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Preface to ”Advances and Trends in Mathematical

Modelling, Control and Identification of Vibrating

Systems”

This book introduces novel results in mathematical modelling, parameter identification,

and efficient automatic control for a wide range of applications of mechanical, electric, and

mechatronic systems, where undesirable oscillations or vibrations are manifested. The six chapters

of the book written by experts from the international scientific community cover a wide range

of interesting research topics related to original and innovative contributions to identification

techniques of rotordynamic parameters in rotor-bearing systems, finite element modelling, active

vehicle suspension systems, model-free data-driven-based control, voltage source converters, static

synchronous compensators, bending vibrations in flexible structures, active vibration control on

quadrotor aerial vehicles, artificial neural networks, particle swarm optimization, and low-frequency

oscillations in large-scale power systems. The book is addressed to both academic and industrial

researchers and practitioners, as well as to postgraduate and undergraduate engineering students and

other experts in a wide variety of disciplines seeking to know more about the advances and trends

in mathematical modelling, control, and identification of engineering systems in which undesirable

oscillations or vibrations could be presented during their operation.

The book is organized into six chapters. A brief description of every chapter follows. Chapter 1

deals with the problem that arises when diverse regulation devices and controlling strategies are

involved in electric power systems’ regulation design. A B-Spline neural networks algorithm is

used to define the best controllers gains to efficiently attenuate low-frequency oscillations when a

short circuit event is presented. Chapter 2 introduces an exact elastodynamics theory for bending

vibrations for a class of flexible structures, which is based on the partial differential operator theory. In

Chapter 3, the authors describe a model-free data-driven-based control for a Voltage Source Converter

(VSC)-based Static Synchronous Compensator (STATCOM) to improve the dynamic power grid

performance under transient scenarios. Chapter 4 proposes a planned motion profile tracking control

scheme and vibrating disturbance suppression for quadrotor aerial vehicles using artificial neural

networks and particle swarm optimization. Chapter 5 presents a model predictive control method

for active automotive suspension systems by means of hydraulic actuators. Chapter 6 concludes the

book, describing fast algebraic identification techniques of rotordynamic parameters in rotor-bearing

systems using finite element models.

Finally, we would like to express our sincere gratitude to all the authors for their excellent

contributions, which we are sure will be valuable to the readers. We hope that this book can be

useful and inspiring for contributing to the technology development, new academic and industrial

research, and many inventions and innovations in the field of mathematical modelling, control, and

identification of mechanical, electric, and mechatronic systems where vibrations or oscillations could

be exhibited.

Dr. Francisco Beltran-Carbajal

Universidad Autónoma Metropolitana, Unidad Azcapotzalco, Departamento de Energı́a

Dr. Julio Cesar Rosas-Caro

Universidad Panamericana, Sede Guadalajara, Facultad de Ingenierı́a, Mexico

Dr. Juan M Ramirez

Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Guadalajara, Mexico.
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Abstract: This proposal is aimed to overcome the problem that arises when diverse regulation
devices and controlling strategies are involved in electric power systems regulation design. When
new devices are included in electric power system after the topology and regulation goals were
defined, a new design stage is generally needed to obtain the desired outputs. Moreover, if the
initial design is based on a linearized model around an equilibrium point, the new conditions might
degrade the whole performance of the system. Our proposal demonstrates that the power system
performance can be guaranteed with one design stage when an adequate adaptive scheme is updating
some critic controllers’ gains. For large-scale power systems, this feature is illustrated with the use of
time domain simulations, showing the dynamic behavior of the significant variables. The transient
response is enhanced in terms of maximum overshoot and settling time. This is demonstrated
using the deviation between the behavior of some important variables with StatCom, but without
or with PSS. A B-Spline neural networks algorithm is used to define the best controllers’ gains to
efficiently attenuate low frequency oscillations when a short circuit event is presented. This strategy
avoids the parameters and power system model dependency; only a dataset of typical variable
measurements is required to achieve the expected behavior. The inclusion of PSS and StatCom with
positive interaction, enhances the dynamic performance of the system while illustrating the ability of
the strategy in adding different controllers in only one design stage.

Keywords: B-spline neural networks; adaptive power system control; coordinated multiple con-
trollers; StatCom

1. Introduction

Electric power systems are large, interconnected, complex, and highly changeable
systems that are always affected by a wide variety of perturbations [1]. Therefore, the con-
trol design stage and tuning procedure for multiple controllers is an entangled task [2,3],
present interesting approaches on stabilizing procedures in electric power systems that
use multiple power system stabilizers with lead and lag compensators. The conventional
linear controllers designed around an equilibrium point are useful, but their performance
could be degraded if variations are presented in the system. On the other hand, dealing
with non-linear controllers is a high demanding and slow task due to the complexity of
large-scale power system. In general, for reaching a good performance, these strategies
present dependency on the parameters system modeling.

Power system stabilizers (PSS) have been used to generate supplementary signals to
control the excitation system to improve the power system dynamic performance by the
damping of system oscillations [1]. However, the expected behavior depends entirely on
the correct selection of controllers’ gains and time constants [2,3]. Moreover, some flexible

Mathematics 2021, 9, 1474. https://doi.org/10.3390/math9131474 https://www.mdpi.com/journal/mathematics
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alternating current transmission systems (FACTS devices) are included to solve some
specific power systems problems; nevertheless, their operation is also depending upon
the positive interaction with other regulation devices. Refs. [4,5] exemplify the problem of
simultaneous tuning of multiple controllers in large scale power system including FACTS
devices in transmission systems.

There are several methodologies to solve the problem of designing linear controllers
to reach good dynamic performance. However, these solutions are complex in implemen-
tation; they do not cover a wide range of operating conditions of the power system or
they do not have the same behavior with new grid topologies. The main objective of this
proposal is to attain an adaptive performance of PSS in large-scale power systems with the
possibility of adding new components that change the grid configuration, in this case for
exemplifying through a static synchronous compensator (StatCom).

In order to validate the proposed strategy and without loss of generality, this paper
presents the control design problem of PSS in power systems including a StatCom, which
is one of the most useful FACTS devices in practical power systems. This configuration
adds enough complexity to verify the viability of the proposal.

In general, the design control stage has been considered an independent problem,
with only one controller. The fact that the system can have other regulation devices, has
not been included. Only few works contemplate more than one controller simultaneously
in the design stage. However, this is an open research topic due to the electrical grid
composition and the continuous topology changing on it [6].

In [2] two objective functions must be solved to obtain coordination between PSS
and traditional static VAR compensators (SVC). In order to reduce the high computational
load, the genetic algorithm was used for solving the multi-objective optimization problem,
adapting it for parallel computing. An analysis based on the power system modeled as a set
of hybrid non-linear differential algebraic equations is presented in [3], where the dynamic
behavior of the system is studied in various scenarios: no PSS, PSS without dead-band,
and PSS with dead-band.

In [7], a single machine infinite bus (SMIB) model is used to tune the PSS, and then
new non-specified adjustments are carried out to extend the scheme to the multimachine
scenario. Additionally, the tuning stage is very case-dependent. Multi-band PSS are
tuned in [8] by using an optimization search method based on modal performance index,
but representative linearized system models are required for the optimization procedure.

The PSS tuning based on linear quadratic regulator design is presented in [9]. The state
and input matrices of the linearized power system model are required for developing the
optimization procedure in a single machine case, and then it is extended to the multi-
machine case. In [10], a two-level control strategy that blends a local controller with a
centralized controller is proposed to diminish low frequency oscillations. In the PSS model,
a proportional integral (PI) controller is added. Two extra gains are included in the problem
solution. For the tuning procedure, two stages are required, first the design of the local PI
controller and then the design of the centralized controller.

A design method using a modified Nyquist diagram with an embedded partial pole-
placement capability is presented in [11]. The small signal stability model obtained by the
linearization of the power system around an operating point is required. That method
evaluates the open loop transfer function along a line of constant damping ratio to design
PSS for two test systems.

Additionally, control design based on non-linear theory is used, but in the same sense
the procedure is realized separately for each controller. In [12], a scheme called decentral-
ized continuous higher-order sliding mode excitation control is applied. The deviations
on the angle of the power are required to obtain the desired system performance, also the
estimation of first and second order time derivatives of this angle must be determined.
Similarly, in [13] the H∞ control with regional pole placement is used to ensure adequate
power system dynamic performance, the linearized model around an equilibrium point
is also needed. Additionally, deterministic strategies based on artificial intelligence could

2



Mathematics 2021, 9, 1474

be an alternative to the design procedure of multiple controllers in electrical grids [14].
Another important algorithm is the non-linear feed forward control which represents an
option of non-linear adaptive control techniques [15]. This kind of strategies has been little
explored in applications for electrical power systems. Similarly, other approach that can be
extended to large scale power systems is the physics-based control technique [16].

A scheme called networked predictive control (NPC) used to design a damping
controller that incorporates a generalized predictive control (GPC) to generate optimal
control predictions is presented in [17]. Model identification is required to deal with
uncertainties and to provide an adaptive predictive model for GPC. This method describes
four steps for designing a NPC for a wide area damping controller: (i) modal analysis of
the detailed non-linear model; (ii) determination of the order of the reduced order model
of the power system; (iii) obtain the low-order equivalent model via model identification
algorithm and use it as the prediction model for the NPC; (iv) selection of parameters
like the output prediction horizon, the control horizon, the weighting sequence, and the
sampling period.

Finally, artificial intelligence methodologies such as artificial neural networks (ANN),
fuzzy logic (FL), or neuro-fuzzy are used for design purposes. In [18] an adaptive fuzzy
sliding mode controller with a PI switching surface to damp power system oscillations is
proposed. This strategy combines: (a) a sliding surface, (b) a fuzzy controller, (c) a curbing
controller, and (d) a wavelet neural network to obtain the best auxiliary signal input to the
excitation system. The structure of wavelet neural network is based on three layers, where
the inputs are the sliding surface and its derivative.

A so-called hybrid adaptive non-linear controller is proposed in [19]. For the controller
design it is necessary to estimate non-linear parts of the system, it is also required to
measure data. The controller has a feed forward neural network structure, it is trained
offline with extensive test data and it is adjusted online. In [20], the design of a PSS based
on a combination of fuzzy logic and sliding mode theory is illustrated. This proposal
indicates that a fuzzy-PID controller is composed of fuzzy PI and fuzzy PD controllers,
and the response depends on scaling factors, hence selection of these parameters is crucial
while designing the controller. The definition of the fuzzy rules is also an important issue
for its correct operation.

Other important proposals, including FACTS devices, offer better results working
with positive interaction with PSS. In [4], an optimization formulation is used to coordinate
one PSS with one unified power flow controller (UPFC), but two objective functions based
on eigenvalues of the state are needed for it. The possibility of using different FACTS
devices is indicated in [5], the results include a StatCom and a UPFC. The eigenvalues of
the power system model are required on the tuning procedure.

In [21], a StatCom and a PSS have been tuned to get a good dynamic power system
performance using the seeker optimization algorithm to obtain the controller gains by an
objective function. The StatCom model used, includes the components of the current and
voltage dynamic in terminals of direct current (DC) capacitor.

Similarly, an objective function in [22] is used to attain a positive interaction between
StatCom and PSS with a constraint set. The StatCom model is described with the operating
range curve, but no dynamic equations are included. In [23], the dynamic operation of
the StatCom is coordinated with a PSS. The tuning procedure depends on an objective
function, and the definition of a constrain set.

The changing nature of power systems demands different types of studies due the
inclusion of new control devices, renewable energies, and emerging technologies. However,
it is difficult to have a unique methodology to solve the problem of the control design in
large-scale power system. Although there are different alternatives to solve this problem,
these proposals offer a solution limited to the characteristics of the systems under study.
In multimachine power systems the control design problem is amplified due to the presence
of multiple controllers that must be tuned simultaneously to guarantee a positive interaction
for each operating condition.

3
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Therefore, the present contribution considers the non-linear power system nature and
it defines an adaptive controllers’ behavior. This performance is obtained by the inclusion
of some selected dynamic gains that are updated on each sample time to find the best
values for every operating condition and system topology. It is possible to update all the
controller gains, but to exemplify the relevance of the proposal, only some of them are
dynamically calculated. Simultaneous tuning of each controller is obtained.

To validate the proposed scheme based on B-Spline neural networks, PSS are simulta-
neously coordinated with a StatCom to enhance the power system dynamic response under
severe disturbances. An effective control design procedure for power system controllers is
demonstrated by the obtained results, improving the overall multimachine system dynamic
performance. The proposal avoids the parameters and power system model dependency
by using only measurements of some system variables to reach the expected behavior.
The main contributions of our methodology are: (i) a new method for tuning multiple
controllers in electrical grids is proposed; (ii) a time-domain analysis for damping low
frequency oscillations considering different controllers when previous design stage was
already performed is included; (iii) different controllers preserving good performance
without imposing a particular requirement are considered; (iv) the introduced methodol-
ogy offers a practical way to obtain adaptive behavior of controllers with simultaneously
tuning, and positive interaction; (v) the proposed algorithm is learning online, which
means no additional stages for training are required.

2. Electric Grid Operation and Control

Transient stability in large-scale power system is usually demonstrated by time domain
simulations over a range of operating conditions and perturbations due to the complexity to
dealing with large non-linear models associated to the power systems. Typically, the most
demanding scenarios are first analyzed to have the power system with good dynamic
performance, and then, similar or better behavior is expected when less demand occurs.

On the other hand, the classical stability analysis based on the power system lin-
earized model has high complexity to attain an accurate linearized model, moreover, new
components integration, and the consideration of continuous grid change involves new
equilibrium points. These aspects represent another important open research topic.

Thus, we used a complete non-linear representation for transient stability studies in
large-scale power system. Besides that, our proposal is proved under three phase faults,
which are considered severe disturbances. The solution under these considerations is
gotten by numerical methods involving a set of non-linear differential equations modeling
all grid components with dynamic behavior.

Some models available in the literature are used to evaluate the proposed strategy.
Additionally, the steady state condition and dynamic performance of the power system
with excitation is developed in PSS® E. The results gotten are consistent in our simulation
platform and the commercial software.

2.1. Power System Model

For transient stability studies, a synchronous generator model with four state variables
δi, ωi, E′

qi, E′
di, and an automatic voltage regulator represented by a state variable Ef di [1,24]

is used Equation (1). Where subscript i identifies the ith generator. Then,

4
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dδi
dt

= ωi − ωB

dωi
dt

=
ωB
2Hi

[−D(ωi − ωB) + Pmi − Pei]

dE′
qi

dt
=

1
T′

d0i

[
−E′

qi +
(
xdi − x′di

)
idi + Ef di

]
dE′

di
dt

=
1

T′
q0i

[
−E′

di −
(

xqi − x′qi

)
iqi

]
(1)

where δ is the load angle; ω is the angular speed; E′
q and E′

d are the quadrature and direct
internal transient voltages, respectively; Pe is the injected real power; iq and id are the
quadrature and direct axis currents, respectively; Ef d is the excitation voltage; ωB is the
speed in steady state condition; H is the inertia constant; T′

d0 and T′
q0 are the d and q

open-circuit transient time constants; x′d and x′q are the d and q transient reactances; xd and
xq are the d and q synchronous reactances; D is the damping constant. Considering this
representation, the real power is obtained by,

Pei = E′
diidi + E′

qiiqi +
(

x′di − x′qi

)
idiiqi (2)

This set of equations is solved along with the algebraic equations of the electric grid.
The initial values of dq-axis currents are obtained by power flow analysis. The algebraic equa-
tions of the power grid are formulated by power flow representation and solved together with
synchronous generator equations [24]. Additionally, a static excitation system is considered to
regulate the terminal voltage in each equivalent model of synchronous generators,

dEf di

dt
=

1
TAi

[
−Ef di + KAi

(
Vre f i − Vti + Vsi

)]
(3)

where Vre f is the reference voltage; Vt is the terminal voltage magnitude; Vs is the PSS’s
output signal (auxiliary signal); KA and TA are the system excitation gain and time constant.

The power system stabilizer model has the representation by phase lag-lead compen-
sators and a washout block. The error between the actual speed and the corresponding in
steady state condition is considered as the input signal, ωi(s)− ωB. This auxiliary control
signal, Vs, must guarantee a faster damping of the low frequency oscillations that occur in
the system after a short circuit failure is presented. For this purpose, it is necessary to define
properly: Ks, Tw, T1, T2, T3 y T4, for each PSS included in the power system. In general, it is
considered that T1 = T3 y T2 = T4.

In Figure 1, the proposed adaptive scheme is included in the power system stabilizer
model to attain improved dynamic performance. This non-linear model is used to validate
the tuning on the proposal. The Equations (1)–(3) are not used for design purposes.
The time response of some variables is used to train the adaptive scheme in offline stage
and then also in online learning operation.

5
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Figure 1. Improved power system stabilizers with adaptive scheme.

2.2. Statcom Model and Control

The StatCom model used on this paper consists of an equivalent transformer that
emulates the voltage source converter operation. This transformer is connected in one
side to a capacitor bank and, on the other side to the electric grid through a coupling
transformer [25], Figure 2. One important feature of this model is the possibility to be
included in transient stability studies of the power systems. The internal AC voltage of the
StatCom is defined by,

Vint = kmaEdcejφ (4)

where k is a known constant; Edc is the DC voltage on the capacitor terminals; φ is the
phase angle of Vint in phasor form, and; ma in this model emulated the index modulation
to regulate the voltage magnitude.

Figure 2. StatCom model with dynamic control gains.

Three PI controllers are used to regulate the StatCom dynamic performance, the main
objective is to control the voltage magnitude at the point of common coupling (PCC), but an
auxiliary signal could be included. In this scheme, the controlled voltage is after internal
losses of the VSC, Vac, before the PCC transformer. The real and reactive power of the
presented equivalent circuit is defined by [25],

Pac = V2
acG − kmaVacEdc[G cos γ + B sin γ]

Qac = −V2
acB − kmaVacEdc[G sin γ − B cos γ] (5)

where γ = θac − φ, represents the angular aperture between the internal voltage of VSC
model and terminals, after internal losses, G and B. This angle is the second control variable
to guarantee the desired exchange of active power, in this case only the required active
power from the grid for losses compensation of the StatCom, G and Gsw, the last one
represents the switching losses. These power flow equations are solved together with the
electrical grid.

6
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The dynamic performance is evaluated by the resulting equations of the equivalent
circuit in Figure 2. In the DC bus,

ic = CdcĖdc (6)

where ic = −IdcR − Idc, also,

IdcR =
P0ac

Edc
(7)

where Idc is the output of the first PI controller with Edc − Enom
dc as its input. Two controller

gains, KPEdc and KIEdc are needed.
The capacitor cannot inject active power, so it is necessary one regulator to guarantee

the physical condition that only active power losses are absorbed from the grid. Therefore,
a second PI controller is employed for this task, where the input is P0ac and the output is γ,
KPP0ac, and KIP0ac are needed.

Finally, a deviation from the nominal value (initial condition), ma, is calculated by a
third PI controller. This deviation helps to regulate Vac. The adaptive PI controller input
is defined as the difference between the desired and actual voltage magnitude, Vac − V∗

ac;
also, two gain values must be properly specified for the StatCom connected to the electric
grid, KPV ac and KIV ac. In total, six gains must be defined for the StatCom controllers.
This model captures the main behavior in steady state and dynamic performance of the
StatCom. Different to other models presented in the literature for this device, this model
includes a phase-shifting transformer and an equivalent shunt susceptance, resulting in an
explicit representation of the voltage source converter (VSC) in both sides the AC and DC,
respectively. The reader interested in reviewing more details of this model can consult [25].

3. Dynamic Controllers’ Gains

In some power systems, a low damping ratio is exhibited. Therefore, the tuning
procedure of each controller is a task of precision; moreover, if several gains must be
defined, a critical control design stage is presented. An alternative solution for this scenario
is to analyze any steady-state condition, and then some gains could be updated online to
attain better dynamic performance.

With our strategy it is possible to update all controllers’ gains but, to exemplify the
relevance of the proposal only some of them are dynamically calculated: the gains for
the StatCom KPV ac and KPP0ac and for each PSS, Ks and Tw. A similar behavior in practice
is expected, where only some of them could be retuned by an online procedure. Table 1
exhibits the main steps in proposed control design procedure. The first step consists in
use typical gain values obtained around the steady state condition, which are present in
Table 2 for the StatCom, and in Table 3 for the generators.

Table 1. Main stages in the proposed procedure to attain adaptive controllers.

Offline and Online Steps in the Proposed Methodology

(i) Offline stage
Extracted key signals from any steady state condition of the power system, input
output mapping.
Controllers are initialized to attain this equilibrium point.
An initial architecture of neural networks is defined (shape, size, and learning rate).
An accuracy neural networks architecture is obtained by training procedure, initial
dataset.
The proposal is test to different power system scenarios.

(ii) Online stage
The proposed algorithm is updating the controller gains if it required.
The adaptive controllers follow new steady state power system condition.
If disturbances are presented fast changes in controllers gains are exhibited.
Several controllers are tuning simultaneously with positive interaction.

7
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Table 1. Cont.

Offline and Online Steps in the Proposed Methodology

(iii) New controllers
If new regulation strategies are included, the adaptive controllers update their self
by online learning Equation (11).
Additionally, if it has critic gains, it is possible include new neural networks
schemes with a similar architecture, Figure 3.

Table 2. Gains of StatCom controller.

Parameter Value

KPEdc 1
KIEdc 1.5
KIP0ac 0.0015
KIV ac 0.2
Rltc 0 pu
Xltc 0.05

RVSC 2 × 10−3

XVSC 0.01
G0 2 × 10−3

Table 3. Gains of Generator controller.

Generator Ks Tw

1 91 10
2 97 9.8
3 100 10
4 100 10

The proposed adaptive PI controller in the StatCom scheme is defined by,

u(t) = KP(e1)e(t) + KI(e1)xaux

u̇(t) = e(t) (8)

For controlling purposes, KP and KI and the PSS constants must be defined adequately.
We propose to update these gains using the adaptive control law of Figure 3, defined as
Equation (9).

K1(e1) = β1(e1)ŴT
1 (9)

K1 on the Equation (9), and Figure 3 is used for any of the gains to be calculated.

Figure 3. Schematic representation of update procedure.

8
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|e1| ≤ e∗ with e∗ being a constant. The update law for Ŵ1 is given by,

Ŵ1 = W1 + Γ1(e1, β1, ς) (10)

ς ∈ R is a positive constant; W1 ∈ RP with positive constants and; Γ1 ∈ RP calculated by

Γ1 = − ςβ1

‖β1‖2 e1 (11)

β1 ∈ RP represents a non-linear relationship from the input signals, e1. The non-linear
relationship is defined by polynomial splines, B-splines [26,27], in this paper are univariate
B-spline of fourth order.

Therefore, the controllers update their performance on each sample time with
Equations (9)–(11). The input space is normalized in such a way that the input error
is bounded in magnitude. First the system is operating offline where learning ratio, ς, is de-
fined in order to get the best performance [28,29]. Then, the dynamic gains are updated by
Equation (11) and put to operate online. The results under this last condition are exhibited
in Section 4.

The search begins with some typical known values of each gain Equation (12), then
the training algorithm is developed to improve the dynamic system response.

KPP0ac = 0.002

KPV ac = 5

T1 = T3 = 0.05

T2 = T4 = 0.01

Vmin ≤ Vs ≤ Vmax

Vmax = 0.05; Vmin = −0.05 (12)

After that, with each operating condition the adaptive algorithm continues learning
with input variables and finding the best set of controller gains. The input signals for
updating PSS gains are defined by,

e11 = ωi(t)− ωB (13)

e12 = Pm − Pe(t) (14)

The gains for the StatCom controller have only one input signal, defined by Equation (13).
The online procedure consists in calculating the best value for each dynamic gain for the
power system operative point. This is possible because the BSNN is updating the weighting
vector as a result of input error modification.

Finally, the implementation of the B-Spline neural networks stepwise rules are pre-
sented in Table 4, where all mathematical details behind this approach are included.

In this work, B-Spline neural networks algorithm was selected because it requires less
computational effort, thanks to its single layer of neurons, its structure, and the shape of
the base functions, Figure 3, in contrast to the multi-layer neural networks architecture.
Furthermore, the activation functions are linear with respect to the adaptive weights,
with an instant learning rule that can be used to update and adjust the weights online.
These conditions make the B-Spline neural networks algorithm able of modeling and
regulating complex non-linear systems. With these features, a robust, optimal control
system is obtained with the ability to be adapted to inherent non-linearities and external
or internal disturbances of the system. One of the core aspects of selecting the use of the
BSNN is that by defining the base functions a non-linear relation of the input is obtained,
and the training algorithm is computationally efficient, with a numerically stable recurring
relationship that works with any distribution of knot vector.

9
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Table 4. 1: B-Spline Neural Network off-line training rules.

Input Define: space lattice with n knot-vectors
Define: basis functions (K order, shape and distribution)
Define: number of knot-vector
Define: nodes of hidden layer

Define: Initial conditions (weights)
Define: error signal and minimum and maximum values
Define: threshold error
while t < simulation time do

Calculate the input and output value of each layer
Calculate the errors between target and current value
Includes several operating conditions
if ex < threshold error

NN is ready for online operation
return weights

else
Update weights
Calculate the input and output value of each layer
Calculate the errors between target and actual value
if ex < threshold error

NN is ready for online operation
return weights

else
Update weights
Change data source and update learning rate

end if
initialize the process

end if
return weights, K order, threshold error

end
on-line training
Load weights, K order, threshold error, error signal
while t < simulation time do

Calculate the input and output value of each layer
Calculate the errors between target and current value
if ex < threshold error

return k1
else

Update weights ec. Equation (10)
Calculate the input and output value of each layer, ec.

Equation (9)
return k1

end

4. Test Power System

Without loss of generality, the performance of our proposal is proved in an important
benchmark of four machine and two area electric power system [1]. Although this system
is not big, it presents an interesting and complex behavior for transient stability studies.
The two areas are connected by a weak tie, this is an important case for studying the
fundamental nature of inter-area oscillations and the inherent difficulty in tuning and
controllers coordination.

4.1. Case Base

A base analysis for different types of excitation control is presented in [1]. This power
system has three rotor angle modes of oscillation. There is one inter-area mode of 0.55 Hz
with generator 1 and 2 swinging against generators 3 and 4 of area 2. Two more are
intermachine oscillation local modes, one of 1.09 Hz corresponds to area 1 and the second
of 1.12 Hz is for area 2. These modes are determined only with one type of excitation control
that changes if the operating condition varies or more dynamic components are involved.

10
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In this analysis, each synchronous generator of Figure 4 is represented by the model
Equation (1). Two loads are connected at bus 7 and 9. The initial conditions are based in data
set reported in [1]. The active power injected by each generator: PG1 = PG2 = PG4 = 700 MW
and, PG3 = 719 MW; terminal voltages: VtG1 = 1.03∠20.2 pu, VtG2 = 1.01∠10.5 pu,
VtG3 = 1.03∠− 6.8 pu, VtG4 = 1.01∠− 17.0 pu. The initial conditions for state variables
of each generator are obtained considering (1)–(4) using this information. The machine
parameters are also available in [1] and used on this paper.

Figure 4. Four machine power system with StatCom at bus 8.

With this model representation and initial conditions, the system is exposed to a
three-phase fault at different nodes with similar results, selecting node 7 on this section to
illustrate the results.

The electrical grid without StatCom neither PSS exhibits an unstable performance
when the fault is cleared after eight cycles, Figure 5. If the fault is cleared up to seven
cycles a stable evolution is observed, but the oscillations have values far from the prefault
condition, and with long duration. After 6 s the oscillations continue with very little
damping. Figure 5 shows the angular difference between machines with generator number
one as a reference, for eigth cycles (unstable operation) and six cycles (stable but oscillating
operation). Additional damping required is evidenced. Similar behavior is observed in
other system variables.
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Figure 5. Angular difference of each machine with respect to number one, electrical grid without
StatCom neither PSS.
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4.2. Case 1. Three-Phase Failure Cleared after Eight Cycles

This study considers a StatCom integrated to the power system at bus 8, as presented
in Figure 4. Initially, the StatCom operation was forced to keep the system behavior very
similar to one without StatCom and PSS. Therefore, the power flow solution is used to
feed the calculation of initial conditions by the prefault situation of angles and voltage
magnitude. At bus 8, the voltage magnitude is V8 = 0.9556 pu, close to the lower limit.

A three phase fault at 0.1 s is presented near to node 7 in one of the transmission lines
7–8. Several fault duration times were tested. Figures 6 and 7 exhibit the power system
performance when the StatCom and PSS have a positive interaction. The fault is cleared
after eight cycles, which was the fault duration for the power system to become unstable
on the base case. There is a comparison using StatCom with and without PSS for making
the system stable. The StatCom inclusion is not enough to improve the global power
system damping, however, it diminishes the magnitude of the oscillations and improves
the damping ratio respect to the system without controllers in the same period.
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Figure 6. Angular difference of each machine with respect to number one, case 1: 8 cycles until the
fault is cleared.

Figure 6 depicts the angular difference of each generator. The proposed control design
methodology shows a positive interaction between controllers and the overshoot has an
important reduction with and without the PSS, but the oscillations are eliminated in a fast
way when PSS is included. Figure 7a presents the active power on the generator two and
Figure 7b the voltage magnitude in PCC node where the StatCom is included.

Table 5 presents the main characteristics of transient response for case 1. Where
the quantitative comparison is obtained in the case: (i) with StatCom and without PSS
(wS/woPSS); and (ii) with StatCom and with PSS (wS/wPSS). The transient responses of
the angular differences are improved with the correct coordination of controllers. In the
case of δ21 the settling time is diminished in about 80.5%, for the overshot a marginal
improves percent is obtained. However, the overall performance of the proposed technique
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permits to attain a similar behavior in terms of overshot, in some case better, but in all
responses the settling time is drastically enhanced.
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Figure 7. Case 1: (a) real power at generator 2; (b) voltage magnitude in bus of StatCom connection.

Table 5. Analysis in time domain of the responses for case 1.

Variable Case Rise Time Settling Time Overshoot Peak Time

δ21 wS/woPSS 0.0802 14.4562 2.3927 0.5300

wS/wPSS 0.0198 3.8236 2.2998 0.4960

δ31 wS/woPSS 0.0515 16.1978 10.1564 0.5670

wS/wPSS 0.0205 2.2131 8.5395 0.5180

δ41 wS/woPSS 0.0571 15.7923 10.2529 0.5120

wS/wPSS 0.0238 2.8591 10.3163 0.4820

Pe2 wS/woPSS 0.00054 4.0704 1.2251 0.2340

wS/wPSS 0.00052 0.5917 1.4949 0.2340

The settling time is improved with the following percentages; for δ31, 86.3%; for δ41,
81.9%, and Pe2, 85.5%, which is concentrated in Table 6. The rise time and peak time
are similar for both controller’s tuning. Like the previous dynamic performance of the
power system, for the case 2, also the transient response features are determined, Table 6.
Now, the proposed adaptive strategy has impacted in two main features in time domain
transient response. Both settling time and overshoot are clearly enhanced by the proposed
control coordination scheme. The following improvement values are attained: δ21, 83%;
δ31, 87.5%; δ41, 86%, and Pe2 in 85%. In Table 6, the results are presented. It is evident the
correct performance of the proposed algorithm to diminish the exhibited low frequency
oscillations in a faster way. Additionally, the percent that diminishes the overshoot in this
case is:δ21, 65%; δ31, 70%; δ41, 79%, and Pe2 in 43.3%.
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Table 6. Analysis in time domain of the responses for case 2.

Variable Case Rise Time Settling Time Overshoot Peak Time

δ21 wS/woPSS 0.1568 9.7201 2.1921 1.2450

wS/wPSS 0.1339 1.6374 0.4907 0.3415

δ31 wS/woPSS 0.3151 17.6893 12.6784 1.0090

wS/wPSS 0.4666 2.2153 1.5931 1.1230

δ41 wS/woPSS 0.3149 14.7150 10.9615 1.0640

wS/wPSS 0.3860 2.0571 2.2949 1.0620

Pe2 wS/woPSS 0.0026 4.9918 0.4435 0.8310

wS/wPSS 0.0019 0.7363 0.2515 0.7930

4.3. Case 2. Three-Phase Failure with Line Out of Service after Eight Cycles

In contrast to case 1, now the postfault condition is with one of the parallel transmis-
sion lines 7–8 out of service after the fault is cleared. The fault with six cycles of duration is
presented between buses 7–8, close to node 7. The proposed methodology has a behavior
similar to case 1, Figures 8 and 9.
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Figure 8. Angular difference of each machine with respect to number one, case 2.

The angular difference of machines respect to number one are presented in Figure 8.
The overshot after the fault is released is bounded and the oscillations of internal machine
angle exhibit fast transient respond reaching a new value in steady state. The final condition
is due to a new electrical grid topology with one transmission line out of service.

Figure 9a reveals the active power injected by the generator 2. With improved control
design stage and dynamic gains, the controllers are adapted to the new power system
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condition or perturbation presented. The power oscillations are diminished after one
second. With only StatCom the oscillations are diminished with low magnitude.

In Figure 9b some voltage magnitudes are presented. At node 8 where StatCom is
connected the voltage magnitude returns to the set point, however, it is close to low voltage
limit. In the case of faulted node 7, the system tries to return a stable condition, but the
voltage is below low limit. Thus, an action of secondary control loop is required to reach
the new steady state condition where all variables should be within physical limits.

The evolution of the gains is exhibited in Figure 10a, the updated values allow to get
the best performance. All results are in accordance with the expected values of the power
system with improved damping ratio due to the design procedure and the inclusion of
some dynamic gains. Additionally, the performance of these gains in case 2 is presented
in Figure 10a, the initial conditions are equal for both study cases but have different
dynamic evolution.
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Figure 9. Case 2: (a) real power at generator 2; (b) voltage magnitude in bus of StatCom connection.

In Figure 10b, the control signals for the StatCom are displayed. The calculated gains
are meant to get a fast response with limited overshoot, after the transient period both
control signals attain a new steady state condition. Similar behavior for both cases is
exhibited in these signals.

The deviation respect to initial values is small, and with very fast response
(less than one second).

Cases 1 and 2 demonstrate the improved dynamic performance that the power system
exhibits by using the variables of this section. The simulation results indicate that critical
clearing time has been improved widely. Under this scenario the presented results illustrate
the system response when the fault is cleared after six cycles. The prefault and postfault
condition are the same.
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Then, without loss of generality it is possible to extend our methodology in electric
power system with more generators, different FACTS devices, generation plants and
emerging technologies. Under these new conditions some minor considerations must be
included in B-Spline scheme for on line operation.
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Figure 10. (a) Evolution of dynamic gains and; (b) Control signals for the StatCom.

5. Conclusions

The proposed design methodology includes a complete non-linear representation of
large-scale power systems for transient stability studies. Three-phase failure is presented
to validate stability. On the base case, the angular difference of the machines is not ensured
when failure is released after 8 cycles. The power system presents enhanced dynamic
performance when StatCom and PSS are included. The PSS and the StatCom controllers
are simultaneously tuned using B-Spline for gain definition, and using typical known
values for each gain. Model uncertainties are not included in the design stage because
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they are considered on the gains updating task, which is performed in each sample time,
avoiding model and parameter dependency. The control design stage allows good system
performance under a specific operating point but also with other operating conditions
or topologies. Moreover, the new proposed technique can be extended to other complex
multimachine power systems with several adaptive dynamic controllers.
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Abstract: Thick wall structures are usually applied at a highly reduced frequency. It is crucial
to study the refined dynamic modeling of a thick plate, as it is directly related to the dynamic
mechanical characteristics of an engineering structure or device, elastic wave scattering and dynamic
stress concentration, and motion stability and dynamic control of a distributed parameter system.
In this paper, based on the partial differential operator theory, an exact elasto-dynamics theory
without assumptions for bending vibrations is presented by using the formal solution proposed by
Boussinesq–Galerkin, and its dynamic equations are obtained under appropriate gauge conditions.
The exact plate theory is then compared with other theories of plates. Since the derivation of the
dynamic equation is conducted without any prior assumption, the proposed dynamic equation of
plates is more exact and can be applied to a wider frequency range and greater thickness.

Keywords: exact plate theory; thick plate; bending vibration; partial differential operator theory;
gauge condition

1. Introduction

As typical structures, thick plates with holes are widely used under dynamic loads in
aerospace, ocean engineering, civil engineering and mechanical engineering [1–5]. Due
to the stress concentration near the load-bearing opening in the finite thickness structure,
there will be an intense three-dimensional effect zone. The three-dimensional effect zone is
closely related to the relative thickness of the structure, which largely controls the fracture,
fatigue and other mechanical properties of the structure [6,7]. There is a large error in
calculating the dynamic problem of the plate with actual thickness based on the classical
thin plate theory. With the development of modern science and technology, engineering
structure designs tend to be light, and the way to achieve this is to use advanced materials
and improve the structure design theory. However, because the three-dimensional problem
has not been well solved, it will encounter great mathematical difficulties in solving the
three-dimensional problem.

The classical plate theory (CPT) is the basic theory in the hierarchy of plate theories [6].
Since it was formulated systematically in the 19th century, CPT has been widely applied for
buckling, bending and vibration analyses of plates. However, it is worth noting that CPT
does not consider the effects of shear deformation or rotary inertia [8–10]. Hence, in the
analysis of thick plates and also in the case of thin plates vibrating at higher frequencies,
the use of CPT would result in considerable errors [11–14]. These limitations of CPT led to
the development of first-order and higher-order shear deformation plate theories.

Reissner [11,12] proposed a thick plate theory, including the effects of shear deforma-
tion. Reissner’s theory involves three coupled governing differential equations in terms of
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three unknowns. In fact, Reissner’s theory is based on a stress approach. Mindlin [13] con-
sidered both the effects of shear deformation and rotary inertia and proposed a first-order
displacement-based theory, which involves three coupled governing differential equations.
Mindlin’s theory was derived by using the frequency domain method, so its disadvantage
is that it cannot predict the constant transverse shear strains and stresses across the plate
thickness. Therefore, the theory requires a shear correction factor to match the strain energy
calculated by using constant transverse shear strains and stresses. The transverse shear
strains and stresses vary parabolically across the plate thickness [14].

The Levinson [15] and Reddy [16,17] plate theories are higher-order shear deformation
plate theories based on displacement. Both the theories are based on the same displacement
field. However, the governing equations of the Levinson theory are derived from the plate
gross equilibrium equations, whereas Reddy used the principle of virtual displacements
to derive the governing differential equations. Neither theory requires a shear correction
factor. The plate theory proposed by Kant [18] is based on a higher-order displacement
model, which causes a secondary change in transverse shear strain and a linear change
in transverse normal strain across the plate thickness. This work involves the flexure of
thick rectangular isotropic plates. The formulation of the theory involves six variables.
Since the higher-order plate theories cannot take the continuity conditions of displacement
and shear stresses into consideration, the accuracy of analytical solutions cannot meet the
requirements in engineering applications [19].

Nedri [20] presented a novel refined hyperbolic shear deformation theory based on
the assumption that the transverse displacements consist of shear and bending compo-
nents where the bending components do not contribute to shear forces, and likewise, the
shear components do not contribute to bending moments. The irrelevancies of the two
components make calculations simple, yet it may lead to an erroneous result when the
displacements vary sharply across the thickness. Shimpi [21] developed a refined plate
theory (RPT) with only two unknown functions available in the paper. RPT produces two
fourth-order governing differential equations, which are uncoupled for static problems and
are only inertially coupled for dynamic problems. Subsequently, Shimpi [22] presented
two new first-order shear deformation plate theories with only two unknown functions
to improve RPT. Using the method proposed by Timoshenko and Ashwell, Nicassio [4]
presented a novel forecast model to map the surface profiles of bistable laminates and
developed an analytical model to provide an interpretation of the bistable shapes in terms
of principal and anticlastic curvatures. Wu [5] gave a revised method to increase the stiff-
ness and natural frequency of bistable composite shells, which can be suitable for spatial,
lightweight structural components.

Among various refined plate theories, Carrera [23] presented a unified expression,
which provides a program to obtain refined structural models of beams, plates and shells
that explain variable kinematics descriptions. Based on Carrera’s unified formulation
(CUF), these structural models are obtained using the N-order Taylor expansion to expand
the unknown displacement variables. Tornabene et al. [24,25] derived a general formu-
lation of 2D higher-order equivalent plate theory. The theoretical framework covers the
static and dynamic analysis of shell structures by using a general displacement field based
on CUF. In the CUF system, a linear case can describe a classical model, while a higher-
order case can describe a three-dimensional structure. Kolahchi [3] investigated bending,
buckling and buckling of embedded nano-sandwich plates based on refined zigzag theory
(RZT), sinusoidal shear deformation theory (SSDT), first-order shear deformation theory
(FSDT) and classical plate theory (CPT), and a differential cubature (DC) method is ap-
plied for obtaining the static response, the natural frequencies and the buckling loads of
nano-sandwich plates. The numerical investigation shows that RZT is highly accurate in
predicting the deflection, frequency and buckling load of nano-sandwich plates without
requiring any shear correction factors.

In brief, although the above CPT theories have been optimized and updated, they are
theoretically based on the geometric method, and the models are rough since engineering
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assumptions are still used during the derivation, which results in many limitations in the
application of thick wall structures, especially in the case of plates vibrating at higher
frequencies. In this paper, we propose a novel theory of exact elastic dynamics for bending
plates not based on the geometric view but the algebraic view. During the derivation,
we apply the general formal solution proposed by Boussinesq–Galerkin and the operator
theory of partial differential equations. The exact elasto-dynamics equations for bending
plates are obtained by using appropriate gauge conditions, and the exact dynamic theory
of thick plates is compared with other plate theories. Since the derivation of the dynamic
equation is carried out without any prior assumption, the proposed dynamic equation of
plates is more exact and can be applied in a wider frequency range and greater thickness.
The exact thick plate theory in this paper makes up for the shortcomings of the classical
thin plate theory and other thick plate theories. It can be used not only for structures with
large thickness span ratio but also for vibration mechanics problems with great influence
of shear deformation and moment of inertia, such as spacecraft attitude dynamics and
control, structural motion stability, dynamic stress concentration for thick plates with holes,
and calculations for submarine anechoic tile structure design.

2. Derivation of the Exact Dynamic Theory for the Bending Plate

First, the derivation process of the exact plate theory for the bending plate is intro-
duced. According to the three-dimensional elasto-dynamics theory, the governing equation
of the spatial displacement field is the Navier equation:

μ∇2u + (λ + μ)∇(∇ · u) = ρ
∂2u

∂t2 , (1)

where μ, λ are the Lame constants, ∇ = i∂/∂x + j∂/∂y + k∂/∂z, ρ is the density.
From Equation (1), based on Boussinesq–Galerkin solution (B-G solution), the solution

given as:

u = 2(1 − ν)

(
∇2 − 1

c2
1

∂2

∂t2

)
G −∇(∇ · G), (2)

where c1, c2 are longitudinal wave velocity and transverse wave velocity, ν is the Poisson
ratio, and G = (G1, G2, G3) is the Somigliana vector potential function, which satisfies the
following relation as:

∏
(
∇2 − T2

j

)
G = 0. (3)

where Tj are time differential operators, T2
j = 1

c2
j

∂2

∂t2 , (j = 1, 2),

Using the Taylor series expansion of the exponential operator function, the displace-
ment at any point in the plate can be written as:

ux(x, y, z) = exp
(

z
∂

∂z

)
ux(x, y, 0), (4)

uy(x, y, z) = exp
(

z
∂

∂z

)
uy(x, y, 0), (5)

uz(x, y, z) = exp
(

z
∂

∂z

)
uz(x, y, 0). (6)

The fluctuation of plate bending is a case of antisymmetric motion, and Equation (4)
can be written as:

ux(x, y, z) = sin h
(

z
∂

∂z

)
ux(x, y, 0), (7)

uy(x, y, z) = sin h
(

z
∂

∂z

)
uy(x, y, 0), (8)
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uz(x, y, z) = cosh
(

z
∂

∂z

)
uz(x, y, 0), (9)

where sinh(·) is hyperbolic sine function, and cosh(·) is a hyperbolic cosine function.
The B-G solution can be written as:

Gj(x, y, z)= sin h
(

z
∂

∂z

)
Gj(x, y, 0) = cosh

(
z

∂

∂z

) 2

∑
i=1

Gi
j
(x, y, 0), (10)

G3(x, y, z)= cos h
(

z
∂

∂z

)
G3(x, y, 0) = cosh

(
z

∂

∂z

) 2

∑
i=1

Gi
3
(x, y, 0), (11)

The Somigliana vector potential function G can be decompose into two vector potential
function as G = G1 + G2, and

(
∇2

j +
∂2

∂z2

)
Gj = 0, here ∇2

j = ∇2 − T2
j , (j = 1, 2) is the

Lorentz operator. The trigonometric function operator can be written as:

sin
(
z∇j

)
∇j

=
∞

∑
n=0

(−1)n 1
(2n + 1)!

z2n+1∇2n
j , (12)

cos
(
z∇j

)
=

∞

∑
n=0

(−1)n 1
(2n)!

z2n∇2n
j , (13)

here j = 1, 2.
We can also obtain the following relation as:

∇0G =
∂G1

∂x
+

∂G2

∂y
+

∂G3

∂z
=

2

∑
j=1

sin
(
z∇j

)
∇j

(
∂gj

1
∂x

+
∂gj

2
∂y

−∇2
j gj

3

)
. (14)

For the sake of avoiding the non-uniqueness of unknown functions, two gauge condi-
tions are adopted as follows:

∂gj
1

∂x
+

∂gj
2

∂y
= 0, (j = 1, 2). (15)

Equation (8) can be written as:

∇0(∇0 · G) = −
2
∑

j=1

[
sin(z∇j)

∇j
∇2

j
∂

∂x gj
3

]
i −

2
∑

j=1

[
sin(z∇j)

∇j
∇2

j
∂

∂y gj
3

]
j

−
2
∑

j=1

[
cos

(
z∇j

)
∇2

j gj
3

]
k

(16)

The displacement in the plate can be expressed as:

u = 2(1 − ν)

(
∇2

1 +
∂2

∂z2

)
G −∇0(∇0 · G). (17)

Its component-wise expressions can be written as:

ux =
sin(z∇2)

∇2
T2

2 g2
1 +

2

∑
j=1

sin(z∇j)

∇j
∇2

j
∂

∂x
gj

3, (18)

uy =
sin(z∇2)

∇2
T2

2 g2
2 +

2

∑
j=1

sin(z∇j)

∇j
∇2

j
∂

∂y
gj

3, (19)
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uz = cos(z∇2)T2
2 g2

3 +
2

∑
j=1

cos(z∇j)∇2
j gj

3. (20)

Considering the neutral surface displacement and the normal angle, the generalized
displacement in the plate can be expressed as:

ψx = −∂ux

∂z

∣∣∣∣
z=0

= −T2
2 g2

1 −
2

∑
j=1

∇2
j

∂2gj
3

∂x
, (21)

ψy = −∂uy

∂z

∣∣∣∣
z=0

= −T2
2 g2

2 −
2

∑
j=1

∇2
j

∂2gj
3

∂y
, (22)

w = uz|z=0 = ∇2g2
3 +∇2

1g1
3. (23)

The rotational normal angle to the neutral surface can be expressed as:

ψx =
∂F
∂x

+
∂ f
∂y

, ψy =
∂F
∂y

− ∂ f
∂x

. (24)

The functions g2
1, g2

2, g2
3 can be expressed by the neutral surface displacement and

normal angle as:

g2
1 = −T−2

2

(
∂ f
∂y

+
∂E
∂x

)
, (25)

g2
2 = T−2

2

(
∂ f
∂x

+
∂E
∂y

)
, (26)

g1
3 = −T−2

2 ∇−2
1

(
∇2

1w +∇2F
)

, (27)

g2
3 = T−2

2 (F + w − E). (28)

where ∇2E = 0,F = −∇2
1g1

3 −∇2
2g2

3 + E.
In this way, the displacement can be derived as:

ux =
2
∑

j=1
(−1)j−1 sin(z∇j)

∇j
∂w
∂x − sin(z∇2)

∇2

(
∂F
∂x + ∂w

∂x

)
−T−2

2

2
∑

j=1
(−1)j−1 sin(z∇j)

∇j
∇2

(
∂F
∂x + ∂w

∂x

) (29)

uy =
2
∑

j=1
(−1)j−1 sin(z∇j)

∇j
∂w
∂y − sin(z∇2)

∇2

(
∂F
∂y − ∂ f

∂x

)
−T−2

2

2
∑

j=1
(−1)j−1 sin(z∇j)

∇j
∇2

(
∂F
∂y + ∂w

∂y

) (30)

uz = cos(z∇1)w − T−2
2

2

∑
j=1

(−1)j−1 cos(z∇2)∇2(F + w). (31)

In line with Hooke’s law, the stress components can be expressed as:

τzx = 2μ cos(z∇1)
∂w
∂x − μ cos(z∇2)

(
∂F
∂x + ∂w

∂x + ∂ f
∂y

)
−2μT−2

2

2
∑

j=1
(−1)j−1 cos

(
z∇j

)
∇2

(
∂F
∂x + ∂w

∂x

) (32)
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τzy = 2μ cos(z∇1)
∂w
∂y − μ cos(z∇2)

(
∂F
∂y + ∂w

∂y − ∂ f
∂x

)
−2μT−2

2

2
∑

j=1
(−1)j−1 cos

(
z∇j

)
∇2

(
∂F
∂y + ∂w

∂y

) (33)

σz = 2μT−2
2

2
∑

j=1
(−1)j−1 sin(z∇j)

∇j
∇2∇2(F + w)

−(λ + 2μ)T−2
1 T−2

2
sin(z∇1)

∇1
∇2(F + w)

+(λ + 2μ)T2
1

sin(z∇1)
∇1

w

−2μ
sin(z∇1)

∇1
∇2w + 2μ

sin(z∇2)
∇2

∇2(F + w)

(34)

Considering the free boundary condition, the shear stress at the plate surface is zero.
The equalities can be given from Equations (32) and (33) as follows:[

cos
(

h
2∇1

)
∂w
∂x − 1

2 cos
(

h
2∇2

)
− T−2

2

2
∑

j=1
(−1)j−1 cos

(
h
2∇j

)
∇2

]
(

∂F
∂x + ∂w

∂x

)
− 1

2 cos
(

h
2∇2

)
∂ f
∂y = 0

(35)

[
cos

(
h
2∇1

)
∂w
∂y − 1

2 cos
(

h
2∇2

)
− T−2

2

2
∑

j=1
(−1)j−1 cos

(
h
2∇j

)
∇2

]
(

∂F
∂y + ∂w

∂y

)
+ 1

2 cos
(

h
2∇2

)
∂ f
∂x = 0

(36)

where h is the thickness of the plate.
On the basis of the complex variable function theory, Equations (35) and (36) can be

regarded as the real part and imaginary part, which consist of a Riemann condition of the
analytic function. Now, the non-homogeneous solution of the equation does not influence
the solution of the stress state, so there can be:

cos
(

h
2
∇1

)
w −

[
1
2

cos
(

h
2
∇2

)
+ T−2

2

2

∑
j=1

(−1)j−1 cos
(

h
z
∇j

)
∇2

]
(F + w) = 0, (37)

cos
(

h
2
∇2

)
f = 0. (38)

According to the integral function theory, Equation (38) can be expanded in series as:

∞

∏
m=1

[
1 − h2∇2

2

(2m − 1)2
π2

]
f = 0. (39)

By means of truncating the infinite series, the following second-order elastic wave
equation is given as:

∇2 f −
(
π2

h2 +
1
c2

2

∂2

∂t2

)
f = 0. (40)

According to the free boundary condition that the normal stress at the plate surface
is zero, the governing equation for the elastic wave of the plate can be derived from
Equations (34) and (37) as:

T−2
2

2

∑
j=1

(−1)j−1 cos(
h
2
∇j)∇2(F + w) +

1
2

cos(
h
2
∇2)(F + w)− cos(

h
2
∇2)w = 0, (41)

T−2
2

2
∑

j=1
(−1)j−1 sin( h

2 ∇j)

∇j
∇2∇2(F + w) − 1

2

[
sin( h

2 ∇1)
∇1

− 2 sin( h
2 ∇2)

∇2

]
∇2(F + w)

− sin( h
2 ∇1)
∇1

∇2w + 1
2 T2

2
sin( h

2 ∇1)
∇1

w = 0
(42)
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The operator algebraic equation involving the unknown functions F and w is deduced
by Equations (41) and (42) as:

Λ

[
F
w

]
=

[
0
0

]
, (43)

where the expression of each operator of Λ is

Λ11 = T−2
2

2
∑

j=1
(−1)j−1 cos( h

2∇j)∇2 + 1
2 cos( h

2∇2),

Λ12 = T−2
2

2
∑

j=1
(−1)j−1 cos( h

2∇j)∇2 − cos( h
2∇1) +

1
2 cos( h

2∇2),

Λ21 = T−2
2

2
∑

j=1
(−1)j−1 sin( h

2 ∇j)

∇j
∇2∇2 − 1

2
sin( h

2 ∇1)
∇1

∇2 +
sin( h

2 ∇2)
∇2

∇2,

Λ22 = T−2
2

2
∑

j=1
(−1)j−1 sin( h

2 ∇j)

∇j
∇2∇2 − 3

2
sin( h

2 ∇1)
∇1

∇2 +
sin( h

2 ∇2)
∇2

∇2 + 1
2 T2

2
sin( h

2 ∇1)
∇1

.

The determinant of Equation (23) is:

det(Λ) = T−2
2

[
sin( h

2 ∇1)
∇1

cos( h
2∇2)− sin( h

2 ∇2)
∇2

cos( h
2∇1)

]
∇2∇2

−
[

sin( h
2 ∇1)
∇1

cos( h
2∇2)− sin( h

2 ∇2)
∇2

cos( h
2∇1)

]
∇2

+ 1
4 T2

2
sin( h

2 ∇1)
∇1

cos( h
2∇2)

(44)

The fourth-order differential equation involving the lateral displacement can be ex-
pressed as:

det(Λ)w = 0. (45)

After the truncation of the infinite order operator series, the governing equation for
the elastic wave of plates can be derived as:

∇2∇2w − 3 − 2κ

2(1 − κ)
T2

2∇2w +
3

1 − κ
T2

2

(
1
h2 +

1
24

T2
1 +

1
8

T2
2

)
w = 0, (46)

C∇2∇2w − (2 − v)DT2
2∇2w +

[
CT2

2 +

(
7
8
− v

)
DT2

4
]

w = 0, (47)

where C = EMh
2(1+ν)

, D = EMh
12(1−ν2)

, EM is Young modulus.
Without loss of generality, the solution of the vibration harmonic of the problem is

studied. Set:
w = w̃e−iωt, F = F̃e−iωt, f = f̃ e−iωt, (48)

where ω is the angular frequency of plate bending, and i is an imaginary unit.
In the following analysis, the time factor and the symbol ‘~’ in the generalized dis-

placement functions are left out. Taking Equation (48) into Equation (47), the following
equations can be expressed as:

∇2∇2w +
3 − 2κ

2(1 − κ)
k2

2∇2w +
3

4(1 − κ)
k2

2

(
κk2

2
6

+
k2

2
2
− 4

h2

)
w = 0, (49)

2

∏
j=1

(
∇2 + α2

j

)
w = 0, (50)

where αj(j = 1, 2) are scattering wave numbers, which satisfy the following expression

α4 − (2 − v)k2
2α2 + k2

2

[
(7−8v)k2

2
8 − 6(1−v)

h2

]
= 0.
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The scattering numbers on the basis of Mindlin plate theory are determined by the

following expression: α4 −
(

12
π2 +

1−v
2

)
k2

2α2 + 6(1 − v)k2
2

(
k2

2
π2 − 1

h2

)
= 0, where kj =

ω
cj

,

(j = 1, 2).
The corresponding generalized displacement potential function is:

F = F1 + F2 =
2

∑
j=1

(
δj − 1

)
wj, (51)

where δj are the ratio coefficients of the displacement potential function, and thus

δj =
16+2

(
α2

j −κk2
2

)
h2

8+
[
(3−2κ)α2

j −k2
2

]
h2

.

Comparatively, the ratio coefficients of the displacement potential function by Mindlin

plate theory are δ1 = − 2
1−ν

α2
2h2

π2−k2
2h2 , δ2 = − 2

1−ν
α2

1h2

π2−k2
2h2 .

3. Comparison of Various Bending Plate Theories

In this paper, the comparisons between the governing equation for the bending plate
and the governing equations for various classical bending plates are presented in Table 1.

Table 1. Comparison of different theories of plate bending.

Plate Theory Categories Statics Equations Dynamics Equations

The exact plate theory in this paper D∇2∇2W = q − 2−ν
8(1−ν)

h2∇2q

∇2 f − π2

h2 f = 0

D∇2∇2W − (2 − ν)DT2
2∇2W

+CT2
2 W +

(
7
8 − ν

)
W

= q + 3D
4C (1 − ν)

(
T2

2 − 2−ν
1−ν∇2

)
q

∇2 f −
(
π2

h2 + T2
2

)
f = 0

Lagrange-Germain plate theory D∇2∇2W = q D∇2∇2W + CT2
2 W = q

Reissner plate theory D∇2∇2W = q − 2−ν
10(1−ν)

h2∇2q

∇2 f − 10
h2 f = 0

Mindlin plate theory
D∇2∇2W −

(
12ρD
π2C +

ρh3

12

)
T2

2∇2W

+ρhT2
2 W +

ρ2h3

π2C T4
2 W

= q + 12
π2C

(
ρh2

12 T2
2 − D

h ∇2
)

q

∇2 f −
(

3π2

4h2 + T2
2

)
f = 0

Hencky plate theory D∇2∇2W = q − 1
6(1−ν)

h2∇2q
Panc plate theory D∇2∇2W = q − 1

5(1−ν)
h2∇2q

The dispersion equation based on the Lagrange–Germain plate theory (CPT) can be
described as:

c
c2

=

√
4π2

6(1 − ν)

h
λ

. (52)

where λ is the wavenumber of an elastic wave.
The dispersion equation in consideration of the moment of inertia can be described as:

c
c2

=

√√√√ 4π2

6(1 − ν)

[
1 +

π2

3

(
h
λ

)2
]−1

h
λ

. (53)
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When the moment of inertia and shear deformation are involved, the implicit disper-
sion equation can be described as:

π2

3

(
h
λ

)2
(

1 − c2

κ2c2
2

)(
c2

p

c2 − 1

)
= 1. (54)

The implicit dispersion equation based on the three-dimensional elasto-dynamics
theory can be described as:

4c2
2

√(
c2

2 − κc2
)(

c2
2 − c2

)
(
2c2

2 − c2
)2 =

tanh
(

2π h
λ

√
c2

2 − κc2
)

tanh
(

2π h
λ

√
c2

2 − c2
) . (55)

The dispersion equation based on the exact plate theory in this paper is:

α4 − (2 − v)k2
2α2 + (1 − v)k2

2

[
k2

2(7 − 8v)
8(1 − v)

− 6
h2

]
= 0. (56)

4. Discussion of the Exact Plate Theory

In this paper, the derived plate bending vibration equation is compared with the
classical corresponding equation. The comparison of the specific equation form is shown
in Table 1. In the process of comparison, the equation form in the frequency domain is
used. The bending vibration equation of plates presented in this paper is similar to other
classical bending vibration equations of plates. When the statics problem is studied, the
elastic vibration equation of plates derived in this paper degenerates into an exact equation
of the static bending of plates.

According to those dispersion equations above, Figure 1 is drawn to compare the
dispersion curves; Figure 2 is drawn to compare the scattering wave numbers. From
Figure 1, we can see that the dispersion curves based on the classic thin plate theory and
Mindlin plate theory are far apart from the three-dimensional elasto-dynamics theory, but
the dispersion curves by the exact plate theory in this paper are very close to the dispersion
curves based on the three-dimensional elasto-dynamics theory. By comparing those curves,
the superiority of the exact plate theory to other plate theories is obvious.

As can be seen in Figure 2, the scattering wave number α1 obtained by the exact plate
theory and Mindlin plate theory is very close, but the scattering wave number α2 obtained
by the exact plate theory is quite different from that of the Mindlin plate theory. With the
increase of the vibration frequency, the scattering wave number becomes greater. It can
be seen that the scattering wave number α1 at any frequency is greater than zero, so it can
be concluded that the wave mode is in the propagation region. Nevertheless, when the
frequency is low, the scattering wave number α2 is less than zero, and the wave mode is in
the cutoff frequency domain, which is called a localized standing wave. When the frequency
is high, the scattering wave number α2 is greater than zero, and the wave mode is in the
propagation region, which is called a propagating wave. According to Reference [7], it can
be seen that the applicable frequency interval of the Mindlin plate theory is ω/ω0 < 1, i.e.,
h/λ2 < 0.5, and the application of the Mindlin plate theory is limited. The dynamic model
proposed in this paper is completely based on the three-dimensional elasto-dynamics
theory, and consequently, its limitations of application are minor.
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Figure 1. Dispersion relation by the different theories.

Figure 2. Wavenumbers by the different theories.
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5. Conclusions

In this paper, the novel dynamics plate model is completely based on the theory of
three-dimensional elasto-dynamics theory, and the derivation of the dynamic equation
is conducted without any prior assumption but in view of the partial differential oper-
ator theory and analytic theory of complex function. Therefore, the proposed dynamic
equation is more exact. It is not only suitable for low-frequency vibration of the plate but
also suitable for high-frequency vibration, which will not produce the phenomenon of
high-frequency dispersion.

With the development of modern mechanics and mathematics, new research results
and methods continue to appear. The research object develops toward high speed and
high-frequency. The new development of mathematical and mechanics improves the
ability to solve complex mechanical problems and plays a positive role in promoting the
development of mathematics in mechanics and physics. It provides a new formulation
and means for solving the dynamics and numerical calculation of solid structures more
accurately. The governing equation of bending plate vibration proposed in this paper
is expected to be used to analyze the vibration of thick plates, evaluate the applicable
condition of the engineering plate theory and design the active vibration control of thick
plates exactly in the research on the dynamics and stability for flexible spacecraft structures
and broadband vibration frequency.
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Abstract: This work proposes a data-driven approach to controlling the alternating current (AC)
voltage via a static synchronous compensator (STATCOM). This device offers a fast dynamic response
injecting reactive power to compensate the voltage profile, not only during load variations but also
depending on the operating point established by the grid. The proposed control scheme is designed
to improve the dynamic grid performance according to the defined operating point into the grid. The
mathematical fundamentals of the proposed control strategy are described according to a (model-free)
data-driven-based controller. The robustness of the proposed scheme is proven with several tests
carried out using Matlab/Simulink software. The analysis is performed with the well-known test
power system of two areas, demonstrating that the proposed controller can enhance the dynamic
performance under transient scenarios. As the main strength of the present work with respect to
the current state-of-the-art, we highlight the fact that no prior knowledge of the system is required
for the controller implementation, that is, a model or a system representation. The synthesis of the
controller is obtained in a pure numerical way from data, while it can simultaneously ensure stability
in a rigorous way, by satisfying Lyapunov conditions.

Keywords: data-driven control; reactive power compensation; STATCOM; voltage control; voltage
source converter

1. Introduction

The technical regulations about environmental issues and the use of renewable en-
ergy sources (RES) set robust planning expansion programs due to the increasing energy
demand. This leads to analysis of the system constraints, aiming to avoid instability sce-
narios defined by the load-ability limits [1]. Voltage stability is of utmost importance in
electrical power systems studies and is related to reactive power compensation. In this
context, flexible AC transmission system (FACTS) devices have been developed not only
to offer a fast dynamic response of reactive power compensation but also to prevent the
occurrence of synchronous resonance in large power systems [2,3]. In the literature, it has
been reported that static synchronous compensator (STATCOM) presents promising results
in dynamic reactive power compensation, voltage regulation and also helping to reduce
power fluctuations [4,5].

During transient events, a power system may exhibit low-frequency power oscillation
between two or more interconnected areas, also called inter-area oscillations, that are in
a range of 0.1–1.0 Hz according to [6]. It is well-known that a STATCOM model not only
provides good support of voltage control but can also improve the dynamic performance
of the grid during transient events, in other words, is able to enhance the voltage recovery
time and limits, and it is expected to have a better performance during power oscillations.
As a consequence, a STATCOM is a good alternative to provide power oscillation damping

Mathematics 2021, 9, 2361. https://doi.org/10.3390/math9192361 https://www.mdpi.com/journal/mathematics
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(POD) [7]. This task is commonly carried out using power system stabilizers (PSS) to damp
low-frequency power oscillations, which consists of an auxiliary control loop that measures
the deviation of frequency. However, this is not the main task of a STATCOM, it is rather
an inherent response due to its control design and can also include an additional damping
controller [8].

Dynamic reactive power compensation can be an effective way to facilitate the in-
terconnection of RES, especially to comply with grid codes regarding reactive power
requirements at the point of common coupling (PCC) [9]. For example, in [10], a control
scheme based on the fundamentals of a STATCOM is employed in photovoltaic (PV) power
plants to reduce power oscillations in power grids, due to an inverter being able to act
as a STATCOM; this enables the mitigation of POD during transient events. In [11], a
STATCOM is also used in wind power plants to enhance the dynamic performance of the
main oscillating modes; in that work, an adaptive network-based fuzzy inference system
(ANFIS) controller is employed. Another proposal focused on POD can be found in [12],
where a STATCOM is equipped with energy storage so that the combination of real and
reactive power injection offers good robustness during the dynamic response of the power
system.

On the other hand, different control strategies have been proposed in the literature
to enhance the dynamic response of power systems supported by STATCOMs. Many of
those approaches present different attributes according to the employed techniques. In [13],
a mechanism of POD is based on auxiliary damping controllers defined by a wavelet
neural network (WNN), which offers a reduced complexity due to the number of data
used as well as its learning capability. In the same way, in [14], a multi-band controller
is employed to deal with POD, which is a coordinated design and is optimized based on
the operating conditions of the grid. Most of them have been used to design auxiliary
control loops aiming to damp power oscillations, like in [8], which presents a control
strategy using an additional damper controller (ADC) based on artificial neural networks
and deep deterministic policy gradient (DDPG). In another study reported in [15], a data-
driven analysis is carried out to adjust and calculate the control gain to enhance the overall
system dynamic response to reduce the power oscillations. In contrast with other proposed
control strategies, this work is focused on the full control of the voltage source converter
(VSC)-based STATCOM without using auxiliary control loops to enhance the dynamic
performance.

This paper presents a fully data-driven controller for a VSC-based STATCOM. The
general idea is based on the fact that a STATCOM helps to increase the transient stability;
this is feasible using well-coordinated controllers or employing other supplementary
control functions. In this context, the proposed approach aims to improve the dynamic
performance of a VSC-based STATCOM following the fundamentals of a conventional
VSC controller. The contribution is underpinned in a data-driven controller to enhance
the transient response of a VSC-based STATCOM under different operating conditions
of a two area, four-machine power system. The proposed controller offers robustness
and adaptability according to the power system requirements that will be reflected in the
dynamic performance.

The proposed data-driven control is able to ensure the demanding performance
specifications without any prior knowledge of the system. Among such specifications
we can highlight stability as the most important one. It is well-known that model-based
techniques are able to ensure stability and general performance. However, the limitation of
such approach is the requirement of an existing accurate model of the grid and the power
converter as a starting point. For instance, in [16] the small signal model of the system is
required to design the controller of a STATCOM based on a multilevel converter. Similarly,
in [17] the model of the system is required in order to design an adaptive controller for
voltage regulation using a STATCOM. Other newer approaches, such as model predictive
control (MPC), also require a detailed modeling of the system in order to work properly as
can be corroborated in [18,19], where MPC is used as the control strategy for the mitigation
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of voltage unbalance and reactive power control. Robust control can be also categorized as
a model-based technique as can be observed in [20,21], where the system-model derivation
is an important step of the controller design procedure. In real-life, a power grid is such
a complex system that its model, parameters and general dynamics have a high-level
of uncertainty. Consequently, the stability conditions obtained from an idealized model
can be compromised during extreme scenarios such as the occurrence of faults. Another
alternative is the use of classical proportional (P), proportional and integral (PI) and
proportional, integral and derivative (PID) tuning rules, which do not require a model to
set-up controller gains. The limitation of these rules, however, is the fact that they cannot
guarantee stability unless a system model, for example, transfer function or frequency
response traces, is provided (see e.g., [22,23]). Motivated by this problem, we developed a
data-driven control technique that is able to ensure performance specifications and by all
means stability, as in a model-based technique. Nevertheless, we replace the requirement
of a model, by matrices constructed from data and stability conditions provided in terms
of linear matrix inequalities (LMIs), which can be easily set-up and numerically solved by
traditional MATLAB (Version R2021a, MathWorks, Natick, MA, USA) toolboxes such as
Yalmip (free toolbox developed by Dr. Johan Lofberg).

The present paper is organized as follows. In Section 2, a theoretical background is
discussed, which sets the basis of the proposed data-driven controller. The conventional
state-space model is replaced by data, which is discussed in Section 3; it includes modeling
and parametric identification. Section 4 describes the data-driven control design. The
conventional and data-driven VSC is derived in Section 5, which includes the development
of the state-space model, also known as the model-based. The case of study is depicted
in Section 6, which describes the system that is going to be used to test the data-driven
controller. In addition, Section 6 also includes the results, and the tests are focused on three
aspects: voltage reference changes, power oscillation damping during transient faults, and
load shedding. The data-driven controller performance is compared to the conventional
controller, which is a state-space model described in [24]. Finally, Section 7 presents the
conclusion of the data-driven controller performance.

2. Theoretical Background

In this section, we introduce the main notation and theoretical elements that constitute
the basis of the proposed data-driven controller.

2.1. Notation

The notation used throughout the paper is described next. R is the set of reals, and Z+

is the set of positive integers. Rq stands for real vectors of dimension q. Rp×q represents
real matrices of dimension p × q. An identity matrix with q rows and q columns is denoted
by Iq. col(x1, x2) is a vector obtained after stacking column vectors x1 over x2. rank(M)
denotes the rank of matrix M ∈ Rp×q, and colspan(M) represents the set of all linear
combinations of its column vectors. σ denotes the shift operator, which applies to a
function f : Z+ → Rq in the form (σ f )(t) := f (t + 1). This operator can be extended to an
order N, as (σN f )(t) := f (t + N).

2.2. Linear Difference Systems

Recall that linear difference equations can be used to study discrete-time linear (sam-
pled) systems, which have the following quite general form:

R0w + R1(σw) + · · ·+ RN(σ
Nw) = 0, (1)

where the discrete time function w : Z+ → Rq maps time instants into physical amounts
(or measurements); the maximum degree of the shift operator σ is represented by N; and
Ri ∈ Rp×q (i = 0, 1, . . ., N). The linear difference system (1) can be compactly expressed
as:

R(σ)w = 0 ; (2)
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where R(σ) is a p× q polynomial matrix in σ, and represents the laws of the physical system
with respect to w. The components of w can be classified as either inputs or outputs. Input
functions, denoted by u, are independent (v.g., control variables), and output functions,
denoted by y, are results due to the inputs (v.g., state variables). These variables can be
accommodated as an input/output partition, that is, w := col(u, y).

2.3. Quadratic Difference Forms (QdFs)

Functionals, such as Lyapunov functions, have been traditionally used to study stabil-
ity and other important properties of linear difference systems. In the present case, we use
the notion of quadratic difference forms (QdFs), which are functionals of the discrete-time
function w and its time-shifts, that is,

QΨ(w) =
[
w	 σw	 · · · σNw	]

Ψ̃

⎡⎢⎢⎢⎣
w

σw
...

σNw

⎤⎥⎥⎥⎦ , (3)

where Ψ̃ ∈ RNq×Nq is referred to as the coefficient matrix of QΨ. The rate of change of
functional QΨ, denoted as ∇QΨ (an analogous to a continuous-time derivative), is given by

∇QΨ(w)(t) := σQΨ(w)(t)− QΨ(w)(t) . (4)

Stability for autonomous systems represented by (2) can thus be studied by means of
QdFs. A system is autonomous if the polynomial matrix R(σ) in (2) is square and nonsin-
gular (see [25]). In the present case, we will see that this characteristic is easily achieved
since the resultant closed-loop system under study is autonomous. An autonomous linear
difference system is asymptotically stable if

lim
t→∞

w(t) = 0 , ∀w satisfying (2).

A system described by (2) is asymptotically stable, according to the Lyapunov ap-
proach, if a QdF QΨ exists and is such that, ∀w satisfying (2), the following holds:

(i) QΨ(w) ≥ 0; and
(ii) ∇QΨ(w) < 0.

This QdF QΨ that satisfies the above inequalities is referred to as the Lyapunov function.

2.4. Stabilization

We are now interested in designing a controller that is not only able to regulate
the system variables to a desired set-point, but that can also guarantee stability during
disturbances and events that are typical in an electrical system.

In terms of linear difference systems, the equations of the plant and the controller can
be represented as in (2), that is, by P(σ)w = 0 and C(σ)w = 0, respectively. Moreover, the
interconnected (closed-loop) system can be represented by:[

P(σ)
C(σ)

]
︸ ︷︷ ︸

R(σ)

w = 0 , (5)

where plant P(σ)w = 0 and controller C(σ)w = 0 laws must be simultaneously satisfied by
w. This means that, by selecting a suitable controller, we are able to restrict the trajectories
of the system to those that are asymptotically stable and discard those that are undesirable,
for example, unstable, highly oscillatory, too slow, and so forth.

The design of controller C(σ) can impose the stability on (5). For this, it must be
guaranteed that, having a partition w = col(u, y), the stability conditions recalled in
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Section 2.3 for a Lyapunov function candidate QΨ, hold for all w satisfying (5). Notice that,
if the coefficient matrix satisfies Ψ̃ > 0, then QΨ ≥ 0 prevails. Then it is still necessary
to guarantee that ∇QΨ < 0 ∀w satisfying (5). For this, the description of the closed-loop
system can be introduced in the inequality, by considering a polynomial matrix V(σ),
which is non zero, and has the same dimensions as R(σ) in (5). In this form, the symmetry
necessary to satisfy the inequality is preserved, that is,

σQΨ(w)− QΨ(w)︸ ︷︷ ︸
∇QΨ(w)

+w	V(σ)	
[

P(σ)
C(σ)

]
w + w	

[
P(σ)
C(σ)

]	
V(σ)w︸ ︷︷ ︸

Symmetric component

< 0 . (6)

Notice that the condition imposed by inequality (6) is interpreted as follows. If a
QdF QΨ ≥ 0 (i.e., Ψ̃ > 0) exists and is such that (6) is satisfied, then asymptotic stability
is guaranteed for the interconnected system (5). This follows from the fact that every
trajectory w satisfying the interconnected system laws, will cancel out the additional sym-
metric component (because P(σ)w = C(σ)w = 0), which meets the condition ∇QΨ < 0,
concerning the trajectories w produced by the closed-loop system (5).

Next, we introduce a numerical solution to this apparently algebraically complex
condition. For this, we use a candidate controller whose gains are unknown that will be
eventually computed using measurement data, rather than a model of the system. The
plant mathematical model will be ultimately substituted by a condition on coefficient
matrices built entirely from data.

3. Bypassing Models Using Data

The main objective of control design based on the data-driven approach is enabling the
possibility to synthesize controllers entirely from data of available measurements, which is
a simplified route with respect to the classic system identification (modeling and parametric
identification) plus a model-based control approach. This is illustrated in Figure 1.

System

Modeling

Implementation

Parameter 
Identification

Controller 
Design

Data-Driven 
Control

Figure 1. Proposed data-driven control vs. traditional “system identification + model-based” approach.

Moreover, stability conditions and the desired performance must be completely com-
parable with a model-based scheme. This is also in sharp contrast with basic empiric
gain-tuning rules for classic P, PI, and PID controllers, which do not require a model of the
system, but cannot guarantee stability and performance in a deterministic way (see [22,23]).
Our present conviction is to generate a controller purely from measurements that permits
to omit the need for an explicit mathematical model without losing stability and general
performance capabilities with respect to a model-based technique.
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The process begins with the establishment of essential conditions to assure that the
measured data are convenient for control design. In brief, we introduce a test that de-
termines whether the information provided by the available data is sufficient to fully
recuperate the system physical laws.

3.1. Information Sufficiency

Consider that the sampled external variables w are aligned in a vector of measurement
data {w(1), w(2), . . ., w(T)} of length T. Associated with this set of measurements, a Hankel
matrix with a depth of L < T ∈ Z+ can be defined as follows:

HL(w) :=

⎡⎢⎢⎢⎣
w(t) σw(t) · · · σ(T−L+1)w(t)

σw(t) σ2w(t) · · · σ(T−L+2)w(t)
...

... · · ·
...

σLw(t) σ(L+1)w(t) · · · σTw(t)

⎤⎥⎥⎥⎦ . (7)

Next, the persistency of excitation concept [26] is appealed to; to verify if the available
information provided by measurements is sufficient to recuperate the system physical laws,
we use. This is a condition that applies for the input functions u in w = col(u, y), which is
defined as follows. A vector u = u(1), u(2), . . ., u(T) is said to be persistently exciting (PE)
of order L if matrix HL(u) has full row rank.

Assume that u is PE of at least order L, where L equals the sum of the number
of inputs plus the state-space dimension (please check Theorem 1 in [26]); out of this,
colspan(HL(w)) represents the set of all possible solutions of (2). That is, if the input is
PE, then the complete dynamics of the electrical system can be fully described by the set
of available measurements. While a model is able to determine all the possible outcomes
of an electrical system as the solution of linear difference or differential equations, we are
able to do the same by considering the linear combination of the row vectors of the Hankel
matrix HL. Consequently, this array of data in a matrix owns the same model information.

3.2. Data-Based Coefficient Matrices

In this section we show the connection between matrices constructed from data and
the models studied in Section 2.

Consider the above kernel representation (2). Based on (1), the following factorization
is obtained:

[
P0 P1 · · · PN

]︸ ︷︷ ︸
P̃

⎡⎢⎢⎢⎣
w

σw
...

σNw

⎤⎥⎥⎥⎦ = 0 ; (8)

where P̃ (a block matrix) is referred to as the coefficient matrix. It is shown next that this
matrix can be directly obtained out of measured data. For this, consider expression (7) for
L = N + 1, w with sufficiency of information and N representing the maximum degree of
the shift operator. We appeal now to the singular-value decomposition (SVD) which is de-
fined as HN+1(w) := UΣV	, where matrices U and V are square (q × q) and orthogonal; Σ
represents a diagonal matrix having non-negative real numbers on its diagonal which are re-
ferred to as singular values. Furthermore, there is a number given by r := rank(HN+1(w))
that accounts for non-zero singular values. It can be demonstrated, out of the last (q − r)
rows of zeros of U	H(w), that U	 has annihilators of w (i.e., the set of vectors V such
that Vw = 0). Therefore, after examining the partition U :=

[
U1 U2

]
, where U1 owns r

columns, the left kernel P̃ := U	
2 can be retrieved.

Notice that matrix U	
2 , built entirely from data, owns the same information as that

offered by the coefficient matrix P̃, which is derived from an explicit mathematical model.
Based on this proven equivalence, it is possible to get around the need for an explicit
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mathematical model representation and to directly design controllers considering only
measured data and assisted by numerical tools.

4. Data-Based (Model-Free) Control

This section introduces a method to design stabilizing controllers from measured data.
The proposed method involves the calculation of linear matrix inequalities (LMIs). For
this, consider first that the elements of (6) can be factored in terms of coefficient matrices as
described next. Notice that the energy rate of change can be factored as follows:

∇QΨ(w) =

⎡⎢⎢⎢⎣
w

σw
...

σNw

⎤⎥⎥⎥⎦
	[

0q×q 0q×Nq
0Nq×q Ψ̃

]⎡⎢⎢⎢⎣
w

σw
...

σNw

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

σQΨ(w)

−

⎡⎢⎢⎢⎣
w

σw
...

σNw

⎤⎥⎥⎥⎦
	[

Ψ̃ 0Nq×q
0q×Nq 0q×q

]⎡⎢⎢⎢⎣
w

σw
...

σNw

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

QΨ(w)

.
(9)

Based on the coefficient matrix definition for the plant dynamics presented in (8), and
defining coefficient matrices for C(σ) and V(σ), the following factorizations can be obtained

[
P(σ)
C(σ)

]
w =

[
P̃
C̃

]⎡⎢⎢⎢⎣
w

σw
...

σNw

⎤⎥⎥⎥⎦ , V(σ)w = Ṽ

⎡⎢⎢⎢⎣
w

σw
...

σNw

⎤⎥⎥⎥⎦ . (10)

Notice that, out of factorizations (9) and (10), condition (6) can be entirely written in
terms of coefficient matrices, that is,[

0q×q 0q×Nq
0Nq×q Ψ̃

]
+

[
Ψ̃ 0Nq×q

0q×Nq 0q×q

]
+ Ṽ	

[
P̃
C̃

]
+

[
P̃	 C̃	

]
Ṽ ≥ 0 ; (11)

Consequently, if there is a Ψ̃ = Ψ̃	 ≥ 0, X̃ ∈ R(N+1)q×(N+1)q and C̃ ∈ R(q−m)×(N+1)q

such that (11) is kept valid, then stability is guaranteed for a plant whose coefficient matrix
P̃ ∈ R(q−m)×(N+1)q is built upon data. It is noteworthy that the numerical solution of the
inequality (11) is a relatively simple issue for conventional MATLAB toolboxes such as
Yalmip. Therefore, based solely on measurement data to generate P̃, the coefficients of a
stabilizing controller can be obtained without the need for an explicit mathematical model.
In other words, the controller given by C(σ)w = 0 can be realized out of the numerical
solution of C̃ in (11).

Candidate Controller for Stabilization

After examining (11), one can conclude that there are several solutions that will deliver
convenient stabilization controllers for a certain plant. However, regarding electric power
systems, there might be a particular interest in finding solutions that exhibit particular
requirements, for instance, the regulation of certain variables despite of disturbances. As
an example, in this section, a general convenient controller structure is proposed. The
associated gains can be implicit in C̃, and thus they can be numerically calculated after
solving (11).

The controller design process starts by considering the error variables Δx := x − x∗,
where x represents the original discrete-time function, while x∗ is the reference at the
equilibrium point (set point). Next, the following proportional feedback current control is
proposed:

Δu := −KΔy , (12)
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where Δu := u − u∗ and Δy := y − y∗ are the error variables of the input u and the output
y, respectively. We will denote the number of inputs as l and number of outputs as m;
consequently K ∈ Rm×l .

This control loop can guarantee stabilization by a proper computation of K. Moreover,
to ensure steady-state error compensation we can add a discrete-time integrator:

Δu = −KΔy − Gz ; σz = z + Δy ; (13)

where z represents an auxiliary state-variable to describe the discrete-time integrator
of the output variable error, then G ∈ Rm×l . By considering w := col(Δu, Δy, z) and
considering (12) and (13), it is possible to obtain the following representation for the
controller: [

Im K G
0m×l −Il σIm − Im

]
︸ ︷︷ ︸

C(σ)

⎡⎣Δu
Δy
z

⎤⎦ = 0 . (14)

The associated coefficient matrix C̃ is described by:

C̃ =

[
Im K G 0m×m 0m×l 0m×l

0l×m −Il −Il 0l×m −Il σIl

]
. (15)

Now the gains in K and G can be numerically computed as a solution of (11) with P̃
the coefficient matrix of the plant, which is obtained out of measured data w, as explained
in Section 3.2.

5. Voltage Source Converters

Several VSC models have been developed and used throughout the past few years.
Depending on the approach, a detailed or average model can be employed. The control
design of the converter may vary and some designs are more accurate than others, but
for large power systems an average model is usually used to reduce the computational
effort [27].

5.1. Conventional VSC

The conventional VSC is also referred to as an average model, which is represented
in Figure 2. This model consists of one controlled voltage source on the AC side, and
another controlled current source on the direct current (DC) side. The state space model of
the conventional VSC converter is derived by the connection to the grid through a power
transformer; therefore, its control can be performed by the impedance Zf among two buses
vg and vc, defined by L f and R f . The equivalent circuit of the grid is represented by a grid
impedance Zs and a voltage source Vs.

Figure 2. Average VSC model.

According to Figure 2 and considering the Kirchhoff’s voltage law in the abc reference
frame, the voltage drop along the impedance Zs is:

vabc
g − vabc

c = L f
diabc

f

dt
+ R f iabc

f . (16)
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Applying Park’s Transformation dq0 and considering ωg as the angular frequency of
the rotating system; Equation (16) can be rewritten dividing the real and imaginary parts,
giving the next expressions as a result [28]:

L f
did

f

dt
= ωgL f iq

f − R f id
f + vd

g − vd
c , (17)

L f
diq

f

dt
= ωgL f id

f − R f iq
f + vq

g − vq
c . (18)

The d-axis is aligned to the dq0-rotating frame, which provokes the q-component
equals zero in steady-state [29]. In this context, to synchronize the dq0-rotating frame a
Phase-Locked Loop (PPL) must be used. Therefore, the real and reactive powers in the
dq0-rotating frame can be expressed as follows:

Pg = vd
gid

f (19)

Qg = −vd
giq

f . (20)

A VSC is capable of controlling independently active power P (or DC voltage) and
reactive power Q (or AC voltage) [24]. Basically, the control consists of two control loops:
the outer-control loop and the inner-control loop. Both are derived from the mathematical
equations developed previously. The outer-control loop calculates the reference signals
for id∗

f and iq∗
f , which are employed as inputs to the inner-control loop. The inner-control

loop gives the reference voltage [28] to Vc (controlled voltage source). Depending on the
target of control, the VSC can work either as a rectifier or inverter. Considering a lossless
converter, the power balance equation in the dq0 reference frame is [30]:

Pdc = Pac = vdcidc = vd
gid

f + vq
giq

f . (21)

Expression (21) can also be rewritten as:

idc =
vd

gid
f + vq

giq
f

vcd
. (22)

In this case, Equation (22) provides the input signal to the controlled current source
on the DC side of the VSC.

5.2. Model-Based Control

The model-based control of a VSC-based STATCOM model consists basically of two
control loops. The first one corresponds to the outer loop depending on the variable to be
controlled, Vac or Vdc. The second one represents the inner loop based on the state-space
model defined by expressions (17) and (18). Therefore, the conventional control uses a
PI-controller, so that, the inner-control loop can be represented as:

vd
c = ωgL f iq

f −
(

Kp −
Ki
s

)(
id∗

f − id
f

)
+ vd

g (23)

vq
c = −ωgL f id

f −
(

Kp −
Ki
s

)(
iq∗

f − iq
f

)
+ vq

g. (24)

The complete details of the conventional model-based control can be found in [31].
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5.3. Data-Driven Controller

Even though data-driven controllers applied to VSC-based STATCOMs have been
used in the past, most of them have been aimed at auxiliary control and not the converter
itself [8,15]. Data-driven controllers enable a faster response which is an important feature
demanded by any STATCOM model given that it needs to provide voltage support after
an external event such as faults or connection/disconnection of loads.

The data-driven based STATCOM model proposed in this work is based on the
response of the conventional VSC model. In fact, the data-driven controller consists only of
inputs and outputs data and avoids the use of complex mathematical algorithms, which
makes it suitable for a large power system that usually requires a high computational
burden. The proposed data-driven strategy that is discussed in a general way in Section 4,
is now described in terms of the VSC variables for its implementation.

To set-up the controller, it is not required to know any information about the models
of the VSC and the grid. The only requirement is the definition of variables available
for control and measurement, as well as a required operating point, that is, a set-point.
We call these external variables accommodated in a vector w. To denote the desired
value of the external variables at the equilibrium, that is, a set-point, we use the notation
w∗. Then error variables are denoted by Δw = w − w∗. Then a set of measurements
containing w(1), w(2), . . ., w(T) can be used to generate Δw(1), Δw(2), . . ., Δw(T), simply
by subtracting the operating point value.

In this case, we selected Δid, Δiq, Δvdc, Δvac, and Δvd
c , Δvq

c as the external variable,
since they are typically the available measurements in practice. Moreover, the variables
Δvd

c , Δvq
c will permit implementation of the controller, as they provide the voltage reference

for the VSC in terms of dq-components.
As described in Section 3.1, the collection of data on these variables permits us to

obtain the coefficient matrix P̃, which replaces the requirement of a model, since it contains
sufficient information about the dynamics of the to-be-controlled system. Then, the matrix
inequality shown in (11) is implemented using MATLAB and external optimization tools,
in this case we used Yalmip. To set up (11), it is necessary to define the adequate sizes
of P̃si (in this case N = 2 and q = 6) and Ṽ (with the same dimension as P̃. It thus
remains to define the matrix C̃ that contains the parameters of the candidate controller. For
ease of implementation, we chose a PI configuration as the candidate controller with the
following equations:

Δvd
c = −K1Δid − K2Δiq − K3Δvdc − K4Δvac

− K5z1 − K6z2,
(25)

Δvq
c = −G1Δid − G2Δiq − G3Δvdc − G4Δvac

− G5z3 − G6z4 ,
(26)

where the variables z1, . . ., z4 are obtained by discrete-time integration, that is,

σ

⎡⎢⎢⎣
z1
z2
z3
z4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
z1
z2
z3
z4

⎤⎥⎥⎦+

⎡⎢⎢⎣
Δvdc
Δvac
Δvdc
Δvac

⎤⎥⎥⎦ . (27)

The controller therefore has the following representation:
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⎡⎢⎢⎢⎢⎢⎢⎣

−K1 −K2 −K3 −K4 −1 0 −K5 −K6 0 0
−G1 −G2 −G3 −G4 0 −1 0 0 −G5 −G6

0 0 −1 0 0 0 σ − 1 0 0 0
0 0 0 −1 0 0 0 σ − 1 0 0
0 0 −1 0 0 0 0 0 σ − 1 0
0 0 0 −1 0 0 0 0 0 σ − 1

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

C(σ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δid
Δiq

Δvdc
Δvac
Δvd

c
Δvq

c
z1
z2
z3
z4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0.

As defined in (8), and as exemplified in (15), the factorization of C(σ) leads to the
coefficient matrix C̃. Finally, the gains K1, . . ., K6 and G1, . . ., G6 are numerically computed
by solving (11). Although every version of the software is portable enough to work with
different versions, in the present work, it might be of interest that we used MATLAB
R2021a, YALMIP R20210331, and the standard LMILAB solver available in MATLAB. The
latter was used as a default option, but the results were also corroborated by using SEDUMI
1.1 as a solver. The reader can refer to [32] for more information and more suitable options.

The realization of the controller in terms of a flow diagram is shown in Figure 3. In
the following sections, we discuss the performance of the proposed data-driven controller
with respect to the model-based strategy introduced in the previous section.

Figure 3. Data-driven controller for a VSC-based STATCOM model.

6. Case Study and Results

6.1. Test System

In order to validate the data-driven controller of a VSC-based STATCOM model, a
two areas power system is employed. The test system is simulated in Matlab/Simulink
software; it is comprised of a 2-area power system connected by two AC transmission lines
and two machines in each area; these test systems are well-known, such as the Kundurs
2-area 4-machine power system. The complete details of the electrical grid can be found
in [33]. The single-line diagram can be seen in Figure 4. The active power exchange
between two areas is around 400 MW, going from area 1 to area 2, and the swing generator
corresponds to machine 2, labeled as G2. The STATCOM model is connected to Bus 7 (B7)
for controlling the AC bus voltage Vac and the power ratings of the STATCOM can be seen
in Appendix A, particularly in Table A1, where a step-up transformer 195 kV/230 kV is
employed to connect it to the grid.
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Figure 4. Two-area power system [33].

The proposed data-driven control is assessed considering different operating con-
ditions according to the established voltage profile as well as transient faults to analyze
power oscillations just after the fault clearing time. All simulations are carried out using
Matlab/Simulink software, and a time step Ts equal to 1 × 10−4 is used for the imple-
mentation of the data-driven controller. The data-driven controller can be set up from
the historical data collected from the grid or even from another model-based closed-loop
operation of the STATCOM connected to the grid. Therefore, the data-driven controller
will guarantee the dynamic performance of the STATCOM according to the rated reactive
power because this will be mainly designed to operate to their limits.

The main advantage of the data-driven controller is that it is completely model-free,
while its stability and general dynamic performance are equally deterministic, as if it was
based on the existence of a completely accurate model of the grid. To account for this fact,
we proceed to make a comprehensible comparison between the two scenarios: model-based
and model-free. Other advantages include the ability to bypass the issue arising from model
uncertainties, which is the typical weakness of any model-based approach. Based on the
described advantages, the proposed approach is validated analyzing the performance of a
VSC-based STATCOM model, which is compared to the model-based control system under
three different scenarios: (a) by using changes in AC reference voltage; (b) by analyzing
the voltage recovery after a three-phase fault; (c) power oscillation damping after the fault
clearing time. For either, data-driven and conventional models, an average model of the
VSC is used. The PPL parameters and grid parameters are kept the same for both types
of controllers.

6.2. Voltage Step Response

To demonstrate the performance of the proposed method, we first use a test for
comparing both model-based and data-driven control, which consists of changing the AC
voltage reference Vac. For this scenario, V∗

dc remains unchanged given that it should be
constant according to [34]; this means that Id and Iq should be effectively compensated for
by the controller in order to keep Vac and Vdc close to their references.

Figure 5a shows the results for different set points of AC voltages. First, the Vac is
stepped up from 1.006 to 1.044 p.u. at t = 2 s; then, it is also stepped down from 1.044
to 0.98 p.u. at t = 8 s; finally, at t = 12 s the reference changes from 0.97 to 1.022 p.u.
Notice that both controls present similar behavior during the changes of voltage; this
can be confirmed with the error of differences shown in Figure 5b. Faster response time
represents a faster time to reach a new steady-state defined by a particular variable due to
reference changes, which can be measured with Δt. Figure 6 shows a fair comparison of
the model-based controller and the proposed method during the first voltage step shown
in Figure 5. Notice that Δt1 corresponds to the time in which the data-driven controller
reaches the new steady-state, while Δt2 is the elapsed time by the conventional model-
based control. In conclusion, Δt1 corresponds to the settling time which is around 0.242 s,
whilst Δt2 is close to 0.426. Based on the results, the VSC-based STATCOM model with
a conventional controller takes more time to reach the new steady-state compared to the
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data-driven controller. Other time steps are also used to analyze the dynamic response of
the controller, and these are summarized in Table 1.
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Figure 5. Reference changes: (a) voltage step comparison and (b) errors of differences.
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Figure 6. Comparison of both control approaches during voltage reference changes.

Table 1. Controller performance using different time steps.

Step Time
Settling Time

Model-Based Data-Driven

0.25Ts 0.528 0.243
0.5Ts 0.527 0.242

Ts 0.426 0.242
2Ts 0.425 0.242

Figure 7 displays the current flowing from the STATCOM to the grid, current com-
ponents in the dq reference frame. Notice that a change in the voltage reference does not
impact the current component id significantly as shown in Figure 7a, while the second
component iq presents the most noticeable changes due to a voltage change may demand
more reactive power, and this will be reflected in the reactive component of the current
flowing to the system. Figure 8 presents the dynamical performance of the reactive power,
which is injected into the grid according to the objective of control, that is, a higher voltage
will be demanding more reactive power (capacitive) and vice-versa.
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Figure 7. Currents of the data-driven controller during changes in the AC reference voltage: (a) d-axis
current and (b) q-axis current.
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Figure 8. Reactive power at PCC using the data-driven controller with changes in the AC refer-
ence voltage.

6.3. Voltage Recovery under Transient Faults

Another subject of interest to assess the dynamic performance of a STATCOM is linked
to its ability to provide a fast voltage recovery after a transient event by injecting reactive
power, which results in improving the power system stability limits [35,36]. In this context,
the VSC-based STATCOM model using a data-driven controller is analyzed because the
lack of reactive power may deteriorate the bus voltage values as well the power transfer
limits [37]. In this work, the voltage recovery is assessed under two different scenarios:
(1) a solid-grounded three-phase fault on Bus 7, and (b) a solid-grounded three-phase fault
in one of the parallel transmission lines. For both scenarios, the clearing time corresponds
to 100 ms.

6.3.1. Transient Fault on Bus 7

Figure 9 shows the dynamic response during a transient fault simulated at Bus 7.
Notice that both controllers present small differences in the voltage control. However, a
better performance can be observed when the data-driven controller is employed. From
Figure 9, one can notice that the proposed control presents a higher voltage overshoot than
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the model-based control; however, once the fault is cleaned up, the data-driven controller
reaches the steady-state faster than the conventional controller. In addition, during any
transient fault, the STATCOM will act to maintain the voltage profile according to the AC
voltage reference and depending on the fault severity, where sometimes the controller can
be saturated. This will be defined by the reactive power requirements during the pre-fault
condition, where a larger AC voltage reference will be demanding more reactive power. A
fault may also produce a higher overshoot during the transient response, and the controller
may be saturated because this has physical limits.
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Figure 9. Voltage control during transient fault at Bus 7.

Figure 10 confirms the robustness of the proposed approach because the power flows
between the interconnected areas, active and reactive powers, present smaller power
oscillations than the generated with the conventional control. For instance, Figure 10a
shows significant differences during the transient behavior of the active power, while
Figure 10b displays the results of the reactive power.
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Figure 10. Power flow during a fault at Bus 7: (a) active power, and (b) reactive power.

On the other hand, a STATCOM not only offers the capability to improve the power
system efficiency due to its fast dynamic response of voltage control but can also help
to mitigate low-frequency power oscillations [38]. For example, Figure 11 displays the
difference between two rotor angles corresponding to Generator 1 and Generator 2 (defined
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as slack generator). The results show low-frequency oscillations between both generators
when a PSS is used for every generator, except for Generator 4. For all analyzed scenarios,
the machine speed deviation is used as an input signal to each PSS. According to the
results shown in Figure 11, notice that the proposed controller helps to reduce the power
oscillations due to the fast dynamic response to recover the AC voltage at the PCC. In
addition, the differences shown in Figure 11 not only depend on the STATCOM but are also
due to other generators. This is the main reason that both responses do not match very well
during the transient period. However, notice that after some seconds both controllers have
the same behavior; this means that the power system has reached the new steady-state.
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Figure 11. Rotor angles during a fault at Bus 7.

6.3.2. Fault along the Transmission Line

In this case, a transient fault is analyzed, which is cleaned up by opening the circuit-
breakers of the faulted transmission line. The dynamic response corresponding to voltage at
the PCC is depicted in Figure 12, where significant differences occur between the proposed
control scheme and the model-based control. In addition, Figure 13 shows the power flow
changes after the fault clearing time. The power flow measurements are taken from the
non-faulted transmission line. The power transmission losses are increased due to the
presence of only one transmission line. The damping capability is highly noticeable in
Figure 14, which shows the rotor angle difference after the clearing time and due to the
change of topology caused by the opening of one transmission line. Figures 11 and 14 help
to confirm the dynamic performance of the data-driven controller in comparison with the
conventional model-based controller. Notice that a better performance is exhibited when
the STATCOM is controlled by the data-driven approach. Finally, the described results help
to confirm the dynamic performance of the data-driven controller in comparison with the
model-based controller, where significant differences appear during the transient period.
Table 2 summarizes the controller performance during transient faults after evaluating
different time steps; voltage recovery after the fault clearing time. Finally, considering
all analyzed variables, the results showed that the data-driven controller offers better
performance during transient events because the resulting power oscillations are smaller
in magnitude for all analyzed scenarios.

Table 2. Controller performance during transient faults using different time steps.

Step Time
Overshoot Settling Time

Model-Based Data-Driven Model-Based Data-Driven

0.1Ts 0.100 0.21 1.050 0.84
0.5Ts 0.093 0.21 1.030 0.78

Ts 0.090 0.21 0.894 0.83
2Ts 0.090 0.20 0.894 0.83
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Figure 12. AC voltage during a fault on the transmission line.

0 2 4 6 8 10 12

Time [s]

-200

0

200

400

600

800

P
B

7
−

B
9

[M
W

]

(a)

Model−based

Data−driven

0 2 4 6 8 10 12

Time [s]

-200

0

200

400

600

800

Q
B

7
−

B
9

[M
V

A
r]

(b)

Model−based

Data−driven

Figure 13. Power flows during transient fault and topology change: (a) active power, and (b) reac-
tive power.
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Figure 14. Rotor angles during transient fault and topology change.
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6.4. Load Shedding Assessment

One of the last resources to mitigate electric power generation deficiency is load
shedding. It consists of disconnecting the less essential loads connected to the grid. An
inequality between power generation and consumption affects the power system frequency
leading to a collapse [39]. Load shedding is a common practice that can be either beneficial
or detrimental to the power system stability. The disconnection of considerable sizing loads
creates a mismatch between mechanical and electrical power, causing a positive power
acceleration that can lead to power system instability.

To assess the performance of the STATCOM after a load shedding, a 200 MW load is
disconnected from Bus 9. The load shedding decreases the power flow between the two
areas bringing a new condition to the generation (rotor angles). Figures 15 and 16 show the
comparison between the transient response of the model-based and data-driven controllers.
Regarding the real and reactive power flows shown in Figure 15, both controllers present
quite a similar performance. The transient response of the AC voltage shown in Figure 16
reaches a peak voltage of 1.03 p.u. when the data-driven controller is employed. That
voltage is a bit higher than that produced by the model-based controller but both controllers
match very well due to both producing the same magnitude on the first oscillation and
almost the same settling time. The reactive power injected by the STATCOM can be
shown in Figure 16, where both controllers present a similar behavior. Notice that the load
shedding will demand less reactive power as expected.
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Figure 15. Power flows during load shedding: (a) active power, and (b) reactive power.
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Figure 16. STATCOM: (a) AC voltage, and (b) reactive power during load shedding.

7. Conclusions

A new control approach based on data-driven was proposed. The fundamentals of
design were included, aiming to develop a new control strategy for a STATCOM model.
The proposed data-driven control was assessed, considering different operating conditions
according to the established voltage profile as well as transient faults to analyze power
oscillations just after the fault clearing time. A solid comparison of a VSC-based STATCOM
model was developed between a model-based control and a data-driven control approach.
The studies were focused on voltage control and power oscillation damping capabilities.
For voltage control, two tests were carried out: (a) voltage step response, and (b) voltage
recovery under fault scenarios. After testing the scenarios, the authors concluded that
the data-driven controller showed a better performance in all scenarios compared to the
conventional model-based controller, providing a faster response for voltage control and
power oscillations damping.
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Abbreviations

The following abbreviations are used in this manuscript:

RES Renewable Energy Resources
FACTS Flexible AC Transmission System
STATCOM Static Synchronous Compensator
POD Power Oscillation Damping
PSS Power System Stabilizer
PCC Point of Common Coupling
PV Photovoltaic
ANFIS Adaptive Network-Based Fuzzy Inference System
WNN Wavelet Neural Network
ADC Additional damper controller
DDPG Deep Deterministic Policy Gradient
VSC Voltage Source Converter
PLL Phase-Locked Loop
DC Direct Current
AC Alternating Current
LMIs Linear Matrix Inequalities

Appendix A

The STATCOM parameters and ratings are a modified version from the one used
in [24,40], which are presented in Table A1.

Table A1. Parameters of the VSC-based STATCOM.

Parameters Value

Rated power 550 MVA
Rated alternating voltage 195 kV

Rated direct voltage ±150 kV
Coupling resistance 1.0864 Ω

Coupling inductance 0.0692 H
DC capacitor per pole 114 μF

Converter transformer ratio 230 kV/195 kV
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Abstract: Most of the mechanical dynamic systems are subjected to parametric uncertainty, un-
modeled dynamics, and undesired external vibrating disturbances while are motion controlled. In
this regard, new adaptive and robust, advanced control theories have been developed to efficiently
regulate the motion trajectories of these dynamic systems while dealing with several kinds of variable
disturbances. In this work, a novel adaptive robust neural control design approach for efficient
motion trajectory tracking control tasks for a considerably disturbed non-linear under-actuated
quadrotor system is introduced. Self-adaptive disturbance signal modeling based on Taylor-series
expansions to handle dynamic uncertainty is adopted. Dynamic compensators of planned motion
tracking errors are then used for designing a baseline controller with adaptive capabilities provided
by three layers B-spline artificial neural networks (Bs-ANN). In the presented adaptive robust control
scheme, measurements of position signals are only required. Moreover, real-time accurate estima-
tion of time-varying disturbances and time derivatives of error signals are unnecessary. Integral
reconstructors of velocity error signals are properly integrated in the output error signal feedback
control scheme. In addition, the appropriate combination of several mathematical tools, such as
particle swarm optimization (PSO), Bézier polynomials, artificial neural networks, and Taylor-series
expansions, are advantageously exploited in the proposed control design perspective. In this fashion,
the present contribution introduces a new adaptive desired motion tracking control solution based on
B-spline neural networks, along with dynamic tracking error compensators for quadrotor non-linear
systems. Several numeric experiments were performed to assess and highlight the effectiveness of the
adaptive robust motion tracking control for a quadrotor unmanned aerial vehicle while subjected to
undesired vibrating disturbances. Experiments include important scenarios that commonly face the
quadrotors as path and trajectory tracking, take-off and landing, variations of the quadrotor nominal
mass and basic navigation. Obtained results evidence a satisfactory quadrotor motion control while
acceptable attenuation levels of vibrating disturbances are exhibited.

Keywords: quadrotor UAV; artificial neural networks; robust control; Taylor series; B-splines; particle
swarm optimization

1. Introduction

It is known that, in motion control systems, it is required that the system move to
match some desired features of acceleration, velocity, position, or a combination of them.
Unmanned aerial vehicles (UAVs) are dynamic systems where the controlled motion is
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fundamental to complete specific applications. Recently, diverse types of UAVs vehicles
have been developed, with fixed-wing unmanned aerial vehicles (FW-UAVs) being the
most common and most developed. These aircraft are similar to passenger aircraft, with
a pair of wings to provide lift, a propellant system to provide thrust, and aerodynamic
surfaces to control the motion. Their efficiency is higher compared to other UAVs, allowing
it to perform long flights. Nevertheless, their indoors use is exclude since they do not
have the ability to hovering and can not turn at reduced distances [1]. For their part,
rotary-wing unmanned aerial vehicles (RW-UAVs) have various configurations including
the conventional helicopter, the coaxial helicopter, and multi-rotors, which can sustain
hover flight and take-off-landing vertically (VTOL). The FW-UAVs and RW-UAVs are the
classic configurations most used in the applications assigned to unmanned aerial vehicles.
Among the main ones are surveillance, monitoring, photography, inspection, and cargo
transportation [2], with RW-UAVs having more civil applications than FW-UAVs [3]. On
the other hand, technological advances have also allowed the development of new UAV
configurations, such as bio-inspired flapping-wing unmanned aerial vehicles (Fl-UAV) [4]
and lighter-than-air unmanned aerial vehicles, (LtA-UAVs) [5]. The four rotor helicopter or
quadrotor is the most common rotorcraft platform in the research community due to its
properties of under-actuation, low construction cost, symmetrical structure, high coupling
non-linear dynamics, and capabilities of VTOL and hovering.

In the literature, several important contributions have been reported for controlling
the quadrotor dynamics. Motion controllers based on theories, such as sliding modes [6],
active disturbance rejection [7], backstepping [8], Lyapunov functions [9], H∞ [10], adaptive
controllers based on L1 [11,12], fuzzy logic [13], neural networks [14], model predictive
control [15], or combination of them. Since, to some, drawbacks are inherent to each
control strategy, such as high-frequency control actions, unmeasurable system information
required, high dependency of mathematical models, high-gain feedback, and high sensi-
bility against exogenous disturbances, some researchers have been properly exploited the
properties of adaptive and robust control for designing advanced control methodologies.

In contrast with conventional control, intelligent control techniques are able to effi-
ciently deal with incomplete information of many dynamic systems and its environment
within a wide range of operational conditions. Then, adaptive control strategies represent
a potential alternative for improving the performance of robust motion control schemes. In
the literature, adaptive control stands for a class of control techniques used for compensat-
ing parameter changes, disturbances, and unknown changes in the system, by adaptations
based on observations [16]. Relevant and recently research have been inspired by the quali-
ties of adaptive and robust control schemes for quadrotor motion control. Authors in [17]
introduce a model reference adaptive control scheme for a four-rotor helicopter in order
to increase robustness against parametric uncertainty. A baseline controller is proposed
for trajectory tracking task which is further improved by including adaptive capabilities.
Similarly, switched adaptive controller are properly introduced in [18,19]. Here, controllers
are suitably designed for controlling a quadrotor in the presence of unknown external
disturbances and variations in the mass and inertia of the quadrotor due to unknown
payload. Strict simulation scenarios are brought out to validate their proposal.

On the other hand, another adaptive control scheme is presented by authors in [20],
where the quadrotor attitude is stabilized by an adaptive multi-variable finite-time algo-
rithm. The controller design is carried out by using an improved super-twisting technique.
Control methodologies designed based on the central ideas of adaptive sliding mode
control are presented in [21,22]. In [21], a disturbance observer (DO) is integrated in control
design to compensate external disturbances. The tune of the gain of sliding surface is
accomplished via neural networks. In contrast, authors in [22] implement an adaptive
scheme by proposing a super twisting controller along with Lyapunov-based function
methodology and discontinuous projection operators. The research in [23] presents a
fuzzy adaptive linear active disturbance rejection controller. The fuzzy framework is setup
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successfully to compute the observer bandwidth, controller bandwidth, as well as the
control compensation factor.

Considering the aforementioned information, in this paper, authors introduce a novel
and efficient adaptive robust motion tracking control for quadrotor non-linear systems.
The main differences with others proposals reported in the literature are enlisted below:

1. Only position measurements are required for feedback control;
2. High-gain feedback is reduced by using B-spline artificial neural networks;
3. Reduced amount of control parameters needs to be tuned;
4. The use of disturbance observers is unnecessary;
5. The use of the tracking error derivatives is avoided in the controller design;
6. Offline training of B-spline artificial neural networks is performed by particle swarm

optimization;
7. Low dependency of the quadrotor non-linear mathematical model;
8. Robustness against a class of external disturbances, including undesirable vibrating

forces and torques.

The content of this paper is summarized as follows: the quadrotor non-linear and
high coupling mathematical model is presented in Section 2. In Section 3, the design
procedure of the novel robust and adaptive controller is introduced. Subsequently, some
simulation experiments are presented in Section 4 in order to highlight the performance
of the introduced methodology. Finally, some conclusions, remarks, and future work are
mentioned in conclusions section.

2. Mathematical Quadrotor Model

A quadrotor is an aerial under-actuated mechanical system with four independent
variable speed rotors. It has six degrees of freedom which are controlled by four control
inputs: a main thrust force (u), and three torques (rolling τφ, pitching τθ , and yawing τψ).
Lateral, longitudinal, and vertical motion are achieved by a suitable combination of the
control inputs. The main force, produced by the total sum of the thrust provided by each
individual rotor, allows the quadrotor to take-off and land, as well as hover. Meanwhile,
control torques are generated when there exists a difference of the produced forces by two
pair of rotors: first pair rotating clockwise is formed by rotors 1 and 3, and the second by 2
and 4 rotors spinning in the opposite direction. Different from conventional helicopters it
is not required a mechanical pitch system for the rotor blades.

The Euler–Lagrange and Newton–Euler formalisms are usually used to obtain the
quadrotor dynamics described by a set of highly coupled non-linear differential equations.
The quadrotor pose is determined by considering a body-fixed frame with X′, Y′, and
Z′ axes coincident with the centre of mass, and a global inertial coordinate system, or
earth-fixed frame, with X, Y, and Z axes, as shown in Figure 1. By nature the quadrotor is
an unstable system, and during outdoor and indoor flying, quadrotors might be subjected
to undesirable vibrating disturbances. Thus, it should be designed efficient force and
torque controllers to perform a proper motion tracking in the three-dimensional space.

The control inputs are related with each individual rotor by the following expressions

u =
4

∑
i=1

Fi

τψ =
4

∑
i=1

τMi

τθ =(F3 − F1)l

τφ =(F2 − F4)l (1)

here l stands for the distance measured from a rotor axis to the quadrotor centre of mass,
and τMi is the couple developed by motor Mi. Fi and τMi are functions of the rotor angular
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velocities. From Equation (1) it is appreciated that the quadrotor motion is possible by
suitably combining the control inputs.

Figure 1. Schematic of a non-linear quadrotor system [24].

In this work, the non-linear dynamic model of the quadrotor is derived by means
of the Euler–Lagrange formalism. In order to describe the system, let us consider the
following vector of generalized coordinates

q = [x y z φ θ ψ]	 ∈ R
6 (2)

the centre of mass position is represented by the variables x, y, and z, and the quadrotor
attitude is described by the set of Euler roll φ, pitch θ, and yaw ψ angles.

The Lagrangian is defined by the difference of the kinetic and potential energy, so
we get

L =
1
2

λ̇Mλ̇
	
+

1
2

η̇	Jη̇− λMG (3)

M indicates a diagonal mass matrix, J is the inertia tensor, and G = [0 0 g]	 denotes
gravity terms. Henceforth, consider λ = [x y z]	 and η = [φ θ ψ]	 as the position and
attitude vectors, both expressed in the earth-fixed reference frame.

For controller design, the non-linear quadrotor dynamics can be written as

mẍ = −u sin θ + ξx

mÿ = u cos θ sin φ + ξy

mz̈ = u cos θ cos φ − mg + ξz (4)

unknown time-varying disturbances are represented by ξx, ξy, and ξz. On the other hand,
disturbed rotational dynamics are given by

Jη̈ = τη − C(η̇, η)η̇+ ξη (5)

with

J =

⎡⎢⎣ −Ixsθ 0 Ix
(Iy − Iz)cθcφsφ Iyc2

φ + Izs2
φ 0

Izc2
θc2

φ + Iyc2
θs2

φ + Ixs2
θ (Iy − Iz)cθcφsφ −Ixsθ

⎤⎥⎦
C(η̇, η) =

⎡⎣c11 c12 c13
c21 c22 c23
c31 c32 c33

⎤⎦ (6)
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and

c11 = (Iz − Iy)ψ̇sφcφc2
θ

c12 = −Ixψ̇cθ + Iy(θ̇sφcφ + ψ̇cθs2
φ − ψ̇cθc2

φ)− Iz(ψ̇cθs2
φ − ψ̇cθc2

φ + θ̇sφcφ)

c13 = 0

c21 = −Ixψ̇sθcθ + Iyψ̇sθcθs2
φ + Izψ̇sθcθc2

φ

c22 = (Iz − Iy)φ̇sφcφ

c23 = Ixψ̇cθ + Iy(−θ̇sφcφ + ψ̇cθc2
φ − ψ̇cθs2

φ) + Iz(ψ̇cθs2
φ − ψ̇cθc2

φ + θ̇sφcφ)

c31 = θ̇ Ixsθcθ + Iy(−θ̇sθcθs2
φ + φ̇sφcφc2

θ)− Iz(θ̇sθcθc2
φ + φ̇sφcφc2

θ)

c32 = Ixψ̇sθcθ − Iy(θ̇sθsφcφ + φ̇cθs2
φ − φ̇cθc2

φ + ψ̇sθcθs2
φ) + Iz(φ̇cθs2

φ − φ̇cθc2
φ − ψ̇sθcθc2

φ + θ̇sθsφcφ)

c33 = −Ix θ̇cθ + (Iy − Iz)(ψ̇c2
θsφcφ)

For purposes of simplicity of the model representation, the shorthand notation for
trigonometric functions is adopted [25], where sb = sin b and ca = cos a. On the other
hand, the control and disturbance torque vectors are denoted by τη = [τφ τθ τψ]T and
ξη = [ξφ ξθ ξψ]T , respectively.

Since the quadrotor is an under-actuated non-linear system, two synthetic controllers
are designed for tracking tasks of some desired reference position trajectory on the plane.
For control design purposes, it is considered the output feedback errors given as follows

eμ = μ − μ� (7)

for μ = x, y, z, φ, θ, ψ. The superscript � stands for the desired reference trajectory. Moreover,
in order to perform a proper motion control in X and Y directions, the desired pitch θ� and
roll φ� references are computed from Equation (4) as follows

θ� = sin−1
(
− 1

u
mvx

)
φ� = sin−1

(
1

u cos θ
mvy

)
(8)

To solve adequately the under-actuation problem, the angular dynamics needs to be
faster than translational dynamics. In this way, the proposed motion controllers should be
capable to lead the quadrotor to stable scenarios while performing a proper tracking of the
planned references.

3. Syntheses of an Adaptive Robust Motion Controller

The syntheses of a novel adaptive robust motion controller is introduced in this section
by using the robust control scheme introduced by the authors in [24]. In this proposal, it
is improved the performance of the control scheme by reducing the high-gain effects and
easing the tuning of the control parameters computed online by using the Bs-ANN.

3.1. Dynamic Compensators for Robust Control Design

In order to realize the stable control design, the quadrotor disturbed tracking error
dynamics from Equations (4) and (5) are simplified as follows

ëμ = vμ + ξμ(t) (9)

Moreover, ξμ(t) are assumed to be bounded time-varying disturbance signals locally
approximated into a self-adaptive small interval of time around a given time instant t0 > 0,
say [t0, t0 + ε], by r-th order Taylor polynomials as

57



Mathematics 2021, 9, 2367

ξμ(t) ≈
r

∑
n=0

ξ
(n)
μ (t0)

n!
(t − t0)

n =
r

∑
n=0

σn,μ(t − t0)
n (10)

where the superscript (n) stands for n-th order time derivative. Furthermore, to avoid
velocity measurements, from Equation (9) structural estimates—known as integral recon-
structors as well [26]—for time derivatives of velocity tracking errors are computed by

̂̇eμ =
∫ t

t0

vμ dt (11)

Here, initial conditions of the non-linear dynamic system, as well as the polynomial
disturbance signal parameters are assumed to be completely unknown. Then, the poly-
nomial relationship between integral reconstructors ̂̇eμ and actual velocity tracking error
signals ėμ is given by

ėμ = ̂̇eμ +
r+1

∑
n=0

αn,μ(t − t0)
n (12)

where parameters αn,μ are assumed to be unknown as well.
In this fashion, the following family of controllers based on dynamic compensators to

actively compensate polynomial disturbances can be synthesized as follows

vμ = −βr+3,μ̂̇eμ − βr+2,μeμ − δr+1,μ (13)

with

δ̇0 = β0,μeμ

δ̇1 = δ0,μ + β1,μeμ

...

δ̇r = δr−1,μ + βr,μeμ

δ̇r+1,μ = δr,μ + βr+1,μeμ (14)

Substitution of Equation (13) into Equation (9), closed-loop tracking error dynamics is
then described by

e(r+4)
μ +

r+3

∑
n=0

βn,μe(n)μ = 0 (15)

Thus, closed-loop system stability criteria is fulfilled by selecting the control gains βk,μ
for k = 0, 1, . . . , r + 3, such a way the characteristic polynomial of Equation (15) is stable
(Hurwitz). By using the family of Hurwitz polynomials

PCLμ
(s) =

(
s + γμ

)r+4, γμ > 0 (16)

the control design parameters can be then computed by

βk,μ =
(r + 4)!

k!(r + 4 − k)!
γr+4−k

μ (17)

In the present study, three layers B-spline artificial neural networks and particle swarm
optimization are properly implemented to compute adaptive control gains in order to avoid
possible undesirable high-gain control effects. Furthermore, first order Taylor polynomial
expansions for approximation of disturbance signals are selected. Nevertheless, higher
order polynomial expansions can be also chosen for applications where a much better
approximation of disturbances is demanded. In this work, it is shown that first order
polynomial disturbance approximations yield an acceptable motion trajectory tracking
performance under significantly perturbed operating conditions.
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Thus, from Equation (10), Taylor polynomial expansions for disturbance signals are
described in this work as

ξμ(t) ≈ σ1,μ + σ2,μ(t − t0) (18)

where coefficients σ1,μ and σ2,μ are assumed to be uncertain. Moreover, the structural
estimated variables and actual velocity tracking error signals are related by

ėμ = ̂̇eμ + α0,μ(t − t0) + α1,μ(t − t0)
2 (19)

where parameters αi,μ are unknown.
In this sense, we proposed the following family of auxiliary controllers for robust

quadrotor motion control

vμ = −β4,μ̂̇eμ − β3,μeμ − β2,μδ1,μ − β1,μδ2,μ − β0,μδ3,μ (20)

with

δ̇1,μ = eμ

δ̇2μ, = δ1,μ

δ̇3,μ = δ2,μ (21)

Thence, from Equations (9) and (20) the closed-loop error dynamics is governed by

e(5)μ + β4,μe(4)μ + β3,μe(3)μ + β2,μ ë + β1,μ ė + β0,μeμ = 0 (22)

The control gains βk,μ for k = 0, 1, . . . , 4 should be properly selected in order to the
associated characteristic polynomials

PCLμ
(s) = s5 + β4,μs4 + β3,μs3 + β2,μs2 + β1,μs + β0,μ (23)

are Hurwitz polynomials. In this fashion, reference trajectory tracking can be achieved:

lim
t→∞

eμ = 0 ⇒ lim
t→∞

μ = μ� (24)

with μ and μ� standing for the real and planned references for translational and rotational
trajectories, respectively.

Notice from (5) that the rotational dynamic model can be also be expressed as follows:

η̈ = J−1(τη − C(η̇, η)η̇
)
+ J−1ξη (25)

which can be expressed matching the structure in (9). Therefore, from (21) it is observed that
the synthetic controllers drive the system closed-loop dynamics. Finally, by analyzing the
full non-linear dynamics, the control inputs nature and the robustness of the synthesized
robust scheme, a suitable selection of the control inputs is given as follows

u =
1

cos φ cos θ
(mvz + mg)

τψ = Izvψ

τθ = Iyvθ

τφ = Ixvφ (26)

3.2. Adaptive Outline for Control Purposes

Adaptive control is a viable solution to avoid the use high-gain feedback or high
frequency switching control actions for providing stability to many dynamic systems
subjected to parametric uncertainty, unmodeled dynamics, and external disturbances [27].
In this work, we use a class of artificial neural networks for performing the tuning process
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of the control gains. The B-spline artificial neural networks are suitably integrated into
adaptive motion controllers, where the tracking errors and their derivatives are used as
the inputs of each network. The Bs-ANN functioning is based on the constant learning
process of the physically system variables, therefore, have been successfully used to deal
with system non-linear terms and uncertainty [28].

A B-spline function is a polynomial mapping defined by its extremes which uses a
linear combination of the mono-variable and multi-variable basis functions. The B-spline
networks, as depicted in Figure 2, are associative networks capable to adjust iteratively
their synaptic weights for reproducing a specific function. The author in [29] proposes the
following output:

y = aw, w = [w1 w2 . . . wh]
T , a = [a1 a2 . . . ah] (27)

where wq y aq are the q-th weight and the q-th basis function input, respectively; the
quantity of synaptic weights is denoted by h. Each individual network output y(t) is used
in this work for computing dynamically the control gains. In this study, we introduce
different experiments where the output of the neural networks differs: in experiments 1,
2, 4, and 5, it is computed just one control parameter while in experiment 3, three control
parameters are computed by the adaptive scheme.

Figure 2. Three layer B-spline artificial neural network structure, Bs-ANN.

The actual output vector value minus the desired value defines the minimization
error, which is used as the key term for the learning process. In this work, the following
instantaneous learning rule has been adopted [30]

wi(t) = wi(t − 1) +
�ei(t)

‖ a(t) ‖2
2

ai(t) (28)

Here, � represents the learning rate and ei(t) stands for the instantaneous output
error. The adaptive process is achieved by the continuous training and the updating of
the synaptic weights values considering the evolution of the inputs values. The Bs-ANN
internal layer is constituted just by the basis functions, where the limits should be properly
bounded by the adequate selection of the knot vector and basis function shape. In this
proposal, four third order basis functions are employed for the adaptive scheme: two
concerning the tracking error and two for the error derivative, as shown in Figure 2. It is
important to mention that offline training of the Bs-ANN is performed for finding parameters
during the adaptive scheme design process, in order to carry out the quadrotor to stable
scenarios at the begging of the online training. To select properly these parameters, several
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quadrotor operational conditions are considered. The training data includes the transient and
steady state response of the system, within the advantages of the proposed neural strategy, is
that these data can come from an exact or approximate mathematical model or otherwise be
measured data from the real system (inputs, outputs, control signals, etc.).

Thereafter, the control structure is summarized as follows: firstly, only the quadrotor
position measurements are included as a feedback in order to determine the tracking
errors. Later, integral reconstructors are suitably integrated for computation of the error
derivatives which are used as inputs in the adaptive scheme for computing the control
parameters and gains. Posteriorly, the virtual controllers vx and vy within the robust
controller block are used for solving the under-actuation problem. Finally, the force and
torque control inputs are injected to the system as variations of angular velocity of their
four rotors, as portrayed in Figure 3.

Figure 3. General structure of the adaptive robust motion control scheme.

4. Validation through Simulation Experiments

In this section, we investigate the applicability of the adaptive robust scheme for
enhancing the tracking performance of a quadrotor non-linear system. Thus, several experi-
ments are performed for an aerial vehicle numerically simulated. It is important to mention
that the aim of the experiments is to portray some of the main contributions and advantages
of implementing the proposed motion control strategy. Additionally, the experiments will
demonstrate if the implementation of the proposal can be successfully extended for motion
control of different types of autonomous vehicles. During the experiments, it is considered
an aerial vehicle characterized by the set of parameters presented in Table 1.

Table 1. Parameters of the 6DOF non-linear quadrotor system.

Parameter Units Values

m kg 0.98
g m/s2 9.81
l m 0.25
Jx kg m2 0.012450
Jy kg m2 0.012450
Jz kg m2 0.024752

4.1. Polynomial Interpolation for Quadrotor Navigation

Bézier curves have been used widely and properly for path smoothing in robot
navigation [31] and in motion control schemes for electric motors [32] and mechanical
systems [33]. In the former, curves are expressed, such as parametric equations, where
the time t is used to determine the values of coordinate pairs of (x, y) points graphed
on the plane. In this work, a cubic Bézier curve is used and is defined by end points:
(X1, Y1) and (X4, Y4), and control points: (X2, Y2) and (X3, Y3) such illustrated in Figure 4.
In the second case, Bézier interpolation polynomials are suitably configured as position or
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velocity trajectory reference profiles, in order to soft the transition between two operation
points for electromechanical and mechanical systems.

It is worthwhile to note that, due to its structure and after a proper selection of
endpoints and control points, Bézier curves can be successfully implemented in a quadrotor
to online computing the navigation path in cluttered environments, in order to ensure
adequate obstacle avoidance manoeuvres while accomplishing a specific mission. On the
other hand, it should be noted that derivatives of the trajectory references are not available
in advance, and, in consequence, the proposed approach in this paper can be effectively
implemented for this experiment.

Figure 4. Cubic Bézier curve defined by a couple of pair of endpoints and control points.

During the first experiment, the quadrotor is tasked to perform the following: soft
take-off to a height of 3 m; navigation through specific operation points in the space; and
finally, soft landing, all of them by means of Bézier curves. It is worthwhile to note that
the use of these curves is a viable strategy for solving properly the navigation and obstacle
avoidance problems. Thus, in order to obtain smooth transitions between initial and final
vertical operation points, the following motion scheme is adopted for take-off and landing tasks:

z� =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Γ0 0 ≤ t < T1

Γ0 + (Γm − Γ0)Bz(t, T1, T2) T1 ≤ t < T2
Γm T2 ≤ t < T3

Γm + (Γ0 − Γm)Bz(t, T3, T4) T3 ≤ t < T4
Γ0 t > T4

(29)

where Γ0 = 0 and Γ f = 2, given in meters, stand for the desired initial and maximum
vertical positions. The time values given in seconds are as follows: T1 = 1, T2 = 3, T3 = 37
and T4 = 40. In addition, Bz is a Bézier polynomial [32] defined as

Bz(t, Ti, Tf ) =
n

∑
k=0

rk

(
t − Ti

Tf − Ti

)k

(30)

with Ti and Tf as the initial and final transition times. Moreover, n = 6, and r1 = 252,
r2 = 1050, r3 = 1800, r4 = 1575, r5 = 700, r6 = 126.

Subsequently, after the take-off, the rotorcraft is carry to desired positions in the
horizontal plane, where the third order parametric equations used for navigation are
defined as follows:

x� = (1 − T )3X1 + 3(1 − T )2(T X2) + 3(1 − T )(T 2X3) + T 3X4

y� = (1 − T )3Y1 + 3(1 − T )2(T Y2) + 3(1 − T )(T 2Y3) + T 3Y4 (31)
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Here, the values of the endpoints and control points are selected for performing a
continuous navigation according to the parameters summarized in Table 2. Observe that
four Bézier curves are used to define the whole navigation path and which is segmented
for purposes of mathematical description.

Table 2. Control and endpoint values for the Bézier curves.

Segment Time Lapse [s] T X1 Y1 X2 Y2 X3 Y3 X4 Y4

1 0 ≤ t < 10 t
10 0 0 1 0 1 2 2 2

2 10 ≤ t < 20 t
10 − 1 2 2 3 2 3 4 4 4

3 20 ≤ t < 30 t
10 − 2 4 4 5 4 5 2 6 2

4 t ≥ 30 t
10 − 3 6 2 7 2 7 0 8 0

On the other hand, external vibrating disturbance forces have been included after
12 s for robustness assessment purposes of the introduced motion control scheme, and are
given by

ξ j = Aj sin(ωjt) (32)

with j = x, y, z, Ax = Ay = 1 N, Az = 2 N, and ωx = ωy = ωz = 10 rad/s.
In Figure 5, it is presented the quadrotor flight performance by implementing the pro-

posed controller, where a proper path following is exhibited. Throughout the manuscript,
the use of solid and dashed lines for representing real and desired trajectories is adopted,
respectively. As observed in Figure 6, the Bézier curves are successfully implemented for
navigation between operation positions, and as a consequence of the proposed controller, a
proper trajectory tracking of the planned references is achieved. Moreover, according to
this figure, angular tracking of the online computed references φ� and θ� is achieved in
spite of there is not information about the derivatives of these references since a properly
integration of integral reconstructors and neural networks within the robust motion control
approach is achieved.

Furthermore, it is evident the satisfactory performance of the quadrotor tracking
motion control scheme even though the quadrotor is subjected to undesired harmonic forces.
Notice that regulation around ψ� = 0 rad is performed in this experiment. Additionally,
Figure 7 portrays the controlled vertical quadrotor dynamics, the height control, and yaw
motion regulation. From this figure, the utility of the Bézier polynomial curve, where a soft
take-off and landing are achieved thanks to the mathematical framework introduced by
Equations (30) and (52) is appreciated. In the next section, the ground effect is included
within the analysis in order to assess the control scheme robustness for controlling the
quadrotor vertical motion.

Figure 5. Quadrotor navigation on the plane and space.
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Figure 6. Lateral and longitudinal motion tracking in experiment 1.

Figure 7. Vertical motion tracking for experiment 1.

For this experiment the following desired Hurwitz polynomial has been selected,

Pd(s) = (s + γ2)5 (33)

where, in order to ensure close-loop stability and the properly tracking of the planned
trajectory, the control gains in (23) should match the following

β4i = 5γi

β3i = 10γ2
i

β2i = 10γ3
i

β1i = 5γ4
i

β0i = γ5
i (34)

where γi, for i = x , y , z , φ , θ , ψ, is the unique online computed control parameter. To
improve and ease the parameter selection process in this experiment, each of these control
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parameters are suitably derived by the adaptive framework introduced in Figure 2, where
the output of each individual neural network is the value for the control parameter γi. As it
is presented in Figure 8, dynamical updating, as well as a successful parameter computation
of the control gains, is achieved by using the adaptive B-spline artificial neural networks.

Figure 8. Adaptive γi control parameters, for i = x, y, z.

In Figure 9, it has been included results considering both perturbed and unperturbed
cases in order to contrast the compensation action of the adaptive robust control scheme.
It is worthwhile to note, from Figure 9b, that it is possible to track, satisfactorily, the
references, as well as being demonstrated in Figure 9a. Nevertheless, the vibrating dis-
turbance compensation is not present in the unperturbed case. By analyzing Figure 9b, it
is evident the reachability of the control commands which benefits the non-saturation of
the actuators. It is also important to mention that similarly as the oscillations due to the
control compensation action, in Figure 6 it is appreciated the compensation of the vibrating
disturbance forces affecting translational dynamics since are related with the rotational
trajectory tracking trough the under-actuation property.

According to the results, the proposed control method is robust and able to efficiently
reduce induced oscillations. Additionally, it is demonstrated that Bézier polynomial inter-
polation can be widely and satisfactorily exploited in quadrotor motion control systems:
path and trajectory tracking. The experiment presented in this section illustrates that the
complex quadrotor non-linear system is motion controlled in an acceptable way. As no
information is required about derivatives of the trajectory references and from the external
disturbances the control process is simplified significantly.
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Figure 9. Computed control inputs in experiment 1. (a) Unperturbed. (b) Perturbed.

4.2. Improved Robust Quadrotor Autonomous Landing

One of the most essential requirements for a VTOL vehicle is to ensuring a safe
landing flight phase. Rotorcraft are subjected to significant variations in motion control
during take-off and landing stages due to the increase in lift force when they are close
to the ground. Such phenomena are known as the ground effect [34]. The aim of this
experiment is to assess the capabilities of the proposed controller for dealing with the
ground effect in simulation. Therefore, the Cheeseman and Bennett modified ground effect
model, proposed for quadrotors by authors in [35], are used, which state the following:
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u
ur

= 1 − ρ

(
r

4zr

)2
(35)

where the ratio u
ur

is equal to one outside of the ground-effect. In addition, r is the propeller
radius, zr represents the distance from the rotor to the ground, u and ur is the input thrust
commanded and the generated real thrust, respectively. Notice, the third expression of
equations set (4) is affected by the introduced model representation of the ground effect
phenomenon, where it is evident that

ur = u + urρ

(
r

4zr

)2
(36)

and referring to the above equation and using the real generated input thrust in the nominal
mathematical model it yields the following

mz̈ = ur cos θ cos φ − mg (37)

or

mz̈ = u cos θ cos φ + urρ cos θ cos φ

(
r

4zr

)2
− mg (38)

Thereafter, without loss of generality

mz̈ = u cos θ cos φ − mg + ξz (39)

with

ξz = urρ cos θ cos φ

(
r

4zr

)2
(40)

where ξz should be compensated by the adaptive robust motion control approach. In
addition, the following data have been used during the simulation: ρ = 10, r = 0.1 m, and
zr = 0.1 m.

On the other hand, in Figure 10 the quadrotor landing is illustrated. Here, it is used
two different values for the learning rate � and for the weighting vector for vertical motion
wz = [w1,z , w2,z , w3,z , w4,z], in order to illustrate two cases where the effect of increasing
or decreasing the parameter values within the adaptive framework defines the quadrotor
operation. Moreover, it is observed that a better tracking performance of the closed-loop
system is achieved when a suitably selection of the parameters is done. In Table 3 are
showcased the respective values for the aforementioned parameters in each case.

It is relevant to mention that in this experiment it is adopted the same set up outlined
by expressions (33) and (34) defined in the previous section. Thus, as corroborated by
the dynamic behavior of γz in Figure 10, online computation of the control parameters
is accomplished dynamically by the adaptive framework. From the same figure, it is
also appreciated that the magnitude of the control effort is modified in function of the
disturbance force exerted as a consequence of the ground effect. Nevertheless, a significant
deviation of the actual motion from the planned reference is observed in the first case. In
contrast, in the second case, acceptable attenuation levels of induced oscillations is attained
by a proper selection of the parameters presented in Table 3.
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Figure 10. Quadrotor autonomous landing under the ground effect phenomenon: (a) First case.
(b) Second case.

The key for a successfully performance of the adaptive scheme depends on a properly
selection of the adaptive parameters during the design process. Note that the selection of
the initial weights within the offline training procedure, different operational conditions
can be take into account for improving the initial system response, and, in this way,
leading the quadrotor non-linear system to stable scenarios. In the next section, a different
setup is introduced for selection of the control parameters: a desired Hurwitz polynomial
where three parameters will be computed and a optimized selection by means of particle
swarm theory.

Table 3. Parameters for the adaptive framework in experiment 2.

Case �z w1,z w2,z w3,z w4,z

First 5 × 10−9 1 1 2 1
Second 5 × 10−4 30 20 3 3
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4.3. Bs-ANN Offline Training by Particle Swarm Optimization

Inspired by the social behavior observed in fish schools and bird flocks, particle
swarm optimization (PSO) has been proposed as an effective solution for solving a wide
range of optimization problems [36]. The use of intelligent agents, called particles, allows
this algorithm to iteratively find the best solution on a defined space of searching. For
this reason, potentials of PSO has been properly exploited in different engineering and
researching applications, such as tuning of automatic controllers [37] and artificial neural
networks training [38]. In the second experiment, the PSO is used for the offline training of
the BsNN (selection of the initial weights). The training process is performed while the
system is commanded to reach a step reference for vertical translational motion, where
the closed-loop response information is used for designing the objective function fo to
be minimized.

Figure 11 portrays the closed-loop response of a second order system. Here, it can
be observed that there exist several parameters can be used in the design of the objective
function in order to minimize the tracking error and the control efforts: tr, ts, Mp, and
tp stand for the rise time, settling time, maximum peak, or overshoot and peak time,
respectively.

Figure 11. Time response of a closed-loop controlled second order dynamical system.

In this study, only the overshoot data are used as design parameter of the following
objective function

fo = ε
(

Mp + ITAE
)
+ κ(ISCI) (41)

where the coefficients ε = 0.5 and κ = 0.1 penalize the error and the magnitude of the
control inputs, respectively. On the other hand, the integral time absolute error (ITAE)
index is computed as follows

ITAE =
∫ t

0
t|ez| dt (42)

here ez is the tracking vertical error and t is the time variable. Additionally, the integral
squared control input (ISCI) term is introduced in Equation (43).

ISCI =
∫ t

0
u2 dt (43)

In contrast with the previous experiments, it has been selected the following
Hurwitz polynomial:

Pd(s) = (s2 + 2ζcωcs + ω2
c )

2(s + Pc) (44)
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here ωnc , ζc, Pc > 0, are the controller adjustment parameters. Therefore, concerning
Equation (22), the control gains can be selected as follows for ensuring closed-loop stability
and the properly tracking of the planned trajectory

β4z = 4ζcωc + Pc

β3z = 2ω2
c + 4ζ2

c ω2
c + 4Pcζcωc

β2z = 4ω3
c ζc + 2Pω2

c + 4Pcζ2
c ω2

c

β1z = 4Pcω3ζc + ω4
c

β0z = Pcω4
c (45)

For the third experiment, the quadrotor take-off stage is analyzed. In order to improve
and ease the tuning process, the control parameters are properly computed online by using
artificial neural networks which trained offline by a PSO framework.

In the Algorithm 1, it is presented the pseudocode for the training process, where a
simulation time of 10 seconds is adopted.

Algorithm 1: Evaluation of the objective function fo.

Input: wz = 0 // 1 × 4 weight vector

Output: fo

1 ε = 0.5, κ = 0.1, Δt = 0.001 // constants

2 z(0) = 0, ż(0) = 0, ts = 0 // initial conditions

3 for k = 1 to s do // s = ts
Δt, ts = 10

4 Calculus of ζc ωc and Pc
5 Solution of system dynamics // by Runge-Kutta Fehlberg Numerical

method

6 ts = ts + Δt
7 Storing e[k] = ez, u[k] = u, t[k] = ts
8 end
9 n = s

10 Get Mp // by means of stepinfo MATLAB function

11 Calculus ITAE = ∑n
1 t|e|2 Δt

12 Calculus ISCI = ∑n
1 |u|2 Δt

13 Evaluation of fo

The MATLAB optimization toolbox is used for the execution of the PSO algorithm.
It is worthwhile to note that the procedure in Algorithm 1 is evaluated in each iteration
of the optimization process, in order to determine the best set of control parameters who
minimizes the objective function, which has been designed in function to the vertical
motion tracking error, as well as the control input effort. Moreover, for this simulation
experiment the PSO algorithm is configured with the dimensions of the search space
defined by the low and upper boundaries lb = −5 and ub = 5, respectively, and a swarm
size of 50 particles.

Additionally, in order to highlight the performance of the introduced novel adaptive
robust control strategy, in this section it is illustrated the applicability of offline training of
Bs-ANN neural networks by description of two relevant scenarios: in the first the offline
training is carried out for determining initial values of control parameters ζc ωc and Pc
without using the online learning. On the other hand, online training is considered for
computation of the parameters values throughout second scenario. Henceforth, we identi-
fied the scenarios, respectively, as fixed and adaptive. The yielded results are portrayed in
Figures 12 and 13.

It is worth to mention that from Figure 12 it is observed that the performance for
both scenarios looks similar. Nevertheless, the control signal efforts and the error are
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significantly decreased by using the adaptive strategy. The ISCI and the ITAE indexes are
used also for a quantitative comparison and is summarized in Table 4 for both cases in
experiment 3.

Figure 12. Tracking motion for experiment 3: (a) First scenario. (b) Second scenario.

Table 4. Computed ISCI in experiment 3.

Gain Case ISCI ITAE

Fixed 6.4181 × 103 423.9004
Adaptive 6.4140 × 103 422.9049

It is important to point out that in first scenario it is also achieved an acceptable
performance of the introduced control approach. The tuning procedure of the control gains
in automatic control systems is not always an easy tasks since it depends on the designer
experience for selecting the control gains. Thus, after a properly setup of the PSO scheme,
it is possible to ease the tuning process where several control gains or parameters need
to be selected: five gains in the present study. Moreover, in Figure 12, we highlighted the
useful of the offline and online training process in the quadrotor motion control. Here,
large overshoot and oscillation is avoided from the the closed-loop response by an efficient
implementation of the adaptive robust motion control strategy.

On the other hand, in Figure 13, it can be appreciated the effects for using the online
training of the Bs-ANN in contrast with the fixed case utilized in the first scenario of third
experiment. According to the information presented in this figure, it is corroborated that
by using the full adaptive scheme it is possible to improve the closed-loop response of the
quadrotor system by suitably adjusting the control parameters. Notice that the introduced
control scheme, it is able to perform efficiently regulation and trajectory tracking tasks even
though there is not full knowledge of the non-linear quadrotor mathematical model, as
well as the external vibrating disturbances.
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Figure 13. Fixed and adaptive control parameters used in experiment 3: (a) First scenario. (b) Second
scenario.

4.4. Quadrotor Subjected to Wind Gust Disturbances

In this section, a Dryden wind gust model is used for the assessment of control robust-
ness. From the set of Equation (4), it is evident that in presence of induced disturbance
torques, the angular, as well as the translational trajectory tracking, will be deteriorated.
Therefore, in this experiment, the quadrotor is disturbed while it is hovering and path
following in order to simulate different scenarios which it would usually face within a
wide range of applications. Consider the wind gust mathematical model [39] given by

ξη(t) = ds
w +

n

∑
σ=1

Aσ sin(�σt + ϕσ) (46)

for η = φ, θ, ψ. Expression (46) considers that the disturbance caused by wind field
is proportional to the wind speed [39], which is described as a family of time-varying
excitations. On the other hand, �σ and ϕσ are randomly selected frequencies and phase
shifts, respectively; n is the number of sinusoids, Aσ is the amplitude, and ds

w is a static
term for wind disturbance. Thus, the mathematical expression in (46) can be integrated in
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(5) for this simulation experiment as torque disturbances ξφ, ξθ and ξψ, with n = 6 for φ
and θ, and n = 7 for ψ. Disturbance parameters are summarized in Table 5.

Table 5. Values for simulated torque disturbances.

ξη ds
w A1 . . .An �1 . . . �n ϕ1 . . .ϕn

ξφ 0.3 0.27, 0.45, 0.06, 0.45, 0.3, 0.15 π(2.5, 2, 0.4, 0.08, 0.07, 0.05) −1.2, 2.7, −9.5, 1, 0.5, 2
ξθ 0.6 0.2, 0.1, 0.4, 0.1, 0.2, 0.1 π(1.5, 2, 0.4, 0.03, 0.07, 0.05) −0.3, 1.7, −1.5, 1, 1.5, 0.3
ξψ 2 0.5, 0.725, 1, 0.5, 0.25, 0.5, 0.25 π(2.5, 2, 0.4, 0.2, 0.008, 0.07, 0.05) −3, 7, −9.5, 0, 1, 1.5, 2

Consider the following planned references for lateral and longitudinal quadrotor
motion in this experiment,

x� = 5 cos(T) + cos(3T) cos(T)

y� = 5 sin(T) + cos(3T) sin(T) (47)

with T = 0.1t, and the Bézier based motion profile for vertical motion defined by Equations (30)
and (52) with the following data: Γ0 = 0, Γ f = 5, T1 = 2, T2 = 10, T3 = 57 and T4 = 65.
Additionally, the yaw motion is regulated about a constant angle ψ� = 0 rad. Soft transition
between initial condition and the regulation point is accomplished by a Bézier polynomial.

Figures 14 and 15 describes the effective performance of the adaptive robust motion
control scheme (20), which compensates the disturbance forces induced by the wind gust
model introduced in (46). Moreover, it is evident excellent levels of oscillations attenuation
by using our control approach.

Figure 14. Trajectory tracking for the experiment 4.

Figure 15. Path following on the plane for the experiment 4.

From Figure 16, it is observed that the quadrotor is able to efficiently perform trajectory
tracking tasks in spite of there is not previous information of the disturbance torques while
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tracking the planned references introduced in (47). On the other hand, the control input
forces and torques generated by the proposed controller are presented in Figure 17. Here, it
is appreciated a properly compensation of the disturbance effects which by the computed
control inputs. The closed-loop system response for rotational dynamics is plotted in
Figure 18, where it is corroborated an efficient performance of the introduced adaptive
robust control approach, as done in previous experiments. It is important to mention that
during experiment 4 it is adopted the same process for the computation of the control gains
in the first experiment.

Figure 16. Translational motion tracking for experiment 4.

Figure 17. Computed control inputs in experiment 4.

Finally, in Figure 18, it can be seen the control parameters for rotational motions,
which are computed online by means of the adaptive BS-ANN scheme. In addition, it is
corroborated that even though there is not available information from derivatives of the
angular references, the under-actuation problem is properly solved by the use of the neural
networks and the integral reconstructors, thereby a good tracking of the online computed
references φ� and θ� is achieved.
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Figure 18. Dynamic rotational closed-loop response for the experiment 4: (a) Computed rotational
adaptive control parameters. (b) Angular tracking motion.

4.5. Robustness against Uncertainty of Quadrotor Mass

Another important issue for controlling a quadrotor is the variations of the nominal
mass. Notice that the online computed references in (8) which define a proper motion on
the plane depends on the nominal mass. Therefore, the quadrotor is supposed to follow the
references considering the nominal mass value. Thus, during this experiment, it is probed
if the vehicle flight may be deteriorate significantly when an extra mass is added.

Consider the following mass variation for this experiment

m = mn +MΔ(t) (48)

where mn = 0.973 stands for the nominal quadrotor mass in kg, and MΔ(t) is an abrupt
change of the mass quadrotor described by a modified impulse function given by
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MΔ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1√
2πσ2

Δ

)
e
−
(

(t−a)2

2σ2
Δ

)
+ b 0 ≤ t < 20.4(

1√
2πσ2

Δ

)
e
−
(

(t−c)2

2σ2
Δ

)
+ d t ≥ 20.4

(49)

with a = 20.25, b = 0, c = 19.55, d = 0.7, and σΔ = 0.4. During the experiment it is adopted
a spiral shape planned reference given by the next parametric equations

x� = r cos(T)

y� = r sin(T) (50)

where

r = 5 + 0.2 cos(t) (51)

and T = t
6 . Inspecting Figure 19, it is appreciated that the abrupt variation in the quadrotor

mass does not affect significantly the following of the planned reference. In Figure 20,
it is observed a slightly deviation of the quadrotor angular tracking in contrast with the
nominal references θ�n and φ�

n, computed with the nominal mass. Moreover, it is evident
that after a brief period of time the quadrotor is able to recover from the perturbation
and perform a proper tracking of the desired references thanks to the robustness of the
proposed control scheme.

Figure 19. Simulation results for experiment 5. (a) Path following. (b) Mass variation given by
Equation (48).

In Figure 21a, it is presented the compensation to the mass variation at 20.4 s by the
control input u. Figure 21b portrays the vertical motion which is performed before the path
following, and is given by the following Bézier polynomial

z� =

⎧⎪⎨⎪⎩
Γ0 0 ≤ t < T1

Γ0 +
(

Γ f − Γ0

)
Bz(t, T1, T2) T1 ≤ t < T2

Γ f t ≥ T2

(52)

where Γ0 = 0 and Γ f = 5, given in meters, stand for the desired initial and maximum
vertical positions. The time values given in seconds are as follows: T1 = 2, T2 = 10. In
addition, Bz is the Bézier polynomial introduced in (30) with Ti and Tf as the initial and
final transition times. Moreover, n = 6, and r1 = 252, r2 = 1050, r3 = 1800, r4 = 1575,
r5 = 700, r6 = 126.
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Figure 20. Reference tracking results for experiment 5.

Figure 21. Simulation results for experiment 5. (a) Main force control input. (b) Controlled verti-
cal motion.

Future studies will address other methodologies for trajectory generation. Interested
readers are referred to [40,41] and references therein for further information on trajectory
generation. Moreover, algebraic estimators [42] will be explored for determining variation
in the quadrotor nominal mass due to unknown payload and damage or failure in the
quadrotor frame.

4.6. Discussion of Results

Throughout the presented experiments in this work, it is corroborated that the in-
troduced control scheme is able to properly leads the quadrotor to stable scenarios in
spite of the presence of external forces and torque disturbances, as well as mass uncer-
tainty. Different from the important adaptive robust contributions proposed in [21–23],
in our approach disturbance observers are unnecessary, only positions measurements are
required for motion control, and the use of high frequency discontinuous control actions,
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as a consequence of the use of signum functions, is avoided. Additionally, due to the low
dependency of the quadrotor non-linear mathematical model, the robustness against exter-
nal disturbances and since it is not required the error derivatives for the implementation of
our control scheme, we widely recommend this as an viable strategy for controlling other
autonomous systems.

5. Conclusions

A novel adaptive robust neural motion control scheme for quadrotor systems has been
introduced in this study. The proposed controller guarantees that the desired trajectory
can be tracking by the quadrotor vehicle. The control framework is composited by using
dynamic compensators along with an adaptive strategy based on B-spline artificial neural
networks. Moreover, an artificial intelligence mechanism based on PSO theory was properly
employed for improving the design of the control strategy, as well as the dynamic closed-
loop response of the quadrotor system, where ITAE and ISCI metric indexes have been
used for measuring the control performance. The introduced research is particularly
important because of its potential application in motion tracking control of quadrotor
systems, where the use of neither tracking error derivatives nor disturbance observers is
required. Several simulation experiments were proposed for purposes of performance and
robustness assessment. It was corroborated that, by using the introduced control scheme,
the quadrotor dynamic response is sufficiently robust for driving the system to stable
scenarios. Vibrating disturbance forces and torques, uncertainty of the quadrotor mass, and
wind gusts affecting the quadrotor stable motion were used for testing the control scheme
robustness. The suitable integration of adaptive and robust control allows to compensate
external disturbances during the quadrotor navigation and soft-motion during take-off
and landing. Additionally, the quadrotor performance is improved significantly in contrast
when it is adopted fixed values for the control gains. The obtained results, thus, prove
that the controlled quadrotor system is able to achieve acceptable control accuracy levels
for both trajectory tracking and path following in spite of been subjected to undesired
disturbances. Finally, it is worth pointing out that the proposed control strategy can be
further extended for the motion control of different autonomous systems subjected to
external vibrating disturbances, which will be addressed in future works.
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Abstract: The control of an automotive suspension system by means of a hydraulic actuator is a complex
nonlinear control problem. In this work, a Linear Parameter Varying (LPV) model is proposed to reduce
the complexity of the system while preserving the nonlinear behavior. In terms of control, a dual
controller consisting of a Model Predictive Control (MPC) and a Linear Quadratic Regulator (LQR) is
implemented. To ensure stability, Quadratic Stability conditions are imposed in terms of Linear Matrix
Inequalities (LMI). Simulation results for quarter-car model over several disturbances are tested in both
frequency and time domain to show the effectiveness of the proposed algorithm.

Keywords: active suspension; model predictive control; linear parameter varying; ellipsoidal set;
attraction sets; quadratic stability

1. Introduction

A vehicle can experiment different road disturbances while maneuvering in normal
conditions such as bumps or bends. The suspension system of a car is designed to attenuate
those disturbances to preserve comfort for the passengers while maintaining safe driving
conditions to control the car’s direction. However, when road conditions are harsh, passive
suspension systems may fail to preserve both comfort and road holding.

The Active Suspension system has been used to improve road-holding conditions
while improving the comfort of passengers by means of a hydraulic actuator. To provide
Active Suspension control, several control strategies have been proposed in the literature
such as PID controller [1–4], H2 and H∞ control [5–9], fuzzy logic control [10–13], and
sliding mode control [14–17]. All these controllers have exhibited a trade-off between
comfort and road holding, with specific tuning conditions to manage each one of the design
specifications according to the desired performance.

Another control strategy widely used in Active Suspensions is Model Predictive
Control (MPC). MPC approaches encompass several MIMO control strategies involving the
prediction of the future behavior of the system along a prediction horizon Np and finding
an optimal control solution subject to constraints in inputs, outputs and states. The general
structure of the MPC strategy is to solve at each step an optimization problem where a
cost function is minimized subject to constraints to find the optimal input sequence to be
introduced in the system.

Some MPC approaches for Active Suspension systems are the following. In [18] an
autoregressive with exogenous variable (ARX) model-based predictive control is presented
to improve passenger comfort and road holding in a vehicle using a semi-Active Suspension
with a Bouc–Wen representation. The results showed improvement when compared with
passive suspension; however, the results were limited by the type of suspension used in
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this application. In [19] a full-car suspension model is controlled by a linear MPC with 6
degrees of freedom (6-DOF). In this approach, the control goal is to achieve a desired tilt
angle to preserve comfort and road holding. The actuator is considered to be ideal, which
results in a linear behavior of the system. This allows real-time implementation due to the
short optimization time; however, the performance of the control algorithm may not be as
effective as the one shown in simulation due to the linear design of the controller. Other
MPC approaches using linear models are presented in [20–22].

Another MPC approach for the Active Suspension system is presented in [23]. In
previous work, the Active Suspension quarter-car system was modeled as nonlinear by
considering the nonlinear effect of the actuator. To comply with the MPC approach, the
system is modeled as a Takagi–Sugeno model (T–S) by a fuzzy representation consisting
of two sub-models. The Model Predictive Control is also designed as a fuzzy MPC where
there exist two interconnected linear models and the switching between one model and
the another is performed by fuzzy logic. Additionally, terminal equality constraints are
included in terms of Linear Matrix Inequalities (LMI) to ensure stability. In [24] a robust
model predictive controller (RMPC) for an Active Suspension full-car system is presented.
This approach considers both the nonlinearities of the hydraulic actuator and the nonlinear-
ities presented by the relationship of the movement of each one of the four corners of the
car. Therefore, to design the MPC, the model is simplified into a linear fuzzy logic system.
To add robustness to the control approach, an adaptive control law is proposed based on
the MPC and a fractional PID controller.

As shown in the previous works, the nonlinear model of an Active Suspension sys-
tem is represented by linear representations to comply with the MPC strategy. In this
research work, a Linear Parameter Varying (LPV) representation is proposed. This kind of
representation is common in semi-Active Suspension control approaches [25–27]. In this
approach, the LPV representation is done using one scheduling parameter embedding the
nonlinearities of the hydraulic actuator.

Therefore, the proposed control strategy consists of a Model Predictive Controller for
an Active Suspension system with an electro-hydraulic actuator with a servo spool valve.
The model of the system is constructed as a Linear Parameter Varying model using one
scheduling variable ρ1. Quadratic Stability conditions are included in the MPC algorithm
as LMI, as presented in [28]. To improve performance, a terminal cost using attraction sets
is included, as shown in [29]. Finally, the inclusion of a terminal set and a Linear Quadratic
Regulator (LQR) controller in the terminal set is included.

The rest of the paper is organized in the following structure. Section 2 presents the
Active Suspension with electro-hydraulic actuator model. Section 3 shows a state–space
LPV representation of the Active Suspension. Section 4 describes the MPC-LPV control
algorithm. Section 5 shows a Recursive Least Squares (RLS) algorithm for the prediction of
the scheduling parameter along the prediction horizon. Section 6 presents the Quadratic
Stability conditions for the MPC-LPV approach. Section 7 describes the attraction sets and
terminal set for control switching. Results and simulations are presented in Section 8 and
conclusions are discussed in Section 9.

2. Quarter-Car Active Suspension Model

Active Suspension systems add an actuator to the passive system mainly consisting of
the wheel mass and the chassis mass. Figure 1 presents a schematic model of an Active
Suspension system as found in [7]. In this model, the actuator produces a force fs which
reduces the vertical movement of both masses ms, which is the sprung mass representing
the chassis body, and mus, which is the unsprung mass representing the suspension unit
and wheel of the quarter-car.
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Figure 1. Active Suspension System.

The dynamic force equations of the system are the following:

msz̈s + ks(zs − zus) + bs(żs − żus)− fs = 0 (1)

musz̈us − ks(zs − zus)− bs(żs − żus) + kt

(
zus − r(t)

)
+ fs = 0 (2)

with ks being the constant of the spring between the two masses and bs being the damping
coefficient. kt represents the tire elastic constant and r(t) represents the road disturbances.
The force fs is generated by an electro-hydraulic actuator with a servo spool valve. A
schematic of the electro-hydraulic actuator is shown in Figure 2. By means of this actuator,
the force fs is generated by the pressure supplied to the system Pl and the area of the
moving piston A. Therefore, the force can be expressed using the following equation.

fs = APl (3)

Figure 2. Electro-Hydraulic Actuator.

The pressure Pl dynamics are modeled using the following differential Equation (4).

Vt

4βe
Ṗl = Q − CtpPl − A(żs − ˙zus) (4)
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with Q = sgn
[

Ps − sgn(zv)Pl

]
Cdwxv

√
1
ρ

∣∣∣Ps − sgn(zv)Pl

∣∣∣, where Vt is the total actuator

volume, Q the load flow, Be the effective bulk modulus, Ctp the piston leakage coefficient,
Cd the discharge coefficient, w the spool valve area gradient, ρ the hydraulic fluid density
and Ps the pressure supply. The displacement of the spool valve zv is proportional to the
control action u(k) which is a voltage signal. The valve displacement is expressed by the
following equation.

żv =
zv

τ
+ kvu(k) (5)

where kv represents the valve gain and τ is a scaling factor.

3. LPV-SS Representation of the Quarter-Car Active Suspension Model

To comply with the MPC strategy, Equations (1) through (5) will be used to build a
Linear Parameter Varying state–space (LPV-SS) model with a scheduling parameter ρ1 of
the form:

ẋ(t) = A
(

ρ1(t)
)

x(t) + Bu(t) + Brr(t) (6)

with the discrete LPV-SS obtained by a Zero-Order Hold (ZOH) represented as:

x(k + 1) = A
(

ρ1(k)
)

x(k) + Bu(k) + Brr(k) (7)

where ẋ(t) = [x1 x2 x3 x4 x5 x6]
T = [zs żs zus ˙zus Pl zv]T . With A being the state matrix

and B the input matrix, Br represents the input disturbance matrix while u(k) is the control
input. Therefore, the space-state matrices can be defined as the following:

A
(

ρ1(k)
)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
− ks

ms
− bs

ms
ks
ms

bs
ms

A 0
0 0 0 1 0 0
ks

mus
bs

mus
− ks+kt

mus
− bs

mus
− A

mus
0

0 −αA 0 αA −β γρ1
0 0 0 0 0 1

τ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(8)

B =

⎡⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
kv
τ

⎤⎥⎥⎥⎥⎥⎥⎦ (9)

Br =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
kt

mus
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(10)

With α = 4βe
Vt

, β = αCtp, γ = αCd

√
1
ρ and ρ1 = sgn

[
Ps − sgn(x6)x5

]√∣∣∣Ps − sgn(x6)x5

∣∣∣.
The inclusion of the scheduling variable ρ1 allows the system to be expressed as an LPV-SS
representation which allows the MPC law to be computed in a compact matrix form.

4. LPV-MPC Controller

To develop a MPC scheme for LPV models, the future states need to be formulated so
a trajectory can be formed along the prediction horizon. The i-steps-ahead prediction can
be structured as the following:
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x(k + i|k) =
(

i−1

∏
j=0

A
(

ρ1(k + j)
)

x(k) +

(
i−1

∑
s=1

(
i−1

∏
l=s

A
(

ρ1(k + l)
)))

Bu(k + s − 1)

)
+ Bu(k + i − 1) (11)

Prediction of the future states needs to be performed for the future Np time steps, thus
using (11) the following matrix equation can be deduced.

X = Φ ∗ x(k) + Ψ ∗ U (12)

Where:

X =

⎡⎢⎢⎢⎢⎣
x(k + 1|k)
x(k + 2|k)

:
.

x(k + Np|k)

⎤⎥⎥⎥⎥⎦ (13)

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A(ρ1(k))

∏1
j=0

(
A
(

ρ1(k + j)
))

...

∏
Np−1
j=0

(
A
(

ρ1(k + j)
))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(14)

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B 0nx×nu . . . 0nx×nu

A
(

ρ1(k + 1)
)

B B . . . 0nx×nu

A
(

ρ1(k + 2)
)

A
(

ρ1(k + 1)
)

B A
(

ρ1(k + 2)
)

B . . . 0nx×nu

...
...

. . .
...(

∏
Np−1
i=1 A

(
ρ1(k + i)

))
B

(
∏

Np−1
i=1 A

(
ρ1(k + i + 1)

))
B . . . B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15)

U =

⎡⎢⎢⎢⎢⎣
u(k)

u(k + 1)
:
.

u(k + Np − 1)

⎤⎥⎥⎥⎥⎦ (16)

with X ∈ RNp ·nx , Φ ∈ RNp ·nx×nx , Ψ ∈ RNp ·nx×Np ·nu and U ∈ RNp ·nu where nx is the number
of states and nu the number of inputs. With the state prediction equation, we can construct
a cost function to minimize the deviation from the equilibrium states and the energy used
by the inputs, so that the cost function is defined as:

J = XTQcX + UTRcU (17)

where Qc and Rc are weight matrix of appropriate dimensions. To find the optimal control
trajectory U, (17) needs to be minimized subject to the constraints in the inputs (18) and the
states (19).

umin ≤ U ≤ umax (18)

xmin ≤ X ≤ xmax (19)

with both umin & umax ∈ RNp×nu and both xmin & xmax ∈ RNp×Np . However, to properly
solve the MPC problem, the future values of ρ1, which are unknown, must be estimated. To
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obtain the values we must estimate them using an RLS approach to obtain an approximate
value of the scheduling parameter based on its previous behavior and the system response.

5. Scheduling Parameter Prediction Using RLS

To obtain an estimation of the future scheduling parameter, an RLS approach is used
as presented by Sename, Morato & Normey-Rico in [26]. The scheduling parameter is
assumed to be measurable at instant k and all previous values can be stored; however, the
future parameters will be estimated based on the previous measurements of the scheduling
parameters as well as the previous inputs and outputs to consider the behavior of the system.

The behavior of the scheduling parameter of a LPV system can be approximated by a
linear ARX model, which is a function of the previous scheduling parameter values, the
previous inputs and the previous outputs. This ARX model can be represented as:

ρ1(k + Np) = a0ρ1(k) + ... + aNp ρ1(k − Np) + b0u(k − 1) + ...

... + bNp u(k − Np − 1) + c0y(k) + ... + cNp y(k − Np) (20)

Afterwards, (20) can be expressed in a compact form and be dependent only on known
values to be suitable for MPC design. To find a solution to the RLS, parameters a0 to cNp

need to be calculated. These parameters will be grouped into the following vector:

Θ(k) = [a0...cNp ]
T (21)

resulting in:
ρ1(k) = γ(k)TΘ(k) (22)

with:

γ(k)T =
[
ρ1(k − Np), ..., ρ1(k − 2Np), u(k − Np − 1), u(k − 2Np − 1), y(k − Np), ..., y(k − 2Np)

]
(23)

with (22) and (23) a direct solution can be built and used to find ρ1 in an online RLS
algorithm as presented in [30]:

Θ(k) = Θ(k − 1) + σ(k)
(

ρ1(k)− γ(k − 1)TΘ(k − 1)
)

(24)

Q̂(k) =
(

I − σ(k)γ(k)T
) Q̂(k − 1)

μ
(25)

with μ ∈ [0, 1] being a forgetting factor that gives exponentially less weight to older error
samples of the RLS algorithm and σ(k) being a vector defined as:

σ(k) =
1

μc(k)
Q̂(k − 1)γ(k) (26)

and c(k) is a scalar defined by:

c(k) = 1 + γ(k)T Q̂(k − 1)
μ

γ(k) (27)

Therefore, the RLS algorithm for estimating the future scheduling parameters is shown
as Algorithm 1:

After solving the RLS algorithm for the Np future scheduling parameters, they will be

considered to be known and exact to build a vector P̂(k) =
[
ρ1(k), ..., ρ1(k + Np)

]T
which

contains all of them; therefore, (12) is no longer an equation with unknown variables and
can be solved through LMI optimization.
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Algorithm 1

Offline
Step 1—Initialize Θ(0) and Q̂(0)
Online
Step 2—Obtain ρ1(k), y(k) and u(k)
Step 3—Construct γT(k) vector
Step 4—Calculate scalar c
Step 5—Obtain vector σ(k)
Step 6—Obtain Θ(k)
Step 7—Obtain Q̂(k)
Step 8—Obtain ρ1(k)
Step 9—Set k = k + 1, If k < Np go to Step 10, else, go back to step 3

Step 10—Construct P̂(k) =
[
ρ1(k), ρ1(k + 1), ..., ρ1(k + Np)

]

6. Quadratic Stability in MPC-LPV Approach

To ensure Quadratic Stability in the MPC-LPV approach, system (7) can be considered
to be a parametric uncertain system. In parametric uncertain systems, the scheduling
variable is limited to vary in a range Δρ1min ≤ Δρ1k ≤ Δρ1max. To ensure stability in
parametric uncertain systems, the following condition needs to be met as presented in [31].(

A(ρ1) + BK
)T

P
(

A(ρ1) + BK
)
− P < 0 (28)

which is the Riccati Equation for parametric uncertain systems where P > 0 is a positive
definite matrix of appropriate dimensions and K a static feedback gain matrix. Then, (28)
can be pre- and post-multiplied by a matrix Q = P−1 and KQ = R to obtain:(

QAT(ρ1) + RTBT
)

Q−1
(

A(ρ1)Q + BR
)
− Q < 0 (29)

To cope with the MPC paradigm, the Schur complement is applied to (29) to obtain
the following LMI: [

Q QAT(ρ1) + RB

A(ρ1)Q + BR Q

]
> 0 (30)

for every possible value of ρ1 at time instant k which leads to an infinite number of LMI.
However, as system (7) is considered to be a parametric uncertain system, (30) can be
evaluated on the vertex of matrix A to consider the worst-case scenarios. Therefore, (30)
can be written as: [

Q QAT
i,j(ρ1) + RB

Ai,j(ρ1)Q + BR Q

]
> 0 (31)

The previous condition must be met ∀j ∈ [k, k + Np] and ∀i ∈ [1, 2l ], where l is
the number of scheduling variables ρ1, Q > 0 is a positive definite stability matrix to
be determined, and KQ = R, where K is the static feedback gain matrix. With these
adjustments, the number of LMI to be solved is now finite and equal to 2l Np. Since there is
the consideration of a static feedback gain, the control law is determined as u(k) = Kx(k),
but to comply with the MPC paradigm, the previous expression can be considered to be
an inequality as u(k) < Kx(k). This leads to a conservative MPC performance due to the
limitations of the input variable. However, this problem will be addressed in Section 7
with the inclusion of terminal sets. Therefore, using (17)–(19) and (31) the optimization
problem needs to find the optimal control sequence at each time step k is the following:

min
U

J s.t.(18), (19) & (31) (32)
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7. MPC-LQR for LPV Models

7.1. Attraction Sets and Terminal Set

The inclusion of LMIs to ensure robust stability to the MPC paradigm often leads to
a conservative performance of the control of the system. Therefore, to steer the system
into a desired equilibrium state in the presence of disturbance or uncertainty, a series of
terminal sets can be defined. In [32] a set of shrinking ellipsoids is determined using a
decay rate, which can vary the speed of the system and the stability determined by similar
stability conditions to the ones shown in Section 6, to steer the states to the equilibrium
point. However, the determination of the decay rate and the constructions of the ellipsoids
make this algorithm too slow for real-time applications and is rather implemented as an
offline algorithm. In [33] a set of ellipsoidal sets are defined to predict the behavior of the
system in the presence of bounded disturbances and uncertain bounded parameter changes.
In [34] a path of ellipsoids is defined to predict the possible behavior of the scheduling
parameter along the prediction horizon. In all three approaches, the goal of the ellipsoidal
sets is that the states reach a terminal set or a terminal point, where a state-dependent
stationary gain is applied to the system instead of the MPC law.

In this work, the future scheduling parameter is not known but predicted using the
RLS algorithm presented in Section 3; therefore, the ellipsoids to build do not consider a
variation on the scheduling parameter but rather the prediction error generated by the
RLS algorithm. To generate the optimal desired trajectory to the setpoint, a path must be
defined from every possible initial state to the terminal ellipsoidal set.

To steer the system into the desired terminal set, a term JTS is added to the cost
function J presented in (17). JTS is defined as the following:

JTS =
(

x(k + Np)− (xds + xdist)
)T

L
(

x(k + Np)− (xds + xdist)
)
− E(ρ1) (33)

where E(ρ1) = ∑
k+Np
i=k

[
ρ1(i) − γ(i − 1)TΘ(i − 1)

]2
represents the sum of the squared

errors of the prediction of the future parameter values. x(k + Np) are the predicted states
at the end of the prediction horizon, xds represents the desired state after Np steps, xdist is
the predicted effect of the disturbance on the states Np steps ahead and it was obtained
by performing an open loop simulation of every possible disturbance from every initial
set of states. Both xds and xdist were computed offline and stored in a lookup table. L is a
weighing matrix of appropriate dimensions. Therefore, (17) is redefined as:

J = XTQcX + UTRcU + JTS (34)

However, the computation of every desired trajectory for every state needs to be
computed offline and stored in a lookup table before the implementation of the MPC
algorithm to increase execution speed.

7.2. MPC-LQR Dual Controller

To reduce the computational load of the algorithm, when the current states reach a
terminal invariant set around the equilibrium point, the MPC algorithm does not need
to be computed. Instead, an LQR gain can be computed based on the value of the actual
prediction parameter to cope with the small error that may be present inside the terminal
invariant set. The control law is then presented as:

u(k) =

{
Umpc x(k) /∈ T

KLQR(ρ1)x(k) x(k) ∈ T
(35)

where KLQR(ρ1) is the LQR gain dependent on the scheduling parameter ρ1 and T is the
terminal invariant set defined around the equilibrium point of the system.
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Figure 3 presents the block diagram for the proposed LPV-MPC-LQR control strategy.
Additionally, the LPV-MPC-LQR algorithm is shown in the flowchart presented in Figure 4.

Figure 3. Block diagram of the proposed LPV-MPC-LQR control strategy for the Active Suspension system.

Figure 4. Flow diagram of the LPV-MPC-LQR control strategy.

8. Results and Discussion

The following simulations are made to observe the advantages and performance
of implementing the proposed LQR-MPC-LPV algorithm described in Section 7. The
algorithm was tested in the Active Suspension system described in Section 2. Table 1 shows
the specifications of the Active Suspension system obtained from [7].
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Table 1. Constant Values of the Active Suspension system.

Variable Value Units

ms 250 kg
mus 50 kg
mus 50 kg
kt 190,000 N/m
ks 16,812 N/m
bs 1000 N/(m/s)
Ps 10,300,000 Pa
τ 1/30 s
A 3.35 × 10−4 m2

β 1 s−1

α 4.515 × 1013 N/m−5

kv 1 × 10−4 m/V

A discretization is made to comply with the MPC paradigm using a sampling time
of Ts = 10 ms. A prediction horizon of Np = 3 was defined after several tests using
different prediction horizons were made. Using a larger prediction horizon resulted in
longer optimization time and more inexact variable scheduling predictions while it does
not exhibit a significant improvement in control performance. The control objective is to
steer all the states to the origin while complying with the following constraints.

−12 V ≤ u(k) ≤ 12 V

−1 cm ≤ zv ≤ 1 cm

The results will be divided into frequency-domain results and time-domain results.

8.1. Frequency-Domain Results

To obtain a frequency analysis in the nonlinear Active Suspension system, an algorithm
similar to the process of defining the system response as a describing function is used.
To produce these results, Algorithm 1 presented in [35] is issued. Figure 5 presents the
frequency response of the Active Suspension deflection gain using the proposed LPV-MPC-
LQR algorithm. Figure 6 presents the frequency response of the acceleration of the chassis
mass using the proposed LPV-MPC-LQR algorithm; also, the frequency response plots are
compared with the ones presented in [36] which use an LPV gain scheduling approach.

The results show how the suspension deflection is attenuated at every frequency,
which results in better road holding and driving conditions. Additionally, the chassis
acceleration stays in values which guarantee passenger comfort. Compared to the frequency
responses of the work of Fialho et al. [36] the MPC-LQR-LPV approach presents an
improvement especially in terms of road holding, shown in Figure 5, without affecting the
passenger comfort.

8.2. Time-Domain Results

To obtain time-domain results using the proposed LPV-MPC-LQR control algorithm,
the system was simulated using two different disturbances. Figures 7–9 present the
suspension behavior when a bump disturbance of 5 cm is introduced. Figures 10–12
show the suspension behavior when driving through a sinusoidal road. The system was
simulated using Matlab®; also, the software package YALMIP [37] using QP-solver SDPT3
was used for the MPC optimization. The results presented by [7] are included to make a
comparison. Additionally, the results using the MPC with a frozen scheduling parameter
approach without using the RLS to show the effect of the scheduling variable prediction in
control performance are included.
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Figure 5. Frequency response of the Active Suspension deflection gain.

Figure 6. Frequency response of the chassis acceleration.
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Figure 7. Chassis displacement—Bump Disturbance (Blue—disturbance, Red—MPC-LQR, Yellow—
Passive, Purple—H2, Green—MPC-Frozen).

Figure 8. Suspension Deflection—Bump Disturbance (Blue—disturbance, Red—MPC-LQR, Yellow—
Passive, Purple—H2, Green—MPC-Frozen).

The results of both displacement and deflection show a better performance, which
results in better road holding while maintaining passenger comfort. Additionally, the
comfort exhibits improvement in terms of chassis acceleration as shown in Figure 9. Addi-
tionally, to express the results numerically, both the RMS value and the maximum value
of the displacement of the chassis, the suspension deflection and the acceleration of the
chassis are presented in Tables 2 and 3 respectively.
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Table 2. RMS Values performance.

Variable MPC-LQR-LPV H2 (Ghazaly, 2016) Passive MPC-Frozen

Chassis Displacement (m) 0.0079 0.0091 0.0142 0.0107
Suspension Deflection (m) 0.0089 0.0149 0.0240 0.0122

Chassis Acceleration (m/s2) 0.0713 0.1104 0.1041 0.0838

Table 3. Max Values performance.

Variable MPC-LQR-LPV H2 (Ghazaly, 2016) Passive MPC-Frozen

Chassis Displacement (m) 0.0293 0.0284 0.0380 0.0367
Suspension Deflection (m) 0.0355 0.0499 0.0464 0.0439

Chassis Acceleration (m/s2) 0.2644 0.3978 0.2925 0.2899

Figure 9. Chassis Acceleration—Bump disturbance (Blue—MPC-LQR, Red—Passive, Yellow—H2,
Purple—MPC-Frozen).

Similar to the bump disturbance case, the proposed LPV-MPC-LQR control strategy
exhibits better performance in both displacement and deflection, which results in better
road holding. In terms of comfort, the acceleration of the chassis presented in Figure 12
shows a major improvement. Table 4 presents the peak values for the displacement of the
chassis, the suspension deflection, and the acceleration of the chassis.

Table 4. Peak Values performance.

Variable MPC-LQR-LPV H2 (Ghazaly, 2016) Passive MPC-Frozen

Chassis Displacement (m) 0.0027 0.0044 0.0151 0.0055
Suspension Deflection (m) 0.0034 0.0040 0.0097 0.0051

Chassis Acceleration (m/s2) 0.0164 0.32 0.162 0.0312

As shown in the previous figures, the proposed LPV-MPC-LQR control algorithm
presents a better performance when compared with the H2 control strategy in both distur-
bance cases (bump disturbance and sinusoidal road disturbance). The RLS prediction of the
future scheduling parameters have improved the control performance as well. Additionally,
the proposed algorithm shows an appropriate optimization time with a worst optimization
time of 930 ms and an average optimization time of 93 ms.
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Figure 10. Chassis displacement—Sinusoidal Disturbance (Blue—disturbance, Red—MPC-LQR,
Yellow—Passive, Purple—H2, Green—MPC-Frozen).

Figure 11. Suspension Deflection—Sinusoidal Disturbance (Blue—disturbance, Red—MPC-LQR,
Yellow—Passive, Purple—H2, Green—MPC-Frozen).
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Figure 12. Chassis Acceleration—Sinusoidal disturbance (Blue—MPC-LQR, Red—Passive, Yellow—
H2, Purple—MPC-Frozen).

9. Conclusions

In this paper, a novel LPV-MPC-LQR control algorithm ensuring Quadratic Stability
and with the inclusion of attraction sets was presented. This method runs an RLS algorithm
to obtain the prediction of the future scheduling parameter values, which simplifies the
prediction of the future states while ensuring Quadratic Stability. This application can
cope with nonlinear systems that can be embedded into LPV representation and therefore
reduce the complexity of the algorithm and allow fast execution times. This control strategy
was designed and tested on a nonlinear Active Suspension system. The results show
improvements to the performance of the Active Suspension in terms of road holding and
passenger comfort. Future research works should deal with recursive feasibility analysis
based on stability conditions, and robustness analysis. Optimization of the LPV-MPC-LQR
algorithm to achieve faster execution times using techniques of the embedded systems will
also be considered in future works as well.
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Abstract: In this work, a novel methodology for the identification of stiffness and damping ro-
tordynamic coefficients in a rotor-bearing system is proposed. The mathematical model for the
identification process is based on the algebraic identification technique applied to a finite element
(FE) model of a rotor-bearing system with multiple degree-of-freedom (DOF). This model considers
the effects of rotational inertia, gyroscopic moments, shear deformations, external damping and linear
forces attributable to stiffness and damping parameters of the supports. The proposed identifier only
requires the system’s vibration response as input data. The performance of the proposed identifier is
evaluated and analyzed for both schemes, constant and variable rotational speed of the rotor-bearing
system, and numerical results are obtained. In the presented results, it can be observed that the
proposed identifier accurately determines the stiffness and damping parameters of the bearings in
less than 0.06 s. Moreover, the identification procedure rapidly converges to the estimated values in
both tested conditions, constant and variable rotational speed.

Keywords: algebraic identification; rotor-bearing system; finite element model; rotordynamic coefficients

1. Introduction

Over the past few decades, several numerical approximations on the dynamic behavior
analysis for rotordynamic systems have been developed. Among these approximations,
the most popular approach is the finite element (FE) method because it is highly efficient
and convenient for modelling diverse physical systems. According to Koutromanos [1],
with this method a complex region that defines a continuous system is discretized with
simple geometrical forms called finite elements. The material properties as well as the
governing relationships are taken into consideration for these elements and expressed
in terms of unknown values on the element boundaries. After an assembly process and
consideration of the loads and boundary conditions, an equation system is obtained. The
solution for these equations provides the approximated behavior of the continuous system.
At the start of the 1960s, engineers used the FE method to obtain approximated solutions
for problems related to stress analysis, fluid flows, heat transfers and other areas. However,
the FE method was not applied to rotordynamics until a decade later. Through the 1970s,
diverse efforts were made to incorporate effects of rotational inertia, gyroscopic moments,
axial load, shear deformation and internal damping, as pointed out in [2]. Recently,
Shen et al. [3] remarked on the importance of including the effects of rotational inertia in
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the finite elements used to model and analyze rotordynamic systems, in order to have a
more general and appropriate kinematic and dynamic description of rotating structures
supported by bearings with stiffness and viscous damping characteristics.

Through the bearing characterization in rotor-bearing systems, the rotordynamic
stiffness and damping coefficients can be determined. Physical insight of these parameters
is essential for the correct modelling of every rotordynamic system as they are important
factors in determining the system’s dynamical behavior. In general, when a rotor-bearing
system is studied, stiffness and damping coefficients of the bearings are unknown, meaning
it is therefore necessary to implement a methodology to determinate them. According to
Tiwari [4], Matsushita et al. [5] and Breńkacz [6], there are eight rotordynamic coefficients
in bearings, four for stiffness (two directs and two crossed) and four for damping (two
directs and two crossed). Nowadays, rotor-bearing systems can be modelled in a very
precise way by using modern modelling techniques. However, accurately estimating the
dynamic parameters through theoretical models is still a challenge because it is difficult to
accurately model every phenomenon affecting the dynamic behavior of the bearings. This
problem has led to the development of novel numerical and experimental techniques for
dynamic parameter identification [4,6,7]. Tiwari and Chougale [8] developed an algorithm
to estimate the dynamic parameters of active magnetic bearings as well as the residual rotor
unbalance. The proposed algorithm is based on the least squares technique in frequency
domain. Moreover, Xu et al. [9] presented a novel identification approach for estimating
bearing dynamic parameters based on the transfer matrix method. Stiffness and damp-
ing parameters of an active magnetic bearing were determined by minimizing the error
between the unbalance response calculated by the transfer matrix approach and the experi-
mental approach. Mao et al. [10] also proposed a method for identifying bearing dynamic
parameters in flexible rotor-bearing systems by minimizing the quadratic error between the
numerical and experimental results of the vibration response caused by system unbalance.
There are several investigations on methods for identifying unbalance and bearing dynamic
parameters [11–15]. Recently, Wang et al. [16] presented the development of algorithms
for the simultaneous identification of unbalance and bearing dynamic parameters. In both
cases, the proposed algorithms were validated by comparison with experimental data.
Additionally, in [17], the authors estimated the rotordynamic coefficients of a controllable
floating ring bearing with a magnetorheological fluid (MRF) showing that the magnetic
field-induced, field-dependent viscosity of the MRF changes the stiffness and damping
bearing coefficients, which can be used to modify the dynamic behavior of the rotor-bearing
system. In 2020, Kang et al. [18] used the Kalman filter to estimate the bearing dynamic co-
efficients of a flexible rotor-bearing system. The rotor system is modeled with Timoshenko
beam elements, but the imbalance force considered in the dynamic model is calculated for
a constant rotational velocity condition. More recently, in 2021, Chen et al. [19] proposed
a method to simultaneously identify the parameters of the oil-film bearings and active
magnetic bearings/bearingless motors AMBs/BELMs along with the residual unbalanced
forces during the unbalanced vibration of the rotor. The proposed method requires inde-
pendent rotor responses and control currents to form a regression equation to estimate all
of the unknown parameters. Independent rotor responses are realized by changing the PID
control parameters of the AMBs/BELMs. The finite element method is used to model the
system by using Timoshenko beam elements, and both numerical and experimental results
are presented at a unique operation velocity of 2400 rpm. Taherkhani and Ahmadian [20]
used the Bayesian approach to an appropriate parameter selection procedure and suitable
sampling strategy for stochastic model updating to investigate variability in the dynamic
behavior of a complex turbo compressor supported by hydrodynamic bearings, leading to
successful parameter identification results. Brito Jr. et al. [21] presented an experimental
method to estimate the direct and cross-coupled dynamic coefficients of tilting-pad journal
bearings of vertical hydro-generators. The method employs only the shaft radial relative
vibrations, and the bearing radial absolute vibrations originated by the hydro-generator
residual unbalance. The authors affirmed that the vibration measurements required by the
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estimation method could be a major problem in low-speed machines (less than 400 rpm).
Although any type of bearing provides stiffness and damping forces that may depend
on the operation speed and many other factors, linearized force coefficients are widely
used to model the reaction forces from fluid film bearings. These linear force coefficients
are derived from the assumption of small amplitude motions about an equilibrium posi-
tion [22] and have been used to study the dynamic responses and analyze the stability of
rotor systems supported by oil-lubricated tilting-pad bearings, cylindrical bearings and foil
bearings, as pointed out in [23] and references within. Recently, Dyk et al. [24] presented
diverse linearization methods in the stability analysis of rotating systems supported on
floating ring bearing (FRBs), demonstrating the usefulness of the linear force coefficients
to predict the dynamic behavior of non-linear systems such as turbochargers supported
by FRBs.

There is also substantial literature on parameter identification and estimation methods.
Most of these schemes are essentially asymptotic, recursive or complex [25–27], and, accord-
ing to Arias-Montiel et al. [28], these methods lead to unrealistic implementations. Over the
past few years, another method of parametric identification called algebraic identification
has been successfully implemented in a wide range of engineering applications [29]. The
algebraic identification method is based on differential algebra and operational calculus
for developing estimators in determining unknown system parameters from a mathemat-
ical model. These estimations are carried out on-line in continuous or discrete time. An
advantage of algebraic identification over other methods is that it provides identification
expressions that are completely independent of the initial system conditions. Algebraic
identification has been used for parameter and signal estimation in linear and non-linear
vibrational mechanical systems [30–39]. Numerical and experimental results show that
algebraic identification is extremely robust against parameter uncertainty, frequency vari-
ations, measurement errors and signal noise. Additional information on the algebraic
identification robustness and other advantages and disadvantages of this method are
highlighted by Sira-Ramírez et al. in [29].

In this work, a novel methodology for developing two mathematical models for
identifying the unknown stiffness and damping parameters of bearings in multiple degree-
of-freedom (DOF) rotor-bearing systems is proposed. This methodology is based on the
algebraic identification technique. Developed identifiers are obtained based on an FE model
for a multiple DOF rotor-bearing system that considers the effects of rotational inertia,
gyroscopic effects, shear deformations, internal damping and linear forces attributable to
stiffness and damping parameters of the supports. Estimators are developed for two differ-
ent operation conditions of the rotor-bearing system: constant and variable rotational speed.
Analysis and evaluation of the proposed identifiers is carried out by numerical results
showing the viability for applying algebraic identification techniques for the rotordynamic
coefficients in rotor-bearing systems.

2. Materials and Methods

2.1. Mathematical Model of the Rotor-Bearing System

The FE method is used to obtain the mathematical model of the multiple DOF rotor-
bearing system. The shaft is modelled with a finite element type beam with four DOF
per node, two lateral displacements and two rotations (beam deflections), as illustrated
in Figure 1.
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Figure 1. Beam-like finite element for the modelling of the rotor-bearing shaft.

The nodal displacement vector is defined as

{δ} = {u1, w1, ψ1, θ1, u2, w2, ψ2, θ2}T (1)

where superscript T denotes the transposed vector.
Displacement and rotations corresponding to the movement along X and Z directions are

{δu} = {u1, ψ1, u2, ψ2}T

{δw} = {w1, θ1, w2, θ2}T (2)

The mathematical model of the multiple DOF rotor-bearing system with excitation by
unbalanced mass is given by [2]

[M]
{ ..

δ
}
+

[
C
( .

φ
)]{ .

δ
}
+

[
K
( ..

φ
)]

{δ} =
.
φ

2{
Fu(1)(φ)

}
+

..
φ
{

Fu(2)(φ)
}

(3)

with
Fu(1) = mud(sin(φ + α) + cos(φ + α))

Fu(2) = mud(sin(φ + α)− cos(φ + α))

where mu, d and α, are mass, eccentricity and angular position of system unbalance,
respectively,

..
φ and

.
φ are angular acceleration and velocity of the rotor-bearing system,

respectively, and φ =
.
φt. Moreover, {δ} is a vector with all the nodal displacements, [M] is

the global mass matrix of the system,
[
C
( .

φ
)]

is the global damping matrix that includes

gyroscopic effects as a function of the rotational velocity
( .

φ[C2]
)

and [C1] that represents

the damping in the supports,
[
K
( ..

φ
)]

is the global stiffness matrix constituted by [K1], [K2],

which include the supports and rotor stiffness, respectively, and
..
φ[K3], which is a stiffness

term as a function of the rotational acceleration of the system. Finally,
{

Fu(1)(φ)
}

and{
Fu(2)(φ)

}
are the components of the centrifugal force vector caused by the unbalanced

mass. Shape functions for the beam type finite element and a detailed definition for
matrices in Equation (3) are provided in Appendix A.

Stiffness and damping matrices provided by the bearings are obtained by determining
the generalized forces that these elements exert on the rotor shaft. After applying the
virtual work principle to the bearing model shown in Figure 2, forces acting on the rotor
can be expressed in a matrix form as [40]{

Fui

Fwi

}
= −

[
kxx
kzx

kxz
kzz

]{
ui
wi

}
−

[
cxx
czx

cxz
czz

]{ .
ui.
wi

}
(4)
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where i denotes the nodal location of the bearing inside the rotordynamic systems. Matrices
from the right side of Equation (4) are stiffness and damping matrices corresponding to
system supports [K1] and [C1], respectively.

Figure 2. Stiffness and damping parameters in bearings [40].

2.2. Operation Velocity of the Rotor-Bearing System

Two different conditions for the operation velocity of the rotor-bearing system are
considered: constant velocity and a linear ramp excitation.

Under the constant velocity scheme, no time variation of the rotating machine excita-
tion is considered. This condition can be expressed as

.
φ(t) = Ω = constant (5)

The term “ramp excitation” means a continuous variation in the excitation frequency
with a specific ratio with respect to time and can be ascendant (up) or descendent (down).
With most real rotating systems, the excitation frequency does not change in a linear manner
with respect to time. However, in some cases, frequency variation is sufficiently slow to
be approximated by a linear function. For the solution of Equation (3), it is considered a
variation of the excitation frequency of the form

.
φ(t) =

.
φ0 +

..
φt (6)

where:
.
φ0 is the excitation frequency at the ramp beginning;
..
φ is the change ratio with respect to time of the excitation frequency;
t is the time.

2.3. Mathematical Model for Bearing Rotordynamic Parameters Identification

The development of the mathematical model of the identifier is carried out from the
rotordynamic system model given in Equation (3), considering both cases: constant and
variable system operation velocity.

2.3.1. Algebraic Identifier with Constant Operation Velocity

As pointed out above, it is necessary to have a mathematical model for the dynamic
behavior of the rotor-bearing system to develop algebraic identifiers. From this model
and through an algebraic manipulation of the equations, estimators for the unknown
parameters are obtained.
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If a constant rotational velocity of the system is considered, Equation (3) can be written as

[M]
{ ..

δ
}
+ [C1 + ΩC2]

{ .
δ
}
+ [K1 + K2]{δ} = mudΩ2{sin(Ωt + α) + cos(Ωt + α)} (7)

Now, Equation (7) is multiplied by t2 and, after that, the result is twice integrated with
respect to time, giving

∫ (2)
[K1]t2{δ}+ [C1]

[∫
t2{δ} − 2

∫ (2)
t{δ}

]
=

∫ (2)
mudΩ2{sin(Ωt + α) + cos(Ωt + α)}t2 (8)

where
∫ (2) f (t) denotes iterated integrals. Furthermore, bearing stiffness and damping

terms to be identified are included in [K1] and [C1], respectively. Therefore, after the inte-
gration of the left side of Equation (8) and an algebraic treatment, the following expression
can be obtained∫ (2)

[
[M]

{ ..
δ
}
+ [C1 + ΩC2]

{ .
δ
}
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]
t2

=
∫ (2)[2ΩC2t − 2M − K2t2]{δ}+
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−{M}t2{δ}+
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(9)

Equation (9) can be separated into individual equation systems for each node where
the bearings are located. These equations can be presented in the form[
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{

ui
wi

}
+

[
cxx cxz
czx czz

](∫
t2
{

ui
wi

}
− 2

∫ (2)
t
{

ui
wi

})
=

{
bui
bwi

}
(10)

To solve Equation (10) an equal number of equations and unknowns is needed. For
this, Equation (10) is successively integrated three times in order to obtain the missing
equations, which are written as[

kxx kxz
kzx kzz

] ∫ (3)
t2
{

ui
wi

}
+

[
cxx cxz
czx czz

](∫ (2)
t2
{

ui
wi

}
− 2

∫ (3)
t
{

ui
wi

})
=

∫ {
bui
bwi

}
(11)

[
kxx kxz
kzx kzz

] ∫ (4)
t2
{

ui
wi

}
+

[
cxx cxz
czx czz

](∫ (3)
t2
{

ui
wi

}
− 2

∫ (4)
t
{

ui
wi

})
=

∫ (2){ bui
bwi

}
(12)

[
kxx kxz
kzx kzz

] ∫ (5)
t2
{

ui
wi

}
+

[
cxx cxz
czx czz

](∫ (4)
t2
{

ui
wi

}
− 2

∫ (5)
t
{

ui
wi

})
=

∫ (3){ bui
bwi

}
(13)

From Equations (10)–(13), a linear system equation is obtained for each node where
the bearings are located. These equations can be expressed as

[As(t)]{Θs} = {bs(t)} (14)

where {Θs} = {kxx kxz kzx kzz cxx cxz czx czz }T denotes the transposed vector of parame-
ters to be identified and [As(t)], {bs(t)} are 8 × 8 and 8 × 1, respectively.

As can be observed in Figure 2, eight parameters are required to define stiffness and
damping characteristics provided by the system supports. This is because in order to obtain
the terms of [As(t)] and {bs(t)} in Equation (14), eight simultaneous equations involving
the unknown support parameters are required to obtain their magnitudes.

From Equation (14) it can be concluded that vector {Θs} is identifiable if, and only
if, the dynamic system trajectory is persistent. That is to say, the trajectories or dynamic
system behaviors satisfy the condition det[As(t)] �= 0. In general, this condition is main-
tained at least in a small interval ( t0, t0 + ε] where ε is a positive and sufficiently small
value [29]. Then, the linear system Equation (14) is solved to obtain the algebraic identi-
fier for determining the stiffness and damping parameters of rotor-bearing support with
constant operation velocity.

{Θs} = [As]
−1{bs} ∀t ∈ ( t0, t0 + ε]. (15)
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It is important to mention that to identify the support parameters, lateral vibration
measurements at the node and the nodal slopes are required. Moreover, similar information
from the adjacent node is also needed. The nodal slopes can be calculated by numerical
approximation using the lateral displacements from two adjacent nodes.

2.3.2. Algebraic Identifier with Variable Operation Velocity

In this section, the rotor-bearing system velocity is considered as a linear ramp of
excitation. The mathematical model of the system is defined by Equation (3). In order to
develop the parameter identifier, this equation is rewritten as follows

[M]
{ ..

δ
}
+

[
C1 +

.
φC2

]{ .
δ
}
+

[
K1 + K2 +

..
φK3

]
{δ} =

.
φ

2
F1(φ) +

..
φF2(φ) (16)

By multiplying Equation (16) by t2 and integrating the result twice with respect to
time, the following is obtained∫ (2)[

[M]
{ ..

δ
}
+

[
C1 +

.
φC2

]{ .
δ
}
+

[
K1 + K2 +

..
φK3

]
{δ}

]
t2 =

∫ (2){ .
φ

2
F1(φ) +

..
φF2(φ)

}
t2 (17)

where
∫ (2)

ϕ(t) are iterated time-integrals of the form
∫ t

0

∫ σ1
0 · · ·

∫ σn−1
0 ϕ(σn)dσn · · · dσ1 with∫

ϕ(t) =
∫ t

0 ϕ(σ)dσ, and n a positive integer.
Similarly for the case of constant velocity, matrices [K1] and [C1] contain the stiffness

and damping parameters provided by the supports. Therefore, after the integration of the
left part of Equation (17) and rearranging terms, we have∫ (2)

[K]1t2{δ}+ [C1]
[∫

t2{δ} − 2
∫ (2) t{δ}

]
=

∫ [
4Mt −

.
φC2t2

]
{δ}

+
∫ (2)

[
C2

( ..
φt2 + 2

.
φt

)
− 2M −

(
K2 +

..
φK3

)
t2
]
{δ} − [M]t2{δ}

+
∫ (2)

{
.
φ

2
F1(φ) +

..
φF2(φ)

}
t2

(18)

It is worth mentioning that Equation (18) can be separated into individual equation
systems for each node where the bearings are located. These equations can be written as
follows[

kxx kxz
kzx kzz

] ∫ (2)
t2
{

ui
wi

}
+

[
cxx cxz
czx czz

](∫
t2
{

ui
wi

}
− 2

∫ (2)
t
{

ui
wi

})
=

{
bui
bwi

}
(19)

To solve Equation (19), an equal number of equations and unknows is required. There-
fore, Equation (19) is successively integrated three times to obtain the missing equations
which are expressed as[

kxx kxz
kzx kzz

] ∫ (3)
t2
{

ui
wi

}
+

[
cxx cxz
czx czz

](∫ (2)
t2
{

ui
wi

}
− 2

∫ (3)
t
{

ui
wi

})
=

∫ {
bui
bwi

}
(20)

[
kxx kxz
kzx kzz

] ∫ (4)
t2
{

ui
wi

}
+

[
cxx cxz
czx czz

](∫ (3)
t2
{

ui
wi

}
− 2

∫ (4)
t
{

ui
wi

})
=

∫ (2){ bui
bwi

}
(21)

[
kxx kxz
kzx kzz

] ∫ (5)
t2
{

ui
wi

}
+

[
cxx cxz
czx czz

](∫ (4)
t2
{

ui
wi

}
− 2

∫ (5)
t
{

ui
wi

})
=

∫ (3){ bui
bwi

}
(22)

From Equations (19)–(22), a linear system equation is obtained for each node where
the bearings are located. These equations can be expressed as

[As(t)]{Θs} = {bs(t)} (23)

where {Θs} = {kxx kxz kzx kzz cxx cxz czx czz }T denotes the transposed vector of parame-
ters to be identified and [As(t)], {bs(t)} are 8 × 8 and 8 × 1, respectively.

Again, the condition det[As(t)] �= 0 must be satisfied to identify the vector {Θs}.
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From the solution of Equation (23), a mathematical model for an on-line identifier of
stiffness and damping bearing parameters can be obtained as

{Θs} =
[

As
−1

]
{bs} ∀t ∈ ( t0, t0 + ε] (24)

As can be observed, algebraic identification of stiffness and damping bearing param-
eters is independent of system initial conditions and only depends on the displacement
vector and the type of ramp excitation. It is important to mention that as with the case
of constant velocity, to identify the supports parameters, lateral vibration measurements
at the node and the nodal slopes are required. Moreover, similar information from the
adjacent node is also needed.

3. Results

In Figure 3, a scheme of the rotor-bearing system considered in this work and its
discretization is presented.

Y

Z

X

D1 D2

.L1 L2 L3 4L ...

5L 6L

1 2 3 4 5 6 7 8 9 10

11 12

r3
r2 r1

Figure 3. Rotor-bearing system scheme [40].

To obtain the mathematical model for the rotor-bearing system using the FE method,
it was discretized into 11 beam-like elements, as is shown in Figure 3. The system includes
two inertial disks located at nodes 1 and 12, while supports (bearings) are placed at
nodes 4 and 8. The correct nodal location ensures that the simulation replicates the model’s
real conditions. In addition, two unbalanced masses were considered in two different
angular positions located on inertial disks D1 and D2.

In Table 1, the mechanical and geometrical properties of the shaft are shown, while
the inertial properties of discs and unbalanced masses are presented in Table 2.

Table 1. Mechanical and geometrical properties of the rotor-bearing shaft.

Parameter Value Parameter Value

Modulus of elasticity 2 × 1011 N/m2 L1 0.035 m
Density 7800 kg/m3 L2 0.010 m

Poisson ratio 0.3 L3 0.025 m
r1 0.005 m L4 0.130 m
r2 0.02 m L5 0.050 m
r3 0.035 m L6 0.050 m
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Table 2. Inertial properties of the disks and unbalance masses.

Parameter Value Parameter Value

D1 mass 1.2 kg D2 mass 1.0 kg
D1 moment of inertia 1.2 × 10−3 kg·m2 D2 moment of inertia 1.0 × 10−3 kg·m2

D1 polar moment of inertia 2.4 × 10−3 kg·m2 D2 polar moment of inertia 2.0 × 10−3 kg·m2

D1 mass unbalance 5 × 10−7 kg·m ∠0 rad D2 mass unbalance 5 × 10−7 kg·m ∠π rad

In Table 3, the stiffness and damping bearing parameters [40] used for numerical
simulation are presented.

Table 3. Stiffness and damping bearing parameters [40].

Parameter Bearing 1 (Node 4) Bearing 2 (Node 8)

kxx 8 × 107 N/m 5 × 107 N/m
kxz −1 × 107 N/m −2 × 107 N/m
kzx −6 × 107 N/m −4 × 107 N/m
kzz 1 × 108 N/m 7 × 107 N/m
cxx 8 × 103 N·s/m 6 × 103 N·s/m
cxz −3 × 103 N·s/m −1.5 × 103 N·s/m
czx −3 × 103 N·s/m −1.5 × 103 N·s/m
czz 1.2 × 104 N·s/m 8 × 103 N·s/m

On-line algebraic identification of stiffness and damping bearing parameters was
determined based on the vibratory response of the rotor-bearing system in the time do-
main, which was obtained from Equations (3) and (7) by using the Newmark method for
numerical integration.

3.1. Algebraic Parameter Identification with Constant System Velocity

The displacement vector used in the algebraic identification procedure was obtained
from Equation (7) by using the Newmark method for numerical integration and taking
into account a constant rotational velocity of the rotor-bearing system.

In Figure 4, vibration signals at node 4 (corresponding to bearing 1 location) of the
rotor-bearing system of Figure 3 are presented. This response is obtained for an operation
rotational velocity Ω = 600 rpm. These signals, the nodal slopes and the corresponding
information of the nodes adjacent to the bearing locations are the required data to identify
stiffness and damping parameters of the bearings.

 

Figure 4. Vibration signal at node 4 (bearing 1) at 600 rpm: (a) X direction; (b) Z direction.

Figures 5 and 6 present the obtained results from the numerical simulation for the alge-
braic identification of stiffness and damping parameters for bearing 1, while Figures 7 and 8
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show the results corresponding to bearing 2. It is important to mention that the sample
time used in the simulation was 0.1 milliseconds. However, by carrying out numerical
simulations with different sample times, it was observed that the shorter the sampling
period, the faster the identifier converges.

 

Figure 5. Identified stiffness parameters for bearing 1 at 600 rpm. (a) kxx, (b) kxz, (c) kzx, (d) kzz.

 

Figure 6. Identified damping parameters for bearing 1 at 600 rpm. (a) cxx, (b) cxz, (c) czx, (d) czz.
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Figure 7. Identified stiffness parameters for bearing 2 at 600 rpm. (a) kxx, (b) kxz, (c) kzx, (d) kzz.

 

Figure 8. Identified damping parameters for bearing 2 at 600 rpm. (a) cxx, (b) cxz, (c) czx, (d) czz.

As can be observed in Figures 5–8, the identification of both stiffness and damping
parameters of the bearings is carried out in less than 0.1 s, and once the parameter reaches
the identified value, this remains for the rest of the time period. For a better analysis of
the identifier behavior, only results for 0.1 s are presented in Figures 5–8, because it is
important to observe the time that the identifier requires to converge to the estimated value.

3.2. Algebraic Parameter Identification with Variable System Velocity

The displacement vector used as input data for the algebraic identification is obtained
from Equation (3) by using the Newmark method for numerical integration and taking into
account a linear ramp excitation with angular acceleration

..
φ = 10 rad/s2. The rotor-bearing

system response at node 4 is shown in Figure 9 where the vibratory behavior of the system
in the location of bearing 1 can be appreciated.
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Figure 9. System vibratory response at node 4 with a linear ramp of excitation of 10 rad/s2.

In Figures 10–13, the behavior of the algebraic identifier for bearing stiffness and
damping parameters of both bearings (placed at nodes 4 and 8) is shown as a function
of time.

 

Figure 10. Identified stiffness parameters for bearing 1 with a linear ramp of excitation of 10 rad/s2.
(a) kxx, (b) kxz, (c) kzx, (d) kzz.
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Figure 11. Identified damping parameters for bearing 1 with a linear ramp of excitation of 10 rad/s2.
(a) cxx, (b) cxz, (c) czx, (d) czz.

 

Figure 12. Identified stiffness parameters for bearing 2 with a linear ramp of excitation of 10 rad/s2.
(a) kxx, (b) kxz, (c) kzx, (d) kzz.
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Figure 13. Identified damping parameters for bearing 2 with a linear ramp of excitation of 10 rad/s2.
(a) cxx, (b) cxz, (c) czx, (d) czz.

As in the case of constant rotor system velocity, stiffness and damping bearing pa-
rameters are identified in les tan 0.1 s as can be observed in Figures 10–13. Furthermore,
the parameter values remain constant until the rotor-bearing system reaches its nominal
operation velocity. For a better analysis of the identifier behavior, the results for 0.1 s are
presented in Figures 10–13 because it is important to observe the required time for the
identifier convergence. The sample time used to solve Equation (3) using the Newmark
method was 0.1 milliseconds. The numerical solution of Equation (3) was used as input
data for the proposed algebraic identifier. Moreover, achieving this sample time with
diverse data acquisition systems for experimental implementation was verified.

4. Discussion

Different numerical simulations were carried out in order to determine the robustness
of the proposed identifiers under different conditions for the rotor-bearing system velocity.
For the constant velocity case, different magnitudes for the rotor system velocity were
considered, while for the variable velocity case, different ramps of excitation were explored.

Figure 14 shows results for the algebraic identification of stiffness and damping
parameters for bearing 1 at a constant operation velocity of the rotor-bearing system of
50,000 rpm. A rapid identifier convergence to the estimated values can be observed,
meaning that an increase in operation velocity does not affect the identifier performance. It
is important to mention that, while the results for the identification of damping parameters
of bearing 1 and the stiffness and damping parameters of bearing 2 are not presented, these
parameters are correctly identified in less than 0.1 s.

The identifier performance for different ramps’ excitation was analyzed. The accel-
eration values considered for numerical simulation were:

..
φ = 10 rad/s2,

..
φ = 100 rad/s2,

..
φ = 1000 rad/s2,

..
φ = 3000 rad/s2 and

..
φ = 6000 rad/s2. The result for

..
φ = 10 rad/s2 were

reported in the previous section. Due to the similar behavior of the identifier with different
acceleration values, only results for

..
φ = 6000 rad/s2 are shown here. The rotor-bearing

system response for a ramp of excitation with the mentioned value of acceleration at node 4
(bearing 1 location) is presented in Figure 15. It can be seen that there is a considerable
change in the time scale in comparison with Figure 9 because the acceleration is increased
600 times.
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Figure 14. Identified stiffness parameters for bearing 1. (a) kxx, (b) kxz, (c) kzx, (d) kzz at 50,000 rpm.

 

Figure 15. System vibratory response at node 4 with a linear ramp excitation with acceleration of
6000 rad/s2.

The algebraic identification performance under the conditions described above is
shown in Figures 16–19 where the estimation for the stiffness and damping bearings
parameter is visualized. For this simulation, the system response in Figure 15 is used as
input data.
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Figure 16. Identified stiffness parameters for bearing 1 with a ramp excitation of 6000 rad/s2. (a) kxx,
(b) kxz, (c) kzx, (d) kzz.

 

Figure 17. Identified damping parameters for bearing 1 with a ramp excitation of 6000 rad/s2. (a) cxx,
(b) cxz, (c) czx, (d) czz.
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Figure 18. Identified stiffness parameters for bearing 2 with a ramp excitation of 6000 rad/s2. (a) kxx,
(b) kxz, (c) kzx, (d) kzz.

 

Figure 19. Identified damping parameters for bearing 2 with a ramp excitation of 6000 rad/s2. (a) cxx,
(b) cxz, (c) czx, (d) czz.

From the results presented in Figures 16–19, it can be observed that despite the linear
ramp excitation being 600 times faster than the corresponding one in Figure 9, the proposed
identifier rapidly converges to the estimated values and remains in these values for the
rest of the time period. Note that the algebraic identifier is not affected by the system’s
acceleration and only depends on the displacement vector at each instance. The robustness
of the algebraic identification method against acceleration ramp variations had already
been proved by Mendoza-Larios et al. [36] but only for the identification of unbalance
parameters in rotor-bearing parameters.

Furthermore, the obtained results for both cases, constant and variable rotor-bearing
velocity, show a transient state of the identifiers before the convergence to the estimated
values of stiffness and damping bearing parameters. This behavior is due to the sample
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time used in the numerical simulations of the identifiers for solving the iterated integrals
of Equations (15) and (24), which utilize the trapezoidal rule. According to Kharab and
Guenther [41], this method presents major calculation errors in comparison with other
integration methods. However, it was found that the smaller the sample time the shorter
the error in the trapezoidal rule calculation.

5. Conclusions

In this article the identification problem for stiffness and damping parameters of
the supports in rotor-bearing systems was addressed. The system model was obtained
by the finite element method and using a finite element type beam, which consider the
effects of rotational inertia, gyroscopic moments and shear deformations. The algebraic
identification technique was applied to the finite element model to obtain two identifiers
for the stiffness and damping parameters attributable to the bearings. The first identifier
considers a rotor-bearing system operating at a constant velocity, and the second with
a linear ramp of excitation as a system velocity input. The numerical results present
the identifier behavior showing a fast convergence and robustness in both operation
conditions with different values of constant rotational velocity and ramp of acceleration.
The numerical results indicate a fast convergence in the stiffness and damping parameters
identification in less than 0.06 s for both considered operation conditions. It is important to
mention that the convergence time of the identifier depends mainly on the sample time
used in numerical simulations. An important characteristic of the proposed algebraic
identifiers is that the unbalance parameters (magnitude and phase) are not needed for their
development and implementation because only the vibratory response of the system at
the bearings’ location and the adjacent nodes is required. As a first approach we have
proved the proposed identifiers in rotor-bearing system models with constant rotordynamic
coefficients. However, as a future work, the proposed identifiers can be used to numerically
and experimentally determine rotordynamic coefficients, which are a function of the system
rotational velocity as in the case of pressurized bearings, by adapting the identifier method
to estimate non-constant functions. This is possible because in the mathematical model used
for the identifiers’ development, only the effects (stiffness and damping) of the supports
are considered without taking into account the nature of the bearings.
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Appendix A

Shape functions for the beam finite element.

N1(y) =
[
1 − 3y2

L2 + 2y3

L3 ;−y + 2y2

L − y3

L2 ; 3y2

L2 − 2y3

L3 ; y2

L − y3

L2

]
N2(y) =

[
1 − 3y2

L2 + 2y3

L3 ; y − 2y2

L + y3

L2 ; 3y2

L2 − 2y3

L3 ;− y2

L + y3

L2

] (A1)
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Expressions for matrices in Equation (3) are

[MT ] =
ρSL
420

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

156 0 0 −22L 54 0 0 13L
0 156 22L 0 0 54 −13L 0
0 22L 4L2 0 0 13L −3L2 0

−22L 0 0 4L2 −13L 0 0 −3L2

54 0 0 −13L 156 0 0 22L
0 54 13L 0 0 156 −22L 0
0 −13L −3L2 0 0 −22L 4L2 0

13L 0 0 −3L2 22L 0 0 4L2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A2)

[MR] =
ρI

30L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

36 0 0 −3L −36 0 0 3L
0 36 3L 0 0 −36 3L 0
0 3L 4L2 0 0 3L −L2 0

−3L 0 0 4L2 3L 0 0 −L2

−36 0 0 3L 36 0 0 3L
0 −36 3L 0 0 36 −3L 0
0 −3L −L2 0 0 −3L 4L2 0

−3L 0 0 −L2 3L 0 0 4L2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A3)

[C1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cxx
czx
0
0
0
0
0
0

cxz
czz
0
0
0
0
0
0

0
0

0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
or

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0

cxx
czx
0
0

0
0
0
0

cxz
czz
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A4)

[C2] =
ρI

15L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −36 −3L 0 0 36 −3L 0
36 0 0 −3L −36 0 0 −3L
3L 0 0 −4L2 −3L 0 0 L2

0 3L 4L2 0 0 −3L −L2 0
0 36 3L 0 0 −36 3L 0

−36 0 0 3L 36 0 0 3L
3L 0 0 L2 −3L 0 0 4L2

0 3L −L2 0 0 −3L 4L2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A5)

[K1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kxx
kzx
0
0
0
0
0
0

kxz
kzz
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
or

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0

kxx
kzx
0
0

0
0
0
0

kxz
kzz
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A6)
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[K2] = A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 0 0 −6L −12 0 0 −6L
0 12 6L 0 0 −12 6L 0
0 6L (4 + a)L2 0 0 −6L (2 − a)L2 0

−6L 0 0 (4 + a)L2 6L 0 0 (2 − a)L2

−12 0 0 6L 12 0 0 6L
0 −12 −6L 0 0 12 −6L 0
0 6L (2 − a)L2 0 0 −6L (4 + a)L2 0

−6L 0 0 (2 − a)L2 6L 0 0 (4 + a)L2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A7)

[K3] =
ρI

15L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −36 −3L 0 0 36 −3L 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 3L 4L2 0 0 −3L −L2 0
0 36 3L 0 0 −36 3L 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 3L −L2 0 0 −3L 4L2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A8)

with A = EI/((1 + a)L3) and a = 12EI/
(
GSL2), where E is the Young modulus of the

shaft material, I is the moment of inertia of the shaft transversal section, a is the shear
factor, S is the cross-sectional area of the shaft, L is the element length, G and ρ are the
shear modulus and the density of the shaft material, respectively.
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