H = 500 mm; (c) H = 800 mm.

4. Discussion

Since corrugated board is an orthotropic and non-homogeneous material, a large
number of tests were required for the correct characterization of its mechanical parameters.
This means that when testing both corrugated cardboard and boxes made of such material,
one can expect a large dispersion of test results. This is related to the heterogeneity of the
paper itself, as well as the corrugated cardboard, and the inaccuracy of the assemblies of
the tested packaging. Thus, the number of tests in the case of boxes should not be less than
five, as is the case with testing the corrugated cardboard samples.

Among the many mechanical tests of corrugated board available in the papermaking
laboratory, the most important define not only the static edge crush resistance but also the
flexural and torsional stiffness of the specimen. In this study, the BSE system [50], which
allows the examination of five physical parameters of cardboard (for three of them in both
directions of orthotropy), was exploited. Based on the results of all laboratory tests (see
Table 1 and Figure 9), homogenized parameters describing the elastic and plastic behavior
of the particular corrugated cardboard were obtained.

In order to diversify the set of BCT laboratory results, various corrugated cardboards
(a total of seven types) that are used for box production and nine different dimensions
of the packaging structure, in two variants (without and with offsets), were tested. The
results are presented in Table 3, where among the dimensions of the boxes and the symbols
of the corrugated board one can also find the BCT results for two cases: (a) without offsets
in column five and (b) with offsets in columns six and seven. The sixth column of Table 3
presents the force value for which two offset walls have been crushed. This is clearly seen
in Figure 10: the first peak in the blue result plots. Column seven of Table 3 shows the
maximum force value obtained in the BCT test.

Both predictive models take into account the behavior shown in Figure 10, which is
characteristic for the offset boxes. The numerical model is loaded sequentially, first on
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the walls with an offset and then when the displacement of the upper surface exceeds
the given offset, the two remaining walls are also loaded. As already mentioned, after
calibrating the material model and for the given geometry, the only unknown was the size
of the imperfections of the vertical walls. These parameters were in each case adjusted so
that the estimates agreed with the laboratory results. The effect of the applied imperfection
in a specific case (box EB-780) is shown in Figure 11.

This phenomenon is treated slightly differently in the analytical model, which is based
solely on the geometry of the box, its strength in CD and both stiffnesses in MD and CD. In
this case, the imperfections are embedded in the predictive model through the critical load
term in Equations (9) and (10), while the sequential crushing of the shifted and non-shifted
faces is captured by independently determining two values and scaling the maximum force
in the first peak by the factor α (see Equation (8)). This allows the degraded resistance of
walls with an offset and the resistance of walls without an offset to be taken into account
in the second peak. The tuning exponents found by the minimization procedure (shown
in Table 5) reached the optimal values of 0.5 or 1.0, while the constant k and exponent r
reached values of 0.75 and 0.55, respectively.

The use of data synthetically generated by the calibrated numerical model allowed a
much greater accuracy of the tuned parameters in the analytical model to be obtained. This
was mainly due to a larger range of results numerically generated for various geometric
dimensions of boxes that could not be physically produced and tested in the BCT press.
Figure 13 shows the distribution of the prediction error of the load capacity of various
corrugated board packages without and with an offset. The largest discrepancies occur
for packages with a relatively large proportion of dimensions (see Figures 14 and 15).
However, the average error in both cases does not exceed 7%. Overall, the proposed
predictive analytical model can capture the first peak in any experimentally tested sample
fairly correctly, and the error in most cases is less than 7%. The greatest differences can be
observed for samples B-400-1 and B-400-2, where the error was 8% and 9%, respectively.
Similar conclusions can be drawn when predicting a second peak. In most cases, the error
did not exceed 5%; only for the B-400-2 sample did it reach 9%.

In general, the application of analytical models existing in the literature, e.g., those
proposed in [4–10] or even more the recent models presented by Garbowski et al. [1,2,11],
does not allow one to predict the strength of boxes with shifted flaps. The reason is that
these models do not take into account the sequential crush of the package walls. Particular
attention should also be paid to modeling with purely numerical models, because special
techniques for sequential loading of the walls with appropriate imperfections should be
considered as well. The results presented in Tables 4 and 6 show the precision with which
both the numerical model and the proposed analytical model reflect the laboratory results
for selected constructions of corrugated cardboard boxes. The results obtained from both
models do not differ by more than 10% from the experimental results.

5. Conclusions

This article presents numerical and analytical models for predicting the strength of
boxes with displaced flaps. The obtained results are in accordance with the conducted
laboratory tests. In both models, the mechanical parameters of the corrugated board
obtained from the selected laboratory tests were implemented. Both models are based
on a sequential approach for the loading of the vertical walls of a box; the walls with an
offset are loaded first, then the walls without an offset. At the moment of loading the
walls without offset, the two walls loaded in the first step are already partially damaged.
Therefore, this type of packing is characterized by much lower load-bearing capacity than
packages with flaps without an offset. Thanks to the methodology presented in this paper
and utilization of such predictive tools, it is possible not only to design packaging more
consciously, but also to deliver and optimally use the material for their manufacturing, and
thus improve the sustainable economy of the production plant.
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32. Ghiţă, C.; Pop, N.; Cioban, H. Quasi-Static behavior as a limit process of a dynamical one for an anisotropic hardening material.

Comput. Mater. Sci. 2012, 52, 217–225. [CrossRef]
33. Thakkar, B.K.; Gooren, L.G.J.; Peerlings, R.H.J.; Geers, M.G.D. Experimental and numerical investigation of creasing in corrugated

paperboard. Philos. Mag. 2008, 88, 3299–3310. [CrossRef]
34. Beex, L.A.A.; Peerlings, R.H.J. An experimental and computational study of laminated paperboard creasing and folding.

Int. J. Solids Struct. 2009, 46, 4192–4207. [CrossRef]
35. Giampieri, A.; Perego, U.; Borsari, R. A constitutive model for the mechanical response of the folding of creased paperboard.

Int. J. Solids Struct. 2011, 48, 2275–2287. [CrossRef]
36. Domaneschi, M.; Perego, U.; Borgqvist, E.; Borsari, R. An industry-oriented strategy for the finite element simulation of

paperboard creasing and folding. Packag. Technol. Sci. 2017, 30, 269–294. [CrossRef]
37. Awais, M.; Tanninen, P.; Leppänen, T.; Matthews, S.; Sorvari, J.; Varis, J.; Backfolk, K. A computational and experimental analysis

of crease behavior in press forming process. Procedia Manuf. 2018, 17, 835–842. [CrossRef]
38. Leminen, V.; Tanninen, P.; Pesonen, A.; Varis, J. Effect of mechanical perforation on the press-forming process of paperboard.

Procedia Manuf. 2019, 38, 1402–1408. [CrossRef]
39. FEMat BCT Press. Available online: http://fematsystems.pl/bct_en/ (accessed on 21 July 2021).
40. Garbowski, T.; Jarmuszczak, M. Numerical Strength Estimate of Corrugated Board Packages. Part 1. Theoretical Assumptions in

Numerical Modeling of Paperboard Packages. Pol. Pap. Rev. 2014, 70, 219–222. (In Polish)
41. Garbowski, T.; Jarmuszczak, M. Numerical Strength Estimate of Corrugated Board Packages. Part 2. Experimental tests and

numerical analysis of paperboard packages. Pol. Pap. Rev. 2014, 70, 277–281. (In Polish)
42. Hill, R. A theory of the yielding and plastic flow in anisotropic metals. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1948, 193,

281–297. [CrossRef]
43. Hoffman, O. The brittle strength of orthotropic materials. J. Compos. Mater. 1967, 1, 200–206. [CrossRef]
44. Tsai, S.W.; Wu, E.M. A general theory of strength for anisotropic materials. J. Compos. Mater. 1971, 5, 58–80. [CrossRef]
45. Xia, Q.S.; Boyce, M.C.; Parks, D.M. A constitutive model for the anisotropic elastic–plastic deformation of paper and paperboard.

Int. J. Solids Struct. 2002, 39, 4053–4071. [CrossRef]
46. Makela, P.; Ostlund, S. Orthotropic elastic–plastic material model for paper materials. Int. J. Solids Struct. 2003, 40, 5599–5620.

[CrossRef]
47. Borgqvist, E.; Lindström, T.; Tryding, J.; Wallin, M.; Ristinmaa, M. Distortional hardening plasticity model for paperboard.

Int. J. Solids Struct. 2014, 51, 2411–2423. [CrossRef]
48. Robertsson, K.; Wallin, M.; Borgqvist, E.; Ristinmaa, M.; Tryding, J. A rate-dependent continuum model for rapid converting of

paperboard. Appl. Math. Model. 2021, 99, 497–513. [CrossRef]
49. Abaqus Unified FEA Software. Available online: https://www.3ds.com/products-services/simulia/products/abaqus (accessed

on 21 July 2021).
50. FEMat BSE System. Available online: http://fematsystems.pl/bse-system_en/ (accessed on 21 July 2021).

216



materials

Article

On Wrinkling in Sandwich Panels with an Orthotropic Core

Zbigniew Pozorski 1,* , Jolanta Pozorska 2, Ireneusz Kreja 3 and Łukasz Smakosz 3

Citation: Pozorski, Z.; Pozorska, J.;

Kreja, I.; Smakosz, Ł. On Wrinkling in

Sandwich Panels with an Orthotropic

Core. Materials 2021, 14, 5043.

https://doi.org/10.3390/ma14175043

Academic Editor: Antonio Gloria

Received: 8 July 2021

Accepted: 1 September 2021

Published: 3 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Structural Engineering, Faculty of Civil and Transport Engineering, Poznan University of
Technology, ul. Piotrowo 5, 60-965 Poznań, Poland
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Abstract: This paper deals with the local loss of stability (wrinkling) problem of a thin facing of a
sandwich panel. Classical solutions to the problem of a facing instability resting on a homogeneous
and isotropic substructure (a core) are compared. The relations between strain energy components
associated with different forms of core deformations are discussed. Next, a new solution for the
orthotropic core is presented in detail, which is consistent with the classic solution for the isotropic
core. Selected numerical examples confirm the correctness of the analytical formulas. In the last
part, parametric analyses are carried out to illustrate the sensitivity of wrinkling stress to a change in
the material parameters of the core. These analyses illustrate the possibility of using the equations
derived in the article for the variability of Poisson’s ratio from −1 to 1 and for material parameters
strongly deviating from isotropy.

Keywords: sandwich panels; local instability; strain energy; wrinkling; orthotropic core

1. Introduction

In a typical sandwich element, the two facings are joined to each other by a relatively
thick but deformable core. The deformations and stresses in the sandwich panel are caused
by the acting loads (wind, snow, self-weight, live load), but they are also largely due to
thermal loads. As a result of these interactions, the facing can be compressed, and because
it is connected to a susceptible substructure (a core), it very often experiences local loss of
stability (wrinkling).

Wrinkling is undoubtedly one of the most common damage mechanisms of a sand-
wich element. For this reason, the correct estimation of the stress leading to the loss of
facing stability is a key issue that has been undertaken by many researchers using various
approaches: analytical, numerical, experimental, or mixed (or some combination of these
approaches). Numerical methods allow for solving many complex problems, and the
performed experiments allow for the verification of the obtained results. Nevertheless,
analytical solutions should also be treated as very valuable, even if they are obtained with
significant simplifications. Simple formulas are easy for engineering application and allow
for a very quick (and continuous) assessment of the sensitivity of the solution to a change
in design parameters.

With full awareness of the new challenges related to the sandwich structures
(anisotropy [1], influence of extreme excitations [2], new production technologies [3],
and many others), this work is an attempt to take a deeper look at the known classical
solutions to the local instability problem [4–6]. The presented solution for an orthotropic
core is based on the work of [7], in which sandwich columns under compression were
considered, and the solution was presented in the form of hyperbolic functions. It also
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clearly refers to the classic solution for an isotropic core [6], where a facing and a core were
assumed as infinite and the differential equation written for the facing was used.

The above-mentioned classic approaches to the problem of facing instability are
constantly being used and extended to more and more complex issues. The analytical
model that leads to wrinkling of the orthotropic face layer supported by a transversely
isotropic core was presented in [8]. Wrinkling of a composite-facing sandwich panel under
biaxial loading was discussed in [9]. Article [10] presents the solution to the symmetrical
face sheet wrinkling problem using the energy method. The approach focused on a
3D case of wrinkling of orthotropic face sheets was presented in [11]. The analytical
approach to the problem of anisotropic facing instability was presented in the works [12,13].
Wrinkling in sandwich structures with a functionally graded core was discussed in [14]. The
papers [15–17] are examples of work on wrinkling, in which the core was modeled using
higher-order theories, which allowed, among others, to take into account the influence of
the core transverse compressibility.

This paper is divided into three parts. In the first one, we present some relations
between the classical solutions to the analyzed problem of wrinkling. We believe that they
will shed a slightly different light on known solutions. This applies to the conditions of
reaching the critical stress, the influence of the Poisson ratio on the wrinkling stress, and
the relationship between strain energy components. In the second part, the solution for
the orthotropic core is derived and discussed, and we focus on the interpretation of the
solution and the question of the conditions for obtaining it. In the third part, a parametric
analysis of the solution for the orthotropic core is presented, illustrating the sensitivity of
the solution (especially the wrinkling stress) to a change in some material parameters. In
our opinion, this is essential for the optimal design of layered structures. By assuming
certain constraints on material parameters, we can specify a solution with the maximum
value or the minimum sensitivity.

2. Formulation of the Problem

We are considering a sandwich panel consisting of two thin facings and a thick but
deformable core. Due to the bending of the composite panel, considerable compressive
stresses may be generated in its facing, resulting in a local loss of stability. The instability
has the form of wrinkling. In general, due to the variety of support and load conditions, the
problem can be very complex; however, in practical civil engineering problems, a facing is
usually compressed unidirectionally [18].

The wrinkling phenomenon may be considered as a compression effect of a thin facing
(treated as a beam or plate) supported by a continuous elastic core (Figure 1). The facing in
tension is ignored because the deformation of the core quickly disappears as the distance
from the compressed facing increases. It is convenient to assume that the compressed facing
is infinitely long and the core extends to infinity on one side of the facing. The wrinkling is
associated with short waves of buckling of the facing. Figure 1 shows a fragment of the
deformed facing supported by the core.

It is assumed that the face layer is in a uniform stress and strain state. The deformations
of the facing, which are infinite and periodic, induce strain and stress in the core. Core
deformations quickly decay as the variable z increases, and the rate of this decay depends
on the assumed displacement field.

The core and facing materials are homogeneous. Suppose the core is isotropic or or-
thotropic with one of the orthotropic axes coinciding with the direction of the compression.
The facing material could be orthotropic if its axes were aligned with the material axes
of the core. These are quite strong assumptions, but they give analytical results that are
relatively easy to interpret.
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Figure 1. Assumed shape of a wrinkling.

3. Classical Solutions of the Wrinkling Problem

3.1. Energy Method—Linear Decay Function

Following the proposition of Hoff and Mautner [4], the core is affected only in a
small zone with depth h (smaller than the thickness of the core). The shape of the face
deformation is assumed in the sinusoidal form (Figure 1), and the core deformation field
vanishes linearly with coordinate z:

wC = wF
(h − z)

h
= W

(h − z)

h
sin

πx

l
, (1)

where wC, wF, and W denote the vertical displacement of the core, face, and the displace-
ment amplitude, respectively. The term l is a half wavelength of the wrinkles. Comparing
the sum of strain energy of the core and the facing (per half wavelength) with the ex-
ternal work done by an applied work, the expression on the compressive stress in the
facing is obtained:

σx =
ECl2

π2tFh
+

hGC

3tF
+

π2EF

12

(
tF

l

)2
. (2)

Symbols EC and GC denote the modulus of elasticity and shear modulus of the
isotropic core material, respectively. The thickness of the facing is tF, whereas the modulus
of elasticity of the isotropic facing material is EF.

The minimum value of the compressive stress (2) corresponds to the critical (wrinkling)
stress, and it can be found by using derivatives of σx with respect to h and l:

σw =
3

√
3
4
· 3
√

ECGCEF
∼= 0.909 · 3

√
ECGCEF. (3)

It is worth noting that reaching the wrinkling stress corresponds to a situation in
which each term on the right-hand side of Equation (2) is equal to each other.

3.2. Energy Method—Exponential Decay Function

Plantema [5] assumed the displacement field of the exponential form

wC = wFe−kz = We−kz sin
πx

l
, (4)

where k ≥ 0 is an auxiliary constant (with the unit inverse to the unit of variable z). The
use of the strain energy of the core makes it possible to represent the compressive stress of
the facing as

σx =
ECkl2

2π2tF
+

GC

2ktF
+

π2EF

12

(
tF

l

)2
. (5)
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The wrinkling stress is obtained from the conditions of zeroing the derivatives of σx

with respect to k and l. As we can see, a slightly different assumption of the displacement
field leads to a different result. First of all, the condition for reaching the extreme (minimum)
stress σx is different. Again, when the critical stress is reached, each term of Equation (5)
has the same value. The wrinkling stresses (3) and (6) are independent of the Poisson ratio
of the core material.

σw =
3

2 · 3
√

6
· 3
√

ECGCEF
∼= 0.825 · 3

√
ECGCEF (6)

3.3. Differential Equation Method

The solution based on the differential equation method was presented by Allen [6].
Stresses in the elastic isotropic medium can be defined using the Airy stress function F (x,z).
The strain compatibility in the x–z plane leads to the bi-harmonic differential equation.

∂4F

∂z4 + 2
∂4F

∂x2∂z2 +
∂4F

∂x4 = 0. (7)

Equation (7) is satisfied by the function

F(x, z) = A sin
πx

l
(1 − Bz)e−

πz
l , (8)

where A and B are constants. Constant B can be found by using the condition that the
x-displacements and strains at the surface of the core (z = 0) are equal to zero. Constant
A can be expressed by the amplitude W of the z-displacement at z = 0. By using Allen’s
method, nearly the entire mechanical field is obtained, which depends on x and z variables.
If the state of plane stress is assumed, then displacements u, v, and w, strains εx, εy, εz, and
γxz, and stresses σx, σy, and τxz are non-zero.

The equilibrium differential equation for the facing has the form

BF
d4w

dx4 + P
d2w

dx2 = σz, (9)

where the stress σz is the effect of the interaction between the facing and the core (see
Figure 1). The symbol BF denotes the face bending stiffness per unit width. For the beam
theory (as used here), BF = EFt3

F/12; in the case of the plate theory, BF = EFt3
F/12

(
1 − ν2

F

)
.

Using the function of the facing displacement

w = W sin
πx

l
, (10)

and the parameter m = l/tF, the compressive stress in the facing can be expressed as

σx =
π2EF

12m2 +
a

π
m = σ1 + σ2, (11)

where
a =

2EC

(1 + νC)·(3 − νC)
(12)

is the material constant. The two terms of the solution for (11) are denoted as σ1 and
σ2, respectively.

From the condition for the extreme, dσx/dm = 0, we can find m = π · 3
√

EF/6a and
the minimum critical (wrinkling) stress:

σw = 3

√
9

2(1 + νC) · (3 − νC)
2 ·

3
√

ECGCEF = r · 3
√

ECGCEF. (13)
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If we assume the facing stiffness as for the plate, BF = EFt3
F/12

(
1 − ν2

F

)
, the modulus

EF should be replaced by EF/
(
1 − ν2

F

)
.

It is interesting that for the minimum value of σx (11), the second expression (σ2) is ex-
actly two times higher than the first (σ1) [19]. From some literature sources, e.g., [6] p. 159,
Figure 8.3, it can be drawn incorrectly that both of these values are equal. The value of the
first root (r) depends only on the Poisson ratio of the core material νC, but for the typical
range of this parameter, the root r reaches the value from 0.780 to 0.794. It is also worth
noting that as the Poisson ratio tends to −1, the critical stress would increase to infinity,
although this is a rather theoretical situation.

3.4. Comparison of Classical Solutions

3.4.1. Influence of the Poisson Ratio

Let us return first to Allen’s solution. The result (13) was obtained for a plane stress
state. Assuming a plane strain state, the procedure is analogous; however, the functions of
stresses, strains, and displacements are different. Equation (11) is valid, but:

a =
2EC(1 − νC)

(1 + νC)·(3 − 4νC)
, (14)

σw = 3

√√√√ 9(1 − νC)
2

2(1 + νC) · (3 − 4νC)
2 · 3
√

ECGCEF = s · 3
√

ECGCEF. (15)

Of course, the value of s in (15) is different than r in (13). To compare Allen’s solutions
in the case of the plane stress and plane strain states, see Figure 2.

σ σ

σ 𝑚 = 𝜋 ∙ 𝐸 /6𝑎
𝜎  =  ∙   ∙ 𝐸 𝐺 𝐸  =  𝑟 ∙ 𝐸 𝐺 𝐸𝐵  =  𝐸 𝑡 /12 1 − 𝜈𝐸 / 1 − 𝜈

σ σ
σ

ν

−

𝑎 =   ∙   
𝜎  =    ∙   ∙ 𝐸 𝐺 𝐸  =  𝑠 ∙ 𝐸 𝐺 𝐸  

−

Figure 2. Comparison of Allen’s solution in the case of the plane stress (r) and plane strain (s) states.

It should come as no surprise that for vC = 0, the coefficients r and s are identical and
equal to 0.794. For negative values of vC, the coefficients r and s take similar values that are
much higher than 0.794. For vC tending to −1, the values of r and s, and hence the critical
stress values, tend to infinity. In the range of vC (−1; +0.5), the critical stresses in the plane
strain state are higher than in the plane stress state, but the greatest differences between
r and s appear for vC close to 0.5. This is obvious because in a plane state of stress, the
material has the potential to deform in the y-direction (perpendicular to the plane), which
facilitates the deformation of the facing. The plane strain condition limits the deformation
(in the y-direction) and makes it difficult to buckle the facing. The greater the Poisson ratio,
the greater the significance of this effect. For some order, let us remind you that the Poisson
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ratio of the core material does not affect the critical stresses in the case of the solutions
given by Hoff and Mautner (3) and Plantema (6).

3.4.2. Assumptions and Strain Energy Considerations

The Hoff–Mautner and Plantema solutions are based on an energy approach. The
assumption of a specific displacement field turns out to be very effective and quickly
leads to a solution. However, it is worth noting that in contrast to Allen’s solution, the
assumed displacement fields ((1) or (4)) result in non-fulfillment of most of the differential
equilibrium equations of a solid (mass forces were omitted in Equation (16)):

σji,j = 0. (16)

Let us return to the solution presented by Allen [6]. In the case of a plane stress state,
constant B is

B = − π

2l
(1 + νC), (17)

and the stresses in the core are expressed as the corresponding derivatives of the function
F (x,z). By using commonly known physical and geometric relationships, we determine the
fields of strain and displacement. Therefore, we can calculate the appropriate components
of the strain energy of the core, obtaining, respectively:

1
2

∫ ∞

0

∫ l

0
σxεxdxdz =

1
16

A2

EC

π3

l2 (1 + νC)
(

1 − ν2
C

)
, (18)

1
2

∫ ∞

0

∫ l

0
σzεzdxdz =

1
16

A2

EC

π3

l2 (1 + νC)
(

13 − 4νC − ν2
C

)
, (19)

1
2

∫ ∞

0

∫ l

0
τxzγxzdxdz =

1
16

A2

EC

π3

l2 (1 + νC)
(

10 − 4νC + 2ν2
C

)
. (20)

For vC = 0, the ratio of energies expressed in (18)–(20) is 1:13:10. Let us recall that under
the condition of loss of stability, the elastic energy in the facing is half of the elastic energy
in the core. Commenting on the relations between the energies in the core, we can say that
the share of energy (18) resulting from the deformation of the core along the x-direction (εx)
is small, which can justify the omission of this term in classical energy methods. For the
sake of order, we note that the fulfillment of the condition of loss of local stability for each
of the previously discussed classical energy methods means that the energy components
on the left side of Equations (19) and (20) are equal to each other, and the integral (18) is
equal to zero.

An additional point requires clarification. Each of the presented classical methods
differs in the final result, but only because of different assumptions and not because of the
method itself. For example, this is easily demonstrated by using Allen’s mechanical fields
for the energy approach. Then, it turns out that the obtained expression for the critical
stress is identical to (13).

For an illustration of the assumptions made in Allen’s solution, Figure 3 presents the
displacement fields w(x, z) (perpendicular to the facing i.e., along the z-axis) and u(x, z)
(along the x-axis). The values are given assuming the constant A = 1, see (8). The isotropic
material of the core EC = 4 MPa, vC = 0.05 and a facing with a thickness of tF = 0.5 mm made
of an isotropic material EF = 210 GPa were assumed. The range of the x-axis corresponds to
2l = 74 mm, while the z-coordinates are given in millimeters. In Figure 3a, for z = 0, we can
see a full sinusoid with an extreme equal to 3.248 × 10−5, which disappears with increasing
z. The amplitude of the sinusoid decreases 10 times for z = 36 mm. In Figure 3b, according
to the assumption, for z = 0, the horizontal displacements are equal to zero. The variability
of the function u(x, z) in the x-direction is described by the cosine function, the extreme
value of 4.253 × 10−6 is reached for z = 12 mm; at a distance of z = 60 mm, the function
value is 10 times smaller than the extreme. The rapid disappearance of displacements
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with the increment of the z-coordinate, and the values of w(x, z) being one order greater
than u(x, z), are both noteworthy, as they, among other things, justify the omission of
longitudinal deformations in classical energy methods.

−

−

 

Figure 3. Solution obtained by using the differential equation method: (a) vertical displacement
w(x, z), (b) horizontal displacement u(x, z).

4. Solution for the Orthotropic Core

4.1. Differential Equation

A certain solution to the problem of facing wrinkling resting on an orthotropic elastic
substructure and loaded on the edge (in the facing plane) was presented in [7]. A similar
approach was used in [8]. The following is a detailed solution, which is an extension of [6],
formally based on [7,8], but it differs in some nuances. Efforts were made to present the
solution precisely in order to also discuss the conditions for obtaining this solution.

Suppose we have an orthotropic core, in which orthotropic axes coincide with the axes
of the element. The facing is compressed uniaxially, and the load direction is according
to the material axes of the core. Such a situation is very common in practice [20]. The
constitutive relation for the orthotropic core material is:

223



Materials 2021, 14, 5043





εx

εy

εz

εxy

εxz

εyz





=




1/Ex −νyx/Ey −νzx/Ez 0 0 0

−νxy/Ex 1/Ey −νzy/Ez 0 0 0

−νxz/Ex −νyz/Ey 1/Ez 0 0 0

0 0 0 1/2Gxy 0 0

0 0 0 0 1/2Gxz 0

0 0 0 0 0 1/2Gyz








σx

σy

σz

τxy

τxz

τyz





. (21)

In the case of a 2D problem, relation (21) can be simplified to:

εx = axxσx − axzσz

εz = −axzσx + azzσz

εxz = (1/2Gxz)τxz



. (22)

In the case of plane stress state, material constants axx, azz, and axz are:

axx = 1/Ex

azz = 1/Ez

axz = νxz/Ex



, (23)

whereas for the plane strain state, we have:

axx =
1−νxyνyx

Ex

azz =
1−νyzνzy

Ez

axz =
νxz+νxyνyz

Ex





. (24)

The compatibility of strains in the x–z plane requires:

∂2εx

∂z2 +
∂2εz

∂x2 – 2
∂2εxz

∂x∂z
= 0. (25)

After introducing the Airy stress function F (x, y) such that

σx =
∂2F

∂z2 , σz =
∂2F

∂x2 , τxz = − ∂2F

∂x∂z
, (26)

condition (25) takes the following form:

azz
∂4F

∂x4 + 2
(

1
2Gxz

− axz

)
∂4F

∂x2∂z2 + axx
∂4F

∂z4 = 0. (27)

By using substitution
η = ǫz =

(
4
√

azz/axx

)
z, (28)

we obtain
∂4F(x, η)

∂x4 + 2κ
∂4F(x, η)

∂x2∂η2 +
∂4F(x, η)

∂η4 = 0, (29)

where κ is a dimensionless quantity and depends only on the material parameters of
the core,

κ =
1√

axxazz

(
1

2Gxz
– axz

)
. (30)

For an isotropic material, κ = 1.
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4.2. Solution of the Differential Equation

To find a solution of (29), we separate variables:

F(x, η) = G(x)H(η) (31)

and assume the sinusoidal form of function G (A1 is a constant)

G(x) = A1 sin
πx

l
(32)

which leads to
d4H

dx4 − 2κ
(π

l

)2 d2H

dη2 +
(π

l

)4
H = 0. (33)

By assuming that the function H(η) = eλη is a general solution of Equation (33), we
obtain a solution in the form of a linear combination of this function:

H(η) = C1eλ1η + C2eλ2η + C3eλ3η + C4eλ4η , (34)

where
λ1 = +π

l

√
κ −

√
κ2 − 1 , λ2 = −π

l

√
κ −

√
κ2 − 1

λ3 = +π
l

√
κ +

√
κ2 − 1 , λ4 = −π

l

√
κ +

√
κ2 − 1

}
. (35)

The positive solutions for λ have to disappear to allow an exponential decrease in the
stresses in the thickness direction z. Therefore, C1 = 0, C3 = 0, and

F(x, y) =

[
C2e−

π
l

√
κ−

√
κ2−1ǫz + C4e−

π
l

√
κ+

√
κ2−1ǫz

]
A1 sin πx

l =
[

B1e−
π
l

√
κ−

√
κ2−1ǫz + B2e−

π
l

√
κ+

√
κ2−1ǫz

]
sin πx

l ,
(36)

where B1 = C2 A1 and B2 = C4 A1 are constants. These constants can be calculated with the
following boundary conditions:

εx(z = 0) =0, (37)

which reflects the observation that the face material is typically much stiffer than the core
material, and

σz(z = 0) = A sin
πx

l
, (38)

because the stress at the interface in the z-direction is distributed as a sine wave with a
certain amplitude A corresponding to the assumed wave deformation. From the assumed
boundary conditions, we obtain:





B1 = −A
(

l
π

)2 axz+axxǫ2(κ+
√

κ2−1)
2axxǫ2

√
κ2−1

B2 = A
(

l
π

)2 axz+axxǫ2(κ−
√

κ2−1)
2axxǫ2

√
κ2−1

. (39)

It is easy to note that B1 + B2 = −A
(

l
π

)2
.

The equilibrium differential equation for the facing has the same form as (9). By integrat-
ing εz (22), we can find the following expression for the facing displacement wF = w(z = 0)

w(z = 0) =
π

l
sin

πx

l

[
axzB1ǫ

√
κ −

√
κ2 − 1 + axzB2ǫ

√
κ +

√
κ2 − 1 + azzB1

1

ǫ
√

κ −
√

κ2 − 1
+ azzB2

1

ǫ
√

κ +
√

κ2 − 1

]
. (40)
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By performing some additional algebraic transformations as suggested by Allen [6],
one can arrive at the analogy of (11) with

a =

√
κ2 − 1√

κ +
√

κ2 − 1 −
√

κ −
√

κ2 − 1

2axxǫ

2axxaxzǫ2 − a2
xz + axxazz(2κ + 1)

. (41)

From the condition for the extreme dσx/dm = 0, we have as before

m = π · 3

√
EF

6a
(42)

and the minimum critical (wrinkling) stress is obtained (the solution is consistent with (13)):

σw =
3

2 3
√

6
· 3
√

a2EF. (43)

It is easy to prove that again, σ2 = 2σ1 (see also Figure 4).

ν 𝜖
κ

σ

Figure 4. Wrinkling stress as a function of m parameter.

Based on the quick analysis of Equation (41), it can be concluded that for a, which has
the nature (and the measurement unit) of the stiffness modulus (of the core), the condition κ
> 1 must be satisfied to reach real values. With smaller values of κ, the roots in Equation (41)
are complex numbers. However, it is somewhat surprising that despite the complex roots
in (41), the value of a,

a =

√
κ + 1

2
2axxǫ

2axxaxzǫ2 − a2
xz + axxazz(2κ + 1)

, (44)

is real if the condition κ > −1 is satisfied. In order for parameter m to be positive, the
denominator in expression (41) must be positive (the nominator is positive). When the
denominator in (41) approaches 0+, a and consequently also σw tend to infinity.

Let us take a moment to analyze the value of κ in a plane stress state. According to
(30), we have

κ =
√

ExEz

(
1

2Gxz
− νxz

Ex

)
. (45)

Modules Ex, Ez, and Gxz must be positive. In this situation, if νxz is negative, then κ
will always be positive. If νxz = 0.5, then κ is positive when Ex > Gxz; if νxz = 1, then κ is
positive when Ex > 2Gxz. Let us recall that in the case of orthotropic materials, the condition
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for the stability of the material behavior is not only the positive values of the Ex, Ez, and
Gxz modules, but also, among others [21],

|νxz| <
√

Ex/Ez. (46)

5. Examples

5.1. Analytical Solutions

The first example concerns the facing with a thickness of tF = 0.5 mm made of an
isotropic material (EF = 210 GPa) placed on an isotropic core (EC = 4 MPa, νC = 0.05;
therefore GC = EC/2(1 + νC ) = 1.905 MPa). According to the approach of Hoff–Mautner (3),
Plantema (6), and Allen (13), we will obtain the following wrinkling stresses, respectively:
σH-M = 106.32 MPa, σP = 96.49 MPa, and σA = 92.36 MPa.

Now let us consider the same facing (tF = 0.5 mm EF = 210 GPa) supported by an
orthotropic substructure (Ex = 10 MPa, Ez = 4 MPa, νxz = 0.05, Gxz = 3 MPa).

We assume a plane state of stress in the x–z plane and look for the critical stress
that will cause the wrinkling of the facing. According to (28), (30), and (41), we will get
ǫ = 1.257, κ = 1.022, and a = 3.256 MPa. The wrinkling stress is achieved for m = 69.336
(see (42)) and according to (43), σw = 107.8 MPa. Figure 4 shows the dependence of the
critical stress (solid line) on the m parameter. The blue and brown lines show both stress
components (11).

5.2. Numerical Solutions

Numerical analysis of the instability problems of all kinds of structures is an intriguing
and fascinating task, but it is not easy. First of all, it should be realized that numerical
models are often much more complex than analytical models. This is due to the fact that
commercial software (using, for example, the finite element method) allows for a relatively
quick creation of spatial models. However, the problem is that the appropriate model class
requires boundary conditions corresponding to this model. Therefore, these conditions
are usually different than in the analytical model, which makes it difficult to compare the
solutions. This issue was pointed out by numerous researchers [22–24]. This problem
also arises when it comes to determining the critical stresses in a thin facing resting on a
susceptible substructure.

The numerical analysis of the discussed issue was prepared using ABAQUS, which
is a software suite for finite element analysis and computer-aided engineering. The prob-
lem was solved using two different classes of numerical models: 2D and 3D. A detailed
description of the 3D model is presented below. The results obtained for the 2D model are
presented at the end of the subsection.

The three-dimensional model was created in order to fully analyze the phenomenon
of loss of stability in conditions close to the plane stress state. Of course, we also tried to
make the numerical model as close as possible to the analytical model. The model space is
not infinite, but the dimensions have been defined so that the displacements, strains, and
stresses at the edge of the model are relatively small; the core body was 1.2 m long and
0.3 m high. The core thickness was 0.05 m, which should provide a freedom of deformation
along the y-axis. A facing strip 0.5 mm thick and 0.7 m long rests on such a substructure.
The geometry of the system is shown in Figure 5.
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ν
ν

ν ν ν

Figure 5. Numerical model of the problem of compression of a thin facing resting on a
susceptible substructure.

In order to compress the facing, an area of 0.10 m × 0.05 m was determined on its
two ends, to which a uniform pressure p was applied in the x-direction (tangent to the
facing, opposite at the two ends). The load application area is distant from the edge of
the substructure (0.25 m). The decision was made to apply the load distributed over the
surface because the attempt to load the system in the form of a linear load applied to the
edge of the facing caused too much local disturbance. As the system had to be supported,
after several attempts, it was decided to support the bottom surface of the substructure.
The displacement conditions uy = 0, uz = 0 were assumed on the entire bottom surface,
and additionally, ux = 0 was assumed in the middle of this surface, which is shown in
Figure 5. This support had a small influence on the behavior of the system, while ensuring
its necessary stabilization. When trying to limit the displacements on the sides of the
substructure, it turned out that these limitations affect the behavior of the system and cause
stress disturbances. The attempt to define the boundary conditions identical to those in the
analytical model was unsuccessful. The assumption that the horizontal displacement of
the facing equals zero made it practically impossible to induce the appropriate stress state
in this facing. The description of the model shows that despite all efforts, the numerical
model has some deviations from the theoretical model in which the core (substructure) is
an infinite elastic half-space.

The material parameters of the 3D numerical model corresponded to the analytical
model. The facing material was assumed to be isotropic elastic (EF = 210 GPa, νF = 0.3). In
the case of an isotropic core, it was assumed EC = 4 MPa, νC = 0.05. When the case with
the orthotropic core was analyzed, its parameters were defined as follows: Ex = 10 MPa,
Ey = 10 MPa, Ez = 4 MPa, νxy = νxz = νyz = 0.05, Gxy = Gxz = Gyz = 3 MPa. The 3D model
uses C3D8 solid elements (core) and S4 shell elements (facing), in which there is no reduced
integration. Interaction between the facing and the core was defined using a TIE connection,
which causes the displacements of nodes of one surface to be identical to the displacements
of nodes on the other surface. The size of the finite element mesh was constant and equal to
0.01 m. It is worth mentioning that the problem of facing wrinkling is mesh-dependent. The
mesh should be dense enough to allow deformation of the core and facing. Thus, the mesh
size is dependent on the finite element itself (a shape function) as well as the properties
of the facing and core materials. In the case of S4 finite elements (doubly curved general
purpose shell, finite membrane strains), it is sufficient if there are two finite elements per
half-wavelength l. In our case, the half-wavelength was in the order of 0.035–0.038 m;
therefore, the size of the finite elements turned out to be small enough (0.01 m).

Since the phenomenon of face wrinkling is associated with the local deformation of
the compressed face, a geometrically nonlinear static analysis and the Riks method were
used. Due to the symmetry of the problem, it turned out to be beneficial to introduce into
the model’s initial imperfections as a linear combination of buckling modes of the structure.
The buckling modes were solved independently. The size of the introduced imperfections
was very small. The sum of four modes multiplied by 0.00001 was introduced, which
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meant that the positions of the model nodes were disturbed about 0.025 mm. This means
that the amplitude of the imperfection was 5% of the facing thickness.

The load applied to the model could increase to the value of 2000 kPa, which corre-
sponds to a compressive force of 10 kN and a compressive stress in the facing of 400 MPa.
Obviously, such a load value was never realized because the facing had previously buckled.
The applied load level was determined on the basis of the LPF (Load Proportionality
Factor) value.

Another interesting challenge of numerical analysis is the question of recognizing
when a structure loses stability and when it does not. Unfortunately, as in real conditions,
and unlike in analytical solutions, in a numerical solution, there is usually no unambiguous
parameter indicating the state of the system (stable–unstable). Wrinkles in the compressed
facing appear very quickly, which is illustrated in Figure 6a (only the facing was presented).
A certain determinant of instability may be the appearance of a nonlinear relationship
between LPF and arc length factor (Figure 6b), indicating the nonlinear nature of the
process [25]. One should also pay attention to the difference between the compressive
stress in the facing in the x-direction calculated on the basis of the currently applied force
divided by the facing cross-section area and the stress obtained in the FE model that takes
into account nonlinear effects, i.e., local deformations. The comparison of these stresses for
the first eight load increments is presented in Table 1. The stress values estimated at the FE
nodes are much higher due to the effect of the load acting on the distance resulting from
the deformation of the facing. Since the material was originally assumed to be perfectly
elastic, the stresses in the model can be very high.

(a) 

 
(b) 

 

σ
Figure 6. Numerical solution of the compression of the elastic facing resting on the susceptible core:
(a) σx stress at the top of the facing (fifth load increment) (b) LPF–arc length relation.
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Table 1. The comparison of compressive stress in the facing for the load increments of the
numerical model.

Load Increment
The Percentage

Completion of the
Load Step (LPF)

Theoretical
Compressive Stress

σx [MPa]

Extreme
Compressive Stress
Read in the Model

Nodes σx [MPa]

1 0.0156 6.24 6.72
2 0.0313 12.52 13.52
3 0.0547 21.88 23.88
4 0.0898 35.92 39.99
5 0.142 56.80 66.62
6 0.213 85.20 129.5
7 0.238 95.20 263.8
8 0.241 96.40 330.4

This situation, which is complex for evaluation, definitely changes after assuming that
the facing material is perfectly elastic–plastic. Assuming the yield point fy = 270 MPa (the
value is consistent with the characteristics of typical steel sheets used for the production of
sandwich panels), in the ninth load increment, for LPF = 0.239, the LPF–arc length diagram
breaks down (Figure 7), which corresponds to the theoretical facing compression stress
0.239 × 400 = 95.6 MPa.

σ σ

 

Figure 7. Numerical solution of the compression of the elastic–plastic facing resting on the susceptible
core: LPF–arc length relation.

A very similar relationship can be observed in the analysis of the problem with the
orthotropic core. A breakdown of the LPF–arc length relationship occurred for LPF = 0.284,
which corresponds to the theoretical stress 113.6 MPa. Of course, the stresses in the nodes
of the model are different and reach the yield point of the material.

The obtained numerical results (95.6 MPa and 113.6 MPa) are close to the theoretical
values (92.36 MPa and 107.8 MPa). Introduction of the yield stress for the facing material
facilitates the interpretation of the numerical results. It is also worth paying attention to
the fact that for the seventh or eighth load increment (Table 1), the stresses in the core reach
the values close to the strength of typical core materials.

A number of numerical analyses were also carried out using the 2D model. The
geometry and boundary conditions of this model corresponded to the geometry and
boundary conditions of the 3D model. The main difference between the models was that
they used plane (not spatial) finite elements: CPS4 for the core and B23 beam elements for
the facing. It turned out that the 2D model behaves very similarly to the 3D model. Among
other things, there are similar difficulties in interpreting the moment of loss of stability. This
situation changes after assuming that the facing material is perfectly elastic–plastic. For
the isotropic core, the LPF–arc length relationship is very similar to the relation presented
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in Figure 7, but the breakdown occurs for LPF = 0.227, which corresponds to the facing
compression stress 0.227 × 400 = 90.8 MPa. For the orthotropic core, the extreme LPF value
is 0.259, which corresponds to the stress of 103.6 MPa. These values are similar to the
analytical results, although they are slightly lower than in the case of the 3D model.

6. Parametric Analysis

Description of the Models

Using the derived formulas, the influence of the material parameters of the orthotropic
core on the value of the wrinkling stress was calculated and illustrated (Figure 8). Modulus
Ex = 10 MPa was assumed as constant. The modules Ez and Gxz are variable. Moreover,
each of the graphs corresponds to a different value of the Poisson ratio νxz, namely −1.0,
0.0, 0.5, and 1.0. For additional illustration of the problem, the graphs of the parameter κ
are also presented in Figure 8.

The basic conclusions from the analysis of the graphs are quite obvious and consistent
with the case of the isotropic core: the greater the stiffness of the core, the higher the
wrinkling stress. It gets more interesting when νxz = 1, because with large Ez and Gxz the
parameter κ approaches −1 and the parameter a increases strongly. In the case when νxz

= −1, the parameter κ takes values in the typical range (positive values), but with large
values of Ex and Gxz, the parameter a (44) reaches much higher values and grows faster
than the parameter m drops (42). It should be emphasized that for the presented range of
variability, κ > −1 and a is a positive value.

ν
−
κ

(a) 

  
(b) 

 
 

Figure 8. Cont.
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(c) 

 
 

(d) 

 
 

κ ν − ν
ν ν

ν
κ −

ν − κ

κ −

Figure 8. Influence of core material parameters on the value of wrinkling stress and the parameter κ: (a) νxz = −1.0,
(b) νxz = 0, (c) νxz = 0.5, (d) νxz = 1.0.

7. Conclusions

The first part of the article contained a short survey of the classical solutions to the
problem of instability of a facing resting on a homogeneous and isotropic substructure
(core). It was presented how the assumptions concerning the displacement field affect
the solution of the problem. Next, the dependence of the solution [6] on the value of the
Poisson ratio was presented, and strain energy analyses were carried out to investigate the
relationships between the individual components of the deformation energy of the core. In
the second part of the paper, the derivation of the formula for the critical stress in the case of
uniaxial compression of the thin facing resting on the orthotropic core was presented. The
conditions for the existence of the solution were discussed, which in principle are met for a
wide range of variability of material parameters. The numerical example confirming the
compliance of the selected analytical solution with the numerical one was also presented.
The article discussed the applied models in detail and explained the difficulties associated
with determining the load and support boundary conditions. The presented numerical
model has not been experimentally verified, although a similar model was verified in [19]
for a core with the Poisson ratio ranging from 0 to 0.3. The third part of the article presented
the results of the parametric analysis, i.e., the effect of changing the material parameters of
the orthotropic core on the wrinkling stress. This type of analysis can be of great importance
in the optimal design of sandwich systems where local loss of stability plays a significant
role. The developed solution can be easily introduced into the optimization procedure.

The presented work confirms that the further development of analytical methods
in solving the discussed problem is advisable and important, both from a scientific and
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engineering point of view. Undoubted benefits also come from the possibility of numerical
analysis of the issue under discussion. The applied FE models revealed that due to the local
loss of stability, the stresses in the facing locally increase to the yield point, and the stresses
in the core reach values similar to the strength of the core material. This means that if we
want to accurately understand the stress state in the facing and the core, a relatively simple
and attractive analytical approach should be supplemented with a numerical solution.
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60-627 Poznań, Poland; tomasz.garbowski@up.poznan.pl

2 Institute of Structural Analysis, Poznan University of Technology, Piotrowo 5, 60-965 Poznań, Poland
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Abstract: The corrugated board packaging industry is increasingly using advanced numerical tools
to design and estimate the load capacity of its products. This is why numerical analyses are becoming
a common standard in this branch of manufacturing. Such trends cause either the use of advanced
computational models that take into account the full 3D geometry of the flat and wavy layers of
corrugated board, or the use of homogenization techniques to simplify the numerical model. The
article presents theoretical considerations that extend the numerical homogenization technique
already presented in our previous work. The proposed here homogenization procedure also takes
into account the creasing and/or perforation of corrugated board (i.e., processes that undoubtedly
weaken the stiffness and strength of the corrugated board locally). However, it is not always easy to
estimate how exactly these processes affect the bending or torsional stiffness. What is known for sure
is that the degradation of stiffness depends, among other things, on the type of cut, its shape, the
depth of creasing as well as their position or direction in relation to the corrugation direction. The
method proposed here can be successfully applied to model smeared degradation in a finite element
or to define degraded interface stiffnesses on a crease line or a perforation line.

Keywords: corrugated cardboard; numerical homogenization; strain energy equivalence; perforation;
creasing; flexural stiffness; torsional stiffness

1. Introduction

Colorful boxes and packaging are designed to attract the customers’ attention and, as
a consequence, to drive the sales of various goods ranging from bulky products, through
food, children’s toys, cosmetics, and many others. A growing awareness of concern
for the natural environment has led many companies to opt for packaging that can be
easily recycled or disposed of, biodegradable, and space-saving after manufacturing. A
corrugated cardboard undoubtedly has all of these qualities. Moreover, it is easy to print on,
for example, the brand name. Corrugated cardboard is easy to shape via creasing along the
suitable lines and, furthermore, creating openings, ventilation holes, or perforations does
not cause much difficulty. The latter is essential with regard to shelf-ready packaging (SRP)
or retail-ready packaging (RRP) when the product, after transportation to the site, is placed
on the shelves and after tearing off the flap along the appropriately designed perforation,
is ready for sale. Thus, a lot of time is saved, which nowadays leads to significant profits
for large companies.

Of course, one cannot only focus on the aesthetic values because the packaging, in
fact, plays a much more important role such as securing the goods during storage or safe
transport to the destination place. The load-bearing capacity of the corrugated cardboard
boxes and the influence of humidity, openings and perforation arrangement, or the location
of flaps is under constant investigation. Therefore, scientific research has become an integral
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part of a distinct branch of industry (i.e., cardboard packages production). Manufacturers
of these packaging types strive for effective, economical, and easy-to-use solutions, which
results in the continuous, lasting over many years, development of research on cardboard
strength while using various analytical, numerical, and experimental methods.

Compressive, tensile, or bursting strength tests are routinely executed to assess the
load-bearing capacity of corrugated cardboard boxes. The box compression test (BCT)
and the edge crush test (ECT) are the best known. Inextricably related to the mechanical
strength of the paperboard or corrugated cardboard boxes are two characteristic in-plane
directions of orthotropy (i.e., perpendicular to the main axis of the fluting and parallel
to the paperboard fiber alignment—machine direction (MD) as well as parallel to the
fluting—cross direction (CD)).

Another option for estimating the compressive strength of the boxes is the application
of analytical formulae in which, in general, three groups of parameters such as paper, board,
and box parameters are present [1]. Ring crush test (RCT), Concora liner test (CLT), liner
type, weights of liner and fluting, corrugation ratio, and a constant related to fluting belong
to the first group. Thickness, flexural stiffnesses in MD and CD, ECT, and moisture content
are affiliated with the second group whereas dimensions and perimeter of the box, applied
load ratio, stacking time, buckling ratio, and printed ratio are in the third one. Already in
1952, Kellicutt and Landt [2] proposed the calculations of box compressive strength while
employing the formula with parameters introduced in the paper (RCT, flute constant) and
box (perimeter, box constant). In 1956, Maltenfort [3] indicated the relation between the
critical force and paper parameters (CLT, type of liner) and cardboard box dimensions in the
BCT. In the approach proposed by McKee, Gander, and Wachuta [4] in 1963, the parameters
of the paperboard (ECT, flexural stiffnesses) and the box perimeter were applied. Even
though this formula is commonly used in the packaging industry due to its simplicity,
which leads to quick and easy solutions for practical implementations, it is applicable only
to simple standard boxes. Therefore, scientists have been making attempts to extend the
implementation of McKee’s analytical approach. Allerby et al. [5] modified the constants
and exponents, whilst Schrampfer et al. [6] improved McKee’s method by expanding the
range of cutting methods and equipment. Batelka et al. [7] augmented the relationship by
introducing the dimensions of the box and Urbanik et al. [8] included the Poisson’s ratio.
Further modification of the above-mentioned McKee’s formula for solving more complex
problems has been proposed by Aviles et al. [9] and later, by Garbowski et al. [10–12].

Over recent decades, meshless and meshfree methods (e.g., the collocation method)
have become popular numerical techniques for solving partial differential equations
and have been beneficial while considering corrugated cardboard problems. Wang and
Qian [13] proposed the meshfree stabilized collocation method (SCM) and introduced the
reproducing kernel function as the approximation. Wang et al. [14] employed the meshfree
radial basis collocation method (RBCM), which utilizes infinitely continuous radial basis
functions (RBFs), as the approximation for the static and dynamic eigenvalue analysis of the
thin functionally graded shells (FGSs) with in-plane material inhomogeneity. The buckling
analysis of thin FG plates, also with in-plane material inhomogeneity, while applying radial
basis collocation method (RBCM) and Hermite radial basis function collocation method
(HRBCM) was discussed by Chu et al. [15]. The main advantages of the above-mentioned
approaches are high accuracy and exponential convergence.

Unquestionably, many determinants affect the compression strength of the corrugated
paperboard boxes [16] including the moisture content of the box [17,18], openings, ventila-
tion holes and perforations [11,12,19], storage time and conditions [20], stacking load [21],
or a very significant one—creasing. As a result of such a process, fold and perforation lines
are performed and through this, the mechanical strength of the manufactured corrugated
paperboard boxes is diminished.

A very effective, commonly applied in engineering, technique to determine the
strength of the boxes is the finite element method (FEM). Thakkar et al. [22] compared the
experimental and FEM numerical results to investigate the creasing impact on the local
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strength of corrugated paperboard; Beex and Peerlings [23], in turn, conducted physical
and numerical experiments to examine the influence of creasing and subsequent folding
on the mechanical properties of the laminated paperboard. A constitutive model was
implemented by Giampieri et al. [24] in order to obtain the mechanical response of creased
paperboard after folding. FEM simulations of paperboard creasing, which appeared to be
significant from a practical standpoint, have been proposed by Domaneschi et al. [25] and
Awais et al. [26]. Leminena et al. [27] performed experimental and numerical analyses to
examine the influence of the creasing process during the press forming on the paperboard
mechanical properties. FEM has also been involved in research raising the issue of numeri-
cal analysis in relation to transverse shear stiffness of the corrugated cardboards [28–32] or
buckling and post-buckling phenomena [33].

The examined models can be facilitated to one single layer described by the effective
properties of the composite instead of building layers composed of different materials.
Such a method, called homogenization, has been used extensively over the last years by
Garbowski et al. [32,34–37]. A clear advantage of this technique is the significant saving in
calculation time while preserving the precision of the results. Hohe [38] proposed a repre-
sentative element of the heterogeneous and homogenized elements based on strain energy
to analyze sandwich panels. A periodic homogenization method presented by Buannic
et al. [39] enabled them to obtain an equivalent membrane and pure bending characteristics
of period plates and, in a modified version, to incorporate the transfer shear effect in the
analysis. Biancolini [40] engaged FEM to study a micromechanical part of the considered
plate. Thanks to the energy equivalence between the model and the homogenized plate,
the stiffness properties of the sandwich plate were received. Decomposition of the plate
into two beams in directions of the plate allowed Abbès and Guo [41] to define the torsion
rigidity of the orthotropic sandwich plates. An interesting approach based on empirical
observation can also be found in the recent work of Gallo et al. [21]. A multiple scales
asymptotic homogenization approach was presented by Ramírez-Torres et al. [42] where
the effective properties of hierarchical composites with periodic structure at different length
scales has been studied, whereas in [43], the authors used the asymptotic homogenization
technique to the equations describing the dynamics of a heterogeneous material with
evolving micro-structure, obtaining a set of upscaled, effective equations.

The following article, as the next one in the series, provides theoretical considerations
that develop and extend the numerical homogenization technique already presented in
the prior works of the authors. The proposed homogenization procedure also takes into
consideration the creasing and/or perforation of corrugated board (i.e., processes that
evidently weaken the stiffness and strength of the corrugated board locally). However, it
is not always easy to estimate how exactly these processes affect the bending or torsional
stiffness. The fact is that the decrease in stiffness depends, among others, on the type of cut,
its shape, and the depth of creasing as well as their position or direction in relation to the
corrugation orientation. The method proposed here can be successfully implemented to
model smeared degradation in a finite element or to define degraded interface stiffnesses
on a crease line or a notch line.

2. Materials and Methods

2.1. Corrugated Board—Material Definition

Corrugated board, as a fibrous material, is characterized by strong orthotropy. The
mechanical properties of its components (i.e., cardboard) depend on the direction of the
fibers in the individual layers of the composite. Paper and paperboard are more than twice
as stiff in the machine direction (MD) than in the cross direction (CD). This is related to the
fibers which, due to the production process, arrange along the MD. In this direction, the
material is more resistant to tearing and crushing, although it has lower ductility than in
CD (see Figure 1).
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Figure 1. Paperboard mechanical behavior. The stress–strain relationships in different material directions.

The linear elastic orthotropic material can be described by the following stress–
strain relationships:
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(1)

where E1 is the Young’s modulus in the machine direction (MD); E2 is the Young’s modulus
in the cross direction (CD); G12 is the Kirchhoff’s modulus, ν12; ν21 is the Poisson’s coeffi-
cients. Due to the symmetry of the material compliance/stiffness matrix, the relationship
between the Poisson’s coefficients is as follows:

ν12

E1
=

ν21

E2
(2)

The material orientation was always the same in all layers (see Figure 2). This is
related to the corrugated board production process in which the paper (for the production
of both flat and corrugated layers) is rolled on a corrugator machine from multi-tone bales.

 

 (MPa) (MPa) (MPa)

Figure 2. Material orientation.

The paperboard, as already mentioned, was modeled here using classical linear elastic
orthotropy (see Equation (1)). The material data were taken from the literature [40,44,45].
All material data are presented in Table 1 (i.e., E1, E2, v12, G12, G13 and G23, which repre-
sents Young’s moduli in both directions, Poisson’s ratio, in-plane shear modulus and two
transverse shear moduli, respectively).

238



Materials 2021, 14, 3786

Table 1. Material data of intact double wall corrugated cardboard used for modeling the paper layers
according to orthotropic constitutive relation.

Layers
E1 E2 ν12 G12 G13 G23

(MPa) (MPa) (-) (MPa) (MPa) (MPa)

liners 3326 1694 0.34 859 429.5 429.5
fluting 2614 1532 0.32 724 362 362

The thickness of all flat layers (liners) in both single- and double-walled corrugated
boards was assumed to be 0.30 mm; for all corrugated layers (flutes) in both models, the
thickness was also taken as 0.30 mm.

2.2. Creases and Perforations—Numerical Study

The main goal of this work was to numerically analyze many cases of perforation
with possible creasing and its effect on the stiffness reduction of corrugated board. The
variants include not only different types of perforation (e.g., 4/4—4 mm cut, 4 mm gap;
2/6—2 mm cut, 6 mm gap; and 6/2—6 mm cut, 2 mm gap), but also different orientations
of the cuts in the sample (from 0 to 90 deg. every 15 degrees). All cases are compiled in
Table 2 and are shown in Figure 3.

Table 2. Sample symbols.

Perforation Type Model SW Model DW

4 mm cut, 4 mm gap SW-44-Y 1-xx 2 DW-44-Y-xx
2 mm cut, 6 mm gap SW-26-Y-xx DW-26-Y-xx
6 mm cut, 2 mm gap SW-62-Y-xx DW-62-Y-xx

1 Y means model type and can be: F-flute or C-cut. 2 xx is the cut or crease orientation and can be: 00, 15, 30, 45,
60, 75, or 90.

 (MPa) (MPa) (MPa)

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 3. Perforation types: (a) Type 2/6—model SW; (b) Type 4/4—model SW; (c) Type 6/2—model SW; (d) Type
2/6—model DW; (e) Type 4/4—model DW; (f) Type 6/2—model DW.

Two hypothetical corrugated boards were analyzed here, namely single-walled (SW)
with 8 mm flute period, 4 mm height and double-walled (DW) with 4 mm flute period,
2 mm flute height (for lower layer) and 8 mm flute period, 4 mm flute height (for higher
layer). Figure 4 shows the visualizations of the geometry of both examples.
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(a) (b) 

Figure 4. Geometry of the sample: (a) single layer; (b) double layer.

Both the influence of the flute orientation and the cutting orientation on the decrease
in the stiffness of the corrugated board were examined. In case C, the cutting orientation
changed to 00, 15, 30, 45, 60, 75, 90 degrees (see Figure 5) while the flute orientation
remained constant.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 5. Perforation orientation in sample SW-44-C: (a) rotation by 15 degrees; (b) rotation by 30 degrees; (c) rotation by
45 degrees; (d) rotation by 60 degrees; (e) rotation by 75 degrees; (f) rotation by 90 degrees.

In case F, the flute orientation were changed to 00, 15, 30, 45, 60, 75, 90 degrees (see
Figures 6 and 7) while the cut orientation remained constant. All cases are summarized in
Table 2.

Both single-walled and double-walled models with perforations of 4/4 mm, 2/6 mm,
and 6/2 mm in the variant 00 deg. of cut and flute rotation were crushed by 10, 20, and
30%. This consideration results from the observation of the serial production of packaging
in which crushing is an element built into the entire cutting and perforation process. The
additional crushing during cutting is the result of using rubber in the area of perforation
knives that additionally crush the cross-section. The crushed geometry of both kinds of
samples is shown in Figure 8.

All crushed samples were marked with an additional symbol R-xx, where xx means
the amount of crush (i.e., 10, 20, or 30). Therefore, for example, a single-walled specimen
with a cut/flute rotated by 0 degrees with a cut version of 44 and crushed by 10% has the
symbol SW-44-C-00-R-10.
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(a) (b) (c) 

  
(d) (e) 

Figure 6. Perforation orientation in sample SW-44-F: (a) rotation by 15 degrees; (b) rotation by 30 degrees; (c) rotation by
45 degrees; (d) rotation by 60 degrees; (e) rotation by 75 degrees.

   
(a) (b) (c) 

  
(d) (e) 

Figure 7. Perforation orientation in sample DW-44-F: (a) rotation by 15 degrees; (b) rotation by 30 degrees; (c) rotation by
45 degrees; (d) rotation by 60 degrees; (e) rotation by 75 degrees.

Additionally, what was verified during this research was the influence of the position
of the cut in the corrugated boards’ cross-section along the wave on the stiffness reduction.
For this purpose, four additional representative volumetric element (RVE) models were
created in two variants of the SW and DW samples, in which the flute was shifted by 1/16
of the period (P) from 1/16 P to 4/16 P (see Figure 9).
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 8. Crushed samples: (a–c) Single-walled sample crushed by 10%, 20%, and 30%, respectively; (d–f) Double-walled
sample crushed by 10%, 20%, and 30%, respectively.

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

 = ,

Figure 9. Cross section of the corrugated board along the wave: (a) the reference SW sample—no offset; (b) SW sample—
offset equal to 1/16 P; (c) SW sample—offset equal to 2/16 P; (d) SW sample—offset equal to 3/16 P; (e) SW sample—offset
equal to 4/16 P; (f) the reference DW sample—no offset; (g) DW sample—offset equal to 1/16 P; (h) DW sample—offset
equal to 2/16 P; (i) DW sample—offset equal to 3/16 P; (j) DW sample—offset equal to 4/16 P.

2.3. Homogenization Technique

In order to determine the effect of cuts on the stiffness of the corrugated board, the
numerical homogenization method was used here. This method, originally proposed by
Biancolini [40] and later extended by Garbowski and Gajewski [32], is based on the elastic
energy equivalence between the simplified shell model and the full RVE of corrugated
cardboard. The RVE is a finite element (FE) representation of a small, periodic section of
the full 3D corrugated board structure. The complete derivations of the constitutive model
can be found in [32]. In the present study, only the basic assumptions are presented below.

The displacement based on finite element formulation for a linear analysis can be
represented by an equation:

Ke ue = Fe, (3)

where Ke is a statically condensed global stiffness matrix of the RVE; ue is a displacement
vector of external nodes; and Fe is a vector of the nodal forces applied to external nodes. In
Figure 10, the FE mesh and mesh nodes are shown.

Static condensation relies on the removal of unknown degrees of freedom (DOF) and
then the formulation of the stiffness matrix for a smaller number of degrees of freedom,
called the primary unknown or principal DOF. In the analyzed cases, the eliminated degrees
of freedom is the internal RVE nodes and the external nodes are the primary unknowns.
The statically condensed FE stiffness matrix is computed from the equation:

Ke = Kee − Kei K−1
ii Kie, (4)
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where the stiffness matrix contains four subarrays related to internal (subscript i) and
external (subscript e) nodes:

[
Kee Kei

Kie Kii

][
ue

ui

]
=

[
Fe

0

]
. (5)

 = ,

  

(a) (b) 

Figure 10. RVE—external (in red color) and internal nodes and finite elements: (a) SW model;
(b) DW model.

Static condensation reduces the total elastic strain energy to the work of external forces
on the corresponding displacements. The total elastic strain energy can be calculated from
the equation:

E =
1
2

uT
e Fe. (6)

The balance of the total energy for the full 3D shell model and the simplified shell
model is ensured by an appropriate definition of displacements in the external RVE nodes
and by enabling the membrane and bending behavior. More details can be found in
Garbowski and Gajewski [32]. The generalized displacements are related to the generalized
strains on the RVE edge surfaces, which can be represented by the relationship:

ui = Hi ǫi, (7)

where for a single node (xi = x, yi = y, zi = z) the Hi matrix adopted for RVE shell model
can be determined:




ux

uy

uz

θx

θy




i

=




x 0 y/2 xz 0 yz/2 z/2 0
0 y x/2 0 yz xz/2 0 z/2
0 0 0 −x2/2 −y2/2 −xy/2 x/2 y/2
0 0 0 0 −y −x/2 0 0
0 0 0 x 0 y/2 0 0
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κy

κxy
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i

(8)

While using the definition of the elastic strain energy for a discrete model:

E =
1
2

uT
e K ue =

1
2

ǫT
e HT

e K He ǫe (9)
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and considering a finite element as subjected to bending, tension, and transverse shear, the
elastic internal energy is expressed by:

E =
1
2

ǫT
e Hk ǫe{area}. (10)

For a homogenized composite, the stiffness matrix can be easily determined as:

Hk =
HT

e K He

area
. (11)

The presented homogenization method is based on replacing the full 3D shell model
with a simplified shell model and computing the effective stiffness of the RVE. Such a
procedure significantly accelerates the computations and maintains a very high accuracy
of the results.

The matrix Hk is formed by the matrices A, B, D, and R as follows:

Hk =




A3×3 B3×3
B3×3 D3×3

R2×2


 (12)

where A represents extensional and shear stiffnesses; B represents extension-bending
coupling stiffnesses; and D represents bending and torsional stiffnesses, while R represents
transverse shear stiffness.

In general, the stiffness matrix A is independent of the position of a neutral axis.
For the most symmetrical cross sections, all elements of stiffness matrix B are equal to
zero. However, for unsymmetrical sections (i.e., double-walled corrugated board samples)
matrix B is a non-zero, which indicates that there is a coupling between bending/twisting
curvatures and extension/shear loads. Traditionally, these couplings have been suppressed
for most applications by choosing the position of the neutral axis that minimizes the values
of B. Alternatively, uncoupled matrix D can be computed from the formula:

D = D0 − BA−1B, (13)

where D0 represents the original (coupled) bending and torsional stiffnesses.
Within all analyses, the 3-node triangular general-purpose shell elements, named S3,

were used for the computations. In every examined case, approximate global size equal to
0.5 mm was assumed. Due to the analysis of different orientations of flutings or cuts in
the sample, the number of elements changed. For example, in the case of the SW-44-C-00
sample—2002 elements, 1099 nodes, and 6594 degrees of freedom were obtained, and
for the DW-44-C-00 sample—3972 elements, 2074 nodes, and 12,444 degrees of freedom
were obtained.

3. Results

3.1. Validation of the Proposed Method

The proposed numerical method was first verified by direct comparison of the ob-
tained results with the existing solutions from the literature. One example concerns an
assembled sandwich structure consisting of a corrugated tooth-shaped core enclosed be-
tween two sheets. A reference solution is available from Buannic et al. [39]. According to
the notation used in the literature, the T2 panel was tested here. The FE models used in
this comparison for the T2 sandwich consists of 3-node and 4-node shell elements and are
shown in Figure 11. Error estimation was performed and the maximum deviation was less
than 2.5%.
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= − ,

  

(a) (b) (c) 

Figure 11. Representative shell elements of saw tooth geometry with quadrilateral mesh (single
period): (a) model with a fine 4-node mesh; (b) model with a coarse 3-node mesh; (c) model geometry.

On the basis of the above validation (see Table 3) carried out on two numerical
models: (a) model with a fine mesh (see Figure 11a) and (b) model with a coarse mesh (see
Figure 11b), it was found that the solution does not depend on the element type and on the
size of the finite element. It is important, however, to correctly represent any curvatures,
therefore, in the case of sinus-like fluting, at least 16 segments are required to obtain correct
results [32].

Table 3. The stiffnesses of representative shell element computed for a different approach of modeling
confronted with data from [39] for saw tooth geometry.

Stiffness Ref. [39] Corse Model Fine Model

A11, (N/mm) 1.108 106 1.118 106 1.118 106

A22, (N/mm) 1.358 106 1.380 106 1.378 106

A12, (N/mm) 3.324 105 3.449 105 3.448 105

A33, (N/mm) 4.168 105 4.115 105 4.115 105

D11, (N·mm) 9.195 108 9.211 108 9.210 108

D22, (N·mm) 9.822 108 9.926 108 9.925 108

D12, (N·mm) 2.758 108 2.777 108 2.777 108

D33, (N·mm) 3.220 108 3.269 108 3.268 108

A44, (N/mm) - 5.194 104 5.184 104

A55, (N/mm) - 7.408 104 7.376 104

3.2. Detailed Results

This section presents all the results of numerical tests for both single-walled (SW) and
double-walled (DW) corrugated board samples. First, Tables 4 and 5 show an example
of the Ak matrix, calculated while using the SW and DW models, respectively (both
unperforated).

Table 4. Constitutive stiffness matrix Ak for the SW model without perforation.

A & B B & D R
1 2 3 1 2 3 4 5

A & B

1 2184.4 388.92 0 0 0 0
2 388.92 1756.9 0 0 0 0
3 0 0 667.81 0 0 0

B & D

1 0 0 0 8628.2 1506.5 0
2 0 0 0 1506.5 5469.3 0
3 0 0 0 0 0 2300.2

R
4 105.08 0
5 0 130.91
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Table 5. Constitutive stiffness matrix Ak for the DW model without perforation.

A & B B & D R
1 2 3 1 2 3 4 5

A & B

1 3313.8 593.33 0 1117.1 195.90 0
2 593.33 2967.5 0 196.36 1200.6 0
3 0 0 1077.8 0 0 409.89

B & D

1 1117.1 196.36 0 20 619 3620.8 0
2 195.90 1200.6 0 3620.8 15 042 0
3 0 0.0 409.89 0 0 5934.5

R
4 233.13 0
5 0 242.28

Due to the volume limitations of the data that can be presented in all the following
tables, only the values from the main diagonals of the Ak matrix are shown. This sim-
plification does not introduce an error in the analyses of the results, mainly because the
components (∗)12 are related to the elements (∗)11 and (∗)22 in each matrix. The B matrix
was also disregarded. However, it has been accounted for using Equation (13) in the D

matrix, which is presented in all tables below.
Since the DW model is asymmetric, all matrices A, B, D, and R are non-zero; in

particular, matrix B (see Table 5), which combines the bending effects with the membrane
stiffness of the plate.

Table 6 shows the selected stiffnesses of all SW models with no perforation and fluting,
rotated by an angle of 0 to 90 every 15 degrees. It is worth noting that in the case of models
with rotated fluting by 90 degrees SW-0-F-90 and with non-rotating fluting SW-0-F-0, the
stiffness values (∗)11 and (∗)22 were swapped (the same holds for (∗)44 and (∗)55).

Table 6. Selected stiffnesses in SW samples with no perforation and with different flute orientations.

SW-0-F-00 SW-0-F-15 SW-0-F-30 SW-0-F-45 SW-0-F-60 SW-0-F-75 SW-0-F-90

A11 (MPa mm) 2184.4 2127.2 1990.3 1854.2 1774.2 1751.5 1756.9
A22 (MPa mm) 1756.9 1751.5 1774.2 1854.2 1990.3 2127.2 2184.4
A33 (MPa mm) 667.81 699.26 760.50 792.80 760.50 699.30 667.80

D11 (MPa mm3) 8628.2 8313.5 7480.9 6521.5 5897.3 5575.8 5469.3
D22 (MPa mm3) 5469.3 5575.8 5897.3 6520.4 7480.9 8313.5 8628.2
D33 (MPa mm3) 2300.2 2425.2 2650.1 2755.4 2650.1 2425.2 2300.2
R44 (MPa mm) 105.08 108.15 119.80 132.90 127.20 126.20 130.90
R55 (MPa mm) 130.91 126.16 127.20 132.80 119.80 108.10 105.10

Table 7 shows the selected stiffnesses of all DW models with no perforation and
fluting rotated by an angle of 0 to 90 every 15 degrees (see Figure 7). For the DW-0-F-45
and SW-0F-45 samples, the same values were obtained for all (∗)11 and (∗)22 as well as
(∗)44 and (∗)55, which was expected. This is, of course, due to the symmetry in both the
geometrical setup and the material orientation.

Table 7. Selected stiffnesses in DW samples with no perforation and with different flute orientations.

DW-0-F-00 DW-0-F-15 DW-0-F-30 DW-0-F-45 DW-0-F-60 DW-0-F-75 DW-0-F-90

A11 (MPa mm) 3313.8 3250.6 3090.4 2955.2 2912.0 2939.7 2967.5
A22 (MPa mm) 2967.5 2939.7 2912.0 2955.3 3090.4 3250.6 3313.8
A33 (MPa mm) 1077.8 1127.5 1225.3 1275.9 1225.3 1127.5 1077.8

D11 (MPa mm3) 20,242 19,610 17,980 16,221 15,123 14,662 14,556
D22 (MPa mm3) 14,556 14,662 15,123 16,220 17,980 19,610 20,242
D33 (MPa mm3) 5778.6 6071.8 6634.3 6910.6 6634.3 6071.8 5778.6
R44 (MPa mm) 233.13 240.21 246.71 257.56 247.51 242.88 242.28
R55 (MPa mm) 242.28 242.88 247.51 257.43 246.71 240.21 233.13
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Figure 12 shows the stiffness reduction of thee perforated models (both SW and DW)
depending on the perforation rotation angle. The normalization term in each case is the Ak

matrix of the corresponding non-perforated sample (i.e., all stiffnesses in the perforated
SW models are divided by the corresponding stiffnesses in nonperforated SW model).

   

(a) (b) (c) 

   

(d) (e) (f) 

− ∗− ∗− ∗− ∗− ∗− ∗− ∗ −− ∗

Figure 12. Stiffness degradation in sample: (a) SW-26; (b) SW-44; (c) SW-62; (d) DW-26; (e) DW-44; (f) DW-62.

Tables 8 and 9 summarize the chosen values of stiffness for a selected case of SW
sample with fluting rotated by 15 degrees, for four cases of perforation: (i) no perforation;
(ii) 2/6 mm (i.e., the normalized cut is 25%); (iii) 4/4 mm (i.e., the normalized cut is 50%);
and (iv) 6/2 mm (i.e., the normalized cut is 75%).

Table 8. The selected stiffnesses in SW models for different perforations and flute rotated by 15 degrees.

Stiffness SW-0-F-15 SW-26-F-15 SW-44-F-15 SW-62-F-15

A11 (MPa mm) 2127.2 2116.1 2082.1 2052.3
A22 (MPa mm) 1751.6 1609.1 1267.7 885.12
A33 (MPa mm) 699.26 681.92 608.30 524.18

D11 (MPa mm3) 8313.4 8276.1 8166.4 8048.5
D22 (MPa mm3) 5575.8 5290.9 4291.8 2877.2
D33 (MPa mm3) 2425.2 2384.5 2216.7 1968.9
R44 (MPa mm) 108.15 107.68 106.48 106.77
R55 (MPa mm) 126.16 120.04 94.100 83.465

Figure 13 shows the selected values of the stiffness reduction of the SW samples with
the flute rotated by 15, 30, 45, 60, and 75 degrees. All stiffnesses were normalized by the Ak

matrix of the non-perforated sample with the appropriate fluting orientation (see Figure 6).
Figure 14 presents the selected values of the stiffness reduction of the DW samples with
the flute rotated by 15, 30, 45, 60, and 75 degrees. All stiffnesses were normalized by the Ak

matrix of the non-perforated sample with the appropriate fluting orientation (see Figure 7).
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Table 9. Stiffness reduction for both SW and DW samples with flute rotated by 15 degrees for three cases of perforation.

Stiffness
Reduction

SW-26-F-15
(%)

SW-44-F-15
(%)

SW-62-F-15
(%)

DW-26-F-15
(%)

DW-44-F-15
(%)

DW-62-F-15
(%)

1 − A11/A∗
11 0.523 2.121 3.519 0.508 1.903 3.364

1 − A22/A∗
22 8.133 27.66 49.46 7.852 27.77 50.98

1 − A33/A∗
33 2.480 13.01 25.04 2.735 12.66 24.50

1 − D11/D∗
11 0.449 1.769 3.187 0.467 1.786 3.247

1 − D22/D∗
22 5.110 23.03 48.40 6.377 25.41 49.18

1 − D33/D∗
33 1.677 8.598 18.81 2.171 10.25 20.88

1 − R44/R∗
44 0.435 1.545 1.273 −0.349 1.032 1.177

1 − R55/R∗
55 4.851 25.41 33.84 4.060 18.48 30.95

* denotes the reference value of non-perforated specimen (i.e., SW-0-F-15).

   
(a) (b) (c) 

  
(d) (e) 

Figure 13. Stiffness degradation in sample SW: (a) F-15; (b) F-30; (c) F-45; (d) F-60; (e) F-75. Three types of perforations were
analyzed (2/6 mm, 4/4 mm, or 6/2 mm).

In the process of cutting corrugated board, perforation may occur in various locations
relative to the fluting position, therefore the impact of fluting shift on stiffness changes has
also been analyzed. Figure 15 presents the values of the stiffness reduction depending on
the location of the cut in relation to the fluting position for the SW and DW samples in
three perforation varieties: 2/6 mm, 4/4 mm, and 6/2 mm.

Due to noticed increase of R44 and R55 stiffnesses (negative stiffness reduction values
shown in Figure 15), non-perforated samples were also examined. The values of the
stiffness reduction depending on the fluting shift for the SW sample are summarized in
Table 10, whereas the values of the stiffness reduction depending on the fluting shift for
the DW sample are listed in Table 11.

As the perforation process is inseparable from the crushing process, this effect on the
reduction of stiffness has also been tested. The influence of additional crushing of 10, 20,
and 30% of the initial height of the corrugated board on the stiffness degradation of SW and
DW samples is presented in Figure 16. The comprehensive study of the impact of crushing
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on single-walled corrugated board is presented in a recent study of Garbowski et al. [44],
while for the double-walled structures, see Gajewski et al. [45].

   
(a) (b) (c) 

  
(d) (e) 

Figure 14. Stiffness degradation in a sample DW: (a) F-15; (b) F-30; (c) F-45; (d) F-60; (e) F-75. Three types of perforation
were analyzed (2/6 mm, 4/4 mm, or 6/2 mm).

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 15. Stiffness degradation in sample C-0: (a) SW-26; (b) SW-44; (c) SW-62; (d) DW-26; (e) DW-44; (f) DW-62.
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Table 10. Uncut samples SW. Stiffness reduction in terms of flute offset.

Stiffness
Reduction

1/16 P
(%)

2/16 P
(%)

3/16 P
(%)

4/16 P
(%)

1 − A11/A∗
11 −0.023 −0.121 −1.061 −0.055

1 − A22/A∗
22 −0.018 −0.061 −0.086 −0.003

1 − A33/A∗
33 −0.035 −0.089 −0.062 0.038

1 − D11/D∗
11 0.023 0.099 −0.687 0.059

1 − D22/D∗
22 0.018 0.053 −0.007 0.050

1 − D33/D∗
33 0.124 0.495 1.102 1.720

1 − R44/R∗
44 3.533 13.41 10.63 1.771

1 − R55/R∗
55 1.286 4.036 8.186 8.956

* denotes the reference value of non-shifted flute.

Table 11. Uncut samples DW. Stiffness reduction in terms of flute offset.

Stiffness
Reduction

1/16 P
(%)

2/16 P
(%)

3/16 P
(%)

4/16 P
(%)

1 − A11/A∗
11 −0.018 −0.094 −1.052 −0.037

1 − A22/A∗
22 −0.013 −0.044 −0.075 −0.003

1 − A33/A∗
33 −0.032 −0.082 −0.056 0.039

1 − D11/D∗
11 0.012 0.029 −1.048 −0.012

1 − D22/D∗
22 0.011 0.009 −0.062 0.021

1 − D33/D∗
33 −0.029 0.110 0.459 0.880

1 − R44/R∗
44 2.706 9.932 8.977 1.396

1 − R55/R∗
55 2.378 6.572 11.88 15.28

* denotes the reference value of non-shifted flute.

− ∗ − − − −− ∗ − − − −− ∗ − − −− ∗ −− ∗ −− ∗− ∗− ∗

− ∗ − − − −− ∗ − − − −− ∗ − − −− ∗ − −− ∗ −− ∗ −− ∗− ∗

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 16. Stiffness degradation in sample: (a) SW-26-C-0-R-xx; (b) SW-44-C-0-R-xx; (c) SW-62-C-0-R-xx; (d) DW-26-C-0-R-xx;
(e) DW-44-C-0-R-xx; (f) DW-62-C-0-R-xx. Here xx is a crush level (0%; 10%, 20%, and 30%).
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4. Discussion

On the basis of the conducted analyses and the obtained results, it can be concluded
that the perforations to a greater or lesser extent affected the stiffness degradation not
only in the A sub-matrix (responsible for the tensile/compression stiffness) and in the
D sub-matrix (responsible for bending/torsion stiffness), but also in the R sub-matrix
(responsible for the transversal shear stiffness).

For samples with different perforation orientations (see Figure 5), the reduction in
stiffness was related to the rotation angle of the perforation. In the samples with a rotation
angle below 30 degrees, the greatest reduction occurred for matrix elements with indices
22 and 55. If the rotation angle was greater than 60 degrees, mainly matrix elements
with indices 11 and 44 were reduced. This rule applied to both types of samples (i.e., SW
and DW). When the perforation was rotated by an angle equal to 45 degrees, the matrix
elements with indices 11, 22, 44, and 55 were evenly degraded.

For 2/6 mm perforation in model SW (see Figure 12a), the maximum degradation did
not exceed 10% and was applied to A22 (for perforation rotation angle < 30 degrees) and
A11, D11 (for perforation rotation angle > 60 degrees). It is worth noting that the decrease
in the stiffness D22 and R55 for the rotation angle of the perforation equal to 0 degrees
was relatively high and amounted to 5% for the perforation type 2/6 mm. The remaining
stiffnesses degraded less than 3% in this case. A similar observation applied to the DW
model (see Figure 12d).

While considering the 4/4 mm type perforation (see Figure 12b), the observations
were as follows: reduction of A22, D22 was about 25% for a perforation rotation of 0 degrees
and about 0% for a 90-degree rotation; R55 degraded about 25% when the perforation
was rotated by 0 degrees and about 10% when the perforation was rotated by 90 degrees;
reduction of A33 and D33 was about 10% regardless of the perforation rotation angle,
while the degradation of A11 and D11 varied from around 0% to 30% for 0 degrees and
90 degrees, respectively; and the degradation of R44 did not exceed 5%. In the DW model
(see Figure 12e), a similar decrease could be observed. The reductions R44 and R55 look
slightly different; this is related to a different ratio of the sample height to its dimensions in
the plan.

The greatest reductions were observed for the sample with the 6/2 mm perforation
type (see Figure 12c,f). This is obviously related to the largest cut-to-gap ratio (which
amounts to 75% in this case). In the case of the SW model, both the stiffness reductions
A11 and D11 as well as A22 and D22 reached a maximum value of slightly more than 50%.
The reduction of A33, D33, and R55 varied between 15 and 30%. The R44 stiffness reduction
was approximately 0% for the non-rotated perforation, while for the rotation angle of
90 degrees, it was about 20%. A very similar stiffness degradation could be observed for
the DW model (see Figure 12f).

For samples with different fluting orientations (see Figures 13 and 14), the greatest
reduction in stiffness always occurred in the direction perpendicular to the perforation (i.e.,
(∗)22 and (∗)55), regardless of material orientation. Both A22 and D22 stiffnesses had the
greatest reductions and amounted to about 50% in the case of 6/2 mm perforation for all
fluting orientations. Slightly smaller reductions in stiffness were observed for R44, A33, and
D33 ranging from 15 to 30% (for 6/2 mm perforation type), depending on the orientation
of the fluting. The smallest stiffness reductions were observed for A11, D11, and R55.

When analyzing the stiffness reductions for models with shifted fluting (see Figure 9),
even in the case without perforation, slight differences in stiffness could be observed (see
Tables 10 and 11) and concerned mainly R44 and R55. Small fluctuations were also observed
in models with perforation for both cases of SW and DW (see Figure 15), where again, the
R44 and R55 showed the greatest dependence on fluting shift.

By also adding to the model the crushing of fluting (see Figure 8) that accompanies the
perforations during the treatment of corrugated board, the degradation for some stiffnesses
can increase several times (see Figure 16). The more perforated the model (i.e., 6/2 mm
perforation type), the smaller the further reductions in the stiffness A22, D22, and R55.
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The remaining stiffnesses were drastically reduced with the increase in the crushing of
the cross-section of the corrugated board. It is worth noting that for the DW model, the
stiffnesses reduction of A11, A22, and A33 did not depend on the amount of crushing.

5. Conclusions

This article presents the comprehensive numerical analyses of the effect of perforation
on reducing stiffness while implementing homogenization techniques. The acquired
knowledge can be used for numerical modeling, for example, of corrugated cardboard
packaging with perforations. Knowing the specific values of the stiffness reduction, it
is possible to correctly model the perforation line and thus accurately estimate the load
capacity of the packaging. The reduction in individual stiffnesses depends not only on the
type of perforation, but also on the orientation of the perforation and the orientation of
the fluting, but does not depend on the location of the perforation along the wavelength.
Further development of the launched research is planned related to the validation of the
proposed model with experimental models while engaging the non-contact displacement
measurements [46].
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Abstract: Edgewise compression response of a composite structural insulated panel (CSIP) with
magnesium oxide board facings was investigated. The discussed CSIP is a novel multifunctional
sandwich panel introduced to the housing industry as a part of the wall, floor, and roof assemblies.
The study aims to propose a computational tool for reliable prediction of failure modes of CSIPs
subjected to concentric and eccentric axial loads. An advanced numerical model was proposed that
includes geometrical and material nonlinearity as well as incorporates the material bimodularity
effect to achieve accurate and versatile failure mode prediction capability. Laboratory tests on
small-scale CSIP samples of three different slenderness ratios and full-scale panels loaded with
three different eccentricity values were carried out, and the test data were compared with numerical
results for validation. The finite element (FE) model successfully captured CSIP’s inelastic response
in uniaxial compression and when flexural action was introduced by eccentric loads or buckling
and predicted all failure modes correctly. The comprehensive validation showed that the proposed
approach could be considered a robust and versatile aid in CSIP design.

Keywords: composites; sandwich panel; composite structural insulated panel; magnesium oxide
board; bimodular material; experimental mechanics; computational mechanics; finite element analysis

1. Introduction

The composite structural insulated panel (CSIP) is a novel product introduced to the
housing industry as a part of the wall, floor, and roof assemblies in low-rise buildings. It is a
type of multifunctional sandwich panel that combines enveloping, thermoinsulational, and
structural roles. Composite materials with low weight to strength ratio and modularized
components allow to significantly reduce the time and cost of transport and assembly,
making them an attractive alternative to traditional construction materials [1–5]. The CSIP
is a developed version of a structural insulated panel (SIP), which uses mainly wood-based
facing materials, such as oriented strand board (OSB), that are prone to biological and
environmental degradation [6,7]. The use of the right composite facings can solve this
problem and, depending on the type of material used, introduce additional advantages.

The subject of the present research is a CSIP with magnesium oxide board (MgO
board) facings and an expanded polystyrene (EPS) core, bound together by a polyurethane
adhesive (Figure 1). The MgO board is a relatively new cladding material, composed of
a magnesia cement mortar matrix and a glass-fiber mesh reinforcement. Such use of the
MgO board provides the panel with high strength and stiffness, immunity to biological
corrosion, flame retardancy, and environmental sustainability [8–11]. The analyzed CSIP
overcomes the disadvantages of a traditional SIP and allows to create more durable and
eco-friendly buildings.
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Figure 1. Schematic layout of the analyzed CSIP.

The CSIP under consideration is intended for use as a structural element of walls,
which means it has to be suitable for in-plane load transfer. The need for a sufficient thermal
insulation and structural strength results in a relatively high total thickness to length ratio.
This type of geometry makes it prone to premature initiation of local damage, and the
actual failure pattern is difficult to predict at the design stage. Possible failure modes, when
subjected to in-plane compression, include yielding of facings, core shear, global buckling,
inward local buckling (core crushing), and outward local buckling (delamination) [12].
The prominent difference in facing and core stiffness and the complex nature of their
interactions make a prediction of CSIP failure mode a challenging task. Therefore, it is
essential to provide a computational tool well-suited for this type of composite.

Several investigations on the subject of sandwich panel behavior under axial loads
were carried out in recent years. The compressive behavior of sandwich column samples
with carbon/epoxy facings and two types of core material, polyvinyl chloride foam and
aluminum honeycomb, was investigated in [13]. Local buckling failure was observed in
the soft foam core samples, whereas no wrinkling occurred in the honeycomb sample, due
to its high thickness–direction stiffness. Fundamental analytical expressions allowed to
predict the wrinkling load when it appeared before the core yield, but the formulas had to
be modified to account for the stiffness loss in cases where the core failed first. CSIPs with
thermoplastic glass/polypropylene facings and an EPS core were analyzed in [14,15]. The
first report [14] concentrates on global buckling failure of small-scale samples caused by
concentric and eccentric loads. The authors derive formulae that consider the orthotropic
facings and the core shear deformation to predict the elastic buckling load successfully.
The second study [15] concerns full-scale CSIPs subjected to eccentric compression. All
tested panels failed by local buckling, and an analytical model for critical wrinkling stress
was proposed and validated for the elastic range. Furthermore, a 3D continuum FE
model with geometric nonlinearity was used for a parametric study, highlighting the
possibilities of such an approach in CSIP design. Mechanical behavior of panels with low
density polyethylene facings and a lightweight polyethylene foam core under edgewise
compression was investigated in [16]. An experimental study on small-scale samples was
carried out, utilizing strain and out-of-plain deformation measurements, and multiple cases
of localized buckling were captured. A high fidelity 3D continuum FE model accounting
for thickness irregularities as well as material and geometrical nonlinearities was created
and successfully validated against experimental results. Afterward, the model was used
in a parametric study to assess the sensitivity of panel’s response to changes in layers’
thickness and interface irregularities. An extensive study on the influence of slenderness
ratio on the compressive behavior of glass fiber reinforced polymer (GFRP) facings and
polyurethane foam core sandwich panels’ compressive response was carried out in [17].
The observed failure types were global buckling, wrinkling, GFRP yield, and core shear.
The authors correlated the failure modes to the slenderness ratio and proposed analytical
expressions for ultimate load prediction in the elastic range. An investigation of axial
performance of single sandwich wall panels and panel assemblies jointed with a novel
connector system was performed in [18]. The observed failure modes were local buckling
of GFRP skins, and global instability resulting from delamination between the core and
facings. A linear elastic theoretical study was carried out and the obtained results were
in a reasonable agreement with the experimental data. Load-bearing sandwich panels
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with glass fiber reinforced polymer (GFRP) facings and a foam-web core subjected to
edgewise compression were discussed in [19]. Outward local buckling and compressive
facing yield failure types were observed, depending on the foam-web layout. Analytical
formulae calculating critical local buckling stress, and axial load capacity of the panel were
derived and validated in an experimental examination. Elastic range consideration was
sufficient in this case as well. One of the few examples of MgO board strength research
was presented in [9]. The structural behavior of wall-panels with MgO board facings and
a glass fiber reinforced polyurethane foam core was investigated. Full-scale panels with
different support assemblies and a panel with a damaged facing were tested in uniaxial
compression. The observed failure modes were facing buckling followed by vertical
cracking and facing cracking due to shear sliding. It was also observed that the presence of
local damage in the board caused cracks propagating from the weakened area and led to
a significant reduction of the load-bearing capacity of the panel. Examples of nonlinear
FE approach to sandwich panel analysis can be found in [20,21]. Numerical studies of
composite response to local loads were performed with consideration of both material and
geometrical nonlinearities. Core layers were modeled with continuum solids and facings
were treated as structural shells. This approach allowed for a more detailed insight into
sandwich layer interactions. A high fidelity method of sandwich panel FE modeling is
presented in [22]. Nonlinear material behavior was applied to all components, taking into
account the difference in tensile and compressive responses of textile-reinforced cement
faces, and high deformability of an extruded polystyrene foam (XPS) core in compression.
The numerical approach was validated by comparison of surface strain results in different
layers with comprehensive digital image correlation data. Structural behavior of SIPs with
OSB facings subjected to concentric and eccentric compression was analyzed in a joint
experimental and analytical study in [23]. Full-scale panels with different configurations
of slenderness ratio and foam core type were tested, and the observed force-deflection
responses were predominately linear until failure. Failure modes consisted of facing
crushing at different locations, core shear, core rupture near the interface, and debonding
at the adhesive layer. Several design recommendations, along with empirical expressions
for SIP’s ultimate axial strength, were proposed.

The analyzed CSIP and its components were subjected to various mechanical tests to
identify its failure patterns and establish material properties of the MgO board and the
EPS core [24,25]. Both core and facing yield were noted before failure initiation, therefore
limiting the computational model to the elastic range would be inadequate. Material
and geometrical nonlinearities had to be considered. Moreover, it was observed that the
structural response and the parameter values depended strongly on the stress state of
the materials and that the most notable differences occurred between compression and
tension. The observed material bimodularity was incorporated into a preliminary FE
model, which significantly improved the simulation results’ overall quality. An attempt to
use this approach for CSIP edgewise compression analysis was made [26]. The numerical
analysis produced qualitatively acceptable results; however, the samples’ stiffness and
strength were considerably underestimated. Quite recently, a refined description of the
bimodular material model was proposed and positively validated [27]. As a result, a notable
improvement of similarity between numerical and experimental curves, and accuracy of
failure mode prediction was achieved for flexural behavior.

In the current work, the refined bimodular FE approach was used to simulate the
behavior of the MgO board CSIP under concentric and eccentric edgewise compression. The
validation of the numerical model was accomplished by comparing its outcomes with the
results of laboratory tests performed on samples of different geometries and eccentricity
values. Both small-scale and full-scale samples were investigated for comprehensive
validation. The study aims to propose a robust, versatile computational framework that
can be used as a reliable design aid for predicting CSIP failure modes in compression.
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2. Materials and Methods

2.1. Experimental Analysis

A series of laboratory edgewise compression tests was executed on a variety of CSIP
samples (Table 1). Small-scale CSIP columns of three different heights (L1, L2, L3) were
tested under uniaxial compression, and full-scale panels were subjected to compression
with three different eccentricity values (e0, e1, e2). The test series aimed to produce a
variety of compressive responses and failure modes to provide experimental data for the
comprehensive validation of the FE model.

Table 1. CSIP samples’ geometry and test setup parameters.

Sample n
Core
Type

tf

mm
tc

mm
a

mm
L

mm
e

mm
Rotation
at Supp.

Le

mm
λ

L1 2 EPS15 11 20 100 275 0 Fixed 138 8.7
L2 2 EPS21 11 20 100 645 0 Fixed 323 20.4
L3 1 EPS15 11 20 100 955 0 Free 955 60.4

e0 1 EPS21 11 152 1000 2750 0 Free 3080 37.3
e1 1 EPS21 11 152 1000 2750 27 Free 3080 37.3
e2 1 EPS21 11 152 1000 2750 54 Free 3080 37.3

Note: n = number of tested samples; tf, tc, a, L = specimen dimensions (Figure 1); e = eccentricity; Le = effective length; λ = slenderness ratio.

Small-scale edgewise compression tests were performed based on the procedure given
in [28]. The tests were conducted on an Instron 5569 machine (Instron, Buckinghamshire,
UK) using displacement control and a continuous recording of cross-head movement,
ux, and reaction force, Fx. CSIP columns’ dimensions were assumed with a gradually
increasing slenderness in an attempt to produce both facing yield and global buckling
failure modes. Since the original panel was too thick to observe buckling behavior in small-
scale, all specimens were modified by removing the central portion of the core and using
an adhesive to create columns of reduced thickness. This interference in the composite
layout did not influence the compressive behavior of the samples in any noticeable way. It
was noted that the EPS cores of the source panels had two different densities: 15 kg/m3

(EPS15) and 21 kg/m3 (EPS21). Other than that, the cross-section of all samples remained
constant, and three different heights were considered (Table 1). In the case of L1 and L2
columns, support profiles with 30 mm high flanges were used (Figure 2a). The flanges
were discarded for the L3 column to reduce rotational stiffness and increase slenderness
(Figure 2b). A stabilizing layer of mortar was applied in all cases to ensure uniform stress
distribution.

Figure 2. Schematic diagram of small-scale laboratory tests: (a) L1 and L2, (b) L3.

258



Materials 2021, 14, 3030

A full-scale CSIP compression test procedure was developed based on small-scale
research and panel application guidelines provided by the producer. The test stand com-
prised an Instron Labtronic® 8800 structural testing system (Instron, Buckinghamshire, UK)
with a NBC Elettronica TA10 load cell (N.B.C. Elettronica Group s.r.l., Delebio, Italy) and a
tested panel (LS Tech-Homes S.A., Czechowice-Dziedzice, Poland) mounted horizontally
in two steel profiles acting as pin supports (Figure 3). The mounting profiles were designed
to warrant sufficient rigidity with 165 mm distance from a panel’s edge to the pin, and
a 100 mm high flange (Figure 4a). A stabilizing layer was used between the sample and
the profiles for uniform stress distribution. The assembly was attached to a steel frame,
that allowed for a horizontal movement of the loading profile (Figure 3b) and blocked all
translations of the support profile (Figure 3c). The connection between the pin supports
and the steel frame allowed to apply loads with a set eccentricity value. Three levels of ec-
centricity were selected to produce a substantially varied response: 0, d/6 (27 mm) and d/3
(54 mm), where d is distance between facing centroids, d = h − tf. All tests were performed
under displacement control with continuous recording of reaction force, Fx, horizontal
displacement, ux, using cross-head movement and a linear variable differential transformer
(LVDT), vertical displacements, uz, using LVDTs, and facing longitudinal strains, εx,f, using
strain gauges (SG). The measuring devices were LVDTs with a precision of 0.01 mm, and
tubular strain gauges with a grid length of 60 mm. Measuring devices’ placement is shown
in Figure 4b.

Figure 3. Full-scale CSIP test stand: (a) overall view, (b) loading assembly, (c) support assembly [26].
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Figure 4. Schematic diagram of full-scale laboratory tests: (a) load and support, (b) positions of measuring devices.

Information considering the number of tested samples, the EPS core’s density, speci-
men dimensions, and characteristics affecting slenderness is summarized in Table 1. The
slenderness ratio was calculated from:

λ = Le

√
A f

Jy
= Le

√
2t f a

a
12 (h

3 − tc
3)

= Le

√
24t f

h3 − tc
3 , (1)

where: Le—effective length; Af—cross-sectional area of facings; Jy—moment of inertia of
facings; remaining symbols in accordance with Figure 1. The effective length was assumed
as: Le = L/2 for specimens with rotational constraints (L1, L2), Le = L for the L3 sample,
and Le = L + 2 × 165 mm to account for mounting profiles’ height for full-scale panels (e0,
e1, e2).

2.2. Numerical Analysis

The proposed approach was applied to perform a numerical study, validate the FE
model, and assess its viability as a design aid tool. Both small-scale and full-scale tests
described in Section 2.1 were reproduced as simulations and the computational results
were compared with the test data. In total, six numerical test assemblies were created
using ABAQUS software [29] (version 6.11, Dassault Systèmes, Providence, RI, USA). The
computations were supplemented by an author’s procedure, implemented to account for
dependence of material response from stress state [27].

A continuum approach was taken and all simulations were performed in plane stress
state. The test samples were discretized using four-node elements with reduced integration
and hourglass control. A regular geometry mesh established in a convergence study,
consisting of 4 mm × 4 mm elements in the core area and 1 mm × 4 mm in the facings,
was used in all cases (Figure 5). Sample dimensions and layer arrangements were adopted
in accordance with Table 1. Perfect bonding was assumed between facings and core
constituents since no pre-failure delamination was observed in laboratory tests.
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Figure 5. FE mesh section in the support area and rigid body contact interactions.

The loading and support profiles were idealized as linear rigid bodies to ensure
indirect load transfer and uniform stress distribution in the analyzed samples. Two types
of interactions between a specimen and a rigid body profile were defined: (1) tie constraint
at the edge perpendicular to the direction of compression and (2) penalty friction with
a 0.1 coefficient on the sides parallel to the direction of compression (Figure 5). Gaps of
0.5 mm between a modeled sample and a rigid profile were created on the edges with
the frictional contact to reflect small clearances that were present in laboratory tests. The
boundary conditions and loads were prescribed on the rigid profiles’ reference points
(Figure 6). The profiles’ geometries were adjusted to match the experimental support
conditions: flanges were used for L1 and L2 specimens (Figure 6a), no flanges were created
for the L3 column (Figure 6b), and simplified shapes were generated for full-scale panels
(Figure 6c).

Figure 6. Boundary conditions used in simulations of (a) L1, L2, (b) L3, (c) e0, e1, e2 tests.

The computations were realized as geometrically nonlinear static analysis. Samples
were loaded using displacement control in all simulations (Figure 6). In case of full-scale
tests dead load was considered additionally, due to horizontal orientation of the specimens
(Figure 6c), with mass densities of 1130 kg/m3 for MgO board and 21 kg/m3 for EPS [24,25].
Both core and facing constituents were defined with isotropic elastic–plastic material
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models. An extended Drucker–Prager model with hyperbolic yield criterion, available
in the ABAQUS software [29], was applied for both constituents. MgO board property
values were characterized by a substantial scatter [24,25] so instead of using averaged
values two descriptions representing experimental result boundaries were defined as MgO
min and MgO max. A damage initiation criterion defined in ABAQUS [29] in terms of
equivalent plastic fracture strain, εpl,eq, and stress triaxiality factor, η, was used for failure
mode prediction. Parameter values defining the material model are presented in Table 2.

Table 2. Material parameter values used in FEA [27].

Material
Model

SSV
E

MPa
υ

σpl

MPa
Epl

MPa
β ψ

pt0

MPa
εpl,eq η

MgO
min

−1 2430 0.18 5.0 1205 25 10 8 1.6 × 10−3 −3.2 × 10−1

1 6325 0.18 4.8 1940 25 10 8 1.4 × 10−3 3.3 × 10−1

MgO
max

−1 3885 0.18 18.2 1130 25 10 8 3.0 × 10−4 −3.2 × 10−1

1 8845 0.18 6.1 1495 25 10 8 1.3 × 10−3 3.3 × 10−1

EPS15
−1 5.0 0.09 0.075 0.14 1 1 0.7 1.0 −1.0
0 6.1 0.09 0.075 3.45 1 1 0.7 8.3 × 10−3 −1.5 × 10−2

1 7.2 0.09 0.135 4.08 1 1 0.7 8.0 × 10−3 3.3 × 10−1

EPS21
−1 6.8 0.12 0.090 0.18 2 2 0.5 1.0 −1.0
0 9.2 0.12 0.090 5.21 2 2 0.5 1.4 × 10−2 −1.5 × 10−2

1 10.5 0.12 0.160 5.94 2 2 0.5 7.1 × 10−3 3.3 × 10−1

Note: E = modulus of elasticity; υ = Poisson’s ratio; σpl = yield stress; Epl = modulus of hardening; β = angle of friction; ψ = dilation angle;
pt0 = initial hydrostatic tension strength; εpl,eq = equivalent plastic fracture strain; η = stress triaxiality factor.

Computations were terminated when the damage initiation criterion variable (DICV)
reached unity. All experimental samples lost their load-bearing capacity after initial failure,
so reaching the criterion fulfillment was sufficient to identify the failure mode, and damage
evolution analysis was not performed. A stabilization algorithm with numerical damping
factor of 1 × 10−9 was used to prevent convergence issues occurring directly before failure.

An author’s procedure was supplemented during computations to account for the
material bimodularity effect. The procedure allowed to prescribe material property values
in all integration points, depending on their stress states at the beginning of each increment
in an automated manner. The algorithm generates a stress state variable (SSV) based on a
following set of conditions:

SSV =





−1
|σmax/σmin| − 1
0
σmin/σmax + 1
1

when σmax ≤ 0
when |σmin| > |σmax|
when |σmin| = |σmax|
when |σmin| < |σmax|
when σmin ≥ 0

, (2)

where σmin = min(σ1, σ2, σ3), σmax = max(σ1, σ2, σ3), and σ1, σ2, σ3 are the principal stress
values. SSV generated from (2) describes stress state in any given integration point and can
be used with most material models as a field variable, enabling definition of multiple values
for a selected parameter. Characteristic states for which parameter values were defined
in this finite element analysis (FEA) were SSV = −1 (compression), SSV = 0 (shear), and
SSV = 1 (tension). In cases where SSV values fell between the defined characteristic states,
parameter values were automatically obtained through linear interpolation. A summary
of characteristic SSV values and corresponding material parameter values used in the
analysis is shown in Table 2. The majority of presented data were established in course
of an experimental investigation, supplemented by a literature study and a parameter
identification analysis as an extensive part of previous research [25–27].
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3. Results

Experimental data obtained from small- and full-scale compression tests are presented
and compared with computational results obtained from the proposed FE model. Four
types of results are discussed: (1) SSV distribution maps at failure initiation (only in FEA),
(2) failure modes, (3) force–displacement curves and (only in full-scale) force–strain curves,
(4) failure stress values.

3.1. Small-Scale Sample Tests

SSV distribution maps are presented in Figure 7. Only the MgO min variant is shown
as MgO max outcomes are very similar. Both shorter samples, L1 and L2, were identified as
wholly under compression (Figure 7a,b), whereas the highest column, L3, was recognized
as under compression before buckling and shifted into a flexural deformation when the
buckling occurred (Figure 7c). After the critical load was reached and further vertical
displacement was applied, one facing remained nearly entirely under compression, and in
the other substantial areas under tension appeared in the center and near the supports. All
of the SSV maps depict physically reasonable behavior and exemplify that the author’s
procedure works as intended.

Figure 7. SSV distribution in compression simulations of (a) L1, (b) L2, and (c) L3 samples.
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Failure modes are presented as experimental observations and DICV distributions
in Figures 8–10. In both shorter samples, L1 and L2, the failure initiated on the edges of
the facings, in the contact zone with the support profiles, and in both cases, the computa-
tional predictions agree with laboratory test observations (Figures 8 and 9). No flexural
deformation occurred in the L1 sample throughout the experiment, neither in laboratory
specimens nor in their numerical representation. A post-failure deflection occurred in
the L2 sample laboratory test (Figure 9c), but since the FEA’s focus was on the failure
initiation, this behavior was not investigated further in simulations (Figure 9a,b). The
use of the MgO min and MgO max variants did not affect the location of failure initia-
tion points, however, for MgO min, both facings were recognized as under significant
strain with DICV values close to 1 across the whole area (Figures 8a and 9a), whereas for
MgO max, the peak DICV values appeared only in concentrated areas near the supports
(Figures 8b and 9b). A global buckling occurred in the highest column, L3, and failure initi-
ated in its central section (Figure 10). It can be seen that the numerical sample deformed
symmetrically (Figure 10a,b), whereas the physical specimen cracked around one-third of
its height (Figure 10c). The imperfection of support conditions and sample positioning in
the laboratory test was the most probable cause of this difference.

Figure 8. Comparison of failure modes in the L1 sample compression test obtained from FEA (a) MgO
min, (b) MgO max variants, and (c) experimental observation.

Figure 9. Comparison of failure modes in the L2 sample compression test obtained from FEA (a) MgO
min, (b) MgO max variants, and (c) experimental observation.
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Figure 10. Comparison of failure modes in the L3 sample compression test obtained from FEA
(a) MgO min, (b) MgO max variants, and (c) experimental observation.

Force–displacement, Fx(ux), experimental curves for individual samples, averaged
when more than one reading was available, are compared with FE model outcomes for
MgO min and MgO max variants in Figure 11. Every computational curve was matched
against a corresponding experimental curve by resampling the analyzed datasets in their
shared domain and calculating a coefficient of determination, r2, used here as a measure of
curve similarity [30]. The closer the r2 value is to unity, the stronger the resemblance of the
computational curve to the experimental one.

Examination of the L1 sample results shows that the material model variant outcomes
encompass the experimental series quite well. The values of r2, obtained in relation to the
averaged curve, range from 0.4 to 0.7 and similarity with individual laboratory specimens
is even more pronounced (Figure 11a). The L2 sample FEA plot for the MgO max variant
is in very good agreement with the averaged experimental data (r2 nearing unity) and a
nearly exact match with one of the individual specimen results (Figure 11b). In the MgO
min case, the plot shape diverges from experimental curves, but the predicted failure load
is in a satisfactory agreement with the minimal laboratory reading.
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Figure 11. Comparison of small-scale sample compression Fx(ux) curves obtained from FEA against experimental data for
(a) L1, (b) L2, (c) L3.

For the L3 column, the MgO max curve shape is very similar to the experimental
plot, while the MgO min prediction is visibly underestimated (Figure 11c). It is worth
to note a qualitative difference between plotlines recorded in global buckling, and the
ones corresponding to failure by facing edges cracking. In the first case there is a smooth
transition from the peak and into the post-critical slope (Figure 11c), while in the latter
irregular drops are visible (Figure 11a,b). An equivalent buckling load was additionally
estimated using a formula for sandwich columns with core shear effect, derived in [14] and
adjusted to assume facing material isotropy:

Fx
eq =

FE

1 + FE
AsGc

=
π2

Le
2

E f Jy(
1 + π2

Le
2

E f Jy

AsGc

) , (3)

where: FE—critical buckling load; As = a(h + tc)/2—shear area of the column; Gc—core
shear modulus; Le—effective length; Ef—modulus of elasticity of facings; Jy = a(h3 −
tc

3)/12—moment of inertia of facings about the centroid of the panel. The L3 sample
buckling load obtained for parameters listed in Table 2, ranges from 8.8 to 9.1 kN which
fits within the numerical prediction (Figure 11c). Computational and analytical results
are both significantly lower than the laboratory test reading. Again, this can be explained
by the influence of boundary conditions. In both FEA and analytical estimation (3), a
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free rotation was assumed on both ends, whereas laboratory sample supports had some
rotational stiffness.

The result summary is shown in Table 3, with experimental failure stress obtained
from (4) assuming e = 0.

σx, f =
Fx

2at f
+

Fxe
a

12 (h
3 − tc

3)

h

2
, (4)

Table 3. Summary of small-scale FEA result similarity to experimental data.

Sample

Experimental FEA Comparison Failure
Mode
Pred.

Fx
u

kN
σx,f

u

MPa
Fac. Mat.
Variant

Fx
u

kN
σx,f

u

MPa
δFx

u

%
δσx,f

u

%
r2

L1
−27.08 −14.13 MgO min −18.93 −9.04 30.1 36.0 0.741 Correct

MgO max −40.51 −19.02 49.6 34.6 0.416 Correct

L2
−21.36 −13.71 MgO min −18.91 −9.05 11.5 34.0 0.559 Correct

MgO max −40.49 −19.03 89.5 38.8 0.981 Correct

L3
−12.91 a −5.95 a MgO min −7.48 a −3.47 a 42.3 41.7 0.452 Correct

MgO max −9.83 a −4.98 a 24.1 16.3 0.808 Correct
a Buckling failure.

3.2. Full-Scale CSIP Tests

Dead load influence was additionally considered in the full-scale FEA since the
compressed panels were oriented horizontally. Due to CSIPs’ low weight, the obtained
mid-span vertical deflection was less than 0.9 mm; however, it did play a notable role in the
case of concentric compression test simulation. A comparison of numerical results obtained
with and without dead load consideration in relation to experimental data is shown in
Figure 12. It can be seen that while its influence on horizontal deflection was insignificant
(Figure 12a), it caused a qualitative change in the nature of vertical deflection response
(Figure 12b).

Figure 12. Dead load influence on e0 panel FEA results: (a) Fx(ux), (b) Fx(uz) at L/2.

The SSV distribution maps at failure initiation are presented in Figure 13. The fac-
ings of the e0 sample (e = 0) were identified as being entirely under compression, while
substantial portions of the core edged towards shear (Figure 13a). The slight downward
deflection of the panel is caused by the consideration of the dead load. The deflection of
two remaining CSIPs is directed upwards, due the compressive load placement. There is a
noticeable flexural deformation in the e1 sample (e = 27 mm). Both facings remain in the
state of compression, but large portions of the core are recognized as approaching shear
(Figure 13b). In the e2 sample (e = 54 mm), the flexural deformation is more pronounced
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(Figure 13c). The whole bottom facing is identified as being under compression; however,
tension dominates in the central part of the top facing. Portions of the core that are not
under uniaxial compression continue to grow and translate into small areas staying under
pure shear. The shear stress state progression in the core coincides with changes in each
specimen’s vertical deflection direction and intensity. It appears to be a consequence of
flexural action becoming more pronounced as the eccentricity value increases. The pre-
sented results indicate a physically reasonable pattern of dependency between eccentricity
value and stress state distribution in the core and facings.

Figure 13. SSV distribution in natural-scale panel compression simulations for (a) e0, (b) e1, (c) e2.

A comparison between failure modes predicted in FEA and those observed in ex-
perimental tests is presented in Figures 14–16. It can be seen that the DICV values in the
MgO min variants are distributed more evenly across the facing subjected to stronger
compression (Figures 14a, 15a and 16a), while the MgO max variants result in maps with
distinct peak values concentrated on facing edges, in the contact zone with loading profiles
(Figures 14b, 15b and 16b). In all cases, the DICV distribution maps indicate failure initi-
ation on the edge of the facing subjected to higher intensity compressive stress for both
facing material variants, which results in failure of the top facing in the e = 0 case, and
failure of the bottom facing in two remaining cases. All predicted failure locations are in
agreement with experimental observations (Figures 14c, 15c and 16c).

Data plots obtained from both experimental and numerical analyses were arranged
into three categories: (1) force–displacement, Fx(ux), (2) force–deflection, Fx(uz), and
(3) force–strain, Fx(εx,f). Experimental displacements were measured with LVDTs, and
experimental strains were obtained as SG readings. Computational curves were compared
with corresponding experimental curves (averaged, if available, individual, if not) by
calculating the coefficient of determination, r2, for each pair of the resampled datasets [30].
The experimental test of uniaxial compression (e = 0) resulted in a failure load value
Fx

u = 127 kN, which is unexpectedly low, as the corresponding results of both eccentric
load tests were higher. However, the comparison with numerical outcomes showed that
this result is actually within the FE model’s prediction range (Figure 17a,b). Numerical
force–strain curves are very close to the experimental response as well (Figure 17c,d). It is
worth to note an appearance of a small loop, clearly visible in all experimental force–strain
curves around Fx = 100 kN. A possible cause for this might be a material defect in one
of the facings leading to localized damage, resulting in a premature drop of the ultimate
load, and irregularities in Fx(εx,f) curves. This occurrence is in line with the results of
previous research, which showed that compressive strength of the analyzed MgO board
varies significantly from sample to sample [25,26].
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Figure 14. Comparison of failure modes in natural-scale e0 panel compression test; FEA results:
(a) MgO min, (b) MgO max; (c) experimental observation.

Figure 15. Comparison of failure modes in natural-scale e1 panel compression test; FEA results:
(a) MgO min, (b) MgO max; (c) experimental observation.
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Figure 16. Comparison of failure modes in natural-scale e2 panel compression test; FEA results:
(a) MgO min, (b) MgO max; (c) experimental observation.

Figure 17. Comparison of natural-scale e0 panel compression test curves obtained from FEA against experimental data:
(a) Fx(ux), (b) Fx(uz), (c) Fx(εx,f) at L/2, (d) Fx(εx,f) at L/4.
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The results of both eccentric load tests exhibit a similar level of agreement between
numerical and experimental curves. The numerical force–displacement curves place
themselves concentrically around the experimental data (Figures 18a and 19a) and force–
deflection curves in mid- and quarter-span are close to laboratory measurements for the
MgO max outcomes (Figures 18b and 19b). It can be seen that the FE model is able
to reproduce the flexural deformation quite well, with deflection in L/2 being slightly
more accurate than in L/4. The distinction between L/2 and L/4 deflections is quite
apparent, unlike the uniaxial load case, in which the difference is barely visible (Figure 17b).
Force–strain curves obtained from the MgO max variant are in very good agreement with
experimental measurements in the e1 test (Figure 18c,d) and for the bottom facing in
the e2 test (Figure 19c). The laboratory measurements at the top facing in the e2 test
indicate strain being negative in the initial loading stage, and transitioning into tension for
the remainder of the test. Both numerical curves remained mostly in the negative strain
range and transformed into tension only near the end of the simulation. This qualitative
difference led to very low r2 values, however, shapes of numerical curves still resemble
experimental ones quite well.

Figure 18. Comparison of natural-scale e1 panel compression test curves obtained from FEA against experimental data:
(a) Fx(ux), (b) Fx(uz), (c) Fx(εx,f) at L/2, (d) Fx(εx,f) at L/4.
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Figure 19. Comparison of natural-scale e2 panel compression test curves obtained from FEA against experimental data:
(a) Fx(ux), (b) Fx(uz), (c) Fx(εx,f) at L/2.

A summary of FEA and experimental results is presented in Table 4. The experimental
failure stress values were obtained from (4). The best overall numerical result accuracy was
obtained for MgO min in the e0 panel and MgO max for e1 and e2 specimens.

Table 4. Summary of full-scale test results.

Sample

Experimental FEA Comparison r2 (-)
Failure
Mode
Pred.

Fx
u

kN

σx,f
u

MPa

Fac. Mat.
Variant

Fx
u

kN

σx,f
u

MPa

δFx
u

%

δσx,f
u

%
Fx(ux)

Fx(uz)
L/2

Fx(uz)
L/4

Fx(εx, f)

L/2 top

F(εx, f)

L/2 bot

Fx(εx, f)

L/4 top

Fx(εx, f)

L/4 bot

e0
−133.3 −5.77 MgO min −133.0 −9.59 0.3 66.2 0.951 0.721 0.628 0.485 0.413 0.546 0.423 Correct

MgO max −288.0 −20.66 116.0 258.1 0.414 0.078 0.054 0.932 0.805 0.981 0.822 Correct

e1
−199.8 −12.35 MgO min −109.1 −9.12 45.4 26.2 0.604 0.303 0.344 0.915 0.383 0.807 0.407 Correct

MgO max −211.2 −19.58 5.7 58.5 0.860 0.981 0.941 0.686 0.910 0.909 0.926 Correct

e2
−161.9 −10.10 MgO min −86.3 −9.12 46.7 9.7 0.691 0.376 0.379 −0.219 0.446 - - Correct

MgO max −165.3 −19.59 2.1 94.0 0.698 0.954 0.881 0.086 0.985 - - Correct

4. Discussion

Experimental tests on samples of varying slenderness and load eccentricity values
allowed to obtain a varied response for a comprehensive FE model validation. The low
slenderness L1 (λ = 8.7) and L2 (λ = 20.4) samples failed by facing crushing without
visible transverse deflection occurring before failure initiation. A significant increase of
slenderness (λ = 60.4) in the L3 column caused a global buckling response accompanied by
a pronounced flexural deformation leading to facing tensile failure. The full-scale panels’
slenderness (λ = 37.3) was slightly higher than L2 samples’ and no form of local or global
buckling was observed. In the concentrically loaded e0 panel only a slight deflection caused
by the gravitational force was noted; however, the introduction of load eccentricities in
e1 (e = 27 mm) and e2 (e = 54 mm) panels resulted in pronounced transverse deflections.
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In the case of the e2 test, positive strain readings were recorded in the middle of the top
facing; however, the bottom facing was subjected to intensified compression and the failure
initiated on its edge.

The FE model was able to reproduce all of the effects listed above and allowed to
reach a better understanding of processes taking place in CSIPs subjected to edgewise
compression. The SSV maps, produced as results of the stress state identification, depicted
changes taking place in all simulated samples in a physically sound way.

In the low-slenderness concentrically loaded numerical samples (L1, L2, e0) the SSV
maps were dominated by values equal or close to −1 throughout the whole analysis. A
slight deflection in the e0 specimen was interpreted by the algorithm as a minor shift
towards shear in the core, whilst, the reminder of the deformable area was considered as
under compression. Material parameter values used in these simulations were heavily
centered around SSV = −1 dataset. Introduction of load eccentricity in e1 and e2 cases
produced visible changes in SSV maps, signaling an increased variation of material pa-
rameter selection and reflecting the intensification of flexural action. The appearance of a
region under tension in the upper facing of the e2 panel test simulation was captured on
the SSV map as well. All of these simulations resulted in failure located on the facing edges,
in complete agreement with laboratory test observations. Failure criteria used in FEA
produced very similar ultimate stress values for all facing crushing cases, both small- and
full-scale. This shows that compressive failure data obtained from small-scale laboratory
tests can be used in a numerical analysis of full-scale CSIPs.

The simulation of the high-slenderness L3 column is the best showcase of the proposed
model’s capabilities. At the initial stage, the SSV maps recognized the whole specimen as
being under compression. When the reaction force reached a critical value both facings
remained under compression, but a slight transverse deflection formed, accompanied by
an SSV distribution shift towards shear in the core. The critical load values obtained from
the model were in very good agreement both with experimental and analytical results.
Further vertical displacement intensified the flexural deformation in the post-buckling
range and caused a qualitative change in the SSV distribution: one facing remained under
compression, substantial areas under tension appeared in the other facing, and most of the
core was recognized as under shear. Throughout the whole analysis, material properties in
different areas of the sample were assigned based on three different datasets corresponding
to SSV = −1, SSV = 0, and SSV = 1. In the post-buckling range, the load-bearing capacity
kept decreasing as the transverse deflection increased. At the final stage, failure initiation
condition for the MgO board in tension was fulfilled first, resulting in a failure mode
consistent with the experimental one.

The results showed that the quality of MgO board is a vital factor for computational
accuracy, as it has a direct impact on how the facing material model is defined. The use of
MgO min and MgO max descriptions was dictated by a substantial scatter in experimental
results and it produced numerical results in form of ranges. It allowed to illustrate that
even though the concentrically compressed e0 panel failed at lower load than both e1
and e2 specimens, it was actually within expectations based on small-scale MgO board
strength study.

No local buckling or pre-failure delamination were observed in any of the experimental
tests. Moreover, such behavior seems unlikely in the CSIP’s case, due to the brittle nature
of the MgO board damage. Delamination was observed only after facing cracking occurred,
and the sample lost its load-bearing capacity. This effect was not in the scope of the present
study; however, perfect bonding between layers can be substituted with cohesive contact
to track delamination progression if needed.

The presented results showed that the proposed model was able to identify all failure
types correctly and capture effects characteristic to compression of various CSIP specimens.
Consideration of material bimodularity with the use of author’s procedure allowed for
accurate modeling of flexural action in case of high-slenderness and eccentrically loaded
specimens. It is worth noting that even though the number of samples in each laboratory
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test was quite limited, the covered spectrum of geometries and loading conditions was
wide enough to observe varied responses that were successfully reproduced in numerical
simulations. Moreover, the proposed numerical approach was used with the same set of
material parameter values to successfully reproduce CSIP failure under flexure [27], which
further improves its reliability.

5. Conclusions

Numerical simulations of compression tests on CSIP specimens of varied slenderness,
subjected to loads with different eccentricity values, were performed and compared with
experimental data. The following conclusions can be drawn, based on the obtained results.

• The proposed stress state dependent numerical approach enables an automatic differ-
entiation of elastic, plastic, and failure properties in the entire specimen throughout
the whole analysis. This functionality allows accounting for flexural action caused
by load eccentricity and global buckling. The presented SSV maps show that the pro-
cedure identifies stress state distribution changes in all CSIP samples in a physically
sound manner.

• The numerical model identified all failure modes correctly. It was able to capture the
e0 panel’s premature failure and global buckling of the L3 column. A high level of
curve similarity for both force–displacement and force–strain curves was obtained as
well. A few slight differences were noted that can be attributed to the idealization of
boundary conditions in FEA.

• The model allows for efficient macroscale calculations and to avoid detailed mesoscale
modeling. The author’s procedure enhances the capabilities of a homogenized ap-
proach in a straightforward manner.

• The availability of comprehensive material property information for different stress
states is preferred; however, this approach allows for a simple introduction of addi-
tional data once it is obtained from experimental tests.

Based on the successful validation performed in this study, the FE model can be
considered feasible for CSIP compression simulations. As the previous research [27] has
proven it is suitable for flexural analysis, meaning that it can be applied to different loading
conditions. Therefore, the proposed approach can be considered a reliable and robust aid
for CSIP design. Moreover, the procedure can be supplemented to 3D problems where
the core is discretized with continuum solid elements and the facings with structural shell
elements. Further research in this direction is planned to test the approach with different
kinds of CSIPs, SIPs, and other sandwich panels.
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3. Chróścielewski, J.; Miśkiewicz, M.; Pyrzowski, Ł.; Rucka, M.; Sobczyk, B.; Wilde, K. Modal Properties Identification of a Novel
Sandwich Footbridge—Comparison of Measured Dynamic Response and FEA. Compos. Part B Eng. 2018, 151, 245–255. [CrossRef]

4. Sharafi, P.; Nemati, S.; Samali, B.; Ghodrat, M. Development of an Innovative Modular Foam-Filled Panelized System for Rapidly
Assembled Postdisaster Housing. Buildings 2018, 8, 97. [CrossRef]
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21. Studziński, R.; Pozorski, Z. Experimental and Numerical Analysis of Sandwich Panels with Hybrid Core. J. Sandw. Struct. Mater.

2018, 20, 271–286. [CrossRef]
22. Vervloet, J.; Tysmans, T.; El Kadi, M.; De Munck, M.; Kapsalis, P.; Van Itterbeeck, P.; Wastiels, J.; Van Hemelrijck, D. Validation of a

Numerical Bending Model for Sandwich Beams with Textile-Reinforced Cement Faces by Means of Digital Image Correlation.
Appl. Sci. 2019, 9, 1253. [CrossRef]

23. Jacques, E.; Makar, J. Behaviour of Structural Insulated Panels (SIPs) Subjected to Short-Term out-of-Plane Transverse Loads. Can.

J. Civ. Eng. 2019, 46, 858–869. [CrossRef]
24. Smakosz, Ł.; Tejchman, J. Evaluation of Strength, Deformability and Failure Mode of Composite Structural Insulated Panels.

Mater. Des. 2014, 54, 1068–1082. [CrossRef]
25. Smakosz, Ł. Experimental and Numerical Analysis of Sandwich Panels with Magnesium-Oxide Board Facings and an Expanded
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Abstract: This article focuses on the derivation of simplified predictive models for the identification
of the overall compressive stiffness and strength of corrugated cardboards. As a representative
example an unsymmetrical 5-ply sample (with E and B flute) was used in this study. In order to
exclude unreliable displacement measurement in the standard edge crush test, virtual strain gauges
were used. Video extensometry was employed to collect measurements from the outer surfaces of
the sample on both sides. Additional data allowed real force-displacement curves to be obtained,
which were used in the validation procedure. To emulate the experimental results, besides a simple
analytical model, a 3D numerical model fully reflecting the geometry of the corrugated board, based
on the finite elements method was also built. In both cases good agreement between the experimental
results and the analytical and numerical calculations was observed. This proved that the proposed
analytical model can be successfully used to determine the overall stiffness and compressive strength
of corrugated board, provided that the geometry and properties of all the layers of the board are
known. The simple model presented in this work enables quick and reliable design and prototyping
of new assemblies without the need to manufacture them.

Keywords: corrugated cardboard; edge crush test; orthotropic elasticity; digital image correlation

1. Introduction

Prediction of material strength is an important issue for designing and manufacturing
of products made from corrugated paperboard. In the literature, authors have applied
many different approaches for strength investigations of corrugated sandwich structures,
including paperboard, i.e., analytical [1,2], numerical [3–7], or analytical-numerical [8–10]
methods. Recently, Kmita-Fudalej et al. presented an analytical prediction of the strength
of honeycomb paperboard based on the mechanical properties of the paper used and the
geometrical features of the investigated structure [11]. Park et al. performed numerical
simulation using the finite element method (FEM) in order to estimate the strength in the
edge crush test (ECT) [12]. Recently, artificial intelligence methods have become popular,
e.g., artificial neural networks, for prediction of strength of composite materials, including
sandwich structures [13]. An alternative to the numerical prediction of the strength of
corrugated board is its experimental measurement.

To perform numerical simulations, detailed knowledge of the material properties
of the constituents is required. This is however a challenging task, due to the inherent
anisotropy of paper-based materials. As a result, physical testing of corrugated paperboard
is much more popular within the industry.

A number of typical tests to characterize mechanical properties of corrugated pa-
perboard have been developed to standardize the process. The compressive strength is
investigated by performing the ECT, in which the loading is applied perpendicularly to the
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axis of the flutes. In the bending test (BNT), four-point bending test is performed, in which
there are two supports at the bottom of the paperboard and two equal forces acting on the
sample from the opposite side. The shear stiffness test (SST) is carried out by applying a
pair of forces on the opposite corners (two others are supported), causing the cross-section
of the paperboard to be twisted. The torsional stiffness test (TST) is conducted by twisting a
sample in both directions. Other tests of the paperboard are namely bursting and humidity
tests. In order to investigate the strength of the whole container made from the corrugated
paperboard, the box compressive test (BCT) is carried out [14].

Analytical and numerical predictive models of the strength obtained in the ECT are
considered in this paper. The ECT is standardized; there are four different methods of the
ECT described in the standards. One of the main features that distinguish these tests is
the shape of the specimens. These methods are as follows: edge-clamping method [15],
neck-down method [16], rectangular test specimen method [16–18], and edge-reinforced
method [19,20]. Here, the rectangular test specimen method with a specimen with dimen-
sions of 100 mm × 25 mm was used. More details about these standards of the ECT can be
found in [21].

As a verification method for the results obtained from analytical and numerical ap-
proaches, presented in this study, a video extensometry technique was used, where pairs
of points are tracked across images taken at various levels of loading and their relative
distance is measured. This is a similar, but simpler approach to digital image correlation
(DIC), which is an advanced full-field non-contact optical method of measurement that
is recently becoming popular in the area of experimental mechanics, due to its very high
accuracy. However, application of those techniques for investigation of the paperboard
strength is rather limited in the literature. Hägglund et al. investigated thickness changes
during the ECT in the corrugated paperboard using the DIC [22]. The authors examined
both damage and undamaged panels. In the series of papers [23–25], Viguié and col-
laborators employed the DIC technique in order to study the strain and stress fields of
paperboard panels during the box compression test. Borgqvist et al. proposed a distortional
hardening plasticity model for paperboard [26]. The authors introduced a yield surface
described by multiple hardening variables and showed that they can be obtained from
simple uniaxial experiments. The results obtained from the model were compared with
the results obtained from experiments using DIC. Cocchetti et al. investigated identifi-
cation of material parameters of anisotropic elastic-plastic material models in the case
of foils [27,28]. The authors considered paperboards and laminates for liquid containers.
They performed combined compression and bending tests using DIC. On the other hand,
numerical simulations using the FEM were used in a direct analysis. The parameters of
the model were obtained from an inverse analysis, employing results of the experiment
and simulations. Considine used DIC and the virtual fields method (VFM) technique to
identify general anisotropy parameters of a filter paper and a paperboard [29]. Åslund and
collaborators investigated the failure mechanism of the corrugated sandwich panels during
the ECT using the detailed finite element method and compared it with the measurements
obtained using DIC [30]. Zappa et al. investigated inflation of the paperboard composites
using in beverage packaging using the DIC technique [31]. Recently, Fadiji et al. employed
DIC to analyze a paperboard box with ventilation holes under compression loading [32].
In most of the investigations mentioned above, samples of 3-ply corrugated cardboards
were examined. In this study, an optical method was employed to verify the analytical
and numerical results in the ECT analysis of double-wall corrugated cardboard, i.e., 5-ply
corrugated cardboard samples with E and B flutes.

Here, analytical and numerical models are proposed to identify paperboard stiffness
and to predict the compressive strength of the corrugated paperboard. Optical exten-
sometry is employed to validate the obtained results. Both the analytical and numerical
approaches achieved accurate results.
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2. Materials and Methods

2.1. Corugated Cardboard

In the research, 5-layer corrugated cardboard named 5EB650C3, produced in Aquila
Września—the Polish branch of the VPK Group—was used. This grade consists of an
external coated layer of a white recycled base liner board with a grammage of 140 g/m2.
Both corrugated layers (E and B flutes) and the flat layer in between are made from
lightweight recycled fluting WB with a grammage of 100 g/m2. As an internal layer again
the white test liner with a grammage of 120 g/m2 was used. The arrangement of individual
layers and the geometry of the cardboard cross-section are shown in Figure 1.

ś

 

1 1 cos 2 ,
1.239 1.302

Figure 1. The cross section of 5EB650C3 corrugated board.

The geometrical features of both corrugated layers (flutes) are presented in Table 1.
Take-up ratio is defined as the ratio of the length of the non-fluted corrugated medium to
the length of the fluted web. For the correct numerical modeling of corrugated layers, a
sine-shaped corrugated layer is usually considered. This however is an approximation to
the real shape of the flute produced. The theoretical take-up factors can be computed from
the formula:
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O

√
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(

π
H

P
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2πx

P

))2
dx, (1)

where H is the height, P denotes the pitch. Thus, for the E-flute one can obtain α = 1.239,
and for the B-flute, α = 1.302, which are very close to the actual values given in Table 1.
The above formula results from a sine-like shape assumption and is equal to the length of
the fluting divided by the flute pitch (wave period).

Table 1. The geometrical features of both corrugated layers of 5EB650C3.

Wave (Flute) Pitch [mm] Height [mm] Take-Up Ratio [–]

E 3.50 1.18 1.242
B 6.48 2.5 1.315

Since corrugated cardboard consists of several layers of paperboard, made of cellulose
fibers, its mechanical properties depend on the fiber orientation of its components. In
paperboard, two main, mutually perpendicular directions can be determined. First, along
the fiber orientation, which is called Machine Direction (MD). Material is both stiffer and
stronger in this direction. The second is perpendicular to the MD and is called Cross
Direction (CD). The paper-forming fibers make the corrugated board also an orthotropic
material, in which the MD is along the waves (see Figure 2). The corrugated layers
thus compensate through take-up factor for the weaker mechanical performance of the
cardboard in the CD.
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10% 4.30.2	mm
Figure 2. The material orientation in corrugated board.

Specified by the producer, the compressive strength, ECT of the combined corrugated
board (5EB650C3) in CD is 7.6 kN/m (±10%), while its overall thickness H is 4.3 mm
(±0.2 mm).

The material properties of the individual layers are presented in Table 2. The SCTCD

value represents a compressive strength in CD from the short-span compression test
according to DIN EN ISO 3037 [18].

Table 2. The mechanical properties of individual layers of 5EB650C3.

Layer
Name

Thickness
[µm]

EMD

[kN/m]
ECD

[kN/m]
SCTCD

[kN/m]

TLWC 140 180 725 323 2.32
W 100 160 886 328 1.76

TLW 120 170 907 313 1.81

2.2. Measurements

A typical test to determine the compressive strength of corrugated board is the ECT
(according to the FEFCO standard DIN EN ISO 3037 [17,18]), in which a specimen that
is 100 mm long and 25 mm high (see Figure 3) is loaded along its height between two
rigid plates (see Figure 4a). The samples should be cut on a special cutter with the use of
one-sided ground blades to maintain the parallelism of the cut edges. According to the
standard, the air condition should be controlled, and the test should be carried out at 23 ◦C
and 50% relative humidity. All the ECT tests were performed in a controlled environment
as standard on an FEMat ECT/FCT laboratory apparatus (FEMat Sp. z o. o., Poznan,
Poland) [33], see Figure 4b.

10% 4.30.2	mm

 

Figure 3. The sample for the edge crush test.

The ECT is used explicitly to determine the compressive strength of the corrugated
board in CD. Although most testing machines allow the recording of curves from the entire
test, it is not possible to use these curves for a reliable determination of e.g., compression
stiffness. The measured displacements do not represent the elastic deformation of the spec-
imen as they are significantly affected by the clearance and susceptibility on the crosshead,
local pressure on sample unevenness (edge effects), etc. Therefore, non-contact optical
techniques are required to reliably measure displacements (deformations or strains). Addi-
tionally a measure without direct contact does not influence the measure. In measurements
with contact (e.g., traditional extensometers), noise is introduced into the measurement
and thus the actual measured values are distorted.
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(a) (b) 

Figure 4. Edge crush test: (a) Universal Testing Machine (Instron 5569); (b) FEMAT lab. device.

2.3. Optical Measurements of Sample Deformation

In this study, the specimen was also tested using optical extensometry. Two cameras
were used to track the deformation of both faces to account for the out-of-plane bending
produced by the non-symmetrical section. The front face is the higher flute, while the
back face is the lower flute of the paperboard, see Figure 5a. Each of the two faces of
the specimen was marked with three sets of dots in order to enable point tracking. In
Figure 5b, one can observe the sets of points on one of these faces. The single set of points,
marked in this figure by squares connected by a dotted line, is a virtual extensometer, for
which the extension is observed during the test. The video extensometry was performed
using MatchID DIC platform (v. 2020.2.0, MatchID, Ghent, Belgium). The specimen was
sandwiched between two platens and aligned using 3D printed L-brackets.

  
(a) (b) 

Figure 5. Specimen: (a) back and front face of the specimen; (b) virtual extensometers on the front
face of the specimen.

Two 5 MPix cameras (Manta G504-b, Allied Vision, Allied Vision, Stadtroda, Germany)
were used to record grey scale images during the test, see Figure 6. Cameras were calibrated
using MatchID calibration plate (MatchID, Ghent, Belgium) to obtain the pixel to mm
conversion rate of ~50 µm/pix. The specimen was manually pre-loaded to a very small
load (15 N) to make sure both plates were in contact. After that the measured load cell
and displacement were zeroed and the supporting L-brackets removed. Once the cameras
started recording, the sample was loaded using displacement control at 0.5 mm/min. The
load and the crosshead displacement were synchronized with the cameras. The virtual
extensometers were used to measure displacement between the marked points. They
were placed roughly 2 mm away from the loading edge in order to avoid measuring
additional phenomena occurring in the surrounds of the loading edge. The accuracy of
the measurement was estimated using a set of 25 static images (without any movement);
standard deviation of the measured elongation was e4valuated to be 4 µm, which can be
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considered the level of uncertainty. Optical displacements were averaged for each face and
compared against the crosshead displacement.

  
(a) (b) 

12 ,	

,

Figure 6. Setup of the optical measurements: (a) camera recording the front face; (b) camera recording
the back face.

2.4. Predictive Models

Two different models were used to estimate the compressive strength of the corrugated
board in the CD: (a) a simplified analytical model and (b) a fully detailed 3D numerical
model. The former model is based on an iterative procedure, while the latter model is
based on the FEM.

The simplified estimation procedure proposed here consists of a simple analytical
model and uses the basic constitutive parameters of the individual i-th layer, namely:
SCTi

CD, compressive strength in CD and E
i
CD, stiffness index in CD. As in some cases single

layer instability may occur before plasticity activation, the critical load should be calculated
from the formula [8–10]:

Pi
cr =

π2

b2
i

t2
i

12

√
Ei

CDEi
MD

(
mbi

L
+

L

mbi

)2
, (2)

where, bi is the width of the separated plate and is related to a pitch or a half-wave length
of the flute (see Figure 7); ti is the i-th board thickness; Ei

CD is the stiffness index in CD;
Ei

MD is the stiffness index in MD; L is the sample height (always equal 25 mm); m is the
number of half-waves for which Pi

cr reaches the minimum.

12 ,	

,
Figure 7. Width of the i-th layer.
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The deformation corresponding to the maximum load can be calculated from Hooke’s
law considering the stiffness in the CD direction, sample height, L, and the compressive
strength or critical load, whichever occurs first (see Figure 8). So for the i-th layer the
relation takes the form:

ui
0 =

pi
max

Ei
CD

L, (3)

where:
pi

max = min
(

SCTi
CD, Pi

cr

)
. (4)

,
min , . 

32 . 
	 , 

  
(a) (b) 

,					 . 
0.387 . 
0.293 . 

Figure 8. Compressive strength vs. deformation. (a) the case where the SCT is lower than the critical
load of the i-th layer; (b) the case where the critical load is lower than the SCT of the i-th layer.

If it is assumed that the failure once initiated successively progresses over time and,
for example, for the value of ui

max, the compression resistance of the i-th layer reaches zero,
we obtain a bilinear curve describing the constitutive behavior of a single panel. It was
assumed on the basis of experimental observations, that the ultimate deformation equals:

ui
max =

3
2

ui
0. (5)

Now, the ECT value can be obtained by simple summation over all layers including
the take-up ratio. The displacement-dependent formula for ECT is therefore:

ECT(u) =
n

∑
i=1

pi(u) αi, (6)

where αi is the take-up factor of the corrugated layers calculated by Equation (1) or taken
from Table 1.

The second model was built in the Abaqus Unified FEA® [34] software (version
2020, Dassault Systemes SIMULIA Corp., Johnston, IA, USA), which uses a linear elastic
orthotropic material model with von Mises plasticity. Shell elements used in the calculations
are quadrilaterals with four nodes, named S4, which use the full integration scheme with
built-in techniques to prevent locking phenomena. The approximate size of a single
element was 1 mm, which gives in total 17,825 elements, 18,668 nodes, and 112,008 degrees
of freedom. In order to provide all the required material constants, the empirical equations
provided by Baum [35] were used. First the Ei

MD and Ei
CD stiffness indexes (given in

Table 2) were transformed to stiffness coefficients Ei
1 and Ei

2, respectively, by the equation:

Ei
1 =

Ei
MD

ti
, Ei

2 =
Ei

CD

ti
. (7)
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The in-plane shear stiffness can be computed from the empirical formula [35]:

Gi
12 = 0.387

√
Ei

1Ei
2. (8)

The Poisson ratio in the 1–2 plane can be assumed from [35] as:

νi
12 = 0.293

√
Ei

1

Ei
2

. (9)

Both transversal stiffnesses were computed using the approximation from [36]:

Gi
13 =

Ei
1

55
, Gi

23 =
Ei

2
35

. (10)

The compressive strength can be determined by dividing the SCT value in the CD by
the appropriate thickness of a single i-th layer.

σi
0 =

SCTi
CD

ti
. (11)

All the computed values of the constitutive parameters for each layer are summarized
in Table 3.

Table 3. The mechanical properties of individual layers of 5EB650C3.

Layer
Name

E1
[MPa]

E2
[MPa]

ν12
[–]

G12
[MPa]

G13
[MPa]

G23
[MPa]

TLW 120 5669 2050 0.176 1319 103 59
W 100 5537 2050 0.209 1112 101 59

TLWC 140 4028 1794 0.196 1040 73 51

3. Results

3.1. Edge Crush Test Results

Here, first the results of the edge crush tests are presented. The dispersion of the
obtained results is due to the heterogeneity of the corrugated cardboard samples, including
local imperfections, lack of parallelism of the sample edges, local detachment of the
corrugated layers, etc. Although the specimen is held by steel blocks during the test to
prevent global out-of-plane buckling, local buckling on the outer surfaces of the specimen
still could be observed. A slight bend, which is the result of the nonsymmetric cross-section
of the sample, also could be observed.

It is worth noting that the elastic stiffness, which could be determined from the linear
part of the experimental curves, is not the real stiffness because it includes all the effects of
the crossbar compliance and the sample imperfections, especially visible in the initial part
of the curves (see Figure 9).

3.2. Optical Measurements Results

Figure 10 presents the results obtained from the video extensometry measurements.
In Figure 10a, one can observe the extension in terms of the image number from the
virtual extensometers on the front face (on the left side, at the center and on the right
side), on the back face (on the left side, at the center and on the right side) and on the
crosshead. In Figure 10b, the applied force is shown in terms of the image number. The
maximum absolute value of the applied force was approximately 703 N, while the mean
value obtained from the ECT measurements was equal to 751 N. However, it should be
noted that a pre-load of 15 N was applied and after that the measurements started from
zero value. Here, the loading rate (0.5 mm/min) was significantly slower than the typical
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10 mm/min due to the limited frame rate of the cameras, which reduces the measured
maximum load through relaxation.

55,					 35.
.

 

Figure 9. Edge crush test results (on the FEMat ECT/FCT laboratory apparatus).

  

(a) (b) 

Figure 10. Optical measurements results: (a) extension, (b) applied force.

3.3. Predictive Analytical Model

In the predictive analytical model, constitutive curves are first constructed based on the
specific material parameters of the individual layers (see Table 2), based on Equations (2)–(6).
The results of the buckling analysis and other parameters necessary to build the constitutive
curves are summarized in Table 4.

Table 4. The mechanical properties of individual layers of 5EB650C3.

Layer
Name

b
(mm)

L
(m)

SCTCD

(kN/m)
Pcr

(kN/m)

TLWC 140 3.50 25 2.32 4.212
W 100 (E) 2.17 25 1.76 9.573

W 100 - 25 1.76 -
W 100 (B) 4.26 25 1.76 2.444
TLW 120 6.48 25 1.81 1.237

Figure 11a shows an example of the eigenmode of the individual separated i-th plate,
calculated as simply supported plate loaded along the L dimension. Figure 11b shows all
constitutive curves, where the maximum value of the compressive load is equal to SCTCD

for the TLWC140 layer and all W100 layers, while for the TLW120 layer it is the critical load
value due to the dimension bi (see Equation (2)), which is the largest in this case.

285



Materials 2021, 14, 2840

  

(a) (b) 

Figure 11. Analytical model: (a) Visualization of first buckling mode for the i-th layer; (b) constitutive
relationships for all corrugated board layers.

3.4. Predictive Numerical Model

In order to correctly calculate the compressive strength using the FEM in the simulation
of the ECT, two steps of the numerical procedure had to be used, namely: (1) perturbation
analysis, where the eigenmode and eigenvector were calculated, and (2) geometric and
material nonlinear iterative analysis, in which geometric imperfections are introduced
based on the calculated eigenvalues and eigenvectors from the first analysis.

The first perturbation analysis was only to find the initial shape imperfection in the
numerical model of the ECT sample, which was later entered as the first scaled eigenvector
of the model (see Figure 12) in the Abaqus Unified FEA® software. This imperfect geometry
was used in nonlinear analysis where the standard Newton–Raphson algorithm was used
to find convergence in the subsequent iterations.

 

Figure 12. Numerical model. Visualization of the first buckling mode for the whole corrugated board
(front view).

The equivalent plastic strains on both sides of the ECT sample model in the last
iteration are shown in Figure 13, where the plasticized region is marked in a dark red color.
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Figure 13. Equivalent plastic strains on both sides of the ECT sample in the last iteration of the
nonlinear analysis.

The displacements on both sides of the ECT sample in the last iteration are shown in
Figure 14, where the unloaded part of the sample is shown in blue.

 

Figure 14. Displacements on both sides of the ECT sample in the last iteration of the nonlinear analysis.

Figures 13 and 14 clearly show that the induced imperfections cause the first-mode
buckling deformation of the sample and eventually the sample is damaged at about half its
height. Numerical observations confirmed the experimental results, in which the correct
failure mode in the ECT is the crush (crease) of the sample between its span, not the crush
at the edges.

3.5. Compilation of All Results

Experimental results based on non-contact full-field displacement measurements and
crosshead displacement (see Figure 15a) are presented here together with the results from
various predictive models. Figure 15b shows the force-displacement curve obtained from a
numerical full detailed 3D FE model.
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(a) (b) 

,
min ,

Figure 15. Experimental and numerical results: (a) load–displacement curves from experimental
studies; (b) load–displacement curves from numerical studies.

Figure 16 presents the summary of all results including the lower and upper bound of
the analytical solutions. The lower bound can be computed by the formula:

Pmin = ǫmin ∑
n

i=1 Ei
CDαi, (12)

where minimal strain, ǫmin equals:

ǫmin = min

(
pi

max

Ei
CD

)
, (13)

while the upper bound can be obtained from the equation:

,
min ,

 

Figure 16. Summary of all results.

Figure 16 also shows the results of the analytical method proposed here, as well
as the experimental data (mean value ± one standard deviation) and results from the
numerical validation model. Table 5 summarizes all measured and computed stiffnesses
and compressive strengths in CD of the corrugated board 5EB650C3.
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Table 5. The measured/calculated compressive stiffness and strength in CD of the corrugated board
5EB650C3.

Test/Model
ECTCD

(kN/m)
ECD

(kN/m)

Producer specification 7.60 -
FEMat—crosshead 7.51 1991
Instron—crosshead 7.03 2142

Instron—opt. extensometry 7.03 6442
Numerical model 7.94 5920
Analytical model 8.08 7063

4. Discussion

The first and main observation (conclusion) to be drawn from this study is that the
overall stiffness of a corrugated board sample cannot be determined from a typical ECT.
This is clearly seen in Figures 10 and 15a, where the slope of the force-displacement curve
(with displacement measurement from the crosshead) gives about a three times less rigid
response than when the displacement measurement is based on optical extensometry
(Figure 15a). The use of non-contact measurement techniques makes it possible to correctly
measure the displacements on the outer surfaces of the sample (excluding the edge areas
of the sample and crosshead compliance). Therefore, in order to determine the stiffness of
the corrugated board in the CD in the ECT, virtual extensometers are required.

The results summarized in Table 5 show that the analytical and numerical models
give very similar values for the compressive stiffness compared to the measurement based
on optical extensometry, while the stiffness value calculated from the displacements of the
crossbars (on both machines) is three times smaller and cannot be treated as a representative
value. The difference between the measured/calculated compressive stiffness does not
exceed 10%. The compressive strength measured and calculated using both: (a) the
numerical model and (b) the proposed analytical method differs by about 5% from the
stated value of 7.6 kN/m. The results obtained with the analytical model are slightly higher
than the measured values (stiffness: 9%, compressive strength: 6%). The full 3D FE model
gives a slightly higher value of compressive strength (4.5%) and a slightly lower value of
compressive stiffness (8%), which may be the result of introduced imperfections.

The second conclusion is that the proposed analytical formula for estimating stiffness
and compressive strength appears to be very promising. It has the same accuracy as a full
detailed 3D FE model (see Figures 15b and 16) while being easier to implement and much
faster to operate. Both analytical and numerical models can easily capture the compressive
strength, ECT, and the overall stiffness of the corrugated board in the CD, as evidenced
by the experimental results (see Figure 16). It is worth noting that the force-displacement
curves from the optical measurement are in good agreement with the curves plotted
by the predictive models (the maximum force appears between the displacement range:
0.1–0.2 mm, see Figures 15 and 16).

If one would like to optimize the design of the corrugated board by appropriate
selection of solid boards for individual layers, it is enough to raise the basis weight of
the weakest layer (in this case the TLW120 layer). By drawing the stress–strain curves of
individual layers using Equations (3)–(6), it is easy to determine, which layer is the weakest.
Figure 17 shows the constitutive curves of individual layers, taking into account the increase
in the grammage of the TLW120 layers by 10% (Figure 17a) and 20% (Figure 17b).

Table 6 summarizes the simulation results where the basis weight of each of the layers
was increased by 10 and 20 percent, respectively, and the effect of this change on the
estimated edge crush resistance of the cross-section was checked using Equation (6). By
far the biggest improvement is noted when the TLW120 layer is changed (strengthened).
By increasing the basis weight of this layer by 10%, the ECT increases by 10.64%, and by
increasing the basis weight by 20%, the ECT changes by as much as 24.33%.
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(a) (b) 

Figure 17. Stress-strain curves: (a) TLW120 exchanged with TLW130; (b) TLW120 exchanged
with TLW145.

Table 6. The effect of improving individual corrugated board layers by 10 and 20 percent, respectively, on the changes in
the ECT.

Reference Single Layer Improved by 10% Single Layer Improved by 20%

Paperboard
Symbol

ECT
(kN/m)

Paperboard
Symbol

ECT
(kN/m)

Diff.
(%)

Paperboard
Symbol

ECT
(kN/m)

Diff.
(%)

TLWC 140 8.08 TLWC 155 8.261 2.24 TLWC 170 8.442 4.48
W 100 (E) 8.08 W 110 (E) 8.297 2.69 W 120 (E) 8.515 5.38

W 100 8.08 W 110 8.255 2.17 W 120 8.430 4.33
W 100 (B) 8.08 W 110 (B) 8.310 2.85 W 120 (B) 8.541 5.71
TLW 120 8.08 TLW 130 8.940 10.64 TLW 145 10.046 24.33

5. Conclusions

This paper presents predictive models for the evaluation of compressive strength and
stiffness of corrugated board in CD. The models proposed here and the obtained analytical
and numerical results were compared with the experimental results. Good agreement in
the obtained results was observed. The accuracy achieved with the full 3D FE model was
within 95%, while the accuracy of the simplified analytical model was around 94%. Similar
results were obtained by Perks et al. [12], who modeled different standards of the ECT
test using the finite element method. However, the ECT prediction methods presented
here (using both analytical and numerical models) are slightly more accurate than the
results obtained by Parks et al. Only the optical measurement allows the correct drawing
of load–displacement curves in the edge crush test. The use of crosshead displacement
could not be used to calculate the stiffness of the corrugated board. In further research,
further investigations on the use of full-field measurement methods (DIC) to estimate more
material constants from the edge crush test are planned.
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Abstract: Knowing the material properties of individual layers of the corrugated plate structures
and the geometry of its cross-section, the effective material parameters of the equivalent plate can be
calculated. This can be problematic, especially if the transverse shear stiffness is also necessary for
the correct description of the equivalent plate performance. In this work, the method proposed by
Biancolini is extended to include the possibility of determining, apart from the tensile and flexural
stiffnesses, also the transverse shear stiffness of the homogenized corrugated board. The method
is based on the strain energy equivalence between the full numerical 3D model of the corrugated
board and its Reissner-Mindlin flat plate representation. Shell finite elements were used in this
study to accurately reflect the geometry of the corrugated board. In the method presented here,
the finite element method is only used to compose the initial global stiffness matrix, which is then
condensed and directly used in the homogenization procedure. The stability of the proposed method
was tested for different variants of the selected representative volume elements. The obtained results
are consistent with other technique already presented in the literature.

Keywords: corrugated board; numerical homogenization; strain energy equivalence; finite element
method; plate stiffness properties; shell structures; transverse shear

1. Introduction

Corrugated cardboard is widely used as packaging and protective material in almost
all industries. Whenever a product is displayed in shop windows, it is often packaged in
colorful and branded corrugated cardboard packaging. This becomes a required standard
all over the world. The packaging is not only to attract the eye of the customer, but is often
the main protection for the product that is transported to warehouses or directly delivered
to customers by courier companies. Along with the growth of e-commerce, the amount
of packaging that goes to the market also grows. Fortunately, corrugated cardboard is a
material that is not only environmentally friendly, but also easily recycled. These features
largely contributed to the noticeable growth of the corrugated board packaging market
in recent years. As a result of the growing awareness of producers and their customers,
ecological products are gaining in popularity and therefore require more attention.

As long as the corrugated board is made of paper and the paper is made of cellulose
fibers, which mainly come from trees, we must pay particular attention to the sustainable
use of virgin and recycled fibers. The only way to achieve savings in the material used
for the production of packaging is to focus the attention on the optimal selection of the
composition of raw materials and a thorough strength analysis of corrugated board prod-
ucts. Currently, not only simple transport packages need to be optimized, but also more
complex structures, e.g., SRP (shelf ready boxes) or displays. For typical box designs, it
is sufficient to estimate the strength of a corrugated cardboard box on the basis of any
analytical formula found in the literature; from the simplest and most popular [1] to the
more complex [2–7].
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McKee and coworkers developed the formula in which a compressive strength in
cross direction of corrugated cardboard, its thickness and base dimension of the box is
required to provide a simple estimation of the box strength. This approach is only valid for
very simple flap boxes and can be used for regular shaped packages without perforation
and holes. In the recent years many attempts were made to extend the applicability
of simple analytical methods and to improve their accuracy. Allerby and coworkers
modified constants and exponents in original McKee formulation which slightly improved
its accuracy [2]. Schrampfer et al. extended the applicability of the McKee formula for wider
range of boxes [8]. Batelka et al. included all box dimensions in their formula [3], while
Urbanik et al. included also inelastic buckling phenomenon [4]. Recently, the numerical-
analytical formula was proposed by Garbowski et al. to take into account also holes [6]
and perforation [7] in the estimation of the box strength.

The strength of a slender box depends on the compressive strength of the corrugated
board, but also on the critical load that its vertical walls must withstand. Therefore many
research has been devoted to the phenomenon of corrugated board buckling [9–13]. Since
corrugated board is a laminated material with a special fiber orientation, the buckling
analysis requires advances models. Both the orthotropic nature of the material and its
layered cross-section should be taken into account [14]. Therefore, the finite element
method is the most appropriate method to calculate the critical load capacity of panels
made of corrugated board. Especially in the case of complex shapes of such panels or in
the presence of holes and perforations [6,7] where analytical formulas are difficult to apply.

In recent years, to assess the strength of corrugated cardboard structures, both hybrid
methods [4,6,7,15] or purely numerical [16–19] have been increasingly used. A recent
review can be found here [20]. Since corrugated cardboard boxes, fruit trays, displays and
retail ready boxes are very often complex 3D structures loaded in various ways, the finite
element method [21] is most often used for calculations of such structures. Corrugated
board has a soft corrugated core, therefore the traditional Kirchhoff–Love plate theory is
usually replaced with the Mindlin–Reissner shell theory, which also takes into account the
transverse shear in the shell members. This require proper selection of the finite element
(FE), which is of key importance for obtaining the correct results of numerical simulation.
It is known that both triangular and quadrilateral shell FE suffer from a so-called shear
locking. To overcome such limitations, many improvements to the traditional FE have been
proposed in the literature, e.g., Bathe and Dvorkin [22,23], where auxiliary shear modes
were applied. These modes was first used by MacNeal [24,25] and later extended by Done
and Lamain [26] and Onate et al. [27]. This element has been successfully implemented and
used in the work by Garbowski et al. [13], in which the authors prove that the mechanical
behavior of this element in twisting tests is identical to the analytical predictions.

In case of structures made of corrugated boards very rarely the full multi-layered
structure of the cross-section is modeled. Typically, a complex multi-layer cross-section is
replaced with a single-layer model that has equivalent properties very similar to those of
the full model. Such converting process is called homogenization. The homogenization of
composite laminates has been the subject of interest of many researchers for several decades.
One of the recent method that uses a strain energy was proposed in 2003 by Hohe [28] for
homogenization of sandwich panels with hexagonal honeycomb core. The author uses a
strain energy based procedure with assumed mechanical equivalence between a representa-
tive volume element (RVE) of a periodic plate and the simplified model, provided that the
effective deformation in both models are equal in an average sense. Buanic et al. proposed
a periodic homogenization method in which both an equivalent membrane, bending and
shearing characteristics of periodic plates can be computed [29]. Biancolini obtained both
membrane and bending properties for plates with corrugated core using the strain energy
equivalence between the numerical model of RVE and single layered equivalent model [30].
The comparison of different approaches to homogenization of sandwich panels with corru-
gated boards can be found, e.g., in Garbowski and Jarmuszczak [31,32], and Marek and
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Garbowski [33]. The application of inverse analysis to homogenization of corrugated board
was presented in the work of Garbowski and Marek [34].

An extension of the homogenization method proposed by Biancolini is presented here.
The proposed generalization allows to take into account transverse shear in the process
of homogenization of the corrugated cardboard. As already mentioned, transverse shear
plays an important role in the mechanical behavior of the corrugated board, therefore
many researchers have proposed different methods to calculate the effective transverse
shear stiffness of the corrugated board [14,35–38]. This article presents the strain energy
equivalence between RVE-base method of the full multi-layer corrugated cardboard FE
model and the equivalent single-layer shell model. The proposed approach allows to
calculate all properties of tensile, bending and transverse shear stiffnesses, which are
extremely important if one would like to properly model the behavior of homogenized
sandwich with corrugated cores. The method presented here has promising applications,
not only to corrugated cardboards, but also for other types of sandwich or composite
structures, including dynamic analysis, e.g., [39,40]. The results obtained by our method
were compared with the results from the literature. A satisfactory agreement with the
literature data was obtained.

2. Materials and Methods

The homogenization method proposed here is based on the equivalent of the defor-
mation energy between a small part of a periodic multi-layer structure cut from corrugated
cardboard and its simplified single-layer counterpart. Given the representative volume
element (RVE) of the full detailed corrugated board model on the one hand and the simpli-
fied model on the other hand, the effective properties can be calculated, provided that the
effective strains in both models are equal in an average sense. For the correct representation
of the geometry of the cross-section a finite element models are used here.

Corrugated cardboard is a material made of several layers of paperboard. It consists
of alternating flat and corrugated layers. The cellulose fibers in each of these layers are
oriented along the waves, see Figure 1. This direction is called the machine direction (MD).
The second, in plane direction, perpendicular to the fibers orientation, is called the cross
direction (CD). The out of plane direction is the thickness direction.

Figure 1. Material orientations.

In order to compute all effective parameters of equivalent single-layered model, first
the RVE need to be constructed. Here the single-wall corrugated cardboard is investigated
therefore a selected RVE consists of singe period (see Figure 2) of the wavey layer. This
selection was made to test the effect of the RVE type on the quality and stability of the
calculated effective membrane, bending and transverse shear stiffnesses of the equivalent
plate. The most problematic and least stable parameters identified by the homogenization
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method proposed here turned out to be both transverse shear stiffness in plane 13 (MD-
TD) and 23 (CD-TD). Therefore, other RVE types and boundary conditions were also
investigated in this study to check the robustness of the proposed approach.

Figure 2. Representative volume element (RVE).

In the traditional displacement based linear formulation of finite element we have:

Ke ue = Fe, (1)

where Ke is a statically condensed (through elimination of internal nodes) the global
stiffness matrix of the RVE, ue is a displacement vector of the external nodes and Fe is a
vector of the nodal force applied to the external nodes. The FE mesh and external nodes
are visualized in Figure 3.

Figure 3. External (in red color) and internal nodes of RVE.

The stiffness matrix condensed to external nodes can be computed by the following
equation:

K = Kee − Kei K−1
ii Kie (2)

where overall stiffness matrix is partitioned into external (subscript e) and internal (sub-
script i) nodes into four submatrices in the following way:

[
Kee Kei

Kie Kii

][
ue

ui

]
=

[
Fe

0

]
(3)

After static condensation (Equation (2)), the strain energy stored in the system is:

E =
1
2

uT
e Fe (4)

296



Materials 2021, 14, 1976

The energetic equivalence between the FE model of the RVE and the simplified shell
model can be established by a proper definition of the displacements and rotations in the
external nodes. These general displacements at each boundary node are related to the
generalized strains, which for membrane behavior reads:




ε0
x

ε0
y

γ0
xy


 =




∂u0/∂x
∂v0/∂y

∂u0/∂y + ∂v0/∂x


. (5)

Displacements are related with rotations in the following way:




u(x, y, z)
v(x, y, z)
w(x, y, z)



 =





−z θx(x, y)
−z θy(x, y)

w0(x, y)



, (6)

while rotations according to Kirchhoff–Love assumption are considered as:
{

θx

θy

}
=

{
∂w/∂x
∂w/∂y

}
. (7)

Since in Kirchhoff–Love plate theory the normal remains orthogonal to the middle
plane after deformation, we have:

{
∂u/∂z
∂v/∂z

}
=

{ −∂w/∂x
−∂w/∂y

}
. (8)

The normal strains can be than computed from Equations (6) and (7):




εx

εy

γxy


 =




∂u/∂x
∂v/∂y

∂u/∂y + ∂v/∂x


 = −z




∂θx/∂x
∂θy/∂y

∂θx/∂y + ∂θy/∂x


 = −z




∂2w/∂x2

∂2w/∂y2

2∂2w/∂x∂y


, (9)

while transverse shear can be computed from:
[

γxz

γyz

]
=

[
∂w/∂x + ∂u/∂z
∂w/∂y + ∂v/∂z

]
=

[
0
0

]
. (10)

This assumption does not allow to calculate the transverse shear. Therefore, the
Mindlin–Reissner theory should be applied, where the rotation is described by the formula:

{
θx

θy

}
=

{
∂w/∂x + φx

∂w/∂y + φy

}
, (11)

where the normal rotation is obtained as the sum of two rotations: (i) The corresponding
slope of the middle plane of the plate and (ii) the additional rotation φ, which results from
the lack of orthogonality of the normal to the middle plane after deformation. Consequently
we have: {

∂u/∂z
∂v/∂z

}
=

{ −(∂w/∂x + φx)
−
(
∂w/∂y + φy

)
}

. (12)

Now the transverse shear reads:
[

γxz

γyz

]
=

[
∂w/∂x + ∂u/∂z
∂w/∂y + ∂v/∂z

]
=

[
∂w/∂x − θx

∂w/∂y − θy

]
=

[ −φx

−φy

]
, (13)
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while the curvatures are:



κx

κy

κxy


 = −




∂θx/∂x
∂θy/∂y

∂θx/∂y + ∂θy/∂x


. (14)

Using the Mindlin–Reissner theory the normal strains consists of membrane and
bending behaviors as follow:




εx

εy

γxy


 =




∂u/∂x
∂v/∂y

∂v/∂x + ∂u/∂y


 =




ε0
x

ε0
y

γ0
xy


+ z




κx

κy

κxy


, (15)

that permit to calculate (from Equations (13)–(15)) by integration the in plane displacement
fields along x-axis as follows:

u(x, y, z) = x
(

ε0
x + zκx

)
+

y

2

(
γ0

xy + zκxy

)
− z

2
γxz, (16)

and along y-axis as follows:

v(x, y, z) = y
(

ε0
y + zκy

)
+

x

2

(
γ0

xy + zκxy

)
− z

2
γyz, (17)

while out of plane displacements are:

w(x, y) = − x2

2
κx −

xy

2
κxy −

y2

2
κy −

x

2
γxz −

y

2
γyz. (18)

Recalling the definition of curvatures in Equation (14) and after a first integration
of angular rotation with respect to x-axis, the following rotation with respect to y-axis
is obtained:

θx(x, y) = φx +
∂w

∂x
= −yκy −

x

2
κxy, (19)

while the rotation with respect to x-axis is:

θy(x, y) = xκx +
y

2
κxy. (20)

The originally proposed by Biancolini [30] and here extended (by taking into account
also both transverse shear) relationship between generalized constant strains and the
position of the external nodes can be expressed by the following transform:

ui = Ai ǫi, (21)

where for single node (xi = x, yi = y, zi = z) we have:




ux

uy

uz

θx

θy




i

=




x 0 y/2 z/2 0 xz 0 yz/2
0 y x/2 0 z/2 0 yz xz/2
0 0 0 x/2 y/2 −x2/2 −y2/2 −xy/2
0 0 0 0 0 0 −y −x/2
0 0 0 0 0 x 0 y/2




i




εx

εy

γxy

γxz

γyz

κx

κy

κxy




i

. (22)

Recalling the definition of the strain energy for the discrete model:

E =
1
2

uT
e K ue =

1
2
ǫ

T
e AT

e K Ae ǫe, (23)
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and considering that for a shell subjected to bending, traction and transverse shear the
internal energy is:

E =
1
2
ǫ

T
e Ak ǫe{area}, (24)

overall stiffness matrix for the laminate could be easily extracted from the discrete matrix as:

Ak =
AT

e K Ae

area
. (25)

3. Results

The numerical examples presented in the study are referring to the material and
geometrical data used in the work of Biancolini [30]. In the Table 1, the material properties
used in this paper for liners and fluting are shown, namely, E1, E2, v12, G12, G13, and G23,
i.e., Young moduli in both directions, Poisson’s ratio and shear moduli, respectively. Also,
the paper thicknesses, t, are shown in Table 1. The fluting period used here equals 8 mm.
Apart Section 3.1, the axial spacing between internal and externa liners equals 3.51 mm. In
Section 3.1, the axial spacing between liners itself was analyzed.

Table 1. Thicknesses and material properties of liners and fluting used in this study.

Layers
t

(mm)
E1

(MPa)
E2

(MPa)
ν12
(-)

G12
(MPa)

G13
(MPa)

G23
(MPa)

liners 0.29 3326 1694 0.34 859 429.5 429.5
fluting 0.30 2614 1532 0.32 724 362 362

3.1. Stiffnesses Variation Due to Different Approach for Modelling Cross-Direction Section

In the first step of numerical part of the study, the examples presented by Biancol-
ini [30] were used as reference and recreated. The saw tooth type geometry was considered
here, see Figure 4. In the referred paper only the overall data regarding the geometry
were explicitly given, there was a lack of detailed information about the modelling of the
cross-section geometry. For instance, if the height of 3.8 mm used, was the overall outer
thickness of the cardboard or the axial distance between the liners. Thus, in this study, we
have utilized different approaches to model the cross-section geometry, see Figure 5, to
verify which approach was used by the author. In Figure 5a, the axial spacing between
shell liners equals 3.51 mm; the outer thickness equals 3.8 mm. In Figure 5b, the shells with
offset technique were adopted; in this case the outer thickness was also 3.8 mm. In Figure
5c, the axial spacing between the shell liners equals 3.8 mm; the outer thickness equals
4.09 mm. In numerical examples of this section, the 4-node quadrilateral element with full
integration scheme (labelled in Abaqus FEA as S4) was used.

Figure 4. Representative shell elements of saw tooth geometry with quadrilateral mesh (single period).
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Figure 5. The different approach of modelling the cardboard cross-direction section of the saw tooth geometry: (a) 3.80 mm
as the outer cardboard dimension, (b) 3.80 mm as the outer cardboard dimension with offset technique used and (c) 3.80 mm
as axial spacing between liners.

Our computational results for saw tooth geometry are presented in Table 2. In the
second column, the values according to [30] were demonstrated. In the third, fourth and
fifth columns, the results computed using different geometry are presented, see Figure 5a–c,
respectively and Materials and Methods section.

Table 2. The stiffnesses of representative shell element computed for a different approach of mod-
elling confronted with data from ref. [30] for saw tooth geometry.

Stiffness Ref. [30]
Axial

Geometry
Inner

Geometry
Outer

Geometry

A11, (kPa·m) 2158 2140 2154 2131
A22, (kPa·m) 1660 1665 1643 1687
A12, (kPa·m) 379.9 382.9 385.4 381.9
A33, (kPa·m) 677.6 662.5 668.4 656.8
D11,

(
Pa·m3) 6.370 6.392 6.389 7.482

D22,
(
Pa·m3) 3.824 3.859 3.740 4.549

D12,
(
Pa·m3) 1.092 1.115 1.113 1.305

D33,
(
Pa·m3) 1.655 1.656 1.639 1.937

A44,(Pa·m) - 202.4 179.4 218.5
A55, (Pa·m) - 99.0 89.0 112.4

3.2. Stiffnesses Variation Due to Different Finite Element Type

In this section, the influence of using different element type in RVE on determination
of Ak stiffnesses was verified. Here, the sine geometry of fluting was used. In Table 3,
the second column represents the results from the model with the 4-node quadrilateral
element with full integration scheme (labelled in Abaqus FEA as S4). The third column
represents the results from the model with the 4-node quadrilateral element with a reduced
integration scheme (labelled in Abaqus FEA as S4R). The fourth column represent the
results from the model with the 3-node triangular element (labelled in Abaqus FEA as
S3). In the fifth column, the results for quadrilateral, bilinear deflection and rotations and
linear transverse shear strain fields (QLLL) element was shown, embedded in in-house
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finite element method code [13]. In all cases, the number of nodes is the same, however, in
the mesh with triangular element type the number of elements is almost twice bigger, see
Table 3.

Table 3. The stiffnesses of the representative shell element computed for different element type-
sine geometry.

Stiffness
Quadrilateral
Element (S4)

Reduced
Quadrilateral
Element (S4R)

Triangular
Element (S3)

QLLL Element

A11, (kPa·m) 2219 2218 2225 2128
A22, (kPa·m) 1694 1694 1694 1677
A12, (kPa·m) 411.8 411.5 413.4 378.9
A33, (kPa·m) 659.3 659.3 659.6 659.7
D11,

(
Pa·m3) 6.521 6.517 6.535 6.443

D22,
(
Pa·m3) 4.071 4.066 4.091 4.035

D12,
(
Pa·m3) 1.149 1.148 1.152 1.135

D33,
(
Pa·m3) 1.729 1.728 1.731 1.716

A44,(Pa·m) 140.5 139.8 143.8 71.1
A55, (Pa·m) 132.6 132.4 135.6 102.4

nodes/element 969/896 969/896 969/1792 969/896

3.3. Stiffnesses Variation Due to Different Fluting Discretization

Next, the fluting shape discretization was analyzed to derive, how the number of
segments influence the determination of Ak matrix. For this purpose different discretiza-
tions were considered, namely, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, and 64
segments for a single fluting period. Two RVS were selected, the one with unsymmetric
fluting (flute period starts from the middle), and the one with symmetric fluting (flute
period starts from the liner). Three selected discretizations with 8, 16, and 32 segments on
unsymmetric model are presented in the Figure 6. In the first row, the three-dimensional
fluting cardboards are presented, in the second row the corresponding cross-sections are
shown. In those numerical examples, the quadrilateral, bilinear deflection and rotations
and linear transverse shear strain fields (QLLL) element was used.

Figure 6. Different discretizations of cardboard fluting for unsymmetric RVE: (a) 8, (b) 16, and (c) 32 fluting segments; and
corresponding cross-sections: (d) 8, (e) 16, and (f) 32 fluting segments.
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The Ak stiffnesses obtained for those cases are presented in Table 4. In Figure 7, the
results of A44 and A55 for all used flute segments (16 cases) are plotted separately.

Table 4. The stiffnesses of the representative shell element computed for different number of segments for one fluting
period–sine geometry.

Stiffness
Unsymmetric
8 Segments

Unsymmetric
16 Segments

Unsymmetric
32 Segments

Symmetric
8 Segments

Symmetric
16 Segments

Symmetric
32 Segments

A11, (kPa·m) 2128 2108 2106 2126 2114 2107
A22, (kPa·m) 1677 1681 1682 1678 1681 1682
A12, (kPa·m) 378.9 373.7 373.4 380.4 375.9 373.7
A33, (kPa·m) 659.7 658.7 658.3 659.6 658.4 658.1
D11,

(
Pa·m3) 6.443 6.433 6.432 6.445 6.435 6.429

D22,
(
Pa·m3) 4.035 4.087 4.101 4.033 4.086 4.099

D12,
(
Pa·m3) 1.135 1.130 1.130 1.137 1.131 1.129

D33,
(
Pa·m3) 1.715 1.728 1.732 1.682 1.694 1.698

A44,(Pa·m) 71.1 48.0 43.1 75.0 49.0 42.5
A55, (Pa·m) 102.4 104.4 104.7 113.4 114.4 114.6

Figure 7. The variation of (a) A44 and (b) A55 due to different number of fluting segments used.

3.4. Stiffnesses Variation Due to Different Numbers of Periods

Because the application of general strains (γ13) at RVE edges allows free deformation
of liners and fluting (see Figure 8) therefore the influence of the number of periods of
the internal layer on the calculated transversal shear stiffness A44 was checked here. The
different numbers of periods (namely 1, 2, or 3 periods) for corrugated cardboard with sine-
shaped fluting was studied. Two geometries were analyzed, i.e., with the period starting
from the middle of fluting–unsymmetric, see Figure 9a–c; and with the period starting
from the liner–symmetric, see Figure 9d–f. In those numerical examples, the quadrilateral,
bilinear deflection and rotations and linear transverse shear strain fields (QLLL) element
was used. Note that in CD the length is conservatively assumed to be equal the period
length, i.e., 8 mm. In Table 5, the second to fourth columns represent the results from the
model with the unsymmetric periods—1, 2, or 3, respectively. The fifth to seventh columns
represent the results from the symmetric periods—1, 2, or 3, respectively.
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Figure 8. Deformation of RVE cross-section under transverse shear strains for different numbers of periods of corrugated
cardboard for unsymmetric fluting cardboards: (a) 1, (b) 2, and (c) 3 periods; and symmetric fluting cardboards: (d) 1, (e) 2,
and (f) 3 periods.

Figure 9. Different numbers of periods of corrugated cardboard for unsymmetric fluting cardboards: (a) 1, (b) 2, and (c) 3
periods; and symmetric fluting cardboards: (d) 1, (e) 2, and (f) 3 periods.

Table 5. The stiffnesses of the representative shell element computed for different numbers of periods for unsymmetric and
symmetric sine geometry.

Stiffness
Unsymmetric

1 Period
Unsymmetric

2 Periods
Unsymmetric

3 Periods
Symmetric

1 Period
Symmetric
2 Periods

Symmetric
3 Periods

A11, (kPa·m) 2108 2106 2106 2114 2110 2108
A22, (kPa·m) 1681 1680 1680 1681 1681 1681
A12, (kPa·m) 373.7 373.4 373.3 375.9 374.5 374.0
A33, (kPa·m) 658.7 658.5 658.4 658.4 658.4 658.4
D11,

(
Pa·m3) 6.433 6.445 6.458 6.435 6.428 6.426

D22,
(
Pa·m3) 4.087 4.085 4.085 4.086 4.085 4.084

D12,
(
Pa·m3) 1.130 1.129 1.129 1.131 1.129 1.128

D33,
(
Pa·m3) 1.728 1.713 1.710 1.694 1.694 1.694

A44,(Pa·m) 48.0 45.9 45.1 49.0 46.4 45.4
A55, (Pa·m) 104.4 102.8 102.3 114.4 107.8 105.6
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4. Discussion

4.1. Different Approach of Modelling Cross-Direction Section

Regarding results presented in Section 3.1 concerning modelling cross-direction sec-
tion it should be noted, that the extended approach derived in this paper, in which A44 and
A55 are computed from the RVE, does not influence the computed values of A11, A22, A12,
A33, D11, D22, D12, and D33. Therefore, the data in the second column from Biancolini [30]
may be directly compared with the third, fourth, and fifth columns. The stiffness in the
second and third column are the closest to each other, thus, it may be concluded that this
approach was used by author.

Notice that the inner geometry case (fourth column) is closer to the real-world ge-
ometry, but the offset technique used here is rarely available in finite element method
software. Via comparing the third and the fourth columns, it may be concluded, that the
inner geometry case does not give meaningful changes to the axial geometry case. Thus, the
fluting simplification with the axial geometry case, without the use of the offset technique,
is justified. On contrary, the outer geometry case meaningfully differs with other cases,
especially in D11, D22, D12, and D33, in which distance between liners plays important role.
In this case, corrugated cardboard thickness is 0.29 mm higher than in previous cases, cf.
Figure 5c with Figure 5a,b.

4.2. Different Finite Element Type

Regarding results presented in Section 3.2 concerning different finite element type,
while comparing results from using quadrilateral elements (second column) and results
from using quadrilateral elements with reduced integration scheme (third column), it may
be observed that all Ak corresponding stiffnesses are very similar (difference less than 0.5%).
There is no significant difference between the full quadrilateral and reduced quadrilateral
element in A44 and A55.

While comparing the results from using quadrilateral elements (second column) and
results from using triangular elements (fourth column), it may be observed that again Ak

corresponding stiffnesses are very close to each other (difference less than 0.5%). Here,
there are some differences between full quadrilateral and triangular element in A44 and
A55, 2.3% and 2.3%, respectively.

On the other hand, the differences obtained from QLLL and S4 elements are quite large,
the most significant differences was in A44 and A55, i.e., about 27% and 46%, respectively.
Since, this element approach was proved to be exceeding the S4/S4R/S3 elements, see [13],
QLLL element was used in computations in Sections 3.3 and 3.4.

4.3. Different Fluting Discretization

Regarding results presented in Section 3.3 concerning different fluting discretizations
considered, while comparing unsymmetric and symmetric cases the results from using
32 segments (fourth column) with the results from using 16 and 8 segments, it may be
observed that Ak corresponding stiffnesses are similar. The difference less is than 1.7%.
However, it should be noted that, as presented in Table 4 and Figure 7 there is a meaningful
difference between the values of A44 and A55 considered for different segments number;
it stabilizes with increasing number of fluting segments. As presented in Figure 7 an
asymptote is reached for approximately 32 segments. The same effect is shown for both
cases analyzed (unsymmetric and symmetric period).

4.4. Different Numbers of Periods

Regarding results presented in Section 3.4 concerning numbers of periods used, it may
be noted that between unsymmetric period and symmetric period cases the differences in
Ak corresponding stiffnesses are negligible. The biggest differences are visible for A44 and
A55, but they are still less than 5%, while for other stiffnesses they are less than 2%, which
proves that the obtained results are independent of the RVE size.
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5. Conclusions

In this research study, the homogenization technique for corrugated cardboard shell
structures was considered, however it may be adopted for any periodic shell structure.
The strain energy equivalence with condensation technique used to determine the stiffness
properties of homogenized shell was extended here to determine not only the membrane
and bending stiffnesses but also the transverse shear stiffnesses of any periodic shell
structure. The techniques requires computing the FE global stiffness matrix of the full 3D
FE shell structure and simple algebraic operations.

Based on this study several guidelines may be defined for robust determination of
membrane, bending and transverse shear stiffnesses of corrugated cardboard. If one would
like to acquire only membrane and bending stiffnesses the RVE selectin, in particular the
fluting segments number or unsymmetric/symmetric geometry do not play any important
role. But it should be noted that in order to determine proper values of transverse shear
stiffnesses of the corrugated cardboard, at least 32 segments must be used for correct
reconstruction of sine-shaped fluting. Furthermore, the selected number of periods in
RVE is not affecting the obtained results, assuming the RVE dimension in CD length is
constant. The presented here homogenization method together with practical guidelines
can be successfully used to obtain stiffness properties of any corrugated shell structures.
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