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Preface to “Symmetry in the
Mathematical Inequalities”

This Special Issue brings together original research papers, in all areas of mathematics, that
are concerned with inequalities or the role of inequalities. The research results presented in this
Special Issue are related to improvements in classical inequalities, highlighting their applications and
promoting an exchange of ideas between mathematicians from many parts of the world dedicated to
the theory of inequalities.

This volume will be of interest to mathematicians specializing in inequality theory and beyond.
Many of the studies presented here can be very useful in demonstrating new results.

Itis our great pleasure to publish this book. All contents were peer-reviewed by multiple referees
and published as papers in our Special Issue in the journal Symmetry. These studies give new and
interesting results in mathematical inequalities enabling readers to obtain the latest developments in
the fields of mathematical inequalities.

Finally, we would like to thank all the authors who have published their valuable work in this
Special Issue. We would also like to thank the editors of the journal Symmetry for their help in making

this volume, especially Mrs. Teresa Yu.

Nicusor Minculete and Shigeru Furuichi
Editors
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Introduction

The theory of inequalities represents a long-standing topic in many mathematical
areas and remains an attractive research domain with many applications. Inequalities
Theory represents an old topic of many mathematical areas which still remains an attractive
research domain with many applications. The study of convex functions occupied and still
occupies a central role in Inequalities Theory because the convex functions develop a series
of inequalities.

The research results presented here are concerned with the improvement in classical
inequalities resulting from convex functions and highlighting their applications.

Related to probability theory, a convex function applied to the expected value of a
random variable is always less than or equal to the expected value of the convex func-
tion of the random variable. This result, known as Jensen’s inequality, underlies many
important inequalities.

Another important result related to convex function is the Hermite—Hadamard inequality,
due to Hermite and Hadamard, which asserts that for every continuous convex function
£+ [a,b] = R the following inequalities hold:

() < [[pwa < OO,

Related to the Hermite-Hadamard inequality, many mathematicians have worked
with great interest to generalise, refine, and extend it for different classes of functions such
as quasi-convex functions, log-convex, r-convex functions, etc., and apply it for special
means (logarithmic mean, Stolarsky mean, etc.).

Ujevi¢ in [1] obtained sharp inequalities for Simpson and Ostrowski types. Liu et al.,
in [2], used the MT-convexity-class-derived Ostrowski fractional inequalities. Kaijser et al.,
in [3], established Hardy-type inequalities via convexity. Rashid et al., in [4], using general-
ized k-fractional integrals, found Griiss inequalities.

There are many types of inequalities for functionals and inequalities for invertible
positive operators. Among these, we found the Jensen functional under superquadraticity
conditions and the Jensen functional related to a strongly convex function. Some applica-
tions of these functionals are related characterizations of generalized entropies. Generalized
entropies have been studied by many researchers. Rényi and Tsallis entropies are well
known as one-parameter generalizations of Shannon’s entropy, being intensively studied
not only in the field of classical statistical physics but also in the field of quantum physics.

Due to the nature of convexity theory, there exists a strong relationship between
convexity and symmetry. When working on either of the concepts, it can be applied to the
other one as well. Integral inequalities concerned with convexity have a lot of applications
in various fields of mathematics in which symmetry has a great part to play.

Recently, fractional calculus has been the center of attraction for researchers in mathe-
matical sciences because of its basic definitions, properties, and applications in tackling
real-life problems.

Symmetry 2022, 14, 774. https:/ /doi.org/10.3390/sym14040774
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Quantum information theory, an interdisciplinary field that includes computer science,
information theory, philosophy, cryptography, and symmetry, has various applications for
quantum calculus. The inequalities have a strong association with convex and symmetric
convex functions. From the past to the present, various works have been dedicated to
Simpson’s inequality for differentiable convex functions. Simpson-type inequalities for
twice-differentiable functions have been the subject of some research.

This Special Issue brings together original research papers in all areas of mathematics
that are concerned with inequalities or their role. The research results presented in this
Special Issue are related to the improvement of classical inequalities and highlight their
applications, promoting an exchange of ideas between mathematicians from many parts of
the world dedicated to the theory of inequalities.

For example, the study of convex functions has occupied a central role in the theory
of inequalities because such functions develop a series of inequalities. There is a strong
correlation between the concepts of convexity and symmetry. In number theory, a number
of inequalities characterize arithmetic functions. Other important types of inequalities are
those related to invertible positive operators that have applications in operator equations,
network theory, and quantum information theory (inequalities for generalized entropies).

The following manuscripts were selected for publication. The articles were prepared by
scientists working in leading universities and research centers in Albania, China, Ecuador,
Greece, India, Iraq, Italy, Japan, Pakistan, Romania, Serbia, Saudi Arabia, South Africa,
Taiwan, Thailand, Tunisia, Turkey, and the USA.

S. K. Sahoo et al., in the paper “New Ostrowski-Type Fractional Integral Inequalities
via Generalized Exponential-Type Convex Functions and Applications” [5], presented some
fractional integral inequalities of the Ostrowski type for a new class of convex mapping.
Specifically, n-polynomials that are exponentially s-convex via a fractional operator are
established. Additionally, they showed a new Hermite-Hadamard fractional integral
inequality. Some special cases of the results are discussed as well. Finally, in applications,
some new limits for special means of positive real numbers and midpoint formulae are
given. These new outcomes yield a few generalizations of the earlier outcomes already
published in the literature.

X. Huang et al., in the paper “A More Accurate Half-Discrete Hilbert-Type Inequality
Involving One upper Limit Function and One Partial Sum” [6], constructed proper weight
coefficients by virtue of the symmetry principle and used them to establish a more accurate
half-discrete, Hilbert-type inequality involving one upper limit function and one partial
sum. The authors proved the new inequality with the help of the Euler-Maclaurin sum-
mation formula and Abel’s partial summation formula. Finally, it is illustrated how the
obtained results can generate some new half-discrete Hilbert-type inequalities.

T. Sitthiwirattham et al., in the paper “On Some New Trapezoidal Type Inequalities
for Twice (p, q) Differentiable Convex Functions in Post-Quantum Calculus” [7], studied
a (p,q)-integral identity involving the second (p, q)-derivative and then used this result
to prove some new trapezoidal-type inequalities for twice (p, q)-differentiable convex
functions. It is also shown that the newly established results are the refinements of some
existing results in the field of integral inequalities.

T. Sitthiwirattham et al., in the paper “On Some New Fractional Ostrowski- and
Trapezoid-Type Inequalities for Functions of Bounded Variations with Two Variables” [8],
proved three identities for functions of bounded variations. Then, by using these equalities,
several trapezoid- and Ostrowski-type inequalities were obtained via generalized fractional
integrals for the functions of bounded variations with two variables. Moreover, presented
some results were presented for Riemann-Liouville fractional integrals by the special choice
of the main results. Finally, the connections between their results and those in earlier works
were investigated.

1. B. Sial et al., in the paper “On Some New Inequalities of Hermite-Hadamard
Midpoint and Trapezoid Type for Preinvex Functions in p,q-Calculus” [9], established some
new Hermite-Hadamard-type inequalities for preinvex functions and left-right estimates
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of newly established inequalities for (p, g)-differentiable pre-invex functions in the context
of (p,q)-calculus. The authors also show that the results established in this paper are
generalizations of comparable results in the literature of integral inequalities. Analytic
inequalities of this nature and especially the techniques involved have applications in
various areas in which symmetry plays a prominent role.

Y. Li and P. Zeng, in the paper “Continuous Dependence on the Heat Source of 2D
Large-Scale Primitive Equations in Oceanic Dynamics” [10], studied the initial boundary
value problem for the two-dimensional primitive equations of large-scale oceanic dynam-
ics. These models are often used to predict the weather and climate change. Using the
differential inequality technique, rigorous a priori bounds of the solutions and the con-
tinuous dependence on the heat source are established. The application of symmetry in
mathematical inequalities are shown in practice.

S. Simi¢ and B. Bin-Mohsin, in the paper “Global Bounds for the Generalized Jensen
Functional with Applications” [11], found sharp global bounds for the generalized Jensen
functional J,(g, h; p, x). In particular, exact bounds are determined for the generalized
power mean in terms from the class of the Stolarsky means. As a consequence, they
obtained the best possible global converses of quotients and differences of the generalized
arithmetic, geometric, and harmonic means.

M. A. Ali et al., in the paper “Some New Simpson’s—Formula-Type Inequalities for
Twice-Differentiable Convex Functions via Generalized Fractional Operators” [12], estab-
lished a new generalized fractional integral identity involving twice-differentiable functions.
The authors used this result to prove some new Simpson’s-formula-type inequalities for
twice-differentiable convex functions. Furthermore, a few special cases of newly established
inequalities were examined, and several new and old Simpson’s-formula-type inequalities
were obtained. These types of analytic inequalities, as well as the methodologies for solving
them, have applications in a wide range of fields where symmetry is crucial.

S. Luo et al,, in the paper “Phragmén-Lindelof Alternative Results for a Class of Ther-
moelastic Plate” [13], studied the spatial properties of solutions for a class of thermoelastic
plates with biharmonic operators. The energy method was used. A differential inequality
in which the energy expression was controlled by a second-order differential inequality
was deduced. The Phragmén-Lindel6f alternative results of the solutions were obtained by
solving the inequality. These results show that the Saint-Venant principle is also valid for
the hyperbolic-hyperbolic coupling equations. Their results can been seen as a version of
symmetry in inequality for studying the Phragmén-Lindelof alternative results.

T. Zhang et al., in the paper “Schur-Convexity for Elementary Symmetric Composite
Functions and Their Inverse Problems and Applications” [14], investigated the Schur-
convexity, Schur-geometric convexity, and Schur-harmonic convexity for the elementary
symmetric composite function and its dual form. The inverse problems are also considered.
New inequalities on special means are established by using the theory of majorization.

S. Furuichi and N. Minculete, in the paper “Bounds for the Differences between
Arithmetic and Geometric Means and Their Applications to Inequalities” [15], provide
some bounds for the differences between the weighted arithmetic and geometric means,
using known inequalities. It improved the results given by Furuichi-Ghaemi-Gharakhanlu
and Sababheh—Choi. The authors also found some bounds on entropies, applying the
results in a different approach. Finally, explored certain convex or concave functions are
explored, which are symmetric functions on the axis t = 1/2.

M. ]. Vivas-Cortez et al., in the paper “On Some New Simpson’s Formula Type Inequal-
ities for Convex Functions in Post-Quantum Calculus” [16], proved a new (p, )-integral
identity involving a (p, q)-derivative and (p, q)-integral. The newly established identity is
then used to show some new Simpson’s formula type inequalities for (p, q)-differentiable
convex functions. Finally, the newly discovered results are shown to be refinements of com-
parable results in the literature. Analytic inequalities of this type, as well as the techniques
used to solve them, have applications in a variety of fields where symmetry is important.
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X. Chen et al., in the paper “Spatial Decay Bounds for the Brinkman Fluid Equations
in Double-Diffusive Convection” [17], studied the Brinkman equations pipe flow, which
includes the salinity and the temperature. Assuming that the fluid satisfies nonlinear
boundary conditions at the finite end of the cylinder, using the symmetry of differen-
tial inequalities and the energy analysis methods, the exponential decay estimates for
homogeneous Brinkman equations are established.

J. Reunsumrit et al., in the paper “On Generalization of Different Integral Inequalities
for Harmonically Convex Functions” [18], proved a parameterized integral identity involv-
ing differentiable functions. Then, for differentiable harmonically convex functions, they
use this result to establish some new inequalities of a midpoint type, trapezoidal type, and
Simpson type. Analytic inequalities of this type, as well as the approaches for solving them,
have applications in a variety of domains where symmetry is important. Finally, several
particular cases of recently discovered results are discussed, as well as applications to the
special means of real numbers.

A. Kashuri et al., in the paper “New Generalized Class of Convex Functions and
Some Related Integral Inequalities” [19], studied the new generic class of functions called
the (n, m)-generalized convex and studied its basic algebraic properties. The Hermite—
Hadamard inequality for the (11, m)-generalized convex function, for the products of two
functions and of this type, were proven. Moreover, this class of functions was applied
to several known identities; midpoint-type inequalities of Ostrowski and Simpson were
derived. Our results are extensions of many previous contributions related to integral
inequalities via different convexities.

This volume will be of interest to mathematicians specializing in inequalities theory
and beyond. Many of the results presented here can be very useful in demonstrating
new results.

Funding: The research was funded by the Transilvania University of Brasov. There is no third-party
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Abstract: Recently, fractional calculus has been the center of attraction for researchers in mathematical
sciences because of its basic definitions, properties and applications in tackling real-life problems.
The main purpose of this article is to present some fractional integral inequalities of Ostrowski type
for a new class of convex mapping. Specifically, n—-polynomial exponentially s—convex via fractional
operator are established. Additionally, we present a new Hermite-Hadamard fractional integral
inequality. Some special cases of the results are discussed as well. Due to the nature of convexity
theory, there exists a strong relationship between convexity and symmetry. When working on either
of the concepts, it can be applied to the other one as well. Integral inequalities concerned with
convexity have a lot of applications in various fields of mathematics in which symmetry has a great
part to play. Finally, in applications, some new limits for special means of positive real numbers and
midpoint formula are given. These new outcomes yield a few generalizations of the earlier outcomes
already published in the literature.

Keywords: Ostrowski inequality; Holder’s inequality; power mean integral inequality; n-polynomial
exponentially s-convex function

1. Introduction

The theory of inequalities along with convexity property plays an essential part in
present-day mathematical investigation. Numerical analysis relies on numerous mathemat-
ical inequalities such as the Simpson inequality, Hermite-Hadamard inequality, Bullen-type
inequality, Ostrowski inequality, etc. Recently, a broad exploration has been completed on
acquiring different variants of traditional inequalities using different methodologies. An
exceptionally intriguing methodology is to obtain a fractional version of the inequalities.
Inequalities associated with various forms of fractional operator such as Riemann-Liouville
fractional operator, Conformable, Katugampola fractional operator, Tempered fractional
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operator, Generalized proportional fractional, Weighted fractional operator, Caputo frac-
tional operator, etc. assume a critical part in the foundation of the unique solution for
fractional differential equations. For some recent articles on fractional inequalities, see
References [1-8].

The concept of convexity plays a strong role in the field of mathematical inequalities
and mathematical analysis due to the beautiful nature of its classical definition and its
algebraic properties. Recently, many authors have explored the close relationship and
interrelated work on convexity and symmetry. They have also explained that due to the
strong relationship between them, while working on any one of the concepts it can be
applied to the other one as well. Convexity theory has gained a lot of attention in recent
years and many generalizations and refinements of convexity analysis for inequalities have
been found (see, for example [9-15]).

Fractional operator examines the integrals and derivatives of any order « > 0 be
it real or complex valued. It was introduced by Leibniz and Marquis de 1'Hospital in
1695 by talking about the differentiation of functions. In any case, it encountered a fast
development throughout the limited time.

In the theory of integral inequalities, Sarikaya et al. [6] introduced the application
of fractional integral operator by establishing the fractional analogues of classical Her-
mite-Hadamard’s inequality using convexity. In [16], Dragomir for the first time estab-
lished fractional versions of Ostrowski-type inequalities.

In 1938, Ostrowski introduced the following useful and interesting integral inequality,
(see [17], page: 468).

Let ¢ : ] € R — R be a differentiable mapping on ], the interior of the interval ],
such that ¢ € L[y, 112], where 111,172 € ] with i > 11, If |¢'(z)| < K, forall z € [i1,12],
then the following inequality holds:

(- 242)°

(12 —m)?

‘4)(2) ! /”2 fP(X)dX‘ <K(2 —m) i + (1

Cm—my

x=¢
above result (1) is famously known as the Ostrowski inequality. For recent results and re-
lated generalizations, variants and extensions about the Ostrowski inequality (see [18-23]).
This inequality gives us an upper bound for the approximation of the integral average
1721'71 1;712 ¢(x)dx by the value of ¢(u) at the point x € [11, 172].

The Ostrowski inequality has a great number of applications in different fields of
mathematical analysis such as numerical analysis and especially in the theory of approxi-
mations. This type of analytic inequality and especially the techniques used in this article
have applications in various fields in which symmetry plays a significant role.

In the wake of contemplating writing about convexity theory, propelled and motivated
by the continuous generalizations and exploration in this interesting field, we discovered
that there exists an exceptional class of convexity known as exponential convexity and
recently a great number of researchers are working on this concept for its enhancement.
Antczak [24] and Dragomir [25] presented the class of exponential-type convexity. Con-
sequently, Awan [26] contemplated and examined another class of exponential convex
function. Very recently, Mahir Kadakal and Iscan [27] presented another meaning of
exponential-type convexity. Studying the above-mentioned papers, we have introduced a
new definition in this aspect which is called n—polynomial exponential s—convex function.
Applying this new definition, we have presented our main results as refinements of the
Ostrowski inequality. This is the novelty of our proposed work.

The objective of this paper is to obtain some new novel refinements of Ostrowski’s
inequality basically using n—polynomial exponential s—convex function for fractional cal-
culus. We initially attain a new fractional version of the Hermite-Hadamard inequality

holds, where K is the Lipschitz constant which is equal to sup { ‘ 2X)-9(9) ‘ JX F ¢}. The
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using a new class of convexity, namely n—polynomial exponential s—convex function. We
additionally investigate some important special cases that can be concluded from the
presented results of the article. In Sections 6 and 7, we present a few applications of the
presented results. We trust that the thoughts and strategies introduced in this paper will
rouse intrigued researchers for further research.

Recently, it has been seen that many scientists are interested in big data analysis,
deep learning and information theory using the concept of exponentially convex functions.
Hence, we believe that the concept of n-polynomial exponentially convex function using
fractional operator can attract the interest of such scientists for further development in the
field of deep learning, data analysis and information theory.

Motivated by the advancement of the theory of fractional calculus, ongoing research
and literature about integral inequality and convexity, the present paper is structured in
the following way: First, in Section 2, we will give some necessary known definitions and
literature. Second, in Section 3, we will explore the concept of n—polynomial exponen-
tially s—convex function. In addition, algebraic properties and examples for the newly
introduced definition are elaborated. In Section 4, we attain a new fractional version
of the Hermite—Hadamard-type inequality. Furthermore, in Section 5, we investigate
some novel refinements of the Ostrowski-type inequality and some special cases via the
Riemann-Liouville fractional integral operator. Finally, in the next Section, we present
some applications to special means and midpoint formula.

2. Preliminaries

In this Section, we recall some known concepts.

Definition 1 ([28]). Let ¢ : I C R — R be a real-valued function. A function ¢ is said to be
convex, if

e + (1 =x)n2) < xe(n) + (1= x)9(12), @
holds for all 1,1, € Tand x € [0,1].

The Hermite-Hadamard inequality states that if a mapping ¢ : | C R — R is convex
on ] for 171,172 € J and 17 > 11, then

m+mn 1 & @(m) + ¢(12)
¢<T>§ Pa— /}71 e(x)dx < 5 3)

Interested readers can refer to [8,29].

Definition 2 ([30]). A function ¢ : [0, +00) — R is said to be s—convex in the second sense for a
real number s € (0,1] or ¢ belongs to the class of K2, if

o(xm + (1= X)) < xX’o(m) + (1 —x) () 4)

holds for all 171,17, € [0, 400) and x € [0,1].

Breckner in his article [31] introduced s—convex functions. Hudzik presented several
properties and connections with s—convexity in the first sense in [32]. Usually, when we
put s = 1 for s—convexity, it reduces to usual convexity. In [29], Dragomir et al. proved
a generalized Hadamard’s inequality, which holds for s—convex functions in the second
sense.

Recently, many researchers have investigated the importance and development of
the theory of exponentially convex functions. The fruitful importance of exponential-type
convexity is that it can be used to manipulate for statistical learning, image processing,
stochastic optimization and sequential prediction. In 2020, Kadakal and Iscan investigated
a new class of exponential convexity, which is stated as follows:
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Definition 3 ([27]). A nonnegative real-valued function ¢ : ] C R — R is known to be an
exponential convex function if the following inequality holds:

oOum + (1= 0m2) < (X =) + (¢ = 1) 9(12). ©)

Definition 4 ([33]). A nonnegative real-valued function ¢ : I — R is called n—polynomial
convex, if

$lom + (1= x)m) < ,112[1— 1=x)T90m) + Z[l—xlw ), ©)

i=1

holds for every 11,12 € I, x € [0,1],5 € [0,1] and n € N.

Definition 5 (see, for details, [6]). Let ¢ € L[1j1,12]. Then the fractional integrals ]]‘;‘+ and ];‘,
1 2
of order & > 0 are defined by

X

o) = | - gz @Sm<x <)

and
1

o) =i [0 e@dz @<m<x <),

respectively.

3. Generalized Exponentially s-Convex Function

Definition 6. Let n € Nand s € (0,1]. Then the nonnegative real-valued function ¢ : ] C R — R
is known to be an n—polynomial exponentially s—convex function if the inequality holds:

12 1 B i
pUom+(1—=0m) < Y (@ = Dip(m) +~ Y (¢ =1) o). )
= =}

We represent the class of all n—polynomial exponentially type convex functions on the interval
J as POLEXPC(]) for each 11,12 € J and x € [0,1].

Remark 1. In Definition 6, if n = s = 1, then the 1-polynomial exponentially s- convex function
reduces to the classical exponential-type convexity given by Iscan in [27].

Remark 2. The range of the exponentially s—convex functions for some fixed s € [In2.4,1]

is [0, 4-00).

Lemma 1. For all x € [0,1] and for some fixed s € [In2.4,1] the following inequalities
n .

1l Z (eX —1)' > xSand Ly (-1 — 1)1 > (1 — x)° hold.

1—1

n
Proof. Now, we will prove the first inequality i.e, 1 3~ (X —1)7 > x* forall x € [0,1] and
i=1
s € [In24,1]andn € N.
The following inequality is well-known as Bernoulli inequality in mathematical analysis

(=14 eX) > 1+ i
= 14 (1 +e) > ieX

_ _ SX )i
1e5X

10
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Thus, we have

PPV e
ni= nesx -
n(e’* —1) 71+12 :fn(es"fl)+1i(es"fl)i<0
n n -

(-2 < Ly (@00 1)
O

Proposition 1. Every nonnegative s—convex function is an n—polynomial exponentially s—convex
function for s € [In2.4,1].

Proof. Applying Lemma 1 and s € [In2.4,1], we have

e(xm + 1= x)m) < xX°e(m) + (1 —x)°¢(2)

(e =1)'g(m) + Z( )ifp(flz)

M:

1
<=
n

I
-

i

O

Remark 3. If in the above proposition s = 1, then every nonnegative convex function is an
n—polynomial exponentially s—convex function for s € [In2.4,1].

Now, we will make some examples in the support of the newly introduced function.

Example 1. Since, ¢(x) = e* is a nonnegative convex function for all x > 0. Using Remark 3,
it is also an n—polynomial exponentially s—convex function for s € [In2.4,1].

Example 2. Since, ¢(x) = c is a nonnegative convex function on R for any ¢ > 0, using Remark 3,
it is also an n—polynomial exponentially s—convex function for s € [In2.4,1].

Example 3. Since ¢(x) = 1 forall x > 0, is a nonnegative convex function, using Remark 3, it is
also an n—polynomial exponentially s—convex function for s € [In2.4,1].

Example 4. Since ¢(x) = _0_xqt! form > 1and q > 1, is a nonnegative convex function.

m+q
Using Proposition 3, it is also an n—polynomial exponentially s—convex function for s € [In2.4,1].

Example 5. Dragomir [29] clearly investigated and proved that the function ¢(x) = x5, x > 0
is an s—convex function, for the above-mentioned conditions s € (0,1) and 1 <1 < L. In addition,

using Proposition 1, it is also an n—polynomial exponentially s—convex function for s € [In24,1].

Remark 4. If we assign n = 2 in Definition 7, we obtain the following definition for 2-polynomial
exponentially s-convex function.

11
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25X _ pSX 25(1—x)—es(1-%)
plxm + (1= x)n2) < (%)Mmh <€2> ¢(12)- ®)

4. Hermite-Hadamard Type Inequality via Fractional Operator
In this Section, we present one Hermite—Hadamard-type inequality for the n—polynomial
exponentially s —convex function.

Theorem 1. Let ¢ : A = [171,12] — R be a positive function with 0 < 11 < 1 and ¢ be an inte-
grable function on the closed interval sets 171 and 1. If ¢ is an n—polynomial exponentially s—convex
function, then the following inequality for fractional integral with « > 0 and s € [In2.4,1] holds:

1 _ Tla+1)
RCED B

i=1

Proof. Letz,z, € A. Then, using the definition of n—polynomial exponentially s—convex
function ¢ on A, we have

o(*52) < LL (1) Ipte + o) (10

2
i=

[ 00) -+ 5 o) ©)

Suppose z1 = xn2 + (1 —x)mn and zy = xim1 + (1 — x)n2.

Then (10) leads to

@(%) < %;(62 —1)i[<p(x172+(1—x)rh ) +Hexm+ (1 -x)p)]. (11

Now, multiplying both sides of (11) by x*~! and then, integrating the resultant in-
equality with respect to y over [0,1] and, we obtain

%¢(W> < %i(ﬂfl [/ X elon + (1= 0m dx+/ X oo + (1 - )’12)‘71)(]

Hence, we obtain

! + T(a+1) [,
%2?11@ _1>itp<’71 3 ’72> < (2 =) {I ~@(n) + 1, q;(m)}

The proof of the first part of the inequality (9) is complete.
Next, we prove the second part of the inequality (9) using the fact that ¢ is an expo-
nentially s—convex function, we obtain

e(xm+Q1—-x)m ) < (€ —1) p() +

Z( 1)i¢(111) (12)

i=1

S |-
M:
:\H

Il
-

and

=

@ = 1ig0m) + 1 (¢00 —1) pln). (3)

Mx

1
elom + 1 =x)n2 ) <

Il

-
Il
-

i

12
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Upon adding the above inequalities, we obtain

e(xm+ 1 =x)m ) +elxm+ (1 - )172 ) (14)

n

< [(p(mw(nzn{%z )+ E( “‘—1)}

i=1

Now, multiplying both sides of (14) by x*~!, integrating the resultant inequality with
respect to x over [0,1] and then using the change of variable technique, we obtain

r(a) (4 ®
W {]”r(l’(’h) + ]”E(P("ll)}

< [¢(n1)+¢(ﬂz)]Alx“’1{;Z (X —1) + %

=

(e - 1)‘}@(,

1

Consequently,
% {],71-(/’('72) + I,‘;y(w)} |
< lotm) + ot | {55 -7 L e )

This completes rest of the proof. [

Remark 5. Exclusively, in Theorem 1, If we assign o = 1, then we attain

1 7]1+172> < 1 2
- d 15
iy (8%71),4)( PR ‘/,71 e(x) dx (15)

< %;(ﬁ%)l {4)(771) + fP(’?z)} .

Remark 6. Exclusively, in Theorem 1, If we assign n = s = « = 1, then it reduces to
[Theorem 3.1, [27]].

In the next section, we establish new Ostrowski-type inequalities for n—polynomial
exponentially s—convexity via Riemann-Liouville fractional integral. A useful and inter-
esting feature of our results is that they provide new estimates on these type of inequalities
for fractional integrals.

5. Ostrowski-Type Inequalities for n-Polynomial Exponentially s —Convexity via
Fractional Integral

To prove our results, we need the following identity (see [34,35]).

Lemma 2. Suppose a mapping ¢ : | € R — R is differentiable on ]°, where 11,1, € | with
m <. If @' € L, 2], forall z € [y, 12] and « > 0, then the following equality holds:

(z=m)"+(p—2)" F("“*‘1 "
( 2 —m > @) - N2 — {] o lr
(Z*lﬁ)ﬂﬂ_l

1
= = '/0 X' (xz+ (1= x)m) dx

1) + I e(n2)}
_ oc+1
—(77,27272/ X ¢ (xz+ (1 =x)m) dx,  (16)

where I is the Euler gamma function.

13
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Theorem 2. Suppose a mapping ¢ : ] € R — R is differentiable on ]J°, where 11,12 € |
with 5y < na. If |¢'| is n—polynomial exponentially s—convex on [i1,12] for some s € (0,1],
¢' € Ly, np] and |¢' (z)| < K, forall z € [n1,112], « > 0, then the following inequality holds:

(Bl tmoaly,) Matd

L g + 1 qo(m)}]

M —m M2 —n
<K
= (2 —m)

w1 [ & r@+1,—s)—T(a+1) 1 \'
e LR )

S )

i=1

+(7]2—z)“+1{i(?(“+l,—s)_r(a+l)_ . >i

i=1 (—s)"s a+1
n(ypa+1,8) —T(a+1)e 1\
- . 17
L a
Proof. From Lemma 2, n—polynomial exponentially s—convexity of |¢'| and |¢’'(z)| < K,
we have
(Z*m)‘“r(nz*Z)“) ra+1 « ’
) + T
(Bl o) TOED e i + g2 o)
=)t (77272)le 1 el
< 2 +(1- dy + 22 +(1- dx.
S —— /0 X9z + (U =pom)ldx + === /0 X' (xz + (1= X)) dx
z—m)* rx{l s iy Ly ( sy iy }
< =Y (e -1 += N1 d
< Lt LG @ -l @l L (e ) le/ )| px
(772_'2)0(Jrl 1 a{l S SX iy 7 1¢ s(1-x) i / }
2= = -1 - 01 d
e ARG N ) lo/ )] fax

< (217_2111771 {W ‘/ x 72(@% id;(+}qn/(rh)(/ol)(“%é(es“”‘)71)101?(}
=D ) [ e vl [ B0 1) o
__K
= n(p—m) )
) (277/1)““{ i;(y(/x—k 1,(—js))zsr(a+1) _ %H)

n (et 1) ~Ta+D)e 1
()
y_ K

n(ﬂz*’?l) .
‘221 { g(ﬂw 1,(-js>);sr(uc+1) _ %)

" (y(a+1,8) —T(a+1))e 1y
_l;<'ya+ SSH] a+1))e +a+1> }

After further simplifications, proof of Theorem 17 will be completed. [

14
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Corollary 1. If we assign n = 1 in Theorem 2, then

(eenttpet) e
B '721—<171)
[ a+1{<7(“+1r(—_55))zsr(“+1) 70H1r1>
< y(a+1, sSHl (a+1))e5+a}rl>}
+ (2 — 2)**1 ’Y(“"’l/—s):r(ﬂé-i-l) 1
B Zzy(:+1,s{)<r(zx+1§)ei): 1 )}}Hl)

s+l a+1

U ptm) + 12 qo(vm}]

Corollary 2. If we assign s = 1 in Theorem 2, then

‘((Z* m)" + (2 72)0‘)?(2) r(le)

L o0 + 15 s»(nz)}]

2= 2 —
O
li( (x+1,1) F(w+1))e+%>l}
+(7]2_Z)Hl{i:Z;(y(a—H,(—i)l)—ar(wrl)_aj_l)z
(e -raser 1))

Corollary 3. If we assign &« = 1 in Theorem 2, then

’4)(2) o i " /m e(x)dx

+ (12 —2)° {g(%);;(%)}}

Corollary 4. If we assign « = 1 and z = 1y in Theorem 2, then

o) = [ g0
o) == | "ol

<l {E () B ()

15
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Corollary 5. If we assign &« = 1 and z = 11, in Theorem 2, then

1 2
- d
o) = [ ol

< o {E () £ (5 ]

Theorem 3. Suppose a mapping ¢ : | € R — R is differentiable on |°, where 1,1, € | with
m < 2. If |@'|7 is n—polynomial exponentially s—convex on (i1, 1j2] for some s € (0,1],q > 1,
gl =1—p, ¢ € Lp,m] and |¢'(2)| < K, forall z € [i1,12], with « > 0, then the
following inequality holds:

‘ ((Z - 771’)7': i- 1(771]2 - Z)“) (z) — 1:7(“;*"71)

wf<>+h¢mﬂ

. 2K (1 )%
T n(pp—m) \ap+1

x {(zfm)““ {X;(es_:_ly}l' + (-2 {Z;(es_ss_ly}}’} (18)

Proof. Applying Lemma 2 and the well-known Holder’s inequality, we have
(2—771)“+(112—Z)“> Tlat1) o
‘ ( T2—m ple) = 2= Uz ol
_ =)t (12— 2"
Tom-m 2=

< <Z”727};+1 (/ x“%c) (/Ol\w’(szr(l—x)m)I"dx)%

a+1

+%(/ 7‘“”") (/(:\qv’(xw (1 f)()ﬂz)|qd;(>%, 19)

Since |¢’|7 is n—polynomial exponentially s—convex and |¢’(z)| < K, we obtain

1 -1 n . n i
190+ @ =x0m)'ax = | {%gemnw(z);u%g(aw -1) W(m)w}dx

olm) + I qo(nz)}\

/1 X o' (xz+ (1= x)m)| dx + /01 X9 (xz+ (1= x)m)| dx

18 (s —s—1) 188 —s—1)

< K7 - - K7 —

<wo () e ()
18 /e —s—1\

< 2K7 = -

< nZ( ; > (20)
i=1

and

9" (xz + (1= 0m2) ["dx = / {% Y (@ 1)]g/ ()] + % ; (20070 - 1)i‘<P,(’72)|q}dX

i=1

01 oS —s—1 1 e —s—1\
— q
R el B ()
=1 i=1
18 (8 —s—1)
2KT = . 21
2 ( ) e

i=1 s

.O\bd

IN

0=

IN

By connecting (20) and (21) with (19), we have the desired inequality (18).
O

16
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Corollary 6. If we assign n = 1 in Theorem 3, then

(et e

20K ( 1 >%
Si
(2 —m) \ap+1

. {(Z_m)m <¥>ﬂ + (2 — 2 <¥H

Corollary 7. If we assign s = 1, in Theorem 3, then

(z=m)" + (p—2)" Ta+1), 4
(BT Jota - e

S%(ﬁﬂ(“’m“{é(”)i}%* Gt

Corollary 8. If we assign &« = 1, in Theorem 3, then

U5 oln) + 2 qo(vm}]

+ 15 o)

,72_,71/ cp(x)dx‘

S e e AR ol =

Corollary 9. If we assign « = 1 and z = 1y in Theorem 3, then

‘¢<Z)

fom = [ ot

2 —1M
< Jﬁ(ﬁ)ﬁ{(vrm)z{;(ﬁ%_l)l}q 23)

Corollary 10. If we assign « = 1 and z = 11, in Theorem 3, then

‘fﬂ(ﬂz) R— /:2 fp(x)dx‘

1112_]71 -1
Sﬁ(ﬁ)ﬁ(ﬂz—%)ﬁé(?)l}q. 24)

Theorem 4. Suppose a mapping ¢ : ] C R — R is differentiable on ]°, where 1,1, € J with
h <. Letq>1land g~ =1—p~L If |¢'|1 is n—polynomial exponentially s—convex on

17
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[m1, 2] for some s € (0,1], ¢' € Lyy, 2] and |¢' (z)| < K, forall z € [i71,n2], with a > 0, then
the following inequality holds:

‘((z—m (12 —2) )‘P T(a+1)
Mm—m mn—n

L gom) + 12 go(m)}]

1
q

<f(112*i11 ( 1>1 4
X{ 71a+1{;<'}’“+1—5 “Tla+1) 1 )

w+1

1

—E((v(oc+1,s)_r(aﬂ))ﬂflgs_ 1 >l}a

P a+1
+ (1 —2)" ! {i <Y(a+l'(s));r(a+l) - 1)1
i-1 —s)s “t
,Z< (x+1,9) F(a+1))s"‘1esai1>l};} (25)

Proof. Using Lemma 2 and power mean inequality, we have

‘((2*111)“+('12*2)“)(P(2) F(oc+l

{] o(n) + 5 o(r2)}

2= 2
S%/lxa|¢’(Xz+(1—x)ﬂl>\dx+%zz;‘:1/olxa|¢,(XZ+(1_X>’72>MX
’%12::1(/0 hd")li% (/Ol?(“|‘l’/(xz+(1—?()'71)\"@()%

- % (/o1 X“‘*")li% ( /01 xe'(xz+ (1 - X)ﬂz)}qu)% 26)

Since, |¢'|7 is n—polynomial exponentially s—convexity and |¢’(z)| < K, we obtain
1
/0 X 1o (xz + (1= x)m)|" dx

= [ (S EE vl @ R (e =) ool fan

< %{;(7(“1,(—;));5(“1)iwlrl)"
é< e r(Hl))siailes_ail)i} 27)

Consequently, similar computation gives
1 , .
/0 X o' ez + (1= x)m2)|" dx

n X 1M i
Z(ESX _ lﬂgv’(z)‘q + - Z(eS(lfx) _ 1) |§0/(i72)|q}d?(
i i=1

q (2 —s) — i
§£{2<7(a+1, s)al"(rx-&-l)i 1 )

n | (—s)"s a+1

-3 (1,0 T 1)t e - L)} (8)

a+1
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By connecting (27) and (28) with (26), we obtain the desired result (25).
O

Corollary 11. If we assign n = 1 in Theorem 4, then
o 3
‘((Ziﬂl) +(’7272) )?(Z) F(OC+1 {]a

o(m) + J3 9(12)}

T2—m 2 —
1\
(772*’71)<“+1>
1
) ya+1,—s)—T(a+1) _ a1 2 }5
[ { N (y(a+1,5) =T(a+1))s ey

+ (2" {7<“+1,(52);Sr(a+1) —(y(a+1,8) —T(a+1))s " te* - %ﬂ}ﬁ]'

Corollary 12. If we assign s = 1, in Theorem 4, then

[T R PEENES

7= o=y Uz #0m) + )2 (P(WZ)}’

% [(z,,mm {i(v(“ﬂ'[ﬂ)@r(““) *aL)l

i=1

_2< (@+1,1) r(¢x+1))e—}r1>i}é

+ (g2 —2)*™! {i <W(D¢+llzi)1);r(a+l) - a_1’_1>i

i=1

n

§ (e -rese )}

Corollary 13. If we assign « = 1, in Theorem 4, then

o= [ oo
-
9 }72_,]1’71?7(7(

il (e p ey

Yl —m)2" 1 =

Y et e e S ]

i=1

Corollary 14. If we assign « = 1 and z = 11 in Theorem 4, then

1 112
- d
lotm) = [ oot

K 2+ (25 —2)e° — 2 P r0es _ 2 052\
< ot { R () R ()
Vn(ga — )20 i=1 s i s
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Corollary 15. If we assign a« = 1 and z = 11, in Theorem 4, then

1 /'72 ‘
d
e, P(x)dx

K 24 (25 —2)e° — 2 o e 2 g 2\! i
< i e B (R n () |
Yn(pp —m)2 1 i=1 S i=1 S

6. Applications

@(72) —

We recall the following special means for different positive real numbers 71, 17, and
11 < 172 as follows:

1.  The arithmetic mean:

+
Al ) = T2 3 )
2. The Harmonic mean:
21112
H(m, = , 1,12 > 0.
(1, 112) ot o
3. The logarithmic mean:
M —1m
L=L(n,mn) = I —Inp’ m # 12

4. The generalized logarithmic mean:

r+1 T
B } ; reR\{-1,0}.

Le(im,m) = m

5.  The Identric mean:

m m =12

I(m,m2) = A=
1<’%> N

h

Proposition 2. Let 0 < 171 < 172. Then for some fixed s € [In2.4,1), we obtain

‘1n1(771/ ’72) - lnA(ﬂll 772)|

K (& /2+2(5—1)¢ —s2\  (L/2e5—s2—25—2\'
< (1 —n1)— it S A e A
< (n2 '71)211 { Z < 252 * ]; 252

i=1
Proof. The assertion follows from Corollary 3 by letting z = '71+'72 and ¢(z) = —Inz. O
Note: Estimation of “K” for the above Proposition 2 is as follows:

1
m

N\»—\

¢(z) = —Inz = |¢'(z)| = - <K= |¢'(n)| =

Proposition 3. Let 0 < 11 < 7o and q > 1. Then for some fixed s € [In2.4,1), we obtain

() (EEEY

Proof. The assertion follows from Corollary 8 by letting z = @ and ¢(z) = % O

S

\H(m,vz) - L’l(m,rzz)\ <2
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Note: Estimation of “K” for the above Proposition 3 is as follows:

1 1 1
p(z) =2 = l9'@) =z <K=l¢'(m)l = >
1

=

Proposition 4. Let 0 < 171 < #72. Then for some fixed s € [In2.4,1), we obtain

| A (1, 12) = LG, 2)|

< (m2 —171)%{ E(%) + i(w)l}

i=1
Proof. The assertion follows from Corollary 3 by letting z = 72 and ¢(z) = 2/*. O

Note: Estimation of “K” for the above Proposition 4 is as follows:
9(z) =2 = [¢(2)] = Is(2)"" <K = |9/ (m2)] = Is(2)""!

Proposition 5. Let 0 < 11 < 172. Then for some fixed s € [In2.4,1), we obtain

AL (y,172) — Lf?(m,’?z)‘

<2 K, ;71)(;1);@(65—;—1)’}?

Proof. The assertion follows from Corollary 8 by letting z = % and ¢(z) =25 O

Note: Similarly, one can estimate the value of “K” as estimated in the above propositions
(see Propositions 2—4).

Proposition 6. Let 0 < 11 < 172. Then for some fixed s € [In2.4,1), we obtain
G (&, ) — Lo, )
K& (242(s—1)ef —s? 2 —s?—25 -2/
B e )

i=1

Proof. The assertion follows from Corollary 3 by letting z = @, ¢(z) =e%,z>0and
K= g”ll/ﬁ —en2, O
Note: Similarly, one can estimate the value of "K” as estimated in the above propositions

(see Propositions 2—4).

7. Midpoint Formula

Since in [36], suppose d is the division 177 = xp < x1 < x < ... < x; = 175 of the
interval [, 2] and consider the quadrature formula

/nr/2 e(x)dx =T(¢,d) + E(e,d), (29)

where T(¢,d) = Z" ! <x’+x]“>h], is the midpoint version and E(¢,d) denotes the
approximation error and h = Xj11— X, forj=0,1,2,..,n—1.

21



Symmetry 2021, 13, 1429

Proposition 7. Suppose a mapping ¢ : I C [0,00) — R is differentiable on I° such that
¢’ € L[, 2], where 1,15 € 1with iy > 1. I |¢'| is n—polynomial exponentially s—convex
on [111,2], then for every division d of [111, 2], the midpoint error satisfy

E(p,d)| < %i,ﬂ;(%) +Z<M>'}'

Proof. Since applying Corollary 3 with n—polynomial exponentially s—convexity and
r71+712 on the subinterval [x;, x; 1]

Xi+ Xi1q Xj+1
o () - [ gl

]

/24 2(s—1)e° —s? P e — 5225 -2\
x{;( 252 +g 252 '

Summing over j from 0 to n—1 and taking into account that |¢’| is n—polynomial
exponentially s —convex, we obtain, by the triangle inequality

n-1 X1 xi+x;
< 2{/1 go(x)dx—90<]TH1>hj}'
j=0 Xj
n=l Xj1 xi+ x;
R e
j=0 Xj

S%fh?X{Z(2+2(Sgsl)e —s2>i+i<2e —s —25—2>1}.

i=1 i=1
which completes the proof. [

Note: Similarly, one can estimate the value of "K” as estimated in the above propositions
(see Propositions 2—4).

Proposition 8. Suppose a mapping ¢ : I C [0,00) — R is differentiable on I1° such that

¢’ € L1, 2], where 171,172 € Twithy, > 1,9 > 1, for s € [In2.4,1) in (29), for every division
d of [m,m2). If |@'|7 is n—polynomial exponentially s—convex on [1,12], then the midpoint

error satisfy
v e—s—1\17
E(o,d <2¢7 _ .
sl <2t () { B (=)

Proof. By applying the same technique as in proposition (7) but using the Corollary 8 with
=Nt 5
)

™=

Note: Similarly, one can estimate the value of "K” as estimated in the above propositions
(see Propositions 2—4).

8. Conclusions

In this article, we have taken into consideration a critical extension of convexity
that is referred to as n-polynomial exponentially s-convex functions and acquired a new
Hermite-Hadamard-type inequality and some novel refinements of Ostrowski-type in-
equalities. We also presented some applications of our established results to special means
of two positive real numbers and midpoint formula. In the future, new inequalities for
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other n-polynomial convex functions can be obtained by using the techniques used in
this article.
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Abstract: In this paper, by virtue of the symmetry principle, we construct proper weight coefficients
and use them to establish a more accurate half-discrete Hilbert-type inequality involving one upper
limit function and one partial sum. Then, we prove the new inequality with the help of the Euler—
Maclaurin summation formula and Abel’s partial summation formula. Finally, we illustrate how the
obtained results can generate some new half-discrete Hilbert-type inequalities.

Keywords: weight coefficient; Euler-Maclaurin summation formula; Abel’s partial summation
formula; half-discrete Hilbert-type inequality; upper limit function

1. Introduction
The celebrated Hardy-Hilbert’s inequality reads as:

2 apby T & 7 i
—_ a , 1
mzz“lr;m-kn sm(n/p) Z m) Z @
where p > 1, %+% =1, ay,by, >0,0< Y0 lu,’j, <ooand0 < Y5 bl < oo, the constant
factor ﬁ is the best possible (see [1], Theorem 315).
A more accurate form of (1) was provided in ([1], Theorem 323), as follows:

l 1
& apby o P P g
< by) . 2
m;ln;ernfl sin 7r/p mflu n;l ) @
In 2006, by introducing parameters A; € (0,2](i = 1,2),A1 + A, = A € (0,4], an
extension of (1) was provided by [2] as follows:
1 1
o o0 ) p ® 7
L Z < B(A,A)[ Y mPU )T el (Y a0 ®

m=1 n=1

where the constant factor B(A1, A,) is the best possible, and the beta function is defined as:

) pu—1
B(u,v) :/0 Wdt(u,v > 0).

Obviously, when A = 1,1 = Az =
M=Ay= %, inequality (2) reduces to the mequahty presented by Yang in [3].

Recently, applying inequality (3) and Abel’s summation by parts formula, Adiyasuren et al. [4]
gave a new inequality with the kernel ( + s involving two partial sums. Inequality (1),

mequahty (2) reduces to (1); whenp =g = 2,
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with its integral analogues, is playing an important role in analysis and its applications
(see [5-8]).

In 1934, a half-discrete Hilbert-type inequality was given as follows ([1], Theorem 351):
assuming that K(f) (t > 0) is a decreasing function, 0 < ¢ (s fo HE~ldt < 00,0, >0,
such that 0 < Y% ; al < co, we have:

(=S}

o0 (o)
/0 poZ nxunpdx<¢p%2 (4)

In 2016, Hong et al. [9] considered some equivalent statements of the extensions of (1)
with the best possible constant factor related to several parameters. Some extensions of
inequality (4) were given by [10-15]. Recently, Yang et al. [16,17] gave reverse half-discrete
Hardy-Hilbert’s inequalities and dealt with their equivalent statements of the best possible
constant factor related to several parameters.

In this article, following the method of [2,4,9], in the light of the symmetry princi-
ple, we construct proper weight coefficients and use them to establish a more accurate
half-discrete Hilbert-type inequality involving one upper limit function and one partial
sum. Subsequently, we prove this new inequality by means of the Hermite-Hadamard
inequality, Euler—-Maclaurin summation formula and Abel’s partial summation formula. As
an extension of the obtained results, the equivalent statements of the best possible constant
factor related to several parameters are discussed. It is shown that some new half-discrete
Hilbert-type inequalities can be derived from the special cases of our main results.

2. Some Lemmas
In what follows, we suppose that p > 1,1 5T L=1,5e[0, A€ (02,1 €(0A+1),

A€ (0,1]N(0,A+1), 4= A AZ + )‘1 Ao _q)” + %. We also assume that f(x) (> 0)
isa Lebesgue 1ntegrable functlon in any 1nterva1 (0,b](b > 0), and define the upper limit
function F(x fo t)dt(x > 0) with the partial sums as follows:

n
Ap:=Y a(ay >0,n eN: ={1,2,---}),
k=1
which satisfies F(x) = o(e!*), A, = 0(e!"1)) (t > 0;x,n — 0):
0< /0 x*p}”’lF’”(x) <ooand0 <y (n— U)fﬁquZ < 0. )

n=1

Lemma 1. (i) Let (71)idd—;g(t) > 0,t € [m,00)(m € N) with g (c0) =0 (i = 0,1,2,3), and
let P;(t), B; (i € N) be the Bernoulli functions and the Bernoulli numbers of i-order. Then, we
have ([5]):

/ Poy 1 (Dg(t)dt = —eqz—;g(m)(O <eg <19 €N). ©)
m
In particular, forq = 1,in view of By = %, we have:

~ spstm) < [ m(ng(ar <o %

For g =2, in view of By = — 3170, it follows that:

0< [ B0t < p58(m). ®
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(i) If h(t)(> 0) € C3[m,o0),h)(c0) = 0 (i =0,1,2,3), then we have the following
Euler-Maclaurin summation formula:

;i /oo (Bt + Lum +/ Pu(DI (1)dt, )

where:
1 {ee]

00 (10)

./: P(H)H (t)dt = —11—2h’(m) +

Lemma 2. Let s € (0,4],5 € (0,3] N (0,5)ks(s;) := B(si,s — ;) (i = 1,2), and let @(sy, x)
denote the following weight coefficient:

sp—1
@(sp,x) ;= x°"%2 1) eRy:=(0 11
(s2,x Zx+n_)(x + = (0,00)) 1)
Then, we have the following inequalities:
1
0 < ks(s2)(1— O(E)) < @(s2,x) < ks(s2), (12)
where we indicate O( )= sz fo ‘{jul du > 0.

Proof. For fixed x € Ry, we define a function g(x, t) by:

(.

(x+ t _’7)5 (t € (I’/,OO)),

g(x, t) =
which implies that g(x,t) > 0 (t € I;) and g € C®(I;), where I; := (1,00). In the
following, we consider two cases of s, € (0,1) N (0,s) and s, € [1,3] N (0,5) to prove
inequalities (12).

(i) For sy € (0,1) N (0, s), since:
ot
(fl)‘ﬁg(x,t) >0(t>n;i=0,1,2),

: : . . _t—y .
by the Hermite-Hadamard inequality, setting u = —*, we have:

@(sp,x) = x°%2 Z;lg(x,n) < xs’SZ/l g(x, t)dt
n 2

oo -1
=% Szfz Y+t 1)’ - fi’” (q+ u)® sdu
-
</ (ll‘ju)sdu:B(sz,s—sz) ks(s2).

On the other hand, in view of the decreasingness property of series, setting 1 = e

X
we obtain:

@(sp,x) =x°72Y " g(x,n) > xS*SZ/mg(x,t)dt
n=1 1

1 [/ Y
= [Ty ﬁu du = B(sp,s —52) — [y * (L{ju)s du

A

= ks(s2)(1-O(5)) >0,
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where O(—2 fo ” 2 du > 0, which satisfies:
1;!/ 52 1 u X 17
0< / / w2 du = — €ERy).
e w= 1 wery

In this case, we obtain (12).
(ii) For sy € [1, %] N (0,s), by (9), we have:
): g(x,n) —f1 dt+ zg x,1 +f1 Py(t) atg(xr )dt
n=1
= J, 8(x,t)dt —h(x),

where hi(x) is defined by:

h(x) = /Vlg(x,t)dtf%g(x,l) - ‘/1°° () g, Bt

We obtain f% g(x,1) = 2((;_7'17)17)5, and then integrating by parts, it follows that:

1 N G R LN () R U () s (1 (t—n)™dt
Ag(x’t)dt*/v (x+tfn)5dtfsz/v ) ey ey z/n (x+t—p)*

1 (1-n)* s 1 1
T s s+ At —
$2(x+1—1) sz(serl)/,7 (x+1—y)°'" (t—=1)

sp+1

1 (1-75)%2 s t—p)tt ! s(s+1 1
S = ( ’7) -+ ; ( 17) = + ( ) s+2/ (t _ 17)52+1dt
$2(x+1-n)° sas2+1) (x4++t—1p) y S22+ )(x+1-7) ]

1 (-9 s (1—p= s(s+1)(1—n)?"?
s2(x+1-1)°  sa(s2+1) (x 4+ 1—7) sy(sa+1)(s2 +2)(x +1— )"
We find:
) _ (=)= | s(=p2!
@glxt) = (x+t—n)° (x+t—p)° T
= (Qes)(=p)2? s 2 sx(toy)2 2
T () (ett=n)"  (xt—n)*"!
_ (Hl=s)(t=n)2 70 sx(tp)?
(rtt—y)° (x+t—y)* T

additionally, for s, € [1,3] N (0,s), it follows that:

i (2 S (a2
o (t=1) }>O(—1)’8—%]>O(t>n;i:0,l,2,3).

R AR T ray

By (8), (9) and (10), setting a := 1 — 7 (€ [3,1]), we obtain:

Sy—2
(s+1—s) " Pr(t ( N2 gp s _stls 52

x+t—1)° 12(x+1-7) 4 A
_ ( 17)52’ 5—2 _ xs [ (t=n)2”
xs [i7 Pt (+f ’7)5+1dt> 12(}:“7’7)5““ 720 (e W)SH][ 1
(x+1—1)s—as 2522 _ (x+1—r])s[(s+l)(s+2)a52’2 2(s+1)(2—sp)a%2 3 (2752)(3752)#2’4]
12(x+1-)""! 720 (x+1-y)"" (x+1-y)" (x+1—ptT
N v sa®2~! s 1(s+1)(s4+2)a%272 | 2(s+1)(2—sp)a2 3 + (2—s5)(3—sp)a%2 4
C ORGSRy 0 ey (1)t (11"
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and then we have:
a4 sa%273 s(s+1)a%2
h 5+2 hs,

hlx) > (X+1*’7)5h1+(x+1—r])5“ ? (x+1-7)

where h; (i = 1,2,3) are indicated as:

B (1=s)a®  s(2—5p)(3=sy)
1 720

—at
hy = sy 2 4
By b a2 (s+1)(2-s))

27 5(s41) 12 360/
a* s+2

hy = —— —————— — ———.
ST el D(s2+2) 720

Fors € (0,4],5, € [1,3]N(0,5),a € [3,1], we find:

a? 1
hy > —[52 (6a 4 1)sy + 124%] — %"

125,
In view of:
%[52 — (6a+1)sy+12a”] = 6(4a —s3) > 6(4- i E) > 0,and

=153 — (6a+1)sy +120%] = 255 — (62 + 1)
<2:3-(6-2+41)=3- <o,
we obtain: 5 ) )
(3/4)* 3 3 3 3 1
h1*12(3/2)[(2) (63 +D3+12(3) 1= 55
402 1 1 32432 1 1 301
2
oy > (DY (D) ) =
h2>“(15 12) 72—(4 [15 4) 12] 7280 720

8 34 1 27 1

8a* 6
120

> 22y -
hs 2 105 720 — 105(4) 120 ~ 1120

and then we obtain i1(x) > 0.
On the other hand, similar to the above, we have:

Zlg(x,n) —f] dt+2g x,1) +f1 Py(t atg(x,t)dt
P
= [ g(x, t)dt + H(x),

where H(x) is indicated as:

H(x) := %g(x,l) + /1oo Pl(t)%g(x,t)dt.

. 1 o sp—1
Thus, we obtain that ;¢(x,1) = m and:
] s+1—s)(t—n)2"2  sx(t—n)22
LM (55 [T L (et
t (x+t—1) (x+t—1)

Fors, € (0,3]N(0,5),0 < s < 4, by (7), we obtain:

1) _ sp—2
—(s+1 —sz)/l Pl(t)%dt >0,
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-2 —xs 5p-2 _ —(x+1-p)stas s, 2
Xs dt > a7 = ——— 122 g%
fl x-H— et 12(x+1-4)°"*! 12(x+1-7)°"t
—s ~u52_ s 521 —s as2—
= 20—y 12(x41-5)"1 12(x+1-1)°
Hence, we have:
a52-1 sa22  _ca sy a2
H(x) > 2(x+1-1)° 12(Y+1 )’ (2 12)<X+1,,7)é
2 S9—2
> (1.3 4y a2 (3 1y a2 ,
22 i 2 angy = G-I ahgy >0

Therefore, we obtain:

/1 glx, t)ydt <Y g(x,n) </ g(x, t)dt(x > 0)
: n=1 71

In view of the results obtained in the case (i), we obtain (12). This completes the proof
of lemma 2. [J

Lemma 3. Let s € (0,4],51 € (0,5),52 € (0, 3] N (0, s).Then, we have the following more accurate
half-discrete Hardy—Hilbert inequality:

_ [P anflx) H s i
1= [T L G e S (2 sler)

(13)
n=1

1 1
o s5—sp | 8 7 00 5 s q
A [T G ) { Y (n -y G q} '
Jo
Proof. For s; € (0,s), setting u = iy We have the following expression of the weight
coefficient:

s ) xslfl B 0o uslfl B
w(sy,n):=(n—n) /O mdx 7/0 mdu =ks(s1)(n € N). (14)

By using Holder’s inequality [18], we obtain:

o & x(1=5)1/q

_p)A=s2)/p
=I5 ¥, ey s N S andx

8

o0 A1) 1
< [fo ng] (x+n7:7)5 4(;17,1)1752’]( (X)dx]p
1
_ ) (1=s2)(9=1) q
XL I gy )

{fo (s2,x “ <572*%>]*1fr(x)dx}%
x { by w(s,1n)(n_,7)ql1 F+P-1 q}a'
n=1

Then, by (12) and (14), we derive inequality (13). The Lemma 3 is proved. [J

Remark 1. In (13), fors = A +2 € (2,4, A € (0,2],51 = Ay +1 € (1,5),A1 € (0,A +1)

1
52:/\2+1€ ]/\260 ] (0)\+1)
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Replacingf (x) (resp.ay)byF (x) (resp.Ap), in view of Lemma 3 and (5), we have:

/:o iﬁp(")d" < (koo +1))7 (kysp (g + 1))

1

><[/O X PhTER (i dx] 2 )~ Ma1a0)” (15)

Lemma 4. For t > 0, we have:

/oo e f(x)dx = t/oo e F(x)dx, (16)
0 0

) ety < ty” e t=m g, 17)
n=1 n=1

Proof. Integration by parts, in view of F(0) = 0, F(x) = o(e!*)(t > 0;x — 0), it follows that:

==

o= Ay 1
A P(a)dx < (kg (As 1)) 7 (K p(Ag + 1))
[ e
= lime "F(x +t/ “BF(x x—t/ ~IF(x)dx,
X—>00

and then (16) follows.
Inview of A,e~t"=1) = 0(1)(n — o), by Abel’s summation by parts formula, we obtain:

Z e~ t=mg, = lim Aue~t=1) 4 g Ay et — g=tn=n+1)]
n—oo n=1

n=

_ Z An[eft(nfq) _ e*[’(}‘l*ﬂ"’l)} _ (1 _ eft) % eft(nf;])An'
n=1

n=1

Since 1 —e~f < t(t > 0), we have (17). The Lemma 4 is proved. [J

3. Main Results

Theorem 1. Letp > 1,5 + ¢ = Ly € [0, 3],A € (0,241 €(0,A+1), A2 € (0,5]N (0,4 + 1),

A=2 p/\z + /;1,)\2 =2 qu + );72. Then, we have the following half-discrete Hilbert-type inequality:

! _/ (x+n— )Af( x)dx %“AH(AZJFD)%(I(MZ(M+1))

==

(n— ) 12147)". (18)

18

X [/Ooo x*p;\le’”(x)dxf[

Il
—

n

In particular, forAy + Ay = A(€ (0,2]) (A1 € (0,A), A2 € (0, 3] N (0,A)),we have:

/ s )Af(x)dx <MA2B(Ay, A2)

1

x| /O ot dx) [Y (- ) Al (19)
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Proof. Since for A > 0, we have:

! ! /OO A—=1,—(x+n—n)t
T A TN e uen
(x+n—n) T
it follows that: .
= ﬁfow 2 ﬂnf(x)f0°° t}‘*le*(XJrnf;])tdtdx

f t/‘ 1f e M f(x) dx):e (n=mtg, dt

ﬂ =

gﬁf AL [ e (x )dxngle (n=mt A, dt

1 oo 0 (e8]
_ (A+2)—1,—(x+n—n)t
F()\)/o ,12:1 A,lF(x)/O t e dtdx

CT(A42) o Ay i
Ty /0 n=17(x+n_,7)“2“ )d

By applying (15), we obtain (18).
In particular, for Ay + A, = A(€ (0,2]) (A1 € (0,4),A2 € (0,311 (0,A)), one has:

f‘M—z()A(Z + 1)) = kA+2E)‘1) J(F 1)) = B((M) +1,A4+1)
T(A+1)T(Ap+1) _ AjAal(A)T(A
= "Tam T Ty — (A+2)/\ 1A2B(Aq, A2).

Hence, it follows from (18) that:

/ O f(x)dx <AihaB(AyA2)
(x+n-—n)
< /O°° PR ()ax) [Y (n - ) AT 0)
X n=1

which is the desired inequality (19). O

Remark 3. Putting n = 0 in (20), we have:

/Ooo Z (x +n)Af( )dx <)\1/\QB(/\],A2)

1 l

X [/0 x PMIIEP (x)dx] | Zn 2= 1Aq} . (21)

Namely, (18) given by Theorem 1 is a more accurate extension of (21) above. It should
be noted that here the statement of “more accurate inequality” borrows from the statement
mentioned at the beginning of the paper on the comparison between inequalities (1) and
(2) described in the previous literature.

Theorem 2. IfA — A1 < % then the following statements (i), (ii) and (iii), associated with
Theorem 1, are equivalent:

1 _
(@) (kyp (A2 +1)7 (ky (M +1))7 <kaga(252 + 4 4 1);

(i) A+ Ay = A(€ (0,2]),wheredy € (0,4),A2 € (0,3]N(0,A);
(iii)  The constant factor:

S

T(A+2)

T(kﬂz()‘z + 1))%(’9\+2(/\1 + 1))%
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in (19) is the best possible.
Proof. “ (i)=-(ii)”. By using Holder inequality with weight, we obtain:

ka2(42 4+ 41 +1)

A=Ay M A=)y A

ATA2 21
=f (1+u) /\+2” P du = [ 1+;)AT2 (w7 ) (' )du
1 1
© 1 /w 1
< —L _rn L Mg
_[/O (H—u)”zu u] [O (H—u)”zu u]
00 1 1 00 1 L
_ (Ao +1)=1g7" / M+D) =117
v v u u
U o A e !

1 1
= (ka2 (A2 +1))7 (ky 2 (M +1))7. 22)
In view of inequality (i), we conclude that (22) keeps the form of equality.
We observe that (22) keeps the form of equality if and only if there exist constants A

and B, such that they are not both zero and Aut~*2 = BuMa.e. in R, (see [18]). Assuming

that A # 0, we have u* ~%2=4 = %a.e. inRy,and then A — Ay — Ay = 0, namely, Ay +A; =

A(€ (0,2]), where, Ay € (0,A),A2 € (0,31 N (0,A).
“(i)=>(iii)". For Ay + Ay = A(€ (0,2]), A1 € (0,A), A2 € (0,3] N (0,4), (19) reduces to

(20). For any 0 < & < min{pAy,gA,}, we set:

f(X):_{ N T e e N

_E_ ap :=n
xA1 b 1/}(21 rbn

Then, it follows that:

0,0<x<1,
fO Hdt < %x)”_i,x >1 7
1=
~ n _E_ _E_ _&
Api= ) ﬁk Z kAz ! .]” Az 1 Azl,in/\z 1 (Vl € N)
q

k=1
If there exists a positive constant M < A1A;B(Aq, Ay ) such that (20) is valid when replacing
MA2B(A1, A2) by M, then, in particular for 57 = 0, by substitution of f(x) = f(x),ay = @y,
F(x) = F(x) and A, = A, in (21), we have:
1 1
~ co ~ 7 & ~n 4
[:= / 3f (x) e dx < M(/ PR (x)dx) (Y n ALY (23)
0 7 (x+ n) n=1
In the following, we show that AA;B(A1,A2) < M, and then M = A1A;B(Aq, Ap) is

the best possible constant factor in (20).
By (23) and the decreasingness property of series, we obtain:
1

1
¥ 1  loph—egn? Lo o1 ke
I<M/\1_£(/1 x Pl PMe gy )\Z_E(Zn 2= lyara—e)
P q n=1
1 0o 1
= M) (R (P (L p e )’
1 p q
1 1
<M(A11§ E (J77 x e dx) P ( 1+f Yy~ dy) 7

M1 :
= G e+
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By (11) (for 77 = 0), setting A2 = A» — £ € (0,3) N(O,A)(0 < Ay = A1+ £ < A),

we obtain:

_ /\1+ 1 (A2=£)=17, —e—1
I=["lx P l(Hn)\n o x e dx
= [1 /\2, x e 1dx > B )\1,)\2 [1 [1 — (x

7B )\1//\2 [fl x & ldx—fl r\ﬁ +1)dx}
= 1B(A+ 54 = £)(1-€0(1)).

Yx—t dx

Then, in virtue of the above results, we have:

B(/\1+q /\2—6)(1—80(1))< el < M(5 1_£)(A 1_ )(e+1)1.

€
1T p 72 9

Putting ¢ — 0", in view of the continuity of the beta function, we obtain A;A;B(Aq, A7) <
M. Hence, M = A1A;B(Aq, Ay) is the best possible constant factor in (20).
“(iii)=-(i)”. Since A — A1 < %, for Ay = % +M %, = % + /\—pz, we find:
A=Ay
p

A=A A A
Lo M 0<Aij i< 242 =0,
q p P4

A A
AMF+Ay= + —

q
< M2+ 12 =} and L ApB(A1, 4,) € Ry

Ay < 1.
I( A+2 1 1. . :
(kA+2()‘2 +1))7 (kyp(A1 +1))7 in (19) is the best possible,

If the constant factor
then by (21) (for A; = ;\,‘(l = 1 2)), we have:

T'(A+2 1 1

(F(A) ) (kpp2(A2+1)) 7 (ky (A +1))7

MA2B(Ay,Ap) = F(A<+)2)k/\+2(5\1 +1)

= “ﬁf’m@ 2o+ g+ 1)(ERY),

namely, statement (i) is valid.
Hence, the statements (i), (ii) and (iii) are equivalent. This completes the proof of

Theorem 2. [
Remark 4. Putting n = % in (20), we acquire:

oo a
/ Y M f(x)dx <MA2B(A,A)
(U (x +n— 1)

1
1l o 1 —qAy—1 q
ATl (24)

><[/ xTPMTIEP (i dx] Z n——
0

In particular, forh = 1,A\y = Ay = 1, we have the following Hilbert-type inequality with the

best possible constant factor

b Ly

1
-3- q

dx<7[/ *’*11-"” dxE i n—f Am . (25)

n=1

34



Symmetry 2021, 13, 1548

4. Conclusions

In this paper, based on the weight coefficients and the idea of introducing parameters,
by applying Hermite-Hadamard inequality, the Euler-Maclaurin summation formula and
Abel’s summation by parts formula, a more accurate half-discrete Hilbert-type inequality
involving one upper limit function as well as one partial sum is given in Theorem 1. The
equivalent statements of the best possible constant factor related to several parameters are
considered in Theorem 2. As applications of the main results, some new inequalities are
proposed in Remarks 3 and 4. Our results would provide a significant supplement to the
study of half-discrete Hilbert-type inequality.
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Abstract: Quantum information theory, an interdisciplinary field that includes computer science,
information theory, philosophy, cryptography, and symmetry, has various applications for quantum
calculus. Inequalities has a strong association with convex and symmetric convex functions. In this
study, first we establish a (p, g)-integral identity involving the second (p, g)-derivative and then we
used this result to prove some new trapezoidal type inequalities for twice (p, q)-differentiable convex
functions. It is also shown that the newly established results are the refinements of some existing
results in the field of integral inequalities. Analytic inequalities of this nature and especially the
techniques involved have applications in various areas in which symmetry plays a prominent role.

Keywords: Hermite~Hadamard inequality; (p, )-calculus; convex functions

1. Introduction

In convex functions theory, Hermite-Hadamard (HH) inequality is very important,
and was discovered by C. Hermite and J. Hadamard independently (see, also [1,2], p. 137).

T + 70 1 i T1(7t1) + I1(717)
H< ) < p— 7T17T/H(%)d% < — = 1)

2 2

where IT is a convex function. In the case of concave mappings, the above inequality
satisfies in reverse order.

On the other hand, several works in the field of g-analysis, beginning with Euler,
have been implemented in order to master the mathematics that underpins quantum com-
puting. The term g-calculus creates a link between mathematics and physics. It's used
in combinatorics, number theory, basic hypergeometric functions, orthogonal polynomi-
als, and other fields, as well as relativity theory, mechanics, and quantum theory [3,4].
In quantum information theory, it has many applications [5-7] and it not only has a link
with the estimations calculus, but also to affine algebraic geometry including the famous
Jacobian Conjecture [8,9]. Euler used the g-parameter in Newton’s work on infinite se-
ries, which is why he is thought to be inventor of this important branch of mathematics.
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The concept of g-calculus that is known to be calculus without limits was given by Jack-
son [10,11] for the first time in a proper way. The notions about the g-fractional integral
and g-Riemann-Liouville fractional integral was given by Al-Salam [12] in 1996. Since
the research increased gradually in this field, therefore Tariboon and Ntouyas [13] gave
the idea about the -, D;-difference operator and g, -integral. The notions about the T Dy-
difference operator and q"2-integral were given by Bermudo et al. [14] very recently in
2020. Sadjang [15] generalized the concept of g-calculus by introducing the concepts of
(p, q)-calculus. Soontharanon et al. [16] introduced the concepts of fractional (p, q)-calculus
later on. The (p, q)-variant of , Dy-difference operator and g, -integral was introduced by
Tung and G6v [17]. Recently, in 2021, Chu et al. introduced the notions of D), ; derivative
and (p, q)-integral in [18].

Many integral inequalities for many sorts of functions have indeed been investi-
gated employing quantum as well as post-quantum integrals. For example, the HH
inequalities and their right-left estimates for convex and coordinated convex functions
via 7, Dy,”? Dg-derivatives and qr,, 9™2-integrals were given by different authors in [19-27].
Noor et al. [28] used the pre-invexity to prove HH inequalities in the setup of g-calculus.
Some parameterized g-integral inequalities for generalized quasi-convex functions es-
tablished by Nwaeze et al. [29]. Khan et al. used the notions of Green functions to
establish some new inequalities of HH type in [30]. Budak et al. [31], Ali et al. [32,33]
and Vivas-Cortez et al. [34] proved some new boundaries for Simpson’s and Newton's
type inequalities for convex and coordinated convex functions in the setting of g-calculus.
One can consult [35-37] for q-Ostrowski’s inequalities for convex and coordinated con-
vex functions. In [38], the authors generalized the results of [21] and proved HH type
inequalities and their left estimates using r, D} 4-difference operator and (p, q) ,-integral.
Recently, in [39], the authors established the right estimates of HH type inequalities proved
by Kunt et al. [38]. For (p, q)-Ostrowski type inequalities, one can consult [18]. The results
proved in [14] were generalized in [40].

Inspired by the ongoing studies, we establish some new post-quantum trapezoidal
type inequalities for (p, q)-differentiable convex functions through the (p, q)-integral. Fur-
thermore, we prove that the newly established inequalities are the extensions of some
already given inequalities.

The organization of this paper is as follows: In Section 2, a short explanation of the
concepts of g-calculus and some associated works in this direction are given. In Section 3,,
we review the notions of (p,q)-derivatives and integrals. In Section 4, the trapezoidal
type inequalities for twice (p, g)-differentiable functions via (p, q)-integrals are presented.
The relationship between the results provided here and comparable outcomes in the
literature are also taken into account. Section 5 provides some findings as well as other
study directions.

2. Quantum Derivatives and Integrals

In this portion, we recall a few known definitions and related inequalities in g-calculus.
Set the following notation ([4]):

1—g"
[n], = 1,2 =14+q+@ +..+q"", g€ (0,1).

The g-Jackson integral of a mapping IT from 0 to 715 is given by Jackson [11], which is
defined as:

o) ~
/H(%) dgze = (1—q)my Y q"TI(mpq"), where 0 < g <1 ()
0 n=0
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provided that the sum converges absolutely. Moreover, over the interval [711, 715], he gave
the following integral of a mapping I1:

7?H(%) dgre = 72H(%) dgx —7;H(%) dgr .
m 0 0

Definition 1 ([13]). The qy,-derivative of mapping I1 : [y, 5] — R is defined as:

1(5) —TI(g5¢+ (1 — q)7m1)
(1—q)(5¢—m)

For s = 1y, we state 7 Dgl1(7ry) = im,, 7, 7, Dgl1(5¢) if it exists and it is finite.

m DgTl(30) = , % F . ®G)

Definition 2 ([14]). The g™-derivative of mapping I1: [y, 7t2] — R is given as:

_ (g + (1 — q)mp) — T1(5)
(1—q)(m— )

For s = 715, we state ™Dyl 1(72) = lim,,—, 7, ™Dgl1(¢) if it exists and it is finite.

2D, T1() , % F T @)

Definition 3 ([13]). The q,-definite integral of mapping I1 : [my, 5] — R on [y, 2] is
defined as:

[160) mdgr = (=)= m) ¥ g'Tilg" s+ (1= q")m), =€ [m,mal. 9)
7:[1 n=0

On the other side, the following concept of g-definite integral is stated by
Bermudo et al. [14]:

Definition 4 ([14]). The q™-definite integral of mapping 11 : [y, 712) — R on [my, 71p] is
given as:

/H(T) d,t = (1—q)(m — ) i qII(G" e+ (1 —q")mp), » € [m1,12].  (6)
o n=0

Remark 1. If T is a symmetric function, that is TI(t) = f(m; + mp —t), then we have the
following relation

T T
/ TI(t) ydgt = / TI(f) 2d,t.
m m

3. Post-Quantum Derivatives and Integrals

In this section, we review some fundamental notions and notations of (p, 4)-calculus.

The [H}M is said to be (p, )-integers and expressed as:
pn o qn
nl =
g = 5

with 0 < g < p < 1. The [n] pq!and { Z }! are called (p, g)-factorial and (p, g)-binomial,

respectively, and expressed as:

n
[n],,! = kljl[k}m, n>1,100],,!=1,
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Definition 5 ([15]). The (p, q)-derivative of mapping I1 : [rr1, 7o) — R is given as:

Dy qI1(5) = w, x#0 ?)

with0 <g<p<1
Definition 6 ([17]). The (p,q) ,-derivative of mapping I1: [1t1, 7r] — R is given as:

with0 <g<p<1
For » = 111, we state , Dy gI1(711) = lim,, 7, 7, DpT1(¢) if it exists and it is finite.

Definition 7 ([18]). The (p, q)"-derivative of mapping I1 : [r11, ta] — R is given as:

_ g+ (1 —q)mp) —Tl(psx + (1 - p)m2)

" Dpal1() TR

, % # . )

For s = 115, we state ™Dy, g11(712) = lim,,—z, ™D, 4I1(5¢) if it exists and it is finite.

Remark 2. It is clear that if we use p = 1 in (8) and (9), then the equalities (8) and (9) reduce
to (3) and (4), respectively.

Definition 8 ([17]). The definite (p, q),-integral of mapping I1 : [y, 5] — R on [my, 715] is
stated as:

[0 gt = =)o =) ¥ Tni (s (128 )m) o)
Jm n—0 P p 14

with0 <g<p<1

Definition 9 ([18]). The definite (p, q)™2-integral of mapping 11 : [y, o] — R on [y, 70| is
stated as:

T ) n n n
/ II(7) ™dpgt = (p—q)(m2— ) ) pZH H<—pz+l n+ <1 — pZH > 7'[2) (11)
n=0

Jx

with0 <g<p<1

Remark 3. It is evident that if we pick p = 1 in (10) and (11), then the equalities (10) and (11)
change into (5) and (6), respectively.

Remark 4. If we take 11 = 0 and »c = 7, = 1 in (10), then we have

1 00 n n
_ q q
/O H(T) OleT - (P - q) Z pn+ln<pn+1 >

n=0

Similarly, by taking s« = 711 = 0 and 7, = 1 in (11), then we obtain that

1 1 0 qn qn
/0 I1(7) dmr:(p—q)zpmn(pW).

n=0
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In [38], Kunt et al. proved the following HH type inequalities for convex functions via
(p, @), -integral:

Theorem 1. For a convex mapping I1 : [y, o] — R, which is differentiable on [y, 112], the
following inequalities hold for (p, q) ,-integral:

pra+(1=p)7
SRRy R T ) sy e < T EPIR) g
[Z]p,q p(ﬂ'z - 7-[1) st [2};1,(1

where0 < g <p <1

Lemma 1 ([40]). We have the following equalities:

oy Ty — 1M a+1
/7{ (702 = 5)" "dp ¢ = ( [+ 1])

1 A

o B R B (7_[2 o 7_[1)0(+1
./nl (o2 = )" mdpg2e =y 1,,

where . € R — {—1}.

Remark 5. If I is a symmetric function, that is I1(t) = f(rmr; + mp —t), then we have
following relation

]

It dt:/ TI(F) ™2d,t.
m (1) mpg Jpmi+(1-p)ma * 1

/Pﬂ2+(1*P)7T1

4. Post-Quantum Trapezoidal Type Inequalities

In this section, we prove some new trapezoidal type inequalities for twice (p,q)-
differentiable convex functions using the (p, q)-integrals.

Lemma 2. Consider a mapping I1 : I = [y, 72| — R, which is twice (p, q)-differentiable and
2 D%WH is continuous and integrable on 1. Then, the following equality holds:

™
pll(pm + (1 — p)mo) + qL1(7) 3 1 / ) ot
[2]pq U s
' prr+(1-p?)m
Pl - m)? | -
T2, /pr(l — 1) 2Dy (7 + (1 = 1) m2)dp g, (13)
pAa (

where 0 < q < p <1.

Proof. Consider

’TszwH(‘rm +(1—-1)m)
(gt + (1 —qt)mp) — H(ptm + (1 — p1)ma)
(p—a) (2 —m)t
pI(g* T + (1= 1)) — (2], 11(pa7 + (1 — pqr)m) +qlL(p*Tmy + (1 - p* 1))
pa(p — q)*(m2 — m)*7?

3
DW!

Now, from Definition 9, we have
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1
/ pt(l—g7) HZD?WH(TTL] +(1—1)m)dy,T
0

pH(g* Ty + (1 = ¢*1)m2) — (p+ q)11(pgT

1

/pT(l —a7) +(1 = pgr)m) +qll(pPrm + (1 - p*O)m) |
) pa(p —9)*(m2 — m)*7> -
o 1
q(p = q)*(m2 — m)?
flPll(qzmﬁ(lfqzﬂﬂz)7(P+q)1I(quﬁ(lquf)ﬂz)wlI(szﬂﬁ(lfpzf)nz)d .
0 T 1
1 1
x 7pq_O[H(q217'c1 + (1= 1)) dpeT + q[Z]p,qofH(pq‘rrcl + (1= pqr)m)dp,T
1
—q% [TI(p*tmy + (1 — p?T)12)dp g T
0
r o) n+2 n+2 h
p(p—a) & (T +(1- zmm)
n=0
e n+1 n+1
~(p* =) (T + (1- L))
7?;0
_ q
B 1 +ap—a) T 0(Hm+ 0 nz)
- — )2 _ 2 © o n+2 n+2
AP =P =m)P* | pg(p—g) ) ,,ZHH(meHl* Zm)@)
© n n+1 n+1
407 =) & (G m o+ (1 - o))
~2(p =) L g1 (e + (1 - o))
[ p(p — @) (1(r2) = (g1 + (1 = q)72)) 1
+a(p =) (M(prm + (1= p)72) —T(m2))
3 2 2
1 —my S TG P+ T (p—g)T(pm + (1 p)m)
R e PP+ (1-p?)m
q(p = q)*(m2 — m)? 2 2 .
+p(p — Il(gmy + (1 —q)m2) — pover I1(5) ™2dp 52
prr+(1-p?)ma
pl2] 4
+ () ™2dp g2 — (p* — ¢*)U(prry + (1 = p)72)
L pPri+(1-p?)m i
o3
= ! () + 4 (prry + (1 — p)mp) — Pl ’ [1(5) dy e, (14)
g —m)2 T PE(my = m)? ! VP -m)? pa
prr+(1-p?)m
Now, we have the identity (13) by multiplying both sides of (14) by 2]7) and the

proof is complete. [

Remark 6. In Lemma 2, If we set p = 1, then we have

1

I1(7t1) + qI1(7p)

(o — mp)?

2],

/H
7T2—7T1

T2l = /T(l —q7) nzD%H(TTEl + (1= 1)m)d,T.
0

2l
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IN

IN

IN

1
27-(_7-(2
EZLEA—JL*‘mDéﬂHﬂOW/T%lfqﬂdMT+
0

2(70 — 714)2
pq”(my — 1) [p3

This is established by Ali et al. in [19].

Remark 7. In Lemma 2, If we set p = 1 and later take the limit as g — 17, then we have

o) _ > 1
T1(ry) —; [(m) - i o /H(%)d% = M / (1 - (tm + (1 — 1) mp)dt.

This is established by Alomari et al. in [41].

Theorem 2. Consider the assumptions in Lemma 2 are valid. If | Dé’ql_[| is convex on I, then
the following inequality holds:

!
pIL(pmy + (1 — p)m2) +qT1(mr2) _ 1 / T1(5¢) 2d,, 3¢
[2]M T — M

P+ (1-p2)my

3.2 2

P9 (m — m) T2 2 2\| 2

S S|P DN (m) |+ (pT = p+q7)| 2Dy T
Plp,q[%q[‘*]p,q[ |0 |0

where0 < g < p <1

Proof. Taking modulus of (13) and applying the convexity of nzDﬁlq , We obtain
H(pm + (1~ p)ma) +qll(m) 1 i
pLipm —p)m2) +qti(mn) / [1(30) ™2d. 3
[2} PAa ) — 7 ( ) P

prm+(1-p?)m

1
—m)?
7;2] ™) /T (1—g71) ”ZDZ JI(Tm + (1 - T)nz)‘dp,q'r
P 0
1
7T2 - 7-[1 2 T 12 M 12
2] /T (1- qr ZDp,qH(nl)) +(1-1) ZDp/qH(nz)Hdp,qT
P 4

1
2], ﬂnglqn(nz)‘ b/r(l —qT)(1 = T)dpyT

HZDFZWH(TEI)‘ +p2 (P = p+q°) D} 11(ma) H

[2],418]pq (40
and the proof is completed. [
Remark 8. In Theorem 2, if we set p = 1, then we obtain [19], Theorem 4.
Remark 9. In Theorem 2, If we set p = 1 and later take the limit as q — 1~, then we

obtain [42], Proposition 2.

Theorem 3. Consider the assumptions in Lemma 2 as valid. If | Dg,qHV ,r >1,is convexon I,
then the following inequality holds:

Uy
pl(prm+ (1 = p)mo) +qH(m) 1 / T1(5¢) 2d 03¢
[2] 7Ty — 71 .
prr+(1-p?)m

)

1

3q2(rma — 711)2 "
P jﬁg 2 1)l [p nsz,,qH(ﬂz)‘ ] i
[2]pq" [3],,4[4]5.
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where0 < g < p < 1.

Proof. Taking modulus of (13) and applying the power mean inequality, we have

3
pl(pm+ (1 —p)ma) +q11(m) 1 "
[Z}p,q T—m / H(z0) ™2dp 422

PPm+(1-p)m
1
)2
7'[277r1 /Tz 1—g71)
0

IN

nZDéqu(rnl +(1- T)ﬂz)‘dp,ql’

1 =3 ;

— )2 .
712 ) [/ T(1—gt dpq'l:| {/ (1 —¢q71) HZD?WH(TTH +(1- T)nz)‘rdp,qr
0

0
Now, using the convexity of |2 D%,q r, we have
o
pl(pmi+ (1 —p)m) +qll(m) 1 / -
[2} P4 ) — 7 H(%) dp,q%

prm+(1-p?)m
1
r

1—
Py~ m)? | 1
< W [O/T(l - q’r)dmr}
1 1 '
X [ HZD;qH(m)’ /12(1 —qT)dp,gT + ‘”ZDﬁrqH(nl)) /T(l —q7)(1—1) dp,q*r]
0 0
< PP(m-—m)?| p? o
- 2l,, 21,4034

1

T 12 au
ZDMH(HZ)‘

P |mpy e R )
X{mwwpq’ Pralll )‘ " Blyq[4lp4

— 2 r
7;9(; e ) [p|=D3,00m)| + (0 = p+0?)
[ ]Pq [3};717[ ]F;q

which completes the proof. O

1

HZD}ZWH(T[Z) ‘7 ] G

Remark 10. In Theorem 3, if we set p = 1, then we obtain [19], Theorem 5.

Remark 11. In Theorem 3, if we set p = 1 and later take the limit as q — 1, then we have

7T ™ 7]7 TTH — 2 r r %
H(ﬂl);‘n( 2) n;nl/n(”)d“ S%“H”(ﬂlﬂ + 11 ()| } )

Theorem 4. Consider the assumptions in Lemma 2 are valid. If |™ Df,/qHV is convex on I for some
r > 1, then we have the following inequality:

]
pi(pm + (1 — p)ma) +ql(ma) 1 / T1(5) ™dpq5
21,4 m

P+ (1-p?)my
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r r
Rl mp | [PDRIG| £ (2], - D) "D, T1(7s) |
- 2,4 2,4 '

n

wherez = (p —q) E (pZ+1 )SH(] —(
n=0

%)”“)5,0 <g<p<lands=r/(r—1).
Proof. Taking the modulus of (13) and applying the Holder’s inequality, we have

4o

pl(pm + (1 = p)m2) + qL1(7m2) 1 /

[2] pq T — 7

1 1
< pre-mp { [ qr))sd,,,,,r} /
PA 0 0

Now, using the convexity of | D%rqH\’, we have

T1() nzdp,q%
prr+(1-p?)m

5

r
T2 Df,rqH(Tm +(1- 1)712)‘ dpqT

2
pH(pm + (1 [—2]17)712) +qll(m) - i - T1(3¢) ™d,, 4 5¢
prr+(1-p?)m

)

1 3
S W |:/(T(1 _ qT)sdp,qT]
I 0

1
-

1 1
r r
X [ ﬂzDg,qH(rcl) /po,qTJr ‘ﬂsz,’qH(nz)’ /(1 —7) dp,qT:|
0 0

1
-

HZD%,qH(nl)‘r—f— (12,. - 1)

r
mD2 T1(75) ‘

where

Hence, the proof is completed. [J
Remark 12. In Theorem 4, if we set p = 1, then we obtain [19], Theorem 6.

Remark 13. In Theorem 4, if we set p = 1 and later take the limit as q — 17, then we have

I1(rm;) + (72) 17

1 7 2 _ nz_nlﬂ/H(%)d%
(2 — )2 I () + ()]
%(B(s—i—l,s—i—l))l/{ 1 7 2 } ,

where B(s + 1,5+ 1) = z = [(t(1 — 7)%d7 is the famous Euler’s beta function.

Ct—=r
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Theorem 5. With the assumptions of Theorem 4, we have the following inequality

Plipm+ (1-p)m) +qll(m) 1 /

2] I1(5) ™dpg5¢

P4 T — M
’ prr+(1-p?)ma

2 ) |
pg* (2 — 1) 1 b ,

= 2

- 2y ([5+1]p,q [21‘ Dp,qn(ﬂl)‘ + 2

2n n+1\ " c0
where 2y = (p — q) Z T (1-5) andz = (p—q) T
n=0

HZD,Za,qH(ﬂz)H ',

n n n+1\ "
pqﬂ (l - #)(1 - %) .
Proof. Taking modulus of (13) and applying the Holder’s inequality, we have

T

pI(pt + (1 — p)72) + q11(0) 1 '

— 11 d
[z]p q Tt — 71 (%) p,q”
’ prm+(1-p?)m

1 1
ST 1 H
20 \2
% [/ °d,, ,7'(] [/ (1—gqt) ﬂzD}Z,,qH(Tm +(1- T)T(z))rdpl,ﬂ' .
pA 0

Now, using the convexity of | D%WH\’, we have

3
PH(P”1+(1_P)7T2)+qH(7T2) _ 1 H(%) szpq%
[2]’7 q 7o — 701 !
’ pPmi+(1-p?)m

< pqz(nz—my([ 1 )1

2, s+ 1,

1

1 1 ¥
r/T(l —qT)" dpT+ ”ZD;ZWH(HZ)‘V /(l —17)(1—q1) dp,qT:|
J .

0
_ p(m—m)? 1
B [22];7,11 l ( [S + 1]17/'1) {Zl

™Dy ()

r
nzDgqu(TL’l)‘ + 22

02, 11(m)[ ]

where . . ) an .
21 = (P - ‘7) r;)<pn+l> ( Pn+1>
and
S q" Tine1)
= (-0 ¥ L0 pm)(l (L)

Hence, the proof is completed. [J
Remark 14. In Theorem 5, if we set p = 1, then we obtain [19], Theorem 7.

Remark 15. In Theorem 5, if we put p = 1 and later take the limit as ¢ — 1~ then we have

2

M) +10(m) 1 [
B TTp — 71 /H(%

M@il)g <(r+1)lw> y {(r‘*‘z)h"[//(m)‘r + |H”(7Tz)|r] %.
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5. Conclusions

In this work, we established some new trapezoidal type (p, q)-integral inequalities
for twice (p, q)-differentiable convex functions. We deduce that the findings proved in
this work are naturally universal and contribute into the theory of inequalities, as well
as applications for determining the uniqueness of solutions in quantum boundary value
problems, quantum mechanics, and special relativity theory. The findings of this study
can be applied to quantum information theory and symmetry. Results for the case of
symmetric functions can be obtained by applying the concepts in Remarks 1 and 5, which
will be studied in future work. As a future direction, one can find similar inequalities for
coordinated convex functions.
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Abstract: In this paper, we first prove three identities for functions of bounded variations. Then, by
using these equalities, we obtain several trapezoid- and Ostrowski-type inequalities via generalized
fractional integrals for functions of bounded variations with two variables. Moreover, we present
some results for Riemann-Liouville fractional integrals by special choice of the main results. Finally,
we investigate the connections between our results and those in earlier works. Analytic inequalities
of this nature and especially the techniques involved have applications in various areas in which
symmetry plays a prominent role.

Keywords: trapezoid-type inequality; fractional integrals; functions of bounded variations

1. Introduction

One of the most important inequalities for bounded functions is the Ostrowski in-
equality which gives an estimate for the deviation of the values of a smooth function from
its mean value. The Ostrowski inequality is stated as follows: if F : [k1,k] — Risa
differentiable function with a bounded derivative, then the following integral inequality

2 K1+K2\2
1 1 (- 557 ,
b PR s B
F () P /f (1) dt| < it (2= x1)? (2 — k1) ||F'|., Q)
K1

is valid for every s € [K1,k;]|, which was proved by Ostrowski in 1938 [1]. Here, the
constant 1/4 is the best possible.

In the recent years, many versions of Ostrowski-type inequalities have been proved for
some kinds of function classes, such as convex functions, bounded functions, functions of
bounded variation, and so on. For example, Alomari et al. established some Ostrowski-type
inequalities for s-convex functions in [2]. Moreover, some papers were devoted to study on
Ostrowski-type inequalities for other kinds of convexities [3-6]. On the other hand, Set first
proved the fractional version of Ostrowski inequality for s-convex functions via Riemann—
Liouville fractional integrals [7]. Furthermore, many studies were focused on the proof of
Ostrowski-type inequalities for certain fractional integral operators, such as k-Riemann—
Liouville fractional integrals [8], local fractional integrals [9], Raina fractional integrals [10],
etc. (see [11-23]). Moreover, by utilizing co-ordinated convex mapping, several Ostrowski
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inequalities were presented for the Riemann integral and Riemann-Liouville fractional
integrals in [24,25], respectively.

On the other hand, Dragomir extended the Ostrowski inequality for functions of
bounded variation [26]. Dragomir also proved trapezoid type inequalities and midpoint
type inequalities for the functions of bounded variation in [27,28], respectively. In [29],
the author presented several Simpson’s type inequalities for the mappings of bounded
variations. In the literature, many studies were devoted to new versions of Ostrowski-type
inequalities for functions of bounded variation. For some of them, please refer to [30-42].
In [43], some important inequalities for the functions of two variables with bounded
variation were given and applications in the cubature formula was provided. However,
there were some minor errors in the main results of the paper [43] since the Lemma 1 in the
published version of [43] is inexact. Moricz has already provided the correct version of the
lemma in [44]. In [43], Budak and Sarikaya presented the corrections of these results by
using the lemma proved by Moricz. For other papers on inequalities for functions of two
variables with bounded variation, see [45—47].

This paper aims to establish some trapezoid and Ostrowski-type inequalities for
functions of bounded variations with two variables via generalized fractional integrals.
The general structure of the paper consists of six sections including an introduction. The
remaining part of the paper proceeds as follows: In Section 2, we first present definitions
of the functions of bounded variations and total variations. We also give the definitions
of generalized fractional integrals and relations between generalized fractional integrals
and other type fractional integrals. In Section 3, we prove three identities for functions of
bounded variations with two variables by using the Riemann-Stieltjes integral. Trapezoid-
and Ostrowski-type inequalities for functions of bounded variations with two variables are
established in Sections 4 and 5, respectively. At the end of the paper, some conclusions and
further directions of research are discussed in Section 6.

2. Preliminaries

In this section, we first present the definition of the functions of bounded variation
(single and two variables). Then, we summarize the generalized fractional integrals
and give the relations between generalized fractional integrals and the other types of
fractional integrals.

2.1. Functions of Bounded Variation with One Variable
Definition 1 ([48]). For any partition P : k1 = 39 < 30 < ... < 3, = Ky of [K1, k2] and
AF (54) = F (56i11) — F (54). If the sum

i}'“ ()]

is bounded for all partitions, then the mapping F (3c) is called of bounded variation. We assume

that F has a bounded variation on [K1,%3], and Y_(P) denotes the sum i |AF (54)] corresponding
i=1

to the partition P of [k1,13|. The number

K2

\(F) :=sup{} (P): P € P([x1,x2])}

K1

is called the total variation of | on (K1, k3]. Here, the family of partitions of [k, k2] is denoted by
P( [Kl, Kz] )

In [26], for the functions of bounded variation, Dragomir proved the following Os-
trowski inequality.
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Theorem 1. For the mapping of bounded variation | : [i1, %3] — R on [k, k3]. The inequality

1 7 1 %——K]erxz 2
F(rydt—F ()| < |z 4+ |———— F 2
xz—le/ (T —F ()| < |5+ |52 }\/( ) @

holds for all > € [k, k7). The constant } is the best possible.

2.2. Functions of Bounded Variation with Two Variables
Definition 2. For any set of points (3¢, ;) (i =0,1,2, ..., m) satisfying the conditions

K1 = < <..<xy =Ky,
K3 = Y0 <71 < .. <Ym =Ky,
if the sum
m
Z|Ar(%i/'7i)|

i=1

is bounded for all such sets of points, then the mapping F (s, ) is called a bounded variation
(see [49,50]).

As a result, the definition of total variation of a function of two variables can be
described as follows:
Let F be of bounded variation on Q = [k, k2] X [K3, k4] and Y (P) denotes the sum

n m
¥ ¥ |Auf (54,7j)| corresponding to the partition P of Q. The number
i=1j=1

\/(F) = \7\7(F) = sup{Z(P) :PePQ)}
Q K3 K1

is called the total variation of / on Q. Here, the family of partitions of Q is denoted
by P(Q).

Lemma 1 ([44]). If F (7, &) continuous on the Q = [K1, k2] X (K3, k4] and a (7, &) is of bounded
variation, then a(t, §) is integrable with respect to F (T, &) on Q in the Riemann—Stieltjes integrable
sense and

[ [ F oddeatze) .
— /‘/a(r,é)dfdgf(r,f;)—/'a(r,m)drp(nm” (T k) (T, 5)
,'/OL(KZr‘:)dgF(Kz,f) +/D€(K1,€)dCF(K1,§)

+I (Ko, K4) (K2, K4) — I (12, 163) (K2, K3)
—F (11, k4)ee(x1, kg) + F (51, %3) e (%61, 3).-

Lemma 2 ([43]). Assume that p is integrable with respect to o on Q and w is of bounded variation
on Q, then

[ [ ptamdasuan| < sup loGen)]|V (@), @
R (>7)€Q Q
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2.3. Generalized Fractional Integrals

In this section, we summarize some fractional integrals which will be used in our
main results.

Deﬁnition 3 ([51]). Let F € Lq[xy, k2. The Riemann—Liouville fractional integrals Jﬁl L F and
[ of order & > 0 with k1 > 0 are defined by

, 1 7

T F (3) = ) (=) F(D)dT, x> 1
and ;
l 2

T F () = ) /(T — )" (T)dt, % <K,

respectively. Here, T («) is the Gamma function and J%+ (%) = ]Kr (%) = I ().

Definition 4 ([52]). Let p : [x1, 2] — R be a positive increasing function on (i1, k3], having a
continuous derivative p' (3¢) on (1, 17). The left-sides (T8 1pF (50)) and right-sides (T, _.,F (5))
fractional integral of | with respect to the function p on [K1, k3] of order & > 0 are defined by

« o L[ PO .
il 09 = 151 G =gt 7

and

respectively.

Riemann-Liouville fractional integrals of a function with two variables can be given
as follows:

Deﬁmtlon 5. Let F € Li(A = [k, k2] X [K3,k4]). The Riemann—Liouville fractional integrals
]K1+ N ]K1+ ot Jﬁf_mwF and ]if_m_,f of order w, B > 0 with xy, k3 > 0 are defined by

Vifissik o) = // 2= =0 ()T, >,y > s,
xl K3

JK1+ Kq— (%"‘l/) = // - T a 1(6 'Y)IS ! (T é)dCdT, x> K1, Y < Ky,
Kl v
1 f7

Jxr b (07) = NGORG] / /(T— 2 Ny =P (r8)dedT, x < >3

and
Tt () = // 1y = P, Q)dgdT, < e, <,

Definition 6 ([53]). Let p : [k1, k2] — R be a positive increasing function on (1, k2], having a
continuous derivative ' () on (k1,17 ) and let @ : [k3, k4] — R be a positive increasing function
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on (K3, k4], having a continuous derivative @' (7y) on (x3,x4). If F € L1(A), then for a, B > 0, the
generalized fractional integral operators for functions of two variables are defined by

Y
o _ ! ¢'(7) @'(%)
jx1+,«3+;p,wF(%,7) T (p) JK{ G — p(T)}lf”‘ () w(cj)]l’/jF(T' &)dédr,
> K1,Y > K3, (5)
K1 +,Ky—;0,0 ’ r(a)r(l[}) 2 [P(}f) *p(’f)}lia [(D(g) — (D(’y)]]iﬁ ’ ’
x> K1, Y < Ky, (6)
K
a,p B 1 pl(T) @' (&)
T xstpat (#7) “Trp) ZKS/ () — pGa [w(’y)7@(6)]1_ﬂF(T,C)d§dT,
n < Ky, Y > K3 @)
and
P SR Sy (R[5 D@ or pviein
Pacnet ) w5105 | | oo o) i O
n <K, ¥ < Ky, (8)
respectively.

By using Definition 6, well-known fractional integrals can be obtained by some special
choices. For example:

1. If we choose « = B = 1, the operators (5)—(8) reduce to the double Riemann integral;
2. Considering p(7) = Tand @({) = &, then the operators (5)(8) reduce to the Riemann—
Liouville fractional integrals ]iﬁm F (), ]iﬁ,x —FGa) ];tﬁ s F (55,7) and

ﬁzﬁ,x —F (5¢,7), respectively;

3. Forp(t) =Intand @(¢) = In¢, the operators (5)—(8) reduce to the Hadamard frac-
tionalintegrals It . (3¢,7), I8 o, F (o), I8 oo F Gep) and 122 F (34,),
respectively.

3. Some Equalities for Functions of Bounded Variations with Two Variables

Firstly, we define the following functions which will be used frequently:

Mz(Klr%) _ [P(};)(;—fgl()l)] i

@) - (k)]
Ng(’%r'?) = W,

Mg(KZr %) _ [p(;(rz()a__i_pi)%)]
and
[@(s) — @ (7))

B _
N(D(K4/7) - r(‘3+1)
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M (i1, 523 52) = [p(3¢) — p(x1)]* + [p(12) — p(30)]"
NB(r3,k457) = [@(7) — @ (k3)]P + [@(ka) — @(7)]P

for (»,77) € A. We also denote

ki = ME(k1, 50)Nb (K3, 1) F (1, 55) + M (i1, 32)Nb (14, ) F (i1, K3)

+ M3 (2, )Nb (3, 1) F (2, 63) + M (12, 32)NB (s, V) F (2, K3)

for (»,7) € A.

Throughout this paper, we denote the second partial derivative 2 ara 7 by F ¢z. Moreover,
let p : [k1,%0] — R be a positive increasing function on (x1, k2], having a continuous
derivative p’(3¢) on (x1,x2) and let @ : [k3, 4] — R be a positive increasing function on
(3, 4], having a continuous derivative @’ (7y) on (3, k4).

Now, we are in position to prove the following identity:

Lemma 3. If F : A — R be a mapping of bounded variation on A, then for a, B > 0, we have the
following equality:

K1 — Nb (x3,7) [jiz+;pF(%/K3) + j)éf;pF(%rK3):|
NG (4, ) [T (52, 5) + Ty (34,54)
~ My (0, 20) [T o (51,7) + T o (1,7)]
— My (02, 20) [T o (K2, 7) + T o (k27| + Ty ipl (347)
T s pl Ca) + Tl ol () + T ol (27)
1

= W[h — DL — I3+ 1y,

where
(p(3) = p(1)*(@(7) — @(§))PdedeF (1,§),
(p(0) = p(1)) (@ () — @(7))PdedeF (7,8),

I =

(p(1) = p(0))*(@(7) — @(§))PddcF (1,0),

e

S

x

b= |
K1

K

»

K2

Iy — ()" (@(§) — @(7))PdrdF (T,0).

Il
Ne—

Proof. By using Lemma 1, we have

At
b= [ [ = p(x)(@(7) - @(@)Pdeder (4,) ©

Ky K3

(@(7) = @(x3))P(p(32) = p(k1))*F ()1, k3) — (& + 1) (@(y)
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—@(k3))P T 1 (2,65) = T(B+1)(p(5¢) = p(11))* Thy 0 (51,7)

L+ DB+ DT gl (57)
Similarly, we obtain

L= —(p(¢) = p(k))*(@(ks) = @(7))PF (k1,54) +T (& + 1) (@(k4) (10)
—@(1))P T o F (5%8) + T(B+1)(p(5) = p(1))* Tfy o (51,7)

~T(a+ DI+ DT ool (7).

o= —(p(ke) = p(30))"(@(7) = @(x3))PF (2, x3) + T +1)(@(7) 1n
~@(k3))P T8 pF (54,53) +T(B+1)(p(2)

—p(0)* Th s oF (k2,7) =T+ DT(B+ VTl v oF (567)

and

L = (p(k2) = ()" (@(s) = @(1)PF (2, 04) = T+ 1) (@ (ks) 12)
~@(N))P T b (55,4) = T(B+1)(p(k2)

—0(0)* Thy ol (k2 7) + T+ DIB+ DT ol (2,7).
By equalities (9)—(12), we establish

K1 — Nb (63, 7) [ T8 oF (5,8) + Tis oF (,%5)| = Nb (k4,7)
><{j}é‘;+;pF(%1K4)+J}?;—;pF(%IK4):| 7Mz(K1r%) [JK€+;(DF(K1/’)/)+~7Klif;a7F(Klr'Y)}
—M8 TE b T ol Tk esipol

p(KZ/%) K3+;@ (K217)+ Ky — 3@ (K2/’7) + K1+,K3+;0,0 (%17)

T ool ) F T ol o)+ T ol (7)

1
= m[h*b*lfrh]

which completes the proof. [

Lemma 4. If f : A — R be a mapping of bounded variation on A, then for a, B > 0, we have the
following equality

T(e+1)

Floem) - Mg (K1, 1025 32)

[Jfﬁf;pr (k1,7) + Tqpl (2, 7)]
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B r(p+1)
NB (k3 k4;7)
Fa+1I(B+1)
Mg (x1, 102 %)Ng(m,m;“y

{jf_F‘DF(%’ K3) + J’yﬁ-%-;w'r(%r’%)]

) [jzfy—;p,w'r(’(lr’{i%) + jzf,'y+;p,wF(K1/K4)

+Jif,’yf;p,¢DF(K2rk3) + Jgf,w;p,wF(Kz, K4)]

1
 M8(k, K2 )NA (3, k45 ) s =1 = 17 + I
where .
5= //(p(r) —p(k1))" (@ (&) — @(x3))PdrdeF (7,),
Ie = / /(P(T) — 0(i1))(@(x4) *‘D(‘z))ﬁdrdgf(l',(j),
KoY
Lo
7= /./(p(Kz) —p(0)*(@(8) — @(K3))Pdrdzr (7,§)
and .
s = / / (p(k2) = p(7)"(@(ks) — @(2))PdrdzF (7,5).
x
Proof. By using Lemma 1, we have
x
= //(p(r) — (k1)) (@(8) — @(x3))Pdrdeh (7,) o

Ky K3

= (@(7) — @(k3))P(p(5) = p(k1))*F (56,7) = T(a + 1) (@(7) = @(k3))P TE_pF (51, 7)

LB+ 1)(0(50) — (k1)) TE o (32,k3) + T+ DT (B + DTEE o o (k1,53).

Similarly, we obtain

% Ky

I = [ [(e() = plen)* (@) - @(@)FdedzF (%,8) (14)

K1y

= —(p() = p(k1))"(@(x4) = @(7))PF (36,7) + T+ 1) (@(ks) — @(7))PTE_pF (11,7)
+T(B+1)(p() — (1)  TE oF (56,%4) =T+ DI(B+ 1T, of (k1,58),
2

o= [ [(ete) - p(0)(@(&) -~ @(w) PaedF (x,) o

> K3

= —(plk2) — P (@(7) — @(3))PF (35,7) + T+ 1)(@(7) — @(k5))PTE o (k2,7)
FT(B+1)(plk2) — p(2)*TE o (s2,53) = T+ DT (B + VI, ol (2, 13)
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and

Ky Ky

o= [ [e) - p(0) @) - (@) Prder (x,2) (1
oy

= (p(r2) = p()*(@(ks) = @(1))PF (56,7) = T(a + 1) (@(ks) = @(7)P Ty o (2, 7)

“T(B+1)(p(k2) = p(30))* Ty o (2a) + T+ DI (B + 1 TLE o (k2 K).
Using equalities (13)—(16), we have the desired result. []

Lemma 5. If F : A — R be a mapping of bounded variation on A, then for a, B > 0, we have the

following equality
F (2, %) + F (k2,%3) + F (1, %) + F (i1, %3) a7
4
1 (41 (49 [ [
_m [sz—;p/’ (r1,%4) + j;cz—;pl’ (x1,%3) + qu+;pf (x2,%a) + ‘7K]+}pf (x2, K3)]
1
_m {Jé,;w/‘ (KZ/ KS) + j£+;wf (Kz, K4) + Jiﬁf;tD’L (K1/K3) + jtf;r;wf (Klr K4)]
«,B a,p
+4M§(K1,K2)N£(K3,K4) [szf,xr;pwf (k1,%3) + T, sy ip el (K1, %4)
+~71?61,§—,K4—;p,wF(K2'K3) + j;ﬁﬁ,@-%—;p,wF(KZ/K‘l)]
B 1 1
4r(0‘ + l)r(:B + 1) Mg(Kl,Kz)Ng(K:;, K4)
Kg K.2
< [ [Ho(r) =p(2)* = p(x) = p(x2))"]
K1 K3
x[(@(x4) — @(2))F ~ (@(2) — @(x3))P | dedg (7, ).
Proof. For s« = x7 and 7y = x4 in Equation (13), we have
Ky Kg
b= [ [ =px)(@(@) - @(xs))Pdedet (x,8) as)
K| K3
= (@(ks) — @(k3))P (p(x2) = p(1))*F (K2, Ka) =T +1)(@(xa)
~@(3))P T8 o (k1,%8) = T(B+1)(p(x2) — p(x1))* T, (12, 3)
T+ DIB+ DT ol (k153).
For s = 13 and y = x3 in Equation (14), we have
Ky Ky
o = [ [(0(0) = ptx)* (@(xe) ~ @(&)Pdede (7,) (19)
K1 K3

—(p(K2) = p(r1))*(@(Ks) — @(x3))PF (12, 3)
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T+ 1)(@(ky) — @(k3))PTS _oF (k1,53)
HT(B+ 1) (p(k2) — p(k1)* TE 1o (k2,4)

—T(a+1)T(B+ 1)J;“2’5K3+,.ple(K1,K4),
for 2 = k1 and y = x4 in Equation (15), we have

Ky Ky

o= [ [(e() () (@(@) @ (xka)) PdedeF (7,2)

Ky K3

= —(p(k2) — p(k1))*(@(ka) — @(K3))PF (1, x4)
AT (a+ 1) (@(kg) — @(k3))P T o (K2, K8)
+T(B+1)(p(k2) — p(k1)* TE o (k1,%3)

D+ DI+ DTN, pol (k2,53)
and finally, for s« = x; and 7 = «3 in Equation (16), we find

Ky Ky

e = [ [(ptke) = p(0)*(@(xs) — @(&) Peeder (7,)

= (p(k2) — p(k1))*(@(ks) — @ (k3))PF (K1, K3)
~T(a+1)(@(xs) — @(k3))PTE o F (k2,K3)
~T(B+1)(p(K2) — p(k1)) " TE s o (K1, K3)

+r(/X + 1)r(ﬁ + 1)j12’«‘3#,x3+;p,w'r (K2r K4)'
Using equalities (18)—(21), we establish

1 1
AM(a+1I(+1) Mg(K],KZ)Nf,(Kg,, Ky)

[lo — Iip — I11 + I12]

F(x2,54) + F (k2,%3) 4+ F (11, 64) + F (k1,%3)
4

1
- e [j,f;_;pF(Kl,m) + T8 o (K1,08) + T2 o (k2,068) + T2 4 oF (2, Kg)]

1
ANE (i3, 4)

1 o,p wp
+ Tr= ol (€1,63) + T etk (K1, %4)
4M2(K1,K2)N£(K3,K4)[ e e

+\7;z,f,x4f;p,wF(K2/K3) +Jélﬁ,x3+;p,wF(K2rK4)]
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(TE o (02,5) + T o F (2, 50) + Thy o F (1,%5) + Ty oF (i1, 0)]

(20)

21
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which completes the proof. [

4. Trapezoid-Type Inequalities for Functions of Bounded Variations with
Two Variables

In this section, we present some trapezoid-type inequalities for generalized
fractional integrals.

Theorem 2. If [ : A — R be a mapping of bounded variation on A, then for a, p > 0, we have
the following inequality

[0 = NB (63, 7) [ T8 g (3 5) + Tis o (34,13)] 22)
—NB (ka1 [T (2 068) + Ty (54,5)]
_Mﬂt IS ,B
p(Klf%) jK3+;wf (K1/7)+\7x47;w’L (Klr'Y)
-M; Th il Tt ol NN
p(KZ/%) K3+;@ (K217)+ Ky—;@ (KZ/’Y) + K1+,K3450,0 (%r')/)

T kimipiab (47) + Tl ipol () + T ol (347)|

Y
S ey oyl (CORVCNACRECVEYT
o) — p(r0) (@ (x5) — (1) V(F)
K1y
Ky
+pl2) = p(6) (@ (1) — @)\ V(1)
Hplxa) — (o) (@ (k1) — ()P ] \7(9}
%y
1 1 p(r1) +p(r2)[1"
< T DrEET )~ em) + o) - TR ]
K K px2 K
| 3(@00) — @) + @) - 2T EE [y,
Proof. By taking the modulus in Lemma 3, we obtain
1 = NG ks, 1) [ T8 F (2, 5) + Tyl (24,33)] @3)

NG (04, 1) [T F () + T (0|

~ M (1, 56) [ T (51,7) + Tfy o (k1,7)
o\ 1’1, K3+;@ 1.7 Kg—;@ 1Y

My (2, 7) | T o Th ol (27)] + T sl (547)
p(KZr%) K3+;@ K2/7)+ Ky — ;@ (Kz,’Y + K1+l (4T

+‘7,f;’i,(4,;p,w,f (>,7) + J,f‘z’f,(ﬁ;mlf (>,7) + J,;’E,KA,;MF (>6,7)
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AN
= Fa+1 Ta+1)I(p+1) [// (7) — ‘D(C))ﬁdrdsf(f,é)‘
+ //(p(%) —p(0)"(@(&) — @(7))Pdvdcr (7, g)‘
K1Y

Kz’}j

| [ [0 =G @) - @(@)PaedeF (x, e)‘

# K3

Ky Ky

| [ [0 o) (@@) ~ @(n)PdedF (x, c)H.

0

By Lemma, it follows that

2N
[ [o69 = o) (@(n) - @(@)Pdeder (x, @)‘

K1 K3

IN

(T.8)€Elr1,2 % [k3,7] K1 K3

x Y
(p(2) = p(k1))*(@(7) = @(x3))P\/ V()

K1 K3

Similarly, we obtain

[ [0 = o) (@(@) ~ @(y)Paeder (x, 5)‘
K1Y
< (o) o)) (@(xs) — @)V V()
K1y
L
[ [ = oG (@(r) - @(@)Pdeder (x, @)‘
K2 Y
< (o) = p()* (@(7) — @(xs)P \/ V()
and
[0 = ()" @(@) ~ @(1))Paede F (x, a)‘
%y

K2 Ky

< (pli2) = p(0))*(@(ka) =@ ()P \/ V(F)
x oy
By substituting the inequalities (24)—(27) in Equation (23), we obtain
[0 = N& (63, 7) [ T8 g (3, 5) + Tis o (34,13)]

NG (04, 1) [T o F (1) + T (3|
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x Y
sup (o) —p(1)" (@(1) —@(@)F| V V(1)

(24)

(25)

(26)

27)
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~ M (1,3 [TE o b (60,7) + Thy o F (1,7)]
M2 (kg 3) [ TP o (k2sy) + TP o F (k2 7) | + TP F(7)
o K2, K3+;@ 2,7 Ky— @ 2, K1+, K3+H50,0 Y

+‘7’fi’i’f4ﬂp,0’r(%’ 7) + j’f(z,g,Ker;P,wF(%’ 7) + ‘7:2,5“4*;!"@'((%/ 7)‘

< TG (p(%)—p(Kl))“(w(v)—w(Ks))“gg(F)
(o) =l 0(8) ~0(1))* i?(r)
Hp(r2) () (@)~ o) 7\2(@
o) — p() (@) — (NP \(F)

- Yo o

which gives the first inequality in Equation (22).
By the properties of maximum, we obtain

Y(,7)

IN

maX{(P(%) —p(k1))*(@(7) = @(x3))F, (p(32) — p(k1))" (@ (k3) — @(7))F,

(p(k2) = p(2))*(@(7) — @(x3))P, (p(K2) — p(50))* (@(K4) — w(“r))ﬁ}

x Y x Ky Lol Ko K4
" {\/\/<F>+\/v<m+vv<m+vv<m}
K1 K3 Ko »x K3 x
= max{(p(¢) — p(:1))*, (p(x2) — p())*} max{ (@(7) = @(x3))F, (@ (xs) — @(7))* }
V)
= [Jloto) — ptw)) + o) — L0 |
B K2 Ky
(@)~ @) + o) - ZEELLEE [y,

This completes the proof. O

Corollary 1. Ifwe take p(T) = T, T € [i1, 1) and @(&) = &, & € [k3, k4] in Theorem 2, then we
have the following trapezoid-type inequalities for Riemann—Liouville fractional integrals

(3 — k1)"(y — x3)P (3= K1) (ks — 7)P

WF(KLKS) + r(a+1)r(‘3+1) F(Kl,K4)

61



Symmetry 2021, 13,1724

IN

IN

(o = 7"y — 1) (2 = 5)* (2 = 1)
T ) g )
_ )P
,%[]Kﬁf(% K3) + I8, (52,%3)]
_ )P
%[JK1+F(% i4) +]x2— (%,K4)}
_ (;4(;_:_‘11)) {Jerl‘ (r1,7) +]f4,f (Klr'Y)]
_ (12 — )" B
r(“ + 1) {JK3+F(K2' ,Y) +]K4*F(KZ/ 7)]

B A I OO0 IR AN S E0 IR R o P00 B B o P9

1
Ta+)I(B+1)
X [( s —1x71)" (v —K3) ﬁ\/\/ *Kl)“(K4*7)ﬁ\]\}(F)
K1 K3 Koy
Ky Y Ky Ky
+(K2—%)“(7—K3)ﬁ\/\/(F)+(K2—%)“(Kz;—"r)ﬁ\/\/(F)}
% K3 x
1 Ko — K1 K1+ ]
r<a+1>r(ﬁ+1>[ 2 *"“ 2 }
_ B K2 Ky
X[K42K3+‘ K3+K4:| >{¥

Corollary 2. If we take »« = 132 and = 7% in Corollary 1, then we have

‘F(Kz,m;) + I (o, %3) + F (x1,K4) + I (K1,%3)

4
_% 08 F (x3) + T, F (52, 53)]
,% (08, F (oo a) + T, F (35, 5)]
,Zﬂ(j_(iij);)[ b F (k) + Yo F ()]
,Zﬁ(;r_(ii;;)[ o (k2 7) + T F (k2 )]

20P2T (w + 1T (B + 1)

(k2 — K1)% (kg — 13)P

|:JK1+K3+F(% 7) +JK1+K4—F(% 7)

A b G + T F ()|
Ky Ky
< YV

K1 K2
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Remark 1. If we assign « = p = 1 in Corollary 2, then we have

'f(K2/K4)+f(K2,K3)+f(K1/K4)+f(K1,K3)
4

2(K2 — Kl)

- [7“% Ka)ds + ?F(%, ;q)d%]

K1

72(1(41777@ L/F(Kzr’Y)d’YJF/F(Kl,’Y)d’Y}

K3

Ky Ky

1
mzzf(%v)dwm
1 Ky Ky
< V).

which is given by Budak and Sarikaya in [43].

Theorem 3. If f : A — R be a mapping of bounded variation on A, then for a, B > 0, we have
the following inequality

‘F(Kzr Kq) + F (k2,k3) + F (x1,%4) + F (%1, %3)
4

1
4M5 (i1, K2)

1
ANB (3, k4)

[jigf;pF(KllKﬁl) + Tio—iol (K1,%3) + T 4pF (x2,%4) + «7;§'§+;pF(K2,K3)]

{Jé,;wF(Kz,K:;)+j,£+;wF(K2,K4)+;7,£,;wF(K1,K3)+J£+;(DF(K1,K4)]

1 «,p wp
+ [T ool (61,%5) + Tl o (1, 4)
4M3(K1,K2)N£(K3,K4) womTe e

+‘7’51/+:K4*iP:WF(K2’K3) + jg’ﬁ,xsﬂﬂwF(KZ/ K4)] ‘
1 Ky Ky
< 7 VV).

K1 K3

Proof. By using Lemma 2, we have

‘F(Kz,K;;) + F(Kz,Kg,) + F(Kl,K4) + F(K],Kg,)
4

1
_m [jé*;pF(KllKD + T8 oF (k1,%3)

+Jé+;pF(K2,K4) + J,g‘l+;pF(K2, K3)]

1 B B
Tt _oF (k2,%3) + T .o (K2, %4)
4N£(K3IK4)[ e e

+j,i_;@F(K1,K3) + j£+;wF(K1,K4)}
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1 0B p
* T ol (k1,63) + T2 o oF (K1,K4)
4M“(K1,K2)N£(K3,K4)[ Ko — K4 —;0,00 Kz 13-+3p,@

+j1+x4 pwl' (K2/K3)+Jg§,x3+;p,wf (KZ,K4)H

1 1
- AT(a+1)I(B+1) Mg(Kl,Kz)Ng(m,m)
x| [ o) = p(x))* = p(x) = pl1))*]

x [(@(r) = @(©))F = (@(2) — @(x3))F ] dedde (7,8)|
1 1
4r(a+1)r(13+1) M”‘(K],Kz) ﬁ(K3,K4)

x sup |(p(x2) — p(7))" — p(T) — p(K1))"|
(t/y)en

IN

<|(@(s) ~ () - (@(2) ~ @ (x))" \}\7<r>
_ L (p) —p(0)* (@) ~ @)
S T gt Y
G

This completes the proof. O

Corollary 3. If we take p(T) = T, T € [i1,12] and @(&) = ¢, & € [x3, k4] in Theorem 3, then
we have

‘ F(xa,%a) + F (k2,%3) + F (K1, K4) + F (1, %3)
4
I(a+1)
4k —11)"
NEIGASN {Jm_ (2, %3) + 05, 1 F (k2 xa) + 5, F (11, 53) +J§3+F(K1r’<4)]
4(K4 — K3)
r(tx + 1)1"(/5 + 1)
4(ky — K1) (ks — x3)P

oI (1, ka) + T3, F (K1, 53) + 05, F (K2, k) + T3 4 F (k2,%3)]

1 KA SRS KA Y

Tl g F (02, 60) T F (2|
Ky Ky
< 3 \/ Vi

Kl K3

Remark 2. If we assign « = p = 1 in Corollary 3, then we have

)F(K2/K4) +F (o, %3) + F (x1,%4) + F (K1, %3)
4

2(KzK1|:/F 7, Ky d%+/F %,K3)d%
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1 K4 K4

—————— | [ F(k2,7)d +/FK, d

2(7(4*7(3) KS/ ( 2 'Y) v J ( 1 7) 'Y:|
Ky K4

/ F (5¢,v)dyds

K1 K3

o
(2 —11) (g — K3)

K2 Kg

1

which is given by Budak and Sarikaya in [43].

Corollary 4. If we take p(t) = InT, T € [K1, k2] and @(§) = In&, ¢ € [x3,x4) in Theorem 3,
then we have the following trapezoid-type inequality for Hadamard fractional integrals

‘f(K2,K4)+f(K2,K3)+f(K1,K4)+f(K1,K3)
4

1

—W[Ingf (r1,%4) + L, F (k1,%3) + I o F (K2, %4) + L 1 F (x2,%3)]
C (1,

1
—m [Ifrf (12,%3) + Ifg+f (12, 4) + Ifrf (x1,%3) + If3+f (KI/K4)]
In\™o7
1

+ ;
4Mf‘n (Kl, KZ)Nln (K3, Kq

) [I;?Z'E/K47F(K1,K3) + I;fz/li,ngrF(Klr K4)

g

+IK1’/~3#,K47F(K2/ K3) + I:{i/K3+F(K2rK4)} ‘

K2 Kq

< FVVo).

K1 K3

5. Ostrowski-Type Inequalities for Functions of Bounded Variations with
Two Variables

In this section, we prove some Ostrowski-type inequalities for generalized
fractional integrals.

Theorem 4. If | : A — R be a mapping of bounded variation on A, then for a, B > 0, we have
the following inequality

Tla+1) « «
F(se7) — W I:j}rf;pF(Kllr)/) + j;g+;pF(K2/r)/)i| (28)
LE+1) 7.8 p
~TBAD 178 Gers) + TPk ()
Ng(K3,K4;’Y){ ! e ]

ToP el (k1x3) + TP ol (k1,54)

T(a+1)T(B+1) {
M5 (1, %2; s)NE (13, %45 7)

+\7;if,’yf;p,w/‘ (KZr K3) + j;uf.(f,"wr;p,wf (KZI K4)] ‘
1

M (i, k2; )N (k3, K45 7)
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n Y
* [ (p(2) = p(k1)*(@(7) — @(k3))P \/ /()

((o9) — pls)) (@(ks) — ()P (F)
K1 Y
Ky Y
o) — p()* (@ () — @ (s3))P\ V()
T pl2) — p(0) (@ (xs) — ()P I (F )}
P
< 1
Mg(Kl,Kz;%)Ng(Kg,m;y)
[ 0t02) = plra)) + oo - 220D ]
K K p k2 K
[5@(0) — @) + o - LS Py vy

Proof. By taking the modulus in Lemma 3, we obtain
I'(a+1)
M5 (1, K2; 3¢)

_ I(B+1)
N& (x5, K17)
TFa+1I(B+1) w,p
MmN )
& (x1, K2 3¢) N (K3, K457)

F ()~ (T2 ok (61,7) + T (2,7))

{jf—;wF(%r K3) + jf+’.wF(%, K4)]

(x1,%3) + Jﬁfwwmf (K1, %4)

+~7zfﬁ*;f?'wr(’<2r K3) + jﬁfﬁﬂpwr(’cb K4)] ’

1
M (1, k2; ) Nb (K3, K43 7)

><|:
s Ky ’

[ [(o() = ple)) (@ () ~ @(@))Peeder (x,8)

K1y

| [ (et2) = p(0)*(@(@) = @(x3)) Pt (x, c>’

2
[ [ @) = p())*(@(@) — @(x3)) et (x, 5)‘

K1 K3

+

| [(el2) = p(0))* (@(xs) — (@) P (x, «:)H :

By Lemma 2, we obtain

x Y

[ (@) = p))*(@(@) — @(x3)) et (x, @)’
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x Y
<(p(>) —p(x1))* (@(7) — @(x3))P \/ /(1)

K1 K3

[ [0 = o) (@(xs) — @(@)Fddek (x, a)‘
LS
< (09— p(s2)) (@ (5) — ()P (),
LS
Ky 7
[ [totx2) = p(0))*(@() ~ @(x3))Pdeder ()
K2 Y
< (plr2) = p(0))* (@(7) = @(x2))F \/ /()
and
| [ o) = p(e)* (@(xs) — @(@)Paeds (x, c)'
x oy
< (plk2) — () (@ (k) — (1P V()
N
It follows that
T'(a+1 "
f(%/V)_W[Jg—;pf (K1/7)+k7%+;p,' (KZ/')/)]
r(p+1)
T T (TPl (ek3) + TE o (32,54)

T« +1)(B+1)
M"‘(K] K2; %)Nfg(xg, K4;7)

{sz'y,;p,wF(KHKS) +sz7+;p,wF(K1rK4)

+\7 o+, — pu’)F(KZ/KS)+*7;if,'y+;p,wF(K2rK4)”

1
M5 (11, %2; )b (3, 147)

Y
x| () = p(x1))*(@(7) = @(3))P \/ \/(F)

K1 K3

(o(o9) — pls)) (@(ks) — (1PN (F)
K17
K2 Y

+(p(k2) = p(32)) (@(7) — @(x3))P\/ V()

Ky K4

+(p(r2) — p(0))*(@(xa) —@(71)P\/ \/(F)
x oy

which completes the proof of first inequality in Equation (28). The proof of the second
inequality is obvious from the proof of Theorem 2. [
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Remark 3. If we take p(T) = T, T € [i1, %3] and @ (&) = &, & € [k3, k4] in Theorem 4, then we
have the following Ostrowski-type inequalities for Riemann—Liouville fractional integrals

F(a+1) « «
F () — (e —11)" + (10 — 22)" [ ol (K1,7) + ‘7X+"PF(K2”7)]
r(g+1)
(= K3)P o+ (ks — )P [jff;wf(%r K3) + Tl (4 K“)]
. T(a+1)r(+1) (T2l (k1,%)

(3¢ = x1)* + (k2 = 20)*] [ (7 = 3)P + (ks = 7]

+Jif[7+;p,wF(K1/K4) + j;if,vf;p,wF(KZI K3) + jj:f,’er;p,tDF(KZ/ K4)] ‘

1
o= )"+ (k2 = 29" [(r = x0)P + (04— )]
x Y x Ky
. {(%_ 0 (= )PV () + (2= ) (k1 = 1PV )
K1 K3 K1Y
Ky Y K2 Ky
+(2 — 5) (7 = 13)P \/ V(F) + (k2 — 3" (s — )P \/ V(F)
» K3 x Y
- 1
(e = x1)* + (k2 = 50)%] [ (7 = )P + (10s — 1)
Ko — K K1+ 1% ks — x g 414 [P 12
i e [ A VG

6. Conclusions

In this paper, we present several trapezoid and Ostrowski-type inequalities for func-
tions of bounded variation with two variables via generalized fractional integrals. It is
also shown that several results are given by special cases of the main results. We deduce
that the findings proved in this work are naturally universal, contribute to the theory of
inequalities and have applications for determining the uniqueness of solutions in fractional
boundary value problems. The findings of this study can be applied to symmetry. The
results for the case of symmetric functions can be obtained by applying the concepts of
symmetric convex functions, which will be studied in future work. It is an interesting and
new problem and forthcoming researchers can use the techniques of this study to derive
similar inequalities for different kinds of fractional integrals in their future works.
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Abstract: In this paper, we establish some new Hermite-Hadamard type inequalities for preinvex
functions and left-right estimates of newly established inequalities for (p, q)-differentiable preinvex
functions in the context of (p, q)-calculus. We also show that the results established in this paper are
generalizations of comparable results in the literature of integral inequalities. Analytic inequalities
of this nature and especially the techniques involved have applications in various areas in which
symmetry plays a prominent role.

Keywords: Hermite—-Hadamard inequality; (p, q)-integral; post quantum calculus; convex function

1. Introduction

The Hermite-Hadamard (H-H) inequality, which was independently found by C.
Hermite and J. Hadamard, is particularly important in convex function theory (see, [1-3],
and also [4], p. 137).

T+ 11 1 7 II(7ty) + I1(7r2)
H( ) < mn/n(%)d% < 2+ ) 5

2 2

where ITis a convex mapping. The aforementioned inequality is true in reverse order for
concave maps. Jensen’s inequality for convex functions can easily capture this inequality [5].
Several generalizations and extensions to classical convex functions have been proposed
in recent years. In [6], the notions about invex function was given that is a significant
generalization of convex functions. Weir and Mond introduced the concept of preinvex
functions in [7], and it is used in optimization theory in a variety of ways. Prequasi-invex
functions are a generalization of the invex functions introduced by Pini in [8]. Following
that, the authors looked at some fundamental properties of generalized preinvex functions
in [9]. Noor established H-H integral inequalities for preinvex functions in [10-12]. The
authors of [13,14] used the ordinary and fractional integrals to calculate the left and right
bounds of the H-H inequalities for preinvex functions. More recent results on the integral
inequalities for various types of preinvexities can be found in [15-24].
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On the other hand, beginning with Euler, various efforts in the subject of g-analysis
have been implemented in order to master the mathematics that underpins quantum
computing. The phrase g-calculus binds mathematics and physics together. It is em-
ployed in subjects including combinatorics, number theory, basic hypergeometric functions,
orthogonal polynomials, and others, as well as relativity theory, mechanics, and quan-
tum theory [25,26]. It has numerous applications in quantum information theory [27,28].
Euler is believed to be the creator of this crucial branch of mathematics since he em-
ployed the g-parameter in Newton’s work on infinite series. Jackson [29,30] introduced
the concept of g-calculus, sometimes known as calculus without limits, for the first time
in a proper manner. Al-Salam [31] introduced the concepts of g-fractional integral and
g-Riemann-Liouville fractional integral in 1996. Because study in this subject is gradu-
ally increasing, Tariboon and Ntouyas [32] proposed the r, D;-difference operator and
g -integral. Bermudo et al. [33] published their ideas regarding the ™2 D,-difference opera-
tor and q™2-integral in 2020. By presenting the principles of (p, g)-calculus, Sadjang [34]
broadened the concept of g-calculus. Tung and Gov [35] introduced the (p, g)-variant
of the 7, Dy-difference operator and q,-integral. Chu et al. established the concepts of
™D, 4-derivative and (p, q)"*-integral in [36], in 2021.

Quantum and post-quantum integrals have been used to study a variety of integral
inequalities for a variety of functions. For example, multiple authors in [37-45] gave
the H-H inequalities and their right-left estimates for convex and co-ordinated convex
functions via r, Dg,”2 Dg-derivatives and qr,, g"?-integrals. In the setting of g-calculus,
Noor et al. [46] employed preinvexity to verify H-H inequalities. Nwaeze et al. [47]
discovered several parameterized g-integral inequalities for generalized quasi-convex
functions. In [48], Khan et al. used the concept of Green functions to develop some novel
H-H type inequalities. In the context of g-calculus, Budak et al. [49], Ali et al. [50,51],
and Vivas-Cortez et al. [52] demonstrated new boundaries for Simpson’s and Newton's
type inequalities for convex and coordinated convex functions. For g-Ostrowski inequality
for convex and co-ordinated convex functions, see [53-55]. The authors used the ~, Dy 4-
difference operator and the (p, q) ., -integral to generalize the results of [39] and show H-H
type inequalities and their left estimates [56]. The authors recently established the right
estimates of H-H type inequalities shown by Kunt et al. [56] in [57]. Reference [36] can be
used to solve (p, g)-Ostrowski type inequalities. The findings in [58] are a generalization
of [33].

Inspired by the ongoing studies, we give the generalizations of the results proved
in [33,39,41,59] by proving H-H trapezoid and midpoint type inequalities for preinvex
functions using the concepts of (p, q)-difference operators and (p, q)-integral.

This paper is organized in the following way: Section 2 introduces the basics of g-
calculus and discusses other related research in the field. (p, g)-derivatives and integrals
are discussed in Section 3. In Section 4, we show that in the (p, 7)-calculus setting, H-H
type inequalities exist for preinvex functions. Sections 5 and 6 prove new midpoint and
trapezoid type inequalities for differentiable preinvex functions via (p, )-calculus. The link
between the findings reported here and analogous findings in the literature is also taken
into account. Section 7 summarize the findings and suggests research topics for the future.

2. Quantum Derivatives and Integrals

This section discusses the key concepts and findings that will be needed to prove our
critical findings in the next sections.

Definition 1 ([7,9]). A set w C R" is known as invex with respect to the given 1 : R" x R" —
Rﬂ 1f‘
s+ ty(y, %) €Ew, Vi, v €w, t€[0,1].

The 1-connected set is a more frequent name for the invex set w.
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Definition 2 ([7,9]). Consider an invex set w C R™ with respect to 7 : R" x R" — R". A
mapping IT: w — R is called preinvex, if

[1(5 + t(y, 32)) < HI(7) + (1 — H)I1(5), ¥ 32,9 € w, t € [0,1]. )
If —I1is preinvex, the mapping 11 is called preconcave.

Remark 1. Definition 2 becomes the definition of convex functions if n(vy, ») = v — » is set in
Definition 2:

II(se+t(y — 2)) < t(y) + (1 —t)IL(x), ¥V 2,7 € w, t € [0,1].
Condition C. [9] The function 7 satisfies the following condition if

vy +tn(y) = —tn(s<7), 3
nGor+10ey) = 1-tnG7)

for every s, € wand any t € [0,1]. Note that for every s,y € w, t1,t, € [0,1], and from
Condition C, we have the following:
(7 + b1 (52,7), 7 + 1 (52,7)) = (b2 = 1)1 (52, 7)-
Theorem 1 ([60] (Jensen’s inequality for preinvex functions)). Let IT: w — R be a preinvex
n
function. Let 7y1,72, ..., vn € [0,1] be the coefficients such that Y v; =1, and let t1,t5,... 1, €
i=0
[0,1] be the coefficients. Then, the inequality

(Z (52 +tim (7, > ><Z% (52 + tin (7, ) @)

holds for all s,y € w.

Set the following notation [26]:

n

-1

~ =149+ +..+9"Y, g€(0,1).

Iy =

The g-Jackson integral of a mapping IT from 0 to 71, is given by Jackson [30] which is
defined as:

4

() dgze =(1—q)m Y q"T1(72q"), where 0 < g < 1 (5)

0 n=0

assuming that the sum is absolutely convergent. Moreover, over the interval 711, 715], he
gave the following integral of a mapping IT:

/H?H(;{) dgre = 72H(J4) dgx —/H}H(%) dgr .
T 0 0

Definition 3 ([32]). The qy,-derivative of mapping I1 : [y, 5] — R is defined as:

s an(%) = H(%)(IILIE;J)JZ}ji(ln?)q)nl)r I 7é Ty (6)

For s = 1y, we state 5, DgI1(7r1) = im,,yn, 7, Dgl1(5¢) if it exists and it is finite.
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Definition 4 ([33]). The q™2-derivative of mapping I1 : [y, 7t2] — R is given as:

_ (g + (1 —q)mp) —11(>)
(1—=q)(m — )

For » = 715, we state 2 DyI1(71p) = lim,, ., ™DyT1(52) if it exists and it is finite.

T2 DgT( ) , 7 # 70, (7)

Definition 5 ([32]). The qy,-definite integral of mapping I1 : [my, ] — R on [y, o] is
defined as:

P4

[0 e = (=)= m) Y et (- g)m), %€ (). @

m n=0

Bermudo et al. [33], on the other hand, state the following concept of the g-definite
integral:

Definition 6 ([33]). The q"™2-definite integral of mapping I1 : [y, 2] — R on [my, 71p] is
given as:

/H(T) T = (1—g)(mp — 5) Z qII(G" e+ (1 —q")mp), » € [m1, ). (9)
o n=0

3. Post-Quantum Derivatives and Integrals

We will go over some basic (p, q)-calculus concepts and notations in this section.
The [n],, ; is said to be (p, q)-integers and expressed as:

with 0 < g <p <1.The [n], ! and { Z }! are called (p, g)-factorial and (p, )-binomial,

respectively, and expressed as:

[1]! gmmeLmW:L

{ n }! _ [n],,q! .
k (1=K,

Definition 7 ([34]). The (p, q)-derivative of mapping I1: [rt1, 7t3] — R is given as:

Dy I1(5) = w, % #0 (10)

with0 <g<p<1
Definition 8 ([35]). The (p,q) ,,-derivative of mapping I1 : [1t1, 1] — R is given as:

H(pz+ (1= p)m) —Tl(g + (1 = g)m1)

b)) rrm @

m Dpgll(5) =
with0 <g<p<1

For s = 1y, we state , Dy g11(711) = lim,, ., 7, Dpql1(5¢) if it exists and it is finite.
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Definition 9 ([36]). The (p, q)™*-derivative of mapping I1 : [rt1, mp] — R is given as:

2Dy I1(3) = gz (1 _(Zo)fzq))(_nzl(—pz; 0= p)HZ), % # 1. (12)

For s = 1y, we state ™Dy, g11(712) = lim,,—z, ™D, 411(5¢) if it exists and it is finite.

Remark 2. It is clear that if we use p = 1in (11) and (12), then the equalities (11) and (12) reduce
to (6) and (7), respectively.

Definition 10 ([35]). The definite (p, q) x,-integral of mapping I1 : [7t1, 12] — Ron [11, 112] is
stated as:

» o0 qn qﬂ qn
[0 gt = =)= m) ¥ (et (1- 0 )m )
m p p p

with0 <g<p<1

Definition 11 ([36]). The definite (p, q)™-integral of mapping I1: [r11, 7t3] — R on [y, 115] is

stated as:
7T qn
/ II(t )ﬂzd qr_(p q)(rty — > Z —T < g xt (1 n+1>”2> (14)
” n=0 p p

with0 <g<p<1

Remark 3. It is evident that if we pick p = 1 in (13) and (14), then the equalities (13) and (14)
change into (8) and (9), respectively.

Remark 4. If we take 11 = 0 and s« = 1 = 1in (13), then we have

/01 () 0dpqT = 2 <pnil>

Similarly, by taking s = 711 = 0 and 11y = 1 in (14), then we obtain that

1 0 n n
/0 T1(7) Ydpyt = (p—q) 1. p‘j+1n<1 . ﬁ)

n=0

In [56], Kunt et al. proved the following H-H type inequalities for convex functions
via the (p, q)r, -integral:

Theorem 2. For a convex mapping I1 : [my, o] — R, which is differentiable on [y, 112], the
following inequalities hold for the (p,q) . -integral:

+(1-p)m
n(q’“ ha pm) < [T G g < TP (15)
[2} g p(ﬂ'z - 7-(1) [2]p,q
where0 < g < p <1.
Lemma 1 ([58]). We have the following equalities:
)oc+1

2 wn (m—m
T — )" Rdy gt = ————
/7T1 ( ? ) P [“+1]p/q
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a+1
x— 7T dpgre = ——
w G = T,

/”2 p (o —m)

where . € R — {—1}.

4. New H-H Type Inequalities for Post-Quantum Integrals

We present a new variant of the (p, g)-H-H inequality for preinvex functions in this
section. It is also demonstrated that the results presented here are a generalization of
some previously published results. For brevity, we use I = [y + (711, 712), 2] and
J=[m,m +15(m,m).

Theorem 3. For a differentiable preinvex mapping Il : I — R, the following inequality holds for
the (p,q)™-integral:

7, 7o) + (2], 7T bis
. pi(m, ) + 2], 4702 - 1 / 2 () 2 e
[2}p,q pi’](ﬂ,’z, 7'(1) T +pi(m1,72)

pII(7ta + pry (1, 2)) + qL1(772)
(2], ’

IN

(16)

where0 < g <p <1

roof. For preinvex functions, we can use Jensen’s inequali
Proof. F funct ! lit

1 o 1 o
1_[7/ 224 %>§7/ I1(5¢) ™d,, ;3¢
<P'7(7Tz'711) maHpi (1, 72) P pr (72, 711) J ot py (o m2) (%) "dng

and from the Definition 11, one can easily observe that

1 /7‘(2 pq(nll 7-[2) + [2};”77'[2

—_— 272y g =
p(12, 1) Sty ) - 2]

Thus, the first part of the inequality (16) is proved. To prove the second inequality in (16),
first, we note that IT is preinvex function and we have

I1(7ty + ty (71, 12)) < t1I(mp) + (1 — £)II(71). 17)

Applying the (p, q)™-integral on the both sides of (17), we have

" T1(3¢) e e < PO P10 72)) + T()
P (702, 701) Syt pyp (1, 72) [2]”"7

Hence, the proof is completed. [
Remark 5. We obtain Theorem 5 in [59], by letting p = 1 in Theorem 3.

Remark 6. If we set p = 1 in Theorem 3 and later assume that 1(7y, 11) = —1(m1, 712) =
179 — 7111, then Theorem 3 becomes Theorem 12 in [33].

Example 1. Let T1(3c) = —|s|. Then, I1 is preinvex function with respect to the following
bifunction:
_ | =y ifsy 20
ney) = { y = if 2y <0.
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1. Let us consider 7y, 71 > 0, then n(my, mp) = 111 — 715 and

H(P’/(”lr”2)+[2}p,q”2> _ _pmtqm
2, 2,

: /ﬁz () 2dyge = —PALTIT2
P (72, 1) Syt py(my ) i (2],

and

[2} .9 [2} .9

2. Let my, mp < 0. Then, 17(7y, mp) = 711 — 1M ANdd

pIl(m + py(m, m2)) +qll(m) _ pm+4qm

(P’?(”lr ) + [2},7,.1”2) _ pmtam
2l,, 2,

: /nz T(s) dy g0 = PLEAT2
P (12, 1) Syt py(my ) P (2],

and
pII(m + prp(my, mp)) + qUl(mp)  pry +qm

[2} .9 [2} .9

3. Finally, let 1y < 0 < 79. Then, y(my, 7mp) = 110 — 711 and

pr(m,m) + Ry @prgm—pm

2, 2,4 ’

1 2 (2p+q)m2 — pmy

[ — I(5) ™dy e = —H—T1= T =
pn (7, 1) /ffzﬂ?'?(”lﬂz) () dpq 2]

and
L + py(m, m2)) + g1l () 2p+4q)m —pm

It is clear that the Theorem 3 is valid.

Theorem 4. For a differentiable preinvex mapping I1 : | — R, the following inequality holds for
(P, q) z,-integral:

pi(m2, ) + 2], .1 1 Tt pr(Ta)
- <
H< mw pi (72, 701) /7{1 %) mdpq
pII(m1) + qUI(my + 17 (7t2, 771) )
- 2] ’ (18)
rAa

where0 < g < p <1.

Proof. One can easily obtain the inequality (18) by following the methodology used in the
proof of Theorem 3 and taking into account Definition 10 of the (p, q) ,-integral. [

Remark 7. We obtain Theorem 6 in [59] by letting p = 1 in Theorem 4.

Remark 8. If we set p = 1 in Theorem 4 and later assume that 1(7p, 1) = 1o — 711, then
Theorem 4 reduces to Theorem 6 in [39].
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5. Midpoint Type Inequalities through (p, 4)™2-Integral

We present some new midpoint type inequalities using the (p,q)-derivative and
integral in this section.
The following crucial lemma is required to prove the main results of this section.

Lemma 2. Let IT : I — R be a differentiable function on I°. If ™D, .1 is continuous and
integrable on I, then we have the following identity:

o
17(7a, 711) [/0 Blpa gt 2Dy JTI(H(112 4 17 (711, 712) ) + (1 — ) 712)dp gt
1
+/ ) (gt —1) ™Dy gI1(t(7r2 + 17(my, 712)) 4+ (1 — t)nz)dp,qt:|
B

1 ™ pn(m, m) + (2], .7
= - T1(2) ™dy g3 — 11 A , (19
pr (2, 1) -/772+P’7(771:7T2) () g < 2l

where0 < g < p <1.

Proof. From Definition 9, we have

HZDMH(L‘(TEQ + (1, m2)) + (1 —t)m)
(gt(r2 + 7 (m, m2)) + (1 — gt)m0) — I(pt(m2 + 11(m1, m2)) + (1 — pt)m2)
ty(r2, 1) (p — q)

. (20)

From the left side of equality (19), we have
e
(7o, 1) [/0 " gt "2 Dy g X1(E (712 +17(711, 72) ) + (1 = £) 712 )dp 4t

+ /;(qt —1) ™Dy I1(t(712 + (11, 12)) + (1 - t)”Z)dp,qt:|

2lpq

_r
= y(mym) /O[ZW 7D, TU(t(ry + (1, 72)) + (1— £)712)dy gt

1
+ [0t DIt + y(my 72)) + (1= T2yt
1
_ /0 2Dy, JTI(H(7a + 17711, 712) ) + (1 — t)nz)dwt} . (21)

By the equality (14), we have
[Z]P
/0 P D, T1(Hmy + (1)) + (1 — £)72)dp gt
(gt (2 + (711, 712)) + (1 — qt) 712)
1 /ﬁ —T(pt(m2 + y(m, m)) + (1 - pt)m2)
n(me, m)(p—q) Jo t

dpqt

Loy 20 o gm, ) + (1- 2T
e —_ T +1(711, 12) ) + — = 7 | T
n(me,m) (= \ 2, " e 2]pq P! ’

[ qn p q”
%“(mmp“””"(”“””“( m))]
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M) 1 p(m, m2) + (2], .72 )
n(ma, ) 4, m) (2], ’
1
/O 7D, TU(t( + (1, 72)) + (1 £)712)dy gt
(gt(r2 + 7 (m, m2)) + (1 — qt)m2)
_ 1 /1 ~H(pt(m +(m, m2)) + (1 - pt)ma)
12, ) (p —q) t P
n+1
B 1 Z H( O (2 (1, 72) + (1—%%2)
11(m2, 1) ZH( (7r2+17(7r1,7r2))+(172—2>712>
_ H(mp) —T1(m + (11, 712)) 23)
1(7t2, 701)
and
1
/0 t72 Dy g1t (1 4 (711, 712)) + (1 — £) 712)dp 4t
_ 1 /1{ (qt(rr2 + (1, m2)) + (1 = gt)712) }d ;
(72, ) (p — q) —I(pt(rr2 +n(my, 712)) + (1 = pt)ma) |71
[ oo n n+1 n+1
_ 1 ngo pZHH(Zul (7-[2 + 7](7-[1/7-[2)) + (1 - Znﬁ)rh)
12, m) —niopZLH(Zfﬁ(ﬂz-&-’?(ﬂl,ﬂz))+(1—*)712)
B o r1+1 rz+1 n+1
L D En(Ee e s (5
1(7a, 711) _ %EOZ—HH(”—”(N2+17(7I1,7Q))+ (172—’,1,)@)
1 _lflwq—:Hq—ZnJr 7T, 7T — 1\ n
_ (q p)ngop (P(Z n(m, m)) + ( P> 2>
n(m,m) | — (712 + (1, 72)))
1 [p-gq@&q <q ( q") )
= —|=—— ) LII{ = (m+n(m,m)+(1-- |
n(m,m) | p4 Lyt (e n(m ) pr)
1
~ (e ()|
1 [ 1 ol 1
= I1(5) ™2d) g3c — =T1(71p + 5(1y, 70 } 24
(7, ) ,pqv(nz,m)/nﬁwm,nz) () Bepgpe = (T + (i, 7)) @9

By using (22)-(24) in (21), we obtain the desired identity (19). Thus, the proof is com-
pleted. [

Remark 9. We obtain Lemma 3 in [59] by letting p = 1 in Lemma 2.

Remark 10. Ifwe use p = 1in Lemma 2 and later consider 17(7t2, 711) = —1 (711, 2) = 712 — 711,
then Lemma 2 becomes Lemma 2 in [41].
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Theorem 5. Suppose that the assumptions of Lemma 2 hold. If | 2Dy, (11| is a preinvex function
over 1, then we have the following new inequality:

1, M) + 2], 7T
1 /nz H(%)”de,q%—l_[<p17( 1,72) HM 2)’

' P (72, 1) Syt py (1, m2) 2],,

< n(ma,m) [(|n2Dp,qH(7T1)‘A1(P/‘1) + ‘nsz,qH(ﬂzﬂAz(Pr‘?))
+(|™Dp,g1(71)| As(p, q) + |2 Dy g11(72) | Aa(p,q)) ], (25)

where

qp°
2543l

3(,2 2 2
Arlpq) = a(P (v +q4 p)+p [3]p,[,),

(2],,,13],,9
q(q+2p)  9°(4° +3p° +3pq)
2] miw (3],

9 (q+2p)

Ay(pg) = 2], *W*I%(Pﬂi)'

Ai(pg) =

As(p,q)

, we

obtain that

1 2 . py(m, m2) + 2], 702
/ TI(5) dp,q%H< [Z}W A )‘

' (72, 701) Jry+py(m,mz)

IN

L
(7o, 711) [/0 Bl qt |2 DpT1(t (72 + 17(7m1, 712)) + (1 — £)72) |dp gt

+ /;(1 —qt) |2 Dy I1(t(72 + 17(711, 712)) + (1 — t)n2)|dp,qt}

2lpq

IA

_r
1(7t2, 711) [‘7/0[2]’”7 E(t[™2Dyp,glL(7m1) | + (1 — 1) |2 Dp,gI1(7r2) | ) dp,qt

1
+ / , (1=gt) (™2DplT(m) | + (1= t)nzDP,qH(HZ)DdP'qt} . 0
" Plog

One can easily compute the integrals that appeared on the right side of the inequality (26)

_r 3
[P = P @)
I ’
0 1213,43],0
P P (P +a* —p) + P13,
/ {1 = dyt = NG (28)
pAatipg
/ KL= gyt — q(q+2p)7q2(q2+3p2+3pq) 29)
o 21y 125,481,
1 2(g+2
/p (1)1 gt)dpyt = ﬁ_’i(@iﬁ
g Pa 2]
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[2] r4q [2] 2,q [3} pAa

Making use of (27)—(30) in (26), gives us the required inequality (25). Hence, the proof is
finished. O

N (q(q +2p) _ (a2 +3p? +3w1)>‘ 30)

Remark 11. We obtain Theorem 9 in [59] by letting p = 1 in Theorem 5.

Remark 12. If we take p = 1 in Theorem 5 and later consider n(mp, m1) = —n(my, M) =
1Ty — 7111, then Theorem 5 reduces to Theorem 5 in [41].

r . .
,r > 1isa preinvex

Theorem 6. Suppose that the assumptions of Lemma 2 hold. If | ™Dy 11
function over I, then we have the following new inequality:

T 71, 702) + 2], 7T
1 / 2 H(%) nzdp,q%—n P’?( 1 2) [ ]p,q 2
p1 (72, 1) Syt py(my ) (2],

1-1
r
1

2 ) 1
< y(m,m) ([2;))3’ [{}”ZDp,qH<m>|’A1<p,q>+\”ZDp,qH(m)rAz(p,q)}’
pAa

+{ 2Dy q11(m)|" As(p,9) + I"ZDp,qH(nz)|’A4(p,q)}7}, (31)

where A1(p,q) — Aa(p, q) are given in Theorem 5.

Proof. Taking the modulus in Lemma 2, applying the well-known power mean inequality
for (p, g)-integrals and the preinvexity of ‘ 2Dy a1 " v >1, we have

b mT1, 702) + 2], 7T
1 /2 (o) T2y — 1 py(my, m2) + 2], 472
P (72, 711) Syt py(my,m2) 2],
_r
< g(m,m) [ [ gt [ Dp L1t 2 + (11, 72)) + (1= 1)72) [
1
[, (= gt) DMt + 1, 72)) + (1= £)702) gt
" Plg
<

1-1
P r
(7o, 1) |:</0[2]W7 qtdp,qt)

_pr
) {q /O[Z]M t<t|n2Dp/qH(7Tl)|r +(1-1) HZDp/qH(m)V)dmt}

1
+ (/1,, (1- qf)dmt)

Bl

1

T

1 T
) {q/mzq(l —at) <t}n2Dp,qH(”1)|r +(1-1)] nsz,qH(m)r)dwt}
-

1
;

PZ

(2h)’

81

= 1(m,m) {{ 2Dy T1(m11)|" A1(p, q) + |2 DypgT1(112) |VA2(P/‘1)}



Symmetry 2021, 13, 1864

1
+H{ 2Dy T1(m)|" As(p,q) + 2Dy gT1(702) [ As(p,) } }
which completes the proof. [
Remark 13. We obtain Theorem 10 in [59] by letting p = 1 in Theorem 6.

Remark 14. If we put p = 1 in Theorem 6 and later assume that n(7, 7w1) = —1(7m11, 772)
= 71p — 711, then Theorem 6 reduces to Theorem 6 in [41].

r . .
, v > 1isapreinvex

Theorem 7. Suppose that the assumptions of Lemma 2 hold. If |
function over I, then we have the following new inequality:

/772 ) ﬂzd w—T1 pﬂ(nl’ 7'[2) + [Z]MHZ
(702, 10) Syt py(y ) " 2lpg
s+1 B : |ﬂ2Dp,ﬂH(m)|r<%> 7
e (([;) ()) b (£
e +|™2D) 4 I1(72) | <T>
I

1
—p? T
TN : }nsz,qH(m)r([z][;’jzin)
+ <§ —t) dpqt 2 M / (32)
| )

S +‘7T2Dplql_[(n2)|r(

where s +r = sr.

Proof. Taking the modulus in Lemma 2, by applying the well-known Holder inequality
for definite (p, q)-integrals and the preinvexity of | 2Dy 011 " ¥ > 1, we obtain that

'1/”2 I1(5) nzdp/q%_l_[(r’ﬂ(m, m); [2];%712)‘

p(m2, 711) St py(rma) (21,

IN

o
gy, 111) {/0 Ploa |"2Dp g 11(t (72 + 17(711, 12)) + (1 — £)712) | dp gt

1 1
+ / , <67t> |”2Dpqu(t(7T2+11(7T1, nz))+(1t)n2)|dp,qt}
" Bpg

ﬁ
qn (2, 1) (/O o tsdwt>
1

(/ - —t d,,,qt)
o
1

{/ t}"ZDMn m)| + (1 -1 ”ZDp/qH(nz)V)dp,qt} : 33)
2]

1
5

IA

t|ﬂzDMH m)| 4 (1= t)| ™Dy gI1(m)| )dp,,,t}
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One can easily evaluate the integrals that appear on the right side of the inequality (33)

2y g p N p—g :
<./o ra 4 d;mﬂ) = ((mrm) <ps+l — gt )) (34)

e 2
/0 Pt gt = T” , (35)
2]
o 3 2 2, _ 2
/[zm(l,t)dm _ prtr +32P 9-r 36)
0 2]}
1 2], —p?
td, ot = M, 37
y Hpag NE
g 2lpq
1 22 +pr—p—
[ A=t = Wy 7 =P 1 38)
e 2l
Making use of (34)—(38), gives us the required inequality (32). Hence, the proof is accom-

plished. O

6. Trapezoidal Type Inequalities through (p, 4)™-Integral

In this section, we give some new trapezoidal inequalities by using the (p, q)-derivative
and integral.
To prove the main results of this section, we need the following crucial lemma.

Lemma 3. Let IT : I — R be a differentiable function on I°. If 2D, 411 is continuous and
integrable on 1, then we have the following identity:

pIL(7ea + pr (1, 712)) 4+ qU(7m2) 1 /”2 TT(3¢) ™2dp,q3¢
[2]!7/'1 P72, 701) ot pi (i)
_ qqlm,m) 1
= PR (1 hygt) DR () + (1= 0 i, &

where0 < g <p <1
Proof. From (20) and the right side of (39), we obtain that

% /01 (1= 21,qt) DpaT1(t(m2 + (1, 72)) + (1 = )702) gt
I X
I(gt(m2 + 1 (m, m2)) + (1 — qt)m2)
qn (o, 717) 1 /1 —I(pt(ma +n(m, m2)) + (1 — pt)m2)
(2], |n(m2,m)(p—q) o t

dpqt

2]q /1{ I(gt(rr2 + 1 (7m1, 712)) + (1 — gt)712) }d ;
n(my,m)(p—q) Jo | —TL(pt(m2 +1(m, 712)) + (1 = pt)ma) | P11

From (23) and (24), we have

q17(12, 711)

1
B /0 (1= 20,4t) ™DpaT1(t(m2 + (1, 72)) + (1= ) 712) dpgt
PA
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() Tty (1 72))
_ q11 (12, 711) 2 1(m2,m1)
g | e acramy S s ) T10e) dp g2 = T2 + (71, 7m2)) |

where the identity (39) is obtained and the proof is accomplished. [
Remark 15. We obtain Lemma 2 in [59] by letting p = 1 in Lemma 3.

Remark 16. If we adopt p = 1 in Lemma 3 and later we assume that 1(712, 711) = —1 (711, 702)
= 11y — 711, then Lemma 3 becomes Lemma 1 in [41].

Theorem 8. Suppose that the assumptions of Lemma 3 hold. If | 2D, gI1| is a preinvex function
over 1, then we have the following new inequality:

pII(m + pry (1, ) + qUI(m2) 1 T -
[2];7,,7 Pﬁ(ﬂ.’z, 7'[1) /”2+}’H1(7I1,7TZ) (%) pg*
< WH ﬂsz,qH(ﬂl){As(p,q) 4 ‘ mDp,qH(ﬂz)|A6(P,q)], (40)
1]

where
As(pq) = /01 f‘ (1 - [2}p,qf> ‘ dpqt,
Aotpa) = [ (0] (1= 121, dpat.

Proof. Taking the modulus in Lemma 3 and using the preinvexity of | 2D, ,I1|, we have

’ pII(my + piy (1, m2)) + qLI(772) ) /ﬂ2 I1(5¢) "2dp,q5¢

o+ pr (7m1,72)

(2], pr (12, 1)

%ﬁ;:l) /01 t‘ (1 B [Z]Mtﬂ |n2Dp,qH(7T1)| dpqt

+ /01(1 B t)‘ (1 N [Z]Mt) ‘ |"2DypgI1(712) | dpqt

- % [| 72D g 1) | As(p, ) + | Dy T1(2) | Ag(p, )], (1)
1224

Thus, the proof is completed. [

Remark 17. We obtain Theorem 7 in [59] by letting p = 1 in Theorem 8.

Remark 18. If we adopt p = 1 in Theorem 8 and later we assume that (1, 111) = —1(711, 702)
= 71 — 711, then Theorem 8 becomes Theorem 7 in [41].

Theorem 9. Suppose that the assumptions of Lemma 3 hold. If | Dy oI1|", r > 1is a preinvex
function over I, then we have the following new inequality:

[Z]p,q P77(7T2r 77:1)

1
qn(m,m) (Y, o
= T, (T 1t ot

1
X [| 2 DpT1(m)|" As(p,9) + | Dpgll(m2)| Ae(p,a)| @)

‘Pn(ﬂz + pi(m, 72)) + qT1(72) ! I T1(32) "dlp g ¢

0+ pr(7m1,72)
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where As(p,q) and Ag(p, q) are given in Theorem 8.

Proof. Taking the modulus in Lemma 3 and applying the well-known power mean in-
equality for (p, q)-integrals and the preinvexity of | ", r > 1, we obtain that

pI(my + pry(m, m2)) +qll(mp) 1 /nz T1(5¢) ™2, ;30
[Z]p,q P’?(”Zr 77:1) mo+py (7m1,72) P
1-1
qn (72, 1) nz, 1)
< ( [ 1= 2] Aot
1 1
X {/0 ‘l - [Z]Mt‘ |"2Dy  TI(H(12 + (111, 72) ) + (1 — ) 712) | dp,qt}
1-1 1
g1 (2, 1) ﬂz, m ' r
< (/ 1= 2], dwt) {/0 (1= 21pgt) | 2Dpallen)|” dpat

+ /01(1 - f)‘ (1 - [Z]Mt)‘ 72Dy (2)| d,,,l,t} '

11
(2, 711) "2'”1 (/ ‘1 Mt‘ dp,qt> '

x [| nzpp,qn(nl)rAS(p,q) +] ﬂzpp,qn(nz)rAé(p,q)] . (43)

Sl=

Thus, the proof is finished. [
Remark 19. We obtain Theorem 8 in [59] by letting p = 1 in Theorem 9.

Remark 20. If we adopt p = 1 in Theorem 9 and later we assume that (o, 1) = —1(711, 72)
= 11 — 711, then Theorem 9 becomes Theorem 4 in [41].
Theorem 10. Suppose that the assumptions of Lemma 3 hold. If \ " r > 1isa preinvex
function over I, then we have the following new inequality:

‘PH(N2+P"I(7T1/ m)) +qll(me) 1 /ﬂz 11(5) "dp,q2¢

2], P (72, 1) S+ py (ma,0)

1
L[| D, 11(my)|" + ([2],, —1)| ™D, ()| 1"
< Tmm) 7T2,7T1 (/ ‘1 ’qtrdp,qt> [ pall(m) <[[2]frq )‘ il (2)} . (44)
pAa

where s +r = sr.

Proof. Taking the modulus in Lemma 3 and applying the well-known Holder inequality

for (p, " ¥ > 1, we obtain that
r 7T
pII(r2 + pry (1, m2)) + ql1(ma) 1 / : T1(3¢) 2d, 43¢
(2], pr (72, 701) St py (o m2)

< m(/ ’1 [zlpqt’ dpq)

l r
x {/0 |2 Dy T (t(7r2 4+ 1711, 712)) + (1 — 1) 72) | dp,qt}
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References

1
a1 (712, 771) /1 B s H
= 2,4 <0’1 [Z]Wt’ Aat

1 1 :
x{/o t|”2Dp,qH(7r1)\rdp,qt+/o (1—1t) |™2DpI1(72)|" dypgt| - (45)

We can calculate the integrals that occur on the right side of (45) as follows:

/bltdwt - (46)
0 (2],

1 2],,—1

A—t)dyt = —H4 . (47)
/0 12 [2]%'7

Making use of (46) and (47) in (45), gives the desired result. Hence, the proof is com-
pleted. O

Remark 21. The left-right estimates of inequality (18) given in Theorem 4 that we left for the
readers can be obtained by using the notions of (p,q) ., -derivative and integral, as well as the
techniques used in the previous two sections.

7. Conclusions

In this paper, we proved H-H type inequalities for preinvex functions using the
(p,q)-calculus setup. For (p, q)-differentiable preinvex functions, we also proved some
new midpoint-formula-type and trapezoid-formula-type inequalities. Furthermore, we
demonstrated that the newly discovered inequalities are generalizations of the inequalities
for convex functions in (p, q)-calculus. This study’s conclusions can be used in symmetry.
The results for symmetric functions can be reached by employing the notions of symmetric
convex functions, which will be explored further in future work. It is an intriguing and
novel problem, and future researchers will be able to obtain similar inequalities for co-
ordinated preinvex functions in their studies.
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Abstract: In this paper, we consider the initial-boundary value problem for the two-dimensional
primitive equations of the large-scale oceanic dynamics. These models are often used to predict
weather and climate change. Using the differential inequality technique, rigorous a priori bounds of
solutions and the continuous dependence on the heat source are established. We show the application
of symmetry in mathematical inequalities in practice.

Keywords: a priori bounds; 2D primitive equations; continuous dependence; heat source

1. Introduction

Primitive equations are very useful models which are often used to study the climate
and weather prediction. It was Lions, Teman and Wang (see [1-4]) who first started
the mathematical study of the primitive equations of the atmosphere, the ocean and the
coupled atmosphere—ocean. Assuming that all unknown functions are independent of
the latitude y, Petcu et al. [5] obtained the two-dimensional primitive equations of the
ocean from the three-dimensional primitive equations. The existence and uniqueness of
strong solutions of the primitive equations were derived. In a following paper, Huang
and Guo [6] considered the two-dimensional primitive equations of large-scale oceanic
motion. They obtained the the existence and uniqueness of global strong solutions. Huang
etal. [7] studied the two-dimensional primitive equations of large-scale ocean in geophysics
driven by degenerate noise. They proved the asymptotically strong Feller property of the
probability transition semigroups. Due to the importance of primitive equations, there are
many papers to study the problems (see, e.g., [8-14]).

Recently, many authors began to study the structural stability of large-scale primitive
equations. Li [15] obtained the continuous dependence on the viscosity coefficient of
primitive equations of the atmosphere with vapor saturation. By using the energy analysis
methods, Li [16] proved that the primitive equations of the coupled atmosphere-ocean
depended continuously on the boundary parameters. The inspiration of the study came
from the fluid equations. There have been a lot of articles in the literature to study the
stability of fluid equations (for interest, see [17-29]).

In this paper, we also assume that all the unknown functions are independent of the
latitude y as in [5,6]. We consider the following two-dimensional large-scale primitive
equations with heat source:
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ou ou ou ap
g—ylAu+u$ +w&—fv+£ =0,
v v Jv
E—yzAv—O—uﬁ—FwE—i—fu—O,

9p

9F =0,

9z TP8 (1)
du n ow 0

ox o9z '

oT oT oT

T usAT + s + W= Q(x,t),

p=po(1 = Br(T = Twy)).

The domain is defined as
O =(0,1) x (=h,0),

where /1 is the depth of the oceanic which is always assumed to be a positive constant
in this paper. In (1) the unknown functions (u,v), w, p, p, T are the horizontal velocity
field, the vertical velocity, the density, the pressure, the temperature, respectively. Q is
the heat source function which is given. f is a function of the Earth’s rotation which is
taken to be constant here, and y; > 0(i = 1,2,3) are the viscosity coefficients. pg, T, ¢ are
the reference values of the density and the temperature. 7 is the expansion coefficient
(constants), A = B% + E)%. We observe that, in the case of ocean dynamics, one has to add
the diffusion-transport equation of the salinity to the system (1). The salinity equation is
not present in (1), but this would raise little additional difficulty to take into account the
salinity.
The boundary of Q) is denoted by 9Q) which can be partitioned into

To={(xz)€Q:0<x<1,z=0},
I ,={(x2)eQ:0<x<1,z=—h},
Is={(x,z) €Q:x=0,0rx=1,-h <z <0}
The system (1) also has the following boundary conditions:

Ju v JaT

gzo,gzo,wzo,g:—m, on T,
oT

U=v=w= ,E:O, onT_y, (2)
oT

u=v=w=0,—=0, onls,
0z

where f is a positive constant. In addition, the initial conditions can be written as
u(x,z,0) =up(x,z), v(x,z0)=0vy(x,z), T(x,z0)=Ty(x,z), inQ. 3)

The aim of this paper is to prove the continuous dependence on the heat source of
problem (1)-(3) by using the energy methods. This type of study is devoted to know
whether a small change in the equation can cause a large change in the solutions. While we
take advantage of the mathematical analysis and the symmetry in mathematical inequalities
to study these equations, it is helpful for us to know their applicability in physics. Since
there will appear some inevitable errors in reality, the study of continuous dependence or
convergence results becomes more and more significant. At present, most articles in the
literature mainly focused on the existence and long-time behavior of the solutions of the
primitive equations. Obviously, the structural stability of the primitive equations has not
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been paid enough attentions. The research of this paper will bring reference to the study of
structural stability of other types of primitive equations.

The present paper is organized as follows. In next section we give some preliminaries
of the problem and some well-known inequalities which will be used in the whole paper.
We establish rigorous a priori bounds of the solutions in Section 2. In Section 3 we want to
prove that the energy is exponential decay with time. Finally, we show how to derive a
continuous dependence on the the heat source of our problem in Section 4.

2. Preliminaries of the Problem

We formulate the Equations (1)—(3). Since w|,—_j, = 0, we integrate the Equation (1)4
from —h to z to obtain

w(x,z,t) =w(x,—h,t)— /jh %u(x,@,t)dé’ = —a% /jhu(x,g,t)dg. 4)

In view of w|,—g =0
! —u(x = — ! u(x dg =20 5
./—h Bxu( /&, 1)dg ox ./—h (x,&,1)dg ' ©)

This means that f Eh u(x,{,)d¢ is a constant for arbitrary 0 < x < 1. Realizing the
boundary conditions (2)3 we deduce that

/j’ u(x,,t)dg = 0.

By integrating (1) and using (1) we have

?
Pz ) = u/ 37 L& 1)dg, ©)

where ps = p(x,0,t) is the pressure on the surface of the ocean which is unknown and a
function of the horizontal variable only, and u = poB7. Inserting (4)—(6) into (1)-(3), our
problem can be rewritten as

?;: y1Au+ug—f (/jhaiu(x Z, t)dé')—ff +Bp5 y(/ZO;—xT(x,g,t)dg) =
%7;42Av+ug—xf(/zha (th)dC) +fu=0,

(7)
T
— u3AT + s~ /711 Eu(xlgt)dé) % Q,

0 9
/_h —u(x,3, ) =0,

with the following boundary conditions

du Jdv

E z=0 - g u 2=—h =v ——h =0, (M,U) r. =0, (8)
oM _ g1, _ar
0z lz= az z=—h 0z IT !

and the initial conditions

(u,v, T)) = (uo,v0, To)- ©)

In this paper, we also use some well-known inequalities. We list them here.
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(/5w4dA)% SC[(/(;wsz / |Vw|2dA / wdA) % / |v¢u|2dA)%}

Lemma 1. Ifw(x) € C}(0,h) and w(0) = w(h) = 0, then

/ w'd B 7T2 0 (aa%)de

For proof of Lemma 2.1 one can see Refs. [30,31].

(10)

Lemma 2. If w(x, z,t) is a sufficiently smooth function in Q) = (0,1) x (—h,0) and w(0,z,t) =

w(1,z,t) =0, then

or

(/Qof*dA)% < c{/owszH/waﬁdA],

(11)

where V = (dy,9), C is a positive computable constant and & is a positive arbitrary constant.

Proof. By the Holder inequality, we then write

([ utan)( b
/ wrdA < / (/ wﬁdx / wzdx
Jo J-n \Jo .

Since w(0,z,t) = w(1,z,t) = 0, we have

w3 = 3/ (& z1) (C'Z’t)dcj: 73/1 wz(é‘,z,t)iaw(é'z’t)d

ER ER

Therefore

3 1 dw(x,z,t)
32 2 T\ =)
lw|® < 2-/0 w (x,z,t)‘ gy ‘dx.

Then we have

/“’6‘1"% %(/“”ax‘d")

Inserting (15) into (12) we get

0
/w4dA < §/ / ’ ‘dx / wzdx dz
o) 2.J-n\. dx

1
<3 2 2 / )
<3 o {(f )’} [l Glan
Obviously, we have
w(x,, )
9

= —2/ (x,¢,t) du( ng t)d§+w2(x,0,t),

TS AT+ WP (x, —h,t)

so,

w </ \w\) ‘dz+ [W(x,0,) + w?(x, —h, 1))
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To bound the last term of (18), we define a new known function, f(z), satisfying

f(0) >0, f(=h) <0, |f'(z)| < my, |f(z)] <ma, for —h <z <0,

(19)

where 111, m, are positive constants. For example, f(z) = 5 (z + %), mih < 4m; satisfies
all the conditions in (19). Using the above estimates and employing the divergence theorem

allow us to write
min{f(0), —f(~1)} ([0 (x,0,) + w*(x, —=h, 1)] < F(0)w?(x,0,t) — f(~h)w?(x, ~h, t)
-0 -0 -0 w
= /7;[ % (fw2>dz = / f(z)w?dz + 2/4: fwaa—zdz
<m ./_Ohwzdz+2m2/ |w|‘ 2 ‘dz

Inserting (20) into (18), we have

0
w2§m3/}w2d2+m4/ \w\‘a ’dz,
—h

where
™ = Fmn ), P} "™ = w0, —FmT
Therefore
Jlrgéo { (/Ol wzdx>%} < <m3 /(;wsz + 1y /Q |w|‘aa—(;)‘dA)%.

Thus, from (16) and (23), by the Holder inequality we have

/ wtdA < §{7113 / w?dA
Q 2 Q
LR raa) ) )
el fotaa) ([ I52Faa) T (feran)* ()5
We have after simplification
([ wraa)’ <c[( [ w2aa)'( [ 1Vepas)’
+ (/Qa;sz)%(/QWdeA)%].

|

3. A priori Estimates

Now we derive some a priori estimates for the solutions of (7)-(9).

3.1. Estimates for ||u|[3, ||0||3 and ||T||3

(20)

@1

(22)

(23)

(24)

(25)

Multiplying Equation (7)3 with T and integrating over Q) and using (2.5), we find

1
Ld / Tsz+y3/0|VT|2dA= fyg,/ Tzdx|Z:0+/ TQdA

24t Jo
_/g [”%‘(/Zh s (X€t)d€) }TdA
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Integrating by parts we have
oT zZ 90 oT
_ - — — |TdA =0.
/Q [u ox (/41 Bxu(x’ Q,t)dé) az} d 0
By the Cauchy-Schwarz inequality and the Holder inequality we deduce
L 1 2
/TQdAgf/ TdAJrf/ Q%A
Ja 2 Ja 2 Ja
By (26)-(28) we have
1
2 204 < = 2 1 2
2dt/TdA+;¢3/|VT|dA /TdA+2/QQdA.

By the Gronwall inequality, we have

t t
/Tsz+2y3/ / IVT[2dAdy < / ngA-e’+/ /e”’/deAdr]
JQO JO JQ JQO JO JO

= F(t).
Taking the inner product of Equation (7); with u, in L?>(Q)), we have

1d

R IVulPdA = —
2t ot dAer/ |Vu| dA f/ uvdA

/ / xgtdz;) ]udA
Qap“udA+y/ /a (x,8,)dg ) ud A.

An integration leads to

7/ / &T”(X/C t)dC> ]udA =0.

Integrating by parts and using (7)4 we get

By the Cauchy-Schwarz inequality we have

y/ /—Tx@t)déudA_—// xgtdg)fdA

s%/ dA+h”/T2dA
By (31)-(34) we get
4 / u2dA + / |Vu|?dA < —2f / uvdA + L / T2dA.
dt Jo Ja - Ja 211 Ja
Similarly, we can have from (7)

%/szdA +2p2 /Q |Vo|*dA < 2f/Q uvdA.
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27)

(28)

(29)

(30)
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(32)

(33)

(34)

(35)

(36)
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Combining (35) and (36) and using (30) we get

i(/ usz+/ PdA) + g / \Vul?dA + 2u / voida <P Em. @)
dr\Ja Q "o 2 Ja =2 N

We integrate (37) from 0 to ¢ to find

t t
/QuZdA+/Qv2dA+yl/ / |Vu|2dAd77+2y2/ /Q|Vv|2dAd17

¢ (38)
< / dA+/ dA+ /0 Fy()dn = Ex(t).
3.2. Estimate for |T|
We multiply (7)3 by TP~1, and integrate by parts to find
/ TdA + F m,/ |VTE 2dA = —m,/s/ TPdx|._ 0+/ QTP-ldA
(39)

7/0 [ug—zf (/Zhau(x,g t)dC) ]T” TdA.

After integrating by parts on the third term of (39) and realizing the boundary condi-
tion (8) we get

oT 'z
— = _ p-1
/0 [ (/hax u(x, gt)dg) ]T dA = (40)
By the Holder inequality and the Cauchy-Schwarz inequality we have
/ QTP 1dA < = / QPdAerp ! / TPdA. (1)
Therefore,
d
2 [ 1raa< / PAA+(p—1 / TPdA. 0
dt /Q - QQ (P=1 Q @2

By the Gronwall inequality we have

/T’”dA</ TVAA - e? +// D=1 QP g Ady.

Therefore

(/ TPdA)]P {/ TVAA - el 1)t +// (p-1( Q”dAd;y} (43)

Letting now p — oo in (43) we can obtain

sup [T| < Ty, (44)
Q

where Ty, = supq {[|Qlle, [[Tolleo}-
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3.3. Estimate for H%HU;(Q)
Using (7)1 we start with

//Qaz au au (/Zha (xé't)dg)i_f +8Pb

3 o (45)
- u(/ = T(x,,1)dC ) — prdu } S-dAdy = 0.

Integrating by parts we have

/ Bu +H1//‘V ‘dAd / auo
9%u Z 9 u
= 46
/ / oz /h FrCAd ’7>d€> } oA 10
/ / Jv au / / JaT au
+f oz az ox az
Upon integrating by parts we get

/ Sl aaj;z (f, ! ("g’“dg) }a*udAdrifO 47)

By (30), (38) and the Holder inequality we have

't 9T du Bu
_y/o /Q ox E)szd77 - / / dAd / / dAd

(48)
ARt )_
2113
Inserting the above bounds into (46) we write
1 [ /ou
5 L (5) A+;41/ I (v ‘ dAdy
/ auo / / Jv au
+f 09z az (49)
F1(f)Fz(t)
2umps
We now carry out a similar procedure starting from (7); to obtain
17 a
E/Q(a A+;42/ I v ]dAdq
/ avo iy / / Jdv au
dz az 50)

LI (e

auav du dv dv
‘/ o 52 5 ~ v 52 24

Upon integrating by parts we get

// axaz /Zhaiu(xg"t)dé) ]gvdAdq—O 1)
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Upon using the Cauchy-Schwarz inequality, (11), (38)
Ik %%%% iy
/ I *) / |G (2 4dAd17]‘1‘ / / ) dady]
/ / )ZdAdrll / / dAd;y]
= /o/o 7>2A’7 // dAdUJF‘sl//’V )dAd]
[/;/Q(Z ZdAdnHz//\v (dAd
+[,/0t/g($ // dAdeffa//(V ‘dAd]
l/t/ E)v dAdiy // dAd17+(51//’v ‘dAd (52)
%// ’7] // dAdiHBz//‘V ‘dAd]
[// dAdr]% // dAdq+53//(v " ddy]
E Fiz
1 [F(

IN

it B()
H 2142 2H2 }41 2142
2
o\ o // \V \df‘d"
Fz v |2
+ 5*/72;12 52+,/71 5 /0 /Q‘VE‘ dAd,

where 1, 05, 3 are positive constants which will be given later.
The idea is to insert (51) and (52) into (50) and then choose J; = % %{f)ﬂz, 03 =

1 %&t)yz. We may have

1 Bv
E/Q(E 2”2//\V ’dAd”
/ avo _ / / Jv E)u
f Qaz az
1 |BE(t E(t b(t) (53)
2]42 2#2 2]42 ]41 2}42
/Fz
2y //‘V ‘dAd

We add (49) and (53) and choose that §; = / ?&) p1 to find

Jo G aas [, (52) an
+pt1//‘Vau‘dAd77+y2//‘V ‘dAd (54)

< K(t),
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where
: 2 2
Fs(f):/ (%) A / %) da +op, | LOBH

o\ oz 23
(55)

L(t)Fz(t Fz F2

2up 2#2 2142

Using (11) with 6 = 1 then we have
// dAd <c// dAdvy—s—//‘V ‘dAd)

(56)

<c( /0 Fs(v)dn+EFs(t)) = Fy(b).

4. Exponential Decay Estimates with Time When Q = 0

In this section we want to prove the following theorem basis on Section 3.

Theorem 1. If (19,09, Ty) € H(Q), Q = 0, then the global weakly strong solution (u,v,T) for
the system (7)—(9) satisfies

t t t
[l 1ol TR, [ 10T Py, [ axyuln) Py, [ 11ax,0) P
decay exponentially with time.

Proof. Since T, u and v satisfy the conditions of Lemma 2.1, we have

/‘ )dA>n/T2dA,

/ ] ) JA > 7 /Q W2dA, 7)

/‘ )dA>n/Q PdA.

It follows from (29) with Q = 0 that

2 2
2dt/TdA+7ry3/TdA+y3/‘a‘dA<O (58)

So, by the Gronwall inequality, we get

/ T2dA + 3 / / ‘ ‘dAd;y< / T2dA - e, (59)

where 7; = 72u3. In view of (35), (36) and (57), we have

d 2 2 2 2 2 2
E(/ﬂu dAJr./Qv dA)+7t yl‘/nu dA +2m ;42./00 dA

w5l e

2,2
<P 2
2u1 Ja

Letting
T = nzmin{yl, 2]/12},
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and using (59) we may have from (60)

;t('/ﬂuszJr/szdA)+T2('/Qu2dA+/szdA)

vl [5laa e

2.2
< hiy ngA Lot
2u1 Ja

By the Gronwall inequality again, we get

/QuszJr/vsz+V1/t/) ‘dAdUer//‘ ‘dAd

hZ
7'(21‘ 2 -7t
/ dA+/ 72#1(T2—T1 / TodA-e " if o > 1,
/llsz+/ 2dA+;41/ / )au‘ dAd17+;42/ / ‘ ‘dAd
h
7'(21‘ 2 —Tot
/ dA+/ 72]11(271_] / TygdA-e 2 if b <7,

8
/ 2dA+/ 2dA+;41//) u‘dAdnerz//‘ ‘dAd
_ hyt ot -
< </Qu%dA+/Qv%dA e TZter/QToszm 2t if 1 =1.
O

5. Continuous Dependence on the Heat Source

Supposing (u*,v*, T*, p¥) also be the solutions of (7)-(9) with the same initial-boundary
conditions as (u,v, T, ps), but with different heat source Q*. Let

ﬁ:u—u*,ﬁzv—v*,T:T—T*,n'szps—p;‘,Q:Q—Q*, (62)

then (i1, 7, 715) satisfies the following initial-boundary problem

E;ft HlAu-i—u / E) i(x,Z, t)dg) g
/ axt (06t ) —fo +% - </z ;T(x,g,t)dg) -
% 90 * L 00
E_HZAU—H[@_(/,;,B (xgt)dg)er e
-(f, S (v 04E) 52— fi =0, (63)

oT ~ T 9 oT 0T
9t *’*3“*“5 - (./_f”("'g'”dé)& T

/ FrlCAS) dg)
-[}z a’?("' '’ t)dC =0,

ol oL

_— =0, — ,~ =0 IO, ~,~ :0,

0z Iz=0 0z |z=0 z=—h ¢ z2=—h (#2) Ts (64)
P R T

0z lz=0 "0z lz=—n oxlir.
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(@3,T)|_, = (0,0,0). (65)
We have the following theorem:

Theorem 2. Let (i, 0, T) be the solutions of (63)—(65) with Q, Ty € L®(QY) and Ty, ug, vy €
L%(QY). Then (1,3, T) satisfy the inequality for 8 > 0,71 (t) > 0

_ t 1 _
2 | 2 2 1 ~12 =12 2
/Q(u + 3%+ 0T )dA+/0 /Q <2;41\Vu| + 12| VB + 03| VT )dAd;y

t T - t ~
gmae/o /0 /Q efM(s)dSQ%Adque/O /Q 0%dAdy,

which is the continuous dependence result on the heat source Q.

(66)

Proof. Now taking the inner product of the first equation of (63) with i, in L2(Q)),
we have

3 A [ [ 1vapaaay =g [ [ waady - [ [ O aady
V/ / / ZT(x2, q)dg)udAdq
_/0 /o ﬁﬁ_ /Zh aax (xm)dé) o | ady
_/Ot/(.) [”*gj;‘ /Zh aax “(x,g,m)d C) }udAdU

An integration by parts leads to

/ / / I (x,Cn d@) }udAdq =0, (68)
*/ / s ——udAdy / /1 87r / (x,z, iy)dz)dxdiy =0. (69)

By the Holder inequality, Lemma 2.2, (38), Lemma 2.1, (56) and the AG mean inequality,
we have

—/;/Q{ﬂ%—</fh%aw>dé>2ﬂw
[ Coyomn]' [ o]
iy / ) “aaan]*[ [ [, (5) aann]
/O/QrfldAdq 4
< \/PZT”C /t/ BdAdy + 6, /t/ |VafdAdy]
‘Fh(‘/?// dd17 // PdAdy
+4 /0 / \Vﬁ\szdq]z

t t
gbl(t)/o /Qﬁszdry-i-bz(t)dl/O /Q\Vﬁ\szdry

for computable by (t), bo(t) and positive arbitrary constant d;.

(67)

(70)
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Applying the Cauchy-Schwarz inequality again we have

y/ / / —T(x,¢, q)d@)udAdr;
:—y/ / / (x,5,1) dC)—dAdiy
hz"z / / T2dAdy + 12 / / dAdq

Inserting (68)—(71) into (67) and choosing 6; = ( y we have

4b2

1 ~2 1 .t ~2 .t —~—
- Z <
Z/Ou dA+2;41/0 /Q\Vu\ dAdr]ff/O /qudAdvy

PR Py 4 " 2dad
T t//~ .
i /O/Q -+ 1()‘0 | dAdy

Now, taking the inner product of Equation (63); with 7, we have
1/ FPdA + /t/ V5 2dAd ——f/t/ TodAd
2 Jo 2 Jo Ja 1= 1
t ~aU 4
f/ / s = / u(x, ¢, q)dé’) ]udAdiy
8
~ Jolse = (L e o) st

Computing as previous we arrive at

— — < —
2/00 dA+2H2/o _/Q|Vv| dAdny < f/o /qudAd;y—i—bg,(t)/o /Qv dAdn

for computable positive function bs(t). A combination of (74) and (78) leads to

: . , N
da+ [ @A+ [ [ |Vapaady+p, [ [ |VaPaad
/QM + Ov +I410 Q\ m 77+7420 Q| ] .
< Ellia T /t/ T2d Ady +2by (t) /t/ i2d Ady + 2bs(t) /t/ 24 Ady.
T m JoJo Jo Ja b Jo
We take the inner product of Equation (63)3 with T, we have
5 [ TdA+p /t [ IvTPaady
2Ja 0 Ja
topop.oT z 9 aT
_/0 /Q {ug— </, e u(x,g,n)d C) ]TdAd;y
t LT z
7/0 /Q[” ax /, 3t (X§'1)dé’) ]TdAdq
t ~~
+ [ | QTaady.
0 JQ

On integrating by parts we have

/ / /, aax (L, n)dé) ]TdAdq_o
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Integrating by parts and using the Holder inequality, (44), Lemma 3.2, the AG mean

inequality we get

~ o Il ([, o) 5] Tana
_// il dAd;y // /hax i, &g ) TOL Ty
<l f, fy G aaan)” ([ ) Pas)’
+Tm // /hax xéﬂ)dé dAd'l // dAdW%
% 62 / / dAd + o Tm / / ~2dAd;7
271252 / / ) ddy + 5T / / ) dady,

where 95 is a positive constant.
By the Holder inequality and the AG mean inequality it follows that

/ / OTdAdy < - / / Q%dAdy + » / / T2d Ady.
Inserting (77)~(79) into (76) and choosing & = J7- we get

[ Taa+ //\VT\szd;y< 1 //~2dAd;7+ L //(al)szdq
H3 m m b Jo \ax

+ / / T2dAdy + / / QZdAd;y

2
Then, using (75) and (80), we find that for a positive constant § = = LA

2h2T,,

/O(u + A +6T) dA+// y1|Vu|2+y2|Vz7|2+9y3|VT| )dAdy

<t 2 + 9% 4+ 0T?)dAd
<on(t) [ [ (7 + 7+ eT)daay
[
+9//Q2dAdr],
0 JO

where

2K% T0
Y1(t) = max{1+ =, 2by (t) + =, 2b5(1)}.
10 )

Therefore

O [ (@4 4072 — Jom(s)ds e = Jora(s)ds
E{/O/Q(u + 0" +0T)dAdy-e” oM }39/0 /QQdAdy/.e !

An integration of (83) yields that

t
/ / 2+ 1 0T2)dAdy <9/ / /ef NN Adydr.
0
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Then returning to (81), we obtain
JOS =~ t 1 ~ ~ ~
/Q(u2 R4 0T2)dA + /0 /Q (3111 Vi + pa | V51 + 0| VT2 ) d Ay

< 11(t)8 /0 t /O ‘ /Q et 32 Adydr 4 0 /O t /Q 0%dAdy. )

6. Conclusions

In this paper, we obtain the continuous dependence of the two-dimensional large-scale
primitive equations in oceanic dynamics, where the depth of the ocean is assumed to be
a positive constant. When the depth of the ocean is positive but not always a constant,
Huang and Guo [32] have obtained the existence and uniqueness of a global strong solution
for the problem. The study of the continuous dependence of the primitive equations in this
case may be more interesting.
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1. Introduction
Recall that the Jensen functional J, (i; p, x) is defined on an interval I C R by

Jull p,x) = Z:jpfh(xi) - h(imxo,

whereh: I = R, x = (x1,x2,- - ,x,) € ["and p = {p;}} is a positive weight sequence.
If h is a convex function on I then the inequality

0< ]n(h/'Prx)

holds for each x € I" and any positive weight sequence p.

If /1 is a concave function on I then the above inequality is reversed. Those inequalities
play a fundamental role in many parts of mathematical analysis and applications. For
example, the well-known A — G — H inequality, Holder’s inequality, Ky Fan inequality,
etc., are proven by the help of Jensen’s inequality (cf. [1-6]).

Our aim in this paper is to find the simplest constant C such that

0<Ju(h;p,x) <C,
for any choice of p, x and thus make this inequality symmetrical.

This will be done by assuming that x € [4,b]" C I", and we shall find some
global bounds for the generalized Jensen functional

u(g, i, x) 1= g('lzlpih(xm - g(h(ipixm,

that is, the bounds not depending on p or x but only on 4, b and functions g and .
In this sense, a typical result is given by the part of Theorem 1 (below).
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Forx € [a,b]" C I",1eth: I — ] be convex and g : | — R be an increasing function.
Then

0< Ju(g lpx) < m;X[g(Ph(a) + (1= p)h(b)) — g(h(pa+ (1 —p)b))].

Our global bounds will be entirely presented in terms of elementary means.
Recall that the mean isamap M : R, x Ry — Ry, with a property

min(x,y) < M(x,y) < max(x,y),

foreach x,y € R,.
In the sequel we shall use the class of so-called Stolarsky (or extended) two-parametric
mean values, defined for positive values of x,y, x # y by the following

-y \V 67
(=) o rs(r—s) #0
exp(%+%), r=s#0
Ers(x,y) = -y s _
(SUngflogy)) ! s7#0r=0
VXY, r=s=0,
x, y=x>0.

In this form it was introduced by Keneth Stolarsky in [7].
Most of the classical two variable means are special cases of the class E. For example,

X+
Alx,y) = Eialy) = 7

is the arithmetic mean;
G(x,y) = Eoo(x,y) = E—rs(x,y) = ﬁy
is the geometric mean;

x—y

L(x,y) = Eoa(x,y) = logx —logy

is the logarithmic mean;

I(x,y) = Eva(x,y) = (*/y¥) 7 /e

is the identric mean, etc.
More generally, the r-th power mean

Ar(x,y) = (xr ; yr>1/y

is equal to E,p,(x, ).

Using the class of Stolarsky means enables our results to be presented in a condensed
and applicable way. For example, we give some results regarding .4 — G — H inequalities,
where

Alp,x) := ) pixi;
1
G(p,x) =[]0
1
H(p,x) == (Y pi/x;) ",
1
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are the generalized arithmetic, geometric and harmonic means, respectively.
Letx € [a,0]",0 < a < b. Then

0 < A(p,x) —H(p,x) < 2(A(a,b) — G(a,));

L(a,b)
G(a,b)’

0 < A(p,x) —G(p,x) < A(a,b) — L(a,b) + L(a,b) log

A(p, x) Afa,b)\2,
1= H(p,x) < (G(u,b)) !

1< ((p,x) - I(a,b)L(a,b)

g
H(p,x) = G2(a,b) ~’
A(p,x) _ I(a,b)L(a,b)
G(p,x) = G*ab)
where A, G, H, L, I stands for the arithmetic, geometric, harmonic, logarithmic and identric
means of positive numbers a and b, respectively.
All bounds above are the best possible.

2. Results and Proofs

Our results concerning global bounds for the generalized Jensen functional are given
in the following two assertions.

Theorem 1. 1. For continuous functions g,h let h : I — | be convex and g : | — R be an
increasing function or h : I — | be concave and g : | — R be a decreasing function. Then

0 < Ju(g Ip,x) < m;X[g(Ph(a) + (1= p)h(b)) — g(h(pa+ (1 —p)b))].

2. Ifh: 1 — Jisconvexand g : | — R is a decreasing function or h : I — | is concave and
g ] = Ris an increasing function. Then

0< —Tu(g lip,x) < m;X[g(h(pa +(1=p)b)) — g(ph(a) + (1 — p)h(b))].

Proof. We shall prove only the part 1. The proof of part 2 of this theorem is analogous.
Therefore, if I is a convex function on | we have Y] p;i(x;) > h(¥] pix;). Since g is
an increasing function, it follows that
n n
In(8 i p,x) = g3 pi(xi)) — g(h(}_ pixi)) = 0.
1 1

Similarly, if /1 is a concave function on | we have }_{ p;h(x;) < h(¥X{ pix;). Since gis a
decreasing function, it follows again that

Ju(g h;p,x) > 0.

On the other hand, since 2 < x; < b, there exist non-negative numbers A;, p;; A; + p; =
1,suchthatx; = Aja+u;b, i =1,2,...,n.

Hence,
Ju(g hip, %) = g(ipihm)) —g(h(ipim) = ¢()_ pih(Aa+ b)) —g(h(ip,-miaww))
1
< g(ip,-m,-h(a) + uih(0)) — g(h(a im + bimo))
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= g(ph(a) + (1 = p)h(b)) — g(h(pa+ (1 — p)b)) :== F(p;a,b) < mpaxF(p; a,b),

where we denoted Y p;A; :=p € [0,1].
The second case with concave /1 and decreasing ¢ leads to the same result. [

Note that the function F(p; a,b) is continuous in p and non-negative with F(0;a,b) =
F(1;a,b) = 0. Therefore, max, F(p;a,b) exists. Another and sometimes difficult problem
is to evaluate its exact value (see Open Problem below).

For this cause, we give an estimation of [, (g, ; p, x) with a unique maximum, which
could be easily calculated. This method can be applied to the second part of Theorem 1,
as well.

Theorem 2. 1. Under the conditions of the first part of Theorem 1, assume firstly that g is a
convex function on J. Then

0 < Ju(gIp x) < m;\X[pf(a) + (1 =p)f() — f(pa+ (1-p)b)],

where f := goh.
2. Assuming that f = g o h is a concave function, we have

0 < Ju(g hip,x) < max[g(ph(a) + (1 = p)h(b)) — (pf(a) + (1 = p) f(b))].
Now, both maximums can be easily determined by the standard technique.

Proof. By the first part of Theorem 1, we found that there exists p € [0, 1] such that
Jn(8/1;p,x) < g(ph(a) + (1 — p)h(b)) — g(h(pa+ (1 —p)b)).
If additionally g is convex on J, then
8(ph(a) + (1= p)h(b)) < p(goh)(a) + (1 = p)(g o h)(b).
Hence,
Jn(g h;p,x) < p(goh)(a) +(1=p)(goh)(b) — (goh)(pa+ (1—p)b))
= pf(a)+ (A =p)f(b) = f(pa+ (1= p)b)] < max[pf(a) + (1= p)f(b) = f(pa+ (1= p)b)].
Consequently, if g o /1 is a concave function on J, we have
g(h(pa+ (1 —p)b) = (goh)(pa+ (1—p)b) = p(goh)(a) + (1 —p)(goh)(b),

and

Ju(8:hip,x) < max{g(ph(a) + (1= p)h(b)) — (pf(a) + (1 = p) f(D)]-
|

3. Applications

The results above are the source of a number of interesting inequalities. For instance,
taking g(x) = log x in Theorem 1, we are enabled to determine converses of the quotient

Lpih(x:)

h(Z pixi)’
Or, taking g(x) = h~!(x), we can estimate the difference
An(p,x) — Alp, x),
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where
An(p,x) =11 (Y pih(x

is the quasi-arithmetic mean and

Ax(p,x) = A(p,x) = ) pixi,

is the generalized arithmetic mean.
We shall specialize this argument for the class of generalized power means Bs(p, x) of
order s € R, where
Bs(p, x) : sz 1/5

Some important particular cases are

EPz/X : ( p.x )r
n
Bo(p, x )7hrn[3S p,x Hx i, );
1

= mei = A(p, x),
1

that is, the generalized harmonic, geometric and arithmetic means, respectively.
It is well-known that Bs(p, x) is monotone increasing in s € R (cf. [4]).
Therefore,

H(p,x) <G(p,x) < Ap,x),

represents the famous A — G — H inequality.
As an application of Theorem 1, we shall estimate the difference B;(p, x) — A(p, x).

Theorem 3. Letx € [a,b]" CI",0<a <b.
Then

0< By(p,x) — Alp,x) < %(Es,l(a,b) CECL,(1/a,1/b)), s > 1;
0< A(p,x) — Bs(p, x) < %(El,s(a,b) CEry s(ab), 0<s<1;
0 < A(p,x) — Bs(p,x) < %(El,s,,s(a,b) ~Eys(a,b)), s < 0.
Proof. Leth(x) = x°, g(x) = x'/%,5s € R/{0}.

If s > 1, then & is a convex function and g is monotone increasing on (0, o). Hence,
by the first part of Theorem 1, we obtain

0 < Bi(p,x) — A(p, x) < max((pa® + (1 - p)U*)*) = (pa+ (1= p)b) == Ms(po;a,b).

This maximum is easy to calculate and we obtain

b* —a® \s/(s=1)
s _ s _ Fs
poa® + (1 — po)b <s(b—a)) ESq(a,b).
Therefore,
b —E3,(a,b) Ej (ab) —a®
o= TR
and

ab® — ba® b—a

P0ﬂ+(1*r’0)b:ﬂ+ﬂ s1(ab).
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Since,
b — a8

s(b—a)

E:,l(arb) = Es,l (ﬂ/ b),

we obtain
M (po;a,b) = (poa® + (1 — po)b*)"/* — (poa + (1 — po)b)

- (l/a)s_l _ (1/17)5_1
=Es1(ab) — ( (1/a) — (1/b)
s—1

1
+ EES,I (a/ b))

(Esa(a,b) — E;} 1 (1/a,1/b)).

Incases 0 < s < 1and s < 0 one should apply the second part of Theorem 1, since
then /1 is concave and g is increasing in the first case and & is convex and g is decreasing in
the second case. Proceeding as above, the result follows. [

As a consequence, we obtain some converses of the A(p,x) — G(p,x) — H(p, x) in-
equality.

Corollary 1. Letx € [a,b]" C I", b >a > 0.

Then
0<A(p,x) —H(p,x) <2(A(a,b) — G(a,b)).
Proof. Putting s = —1, we obtain
0 < A(p,x) — B_1(p,x) = A(p,x) — H(p, x)
< Z(Ezrl(ll, b) — El,fl (11, b)) = 2(A(ll, b) — G(ll, b))
OJ

Corollary 2. Letx € [a,b]" C 1", b>a > 0.

Then
L(a,b)I(a,b)

0< A(p,x) —G(p,x) < L(a,b)log G2(a, b)

Proof. Letting s — 0, we have

A(p,x) = G(p,x) = lim(A(p, x) — Bs(p, x))

s—0

<tim(* 2 (Ba(ab) ~ By o(a b))

5—0

After somewhat laborous calculation using Taylor series, the result follows. [

Remark 1. Estimating the Jensen functional

n

Ju(e¥p,x) = ) pieti — M P
1

forx € [a,b]" C R", and then changing variables x; — log x;; a — loga, b — logb, we obtain
the same result.

Open problem Find the exact upper global bound for

Gp,x) = H(p, ).
The next proposition gives global bounds for the quotient of two power means.
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Theorem 4. Fors > tand x € [a,b]" C R, we have

BS(P, x) Es S,f(ﬂ, b)
1< e :
~ Bi(p,x) — Ett—s(a,b)

Both bounds are the best possible.

Proof. Applying the method from the proof of Theorem 1, we obtain
= Nat b, A+ =1,i=1,2,..,n.

Inthe casess > > 0 ors > 0, < 0, we have that the function x*// is convex.
Hence,

x? _ (Aiat +]Aibt)s/t < )\i(at)s/t—l-]ii(bt)s/t _ A,‘as +.uibtr

and

By(p,x) _ (X1 pix)"* _ (@ T pidi + 0 T pipi)/° _ (pa® +qb°)'/*

Bi(p,x)  (Xf pix)V/' T (a' T pidi + 0P X pip) 'V (pat + qbt)1/Y

where we put
n n
Yopidiz=p, Y pmi=qp+tqg=1
1 1
Therefore, it follows that

Bupx) _  (p+ gt (por +qob)
Bilp,x) = (pa+ gt (poat + gob!)1/"

By standard means we obtain that this maximum satisfies the equation

s(poa® +qob®) _ t(poa’ + qob")

as — bs at — bt 4
that is,
1 sb® tbt 1 tat sa’
pois—t(bs—as_bt—at>'q07s—t(b’f—ut_bs—m)'
Consequently,
t1,s sttt t(1,5—t S—t
¢ . a't’ —a’bt s (ab)' (b —a"h)
Poa + qob T s—t bS—as s—t b —as !
and tbs Sht (b)c(ts ts)
t a'b’—a’b t (ab)*(b' 5 —a'~
S S __
Pod +q0bis—t bt—at t—s bt —at
Hence,

(poa’ + qob*)Y/t = G*(a,b)/Ess—1(a,b);
(poa® +qob*)"/* = G*(a,b) /Eys—s(a,b),

and we finally obtain

max (pa® +qb°)'"s _ (poa® +qob*)"* _ Ess—i(a,b)
P~ (pat +qb)V/t T (poat +qobt)V/t T Ergs(a,b)’
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In the third case, for s > t > 0, we have

1< B*'(P/x) _ Bs(Prl/x) < Es,sft(l/a,l/b)
- st(P/x) Bt(pll/x) - Ef,tfs(l/u,l/b)

_ Esst (ﬂ/ b)
Eips(a,b)’

since

Euo(1/a,1/b) = Eyo(a,b)/G?(a,b).

It is obvious that 1 is the best possible lower global bound. To prove that Ms(a,b) :=
Ess—t(a,b)/Ei—s(a,b) is also the best possible global bound, denote by N; ¢(a, b) an arbi-
trary upper bound. Then the relation

Bs(p, x
ng x; < Nos(a,b),
holds for any p and x.
Putting x1 = xp = ... = x,_1 = a,x;, = b, p; = qo, we obtain
s s\1/s
Mas(a,b) — (poa® + qob*)"*  Bs(p,x) < Nes(a,b),

(poa' +qob") !/t Bi(p, x)
and the proof is complete. [

Some important consequences of this theorem are given in the following

Corollary 3. Fors > 1, we have

Alpx) < Bu(px) < Eatl0h)

S Eia(ap) )

Corollary 4. For s > 0, we have

Es,s (ﬂ/ b)Es,O(a/ b)

g(p/x) S BS(PIX) S Gz(ﬂ,b)

G(p,x)-
Corollary 5. Fors > —1, we have

Esi15(a,b)Esy11(a,b)
< < st '
H(p/x) — Bs(p'x) — Gz(ﬂ,b)

H(p, x).
In the last two corollaries we used the identity

E_y_o(a,b)E,,(a,b) = G*(a,b).

Finally, putting s = 1 in Corollary 4 and s = 0,s = 1 in Corollary 5, since E»(a,b) =
A(a,b), E1p(a,b) = L(a,b), E11(a,b) = I(a,b), we obtain global converses of the A — G —
‘H inequality.

Corollary 6.
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Therefore, a sort of tight symmetry is established for these inequalities.

4. Conclusions

We give a method for two-sided estimations of the generalized Jensen functional
Jn(g h; p,x), with applications to the general means. In particular, sharp converses of
the famous

A — G — H inequality are obtained. Further investigations can be undertaken on more
general settings, i Ju(f,g i p,x) = F(X) pih(x;)) — §(h(} pixi)) or even F(L] pih(x,),
h(Y} pix;)), with properly chosen functions f, g, h and F(x,y).
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Abstract: From the past to the present, various works have been dedicated to Simpson’s inequality
for differentiable convex functions. Simpson-type inequalities for twice-differentiable functions have
been the subject of some research. In this paper, we establish a new generalized fractional integral
identity involving twice-differentiable functions, then we use this result to prove some new Simpson’s-
formula-type inequalities for twice-differentiable convex functions. Furthermore, we examine a few
special cases of newly established inequalities and obtain several new and old Simpson’s-formula-
type inequalities. These types of analytic inequalities, as well as the methodologies for solving them,
have applications in a wide range of fields where symmetry is crucial.

Keywords: Simpson-type inequalities; convex function; fractional integrals

1. Introduction

Simpson’s inequality is widely used in many areas of mathematics. For four times con-
tinuously differentiable functions, the classical Simpson’s inequality is expressed as follows:

Theorem 1. Suppose that f : [a,b] — R is a four times continuously differentiable mapping on
(a,b), and suppose also that Hf<4> H = sup ‘f(“) (x)’ < co. Then, one has the inequality
®  xe(ab)

HIGEIERV Ly ey

Many researchers have studied various Simpson’s inequalities. More precisely, some
studies have focused on Simpson’s type for the convex function, because this focus has
been an effective and powerful way to solve many problems in inequality theory and
other areas of mathematics. For example, Alomari et al. established some inequalities of
Simpson’s type for s-convex functions by using differentiable functions [1]. Subsequently,
Sarikaya et al. established new variants of Simpson’s-type inequalities based on differ-
entiable convex functions in [2,3]. Additionally, some papers have listed Simpson’s-type
inequalities in various convex classes [4-8]. Moreover, in the papers [9,10], researchers ex-
tended the Simpson inequalities for differentiable functions to Riemann-Liouville fractional
integrals. Thereupon, several mathematicians studied fractional Simpson inequalities for
these kinds of fractional integral operators [11-19]. For more studies related to different

< gl -0
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integral operator inequalities, one can see [20-31]. In addition, Sarikaya et al. obtained
several Simpson-type inequalities for mappings whose second derivatives are convex [32].
In this article, after giving the definition of the generalized fractional integral operators, we
construct a new identity for twice-differentiable functions. Using this equality, we prove
several Simpson-type inequalities for functions whose second derivatives are convex. Then,
with the help of special choices, the main results in this paper are shown to generalize many
studies. In addition to all these, new results for k-Riemann-Liouville fractional integrals are
also obtained.

First of all, general definitions and theorems that are used throughout the article
are presented.

Definition 1. Let us consider f € Ly|a,b]. The Riemann—Liouville integrals J5, f and J;_f of
order a > 0 with a > 0 are defined by

I f(x) = ﬁ /:(x O (dt, x> a,

and .
Jo_f(x) = (@)

«)

b
/ (t— ) f(B)dt, x <b,
X
respectively. Here, T (x) is the gamma function and [0, f(x) = J9_f(x) = f(x).

For further information and several properties of Riemann-Liouville fractional inte-
grals, please refer to [33-35].

In [36], Budak et al. prove the following identity for twice-differentiable functions and
they also prove corresponding Simpson-type inequalities.

Lemma 1 ([36]). Let f : [a,b] — R be a twice-differentiable mapping (a,b) such that f" €
Ly([a, b]). Then, the following equality holds:

s rar(50) + ] - Z D e 0+ @
_ (b‘ﬁ”)z/lw(t)f"(tb+(1—t) )t,
0
where
H(1- 35, te o],
w(t) =

a-t(1-2%a-nY), te (3]

In [37], Hezenci et al. prove another version of the results given in [36].
However, the generalized fractional integrals were introduced by Sarikaya and Er-
tugral as follows:

Definition 2 ([38]). Let us note that a function ¢ : [0,00) — [0, o) satisfies the following condition:

1
/ Malt<oo.
Jo t

We consider the following left-sided and right-sided generalized fractional integral operators

x—t

welof ) = [P p(oan, x> a o

x—t
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and
p—lpf(x) = /xb %f(t)dt, x<b, 2)

respectively.

The most important feature of generalized fractional integrals is that they gener-
alize some types of fractional integrals such as Riemann-Liouville fractional integrals,
k-Riemann-Liouville fractional integrals, Hadamard fractional integrals, Katugampola
fractional integrals, conformable fractional integrals, etc. These significant special cases of
the integral operators (1) and (2) are used as follows:

1. For ¢(t) = t, the operators (1) and (2) reduce to the Riemann integral.

2. If we assign ¢(t) = %x) and « > 0, then the operators (1) and (2) reduce to the
Riemann-Liouville fractional integrals J* f(x) and J;_f(x), respectively. Here, I is
the gamma function.

3. Letus consider ¢(t) = mt% and &,k > 0. Then, the operators (1) and (2) reduce
to the k-Riemann-Liouville fractional integrals J% | f(x) and J§_  f (x), respectively.

Here, Ty is k-gamma function.

In recent years, several papers have been devoted to obtaining inequalities for gener-
alized fractional integrals; for some of them please refer to [39-45].

Inspired by the ongoing studies, we give the generalized fractional version of the in-
equalities proved by Budak et al. in [36] for twice-differentiable convex functions. The fun-
damental benefit of these inequalities is that they can be turned into classical integral
inequalities of Simpson’s type [32], Riemann-Liouville fractional integral inequalities of
Simpson’s type [36], and k-Riemann-Liouville fractional integral inequalities of Simpson’s
type without having to prove each one separately.

2. Simpson’s-Type Inequalities for Twice-Differentiable Functions

In this section, we prove some new inequalities of Simpson’s type for twice-differentiable
convex functions via the generalized fractional integrals. For brevity in the rest of the paper,
we define

t
A(t) = /T(s)ds,
0

where
S

T(s) = /Mdu.
0

Lemma 2. Let f : [a,b] — R be a twice-differentiable mapping (a,b) such that f" € Ly ([a,b]).
Then, the following equality for generalized fractional integrals holds:

slr@ar (5 o) - HE%)[(#HW@) ¥ () Tof @]

1

2
- 6”) /w(t)f”(tb+(1—t)a)dt,
0
where A
t
t—safn tefod]

117



Symmetry 2021, 13, 2249

Proof. Using integration by parts, we obtain

1/2

L = 0/<t—;’g&tz)))f”(tb+(1—t)a)dt

- (p 3A(1) >f/(tb+(1ft)a) :

b—a |
Wia /(1* T:%(Tl(/;)))f/(tw (1—t)a)dt
- bia (% B 3?((11//22))>f,<a—;b>
i (1)

1/2

o / (13/2) PO w1 - mdt]

_ bﬁﬂ(}_%f/j )f,<a+b> )2f<a+b>

f(@) 3
b—af Ta2)0_ap ()

1/2

0

Similarly, we have

1
/ <1 —t— %)f’(tb + (1 = B)a)dt

L =
1/2
_ 1 (1 BA(1/2)\ ,(a+b a+b
- b—a(z T(1/2) )f( 2 ) b— )Zf( )
f(b) 3
+(b7u)2+T(1/2)(h7 ) (452 + o f (D).

If I; and I are added and then multiplied by (boa) ) , the desired result is obtained. [J
Remark 1. If we take ¢(t) = t in Lemma 2, then Lemma 2 reduces to [32] (Lemma 2.1).

Remark 2. Let us note that ¢(t) = #:), o > 0in Lemma 2, then Lemma 2 reduces to Lemma 1.

Corollary 1. If we choose ¢(t) = krk( 3 & k > 0in Lemma 2, then the following equality for
k-Riemann—Liouwville fractional integrals holds:

a—k

1 a+b 2% I'(a+k) a
slF0+4(757) 10 - ) 0 ¢ Ty

==

1
- ‘6“)2 /'m(t)f”(tb +(1—ta)dt,
0
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where .
t(l—i’jjkk t%>, telod],
m(t) =
1- )( (14)%), te( 1]
Proof. For ¢(7) = kl‘j 5o we have
_ (KZ*Kl)% [ (KZ*KI)% 3
A= R T TR
A(1/2) = (o —m)f
2F Ty ( + k)
and
(ka—Kk)E [ & k(e =)k ayy
A — —
= F@rh [ st (a + k) Tx(a+ k)

Then it follows that

which completes the proof. [

@)

©)

Theorem 2. Assume that the assumptions of Lemma 2 hold. Assume also that the mapping |f"| is
convex on [a, b]. Then, we have the following Simpson-type inequality for generalized fractional integrals

a+b 1

%[f( )+ar( %

b—a)> /'t_ 2 ‘t (17" @)] + |[f ()]

Proof. By taking the modulus in Lemma 2, we have

) +f(b)} - 2Tl

= G)[(z) +1of(0)

s ar(“

< O f"(tb + (1 — t)a)|dt

. 00
6

1/2 ‘|f” th+ (1 — t)a)|dt

N
O\,N\._-

1/2 ‘\f“tlw(l—t )|dt].

1
1
2

With the help of the convexity of | f”|, we obtain

slr@+ar(50) o) —HE%)[(;) f )+ (

119
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2
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- lpf(@)]

) 1pf @]
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Sk @l a- ol @

IN
—
O\Nh—-

- ol a- t)lf”(“)de]

3A( //
1—t— " = T2 ‘dt]|f )|

+{j<lt)\t;ggg)dt+ ]<1t)\1t3/*(<;/z)dt]|f~ |}

_ (bfa)z : 3A(t) 1 3A(1-1) 1 1
- &= L/ttT(l/z)‘dt+l/tltM‘dt][|f(a)|+|f(b)|}

This completes the proof of Theorem 2. [
Remark 3. Consider ¢(t) = t in Theorem 2, then Theorem 2 reduces to [32] (Theorem 2.2).

Remark 4. If we assign ¢(t) = ( yoa > 0 in Theorem 2, then we obtain the following Simpson-
type inequality for Riemann—Liouville fractional integrals

tr@+ar (5 s - E D ) 50+ g sG]

_ 2
< U= Deow|f @)+ |0

Here, ,
1 w41\« 3 1
®("‘)4(a+2)(“< 3 ) +/x+1>_8’ @

which is given by Budak et al. in [36].

A

Corollary 2. For ¢(t) = ( 7/ k,a > 0 in Theorem 2, we have the following Simpson-type
inequality for k-Riemann— Lzouvzlle fractional integrals

slr@ar (5 s - sz("‘t")[(;)ﬂf() o) -uF @ >H

E
< C=Dewn @]+ )

where

],

2k
ko (afatk\* 3k 1
O k) = gt am (k( 3k ) +zx+k>8' ®
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o

Proof. Let ¢(7) = krfkix). By the equalities (3)—(5), we have

.O/Tf 3A(T2))‘d”[ _ 0/

_ ok (afark\E sk ) 1
T 4(w+2k) \ K\ 3k a+k 8’

This completes the proof. []

3k - 2k a

o+ k T |dT

T—

Theorem 3. Suppose that the assumptions of Lemma 2 hold. Suppose also that the mapping
|f"", q > 1, is convex on [a,b]. Then, the following Simpson-type inequality for generalized
fractional integrals

a+b

s (5

)+ o) - ZT@ (o5t Lo f )+ (o38) 1o (@)

/'t‘ 1/2‘

PO+ 3" @FNT (3B + @\
X{( 8 ) +< 8 ) }

; ; 1.1 _
is valid. Here, b + i=
Proof. By applying the Holder inequality in inequality (6), we obtain

b
slrrar (% >+f(b)]2TZ%)[(;) of )+ (232) Lo (@)]

e
1
2
s
0

1
1 r 1 1

1—t— % "t 1/|f”(tb+ (1—t)a)|dt

S

1
4

2
1" _ ‘1
1/2) dt O/\f (tb+ (1 —t)a)|"dt

2

By using the convexity of ||, we obtain

sl +ar(50) +rw)] - TZ%) [ (0 0 0) + (o) Tof @]

()

1

ainla)
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1

1 i X T
(/ tlf" (b) =1|f"@]"] ) + (/ tf”(h)'7+(1—t){f”(u)|'7]dt)

0

e ’
G (O/tﬁg(/tz))'pdt)

« [( F @) . 3\f“<a>w>% . <3|f”(b)\”8+ \f”@)ﬁ) } '

This finishes the proof of Theorem 3. [

Remark 5. If we choose ¢(t) = t in Theorem 3, then we obtain

sl ar () s - (bia)jf<x>dx

1
(b—a)? : '
—r /t”|1—3t\’”dt
0

« {(Wy N <3f”(b)|'7+f”(a)|q>1
8 8 ,
which is given by Budak et al. in [36].

Remark 6. Let us consider ¢(t) = #;), « > 0 in Theorem 3, then the Simpson-type inequality
for Riemann—Liouwville fractional integrals

a—1
s+ (557) < )| - E R ) SO+ g f@)]
(b—a)’ F O+ @FNT (3B + @)\ 7
c by (R’ rar oy
is valid. Here, % + % = 1and
Y(a,p) = O/t”l - 2fit”‘ pdt

which is given by Budak et al. in [36].

Corollary 3. If we choose ¢(t) = kr ( 5 k > 0 in Theorem 3, then we have the following
Simpson-type inequality for k-Riemann—Liouville fractional integrals

a—k

sF0+ (75 ) 10 B SO+ Ty ,kf<u>H
(

(If”(b)\”’ ;3If” ﬂ)lq)

+

Sie e

(b—a)®
< TY(&, pk)

37O + 1" @)\ 7
¢ (ALOL @ }
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1.1 _
Here, p + q 1 and

P

3k 2k uc dt

1
2

Y(a, p, k) /t”
0

I the proof can be seen easily by the equalities (3)—~(5). [

D(

Proof. For ¢(7) = ka(

Theorem 4. Assume that the assumptions of Lemma 2 hold. If the mapping |f"'|7, q > 1 is convex
on [a, b], then we have the following Simpson-type inequality for generalized fractional integrals

sl +ar(50) o) - ZTE;) [(e4t) o)+ (egt) Lo @]
/
0
X O/tt

o [l j(lt)tﬁl

A(tz)) ‘dt |fll(a)|q]

1
2

il—t )‘dt I (0)|" + /tt
0 0

Proof. By applying the power-mean inequality in (6), we obtain

S| |

5@ var(“

1
2 2
0

)+ o) - sz) [(egt) oS (0) + () Tof )]

1—
3A(H)
o ‘dt

1"

a+b

©)

ENT

(1—t)a)|"dt

1 i
X(l/ 1—t—%‘U”(tb-ﬁ-(l—t}a)wdt .
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Since | f”|? is convex, we obtain

1

(1—t)a)|"dt (10)

T3(1/2 Htw O+ (1= Df"(@)|]at

O, O —
— =S

i ol 340 vl | 3A(1)
|f (b)}qo/t t— T(l/Z)‘dt+ !f (a)|q0/(lt)' (1/2)‘dt
and similarly
1
iMoo
1 1
1" 3A(1 ) // 3A(1 _ t)
< |f (b)}ql/tl—t—w‘dt-i-!f |q/(1—f)'1—f—m‘d“

) 3 3A(H) , z 3A(t)

I <b>}q0/<1 ~ 0]t i e+ 1f (”)'qo/t T

If we substitute the inequalities (10) and (11) in (9), then we obtain the desired result. [
Remark 7. Consider ¢(t) = t in Theorem 4, then Theorem 4 reduces to [32] (Theorem 2.5).

Remark 8. If we take ¢(t) = ( y & > 0 in Theorem 4, then we obtain the following Simpson-type
inequality for Riemann—Liouville fractional integrals

o +ar () ] - 2D ) o) +J@),f<a)ﬂ

(o) + (@l w1+ 2w @)

==

L)' (2l o) + 0w 0) )

Here, ©(a) is defined as in (7) and

3
1 Jafa+1\® 3 1
@)= iara 5( 3 ) Tarn)| 2w
Qe) = O(a) —E(a)
2
1 a+1\5 3
e “( 3 ) +u¢+1>
1 Jafat %+ 3 ] 1
a+3)|3\ 3 2@+1)| 12

which is given by Budak et al. in [36].
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Corollary 4. Let us consider ¢(t) = kr ( B k > 0 in Theorem 4, then the following Simpson-
type inequality for k-Riemann—Liouville fractional integrals holds:

‘é[f(>+4f<“”)+f<b>} W{(%mﬂ) Tiags) kf(a)H

2 1 i '
< 5w k) (e 0l O + 0 bl @) + (0Bl 6F + 2w Rl @)

- 6

where ©(w, k) is defined as in (8) and

ko [afesry®,
4(a+3k) |3k \ 3k 2(a+k)
O(a, k) — E(a, k)

k. [afa+k\*T, 3k
= iat20) E( 3k > Ttk
ko [afatk\® 3
ﬁ( 3k ) T 2a+h)

4(a+3k)
Proof. Let ¢(7) = krk( ) By the equalities (3)—(5), we have

1
24’

B, k) =

Q(a, k)

1
12

3A(T)
A/2) ’d

3k Zk %dT
o+ k

o a+k %Jr 3k
3k\ 3k 2(a+k)

k
4(a + 3k)

1
24

and

_k (afaxR)E, 3k
© 4(a+2k) \ K\ 3k a+k

o a+k %+ 3k
3k \ 3k 2(a+k)

1

O

3. Conclusions

For twice-differentiable functions, we have developed a generalized fractional version
of the Simpson-type inequality in this paper. After that, we explained how our findings
generalize a number of inequalities found in previous research. For k-Riemann-Liouville
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fractional integrals, we additionally provided novel Simpson-type inequalities. The findings
of this study can be utilized in symmetry. The results for the case of symmetric convex func-
tions can be obtained in future studies. In future studies, researchers can obtain generalized
versions of our results by utilizing other kinds of convex function classes or different types
of generalized fractional integral operators.
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Abstract: The spatial properties of solutions for a class of thermoelastic plate with biharmonic operator
were studied. The energy method was used. We constructed an energy expression. A differential inequality
which the energy expression was controlled by a second-order differential inequality is deduced. The
Phragmén-Lindelo f alternative results of the solutions were obtained by solving the inequality. These
results show that the Saint-Venant principle is also valid for the hyperbolic-hyperbolic coupling equations.
Our results can been seen as a version of symmetry in inequality for studying the Phragmén-Lindelo f
alternative results.
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1. Introduction

Saint Venant principle points out that for any equilibrium force system on an elastic
body, if its action point is limited to a given ball, the displacement and stress generated by
the equilibrium force system at any point where the distance from the load is far greater
than the radius of the ball can be ignored. This principle is widely used in engineering me-
chanics in practice. Many papers in the literature dealt with the study of the Saint-Venant
principle. For example, Horgan and Knowles [1] and Horgan [2,3] studied the Saint-Venant
principle in different equations and different situations. The traditional characteristic of
the Saint-Venant theorem is to derive the energy decay estimates of the solutions. Usually,
these decays are exponential with the spatial distance from the finite end to the infinity.
In order to have some understandings about the study of the Saint-Venant Principle, one
could refer to the papers [4-9]. In recent years, the studies of Saint-Venant principle for
hyperbolic or quasihyperbolic equations are abundant. Especially for the studies of the
spatial behavior of viscoelasticity equations, we could see papers [10-13]. When the spatial
variable tends to infinity, the solution is decreasing. In the research of solution spacial decay
estimates, people often need to add the solutions must satisfy some constraints at infinity.
Many scholars have begun to study the Phragmén-Lindelof alternative results of solutions.
The advantage of this situation is that there is no need to add constraints on the solutions at
infinity. The classical Phragmén-Lindeld f theorem states that the solutions of the harmonic
equation must grow exponentially or decay exponentially with distance from the finite
end of the cylinder to infinity. Payne and Schaefer [14] extended the study from harmonic
equation to biharmonic equation. They obtained the Phragmén-Lindelo f alternative results
for biharmonic equation in three different regions. Literatures [15-18] studied the spatial
behaviors of biharmonic equations by various methods. In particular, we can see that Liu
and Lin [19] studied the spatial properties for time-dependent stokes equation. They trans-
formed the equation to a biharmonic equation and obtained the Phragmén-Lindelo f results
by using a second-order differential inequality. The abovementioned studies from the
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literature all consider a single equation. Recently, there some new results about the studies
of the hyperbolic equations or biharmonic Equations have been published (see [20-25]).
For studies of other equations using energy method, see [26-29].

The domain we consider in this paper is defined as follows:

00:{(X1,XZ)|X1 >0,0<X2<h}, (1)
with /1 is a given positive number. We now give the following notation:
Ly = {(x1,x2)|x1 =2>0,0 < xp < h}. %)

In reference [30], the authors studied the coupled system of wave-plate type with
thermal effect. They obtained the results of the analytic property and the exponential
stability of the Cp-semigroup. The equations are as follows:

11t — Du— pAuy + AAvs. = 0,
020 1t + 'yszs. + AAu +mA6 =0, (3)
T9,t — kAO — mAv,t =0.

The model is used to represent the evolution process of a system which contains an
elastic membrane and plate. The plate has an elastic force and a thermal effect (see [31]).
Here u is the vertical deflection of the membrane and v is the vertical deflection of the plate.
0 is the difference of temperature. The coefficients p1, 2, i1, A, m,T, v, and k are nonnegative
constants. A denotes the Laplace operator, and A denotes the biharmonic operator.

In the present paper, we consider the case when 7 = 0. In this case, Equation (3) can
be rewritten as:

o1t — Au — pAu; + AAvs. = 0, (4)

2
20, + A% + AAu — ’%Av,t =0. ®)

We give the following initial and boundary value conditions:

v(x1,0,£) = u(x1,0,t) = 1p(x1,0,t) =0, >0, >0,

v(x1,h,t) = u(xy, b t) =up(xqy,ht) =0,x3 >0,t>0,

0(0,x2,t) = g1(x2,1),0 <xp < h,t >0, ©)
1(0,x2,1) = g2(x2,1),0 < xp < h,t >0,

11(0,x2,1) = g3(x2,1),0 < xp < h,t >0,

v(x1,x2,0) = u(xl,xz,O) =u,(x1,%,0),0 < xp <h,x1 >0,

where g;(x2,t),i = 1,2,3 are the given functions and meet the following compatibility
conditions:

81(0,t) = g1(ht) = 812(0, 1) = g12(h,t) =0,

$2(0,t) = ga(h,t) = 22(0/ t) = g22(h,t) =0, )
83(0,t) = g3(h, t) = 832(0,t) = g3o(, t) =0,

81(x2,0) = g2(x2,0) = g3(x2,0) = 0.

We try to establish the Phragmén-Lindeld f alternative results for the solutions of the
biharmonic Equations (4) and (5) under conditions (6) and (7). We firstly define an en-
ergy expression of the solutions, then we derive that the energy expression satisfies a
second-order differential inequality, and finally we obtain the Phragmén-Lindeld f alterna-
tive results of the solutions by solving the second-order inequality. For the inequality is
symmetry, we show the application of symmetry in mathematical inequalities in practice.
Since the system is a hyperbolic-hyperbolic coupling system, how to define the appropriate
energy function will be the greatest innovation in this paper. How to control the energy
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function will be the difficulty of this paper. No similar studies have been found on the
spatial properties for the solutions of the biharmonic equations with hyperbolic-hyperbolic
coupling equations using the second-order differential inequality. In this paper, we use the
comma to represent partial differentiation. , k denotes the differentiation with respect to
the direction xy, thus 1, denotes aaT“ﬂ' and u; denotes %—';. The usual summation convection

2
is employed with repeated Greek subscripts « summed from 1 to 2. Hence, g0 = Y, g';(z .

a=1
The symbol dA = dxidx;.

2. Energy Expression ®(z, t)

In order to get the Phragmén-Lindel6f alternative results, we must define an energy
expression for the solutions. This expression plays an important role in obtaining our
results. The energy expression will be constructed by the following Lemmas.

Lemma 1. Let uand v be classical solutions of problems (4)—(7), we define the a function ¢1(z,t) as:
t t
¢1(z,t) = %/0 /L exp(qu)u/zvdxzdier/\/O /L exp(—wn)uv ,dxpdy. (8)
¢1(z, t) can also be expressed as:
t rz
mn =2 exp(-wn)(z - O dady
+2 /Z/ exp(—wt)(z — H)utdA
2 Jo Jrg ’
w [t [z
+ E/o /0 /Lg exp(—wn)(z — &)uqudAdy
Lr dA
Z —wt)(z — ,
3 ./0 ‘/Lg exp(—wt)(z — &)Ul g
t oz
+y/ / / exp(—wi)(z — &) uytt,aydAdy
0 Jo Jig
ot oz
x [ [ epcante-momanay 0
¢
[ dAd
j/o /O /Lé exp(—wn)uyu,dAdy
t rz
+Aw/ / / exp(—wn)(z — §)unv dAdy
0 Jo Jig
Z
+)\/ / exp(—wt)(z — &)uavdA
Jo JiL;
A Y dAd
+ /0 /0 ~/L§ exp(—wn)u v, i
otz g oz o
+/\w/ / / exp(—w;y)uvlldAdn—O—)\/ / exp(—wt)uvdA +kq(z,t),
0 Jo Jig 0 Jr
where

ot ot p
ki(z,t) = Z/o /Lo exp(—wi)uyudxody + g/o /Lo exp(—w;y)ulz,ldxzdr]
(10)

tor ot
+ 214/0 /Lo exp(—wn)uyu,1,dxady + A /0 /Lo exp(—wi)uv,,dxody.
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Proof. Multiplying both sides of Equation (4) by exp(—wmn)(z — &)u,, and integrating,
we obtain

t rz
0= [ "] exp(=cwon)(z =y (prity = tas = 1ty
0 Jo JiLg
+ Av4q )dAdy

_wpr [t F 2
,T/O/O/L:exp(—wiy)(z—é)urndAdq
+ & /Z/ exp(—wt)(z — E)usdA
2 Jo Jig ’
© [ dAd
+E/0/0/Lgexp(—wry)(z—g)u,au,a 7
L dA
— —wt —
+2/0 /Lgexp( wt)(z = &gl g
u dAd
_/()/f)/Lgexp(_wn)u"7u’l i
t
+z/ / exp(—wn)uyudxody
Jo Ji,
t rz
+H///exp(*‘*”?)(z*g)“,w“,ﬂmd/‘dﬂ
0 Jo Jrg
11)
_H t/ o (
2/0 Lzexp( wry)urndxzdiy
+E /t/ exp(—wiy)u?,dx,dy
2 Jo Ji, A
t
+zy/ / exp(—wi)uyu,1,dxody
0 JLo
t oz
+/\///exp(—wq)(z—g)urav,m]dAdq
0 Jo Jig
ot oz g
+/\w/ / / exp(—wn)(z — &)uav,dAdy
0 Jo Jig
zZ t rz
+/\/ / exp(fwt)(zfc;")u,,xv,adAJr/\/ / / exp(—wi)uv,dAdy
Jo Jig Jo Jo Jig
t t
_/\/ / exp(—wiy)uvﬂdaqdq—i-)\/ / exp(—wn)uv ;dxpdy
0 JL. 0 JLg
t oz o
waw [ [ [ exp(- dAd
w S Lgexp( wn)uv 7

4
+/\/ / exp(—wt)uvdA.
Jo Jig

By combining Equations (8) and (11), we can get (9). The proof of Lemma 1 is finished. [

Lemma 2. We suggest u and v are the classical solutions of problems (4)—(7), and we define a
function ¢y(z,t) as:
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wae)= [ [ [ ep(oeon e uanandy o [ [ [ exp(-con)(z - &) an PaAdy

z t oz
+H/O ~/L5 exp(—wn)(z — &) (ita)>dA —pl/o /0 /Lg exp(—wn)(z — &)upyu p,dAdy

p—l/r /Z/L exp(—wn)u?qudn—wpl /t /Z / exp(—w;y)(z—@)u,ﬁ/gu,ndAdiy (12)
¢

fpl/ / exp(—wt)(z — &u gpu tdA — A/ / / exp(—wn)(z — §)uppvaad Adn
+ka(z,1),

@2(z, t) can also be expressed as:

pa(zt) = -2 /0 t /L exp(—wn)iydxdy, (13)
where
ky(z,t) / / exp( (UI’])M ydxodiy — plz/ / exp(—wi)uyu,1,dxdy.

Proof. Multiplying both sides of Equation (4) by exp(—w)(z — ¢)u gg and integrating, we
can obtain

0= /ot /Oz /L g exp(—wn)(z — &) gp(P1ttyy — tan — Hllaay + A04a)dAdy
- /(: /(;Z /Lg exp(=awn)(z = )u gy pyd Adyy
— 01 /ot /OZ /L‘g exp(—wn)(z — &)u,yu1,dAdy
+p1z /Ot /LO exp(—wn )iy 1,dxody
ten /t /.Z / exp(—wi)(z — §)ugpuydAdy
+pl/ / exp(—wt)(z = §)u gpudA
- /0 /0 /L¢ exp(—wn)(z — &) (1aa)*dAdy
o /ot /: /L; exp(—wn)(z =) (taa)*d Ady
[ e - s

(14)

t oz p
+/\/0/0/Lgexp(qu)(zfg)u,ﬁﬁv,mdAdiy,

By combining Equations (12) and (14), we can get (13).
The proof of Lemma 2 is finished. [
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Lemma 3. We suggest u and v are classical solutions of problems (4)-(7), and we define a function
@3(z, 1) as:

_wpy [t * 2
pGn =2 [ [ /Lgexp(—ww(z—@v,qdfldn
2 /Z/ exp(—wt)(z — E)vidxydy
2 Jo Jig ’
m2 rt oz
+7/0/0/Lgexp(—wn)(z—C)v,wv,wdAdr]
t
+%/0 /OZ‘/L@ exp(—wn)(z — §)v,apv,apd Ady
ry Z
+ E/o /Lg exp(—wt)vr,xﬁv,,xﬁdA
t rz
A [ 7] exp(-ewn)(z ~ Dvapuadady (15)
0 Jo Jrg
t ¥4
A/ // - dAd
+ b o Lgexp( wn) oy, 7
t rz
—27///exp(—wr])v,mvlaldAdiy
zykpzw///exp —wip)v,;v1dAdy

2IYK‘DZ/ / exp(—wn)vv1dA

ZK)vy

/ / / exp(—wn)u,v1,dAdy +ks(z,t).
Le
@3(z,t) can also be expressed as:

m2 [t 5
¢3(z,t) = ﬂ/o /Lz exp(—wr])vrvdxzdn

t
+2’y/ / exp(—wi)v,1,v,1dxady
2k)vy

//exp —wn)u1v11dxdy
—/ / exp(—wi)v 450 4pdxady

2k
7 //exp —wn)v,140 1,dx2dn

(16)

2k
’Y / / exp(—wn)v,1v,1ppdx2dy,
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with
m?  k
ks(z ) = (5 + sz)/ / exp(eon) e
m
+ 72/0 /Lo exp(—wn)v v 1,dxady
t
+’YZ/0 /L exp(—wn) 0,40 q1dxody
0
t
_'YZ/O /L exp(_w”)vllv,lﬁﬁdXqu
0

t
+2'y/ / exp(—wn)v,1,v,1dx2dy
2k/\'y

/ /L exp(—wi)u v11dxody
0
— 7/ /Lo exp(—wi)v 450 4pdxady
L2k 2k'y / /L 0 exp(—wi)v 140 14dx2dy
B 2k'y / /LO exp(—wn)v,1015pdxad.
Proof. Multiplying both sides of Equation (5) by exp(—w#)(z — &)v,; and integrating, we

can obtain

2
07/ / / exp(—wn)(z —&)o, (pzv,m-&-'yvmﬁlg—i-)\uw—mTvM”)dAdiy

_wp ’
- T/o /o ./Léf exp(—wn)(z — §)vydAdy
+ 02 /Z/ exp(—wt) (Z — C)vlztdA
2 Jo Jig
otz
72\/ / / exp(—wn)(z = &)v,uitadAdy
0 Jo Jrg
t ¥4
i / / / _ dAd
+ 0 Jo Jig AR !
t oz
w0 [ ] exp(=wn)(z — 2)00mppdAdy
0 Jo JLg
m2 t rz
T /Lg exp(—n) (2 = )0y 0,ayd Ady
2t 2
~ 3 Jy J esvceniidndy
m? [t 2
3 Jy J,xp(coneidady

m2 ot
+ TZ/O /Lo exp(—wn)v,;0,1,dxady.

(17)
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Next, we begin to deal with the term +y fot Io fo exp(—wn)(z = £)v,y0 aappd Adyy.

t oz
’Y/ / / exp(—wi)(z = &)v 0 aappd Ady
0 J0 JLg
w [t [z
- 77/0 /0 _/Lg exp(—wi) (2 — £)0 450 4pd Adyy
b dA
+§/0 /Lg exP(—WW)(Z—g)v,wy/aﬁ
t rz
2 - dad
'Y/O /o /Lg exp(—wi)v,ayv,,dAdy
t
+'YZ/0 /L exp(—wn) v, 41dxody
0
t
_’YZ/ / exp(—wi)v,018pdx2dsy.
0 Jip

Now let us deal with —27 fot IS fLé exp(—wn)v,ayv 1 dAdyy.

t oz
- 27/0 /0 /LC exp(fwn)v,rxqv,mdAdq
t rz
=27 /0 /0 /L é exp(—wi)vuayv,1dAdy
t
- 27/0 /L exp(—wn)v1,01dxady
t
+27/ / exp(—wn)v,1,v,1dxdy.
JO . LO
Using the Equation (5), we can get
t z d d
21 [ [ ] expl-onommoiaa
’Y.O Jo . exp(—wi)vaayv o
t oz L ) )
:27///exp(—wﬂ)(7PZU,nv+77”,aaﬂ5+7Au,aa)v,1dAd'l
- kpz“Y/ / exp( wﬂ)v;;dxzd17+ sz/ / exp( wwy)v dxpdy
kaw/ / /Lexr] —wn)o WldAd’?*zsz/ / exp(—wn)v, v dA
g
2k
2 / / /L exp(—wi) 0,10 aappd Ady
z

Zk/w///Lexp —wn)u v 1,dAdy
¢

2k/\'y

//exp —wn)u1v 11dxpdy

2k)vy/ / exp(—wn)uv,11dxodr.

Now, let us deal with the term 2];1722 fo IS fLT exp(—wi)v10 guppd Adiy.
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Zk’Y ///exp —wWi)v10 aappd Ady
— 2k'y // / exp(— wry)vmvaﬁﬁdAdﬂ+2’Y //exp wr;)vlvlﬁﬁdxzdn

2k'y //exp wry)vlvlﬁﬁdxqu

@1
ko? rt
—/ / exp(fwr])v,aﬁv,aﬁdxzdryflz/o /L exp(—wn)v ,p0 4pdxady
v L0
2k 2 gt
(Y //exp —wn)v,1,0 1,dx2dn + —5 ’y //exp(—wiy)vlmv,ladxzdiy
L2k 2ky?
'y // exp( wq)vlvlﬁﬁdxzdr]f //exp —win)v,1v,1ppdx2d1.
A combination of (15) and (17)—(21), we obtain
m2 ot 5 t
pa(z 1) = 5 / / exp(—wi)vy dxzdﬂ+27/ / exp(—wn)v1v,1dxady
~ 2kA
'y/ / exp( wn)ulvndxzd;yf—// exp(—wn)v 450 apdxady

2k
7 //exp wq)vmvmdxgdiy— 2 /O/Lexp(—wﬁ)v,w,mﬁdxzd?]-

The proof of Lemma 3 is finished. [

Lemma 4. We suggest u and v are classical solutions of problems (4)—~(7), and we define a function
@a(z,t) as:

t ot
Qa(z,t) = _%/0 /L exp(—wr;)v?ﬂxﬂr]—i—'y/o /L exp(—w;y)v,lal;v,al;dxzdiy
7 [t 7! 2
-5 ./0 ‘/Lz exp(—wn)v 1,0 1,dx2dn + > ./0 /LZ exp(—wn)vy,dxady (22)
7 [ 2
_E/O /L exp(—wq)v/udxzdiy.

Then, ¢4(z,t) can also be expressed as:

Pa(z t *Pz/ / / exp(—wny)(z — C)vmdAd;y + / / exp(—wt)(z — £)v.1401,dA
+ ’Y/O /o /Lz exp(—wn)v1459,10pd Adny — pzaJ/O /0 /L; exp(—wn)(z — &)v10,,dAdy

(23)
"z otz g
_pz/o /Lg exp(—wt)(z—@)U,nv,tdA—&-)\/O /0 /Lc exp(—wn)(z — &)v11a1,0dAdy

t rz t rz
f/\/ / / exp(fwﬂ)v,nu,ldAdﬂJr/ / / exp(qu)v/lzv,zqudq+k4(z, t),
Jo Jo Jig Jo Jo Ji;
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with
ky(z,t) = —p—z/t / exp(—wn)o?, dxydy
4(z, 2 Jo i, pdx2
4
fpzz/ / exp(—win)v,1,v,,dxadn
Jo Jig
ol dipd
+72/0 /Lo exp(—cw])v,uv;,7 xpdy
ot
+’Y/O /L exp(—wn)v 1,80,0pdx2d1
0
i dxod
—5/0 /Loexi’(—w’l)v,lav,la Xod1
top
f'yz/ / exp(—wn)v 1140 g1dxody
0 Jiy
+2 /t/ exp(—wn)v};dx,dy
2 Jo Jig ’
_Z/t/ _ 2 _dx-d
3 L ep(—eniiadrady
t
+'yz/0 /L exp(—wq)vrllv,lﬁﬁdxzdry
0

t r
+ /\z/ / exp(—wn)v111dxodr.
0 JLg

Proof. Multiplying both sides of Equation (5) by exp(—wm)(z — ¢)v 11 and integrating, we
can obtain

ot oz p
0= pZ/O /O /LC exp(—win)(z — $)v110,yydAdy
t rz
Hr [0y expleom (e - Donvagpdady "
t rz
o [ expten(z - Oonnadady

m2 ot oz
- 7/0 /0 '/Lé exp(fw"])(z76)77,110,M1]dAd77-

Using the divergence theorem, the first term on the right of Equation (22) can be
rewritten as

t rz
oo [ [ exp(-wn)(z = Dono,ydady
0Jo Ji;
[ [ expteonG—oeiomaady— 2 [ [ exp(-awn)eidnd
= exp(—wn)(z — &)v 1,0 - xp(—wn)vs, dx
02y Jo Sy cxpen R agdAdy =5 5 | exp(—wn)u, daady
t t
+ % ./0 /Lo exp(fwn)vrz,?dxzdn + P2z /0 -/Lo exp(—wn)v,1,v,ydxady (25)
t rz
+pzw/ / / exp(—wn)(z = §)vnv,ydAdy
Jo Jo Jr;

T
+p2/0 /Lg exp(—wt)(z — &)v 110, dA.
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Similarly, the second term on the right of Equation (22) can be rewritten as
t gz
7/ / / exp(—wn)(z = §)v,110 aappd Ady
0 Jo Jig
t rz t
= 77/ / / exp(fwzy)v,mﬁvrmﬁdAdiy +'y/ / exp(fwry)vrmﬁv,,xﬁdxqu
Jo Jo Ji; 0 JL.
t t
- 7/0 /Lu exp(—wn)v 1450 apdx2dy — %/0 /Lz exp(—wn)v,140,1,dx2dy
t t
+1/ / exp(—wr;)v,mvlmdxzdiy+’yz/ / exp(—wn)v 1140 ,1dx2dny (26)
2 Jo Jiy 0 JLy
7 7
+ E/o /Lz exp(—wiy)vlzndxzdrl — E/o /Lo exp(—wr;)v/zudxzdiy
T T
_ E/o /Lz exp(fwrl)v/zudxzdn + E/o /Lo exp(qu)v/zlzdxzdﬂ
t
f'yz/ / exp(—wn)v110,15dx2d7.
Jo Jiy
The third term on the right of Equation (22) can be rewritten as
t rz
/\/ / / exp(—wn)(z — &)v 111 andAdy
0 Jo Jig
t oz
= 72\/ / / exp(—wn)(z — &)v 1141, dAdy
0 Jo Jig
t rz
+A / / / - dAd
0 Jo i, exp(—wn)v 111, n

ot
- /\z/ / exp(—wn)v 111 1dxody.
0 JiLo

27)

The fourth term on the right of Equation (22) can be rewritten as
m2 t rz .
Tk - - apdA
k /0 /0 /Lg exP( LUI’])(Z g)v,llv,alm 7

m2 4
- exp(—wt)(z — &)v1401,dA
2k ./0 ./Lg (28)

2 ot g
- m?z/o /Lo exp(—wn)(z — &)v,12v,2,dx2dy

t oz
- - dAdy.
/O /0 /Lg exp(—wn)v,120 2 1

A combination of (24)-(28) gives (23). The proof of Lemma 4 is finished. O
Lemma 5. We define new energy expressions ¢(z,t) and ®(z,t) as follows:

@(z,t) = @1(z,t) +k192(z,t) + @3(2,t) + kaga(z,t), (29)

and

t
D(z,t) = / ¢(z,5)ds. (30)
0
The following second-order partial differential inequality holds

°®D(z,t)

[@(z,1)] < k"5,

(C10)
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where ky ky and k3 are positive constance to be defined later.

Proof. From (9), we can get

62471 (Z/ t)

0z2

From (12), we can get

P¢a(zt)

072

From (15), we can get

140

_ v ! / o
== /0 Lzexp( (4}17)11/’7(:1}52(:117
+%1 L. exp(—whuidx,
w [t
+ E/o /Lz exp(—wn)u i dxody
1 n
+ E /Lz exp(_(Ut)u,txu,ade
t
7)\/ / exp(—wn)ug,u1dxady
Jo JL,
t
—/\/ / exP(_wn)uﬂ”,lldxzdiy
0 JL.
t
+A/O /L exp(iwrl)u,llv,;ydedrl
s
+/\/ / exp(—wn)u101,dxody
0 [LZ -
+/\w/ / Exp(*wﬂ)ullvlldxzd.’]
JO JL,
t
+/\w/ / exp(—wn)uv11dxpdy
0 JL,
ot
+F4/0 /L exp(—wi) i ayh aydxody
t
+/\/0 /L exp(—wi) a0 aydxady
+/\/ exp(—wt)u 01dxy
L,
-‘r/\/ exp(—wt)uv 11dx;
L;
¢,
+/\w/0 /L exp(—wn)u,v dxady

+A/ exp(—wt)u v dixy.
JL

t
- /0 ‘/Lz EXp(qu)(u/lm)dezdﬂ
-t
e /0 /Lz exp(_wi//)(u,lm)zdxzdrl
TH /L exp(—wi) (1 aa)*dxz )
t
,Pl/o ‘/LZ Exp(fwﬂ)ulﬂ”u,ﬁ”dxzdn

ot
+p1/0 /L exp(—wq)ullqurldxzdiy.
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% = w/t/zexp(—wn)v? dxpdyy + %2/ exp(—wt)v3dx,
/ / exp( w’?)vm,vmdxzdr]+ / / exp(—wn)v,upv 4pdxady
+ % /Lz exp(—wt)v 450 4pdxy — /\/0 /Lz exp(—wn) v, odxady
+)\/‘t/ exr’(*wﬂ)v,mulldxzdn+)\/t/ exp(—wi)vyu ndxady
Z'Ysza)/ / exp(—win)v1,v,1dxpdy + 2'pr2w/ / exp(—wn)v,,v,11dxody

+ZLPZ/ exp(—wt)v 101dxy + 2% Pz/ exp(—wt)v v 11dxy
L. L.

2 2K
K)w/ / exp(—wn)i 1,0 1,dxod /\'Y/ / exp(—wn)u,v 11,dxody.

From (23), we can get

z

% - /(: AZ exp(—wn)v}, dxadyy + ':Tj | exp(—wt)0,1,0,14dx2
+7 ~/0t ./LZ exp(—wn) V1450 10pdx2dn — pow ./Ot ‘/LZ exp(—wi)v.110,,dxady
+ 02 /Lz exp(—wn)v110,4dxy + A /Ot /LZ exp(—wn)v 1141 xdxody
_ )\‘/Of ./LZ exp(—wn)v111u,1dxady — )\/Ot /L exp(—wi)v 11t 1dxody
+ /Ot /LZ exp(—wn)v1120 2y dxady + /Ot /LZ exp(—wi)v,120,12;dxody.

A combination of (8), (13), (21), (22) and (29) leads to
¢(z,t) = H/ / exp( w;y)u dx2d17+A/ / exp(—wi)uv,,dxady
- 12 / / exp(— w11)u doxpdy — k22/ / exp( wq)vlzdxqu
+ﬂ/ / exp(fwr])vzdxzdnJrZ'y// exp(—wn)v,1,v,1dx2dy
ZkM/ / exp( wri)ulvudxzdn—f/ / exp(—wn)v 450 qpdaady
ka / / exp( wﬂ)vmvmdxzdnf 2 /0 /L Zexrﬂ(*wﬂ)v/lv,mﬁdxzdﬂ

_kzi/o /L exp(—w;y)v,,]dxzdn—o—kz'y/o /L exp(—wiy)vlmﬁvlaﬁdxzdiy

t t
_ kz%./o /Lz exp(—wn)v 1,0 1,dx2dn + kz%/o /Lz exp(qu)v,zndxzdiy.

Combining (32)-(36), we have
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¢(z,1)
072

t
= %/0 /Lz exp(—w;y)u/z,?dxqu + % -/Lz exp(—wt)uidxz
+g/.t/ exp(—wn)uqu ydxod +1/ exp(—wt)uqu odx
ZOLZP 1)U,nU,dxd1 ZLZP yayene)
t t
+u/0 ./L exp(fwiy)u,mumdxqu+)\w/0 /L exp(—wn)u,v ,dxpdy
top
+A/L exp(—wt)u,,xv,adxz+(p1k1—/\)/O /L exp(—wn)u1,u,1dxdy
t b
7)\/ / exp(fwn)u,qu,11dx2d17+2)\/ / exp(—wi)u119,,dxody
Jo L. 0 Jr.
t t
+2/\/ / E‘Xp(—wr])u,l’(),],?dedﬂ-‘r)Lw/ / exp(—wn)uv1dxodn
0 JL. 0 JL
t
+Aw/ / exp(qu)uv,ndxzdr]+)\/ exp(—wt)uqv1dxy
Jo Jr. JL.
t
+A/L exp(—wt)uvrlldxz—&-(l+yw)k1/0 /L exp(—wn) (1 ge)>dxady
t -
+yk1/ exp(fwt)(um)zdxzfplkl/ / exp(—wn)u g,u gy dxody
JL. 0 JL. @7

pw [* 2 p1 2
+ T/o -/Lz exp(—wn)vy,dxody + ?/ exp(—wt)vidx,

2 ot
+mT/o /L exp(—wn) Um,vmdxzdn+—/ / exp(—wt)v 450 4pdx2dy

2k
+%/L exp(—wt)v,aﬁv,aﬁdxz—i— sza;/ / exp(—wq)v/lquldxzdn

2ykpow
2

+ (75— — pawky) //exp —wi)v,,011dxody + (sz/Lexp(fwt)v,uv,ldxz

2k 2kA
+ (/= 7 ‘02 +p2k2)/L exp(—wt)v v 11dx ’Y

2k)vy

//exp(—wq)urmvlmdxzdry

+ (Ak //exp — W)U 40 11,dxpdny — pzkz//exp wﬂ)vlququ

+ﬂk2/ exP(—Wt)v,laU,ladxri"Ykz/O /L exp(—win)v,1450,10pdX2d17

t
7)"‘2/0 /L exl’(*w’?)v/lllu,ldxzdﬂ*/\kz/0 /L exp(—wn)v 111 11dxdy
t t
+k2/0 /L exP(—wW)v,llzv,quxsz+k2/0 /L exp(_wﬂ)v,12u,lzr]dx2d77~

Using the results (3.1)-(3.3) in [19], we have
t t

/0 /L exp(—wn)v v dxady < Cl./o /L exp(—wr])v,,,clgvralgdxzdry, (38)

./L exp(—wt)v v 4dxy < Cl./L exp(—wt)o 460 4pdxa, (39)

N ) ot
/0 /Lz exp(—wn)udxydy < cz/o /Lz exp(—wn)u gatl godxody, (40)

A exp(—wh)utdx, < CzA exp(—wt)u gl godxy, (41)
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P¢(z,t)
S92

wpq

> (Y-

NCE L
283 2

A A "
]/ / exp(—wn)ugu ydxody + ( — 5 Esg) /Lz exp(—wt)uqu ndxo

Ay
2817

+n -

+ (14 pw)ky —

+ (pky —

ﬂkz

2
/ exp(—wt)v 120 1odxp +

1 (27kp2
T2

—————— (

/ exp(—wt)v1v1dxy < C3/L exp(—wt)v 1,0 1,dx2d7, (42)

with ¢1, ¢z, and c3 are positive constants .

Using the Schwarz inequality, and combining (37)-(42), we obtain

//exp —wn)us, ddeﬂ+pl exv(*wt)uﬁdxz

2kAy ) €16
m2 2

w k Aw kA
-2 *)\e**w 3815*(9\7(2*

ki—A
‘0117837p1k1}/0 /L exp(—wi)uaytt wydxzdy

2
— Mes —

Awce kA Ak
5 Ze _J 14_72]/ / exp( WW)(”m) dxpdy

1
284 m2

Ac
72810)/L exp(—wt) (it )2dxs

t
] G pzwkZ)m]/o /L exp(—en)ydrady 3)

+p2k2)£13]/L exp(—wt)v/ztdxz

A koow k
’Ynfzg 11*%7‘02 2]/ / exp(—wi)v,ayv,aydxody

Awey Awep Aw ykpawey 1 29kprw oo 1 kAy 1

2
281 257 283 m2811 2( m2 €12 m2 €14

AC3 A 1 2vkps /
289 2810 2813 m2 + pzkz)] L. exp( (Ut)v,llxv,la’dXZ

k/\')/ 2k)\’y 1 )\kz kz t
— (Aky — 7)@ - 7€19] /0 /Lz exp(—wn)v1457,10pdx2d1

/ exp(—wt)v 140,1dxy,
JL,

where¢;, (i =1,2,---,20) are arbitrary positive constants .
In (43), if we choose e1 = ey = ey = €9 = 41A,S3 =2,e4 = %,g = “é’j\ g =Aeg=1,

k 2 1 kA 21
€10 = %:811 =& = 7,813 = ( Z,,zpz +P2k2) 01,€14 = %1815 = J €16 = /€817 = %,
A 29koy+p2ko)?
g1y = w,e19 = 5, k1 = ZPI( + Ak = 4;m >max{\/4k 2A%2c3 4 5 Cz-l-i(vpzplp2 2) I,

1,872k, \/Zk(l + 72kopw + ? + 4%)},0.; > max{2kip; + 16A2 + 8K2A2 2,1},],1 >

\/% + p102 +4p1Ac1 + Splk/\’)/z,’)/ > max{16/\2c1 + 10A + 4kp2€1 + 4kp2 + 4kA, 1}, we
can get
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¢(z,1)
0z2

%

t
a)pl/ / exp(— wq)u dxzdiy-i-‘ol exp(—wt)u%dxz
0 JL.
't
/0 exp(— wn)uauadxzdiy—&-‘l/ exp(—wt)u i odxy

//exp a}q)(u,m) dxpdy

J’_

ISTRSCIES

exr?( wn)u,

+

2

S~
> \ \.

ky
2

+
‘ =

2
. exp(—wt) (1 e ) dxp + T /0 /Lz exp(—wr;)vrvdxzdiy
(44)

P2 2dny 1+ (! dxrd
Z exp(—wt)v/t x2+ﬁ o )L exp(—wi)v,ayv,aydxzdy

J/ /L exp(fwr])v,aﬁv,aﬁdxzdry+%/L exp(fwt)v,aﬁv,aﬁdxz

t
+Ek2/ exp(—wt)vrlav,mdxz—&-/ / exp(—wi)v1450,10pdx2dy

2 / exp(—wt)v 100 1pdx, + 7 ‘02 / exp(—wt)v 1;v,1dxy
L
= E(z,t).
We now define a new function F(z, t) as

F(z,t) = /OtE(z,s)ds. (45)

We get

t s t
F(z,t):%/o /0 / exp(fwiy)u,zﬂdxzdiydsnt%l/o /L exp(—ws)u%dxods

t s t
+ %/0 /0 /Z exp(—wn)ugu odxodnds + %/O /Lz exp(—ws)u gt o dxods

tors ki tos
+E/ / / exp(fu)il)u,mu,,qudeﬂds+ yuzil/o /0 / exp(*wﬂ)(u,m)zdxzdflds

t rs
Hkl/ / exp(—ws) (140 ) 2dxads + iw/o /0 /Lzexp(—wq)vgndxquds
S
—2/ / exp(fws)vrztdxzderE/ / / exp(—wi)v,ay0,aydxodnds (46)

w'y/// —wn)v ,X}gv,xﬁdxzdnds—i-v/ / exp(—ws)v 40 qpdxods

+ Ekz/o -/Lz exp(—ws)v 1,0 1,dx2ds +/0 /0 /Lz exp(—wn)v,1450 10pdx2d1ds

ot 't
%/0 /Lz exp(—ws)vipdxads + %@02/0 /Z exp(—ws)v}dxods

ko2 [
+ Tﬂ /Lz exp(—wt)v?ldxz,
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We can easily get
F(z,t) > 0. (47)

Following the same procedures as (37)—(44), we obtain

Pe(z,t) 3
aZz 2 (Z, t) ( )

Inserting (30) into (48), we have

?D(z,t) 3
il AT ) 49
P < 2F (z,1) (49)
We can also get

02D (z,t)

a2 > F(z,t). (50)
Combining (47) and (50), we obtain

2 rt
22D(z, 1) _ o fo ¢(z,5)ds - 1)
0z2 0z2 -

Combining (36), (44) and (51), using the Schwarz’s inequality, we can obtain

’D(z,t)

(1) < ks T2,

where k3 is a computable positive constant. The proof of Lemma 5 is finished. [

3. Phragmén-Lindeldf Alternative Results
Based on Lemmas 1-5, we can get the following Lemmas:

Lemma 6. We suggest u and v are classical solutions of problems (4)—(7) in the semi-infinite strip

O defined by (1), if there exists a zy > 0 such that % > 0, then the following inequality holds:

lim e G (z,t) > c1(t), (52)

Z—00

where c1(t) = %[a%cb(zl, 1) + kg ®@(z1, t)]e 471, G(z, t)will be defined in (61).

Bzd;(zzzo,t) >0 forall z > 0, we can get aq;(zz’t) > 0forall z > zp.
We know the fact ®(z,t) > ®(zq,t) + %(z —zp) forall z > z.

1z
If we let z — o0, we can obtain ®(z,t) > 0.
So, wo have the following results:
There exists a z; > zg such that 78@(()221 4 S 0and D(z1,t) > 0.

From (31), we can get

Proof. Since

%D(z,t)

e Kd(z,1) >0, (53)

with ky = ,37.
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Equation (53) can be rewritten as

9 ([ k[0
% (E Efb(z, t) +ka®(z,t)| ) >0,
or
9 ( k[0
3 (e gcb(z, t) —ky®(z,t)| | > 0.
Integrating (54) and (55), we obtain
d Gl k4(z—21)
fCI)(Z, i’) —+ k4¢‘(Z, t) > [*@(21, i’) + k4q>(21, i)]E 4 v,
0z 0z
or

P) ) sl
502 t) ~ka®(z,1) > [5-@(z1,1) — ks®(z1, 1)]e ky(z=z1)

forallz > z;.
Combining (56) and (57), we have

ekalz=21) 4 p—ka(z—21)
2

eka(z=21) _ p—ka(z—21)

2

o) o)
— >
aZdD(z, t) > aZQ(zl,t)

+ky®(z1,1)

Integrating (49) from z; to z, we obtain

/Z P 1) o % TR 1z

. 022
Inserting (59) into (58), we have

3 gz p) ekalz—z1)
i > 2
2 [ Rt > S ot [

+26_k4(z_21) B 1]

eka(z=21) _ p—k4(z—21)
2

+ky®(zy, 1)
If we define

Glzt) = /ZZF(c,t)dC,
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Combining (46) and (61), we have

_wp /t/s/z/ R
et = - dAdyd
(=)=~ o b L, Lgexp( w3, dAdyds
ot pz
+p?1/0 /Z1 /Lg exp(—ws)u%dAds
w [tos oz
- 5/0 /0 /Zl /Lé exp(—wr)uqt,dAdids
1 stz
+ 1/0 /z1 /LZ exp(—ws)uqu  dAds
Bt
- E-/O /0 /21 /Lg exp(=wi)iytt ayd Adnds
wk t sz
* : 2 : /0 /0 ./21 -/Lg exﬂ(_wq)(”,aa)szdnds
ki [tz
+ % /0 -/21 /Lg exP(iws)(”,aa)szds
+w/‘t/s/z/ exp(—w )vszd s
4 Jo Jo Jzy Jr; pl-wi)v,dAdy
P
+ pZZ /0 /Z1 /Lg exp(—ws)vidAds @
m2 rtos oz
ﬁ/o A /Z1 /Lg exp(—wn)0,uy0,ayd Adnds
w t sz
Tt
+ Z/o /21 /Lg exP(_ws)v,fxﬁ'U,fxﬁdAds
m? t oz
- @kz/o /21 /Lg exp(—ws)v,1401,d Ads
A dAdnd
+/0 /0 /Zl /L; exp(—wi)v,14p0 1apd Adds
t rz
kfz/ / / exp(—ws)vy,d Ads
21

w’ykzpz/ / / exp(—ws vldAds
m 71 JLg

’ykpz/ / exp( wtvldA

we obtain

lim e X2G(z,t) > c1(t),

Z—y00
with C1 (f) = %[B%CI)(ZL t) + k4q)(21, ﬂ]eikﬂl . O

Lemma 7. We suggest u and v are classical solutions of problems (4)—(7) in the semi-infinite strip
Q) defined by (1). If % < 0forall z > 0, then the following inequality holds:

H(z,t) < cp(t)e 2, (63)
where ¢ (t) = f%<b(0, t) + ks ®(0,t)], H(z, t)will be defined in (66).

Proof. If we suggest there exists a zp > 0, such that ®(zg,t) < 0. Since % <0
for all z > 0, we can get ®(z,t) < ®(zg,t) < 0 for all z > z;. From (31), we have
Iv(zt) _ zot) azqg(zg,t) (z—2z9) > —é@(g,t)(z —2zp), withzpg < § < z. letz — oo,

0z 0z -
IP(z,t) ad)(z t)
0z

we have > 0. Which gives a contradiction to < 0forall z > 0. So we can

conclude ®(z,t) > 0 forall z > 0.
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Integrating (53) from 0 to z, we obtain

_0D(z,t)

> +ky®(z, 1) < ca(t)e ™, (64)

with oy (t) = — 2 (0, 1) + ks ®(0,1)].
Since ®(z,t) > 0 for for all z > 0, we have

_0D(z,t)

% < C2(t)€7k4z. (65)

8<I>(z t)

From (64), we can get the results ®(z, t) and — tend to 0 as z — co. We thus have

aP(z,t) [ PP ),
oz 7./2 022 4
> [ nae ©66)
= H(z,t).

Combining (46) and (66), we have

_wpr [ 2
,T/O/O/Z /Léexp(fwn)u’ndAdﬂds
t oo
+%1/0/Z /Lgexp(fws)u,zsdAds
w N dAdyd
+§/0/0/z /Lgexp(—wry)u,au,a nds
1 t 00 drod
+1'/0 /Z '/Lgexp(—ws)u,au,a Xods
potops e
7/// /exp(fwr])umu,m]dAdr]ds
kal/ // / exp(—wn) (i4e)*dAdnds
ﬂk]// / exp(—ws) um) dAds
paw
+T/O/0/z /LEEXP(*‘U’?)U,qud’?dS
t oo
+%2/0/z /Lgexp(fws)vidAds (67)
m2 tops e
+§/0/0/z /Lgexp(qu)vmv/m,dAdﬁds
w t ps poo
+TIY,/0/0,/Z /Lgexp(—wq)v/aﬁv/aﬁdAdvyds
gt ope
+7// /exp(—ws)v/ﬂ;;vwd/\ds
+—k2// /exp —ws)v,1,0,1,dAds
+/// /exp(fwly)v’laﬁv,mﬂdAdlyds
Jo Jo Jz JLg
ko [t g )
—// / exp(—ws)vy,dAds

w’ykzpz// /exp —ws vldAds
m Le

’Ykpz/ /exp —wt) vldA
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References

Inserting (66) into (65), we obtain
H(z,t) < cp(t)e k2.

O

Based on Lemmas 6 and 7, we can get the following theorem.

Theorem 1. We suggest u and v are classical solutions of problems (4)—(7) in the semi-infinite
strip Qg defined by (1), then either inequality

: —kyz
Zlggoe G(z,t) > c1(t)

holds or
H(z,t) < cp(t)e ke
holds.

Theorem 1 shows that either the energy expression G(z, t) grows exponentially or the
energy expression H(z, t) decays exponentially.

4. Conclusions

In this paper, we studied the spatial properties of solutions for a class of thermoelastic
plate with biharmonic operator in a semi-infinite cylinder in R2. The Phragmén-Lindeld f
alternative results were obtained based on a second-order inequality. Our method is also
valid for the hyperbolic-parabolic coupling equations. We can only deal with the linear
equations. For the case of nonlinear equations, it is difficult to study the spatial properties.
The results of these future studies will be of great interest to researchers in our field.
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Abstract: This paper investigates the Schur-convexity, Schur-geometric convexity, and Schur-harmonic
convexity for the elementary symmetric composite function and its dual form. The inverse prob-
lems are also considered. New inequalities on special means are established by using the theory
of majorization.
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1. Introduction

Throughout the article, the n-dimensional Euclidean space is denoted by R", and
RY ={(x1,...,xs) | x;>0,i=1,...,n}. R! is denoted by R for simplicity.

In 1923, Schur [1] introduced the concept of the Schur-convex function. It can be
applied to many aspects, including extended mean values [2-7], isoperimetric inequal-
ities on the polyhedron [8], theory of statistical experiments [9], gamma and digamma
functions [10], combinational optimization [11], graphs and matrices [12], reliability [13],
information theoretic topics [14], stochastic orderings [15], and other related fields.

Zhang [16] and Chu et al. [17] proposed the notations of Schur-geometric convexity
(or “Schur-multiplicative convexity”) and Schur-harmonic convexity, respectively. Then
the theory of majorization was enriched [18-27].

Letx = (x1,...,%,) € R", the k-th elementary symmetric function and its dual form,
denoted by Ei(x) and Ej (x), respectively, are defined as

Ex(x) =

k k
Hxi]., Ei(x) = 11 in]., k=1,2,...,n.

1<iy < <ig<n j=1 1<iy < <ig<n j=1

Let f : I — R be a function on an interval I C R. In this paper, the k-th elementary
symmetric composite function and its dual form are denoted by

Ec(f, %) = Ec(f(x1), - f (), B (o) = Eg(f(x1),-, f (xn))-

Clearly Ei(f,x) = E;,(f,x), Ea(f,x) = E{ (f, x).

Schur [1] obtained that Ej(x) is Schur-concave, increasing on R’; . Shi et al. [21-23]
proved that Ej(x) is increasing Schur-concave on R’,, Ex(x) and Ej(x) are increasing Schur-
geometrically convex and Schur-harmonically convex on R} . Xia et al. [24], Guan [25],
Shi et al. [26], Sun [27], Chu et al. [17] constructed and studied the Schur-convexity, Schur-
geometric convexity, and Schur-harmonic convexity of various special cases of Ei(f, x) and
E{(f, x); many interesting inequalities were established and proved.
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Schur [1], Hardy et al. [28] studied the Schur-convexity of E1(f,x) (or E}(f,x) ) and
obtained that:

Theorem 1 ([1,28]). E1(f,x) (or E;;(f,x)) is Schur-convex on I" if f is convex on I C R.
If f is continuous, the inverse problem of Theorem 1 also holds [29]. That is:

Theorem 2 ([29]). If f is continuous on I, then f is convex on I if E1(f,x) (or Ei(f,x)) is
Schur-convex on I".

In 2010, Roventa [30] investigated the Schur-convexity of Ex(f,x) and E,_;(f,x) and
obtained that:

Theorem 3 ([30]). Let I C Ry be an interval. If f : I — R is differentiable in the interior of I
and log f is convex and continuous on I, then Ep(f, x) and E,,_1(f, x) are Schur-convex functions
on I.

However, Roventa did not discuss the case of 3 < k <n —2.
In 2011, Wang et al. [31] proved the following two results.

Theorem 4 ([31]). Let I C Ry be symmetric and convex with non-empty interior, and let
f I — Ry be differentiable in the interior of I and continuous on I. If log f is convex, then
Ex(f,x) is a Schur-convex function on I" forany k = 1,2,...,n.

Theorem 5 ([31]). Let I C Ry be symmetric and convex with non-empty interior, and let
f I — Ry be differentiable in the interior of I and continuous on 1. If log f is convex and
increasing, then Ey(f,x) is a Schur-geometrically convex and Schur-harmonically convex function
onI" foranyk =1,2,...,n.

In 2013, Zhang and Shi [32] gave a simple proof of Theorems 4 and 5. In 2014,
Shi et al. [33] obtained the following two results.

Theorem 6 ([33]). Let I C R, be symmetric and convex with non-empty interior, and let
f I — Ry be differentiable in the interior of I and continuous on I. If log f is convex, then
E{(f, x) is a Schur-convex function on I" for any k =1,2,...,n.

Theorem 7 ([33]). Let I C Ry be symmetric and convex with non-empty interior, and let
f 1 — Ry be differentiable in the interior of I and continuous on 1. If log f is convex and
increasing, then E;(f, x) is a Schur-geometrically convex and Schur-harmonically convex function
onI" foranyk =1,2,...,n.

Theorem 2 is the inverse problem of Theorem 1. Thus, the first aim of this paper is to
study the inverse problems from Theorems 3 to 7. In contrast with these results, our study
suggests that the functions that do not have to be monotonous and continuous.

The arithmetic mean of x,y € R is defined by

x+y

Alvy) = ——

The geometric mean, harmonic mean, identity mean, and logarithmic mean of x,y > 0
are respectively defined by
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2x
G(x,y) = Vxy, H(xy) = x+yy,
1
1/ x%\ v xX—y
(= X FY,
I(X,]/)Z e(y]/) 4 X#y, L(x,y):{logx—logy Yy
X, xX=y, X, X =Y.

It is well known that the following inequalities on special means
H(xy) < G(x,y) < Llxy) < I(xy) < Alxy), xy>0 @

have many important applications. Another aim of this paper is to establish new inequali-
ties on special means by use of the Schur-convexity of E(f, x), E (f,x), and the theory of
majorization.

2. Definitions and Lemmas

First, we introduce the concepts of Schur-convex function, Schur-geometrically convex
function, and Schur-harmonically convex function.
For positive vector x = (x1,...,x,) € R, we denote by

%:: (i i), logx := (logxy,...,logx,), € :=(e%,...,e™).

PRy
X1 Xn

A function ¢ : QO C R" — R is said to be increasing on Q) if x; < y;(1 < i < n) implies
¢(x) < ¢(y) forany x = (x1,..., %),y = (y1,---,Yn) € Q.

Definition 1. Let x = (x1,...,%,), y = (y1,...,yn) € R".
(i) ([34]) x is said to be majorized by y (in symbols x < y) if

k n

Zx[i]ﬁ yi for 1<k<n-1 and in:Zyi’
= =1 i=1 i-1

=~

where Xy 2 - = Xppand Yy = - -+ 2 Yy are rearrangements of x and y in a descending
order.
(ii)  ([34]) A function ¢ : QO C R" — R is said to be Schur-convex (Schur-concave) on Q) if

x=<y=9x) < ()ey), VrycQ

(iii) ([16]) A function ¢ : O C R, — Ry is said to be Schur-geometrically convex (Schur-
geometrically concave) on Q) if

logx <logy = ¢(x) < (>)e(y), Yx,y Q.

(iv) ([23]) A function ¢ : Q C RY — R is said to be Schur-harmonically convex (Schur-
harmonically concave) on Q) if

11
¥y T e = ey), VryeQ.

Next, we introduce the concepts of convex function, geometrically convex function,
and harmonically convex function.

Definition 2 ([22,23]). Let I C R be an interval, and let f : I — R be a function.
(i) f is called a convex (concave) function on I if

fAx+(1=2y) <A f()+ A -A)f(y), Veye,0<A<1
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(i) f:1C Ry — Ry is called a geometrically convex (geometrically concave) function on I if

FEM <O WYY, VayeL,0<A <1

(iti) f:1C Ry — Ry is called a harmonically convex (harmonically concave) function on I if

Lemma 1. Let f: [a,b] C Ry — Ry and ¢ : QO C R — Ry be functions.

(i) ([22]) f is geometrically convex (geometrically concave) on [a,b] if and only if log f (e*) is
convex (concave) on [loga,logb].
(it)  ([23,35]) f is harmonically convex (harmonically concave) on [a,b] if and only if ﬁ is

11
concave (convex) on [g, ;]~

(iti) ([22]) ¢ is Schur-geometrically convex (Schur-geometrically concave) on Q) if and only if
¢(e*) is Schur-convex (Schur-concave) on {logx | x € Q}.
(iv) ([23]) ¢ is Schur-harmonically convex (Schur-harmonically concave) on Q if and only if

(p(%) is Schur-convex (Schur-concave) on {% |x € Q}

Lemma 2 ([16,36]). Let I C R be an interval, and let f : I — R be a continuous function.
(i) f is convex (concave) on I if and only if

fA(xy) < (Z)A(f(x), (), Vxyel

(ii)  f:1C Ry — Ry is geometrically convex (geometrically concave) on I if and only if

f(Gluy) < (2)G(f(x), f(y), Vxyel

(iii) f: 1 C Ry — Ry is harmonically convex (harmonically concave) on I if and only if

f(H(x,y)) < (2)H(f(x), f(y)), Vxy el
Next, we prove the convexity of some functions involving I(x,a + x) and L(x, 2 + x).

Lemma 3. Let a > 0. Then

(i) I(x,a+ x)and L(x,a + x) are concave on R.

(i) I(x,a+x), L(x,a + x) and /L0 0)] gre geometrically convex on R, elt/1(xa+x)] js
geometrically convex on [a, 4+00).

(iii) I(x,a+ x) and L(x,a + x) are harmonically convex on R..

Proof. For simplicity, we denote f(x) = I(x,a + x), g(x) = L(x,a + x).
(i) By asimple calculation, we can obtain that

f1(x) = £(x)[(10g f(x))" + (10g £(x))?] = L3 [ (575 + (log(1+ £))?],
//(x) _ —a?[(2x+a) (log(x+a)—log x)—2a]
8 x2(x+a)2[log(x+a)—logx]>

Let
flt)y=—t—14+(logt)?+2, t>1;
¢x(s) = (2x +s)(log(x +s) —logx) —2s, s>0, x>0,
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(i)

(i)

then

" _JWnd Ty " x) = _”2¢X(’1)
f(x) = 2 , §'(x) = xz(x+ﬂ)2[log(x+a)—10gx}3r

and

Px(s) =710g%+s*%+s >0

Note that f1(1) = 0, $x(0) =0, s0 f1(t) < 0(t > 1) and ¢x(s) > 0(s > 0). It follows
that f”/(x) < 0and g”(x) < 0 on R;. Hence, f(x) and g(x) are concave on R.
Note that

(log f(e¥))" = <, [a+e* +log ng] >0, xR,

(logg(er))” = SPele ogltiee U ., 2 e R,

1 "
() = @hr >0 xR

It means that log f(e*) , log g(e*) and g( %) are convex on R. So f(x), g(x) and e[1/8()]

are geometrically convex on R by Lemma 1(i).
Next we prove that el!/f(¥)] is geometrically convex on [a, +c0). Clearly we have

(ﬁ)” = athz(tex) l:eY (log a+e* +1- a+e"> + (10g %)2] ;X 10gll.

Let
p(t) = (1/t —1)(logt+1—t) + (logt)?, % <t< 1l

1 " - L,pr(ﬂfzx>
then< (e*)) = 7#/((;) and

p(t) = H(t* 1)+ <27 1) logt} <0.

"
Note that p(1) = 0,0 p(t) > 0 (3 < t < 1). It follows that (ﬁ) > 0 on

[loga, +00) and e!/f(¥) is geometrically convex on [4, +c0) by Lemma 1(i).
Note that

"
1 —a
=" <0, x>0
|:g(}{):| (ax +1)2 x

So ﬁ is concave and g(x) is harmonically convex on R by Lemma 1(ii).
Next,xwe prove that f(x) is harmonically convex on R.. Clearly we have
2,2

a
ax +1

|:f11)} -1 {—Zuxlog(ax—i- 1)+ + (log(ax + 1))2|, x> 0.

(x a2xif (1)
Let :
h(t) = —2(t—1)logt +t+ 7 —2+ (logt)?, t>1,

then |: :|H _ hlax+1) d

= a2ef() A
W(t) = —(1 - %) (1 - % +210gt> <0
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1
e f(%lsconcave

and f(x) is harmonically convex on R by Lemma 1(ii).
(|

"
Note that (1) = 0,s0 h(t) < 0(t > 1) and {L} < 0(x > 0). Hence

In the following, we introduce some relevant conclusions on the Schur-convexity of
the composite function. For further details, please refer to [22,23,29].

Lemma 4 ([29]). Let I C R be an interval, and let ¢ : R" = R, f : I — Roand ¢(x) =
@(f(x1), -+, f(xn)) : R" — R be functions.

(i) If f is convex and ¢ is increasing Schur-convex, then  is Schur-convex on I".

(ii) If f is concave and ¢ is increasing Schur-concave, then  is Schur-concave on I".

Lemma 5 ([22,23]). Let I C Ry be an interval, and let ¢ : R} — Ry, f : I — Ry and

P(x) = @(f(x1), -+, f(xn)) : RN — Ry be functions.

(i) If f is geometrically convex and ¢ is increasing Schur-geometrically convex, then 1 is Schur-
geometrically convex on I".

(ii) If f is geometrically concave and ¢ is increasing Schur-geometrically concave, then 1 is
Schur-geometrically concave on I".

(iii) If ¢ is increasing and Schur-harmonically convex and f is harmonically convex, then i is
Schur-harmonically convex on I".

Symmetric functions E(x) and E;(x) have the following properties.

Lemma 6 ([1,21-23]). E(x)and Ej (x) are increasing Schur-concave, Schur-geometrically convex
and Schur-harmonically convex on R,

Lemma 7 ([29]). Let I C Ry be an interval, and let ¢ : I" — R be a continuous symmetric
function. If ¢ is differentiable on I", then ¢ is Schur-convex (Schur-concave) on I" if and only if

(1 — x2) (84)(96) - afP(x)> > 0(< 0).

ax1 ax2

Let Eo(x3, -+ ,x) =1, Z?:l x; = 0, it is easy to induce that

n n
Ei(x) =) x;, Ef(x) =[x
i=1 i=1

Ek(x) =x1E 1 (X3, T /xn) 4+ x2Ef 1 (.X'3, cee ,xn) + xlszk72(x3r . rxn)
+Ek(X3,~~~,xn), 2<k<mn,

OEf(x) E(x) E{(x)
Froa e T s 2sksn
*1 3<iy<aiy g <n X1 F X Xip 3<iy<iaiy p<n X1 F X2+ 10T X,
OEf(x) Ei(x) E;(x) o<k <
d o k—1 k—2 ’ S Ksn.
2 scii<i<ip g sn X2 T Xip 3<ij<oiip p<n Y1 X2 H XX

Hence, by use of Lemma 7, Lemma 1(iii), (iv) and Lemma 6, we have

Lemma8. Letk=1,2,--- ,n, then

(i) Ex(e¥) and Ej(e*) are increasing and Schur-convex on R".
(ii)  Ex(logx) and Ej (log x) are increasing and Schur-geometrically concave on {e*|x € R’ }.
(iii) Ek(%) and Ej} (%) are decreasing and Schur-harmonically concave on R}
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3. Main Results

In this section, we prove our main results. Firstly, we investigate the Schur-convexity

of Ex(f,x) and E/(f, x) and their inverse problems. Note that Theorems 1 and 2 study the
cases of E1(f, x) and E;;(f, x), so we only consider the other cases in the following.

Theorem 8. Let I C R be an interval, and let f : I — R be a function.

(i)

(i)

Iflog f is convex, then Ex(f,x)(2 < k < n)and E} (f,x)(1 <k < n —1) are Schur-convex
on I". Conversely, if Ex(f,x)(2 < k < n)or Ef(f,x)(1 < k < n — 1) is Schur-convex on
I"and f is continuous, then f is convex.

If f is concave, then Ex(f,x)(1 < k < n)and Ef(f,x)(1 < k < n) are Schur-concave on
I". Conversely, if E1(f,x) or Ej;(f, x) is Schur-concave on I" and f is continuous, then f is
concave. If Ex(f,x)(2 < k < n) or E{(f,x)(1 < k < n — 1) is Schur-concave on I" and f
is continuous, then log f is concave.

Proof. We only prove that the results hold for Ex(f,x). A similar argument leads to the
proof of the results for Ef(f, x).

(i)

(i)

O

If log f is convex, then Ex(f,x) = E;(e!%8/, x) is Schur-convex on I" by Lemmas 4(i)
and 8(i). Conversely, if 2 < k < n and Ei(f, x) is Schur-convex on I", note that Ej(x)
is Schur-concave on R’ so for all (xq,- - - ,x,) € I", we have

Ex(f(A(x1,%2)), f(A(x1,x2)), f(x3),- -+, f(xn))
SE(f(x1), f(x2), fx3), -+, f(xn))
<Ex(A(f(x1), f(x2)), A(f(x1), f(x2)), f(x3), -+, f (xn)).-

Since Ei(x) is increasing on R} , then

f(A(x1,x2)) < A(f(x1), f(x2))-

Since f is continuous, f is convex by Lemma 2(i).

If f is concave, then Ei(f, x) is Schur-concave on I" by Lemmas 4(ii) and 6. Conversely,
if E1(f, x) is Schur-concave on I" and f is continuous, then —E;(f, x) = E;(—f, x) is
Schur-convex on I", so — f is convex on I by Theorem 2. Hence f is concave.

If 2 < k < nand Eg(f, x) is Schur-concave on I", note that Ei(e¥) is Schur-convex by
Lemma 8(i), so for all (x1,--- ,x,) € I" and 2 < k < n, we have

Ex(f(A(x1,x2)), f(A(x1,%2)), f(x3), -+, f(xn))
ZE(f(x1), f(x2), f(x3), -+ fxn)
—E, (elogfm),elogf(xw,elogf(xa), o ,elogﬂx”))

>y (A8 (1) Jog F(1)) (A8 f(22) 108 22)), o () ... o))

=Ex(G(f(x1), f(x2)), G(f (x1), f(x2)), f(x3), -+, f (xn))-

Since Ei(x) is increasing on R”, then

f(AGx1, x2)) = G(f(x1), f(x2))-

Since f is continuous, log f is concave by Lemma 2(i).

Secondly, we prove the Schur-geometrically convexity of Ei(f,x) and Ef(f,x) and

their inverse problems.
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Theorem 9. Let 1 < k < nand I C Ry be an interval, and let f : I — R be a function.

(i)

(ii)

If f is geometrically convex, then E(f, x) and Ef(f,x) are Schur-geometrically convex on I".
Conversely, if E,,(f, x) or E{(f,x) is Schur-geometrically convex on I" and f is continuous,
then f is geometrically convex. If Ex(f,x)(1 <k < n—1)or E{(f,x)(2 < k < n)is
Schur-geometrically convex on I'" and f is continuous, then ef is geometrically convex;

If f is geometrically concave, then E,(f, x) and Ef(f,x) are Schur-geometrically concave
on I". If e is geometrically concave, then Ex(f,x)(1 < k < n—1) and Ef(f,x)(2 <
k < n) are Schur-geometrically concave on I". Conversely, if Ex(f,x) or E{(f, x) is Schur-
geometrically concave on I" and f is continuous, then f is geometrically concave.

Proof. We only prove that the results hold for Ex(f,x). A similar argument leads to the
proof of the results for Ef(f, x).

(i)

(i)

If f is geometrically convex, then Ei(f,x) is Schur-geometrically convex on I" by
Lemmas 5(i) and 6. Conversely, if E, (f, x) is Schur-geometrically convex on I", then
forall (x1,---,x,) € I", we have

n n
En(f(G(x1,x2)), f(G(x1,%2)), f(x3), -+~ f (xn)) = f2(Gaxr, x2)) [T f(xi) < TTSf (o).

i=3 i=1

So we have
f(G(x1,x2)) < G(f(x1), f(x2))-

Since f is continuous, f is geometrically convex by Lemma 2(ii).
If Ex(f,x)(1 < k < n—1) is Schur-geometrically convex on I", note that Ej(log x) is
Schur-geometrically concave by Lemma 8(ii), so for all (x1,-- - ,x,) € I", we have

Ex(f(G(x1,x2)), f(G(XI/XZ))If(x3)r"' f(xn))

SEx(f(x1), f(x2), f(x3), -+, f(xn))

Ek<logef logef( 2) logef(x3),~~~ ,logeﬂx">>

Ek<10gG (ef (1) of (12, log G(gf(xl),gf(XZ)),loggf(x?)),... ,10gef(xn)>
Ex(A(f(x1), f(x2)), A(f(x1), f(x2)), f(x3), -+, f(xn))-

Which implies that

f(G(x1,x2)) < A(f(x1), f(x2))-

Since f is continuous, e is geometrlcally convex by Lemma 2(ii).
If f is geometrically concave, then is geometrically convexity, it follows that the

function
1 1
—— =E,| -, x
E.(f,x) " <f >

is Schur-geometrically convex on I" by (i); hence, E,(f,x) is Schur-geometrically
concave on [".

Ifef is geometrically concave, then forany 1 < k < n —1, E¢(f,x) = E(log ef,x) is
Schur-geometrically concave on I" by Lemmas 5(ii) and 8(ii).

Conversely, if Ex(f, x) is Schur-geometrically concave on I", note that Ey(x) is Schur-
geometrically convex on ", so for all (xq,- -+ ,x,) € I", we have

Ex(f(G(x1,x2)), f(G(x1,%2)), f(x3),- -, f(xu))
>E(f(x1), f(x2), f(x3), -+, f (%))
>Ee(G(f(x1), f(x2)), G(f(x1), f(x2)), f(x3), -+, f(xn)).-
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O

Which implies that

f(G(x1,x2)) 2 G(f(x1), f(x2))-

Since f is continuous, f is geometrically concave by Lemma 2(ii).

Finally, we prove the Schur-harmonically convexity of Ex(f,x) and E{(f, x) and their

inverse problems.

Theorem 10. Let 1 < k < nand I C R be an interval, and let f : I — R be a function.

(i)

(i)

If f is harmonically convex, then E(f, x) and E; (f, x) are Schur-harmonically convex on I".
Conversely, if Ex(f,x) or Ej(f,x) is Schur-harmonically convex on I" and f is continuous,
then % is harmonically concave.

If L is harmonically convex, then Ex(f,x) and E}:(f, x) are Schur-harmonically concave on I".

Conversely, if Ex(f,x) or E{(f, x) is Schur-harmonically concave on I" and f is continuous,
then f is harmonically concave.

Proof. We only prove that the results hold for Ei(f,x). A similar argument leads to the
proof of the results for Ef(f,x).

(@)

(i)

If f is harmonically convex, then Ei(f,x) is Schur-harmonically convex on I" by
Lemmas 5(iii) and 6. Conversely, if Ex(f, x) is Schur-harmonically convex on I", note
that Ei(1) is Schur-harmonically concave by Lemma 8(ii), so for all (xq,- - -, x,) € I",
we have

Ex(f(H(x1,x2)), f(H(x1,%2)), f(x3),- -+, f(xn))
<Ex(f(x1), f(x2), f(x3), -+, f(xn))
1 1 1 1
—Ek(l P A S AR )
flx1) flx2) f(x3) fxn)
1 1 1 1
<Ek( ’ rT1 /1)
1 1 1 1
H(f<>c1>'f(>«2>> H(f(xn'f(rz)) flxs) flen)
Which implies that

1 1 1
F(H e, x2) — H(f(xn'f(xz))'

Since f is continuous, % is harmonically concave by Lemma 2(iii).

-1
If Jl( is harmonically convex, note that [Ek(%)} is increasing Schur-harmonically
convex on R’} by Lemma 8(iii), so the function

-1
(Ex(f,x) ' = <Ek (}x))
f

is Schur-harmonically convex on I" by Lemma 5(iii). It follows that E(f, x) is Schur-
harmonically concave on I". Conversely, if Ei(f,x) is Schur-harmonically concave
on I", note that Ej(x) is Schur-harmonically convex on I" by Lemma 6, so for all
(x1,+++,xn) € I", we have

Ex(f(H(x1,x2)), f(H(x1,%2)), f(x3), -+, f(xn))
>Ee(f(x1), f(x2), f(x3), -+, fxn))
>Ep(H(f(x1), f(x2)), H(f(x1), f(x2)), f(x3), - -+, f(xn))-
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Which implies that

f(H(x1,x2)) = H(f(x1), f(x2))-

Since f is continuous, f is harmonically concave by Lemma 2(iii).
|

4. Applications to Means

Now, we use Theorems 8-10 to establish new inequalities on special means.

Letx = (x1,---,x,) € R, the arithmetic mean, geometric mean, harmonic mean of
X1, -, X, are respectively defined by

=

n 1/n n !
An(x) = % Xi, Gn(x) = (Hxi> ’ Hﬂ(x) =n (Exi1> :
. k) i=1

i=1

For simplicity, we denote

I(x,a+x) = (I(x;,a+x1),- -, I(xy,a+x4)),
L(x,a+x) = (L(xy,a+x1),- -, L(xp,a+x,)).

If we replace f(x) with I(x,a + x) and L(x, a + x), respectively, in Theorem 8(ii), then
by Lemma 3(i) and Theorem 8(ii) we can get:

Theorem 11. Leta >0, x = (x1,- -+ ,xy) € Ry, n>2,1<k < n, then

k n
L IliGatn) < () iAd,a+ 4@, @
1<iy<--<ip<n j=1
k n
Z HL(xij,aeri/) < <k>L(An(x),ﬂ+An(x))k, (3)

1<) << <n j=1
k
[T Y Ixi,a+x) <kWI(A(x),a+ Au(x) ), “)
k n n
IT Y L(xia+x) <KHL(A(x),a+ An(x)P. (5)
1<) << <n j=1
In particular, if we let k = 1 in (2) and (3), respectively, then we have

An(I(x,a+x)) < I(An(x),a+ An(x)), (6)
Ap(L(x,a+x)) < L(Au(x),a+ Ap(x)). (7)

If we replace f(x) with I(x,a+x), L(x,a + x), ell/10a+20)] and e[1/L(xa+0)] respectively
in Theorem 9(i), then by Lemma 3(ii) and Theorem 9(i) we have:

Theorem 12. Leta > 0, x = (x1,--- ,xy), n > 2,1 <k <mn, then
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k

P’J

1< <-<iy<n j=
k 1/1( x, a+x,
G

1< <--<ip<n j=1

k
H L( X, a + x,
1<ii<-<ip<nj=1

F’JM

g

ﬁ<a+x,) <)<a+ a(
1<i<<ig<nj=1\ i G ()

> kWI(Gy(x),a+ Gu(x)®,

’:1

ZI Xi;, @ + xZ
1<ii<-<ix<nj=1

:1

1<ip<--<ip<n j=1

k

:1

1< << <nj=1

I

1<y <-<ip<nj

Ix,] a+xl/ ) >
1

2

Y Lxija+x;)> KOL(G

(i)
()
> (¢)ue

k

ek/l Gn(x

L(G

TN

x), 8+ Gu(x))",

),a+Gy (x ))],

11+Gn( )) ’

7

)>(?)/ﬂ

n

k
Zew 53] S ()l / (G ()G ()]

2 (x),a + Gp(x)®),

a+x; g N k(D(u—i-Gn(x
xj; - Gu(x)

n
xeRY,

x € [a,+00)",

xeRY,

x € R,

xeRY,

x € [a,400)",

xeRY,

n
x e RL.

In particular, if we let k = n in (8), (9), (10) and (11), respectively, then we have

Gn(I(x,a+x))
Hy(I(x,a+x))
Gn(L(x,a+x))
Hy(L(x,a+ x))

1

=
<
2
<

I(Gu(x),a+ Gy(x)), x € R,
I(Gu(x),a + Gu(x)),
L(Gu(x),a+ Gy
L(Gy(x),a+ Gy

—

x € [a,+00)"
x)), x € R,
x)), x € R.

®)

)

(10)

(11)

(12)

(13)

(14)

(15)

(16)
(17)
(18)
(19)

If we replace 6] with I(x,a + x) and L(x, a + x), respectively, in Theorem 10(ii), then

1< <--<ip<n j=1

O P

1<ip<-<ip<nj=1

Theorem 13. Leta > 0, x = (x1,- - -

by Lemma 3(iii) and Theorem 10(ii), we can get:

xp) ERY,n>2,1< k< n,then

= (
<

]
<
1‘1+x1)7(

®

I(xi,-/a + X )

n

k

n
k

) I(Hn(x),

a+ Hy(x))K’

> L(Hy(x),
1

a+ Hn(x))k’

H Z:le,aer,)S

1< <--<ip<n j=1

.

I(Hy(x),a+ Hy,(x))k

k
H g:Lx,a+x,)S

1<ip<--<ir<nj=

L(Hn(x),a+ Hy (x))F

In particular, if we let k = 1 in (20) and (21), respectively, then we have

Hy(I(x,a+x))

161

> I(Hu(x),a + Hy(x)),
Hy(L(x,a+x)) > L(Hy(x),a + Hu(x)).

(20)

(21)

(22)

(23)

(24)
(25)
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By the inequalities (6), (7), (16)-(19), (24) and (25), we can obtain the following new
inequalities.

Theorem 14. Leta > 0,x = (xq,- -+ ,x4) € R, n > 2, then

I[(Hn(x),a+ Hu(x))
< Gu(I(x,a+x))
L(Hy(x),a+ Hy(x))
< Gy(L(x,a+x))

n(I(x,a+x)) < I(Gu(x),a+ Gu(x))
Ap(I(x,a+x)) <I(Au(x),a+ Ay(x)), x € [a,+o0)", (26)
Hy(L(x,a+x)) < L(Gp(x),a+ Gu(x))
An(L(x,a+x)) < L(Ap(x),a+ Au(x)), x € RL. (27)

<H
<

<
<

5. Discussion

In this paper, the Schur-convexity, Schur-geometric convexity, and Schur-harmonic
convexity and the inverse problem for Ey(f, x) and Ej(f, x) are established in Theorems 8-10,
then some results in the papers [1,17,24-33] are generahzed.

The inequalities involving special means (arithmetic mean, geometric mean, harmonic
mean, identity mean, and logarithmic mean) are very important. In this paper, by use
of Theorems 8-10 and the theory of majorization, new inequalities on special means are
established in Theorems 11-14.
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1. Introduction
We denote a set of all probability distributions by

n
Ay = {P= {prp2 ook >0, (=12 ,n), Zp,:l}.
=1

In this manuscript, for mathematical simplicity we remove the case p; = 0 for j =
1,2,---,n. For any p € A,, Shannon entropy H(p), Rényi entropy R,(p) and Tsallis
entropy H,(p) are defined as [1-3]

n
H(p) == — Zl pilogpj, Ry(p):= 10g<2 ry) Hy(p) := — Z p]Ing p;.
=
1—q

1—
It is known that lim R,(p) = lim Hy(p) =
q—1 q—1

X

where In, (x) := -1 is g-logarithmic function defined for x > 0 and g > 0 with q # 1.

H(p). An interesting differential relation of the

Rényi entropy [4] is

dR;(p) 1 ! vj
=— vilog —,
dq (1—17)2];] )

q

which is proportional to Kullback-Leibler divergence, where v; = p? / Z]r'l:1 p;-

In [5], the Fermi-Dirac-Tsallis entropy was introduced by
FD -

()= L lnq Z
j=

1
—pj lnq .
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for p € A, and the Bose-Einstein-Tsallis entropy was given in [6] as

L S a+pm

n
1
IBE(p) = 2 pjlng e
! =1 [ I+p;

In the limit of § — 1, we have

n

n
lim 17 (p) = I{°(p) := — }_ pylog pj = 1, (1= pj) log(1 — p))
j=1 j=1

and

n n
lim 175 (p) = IF¥(p) := — 21 pjlog pj+ ;(1 +pj) log(1+ p)),
= =
where I/P(p) and IPE(p) are the Fermi-Dirac entropy and the Bose-Einstein entropy,
respectively. See [6] and references therein for their details.
In [7], we used the expression that describes the difference between the arithmetic
mean and the weighted geometric mean:

dy(a,b) :==pa+ (1—p)b—a’b'" 7, (a,b>0, p<[01]).

It is well known that dp(a,b) > 0 as Young inequality or the weighted arithmetic—
geometric mean inequality.
Next, we consider d,(a, b) for p € R. We easily find that the following properties:

dp(a,b) > 0(whenp € [0,1]),

dp(a,a) =do(a,b) = dy(a,b) =0, dy(a,b) =di_,(b,a) M
and
11 1
dp<N) = dp(ba), dyla1) +dy(b,1)

a—i—b)”_a”-&-b”}. o

dp(a+b,2)+2{< 7 7

In [8] Sababheh and Choi prove that if @ and b are positive numbers with p ¢ [0,1],
thendy ,(a,b) <0.

Some important results [9-11] on the studies used to estimate bounds on several
entropies have been established, recently, via the use of mathematical inequalities. We
provide some results on several entropies, applying new and improved inequalities in
this paper.

2. Bounds of d.(-, -) and Inequalities for Entropies

We first rewrite the Tsallis entropy, Rényi entropy, the Fermi-Dirac-Tsallis entropy,
and the Bose-Einstein-Tsallis entropy by the use of the notation d.(-, -).

Lemma 1. For p € A, and g > 0 with g > 1, we have
. 1 =z
(i) Hq(P) =n—1-—-) dq(szl)r
=
1

(i) Ry(p) = 7 log{n(l —q)+q— ildq(pj,l)},
j=

1 n
(i) IfP(p) =n— i—q _Zl{dq(Pjrl) +dg(1—p; 1)},
=
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. 1 =n
(iv) I7F(p) =n— T—g .Zl{dq(Pjrl) —dg(1+p;, 1)}
=

Proof. The proof can be done by the direct calculations.

(i) Simple calculations

q
n pfp n qp p n
e 3 L B L

= =1

1 n
= n- 1—¢ ;dq(P]vl)
=

show the statement in (i).
(ii) Since we have the relation:

exp((1—q)Ry(p)) =1+ (1—q)Hy(p),

we have

exp((1— 9)Rg(p)) = n(1—4) + 4~ Y do(p;1)

j=1

which implies the statement in (ii).
(iii) We can calculate as

n n 1_ N — (1 — p;
g( Pj)lnql_ ;1 p])l_q( p])
]

- 1*10]‘7*(1710,) R
];{ - +1 p,} +1
n 1_ q _ — P

;{ p])liz( 70])71}+1

-

1 1 ¢
:1_TZ{q(l_l"j)"'l_q_(l_l’j)q}:1_i2dq(1_lﬂjr1)~
7= 73

Thus, we have with the result of (i),

n
1
LP(p) = ;Pj lnq 2 —p)ng
=

1 n
:n—l—Tqu(pj,l)—i- Z

—n——Z{d pj,1) +ds(1—p;, 1)}
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(iv) We can calculate as

(1+pj)In =

]; ! "71+/ ]; 1711
(14 p)T— (1+p;

:2{( p])l—q( p])+1+pj}—n—l
j=1

S {(HP;)“q(lﬂ%)fl}fl
= 1=9q

l n
= -1 T Edq(l + pj,l).
73

Thus, we have
5(p) = Lo pying - Y1 py) g 1
p) = pjlng — — +pj)Ing —
! a7 A T
1 & 1 L
j=1 j=1

1 n
=n— ﬂ Z{dq(p],l) 7dq(] er],l)}
j=1

O
We give relations on d. (-, ).
Lemma 2. Leta,b > 0. If p € R, then the following equalities hold:

dp(a,b) = p(\/ﬁf \/5)2 +dap (m,b)

and
dpla,b) = (1-p)(va - \/E)2 + a1 (o, \/E)

2-2
Proof. We note that a?b! = (ab)' a1 = (V/ab) Pazr—1 = (Vab) P2,

(i) Then,
dp(a,b) = pa+ (1—p)b— (\/;b)z”pr
=pa+ (1—p)b—2pVab— (1—2p)b+2pVab+ (1—2p)b— (\/@) [

= p(\f— \/l;)z-i-dzp(\/ﬂib,b)

(i) We also have
2-2p 2p_1
d,,(a,b)zpaJr(lfp)hf(\/ab) a’?

=pa+(1—p)b—2(1—p)Vab—(2p—1)a
+2(1—p)Vab+ (2p —1)a— (\/%)zfzpuz?’—l
=(1-p) <\/E— \/E>2 +dop 1 <ﬂ/ \/E)
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In several papers [7,12-14], we find estimations of the bounds of d,,(u, b). For this
purpose, we use the following inequalities from (a) to (d).

(a) Kittaneh and Manasrah gave in [12]:

(p) (Va - VB) < dy(ab) < R(p) (Va - VB)" ©

wherea,b > 0,0 < p < 1andr(p) = min{p,1— p}, R(p) = max{p,1 — p}, whose
notations are used throughout this paper without mention.
(b) Cartwright and Field proved the inequality (see, e.g., [14]):

AV

%P(l -7

fora,b >0and 0 <p <1
(c) Alzer, da Fonseca, and Kovacec obtained the following inequalities (see, e.g., [13]):

%p(l — p)min{a, b} log* 7 < dy(a,b) < %p(l — p)max{a,b}log’ 3 (5)
and
min{g, 17—;a}alq(u,b) <dp(a,b) < max{B, 1-r }dq(u,b), (6)
7' 1—¢ 7' 1—¢

fora,b>0and0 < p,qg <1
Taking into account (1), (2) and taking b = 1 and changing p by g in the above
inequalities given in (a)—(c), we obtain the following.

(a1)

r(9)(Va—1)* <dg(a,1) < R(g)(Va—1)° @)
wherea >0and 0 < g < 1.
(b1)
1 1 —1)?
290 -9 —17 < dya,1) < 2q01 -9 ®
for0<a<land0<g<1.
(c1)
%q(l - q)alogza <d4(a,1) < %q(l —q) log2 a )
and

. ql*q} {q 1*{1}
min< —, —— »d,(a,1) < dg(a,1) <max< —, —— rdy(a,1
{4,120, <dya) 1 =)

for0<a<landO<p,g<1.
If we take a = p; < 1, forall j € {1,...,n}, in the above inequalities (a1)(c1) and
passing to the sum from 1 to 1, we deduce the following inequalities (a2)—(c2) on d. (-, -).

(a2)

n 2 n n 2
@Y (VA1) < Lap) <R L (VA —1)
j= = =
where0 < g < 1.
(b2)
1 n n 1 n _1 2
-0 S -1 < Yoy 1) < Jga - 3 B
=1 =1 =1 P
for0 <g <1
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(c2)
n 1 n
2'7 (1-9q ZPJIOg pi< Yda(pj1) < 5 )Y log? p;
j=1 j=1
and
) ql_q}n n {q 1_q}n
min{ —, —- d,(p;, ,1) <maxq -, —— dy(p;,1
{pl—p E;Am g) a(pji 1 1) g;p@])
for0 < p,qg <1

Using the point (i) from Lemma 2 and inequalities (a2)—-(c2), we deduce a series of
inequalities for the Tsallis entropy H, (p) in the following (A)—(C) as the theorem.

Theorem 1. Let 0 < p,q < 1. Then we have the following (A)—(C).

(A)
R(q) 2 r(q) v
e < < .
1 17(1];(\/@ 1) < Hy(p) <n—1 7q];(\/ﬁ] 1) (10)
(B)
g (pi—1)° qy 2
nflfizi_qu(p)gnfleZ(pjfl). (11)
= P =1
(C)
nflfgﬁlogzpngq(p)gnflfgﬁpjlogZPj (12)
j= =
and
1-p {q 1—q}> 1-p {q 1—q}
n—1 — ——maxq§ —, —— +-——max{ —, —— ¢ H < H,
=1 (1= TP ma{ 41200 ) T a4 10 b ) < )
1—p .{q *q}> 1-p .{q *q}
<(n—1){1—-—=min + —F—ming —, —— > H,
( )< 1—gq p’1-p 1—gq p’1-p o(p)
. fq 1—9q 1—9q q 1—9q q
If p < g, then we have min{ -, —— ¢ = and max{ -, —— —, then we
pl-p 1-p pl-p p
obtain

(= 1) B0 I8P () < Hylp) < (),

which implies that Hy(p) is decreasing related to 4.
In the limit of § — 1, we find some bounds for Shannon entropy as a corollary of the

above theorem.

Corollary 1. We have the inequalities for Shannon entropy H(p).

n 2 n
H(p)gn—1—2<ﬁj—1) =2 (ﬁj—l>, (13)
j=1 j=1
1 (Pj—l)z 1 2
nflfigTgH(p)gnflfig(pl-fl), (14)
= =
1 1 »
n—l—EZlog pi<H(pp)<n-1- EZp]-log P (15)
j=1

and
H(p) < Hp(p), (0<p<1).
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Using the points (ii) and (iii) from Lemma 2 and inequalities (22)—(cz), we deduce

several inequalities for Rényi entropy R, (p) and for the Fermi-Dirac-Tsallis entropy I; D(p)

in the following:

Theorem 2. Let 0 < g < 1. Then we have

(Aq)

(By)

(C1)

(A2)

(By)

(C)

=

- logn(1— ) +9— R(g)(n-+1 —ziﬁj>} < Ry (p)
=

T 1oB (1 ~0) +q (o) 1 -2 7))
L

11q10g{"(1—q)+q—%q(1—q)(1—2n+i‘,pi])}SR (p)

11qlog{n(lfq)+‘1*%‘7(1*‘7)(”*2+§P?)}

1 1 i
T lostn(l—q) +q—5q(1-q) Z log” pj} < Ry(p)

1
17q10g{n(1* q) + q (1—¢q ZP;lOg i},

123 (/1) < ()

=1

w19 (on “2L P /1)

1y ! 3n SI};D(p)Sn—ﬂ 11—2-{-2ip2
2 =1 P](l _P]) 2 j=1 !
n— gZ(log pj+log (lfp])) <I;P(p) <

\.
Il
-

:
N\ax
™=

(pjlog pi+ (@ —p;)logz(l—pj))-

-.
I

In the limit of § — 1, we find some bounds for the Fermi-Dirac-Tsallis entropy as a

corollary of the above theorem.
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Corollary 2. We have the following inequalities for the Fermi-Dirac entropy IFP (p):

and

n—

(10g? pj +10g%(1 — py)) < If°(p) <

-
Il
—-

N =
= ME

N =

(jlog?pj+ (1 - pj)10g2(1 — py)).
1

-
I

Theorem 3. Let 0 < g < 1. Then,

(A3)

3 i,/l-ﬁ-m

(2n+1)r(q) = (n+1)R(q) +2R(q) }_ /p; — 2r(q)

j=1 j=1

< (1-q) (5 (p)—n)

< (20+ DR() — (n+ Vr(g) +20(a) 32 V5, ~ 2R(9) 321 7,

(Bs3)

(G3)

i <10g2(pj +1) — log? pj)
(185 (p) — n)

((pj +1)1og(p; +1)  pjlog?p;).

IN
=N

IN
ME

j=1

Proof. From inequality (7), we find

) (vVF; - 1>2 < dg(pj,1) < R(g) (v, - 1>2

and

r(q)(\/pﬁl - 1)2 <dg(pi+1,1) < R(q)(\/rfﬁl - 1)2~

Using inequalities (19), (20) and the definition of the Bose-Einstein-Tsallis entropy
I‘?E (p), given above, we find

n+

1
1—9q

n

=

(05 (0w £ (7)) <

j=1 j
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<ot (RO £ (V-1 - £ (v -)'),

1 j=1
which implies inequality (16). From inequality (8), we have:
2
1 2
<dg(pj+1,1) < 5q(1 = q)p;

1
Eq(lfq)p 1

and 5
1 1 pi—1
591 =0)(pj—1)" < dy(p; 1) < Eq(lfq)i( - L
pj

Summing from 1 to 1, we deduce inequality (17).
We apply inequality (9) in the following way:

1
2000~ ) 1og(py +1) < dy(p; +1,1) < (1 — ) (py + 1) log? (p; +1)
and
! log? pj < dy(pi1) < 2q(1 log?
59(1 —q)pjlog”pj < dq(pj, 1) < 5q(1 —q)p;log” p;.

Summing from 1 to 1, we deduce inequality (18). [

Corollary 3. We have the following inequalities for the Bose-Einstein entropy IFE (p):

1
3n—Y —— <20PE(p) <n+1
].; pil+p) =0
and

n

Z(IOg (pj+1)— log? P]') < 2<IFE(P) )

=1 j

M:

((p]+1)1og (pj+1) - pflogzpj)
1

-

3. New Characterizations of Young’s Inequality

The inequality of Young is given by:
pa+(1—p)b> aPbt=?, (a,b>0, pe0,1]),

which means dp(a,b) > 0.
In this section, we give further bounds on d.(, -).

Lemma 3. Let a and b be positive real numbers, and let p € R. Then,
n k—1 2 1
dy(a,b) = p ) 251 2 < %/ — Z\k/E) + dny (Vab? 1, b) (21)
k=1
and

n k— 2 n
dy(a,b) = (1—p) Y. 21 V@1 (Na = VB +dyp (e, Ve Tb). (2)

k=1

Proof. Using Lemma 2 for p € R, then

dp(a,b) = p(v/a — VB): + doy(Vab, b).
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We replace p by 2p and a by v/ab, then we get
dop(Vab,b) = 2p(Vab — V/b)? + day(Vab3,b).

If we inductively repeat the above substitutions, for k > 1, then we have
k—1 k
dy 1, Vab? -1, b) =25 1p (Va1 _ Vo) + dy, (Vab?=1,p).

Therefore, summarizing the above relations for k € {1,...,n}, we obtain the relation of
the statement. Applying equality (21) and taking into account that d,(a,b) = dy_,(b,a),
we deduce equality (22). O

Remark 1. From [8], if a,b > 0 and p ¢ [0,1], we have dy_,(a,b) < 0, so, we deduce

dznp(zxn/abz"”,b) <0, forp ¢ [0, %] and don(p—1)11(a, NaTTb) <0, forp ¢ [1— %,1].

Using the above equalities, we deduce the inequalities:
n k—1 2
dplab) < p Y 21T VeI (Va - Z\k/E) 3)
k=1

when p ¢ {O, 2%} and

dy(a,b) < (1—p) 2 261221 (Va- %)2. (24)
k=1

whenp & |1 — S 1|. These inequalities are given by Furuichi et al. in ([15], Theorem 3). We also

find that inequality (23) when p < 0 and inequality (24) when p > 1 are given by Sababheh—Choi
in ([8], Theorem 2.9) and by Sababheh—Moslehian ([16], Theorem 2.2).

Proposition 1. Let a and b be positive real numbers. We then have the following bounds on d.(-, -).

(i) Forpe {0, ZL”}’ we have

2

r(2"p )( P21 _ ) +PZ V-1 1(2ku— %) < dy(a,b)
SR(Z"W( ab®' 1 > +p2 7\/102“71—%2\%7 z%)z‘

where r(-) and R(-) are defined above,
(ii) Forp € {0, %} , we have

n 2
< 2V llbyil — b) k-1 k 2
————— Tt V-1 (A= V) <dy(ab
max{ Vab?'-1,b} Pkgl ( ) (@)

n 2
(VarT—b) n 2
~ /4 Ve2-1( 34— b)) (25)
min{ RV, ab?'-1,b} Pk; ( )

2" 1p(1-2'p)

21171 p(l _ an)
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(iii) Forp € {O, 21—”}, we have
21111_1(1—2” ) min{ Vap? 1 ,b} log -
2
—p ): \/bsz](wf %/E)
1—-2"p) min b} log?
P_(1_om a7, by log?

- 2;1+1

Proof. We use the inequalities from (a) to (c), where we replace p by 2" p and a by Vab? T,
Fora,b > 0and p € {O, %} , we have the following (a3)—(c3).

(a3)
2
r(2"p) < a1 ﬁ) < donp( Vab?'=1,b)
. 2
R(2"p) ( a1 x/E) , 26)
(b3)
n 2
Va1 _p .,
2" 1p(1 — 2";7)—< 5 ) < dyny( v ab?'=1,b)
max{ Vab?"-1,b}
n 2
n—1 n (2 ab?' ! — b)
<2 lp1—-2"p) (27)
4 p)min{ 2\/alﬂi"*l,b}
c3)

(1—2"p) min{ Vab?1,b} log® = T < dny X/ab? 1, b)
gt (1= 2"p) max{ Vab?' T, b}log . 8)

- 2n+1

2n+1

Using equality (21) and inequalities (26)—(28), we deduce the inequalities from the
statement. [

4. The Connection between d. (-, -) and Different Types of Convexity

In the following, we use the inequality by Kittaneh-Manasrah as noted in (3). We
prepare some lemmas to state our results.

Lemma 4. If f : ] — R, where ] is an interval of R, is a concave function, then

f(A+r)x—ry) < (1 +7)f(x) = rf(y) (29)

forall x,y € Jand all r > 0 with (1 +r)x —ry € J. If f is a convex function, then the reversed
inequality above holds.

Proof. If f is concave, then we have

1
1+7r

FO =)+ L) < £ (- Tyt ) = f)

’
1+r
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The following result is given in ([15], Corollary 1). This is the supplemental to the first
inequality of (3).

Lemma 5. Let a and b be positive real numbers and let p ¢ (0,1). Then,

dy(a,) < r(p) (Va - VB), 0
where r(p) := min{p,1 — p}.

Proof. We set the function f(t) := t# — 2pt'/2 — (1 —2p) fort > 0and p ¢ (0,1/2). From
F1(t) = pt’l/z(t”’l/z - 1), we find that f/(t) = 0« t =1, f'(t) < 0for 0 < t < 1and
f'(t) > 0fort > 1. Thus, we have f(t) > f(1) = 0. Putting t := a/b and multiplying
b > 0 to both sides in the inequality f(t) > 0, we have

aPb' =P > 2pvab + (1 - 2p)b,
which is equivalent to
pa+(1fp)b*P(\/E*\/l;)2 <aPb'?, p¢(0,1/2) 31)
We similarly have
pa+(1—-pb—(1- p>(\f— \/’3)2 <aPbir, pé(1/2,). (32)

From (31) and (32), we have (30). [

Note that the supplemental to the second inequality of (3), never generally holds:

R(p)(Va - \/E)Z <dyab), ab>0 p#(01).

To state the following result, we review the log-convexity/log-concavity. For the
function f : I — (0,00), where I C R, x,y € Iand A € [0,1], if f((1 —A)x+Ay) <
F17M(x) fA(y), then f is often called log-convex function. If the reversed inequality holds,
then f is called log-concave function.

In the following two lemmas, we deal with the symmetric function on % (ie., f(t) =
f(1—1t), for every t € [0,1]). The results are applied to the concrete symmetric function
related to entropy, in the end of this section.

Lemma 6. Let f : [0,1] — (0,00) be a convex function such that f(t) = f(1 — t) for every
t € [0,1]. Then

2R(5)f(1/2) + (1 = 2R()) f(0) < f(t) < 2r(£)f(1/2) + (1 = 2r(1))f(0),  (33)
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where r(t) := min{t, 1 — t} and R(t) := max{t, 1 — t}. If in addition, f is log-convex, then
2R(8)f(1/2) + (1= 2R (1)) f(0)

< 2R(1)f(1/2) + (1 - 2R(£))£(0) — (1 — 2R(¢ (,/ (1/2) - F)

< f(l/z)ZR(t>f(0)172R(t)
< f(#) (34)
< f(1/2)* V()0

<2r(t)f(1/2) 4+ (1 —2r(t) ) —r(2r(t (\/ f(1/2) =/ f )
<2r(t)f(1/2) + (1 —2r(t ))f(0)~

Proof. By convexity of f, we have for t € [0,1/2],

1) :f<2t~%+ (1-2t) .o) < 2tf<%> +(1-20)£(0).
Thus, we have
2t(f(1/2) = £(0)) = f(t) = f(0).
For t € [1/2,1], by exchanging t with 1 — f in the above inequality, we have
2(1=1)(f(1/2) = f(0)) = f(#) = f(0).
Therefore, we have
2r(8)(f(1/2) = f(0)) = f(t) = £(0),

which implies the second inequality in (33). By Lemma 4 with r := 2t —1 > 0 (ie.,
t € [1/2,1].), we have

) = f(2t%+(172t)-0) :f((1+r)%fr-0>
(L+r)f(L/2) = rf(0) = 2t£(1/2) + (1~ 20)£(0).
Thus, we have for t € [1/2,1]
2t(f(1/2) = £(0)) < (1) = f(0).
For t € [0,1/2], by exchanging t with 1 — f in the above inequality, we have
2(1=1)(£(1/2) = f(0)) < f(#) = f(0).
Therefore, we have
2R(£)(£(1/2) = £(0)) < f(t) — £(0),

which implies the first inequality in (33).

By log-convexity of f, log f is convex so that we have f(t) < f(1 /2)2'“)]‘(0)1*2’(’)
which is the forth inequality of (34). The third inequality is from (33) and the second one is

\Y
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obtained by the Young inequality. The last inequality of (34) is trivial. Since 0 < r(t) < %,
we have 0 < 2r(t) < 1. So we can use the first inequality of (3) as

f(l /2)2r(f)f(0)1—2r(t)

< 2r(B)f(1/2) + (1 —2¢(£))£(0) — r(2r(t <‘/ (1/2) - F)

which is the fifth inequality of (34). Finally, we prove the first inequality of (34). Since
1

5 < R(t) <1, wehavel < 2R(t) < 2and —3 < 1—2R(#) < —1. Namely, we have
1 —2R(t) < 2R(t). By using (30), we have

f(l/z)ZR(f)f(O)lfﬂ?(t)

> 2R()f(1/2) + (1 — 2R(£)) £(0) — (1 — 2R(t (,/ F(1/2) - F)

O

It is notable that the right inequalities in (33) and (34) are also found in ([17], Lemma
1.1). The following lemma is a counterpart by concavity. However, it does not completely
corresponded to the above lemma. (See Remark 2 below).

Lemma 7. Let f : [0,1] — (0, c0) be a concave function with f(t) = f(1 — t) for every t € [0,1].
Then

2r()f(1/2) + (1= 2r(1)) £(0) < f(£) <2R(£)f(1/2) + (1 = 2R(1))f(0).  (35)

If in addition, f is log-concave, then

2
20()£(1/2) + (1 - 2r(1))£(0) — R(2r(t)) <\/f(1/2) - \/f(O))
< f(1/2)0 f(o)t-2
<20(1)f(1/2) + (1— Zr(t))f(O)
< f(t) (36)
< 2R(6)f(1/2) + (1 - 2R(1))£(0)
< £(1/2)2R0 f(0)1-2R()

Proof. By concavity of f, we have for t € [0,1/2],

f(t) =f(2t-%+ (1—-2t) -0) >2tf(1/2) + (1 —2t)£(0),

which implies
2t(£(0) = f(1/2)) = f(0) — f(¢).
For the case of t € [1/2,1], by exchanging t with 1 — ¢, then we have from the above
inequality

2(1=H(f(0) = f(1/2)) = f(0) = f(1 — 1) = f(0) — f(t).

Thus, we have for t € [0,1] and r(t) := min{t,1 —t},

2r(#)(f(0) = £(1/2)) = £(0) = f(#),
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which implies the first inequality of (35). For the proof of the second inequality of (35), we
use Lemma 4. Putting 7 := 2t — 1 > 0 in (29), we have

f(8)

f<2t~%+(172t)~0> :f<(1+r)~%fr-0> < (14 1)f(1/2) — rf(0)
— 2tF(1/2) + (1 - 20)£(0),

which means
2t(f(0) = £(1/2)) < f(0) = f(1), t € [1/2,1].
For the case of t € [0,1/2], by exchanging ¢ with 1 — ¢, we have from the above
inequality
2(1=1)(f(0) = f(1/2)) < f(0) = f(1 = #), £ € [0,1/2].
By the symmetric property of f int = 1/2, we obtain

2R(5)(f(0) = £(1/2)) < f(0) — (),

which gives the right hand side in the inequalities (35).

If f is log-concave, then we have from the first inequality of (35) with concave function
log f, £(1/2)*R) £(0)1-2R() > £(¢), which show the forth inequality in (36). The third
inequality is just from (35). The second and last inequalities in (36) are obtained by the
Young inequality.

Since we have 0 < r(t) < 1/2 < R(t) < 1 generally, we have 0 < 2r(t) < 1 for
t € [0,1]. Then we apply the second inequality of (3), we have

F/2P7 0500 2 2007 (1/2) + (1= 20(0)£0) ~ Rr() (/7 (1/2) - M)
which shows the first inequality in (36). [
Remark 2. In general, we have the supplement to the Young inequality:
A’ > g + (1—9v)b, ©v€&(0,1), ab>0.
Thus, we have
fQ72PROf(0) 720 = 2R(5)£(1/2) + (1 = 2R (1)) £(0).
Therefore, it seems difficult to bound f(1/2)2R() £(0)1=2R(®) iy (36) from the above by the use

of the two terms 2R(t) f(1/2) + (1 — 2R(t)) f(0) and (\/f(l/Z) — «/f(O))2 as a simple form.

We have some bounds on £(1/2)2R() £(0)!1-2R() by applying (3)~(6). We here show
one result by the use of (3). However, we omit the other cases.

Lemma 8. Let a and b be positive real numbers and let p € [1,2]. Then,

pa-+ (1 p)b+min{Ap, By} (Va - x/l?)z
<afb'? (37)
< pa+(1—p)b+max{Ap, Bp}<f - \/E)z,

where Ay == (p — 1)(1 +2\/%) and By := (2p —3)§ + (p — 1)(1 +2\/%)‘

Proof. Since p — 1 € [0,1], we can use (3) as
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r(p—1)(Va—vb)" <dyr(ab) < R(p—1)(Va-vb)'. (38)

Here we have the relation:
b-dy(a,b)—a-dy 1(ab)=(1-p)a— b)?, (a,b>0, peR). (39)
Combining (39) with (38), we obtain
r(p—Da(va—VB) +(1-p)a— b <b-dy(ab)
< R(p—Da(va—B) +(1-p)a—b).
Elementary calculations imply
1 2 2
pa+(1—p)b+ B{(p—l)(\/ﬁ+ \/l;) —R(p— 1)a}(f— \@)

< aPpt-r

gpa+(lfp)b+%{(pfl)<\/ﬁ+ ﬁ)zfr(pfl)a}(\/ﬁf\/g)z.

Considering the cases max{p — 1,2 — p} and min{p — 1,2 — p}, we obtain the inequal-
ities (37). O

As for the bounds on f(1/2)2R() £(0)1-2R(), we have the following result.

Proposition 2. Let t € [0,1] and a function f : [0,1] — (0, 00). Then we have

2
OR(£)£(1/2) + (1~ 2R(£))£(0) + min{ Ay, Bi} (\/f(l/Z) - \/f(O))

< f(l/z)ZR(t)f(O)l—ZR(t)

2
< 2R(F(1/2) + (1= 2RO)10) + max{A, B} (/7172 = 1O))

By = (4R(f) — )f%)z +(2R(H) - 1)<1+2 f%?)

Proof. Since 1 < 2R(t) <2, wesetp :=2R(t),a:= f(1/2) and b := f(0) in Lemma 8. O

where

Example 1. The so-called binary entropy (e.g., [18], example 2.1.1) defined by
hpin(t) == —tlogt— (1 —t)log(1—1t) >0, (0<t<1)

with convention 0log 0 =: 0, satisfies the conditions in Lemma 7, since

Phyin(t) _ 1
;tz EDR
and . () — H1 - 1) (-’
d —hpin (t) — t(1 — £){log t — log(1 — t
el (log Iy (t)) = — (1 — £l ()2 -
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The standard convention 0log 0 =: 0 is in information theory, since we have li%x logx =0
X.

and log x is undefined for x < 0. In information theory, we use 2 as the base of the loga-
rithmic function, but we here use e for mathematical simplicity. Its selection is not essential
in mathematics. Applying (35) to function hy;,(t) with convention hy;,(0) =: 0, we have
2(log, 2)r(t) < hyin(t) < 2(log, 2)R(t), which is equivalent to

2min{t,1—t} < —tlog, t — (1 —t)log, (1 —t) < 2max{t, 1 —t}. (40)

The above inequalities are equivalent to

1-1-2p[ <Hp(p) <1+1-2p|, (0<p<), (41)

where Hy(p) := —plog, p — (1 — p) log,(1 — p) is the usual binary entropy, whose base is 2.
If we do not adopt the standard convention 0log 0 =: 0 in information theory, then we assume
£(0) := }in}) f(t) =: e precisely. Applying the inequalities in (36):
—

FA/2POF0) 20 < f(1) < F(1/2)R0 £(0)1-2R0),

we obtain

(log, 2)We! =21 < £(#) < (log, 2)*kWe! 281,

which implies the following result.

P 1-2r(p) e 1-2R(p)
(mz)  =m0=(ga) - ©=r=n

The Fermi-Dirac entropy is defined above by
11°(p) *ZPJIOgP] Y (1 p)log(1 — py).
j=1 j=1

From the bounds of the binary entropy given in (40) and (41), we obtain the interesting
bounds on the Fermi-Dirac entropy as

n n
2y min{p;,1—p;} < {P(p) <2) max{p;1—p;}
j=1 j=1
or
n
n72|172pj|§Ipo <n+z‘172p/|
j=1 j=1

5. Concluding Remarks

We close this paper by providing some remarks on the log-convex function.
Lemma 9. Fora,b,c,d > 0and A € [0,1], we have
A"+ A< (a4 )M b +d) (42)

Proof. Since function f(t) = t* is concave for A € [0, 1], we use the Jensen inequality for
positive real numbers x and y as

bf(x)+df(y) §f<bx+dy).

b+d b+d
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If we take x := © and Y= then we obtain

b
) A
(O 55 (0 < (159)

which implies (42). [

Theorem 4. If f, g : I — (0,00) are log-convex functions, then function yf + vg is log-convex,
where I C Rand p,v > 0.

Proof. Since f, g are log-convex functions, we have for A € [0,1],

(uf +vg)(Ax + (1= A)y) = pf(Ax+ (1 = A)y) +vg(Ax + (1 - A)y)
< i OFTM) +vgt (08! ) = () ef )+ (g () (g ()
< () +vg () () + vg ),
where we used Lemma 9 in the last inequality. Therefore, y f + vg is log-convex. [
Let M, be the set of all n x n complex matrices, and let M} be the set of all positive

semi-definite matrices in M.

Corollary 4. For A,B € M}, X € M, t € [0,1] and ||| - ||| is the unitarily invariant norm, the
following functions are log-convex:

gu(t) = |[JA'XBI||| + ||| AT XB |,
g2(t) = [[JA'XB || + || AT XBI],
g3(t) = [[1AM]] + |[1A]11,
qu(t) = tr (A‘XBlffX* + AHXBfX*).
Proof. In [19], it was shown that functions fi(t) := |||A'XB!|||, f2(t) := |||A'XB]|],

f3(t) == |||A!||| and fy(t) := tr(A'XBL~'X*) are log-convex on [0, 1]. Thus, we have the
corollary from Theorem 4. [J

Since the functions g; are log-convex and g;(t) = g;(1 — t), we can apply Lemma 6 for
the symmetric function g; on an axis t = 1 Therefore, we obtain the chain of inequalities
for the functions g in the following, for example. We can obtain the similar inequalities for
the other functions ¢», g3 and g4. However, we omit them. For A, B € M, X € M, and
t € [0,1], we have

AR(8)[|AY2XB 2] + (1 - 2R () (1X]]| + ||| AXB ]
2
—(1-2R(1) <\/2H\A”2XB“2HI—\/HIXI\IHIIAXBH\)

t —
< (2l1a2x82)) ™ (1 + )11 axB ) 2R
< [l|A'XB || + [l| AT X B

2r(t) o
< (201A”2xBY2(11) (Il + 1l AxBl| )
< 4r(1)][|AY2XBY2|| + (1 = 2r(®) (11 x]1| + || AXB] ]

2
~r(ar() (V21412812 - {111+ [AXE] )
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Abstract: In this work, we prove a new (p, q)-integral identity involving a (p, q)-derivative and
(p, q)-integral. The newly established identity is then used to show some new Simpson’s formula
type inequalities for (p, q)-differentiable convex functions. Finally, the newly discovered results are
shown to be refinements of comparable results in the literature. Analytic inequalities of this type, as
well as the techniques used to solve them, have applications in a variety of fields where symmetry
is important.

Keywords: Simpson’s inequalities; post-quantum calculus; convex functions

MSC: 26D10; 26D15; 26A51

1. Introduction

During his lifetime, Thomas Simpson created important approaches for numerical
integration and the estimation of definite integrals, which became known as Simpson’s
rule (1710-1761). J. Kepler, who made a comparable calculation roughly a century before
Newton, is the inspiration for Kepler’s rule. Estimations based exclusively on a three-step
quadratic kernel are commonly referred to as Newton-type results because Simpson’s
technique incorporates the three-point Newton-Cotes quadrature rule.

(1) Simpson’s quadrature formula (Simpson’s 1/3 rule)

7T + 7T

3 )—i—]—'(nz)].

(2) Simpson’s second formula or Newton—Cotes quadrature formula (Simpson’s 3/8 rule)

T —
/ 2]-'(x)dx ~ %{}"(m) +3}_<27r1;r7r2> +3.7-'<n1 J;2n2> +.7:(712)}.
Jm

~TT; —
/ ’ F(x)dx ~ m—m

. 5 {]—'(m)+4}'(

The following estimation, known as Simpson’s inequality, is one of many linked with
these quadrature rules in the literature:
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Theorem 1. Suppose that F : [y, o] — R is a four-times continuously differentiable mapping

on (1, 112), and let H]-'(‘l) H = sup ‘.7:(4> (x)‘ < co. Then, one has the inequality
© xe(mm)
1[F(m)+ F(mp) ™+ 11 1 /'”2 1 (4) 4
- — < - .
‘3[ 2 27 o= Sy T x| S 2880”'7: Hoo(”z )

Many researchers have focused on Simpson-type inequality in various categories of
mappings in recent years. Because convexity theory is an effective and powerful technique
to solve a huge number of problems from various disciplines of pure and applied math-
ematics, some mathematicians have worked on the results of Simpson’s and Newton’s
type in obtaining a convex map. The novel Simpson’s inequalities and their applications
in numerical integration quadrature formulations were presented by Dragomir et al. [1].
Furthermore, Alomari et al. [2] discovered a number of inequalities in Simpson’s kind of
s-convex functions. The variance of Simpson-type inequality as a function of convexity
was then observed by Sarikaya et al. in [3]. Refs. [4-6] can be consulted for further research
on this subject.

On the other hand, quantum and post-quantum integrals for many types of functions
have been used to study many integral inequalities. The authors of [7-21] employed left—
right g-derivatives and integrals to prove HH integral inequalities and associated left-right
estimates for convex and coordinated convex functions. Noor et al. proposed a generalized
version of quantum integral inequalities in their paper [22]. In [23], the authors demonstrated
some parameterized quantum integral inequalities for generalized quasi-convex functions.
In [24], Khan et al. used the green function to prove quantum HH inequality. For convex and
coordinated convex functions, the authors of [25-30] constructed new quantum Simpson’s
and quantum Newton'’s type inequalities. Consult [31-33] for quantum Ostrowski’s inequality
for convex and co-ordinated convex functions. Using the left (p, q)-difference operator and
integral, the authors of [34] expanded the results of [9] and demonstrated HH-type inequalities
and associated left estimates. In [16], the authors discovered the right estimates of HH-type
inequalities, as demonstrated in [34]. Vivas-Cortez et al. [35] recently generalized the results
of [11] and used the right (p, q)-difference operator and integral to prove HH-type inequalities
and associated left estimates.

We use the (p, q)-integral to establish some new post-quantum Simpson’s type inequal-
ities for (p, q)-differentiable convex functions, as inspired by recent research. The newly
revealed inequalities are also shown to be extensions of previously discovered inequalities.

The structure of this article is as follows. The principles of g-calculus, as well as other
relevant topics in this subject, are briefly discussed in Section 2. The basics of (p, q)-calculus,
as well as some recent research in this topic, are covered in Section 3. In Section 4, we
prove a new (p, q)-integral identity involving a (p, q)-derivative. Section 5 describes the
Simpson’s type inequalities for (p, q)-differentiable functions via (p, q)-integrals. It is also
taken into account the relationship between the findings given here and similar findings in
the literature. Section 6 finishes with some research suggestions for the future.

2. Preliminaries of g-Calculus and Some Inequalities

In this section, we revisit several previously regarded ideas. In addition, we utilize
the following notation here and elsewhere (see [36]):

1—g"
nly= T =g g g e 01),

In [37], Jackson gave the g-Jackson integral from 0 to 71, for 0 < q < 1 as follows:

Ul s
/.F(x) dgx =(1—q)m Y 4" F(maq") 1)
'0 n=0
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provided that the sum converges absolutely.

Definition 1 ([38]). For a function F : [rt1, | — R, the left g-derivative of F at x € [y, 112]
is characterized by the expression

F(x) — Flgx + (1 —q)m)
(1 =q)(x—m)

If x = 11y, we define , DgF (1) = imyr, 7, DgF(x) if it exists and it is finite.

ﬂqu}-(x) =

’ X#T(]. (2)

Definition 2 ([11]). For a function F : [y, 73] — R, the right q-derivative of F at x € [y, 112]
is characterized by the expression

_ Flax+ (A —gq)m) — F(x)
(1=q)(m2 —x)

If x = 11y, we define 2Dy F (3) = limy ., ™DgF(x) if it exists and it is finite.

™ DgF(x) , X # T0p. 3)

Definition 3 ([38]). Let F : [, M) — R be a function. Then, the left q-definite integral on
[rt1, 710] is defined as

[70 = (- L Fg e -gm) @

1
= (nzfnl)/]:((lft)nlthnz) dgt
0

Definition 4 ([11]). Let F : [, 2] — R be a function. Then, the right q-definite integral on
[rt1, 712] is defined as

[=S)

[F@ R = 0-ge-) L @m0 6)

s

1
- (nzfnl)/}'(tn]Jr(lft)nz) dot .
0

Alp et al. [9] proved the following Hermite-Hadamard-type inequalities for convex
functions via g-integral.

Theorem 2. For the convex mapping F : |11, 2] — R, the following inequality holds

gy + 7T 1 s qF (1) + F(mp)
F( 1[2]4 2) = T — M /]-‘(x) migx < %TZ

In [11], Bermudo et al. established the following quantum Hermite-Hadamard-type
inequalities:

Theorem 3. For the convex mapping F : [rt1, 2] — R, the following inequality holds

T+ g7 1 7 - ]-'(71)—&-11]—'(71)
.7:< 1[2]q 2) < o /]—'(x) dgx < = 1 [2} 2
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< ]-'(m)—;-]-'(nz)

T + 1o 1
<
f( 2 ) ~2(m—m)

Recently, Siricharuanun et al. [29] proved the following Simpson’s formula type
inequality for convex functions.

T ]
/.F(x) mdgx + /.F(x) T2, x
m m

Theorem 4. Let F : [y, 5] — R be a q"™-differentiable function on (711, 7r2) such that ™Dy F
is continuous and integrable on [1y, o). If |™2DyF | is convex on [mty, ), then we have the
following inequality for q"2-integrals:

F(m) + 2[4, F (”1””2) +qf<nz)} ®)

TR P 1
D 4]—'(5) s o

< q(m —m){| Dy F (m1)|[A1(q) + A2(q)] + | ™Dy F (2)|[B1(4q) + B2(q)] },

where 0 < q < 1and

24%(2]3 + (615 (16, — [3],)

A = ’
1@ PHOAGH
qBl,lel, 4> 1 <q+q2 q2+2q>
B S R L R I —~ ,
1@ 2,0,60 @i\ B, W,
i)~ 28 (61 (1 125) — (3151, (1+ 215
2T 2,668 2131, 6], ’
a6l Bl Bl 2 bl
B0 = P m e EE, B,
1{[5}q(2q'1r’12)q+q2
253 6], 3],

3. Post-Quantum Calculus and Some Inequalities

In this section, we review some fundamental notions and notations of (p, 4)-calculus.
The [n] p,q 1S said to be (p, 9)-integers and expressed as:

with 0 < g < p < 1. The [n] pq'and { Z }! are called (p, g)-factorial and (p, g)-binomial,

respectively, and expressed as:

], = TIk,, n=>100,,!=1

{ n }! _ [1],,4!

k CERI

Definition 5 ([39]). The (p, q)-derivative of mapping F : (71, 1p] — R is given as:

F(px) — F(gx)

(p—q)x X #0

DyqF(x) =
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with0 <qg<p <L

Definition 6 ([40]). The left p, g-derivative of mapping F : [rt1, 3] — R is given as:

Flpx+(1—p)m) —Flgx+ (1 —q)m)
(p—q)(x —m1)

m DpgF(x) = S X Fm (7)

with 0 < q < p < 1. For x = rr1, we state that 7, Dy g F (71) = imy s, 7, Dy g F (x) if it exists
and it is finite.

Definition 7 ([35]). The right (p, q)-derivative of mapping F : [y, 7t2] — R is given as:

Flgx+ (1 —q)m) - F(px + (1 — p)ma)
2D, F(x) = , X % 7. 8)
paF ) (v )2~ ) e (
with 0 < g < p < 1. For x = 715, we state that 2D, 4 F (713) = limy 7, ™D, o F (x) if it exists
and it is finite.

Remark 1. It is clear that if we use p = 1in (7) and (8), then the equalities (7) and (8) reduce to
(2) and (3), respectively.

Definition 8 ([40]). The left (p, q)-integral of mapping F : [y, 7t2] — R on [m1y, 712] is stated

as:
/ F(T) mdpgt = (p — q(xfnl <pz+1x+<17#>m> )

st —

with0 <g<p<1

Definition 9 ([35]). The right (p,q)-integral of mapping F : [y, M| — R on [my, 1p] is
stated as:

o} o qn qn
/x F(1) ®dpgt = (p—q)(m2 — x) ; g <pn+1x+(lfpn+1>7r2> (10)

with0 <g<p<1

Remark 2. It is evident that if we select p = 1 in (9) and (10), then the equalities (9) and (10)
change into (4) and (5), respectively.

Remark 3. If we take 1y = 0 and x = mrp = 1in (9), then we have

JAERSS > ().

Similarly, by taking x = 1 = 0 and 71y = 1in (10), then we obtain that
n n
9
n+1]:<l N pn+1>'
Remark 4. If f is a symmetric function—that is, F (s) = F(1tp 4 111 — ), for s € [, o] —then

we have (=p)
pro+(l1—p)m s
/ ’ ]]-'(s)nldp,qs :/ ’ F(s)2dpgs.
m pri+(1-p)m

[ 7@ e = -0 ¥
n=0
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Lemma 1 ([35]). We have the following equalities

72 (77.’2 — 711)7[1+1
_x) 2y — I 11
/m (2 = x) pa* (1 +1]M an
L (rty — )™ 1
— )™ L B VS 12
/711 (r =)™ mdp g o+ 11, 12)

where 11 € R — {—1}.

Recently, M. Vivas-Cortez et al. [35] proved the following HH-type inequalities for
convex functions using the (p, q)-integral.

Theorem 5 ([35]). For a convex mapping F : [rt1, ma] — R, which is differentiable on [, 115],
the following inequalities hold for the (p, q)™-integral:

s
F prt g < 1 / 2 F(x) nzdp/qx < pF(m) +q]:(7772), 13)
[Z}p,q p(nz - 7'(1) pri+(1-p)m [z]p,q
where0 < g < p < 1.
Theorem 6 ([35]). For a convex function F : [r11, 5] — R, the following inequality holds:
m + 1 pra+(1=p)m o .
]:( 2 ) = 2}”(”2 - 7T1) {/71’1 ]:(x> Tﬁ dp,qx M /P/'flJr(l*P)TTz f(X) de,qx (14)
F(m) + F(m2)
< ) ,

where0 < g <p <1

4. An Identity

In this section, we deal with an identity that is required to reach our major estimates.
In the following lemma, we first build an identity based on a two-stage kernel.

Lemma 2. Let F : [y, 5] — R be a differentiable function on (11, 7t2). If 7, DpgF is
continuous and integrable on [111, 72|, then one has the identity

P pro +qm
m[fﬂm”"(mm *1)5”(W> +qf(7r1)} (15)
1 pra+(1-p)m
() /7'[1 F(s) mdpgs

1
= pq(my — 1) / A(s) m DpgF (sma+ (1 —s)my) dpgs ,
0

where
_ 1 _r
A(S) = ’ (6l s€ |0 2]
N o [S]p,q 14
s 0 s € m,l .
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Proof. Using the fundamental properties of (p, q)-integrals and the definition of function

A(s), we find that
1
/ A(s) m DpgF (smta+ (1 —s)my)  dpys (16)
0
-
Slpg—1

— 7/ mDpgF(sma+ (1—s)m) dpgs

p 5
+0/<s M:Z) 1 DpgF (smta + (1 =s)mmy)  dpgs .

According to Definition 6, one must also have

F(psma+ (1 = ps)m) — F(gsma + (1 — gs) 1)
(p—q)(ma —m)s ’

m DpgF (sma+ (1 —s)my) =

Now, if we substitute the above equation into (16), we obtain

1
/A(s) m DpgF (5702 + (1 =s)my)  dpgs 17)
0 .
_ Wwfl/%@mﬁwvmwmffw@+ufwwﬂds
Cra (r—0) (2~ m)s &
(psma + (1 — ps)my) — F(gsma + (1 —gs)my)
+/ (h—)(m—m) e
q/l]-'psm—&— (1—ps)m)— F(gsma+ (1 —gs)my) P
pa (1—=9)(m2 —m)s e

When the first integral on the right-hand side of (17) is calculated using Definition 8,
it is discovered that

p
2pq

/ Fpsmo+ (1 = ps)m) — F(qsma + (1 — gs)7m1)
0

(p—q)(m2— m1)s dpgs (18)

1 ) qk pZ qk pZ
= — Flammm+H|(1— G55 |7
(my —mp) { 1;) ( pFHL (2] i 2 pr1 2] i 1
oo k+1 k+1
9 p 9 p
-) F T+ |1 = | 7T
k; (pkﬂ Rl ( P mw) 1>}

_ 1 pra+qm
B (7[2—7'[1){f< [zz]p,q l> _]:(7.[1)}.
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If we look at the other integrals on the right-hand side of (17), we obtain

/1 F(psma + (1 = ps)m) — F(gsma + (1 — qs)m) dpqs (19)

/ (p—q)(m2 —m)

1 1 pro+(1-p)m

1
e e / F(6) mipas + o F ()

and

jﬂm@+ﬂ*mMﬂ*H%m+U*%WO

(p—q)(m—m)s dpgs (20)

0
1
= ——{F(m) - F(r
Gy (P ) = Flm))
Substituting the expressions (18)-(20) into (17), and later multiplying both sides of the
resulting identity by pg(7, — 711), the equality (15) can be captured. [

5. Main Results

For (p, q)-differentiable convex functions, we prove some new Simpson’s formula
type inequalities in this section. For the sake of brevity, we start this section with certain
notations that will be utilized in our new results.

21203, (181, = 21,) + 121615, (P61, — [31,.4)

o 21
e 25 -
21,4315 [6]%7 _ [3];“1[6};7 g~ Blpy 2 A
By(p,q) =2
1pa) 214031061
+ <p2[3]ﬂfq[6hﬂfﬂ P28l — P el tp [3]pq> (2)
21%,43],,416],,4

Aax(p,q) = 2[3}17"7[5]?’/'7 — [Z]P,FI[S]WI p [6]p,q - p2[3]pq[5]pq + [2];,7[6} v~ [Z]?q [3]}7,51,
121543141605 23 4131,,416],.4

(23)
zmamwmmmw—m;mwww—m;m .+ 155,02,
12)14[31541619
P151,,0(215,43150 = P2[81,,16]5 = P2[51,,43],0 + P26,
< 1213,4131,.4161,.4 )
+ <[3} M[Q 2 [S]M 2 2z 3] 2 mnq [6] pa 5] 2z 8] m)

[2] pq [3] r.q [6] r.q

By(p,q) =

(24)
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Theorem 7. Assume that the conditions of Lemma 2 hold. If |7r] Dp,qf| is convex on [y, T3],
then we have following inequality for (p,q)  -integrals:

p pr Jqu[
G [Sf(ﬂ2)+’1([5]pq );<7;+q ])+qf(ﬂ1)] (25)
1 pm—(1-p)m
,m F(8) mdpgs

m

< pg(ma — m){| = Dp,gF (72)|[A1(p, q) + A2(p,9)] + | = Dp,gF (701)|[B1(p, q) + Ba(p, )]},

where 0 < g < p < 1and A1(p,q), A2(p,q), Bi(p,q), B2(p,q) are given as in (21)—~(24), respec-
tively.

Proof. We observe that when we take the modulus in Lemma 2, because of the modulus’
characteristics, we have

N
(6],

P + g
{ps]-'(nz) +q<[5]w —1)}'<ﬁ> +q}'(7r1)} (26)
pre—(1—p)m

1
F(s) mdpqs

(- m) :
sl
P

S pq(n,z o 7_[1)/0[2]!7,‘1

s — | 1Dy F (5702 + (1= 8)711) |dpgs

1
[6],,4

(6],

s — — || Dpg F (5712 4 (1 = 8)711) | dp,gs

1
+pq(m2 — m) /L

g

Using the convexity of |,
of (26) as follows:

/ P g _
0

. p
2lpq
< |7T1Dp,q«7:(7'52)‘/0 "s

, we may calculate integrals on the right-hand side

| i DpgF (smr2+ (1 —s)m1) |dpgs

S

o
2
— dp,qgs + | m DpqF (m)| /0 11— 5)s dpgs.

L _
[6] g [6] P4

When we apply the equality (12) idea to the aforementioned post-quantum integrals,

we obtain
ﬁ ‘[6]1
PAa — I .’”i
/0 s|s dp,qs /0 ([6];”, )dpqs—&-/ < /q)dws
= Z/WS —fs dpqs+/ms sf—l dpqs
0 (61,4 o (6],0) "

220 (18],0 = [21,0) + 121615, (PI6], — B],)

1215413141615,

L
(6,4
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and
/ﬁmu_s) [6]pqdpqs
1 _ 1 pAa _
e ><wp )d””/a‘, ! ”( {61,”)‘1”5

ﬁ 1 2lpq 1
= 2/0 (1s)<[6]ms>dp,qs+/0 (15)<5%>dp,45

2 [2} p.q [B]p,q [6] pg [3} g [6} pg [B]p,q + [2] g
121,131,461,
T <p2 [3] pa [6} [ 2/ p[z];,q [3} pa P3[6} pq + pZ [3]p,q ) )
(213,431,416,

Thus, we obtain

/Om . @ | e DpaF (572 + (1 8)11) |dpgs @7)
2122 (131, — [2],,.) + P2I615, (pl6],, — [3],,
< mDprq]:(ﬂzﬂ( M( o p[qz)]sm [6]3M( & pq))
qt-iq

+| 1Dy F(m1)| | 2 [2]pq[3]pq[6]pq 131p,4[6]pg — Blpq + 21,4
™ =PAg 1 [2]’“1[3} q[6}lﬂ'i

+<ﬁmwwwpmamw MM+PHM>>
1203,413],4161,.4

Similarly, we have

! 1554
/ y |57 6] |7 DpgF(s72 + (1 —8)711) | dp s (28)

@y pa

, \ P16, = P*[5] q[3}pq 123,061,

| 7 DpgF (m2)]| 2[3}’”"7[5]”# ~ Blpglyg [S}M[ Jpa3pa

1 7

[2} 1 [3] p4q [6]:})’7,17 [Z}p q [ ]p q [6];7 q
2 [5]?"’7 p4Blpq 6115 ]fw By 6lpq— [5]2/11 Blpgt [5];»1 2l

[2],,4131,, 161,
B p[sl,,,q[zlf,,q[s]p,fpz[s],w[61,,,qu2[slp,q[al,,,q+p3[61p,q]
215,4131,,416],,4
n { (31,461, = 151,121,431, = (21, [6],4F[5),4 3]0 }

Z]P/q [3]P/‘7 [6]P/’7

+| 1 DpgF ()]

We obtain the inequality (25) by placing (27) and (28) in (26). This completes the
proof. O
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Corollary 1. In Theorem 7, if we set p = 1, then we have the following new Simpson’s type
inequality for g-integrals:

/]—' s

< q(my — m){| 7 DgF (m2) [[A1(1,9) + A2(1, )] + | = Dy F ( 1)\[31(1rq)+Bz(Lq)}}~

Ty — 7Mp)

o [ (m)+q([5]q71)f<%‘7‘;“> +q.7—'(m)} e

Remark 5. In Theorem 7, if we assume p = 1 and later take the limit as q — 17, then we obtain
the following Simpson’s type inequality:

’% {}'(m) +4f<”1 ’2L ”2) +]—'(7tz)} - ! - /7:2 F(s)ds

< ST 5 4 | )

This is proven by Alomari et al. in [2].

Now, we can see how the inequalities appear when we utilize maps with convex
q"2-derivative powers in an absolute value.

Theorem 8. Assume that the conditions of Lemma 2 hold. If |z, Dy, F |p ! is convex on |11y, 713)
for some py > 1, then we have following inequality for (p, q) ,,-integrals:

P |5 p7t2 +qm
m[p Fime) 4 (5l - 1) 7 (P2 4 g7 () 29)
1 pro+(1-p)m
“m-m) J F(s) mdpgs
< Pfi(@*ﬂl)[ Ll(lbfi)

2 o
pl2l,,
( 3| 1 DpaF ()| + 5 |7T1DM-F(771 )|
(21,4 [ }

1
+@;' (p,q)
I

} mDpqu(ﬂﬂp]) ’

o[ Boa Py a =Bl PPt
e, 22,

whereO<q<q§1,%+%fland

n

2. 1
O1(p.q) = /ZMS*7 dpqs,
70 (6]
1 5], "
Oa(p,q) = /,, 5— [6]17 dp,gs.
Clpg 1

Proof. When the integrals on the right-hand side of (26) are subjected to the well-known
Holder’s inequality for post-quantum integrals, it is discovered that
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1 pry+(1—p)my
Py r ) a8, - 1) F(PEEI ) g F | - ol [ FO) e

p+q Ty — 711)
ot T
< pq(m—m) (/o - dws>
k q
a1
e n "
x /0 | ey DpgF st 4 (1 —5)711) |Mdpgs

s_ L
+pq(m2 — 1) (/1,, s

m

),
2lpq

1 X
X /L | DpgF(smm2 + (1 —8)7r1) |t dp g8 .

2pq

By using the convexity of |, Dp 4| P!, we obtain

pr +qm

P+q )+‘1]"(7T1)} (30)

‘w’;q [P (ma) = a(llyg 1) F(

1 pro+(1-p)m
—— F(s) mdpgs
T

(2 — 1m1)
o noT
pa(me — m) (/0 s dp,qs)
(nlD,,,qf(nz)V” /0 P sy g + | 1 DpgF () P! /O M(1—s)dp,qs>
1
1 " "
+pq(ma — 1) (/p dws)
1

Plpq
1 1 P1
| Dy F(m2) " /L sdpgs + | mDpoF(m)|"! /Lu —$)dygs

2pq 2l

1

(6],

IN

51,4

ST,

Using equality (12), we see that, for the other integrals on the right-hand side of (30),

Bhy r’
/ Msdys = b @1)
0 [Z]fw
e 2]2 —p?
i (1 — ¢)d — M. 30
/0 ( s) pas [2]3 (32)

)
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Similarly, we obtain

1 22—
/ | sdpgs = H’Wi’; 33)
e (12154
1 2, — 1215, — P23, + PP
/p (1=s)dpgs = —24—P1 1~ (34)
g ( 2], q>
We obtain the desired inequality (29) by inserting (31)-(34) into (30), which completes

the proof. [

Corollary 2. In Theorem 8, if we set p = 1, then we obtain the following new Simpson’s type
inequality for g-integrals:

7 + 47

[6] { (nz)+q<[5]qfl>f<ﬁ> +q.7-'(7r1)} fﬁ /.7: mdgs

< q(ﬂz—ﬂl){e)lﬁ(l/q)

1

<[21]3{ T q]'—(7772)|}/Jl [ ][?Z] {nqu (7T1)|p1>
q

+®2ﬁ )

1

2P -1 n
X <H[L;]3| ﬁlD'i]:(HZ)}p] H[][Z]H| 7T1Dﬂ]:(7tl Pl) .
q q

Theorem 9. Assume that the conditions of Lemma 2 hold. If |z, Dy, F |p ! is convex on |11y, 713)
for some py > 1, then we have following inequality for (p, q) , -integrals:

Wqu {P5]-'(7r2)*q([5} )f(%) +qf(m)} 35)

pr+(1-p)m

1
F(s) mdpgs

- (m—m)
st

< pg( ) 2([2)yy 1) L P16l — P2, o
Tlp — TT
= PETTI T e, 61,21,

1
% (A1(p, )| 5 DpaF (2)|" + B1(p,0)| 7y DpgF () [7) 7
1

(2 [2] pq [5} ;za,q - [5]§,q L [5] pa p[5} pq [2] i,q - p2 [6] p,q) 17%
2] I

121416154 2lpq [0l (6,421

< (A2(p, )] muDpaF ()| + Balp, )] mDpaFlr)|") 7,

where 0 < q < p < land A1(p,q), A2(p,q), Bi(p,q), B2(p,q) are given as in (21)—(24),
respectively.
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Proof. Using the conclusions obtained in the proof of Theorem 7 after applying the well-
known power mean inequality to the integrals on the right-hand side of (26), we discover
that, due to the convexity of |nle,q]-' |p 1

e [P Fe — (8l - 1) AP g | o9
A

1 pra+(1-p)m
“m—m) F(s) mdp,qs

p
< pg(m—m) |:</0[2]M s
P

[2]7,
X <|H1Dp,q]-'(7r2)p1/0 P g

[6],,4

1—1
P1
pAa

1
1
P1
dpqs
1

s dpqs

or

s —

|

P
[2]
+|mD,,,qu(nl)|”]/0 P (1—s)

5
+pq(my — 1) (/1 SEM
2l A

2lpq

S
(6],

1 [5]
x |H1Dprq7(”2)|p1/p 5’5—[6];”7 dpqs
Pl P
1
! [5] "
+|m DpgF ()" /p (1—s)[s— [6}” dpgs
" lg P

1

[6],,4

o -5
_ _ P | _ i
= pq(my —m) </0 s MS>

1
x (Al(p"m 1 DpgF (1) | + Bi(p,q)] nlDM}'(m)‘pl) pl}

+pq | (2 —m) (/1?5 — Eﬂ
o 4

1
* (Az(p,q)} ”1DP/‘1}—(7T2)|m +Ba(pq)] mDp,q]:(”l)‘pl) pl]

We also observe that

ﬁs dpgs = 2 m L —s|dpqs+ ﬁ s——1 dpqs (37)
o rAa - 0 [6} b pAa 0 [6} ., pA
(g =1)  p%l6],,— P22,

21,06, 16141215,

6

’

and by using similar operations, we have

1 _ [S]ﬂ d _ [Z]p,q [5]?1,14 - [5]p,q L -~ [S]ﬂ _ p[S]p,q [2];17 - pZ [6]p,q 38
éﬁ G IS R 6,25, 9
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We obtain the needed inequality (35) by swapping (37) and (38) in (36). As a result,
the proof is complete. [

Corollary 3. In Theorem 9, if we set p = 1, then we obtain the following new Simpson’s type
inequality for the g-integral:

[f(nz) ~q(B5], - 1)?(%‘?) +q]~'(n1)} - ﬁ 7;(5) radgs

2(2, - 1) 16— 22 T
2], 6] (6], (2],

b
[6l,

< g(m—m)

< (A1(1,0)] D F ()" + By (1,)] Dy F (1) 1) "
1

+<2[2L,[5}§[5]§ 1 B [5].,[215[%) T

2,67 B, ®, 6,20
* (Az(l’q)| ”1D’4]:(7T2)|p1 +BZ(1/¢7)| nqu}-(”l)}m)ﬁ

Remark 6. In Theorem 9, if we set p = 1 and later take the limit as q — 1=, then we have the
following Simpson’s type inequality:

1 7T + 1) B 1 /"2
‘6 {}-(nl) +4]:< 2 > +]:(7T2)} T — 1 Jmy Fls
1
1 5\
P _
T (1296)7 <72> (2 = m)

1 1
<[t ()l + 291 F ()| |+ (291 )|+ 611 )
This is given by Alomari et al. in [2].

6. Conclusions

In this investigation, we have proven different variants of Simpson’s formula type
inequalities for (p, q)-differentiable convex functions via post-quantum calculus. We con-
clude that the findings of this research are universal in nature and contribute to inequality
theory, as well as applications in quantum boundary value problems, quantum mechanics,
and special relativity theory for determining solution uniqueness. The findings of this
study can be utilized in symmetry. Results for the case of symmetric functions can be
obtained by applying the concept in Remark 4, which will be studied in future work. Future
researchers will be able to obtain similar inequalities for different types of convexity and
co-ordinated convexity in their future work, which is a new and important problem.
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Abstract: In this paper, we consider the Brinkman equations pipe flow, which includes the salinity
and the temperature. Assuming that the fluid satisfies nonlinear boundary conditions at the finite
end of the cylinder, using the symmetry of differential inequalities and the energy analysis methods,
we establish the exponential decay estimates for homogeneous Brinkman equations. That is to prove
that the solutions of the equation decay exponentially with the distance from the finite end of the
cylinder. To make the estimate of decay explicit, the bound for the total energy is also derived.

Keywords: spatial decay estimates; Brinkman equations; Saint-Venant principle

1. Introduction

The Brinkman equations are one of the most important models in fluid mechanics.
This model are mainly used to describe flow in a porous medium. For more details, one
can refer to Nield and Bejan [1] and Straughan [2]. In the present paper, we define the
Brinkman flow depending on the salinity and the temperature in a semi-infinite cylindrical
pipe and derive the spatial decay properties. When the homogeneous initial-boundary
conditions are applied on the lateral surface of the cylinder, We prove that the solutions of
Brinkman equations decays exponentially with spatial variable.

In fact, the Brinkman equations have been studied by many papers in the literature.
For example, Straughan [2] considered the mathematical properties of Brinkman equations
as well as Darcy and Forchheimer equations, and stated how these equations describe
the flow of porous media. Ames and Payne [3] studied the structural stability for the
solutions to the viscoelasticity in an ill-posed problem. Franchi and Straughan [4] proved
the structural stability for the solutions to the Brinkman equations in porous media in a
bounded region. More relevant results one can see [5-10]. Paper [11] studied the double dif-
fusive convection in porous medium and obtained the structural stability for the solutions.
The continuous dependence for a thermal convection model with temperature-dependent
solubility can be found in [12]. For more recent work about continuous dependence, one
may refer to [13-19].

In this paper, let R be a semi-infinite cylinder and oR represents the boundary of R. D
denotes the cross section of the cylinder with the smooth boundary 9D (see Figure 1).

In this paper, we also use the following notations

R; = {(x1,xz, x3)‘(x1,xz) €D, x3>z> 0},
D; = {(xl,x2,x3)‘(xllxz) €D, x3=z2> 0},

where z is a point along the x3 axis. Clearly, Ry = R and Dy = D. Letting u;, T, C and p
denote the fluid velocity, temperature, salt concentration and pressure, respectively.
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X1

Figure 1. Cylindrical pipe.

The Brinkman equations we study can be written as [20]

% ZVAMi*klu,'*pri+g,'T+h,'C, in R x {t > 0}, 1)
JaT oT

. = i > 2
5 + u; o, ko AT, in R x {t >0}, 2)

aC aoC .

. — >

5 + u; o, ksAC + oAT, in R x {t >0}, 3)
u,-,,-=0, in R x {tZO}, (4)

where v, ¢ > 0 denote the Brinkman coefficient, and the Soret coefficient, respectively.
ki,kz, k3 > 0. Without losing generality, we take them equal to 1. A is the Laplacian
operator. g;(x) and h;(x) are gravity field, which are given functions. We suppose that
(1)~(4) have the following initial-boundary conditions

uy=0, T=C=0, on 9D x {t > 0}, (5)
uy=0, T=C=0, on R x {t=0}. (6)
Ui = fi(xlf X2, t)r T= F(xerZr t)r C= G(xlfoI t)/ on DO X {t > O}r (7)
ui wij, i, T,T;,C,Cip = o(x3_1) uniformly in x1,xp,t, as x3 — 0. 8)

In (1)—(8) and in the following, the usual summation convention is employed with re-

peated Latin subscripts summed from 1 to 3 and repeat Greek subscript summed from

1to 2. The comma is used to indicate partial differentiation, i.e., u;;u;; = 213,/':1 <% )2/
2

PapPap = Lapoi (gfg)

The purpose of this paper is to consider the spatial decay properties of the
Equations (1)-(8) in a semi-infinite cylindrical pipe by using the symmetry of differen-
tial inequalities, that is, to prove that the solutions of the equations decay exponentially
with the distance from the finite end of the cylindrical pipe.

In Section 2, some auxiliary inequalities are presented. We establish some useful
lemmas in Section 3. The spatial exponential decay estimate for the solution is established
in Section 4. Finally, in Section 5 we derive the bounds for the total energies.

2. Auxiliary Results

In this paper, we will use some inequalities in the following sections. Thus, we firstly
list them as follows.
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Lemma 1. Let D be a plane domain D with the smooth boundary 0D. If w = 0 on 0D, then

/ wawdA > M / wdx, 9)
D R;
where Ay is the smallest eigenvalue of the problem
Ap+Ap=0 in D,
¢=0 on dD.
Many papers have studied this inequality, e.g., one may see [21,22].
A representation theorem will be also used in next sections. We write this theorem as

Lemma 2. Let D be a plane Lipschitz bound region and w be a differential function in D which
satisfies [, wdA = 0, then there exists a vector function ¢, (x1, x2) such that

Quo=w in D,

@« =0 on 9D,

and a positive constant A depending only on the geometry of D such that

/D PupPupdA < A /D g2 LdA. (10)

The Lemma 2 was proofed by Babuska and Aziz [23] and Horgan and Wheeler [24]
have used the Lemma 1 to viscous flow problems. The explicit upper bound of A can
be found in Horgan and Payne [25]. In this paper, this Lemma 2 is used to eliminate the
pressure function difference terms p, since we can prove that u3 satisfy the hypothesis of
this Lemma 2 later.

Ifw € C}(D) and w € C}(R), the following Sobolev inequalities hold

/Dw‘*dAg %[/DwszH/Dw,,xw,,di], 1)

3
wddx < Q[/ w/,'w,,-dx} . (12)
R. R.

For (11), we assume that w — 0 as x3 — co. Payne [26] has given the derivation of (12).
For a special case of the results one can see [27,28]. They have obtained the optimal value

of O 1 /34
a=5(i)-
In the following, we also use the following lemma.

Lemma3. Ifw € Cl(Rz), w; .

= 0and w; — 0as x3 — oo, then

/D Z (wizui)sz <4v0)| /R wi,jw,v,/-dxr. (13)

We will also use the following lemmas which were derived in [29].
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Lemma 4. Let that the function ¢ is the solution of the problem

Ap=0 in R,
9¢
3 0 on 9D, (14)
g—(p g in Dy,
where [, gdA = 0. Then
/D QupadA = /DZ FdA, (15)
/ : »dA—L/ 244 16
& Qipian = N ng , (16)

3. Some Useful Lemmas

In this section, we derive some useful lemmas which will be used in next section. First,
we define a weighted energy expression

t
E(z,t) = k/o /R (&—z u,,]u,,]dxd11+v/ / z)u; ju; idxdy

t 17
+m/0 /R (& —2)T;T dxdy erz/O /R (& —2)C,;Cdxdy 17

= Ei(z,t) + Ex(z,t) + E3(z,t) + E4(z,1),

where k, p1, p are positive parameters and ¢ > z > 0.
By using the divergence theorem and Equations (1) and (4), we obtain

t
Ei(z,t) =k /0 /R (6 —z)uiy {vAul- —uj—p;i+&T+ h,-C] dxdy

t o, t
= kv/ / u; i 3dxdn +k/ / us pdxdn
+k/ / ul,7g,ded17+k/ / -z u,,7h Cdxdy

7kv/R(§fz)u,]u,]dx 7fk_/ fzuudx’7

4
=) A
i=1

(18)

1
_ Ekv /Rz(fjfz)u,-,jui,jdx » k/ Juju dx‘ _
Using the Schwarz inequality, the arithmetic geometric mean inequality and (9), we
can obtain

1<k {/ / ul,iu,,]dxdr]/ / ul3u,3dxd77
(19)

< vk k dxd dxd

< T o Jr. Wiyt pdx n+v b I, ui/3ul-,3 X 17],

Az <

(20)

I/\

k H
Vit i dxdry// —ZTTdXdi]]

v AL

1y

> // u,”u,”dxdq+2Algl//z 2)T o Todxdy,
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and

&, [ / ko3 /‘f /
<& R _ 21
Ay < 5 k/0 -Rz(é Z)Uj ki ydxdn + e Jo . Z(C 2)C o Coadxdny, (21)

where ¢1,¢, > 0 will be determined later and

6t = max(gigi), 63 = max(ihy), 22)

We note that for any z* > 0, using (4) and (5),

.
/ 3y dA = / 13,y dA — / / 03 3y dAdE
Jp. Jp.. Jz Jpg

. ¥
— [ wsgdas [ [ uondadg
D, « z De

— [ us ,dA.
/Dﬁ 31
Since
| fagda=0, =0, (23)
Do
then,
us ,,dA = 0.
J, 1o

Under this assumption, using Lemma 2, there exist vector functions (¢1, ¢2) such that
Pau =Uusy in D, ¢u =0 on aD. (24)

Hence we have

Ay = k/(; /Rz Paapdxdn = —k/(: /I;Z Pupadxdy
-F /ot /R 9 [ttay = Ay + 114 = gaT = haC|dxdy
- /f: . etantsan-+ ke /; J pstapixdy 25)
+kv /Ot /Dz Qatiy3dxdn + k/ot -/Rz Putigdxdy

it 't
—k// Tdd—k// ha Cdxd

0 qu’aga e 0 RZ%“ xan
= Aoy + Ap + Axz + Ay + Axs + Ag.
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Using the Schwarz, Poincaré and the AG mean inequalities, (9) and (10), we can obtain

t 1o !
Ay < (/0 /R (p,xq),xdxdiy) (/0 /Rz ua,vua,,,dxd;o
<71 </t/ dxdf(/t/u U dxd)%
= a0 o Jr, PepPaptXA) o fg, Hantan@Xa
3 t 1 t 1
< S fodan) ([ [, worttsar)
S kAZ / / u”?ulndXdﬁ, (26)
2 t 1
Ap < kl/ /0 /R %’ﬁ(pa,ﬁdxdq /0 /R u%}guwdxd@
iy 5 /ot 1
kvA2 <./0 /Rz u3l,7dxd;7> </0 /Rz ua,ﬁua’ﬂdxdiy)
kuAz [t kvAZ ot
=72 /0 /R ey + =5 /0 /R Up pll, pdxdi], (27)
tr 1.t g 1
Az < kv(/0 /D goagoadxdr])j(/o /D ua,gua/;;dxdﬁ)j
kvAz t % t 1
< T Uy S i)™ (f J, tasvssin)
kvAZ [t [ kvAZ
< 2V, /0 /DZ “gwd"d’ﬁ / / Ug 31 3dxd1], (28)
t % 2
Apy < k / / (Pa(PadXdU) /0 /R uauadxdq
t 1
< kAz / / u3,7dxd17 / / ua,ﬁua,ﬁdxdq 2
kAZ
<
=24 / / dx”l’H 2N / / g pla, pdxdi], (9)

A25§k</0/ (pa(padxdry 2 // gag,,‘Tzdxdr] :

k(slAZ
< A //u3,7dxd17 // Tdedﬂ)

IN

< LTS // 2, dxdy +k‘5lA / T T dxdy, (30)
20 2

A < kA2 / / 2 dxd17+k52A2 / / CiCdxdy. @1)
2/\1 0 - Z

Inserting (26)-(31) into (25), then (19)—(21) and (25) into (18), and choosing e; = &, = %,
we obtain the following lemma.
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Lemma 5. Let u, T,C, p be solutions of Equations (1)~(8) with g,h € Leo(R x {t > 0}) and
Jp f3dA = 0. Then

Eq(z,t) +kv/ (¢— )u”u”dx +k/ —z2)u; udx‘”:t

<a1k// u,ﬁu,ﬁdxdiy—s—azv-// uj ju; jdxdn

+k‘5;\m / / Tdedmk‘siA / / CCdxdy
1 .

kVAZ// u3,7dxd77+kVAz// Uy 3l 3dxdn

2
21«5 // —zTdedry—f——// ¢ —2)CuCadxdn,
R

where

1 1 1 1
Al LAY 26AF 26,
=vViv+ = tvAar+ -+ 2 2
“ HY, TS VL X
1 1
Vkv kAP kAl
ay = Vv + -+ .
2 "2 T ayn

Similar to Lemma 5, for E;(z, ) we can obtain the following lemma.

’

Lemma 6. Let u, T, C, p be solutions of Equations (1)~(8) with g,h € Leo(R % {t > 0}) and
Jp f3dA = 0. Then

2(z,t) 2// uudxdﬂ—l—z/ uudx’,?:t
§a3/ / ui,jlti,jdxd77+§/ / ujuidxdny
(SIA :
2/\1/ / Uj i, ,7dxd7]+ / ToT dxdy

(52/\7
e / / C.oCudxdy

2)\153// & —2)T,T, dxd77+2)\1£2/ /Rz & —2)CoCadxdy,

where
1 1 1 1 1 1
. v A2 vA2 +VA? kA2 51A2 62
T2 oA T2VA, 2A 20 2A7 24
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Proof. By the divergence theorem and Equations (1)—(8), we have

t
—/0 /Rz(g — z)ujudxdy — / Yujudx
t t
fv/ / u,—u,-,3dxd;7+/ / (¢ —z)u;g;Tdxdn
+/ / z)uih; Cdxdr]-i—/ / uzpdxdy (32)
f// ¢ —z)ujuidxdny — 2/ uudxnzt

+ Z 7.
i=1

=t

Using the Schwarz inequality, the Poincaré inequality and the AG mean inequality,

we can obtain
ot otop %
<v / / uil3uil3dxd17/ / uiuidxdiy

% //u,gu,gdxdﬂ+/ / uudxdiy (33)

Similar to (20) and (21), we have for B, and Bs

e ¢ (52 t
<3 [ @ 2mdsan+ 7 [7 [ (@ 2T Tadxdy, (34)

and

— 35
//Z uudxd17+2)\82//7 2)C o C ndxdy, (35)

where €3, ¢4 are positive constants.
To bound By in (32), we also require that

/D FrdA = 0.

Then using to the Lemma 2 in Section 2, there exist vector functions (¢1, $2) such that
Qo =us, in D, ¢y =0, on aD. (36)

Therefore, we have

/0[ /R Qu,apdxdy

_/Ot /Rz Pup adxdy

./ot /R P [“‘W — VAU + Uy — &aT = hac} dxdy

= /Ot /R Puttaydxdy +v /0 t /R gty + v /0 t /D P sdAdy
+ /Of /R Patadxdy — /0" /R SuT@adxdy — /(;f /R I Chadxdy

6
=) By
i=1

B,y

(37)
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As the derivation of (26)—(32), we conclude that

Ba < ([ t A Z madxdn)%( / t / ”a/v”a,ridm'?)%

1 Y P 1
Sﬁ(/o/R‘Pa,ﬁ(Pa,ﬁdx‘iﬂ )2 // ua,,uwdxdry

1
A2 ot g ) %
ST(/ S, i)
2)\1 /./ u3au3,xxd;1+/ / M,Wu,”dxd;y
~ o~ 2 %
v ./0 -/Rz ‘Pa,ﬁ%,ﬁdxdﬂ ./0 /Rzua,ﬁ“a,ﬁd"‘iﬂ)

I/\

I/A7

t 1
//u%dxdn)z
// u; juj dxdy,

By <v /0 /Dz q?agﬁadxdn 2

<

<

IN

IN

IN

IN

By <

VA%
VA

1
2

(/ / u“"I”a,ndqu) 3

(/t /R ua,ﬁua,ﬁdxdry)%

1
/0 -/Dz ua,3ua/3dxdi1) :

(/O-t / Z u%dxdﬂ) 3 (/Of /I‘DZ ua/3uk,3dxd77)%

1
vA2 [t
2)\1 /0 ./DZ u,-,]-u,-,jdxdq,

t 1 t 1
(/O /R @@dxdﬂ)z(/o /R atacty )
1
A2ty
)\71/0 /Rzu,-u,-dxdiy

1
kA2t
ZAl/()A”i,aui,udXdﬂ/

t R % t ) %
</0/ (p,x(padxdq //g,xgaT dxdq)
1
//usau;;,xdxdq // Tded11)2

(51/\2
M
511\2
2M
SA%
2MA4

kA%
22

N

20

1 1 1
A2 VA2 vA2
By < |—
4= {z)\l 2/ Ton
2)\1/ / U i pdxdiy +
52/\2 / C o Codxdy.

211

[/0 /Rz U3 Uz o dxdn +/O /Rz ID‘T,adxdq],
ot ot
[/0 /Rz U3 (U3 o dxdy +/O /Rz C,aC,,dedry].

Inserting (38)—(43) into (37), we obtain

5 AR 5A2
+ 2 2 //u”u”dxdry

o N

t
ToTadxd
/0 /Rz ol n

(38)

(39)

(40)

(41)

(42)

(43)

(44)
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Inserting (33), (34), (35) and (44) into (32) and choosing e3 = &4 = %, we can obtain

Lemma 5.
Next we may bound E3(z, ). First we let T); denotes that the maximum of T by using

the maximum principle in R, i.e.,

Ty = F(x1,x2, ).
M DE}?;(O} (x1,%2,t) (45)

Integrating by parts, using (3), (5), (6), (7) together with (9) and the AG mean inequality,
we have

3(z, 1) —pl/ / TTzdxdy — pl/ / g+ uiT;)dxdy
__P T2 1 2 1 "/ 2
-2 RZ(; )T dx‘”:+ // T2dAdy + /O [ waTdxay
_h _ T2
RZ(@’ z)T dx 2/\1// ToTodAdy
" %// 2
+ 5 < o Jx. uadxdq dedq)

- 2
o1 [ 2 '
< A _
<-2/@ z)de’ +2A1// ToTadAdy

plTM / / U3 Uz o dxdny +/ / T,T; dxdq
4/\1 z
Using Equations (3)—(7) and integrating by parts, we obtain
t t
Ey(z,t) = —p2 / / CCsdxdny — pa / / (¢— z)C[C,,7 +u,;C; — U'AT] dxdny
Jo JR.
+ 22 / t / usCldxdy (47
= 2 Jo Jr.
t
— T _ _ T .
(sz/o -/RZC ‘sdxdn — o ps '/0 '/Rz(é z)C,;Tdxdn

By the Schwarz and the AG mean inequalities, it follows that from (47)

(46)

IA

/ C2dady -2 ((f,‘—z)Czdx‘

Eu(zt) + 2 (@~ z)Czdx‘

2 n=t
<t / / C2aAdy + ‘7’32 / C.:Cdxdy

0_1 2z . (48)
+2\/Pi / TsTsdxdy + P“/ / (& — 2)C,C sdxdy

”pz// ¢ — )T Tidudy + 2 // usC2dxdy,
285 -

for an arbitrary constant e5 > 0.
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In order to bound the last term on the right of (48), using the Equations (9), (11) and (13),
the Schwarz inequality and the AG mean inequality to obtain

t o, . 1
&22/0 /R uzC?dxdny < 22 / / (u3C) de / Czdx)zdiy

1

<o (o)LL (i) () s
Spgg&fmtax{(/ Czdx // u”u”dxdq //C'Cdxdﬂ)1 (49)

210f

L 1
piijmfax{(/ Czdx 2 // Ml]”z]dXdU""// CCdxdﬂ

210

IN

where the bound for max; {(]RZ C?dx) %} will be derived later.
Inserting (49) back into (48), we have

E4(z,t)+p—2 ((’j—z)Cde‘ B

< £z //c CadAdy + P2 // CiCxdy + 572 // T5Tsdxdy
1

+ 286/0/ (& - 2)C,Codxy + 72 / J (&~ 2T Ty 0
0 (20 Y[ ft | ], ).

Combining (46) and (50), we obtain the following Lemma.

Lemma 7. Let u, T, C, p be solutions of Equations (1)~(8) with ¢,h € Leo(R x {t > 0}) and
Jp f3dA = 0. Then

1
E3(z,t)+E4(z,t)§/R (E—2z2) [psz—&-poz]dx‘ _
<P //TTdAd17+ /CCdAdr]
2A1

op2 , pa0l¥ [ c : / [ cicidxd

+[2\/)T1+2%A1%mtax{<,1{z x) }}'O'Rz A 0X A
op2 | p1Tm /t/ -

+ {2\/—“!’ 4)\1 T,,T,,dXdTI

(7‘0286// szCdxd77+Up2// ¢ —2)T,T;dxdy

+ [plTM + ‘0208 max{(/ Czdx / / u; i jdxdy,
4/\1 2% /\4 t

where €4 is a positive constant. Next, we use Lemmas 5—7 to prove our main result.
O
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4. Main Result

First, we introduce a new function
P(z,t) = k/ / M,,]M,ﬂdxdﬂ+V/ / z)u; ju; idxdy
+o1 /O /Rz(ﬁ )T, Tidxdy + pz/o /Rz(g — 2)CCdxdy
1
+ kv/ (¢— z)ui,jui,jdx‘ + (k+ =) / (¢- Z)uiuidx‘
=t 2 R n=t

2/ / uudxd17+2/ é—z) [p1T2+p2C2]dx‘ -

Using Lemmas 4-6 and in view of (51), we have

()

t oy t
P(z,t) < a4/0 /Rz ui,qui,qud77+a5/0 /R u; ju; idxdy
t t t
+a6/ / fifidxdq+%/ / uiuidxd17+a7/ / C;Cdxdn
kVAZ / / dAdy + kA / / o 31t 3d Addy

e / / TaTadAdy + 22 / CoCod Ady 52)
24,

2ko? k&3
+ N /0 (‘: —2)TaTadxdy + . / / (§ —2)CaCoadxdy

2)\183//2 szdedierzAgz//z —2)C o Cadxdn

Upz‘%// —zCCdxd17+ // ¢ —2)T,;T;dxdy,

where

1

A2
ag = ﬂ1k+

)L ,05 = AV +asz +

1 1

T n ()8 2

PiAM +7‘07 T max{(/ Czdx)z},
1 21/\11 t z

1 1 1 1 1 1
_ ko Az 0 A2 _ ko A2 S A2 o2 szS / 2 2

I Y VI A VLY PR v mfax{(,RZC ax)’ }.

. 1 _ 8k2 | 282 4ké? 0p2
Choosing €6 = 55,02 = 32 + 55/01 = 3+ + /\123 + -2 and define

Y(z,t) —k/ / Z) U, u;, ,,dxdiy-i-v/ / z)u; ju; idxdn

2p1// —zTded17+2p2// z)C;C ;dxdy

(3)
ko [ (€= 2] (ke oy (€= 2|

+§/0 I/RZ(C*z)ulu,dxdﬂ+E/Rz(éfz)[plT +,02C]dx’ )
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we can have from (52)

t ¢
Y(zt) <ay ./0 /R Ut pdxdn +a5/0 '/Rz u; ju; dxdn
t t t
+ﬂ6/ / T;T;dxdn + %/ / wiuidxdy +ﬂ7/ / C;Cdxdn
(54)

kVAZ / / u3,1dAd11+kVA // Ug 3Ua3d Ady

+ //TTdAdiy-i— /CCdAdr]
2

From (53), we have

t t
= k/o /Rz u,‘,qu,‘,”dxqurv/o /Rz u; ju; jdxdny
Yoo [ [ Tiriaxdy + o0 [ CiCudd
o [ [ [
2PV o Ju, WGP Jy Jy, S (55)
" 1
+ kv /RZ u,-/ju,-/]‘dx‘”:t + (k+ E) /RZ uiuidx‘}?:t
41 /t/ u-u-dxd11+1/ [p T2+p2C2]dx‘
2Jo Jr. 2 Jr, 1 y=t
and
Y (z,t) t t
Tiz = k/(] /DZ ui,qui,qudI] -‘rV/O /DZ Ml‘/]‘Ll,',]‘dAdU
1 £ 1 t
+—p1/ / T,-T,-dAdﬂJrfpz/ [ cicidady
2 o 2 D " (56)
+k1// ul]u,]dA’ +(k+ = )/ uiuidA‘
JD; D, n=t

1 . 1 2 2
Jri/0 /D ululdAdnJrz/DZ P11+ p2C }dA‘q:r

Combining (54), (55) and (56), we have
Thus

2
¥(zt) < Ki| - awa(i’t)] 4K ‘I;S H, (57)

where

lZ4 115 ag ay

T Vi—r— 1,
v P1 P2
1

VAT kAR 1}

Ky = max{ 22, Y
2 =max{y = o,

K; = max

Inequality (57) can be rewritten as

0 ( _y,/0Y
- 1z 58
0z {e ( 0z * (22‘1’) } o 8
where
Ky 1 |K 4 K 1 [Kf | 4
1 = —— — =+ =, Zz = — [ == —.
2K, 2 K% K> 2K2 2 K% K>
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Integrating (58) from z to co leads to

My <o,
0z

and hence
Y¥(z,t) < ¥(0,t)e 2%, (59)
Combining (53) and (59), we can obtain the following theorem.

Theorem 1. Let u, T, C, p be solutions of Equations (1)-(8) with g,h € Leo(R % {t > 0}) and
Jp f3dA = 0. Then

k/ / u,,,u,,]dxdrj+v/ / z)u; ju; idxdy

+ Epl/o /RZ(C—Z)T,z‘T,z‘dXdW + 592/0 /R (¢ —2)CiCdxdy
1

+ kv ./RZ ((:f — z)u,-,ju,-,jdx‘vzt + (k+ E) ./RZ ((;K - Z)uiuidx‘q:t

+ % /[: /I'{Z(g — z)uudxdy + % /RZ(@ —z) [psz +p2C2}dx”7:t

< ¥(0,t)e %,

(60)

Remark 1. The result of Theorem 1 belongs to the study of Saint-Venant principle, which shows
that the fluid decays exponentially with spatial variables on the cylinder.

Remark 2. Theorem 1 shows that the solutions of Equations (1)—(8) decays exponentially as z — oo.
To make the decay bound explicit, we have to derive the bounds for ¥ (0, t) and max; [, Cdx in
next section.

5. Bounds of ¥(0, ) and max; [, C?dx

From the previous section, we can see that a3 involves the quantities max; [ C2dx.
To make our main result explicit, we have to derive bounds of ¥ (0, t) and max; [, C?dx
in term of the physical parameters o, v, g;, h1;, the boundary data and so on. To do this, we

begin with
t t t
/ / T, Tdxdy = — / / FT3dAdy — / / TATdxdy. 1)
0 JR 0 JD 0 JR

Now we assume that S is a sufficiently smooth function satisfying the same initial and
boundary conditions as T. Thus,

of t . ot
| [ Titdxdy =~ [ [ sTaanay— [ [ TaTdxiy
0 JR 0 JD 0 JR
ot t oy
= [ [osimdsay— [ [ (7 s)aTaxy

N .
:/0 /R S,iT,idxdW—/O /R(T—S)(T,y, +u;T;)dxdy (62)

ot )
:/ /Sfinid"d’Y*/ TZdX‘ +/ Tde’

Jo Jr R =t I yt

[ syTaxdy— [ [ sTwdvay -1 [ [ freaad
_/O/R'W xﬂ—/O/R,fu,xU—E/O/Df 7.
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Using the Schwarz and the arithmetic-geometric mean inequalities, we can obtain

t 1 1t
24 //TvT-d d <7/52d —7// F2dAd
/R x‘17=t+0 R A= Je T P T 2 o o’ !

t t
+(2 / / T,,-T,z-dxdmi / / 58 s

(63)
+ (2)\1 / / TiTidxdy + 503 262)\1 / / OCL)
+ €3TM//uudxd17+ //Sded;y
2e3
where €1, €2, €3 are positive constants. Choosing
1 A
=5 €= 71, (64)
we can obtain
) t o esTy [t
/T dx‘ +/ / T;T;dxdy < / /uiuidxdierdata. (65)
JR n=t Jo JR " 2 Jo JrR

Obviously, the data terms in (65) involve } Jr Szdx‘ ; ]Ot Jr S,iS idxdy, [Ot Jr SS ydxdy
o=

and —1 Ot Jp fF2d Ady. Similarly, we can bound fot J& CiCidxdn as well as max; [, C2dx.
Firstly, we introduce a function H:

%—TJruH =AH, inRx{t>0},

H=0, inRx{t=0}, (66)
H=0, onoD x {x3>0}x{t>0},
H = G(x1,x,t), onDx {t>0},

Then we have

(C—H);+uj(C—H); = AC—H)+0AT, inRx {t>0},

0 in R x {t =0},

0 on oD x {x3 > 0} x {t >0},

0 on D x {t > 0}.

(67)

C—-H
C—-H
C—-H

By the triangle inequality, we obtain that

1

//CCdxdq //c H);(C — H) sy ] * + //Hdedﬂ%, (68)

and

1 1

1 1
max/ C2dx P < [mtax/(C H)zdx]2 mtax/ szx] . (69)
R
Then,

1 2 t t
1 c-n — H),(C — H) jdxdy = — —H),T 7
3 fc—1) dx]ﬂ:tf/o J (€= H)(C — H)dvdy = —c [ [ (€~ H) Tidxdn, (70)
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which follows that
1 t
= [(c—H)x | [ (€~ H)(c~ H)axa
3 J(€Hpax| [ [ (€~ H)i(C— H) iy
ot p
< (72/ / T,,‘T/,‘dxdﬂ
0 JR
2 ot
< &Tmo” / / ujudxdny + data.
2 Jo Jr
Just as in the computation for T, we have the following inequality

1 t ot
5/1<H2dx|”:t+/() /RH,I»H,,'dxdiy §e4/0 /Ruiu,'dxdiy—&—datu.

Thus,

1 t t
5./1{C2dx"7:t+./o /RC,,-C,,-dxd;yges /0 '/Ru,-uidxd17+data,

(1)

(72)

(73)

where €5 > 0 depends on €3, €4 and 0. Next we have to derive a bound for fot f R Winidxdny

in term of data. To do this, we define a function
@; = fie 1%,

for some positive constant ;. Then,

t 1 t 1
[/0 -/Rui,jl/li,jdxdﬂ]z < [/0 _/R(u,- "Di),j(“i*@i),]-dxdﬂ z
+ [/(: /R wi,j(oi,jdxdr]} %,
Obviously, we find that the last term of (75) is a data term. Now
¢
V/o /R(”i —@;) j(u; — @;) jdxdy
S /Of /R(w - @), {(ui — @) +p,;—&T —hiC+ @ — vAw,-] dxdy
or
v ot
5/0 /R(”i —@;) j(u; — @;) jdxdy
t 5t 52 ot
< - ./0 /R pew; idxdn + ?1/0 /R T2dxdny + 72 ./0 /RCded;y + data.
Noting that
@i = (fau —G1f3)e” 7 =0,

inRforg) = ]:2—;“, we can rewrite (76) as

v [t
E/o /R(”i—wi),j(ui_‘oi),jdXdV

5% ' dxd 5% ' dxd d
< 1 T 2 .C .
< 22\1/0 /RT,,T,, X ’7+2A1/0 /RC,,C,, xdn + data

218

(74)

(75)

(76)

(77)

(78)



Symmetry 2022, 14, 98

Inserting (78) back into (75), we may have a bound of the form

t t t
/ / u,',]-ui,]-dxdq < Cl/ / T;T;dxdn +C2/ / C;Cidxdny + data, (79)
0 JR 0 JR 0 JR
for computable C; and C;. Combining (65) and (73) and by inequality (17), we have

t Ci Ty t G t
./0 ./Ru,-,/-u,-,]-dxdﬂg Ie 63/0 /R ui,jui,jdxd11+/\—le5/0 /Ru,-,]-u,-,/-dxdierdatu. (80)

It is clear to see that

t
/ /Ll,'/jbl,'/]‘dxdi’] < data, (81)
0 JR
for ez = zcﬁilTMf% = 4%. From (65) and (73), we can obtain
mtax/ T2dx < data, mtax/ C2dx < data, (82)
R R
and
N N
/ / T;T;dxdny < data, / / C;Cdxdn < data. (83)
0 JR 0 JR
Next we seek bound for the total energy ¥ (0, t). From (54) we can obtain for ¥(0, t)

t v ot
Y(0,t) < a4/0 /R”i,n”i,ndx’iﬂ+§/o _/Ru,'uidxdiy

t (84)
+ by / / Ug 3tlg 3dAdny + data.
0 JD

We are left to derive bounds for fot Jr. tiyttiydxdny and fot Jp ta3tta3d Ady. Multiplying (1)
with u;,, and integrating in the region R x [0, t], we have

_/Ot /R U i pdxdy = /Ot /R Uiy [vAu,' —u;—pi+gT+ th] dxdny, (85)
which follows that
T otop t oy
/0 /R Ui pdxdny < —21//0 /D Uy 3UaydAdy +2/O /D uz,, pd Adny

5% t 5% t
20 e 0 Ci 86
* 2M /O /R T’lT'ldXdW + 2\ /O /RC,ZC,dedU + data (86)

t o, ot
< 721//0 '/D U3 fuydAdy +2/0 /ng,ﬂpdAdn + data,
where we have used the fact u33 = —u40 = —fan On Dy and (83), and & is a positive

constants. For the first term of (86), using the Schwarz and the AG mean inequalities
we have

ot - % . %
_21//0 /Do faytiazdxdy < 21/(/0 /D0 ua,SuanAdﬁ) (/0 /Do fa,qfu'y/dAdﬂ)

t (87)
< / / Uy 3Ua3dAdy + data.
Jo Jpy
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To bound the second term on the right of (86), we define p to be the mean value of p
over Dy, i.e.,

1
P== dA, 88
P~ D0l Jo,? o
where | Dy| is the measure of Dy. Since
[, FaPaA=F [ faydd =0, (59)
we obtain
[, fapdc= [ foy(p=p)aa. ©0)
Jpy JDy

It follows by using Schwarz inequality that

/Ot /Do faypdxdy = /Ot /Do fa(p —P)dAdy < data + eg /Ot /Do(p —p)2dAdy,  (91)

where € is a positive constant to be determined later.
To deal with the integral fot /i Dy (p — P)?d Ady, we let an auxiliary function y satisfying:

9x

Ax = =
XO'Bn

—0 ondDy, % — p—7, in Do. 92)

From the definition of  in (88), it is clear that || Do( p—p)dA = 0. Thus, the necessary
condition for the existence of a solution is satisfied and we compute

t t 9 t
—P)dAd :// —*—de:// ~ ) ix.dxd
/O/DU(P praady = | | (p=p)gdxdy= | | (p—p)ixdxdy

! (93)

= /0 /RX,i [ — Uiyt v —ui+ &T + h,»C} dxdy.

Since
ot p i .
V/O /R Kk = —1//0 /D X itipdxdy — v/o /R X ijtti jelxd
ot o

=v dxdy —v / / e ~dd

/0 /D X 3fuadxdr] [ Xtha3dxdr o1

t o, ot
+v/0 /DX,ju3,jdXd’7+V'/0 /Rxl]vu,v,,vjdxdn

t ot
:71/./0 /Dx,aua,3dxd17+1//0 /D)(,afmdxdn.
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From (93), we can obtain
¢ ¢
./o /Do(pf?)szdn:/O '/Rx,i[fu,-,,7+vuz-,]-]-fui+giT+hiC]dxd17
ot 1 t o, 1
< (/ /X,iX/idXdW 2 //”f,v”fﬂdm” 2
1 1
+v(/ /)(,X)(,didq 2 / /ugau3adAd17 2
1 1
v(/ [ xaxadadn)*( //foMalAdq)2 (95)
m / /X,IX,Z X 17 / /ul,jul,] X 77)
L//)()(dxdﬂ //Tdedry)
r 1 1
1

\/5—% /(J/l?X’iX/idde % //C iCi dxd;y 2
Making use of (15), (16), (81) and (83) with ¢ = p — P, we have
[, - )’
0 JDg
1 t 3 t 3
7(/0 /Ru,ﬂﬂu,‘,ﬁdxdq) +1/(/0 /Do u,,(,3u,x,3dxd17>
t 1,1 t 3
v(/ / f3,af3,adxd11> + \/ﬁ</o /R ui,jui,jdxdq>
T //T ded;;)% o (/t / C,jC/jdxdiy>%,
Vil Vid Mo Jr
which follows that
/ot /Do(p,@ZdAdW < data+c3 /Ot /Do Ug 3Ua 3dxd1 + Cy /Of/Ruil,]u,vl,]dxdr]. 97)

Obviously, from (97) we must establish a bound for the term ]0/ f Dy g 3Uq3dxdy. To do
this, we begin with the identity

+

it
/0 /Ru,4,3 [vui,]-j — Ui = Pi— Uy -+ g,‘T + h,‘C} dxd;y =0. (98)

Integrating (98) by parts, we can have

t t t
_v/o /Do u,»,3u,»,3dxd77+v_/0 /R“i,jsui,jdx‘i’l‘f‘/o _/Ruiﬁuidxdq
t t t
+/O /R”iﬁp,idx‘i'l"'/o /R”i,S”i,fdedW"'/o /Ruiﬁg,'dedq 99)
ot
+/ / ui3h;Cdxdy =0,
0 JR
which follows that
t ot t o,
dxdy < dat // dAd //vvdd. 100
./0 /Doualgua/g; xdny < data + A Doua,gp 1+ €7 X R”w”w xdny (100)
where €7 is a positive constant.
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As the derivation of (91), for the term fot /i Dy Ha3 pd Adi we can obtain

t t
spdAdy < dat // — p)2dAdy, 101
/o/DO”“'Bp 1< datates | DO(P P) U] (101)

where €3 is a positive constant.
Combining (97), (100) and (101), we have

ot ot p
—\2
<1 - 68(,'3) /0 /Do(p — ) dxdy < data + C3€7/0 /R U i ydxdyy. (102)

Combing (86), (87), (91) and (100), we obtain

t t
(1—ey) _/0 /Rui,qui,,,dxdiy < data+ (e + 67)/0 /D (p — P)2dxdy. (103)
o

Choosing €7 and eg small enough such that 1 —egc3 > 0 and 1 —e; > 0, from
(102) and (103) we can obtain

t
/0 /Ru,-,,]u,-,ﬂdxdq < data, (104)

and

t
/O /D (p — P)*dAdy < data. (105)
K 0

Inserting (101) back into (100), we obtain

t t t
/O /Do Uy 3ug3dxdn < data +68/O /Do(p —p)2dAdy +e7/0 /Ru,'/vu,'/ﬁdxdiy. (106)

In light of (104) and (105), we have

t
/ / g 3ty 3dxdn < data. (107)
Jo Jpy
Recalling (84) and using (104) and (107), we obtain
Y(0,t) < data, (108)

which is to say that we have bounded the total energy.

6. Conclusions

In this paper, we consider the spatial decay bounds for the Brinkman equations in
double-diffusive convection in a semi-infinite pipe. Using the results of this paper, we
can continue to study the continuous dependence of the solution on the parameters in the
system of equations. In addition, Using the results of this paper, we can continue to study
the continuous dependence of the solution on the parameters in the system of equations.
This research can refer to the method of [30,31]. In addition, if Equation (1) is replaced by a
nonlinear problem (e.g., Forchheimer equations), it will be a more interesting topic.
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Abstract: In this study, we first prove a parameterized integral identity involving differentiable
functions. Then, for differentiable harmonically convex functions, we use this result to establish some
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1. Introduction

The Hermite-Hadamard inequality, which was independently found by C. Hermite
and ]. Hadamard (see, also [1], and [2] (p. 137)), is particularly important in the convex
functions theory:

7 Fli) + F
(55) ety

K1

where F : I C R — R is a convex function over I, and k1, € I, with x; < k. In the case
of concave mappings, the above inequality is satisfied in reverse order.

Several researches have concentrated on obtaining trapezoid and midpoint-type in-
equalities that offer bounds for the right-hand side and left-hand side of the inequality (1),
respectively, throughout the previous two decades. In [3,4], for example, authors first ob-
tained trapezoid and midpoint-type inequalities for convex functions. In [5], Sarikaya et al.
obtained the inequalities (1) for the Riemann-Liouville fractional integrals and the au-
thors also proved some corresponding trapezoid-type inequalities for fractional integrals.
Igbal et al. presented some fractional midpoint-type inequalities for convex functions
in [6]. On the other hand, Iscan defined the harmonically convex functions and obtained
Hermite-Hadamard-type inequalities for these kinds of functions in [7]. The author also
established some trapezoid-type inequalities for harmonically convex functions in [7]. Fur-
thermore, using the Riemann-Liouville fractional integrals, the authors proved Hermite—
Hadamard-type inequalities for harmonically convex functions in [8]. They also proved
some fractional trapezoid-type inequalities for mapping whose derivatives in absolute
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value are harmonically convex. In [9], Sanl1 proved several fractional midpoint-type in-
equalities utilizing differentiable convex functions. In [10], Butt et al. presented a new
generalization of Hermite-Hadamard inequalities for harmonically convex functions using
the notions of the Jensen—Mercer inequality and, in [11], Butt et al. gave a new definition of
general harmonically convex functions and proved Hermite-Hadamard-type inequalities.
In [12], the authors used fractional operators and proved some new inequalities for general
harmonic convex functions. In [13], the authors established Hermite-Hadamard-type
inequalities for harmonically convex functions on n-co-ordinates. Some generalizations
of Hermite-Hadamard-type inequalities for harmonically convex functions on fractal sets
are also given in [14]. Moreover, Liu and Xu extended this class of functions and defined a
general harmonic convexity for interval-valued functions in [15]. In the literature, there
are several papers on inequalities for harmonically convex functions. For some recent
developments in integral inequalities and harmonical convexity, one can consult [16-26].

Inspired by these ongoing studies, we prove several Simpson’s type generalized
integral inequalities for differentiable convex functions. The key benefit of these inequalities
is that they can be turned into midpoint and trapezoidal-type inequalities for differentiable
convex functions without having to prove each one independently. These newly established
inequalities are the generalizations of inequalities proved in [7,9].

The following is the structure of this paper: In Section 2, we present the definition of
the harmonically convex functions and some related results. In Section 3, we prove several
new results for harmonically convex functions depending on parameters. We also prove
some new integral inequalities to highlight the relationship between the results reported
here and related results in the literature. By specially choosing one of the parameters, we
give some new results in Section 4. Some applications of newly established inequalities
to special means of real numbers are given in Section 5. In Section 6, we give some
recommendations for future studies.

2. Preliminaries

In [7], Iscan gave the concept of harmonically convex functions and proved associated
Hermite-Hadamard inequalities as follows:

Definition 1 ([7]). If the mapping F : I C R\{0} — R satisfies the inequality

]:<‘r+11‘r> < TF(2) + (1= 1) F(x1), 2)

x2 K1

forall x,y € Iand T € [0,1]; then, F is called the harmonically convex function. In the case of
harmonically concave mappings, the above inequality is satisfied in reverse order.

Theorem 1 ([7]). For any harmonically convex mapping F : I C R\{0} — Rand x1,x € I,
with k1 < k3, the following inequality holds:

}-< 2K1K2 ) < far /"2 ]:(zx)dx < F(x1) + F(x2)
K1 + K2 Ky — K1 Jk, X 2

. ®)

In [7], Iscan established the following Lemma to prove trapezoidal-type inequalities
for harmonically convex functions.
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Lemma 1. Consider a mapping F : I C R\{0} — R, which is differentiable mapping on I°
(interior of 1) and k1, x5 € I° with k1 < K. If]-" is integrable over (K1, K7, then we would have
the following equality:

dx “4)

F(x1) + F(xo) L) /KZ F(x)
2 Ko — K1 Jiq x2

Kle(Kz — Kl) 1 1-21 K1Kp
- 2 / el ey ar
0 (trp+ (1 —1)Kq) Try + (1 = T)q

Theorem 2. Consider a mapping F : I C (0,00) — R, which is differentiable mapping on I°
and ky, k3 € 1° with k1 < ik, and F' is integrable over [ky, k2]. If | F'| is harmonically convex on
(1, k2], then the following inequality satisfies:

dx

Fr) + Flka) KK /"2 F(x) ®)

2 Ky — K1 Jiy XZ

_ _1 L
Kl — 1) K1)91 q(62|}"(K1)\q+93|.7-"(K2)|q>q,

<
- 2
where
2
6 — 1 2 In (1 + %) )
K1K2  (kp — K1) 41k
1 3 2
th = + K1+K23ln (1 +12) ,
k(K1 —%2) (1 —1q) 411
03 = 6,0,

Recently, Sanli [9] proved the following Lemma to find the left estimates of the
inequality (3).

Lemma 2. Consider a mapping F : I C R\{0} — R, which is differentiable mapping on
I° and x1,xp € I° with k1 < K. If F' is integrable over [k1,%y], then we would have the
following equality:

f<m>, Bl Ry ja Lo ©)

K1 + K Ky — K1 Jig X2

1
T

B B 1 , K1Kp
=l Kl){/o (TK2+(17T)K1)2]: (TK2+(1*T)K1>dT

1 —
+/ Tl 2]—"( *1¥2 >dT .
3 (tra + (1= 1)Kq) T+ (1= 1)K
3. New Parameterized Inequalities for Harmonically Convex Function

Lemma 3. Consider a mapping F : I C R\{0} — R, which is differentiable mapping on I° and
K1,k € I° with k1 < 1. If F' is integrable over [kq, k3], then for A € R we would have the
following equality:

A[f(m+f<nz>1—<u—1>f(2"“‘2)— we I8 @

K1 + Ko Ko — K1 Jig X2

ity ! m(t) 1 K112 T
= K1xa(r2 1)/0 - <TK2+(1—T)xl>d g

227



Symmetry 2022, 14, 302

where
A—1, dfTE {O,%)

m(t) =
(@) { 1-A—71, ifTe [%,1}.
Proof. From the fundamental concepts of integration, we had:

1 m(T) / K1Kk2
samali =) | (tky + (1 - T)ry)? (rnz+(1—T>K1>dT

1
2 A—T K1K;
= Kikp(kp — K ]—"( 172 >d'r
2(2 1)[/0 (tka 4+ (1 = 7)K1)? T2 + (1= )iy
1 A
+/ 1-A—-1 2]__,< K1k )d’r
1 (i + (1= 1)Ky) Tk + (1 - T);y
1 1
_ K1K2 77/7 K1K2
(T /\)]:<TK2+(1*T)K1)0 Jo ]:(TK2+(1T)K1)dT}

1 1
KK K1K2
(T+2 1)'F<TK2+(1—T)K1> 1 /% f(TK2+(1—T)K1>dT:|
2K1K2 ) K1k /"2 -F(Zx)dx
K1 + K2 K2 =K1 Jig X

+

= A[F(x1) + F(r2)] — (A — 1)]-'(

and the proof was completed. [
Remark 1. Inn Lemma 3, if we set A = 1, then we recaptured the identity (4).
Remark 2. In Lemma 3, if we assume A = 0, then we recaptured the identity (6).

Theorem 3. Consider a mapping F : I C (0,00) — R, which is differentiable mapping on I°
and k1, ky € 1° with k1 < ik, and F' is integrable over [kq, k2]. If | F'| is harmonically convex on

[1, k2], then the following inequality satisfies:

2K1 K >_ K1Kp /"2 }—(x)dx

K1 + Ko ko — K1 Jig X2

AF(x1) + F(r2)] — (24 — 1)]—'(

IN

K1k (K — #7)
{[A1(%1, K2; A) + Az (%1, K0; A) + A5 (1, K05 A) + A7 (1, %05 M) ]| F (361) |
, if0<A<]

+[Ao(re1, 105 A) + Ay (1,10, ) + Ao (K1, K25 A) + Ag(ie1, 025 A)]| F (12)| }

{[Ag (1, k2; A) + Aqq (11, 12 A)] | F' (k1) | if

, <A<1
+[A1o (K1, 12, A) + Daa (i1, k2 A)]| F (2) | }

N|—
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where

Aq(x1,52; 1)

AZ (Klr K2, /\)

A3 (Klr K2; /\)

Ay(K1, %25 A)

As(k1,%2; A)

Ag (k1,725 A)

Az(K1,%2; A)

Ag(k1,%2; A)

Ag(k1,%2; A)

Aqo(K1, %25 A)

Aqp (K1, 25 A)

Arp(K1, K2; M)

(x> jxl)z In(rr- (A2 + (1= A1)
B 2A 2K n Ao+ (1= Ay
(KZ*K1)2+ (Kz*Kl)Sl < 1 )’

A 1 x >
" In — Ay (1,725 A),
k2 =K) (k=) (AK2+(1—A)K1 1(1, %2, )
24 —1 Ay ((K1+K2)(/\K2+(1—)\)K1)>
>y T 5 In
22 —«3) (i —x1) 5
S+ 3]n< (M + ( Kl))>’
(k2 —x1)" (k2 — K1) K1+ Ko
20 —1 1 ( K1+ Ko
(k2 —r1)? \2(Ak2 + (1= Axq))
20 —1 K1 + K2 ln<K1+K2>
263 —x3) (1 —1p)° 2
1-2A
+——"5 (1 +In(Aky + (1 - A)xz))
(1 —1x1)
2
_73(/\1(1 + (1= A)xp) In(Axy + (1 — A)xy),
(r —1x1)

> — A3y, K2, A),

20 —1 1 2(\ 1-A
> 2 2111( (Arer + ( )K2)> BN
Ky =Ky (k2 — K1) K1+ K2

1-24
ﬁln(m +(1-AN)ky)
2— K1

_(K2_27K1)3()LK] + (1= A)x2) In(Axg + (1 — A)xy)

A _ 2A . i K1 + K2 ln(KZ)/
(ke —Kx1)  (n-x) K-k
1 ln<)uc1 +(1— A)Kz) n A N
(k2 — K1) 2 K2 (K2 — 1)
1;2)\2 n K1+K231H<K1+K2)
Z(KziKl) (KZ_K]) 2
1 A 5
- 2" 5 In(x) — ————xi (),
(KZ — Kl) (Kz — Kl) (KZ o Kl)
I DL 21n<K1+K2>
K=K 2(K2 — Kl) 2
k2 — K1 A 1
- - K1 In(x1) — Ag(xq, K2 A),
2 K1 (K2 — K1) (Kz—K1)2 11n(x7) o (i1, %2, )
A +1In (1+/\)(K2*K13) + 217
Ko (K1 — K2) (12 — 1)
_ 1 . 2/2\—12 +ln<)\(K2—K1)+K;+K2>,
(k= x1)* 203 —x7) (k2 —11)
A 1
+ Ko In (1
ok =) (k—x)? (x2)
_ 1 20 -1 ®+iKo ln<K1+K2)
2ka—K1) K-k} 2k —x1)2 > )
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Proof. Taking modulus in (7), we had:

K1 + Ko Ko — K1 Jig X2

/ K1K2
7 (TKz +(1- T)K1>

/ K1K2
4 (TK2 +(1- T)K]) dT:|

From the convexity of |F'| and for 0 < A < %, we have:

'A[F(K1)+F(K2)] - (2)\—1)]—'( 2Ky 12 > K1k /“2 F(x) 5

A -1

Fakz (k2 = K1) M (tr2 + (1= T)m)?

IN

dt

/1 [1—A—1]
1 (T + (1= 1)iey)?
= K1K2(K2 — Kl)[sl + 52].

1

2 A —1| ' ’
5 < /Omwmm+<1—r>|f<x1)|]dr

/\ —
/0 ﬁ[r\}"(xﬂ + (1= )| F (k)| dr

3 (t—A7) / — "k
[ T e+ 0

{/O (TKZ'i'(l—7)1C1)2dr—~_/A (TK2+(1—T)K1)2dT:| FACH

A l-nA-1) (I-7)(r-4)
+{/o (TK2+(1—T)K1)2dT+/A (T2t (- )2
= [Al(;cl,Kz;)\)+A3(K1,K2;A)]|}'/(K1 |+ Ny Kl,Kz,A)+A4(K1,K2;/\)H]-"(K2)|.

|.7:/ Ko !

Similarly, we have:
1 1-A—7
S ESEL
3 (o + (1= 1)Kq)

L st 0]+ =l

! M IK _ /
+/1 A (TK2+(1—T)K1)2 [T|]:( 1)|+(1 T)|]: (Kl)HdT

{/; (i + (1= 'r)K1)2dT+/1*A (tra + (1= r)xl)zdr} |7 ()]

N V” %dﬂr/;A “T)(der} | (12)]

I (i + (1= 1)xq) A (Tiy + (1= T)xp)?
= [A5(K1,K2;)L) + A7(K],K2;/\)]|]:/(K1){ + [Aé(K],KZ;)\) + Ag(Kl,Kz,'/\)} |]'—/(K2)|.

[t|F (k)| + (1 = )| F (1) |]dT

Now, from the convexity of | 7’| and for J < A < 1, we have:

3 A — 1| T F A e de
51 /o (TK2+(1—T)K1)2[ )+ @ =ml el

Y L B .
= /0 (TK2+(1*T)K1 [T|}-(K1)|+(1 T)|]—'(K1)HdT
( ()‘—— ‘ (1—1)(

’ K1|/ (k2 +(1— e+ |7 (e |/ (tip + 1*”[’1{1 (Tt (om0

Ag(Kl K2, )\ ‘]: K1 |+A10 K1, K2, /\ |]: K2 ‘
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and

2= /%(sz+(1fT)K1)2[T|F(K1)|+(1 Ol

1 -
= J o e Ol 07 Gl
= |7 trrr-1) )| [ A=A
= P ‘/ (tra + (1 —T)x1)? (ot Qo P e |/% (TK2+(17T)K1)2dT

Mgy (k1,105 A) | F (1) | + Dz (11, 702 A) | F' (12)))

Thus, the proof is completed. [

Remark 3. In Theorem 3, if we set A = %, then we recaptured the inequality (5) for g = 1.
Remark 4. In Theorem 3, if we set A = 0, then Theorem 3 reduced to [9] (Theorem 3.1 for q = 1).

Corollary 1. In Theorem 3, if we set A = %, then we had the following inequality of Simpson’s type:

1 {f(m) +4F<M> + ]:(Kz)} e /K2 fmdx‘

6 K1 + Ko Ky — K1 x2
< rarg(ky — K1)

1 1 1 1
><{ {Al <K1,K2;g> + 43 <K1,K2;6> +As (Klrk2;6> + 47 <K1,K2;*>} | F' (x1)]
1 1 1 ,
B2 x| + B K1 k2i ) + Do Km0 ¢ | +As KllKZr | F (2)] ¢-

Theorem 4. Consider a mapping F : I C (0,00) — R, which is differentiable mapping on I° and
K1,k € I° with k1 < Ky, and F' is integrable over [x1,x2]. If | F'|7, ¢ > 1is harmonically convex
on (K1, k3], then the following inequality satisfies:

MF (k1) + Fli2)) — (24 — 1);(;(21"&) - Kz’clfzKl /Klz }'x( )

= KKk — K1)
1
(A1 (K1, K25 A) + Do (i1, k2 1)) 0
X ([Aq (k1,125 A) + Az (1, 102 A)] | F (k1) :
+[Da (K1, K0 A) 4 Aa(ry, k25 A)] | F (102) 1) 7

1
+(Bs(K1, K2 ) + D (K1, K23 A)) 71
([As(r1, 125 A) + Az (1, 1003 A)]| F (31|

+[As (K1, 52, A) + As(K1,K2;)\)HF’(K2)\q)ﬂ

N—

e

(Ao (K1, K2; A) + Doy, k2 )~

T

X (Ag(rr, ka3 A)|F (1) |7+ Alo(’fllKlz;)\)lf'(Kz)\q)
+(Drr (1, k23 A) + Dra(ky, k2;A)) T

1
(Aan (k1,25 A F (60 7+ Ara (it 23 )| F (k2) ) a}

=

=
IA

>
IA
o

where Aq (i1, k2; A) — A1 (K1, k2; A) are defined as in Theorem 3.
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Proof. Taking modulus in (7) and applying the power mean inequality, we had:

'A[F(K1)+F(K2)] - (2)\—1)]—'( 2Ky 12 > K1k /“2 F(x) 5

K1 + Ko Ko — K1 Jig X2

r 1
2 A —1| ‘ /< K1Ko >
< K1Ko(Kp — K / F dt
< rKp(Ky — K1) o mt A=) o+ (1— Ox;
1 1—)A—
*hy s —omrl” ()
3 (i +(1—1)Kq) o + (1= T)ry
o B -
< Kika(K2 — K1) /2 M—T|2d'r
0 (tro+ (1—1)x1)

1
q q
d'r)

1
q 7
dT> :| .

B _ 2K\ Kika (%2 F(x)
’/\[}'(Kl)+]-'(1<2)] (22 1)}‘<K1+K2> KZ*KL/Kl S

3 A — 1] , K1K2
</O (T + (1 = T)rp)? ‘]: (TKz +(1- T)K1>
1-1
1 1—)—1| 1
" </% (i + (1 - T)K1)2d7>

! ‘17A7T‘ / KK
</5 (o + (1 — T)K1)2 F <TK2 +(1- T);q)

From the convexity of |7/|Tand 0 < A < }, we have:

1
< Kiko (K — K1) {(Al(KHKZ}A) + gy, k0 A))

1

X <[A](K1,K2;A) + Ag(Kl,Kz;)L)”]:,(Kl)‘q + [Az(Kl,Kz;)\) + A4(K1,K2;)\)]|]‘-,(K2){q> 1
_1
(D5 (11, k2 A) + Do (1,123 4)) 7

x <[A5(K1,Kz;)\) + Dy (1,705 A)]| F (k1) | + [ D6 (11, K25 A) + Ag(xl,Kz;A)”f/(Kz)\q) j.

Now, from the convexity of | F'|T and § < A < 1, we have:

'/\[]‘—(Kl) + F(ra)] = (24 — 1);( 2K1Kp > Kk /"2 }'(x)dx

K1+ 12 Ky — k1 Jg X2

IN

1
Kyko (Ko — K1) {(A9(K1,K2;/\) + Doy, ka5 A))

X (Ag(m,xz;A)W(m)\" +A]0(K1,K2;)\)|.7:/(K2)|q>%

+(D11 (1, k2, A) + Au(’flrkz;?\))li%

x (8111, 1023 ) [ (60)| T+ Bra e s A) | F' (2)|7) ﬂ
and the proof was completed. O

Remark 5. In Theorem 4, if we set A = %, then we recaptured the inequality (5).

Remark 6. In Theorem 4, if we set A = 0, then Theorem 4 reduced to [9] (Theorem 3.1).
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Corollary 2. In Theorem 4, if we set A = %, then we obtain the following Simpson’s type inequality:

1 2K1K2 kK *2 ]'—( )
’6{}'(K1)+4}'<K1+K2>+}'(K2)} rﬂq/ S

1-1
<A1<K1,Kz;é>+A2<K1,K2;%>> !
1 /
x| | B K1, K2 o + A3 KHKZr | (1) |7

1
+{A2 (KI’K2;8> +A4<K1,K2, )} | F'(x2) )
1
+<A5 (Kl’K2;6> + A6 (KLKZ/ ))
1 17
x (|5 (w1505 = ) + Dy (x50 = ) | |F ()]
6 6
1 N7
X B K deo; o ) Bs | K Ko; o | F'(2)| .

4. Some Special Cases of Main Results

IN

Kk (Ko — K1)

_1
]'i

In this section, we gave some new inequalities as special cases of the newly estab-
lished results.

Corollary 3. Under the assumptions of Theorem 3 with A = 1, the following inequality held:

2K1K K1ky (%2 F(x)
Fl1) + Fla) }'<K1+K2> Kz_Kl/ o dx

< KoK —xq)
X {[Ag (k1,1 1) + Aqq (1, 702, 1)] | F (1) | + [Aro (1, k25 1) + Arz k1, 162; 1)] | F (i) |}

Corollary 4. Under the assumptions of Theorem 3 with A = %, the following inequality held:

%{]—'(Kl)Jr]:( 2K112 >+f(xz)] _ _Fka /"2 ‘F(x)dx‘

K1 + Ko Ko — K1 Jr, X2

< K (ro — K1)

1 1 1
{ {Al <K1,K2, > + A3 (KHKZr ) + A5 <K1,K2, 3> + 47 (KHKZ/ )} | F' (1)
1 1 |
S TAY) K1, 12 5 + Ay K1, K2 5 + A Kl,Kz, K1,K2, | F'(x2)] ¢

Corollary 5. Under the assumptions of Theorem 3 with A = %, the following inequality held:

1 |:]:(K1) -‘r]:(K]) ( 2K1Kp >:| K1K2 K2 ]:( )
= +F - [

2 2 K1 + K2 Ko — K1 Jiq x2
< rrp(rp — K1)

1 1

><{ {A1 <K1’K2;Z) +4s (KLKz, ) + 45 <K1/K2?1> +47 <K1,K2,4>} | F' (1)]
1 1 1 |

SFAY) K152 4 + 4y 11,25 4 + A K1, K2 4 +Ag K1,K2, | F'(x2)] -
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Corollary 6. Under the assumptions of Theorem 4 with A = 1, the following inequality held:

dx

F(x1) + F(xa) 211K K1y %2 F(x)
2 -F - /
2 K1+ K2 K2 — K1 Jiq x2
< Kko(rg —xq)

==

1
X {(A9(K1,K2;1) + Agg(K1, K031)) 4 (A9(K1,K2;1)|f/(7<1)\q + A]o(K1,K2;1)|f'(K2)|q)

S

1
(B (k1,52 1) + Dra (K, ;1)) (An(’(lﬂ(z;1)|-;E/(K1)|L7 +A12(K1r’<2?1)|]:,(’<2)‘q)

3

Corollary 7. Under the assumptions of Theorem 4 with A = %, the following inequality held:

1 2K1K7 K1k /KZ F(x)
‘3 {}-(Kl) Jr]:<7<1 +K2> +}-(K2)} Ky —x1 Ji, X2 x

1 1\\ 17
< ko (Ko — K1) |:<A1 <K1,K2;§> + A (Klsz} §>>
1
1 N ) e 1 N o 0\
x (D1 K1, K25 5 + 43 11,25 3 [F (k1) |7+ | As 11, K2 5 + 4y K1, K2 5 | F'(i2) |
(o) 5 s (xmst))
5 Kl,K2,3 6 K1,K2,3
1
1 N w1 1 N o 0\
<\ |Bs|xiK2i 5 ) + A7 K1 k2 5 [F'(x1)|"+ | A6 K1,k 5 )+ Bg| K1 K2 5 | 7' (x2) | .

Corollary 8. Under the assumptions of Theorem 4 with A = 1, the following inequality held:

‘%{f(x1)+]:(1<1) +]__< 2K1K )} KK /K2 F(x)

2 K1 + K2 Ko — K1 Jr, X2

1 1\
< ko (Ko — K1) {<A1 (KHKz}Z) LY <K1,K2; Z))
1
1 1 - 1 1 DAY
< |81l o1 g )+ Bs( Kk g [F (k)| T+ | As K1 K5 5 |+ Bal K1 K2 |F' (1c2) |
+(a ) A 1))
5 K1,K2,1 6 Kl,Kz,Z
1
1 N 1 1 N s g\
x| |As | Kuk2i g |+ A7 { K2 | F'(k1)]" + | D6 K1, K25 )+ As | K1, K2 4 | 7' (12)] .

5. Application to Special Means

dx

For arbitrary positive numbers k1, k; (k1 # k3), we considered the means as follows:

1.  The arithmetic mean;
K1 + &
A:Ammgzi?£

2. The geometric mean;

G = G(x1,K2) = \/K1K3.
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IN

IN

3.  The harmonic mean;

2K1K:
H= H(Kl,Kz) = #
K1 + K2
4. The logarithmic mean;
K2 — K1
L=L(Kk,K) = — .
( ! 2) 11’1K2—11’1K1
5. The generalize logarithmic mean;
1
p+1 p+1 ?

Ly = Lp(x1,%2) = { , p € R\{-1,0}.

(k2 —x1)(p +1)

6.  The identric mean.

1
K2\ K=K
1( % i
T =1(xy,K2) = f<x§1> Jif KL F K2 e S0,
K1, if k1 = K2,

These means are often employed in numerical approximations and other fields. How-
ever, the following straightforward relationship has been stated in the literature.

HSGSLSI<A
Proposition 1. For k1, kp € (0,00) with k1 < Ky, the following inequality was true:

G2(x1,%2)

2AA(r1,12) = (24 = 1) H (11, %2) — L(x1,%2)

KK (Ko — K1)
{[A1 (K1, 52, A) 4 A3(cq, K25 A) + As (i1, 525 A) + A7 (1, 52; A)]
o fo<A< i
X Ao (K1, K25 A) + Ag (1, K23 A) + Do (i1, k2 A) + Ag (K1, 52, A)]KE T }
{[Ag (K1, K2; A) 4 A (i1, 125 A)] + [Aro (k1,52 A) + A (i1, 125 A) ]}, ifi<a<i

Proof. The inequality in Theorem 3 for mapping F : (0,00) — R, F(x) = x leads to this
conclusion. [

Proposition 2. For k1, € (0,00) with k1 < i, the following inequality was true:

2AA(K 2 7E) = (20 = )HP (0, 12) — G (1, 2) L] (1, )|
Ko (k2 — k1) (p +2)

{181 0r1, 23 2) + B (i1, 125 A) + Bs (1,123 2) + A (i1, a3 )]
, f0<A<)
y +[Aa(r1, k05 A) + Ay (1,52, 1) + Do (K1, K2, A) + As(Kl,Kz;/\)]Kfﬂ}
1
{[A9(K11K2;7\) + Ay (1eq, 1025 A) ) Fl<a<i
, 5 s A
+[A10(x1, %2, A) + A12(K1/K2;)\)]K§H} :

Proof. The inequality in Theorem 3 for mapping F : (0,00) — R, F(x) = xP*2, p €
(—1,00){0} leads to this conclusion. [
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References

Proposition 3. For k1, € (0,00) with k1 < i, the following inequality was true:

‘2/\A<K% Inw, K3 Iz ) — (24 = )2 (1, 12) In(H (i1, K2)) — G211, K2) 1n(1(x1,;<2))‘
< KoK — K1)

{[A1(r1, 12, 1) + Az(xq, K25 A)
+A5(K],K2; /\) + A7(K1,K2;)\)]K1 (K1 +211’1K])

, fo<A<i
+[A2(K1,K2;)L) +A4(K1,K2;/\) lf - < 2
X +A6(K1, K25 A) 4+ Ag (K1, 12; A)]Ka (12 + 21Inkn) }

{[Ag(Kl,Kz;/\) +A11(K1,K2;A)]K1(K1 +211’1K1) lf% <A<l

+[Ar0(x1, 12, A) 4 Ap (i1, 525 A) 2 (K2 +21InKp) } 7

Proof. The inequality in Theorem 3 for mapping F : (0,00) — R, F(x) = x%In x leads to
this conclusion. [

6. Conclusions

In this research, we proved some new inequalities of a midpoint type, trapezoidal
type, and Simpson type for differentiable harmonically convex functions. We also showed
that the results proved in this research were the refinements of some existing results in [7,9].
The findings of this study can be utilized in symmetry. The results for the case of symmetric
harmonically convex functions can be obtained in future studies. It is an interesting
and new problem that upcoming researchers can develop similar inequalities for in their
future work, with regards to differentiable coordinated harmonically convex functions.

Author Contributions: Funding acquisition, J.R., M.].V.-C. and T.S.; Investigation, J.R., M.].V.-C.,
M.A.A. and TS.; Methodology, ].R., M.J.V.-C.,, M.A.A. and T.S.; Supervision, M.].V.-C.,, M.A.A. and
T.S.; Writing—original draft, ].R., M.].V.-C.,, M.A.A. and T.S.; Writing—review & editing, J.R., M.].V.-C.,
M.A.A. and T.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the King Mongkut’s University of Technology, North Bangkok.
Contract no. KMUTNB-62-KNOW-26.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Acknowledgments: We want to give thanks to the Direccion de investigacion from Pontificia Uni-
versidad Catoélica del Ecuador for technical support to our research project entitled: “Algunas
desigualdades integrales para funciones convexas generalizadas y aplicaciones". All the authors
want to thank those appointed to review this article and the editorial team of Symmetry.

Conflicts of Interest: The authors declare no conflict of interest.

1.  Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications; RGMIA Monographs; Victoria
University, Melbourne, Australia, 2000.
2. Petari¢, J.E,; Proschan, E; Tong, Y.L. Convex Functions, Partial Orderings and Statistical Applications; Academic Press: Boston, MA,

USA, 1992.

3. Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and
to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91-95. [CrossRef]

4. Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula.
Appl. Math. Comput. 2004, 147, 137-146. [CrossRef]

5. Sarikaya, M.Z; Set, E.; Yaldiz, H.; Basak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional
inequalities. Math. Comput. Model. 2013, 57, 2403-2407. [CrossRef]

6.  Igbal, M.; Qaisar, S.; Muddassar, M. A short note on integral inequality of type Hermite-Hadamard through convexity. J. Comput.
Analaysis Appl. 2016, 21, 946-953.

7. lIscan, I. Hermite-Hadamard type inequaities for harmonically functions. Hacet. J. Math. Stat. 2014, 43, 935-942.

236



Symmetry 2022, 14, 302

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.
21.

22.

23.

24.

25.

26.

Iscan, I.; Wu, S. Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math.
Comput. 2014, 238, 237-244. [CrossRef]

Sanli, Z. Some midpoint type inequalities for Riemann-Liouville fractional integrals. Appl. Appl. Math. 2019, 2019, 58-73.

Butt, S.I; Yousaf, S.; Asghar, A.; Khan, K.A.; Moradi, H.R. New Fractional Hermite-Hadamard-Mercer Inequalities for Harmoni-
cally Convex Function. J. Funct. Spaces 2021, 2021, 5868326. [CrossRef]

Butt, S.I; Tariq, M.; Aslam, A.; Ahmad, H.; Nofal, T.A. Hermite-Hadamard Type Inequalities via Generalized Harmonic
Exponential Convexity and Applications. J. Funct. Spaces 2021, 2021, 5533491. [CrossRef]

Nwaeze, E.R.; Khan, M.A.; Ahmadian, A.; Ahmed, M.N.; Mahmood, A K. Fractional inequalities of the Hermite-Hadamard type
for m-polynomial convex and harmonically convex functions. AIMS Math. 2021, 6, 1889-1904. [CrossRef]

Viloria, ].M.; Vivas-Cortez, M.]. Hermite-Hadamard type inequalities for harmonically convex functions on n-coordinates. Appl.
Math. Inf. Sci. Lett. 2018, 6, 1-6. [CrossRef]

Sun, W. Generalized harmonically convex functions on fractal sets and related Hermite-Hadamard type inequalities. ]. Nonlinear
Sci. Appl. 2017, 10, 5869-5880. [CrossRef]

Liu, R;; Xu, R. Hermite-Hadamard type inequalities for harmonical (h1, hp)-convex interval-valued functions. AIMS Math. 2021,
4,89-103. [CrossRef]

Awan, M.U.; Akhtar, N.; Iftikhar, S.; Noor, M.A.; Chu, YM. New Hermite-Hadamard type inequalities for n-polynomial
harmonically convex functions. J. Inequal. Appl. 2020, 2020, 1-12. [CrossRef]

Baloch, I.A.; Chu, Y.M. Petrovi¢-type inequalities for harmonic /i-convex functions. J. Funct. Space 2020, 2020, 1-7. [CrossRef]
Baloch, L.A.; Mughal, A.A; Chu, Y.-M.; Haq, A.U.; Sen, M.D.L. A variant of Jensen-type inequality and related results for
harmonic convex functions. AIMS Math. 2020, 5, 6404—6418. [CrossRef]

Chen, F. Extensions of the Hermite-Hadamard inequality for harmonically convex functions via fractional integrals. Appl. Math.
Comput. 2015, 268, 121-128. [CrossRef]

Dragomir, S.S. Inequalities of Jensen type for HA-convex functions. An. Univ. Oradea Fasc. Mat. 2020, 27, 103-124.

Kunt, M.; Isscan, 1.; Yazici, N. Hermite-Hadamard type inequalities for product of harmonically convex functions via Riemann-—
Liouville fractional integrals. J. Math. Anal. 2016, 7, 74-82.

Set, E.; 1§car1, 1.; Zehir, E. On some new inequalities of Hermite-Hadamard type involving harmonically convex functions via
fractional integrals. Konuralp J. Math. 2015, 3, 42-55.

Sitthiwirattham, T.; Budak, H.; Kara, H.; Ali, M.A.; Reunsumrit, ]. On Some New Fractional Ostrowski- and Trapezoid-Type
Inequalities for Functions of Bounded Variations with Two Variables. Symmetry 2021, 13, 1724. [CrossRef]

You, X.X.; Ali, M.A; Budak, H.; Agarwal, P.; Chu, Y.M. Extensions of Hermite-Hadamard inequalities for harmonically convex
functions via generalized fractional integrals. J. Inequal. Appl. 2021, 2021, 1-22. [CrossRef]

You, X.X.; Ali, M.A_; Budak, H.; Reunsumrit, J.; Sitthiwirattham, T. Hermite-Hadamard-Mercer-Type Inequalities for Harmonically
Convex Mappings. Mathematics 2021, 9, 2556. [CrossRef]

Zhao, D.; Ali, M.A.; Kashuri, A.; Budak, H. Generalized fractional integral inequalities of Hermite-Hadamard type for harmoni-
cally convex functions. Adv. Differ. Equ. 2020, 2020, 1-37. [CrossRef]

237






symmetry

Article

New Generalized Class of Convex Functions and Some Related
Integral Inequalities

Artion Kashuri 1, Ravi P. Agarwal 2 Pshtiwan Othman Mohammed 3, Kamsing Nonlaopon 4x
Khadijah M. Abualnaja ° and Yasser S. Hamed °

Citation: Kashuri, A.; Agarwal, R.P;
Mohammed, P.O.; Nonlaopon, K.;
Abualnaja, K.M.; Hamed, Y.S. New
Generalized Class of Convex
Functions and Some Related Integral
Inequalities. Symmetry 2022, 14, 722.
https:/ /doi.org/10.3390/
sym14040722

Academic Editor: Nicusor Minculete

Received: 12 March 2022
Accepted: 31 March 2022
Published: 2 April 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Mathematics, Faculty of Technical Science, University “Ismail Qemali”, 9400 Vlora, Albania;
artion.kashuri@univlora.edu.al

2 Department of Mathematics, Texas A & M University-Kingsville, Kingsville, TX 78363, USA;
Ravi.Agarwal@tamuk.edu

Department of Mathematics, College of Education, University of Sulaimani, Sulaimani 46001,

Kurdistan Region, Iraq; pshtiwan.muhammad@univsul.edu.iq

4 Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
Department of Mathematics and Statistics, College of Science, Taif University, P. O. Box 11099,

Taif 21944, Saudi Arabia; Kh.abualnaja@tu.edu.sa (K.M.A.); yasersalah@tu.edu.sa (Y.S.H.)

*  Correspondence: nkamsi@kku.ac.th; Tel.: +66-86642-1582

Abstract: There is a strong correlation between convexity and symmetry concepts. In this study, we
investigated the new generic class of functions called the (1, m)-generalized convex and studied its
basic algebraic properties. The Hermite—Hadamard inequality for the (1, m)—generalized convex
function, for the products of two functions and of this type, were proven. Moreover, this class of
functions was applied to several known identities; midpoint-type inequalities of Ostrowski and
Simpson were derived. Our results are extensions of many previous contributions related to integral
inequalities via different convexities.

Keywords: Hermite-Hadamard inequality; Ostrowski inequality; Simpson inequality; (1, m)-generalized
convexity

MSC: 26A33; 26A51; 26D07; 26D10; 26D15; 26D20

1. Introduction and Preliminaries

The twenty-first century began with the introduction and establishment of new tools
used to solve linear and nonlinear differential and difference equations. In terms of the
convexity theory, one important development involves defining a new class of convex
functions, which is then tested on the well-known inequalities. “As it is known, inequalities
aim to develop different mathematical methods. Nowadays, we need to seek accurate
inequalities for proving the existence and uniqueness of the mathematical methods. In
recent years, especially over the past two decades, several authors have been engaged in
the study of inequalities, including various function classes (symmetric or asymmetric)”,
see [1]. Moreover, the modern convexity theory has motivated researchers to propose a
new generalized class of convex functions and to investigate their special models, which
could effectively be used in different fields, in particular, agriculture, medicine, reliability
engineering, demography, actuarial study, survival analysis, and others. Kasamsetty et al.
in [2] defined a new class of convex functions used to delay modeling and established
an application to the transistor sizing problem. Awan et al. in [3] obtained new classes
of convex functions and inequalities. Hudzik and Maligranda in [4] investigated the
class of s-convex functions. Eftekhari in [5] derived new results using (s, m)—convexity
in the second sense. Kadakal and Iscan in [6] established related inequalities via the
exponential type convexity. Agarwal and Choi in [7] used fractional operators and found
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their image formulas. Rekhviashvili et al. in [8] described damped vibrations via a fractional
oscillator model.

In much of the literature, we can see various Hermite-Hadamard (HH) inequality types,
in which one of the known classes of convex functions is utilized (e.g., [9-11]). Moreover,
some generalizations of the HH integral inequalities, such as HH-Fejér, AB HH, midpoint
HH, mid-end-point HH, conformable HH, and HH-Mercer integral inequalities are found
(e.g., [12-14]). In addition, different integral inequalities using those convexities are investi-
gated. Ujevi¢ in [15] obtained sharp inequalities for Simpson and Ostrowski types. Liu et al.
in [16], using the MT—convexity class derived Ostrowski fractional inequalities. Kaijser
et al. in [17] established Hardy-type inequalities via convexity. Rashid et al. in [18], using
generalized k-fractional integrals, found Griiss inequalities. For more recent published
papers on HH, see [19,20].

Let us review some fundamental and preliminary results on convexity and inequality.

Definition 1. Function © : T C R — Riis called convex, if

O(ox1 + (1= 0)x2) < ¢O(x1) + (1 - 0)O(x2), 1)

holds for all x1, xo € T (T is an interval with real numbers and R is the set of real numbers) and
0 € [0,1]. Moreover, ® is concave if (—©) is convex.

Definition 2 ([4]). Let s € (0,1] be a real number. A function ® : T C R — Ris called s-convex
(in the second sense), if

O(ox1 + (1 -0)x2) <0°0(x1) + (1 - 0)°O(x2), o)

holds for all x1,x2 € T, and ¢ € [0,1].

Definition 3 ([21]). Let T, J be intervals in R, (0,1) C J and let h : J — R be a nonnegative
function, and h # 0. A nonnegative function ® : T — Ris called h-convex, if

O(ox1 + (1 —0)x2) < h(0)O(x1) +h(1-0)O(x2), ®3)

holds for all x1,x2 € T, 0 € (0,1).
Toply et al. [22] introduced the following class of convex functions:

Definition 4. Let n € N. A function ® : T — R is called n—polynomial convex, if
1 n ¢ 1 n /]
Olx+(1-or) <5 ¥ [1-1-0"eq) +: ¥ [1-d"|et), @
n,= n,=
holds for every x1, x2 € T, and ¢ € [0,1].

Recently, Rashid et al. [23] defined the following class of convex functions:

Definition 5 ([23]). Assume that s € [0,1] and n € N. A function ® : T — R is said to be
n—polynomial s—type convex, if

1 & 1 &

n

Y [1-6-o) e+ ¥ [1- 600k, ©

6=1 =1

Oox1 + (1-0)x2) <

holds for every x1, x2 € T, and ¢ € [0,1].

The following double inequality, namely the HH inequality, is remarkable, and it played
an important role in the analysis.
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’2 {9(7(1) +4®<%) +®(X2)] - XZ@(x)dx

Theorem 1 (HH inequality [24]). Let © : T C R — R be a convex function on T for x1,xX2 € T
and x1 < X2, then

xXitx 1 X O(x1) +0(x2)
®< 2 > = X2 —x1 /)a Oleyde < =55 ©

The following well-known inequality is called the Ostrowski inequality:

Theorem 2 (Ostrowski inequality [16]). Let ® : T C R — R a differentiable function in the
interval T and let x1, x2 € T with x1 < x2.If |®' (x)| < M forall x € [x1, x2), then

<>}

1
X2 — X1

O(x) - )

(x2—x1)?

[ (| < Moz - 1) {1 +
X1

Another type of inequality is obtained by Dragomir et al. [25], which is as follows:

Theorem 3 (Simpson inequality [25]). Assume that © : [x1, x2] — R is a four-time continuous
and differentiable function on (x1, x2) such that |©®|| := SUP v (1, 1) |0@ (x)| < oo with
X1 < X2, then

1 46 ()
<y — )
< 5880 X2 — X110 [leo 8)

X2 = X1 /x

For brevity, we denoteby D = {hy, hy, ..., hy, §1,82, .., gm} the convex set in the sequel.
Motivated by the above results, we introduce the following generic class of
convex functions:

Definition 6. Suppose that 1 < n < m, where n,m € N, and assume that hy,, g, : 0,1 —
[0, +00) are continuous functions for all 6 = 1,2,...,nand l; = 1,2,...,m. A function
© : T — R, which is nonnegative, is said to be (n, m)—generalized convex with respect to D, if

Oox1 + (1-0)x2) < (i i hzl(Q)>®(X1) + (1111 ﬁ 822(9)>®(X2), )
h=1 o1

holds for every x1,x2 € Tand ¢ € [0,1].

Remark 1. From Definition 6, we can observe that:

Ifn=m=1hy(0)=1- (1~ 0) and gy, (0) = 1 — o2, then we have Definition 1.
Ifn=m=1,hy(0) = ¢ and gs,(0) = (1 — @)°, then we obtain Definition 2.
Ifn=m=1,hy (o) = h(o) and g¢,(0) = h(1 — q), then we obtain Definition 3.
Ifn=m,hy(0) =1—(1—0)" and g, (0) = 1 — 0, then we obtain Definition 4.
Ifn=m,hy(0) =1— (s(1—0))" and g4, (0) = 1— (s0), then we obtain Definition 5.
Interested readers can derive many other known and unknown classes for suitable choices of
the above functions hy, and g, .

ISR EE S

This article is divided into five sections: in Section 2, algebraic properties of the
(n, m)—generalized convex function are presented. In Section 3, a new version of the HH
inequality is presented; by using this definition, we will also derive the products of two
functions of this type. In Section 4, we obtain general results by using the well-known
identities of midpoint-type inequalities of Ostrowski and Simpson for our new defined
convex functions; we obtain special cases from these. Section 5 concludes the article.
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2. Algebraic Properties of the New Convex Function

This section deals with algebraic properties of our new definition.

Theorem 4. Suppose that 1 < n < m, where n,m € N, and assume that hy,, g, - [0,1] —
[0, +00) are continuous functions forall ¢4 = 1,2,...,nand b, =1,2,...,m,and ©, ©1, O :
T — R.If©, Oy, and O, are three nonnegative (n, m)-generalized convex functions with respect
to D, then

1. Oy + Oy is the (n, m)—generalized convex with respect to D;
2. c®is the (n, m)-generalized convex with respect to D for any nonnegative real number c.

Proof. The proof is evident, so we omitit. [

Theorem 5. Suppose that 1 < n < m, where n,m € N, and assume that hy,, g, : [0,1] —
[0, +00) are continuous functions forall ¢1 = 1,2,...,nand l; =1,2,...,m. Let ©1 : T — R be
a convex function and ®, : R — Ris a non-decreasing and nonnegative (n, m)-generalized convex
function with respect to D. Then the function © o ©1 : T — Ris an (n, m)-generalized convex
with respect to D.

Proof. Forall x1, x» € Tand ¢ € [0,1], we have

(@2001)(0x1 + (1 —0)x2) = ®2(O1(ex1 + (1 - 0)x2))

< @2(001(x1) + (1 - 0)O1(x2))

< Zh41 >®2®1X1 ( Zg;z ) (©1(x2))
£

=1

IN

@, 004)( ( Zgzz >®2O®1)(X2),

lr=1

which ends our proof. [

Theorem 6. Suppose that 1 < n < m, where n,m € N, and assume that hy,, g, : [0,1] —
[0, +-00) are continuous functions for all {4 = 1,2,...,m and ¢ = 1,2,...,m. Let O :
X1, x2] = R be a family of nonnegative (n, m)-generalized convex functions with respect to
D and O(x) = sup, Ok(x). Then © is an (n, m)-generalized convex function with respect to D
and U = {x € [x1,x2) : O(x) < +oo} is an interval.

Proof. Let x1,x2 € U and ¢ € [0, 1], then

Oox1 +(1—0)x2) = sup O(ox1 + (1—0)x2)

( E hye, (0 ) sup Ok (x1) ( Z 8o (0 ) 51;P®k(7(2)

6=1 =1

( Z he, (0 >® 1)+ (;l Z gzz(@)>®(7cz) < +oo,
(=1 =1

IN

which ends our proof. [

Theorem 7. Suppose that 1 < n < m, where n,m € N, and assume that hy,, g, - [0,1] —
[0, +o0) are continuous functions forall ¢ = 1,2,...,nand l; = 1,2,...,m. If© : [x1, x2] = R
is a nonnegative (n, m)-generalized convex function with respect to D, then ® is bounded on
[x1, x2)-
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Proof. Let K = max{®(x1),®(x2)} and x € [x1, x2]. Then, there exists ¢ € [0,1], such
that x = gx1 + (1 — @) x2. Moreover, since h,, g, are continuous functions on [0, 1] for all
4 =1,2,...,nand {, = 1,2,...,m, then we denote, respectively, L1 = max{hy, ha,..., h,}
and Ly = max{g1,$2,-..,gm}- Hence,

O(x) = O(ox1 + (1~ Q)x2) < (1 > hz1<e>>®(xl>+ (fn » g@(g))@(m)

=1 =1

<K

1 n 1 m
P BACE DY gzz(e)}
6=1 (=1

<K

1 n 1 m
=Y Li+— ) L
ny= m, =

= K(Li +Lp) = M.

Moreover , for all x € [x1, x2], there exists ¢ € [0, X2 _Xl], such that x = X3%2 4 7 or

2 2
X = Xq){z — (. Let us suppose that x = @ + ¢ without loss of generality. So, we have

xitx\ _ofl{xitx 1lx+x
o(17) o532 4]+ 5% 4]

GEn Qe (e ()9

< LiO(x) + L2®<w - C’)-

By making use of M as the upper bound, we can deduce

o(x) > i@(@) “M=nm,
L 2

which ends our proof. [

3. The HH Inequality for the New Convex Function

In this section, we will establish some integral inequalities of the HH-type pertaining to
the (n, m)-generalized convex functions.

Theorem 8. Assume that 1 < n < m, where n,m € N, and assume that hy , g, : 0,1 —

[0, +-00) are continuous functions forall (1 = 1,2,...,nand b, =1,2,...,m. If© : [x1, x2] = R
is a nonnegative (n, m)—generalized convex function with respect to D, then we have

X
1 1 : 1 1 ®<X142'7(2> < 1 / 2®(x)dx
Lrhahe (1) + A hoisn(3) X2 X in

Ox) +O(x2)\ |1 ¢ 1 ¢
< (SR [} ) £ ) o

where

1 1
Hy, ::/O he(0)do, Y0 =1,2,...,n and Gy, ::/Oggz(g)dg, Vly=1,2,...,m.
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Proof. Let wy, wy € [x1, x2]- Applying the (1, m)-generalized convexity with respect to D
of ® on [x1, x2], we have

@(wl 42-w2> <= Z hh( ) wy) + %Z:gggz(%)@(wz). (11)

é*l

Let us denote, respectively, w; = 0x2 + (1 — 0)x1 and wy = 9x1 + (1 — 0) x2. From inequal-
ity (11), we obtain

®<M) < % Y he, <%>®(Q7(2 +(1=0ox1) + % Y. 8 (%)6(% +(1-0)x2)- (12)
f=1 l=1

Integrating on both sides (12), with respect to ¢ from 0 to 1, we obtain

o111 < (i(ilhzl (;)) [} oo+ (1 - e

1 & 1 1
" ("%22—1% (2)> |, en + (1~ o)xa)de

_ (111/2_1 hy, (%) Z 8@( )) o ixl /X2®(x)dx,

which gives the proof of the left hand side of (10). For the right hand side of (10), we use the
definition of (1, m)-generalized convexity with respect to D of ®, where ¢ € [0,1]. Hence,

Oox1+(1- ( Z he (o ) x1)+ (;éﬁ gz2(9)>®(7cz),
=1

and

Olox2 + (1 - Q) < (i[i hh(e))@(m ¥ (,}1[2 gb(e))@(xl).
1=1 h=1

Adding both of them, we have

O(ox1 + (1-0)x2) +O(ox2 + (1 — ( Z hy, (o ) X1) + (31 ﬁ g[z(@)>®(X2)
o1

=1

(3 Er)o (5 Lsuo)onr o

Integrating on both sides (13) with respect to ¢ from 0 to 1, we obtain

-1
[ 0oxi + (1 - e+ [ 0oz + (1 - om)ie

A Eroou (3 oo

L[ (oo
which leads to

n =1 lh=1

X2 —X1/x
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which ends our proof. [

Remark 2. We have particular cases from Theorem 8:

o Ifhy (o) = oand g,(0) = g forall ty = 1,2,...,nand lp = 1,2,...,m, we have
Theorem 1.

e Ifn=mhy(0) =1—(s(1— o) and g, (0) =1 (so)2 fors € [0,1], 64 =1,2,...,n
and U, =1,2,...,m, we obtain ([23], Theorem 2.1).

e Ifn=m hy(0) =1—(1—0)" and g,,(0) = 1— o forall & = 1,2,...,n and
lr=1,2,...,m,weobtain ([22], Theorem 4).

Theorem 9. Let 1 < ny < myand 1 < ny < my where ny,ny,my, my € N. Assume that
hg?,géi),h;{z),gl(z) : [0,1] — [0, +4o00) are continuous functions for all {4 = 1,...,nq, { =
1,...,m,k=1,...,nmpandl =1,...,my. If®,¢ : [x1, x2) = Rare nonnegative (ny,m,) and
(1, my)—generalized convex functions with respect to

D) — { Ay h<1) .,hgl?,ggl),gél),...,gﬁ,}l)}, and
{h 2) h .. hﬁlzz), giz), géz), R gfnzz) }, respectively, then we have

SN
O(x)yP(x)dx
P (x)p(x)
1 no Ny n omy
< A © B
< ”1”2112—:11?: ok @) w(xa) + "1’”2@;11): 0 )¥(x2)
1 m my my
+ C O(x D , (14
gy 1/3221 ko mlmZZZEUZi i |OX2)P(x2), (14)
where
Ank: / KV @nP()de, V& =1,2,...,m, Yk=12,...,m,
Biyy: /h[1 oo, Vi =12...,m, VI=12,..,m,

Crpy 1= /h 08 (0)de, Yk=12,...,m, Yl =12,...,m,

and

M@
Dy, ::/O 8, (0)g; 7 (0)do, Yl =1,2,...,my, YI=1,2,...,my.

Proof. Applying (111, m;) and (15, m;)-generalized convexity with respect to D(1) and D)
of ®, ¥ on [x1, x2], respectively, we have

®(ox1+(1-0)x2) < (nl Y h@?(e))@(mw (1 Y gé?(e))@(m) (15)
14=1 m o=

and

Pploxi+(1—0) < Zh >X1)+(;f;g§2>(e)>w<m (16)

1=1
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Multiplying inequalities (15) and (16) on both sides, we obtain
O(ox1 + (1 —)x2)plox1 + (1 - )x2)

(L% hé?(e)) (1 5 h,@(e))@(m)wm)
hé”(q)) (1 g§2><q>>@<xl>w<>@>
hi%)) <1ﬁ1g2><e>>®m>w<xl>

+<nilﬁg§z >< Zgz ) 2)e(0). (17)

Integrating inequality (17) with respect to ¢ from 0 to 1 on both sides, we obtain

1
X2 — X1

= <n1n2[ — &= 1/ hfl dQ>®( Dpx1)

(im £2 15?<g>g;2><e>d@)®("““’("”

mma g 711 1

[ lers + (1 - nawlens + (1 - ke = L [* O

+< 1 "2 ml /1h()(9)82)(9)'1@)@(9‘2)4’()“)

”Zmlk 10=1

+< my mz/ gzz dg)@( )lIJ(XZ)

mymz 12 11=1

1 1o 1 n np
< E Y A, ) DY(x1) + (nlmz GXJ Y B, )9()(1)1/1()(2)

mn2 "=

( ﬁ % Ckfz> 2)p(x1) + ( % EDQ ) 2)P(x2),

M 21 =1 mimy ==
which ends our proof. [J

4. Further Results

We denote by L[x1, x2| the set of all integrable functions on [x1, x2|. Let us recall the
following lemmas in order to establish our following results.

Lemma 1 (Midpoint identity [26]). Let ® : T C R — R be a differentiable function on t and
X1, X2 € Twith x1 < x2.If®'" € L[x1, x2], then

1 X2 X1+ X2
T(®; x1,x2) = / 0(0)d f®<7>
(®;x1,X2) Py (0)dao 7

_be-—x) )t (e 2-9¢ to(e 2-¢
e /OQG) SN+ 5= dQ*/OQ@ St do . (18)

Lemma 2 (Ostrowski identity [27]). Let ® : T C R — R be a differentiable function on T and
X1, X2 € Twith x1 < x2.If©" € L[x1, x2), then
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1 X2
T1(O; x, x1, = 0O(x) — O(0)d
1050 x1,02) = O() - [ “@(e)de

_ (x—x)?

/ - GRSy ey B
= X1 / 00" (0x + (1 —¢)x1)de — /()Q@ (ox + (1—0)x2)do. (19)

X2

Lemma 3 (Simpson identity [28]). Let © : T € R — R be a differentiable function on T and
X1, X2 € Twith x1 < x2.1f®'" € L[x1, x2|, then

Ta@i 1) =  [O(n) +40( 172 ) 0| - L [P elode

= ()cz—)m){/j (Q—%)®’(Qm+(1—e)m)d@+/; (Q—Z)®’(@m+(l—e)xl)de}~ (20)

Theorem 10. Suppose that 1 < n < m, where n,m € N, and assume that hy,, ¢, : [0,1] —
[0, +o0) are continuous functions forall ¢ = 1,2,...,nand l, = 1,2,...,m,and © : [x1, x2] —
R be a differentiable function on (x1, x2) such that © € L[x1, x2]. If |©'| is an (n, m)-generalized
convex function with respect to D on [x1, x2], then we have

IT(0; x1,x2)| < M(\@/(MN +10'(x2)| { Z Uy, +* Z Vi, | (21)

where
1 1
o qQ _ L Q _
Uy, .7/0 thl<§)dg, Vi =1,2,...,n and Vy, .7/0 Qg[2(§>dg, Vil =1,2,...,m

Proof. By using Lemma 1 and the (1, m)-generalized convexity of |@’'| with respect to D,

we have
T(®:X1/X2)|<(X24M){/0196<QX + 250 )‘d“/ ‘ ( (229)’“>d9}

—W{/ K Z’%( )>|@’ml+< Zgzz( )>|®'Xz)]d9
*/ong (s ))'6/ < Lsu(s ))6’7(1)}119}

= 2220 107 + [ ()| { ¥ Uyt Y
6H=1 m, =

’

which ends our proof. [

Corollary 1. We have particular cases from Theorem 10:
e Ifhy(0) =gand g, (0) =1—qforall {1 =1,2,...,n,and b, = 1,2,...,m, we obtain

T©: 0, x0)] < 25 ()| 40/ ()]

247



Symmetry 2022, 14,722

o Ifhy(0) = 0" and gi,(0) = (1—0)2 forall &1 = 1,2,...,n,and {, = 1,2,...,m
we obtain

T@©xx) < 27 16/ 0)] + 10/ ()]

1y 1 Ly V(2 o \_ b (oni2_
X[n£121241(€]+2)+m€;1242(fz+1(22 -5 )

o Ifhy(0) =0 and gr,(0) = (1 =) forallty =1,...,m, 0, = 1,...,m,and s € (0,1],
we obtain

22 (1)) 4100 ()
e+ 2 (o (1) - 5 (2-1)]

Theorem 11. Suppose that 1 < n < m, where n,m € N, and assume that by, 80, 0,1] —
[0, +00) are continuous functions forall (4 = 1,2,...,mand b, =1,2,...,m,and © : [x1, x2] —
R be a differentiable function on (x1,x2), such that ® € L[x1,x2). If |©’|1 is an (n,m)—
generalized convex function with respect to D on [x1, X2}, then for g > 1 and % + % =1,

we have
l {

T(©x0,x2)] < ¢

~

. e—x)( 1
IT(0; x1, x2)| < 1 ﬁ

(iiMQ®va<;iMJWmW}
=1 (=1

+ <:l i Mm) ‘®/(7(2)|q + <; i Ng2> |®’(X1)|'7:| ! }, (22)
=1

=1

where

-1 -1
M, ::'/0 ho(3)de, Yo =12...n and N, ::/ngz(g)dg, Vi =12,...,m

Proof. By using Lemma 1, Holder’s inequality and the (1, m)-generalized convexity of

|@’|1 with respect to D, we have
— 1 2
T (@ x1,x2)| < W{/@ 0|® <QX +( )‘dcﬂr/ ( i ZQ)m)d@}

<t ([ew)

(3o 552 ) ([ (3 250
<) |
AL B @) (s £ cer)s]
AT(Z%(D@Mq% Zw@D m@ﬂ}

6=1 =1

{ur

ng> i }

==
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[y

:chlm(pil){[( ZMﬁ>|®/><l |ff+( Zl%) }
n (31 i Mz1>|®'()€2)|q+ <iz i Ngz>®/(xl)q:| q},
6=1 b=l

which ends our proof. [J

Corollary 2. We have particular cases from Theorem 11:
e Ifhy(0) =oand gs,(0) =1—qforallty =1,2,...,n,and b, = 1,2,...,m, we have

1
_ 1 \7 1 1
@l < 2T (2 (16 o)+ 310/ (e -+ (310 Cea) P+ 10/ el .
o Ifhy(0) = 0" and g1, (0) = (1—0)2 forall &1 = 1,2,...,n,and {, = 1,2,...,m
we obtain
1
_ (e—x1) (1 \»
T @ xux2)l < 5 PE

1 X 1 , 1 222+1 -1 , %
X { {(n ZIZ:‘,l w) |© (x| + (m ZZZ::I 2[2((2+1)> [S] (Xz)ﬂ

1 2 1 , 1 M 2é2+171 , %
<n[1212g1(€1+1)> |©"(x2)|7 + <m 5221262(@+1)>|® (Xl)d }

o Ifhy(0) =0 and g1, (0) = (1 =) forallty =1,...,n, 0, = 1,...,m,and s € (0,1],

+

we obtain
1
) (1)
T(0; x1,
@ < (s

< {10 ()7 + (21 - )\@'(;@W + [+ —nle/ ()l + \@’Ocz)\ﬂ%}

Theorem 12. Suppose that 1 < n < m, where n,m € N, and assume that h;l,ggz :[0,1] —
[0, +00) are continuous functions forall (4 = 1,2,...,mand by = 1,2,...,m,and © : [x1, x2] —
R be a differentiable function on (x1,x2), such that © € L[x1,x2). If |©'|7 is an (n,m)-
generalized convex function with respect to D on [x1, x2|, then for q > 1, we have

@) < B8 (1) {

q

( » Um) ' (x)l" + <;/i V@)IG)/(Xz)Iq}

4=1

(i(i uz1> 1 (x2)1? + ( 5 wz>|® () H 23)
/=1

=1

where Uy, and Vy, are defined as in Theorem 10.

Proof. By using Lemma 1, the well-known power mean inequality and the (1, m)—-generalized
convexity of |@’|7 with respect to D, we have

T(®;X1,Xz)I<W{/()1Q®(QX+( )‘d‘”/ ' (W(z Q)’“>dg}
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1-1

()
(b5 ) ([ 25
< ) (1)
AU (3L @)oo (& £ eald)) ooe ‘7>de]
+ /;Q((rlzglilhfl )@’ X2 |‘7+< Egzzz( )>|®’ X1)|q>d9} }
9

(XZ ;Xl ”{ |: i >|@ x0T+ <71n [f V42> |®/(XZ)|q:| q
=1 (=1

[ gformr (2 )]}

which ends our proof. [J

) ;}

Corollary 3. We have particular cases from Theorem 12:

e Ifhy(0) =qand g,,(0) =1—qforallty =1,2,...,n,and b, = 1,2,...,m, we obtain
. (X ) / q q 1 / q / q 1
T (@132 < 22 ZE{ (10 Gaa) 1+ 210 Gea) 1]+ (2100 Gen) 1+ 1/ ()] .

e Ifhy (o) = o't and g4,(0) = (1 —0)2 forall ¢y = 1,2,...,n,and €, = 1,2,...,m
we obtain

IT(®; x1.x2)| < M(})l‘%
) { Klgzl M) © (1) "
+ G”f (1 (7 1) - (- 1>>> l@/(m)lq} |
(1 by @) ()l

1w 1( 2 nn_y__1 (hnn_ , qﬁ
+<m4§12ﬂ2<£2+1<22 1) €2+2(22 1)>>|@(X1)| )

o Ifhe(0) = 0 and g¢,(0) = (1 —o)* forall by =1,...,n, b =1,...,m,and s € (0,1],
we obtain

+
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EEN

1—
IT(©; x1,x2)| < ()(24;%1) (%)

- {[25<s+z>'® Wl + 5 (737 (2 -1) - 5 (272 -1) )leGar|”

[« (2 (=) - =) o]}

Theorem 13. Suppose that 1 < n < m, where n,m € N, and assume that hy , g, : 0,1] —
[0, 4+00) are continuous functions forall {4 = 1,2,...,mand b =1,2,...,m,and © : [x1, x2] —
R be a differentiable function on (x1, x2), such that © € L[x1, x2). If |©’| is an (n, m)—generalized
convex function with respect to D on [x1, x2|, then we have

[T1(0;x, x1, x2)| < -x)? K Z Ef1>®/ < 2 F£2>|® (?Cl)]

X2 —X1 £=1

(g (L)

X2 — X1

where
1 1
Ey, :/0 ohy (0)do, V04 =1,2,...,n and Fy, ::/O 08r,(0)do, Vil =1,2,...,m

Proof. By using Lemma 2 and the (1, m)—generalized convexity of |@'| with respect to D,
we have

x—x1)? 1
i) < EE [l ter+ (- o)le

)2 1
+%/0 0|®'(ox + (1 - 0)x2) |do

S k(s (2 £ o)
LG o (3 oo
G Emeer (b EnJew

(x2—x)? u | 1
Jr}‘(2*)(1 {( Z_: >® |+<m[2

which ends our proof. [

S’\H

NgE

Fz;) ®'(X2)},

\ |
—

Corollary 4. We have particular cases from Theorem 13:
e Ifhy(0) =qand g, (0) =1—qforall by =1,2,...,n,and by = 1,2,...,m, we obtain

a2
@3 012 < 2 ey 410 ()] + 27 il () + 10/ ().

6(x2 —x1) 6(x2 — x1)
o Ifhy(0) = 0" and gi,(0) = 1 —0)2 forall &4 = 1,2,...,n,and & = 1,2,...,m,
we obtain
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' ( x—x1)?
T1(0;x, x1, <
[71(0;x, x1,x2)| < g

i: )9/ x)|+ <1 /ile)@/(Xl)]

(X2 —x)? 1 & 1 ,
+M{<n€§1€1+2>|®( )+< Z (€2+1)(52+2)>|® (Xz)l}

o Ifh (o) = 0®and g¢,(0) = (1 — o) forall by =1,...,n,lp =1,...,m,and s € (0,1],
we obtain

1
ITL(©; %, x1,x2)| < G+1)(s+2)

x—x1)? , , — )2 ) /
* {w[(erl)I@ () +10'(x1)l] +%[(s+l)l® ()| +10'(x2)1] }

Theorem 14. Suppose that 1 < n < m, where n,m € N, and assume that hy , g, : 0,1] —
[0, +o0) are continuous functions forall ¢ = 1,2,...,nand by =1,2,...,m,and ® : [x1, x2] —
R be a differentiable function on (x1, x2) such that @' € L[x1, x2]. If |©'|1 is (n, m)-generalized
convex function with respect to D on [x1, x2], then for g > 1 and % + % = 1, we obtain

1
1 \7

O;x,xux2)| < | —=
[71(0; x, x1, x2)| (p+1>

X{(Xz_";ﬁ ( ZH )@’ |f'+<;ez>mllc@>®’<xl>wr
_ 2 n m %
+("2">K}1 > H@>®’<x>|ff+ (; Y G@>|®/<m|ﬂ } 5)
6=1 lh=1

X2 — X1

where Hy, and Gy, are defined as in Theorem 8.

Proof. By using Lemma 2, Holder’s inequality and the (1, m)-generalized convexity of
|©’|1 with respect to D, we obtain

(x—x1)?

1
o /0 0|®"(ox + (1 - @)x1)|de

IT1(0; %, x1, x2)| <

_2
+%‘/0 0|®"(ox + (1 - 0)x2)|de

< B0 () ([l er+ - o)
(] v ([t 0-ona)
< (1) {W{/o(( L hlo )6’ "+< L e )@’xnw) r
*MU) (( ,}Zl’% ) I“( ¥ s >I® mw)dgr}

==
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ET

(o) {5 [ oo (5 B

1
q }

Corollary 5. We have particular cases from Theorem 14:

e Ifhy(0) =qand gs,(0) =1—qforall &y =1,2,...,n,and b, = 1,2,...,m, we obtain

1 1
1\ 1 ?

. < (= -
[T1(8; %, x1, x2)| < <2) (p+1>

1 —x)? 3
X{WU@« DI+ 10/ ()l + ()(2)[|®'(X)I'7+I®’(Xz)‘7]”}-

+(X2—x
X2— X1

(n Z H, )@’ 0|7 + (;[i Gzz>®’(7cz)|’4
/=1

which ends our proof. [J

X2 — X1

e Ifhy (o) = o't and gi,(0) = 1 —0)2 forall ¢y = 1,2,...,n,and £, = 1,2,...,m,
we obtain

[71(0;x, x1, x2)| < (P
x_Xl 1 & / 1 & 1 / %
ol o (s

+(jc(§—;1{< 2£1+1> |q+< Z"£+1> XZ)'F}'

o Ifhy(0) =0 and g1, (0) = (1 —o) forallty =1,...,m, 0, = 1,...,m,and s € (0,1],
we obtain

1 1
1Yo/ 1 \?

. < p+1
IT1(0;x, x1, x2)| < <s+1) (p+1>

Y — )2 1 —x)? 1
X{(’“’n@'(x)m@'( DI+ ()(2)[|®'(x)|q+|®’(m)‘7]”}-

X2 — X1 X2 — X1

Theorem 15. Suppose that 1 < n < m, where n,m € N, and assume that hy,, g, : [0,1] —
[0, +o0) are continuous functions forall ¢ = 1,2,...,nand l, =1,2,...,m,and ® : [x1, x2] —
R be a differentiable function on (x1, x2), such that @' € L[x1, x2]. If |@'|7 is the (n,m)-
generalized convex function with respect to D on [x1, x2], then for g > 1, we have

1- i
|71(0; x, x1, x2)| < (%) {(;Z__X;ﬂ K /2 Eg, >|®' T+ (1 lZ F42> |’ (Xl)ﬂ
1=1 =1

(X2 —x)? B lo@r+ (L3 E ) e .l o
+ pra— K 5121 (1> )T+ mzzz::1 5 |10 (x2)] , (26)

where E¢, and Fy, are defined as in Theorem 13.
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Proof. By using Lemma 2, the well-known power mean inequality and the (1, 1)-generalized
convexity of |@'|7 with respect to D, we have
x—x1)? !
Ti@r 10 < S [ gl ox 4 (1 - ) e
X2—X1 Jo

_ 2 1
*%/0 0|®'(ex + (1 - 0)x2)|de

: % </01 Qd@>li% (/01 0@ (ox + (1~ Q)X1)|ng> !

O R S
lq+< Zgzz >|® xm) ]

< () [ (2 8w

2

— x)2
(1 Em@) e (3 £ w) o i }
(1) T xx \ i
_<5> {XZ—)IC][< ZE«1>|® |"+< ézilaz)@(xl)l]
(X —X 1 , %
W ( ZE) "’+(m6221w2)|® (m)q} }

which ends our proof. [J

Corollary 6. We have particular cases from Theorem 15
n,and by =1,2,...,m, we obtain

Ifhy (o) = 0and g, (0) =1 —oforall {; =1,2
T.(0; 1
4 —_—
[T1(®;x, x1,x2)| < 203

1 — x)2 , , 1
X{(Xz_,()m@( 4100+ L2 22E oo+ 0/ e ]

o Ifh (o) = ot and 8,(0) = (1fg)ﬁzfor all b1 = 1,2,...,n,and b, = 1,2,...,m,
we obtain
1\'"4
[T1(0;x, x1, x2)| < (E)

1
(x7X1)2 1 & 1 1 m 1 / 1

ol vrwnnll B e o' (x)]7 + N S— T q

{ X2 — X1 nAZ:lél +2 | ( )‘ Z (p2+1)(£2+2) | (Xl)l

1

(xo—x 1o 1 , 7
+)(2)(1{( Z €1+2> )|q+< ZM(@W)@(M“] }
Ifhe, (0) = ¢ and g, (0) = (1 —@)* forall ty = 1,...,n, b, = 1,...,m,and s € (0,1],

we obtain
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el <(3) (criers)

’ { G20 1 1o + 10/ ) + 22— [ o + @'m)m‘l’}'

X2 — X1 X2 — X1

Theorem 16. Suppose that 1 < n < m, where n,m € N, and assume that hy,, g, : [0,1] —
[0, +o0) are continuous functions forall ¢ = 1,2,...,nand l, =1,2,...,m,and © : [x1, x2] —
R be a differentiable function on (X1, x2), such that @' € L[x1, x2|. If |©'| is the (n, m)-generalized
convex function with respect to D on [x1, x2], then we have

|T2(0; x1, x2)| < (X2 — x1)
1y 1), 40 @, 2@ @, p ® 4 20\ ia
L) (a2 0) (0574 80) (o0 452
L (), ~B) @, ~4) @, @ SONNG)
+ %21[(92 +Cf ) - (céz +C} ) + (sz +D! ) _ (Dk2 +Df )] 0'(x2)| b, @7)
(r=
where , ,
6 2
AY = /0 hi,(0)de, AV = /1 hy, (o)de,
“ 76
@ _ [* @ _
Ay :/% he (@)de, Ay ::/% he, (e)do,
W _ [ @ _ [
B, = | ohy(0)do, B’ := /% ehy, (0)de,
@ _ [¢ @ _ !
B, = [ ohy(0)do, B, := ﬂ ohy, (0)de,
“6
and

5
6

Dy = /1 081, (0)de,
2

forallty =1,2,...,nand ; =1,2,...,m.

g
c? = /1 8e,(0)do,
6

1
4
Ch = /5 8, (e)de,
6
2 3
DEZ) r=/1 081,(0)da,
76

1
DY = /5 08¢, (0)de,
6

Proof. By using Lemma 3 and the (1, m)—generalized convexity of |@'| with respect to D,

we have

|T2(0; x1, x2)| < (Xz—Xl){ /07

1
+/l
2

255

1
0= g‘|®,(07€2+ (1-¢

)x1)|de

5
Q- 5‘ 0" (0x2 + (1= Q)X1)|d€7}
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1

<t fHo- [ (2 E e (& £ st rfa
*./11 H( Z’% >®/le+< ngz ) (x| d@}

2
= [0 ) - (A 0) + (08 7) - (8] )0

o B (e + ) - (e +cfl) + (0 + 02 - (o) + )i,

=1

which ends our proof. [J

Corollary 7. If we take hy, (0) = o,V =1,...,nand 8n,(0) = (11— 0)2, Yl =1,...,m
in Theorem 16, we obtain

[72(0; x1, x2)| < (x2 — x1)

. {1 > (U +u®) — (U@ u) + (v V) - (v V)l )l

(=1
L [(ph ., p® @) OIRPNCAN I
+a422:1[<1)[2 +P[2>*(sz JFP[ ) (sz JFQgZ)*(Q[Z +Q[2 )M®(X2)‘ ’
where
um . 1 @, _1 1 _ 1
b 6[1+1(£1+1)' [ f+1\ 20+ gh+1 )
o 1 5 £]+1_ 1 U 1 - 5 £+1
O +1\\6 201 )7 Th T 41 6 ’
v ._ 1 @._ 1 1 1
O T ehit2(0 42) Th T 42\ 2642 ght2 )’
yO . L (YT 1 w1 5\
O h+2\\6 2042 |7 Tl T g 42 6 ’
P(l) _ 1 - § lr+1 P(Z) _ 1 § lr+1 B 1
L T 41 6 Tl T 41\ \6 2041 |7
. 1 1 1 P& . 1
G T L+ 1\26H T 6ht ) T T ghti(f + 1)
and

le) _ ( 5 ez+1_1<5>£2+z>
2 (£2+1 (b+2) \t+1\6 6h+2\6 ’
lo+1 l 5 042 /2+1 1 1\ @42
(8 wn0)) (R0 =67
641 1 642 (z+l 1 71\ 0+
i(e) —an) ) ( )7

N a1

N =
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Theorem 17. Suppose that 1 < n < m, where n,m € N, and assume that hy,, g, : [0,1] —
[0, +o0) are continuous functions forall ¢ = 1,2,...,nand l, =1,2,...,m,and © : [x1, x2] —
R be a differentiable function on (X1, x2) such that @' € L[x1,x2). If |©'|7 is the (n,m)-
generalized convex function with respect to D on [x1, X2, then for ¢ > 1 and % + % =1,
we have

1
2 (41N
T < -1 [ (L)

K 3 Hh)@/(mw (,i ¥ Gez>|®/<xl>w} e
=1

(=1

where Hy, and Gy, are as defined in Theorem 8.

Proof. By using Lemma 3, Holder’s inequality and the (1, m)—generalized convexity of
|®’|7 with respect to D, we have

[72(0; x1, x2)| < (x2 _Xl){ /Oj‘e - %‘}6’(em+ (1—0)x1)|de

o= [letons+ <1e>xl>>de}

< =) K/j 0 Z\pde)'l’} ([ 10/ + - i)
<(>m—m>{</ﬂe—érd@>;+(/; Z%Qﬂ

[/ (( . e )l@ m)M( 2 50 )ef;ﬁ)q)dgr

1 % n %
ol (e (2 o]

lr=1

€76

1
117 P 1
dQ) +</1

2

0—

which ends our proof. [

Corollary 8. We have particular cases from Theorem 17:
e Ifhy(0) =0and g;,(0) =1—qforallty =1,2,...,n,and b, = 1,2,...,m, we obtain

1 1
2 (2741 ]FIOGl + 10 Gl ]
TE 1) < -0 |53 (Bt )| | :

e Ifhy (o) = o't and g1,(0) = 1 —0)2 forall ¢4 = 1,2,...,n,and &, = 1,2,...,m,
we obtain

1
2 [(2rtl 4 1N\]P
T 1) < e -0 |2 (2t

1

1o , i
K ez—lglJrl) X2)|q+< (22_162+1>|®(X1)|q:|
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o Ifhy(0) =0 and gr,(0) = 1 =) forallty =1,...,m, 0, =1,...,m,and s € (0,1],
we obtain

1 1
2 (2 IO ()| + 1O (x2)|7] 7
. < -
[72(0; x1, x2)| < (x2 Xl){p+l< 6pt1 ﬂ { s+1

Theorem 18. Suppose that 1 < n < m, where n,m € N, and assume that hgl,g(z :[0,1] —
[0, 4+00) are continuous functions forall (4 = 1,2,...,mand b, =1,2,...,m,and © : [x1, x2] —
R be a differentiable function on (x1,x2), such that ©' € L[x1, x2]. If |©'|7 is the (n,m)-
generalized convex function with respect to D on [x1, x|, then for q > 1, we have

1
1”

Ta@i )] < (= 1) () 29)

{G£(F ) oo (£ o1)oer]
(1[2 (Béf) - Ai’?))) 1/ (x2) |7 + ( ﬁ: (pﬁ? - Cﬁ”)) @’(m)mr
" [(1[21(5?) —Bé?)) ' (x2)l? + ( 1(“23) —Dg?)) |@'<xl>|ﬂr
(1 é (BZ” - 5/??))) O ()l + (,}1 Z:Z; (Dé;” 5?3))) |@'<xl>|ﬂ1 }

where A§ ), ng), C[( ), and D for all k =1,2,3,4 are defined as in Theorem 16.

S
~

—_

3=
M=

1%}

+

Proof. By using Lemma 3, the well-known power mean inequality and (1, m)-generalized
convexity |@'|7 with respect to D, we have

[72(0; x1, x2)| < (x2 _Xl){ /ﬂe - %‘}6’(@m+ (1—0)x1)|de

| s
N g’|®/(e)(z+ (- 9)7(1)}@}
2

1 1-1 1-1
2 1 1 1 5 q
<t (e tfee) o (fle-Ze)”
2

- %’|®’(¢m +(1- e)xl)"de> " </; Q- §‘|®’(em +(1- e)xl)lqd@);}
<(x2—x11) {( 0% e— 2’@)14 + (/; Q- Z‘d@)l}l}
\(( Z iy (o )@’ x)lf + <;{i1852(0)> |®’<xl>w>de] ﬁ
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+

1
/l
Y2

Q(( £ 1 >|@'mq+( E s )e Xl)l")dqy}

X
—
—
Y
S|
i
=
.07
/N
S
|
o]
=0
~
~
Q
=
L
=
+
S
SIS
- 3
[iingl
Y
NS
|
-}
5=
~
~
Q
=
=
——
By

. (©)
(,11 3 (E’AG“BS))) /)7 + (
e
n/ =

which ends our proof. [

1
(3) q
1 & (35S, e ,
— 2 q
my( =D | 1€/l
1
(4) q
1 SCZ
) 1€ ()| + (m;l (DE? aiarae )) @/(xlw} }
()=

Corollary 9. Ifwe take hy, (0) = o't and g4,(0) = (1— )" in Theorem 18 forall €4 = 1,2,...,n
and {, = 1,2,...,m, we obtain

e

1—
T2 < (=) (35
1o 1) 1 m %
{[(n Z: ( V )) 10/ (x2) |7 + (m Z: ( sz )) @’(X1)|ﬂ:|
n U(2> P(Z) %
¥ [(,11 )3 (v}? é)) /() + ( (sz )) Sl }
e !
v (5u® 5P(,3)
+[(1112<;1_V ))6/()(2)51_.,_( ( éz —Qgi’)))@/ X1) :|
=1 =1
" U 5p.Y '
(,11 D (Vf,(f) - f)) 0’ (x2)|7 + (l ): (sz )) 19 G)r } }
£1=1 6=1

where UZ() , Vé(lk), Pg) and Qg) forall k =1,2,3,4 are as defined in Corollary 7.

S
NgE

1S
I
—

—_

D’]s

5. Conclusions

In this article, we studied algebraic properties of a new generic class of functions
called the (n, m)-generalized convex function; based on this, we proposed HH inequalities.
Moreover, we obtained new midpoint-type inequalities of Ostrowski and Simpson based
on our new definition, using well-known integral identities. Finally, we observed that the

new, defined convex function is a powerful type of function used to investigate various
inequalities in the real analysis field.

259



Symmetry 2022, 14,722

Author Contributions: Conceptualization, A.K. and P.O.M.; methodology, A.K., R.P.A. and PO.M;
software, K.N.; KM.A. and Y.S.H,; validation, A.K., PO.M. and Y.S.H.; formal analysis, R.P.A., PO.M.,
K.N. and K.M.A ; investigation, A.K., PO.M. and Y.S.H.; resources, PO.M., KN. and KM.A; data cu-
ration, K.N. and Y.S.H.; writing—original draft preparation, A.K., PO.M. and R.P.A.; writing—review
and editing, A.K., PO.M., KM.A. and Y.S.H.; visualisation, A.K., R.P.A. and P.O.M.; supervision,
R.P.A., POM., KN. and Y.S.H.; project administration, PO.M. and K.N.; funding acquisition, K.N.
All authors have read and agreed to the published version of the manuscript.

Funding: Not applicable.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This Research was supported by Taif University Researchers Supporting Project
Number (TURSP2020/217), Taif University, Taif, Saudi Arabia, and the National Science, Research,
and Innovation Fund (NSRF), Thailand.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kashuri, A.; Meftah, B., Mohammed, P.O.; Lupas, A.A.; Abdalla, B.; Hamed, Y.S.; Abdeljawad, T. Fractional weighted Ostrowski-
type inequalities and their applications. Symmetry 2021, 13, 968. [CrossRef]

2. Kasamsetty, K.; Ketkar, M.; Sapatnekar, S.S. A new class of convex functions for delay modeling and its application to the
transistor sizing problem [CMOS gates]. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2020, 19, 779-788. [CrossRef]

3. Awan, M.U; Noor, M.A_; Noor, K.I; Khan, A.G. Some new classes of convex functions and inequalities. Miskolc Math. Notes 2018,
19, 77-94. [CrossRef]

4. Hudzik, H.; Maligranda, L. Some remarks on s—convex functions. Aequationes Math. 1994, 48, 100-111. [CrossRef]

5. Eftekhari, N. Some remarks on (s, m)—convexity in the second sense. |. Math. Inequal. 2014, 8, 489-495. [CrossRef]

6.  Kadakal, M.; Iscan, I. Exponential type convexity and some related inequalities. . Inequal. Appl. 2020, 1, 82. [CrossRef]

7. Agarwal, P; Choi, J. Fractional calculus operators and their image formulas. ]. Korean Math. Soc. 2016, 53, 1183-1210. [CrossRef]

8. Rekhviashvili, S.; Pskhu, A.; Agarwal, P; Jain, S. Application of the fractional oscillator model to describe damped vibrations.
Turk. ]. Phys. 2019, 43, 236-242. [CrossRef]

9. Dragomir, S.S.; Fitzpatrik, S. The Hadamard'’s inequality for s—convex functions in the second sense. Demonstr. Math. 1999, 32,
687-696.

10. Han, J.; Mohammed, P.O.; Zeng, H. Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function.
Open Math. 2020, 18, 794-806. [CrossRef]

11. Rashid, S.; Noor, M.A.; Noor, K.I.; Akdemir, A.O. Some new generalizations for exponentially s—convex functions and inequalities
via fractional operators. Int. ]. Sci. Innov. Tech. 2014, 1, 1-12. [CrossRef]

12.  Iscan, I. Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals. Stud. Univ. Babes-Bolyai Math.
2015, 60, 355-366.

13.  Abdeljawad, T.; Mohammed, P.O.; Kashuri, A. New modified conformable fractional integral inequalities of Hermite-Hadamard
type with applications. |. Funct. Spaces 2020, 2020, 4352357. [CrossRef]

14. Fernandez, A.; Mohammed, P.O. Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels.
Math. Meth. Appl. Sci. 2020, 44, 8414-8431. [CrossRef]

15.  Ujevi¢, N. Sharp inequalities of Simpson type and Ostrowski type. Comput. Math. Appl. 2004, 48, 145-151. [CrossRef]

16. Liu, W.; Wen, W,; Park, J. Ostrowski type fractional integral inequalities for MT—convex functions. Miskolc Math. Notes 2015, 16,
249-256. [CrossRef]

17.  Kaijser, S.; Nikolova, L.; Persson, L.E.; Wedestig, A. Hardy type inequalities via convexity. Math. Inequal. Appl. 2005, 8, 403—417.
[CrossRef]

18. Rashid, S.; Jarad, F.; Noor, M.A_; Noor, K.I; Baleanu, D.; Liu, ].B. On Griiss inequalities within generalized k—fractional integrals.
Adv. Differ. Equ. 2020, 2020, 203. [CrossRef]

19. Mohammed, P.O.; Sarikaya, M.Z.; Baleanu, D. On the generalized Hermite-Hadamard Inequalities via the tempered fractional
integrals. Symmetry 2020, 12, 595. [CrossRef]

20. Kalsoom, H.; Rashid, S.; Idrees, M.; Safdar, F.; Akram, S.; Baleanu, D.; Chu, Y.M. Post quantum integral inequalities of Hermite—
Hadamard-type associated with co-ordinated higher-order generalized strongly pre-invex and quasi-pre-invex mappings.
Symmetry 2020, 12, 443. [CrossRef]

21. Bombardelli, M.; Varosanec, S. Properties of hi—convex functions related to the Hermite-Hadamard-Fejér inequalities. Comput.

Math. Appl. 2009, 58, 1869-1877. [CrossRef]

260



Symmetry 2022, 14,722

22.

23.

24.

25.
26.

27.

28.

Toply, T.; Kadakal, M.; 1§can, i. On n—polynomial convexity and some related inequalities. AIMS Math. 2020, 5, 1304-1318.
[CrossRef]

Rashid, S.; Iscan, I; Baleanu, D.; Chu, Y.M. Generation of new fractional inequalities via n—polynomials s-type convexity with
applications. Adv. Differ. Equ. 2020, 2020, 264. [CrossRef]

Hadamard, J. Etude sur les propriétés des fonctions entiéres en particulier d’une fonction considérée par Riemann. J. Math. Pures
Appl. 1893, 58,171-215.

Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. . Inequal. Appl. 2000, 5, 533-579. [CrossRef]
Sarikaya, M.Z.; Yildirim, H. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math.
Notes 2017, 17, 1049-1059. [CrossRef]

Alomari, M.; Darus, M.; Dragomir, S.S.; Cerone, P. Ostrowski type inequalities for functions whose derivatives are s—convex in
the second sense. Appl. Math. Lett. 2010, 23, 1071-1076. [CrossRef]

Qaisar, S.; He, C.; Hussain, S. A generalizations of Simpson’s type inequality for differentiable functions using (&, m)—convex
functions and applications. J. Inequal. Appl. 2013, 2013, 158. [CrossRef]

261






MDPI
St. Alban-Anlage 66
4052 Basel
Switzerland
Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Symmetry Editorial Office
E-mail: symmetry@mdpi.com

www.mdpi.com/journal /symmetry

P

MDPI
7






MDPI

St. Alban-Anlage 66
4052 Basel
Switzerland

Tel: +41 61 683 77 34

Z
Fax: +41 61 30289 18 rM\D\Pu
F

www.mdpi.com ISBN 978-3-0365-4006-1



	Symmetry cover
	[Symmetry] Symmetry in the Mathematical Inequalities.pdf
	Symmetry cover.pdf

