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Device-to-device (D2D) communications have attracted a great deal of attention from researchers in
recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing
local devices, in physical proximity, to communicate directly with each other. Furthermore, through
relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots.
Besides improving network performance and service quality, D2D can open up opportunities for new
proximity-based services and applications for cellular users. However, there are many challenges to
realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and
D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G)
communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm,
the potential role of D2D and its scalability to support massive IoT devices and their machine-centric
(as opposed to human-centric) communications need to be investigated. New challenges have also
arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple
access (NOMA) and blockchain technologies, which call for new solutions to be proposed.

This special issue aims to present a collection of exciting papers, reporting the most recent
advances in cellular D2D communications. Through invited and open call submissions, a total of ten
excellent articles have been accepted, following a rigorous review process that required a minimum
of three reviews and at least one revision round for each paper. The list of accepted articles includes
one review and nine original research articles on addressing many of the aforementioned challenges
and beyond.

The first paper by Höyhtyä, Apilo and Lasanen [1] is a review article that analyzed the latest
energy consumption models of 3GPP standardized LTE (long-term evolution) and WiFi interfaces,
with recommendations on energy saving options for D2D communications in a set of application scenarios.

Distributed resource sharing and allocation are amongst the most important issues in cellular
D2D networks. Hong, Wang, Cai and Leung [2] investigated the issue of fairness in cooperative
D2D computational resource sharing, and proposed a blockchain-based credit system where user’s
computational task cooperation are recorded on public blockchain ledger as transactions, and their
credit balance can be easily accessed from the ledger. The performance of the proposed credit system is
demonstrated by incorporating it into a connectivity-aware task scheduling scheme to enforce fairness
among users in the D2D network.

Radio resource is another resource type that must be efficiently managed. The next four papers
explore different strategies for allocating radio resources such spectrum and transmit power for
D2D communications. Jiang, Wang, Ren and Xu [3] studied the problem of spectrum resource and
transmit power allocation for underlay multicast D2D communications, and presented a heuristic
and low-complexity resource and power allocation scheme that aims to maximize overall energy
efficiency, while satisfying the QoS (quality of service) requirements of both cellular and D2D
users. Similarly, for underlay D2D communications, Ban [4] proposed a practical scheme with low
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complexity and signaling overhead for distributed radio resource management. The scheme does not
require any channel feedback, and each D2D pair can transmit on its own, based on simple bitmap
information broadcast by the base station and an optimal threshold value derived to maximize the
average sum-rates.

To address the issue of mitigating multicell D2D underlay interference, Katsinis, Tsiropoulou and
Papavassiliou [5] proposed a two-step approach, which involves solving the initial resource block
allocation problem by formulating it as a bilateral symmetric interaction game, and then addressing
the transmit power allocation problem by using a linear programming approach to minimize the total
interference of the network. In order to respond to changing network conditions, there is a need for
the resource allocation mechanism to be adaptive. The paper by Khan, Alam, Moullec and Yaacoub [6]
presented a cooperative reinforcement learning algorithm for adaptive allocation of resource blocks
and transmit power to D2D users in a cellular network. By efficient control of the interference level,
the proposed algorithm results in improved overall system throughput, D2D throughput and fairness
among D2D users.

The spectrum efficiency problem in group D2D communications is next addressed by Anwar, Seet,
and Li [7] who proposed a QoS based non-orthogonal multiple access (Q-NOMA) scheme in which
D2D users in a NOMA transmission are ordered according to their QoS requirements. Using stochastic
geometry tools, the authors modeled the spatial relationships and interferences between the group
D2D users, which led to a closed-form expression for characterizing their outage performance.

In human-centric D2D communications, the social and trust relationships between users are
humanistic features that can be leveraged for enabling more secure and reliable solutions. Militano,
Orsino, Araniti and Iera [8] exploited the social relationships among D2D users to model the trust
level between them, and proposed a social trust-based solution for enhancing the performance of
D2D-enhanced cooperative content uploading in the presence of packet dropping or corrupting
malicious nodes for narrowband-IoT cellular environments. In another cooperative design, Chiti,
Fantacci and Pierucci [9] considered the problem of relay-assisted cooperative multicast (one-to-many)
D2D communications, and presented a relay selection scheme that considers both propagation
link conditions and relay’s social trust level with the constraint of minimizing end-to-end delay
in an integrated social–physical network.

Besides multicast, broadcast (one-to-all) is another communication option that can be supported by
D2D. This special issue concludes with a paper by Nardini, Stea and Virdis [10], who proposed a message
broadcast solution appropriate for vehicular networks based on multihop D2D communications.
The proposed solution allows a user to specify its target area without being constrained by cell
boundaries. It relies on application-level device intelligence and standard D2D resource allocation
methods of LTE-A to enable fast, reliable and resource-efficient message broadcast services.
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Abstract: Device-to-device (D2D) communication is an essential part of the future fifth generation
(5G) system that can be seen as a “network of networks,” consisting of multiple seamlessly-integrated
radio access technologies (RATs). Public safety communications, autonomous driving, socially-aware
networking, and infotainment services are example use cases of D2D technology. High data
rate communications and use of several active air interfaces in the described network create
energy consumption challenges for both base stations and the end user devices. In this paper,
we review the status of 3rd Generation Partnership Project (3GPP) standardization, which is the most
important standardization body for 5G systems. We define a set of application scenarios for D2D
communications in 5G networks. We use the recent models of 3GPP long term evolution (LTE) and
WiFi interfaces in analyzing the power consumption from both the infrastructure and user device
perspectives. The results indicate that with the latest radio interfaces, the best option for energy
saving is the minimization of active interfaces and sending the data with the best possible data rate.
Multiple recommendations on how to exploit the results in future networks are given.

Keywords: D2D communications; 5G systems; power efficiency

1. Introduction

Device-to-device (D2D) communications in infrastructure networks have been studied actively
since the 1990s [1], due to the potential to reduce delays, increase throughput, and to improve
power or energy efficiency. D2D enables cooperative services and data dissemination methods
and can be used in coming 5G networks over various radio access technologies (RATs). Actively
developed application areas currently include 3GPP proximity services, public safety communications,
vehicle-to-everything (V2X) communications, autonomous ships, the Internet of Things (IoT) and
wearables [1–9]. For instance, the number of wearable devices is predicted to grow from 325 million
in 2016 to 929 million in 2021, when 7% of the devices may use in-built cellular connectivity [10].
Other devices, on the other hand, may obtain cellular access through e.g., smart phones.

An essential part of the use of D2D in the mentioned application areas is energy efficiency [11–14],
which is heavily dependent on the used radio interfaces. In general, the role of WiFi and other small
cell technologies is important, as 60% of mobile data was offloaded onto the fixed network through
WiFi or femtocell in 2016 [10]. In addition, computing power is important, especially in short distance
communication [15]. Compared to theoretical power control work, such as [16,17], one is able to
estimate more accurately the resource use in a practical network if measurement-based models for air
interfaces are available. The power consumption of different 3GPP long-term evolution (LTE) and WiFi
interfaces has been actively measured and modelled in recent years [18–22]. Both user device and base
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station power consumption models are available. However, there is a lot of variation in measurement
campaigns between different protocols and between different smart phone models.

Some of the differences can be explained by the new generation of air interfaces and partially
the power consumption changes are due to the different use of the user devices. For example,
social networking [23] generates a constant stream of traffic, causing the mobile device to frequently
move between idle and connected states. Energy state transitions alone cost energy, but these
transitions also cause excessive signaling overhead in (3GPP) networks. Mechanisms such as adaptive
discontinuous reception (DRX), user equipment (UE) assistance, energy harvesting, and massive
multiple-input multiple-output (MIMO) antenna systems at the base station side have been proposed
to reduce the power consumption of LTE mobiles [24–29].

We analyzed the power consumption of user devices in D2D communications in [30] and
studied the power consumption from the base station perspective in [31] using many different
measurement-based LTE and WiFi models. In this paper, we extend and unify analysis of [30]
and [31] and update the results with the latest power consumption models [32]. In addition, we review
the status in 3GPP standardization of D2D communications, focusing especially on IoT, wearables,
and V2X communications [33–38]. The analysis shows where the industry is going and deepens the
discussion on energy efficiency aspects in depicted networks. We believe that quality of service (QoS)
and priority management mechanisms such as network slicing [35,36] can also be used to improve the
performance of D2D networks.

We will extend the state-of-the art in [11–32], summarizing the novelty of this paper as: (1) Review
of the status of the 3GPP standardization, including a summary of D2D features of different releases
of the standard. (2) Definition of a set of D2D application scenarios with multiple data delivery
options. (3) Analysis of the power consumption of the network in the depicted scenarios using
measurement-based models. The 5G system will be a multi-RAT (radio access technologies (RATs))
system that enables seamless interworking between those RATs. Unlike previous works, we will
consider both end user and base station perspectives in this paper. There are no measurement-based
models of new 5G interfaces available yet, but there are LTE and WiFi models that will be an essential
part of the coming 5G system. Therefore, we use the latest LTE-advanced and WiFi power consumption
models in the analysis.

The paper is structured as follows. Section 2 reviews the status of 3GPP standardization.
The system model and the use cases for analysis are defined in Section 3. The selected
measurement-based power consumption models are described in Section 4. Performance analysis
models from base station and end user device perspectives are depicted in Section 5, and the results
given in Sections 6 and 7 provides recommendations based on the conducted analysis. Section 8
concludes the paper.

2. Advances within 3GPP Standardization on D2D

3GPP specified the basic functionalities for D2D communications in release 12, where the main
motivation was to develop a global standard for public safety communications [37]. However,
the application scenario of 3GPP proximity services (ProSe) was not limited to public safety,
D2D extension of conventional cellular services was also considered [38]. The basic architecture
of the 3GPP ProSe is shown in Figure 1. A UE (user equipment) that wants to use ProSe must first
contact the ProSe function through the logical interface named PC3 to get authorization and security
parameters. After the discovery request and response message exchange via PC3 is completed, the UE
can start the direct discovery process to find other UEs with ProSe cabability in their proximity using
the PC5 interface. When two (or more) ProSe-enabled UEs have discovered each other, they can start
direct communication over the direct link between them.
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Evolved packet 
core (EPC)

ProSe
Function

Uu

Uu
PC5

Sidelink PC3

PC3

PC4

S1

Figure 1. Architecture and logical interfaces for proximity services (ProSe); PC: Interface between
ProSe components; S1: interface between base station and the core network; Uu: Air interface.

The physical interface between two ProSe UEs is called sidelink. Time-frequency resources for the
sidelink are shared with the uplink (UL), and the sidelink waveform is also similar to the single-carrier
frequency-division multiple access (SC-FDMA) UL waveform. As ProSe was originally designed
for public safety group communications, the sidelink transmission is based on multicasting with
no hybrid automatic repeat request (HARQ) feedback. Instead, each medium access control (MAC)
protocol data unit (PDU) is retransmitted three times with a different redundancy version for each
transmission. Dedicated resource pools are allocated for sidelink transmissions in order to avoid
collisions between them and conventional UL transmissions. The subframes and physical resource
blocks (PRBs) belonging to sidelink resource pools are broadcasted as system information to UEs.
Resources within a resource pool can be allocated by an evolved NodeB (eNB) (Mode 1) or they can be
autonomously selected by a UE (Mode 2) [39], which enables sidelink communication when a UE is
not within the cell coverage. ProSe communication was further enhanced in release 13 e.g., by allowing
a UE to operate as a relay for another UE. The relaying was implemented at layer three in such a
simple way that the network cannot differentiate the traffic of the remote UE from that of the relay
UE. This limits the ability of the operator to treat the remote UE as a separate device for billing and
security [40].

Service requirements related to the 5G system [41] consider D2D in two different ways. The first
one uses direct device connection without any network entity in the middle. In the second approach,
a relay UE is between a UE and the 5G network. This is called indirect network connection mode.
The relay UE may use multiple access schemes such as 5G RAT, LTE, WiFi, and fixed broadband.
Service continuity plays a key role when changing from one relay UE to another or to the direct
network connection mode. In addition, the 5G system is expected to support the battery consumption
optimization of relay UEs.

2.1. IoT and Wearables

IoT devices with a very long expected battery lifetime and wearables with other cellular-connected
devices in their proximity would especially benefit from short D2D links. Motivated by this, 3GPP
opened a release 15 study item “Study on Further Enhancements to LTE Device to Device, UE to
Network Relays for IoT and Wearables” [42]. The primary objective of the study was to improve the
power efficiency of the remote UEs (IoT devices and wearables) by allowing them to form a D2D
connection with a UE who is willing to act as a relay [40]. Enhancements were planned to release 13
UE-to-network relaying to support end-to-end security and QoS as well as efficient path switching

6
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between conventional and D2D air interfaces. In addition, the needed changes for sidelink were
studied to provide a reliable D2D communication link for low cost and low power IoT devices.

The study considered a diverse group of scenarios that could benefit from UE-to-network relaying.
From the coverage point of view, the remote UE could be located within the cell, out of cell, or can
be operating in the coverage-enhanced mode [40]. As cellular IoT devices mainly reach enhanced
coverage by a high number (up to 2048) of repeated transmissions [43], the power efficiency gain of
using short D2D links with minimal repetitions is obvious in this scenario. Relaying using the sidelink
can be bi- or uni-directional, as shown in Figure 2. Bidirectional relaying is more straightforward
to implement with minimal signaling from the eNB. However, bidirectional relaying over sidelink
requires UL waveform reception capabilities for the remote UEs. This would mean implementing a
UL receiver for low-cost IoT devices, which may not be feasible from the device cost point of view.
Thus, many of the open issues in D2D relaying for IoT are related to the question, how to efficiently
implement mandatory functionalities, such as discovery, for unidirectional relaying.

 

Figure 2. Device-to-device (D2D) relaying variants for cellular Internet of Things (IoT) devices; UE:
user equipment.

As a result of the 3GPP study, a relaying architecture was proposed. Relaying is done above
the radio link control (RLC) layer, i.e., the RLC and lower layers are terminated at the D2D link
and higher layers at the remote UE and the eNB [33]. Several solutions for paging and system
information transfer for remote UEs as well as path switch and group handover enhancements were
also proposed. These layer 2 studies mostly assumed the feasibility of bidirectional relaying; the impact
of unidirectional relaying was not fully analyzed in the study item. For example, the discovery
procedure for the unidirectional relaying case with remote UEs only capable of receiving downlink (DL)
signals was still left open. Another aspect in the 3GPP study was to study the required enhancements
to sidelink physical layer operation. The target was to also enable the sidelink support for low-cost
UEs with a limited bandwidth of one (narrowband IoT) or six (LTE-M) physical resource blocks
(PRBs) and potentially with no sidelink reception capabilities [33]. Enhancements were proposed
to the synchronization procedure such that the relay UE can act as a synchronization source for the
remote UEs. Also, the needed enhancements for the support of unicast communications over the
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sidelink were identified and proposed for resource allocation, semi-persistent scheduling, power
control, measurements and feedback for link adaptation. Based on the performance evaluation results
presented in [33], especially the adaptive modulation and coding together with the adaptive number
of sidelink transmissions provided a significant energy efficiency gain for the remote UEs.

There are still several open issues regarding D2D and UE relaying for cellular IoT. From the
research point of view, the effect on the cell energy efficiency and the battery life-time for all involved
devices has not been thoroughly studied. It is clear that with UE relaying, the devices willing to
operate as relays consume more power than the remote UEs. However, the device power consumption
model used in [33] was rather simplified and no clear view on the spatial distribution of the power
consumption was achieved. The 3GPP has plans to continue the normative work on bringing the
relaying support for cellular IoT and wearables into standards. Currently, the corresponding work
item has been proposed, but it is yet unclear whether the work will take place in release 15 or 16 [44].
D2D communication support in different 3GPP releases is depicted in Figure 3.

 

Figure 3. D2D communications support in 3rd Generation Partnership Project (3GPP) releases; V2X:
Vehicle-to-Everything; Rel: Release; RAT: Radio Access Technology.

2.2. Vehicle-to-Everything (V2X) and Maritime Communications

Another important area for D2D communications is vehicular communications or V2X
communications that can be divided into three areas, namely vehicle-to-vehicle (V2V),
vehicle-to-infrastructure (V2I), and vehicle-to-network (V2N) [9]. The V2V and V2I communications
towards the other vehicles and roadside units (RSU) are handled through the PC5 interface in
3GPP networks. Connectivity to the network and the cloud (V2N) goes through the Uu interface
(Air interface). V2X communications is included first time in Release 14.

Enhanced support for V2X services (eV2X) in 3GPP release 15 will include safety-related V2X
scenarios, such as automated and remote driving and platooning, where vehicles form a platoon or
a line travelling together [45]. It will also enable extended sensors where vehicles could exchange
sensor information locally. A relevant aspect of advanced V2X applications is the level of automation
(LoA), which reflects the functional aspects of the technology and affects the system performance
requirements. The levels of automation are defined as: 0—No Automation, 1—Driver Assistance,
2—Partial Automation, 3—Conditional Automation, 4—High Automation, 5—Full Automation.

At lower automation levels a human operator is primarily responsible for monitoring the
driving environment, whereas in higher layers an automated system is responsible for operations.
Similar types of work are going on in the development of automated drones and autonomous and
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remote-controlled ships [8]. Currently 3GPP is considering and developing systems specifically
for maritime communications for release 16 and beyond to support the needs of future maritime
users [46]. One of the requirements of this “LTE-Maritime” system is to support 100 km coverage.
It will also support the interworking between the 3GPP system and the existing/future maritime radio
communication system for the seamless service of voice communication and data communication
between users ashore and at sea or between vessels at sea.

3. System Model and D2D Use Cases for Combined LTE/5G and WiFi

Figure 4 presents our high-level system model for D2D communications in a 5G network.
There are many types of users that are connected to the base stations using cellular interfaces. Nodes can
also communicate directly using D2D communication links between nodes that are in proximity to each
other. Direct links between user devices such as phones and laptops may use several RATs, including
3GPP evolution, as described in Section 2, Bluetooth, or WiFi standards. Cars also use a dedicated
802.11p standard in the intelligent transport system (ITS) band in 5.9 GHz for V2X communications.
In the future, autonomous and remote-controlled ships will also use more and more ship-to-ship
communications, possibly also radios specifically developed for these purposes. Both in the V2X
communications among cars and in maritime communications, integrated 5G satellite-terrestrial
systems will be needed [8,9].

Internet

Figure 4. High-level system model for D2D communications in 5G; BS: Base station.

The system has a connection to the Internet and the connectivity provider to make all the required
services available to the end users. The 5G core supports seamless cooperation between different RATs
and the terrestrial and satellite segments. It also enables QoS management of data transmission e.g., by
dedicating part of the resources to applications with higher priority. There could even be end-to-end
network slices dedicated to autonomous driving and other use cases so that QoS requirements can
be met in any circumstances via proper resource allocation and isolation mechanisms. Network
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virtualization and slicing techniques enable different operators to share network resources with other
(virtual) operators and to provide end-to-end connectivity across operator boundaries.

In addition to network management with the core network, the 5G networks will also use
spectrum sharing technologies to utilize available radio resources as efficiently as possible. We assume
a licensed spectrum access (LSA) approach, where the incumbent operators are required to provide a
priori information about their spectrum use over the area of interest to the database. They tell explicitly
where, when, and which parts of the frequency bands are available for the secondary use. This most
probably requires a third party to operate the LSA system, since operators are often not willing to
share the information about their spectrum use with other spectrum users.

Let us now look at the simplified model for the analysis that is presented in Figure 5. The model
is based on the high-level system model described above. Wireless mobile users are connected to the
base station using the LTE interface. There are N nodes in the network. We assume that links L12

(between Node 1 and Node 2), L13, L23, L3n can be either LTE or WiFi links. Only user equipment such
as phones, tablets, and laptops are used as nodes in the network. Link attenuations between the base
station and the user equipment are assumed to be equal, as well as the direct links between nodes.
All the links between the user equipment and the base station are using 3GPP interfaces.

Figure 5. Simplified model for analysis. LB1: Link between the base station and the UE 1; LB2: Link
between the base station and the UE 2; LB3: Link between the base station and the UE 3; LBn: Link
between the base station and the UE n; L12: D2D link between UE 1 and UE 2; L13: D2D link between
UE 1 and UE 3; L23: D2D link between UE 2 and UE 3; L3n: D2D link between UE 3 and UE n.

D2D communication is controlled by the base station, which enables interference management
and assures QoS to the end users. Nodes can form a cluster around the cluster head which may be the
only node discussing with the base station. In order to estimate the power consumption in the depicted
system model both from the user device and the base station perspectives, we need to define practical
use cases for analysis. Based on Figure 5, we can define several different use cases for delivering
Internet data or some other data from the content provider that certain node(s) want to access through
the base station. Five different cases are described in the following as [30,31]:

(1) Case 1: The base station sends the data directly to the requesting node(s).
(2) Case 2: Nodes with social ties form a cluster. The base station sends the data to the cluster head

that relays the data to other users over WiFi. The data (such as recently popular YouTube videos)
is cached in the cluster head for some time in order to serve requesting nodes directly.

10

Bo
ok
s

M
DP
I



Future Internet 2018, 10, 3

(3) Case 3: The base station sends the data to the cluster head that relays the data to requesting nodes
over LTE.

(4) Case 4: The base station sends 1/N of the required packets to N different nodes requesting the
same data (e.g., certain content in Facebook shared among friends). Different parts are sent to
different users and the missing parts are shared using D2D connections among nodes over WiFi.

(5) Case 5: Same as case 4, but the sharing is done using an LTE interface.

4. Power Consumption Models

4.1. LTE Base Station Model

The majority of the energy in wireless networks is consumed in the base stations, also in the
defined cooperative scenarios. From the base station point of view, it is crucial to study the supply
power consumption rather than radio frequency (RF) transmission power to see the total effect. Supply
power consumption Psup for a single RF chain showing the relation between supply power and RF
transmission power Ptx is [21]:

Psup =

{
P0 + ΔpPtx, 0 < Ptx < Pmax

Psleep, Ptx = 0
(1)

where P0 is the minimum active power consumption, Δp is a linear transmission dependence factor,
and Psleep is the power consumption in the sleep mode. When there are Ntrx RF chains included, the
total supply power consumption Ptot is

Ptot = Ntrx × Psup (2)

Measured parameter values of LTE base stations (macro, remote radio head, micro, pico, femto)
can be found from [22]. The values are summarized in Table 1. The model and the values are based
on commercially-available base stations, providing sufficient foundation for our energy estimations.
We adopt this model since it is simple, based on vigorous measurements, and easy to use in the analysis.
We note that there are also other models recently published, such as in [47], where a general conclusion
is drawn as: “Modeling a linear dependence between the emitted power and the energy consumption,
as well as between the traffic volume and the energy consumption, is a very good approximation,
and it is strongly confirmed by real data”.

Table 1. Base station power consumption parameters. Data from [22]; BS: Base station; Ntrx: number
of radio frequency (RF) chains; Pmax: Maximum transmission power; P0: Minimum active power
consumption; Psleep: Power consumption in the sleep mode.

BS Type Ntrx Pmax (W) P0 (W) Δp Psleep (W)

Macro 6 39.8 130.0 4.7 75.0
Remote radio

head 6 20 84.0 2.8 56.0

Micro 6 6.3 56.0 2.6 39.0
Pico 2 0.13 6.8 4.0 4.3

Femto 2 0.05 4.8 8.0 2.9

4.2. Model for LTE User Device

The power consumption (mW) when receiving data in a connected state is estimated as [18]:

Prx = Pon + PrxBB(Rrx) + PrxRF(Srx) + βrx (3)
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where Pon is the power consumption when the cellular subsystem is active, βrx is the additional
power consumption of a receiver being active. Parameter PrxRF defines radio frequency (RF) block
power consumption that is dependent on the received power Srx and PrxBB is the baseband power
consumption, dependent on the received data rate Rrx. These parameters are given as

PrxRF =

{
−0.04 × Srx + 24.8, Srx ≤ −52.5 dBm

−0.11 × Srx + 7.86, Srx > −52.5 dBm

PrxBB = 0.97Rrx + 8.16

Equivalent power consumption (mW) when transmitting data in the connected state is given as:

Ptx = Pon + PtxBB(Rtx) + PtxRF(Stx) + βtx (4)

where same parameters are defined for the transmitter side, respectively. Transmission power Stx

primarily affects the RF block power consumption:

PtxRF =

⎧⎪⎪⎨
⎪⎪⎩

0.78 × Stx + 23.6, Stx ≤ 0.2 dBm

17.0 × Stx + 45.4, 0.2 dBm < Stx ≤ −11.4 dBm

5.90 × Stx
2 − 118 × Stx + 1195, 11.4 dBm < Stx

The data rate does not affect baseband power consumption in the uplink, i.e., PtxBB is constantly
0.62 mW. Other parameters are Pon = 853 mW, βrx = 25.1 mW and βtx = 29.9 mW.

4.3. WiFi Power Consumption Models

The power consumption model for LTE and WiFi 802.11g air interfaces has linear dependency
on the data rate in measurements done in [19], as shown in the following. Power consumption (mW)
when receiving data is estimated as

Prx = αrxRrx + β (5)

The power consumption (mW) when transmitting data is estimated as

Ptx = αtxRtx + β (6)

The parameters αrx and αtx are linear scaling factors for reception and transmission, Rrx is the
received data rate, Rtx is the transmitted data rate and β is the basic power consumption in the active
mode. Based on several references, parameters for these models are given in Table 2. It can be seen
that the older air interfaces behave according to Equations (5) and (6), including the LTE device model
in [19] and the 802.11g model in the same paper. The more recent 802.11n model that was defined
in [30] based on measurements reported in [20] is quite flat.

Table 2. Power consumption parameters of different long term evolution (LTE) and WiFi models;
αrx: linear scaling factor for reception; αtx: linear scaling factor for transmission; β: basic power
consumption in the active mode.

Ref. Air Interface ffrx (mW/Mbps) fftx (mW/Mbps) β (mW)

[19] LTE 51.97 438.39 1288.04
WiFi, 802.11g 137.01 283.17 132.86

[20,30] WiFi, 802.11n 6 4 βrx = 450, βtx = 980
[32] 802.11ac ~2100 mW * ~2500mW * 287
[32] 802.11ad ~2100 mW * ~2000 mW * 1938

* Over a large bit rate range the power consumption is quite flat in recent 802.11ac and ad interfaces.
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The most recent 802.11ac and 802.11ad measurements given in [32] show that both receiver power
consumption and transmitter power consumption are almost flat, regardless of the bit rate. The basic
power consumption is much lower in 802.11ac, but the 802.11ad interface always consumes a lot of
energy when it is active. There is no big difference when receiving or transmitting data compared
to the basic power consumption according to [32]. However, the results indicate that with the latest
models, the best option for energy saving is to send the data with the best possible data rate in order to
be able spend more time in the basic power consumption mode.

5. Performance Analysis

5.1. Power Consumption of the End User Device

Mathematically, the power consumption within the cooperative network in defined use cases can
be given as follows: In case 1 the end user devices are only receiving the data using the LTE interface.
Thus, the power consumption in this reference case is

Ptot = N × Prx, LTE(R) (7)

where Prx, LTE is the received signal power for a signal coming from the base station. In case 2, one node
is receiving the data over the LTE link and transmits the data over WiFi to N-1 users, i.e.,

Ptot = Prx, LTE(R) + Ptx, WiFi(R) + (N − 1)× Prx, WiFi(R) (8)

In case 3, the same transmissions are conducted over the LTE interface. Thus, the total power
consumption is

Ptot = Prx, LTE(R) + Ptx, LTE_D2D(R) + (N − 1)× Prx, LTE_D2D(R) (9)

where Ptx, LTE_D2D is the transmission power consumption of a UE and Prx, LTE_D2D is the received
power consumption for a D2D signal. R is the required data rate over the link. In cases 4 and 5,
the data rate is divided into multiple R/N rate streams that are then combined at the requesting
node(s). In case 4, the total power consumption is

Ptot = N × Prx, LTE(R/N) + N × Ptx, WiFi(R/N) + N × Prx, WiFi(R − R/N) (10)

and in case 5 it is

Ptot = N × Prx, LTE(R/N) + N × Ptx, LTE_D2D(R/N) + N × Prx, LTE_D2D(R − R/N) (11)

The power consumption of the cluster head is given in Equations (8) and (9) by excluding the last
term in the equation. In cases 4 and 5, the power consumption is equally shared between the nodes.

5.2. Energy Consumption of a Base Station

Resource allocations in the time and frequency domains in the defined use cases are presented
in Figure 6. Cooperation leads to a shorter active transmission period of the base station in all
co-operative scenarios. The figure shows an example with two nodes (UEs) but the same model can be
easily generalized to N users. The energy required for the transmission of data is the integral of the
power consumption P(t) of the air interface over time

E =
∫ t0+T

t0

P(t)dt (12)
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where the transmission duration T is dependent on the transmission size D and data rate R of the used
air interface. We can now define the energy consumption for all defined cases as follows.

Figure 6. Resource allocation from the BS perspective assuming two mobile devices. (A) Case 1,
(B) Cases 2 and 3, and (C) Cases 4 and 5.

Case 1: Normal cellular case, data sent independently to N users. According to Equation (2)
energy consumption is

E = Ntrx × (P0 + ΔpPtx)× (D/R) (13)

Case 2 and Case 3 look the same from the base station perspective, since it sends all the data to a
single relay. Clear energy savings are achieved especially if the same data is of interest to multiple
users in a D2D enabled network. Energy consumption is now defined as

E = Ntrx × (P0 + ΔpPtx)×
1
N

(
D
R

)
+ Psleep

N − 1
N

(
D
R

)
(14)

which means that the base station is able to reduce its active transmission time to one Nth of the time
when compared with the Case 1 and then spend rest of the time in the sleep mode.

Again, Case 4 and Case 5 are the same from the base station perspective. Since the data is divided
into independent pieces, the total amount of data transmitted by the base station is actually the same
as in Case 2 and Case 3. Assuming that separating the interesting data to independent pieces does
not consume significant amount of energy, we can use the same model for the base station power
consumption as in Equation (14).

6. Results

6.1. Power Consumption of End User Devices

Figures 7–9 show power consumption results with the defined power consumption models
from the end user perspective. All used WiFi and LTE models are applicable to out-of-band D2D
communication scenarios. In addition, the LTE models are applicable to in-band overlay D2D where
D2D links use dedicated resources. The power consumption of the total D2D network, as well as the
power consumption of the cluster head of a network in each case, is given in Figure 7 for a cluster
size of N = 4 nodes using the Huang model [19] for the LTE and WiFi interfaces. It is seen that with
the low throughput values it is best that only the cluster head actively receives the data from the LTE
base station. Then it uses WiFi for relaying the data to requesting users. However, it can be seen that
from the cluster head perspective this is the second most power consuming option and thus there
might be a need to change the cluster head from time to time in order to prevent it draining the battery
completely. When the higher throughput >6 Mbps is required, the most power efficient option from
the end user perspective is to receive all the data directly from the base station.
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Figure 7. Power consumption with the Huang LTE and WiFi models, 4 nodes; whole network (left)
and the cluster leader (right).
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Figure 8. Results with the Lauridsen LTE and the 802.11n WiFi; Power consumption of a whole network
(left) and the cluster leader (right).
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Figure 9. Results with the Lauridsen LTE and the 802.11ac (left) and 802.11ad (right) WiFi, whole
network considered.
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When the Lauridsen model is adopted for LTE and 802.11n for WiFi, the observations are a bit
different, as seen in Figure 8. We have assumed Srx = −50 dBm and Stx = 10 dBm for a D2D LTE link.
The total power consumption in case 2 with a higher number of nodes is even more advantageous due
to the lower power consumption of the WiFi. Case 4 demands the active operation of both LTE and
WiFi interfaces. This is not good from the power consumption point of view due to the static part of
the power consumption that comes from keeping the air interface active, i.e., β in Equations (5) and (6).
Thus, the latest power consumption models propose that dividing the data into smaller streams and
changing the missing packets over the air is not efficient due to the simultaneous use of several active
interfaces. WiFi relaying is a good option up to 20 Mbps data rate. However, also in this case, one
has to take care that the cluster head is changed from time to time in a mobile network to keep all the
nodes alive for longer periods of time.

The situation is quite similar when the 802.11ac and 802.11ad WiFi models are adopted as seen
in Figure 9. The results cover the whole network and show that with the latest radios, where the
power consumption is static regardless of the data rate, the best option is to use LTE alone. Either the
conventional cellular operation or relaying with LTE are the best choices. This is due to the high power
consumption of WiFi models with any data rate. An active WiFi interface consumes a lot of power.
WiFi could be used to enhance the data rate of the devices if very high data rate services were needed.

The used models are applicable both to LTE and LTE-advanced systems. Only some parameter
updates are needed e.g., regarding the power model given in the Equation (1). e.g., release 12
equipment in our lab uses the old HW and only the SW is updated in the base station compared to
the older releases. Power consumption is affected by the software as well, but the LTE-A base station
power consumption can be described with the same model due to the slow evolution of the devices.

6.2. Base Station Energy Consumption in D2D Networks

The energy consumption of cooperative scenarios from the base station perspective is the same
for all depicted D2D scenarios. Thus, we compare here conventional cellular operation with the
cooperative scenario as a function of number of nodes in a D2D network. We adopt the energy
consumption metric J/bit [22] that focuses on the amount of energy spent per delivered bit and is
hence an indicator of network bit delivery efficiency.

We assume an average bit rate of 10 Mbit/s in the following figures and use the energy
consumption models of Equations (13) and (14). The transmission power Ptx is set according to
the Pmax values in Table 2. The results presented in Figure 10 for a macro base station show that with
this data rate conventional cellular transmission consumes roughly 0.3 J/kbit, whereas the cooperation
clearly reduces the energy consumption by sharing the load among cooperative nodes. The effect is
the largest with a few additional cooperative nodes, three nodes already lead to 50% energy savings.
When the number of nodes is increased to more than 10 nodes, the energy consumption of a base
station is around 0.1 J/kbit which means that the base station is able to serve the requesting nodes
with one third of the original energy. This is a significant improvement in the energy efficiency.

When the cell size is smaller, the energy efficiency improvement is smaller, as can be seen in
Figures 11 and 12. Still, even with the small cell base stations the energy reduction is around 40%,
which is significant saving already with a few requesting nodes. The results suggest that cooperative
D2D data dissemination approaches are good for cellular network energy efficiency. The gain is
dependent on the D2D link quality, and with poor D2D links the energy savings would be smaller.
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Figure 10. Energy consumption of a macro base station.
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Figure 11. Energy consumption of a remote radio head (left) and a micro base station (right).
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Figure 12. Energy consumption of pico (left) and femto (right) base stations.

7. Recommendations

Based on the conducted analysis, the following recommendations can be made for network
deployment and operations:
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(1) When the power consumption is dependent on the data rate (as in Figure 7), the aim should be to
find the sweet spots or data rate regions to use different air interfaces. In multi-RAT 5G networks
this would mean analysis of all other radio interface options than the ones analyzed in this paper.
However, the most important ones currently are the LTE and WiFi.

(2) With the latest WiFi and LTE models, the best option for cooperative data delivery is to select a
relay and then use LTE for D2D transmissions. WiFi is a good option only for very high data rates.

(3) The base station results show that D2D transmission brings the largest gains in macro cells, up
to 70% energy reductions. Small cells are already more energy efficient, but energy savings can
still be significant, even 40% in the case of femto cells. Thus, it is recommended to use direct
communication between devices in all cellular networks regardless of the type of base station.

(4) The best option for energy saving in D2D communications using the latest LTE and WiFi models
is to send the data with the best possible data rate.

(5) There is clearly room for the creation of novel models with the latest 3GPP releases after rigorous
power consumption measurement work. The measurements should specifically consider D2D
measurements with the release 12 and beyond devices.

8. Conclusions

Energy efficiency is an important factor in 5G and beyond networks and one of the drivers in
the adoption of D2D technology. This paper has reviewed the potential application areas including
IoT, wearables, and automated driving and reviewed the current status of D2D technology in 3GPP
standardization. In addition, we have analyzed D2D-enhanced cellular networks both from the
base station and from the end user perspectives. The analysis is conducted with several different
measurement-based LTE and WiFi models. The results show that significant energy reductions can be
achieved with all types of base stations, including macro, pico, and femto base stations. The results
also suggest that in order to minimize power consumption, the devices should minimize the number
of active radio interfaces and use the best possible data rates. In our system model this means that
either a LTE or WiFi interface is active in a single device at a given time instant. WiFi could be used to
support very high data rate services. If there is no need for that, one should keep only the LTE interface
active in order to save power. An interesting future topic could be to study the effect of mobility in
energy consumption. This would create new challenges e.g., due to frequent handovers in a multi-RAT
network. In addition, adaptive power control could be included in the analysis to gain a more detailed
understanding e.g., on the effect of UL transmissions.
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Abstract: Device-to-device (D2D) communication is becoming an increasingly important technology
in future networks with the climbing demand for local services. For instance, resource sharing in
the D2D network features ubiquitous availability, flexibility, low latency and low cost. However,
these features also bring along challenges when building a satisfactory resource sharing system in the
D2D network. Specifically, user mobility is one of the top concerns for designing a cooperative D2D
computational resource sharing system since mutual communication may not be stably available
due to user mobility. A previous endeavour has demonstrated and proven how connectivity can
be incorporated into cooperative task scheduling among users in the D2D network to effectively
lower average task execution time. There are doubts about whether this type of task scheduling
scheme, though effective, presents fairness among users. In other words, it can be unfair for
users who contribute many computational resources while receiving little when in need. In this
paper, we propose a novel blockchain-based credit system that can be incorporated into the
connectivity-aware task scheduling scheme to enforce fairness among users in the D2D network.
Users’ computational task cooperation will be recorded on the public blockchain ledger in the system
as transactions, and each user’s credit balance can be easily accessible from the ledger. A supernode at
the base station is responsible for scheduling cooperative computational tasks based on user mobility
and user credit balance. We investigated the performance of the credit system, and simulation results
showed that with a minor sacrifice of average task execution time, the level of fairness can obtain a
major enhancement.

Keywords: D2D communication; blockchain; fairness; connectivity-aware

1. Introduction

Advances in computing technology are transforming the way people execute computational tasks
for daily applications like stock trading [1], gaming [2], etc. Usage of traditional desktop computers for
large computational works has been expanded to various ways of computing such as cloud computing.
For example, cloud gaming platforms PlayStation Now [3] and GameFly [4] execute most gaming
computational tasks on the cloud, which frees gamers from having to update their computing devices
frequently. Stock market investors are now able to manipulate stock trading on their mobile devices by
offloading most computational tasks to the cloud [1].

In recent years, with the explosion of smart mobile devices and their capacities in terms of
computing power, storage, data transmission efficiency, etc., the concept of fog computing [5] and
D2D offloading has been facilitated to overcome high cloud service costs and mobility constraints.
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Although it is widely adapted contemporarily with offloading of computational tasks to the cloud as
the fog does not have as high a “density” (i.e., calculation and storage capacities), fog computing and
D2D offloading prevent high carrier data transmission cost and cloud service costs, and its presence
in users’ vicinity can prevent high communication latency. Intermittent access to cellular data and
non-seamless wireless coverage in the mobile environments are also discouraging factors for users to
completely rely on the cloud. Faster and more responsive task cooperation and offloading in the D2D
network becomes even more necessary in extreme situations like earthquake response.

The work in [6] shows that despite increasing usage of mobile devices in our daily lives, most of
the computational power of these smart devices is still in the idle state and wasted, e.g., only email
notification listeners and other low consumption applications run in the background for most of the
time. If we can take advantage of the computational power of these idle devices together with their
storage and data layover abilities, cost-effective task cooperation in D2D networks is highly feasible.
Such a task cooperation and offloading context was first presented in Serendipity [7], a system that
allows a mobile initiator to utilize computational resources available in other mobile systems in its
surroundings to accelerate computing and save energy, whose performance is further analysed in [8]
to see significant potential gain in both execution time and device energy. The authors of [9] proposed
a mobile application that enables the cooperation of computationally-intensive applications by making
use of computational powers of mobile devices in a nearby cloudlet.

While many previous works tried to exploit how idle computational power can be effectively
utilized in D2D networks, the mobility aspects of users, especially the task cooperation scheduling in
mobile environments, still remain open issues. Previous work in [10] illustrated a computational task
cooperation system in the D2D network that provides users with significantly lowered task execution
time without turning to cloud services that may introduce high monetary costs. However, this work
does not consider the incentive for a user to share the computational resource of her/his device even
though her/his device might be idle, neither is the fairness among users considered.

The work in [11] presented a reputation system incorporated with an ad hoc cloud gaming
system. Without such a reputation system, unfairness will present as the players with higher
network quality will be sacrificing significantly higher bandwidth that may lead to much higher
monetary cost than those with lower network quality. In a D2D computation offloading system,
similarly, unfairness may also result if users who contribute many computational resources are
offered little, or even none, when in need. Therefore, it becomes important for us to build a
reliable credit system on top of our computational resource sharing system to provide incentives
for users to share their spare computational resources and enforce fairness while not affecting
system effectiveness too much. Among various possible ways to implement a credit system for
our computational resource sharing system, the recent upsurge of attention toward de-centralized
blockchain technology has inspired us. Blockchain technology features de-centralized autonomy,
anonymity, transparency, immutability, etc. [12], naturally meeting our system needs and becoming
the choice as the basis of our credit system. In this work, we will be the first to propose a task
outsourcing and scheduling scheme that is probabilistically based on the mobility of smart mobile
device users in a D2D network, with a blockchain-based credit system to enforce fairness among users
in the system.

The remaining parts of this work are organized as follows. Section 2 conducts a review on related
works. Section 3 presents the system overview, and Section 4 models the proposed system. Section 5
illustrates the problem formulation of our proposed scheme, and Section 6 shows corresponding
experimental evaluation results. Section 7 discusses the benefits and limitations of the proposed
scheme. Section 8 concludes our work in this paper.
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2. Related Work

2.1. Abundance of Spare Resources in D2D Networks

To relieve the burden of wireless cellular networks and the cloud, mobile data and computational
traffic can be delivered through other means to the users (e.g., WiFi, D2D communications). This is
known as mobile data and computation offloading. Several works have identified the benefits of
WiFi data offloading [13–15]. The work in [13] showed that deferring the uploading tasks until WiFi
access points are available can save the energy of smartphones. By jointly considering the power
consumption and link capacity of wireless network interfaces, Ding et al. in [14] studied the criterion
of downloading data from WiFi, as well as the WiFi access point selection problem.

However, mobile data traffic cannot always be offloaded to WiFi networks since the number
of open-accessible WiFi access points is limited [14], just as the availability of affordable cloud
computing services may be quite limited [5]. To fully exploit the benefits of data and computation
offloading, mobile traffic and computational works can also cooperate in D2D networks. Specifically,
mobile devices in close proximity can be connected via WiFi Direct [16], Bluetooth, etc., in a D2D
manner for data and task cooperation between users. This is referred to as D2D data and computation
offloading. The works in [7,8] explore task cooperation of mobile devices in the D2D network
and showed that significant execution time and device energy can be saved. The authors of [17]
presented a framework for opportunistic storage and processing in the mobile cloud. The work in [18]
considers D2D technologies as candidates to deal with most local communications and time-sensitive
computations in the near future. A D2D network should make use of Bluetooth, WiFi-Direct and
other protocols to more efficiently provision services to applications such as video gaming and
image processing.

It has been shown in [6] that the computational power of our smart mobile devices is idle and
wasted for most of the time before these devices become outdated and replaced with newer models.
The work in [19] presents that contemporary smart devices (mostly quad-core devices) use less than two
cores on average in their non-idle states with the consideration of simultaneously running applications
in the background, not to mention the computing power that these devices can provide in their idle
states. It is generally true that building more data centres can provision more computational power
for end users. However, a data centre needs to be built and maintained at a very high cost, which
encourages us to exploit the task cooperation possibilities in D2D networks bearing users’ mobility.

Considering the mobile nature of smart device users in ad hoc networks, Wang et al. in [20]
proposed a metric, expected available duration (EAD), based on the mobility and similarities of users’
interests in the D2D network. EAD indicates the statistically determined expected duration of each
user’s files of interest in the D2D network. With this metric, this work presents an optimization and
performance promotion of a file sharing system in the D2D network to reduce the expensive data
charge from cellular carriers and download more data from neighbours.

The work in [11] presented a reputation system incorporated with an ad hoc cloud gaming
system that can reduce system players’ overall bandwidth consumption while keeping fairness among
them, without which players with higher network quality will be sacrificing significantly higher
bandwidth. Similarly, if a user in our D2D computation offloading system can choose not to share
spare computational resources while only receiving help from peers, it is unfair for those helpers
contributing their computational resources. Consequently, we need to add a reliable credit system for
our computational resource sharing system to enforce fairness among users, but not affecting system
effectiveness too much. Multiple candidates are available for building a credit system, among which
de-centralized blockchain technology seems to meet our system needs most.

2.2. Fairness and Blockchain

The authors in [21] presented a blockchain-based reputation system framework for joint cloud
computing services, which evaluates the credibility of cloud service vendors in terms of service quality.

24

Bo
ok
s

M
DP
I



Future Internet 2017, 9, 85

The blockchain-based information database stores vendor reputation values in a distributed manner
and prevents the reputation values from being artificially tampered with, which benefits agnostic
end users. The recent upsurge of attention toward de-centralized blockchain technology resulted
because traditional credit systems like centralized banking and membership services are losing user
confidence because users are agnostic and not truly in charge of their accounts. For example, if the
cloud service vendor in [21] can easily tamper with it and increase its reputation value, the system
is not trustworthy with respect to its customers. To build up a fair and trustworthy computational
resource sharing system, blockchain technology naturally becomes the key cornerstone of our credit
system. First, the blockchain needs to be maintained by mining (to be explained below), which can
be performed by any of our system nodes. Second, the blockchain is available to all users, which
is transparent and immutable so that users are in charge of their own accounts and transactions.
Third, the transactions on the blockchain are anonymized, which provides user privacy, just to name a
few. In this section, we describe the key concepts related to blockchain technology in general.

• Blockchain: Blockchain is a distributed data structure consisting of a chain of blocks. Blockchain
works as a distributed database or a public ledger that keeps records of all transactions in the
blockchain network. The transactions are time-stamped and listed into blocks where each block is
identified by a unique cryptographic hash. Each block links to it previous block by referencing
the hash value of the previous block, forming a chain of blocks and thus called a blockchain.
A blockchain is maintained by a network of nodes, and every node records the same transactions.
The blockchain is publicly accessible among the nodes in the blockchain network. Figure 1
illustrates the structure of a blockchain.

Figure 1. Typical blockchain structure.

• Blocks: The transactions in a blockchain network are bundled into blocks. These blocks are
executed and maintained by all nodes in the network. A block consists of its hash, the hash of
its previous block, a nonce that is used to avoid malicious nodes from flooding the network,
a transaction list and a timestamp. In order to save storage space, the transaction list is typically
stored in a Merkel root [22] format in each block. Only one of the conflicting transactions
(e.g., transactions trying to double spend) will be taken as a part of the block. The blocks are
added to the blockchain at regular intervals by miners.

• Transactions: A transaction is between two nodes in the blockchain network. Each transaction
mainly includes the addresses of the sender and recipient, as well as a transaction value. In a valid
transaction, the transaction value is transferred from the sender to the recipient. All transactions
are signed by the sender’s private key as a digital signature. Transactions are chosen and included
in the blocks in the mining process. All transactions on a blockchain can be accessed by all
participant nodes in the network.

• Mining: Transactions in a blockchain network are verified in a process called mining. Incentives,
in the form of credit or crypto-currency, are provided to participating nodes to perform the mining
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operations. Nodes participating in mining are called miners. A miner typically is required to select
new transactions from a transaction pool, include them in a candidate new block and perform a
mathematical computation to determine an appropriate nonce for the new block. This process of
performing the mathematical computation is referred to as “proof of work” (PoW) [23], which is
mainly used to prevent malicious nodes from arbitrarily adding new blocks to the blockchain
or “flooding” the network. The first miner to come up with a valid nonce and thus a valid new
block gets the block reward. Miners produce blocks that are then verified by other miners in the
network for validity. Once a new winning block is selected, all other miners update to that new
block. The longer the blockchain becomes, the harder for a malicious node to tamper with it.
Therefore, mining is typically the key to keep data safety in blockchain applications. While mining
is prevalent in contemporary blockchain applications, it is not necessary, and the discussion of
this remains beyond the scope of this work.

3. System Overview

Our system consists of two major parts: the cooperative task scheduling to enhance effectiveness
(e.g., average task execution time) among users and a blockchain-based credit system to provide
fairness and incentives to users. Specifically, as the recent upsurge of interest in de-centralized
blockchain technology suggests, traditional credit system like centralized banking and membership
services are losing user confidence because users are not truly in charge of their accounts. The central
power is able to modify user credit or create credit out of nothing, which can lead to user losses.
Consequently, our credit system will be empowered by blockchain technology to enforce fairness and
other benefits, e.g., autonomy and anonymity, among users, which effectively enhances user QoE in a
fair manner.

3.1. Cooperative Task Scheduling and Roles of System Users

As shown in Figure 2, our D2D network consists of users with smart devices and a supernode at
the base station (BS). Communications between user devices are through direct D2D links like Bluetooth
or WiFi Direct, and communications between user devices and the supernode (e.g., reporting mobility
and task information) are through a cellular link like 4G or LTE. D2D task cooperation is coordinated
by the supernode bearing the mobility and task information among users in mind. In this paper,
we assume that some necessary information related to a properly sliced task piece (including some
overhead and necessary execution files, which are assumed to be of limited size not comparable to large
multimedia content) will be sent from a requester to a helper, and the calculation result (which is even
smaller) will be sent back to the requester once the helper has finished. The information exchanged
between a user node and the supernode will be of a much more limited size, whose transmission time
can also be negligible compared to the cooperative task execution time. More importantly, the D2D
task cooperation is coordinated and assigned by the supernode at the base station, meaning that each
helper is assigned specific time slots (to be elaborated in Section 5) and a corresponding amount of
work to help each requester. Thus, we do not emphasize the difficulty of assigning dedicated in-band
channels for the D2D communications in our system. Instead, we emphasize the difficulty of a user
executing her/his own task in a timely manner, and since our system is not proposed for content
sharing that is bandwidth significant, we assume that D2D communications between user nodes use
dedicated in-band channels assigned by the supernode. Hence, mutual interference is not emphasized
in our work.

At any moment, we may further divide system users into computational resource users and
miners. Miners will write transactions into the main blockchain and grant credits for keeping
our blockchain-based credit system safe. Computational resource users consist of requesters and
helpers: requesters in an task period are devices in need of computational assistance, and helpers are
devices that may offer help requesters. Each successful computational assistance will be recorded
as a transaction and will be written into the blockchain. Therefore, a requester will need to pay
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the corresponding amount of credit to a helper after receiving the computational assistance from
that helper.

Figure 2. Task scheduling in the D2D network.

3.2. Supernode Coordination and Working Process

In our system, the supernode will not only assign task assignments to devices in the D2D
network, it will also work as a coordinator between a requester and worker pair by acknowledging
their cooperation work. As shown in Figure 2, the step-by-step working process is as follows:
(1) A requester notifies the supernode at the BS about the need for a cooperative task T; (2) After
calculation and analysis of the system conditions, the supernode will assign, say, 30% of cooperative
task T to one helper and 70% of T to another helper around the requester. The supernode will notify
the requester and each related helper about the cooperation assignment information. The requester
then will send corresponding task portions to each assigned helper; (3) Each helper executes the task
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portion on the device; (4) Upon completion, each helper will notify the supernode and send back the
result to the requester; (5) When the requester gets back the computational result from a helper, she/he
will notify the supernode about the successful reception of the result; (6) A transaction of the requester
paying each related helper is confirmed by all three: the requester, the helper and the supernode.
All three of them will store this transaction into their own transaction pool, waiting for a miner to put
this transaction into the blockchain.

3.3. Transaction Pool and Mining

After cooperation is performed between a requester and a helper, both of them will have an
identical transaction generated. They will store this transaction into their own transaction pool on their
own device and also broadcast to nearby peers. Each peer will then store the transaction into her/his
own transaction pool upon reception of the broadcast transaction. Note that the supernode has the
information of all transactions in the D2D network, so the supernode holds the publicly assessable
full transaction pool for all users in the network. The storage space of the transactions is negligible.
Figure 3 is a typical part of the blockchain of our system. Each block is identified with a 256-bit unique
hash value and links to its previous block. Each block contains transactions, also identified with a
256-bit unique hash value, that contain information about the cooperative work in the D2D network.
For example, Transaction 1 in the left block is recording that User 1 paid 2000 credits to User 2 for
receiving the corresponding amount of helper work from User 2. As a safety feature, each transaction
needs to point to the source of the income of the credit, as a proof of enough credit. For instance,
Transactions 1 and 2 at the right block both point to Transaction 1 in the left block since this is an
indication that User 2 does have enough credit to pay the total of 1600 credits in the right block.
Similarly, Transaction 3 at the right block also points to Transaction 2 in the left block, indicating that
User 4 has enough credit. Note that for demonstration purposes, users are labelled as U1, U2, etc.,
in the figure. In fact, these users are actually represented as 256-bit unique digital addresses to provide
anonymity. Users are also able to change their addresses to further enhance anonymity.

Figure 3. Typical part of the blockchain of our system.

A user will switch between a helper and a miner according to whether task cooperation is needed
in the surrounding area. When a device is assigned work to help a requester in the D2D network,
the device will switch to helper mode; otherwise, i.e., when no task is assigned to assist a helper in the
current period, the device will switch to miner mode in search for a mining possibility. The debate
between how secure the mining algorithm is compared to those used in Bitcoin or Ethereum remains
beyond the scope of this work.
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4. System Modelling

In this section, the basic system settings, connectivity model, dynamic program slicing,
task cooperation scheduling background and the credit balance system that is blockchain based
are illustrated.

4.1. Basic System Settings

Apart from the set of all miners in the D2D network, there is a computational resource user set U
consisting of u users in our system, where in each task period p, u users are requesters and the rest
h = u − p are helpers. We divide the user set U into two member sets, namely requester set P and
helper set H. There are p requesters in P and h helpers in H, where p ≥ 1 and h ≥ 1. Each requester
is denoted as pi ∈ P, and each helper is denoted as hj ∈ H, where i ∈ {1, 2, ..., p}, j ∈ {1, 2, ..., h}.
The smart device of a requester pi or helper hj is subject to a D2D communication range rp

i or rh
j ,

respectively, above which D2D direct link connection is not possible. cp
i or ch

j is used to denote the
available computational power of a requester or helper, indicating how fast or how much computation
the smart device is able to handle per second for our cooperative scheme. Typically, this type of
computational power is represented by how many clock cycles the device can run per second, 2.6 GHz
for example. At any task period Ψ ≥ 0, each requester pi initializes a task of complexity Ti,Ψ in clock
cycles (indicating how many clock cycles need to be run to get the result of the task) with its maximum
wait time ti,Ψ in seconds (indicating the maximum time pi will wait for the result until he/she has to
do the assigned uncompleted task slices by himself/herself).

4.2. Connectivity Model

Assuming the connection between a requester pi and a helper hj to be symmetric, we denote the
random variable Bi,j(τ) = 1 (or Bi,j(τ) = 0) to represent that pi and hj are connected (or disconnected)
at time τ ≥ 0. Moreover, let random variable S1

i,j denote the sojourn time that pi and hj are in the

connected state and S0
i,j denote that in the disconnected state. We consider that both S1

i,j and S0
i,j

follow the exponential distribution with parameters λi,j and μi,j, respectively. Therefore, we have the
cumulative distribution functions (CDF) of S1

i,j and S0
i,j given by:

Pr(S1
i,j ≤ τ) = 1 − eμi,jτ , (1)

and:
Pr(S0

i,j ≤ τ) = 1 − eλi,jτ . (2)

We represent the continuous time Markov chain (CTMC) model with two states illustrated in
Figure 4 and let Pi,j(τ) denote the 2× 2 matrix with entries pxy

i,j (τ) = Pr(Bi,j(τ) = y|Bi,j(0) = x), where
x, y ∈ {0, 1}. Referring to [24], we have the solution of Pi,j(τ) given by:

Pi,j(τ) =

⎛
⎝ λi,j

ψ +
μi,j
ψ κ

μi,j
ψ − μi,j

ψ κ
λi,j
ψ − λi,j

ψ κ
μi,j
ψ +

λi,j
ψ κ

⎞
⎠ , (3)

where κ = e−(μi,j+λi,j)τ and ψ = μi,j + λi,j.
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Figure 4. Continuous-time Markov chain for the connected-disconnected transition between pi and hj.
Let 1/0 represent the state in which pi and hj are connect/disconnected. The transition rates from zero
to one and from one to zero are given by λi,j and μi,j, respectively.

The parameters μi,j and λi,j used in (3) for pi and hj can be obtained by maximum likelihood
estimation (MLE) on each of them. Specifically, without loss of generality, consider that pi and hj were
disconnected initially, and the connectivity between pi and hj has changed m times before the current
time τ. Therefore, pi and hj have recorded a vector of time �τi,j = (τ1, ..., τm) ∈ Rm

+, where each element
τz

i,j < τ(z = 1, ..., m) represents the time when the connectivity between pi and hj changed. Assume
pi and hj are currently connected (then, m must be an odd number, and the case that pi and hj are
currently disconnected can be analysed via following approach similarly); μi,j and λi,j estimated by
MLE up to current time τ are given by:

μ̂t
i,j =

m − 1

2 ∑
m−1

2
z=1 (t

2z
i,j − t2z−1

i,j )
, (4)

and:
λ̂t

i,j =
m − 1

2 ∑
m−1

2
z=1 (t

2z+1
i,j − t2z

i,j )
. (5)

Because the connections between pi and hj are assumed symmetric, the same results are obtained
on pi and hj. For the people who study or work together, �τi,j is kept being recorded by both pi and
hj as the system time increases. According to (4) and (5), μ̂t

i,j and λ̂t
i,j will converge. We denote

μ̂i,j = limt→∞ μ̂t
i,j and λ̂i,j = limt→∞ λ̂t

i,j, which are the MLE of μ̂i,j and λ̂i,j, respectively. Given the
connection station Bi,j(τ) between pi and hj at time τ, the probability that they are connected at future
time τ′ ≥ τ is given by:

Pr(Bi,j(τ
′) = 1|Bi,j(τ)) =

⎧⎪⎪⎨
⎪⎪⎩

λi,j−λi,je
−(λi,j+μi,j)(t

′−t)

λi,j+μi,j
, Bi,j(τ) = 0,

λi,j+μi,je
−(λi,j+μi,j)(t

′−t)

λi,j+μi,j
, Bi,j(τ) = 1.

(6)

4.3. Dynamic Program Slicing

In general, computational tasks cannot be arbitrarily sliced into different parts. However,
many dynamic program slicing techniques are facilitating our need for the distribution of tasks [25].
For example, MapReduce [26] allows Google to slice and run an average of one hundred thousand
MapReduce jobs every day from 2004–2008. Without the availability of dynamic program slicing,
a large load of tasks may not be sent back to the requester in a timely manner, and this increases the
risk of the helper being out of the device communication range of the requester on completion of the
task execution. Therefore, we adopt the assumption that tasks can be sliced in an arbitrary manner in
our system.
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4.4. Task Cooperation Scheduling

In our system, we assume that a computing unit, which we refer to as a supernode, with enough
capacity to perform task cooperation scheduling for all devices is available at the cellular BS covering
the D2D network. At the beginning of each task period, the supernode collects task and connectivity
information sent wirelessly from the devices and computes the task scheduling for requesters and
helpers in the D2D network based on the probability of connection among them according to (6).
Note that the task and connectivity information sent to the supernode is very limited in size and
transmission time, which are assumed to be negligible for simplicity. Each task period is divided into
discrete time slots for scheduling to ensure accuracy and latency and to lower the chance of losing
computation results due to changes in connectivity. This computation will be based on an effective
light-weight algorithm elaborated in Section 5.5.

4.5. Blockchain-Empowered Credit System

In contrast to a Bitcoin system, where later, the user is discouraged from joining due to the
significantly increased difficulty to obtain a new coin, our system offers the same initial credit, �, to any
new user to the system. Users need to pay credits from their own balance to get help from peers and
will earn credits after helping peers on computational tasks. At the beginning of each task period
Ψ ∈ {1, 2, 3, ...}, the credit balance BΨ

k of each user uk is obtained by the supernode by referring to
the blockchain. For each user uk in period Ψ, we denote the amount of help received by peers as
RΨ

k , the amount of work contributed to peers as HΨ
k and the block reward as ηΨ

k . For simplicity,
we limit a user to be either a requester, a helper or a miner within a given task period Ψ. In our
blockchain-empowered credit system, uk needs to pay αRΨ

k from and is rewarded βHΨ
k to the balance

BΨ
k ; therefore,

BΨ+1
k =

{
BΨ

k − αRΨ
k + βHΨ

k + ηΨ
k , Ψ ≥ 1,

�, Ψ = 0.
(7)

5. Problem Formulation

As mentioned in the previous section, we assume that a supernode with enough capacity is
present at the BS covering the D2D network of our interest. At the beginning of each task period,
the supernode will, with the knowledge of all devices and tasks in the D2D network, calculate the
probability distribution of the connectivities between devices and assign computational tasks to each
helper or requester device accordingly. The task assignment also takes into account users’ credit balance
when our blockchain-based credit system is adopted. Connectivity awareness, computational task
assignment, selfishness avoidance and response delay optimization are mathematically formulated in
this section.

5.1. Connectivity Awareness

To analyse the connectivity between requesters and helpers for more accurate and cost-effective
computation assignment, we first define a p × (h + 1) probability matrix Rt at each time slot
t ∈ {0, 1, ..., T

Δt}. For a given t, the element Ri,j,t is the probability of connection between pi and hj if
j ∈ {1, 2, ..., h} and Ri,(h+1),t indicating the probability of connection between pi and herself/himself.
Obviously, Ri,(h+1),t = 1 ∀ i, t. At the start of each task period, i.e., t = 0, we randomly generate
Ri,j,0 ∀ i ∈ {1, 2, ..., p}, j ∈ {1, 2, ..., h} based on the pre-defined initial connection probability. Thereafter,
according to Equation (6), we generate Ri,j,t ∀t ∈ {1, 2, ..., T

Δt} for each pi-hj pair.
At any given time slot t ∈ {1, 2, ..., T

Δt}, we define a p-element vector �It with its element �Ii,t
representing the amount of self-computing computational task assigned to pi and a p × h matrix
Jt with element Ji,j,t representing the amount of assisting computational task assigned to hj for pi.
By concatenating Ji,j,t and�Ii,t, we get a p × (h + 1) computation assignment matrix Mt = [Ji,j,t �Ii,t] at
time slot t. Joining all Mt where t ∈ {1, 2, ..., T

Δt}, we get a p × (h + 1)× T
Δt three-dimensional system
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computation assignment matrix, M, containing the computation assignment in a task period τ ∈ [0, T].
Consequently, Mi,j,t where j ∈ {1, 2, ...h} is the amount of computational task assigned to hj for pi and
Mi,h+1,t is the amount of self-computing computational task assigned to pi at time slot τ = t.

Note that the element-wise product between R and M,

Mexp = M 	 R, (8)

is the matrix indicating the expected amount of computational task done and the result sent back to
requesters. For example, Mexp

i,j,t = Mi,j,t · Ri,j,t is the expected amount of assisting task done by hj and
sent back to pj at time slot τ = t.

5.2. Computation Assignment and Maximum Wait Time

At the start of each task period, all requesters will specify to the supernode at the BS the amount
of computation, in clock cycles, required for the coming task period. We represent these tasks with
a p-element vector �γ with γi corresponding to the total amount of task required by pi. Meanwhile,
for an ensured QoE, pi is also subject to a maximum wait time in each task period for the result of the
computational task. We use another p-element vector �φ with φi corresponding to the maximum wait
time for pi in seconds. Apparently, φi ≤ T, ∀i. Therefore, the computation assignment needs to ensure
that a task is expected to be completed before the maximum wait time for all requesters, that is:

γi ≤
φi/t

∑
t=1

(h+1)

∑
j=1

Mexp
i,j,t , ∀i ∈ {1, 2, ..., p} (9)

5.3. Computation Capacity of Mobile Devices

Each mobile device is subject to a computation capacity denoted as cp
i for pi’s mobile device and

ch
j for hj’s mobile device where i ∈ {1, 2, ..., p}, j ∈ {1, 2, ..., h}. When talking about the computation

capacity of a device, one typically will refer to its CPU. CPU processing capacity is typically referred
to in terms of megahertz (MHz) or gigahertz (GHz). Professionals talk about clock speed, which is
the standard ability of the CPU to cycle through its operations over time. Therefore, a 1-GHz CPU is
able to tick its clock around one billion times per second, which in turn can perform more complicated
computational tasks. Without loss of generality, we regulate these computational power values in
clock cycles to a scale of 0–100, i.e., 0 ≤ cp

i ≤ 100 and 0 ≤ ch
j ≤ 100 ∀ i, j, for simplicity. Each entry of

the computation assignment matrix, Mi,j,t, refers to the number of clock cycles required to perform the
corresponding task section. For example, M3,4,0 = 1000 means that at t = 0, h4 is assigned to help p3

for 1000 clock cycles worth of computational task. If ch
4 = 50 Hz, then it takes h4

M3,4,0
ch

j
= 1000

50 Hz = 20 s

to perform the task. Therefore, each device is subject to an amount of computational task in clock
cycles at each time slot as a higher limit, that is:

p

∑
i=1

Mi,j,t ≤ ch
j , ∀j ∈ {1, 2, ..., h}, t ∈ {1, 2, ...,

T
Δt

} (10)

for all helper devices, and:

Mi,h+1,t ≤ cp
i , ∀i ∈ {1, 2, ..., p}, t ∈ {1, 2, ...,

T
Δt

} (11)

for all requester devices as the (h + 1)th column of the computation assignment matrix is representing
the amount of self-computing tasks.
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5.4. Selfishness Avoidance

As derived in Section 4.5, the balance of each user is updated as represented in (7).
When computing cooperative task assignment for the D2D network at each task period, the supernode
needs to make sure that each requester has enough balance for the task period according to the task
assignment matrix M in that period Ψ. Since the exact amount of RΨ

k and HΨ
k for user uk is not known

at the beginning of task period Ψ, the supernode ideally needs to make sure that:

Pr(BΨ
k − αRΨ

k + βHΨ
k + ηΨ

k ≥ 0) ≥ ξ, ∀k ∈ {1, 2, ..., u}, Ψ ≥ 1. (12)

where ξ → 1. However, though the exact amount of RΨ
k and HΨ

k for user uk is not known at the

beginning of task period Ψ, their expected value, namely RΨ,exp
k and HΨ,exp

k , can easily be obtained in
advance from Mexp in that period Ψ:

RΨ,exp
k =

φk/t

∑
t=1

h

∑
j=1

MΨ,exp
k,j,t , (13)

and:

HΨ,exp
k =

p

∑
i=1

φi/t

∑
t=1

MΨ,exp
i,k,t . (14)

For simplicity, we will relax the constraint (12) to the following:

BΨ
k − αRΨ,exp

k + βHΨ,exp
k + ηΨ

k ≥ 0, ∀k ∈ {1, 2, ..., u}, Ψ ≥ 1. (15)

This way, user connectivity has been taken into account, and more cooperation is expected to be
done, while leaving the possibility that a user’s balance becomes lower than zero after task period Ψ
such that the user will need to earn back enough credit before asking for more help.

5.5. Response Delay Optimization

In our work, we emphasize the importance of low task execution time towards a requester’s
QoE. In each task period, there is n = T

Δt time slots, and we define the expected completion time,
texp
i , for each requester pi as follows:

texp
i = arg mint

t

∑
τ=1

(h+1)

∑
j=1

Mexp
i,j,t ≥ γi, (16)

where i ∈ {1, 2, ..., p}, j ∈ {1, 2, ..., h}, t ∈ {1, 2, ..., T
Δt}. Therefore, our optimization problem becomes:

Minimize:
p

∑
i=1

texp
i

Subject to: (7)− (11) (13)− (16).

(17)

Calculation of the optimal computation assignment matrix M is similar to the famous knapsack
problem that is NP-hard [27]. Here, the computational powers of helper devices are like knapsacks
with different sizes, and the computational tasks from requesters are like items with different sizes.
Solving for the optimal solution for the task scheduling resembles solving for an optimal solution
for the knapsack problem: it is NP-hard. For effectiveness, especially considering the trend of an
increasingly massive number of smart mobile devices in D2D networks, we proposed a light-weight
heuristic algorithm to efficiently find the sub-optimal solution for the computation assignment matrix
M illustrated in Algorithm 1. Note that we make substantial use of the linprog function [28] in
MATLAB for calculating the computation assignment matrix M by transforming M element-wise into
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a one-dimensional unknown vector �x with p · (h + 1) · T
Δt entries from elements in M. According to

linprog [28], A, b in Algorithm 1 represent the inequality constrains for �x, and Aeq, beq represent the
equality constrains for �x. The function get_linprog_parameter in Algorithm 1 is transforming the
constraint functions in (17) from a matrix from to a one-dimensional vector form, which is basically
a simple reshaping of the matrix. There is no upper bound for �x, and the lower limit for elements
of �x is zero. The maximum wait time of a requester is the longest time the requester can wait before
she/he needs to compute the task result herself/himself. However, it is possible that the task can
be completed much sooner than the maximum wait time. Each iteration of Algorithm 1 tries to find
lower feasible task assignment solutions by halving (up to an integer value) a randomly-selected
requester’s maximum wait time. Since the duration of each task period is limited, the maximum
wait time is up to the length of a task period. Therefore, the complexity of Algorithm 1 is subject to
ln(p) · O(linprog) where p is the number of requesters at the task period and O(linprog) represents
the complexity of MATLAB’s linprog function [28]. Unfortunately, MATLAB claims improvement on
efficiency of linprog over time, but releases no detail about the complexity. Yang in [29] claims that
his algorithm on top of linprog may achieve polynomial complexity with the best known complexity
bound on linear programming problems.

Algorithm 1: The algorithm to obtain �φ, which corresponds to a sub-optimal solution for (17).

Input: Maximum wait vector �φ
Output: Modified maximum wait vector �φ that corresponds to a sub-optimal solution for (17)

1 function heuristicMaxWait(�φ)
2 [A, b, Aeq, beq] := get_linprog_parameter(�φ)
3 [x, f easible] := linprog(�0, A, b, Aeq, beq,�0)
4 if f easible then
5 C := {1, 2, ..., p}
6 while C 
= ∅ do
7 for random i ∈ C do

8 ι := �φi

9 �φi :=
⌊
�φi
2

⌋
10 [A, b, Aeq, beq] := get_linprog_parameter(�φ)
11 [x, f easible] := linprog(�0, A, b, Aeq, beq,�0)
12 if ! f easible then

13 �φi := ι
14 C := C\{i}

15 return �φ

6. Experiment

In a D2D network, a variety of factors may affect the performance of our cooperative network
with the credit system. In this section, we will examine the following effects:

• Effect of initial credit: we vary the initial credit provided to each user to see how our system will
be affected.

• Effect of mean maximum wait time: we vary the mean maximum wait time during the random
generation to see how the performance will be affected.

• Effect of mean task size: we vary the mean task size of each requester in a task period during the
random generation to see how the performance will be affected.

• Effect of time elapsed: we run the simulation on multiple task periods and see how system
performance changes over time.

In our simulation, we compare the performance of the computational resource sharing system in
four different cases:
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• Greedy D2D task cooperation without our credit system: Without connectivity awareness, each helper
device will equally contribute its available computing power to all connecting requesters at the

beginning of a task period. For example, helper h5 will assign ch
5
3 computing power to each of p1,

p3, p4 for the current task period if and only if p1, p3, p4 are the only requesters in connection
with h5 at time τ = 0.

• Greedy D2D task cooperation with our credit system: This is very similar to the above case, except
that our blockchain-based credit system is added in to enforce fairness. Therefore, the supernode
at BS will check on requester balances before task assignment, ensuring that the assistance
expected to be received by a requester will not exceed her.his available balance in that task period.

• Connectivity-aware task scheduling without our credit system: At the start of each task period,
the supernode at BS will perform task scheduling calculation according to Algorithm 1 without
our blockchain-based credit system.

• Connectivity-aware task scheduling with our credit system: This is very similar to the above case,
except that our blockchain-based credit system is added in to enforce fairness, as illustrated
in (15).

Apart from being a reasonable incentive for users to provide help and gain credit for future needs,
the blockchain credit also provides selfishness avoidance to our system. That is, it prevents certain
users who only want to get help from peers, but not contribute to other users’ need. We define hereof
the level of selfishness, LoS, to reflect whether users have been contributing relatively equally over
task periods Ψ ∈ {1, 2, 3, ..., χ}:

LoS =
1
u

u

∑
k=1

(
χ

∑
Ψ=1

RΨ
k −

χ

∑
Ψ=1

HΨ
k − �)2 (18)

In the following experimental illustrations, we show the comparison of LoS in a normalized way:
with respect to the greedy D2D task cooperation without our credit system case since LoS for this
case is much larger than the other three cases and it appears to be stable over the changing factors.
For simplicity, the mining process is simplified to a random selection of idle users to be miners in the
network. To validate the performance of our proposed system, we set up the following experiment.
Default simulation parameters are illustrated in Table 1, where the uniform distribution between two
values a, b is denoted as U[a, b]. We used three real-world traces “Intel” (Trace 1), “Cambridge” (Trace 2)
and “Infocom” (Trace 3) in the Cambridge/Haggle dataset in [30] for our simulations. Traces 1–3
were recorded by 8, 12 and 41 mobile iMotes using Bluetooth with a 30-metre radio range, respectively.
Although these iMotes were not smartphones or tablets, the connection states recorded in these traces
can be used to reproduce the dynamic topology for mobile users. The interval of each iMote sending a
beacon (i.e., hello message) is 120 ± 12 s.

The connectivity between mobile users is assumed to be symmetric in our work. However,
the connect and disconnect events in traces were recorded by each iMote individually.
Thus, we consider that a pair of iMotes was connected (or disconnected) as long as one of them
detected a connect (or disconnect) event. In the real-world traces, an iMote has recorded a connect
event with a zero contact duration when it was connected with another iMote for a short period of
time such that the iMote failed to receive two or more consecutive beacons. Thus, for a record with
the zero contact duration, we assume that the actual contact duration is uniformly distributed on
[0 s, 120 s]. We concatenate the contact and inter-contact durations recorded by each pair of iMotes in a
chronological order to reproduce the connect and disconnect events for both of them. We then run
trace-driven simulations with the D2D topologies reproduced by all iMote pairs in each trace.

35

Bo
ok
s

M
DP
I



Future Internet 2017, 9, 85

Table 1. Default simulation parameters.

Number of users u 10
Mean number of requester p̄ 0.4u
Mean number of miners 0.1u
Tasks period T 60 s
Size of time slots Δt 5 s
Total number of periods χ 30

Initial credit � 5000
Block reward credit per task period η 50
α 1
β 1
Maximum computation capacity cmax 100
Minimum computation capacity cmin 40
Computation capacity cp

i or ch
j U[cmin, cmax]

Mean task size per second σ 30 (U[15, 45])
Mean maximum wait time 40 s (U[20 s, 60 s])
λi,j U[10−5, 10−3]

μi,j U[10−3, 10−2]
Initial connection probability at τ = 0 50%

6.1. Effect of Initial Credit

The choice of initial credit is a rather significant factor in our system. The initial credit is an
indication of how much helper work can be received before a requester has to help others or perform
mining to get system credits. If the initial credit is set too low, users are discouraged from performing
D2D cooperation. In the extreme case in Figure 5, where initial credit is set to zero, the users cannot
perform any D2D cooperation, resulting in a self-computing performance with a high average task
execution time and no selfishness.
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Figure 5. Effect of initial credit. (a) Effect on average task execution time; (b) effect on the level
of selfishness.

As initial credit increases, users are encouraged to perform D2D cooperation, leading to a fast
drop in average task execution time in the two cases with our credit system. Particularly, the average
task execution time of the heuristic case with our credit system drops to <5% more than that without
our credit system, while remaining 20% less selfish. This is an indication that with a proper selection
of initial credit, a little sacrifice on average task execution time can be exchanged for a much higher
level of fairness. The greedy-credit case has much lower LoS than that without the credit system,
but its performance is much worse than the heuristic-credit case, implying the importance of our
heuristic algorithm.
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6.2. Effect of Mean Maximum Wait Time

During a task cooperation in the D2D network, the requester typically wants the task to be done
in a timely manner. For example, if a requester wishes to perform a neural network-based stock
index prediction task [31] that predicts the price of a stock in 30 s, this requester will want to get the
computation result within 30 s (could be 20 s, 25 s, etc., depending on the specific application logic and
handling behind).

As shown in Figure 6a, two heuristic cases started with a decrease in average runtime from mean
maximum wait time changing from 15 s to 20 s. This may be due to the fact that when the mean
maximum wait time is too low, the probability of finding a feasible solution in the cases with our
heuristic algorithm is much lower. As mean maximum wait time continues to increase thereafter,
the average task execution time increases in all four cases: the enlarged solution space is increasing the
difficulty of our heuristic algorithm in finding the optimal solution; and in the greedy cases, the helpers
cannot focus on helping fewer requesters since most requesters have similarly high mean maximum
wait time. Particularly, the performance on the average task execution time of the greedy-credit case
deteriorates approximately 36% from 14 s–19 s, while that for our heuristic case with our credit system
deteriorates only 9% for the same change. This further proves the necessity of our heuristic algorithm.
However, the normalized level of selfishness decreases with respect to the greedy-non credit case,
with the two heuristic cases scaling down faster. Comparing the heuristic cases with and without
our credit system, the sacrifice of around 10–15% of average task execution can bring us at least 40%
less selfishness at a 50-s mean maximum wait time and almost 100% less at a 15-s mean maximum
wait time.
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Figure 6. Effect of mean maximum wait time. (a) Effect on average task execution time; (b) effect on
the level of selfishness.

6.3. Effect of Mean Task Size

The generation of task sizes in a period T is a uniform distribution U[0.5σT, 1.5σT]. Note that it is
possible that the mean task size for a requester within a period is over the computing capacity of the
requester device itself. Therefore, a D2D cooperation is necessary if the task needs to be done within
the maximum wait time.

As illustrated in Figure 7a, the average task execution time increases with respect to the mean
task size almost directly proportionally. The performance of our heuristic cases starts at a very close
performance at the beginning when the mean task size is small; a requester does not need too much
assistance work from helpers, leading to a relatively lower level of selfishness and average task
execution time. When the mean task demand from requesters increases, the level of selfishness in
the heuristic case without our credit system increases much faster than that with our credit system.
When the normalized mean task size is 60, though the heuristic case without our credit system is 15%
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better on the average task execution time, it is yet more than 250% higher in the level of selfishness.
This shows how important it is to use our credit system to enforce fairness among users.
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Figure 7. Effect of mean task size. (a) Effect on average task execution time; (b) effect on the level
of selfishness.

6.4. Effect of Time Elapsed

Here, time elapsed is represented in the unit of the number of task periods elapsed. Effect of time
elapsed generally gives an idea of how the performance of the four cases will stabilize over time.

As shown in Figure 8, the performance of our credit system starts to stabilize beyond the point
of the 50th period. As the task period goes on, our blockchain-empowered credit system maintains
a good level of selfishness with decreasing normalized selfishness, while the cooperative system
without the blockchain-empowered credit system, regardless of whether or not our heuristic algorithm
is used, builds up more and more selfishness. Although the performance of the heuristic-credit
case on the average task execution time is around 20% worse than that without our credit system,
the level of selfishness of the case without our credit system is more than three-times higher. Therefore,
the adoption of our credit system is highly recommended to enforce fairness in the network.
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Figure 8. Effect of ongoing number of periods. (a) Effect on average task execution time; (b) effect on
the level of selfishness.

7. Discussion

As shown in Section 6, our blockchain-empowered D2D computational resource sharing
system is able to achieve lower average task execution time while enforcing fairness among
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users. Possible application scenarios include computation virtualization [32] in the D2D network.
The authors in [33] presented the feasibility of computational resource virtualization within a personal
cloud so that a weak device can utilize computational resources from stronger devices for graphics
rendering and other applications. The authors clearly claimed one of the key challenges to be the
dynamic nature of a personal cloud caused by the mobility of the user. With our proposed system
in this paper, we can extend the idea of computational resource virtualization presented in [33]
to a D2D network. A cooperative computational task may be executed in a virtual machine and
migrated to different devices in the D2D network. Although virtualization introduces performance
and management overhead, the flexibility it can bring to network resource management still makes
it very appealing. The fact that virtual machines can be migrated to a different physical host while
keeping applications alive makes the computational resource virtualization and sharing in the D2D
network even more fascinating [34]. Furthermore, our system enforces fairness among users by
incorporating the blockchain-based credit system.

Apart from the pros and cons explained in the Section 6, the benefits of adopting the
blockchain-base credit system for our proposed D2D computational resource sharing system are
as follows:

• Decentralized and trustless: The blockchain is a public ledger of all transactions in the network.
This public ledger is maintained by all participating nodes, and this consensus mechanism makes
central authority unnecessary. Therefore, blockchain technology enables a decentralized and
trustless network where peers do not need any trusted third party to interact with each other.
Note that the supernode in our system mainly works to assign computational resource sharing in
an efficient and fair way by considering user mobility and credit balances. Our supernode also
provides a public transaction pool as a reference to system users, but the supernode in no way
participates in the mining operations. All mining operations are performed by system users in
the D2D network.

• Autonomous: Blockchain technology can enable devices in the D2D network to communicate with
each other and perform transactions autonomously, since each device can assess the blockchain
and a trusted intermediary is not needed. Again, although the supernode helps system users by
assigning cooperation tasks in an efficient and fair way, the credit balance system is not controlled
by the supernode and remains autonomous.

Our system also faces a few challenges as follows:

• Efficiency: Since all miners in the network perform the same computations trying to get the
next block reward from the blockchain, there remains efficiency concerns. In our proposed
blockchain-empowered D2D computational resource sharing system, the block reward is credits
that could be used to exchange for computational resources, which can also be granted when
helping peers computing in the D2D network. Therefore, users in the system are not merely
encouraged to compete for the block rewards, but also encouraged to assist other peers, which
enhances the efficiency of users’ idle computational resources.

• Privacy: Because the blockchain is a public ledger and any node can see all transactions in the
network, privacy concerns remain for the transacting parties.

• Interference in the D2D network: In this work, we de-emphasized the effect of mutual interference
in the D2D network due to the limited D2D communications’ duration and the coordination from
the supernode. To realize a more realistic model, we will elaborate on how mutual interference
can be tackled by supernode coordination in future works.

8. Conclusions

In this work, we build a blockchain-empowered credit system on top of the connectivity-aware
computational resource sharing system in the D2D network. A supernode at the base station,
with knowledge of user mobilities and thus the probability model of device connectivities, will perform
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task scheduling to reduce average task execution time for requesters in the network and enhance user
quality of experience. Based on the blockchain-based credit system, selfish users who only want to get
help from peers, but not contribute, will not be assigned any helper assistance if their balance is not
sufficient. The supernode also possesses a publicly accessible transaction pool for miners’ reference on
building up a trustworthy blockchain network. Simulation results based on a realistically examined
mobility model show that our system substantially reduces average task execution time for requesters
in the D2D network. Sacrificing a minor amount of average task execution time allows the system to
remain at a rather low level of selfishness. To enforce fairness and encourage users, the adoption of our
credit system is highly recommended. With the help of blockchain technology, our system becomes
more favourable for users by providing incentives to helpers and enforces fairness among users.
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Abstract: In this paper, we present an energy-efficient resource allocation and power control scheme
for D2D (Device-to-Device) multicasting transmission. The objective is to maximize the overall
energy-efficiency of D2D multicast clusters through effective resource allocation and power control
schemes, while considering the quality of service (QoS) requirements of both cellular users (CUs) and
D2D clusters. We first build the optimization model and a heuristic resource and power allocation
algorithm is then proposed to solve the energy-efficiency problem with less computational complexity.
Numerical results indicate that the proposed algorithm outperforms existing schemes in terms of
throughput per energy consumption.

Keywords: Device-to-Device (D2D) communication; multicast transmission; energy-efficiency

1. Introduction

With the emergence and popularity of the Internet of Things (IoT) [1,2], billions of devices will
be connected and serviced by current wireless networks. In particular, the local area service of
popular content sharing is one of the main reasons for this tremendous growth. Such unprecedented
growth of data has brought great pressure to current network architectures and technologies. Under
this circumstance, the direct connectivity between mobile devices, namely, Device-to-Device (D2D)
communication underlay cellular networks, emerges as a potential component for the fifth generation
(5G) mobile networks [3].

The concept of underlay D2D multicast transmission refers to the high spectrum-efficient D2D
multicast transmission scenario (from the cluster head (CH) to multiple member user equipment (UEs))
which reuses the resource of existing cellular links [4]. By exploiting the inherent broadcast nature of
wireless channels, D2D multicast transmission provides an effective solution to offload the heavy data
traffic to D2D links, which not only mitigates the burden of the base station (BS) but also increases
the spectrum efficiency of the network [5]. Concerning with current researches about D2D multicast
transmission, most works mainly focus on utilizing D2D multicast to improve the system spectrum
efficiency, or to provide offloading function while the energy efficiency of D2D multicast transmission
has often been omitted [6–11]. In this paper, based on the existing contributions, we propose an
energy-efficient resource allocation and power control strategy for D2D multicast transmission scenario.
Specifically, in order to maximize the overall energy-efficiency of D2D multicast clusters, we first
formulate the energy-efficiency optimization problem which is a non-convex problem. Then, we
propose a heuristic resource allocation and power control algorithm, which brings computational
complexity compared with the conventional exhaustive searching based algorithms. The proposed
scheme has better performance with respect to energy-efficiency.

Future Internet 2017, 9, 84 43 www.mdpi.com/journal/futureinternet

Bo
ok
s

M
DP
I



Future Internet 2017, 9, 84

The rest of the paper is organized as follows. In Section 3, we formulate the network model and
illustrate the energy-efficiency maximization problem. Section 4 investigates the resource and power
allocation problem with energy-efficient consideration and a heuristic algorithm is then proposed.
Simulation results and analysis are given in Section 5. Finally, Section 6 concludes the paper.

2. Related Work

Recently, investigations about underlay D2D multicast transmission mainly concentrate on how
to mitigate the reuse interference introduced by D2D transmission [6–8]. For example, in order to
maximize the total throughput of CUs and D2D clusters in a cellular cell, Meshgi et al. [6] studied
a joint channel and power allocation strategy. The work utilizes the maximum weight bipartite
matching method to find the optimal resource allocation and power allocation between CUs and D2D
pairs. Bhardwaj et al. [7] proposed a scheme to minimize the interference among D2D links and CUs
through a resource allocation scheme. The object is to maximize the total throughput of CUs and D2D
users through a joint power and channel allocation scheme. Kitagawa et al. [8] proposed an efficient
transmitter user selection algorithm, which improves system capacity while minimizing the impact of
interference among D2D multicast communications. However, it can be easily seen that most of the
above works focus on how to improve the system spectrum efficiency of D2D multicasting while the
energy-efficiency aspect of D2D multicasting is not properly addressed.

On the other hand, although some studies already deal with the energy-efficiency aspect of D2D
transmission, their research focuses are different from ours. In [9], D2D multicast transmission is
suggested to perform the computation offloading task for interactive applications. The proposed
algorithm aims at minimizing the energy consumption of each mobile terminal other than the overall
energy-efficiency. In [10], a joint power and resource allocations scheme is proposed for D2D underlay
multicast communication. This work mainly focuses on how to accommodate more D2D multicast
groups while minimizing the total terminal transmission power. In [11], a D2D crowd framework
for 5G mobile edge computing is proposed. The authors first introduced the concept of D2D crowd
framework, then propose a graph matching-based optimal task assignment policy to address the
energy efficient D2D task assignment problem. By taking the energy constraint into account, this
work mainly deals with D2D crowd task assignment problem, while the energy-efficiency of the D2D
clusters is not considered.

3. System Model and Problem Formulation

Without loss of generality, we assume that several D2D clusters have already been formed either by
the BS coordinately or by the cluster head in a distributed way, as shown in Figure 1. In fact, D2D cluster
formation methods have been widely discussed in existing works, such as [12]. Hence, this paper
mainly focuses on cluster-based D2D multicast transmission underlying uplink cellular networks.
As illustrated in Figure 1, supposes there are M D2D multicast clusters who share uplink resource
blocks (RBs) with N CUs. We use m, m ∈ M = {1, 2, . . . , M} to index m-th D2D cluster, where M is
the set of D2D multicast clusters. To clarify computation, the resource allocation for CUs is assumed
to be pre-determined (e.g., the n-th RB is allocated to the n-th CU). Let n, n ∈ N = {1, 2, . . . , N}
indicates the n-th CU and also the RB it occupies, where N represents the set of CUs. This paper
mainly focuses on the matching of D2D multicast clusters and CU as well as the power control policies
correspondingly. Within each D2D multicast cluster, the cluster head serves as the D2D transmitter
and the cluster members are D2D receivers. Suppose Km is used to represent the set of receivers in the
m-th D2D multicast cluster, where |Km| denotes the total number of receivers in the m-th D2D cluster.
When |Km| = 1, the transmission scenario becomes unicast transmission.
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Figure 1. The considered device-to-device (D2D) multicast transmission network model. BS:
base station.

We define a set of binary variables xm,n. If the m-th D2D cluster reuses the RB of n-th CU, then
xm,n = 1, otherwise, xm,n = 0. Assume each D2D multicast cluster is allowed to reuse at most one RB.
Then we have ⎧⎪⎪⎨

⎪⎪⎩
N
∑

n=1
xm,n ≤ 1, ∀m ∈ M

M
∑

m=1
xm,n ≤ 1, ∀n ∈ N

(1)

Equation (1) indicates two aspects. One is that each D2D multicast cluster is allowed to reuse
at most one RB of a CU; the other is the RB of a CU can only be reused by at most one D2D cluster.
Consequently, assume the n-th RB is reused by m-th D2D cluster, the channel quality of the k-th
member UE who act as a receiver in m-th D2D cluster is given by

γD2Dm
k =

GD2D
m,k

N
∑

n=1
xm,nPCU

n GC2D
n,k + σ2

n

, ∀m ∈ M, k ∈ Km, n ∈ N (2)

where γD2Dm
k denotes the channel quality of k-th cluster member in m-th D2D multicast cluster. PCU

n
represents the transmit power of CU n who shares uplink RB n together. GD2D

m,k and GC2D
n,k stand for

the channel gain between the cluster head and cluster member k in the m-th D2D cluster, between
interfering CU n to member UE k, respectively.σ2

n denotes the noise power.
Similarly, the channel quality of a CU n is calculated as:

γCU
n =

GCU
n,BS

M
∑

m=1
xm,nPD2Dm

m GD2C
m,BS + σ2

n

, ∀m ∈ M, n ∈ N (3)

Here, PD2Dm
m stands for the transmit power of the cluster head in m-th D2D cluster who reuses the

RB of CU n. GCU
n,BS and GD2C

m,BS represent the link gain from CU n to the BS and from co-channel cluster
head to the BS, respectively.

According to [6], it is commonly assumed that the transmission rate of a multicast is determined
by the user with the worst channel condition. Combined with the scenario shown in Figure 1, for the
m-th D2D cluster, the transmission rate achieved at RB n is given by

γD2D
m,n = min

∀k∈Km
γD2Dm

k (4)
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Therefore, we can calculate the normalized transmission rate of the m-th D2D cluster as

rD2D
m =

N

∑
n=1

xm,n log2

(
1 + PD2Dm

m γD2D
m,n

)
(5)

As a result, the transmission rate of m-th D2D cluster is expressed as

RD2D
m = |Km|rD2D

m (6)

Similarly, we can formulate the normalized transmission rate for a CU n which use RB n as

RCU
n = log2

(
1 + PCU

n γCU
n

)
(7)

In order to guarantee the quality of service (QoS) requirement of each UE, a threshold is set.
Specifically, for the m-th D2D multicast cluster, the above requirement is expressed as:

PD2Dm
m γD2D

m ≥ ΓD2D
min (8)

The above expression is explained as in order to ensure reliable transmission, the
signal-to-interference-and-noise ratio (SINR) of the user who has the worst channel condition among a
D2D multicast cluster should be above certain threshold. Again, for a CU, this requirement is set as

PCU
n γCU

n ≥ ΓCU
min (9)

where ΓD2D
min and ΓCU

min represent the minimum SINR threshold to ensure reliable D2D multicast and
cellular transmission specified by the system.

Combined with the maximum transmit power constraints for CUs and D2D clusters and by
substituting expressions (2) and (3) into (8) and (9), the transmit power range of a cluster head and a
CU is expressed as ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ΓD2D
min

min
GD2D

m,k
N
∑

n=1
xm,n PCU

n GC2D
n,k +σ2

n

≤ PD2Dm
m ≤ PD2D

max , ∀m ∈ M, k ∈ Km

ΓCU
min

GCU
n,BS

M
∑

m=1
xm,n PD2Dm

m GD2C
m,BS+σ2

n

≤ PCU
n ≤ PCU

max, ∀m ∈ M, n ∈ N
(10)

where PCU
max and PD2D

max represent the maximum allowed transmit power of a CU and a D2D user,
respectively. From expression (10), we can deduce that besides the channel condition factor, the
transmit power of the cluster head as well as the CU who shares the RB resource with a D2D multicast
cluster are intertwined. In order to guarantee reliable transmission, the transmit power of different
kinds of UEs should be considered.

Given the limited energy capacity of each device, the objective of this paper is to maximize
the overall energy efficiency of all D2D multicast clusters, which is also a hottest research aspect.
According to [13], the energy-efficiency (EE) of a single D2D multicast cluster m can be expressed as

ηm =
RD2D

m

PD2Dm
m

(11)

Combing Equations (1)–(11) and since there are M D2D multicast clusters, the energy efficiency of
all the D2D multicast clusters is defined as the ratio of total D2D multicast transmission data rates to
the overall consumed power of all clusters. Consequently, the energy efficiency optimization problem
can be expressed as
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max
∀m∈M

ηall =

M
∑

m=1
RD2D

m

M
∑

m=1
PD2Dm

m

(12)

s.t.
PD2Dm

m γD2D
m ≥ ΓD2D

min , ∀m ∈ M, n ∈ N (12a)

PCU
n γCU

n ≥ ΓCU
min (12b)

N

∑
n=1

xm,n ≤ 1, ∀m ∈ M (12c)

M

∑
m=1

xm,n ≤ 1, ∀n ∈ N (12d)

ΓD2D
min

min
GD2D

m,k
N
∑

n=1
xm,nPCU

n GC2D
n,k +σ2

n

≤ PD2Dm
m ≤ PD2D

max , ∀m ∈ M (12e)

ΓCU
min

GCU
n,BS

M
∑

m=1
xm,nPD2Dm

m GD2C
m,BS+σ2

n

≤ PCU
n ≤ PCU

max, ∀m ∈ M, n ∈ N (12f)

where ηall represents the overall energy-efficiency of D2D clusters. Constraints (12a) and (12b) define
the minimum SINR requirement. Constraints (12c) and (12d) ensure that each D2D cluster reuses the
RBs of CU at most once. Constraints (12e) and (12f) ensure that the transmit power both D2D users
and CUs fall into certain range.

According to Equation (12), in order to improve the total energy-efficiency, the possible solution is
either to decrease the transmit power or to increase the aggregate transmission rate. This is interpreted
as we have to find the optimal resource reuse relationship xm,n between D2D clusters and CUs, as well
as to determine the optimal transmit power of both CUs and D2D clusters which also guarantees the
minimum SINR requirement.

As a matter of fact, when D2D multicast transmission undelaying with a cellular network, the
resource allocation method and power allocation strategy are actually interacted with each other [14].
Once the resource reuse relationship between CUs and D2D clusters varies, the transmit power of
each UE will also be influenced owing to changing interference condition. On the other hand, if the
transmit power of different UE alters, the interference condition between co-channel CUs and D2D
clusters will also change, which conversely affects the resource assignment results. In addition, the
existence of integer assignment variable xm,n makes the optimization problem more complicated.

Consequently, the above optimization problem in (12) is a non-convex optimization problem
which is proved to be a NP-Hard problem and there are no efficient solutions [15]. Moreover, when the
problem size increases, the computational complexity also increases exponentially. A possible solution
for above problem might be using the bipartite matching based optimal resource allocation scheme, as
suggested by [16]. However, such scheme is actually based on exhaustive searching method, which
results in high computational complexity. In order to deal with this challenge, we propose a heuristic
resource allocation and power control algorithm to balance the system performance and complexity.

4. Proposed Heuristic Energy-Efficient Resource and Power Allocation Algorithm

According to (12), we can deduce that in order to improve energy-efficiency of all the D2D
multicast clusters, we have to either decrease the transmit power or to increase the aggregate
transmission rate. However, due to the fraction form of the objective function built in (12), it is
a non-convex optimization problem. Hence, it is difficult to obtain the optimal solution directly. In the
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following part, we will first solve the overall energy-efficiency optimization problem by adopting a
heuristic resource allocation strategy.

Firstly, we consider how to increase the numerator of expression (12). From the resource
assignment point of view, in order to improve the aggregate D2D throughput, higher values of
SINR are desirable. From constraints (12a)–(12f), we can infer that a smaller value of GC2D

n,m means
less interference from co-channel CU n to D2D cluster m, which will result in higher γD2D

m and D2D
throughput. Hence, the fundamental idea of the proposed scheme is to pick up the CU who generates
less interference to the co-channel D2D cluster. To achieve that target, we build a channel state
information (CSI) matrix GC2D

M×N, which is composed of estimated channel gain information of each
D2D cluster from the interfering CU respectively, where GC2D

M×N is expressed as

GC2D
M×N =

⎡
⎢⎢⎢⎢⎣

GC2D
1,1 , GC2D

2,1 , ..., GC2D
N,1

GC2D
1,2 , GC2D

2,2 , ..., GC2D
N,2

...
GC2D

1,M , GC2D
2,M , ..., GC2D

N,M

⎤
⎥⎥⎥⎥⎦ (13)

In the matrix GC2D
M×N, each element stands for the CSI value from the co-channel CU to the

corresponding D2D multicast cluster. We assume that the CSI between each CU and each D2D cluster
can be obtained by each cluster head individually. Actually, such information can be initially obtained
through information change between each cluster head and D2D receivers. Then, the CSI information
between each cluster and each CU can be gathered at the BS side through control information exchange.
Consequently, we can find the minimum GC2D

n,m , n ∈ N , m ∈ M in each row so as to pair up the CU
which brings the least interference to the D2D multicast cluster. By doing the same procedure for
each D2D multicast cluster, the optimal resource assignment between CU and the corresponding D2D
multicast cluster can be decided.

After picking out the cellular resource for each D2D cluster, the next step is to decrease the
denominator of expression (12). This is interpreted as to determine the minimum transmit power of
each CU and D2D cluster respectively, which also satisfies the minimum SINR threshold requirement.
Suppose a CU n shares RB resource with a D2D cluster m after resource pairing process. By using
the Equations (8) and (9) and substituting γCU

n and γD2D
m from expression (3) and (4) respectively, we

can determine the optimal transmit power of a D2D cluster and a CU which can guarantee reliable
transmission as follows⎧⎪⎪⎨

⎪⎪⎩
PD2Dm

m = max
∀m∈M,k∈Km ,n∈N

ΓD2D
min ΓCU

minGC2D
n,k σ2

n+ΓD2D
min GCU

n,BSσ2
n

GD2D
m,k GCUE

n,BS −ΓD2D
min ΓCU

minGC2D
n,k GD2C

m,BS

PCU
n = max

∀m∈M,k∈Km ,n∈N
ΓD2D

min ΓCU
minGD2C

m,BSσ2
n+ΓCU

minGD2D
m,k σ2

n

GD2D
m,k GCU

n,BS−ΓD2D
min ΓCU

minGC2D
n,k GD2C

m,BS

(14)

Combined with the expressions given in (14), if the calculated transmit power of both CUs and
D2D users obtained in (14) do not exceed the maximum allowed transmit power, CU n is finally
chosen as the resource sharing partner for D2D cluster m. By substituting (14) into the optimization
function (12), we can determine the minimum transmit power of different D2D multicast cluster so as
to maximize the overall energy-efficiency of D2D clusters. On the contrary, if the calculated transmit
power of both CUs and D2D users exceed the maximum allowed values, then CU m will be removed
from the available resource assignment list and we will try the next available CU according to the
matrix GC2D

M×N. The pseudo code of the proposed energy-aware resource allocation and power control
algorithm is given in Algorithm 1.
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Algorithm 1 A heuristic energy-efficient resource and power allocation scheme for D2D multicast transmission

1: M: List of D2D clusters
2: N : List of CUs
3: Construct the matrix GC2D

M×N according to (13),
4: i = 1, j = 1,
5: while M 
= ∅,i ≤ N and j ≤ M do

6: GC2D
n,m = argminGC2D

i,j , i ∈ N , j ∈ M,
7 Record the value of n and m,
8: Find PD2Dm

m and PCU
n from (14),

9: if PD2Dm
m ≤ PD2D

max and PCU
n ≤ PCU

max then

10: D2D cluster m shares resource with CU n,
11: Substitute PD2Dm

m and PCU
n into the maximization problem built in (12), find the minimum transmit

power;
12 j = j + 1,
13: else

14: i = i + 1,
15: end if

16: end while

17: Compute ηall according to (12)

In the proposed scheme, in order to maximize the overall energy-efficiency of D2D multicast
clusters, we first search for the optimal RB assignment between CUs and D2D clusters. This leads to
increased total data rates of D2D multicast transmission. Then, combined with the minimum SINR
requirement, we find out the minimum transmit power of both CUs and D2D clusters to ensure reliable
D2D multicast transmission. Hence, the maximization problem built in expression (12) is solved by a
two-step way, where the computational complexity of the proposed strategy is (MN)+(M × f |Km|).
This is because in the worst case, the maximization problem will be solved in M times. Here, f |Km|
represents the size of each D2D multicast cluster. It can be seen that, compared with exhaustive
searching based methods, (e.g., such as [16], where the complexity is

(
M3)+ (M × N × f |Km|)), the

proposed heuristic solution can considerably reduce the computational complexity.

5. Simulation Results

In this section, numerical results are provided to demonstrate the performance of our proposed
strategy. We use the clustered distribution model adopted in [17], where a 400 m × 400 m square area is
used to simulate the network. Cluster heads are randomly distributed in the simulation area according
to the uniform distribution and the D2D users are randomly distributed in the corresponding multicast
cluster. The distance-based path loss and shadowing fading are considered for the transmission
channel. We still consider the scenario that D2D clusters and CUs share uplink cellular RBs together.
Suppose that all available resource is divided into RBs and each CU is allocated with one RB at each
scheduling slot. Other related simulation parameters are listed shown in Table 1.

In order to demonstrate the performance of the proposed energy-aware resource and power
allocation scheme, three other different algorithms are considered. The first one is the QoS-aware
resource allocation scheme proposed in [7], which aims at minimizing the interference among D2D
multicast cluster and CU through resource allocation. Moreover, the power control policy in [7]
assumes that both CU and D2D cluster transmit at the maximum power when the channel condition
is good enough. The second one is the cluster based scheme proposed in [18], which employs social
information to facilitate file transfer process. In the absence of resource pairing scheme between D2D
cluster and CU, the resource assignment between D2D cluster and CU in [18] is assumed to be chosen
randomly while power control method is not applied. The third one is the energy-efficient scheme
proposed in [14], which aims at improving the energy efficiency multicast transmission through proper
power control. The power control principle of [14] is similar to our proposed scheme which tries to
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allocate more transmit power to D2D pairs when the channel condition becomes good. For clarity, our
proposed scheme is referred to as the “Proposed energy-aware” scheme.

Table 1. The simulation parameters. UE: user equipment; RB: resource blocks; SINR: signal-to-
interference-and-noise ratio; CU: cellular users; D2D: Device-to-Device.

Parameter Value

Cell Radius 400 m
Total UE number 500, 1000
Spectrum bandwidth 10 MHz
Bandwidth of each RB 180 KHz
The path loss Component (α) 4
Shadowing Log-normal fading with standard deviation of 8 dB
Noise power spectrum density (σ2) −174 dBm/Hz
Minimum SINR Threshold (ΓD2D

min ,ΓCU
min) 10 dB

Maximum transmit power of UE (PCU
max,PD2D

max ) CU: 23 dBm, D2D user: 20 dBm
D2D cluster radius (r) 30~90 m
UE Transmission range 90 m

Figure 2 illustrates the sum energy efficiency of the D2D multicast cluster with the variation of
the D2D cluster radius. From Figure 2 we can see that with the increase of the D2D cluster radius, the
energy efficiency performance of our proposed scheme is better than other referenced schemes. This is
because the channel gain of the D2D link will decrease with the increase of D2D cluster radius. Hence,
a larger transmit power is required for the D2D clusters so as to satisfy the SINR threshold constraint.
Accompanied with the increase of D2D cluster radius, our proposed scheme gradually increases the
transmit power. This results in the decreased energy efficiency of the D2D cluster. Compared with
the scheme in [14], our proposed resource allocation method minimizes the interference from CUs to
co-channel D2D receivers, which improves the channel gain of D2D links. Furthermore, it is shown
that when there are more UEs in the considered scenarios (N varies), the overall energy efficiency also
increases due to the increased total transmission rate of all D2D multicast clusters.
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Figure 2. Cluster Energy Efficiency versus D2D cluster radius. QoS: quality of service.

Figure 3 compares the total throughput of D2D multicast clusters of the proposed scheme with
three other schemes. From the figure, we can see that the total throughput performance of the proposed
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scheme is initially inferior to that of [7] and gradually outperforms other schemes with the increase
of D2D cluster radius. The reason is twofold. Firstly, our proposed scheme aims at maximizing the
EE performance of the D2D clusters, which adopts a smaller transmit power when the radius of the
D2D multicast group is small. This explains why the total throughput of our proposed scheme is
smaller than that of the scheme in [7], which always adopts the maximum transmit power. However,
with the increase of D2D cluster radius, our proposed scheme will gradually increase the transmit
power of D2D users while decrease the transmit power of co-channel CUs in order to ensure reliable
D2D multicast transmission, which leads to increased total throughput. Secondly, compared with
schemes in [14,18], the resource relationship of our proposed scheme is based on minimizing the
interference of D2D links. As a result, the CU who brings the least interference will be paired up with
the D2D multicast cluster accordingly. This explains why our proposed scheme has better performance.
Similarly, it is shown that the sum throughput of all four algorithms increases with the increase of
user numbers.
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Figure 3. Total Throughput of D2D multicast clusters versus D2D cluster radius.

The impact of energy efficiency on total throughput of D2D multicast groups is shown in Figure 4.
It can be observed that the energy efficiency performance of our proposed scheme and the scheme
in [14] both decrease with the increase of total throughput. This is explained as when the total
throughput increases, according to our proposed power control scheme, the transmit power also
increases, which contributes to decreased energy efficiency. Moreover, based on minimizing the
interference of D2D clusters, our proposed heuristic algorithm allocates better cellular resource to D2D
clusters. Meanwhile, it also decreases the transmit power of co-channel CUs, which contributes to
improved EE performance of D2D multicast clusters.

Figure 5 plots the average SINR of D2D multicast clusters with different D2D cluster radius.
We assume that there are totally 500 UEs randomly distributed in the simulation area. From the
figure, we can infer that for the schemes which include power control scheme, such as our proposed
algorithm and the scheme in [14], the SINR distribution does not obviously decrease with the increase
of D2D group radius. This is because according to the changing channel conditions and resource
reuse relationships, the power control method jointly adjusts the transmission power of both D2D
clusters and CUs, which ensures reliable D2D multicast transmission [19]. On the contrary, for the
algorithms which do not incorporate power control schemes, such as [7,18], the QoS requirement of
D2D multicast clusters in terms of minimum SINR constraint cannot be guaranteed when the channel
quality becomes worse.
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Figure 4. D2D Group Energy Efficiency versus throughput.
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Figure 5. Average D2D group Energy efficiency versus number of group users.

Figure 6 plots the Cumulative Distribution Function (CDF) curve of cellular users’ SINR
concerning with different schemes. It can be obviously seen that with the introduction of power
control scheme, the SINR curves of both [14] and our proposed scheme decrease, while the SINR
curves of [7,18] are not severely impacted. This is because our proposed strategy decreases the transmit
power of CUs in order to maximize the total energy-efficiency of D2D multicast clusters, which results
in deterioration of CU’s SINR. However, compared with [14], our resource allocation strategy will
pick up a CU who brings the least interference for the D2D multicast cluster. Hence, the co-channel
interference caused by underlay D2D transmission will be effectively controlled, which contributes to
improved SINR of C-links. From Figure 6, we can also infer that although the link quality of CUs has
been affected a little for the proposed scheme. But the performance degradation is still acceptable to
CUs because the power allocation strategy considers the minimum SINR constraint of different users.
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Figure 6. Signal-to-interference-and-noise ratio (SINR) of C-links with different schemes.

6. Conclusions

In this paper, we have investigated an energy-efficient resource and power allocation algorithm
for multicast D2D communication underlying a cellular network. The goal of this paper is to maximize
the overall energy efficiency of D2D multicast groups through appropriate resource allocation and
a power control scheme, while maintaining the SINR requirements of both CUs and D2D clusters.
A heuristic resource and power control algorithm is then proposed to solve the above problem with
less complexity. It is shown by simulation that the energy efficiency of D2D multicast clusters with
the proposed scheme can be improved significantly compared with conventional resource allocation
schemes. In future, we plan to extend this work to the multiple multicast problem which means
that several multicast clusters are allowed to reuse the same RB of a CU to further improve the
spectrum efficiency.
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Abstract: In this paper, we investigate a resource management scheme for cellular underlaid
device-to-device (D2D) communications, which are an integral part of mobile caching networks.
D2D communications are allowed to share radio resources with cellular communications as long
as the generating interference of D2D communications satisfies an interference constraint to secure
cellular communications. Contrary to most of the other studies, we propose a distributed resource
management scheme for cellular underlaid D2D communications focusing on a practical feasibility.
In the proposed scheme, the feedback of channel information is not required because all D2D
transmitters use a fixed transmit power and every D2D transmitter determines when to transmit data
on its own without centralized control. We analyze the average sum-rates to evaluate the proposed
scheme and compare them with optimal values, which can be achieved when a central controller has
the perfect entire channel information and the full control of all D2D communications. Our numerical
results show that the average sum-rates of the proposed scheme approach the optimal values in low
or high signal-to-noise power ratio (SNR) regions. In particular, the proposed scheme achieves almost
optimal average sum-rates in the entire SNR values in practical environments.

Keywords: D2D; cellular-aided D2D; underlay; mobile caching

1. Introduction

Mobile internet traffic has been explosively increasing in recent years [1]. To be specific,
multimedia video traffic accounts for about 60% of total mobile internet traffic and the ratio is expected
to grow to 78% by 2021 [1]. The next generation mobile communication systems requires a much higher
capacity to support the explosively increasing multimedia data. It is the easiest way to increase capacity
to use wider bandwidth, but radio spectrum, unfortunately, is a limited resource. Many promising
technologies such as multiple input and multiple output (MIMO) and small cell systems have been
investigated to enhance the spectral efficiency. However, the spectral efficiency is affected by radio
channels, which are mainly determined by the distance between transmitters and receivers. This is
the reason that higher order modulations can be only applied to devices near base stations (BSs) in
current communication systems such as long-term evolution (LTE) and wireless local area network
(WLAN). Thus, it is the most effective way to increase the spectral efficiency to reduce the distance
between transmitters and receivers rather than other promising technologies.

On the other hand, the quality of service (QoS) for multimedia services is mainly determined by
not only transmission rate but also latency, and the latency is closely related to the physical distance
between clients and content servers. No matter how much we increase the transmission rate, we can
not reduce the latency below a certain level because multimedia data is currently transferred from
a content server to mobile clients through many intermediate network entities. If we can shorten
the physical distance in end-to-end communications, both the spectral efficiency and the latency will
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be greatly enhanced at the same time [2]. The communication distance can be noticeably reduced
by using mobile caching technologies, where multimedia data is cached in mobile devices and thus
can be directly transferred to other mobile devices without going through intermediate nodes [3–6].
Device-to-device (D2D) communication is one of the integral parts for the mobile caching networks.
Motivated by these contexts, D2D communications have been attracting plenty of interest as one of the
promising technologies for the next generation mobile communications systems [7–17]. Furthermore,
we can achieve much higher spectral efficiency by cellular underlaid D2D networks, where D2D
communications share radio resources with conventional cellular communications as long as the
generating interference of D2D communications is regulated to secure cellular communications [9,10].

Despite the extensive previous research on D2D communications, the practical feasibility of
cellular underlaid D2D communication networks is not guaranteed because most of them require
immoderate intervention of cellular infrastructure such as BS or excessive signalling overhead
for channel information feedback. In this paper, we thus investigate a cellular underlaid D2D
communication network by focusing on the practical feasibility and we propose a practically feasible
resource management scheme for cellular underlaid D2D networks. In the proposed scheme, all D2D
transmitters use a fixed transmit power level to remove the signalling for channel information feedback,
and each D2D transmitter can determine whether to transmit data on its own without explicit control
from BS, while satisfying the interference constraint imposed by cellular networks. The performance
of the proposed scheme is evaluated in terms of average sum-rates and the feasibility is also verified in
practical environments.

The rest of this paper is organized as follows. In Section 3, system and channel models are
described. In Section 4, a practical resource management scheme is proposed. Our numerical results
are shown in Section 5. Finally, this paper is concluded in Section 6.

2. Related Work

The different transmission modes were introduced for cellular D2D communications [11]:
(1) non-orthogonal mode where D2D communications share the same resource as cellular
communications, (2) orthogonal mode where D2D communications use dedicated resources,
and (3) cellular mode where D2D traffic is transferred through a BS. Based on the three modes,
an optimal mode selection scheme was proposed to enhance the performance of D2D communications.
While single transmit and receiver antenna are considered in [11], multiple input and multiple
output (MIMO) was taken into account by designing pre-coding matrices at each node [12]. In [13],
a non-orthogonal centralized D2D communication system was investigated. It was assumed that D2D
communications share uplink frequency with cellular communications, as in this paper, and each
device can transmit its data in D2D or cellular mode via a BS. An optimal mode selection scheme was
proposed to maximize the overall sum-rate. However, the proposed scheme is centralized and can
not guarantee the QoS of cellular communications, unlike the proposed scheme in this paper. On the
other hand, there have been many studies to investigate power control schemes to deal with cross
interference between D2D and cellular communications, which is one of the challenging problems
to limit the performance of cellular underlaid D2D communications [14–17]. Optimization problems
have been formulated in both non-orthogonal and orthogonal modes and proposed optimal transmit
power allocation schemes to maximize the effective capacity based on the formulated optimization
problems, while satisfying different delay–QoS requirements [14]. Several suboptimal power control
schemes were also proposed and the performance was analysed by simulations. Despite their excellent
performance, the power control schemes inevitably yield excessive complexity and signalling overhead.
Thus, a distributed power control algorithm was proposed in [15]. The algorithm simply aims to set
the individual signal-to-noise and interference ratio (SINR) targets such that the required sum power
is minimized with respect to a sum rate target and allocates transmit power levels. MIMO was also
considered. However, the simple distributed algorithm can not guarantee the overall performance
such as sum-rate and QoS of cellular communications. Contrary to most of the studies considering
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the uplink of cellular networks, the impact of D2D communication on the downlink coverage of a
cellular network was investigated in [16]. They developed an analytical model to characterize the
coverage probability of cellular networks where a D2D link exists. Shadowing and power control were
considered, and BSs and devices were distributed by a Poisson point process. Both centralized and
distributed power control schemes were also proposed to maximize the performance of D2D links
in terms of sum-rate [17]. However, the QoS of cellular communications was not strictly guaranteed
despite their priority over D2D communications.

In spite of many previous studies, to the best of our knowledge, there have been no studies that
can strictly guarantee the QoS of cellular communications and provide a moderate level of complexity
and signalling overhead for commercialization, which motivated the study in this paper.

3. System and Channel Models

In this paper, we investigate a cellular underlaid D2D wireless communication network as
depicted in Figure 1. The utilization in cellular uplink is much lower than in downlink because
of the asymmetry of mobile internet traffic, and thus it is more efficient for the underlaid D2D
network to share uplink resources with cellular communications [18,19]. However, the resource
sharing between D2D and cellular communications can cause the quality deterioration in conventional
cellular communications, which have higher priority over D2D communications. Thus, a cellular
infrastructure such as BS imposes an interference constraint on D2D communications to secure the
quality of cellular communications. In our system model, we have N D2D pairs, a cellular BS,
and a cellular user equipment (UE). In this paper, the association process of D2D pairs and cellular
uplink resource scheduling are both beyond the scope of the paper. Thus, we assume that each D2D
pair has been already associated. A D2D receiver that wants to receive content is associated with
one of the D2D transmitters that cache the wanted content and are located in the proximity of the
receiver. In addition, a cellular UE is scheduled to transmit its uplink data to the cellular BS based on
a scheduling policy. In this paper, we use a statistical channel model, where gij denotes the channel
coefficient between transmitter i and receiver j. i ∈ {1, 2, · · · , N} or i = u and j ∈ {1, 2, · · · , N} or
j = b. i = u denotes a cellular UE and j = b denotes a cellular BS. We consider a Rayleigh fading
model, and thus |gij|2 is exponentially distributed with mean value λij [20]. The effect of path loss
can be incorporated into λij. Quasi-static block fading is also considered and thus all the channel
coefficients are constant during one frame for data transmission and randomly vary each frame.
We assume that D2D communications adopt a time division duplex (TDD) scheme and thus the D2D
channels are reciprocal without loss of generality. N0 denotes the variance of additive white Gaussian
noise (AWGN) in D2D receivers. We assume that the transmit power levels of all D2D transmitters
and cellular transmitter are fixed at P. The cellular transmitter can immediately transmit its data
regardless of the presence of D2D communications, while D2D transmissions should be controlled
to protect the quality of cellular uplink communications. Thus, a cellular BS imposes an interference
constraint on D2D communications. That is, the total interference power that all D2D transmissions
cause to the cellular BS should be less than Ith at any moment. Ith is a parameter that the cellular BS
can determine by considering both the quality of cellular communications and the performance of D2D
communications. Because D2D transmitters use a fixed transmit power, Pi = P if D2D transmitter
i is allowed to transmit its data; otherwise, Pi = 0. Then, the total interference power received at
the cellular BS from all D2D transmitters can be calculated as ∑N

i=1 IiP|gib|2, where Ii is an indicator
function to denote the activity of D2D transmitter i, defined as

Ii =

{
1, if D2D transmitter i transmits data (Pi = P),
0, otherwise (Pi = 0).

(1)
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If we define I � {I1, · · · , IN}, D2D communications should comply with the following
interference constraint imposed by the BS;

N

∑
i=1

IiP|gib|2 ≤ Ith (2)

to protect the cellular uplink communications securely. If normalized by N0, Equation (2) can be
rewritten as

N

∑
i=1

Iiρ|gib|2 ≤ Ith
N0

� I′th, (3)

where ρ is a transmit power-to-noise ratio of D2D transmitters, hereafter simply called SNR. Then,
the signal to noise plus interference (SINR) received at a D2D receiver i, denoted by γi, can be
calculated as

γi(I) =
IiP|gii|2

∑N
k=1,k 
=i IkP|gki|2 + P|gbi|2 + N0

=
Iiρ|gii|2

∑N
k=1,k 
=i Ikρ|gki|2 + ρ|gbi|2 + 1

, (4)

for a given I . Then, the sum-rate of a cellular underlaid D2D network can be calculated by
∑N

i=1 log2 (1 + γi(I)). Finally, we need to choose an optimal I for maximizing the sum-rate while
satisfying the interference constraint as follows:

I∗ = arg max
I

N

∑
i=1

log2 (1 + γi(I))

s.t.
N

∑
i=1

Iiρ|gib|2 ≤ I′th. (5)

D2D Tx i

D2D Rx i

Cellular Tx (UE)

D2D Tx 1

D2D Rx 1

· · ·

BS gii

gi1

gib
gui

g1b

g11

gu1

g1i

Figure 1. An underlaid device-to-device (D2D) communication network.

4. Proposed Resource Management for Cellular Underlaid D2D Networks

The optimization in Equation (5) requires tremendous complexity because it is not a convex
problem but a combinatorial problem. In addition, a central node such as a cellular BS should
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have perfect information of entire channels to solve the problem and have full control of D2D
communications, which inevitably causes excessive signalling overhead for the feedback of channel
state information (CSI). In particular, both the complexity and signalling overhead exponentially
increase as the number of D2D pairs N increases. In this paper, we thus propose a fully distributed
resource management scheme for cellular underlaid D2D communication networks. The proposed
scheme does not require any signalling overhead for CSI and can be operated in a fully distributed
manner with a simple signalling broadcast by the BS. Figure 2 shows the flow diagram for our
proposed scheme.

BSD2D RXsD2D TXs

Stop the timer.

Transmit data. Receive data.

Estimatethe channel gain 
from the response 

packet.

Transmits a response 
packet toward its TX.

Start timers.

Transmit
reference symbols.

BS broadcasts
the eligible set.

BS calculates an eligible 
set satisfying the 

interference constraint.

BS estimates
the channel

gains from all TXs.

Each RX estimates
the channel
gain from its TX.

Figure 2. Flow diagram of the proposed scheme for cellular underlaid D2D communication networks.

1. Every D2D transmitter transmits reference symbols to enable D2D receivers and BS to estimate
channel gains. We assume that each D2D transmitter is assigned orthogonal radio resource for
the reference symbols.
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2. Each D2D receiver only estimates the channel gain received from its associated transmitter,
while the BS estimates all channel gains received from all N D2D transmitters.

3. The BS sorts N measured channel gains in an ascending order. The D2D transmitter with the i-th
largest channel gain is indexed by î. Then, the sorted set of D2D transmitters can be denoted by{

1̂, · · · , î, · · · , N̂
}

and |g1̂b|2 ≤ · · · ≤ |gîb|2 · · · ≤ |gN̂b|2 is satisfied. The BS determines an eligible
set E , defined by

E =
{

1̂, 2̂, · · · , î∗
}

, (6)

where î∗ can be obtained by

î∗ = max

{
î

∣∣∣∣∣
î

∑
k̂=1̂

|gk̂b|2 ≤ Ith

}
. (7)

Even if all D2D transmitters in the eligible set transmit data simultaneously, the interference
constraint imposed by BS is satisfied. Thus, no matter which combination of D2D transmitters in
the eligible set transmit data, the interference constraint will be satisfied.

The BS broadcasts a bitmap message with N bits to notify which D2D transmitters are included
in the eligible set E .

4. If each D2D transmitter î is included in the eligible set, then it waits for a response packet,
which will be transmitted from a D2D receiver in Step 5. Otherwise, it terminates this algorithm.
If each D2D receiver î is included in the eligible set, then it starts a timer. Otherwise, it terminates
this algorithm. The value of timer is determined by C

|gîî |2
, where C is a constant to be determined

by a controller and |gîî|2 was measured in Step 2.
5. A D2D receiver whose timer expires first, denoted by t̂, transmits a response packet towards its

associated transmitter t̂. Note that the timer of the D2D receiver that has the largest channel gain
will expire first and thus a D2D pair with the best channel condition can be selected satisfying the
interference constraint.

6. All D2D transmitters can receive the response packet transmitted by the receiver t̂ in Step 5.
The D2D transmitter t̂ can transmit its data, but each D2D transmitter î included in E \ {t̂} checks
the following condition:

|gîî|2
|gît̂|2

≥ η, î ∈ E \ {t̂}, (8)

where |gît̂|2 can be obtained by measuring the response packet transmitted by receiver t̂, and η is
a threshold value required in the proposed scheme. All other D2D receivers except t̂ stop their
timers right after receiving the response packet from t̂.

The set of D2D transmitters to transmit data simultaneously can be determined by

T � {t̂} ∪
{

î
∣∣∣ |gîî |2
|gît̂ |2

≥ η, î ∈ E \ {t̂}
}

, satisfying the interference constraint. The D2D pairs with higher

channel gain and lower generating interference to the receiver t̂ are more likely to be selected to transmit
data along with the D2D pair t̂. In summary, the proposed scheme is based on a well-known fact
that opportunistic resource management schemes can greatly reduce the complexity [21]. Moreover,
the proposed scheme selects one user with the highest channel gain out of an eligible set and extra
users out of the eligible set satisfying Equation (8) in a decentralized manner to remove most of the
complexity and feedback overhead. For a given threshold η, the SINR of a D2D pair i in T can be
calculated as

γ
prop
i∈T (η) =

ρ|gii|2
∑k∈(T \{i}) ρ|gki|2 + ρ|gbi|2 + 1

, (9)
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and then the sum-rate of the proposed scheme can be obtained as ∑i∈T log2
(
1 + γ

prop
i (η)

)
.

Finally, note that the optimal scheme should carry out 2N iterations to calculate sum-rates with
the entire channel information feedback at each frame and thus we can not afford the complexity as N
increases, while the proposed scheme only requires an N-bit message that is broadcast by BS to inform
an eligible set.

5. Numerical Results

In this section, we evaluate the performance of the proposed scheme in terms of average sum-rate
and compare it with optimal performance. In addition, we derive the optimal threshold values to
maximize the performance of the proposed scheme. Figure 3 shows the average sum-rates of the
proposed scheme where all channels are assumed to be i.i.d. and thus λij = 1 ∀ i and j. N = 5
and I′th = 0 or 5 dB. For the comparison, it also shows the optimal average sum-rates obtained by
solving Equation (5) based on the Brute Force searching algorithm. For a higher I′th denoting that a
cellular network tolerates higher interference from a D2D network, the cardinality for the eligible set
of D2D transmitters increases and thus average sum-rates of the D2D network also increases due to
an increasing gain of user selection diversity. As the SNR of D2D transmitters increases, the average
sum-rates of the D2D network also increase due to transmit power gain. However, the SNR values
higher than a moderate level reduce the average sum-rate on the contrary because the cardinality for
the eligible set of D2D transmitters seriously decreases and thus the user selection diversity decreases
as well. The proposed scheme can achieve almost optimal average sum-rates when SNR is low or high,
while the average sum-rates of the proposed scheme is lower than the optimal value for moderate
SNR values. It should be also noted that the proposed scheme can dramatically reduce the complexity
and feedback overhead, compared to an optimal scheme. Figure 4 also shows average sum-rates of
the proposed scheme and optimal sum-rates under the same conditions as in Figure 3, except for
N = 10. As N increases, the gain of user selection diversity increases and thus the overall performance
is enhanced. The average sum-rates of the proposed and optimal schemes are tabulated and the ratios
of average sum-rate obtained by the proposed scheme to optimal value are also summarized in Table 1.

Figures 5 and 6 show the optimal threshold values to maximize the average sum-rates of the
proposed scheme with the same parameter values with Figures 3 and 4, respectively. As the SNR of
D2D transmitters increases to a moderate level, the optimal threshold value increases and thus |T |
decreases. The optimal threshold value of the proposed scheme decreases if the SNR increases above
the moderate level. The excessively high SNR above the moderate level seriously decrease |E | and
thus a low threshold can enhance the performance of the proposed scheme by increasing |T |.

In Figures 7 and 8, we analyze the average sum-rates of the proposed scheme when channels are
non-i.i.d. to verify the feasibility of the proposed scheme in practical environments. Table 2 summarizes
the average sum-rates of the proposed and optimal schemes and the ratios of average sum-rate obtained
by the proposed scheme to optimal value. (2 × N) D2D nodes are uniformly distributed in a circle
with a radius of 200 m and a cellular BS is located at the center of the circle. The average channel
gain between transmitter i and receiver j is determined by λij = min

(
−30 dB, L−4

ij

)
, where −30 dB

and Lij(0 ≤ Lij ≤ 200) denote a minimum coupling loss and the distance between transmitter i and
receiver j, respectively, and i ∈ {1, 2, · · · , N, u}, j ∈ {1, 2, · · · , N, b}. It is assumed that the channel
bandwidth is 10 MHz and thermal noise power density is −174 dBm/Hz. The transmit power of all
transmitters varies from 0–30 dBm and Ith = −50 or −80 dBm. The performance gap between the
proposed and optimal schemes is noticeably reduced in the entire SNR region, compared to the i.i.d.
channel environments. It is shown that the average sum-rates of the proposed scheme approach the
optimal values for entire SNR values and they are almost optimal in a practical region of SNR such as
0–20 dBm.
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Figure 3. Average sum-rates when all channels are i.i.d., N = 5, and I′th = 0 or 5 dB.
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Figure 4. Average sum-rates when all channels are i.i.d., N = 10, and I′th = 0 or 5 dB.
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Table 1. Average sum-rates when all channels are i.i.d.

SNR (dB)

N = 5 N = 10

I′th = 0 dB I′th = 5 dB I′th = 0 dB I′th = 5 dB

Prop Opt Ratio Prop Opt Ratio Prop Opt Ratio Prop Opt Ratio

−10 0.47 0.48 99.5% 0.48 0.48 99.8% 0.75 0.79 94.7% 0.77 0.78 98.3%
−6 0.75 0.82 91.3% 0.86 0.86 99.1% 1.03 1.24 82.8% 1.24 1.30 95.3%
−2 0.93 1.09 85.5% 1.25 1.34 93.8% 1.24 1.58 78.2% 1.61 1.90 84.8%
2 0.96 1.12 86.0% 1.44 1.66 86.6% 1.31 1.66 79.1% 1.80 2.29 78.5%
6 0.78 0.86 91.6% 1.38 1.63 84.9% 1.16 1.37 84.8% 1.77 2.27 77.9%
10 0.48 0.51 94.8% 1.07 1.20 89.0% 0.81 0.89 90.7% 1.52 1.87 81.1%
14 0.21 0.22 98.1% 0.67 0.72 93.6% 0.45 0.47 95.4% 1.03 1.18 86.9%
18 0.10 0.10 97.8% 0.32 0.33 98.6% 0.22 0.22 99.8% 0.57 0.60 95.5%
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= 0dB

I
′
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= 5dB

Figure 5. Optimal threshold in the proposed scheme when all channels are i.i.d., N = 5, and I′th = 0 or
5 dB.
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Figure 6. Optimal threshold in the proposed scheme when all channels are i.i.d., N = 10, and I′th = 0
or 5 dB.
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Ith = −80dBm

Ith = −50dBm

Figure 7. Average sum-rates when all channels are non-i.i.d. and N = 5.

Ith = −50dBm

Ith = −80dBm

Figure 8. Average sum-rates when all channels are non-i.i.d. and N = 10.

Table 2. Average sum-rates when all channels are non-i.i.d.

P (dBm)

N = 5 N = 10

Ith = −80 dBm Ith = −50 dBm Ith = −80 dBm Ith = −50 dBm

Prop Opt Ratio Prop Opt Ratio Prop Opt Ratio Prop Opt Ratio

0 1.74 1.75 99.7% 1.75 1.75 99.7% 3.25 3.29 98.7% 3.20 3.24 98.8%
4 2.39 2.41 99.4% 2.41 2.42 99.4% 4.32 4.41 98.0% 4.29 4.38 98.1%
8 3.14 3.17 99.1% 3.17 3.20 99.0% 5.46 5.62 97.3% 5.46 5.62 97.2%
12 3.92 3.98 98.5% 3.96 4.03 98.4% 6.54 6.80 96.2% 6.59 6.85 96.2%
16 4.59 4.70 97.8% 4.71 4.83 97.6% 7.42 7.82 94.9% 7.55 7.94 95.2%
20 5.07 5.26 96.4% 5.34 5.52 96.6% 8.05 8.57 93.9% 8.29 8.82 94.0%
24 5.30 5.59 94.8% 5.80 6.07 95.5% 8.15 8.97 90.8% 8.79 9.46 92.9%
28 5.10 5.62 90.7% 6.10 6.46 94.4% 7.73 8.95 86.4% 9.09 9.89 92.0%
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6. Conclusions

In this paper, we investigated a cellular underlaid D2D network, which is an enabling technology
for mobile caching services. D2D communications are allowed to share radio resources with cellular
uplink communications under the assumption that they comply with an interference constraint
imposed by a cellular controller such as BS to secure the quality of cellular communications.
The performance of D2D communications can be maximized by selecting an optimal combination of
D2D pairs to transmit data. However, it causes tremendous complexity of computations and signalling
overhead for channel feedbacks to determine an optimal combination complying with the interference
constraint. Thus, we proposed a practical resource management scheme for D2D communications.
Each D2D pair determines whether to transmit data on its own based on a threshold value and simple
bitmap information broadcast by the BS. Thus, the proposed scheme does not require any feedback
from the D2D network and does not cause any computational complexity to a BS either. We evaluated
the performance of the proposed scheme in terms of average sum-rate and compared it with the
optimal scheme. We also derived the optimal threshold values that maximize the average sum-rate
of the proposed scheme. Our numerical results showed that the average sum-rates of the proposed
scheme approach the optimal sum-rates in low or high SNR regions, despite the tremendous reduction
in complexity and signalling overhead. It was also shown that the gap in performance between the
proposed and optimal schemes noticeably decreases in the entire SNR region in practical environments
where channels are non-i.i.d.
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Abstract: In this paper, the problem of interference mitigation in a multicell Device to Device (D2D)
underlay cellular network is addressed. In this type of network architectures, cellular users and D2D
users share common Resource Blocks (RBs). Though such paradigms allow potential increase in the
number of supported users, the latter comes at the cost of interference increase that in turn calls for the
design of efficient interference mitigation methodologies. To treat this problem efficiently, we propose
a two step approach, where the first step concerns the efficient RB allocation to the users and the
second one the transmission power allocation. Specifically, the RB allocation problem is formulated as
a bilateral symmetric interaction game. This assures the existence of a Nash Equilibrium (NE) point
of the game, while a distributed algorithm, which converges to it, is devised. The power allocation
problem is formulated as a linear programming problem per RB, and the equivalency between this
problem and the total power minimization problem is shown. Finally, the operational effectiveness of
the proposed approach is evaluated via numerical simulations, while its superiority against state of
the art approaches existing in the recent literature is shown in terms of increased number of supported
users, interference reduction and power minimization.

Keywords: interference management; resource allocation; power control; multicell device to device
underlay networks; game theory; linear programming

1. Introduction

Device to Device (D2D) communication has emerged as an add-on communication paradigm to
the modern 5G wireless cellular networks [1]. In these networks, two types of users exist. The first type
of users are the cellular users who communicate conventionally via the intervention of the evolved
nodeB (eNB). The second type of users concerns the D2D users who are able to communicate directly
with each other [2].

D2D communications can take place either overlaying or underlaying inband a cellular network
or outband [3]. D2D users can act cooperatively, form clusters and facilitate content dissemination [4,5].
In the overlay case, D2D communications use dedicated resources, while in the underlay case D2D
communications share common resources with the residual cellular network. In this paper, we focus
on the underlay policy, where the cellular and the D2D users share common radio resources, organized
into resource blocks (RBs). RBs are combinations of frequency and time symbols which are allocated
to the users of the network [6]. All users of the network belong to a cell, where the central entity,
i.e., the eNB, is in charge of the efficient RBs assignment to the users. RBs assignment and power
control are key factors for the efficient operation of the network in terms of spectral and power
efficiency. Though significant research efforts have been devoted to the RBs and power allocation in
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a single-cell environment [7–12], the impact and consideration of multi-cell environment in the case of
D2D underlay cellular network has been considerably neglected.

In this paper, we aim at closing this gap in the literature and study the joint problem of RB and
power allocation in a multicell D2D underlay cellular environment. Multiple neighbouring cells exist
serving the users of the network. Every cell is assumed to use the same spectrum band with the other
cells for reasons of spectrum economy. In every cell, both cellular and D2D users co-exist and share
common RBs. D2D users may share RBs with several other D2D users and with at most one cellular
user in a given cell. Though a RB can be used by only one cellular user in a cell, yet interference may
occur either by the reuse of the same RB by other cellular users in neighbouring cells, or by several
other pairs of D2D users reusing the same RB either in the same cell or neighbouring cells.

In this setting, efficient RBs assignment and power control are of fundamental importance. On one
hand RBs reuse promotes spectrum economy, but on the other hand causes signal to interference and
noise ratio (SINR) degradation to the co-sharing users. The users of the network establish connections
to either the eNB or their D2D receiver and try to obtain a minimum quality of service (QoS) at their
receiver. QoS is expressed at the physical layer via the SINR at the receiver of each link. Users may
have multiple different requirements with respect to the SINR at their receiver.

The rest of the paper is structured as follows. Section 1.1 discusses the related work and Section 1.2
summarizes and introduces our contributions. Section 2 presents the system model adopted, while
in Section 3 the problem under consideration is formally presented. Subsequently, Sections 4 and 5
present the first and second stage of the proposed approach respectively, where the problems of RB
allocation and power control are described and solved. Finally, in Section 6 detailed numerical results
are presented demonstrating the operational effectiveness and efficiency of the proposed methodology,
while Section 7 concludes the paper.

1.1. Related Work

RB allocation approaches in the uplink of Long Term Evolution (LTE) networks have gained a lot
of interest in the literature [13–15]. In this setting, the eNB needs to determine in an efficient and timely
manner the assignment of RBs to the users of the network. The optimization objective of the RBs
assignment process could be the total throughput maximization, the interference mitigation [16,17], or
the spectral efficiency improvement.

The approaches above concern the traditional cellular networks, where the users communicate via
the eNB. Towards 5G networks and enabling the D2D communication capabilities of the users [18–20],
respective RB allocation approaches can be found in [21–23]. In [21] the importance of RB allocation
approaches in various and emerging network architectures is stressed via presenting different
approaches in LTE and LTE-Advanced networks. In [22] the authors propose scheduling algorithms
for the problem of RB allocation in D2D enabled networks taking into account each user’s delay
requirement. Here the eNB needs to determine the optimal assignment of resources to the users
at time scales of milliseconds according to 3rd Generation Partnership Project (3GPP) specifications
including devices that may communicate directly. In [23] the authors are proposing an efficient resource
allocation scheme in clustered D2D enabled networks.

Focusing on the uplink RB allocation problem for the D2D enabled networks most of the related
work is restricted to single cell environments [7–12], while very little attention has been paid so far
to the respective multi-cell case. Specifically, in [24,25] the D2D RB selection problem is analysed as
a game, in a simple scenario with one cellular user per cell. The players of the game are the BSs and
they compete with each other in order to serve the D2D users with less harm. However, the existence
of the Nash Equilibrium (NE) point of the game is not analytically proven, and it is only examined via
numerical simulations.

The previous works focus on maximizing the total sum of rates in the network via game theoretic
approaches and pricing for the resources. In [26], the authors address only the problem of RB allocation
in a D2D underlay multicell network, via formulating a potential game with the objective of optimizing
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the total sum of rates in the network. In [27] the problem of total throughput maximization for the
D2D users in a multicell D2D underlay cellular network is addressed under a Multiple Input Multiple
Output (MIMO) setting. In [28] the problem of both RB and power allocation is addressed. Initially, the
authors aim at minimizing the interference caused by the D2D links to the cellular links of the network,
and subsequently a power control approach is applied in order to maximize total system throughput.

1.2. Paper Contributions

In this paper, we address the joint problem of optimal RB and power allocation in the
uplink communication of multicell D2D enabled networks, where the optimization objective is the
minimization of the total interference of the network. Due to the inherent complexity of the nature of
the combined problem, a two step approach is followed. At the first step the RB allocation problem is
solved considering that all users of the network transmit at fixed power. At the second step, taking the
RB allocation vector of the first stage as an input, the total interference minimization problem is
decomposed into multiple interference minimization problems per available RB.

Specifically, at the first step the problem is formulated as a non-cooperative game which is proven
to be a bilateral symmetric interaction game. This type of games are exact potential games. Every player
of the game is one of the potential receivers of the system. The receiver of the network can be either
an eNB or a D2D receiver. The eNB is in charge of deciding the optimal RB assignment to the cellular
users who belong to the respective cell. The D2D receiver decides the optimal RB for the respective
D2D transmitter. Leveraging the highly desirable properties of potential games, we prove that at
least one NE of the game exists. A best response algorithm is proposed which converges after a finite
number of iterations to the identified NE point of the game.

It is noted that in our approach and methodology, in contrast to the majority of existing literature,
we do not restrict a priori the number of D2D pairs that can reuse a RB, allocated to a cellular link.
This is determined dynamically by the objective of interference minimization. Thus, a RB reserved
by a cellular link can be potentially reused multiple times by different D2D links in order to increase
spectrum efficiency.

During the second step of our approach each uplink power allocation problem per RB is
formulated as a linear programming problem. This optimization problem is shown that is equivalent
to the total power minimization problem for every available RB. For this reason, the well known
Foschini-Miljanic algorithm [29], which solves the total power minimization problem [30], is properly
adopted to solve our problem in a distributed way. This algorithm finds either a feasible solution or
pushes the users who cannot satisfy their SINR requirement to the maximum transmission power level
in order to achieve a SINR level as close as possible to their SINR requirement.

Finally, the efficiency of the overall proposed framework is evaluated through numerical
simulations, especially with respect to significantly decreasing the total power consumption in the
network, while increasing the network capacity in terms of number of users who are able to satisfy
their SINR requirement.

2. System Model

We consider a multicell D2D underlay cellular network, where L neighbouring cells co-exist.
The UEs and the eNBs are assumed to be equipped with a single omni-directional antenna. Each cell
contains two types of users, cellular users (CUs) and D2D users (DUs), where their communication
modes are assumed that have already been selected. The CUs communicate through the eNB of their
serving cell, while the DUs communicate directly to each other in pairs, where the DUs of every D2D
pair are adequately close to each other, thus forming a D2D link. The corresponding reference topology
is shown in Figure 1.
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Figure 1. System Model.

We assume that each cell has access to a fixed number of K RBs. Every cellular user of each cell
uses one of those RBs which are orthogonal to each other. This means that there is no interference
between cellular users of the same cell. The number of cellular users at each cell requesting a RB can
be variable from cell to cell. Considering that the set of cellular users of cell i will be requesting and
assigned a non-overlapping set of RBs, each cellular user of the same cell will occupy a different RB.
Apart from the cellular users, D2D users reside in the network and each of them has to decide which
RB to choose in order to transmit. The D2D users reuse one of the available K RBs at each cell. Multiple
D2D users may share the same RB with one cellular user in each cell. As mentioned before, RBs reuse
takes place between cellular users from different cells and between cellular and D2D users from the
same or different cell. In principle, a RB may be occupied simultaneously from only one cellular user
per eNB, and from multiple D2D users.

In this multicell D2D underlay architecture, in order to treat cellular and D2D users in
a homogeneous and holistic manner from RB allocation point of view, apart from the cellular cells i.e.,
eNBs, we consider the D2D receivers as virtual cells. Each D2D receiver can play the role of a (virtual)
cell, where the serving users of this cell is exactly one i.e., the D2D transmitter of the respective D2D
pair. From this point and on, when we refer to a cell, we may consider either the eNB of a cell or the
D2D receiver of the respective D2D pair (that is we refer to either the physical L neighbouring cells or
the considered virtual cells as defined above).

Let E be the set of all the cells (including the virtual ones) and |E| be its cardinality that represents
the number of the considered cells in the network. Let Vi be the set of users of cell i and let also K be
the set of the available RBs at cell i which a user u can use. We define the SINR at the receiver of every
user u of cell i, either cellular or D2D, using RB k, as follows:

γk
u =

Gi,k
u · Pk

u

∑
j 
=i

∑
v∈Vj

Gi,k
v · Pk

v + σ2
(1)

where u ∈ Vi, i.e., the set of users who belong to cell i, Gi,k
u denotes the channel gain between user u of

the cell i and the receiver-cell i at RB k, Pk
u is the transmission power of user u at RB k, Vj is the set of

users who belong to cell j, Gi,k
v is the channel gain between user v of the cell j and the receiver of cell i

at RB k, Pk
v is the transmission power of user v at RB k and σ2 refers to the thermal background noise

power at the receiver of each link.
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3. Problem Formulation

In the following, we formulate the problem of interference minimization in the joint space of RBs
and uplink transmission power.

minimize
S,P

E

∑
i=1

Ii (2)

subject to
K

∑
k=1

si(u, k) = 1 (2a)

0 ≤ Pu ≤ Pmax
u

⎫⎪⎪⎪⎬
⎪⎪⎪⎭∀u ∈ Vi, ∀i ∈ E (2b)

γu ≥ γtar
u (2c)

∑
u∈Vi

si(u, k) = 1, ∀k ∈ K, ∀i ∈ E (2d)

where

Ii = ∑
u∈Vi

K

∑
k=1

si(u, k)∑
j 
=i

∑
v∈Vj

sj(v, k) · Pv · Gi,k
v + σ2 (3)

is the total sensed interference from all users at cell i, caused by any other user of the other cells of the
system who share common RBs with the users of cell i and

si(u, k) =

{
1 if user u of cell i uses RB k

0 otherwise
(4)

User u belongs to cell i and user v belongs to cell j. Pu denotes the transmission power of user u
of the cell i at the chosen RB from user u. Since every user is assumed to use exactly one RB we can
omit the exponent k from Pk

u without disambiguation. Pmax
u is the maximum transmission power of

user u. γu is the SINR at the receiver of user u. Similarly the exponent k is omitted from γk
u. γtar

u is
a positive real number denoting the SINR requirement of user u.

S = {si}i=1,...,|E| and P = {Pu}u∈Vi ,i=1,...,|E|, where |E| is the number of the cells in the network.
The first Constraint (2a) concerns the fact that each user of each cell (either physical or virtual)

chooses exactly one RB. Constraints (2b) and (2c) concern the acceptable range of values for the
transmission power and SINR levels. The final Constraint (2d) is related to the orthogonality
requirement between users of the same cell. It is stressed here that based on the consideration
of the additional virtual cells, a D2D user belongs to the corresponding cell (which essentially is
a single user cell) and not to the physical cell that is placed within. In a nutshell, in order to solve the
aforementioned optimization problem we search for feasible combinations of RB and transmission
power assignments which minimize the total interference in the network.

The above problem is a mixed integer programming problem since some of the decision variables
are integer numbers and the rest of them i.e. transmission powers, continuous variables. This problem
is a combinatorial optimization problem and its complexity is known to be NP-hard [31]. For this
reason, we aim at efficient approximation algorithms to solve the problem. The proposed approach is
to solve the problem in two stages. In the first stage, we consider that all users have chosen a fixed
transmission power and we search for the optimal RB assignment. We propose a game theoretic
approach which solves the problem iteratively. At each iteration every player of the game makes
a decision regarding its RB which maximizes its utility function while simultaneously minimizes the
total interference in the network. After a finite number of iterations the algorithm converges to the
desirable NE point of the game. At the second stage, the problem of total interference minimization
can be decomposed to multiple interference minimization problems per RB. Certain number of users
share a RB and create interference one to another. Our goal is to determine users’ optimal transmission
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power allocation towards minimizing the total interference per RB while satisfying the minimum SINR
requirements of the respective users.

4. RB Allocation

4.1. RB Problem Formulation and Solution

In this subsection we describe the first stage of our proposed approach which concerns the RB
allocation. It is assumed that every user of the cell (either cellular or D2D) has a fixed transmission
power value. Thus the problem, expressed in Equation (2), may be simplified and take the
following form

minimize
S

E

∑
i=1

Ii (5)

subject to
K

∑
k=1

si(u, k) = 1, ∀u ∈ Vi, ∀i ∈ E (5a)

∑
u∈Vi

si(u, k) = 1, ∀k ∈ K, ∀i ∈ E (5b)

γu ≥ γtar
u , ∀u ∈ Vi, ∀i ∈ E (5c)

where Ii is defined as in Equation (3) and Pv has been assumed a fixed value for every v ∈ Vj and j ∈ E.
The above problem is a combinatorial optimization problem since the decision variables of the

problem i.e., the assignment matrices of each cell are integer. In the literature, efficient algorithms for
the exact solution of this type of problems do not exist. For this reason, we search for approximation
algorithms which provide suboptimal solutions in a time efficient manner.

For this problem, our idea is to model it, as an exact potential game. The players of this game will
be the cells—either physical or virtual (D2D)—of the system and the strategies will be the assignment
matrices of the cells. Formally, we define the game

G = {N, S, U} (6)

where

• N is the set of the players of the game G, N = E, i.e., the set of the receivers in the system—either
the eNBs or the D2D receivers,

• S denotes the set of the strategies of the players, S = {si}i=1,...,|N| i.e., the set of the assignment
matrices of each cell-receiver, si, defined in Equation (4) and

• U denotes the set of the utility functions of the players of the game G.

The utility function Ui of the player i is defined as follows:

Ui(si, s−i) = −Ii(si, s−i)− Ic
i (si, s−i) (7)

where Ii(si, s−i) is defined in Equation (3) and repeated here for clarity reasons

Ii = ∑
u∈Vi

K

∑
k=1

si(u, k)∑
j 
=i

∑
v∈Vj

sj(v, k) · Pv · Gi,k
v + σ2

Ic
i (si, s−i) is defined as follows

Ic
i (si, s−i) = ∑

u∈Vi

K

∑
k=1

si(u, k) · Pu ∑
j 
=i

∑
v∈Vj

sj(v, k) · Gj,k
u + σ2 (8)
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Ic
i (si, s−i) denotes the total interference caused by all users of cell i to all other cells using at least one

common RB with cell i.

Theorem 1. Game G is a bilateral symmetric interaction game [32].

Proof of Theorem 1. A bilateral symmetric interaction game has the following form
B = {N, S, U}, where

Ui(si, s−i) = ∑
j 
=i

wi,j(si, sj), ∀i ∈ N (9)

and

wi,j(si, sj) = wj,i(sj, si), ∀i 
= j (10)

where wi,j : Si × Sj → R.
The utility function of the player i of the game G, defined in Equation (7), can be mapped to the

utility function defined in Equation (9), if wi,j(si, sj) = − ∑
u∈Vi

K
∑

k=1
si(u, k) ∑

v∈Vj

sj(v, k)(PvGi,k
v + PuGj,k

u ) +

σ2. It is observed that the bilateral symmetric property of Equation (10) also holds.

Bilateral symmetric interaction games exhibit certain desirable properties since they are exact
potential games. The potential function of the game G according to [32] is the following:

Pot(si, s−i) = ∑
i∈N

∑
j∈N,j<i

wi,j(si, sj) = − ∑
i∈N

∑
j∈N,j<i

∑
u∈Vi

K

∑
k=1

si(u, k) · ∑
v∈Vj

sj(v, k)(PvGi,k
v + PuGj,k

u ) (11)

We observe that there is a symmetry between the interactions of one player i and another player j.
This holds, because the total interference sensed and caused by the users of cell i to the cell j is equal to
the respective interference from the users of cell j to the cell i. We characterize as a non overlapping set
of users, the users who are allocated orthogonal RBs. The interference sensed by a non overlapping set
of users of the cell i, due to the cell j, is the total interference that a non overlapping set of users of the
cell j create to the cell i. The inverse is also true.

Since the game G is an exact potential game, this means that this game has at least one NE point
and this NE point is a local optimum of the potential function defined in Equation (11). The potential
function, defined in Equation (11), can be easily proven (change of variables i and j for the second
term) that it coincides with minus the total interference sensed by every cell in the network. Thus,
every NE point of the game G is a local minimum of the total interference.

4.2. RB Allocation Iterative Algorithm

In this subsection, we will present a best response algorithm which is proven to converge after
a finite number of iterations to one of the NEs of the game G. We consider that initially all players
of the game, i.e., the cells, have chosen an initial RB assignment for all users who reside inside them.
Below the respective algorithm is presented.

In Algorithm 1, every player of the game, i.e., each cell acts in a sequential order. This assures
that Algorithm 1 will converge to the NE of the game i.e., minimum of the total interference after
a finite number of iterations. It chooses the optimal RB assignment to its users, based on the equation
of Line 4 in the Algorithm 1. All other users are considered that they have already chosen a RB
assignment to their users and then the current cell according to Line 4 chooses the new optimal RB
assignment for its users. This step is repeated until all players of the game conclude to a common RB
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assignment for all users of the network.

Algorithm 1: RB allocation
1: Counter r = 0, Converged = false, ite(i) = 0 ∀i ∈ N
2: for all cells do

3: if Converged == f alse then

4: si(ite + 1) = arg maxsi Ui(si(ite(i)), s−i(ite(−i)))
5: if si(ite(i) + 1) == si(ite(i)) then

6: r = r + 1
7: else

8: r = 0
9: end if

10: ite(i) = ite(i) + 1
11: if r == |N| − 1 then

12: Converged = true
13: end if
14: end if
15: end for

More precisely, from Equation (7) and considering that all other cells, apart from cell i, have chosen
RB assignment the decision problem of cell i takes the following form:

maximize
S

Ui(si, s−i) = − ∑
u∈Vi

K

∑
k=1

si(u, k)bi(u, k) (12)

subject to
K

∑
k=1

si(u, k) = 1, ∀u ∈ Vi (12a)

∑
u∈Vi

si(u, k) = 1, ∀k ∈ K (12b)

where
bi(u, k) = ∑

j 
=i
∑

v∈Vj

sj(v, k)(PvGi,k
v + PuGj,k

u ) (13)

and u ∈ Vi.
Problem (12) is an integer linear programming problem and even the relaxed version of it always

has an integer optimal value since the constraint matrix is totally unimodular. This problem can be
solved via the well known Hungarian algorithm [33] in polynomial time with respect to the number of
the available RBs at each cell. Leveraging the potential game properties, Algorithm 1 converges after
a finite number of iterations. Moreover, at each step, Algorithm 1 improves not only the utility function
of each cell but also the potential function of the game i.e., the total interference. After a finite number
of iterations, a RB assignment is selected which minimizes the total interference of the network.

In order for Algorithm 1 to be practically implementable, there is a need for a communication
control channel between the different cells i.e., the eNBs and the D2D cells. This control channel
will carry the necessary information in order for the cells to execute Algorithm 1. For the case of
eNBs, this can be done using the X2 interface [34] which has been already designed to implement
this type of communication between the eNBs in LTE networks. For the D2D cells it can be assumed
that there is a control channel between the D2D receivers and the respective serving eNB they
reside in [19]. The complexity of Algorithm 1 belongs to the class of Polynomial local search (PLS)
problems [35]. At each step, each eNB runs the Hungarian algorithm in order to update its RB
assignment. The complexity of the Hungarian algorithm is O(K3) with respect to the number of the
available RBs. For the D2D cells the complexity of the update step is O(K) since the number of served
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users is only one i.e., the respective D2D transmitter. The convergence of the above algorithm is
guaranteed but not necessarily in polynomial time. However, at every step of the Algorithm 1 the total
interference is being reduced. As it will be seen in Section 6.1.1 the required number of iterations for
convergence was quite low with respect to the number of players involved. By applying Algorithm 1,
we will obtain a RB assignment for all cells of the network which minimizes the total interference in
the network.

5. Power Control

In this section, we present the second stage of our approach for the power control problem in
multicell D2D underlay network architectures, considering that the RBs have already been assigned
to the cellular and the D2D users according to the output of the first stage of our approach. Thus,
capitalizing on the outcome of the RB allocation approach, Problem (2) takes the following form:

minimize
P

E

∑
i=1

Ii (14)

subject to 0 ≤ Pu ≤ Pmax
u (14a)}

∀u ∈ Vi, ∀i ∈ E
γu ≥ γtar

u (14b)

All cells have already chosen their RB assignment matrices and thus Problem (14) can be
decomposed to multiple optimization problems per available RB since we assume that there is no
interference between different RBs due to their orthogonality. Problem (14) is equivalent to multiple
interference minimization problems per RB k. Then each problem for every RB k can be written as:

minimize
P

∑
i∈Rk

∑
j∈Rk ,
j 
=i

Gi,k
v Pv + σ2 (15)

subject to 0 ≤ Pv ≤ Pmax
v (15a)}

∀j ∈ Rk, ∀v ∈ Vj
γv ≥ γtar

v (15b)

Rk is the set of cells who occupy RB k and v the user of cell j who occupies RB k. There is no other user
who uses the same RB at the same cell since we assume orthogonality of the available RBs. Let Pv be
the transmission power of the the user v of cell j who uses RB k.

The objective is to minimize total interference at every RB k under the constraints of feasible
transmission power and SINR requirement satisfaction of the users. Problem (15) is a typical linear
programming problem. Thus, if this problem has a feasible solution this lies at the point of intersection
of the Constraints (15a) and (15b). The gradient of the objective function shows the direction of the
optimal change of the objective Function with respect to the independent variables of the problem i.e.,
transmission powers of the users sharing RB k. The gradient of the objective Function (15) is positive
with respect to the transmission power of every user of each cell who uses common RB k. Thus,
the minimum power which satisfies all Conditions (15a) and (15b) is the optimal feasible solution
which minimizes the objective function of Problem (15).

The gradient of the objective function of Problem (15) has the same sign to the total power
minimization problem under the same SINR and transmission power constraints. For the problem
of total power minimization, as it is already known from the literature [29], there is a distributed
algorithm which converges to the optimal solution, if this solution is feasible i.e., satisfies
Constraints (15a) and (15b). Thus, by applying this algorithm to Problem (15), we can find the required
optimal solution.

Let Pinit be the initial transmission power vector of all users of the network. This is a fixed
transmission power vector which could be the maximum transmission power value for each user of the
network. At Line 4 of Algorithm 2, each user updates its current power in a parallel fashion. After the
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execution of this step, a coordination mechanism is needed in order to check the power convergence of
each user.

Algorithm 2: Distributed Power Control per RB k
1: Counter t = 0, Converged = f alse, P(0) = Pinit
2: if Converged == f alse then

3: for all i ∈ Rk do

4: Pu(t + 1) = min
{

γtar
u

γu(t)Pu(t)
, Pmax

u

}
, u ∈ Vi, si(u, k) = 1

5: end for
6: if Pui (t + 1) == Pui (t) ∀i ∈ Rk then

7: Converged = true
8: end if
9: t = t + 1

10: end if

6. Performance Evaluation

In this section, we provide a series of numerical results evaluating the operational features and the
performance of the proposed approach. Initially, in Section 6.1, we focus on the operation performance
achievements of our proposed methodology, in terms of interference, uplink transmission power and
achievable data rate. The achievable performance and contribution of the proposed RB allocation
process (i.e., first step) is examined and evaluated in Section 6.1.1, while subsequently in Section 6.1.2
the additional benefits obtained by the second stage of our approach (i.e., power control) are studied
and its fast convergence to the final optimal power values is shown. Then, in Section 6.2 we provide
a comparative evaluation of our proposed approach against another existing approach in the recent
literature that targets rate maximization [26], through the efficient resource allocation in a multi-cell
network supporting D2D communication. The aforementioned approaches are thoroughly compared
in order to illustrate the obtained gain of our proposed approach in terms of uplink transmission
power required to meet the users’ SINR requirements, number of users that can be supported by each
approach (i.e., users that their SINR meets or exceeds the pre-specified threshold), rate and interference.
It should be noted that unless otherwise is explicitly mentioned, the majority of the numerical results
is the statistical average outcome of several random topologies with respect to the distribution of the
cellular and D2D users within each cell.

6.1. Proposed Approach Properties and Operation

6.1.1. RB Allocation

In this subsection, the effectiveness and efficiency of the first step of our approach i.e., Algorithm 1
is shown. The simulation setup and the corresponding parameters considered are shown in Table 1.

Table 1. Simulation Setup.

Parameters Values

Number of evolved NodeBs (eNBs) 3
Number of available Resource Blocks (RBs) per eNB 10

Number of Device to Device (D2D) cells per eNB 16
Number of cellular users per eNB 8

Cellular Cell Radius 300 m
D2D Cell Radius 30 m

Channel Gains Loss Exponent 3
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We consider an initial random RB assignment to all users of all cells (both cellular and D2D
users) of the network, where each user is assumed to use exactly one RB. Cellular users of the same
cell use different RBs in order to satisfy the orthogonality requirement for every cell. The channel

gains between a user u of cell i and the receiver at cell j is computed as Gj
ui =

1
/
(dj

ui )
3. In Figure 2,

the specific topology under consideration in this experiment along with the initial RB assignment is
presented. The corresponding numbers represent the RB assigned to the respective users, therefore
this figure practically shows a graphical representation of the reuse of each RB. In Figures 2 and 3,
the numbers without the special character ’ refer to cellular users while the numbers followed by ’
refer to D2D users.
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Figure 2. Topology of the initial Resource Block (RB) allocation.
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Figure 3. Topology of the final RB allocation.
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Similarly, in Figure 3, the final RB allocation as the outcome of the application of the first step of
our approach (i.e., Algorithm 1) to all users of the network is shown. It is clearly demonstrated that
the RB reuse efficiency has been significantly improved. Specifically, considering as metric of such
efficiency the achieved reuse distance of a common RB—denoting the distance between a transmitter
and a different D2D receiver who share the same RB—it is observed that the reuse distance of all RBs
increases drastically. Precisely, the average minimum reuse distance of every RB, before the application
of Algorithm 1, was approximately 15 m and after the application of Algorithm 1 it increases to
approximately 35 m, corresponding to an improvement of 133%.

In Figure 4, the evolution of the total interference in the network is demonstrated with respect
to the number of iterations needed for Algorithm 1 to converge. It is shown that Algorithm 1 always
reduces the total interference after each step of its execution. This also verifies experimentally the
respective theoretical property of potential games [32], as the one considered in this paper. The required
number of iterations for convergence was quite low with respect to the total number of players of the
game. Precisely, the required number was about 3–4 times the total number of players involved in
the game. The total interference reduction compared to the corresponding value based on the initial
random allocation is approximately 80%. It is noted that we have also verified experimentally that
Algorithm 1 converges to a stable outcome under any initial RB allocation, while the range of the
optimal values of the total interference was within 5% difference of the observed maximum value.
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Figure 4. Total Interference Evolution.

Subsequently, in Figure 5, we show the average interference reduction for every user of the
network after the application of Algorithm 1. For clarity reasons, it is mentioned that users 1–24 in all
figures represent cellular users, while the users 25 and beyond represent D2D users.
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Figure 5. Interference before and after the application of Algorithm 1.

Based on these results, we observe that Algorithm 1 achieves a significant reduction to the
interference, sensed at every user of the network. Precisely, the mean interference reduction is on
average 93%. This in turn can be translated to significant improvements in the achievable transmission
rate as well, as it is observed in Figure 6, where the achieved transmission rate per used bandwidth
unit (i.e., spectral efficiency) is shown for every user of the network. The mean rate increase with
respect to the initial achievable transmission rate is calculated at approximately 34% .
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Figure 6. Rate per Hertz before and after the application of Algorithm 1.

6.1.2. Power Allocation

In this subsection, the second step of our approach i.e. the power allocation Algorithm 2 is
evaluated. After the application of Algorithm 1, a RB selection for all users of the network is obtained.
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Then as explained before, we apply Algorithm 2 for every co-sharing RB. The simulation setup for this
section of our experimentation is the same as presented in Table 1. It is noted that in principle users may
have different SINR requirements depending on the type of service they request. For demonstration
only purposes in the set of results presented here, we have assumed a common SINR requirement for
all users of the network equal to 10. Algorithm 2 instructs users who share a common RB to act in
a parallel fashion. The convergence of Algorithm 2 takes place after a quite low number of iterations.
All users start from an initial power allocation which is their maximum transmission power. This is
considered to be 2 watts for the cellular users and 0.1 watts for the D2D users. During the convergence
process of Algorithm 2, each user tries to find the minimum necessary transmission power in order to
satisfy his SINR requirement. In case this is not found, it transmits at his maximum power.

In Figure 7, the transmit power convergence is shown for a randomly selected RB, that is RB 6.
It is shown that all users of the network who share RB 6 converge to their desired transmission power
values. All users of this RB either meet or exceed their SINR requirement. The transmit power radically
reduces for all users, and as a result the total power consumption decreases by 57% with respect
to the initial power values. Moreover the average number of users, throughout the whole network,
who satisfy their SINR requirement increases from 29.15 to 55.35 after the application of Algorithm 1
corresponding to an increase of approximately 90%, and finally to 61.19 users after the combined
application of Algorithms 1 and 2, raising this improvement to 110% in total.
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Figure 7. Transmit Power Convergence for a random RB.

6.2. Comparative Results

In this subsection our proposed approach is compared against a state of the art approach in
the recent literature [26]. The latter concerns the RB allocation in a multicell D2D underlay network,
with the objective of optimizing the total sum of transmission rates of all users of the network,
through an approximate better response algorithm under a potential game formulation. In the
following, we refer to this approach as Rate Max approach.

The comparative process and evaluation is performed in a gradual manner in order to clearly
demonstrate and quantify the benefits obtained by the application of each step of our approach,
while maintaining fairness in the comparisons. Our approach aims at total interference minimization
while the approach of [26] aims at throughput maximization in the RB allocations space. The first step
of our approach i.e., Algorithm 1 achieves on average better results with respect to the interference at
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the receiver of each user compared to [26]. This gives the users the opportunity as it will be shown next,
by applying Algorithm 2 to transmit at lower levels on average while a larger number of them satisfies
their SINR requirements. Specifically, the following four scenarios are considered and compared:

• the application of only Algorithm 1 i.e., our proposed algorithm for the RB allocation phase of
the problem

• the application of approach [26] for the RB allocation phase of the problem
• the combined application of Algorithms 1 and 2
• the combined application of approach [26] and Algorithm 2 of our approach (for power control).

In this subsection, the above approaches are tested and evaluated under the simulation setup
used in previous Section 6.1.2, that is the one presented in Table 1 with the SINR requirement equal
to 10. As mentioned before, all the numerical results presented in the following refer to statistical
average values, as they are obtained by several repetitions of the simulation, with the locations of
the cellular and D2D users varying uniformly and randomly in the network topology. The combined
application concerns the sequential application of a RB allocation approach and then the application of
our proposed power control approach (i.e., Algorithm 2).

In Figure 8, the first step of our approach i.e. Algorithm 1 is compared directly to approach
[26] in terms of observed interference. As clearly indicated by the corresponding results Algorithm 1
achieves a considerable interference reduction compared to [26]. Specifically, the average reduction of
our approach with respect to [26] is calculated as approximately 50% per user. It should be clarified
that this value refers to the net value of interference, while the vertical axis of Figure 8 is expressed
in decibel Watts (dBWatts). It can be seen that the largest benefit concerns the cellular users, where
the respective reduction is almost 80%. In Figure 9, the respective transmission rates per Hertz for
each user are shown. It can be seen that although Algorithm 1 targets at interference minimization,
under fixed transmission power obtains comparable to [26] performance with respect to the achievable
transmission rate.

0 10 20 30 40 50 60 70 80
−75

−70

−65

−60

−55

−50

−45

−40

−35

−30

−25

Users

In
te

rf
er

en
ce

 (
dB

W
at

ts
)

 

 

Initial
Algorithm 1
Rate Max

Figure 8. Comparison of interference (initial, Algorithm 1, Rate Max [26]).
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Figure 9. Comparison of Rate per Hertz (initial, Algorithm 1, Rate Max [26]).

By applying Algorithm 2 after the execution of Algorithm 1 and approach [26] respectively,
we compare and analyse the averaging results with respect to the transmission power and the
number of users satisfying their SINR requirements. In Figure 10, it is demonstrated that the required
transmission power under our proposed approach reduces radically, i.e., by 70% on average with
respect to the initial transmission power values and by 30% with respect to the combined approach
(Rate Max + Algorithm 2). Lastly, the number of users in the system who are able to satisfy their SINR
requirement also increases following both approaches, with our approach outperforming by 12% the
(Rate Max + Algorithm 2) (Figure 11).
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Figure 11. Average number of satisfied users (in terms of Signal to Interference and Noise Ratio (SINR)
requirement) after each stage of the Resource Block (RB) and power allocation procedure.

Similarly in Figure 12, the total number of users who satisfy their SINR requirements as a function
of increasing number of D2D users per eNB is presented. It is clearly observed that our approach
sustains its significant capacity improvement in terms of number of users that can be supported by the
network resources even both for low and high density networks (i.e., increasing number of D2D users
per eNB).
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Figure 12. Average number of satisfied users (in terms of SINR requirement) for the combined
approaches, for increasing number of Device to Device (D2D) users per evolved NodeB (eNB).
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7. Conclusions

In this paper, the problem of interference mitigation in a multi-cell D2D underlay cellular network
is addressed. To deal with the complexity introduced by the multiple cell environment and the
existence of D2D users, a two step approach has been proposed and adopted. As the first step, the
RB allocation problem is solved by formulating it as a non-cooperative game which is proven to be
a bilateral symmetric interaction game. We show that at least one NE of the game exists and a best
response algorithm is introduced which converges after a finite number of iterations to the identified
NE point of the game. Subsequently, at the second step the total interference minimization problem is
decomposed into multiple interference minimization problems per available RB, and power control
is applied by each user in a distributed manner in order to identify the lowest required transmission
power to satisfy its SINR, if possible. Extensive numerical results are presented that verify several
properties and operational characteristics of our proposed approach. Specifically it is demonstrated that
our proposed approach manages to reduce significantly the total interference in the network as well as
the interference at the receiver of every user, either cellular or D2D. Furthermore, by comparing our
approach to another existing approach in the recent literature that targets rate maximization, it is shown
that though our approach targets interference minimization, it still obtains comparable performance
in terms of total throughput, and as a consequence significant spectral efficiency improvement is
finally achieved. This enhanced performance translates directly to system capacity increase in terms of
number of users that can be supported by the network resources and transmission power reduction.
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Abstract: Device-to-device (D2D) communication is an essential feature for the future cellular
networks as it increases spectrum efficiency by reusing resources between cellular and D2D users.
However, the performance of the overall system can degrade if there is no proper control over
interferences produced by the D2D users. Efficient resource allocation among D2D User equipments
(UE) in a cellular network is desirable since it helps to provide a suitable interference management
system. In this paper, we propose a cooperative reinforcement learning algorithm for adaptive
resource allocation, which contributes to improving system throughput. In order to avoid selfish
devices, which try to increase the throughput independently, we consider cooperation between
devices as promising approach to significantly improve the overall system throughput. We impose
cooperation by sharing the value function/learned policies between devices and incorporating
a neighboring factor. We incorporate the set of states with the appropriate number of system-defined
variables, which increases the observation space and consequently improves the accuracy of
the learning algorithm. Finally, we compare our work with existing distributed reinforcement
learning and random allocation of resources. Simulation results show that the proposed resource
allocation algorithm outperforms both existing methods while varying the number of D2D users and
transmission power in terms of overall system throughput, as well as D2D throughput by proper
Resource block (RB)-power level combination with fairness measure and improving the Quality of
service (QoS) by efficient controlling of the interference level.

Keywords: device-to-device communication; throughput-awareness; cooperative reinforcement
learning; system throughput; interference management; adaptive resource allocation

1. Introduction

Device-to-device (D2D) communication is a nascent feature for the Long term evolution advanced
(LTE-Advanced) systems. D2D communication can operate in centralized, i.e., Base station (BS)
controlled mode, and decentralized mode, i.e., without a BS [1]. Unlike the traditional cellular network
where Cellular users (CU) communicate through the base station, D2D allows direct communication
between users by reusing the available radio resources. Consequently, D2D communication can
provide improved system throughput and reduced traffic load to the BS. However, D2D devices
generate interferences while reusing the resources [2,3]. Efficient resource allocation play a vital role in
reducing the interference level, which positively impacts the overall system throughput. Fine tuning of
power allocation on Resource blocks (RB) has consequences on interference, i.e., a higher transmission

Future Internet 2017, 9, 72 87 www.mdpi.com/journal/futureinternet

Bo
ok
s

M
DP
I



Future Internet 2017, 9, 72

power can increase D2D throughput; however, it increases the interference level as well. Therefore,
choosing the proper level of transmission power for RBs is a key research issue in D2D communication,
which calls for adaptive power allocation methods.

Resource allocators, i.e., D2D transmitters in our system model as described in Section 3 need
to perform a particular action at each time step based on the application demand. For example,
actions can be selecting power level options for a particular RB [4]. Random power allocation is not
suitable in a D2D communication due to its dynamic nature in terms of signal quality, interferences
and limited battery capacity [5]. Scheduling of these actions associated with different levels of power
helps to allocate the resources in such a way that the overall system throughput is increased and
an acceptable level of interference is maintained. However, this is hard to maintain, and therefore,
we need an algorithm for learning the scheduling of actions adaptively, which helps to improve the
overall system throughput with fairness and the minimum level of interferences.

To illustrate the problem, Figure 1 shows a basic single cell scenario with one Cellular user (CU),
two D2D pairs and one base station having two resource blocks operating in an underlay mode. D2D
devices contend for resource blocks for reusing. Here, RB1 is allocated to the cellular user. D2D pair
Tx and D2D pair Rx are assigned RB2. Now, D2D candidate Tx and D2D candidate Rx will contend
for the resources either for RB1 or for RB2 to access. If we allocate RB1 to a D2D pair closer to the BS,
there will be high interference between the D2D pair and the cellular user. So, RB1 should be allocated
to the D2D candidate Tx which is closer to the cell edge (d2 > d3). For reusing the RB1, there will be
interferences. Our goal is to propose an adaptive learning algorithm for selecting the proper level of
power for the RB to minimize the level of interferences and maximize the throughput of the system.

Figure 1. Device-to-device (D2D) communication in a cellular network. RB1 and RB2 resource allocated
to the Cellular User equipments (UE) and the D2D pair TX-D2D pair Rx, respectively. D2D candidate
Tx-D2D candidate Rx has joined the network, it will contend for the resources, i.e., either reusing RB1
or RB2.

In contrast with existing works, our proposed algorithm helps to learn the proper action selection
for resource allocation. We consider reinforcement learning with the cooperation between users by
sharing the value function and incorporating a neighboring factor. In addition, we consider a set of
states based on system variables which have an impact on the overall QoS of the system. Moreover,
we consider both cross-tier interference (interference that the BS receives from D2D transmitter and
that the D2D receivers receive from cellular users) and cotier interference (that the D2D receivers
receive from D2D transmitters) [6]. To the best of our knowledge, this is the first work that considers
all the above aspects for adaptive resource allocation in D2D communications.

The main contributions of this work can be stated as follows:

• We propose an adaptive and cooperative reinforcement learning algorithm to improve achievable
system throughput as well as D2D throughput simultaneously. The cooperation is performed
by sharing the value function between devices and imposing the neighboring factor in our
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learning algorithm. A set of actions is considered based on the level of transmission power
for a particular Resource block (RB). Further, a set of states is defined considering the
appropriate number of system-defined variables. In addition, the reward function is composed of
Signal-to-noise-plus-interference ratio (SINR) and the channel gains (between the base station
and user, and also between users). Moreover, our proposed reinforcement learning algorithm is
an on-policy learning algorithm which considers both exploitation and exploration. This action
selection strategy helps to learn the best action to execute, which has a positive impact on selecting
the proper level of power allocation to resource blocks. Consequently, this method shows better
performance regarding overall system throughput.

• We perform realistic throughput evaluation of the proposed algorithm while varying the
transmission power and the number of D2D users. We compare our method with existing
distributed reinforcement learning and random allocation of resources in terms of D2D and system
throughput considering the system model where Resource block (RB)-power level combination
is used for resource allocation. Moreover, we consider fairness among D2D pairs by computing
a fairness index which shows that our proposed algorithm achieves balance among D2D users
throughput.

The rest of the paper is organized as follows. Section 2 describes the related works. This is
followed by the system model in Section 3. The proposed cooperative reinforcement learning based
resource allocation algorithm is described in Section 4. Section 5 presents the simulation results.
Section 6 concludes the paper with future works.

2. Related Works

Recent advances in Reinforcement learning (RL) create a broad scope of adaptive applications to
apply. Resource allocation in D2D communication is such an application. Here, we describe at first
some classical approaches [7–16] followed by existing RL-based resource allocation algorithms [17,18].

In [7], an efficient resource allocation technique for multiple D2D pairs is proposed considering
the maximization of system throughput. By exploring the relationship between the number of Resource
blocks (RB) per D2D pair and the maximum power constraint for each D2D pair, a sub-optimal solution
is proposed to achieve higher system throughput. However, the interference among D2D pairs is not
considered. Local water filling algorithm (LWFA) is used for each D2D pair which is computationally
expensive. Feng et al. [8] introduce a resource allocation technique by maintaining the QoS of cellular
users and D2D pairs simultaneously to enhance the system performance. A three-step scheme is
proposed where the system performs admission control at first and then allocates the power to each
D2D pair and its potential Cellular user (CU). A maximum weight bipartite Matching based scheme
(MBS) is proposed to select a suitable CU partner for each D2D pair where the system throughput is
maximized. However, this work basically focuses on suitable CU selection for the resource sharing
where adaptive power allocation is not considered. In [9], a centralized heuristic approach is proposed
where the resources of cellular users and D2D pairs are synchronized considering the interference link
gain from D2D transmitter to the BS. They formulate the problem of radio resource allocation to the
D2D communication as a Mixed integer nonlinear programming (MINLP). However, MINLP is hard
to solve and the adaptive power control mechanism is not considered. Zhao et al. [10] propose a joint
mode selection and resource allocation method for the D2D links to enhance the system sum-rate.
They formulate the problem to maximize the throughput with SINR and power constraints for both
D2D links and cellular users. They propose a Coalition formation game (CFG) with transferable utility
to solve the problem. However, they do not consider the adaptive power allocation problem. In [11],
Min et al. propose a Restricted interference region (RIR) where cellular users and D2D users can not
coexist. By adjusting the size of the restricted interference region, they propose the interference control
mechanism in a way that the D2D throughput is increased over time. In [12], the authors consider the
target rate of cellular users for maximizing the system throughput. Their proposed method shows
better results in terms of system interference. However, their work also focuses on the region control
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for the interference. They do not consider the adaptive resource allocation for maximizing the system
throughput. A common limitation to the works as mentioned above is that they are fully centralized,
which requires full knowledge of the link state information that produces redundant information over
the network.

In addition to above-mentioned works, Hajiaghajani et al. [13] propose a heuristic resource
allocation method. They design an adaptive interference restricted region for the multiple D2D pairs.
In their proposed region, multiple D2D pairs share the resources where the system throughput is
increased. However, their proposed method is not adaptive regarding power allocation to the users.
In [14], the authors propose a two-phase optimization algorithm for the adaptive resource allocation
which provides better results for system throughput. They propose Lagrangian dual decomposition
(LDD) which is computationally complex.

Wang et al. [15] propose a Joint scheduling (JS) and resource allocation for the D2D underlay
communication where the average D2D throughput can be improved. Here, the channel assigned to
the cellular users is reused by only one D2D pair and the cotier interference is not considered. In [16],
Yin et al. propose a distributed resource allocation method where minimum rates of cellular users
and D2D pairs are maintained. A Game theoretic algorithm (GTA) is proposed for minimizing the
interferences among D2D pairs. However, this approach provides low spectral efficiency.

With regards to machine learning for resource allocation in D2D communication, there are only
few works, e.g., [17,18]. Luo et al. [17] and Nie et al. [18] exploit machine learning algorithms for D2D
resource allocation. Luo et al. [17] propose Distributed reinforcement learning (DIRL), Q-learning
algorithm for resource allocation which improves the overall system performance in comparison to
the random allocator. However, the model of Reinforcement learning (RL) is not well structured.
For example, the set of states and a set of actions are not adequately designed. Their reward function
is composed of only Signal to interference plus noise power ratio (SINR) metric. The channel gain
between the base station and the user, and also the channel gain between users are not considered.
This is a drawback since channel gains are important to consider as these help the D2D communication
with better SINR level and transmission power, which is reflected in increased system throughput [19].

Recently, Nie et al. [18] propose Distributed reinforcement learning (DIRL), Q-learning to solve
the power control problem in underlay mode. In addition, they explore the optimal power allocation
which helps to maintain the overall system capacity. However, this preliminary study has limitations,
for example, in their reward function, the channel gains are not considered. In addition, in their
system model only the transmit power level is considered for maximizing the system throughput.
To consider RB/subcarrier allocation in the optimization function is a very important issue for
mitigating interference [20]. Moreover, the cooperation between devices for resource allocation is
not investigated in these existing works. A summary of the features and limitations of classical and
RL-based allocation methods is given in Table 1.

We propose adaptive resource allocation using Cooperative reinforcement learning (CRL)
considering the neighboring factor, improved state space, and a reward function. Our proposed
resource allocation method helps to provide mitigated interference level, D2D throughput and
consequently an overall improved system throughput.

Table 1 shows the comparison of all the above mentioned works with our proposed cooperative
reinforcement learning. Firstly, we categorize the related methods in two types: classical D2D
resource allocation methods and Reinforcement learning (RL) based D2D resource allocation methods.
We compare these works based on D2D throughput, system throughput, transmission alignment,
online task scheduling for resource allocation, and cooperation. We can observe that almost all
the methods consider the D2D and system throughput. None of the existing methods for resource
allocation consider the transmission alignment, online action scheduling, and cooperation for the
adaptive resource allocation.
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Table 1. Comparison of existing methods with the proposed cooperative reinforcement learning.

Methods References
D2D System Transmission Action

Cooperation
Throughput Throughput Alignment Scheduling

Classical approaches

LWFA [7] Yes Yes No N/A No
MBS [8] Yes Yes No N/A No

MINLP [9] Yes No No N/A No
CFG [10] Yes No No N/A No
RIR [11] Yes No No N/A No
RIR [12] Yes No No N/A No
RIR [13] Yes No No N/A No
LDD [14] Yes No No N/A No

JS [15] Yes Yes No N/A No
GTA [16] Yes Yes No N/A No

RL based method DIRL [17] Yes No No No No
DIRL [18] No Yes No No No

Proposed method Cooperative RL Yes Yes Yes Yes Yes

3. System Model

We consider a network that consists of one Base station (BS) and a set of C̆ Cellular users (CU),
i.e., C̆ = {1, 2, 3, . . . , C}. There are also D̆ D2D pairs, D̆ = {1, 2, 3, . . . , D} coexist with the cellular
users within the coverage of BS. In a particular D2D pair, dT and dR are the D2D transmitter and
D2D receiver respectively. The set of User equipments (UE) in the network is given by UE = {C̆ ∪ D̆}.
Each D2D transmitter dT selects an available Resource block (RB) r from the set RB = {1, 2, 3, . . . , R}.
In addition, underlay D2D transmitters select the transmit power from a finite set of power levels, i.e.,
pr = (p1

r , p2
r , . . . , pR

r ). Each D2D transmitter should select resources, i.e., RB-power level combination
refers to transmission alignment [21].

For each RB r ∈ R, there is a predefined threshold I(r)th for maximum aggregated interference.

We consider that the value of I(r)th is known to the transmitters using the feedback control channels.
An underlay transmitter uses a particular transmission alignment in a way that the cross-tier
interference should be within the threshold limit. According to our proposed system model, only one
CU can be served by one RB where D2D users can reuse the same RB to improve the spectrum
efficiency.

For each transmitter dT , the transmit power over the RBs is determined by the vector
pr = [p1

r , p2
r , . . . , pR

r ]
T where pr ≥ 0 denotes the transmit power level of transmitter over resource

block r. If RB is not allocated to the transmitter then the power level pr = 0. As we assume that each
transmitter selects only one RB where only one entity in the power level pr 
= 0.

Signal-to-interference-plus-noise-ratio (SINR) can be treated as an important factor to measure
the link quality. The received SINR for any D2D receiver over rth RB as follows:

γDu
r =

pDu
r .Guu

Du,r

σ2 + pc
r .Gcu

r + ∑v 
=u
v∈Dr

pdv
r .Guv

Dv,r

(1)

where pDu
r and pc

r denote the uth D2D user and cellular user uplink transmission power on rth RB,
respectively. pDu

r ≤ Pmax, ∀u ∈ D where Pmax is the upper bound of each D2D user’s transmit power.
σ2 is the noise variance [9].

Guu
Du,r

, Guv
Dv,r

and Gcu
r are the channel gains in the uth D2D link, the channel gain from D2D

transmitter u to receiver v, and the channel gain from cellular transmitter c to receiver u, respectively.
Dr is a D2D pairs set sharing the rth RB.

The SINR of a cellular user c ∈ C̆ on the rth RB is

γc
r =

pc
r .Gc,r

σ2 + ∑v∈Dr pdv
r Gv,r

(2)
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where Gc,r and Gv,r indicate the channel gains on the rth RB from BS to cellular user c and vth D2D
transmitter, respectively.

The total path-loss which includes the antenna gain between BS and the user u is:

PLdB,B,u(.) = LdB(d) + log10(Xu)− AdB(θ) (3)

where LdB(d) is the pathloss between a BS and the user at a distance d meter. Xu is the log-normal
shadow path-loss of user u. AdB(θ) is the radiation pattern [22].

LdB(d) can be expressed as follows:

LdB(d) = 40(1 − 4 × 10−3hb) log10(d/1000)

−18 log10(hb) + 21 log10( fc) + 80
(4)

where fc is the carrier frequency in GHz and hb is the base station antenna height [22].

The linear gain between the BS and a user is GBu = 10
−PLdB,B,u

10 .
For D2D communication, the gain between two users u and v is Guv = kuvd−α

uv [23]. Here, duv is
the distance between transmitter u and receiver v. α is a constant pathloss exponent and kuv is
a normalization constant.

The objective of resource allocation problem (i.e., to allocate RB and transmit power) is to assign
the resources in a way that maximizes system throughput. System throughput is the sum of D2D users
and CU throughput, which is calculated by Equation (6).

The resource allocation can be indicated by a binary decision variable, b(r,pr)
v where

b(r,pr)
v =

{
1, if the transmitter v is transmitting over RB r with power level pr

0, otherwise

The aggregated interference experienced by RB r can be expressed as follows

I(r) =
D̆

∑
v=1

Pmax

∑
pr=1

b(r,pr)
v Gv,r pr (5)

Let B = [b(1,1)
1 , . . . , b(r,pr)

1 , . . . , b(R,Pmax)
1 ]T denote the resource e.g., RB and transmission power

allocation. So, the allocation problem can be expressed as follows:

max
B

R

∑
r=1

Pmax

∑
pr=1

b(r,pr)
v WRB{log2(1 + γc

r) + ∑
u∈Dr

log2(1 + γDu
r )}

subject to I(r) < I(r)th , ∀r

b(r,l)
v ∈ {0, 1}, ∀v,r,l

R

∑
r=1

Pmax

∑
pr=1

b(r,l)
v = 1, ∀v

0 ≤ pr ≤ Pmax, ∀u,r

(6)

where pr = (p1
r , p2

r , . . . , pR
r ) and WRB is the bandwidth corresponding to a RB. The objective function

is to maximize the throughput of the system constrained by that the aggregated interference should be
limited by a predefined threshold. The number of RB selected by the transmitter should be one where
each can select one power level at each RB. Our goal is to investigate the optimal resource allocation in
such a way that the system throughput is maximized by applying cooperative reinforcement learning.
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4. Cooperative Reinforcement Learning Algorithm for Resource Allocation

In this section, we describe the basics of Reinforcement learning (RL), followed by our proposed
cooperative reinforcement learning algorithm. After that, we describe the set of states, the set of actions
and reward function for our proposed algorithm. Finally, Algorithm 1 shows the overall proposed
resource allocation method and Algorithm 2 shows the execution steps of our proposed cooperative
reinforcement learning.

We apply a Reinforcement learning (RL) algorithm named state action reward state action,
SARSA(λ), for adaptive resource in D2D communication for efficient resource allocation. This variant of
standard SARSA(λ) [24] algorithm has some important features like cooperation by using a neighboring
factor, a heuristic policy for exploration and exploitation, and a varying learning rate considering the
visited state-action pair. Currently, we are applying the learning algorithm for the resource allocation
of D2D users considering that the allocation of cellular users is performed prior to the allocation of
D2D users. We consider the cooperative fashion of this learning algorithm which helps to improve the
throughput as explained in Section 1 by sharing the value function and incorporating weight factors
for the neighbors of each agent.

In reinforcement learning, there is no need for prior knowledge about the environment. Agents
learn how to behave with the environment based on the previous experience achieved, which is traced
by a parameter, i.e., Q-value and controlled by a reward function. There should be some actions/tasks
to perform at every time step. After performing every action, the agents shifts from one state to another
and it gets a reward that reflects the impact of that action, which helps to decide about the next action
to perform. The basic reinforcement learning is a form of Markov decision process (MDP).

Figure 2 depicts the overall model of a reinforcement learning algorithm.

Figure 2. Basic components of a reinforcement learning. The agent performs an action to the
environment which gives a reward and helps to shift from one state to another.

Each agent in RL has the following components [25]:

• Policy: The policy acts as a decision making function for the agents. All other
functions/components help to improve the policy for better decision making.

• Reward function: The reward function defines the ultimate goal of an agent. This helps to assign
a value/number to the performed action, which indicates the intrinsic desirability of the states.
The main objective of the agent is to maximize the reward function in the long run.

• Value function: The value function determines the suitability of action selection in the long run.
The value of a state is accumulated reward over long run when starting from the current state.

• Model: The model of the environment mimics the behavior of the environment which consists of
a set of states and a set of actions.

In our model of the environment, we consider the components of the reinforcement learning
algorithm as follows:
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Agent: All the resource allocators: D2D Transmitters.

State: The state of D2D user u on RB r at time t is defined as:

Su,r
t = γc

r ∪ GBu ∪ Guv

We consider three variables γc
r , GBu and Guv for defining the states for maintaining the overall

quality of the network. γc
r is the SINR of a cellular user on the rth RB. GBu is the channel gain between

the BS and an user u. Guv is the channel gain between two users u and v. The variables γc
r , GBu and

Guv are important to consider for the resource allocation. The SINR γc
r is the indicator of the quality

of service of the network. In addition, if the channel gains (GBu and Guv) quality is good then it is
possible to achieve higher throughput without excessively increasing the transmit power, i.e., without
causing too much interference to others. On the other hand, if the channel gain is too low, higher
transmit power is required, which leads to increased interference.

Now, the state values of these variables can be either 0 or 1 based on following conditions. If the
value of the variables are greater than or equal to a threshold value, then this denotes that their state
value is ‘0’. On the contrary, if the values are less than the threshold value, then their state value
is ‘1’. So, γc

r ≥ τ0 means state value ’1’ and γc
r < τ0 means state value ’0’. Similarly, GBu ≥ τ1 means

state value ‘1’ and GBu < τ1 means state value ‘0’. Consequently, Guv ≥ τ2 means state value ‘1’
and Guv < τ2 means the state value ‘0’. In this way, based on the combination of the value of these
variables, the total number of possible states is eight where τ0, τ1 and τ2 are the minimum SINR and
channel gain guaranteeing the QoS performance of the system.

Action/Task: The action of each agent consists of a set of transmitting power levels. It is
denoted by

A = (a1
r , a2

r , . . . , apl
r )

where r represents the rth Resource Block (RB), and pl means that every agent has pl power levels.
In this work, we consider the power levels to assign within the range of 1 to Pmax in the interval of
1 dBm.

Reward Function: The reward function for the reinforcement learning is designed focusing on
the throughput of each agent/user which is formulated as follows:

 = log2(1 + SINR(u)) (7)

when γc
r ≥ τ0, GBu ≥ τ1 and Guv ≥ τ2. Otherwise,  = − 1. SINR (u) denotes the signal to interference

plus noise power ratio of user u (Step 7–10 in Algorithm 1).
SARSA(λ) is an on-policy reinforcement learning algorithm that estimates the value of the policy

being followed where λ is a parameter such as learning rate [26]. In SARSA learning algorithm,
every agent needs to maintain a Q matrix which is initially assigned 0 and the agents may be in any
state. Based on performing one particular action, it shifts from one state to another. The basic form of
the learning algorithm is (st, at,, st+1, at+1), which means that the agent was in state st, did action
at, received reward , and ended up in state st+1, from which it decided to perform action at+1.
This provides a new iteration to update Qt(st, at).

SARSA(λ) helps to find out the appropriate sets of actions for some states. The considered
state-action pair’s value function Qt(st, at) as follows:

Qt(st, at) = + γQt+1(st+1, at+1) (8)

In Equation (8), γ is a discount-factor which varies from 0 to 1. The higher the value, the more the
agent relies on future rewards than on the immediate reward. The objective of applying reinforcement
learning is to find the optimal policy Qπ

t (st, at) which maximizes the value function π = max
π

Qπ
t (st, at).
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We consider the cooperative fashion of this algorithm where each agent shares the value function with
each other.

At each time step, Qt+1 for the iteration t + 1, Qt+1 is updated with the temporal difference error
δt and the immediate received reward. The Q value has the following update rules:

Qt+1(st+1, at+1) ← Qt(st, at) + αδtet(st, at) (9)

for all s, a.
In Equation (9), α ∈ [0, 1] is the learning rate which decreases with time. δt is the temporal

difference error which is calculated by following rule (Step 7 in Algorithm 2):

δt = + γ1 f Qt+1(st+1, at+1)− Qt(st, at) (10)

In Equation (10), γ1 is a discount-factor which varies from 0 to 1. The higher the value, the more
the agent relies on future rewards than on the immediate reward. t+1 represents the reward received
for performing an action. f is the neighboring weight factor of agent i where this factor consists of
the effect of neighbor’s Q-value, which helps to update the Q-value of agent i that is calculated as
follows [27]:

f =
1

ngh(ni)
if ngh(ni) 
= 0 (11)

= 1 otherwise. (12)

where ngh(ni) is the number of neighbors of agent i within the D2D radius. BS provides the information
of number of neighbors for each agent [28].

There is a trade-off between exploration and exploitation in reinforcement learning. Exploration
chooses an action randomly in the system to find out the utility of that chosen action. Exploitation
deals with the actions which have been chosen based on previously learned utility of the actions.

We use a heuristic for exploration probability at any given time such as:

ε = min(εmax, εmin + k ∗ (Smax − S)/Smax) (13)

where εmax and εmin denote upper and lower boundaries for the exploration factor,
respectively. Smax represents the maximum number of states which is eight in our work and S represents
the current number of states already known [29]. At each time step, the system calculates ε and
generates a random number in the interval [0, 1]. If the selected random number is less than or equal
to ε, the system chooses a uniformly random task (exploration), otherwise it chooses the best task
using Q values (exploitation). k is a constant which controls the effect of unexplored states (Step 4
in Algorithm 2).

SARSA(λ) helps to improve the learning technique by eligibility trace. In Equation (9), et(s, a) is
the eligibility trace. The eligibility trace is updated by the following rule:

et(st, at) = γ2λet−1(st, at) + 1 if st ∈ s and at ∈ a

et(st, at) = γ2λet−1(st, at) otherwise.

Here, λ is learning parameter for guaranteed convergence, whereas γ2 is the discount factor.
In addition, the eligibility trace helps to provide higher impact on revisited states. For example,
for a state-action pair (st, at), if st ∈ s and at ∈ a, the state-action pair is reinforced. Otherwise,
the eligibility trace is removed (Step 8 in Algorithm 2).
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The learning rate α is decreased in such a way that it reflects the degree to which a state-action
pair has been chosen in the recent past. It is calculated as:

α =
ρ

visited(s, a)
(14)

where ρ is a positive constant and visited(s, a) represents the visited state-action pairs so far [30] (Step 6
in Algorithm 2).

Algorithm 1: Proposed resource allocation method
Input : Pmax = 23 dBm, Number of resource blocks = 30, Number of cellular users = 30,

Number of D2D user pairs = 12, D2D radius = 20 m, Pathloss parameter = 3.5, Cell
radius = 500 m, τ0 = 0.004, τ1 = 0.2512, τ2 = 0.2512 [9]

Output : RB-Power level, System Throughput
1 loop

2 Pathloss calculation by PLdB,B,u(.) = LdB(d) + log10(Xu)− AdB(θ)

3 Gain between the BS and a user, GBu = 10
−PLdB,B,u

10

4 Gain between two users, Guv = kuvd−α
uv

5 SINR of the D2D users on the rth RB, γDu
r =

pDu
r .Guu

Du,r

σ2+pc
r .Gcu

r +∑v 
=u
v∈Dr pdv

r .Guv
Dv,r

6 SINR of the cellular users on the RB, γc
r =

pc
r .Gc,r

σ2+∑v∈Dr pdv
r Gv,r

7 if (γc
r ≥ τ0, GBu ≥ τ1 and Guv ≥ τ2) then

8  = log2(1 + SINR(u));
9 else

10  = −1;
11 end

12 Apply Algorithm 2 for the power allocation
13 end loop

Algorithm 2: Cooperative SARSA(λ) reinforcement learning algorithm over number of
iterations.
1 Initialize Q(s, a) = 0, e(s, a) = 0, εmax = 0.3, εmin = 0.1, k = 0.25, ρ = 1, γ = 0.9, γ1 = 0.5,

λ = 0.5 [17,29]
2 loop

3 Determine the current s based on γc
r , GBu and Guv

4 Select a particular action a based on the policy, ε = min(εmax, εmin + k ∗ (Smax − S)/Smax)

5 Execute the selected action
6 Update learning rate by α = ρ

visited(s,a)

7 Determine the temporal difference error by δt = + γ1 f Qt+1(st+1, at+1)− Qt(st, at)

8 Update eligibility traces
9 Update the Q-value, Qt+1(st+1, at+1) ← Qt(st, at) + αδtet(st, at)

10 Update the value function and share with neighbors
11 Shift to the next based on the executed action
12 end loop

Algorithm 1 depicts the overall proposed resource allocation method. After setting the initial
input parameters, the system oriented parameters, i.e., pathloss, channel gains, SINR of the D2D
users and cellular users on the rth RB are calculated (Step 2–6 in Algorithm 1). Then the reward
function is calculated (Step 8) and is assigned when the state values satisfy the constraint in step 7.
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After that Algorithm 2 is applied for the adaptive resource allocation. Algorithm 2 shows our proposed
reinforcement learning algorithm execution steps for resource allocation over number of iterations.

5. Performance Evaluation

We implement our proposed cooperative reinforcement learning algorithm and compare it with
the random allocation and existing distributed reinforcement learning algorithm.

The parameters for the simulation are shown in Table 2.

Table 2. Simulation Parameters.

Parameter Value

Pmax 23 dBm
Number of resource blocks 30
Number of cellular users 30

Number of D2D user pairs 12
D2D radius 20 m

Pathloss parameter 3.5
Cell radius 500 m

τ0 0.004
τ1 0.2512
τ2 0.2512
I(r)th 0.001

WRB 180 kHz
Initial Q(s, a) 0
Initial e(s, a) 0

εmax 0.3
εmin 0.1

k 0.25
ρ 1
γ 0.9
γ1 0.5
λ 0.5

We consider a single cell with a radius of 500 m where some cellular users and D2D pairs are
uniformly distributed within the coverage of the BS. There are 30 cellular users and 12 D2D users.
We consider a constraint of resources with only 30 resource blocks.

We consider τ0 = 0.004, τ1 = 0.2512 and τ2 = 0.2512 as constraints to define the states for maintaining
the quality of service [9]. In our reinforcement learning algorithm, we consider εmax = 0.3, εmin = 0.1
and k = 0.25 [29]. We set ρ = 1 for learning rate calculation in Equation (14). The discount factor,
γ1 = 0.9 is considered based on the work [17] for fair comparison with our work.

We compare our method with the distributed reinforcement learning proposed in [17] and
a base-line random allocation of resources.

5.1. Throughput Analysis over Number of Iterations

Figure 3a shows that the proposed cooperative reinforcement learning outperforms both the
random allocation and the distributed reinforcement learning regarding average system throughput
calculated by Equation (6) considering 12 D2D user pairs and other parameter values as in Table 2.
We can observe that after the 30th iteration (Figure 3b), our proposed learning algorithm outperforms
other methods at almost every iteration when the algorithm reaches the convergence of learning.
In addition, there are variations in throughput results for each method and also there are some
points where distributed reinforcement learning outperforms proposed cooperative reinforcement
learning due to the fact that we consider the heuristic action selection policy based on exploration
and exploitation in Equation (13), which avoids to stuck the learning algorithm in a local optimum.
Random allocation shows poor results since it does not act appropriately with the changes of the
environment. Whereas, distributed reinforcement learning shows moderate results comparing with
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the both methods. We consider 100 iterations here for the comparison, but the trend of outperformance
of our proposed algorithm remains the same with additional iterations.

Figure 3b shows the Q-values calculated by Equation (9) of distributed reinforcement learning
and cooperative reinforcement learning over number of iterations for learning. We can observe that
the cooperative reinforcement learning converges faster due to the sharing learned policies between
devices. Further, our proposed learning algorithm provides better Q-value at each time step which
imposes an impact on the overall improved system throughput. Moreover, higher Q-values denote
that action scheduling strategies are performed much better in our proposed algorithm.

(a) Average system throughput over number of iterations

(b) Convergence of learning algorithms

Figure 3. (a) Average system throughput over number of iterations (b) Convergence of
learning algorithms.

5.2. Throughput Analysis by Varying the Transmit Power Level

Figure 4 shows the average D2D throughput over transmit power applying our proposed method,
distributed reinforcement learning and random allocation of resources. All the methods follow the
same trend that with the increase of transmit power, D2D throughput increases. Our proposed
reinforcement learning outperforms others at every level of transmit power due to the appropriate
learning of transmission power assignment to the resource blocks. Our proposed method increases
D2D throughput by 6.2% as compared with the distributed reinforcement learning. On the other
hand, random allocation shows the lowest performance as usual due to the allocation of resources
without adaptiveness.

Figure 5 shows the trade-off between D2D throughput and cellular user throughput when varying
the transmit power to these values {0.0569, 0.0741, 0.0800} after applying the proposed cooperative
reinforcement learning, random allocation, and distributed reinforcement learning where the results
are grouped into three sets for each method considering 12 D2D users. For all methods, we can
observe the same trends, for example, with the increase of transmit power; D2D throughput increases
but cellular user throughput decreases which show the typical phenomena of D2D communication.
When the transmit power of the D2D device increases, the D2D throughput also increases. But this
provides an impact of interference level to the cellular users which provides lower cellular user
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throughput. Our proposed method outperforms all methods in terms of D2D and cellular user
throughput. For example, when the transmit power is equal to 0.0569, our proposed learning algorithm
provides a D2D throughput equal to 3.80, and the cellular user throughput is equal to 2.912. On the
other hand, for distributed reinforcement learning, the D2D and the cellular user throughput are 3.53
and 2.734, respectively which is lower than our proposed method. Moreover, random allocation of
resources provides the least amount of D2D and cellular user throughput with values equal to 2.62
and 2.27, respectively.

Figure 4. D2D throughput versus transmit power.

Figure 5. Joint D2D throughput and cellular user throughput optimization.

5.3. Throughput Analysis over a Number of D2D Users

Figure 6 shows the average D2D throughput, average cellular user throughput and the average
system throughput over the number of D2D users. We can observe that D2D throughput increases
with the increase of D2D users, but on the other hand, cellular user throughput decreases. System
throughput is the summation of D2D and the cellular user throughput, which also increases with the
increment of the D2D users. For example, our proposed method provides a cellular user throughput
equal to 2.912 for 10 D2D users. The proposed method yields 0.2880 as D2D user throughput, which
gives a system throughput equal to 3.2. When we increase the number of D2D users to 20, the figure
shows a cellular user throughput, D2D throughput, and overall system throughput of 2.8259, 0.5477
and 3.3736, respectively.

All methods show these same trends over the number of D2D users. From this experiment, we
can also investigate the issue about the appropriate number of D2D users which provides the better
trade-off between D2D and cellular user throughput in a single cell scenario. Here, we can observe
that moderate number of D2D users, for example, 50 D2D users provide suitable amount of D2D
and cellular user throughput. Our proposed method outperforms the other methods regarding D2D
throughput, cellular user throughput and overall system throughput at every number of D2D users.
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Figure 6. Throughput analysis over a number of D2D users.

5.4. Fairness Analysis

We compute the fairness of our proposed algorithm, the distributed reinforcement learning
algorithm, and the random allocation using Jain’s fairness index [31]. Jain’s fairness index can be
derived as

f (D1, D2, . . . , Dn) =
(∑N

i=1 Di)
2

N ∑N
i=1 D2

i

where D is the throughput of each device and N is the number of users. Jain’s fairness is used to
determine the fairness of the algorithm which helps to make a stable environment of D2D throughput
for each D2D pairs.

Figure 7 shows the fairness measure of our proposed learning algorithm, distributed reinforcement
learning and random allocation of resources. The higher value of Jain’s index shows a better balance of
resources, i.e., fairness. We observe that our proposed algorithm outperforms the two others in terms
of fairness. With the increase of D2D pairs, we can see that there is a slight decrease in the fairness level.
As our learning algorithm works online based on the proper level of transmit power allocation, we get
suitable results in terms of fairness. The distributed reinforcement learning shows comparably less
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performance with the proposed method. Random allocation of resource provides the worst fairness
because it does not use adaptive action scheduling strategy for the resource allocation.

Figure 7. Fairness index of D2D throughput versus number of D2D pairs.

6. Conclusions

Adaptive resource allocation is a critical issue for the current context in D2D communication.
Reinforcement learning can be considered as a suitable method for the adaptive resource allocation
by scheduling the actions performed by the resource allocators. In this work, we apply a cooperative
reinforcement learning for the resource allocation to improve the system throughput and D2D
throughput. A key aspect of our work is that we consider cooperation between agents by sharing
the value function and imposing a neighboring factor. In addition, the set of states for our proposed
reinforcement learning is composed of important system defined variables which helps to increase
the observation space that has to be explored. We measure the fairness of our proposed algorithm
considering a fairness index. Our method is compared with the distributed reinforcement learning and
random allocation of the resource. The results show better performance regarding system throughput,
D2D throughput, and the fairness measure.

All results (showed in Section 5) help us to reach the following decisions:

• Our proposed cooperative reinforcement learning method provides better performance regarding
system throughput compared to the distributed reinforcement learning, and random allocation of
resources. There are some time steps where distributed reinforcement learning outperforms our
proposed method due to our heuristic action selection strategy for exploration and exploitation.

• Our proposed method outperforms the distributed reinforcement learning and random allocation
of resources in terms of D2D throughput while varying the transmit power. It is possible to
observe that in our proposed method, D2D throughput increases about 6.2% compared to the
distributed reinforcement learning.

• The trade-off is observed for D2D and cellular user throughput by varying the transmit power at
different values, we can observe that higher transmit power provides higher D2D throughput.
Our proposed reinforcement learning provides better results regarding both D2D and cellular
user throughput compared to the distributed reinforcement learning and random allocation of
resources. By increasing the number of D2D users, we can observe higher D2D and the system
throughput.

• Higher index value provides higher fairness measure in Jain’s fairness index. We can observe that
our proposed reinforcement learning outperforms the distributed reinforcement learning and
random allocation of resources regarding fairness measure.

Currently, we are considering a single cell for our work. As future work, we will consider multiple
cells with more dynamics in the environment. Investigating the latency and energy efficiency issues
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can further be considered. In addition, currently we are not considering the learning algorithms for BS.
To include BS as an agent to apply learning algorithm might enhance the QoS for allocating resources
to cellular users. Designing the system in a more distributed way considering multiple cells might
utilize the full benefits of applying reinforcement learning.
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Abstract: Non-orthogonal multiple access (NOMA) provides superior spectral efficiency and is
considered as a promising multiple access scheme for fifth generation (5G) wireless systems.
The spectrum efficiency can be further enhanced by enabling device-to-device (D2D) communications.
In this work, we propose quality of service (QoS) based NOMA (Q-NOMA) group D2D
communications in which the D2D receivers (DRs) are ordered according to their QoS requirements.
We discuss two possible implementations of proposed Q-NOMA group D2D communications
based on the two power allocation coefficient policies. In order to capture the key aspects of
D2D communications, which are device clustering and spatial separation, we model the locations
of D2D transmitters (DTs) by Gauss–Poisson process (GPP). The DRs are then considered to be
clustered around DTs. Multiple DTs can exist in proximity of each other. In order to characterize the
performance, we derive the Laplace transform of the interference at the probe D2D receiver and obtain
a closed-form expression of its outage probability using stochastic geometry tools. The performance
of proposed Q-NOMA group D2D communications is then evaluated and benchmarked against
conventional paired D2D communications.

Keywords: quality of service; device-to-device communication; non-orthogonal multiple access;
stochastic geometry

1. Introduction

With the advancement in mobile communication research, the usage of cellular technology has
spread beyond voice and simple data transfer to high data rate, delay sensitive, and loss tolerant
multimedia applications. Despite the fast growth of fourth generation (4G) systems, the current
spectrum resources are still scarce to meet the ever increasing subscribers’ demands for bandwidth
and resource hungry applications, with vigorous requirements of seamless connectivity, anywhere and
anytime. These trends compelled wireless researchers from the academia and industry to define new
paradigm technologies and structures to achieve the goals of fifth generation (5G) systems [1,2].

In order to realize the concept of 5G into reality, many enabling technologies are proposed,
among which millimetre waves, massive multiple-input multiple-output (MIMO), full-duplex (FD),
heterogeneous deployments and software-defined networks have captured the attention of both
academia and industry [2,3]. Nevertheless, the role of multiple access scheme always remains a vital
factor in cellular networks in order to enhance the system capacity in a cost effective manner, while
utilizing the bandwidth in such a way that overall spectral efficiency will be increased [4].

Non-orthogonal multiple access (NOMA) is considered as a promising multiple access candidate
for future fifth generation (5G) wireless systems due to its potential of improving spectrum
efficiency [5,6]. Unlike conventional orthogonal multiple access (OMA), NOMA superimposes message
signals of different users in power domain and send this conglomerate signal using the same time,
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frequency or code resource [7,8]. Successive interference cancellation (SIC) technique is employed at
each receiver to cancel the intra-user interference [9].

Apart from NOMA, another emerging technique to enhance the spectral efficiency is
device-to-device (D2D) communications [10], which has the ability to improve the spectral efficiency
of the conventional cellular network by sharing same spectrum resources among cellular users and
D2D pairs [11–13].

By introducing aforementioned two concepts and their potential to improve spectrum efficiency,
it is natural to investigate the application of NOMA scheme to D2D communications.

1.1. Related Work and Motivation

Recently, a FD D2D aided cooperative NOMA is proposed in [14]. The base station (BS) sends a
NOMA signal to one NOMA-strong and one NOMA-weak user, where the strong user is equipped
with full-duplex ability. By invoking D2D communication between strong and weak NOMA user pair,
the authors proposed to improve the outage performance of the weak user with the aid of D2D aided
direct and cooperative transmissions. However, they only considered a single-cell scenario where
NOMA is conducted at BS while strong and weak users communicate via conventional paired D2D
communication. The authors in [15] developed an analytical framework based on stochastic geometry
to analyse cellular networks with underlay D2D communications. The D2D users are also equipped
with FD transceivers and can operate in FD mode. The authors proposed criteria to select between FD
and D2D modes of operation. They derived closed-form expression for outage probability to evaluate
the performance of cellular and D2D users. However, they modeled spatial topology of D2D users by a
Poisson point process (PPP), which may not be realistic distribution choice for D2D users. The reason is
that PPP cannot capture the features of device clustering and spatial separation of D2D communications
due to its completely random nature [16]. Furthermore, NOMA protocol is not applied for both cellular
and D2D communications. A relay assisted diversity communication is proposed in [17]. The proposed
analytical framework analyses the frame error probability performance by considering the effects of
node locations, link characteristics, power allocation, diversity methods and distributed coding and
constellation signaling. However, they considered an OMA based communication between single
source and destination assisted by three relay nodes. The authors in [18] considered a downlink
multiuser MIMO NOMA celullar network with underlaid D2D communications. They proposed
two beamforming schemes in order to eliminate the inter-beam interference and the one caused to
D2D users by BS transmission. In addition, they formulated an optimization problem to jointly study
the performance of both cellular and D2D users. A potential limitation to their approach is that the
considered system model is limited to single cell and no specific random distribution is utilised to
model the spatial topologies of cellular and D2D users. Hence, it is not straightforward to generalize
the results for a case of multi-cell network. Furthermore, they considered a paired D2D communication
where D2D users do not apply NOMA protocol to communicate with each other.

In [19], the authors considered a NOMA-based D2D communications and introduced the concept
of D2D group, where a D2D transmitter (DT) is communicating with multiple D2D receivers (DRs)
using NOMA protocol. The authors proposed an optimal resource allocation strategy for interference
management that enables to realize the NOMA-based D2D group communications. Although
the concept of NOMA group D2D was introduced in [19], their system model was comprised of
single-cell and lack of interference characterization at DR. Furthermore, it requires interference
modeling and performance evaluation at the DR in order to extend the concept of NOMA group
D2D to a general scenario, where DTs and DRs are distributed in the entire network. The authors
in [20] further proposed cooperative hybrid automatic repeat request (HARQ) assisted NOMA in
large-scale D2D networks. They studied the outage and throughput performance of the D2D users
under the considered network setting and demonstrated that cooperative HARQ assisted NOMA
achieves lower outage probability than non-cooperative case and OMA scheme. However, their NOMA
based D2D network model is restricted to the two-user case only i.e., they only considered two-user
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NOMA transmission from D2D sources. Furthermore, they considered a significant difference between
channels of two D2D users by assuming that one user is always closer to D2D source compared to the
other user. This assumption may not always hold, particularly in the scenario of NOMA based D2D
communications because DRs are clustered around DTs and are located in proximity of each other and
hence DRs may have very similar channel conditions.

In the light of the abovementioned discussion, very little attention was paid to investigate
NOMA group D2D communications. Hence, the aforementioned gaps and shortcomings motivated
us to investigate and analyse the performance of NOMA based group D2D communications under
interference limited scenarios. In order to capture the key features of D2D communications, i.e., device
clustering and spatial separation, the DTs are considered to be randomly distributed over R2 according
to Gauss–Poisson process (GPP), while the DRs are assumed to be randomly clustered around DTs.
The reason for choosing GPP is that it is a relatively simpler cluster point process that maintains good
trade-off between modeling accuracy and analytical tractability. Therefore, in the context of D2D
communications, GPP provides more realistic modeling approach against PPP case by capturing the
clustering behavior of D2D devices [21].

Furthermore, the current approach to order users in NOMA group D2D communications is based
on the channel gains of the DRs. This ordering approach may not be suitable to D2D communication
scenario under which the DRs in the same group are clustered around a common DT and are located
in proximity of each other. Hence, the channel conditions of the DRs located in the same D2D group
would be very similar. Consequently, this ordering strategy may result in very similar power allocation,
which could limit the gains of applying NOMA to D2D communications [7]. In the context of NOMA,
there are few works that use quality of service (QoS) based ordering [22–24]. They mainly focused on
cellular networks and are limited to the two-user case only. In this paper, we propose and analyse QoS
based NOMA (Q-NOMA) group D2D communications and make an attempt to fill the aforementioned
gaps in literature. To the best of our knowledge, it is the first time that Q-NOMA is proposed and
analysed to realize group D2D communications under interference limited scenario.

1.2. Contributions

The main contributions of this work are as follows:

• We propose Q-NOMA group D2D communications in which D2D users are randomly distributed
over the entire two-dimensional plane. Unlike the existing proposals, we order the DRs according
to their QoS requirements, which is more appropriate for the D2D communications scenario.
Furthermore, in contrast to PPP, which is most commonly used to model D2D users (both
DTs and DRs), we model the spatial topology of DTs by GPP and DRs are considered to be
randomly clustered around DTs. These spatial distributions of DTs and DRs are suitable to
analyse the proposed network with any number of D2D users. In addition, based on the QoS
ordering, we propose two policies to compute power allocation coefficients that could lead to two
implementations of the proposed Q-NOMA group D2D communications.

• We derive the interference distribution at the probe DR by utilizing the results from stochastic
geometry. The Laplace transform of interference over GPP is derived in [21], which involves
complex double integrals. In order to obtain useful insights, a major step in characterizing
the interference is the approximation of integrals in the interference Laplace transform by
applying Gaussian–Chebyshev and Gauss–Laguerre quadratures. This approximation results in
an interference Laplace transform expression, which is easy to implement.

• Based on the interference approximation results, we further derive the closed-form expression for
outage probability of the DRs in the proposed Q-NOMA group D2D communications.

• We present numerical results to validate the accuracy of the derived outage results and
compare the performance of the proposed Q-NOMA group D2D with conventional paired D2D
communications using OMA.
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1.3. Mathematical Preliminaries on Gauss–Poisson Process

The generalized GPP [21] is defined as the Poisson cluster process with homogeneous independent
clustering. Denote λ as the parent process intensity. Then, each cluster in GPP can be classified as
single-point or two-point cluster. Let 1 − a and a denote the probabilities that a cluster is single-point,
and two-point, respectively. When the cluster is single-point, the point is located at the position of
the parent. When the cluster is two-point, one point is located at the position of the parent while the
other is randomly distributed around the parent with some probability density function (PDF) fu(·),
where u is the inter-point distance in two-point cluster.

2. System Model

Consider inband D2D communications with an overlay cellular network. We consider a frequency
reuse factor of one among D2D users to achieve better spectrum efficiency. With this setting, every
D2D transmission by a DT is subjected to interference from other active DTs. We consider a composite
fading and path loss channel model between every DT and DR. In this work, we assume that the power
fading coefficients are independent and identically distributed (i.i.d) with exponential distribution of
unit mean, and adopt a path loss model of d−α, where d is the distance between the probe DR and test
DT, and α is the path loss exponent.

2.1. Spatial Distribution of D2D Users

Consider that D2D users are randomly distributed over R2. At any time realization, the D2D
users are classified as transmitters or receivers. We consider the group D2D scenario, where each
DT is communicating with multiple DRs via a NOMA scheme. We refer to a DT communicating to
multiple D2D devices as a group transmitter (GT). Any D2D user can take a role of GT. We assume
that the selection of GTs is performed by a BS, and it can select multiple GTs in a given cell to improve
overall system capacity. We allow multiple GTs to exist in proximity of each other, where each GT is
communicating to its own group of receivers. Hence, at any time realization, each selected GT forms a
group/cluster containing DRs. In order to capture both inband and device clustering, we model the
spatial topology of the GTs by a stationary and isotropic GPP defined on R

2 , denoted by ΦGT with
parent process intensity λGT. Furthermore, we model the coverage of each GT by a disc D with radius
RD. We consider that the DRs are clustered around each GT and are uniformly distributed inside
coverage of GTs. An illustration of NOMA group D2D communication is presented in Figure 1. For a
quick reference, a list of commonly used abbreviations is given in Table 1.

Table 1. List of commonly used abbreviations.

D2D Device-to-device
DR D2D receiver
DT D2D transmitter
F-NOMA Fixed NOMA
GPP Gauss–Poisson process
GT Group transmitter
NOMA Non-orthogonal multiple access
PPP Poisson point process
QoS Quality of service
SIC Successive interference cancellation
SNR Signal to noise ratio
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Figure 1. Example of inband non-orthogonal multiple access (NOMA) group device-to-device (D2D)
communications with overlay cellular network.

2.2. Q-NOMA Group D2D Communication

Since DRs are clustered around GTs and are located in proximity of each other, therefore, the DRs
connected to same GT would have very similar channel conditions. Consequently, in the context of
D2D communications, ordering DRs according to their channel conditions to apply NOMA at GT may
not achieve the desired multiplexing gains and fairness among DRs. Hence, in this work, we propose
ordering the DRs of the GT according to QoS requirements, which are determined by their targeted
data rates.

Let there be a total of M DRs distributed inside coverage of a test GT. The probe DR is assumed to
be located at the origin, with a desired test GT at x0 = (d, 0) with d 
= 0. Without loss of generality,
we assume that the DRs are ordered as R1 ≤ ... ≤ RM, where Ri is the targeted data rate of DR i,
1 ≤ i ≤ M. Correspondingly, the power allocation coefficients are sorted as β1 ≥ ... ≥ βM.

The aforementioned procedure to order DRs of the GT and compute their power allocation
coefficients according to users’ targeted rates is termed as “Q-NOMA”. When it is applied to D2D
communications, we refer to the communication as “Q-NOMA group D2D communication”.

Consider that the NOMA DR m is the probe receiver, then, the received signal from the test
transmitter at the probe DR is given as:

ym = hm

M

∑
i=1

√
βiPGTsi + nm, (1)

where PGT is the transmission power of test GT, si is the message signal of DR i and nm is the additive
white Gaussian noise (AWGN) with zero mean and variance σ2.

2.3. Power Allocation Coefficients Policies

The optimal power and resource allocation improve overall performance and utilise the system
resources efficiently. However, the optimum power allocation strategies proposed in existing literature,
for example, [25], cannot be directly applied to the current work because of significant difference in
system model or underlying transmission method. Therefore, in this sub-section, we discuss two
simple methods to compute power allocation coefficients {βi}M

i=1 that would lead to two possible
implementations of Q-NOMA group D2D communications.
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2.3.1. Policy I

The Policy I utilises targeted rates of DRs to compute the power allocation coefficients. Similar
to [7], the power allocation coefficient for DR i under Policy I is computed as:

βi =
1/Ri

∑M
j=1

1
Rj

. (2)

The intuition behind Equation (2) is that power allocation coefficients could be utilised to maintain
fairness among DRs [3,26]. In case they are computed in proportion with users’ targeted rates,
then the highest ordered DR M would result in the highest SIC decoding order with maximum
signal-to-interference-plus-noise ratio (SINR) threshold among all ordered DRs. Consequently, all of
the lower ordered DRs always require the maximum SINR threshold dictated by the user M, which
would result in a biased treatment of lower ordered users (with lower targeted rates). Hence, in
order to avoid this biasness, we propose to compute the power allocation coefficients as given by
Equation (2).

2.3.2. Policy II

The concept of fixed NOMA (F-NOMA) was proposed in [27], where the power allocation
coefficients are fixed and are computed based on the given user ordering i.e., it does not utilise the
actual channel gains to compute {βi}M

i=1. Similar to [27], we adopt a Policy II to compute {βi}M
i=1

for conventional NOMA that does not utilise the actual targeted rates of DRs. The power allocation
coefficient for DR i under Policy II is computed as:

βF
m =

M − m + 1
μ

, (3)

where βF
m represents the power allocation coefficient of DR m in Policy II and μ is selected in such a

way that ∑M
i=1 βF

i = 1.

2.4. Interference Distribution

The reception at the probe DR from the test GT is interfered by the other GTs. The interference at
probe DR is given as, I = ∑x∈ΦGT\x0

|gx|2d−α
x , where gx and dx represent the Rayleigh fading channel

gain and distance between probe DR and interferer at x0, respectively. The following lemma provides
the Laplace transform of the interference at probe DR.

Lemma 1. Consider a GPP ΦGT with parent process intensity λGT modeling spatial topology of the GTs in
a Q-NOMA group D2D communications. Then, the Laplace transform of the interference at the probe DR
conditioned at the location of test GT is given by:

LI (s) = e
−2πλGT ∑P

p=1 Ωp
a(1−X1(rp))+sr−α

p
1+sr−α

p · Λ2 (d) , (4)

where Ωp = ωperp , ωp =
Γ(P+2)rp

P!(P+1)2(LP+1(rp))
2 , LP(·) is the Laguerre polynomial of degree P, rp are the roots of

LP(·), X1(·) and Λ2(·) are given in Equations (A7) and (A10), respectively.

Proof. See Appendix A.

3. Outage Probability Analysis

In this section, we focus on the outage probability for the DRs in the considered Q-NOMA group
D2D communication. Let τm and Rm denote the SINR threshold and targeted rate of DR m, respectively,
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where τm = 2Rm − 1. Since each DR employs SIC, the outage at DR m occurs if it does not meet the
targeted rate of any higher order DR j, where 1 ≤ j < m. Denote ζm→j =

{
R̃m,j < Rj

}
as the outage

event at DR m due to decoding of DR j, where R̃m,j is the achievable rate of user j at DR m. The outage
event ζm→j can be expressed as:

ζm→j =
{

R̃m,j < Rj
}

=

{
log2

(
1 +

hmβ jP

hmP ∑M
i=j+1 βi + I + σ2

)
< Rj

}

=

{
hm <

ϕj(ρI + 1)
ρt

}
, (5)

where ϕj =
τj

β j−τj ∑M
i=j+1 βi

, ρ = PI
σ2 , ρt =

PGT
σ2 is the transmit signal-to-noise ratio (SNR) and PI is the

maximum received interference power at the probe DR.
Next, define ϕmax

m = max {ϕ1, ..., ϕm}. Based on Equation (3), the outage probability at the DR m
can be given as:

Pm = Pr
(

hm <
ϕmax

m (ρI + 1)
ρt

)

= EI

[
Fhm

(
ϕmax

m (ρx + 1)
ρt

)]
, (6)

where Fhm is the cumulative distribution function (CDF) of hm.
Note that the set {hi} , i = 1, ..., M, of channel gains is not ordered because the users are sorted

in ascending order of their targeted rates. Since the channel gains are i.id. random variables with
common CDF Fh, Equation (4) can be re-written as:

Pm = EI

[
Fh

(
ϕmax

m (ρx + 1)
ρt

)]
. (7)

Consequently, the outage probability of DR m is provided in the following theorem.

Theorem 1. The outage probability of DR m in the Q-NOMA group D2D communications is derived as:

Pm =
L

∑
l=1

ble
− ϕmax

m cl
ρt LI

(
ϕmax

m clρ

ρt

)
, (8)

where bl = ωl

√
1 − φ2

l (1 + φl), ωl = π
L , cl =

(
RD
2 (1 + φl)

)α
, φl = cos

(
(2l−1)π

2L

)
and L is the

complexity-accuracy trade-off parameter.

Proof. See Appendix B.

Note that, due to the presence of interferers in the network, similar to [20,28], the derived outage
probability in Equation (8) is a function of variables ϕmax

m and interference Laplace transform LI . This
is different from existing works that analyse NOMA wireless systems under no interference where
outage probability is mainly a function of ϕmax

m . For reference, please see [14,27,29]. Furthermore, it is
worthy to note that the current outage analysis approach remains valid if more complex cluster models
(Poisson cluster process, etc.) are adopted for modeling spatial distributions of DTs and DRs. In that
case, the LI term will be replaced by the Laplace transform of the interference for the adopted model.
Intuitively, LI is performing a form of scaling in Equation (8) and hence the conclusions are expected to
remain the same if the spatial distribution model(s) of the DTs and DRs is changed. However, the exact
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impact on outage probability when more complex cluster processes model is adopted for modeling DT
and DR locations would require further study, and we plan to investigate them in our future work.

4. Numerical Results and Discussion

This section presents the numerical results to evaluate the performance of the considered network
as well as to validate the accuracy of the derived expression in Equation (8) of Section 3. As shown in
Table 2, simulation parameters used are similar to those in [29], unless otherwise stated. Furthermore,
we adopt Policy I as a default policy to compute power allocation coefficients, unless otherwise stated.

Table 2. Simulation parameters.

Parameter Description Value

M Total users 3
{Rm}M

m=1 Users’ targeted rates {0.7, 1.1, 2}
RD Coverage of GT 10 m
α Path loss exponent 4

λGT Intensity of GTs 10−4

ρt SNR range (5–40) dB
L, N, V, Q, S Gaussian-Chebyshev parameters 5

P Degree of Gauss-Laguerre polynomial 5
d Distance between probe DR and GT 5 m

4.1. Impact of RD on Outage Probability

Figure 2 presents the impact of varying coverage radius RD of test GT on the outage probability
of ordered DRs as a function of SNR. The derived outage results in Equation (8) are shown to be in
good agreement with the Monte Carlo simulations.

Figure 2. Impact of RD on outage probability.

Several observations can be made from the results in Figure 2: (1) increasing the coverage radius
of GT results in a higher outage probability because of a larger path loss; (2) different ordered users
have distinct decreasing slopes of outage probability because of different targeted rates; (3) the higher
order DRs in our proposed Q-NOMA group D2D communications achieve better outage performance
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because they have smaller targeted rates. This is different from conventional NOMA that orders users
based on channel conditions, and where the higher ordered users have larger outage probabilities due
to poor channel conditions [27,28].

4.2. Impact of d on Outage Probability

The impact of varying distance between probe DR and test GT on the outage performance is
investigated in Figure 3. It can be observed that varying d has a larger impact on the average achievable
outage probability at lower SNR value of 5 dB. This is intuitively plausible because increasing
transmission power results in improved SINR at the receiver and hence better outage performance.

Figure 3. Impact of d on outage probability.

4.3. Comparison between Paired and Grouped D2D Communications

The average outage probability achieved by Q-NOMA group D2D communications under
different path loss exponents is shown in Figure 4. The performance of paired D2D communication
based on OMA is also presented in the figure as a benchmark for comparison. It can be observed that
Q-NOMA group D2D achieves overall lower outage probability than the paired D2D communication
for different values of path loss. This is because, as opposed to paired D2D, Q-NOMA group D2D
communication uses only single transmission, which results in better SINR at the DRs under an
interference limited scenario.
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Figure 4. Outage comparison between paired and group D2D.

4.4. Comparison between Two Implementations of Q-NOMA Group D2D Communications

In this section, we compare the performance of two possible implementations of Q-NOMA
group D2D communications based on power allocation coefficients Policies I and II. The results for
Q-NOMA group D2D communication under Policy I are also obtained by utilising Equation (8), with
the exception that {ϕmax

m }M
m=1 are computed by using fixed power allocation coefficients

{
βF

m
}M

m=1.
We consider five different cases for users’ targeted rates and compared the outage probabilities
achieved by the Q-NOMA group D2D communications under Policies I and II at an SNR of 25 dB.
Table 3 summarizes the outage comparison between these two implementations of the group D2D
communications. The power allocation coefficients for Policy I are derived as βF

m = {0.5, 0.33, 0.17}M
m=1,

whereas those for Policy II are calculated using Equation (2) based on users’ targeted rates and are
shown in Table 3.

Table 3. Average outage comparison between two implementations of quality of service based
non-orthogonal multiple access (Q-NOMA) group device-to-device (D2D) communications.

Case Targeted Rates, {Rm}3
m=1 Power Allocation Coefficients, {βm}3

m=1 Policy I Policy II

1. {1, 2.5, 3} {0.58, 0.24, 0.18} 0.04 1
2. {1, 1.5, 2} {0.47, 0.3, 0.23} 0.002 0.04
3. {0.5, 1.5, 2} {0.63, 0.21, 0.16} 1 1
4. {0.9, 1, 2} {0.42, 0.38, 0.2} 1 0.001
5. {0.2, 2, 2.2} {0.85, 0.08, 0.07} 0.006 0.002

It is observed from the results in Table 3 that Q-NOMA under Policy I achieves lower outage
probability in cases 1 and 2, whereas it obtains better outage performance in cases 4 and 5 for Policy
II. In addition, the results in case 3 indicate the importance of proper power and rate allocation to
avoid situations of complete outage. Moreover, it can be observed that the Q-NOMA group D2D
communication under Policy I performs better in cases where the users’ targeted rates are significantly
apart. This is more suitable to D2D communication scenarios where different users may have diverse
QoS requirements.

In order to extend the analysis beyond the case of M > 3 users, we further present in Table 4 the
average outage comparison between paired D2D and Q-NOMA group D2D communications (based on
power allocation coefficients Policies I and II). We consider M = 5, 7, 9 with Rm ∼ U (0.1, 2) , ∀m ∈ M
and ρt = 25 dB, where U (·, ·) represents the random uniform distribution function. It can be observed
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that the results in Table 4 are consistent with those presented in Figure 4, for example, Q-NOMA group
D2D communications consistently achieve lower outage probability than paired D2D communications.

Table 4. Average outage comparison between paired device-to-device (D2D) and quality of service
based non-orthogonal multiple access (Q-NOMA) group D2D communications (M > 3).

Total Users, M Q-NOMA Policy I Q-NOMA Policy II Paired D2D

5 0.003 0.07 0.08
7 0.007 0.06 0.12
9 0.01 0.1 0.3

5. Conclusions

In this paper, we have proposed Q-NOMA group D2D communications. In order to study
the performance of the proposed network, we first derive the Laplace transform of the interference
expression, based on which we further derive the closed-form expression for outage probability to
analyse the performance of the DRs in the proposed Q-NOMA group D2D communications. The results
show that the proposed Q-NOMA group D2D achieves overall lower outage probability than its
counterpart paired D2D communication. Furthermore, based on two power allocation coefficient
policies, we have presented the comparison between two possible implementations of the proposed
Q-NOMA group D2D communications. Due to the similar channel conditions and diverse QoS
requirements of DRs, the results show that the proposed Q-NOMA implementation based on Policy I is
more realistic and suitable than one based on Policy II for group D2D communications. As future work,
we plan to investigate and analyse the performance of proposed Q-NOMA group D2D communications
in underlay cellular mode, where additional interferences from base stations and cellular users will be
considered. Another interesting future direction is to extend the current network model to a framework
of MIMO systems. This would require a robust precoder and MIMO-NOMA design to improve the
system performance and capacity while mitigating the inter and intra beam interference efficiently.
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Appendix A. Proof of Lemma 1

In the case of GPP, when desired transmitter is at x0 ∈ ΦGT , the LI (s) is given by Equation (34)
of [21]:

LI (s) = Λ1 · Λ2, (A1)

where

Λ1 = exp
{

2πλGT
∫ ∞

0

[
1−a

1+sr−α + a
1+sr−α ·

∫ ∞
0

∫ 2π
0

τ fu(τ)dψ

1+s(r2+τ2+2rτ cos(ψ))−α/2 dτ − 1
]

rdr
}

, (A2)

and

Λ2 =
1 − a
1 + a

+
2a

1 + a

∫ ∞

0

∫ 2π

0

τ fu(τ)dψ

1 + s (d2 + τ2 + 2dτ cos(ψ))−α/2 dτ, (A3)

where 1 − a and a are the probabilities of having one and two transmitters in a group, respectively.
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Now let us take X1 in Equation (A2) as:

X1 =
∫ ∞

0

∫ 2π

0

τ fu(τ)dψ

1 + s (r2 + τ2 + 2rτ cos(ψ))−α/2 dτ

=
2

R2
D

∫ RD

0
τ2
∫ 2π

0

dψ

1 + s (r2 + τ2 + 2rτ cos(ψ))−α/2︸ ︷︷ ︸
X2

dτ, (A4)

where fu(τ) =
2τ
R2

D
if 0 ≤ τ ≤ RD.

It is challenging to solve integral X2 in Equation (A4). As such, we approximate it by applying
the Gaussian–Chebyshev quadrature as [30]:

X2 ≈
N

∑
n=1

ϕn

1 + s (r2 + τ2 + 2rτ cos(πtn))
−α/2 , (A5)

where ϕn = πωn
√

1 − θ2
n, ωn = π

N , θn = cos
(

2n−1
2N π

)
, tn = 1 + θn and N is the complexity-accuracy

tradeoff parameter.
Based on Equation (A5), X1 can now be expressed as:

X1 =
2

R2

∫ RD

0

N

∑
n=1

ϕnτ2

1 + s (r2 + τ2 + 2rτ cos(πtn))
−α/2 dτ. (A6)

Note that it is challenging to solve Equation (A6) analytically. In order to obtain insightful results,
we approximate it by applying Gaussian–Chebyshev quadrature as:

X1(r) ≈
V

∑
v=1

N

∑
n=1

2RD ϕnωv
√

1 − ϑ2
vk2

v

1 + s
(
r2 + R2

Dk2
v + 2rRDk2

v cos(πtn)
)−α/2 , (A7)

where ωv = π
V , ϑv = cos( 2v−1

2V π), kv = 1
2 (ϑv + 1) and V is the complexity-accuracy tradeoff parameter.

Based on Equation (A7), Λ1 in Equation (A2) is re-written as:

Λ1 = exp
{

2πλGT

∫ ∞

0

[
1 − a

1 + sr−α
+

aX1(r)
1 + sr−α

− 1
]

rdr
}

= exp
{
−2πλGT

∫ ∞

0

a (1 − X1(r)) + sr−α

1 + sr−α

}
. (A8)

Next, we apply Gauss–Laguerre quadrature to approximate the integral in Equation (A8). Hence,
Λ1 can be expressed after approximation as:

Λ1 = e
−2πλGT ∑P

p=1 Ωp
a(1−X1(rp))+sr−α

p
1+sr−α

p . (A9)

Following the same approximation procedure for X1 and applying Gaussian–Chebyshev
quadrature twice, Λ2 in Equation (A3) is given as:

Λ2(d) =
1 − a
1 + a

+
2a

1 + a

S

∑
j=1

Q

∑
i=1

�iξ j

1 + s
(

d2 + R2
Dz2

j + 2dRDzj cos(πxi)
)−α/2 , (A10)

where �i = πωi

√
1 − η2

i , ωi = π
Q , ηi = cos( 2i−1

2Q π), xi = ηi + 1, ξ j = 2RDωj

√
1 − Θ2

j z2
j ,

Θj = cos( 2j−1
2S π), zj =

1
2 (Θj + 1), ωj =

π
S and Q, S are the complexity-accuracy trade-off parameters.

115

Bo
ok
s

M
DP
I



Future Internet 2017, 9, 73

Finally, the result in Lemma1 is obtained by multiplying Equations (A9) and (A10). �

Appendix B. Proof of Theorem 1

In order to obtain Pm, we require Fh. Since, all wireless links exhibit Rayleigh fading and the DRs
are uniformly distributed inside disc D centered at the location of test GT, the CDF Fh can be expressed
as [31]:

Fh(y) =
2

R2
D

∫ RD

0

(
1 − e−zαy

)
zdz. (A11)

It is challenging to solve the above integral. As such, we approximate it by applying
Gaussian-Chebyshev quadrature as:

Fh(y) =
L

∑
l=1

ble−cl y. (A12)

Based on Equation (A12), Pm in Equation (5) can be expressed as:

Pm =
∫ ∞

0
Fh

(
ϕmax

m (ρx + 1)
ρt

)
f I(x)dx

=
L

∑
l=1

∫ ∞

0
e−

cl ϕmax
m (ρx+1)

ρt f I(x)dx

=
L

∑
l=1

ble
− cl ϕmax

m
ρt

∫ ∞

0
e−

cl ϕmax
m ρx
ρt dx

=
L

∑
l=1

ble
− cl ϕmax

m
ρt LI

(
cl ϕ

max
m ρ

ρt

)
, (A13)

where f I(x) is the PDF of interference I and the last step follows from the definition of Laplace
transform. This proves the result in Theorem 1. �

References

1. Akyildiz, I.F.; Nie, S.; Lin, S.C.; Chandrasekaran, M. 5G roadmap: 10 key enabling technologies.
Comput. Netw. 2016, 106, 17–48.

2. Wong, V.W.S.; Schober, R.; Ng, D.W.K.; Wang, L.C. Key Technologies for 5G Wireless Systems;
Cambridge University Press: Cambridge, UK, 2017.

3. Timotheou, S.; Krikidis, I. Fairness for Non-Orthogonal Multiple Access in 5G Systems. IEEE Signal
Process. Lett. 2015, 22, 1647–1651.

4. Anwar, A.; Seet, B.C.; Li, X.J. PIC-based receiver structure for 5G downlink NOMA. In Proceedings of the
10th International Conference on Information, Communications and Signal Processing (ICICS), Singapore,
2–4 December 2015.

5. Ding, Z.; Liu, Y.; Choi, J.; Sun, Q.; Elkashlan, M.; Chih-Lin, I.; Poor, H.V. Application of Non-Orthogonal
Multiple Access in LTE and 5G Networks. IEEE Commun. Mag. 2017, 55, 185–191.

6. Wei, Z.; Yuan, J.; Ng, D.W.K.; Elkashlan, M.; Ding, Z. A Survey of Downlink Non-orthogonal Multiple
Access for 5G Wireless Communication Networks. arXiv 2016, arXiv:abs/1609.01856.

7. Saito, Y.; Benjebbour, A.; Kishiyama, Y.; Nakamura, T. System-level performance evaluation of downlink
non-orthogonal multiple access (NOMA). In Proceedings of the IEEE 24th Annual International Symposium
on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, UK, 8–11 September 2013.

8. Lv, L.; Chen, J.; Ni, Q.; Ding, Z. Design of Cooperative Non-Orthogonal Multicast Cognitive Multiple Access
for 5G Systems: User Scheduling and Performance Analysis. IEEE Trans. Commun. 2017, 65, 2641–2656.

116

Bo
ok
s

M
DP
I



Future Internet 2017, 9, 73

9. Kimy, B.; Lim, S.; Kim, H.; Suh, S.; Kwun, J.; Choi, S.; Lee, C.; Lee, S.; Hong, D. Non-orthogonal Multiple
Access in a Downlink Multiuser Beamforming System. In Proceedings of the IEEE Military Communications
Conference (MILCOM), San Diego, CA, USA, 18–20 November 2013.

10. Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.K.; Zhang, J.C. What Will 5G Be?
IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082.

11. Fodor, G.; Dahlman, E.; Mildh, G.; Parkvall, S.; Reider, N.; Miklós, G.; Turányi, Z. Design aspects of network
assisted device-to-device communications. IEEE Commun. Mag. 2012, 50, 170–177.

12. Doppler, K.; Rinne, M.; Wijting, C.; Ribeiro, C.B.; Hugl, K. Device-to-device communication as an underlay
to LTE-advanced networks. IEEE Commun. Mag. 2009, 47, 42–49.

13. Lin, X.; Andrews, J.G.; Ghosh, A. Spectrum Sharing for Device-to-Device Communication in Cellular
Networks. IEEE Trans. Wirel. Commun. 2014, 13, 6727–6740.

14. Zhang, Z.; Ma, Z.; Xiao, M.; Ding, Z.; Fan, P. Full-Duplex Device-to-Device-Aided Cooperative
Nonorthogonal Multiple Access. IEEE Trans. Veh. Technol. 2017, 66, 4467–4471.

15. Ali, K.S.; ElSawy, H.; Alouini, M.S. Modeling Cellular Networks With Full-Duplex D2D Communication:
A Stochastic Geometry Approach. IEEE Trans. Commun. 2016, 64, 4409–4424.

16. Afshang, M.; Dhillon, H.S. Spatial modeling of device-to-device networks: Poisson cluster process meets
Poisson Hole Process. In Proceedings of the 49th Asilomar Conference on Signals, Systems and Computers,
Pacific Grove, CA, USA, 8–11 November 2015.

17. Palombara, C.L.; Tralli, V.; Masini, B.M.; Conti, A. Relay-Assisted Diversity Communications. IEEE Trans.
Veh. Technol. 2013, 62, 415–421.

18. Sun, H.; Xu, Y.; Hu, R.Q. A NOMA and MU-MIMO Supported Cellular Network with Underlaid D2D
Communications. In Proceedings of the IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing,
China, 15–18 May 2016.

19. Zhao, J.; Liu, Y.; Chai, K.K.; Chen, Y.; Elkashlan, M.; Alonso-Zarate, J. NOMA-Based D2D Communications:
Towards 5G. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM),
Washington, DC, USA, 4–8 December 2016.

20. Shi, Z.; Ma, S.; ElSawy, H.; Yang, G.; Alouini, M. Cooperative HARQ Assisted NOMA Scheme in Large-scale
D2D Networks. arXiv 2017, arXiv:abs/1707.03945.

21. Guo, A.; Zhong, Y.; Zhang, W.; Haenggi, M. The Gauss Poisson Process for Wireless Networks and the
Benefits of Cooperation. IEEE Trans. Commun. 2016, 64, 1916–1929.

22. Yang, Z.; Ding, Z.; Wu, Y.; Fan, P. Novel Relay Selection Strategies for Cooperative NOMA. IEEE Trans.
Veh. Technol. 2017, doi:10.1109/TVT.2017.2752264.

23. Ding, Z.; Dai, H.; Poor, H.V. Relay Selection for Cooperative NOMA. IEEE Wirel. Commun. Lett. 2016,
5, 416–419.

24. Ding, Z.; Dai, L.; Poor, H.V. MIMO-NOMA Design for Small Packet Transmission in the Internet of Things.
IEEE Access 2016, 4, 1393–1405.

25. Sun, Y.; Ng, D.W.K.; Zhu, J.; Schober, R. Multi-Objective Optimization for Robust Power Efficient and Secure
Full-Duplex Wireless Communication Systems. IEEE Trans. Wirel. Commun. 2016, 15, 5511–5526.

26. Zabini, F.; Bazzi, A.; Masini, B.M.; Verdone, R. Optimal Performance Versus Fairness Tradeoff for Resource
Allocation in Wireless Systems. IEEE Trans. Wirel. Commun. 2017, 16, 2587–2600.

27. Ding, Z.; Yang, Z.; Fan, P.; Poor, H.V. On the Performance of Non-Orthogonal Multiple Access in 5G Systems
with Randomly Deployed Users. IEEE Signal Process. Lett. 2014, 21, 1501–1505.

28. Liu, Y.; Ding, Z.; Elkashlan, M.; Yuan, J. Nonorthogonal Multiple Access in Large-Scale Underlay Cognitive
Radio Networks. IEEE Trans. Veh. Technol. 2016, 65, 10152–10157.

29. Men, J.; Ge, J.; Zhang, C. Performance Analysis of Nonorthogonal Multiple Access for Relaying Networks
Over Nakagami-m Fading Channels. IEEE Trans. Veh. Technol. 2017, 66, 1200–1208.

30. Hiderband, E. Introduction to Numerical Analysis; Dover: New York, NY, USA, 1987.
31. Ding, Z.; Poor, H.V. Cooperative Energy Harvesting Networks With Spatially Random Users. IEEE Signal

Process. Lett. 2013, 20, 1211–1214.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

117

Bo
ok
s

M
DP
I



future internet

Article

NB-IoT for D2D-Enhanced Content Uploading with
Social Trustworthiness in 5G Systems †

Leonardo Militano 1 , Antonino Orsino 2,∗ , Giuseppe Araniti 1,3 and Antonio Iera 1

1 DIIES Deparment, University “Mediterranea” of Reggio Calabria, Reggio Calabria 89100, Italy;
leonardo.militano@unirc.it (L.M.); araniti@unirc.it (G.A.); antonio.iera@unirc.it (A.I.)

2 ELT Deparment, Tampere University of Technology, Tampere 33720, Finland
3 API Deparment, Peoples’ Friendship University of Russia (RUDN University), Moscow 101000, Russia
* Correspondence: antonino.orsino@tut.fi; Tel.: +358-44-299-2908
† Militano, L.; Orsino, A.; Araniti, G.; Nitti, M.; Atzori, L.; Iera, A. Trusted D2D-based data uploading in in-band

narrowband-IoT with social awareness. In Proceedings of the IEEE 27th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 2016; pp. 1–6.

Academic Editor: Boon-Chong Seet
Received: 14 June 2017; Accepted: 6 July 2017; Published: 8 July 2017

Abstract: Future fifth-generation (5G) cellular systems are set to give a strong boost to the large-scale
deployment of Internet of things (IoT). In the view of a future converged 5G-IoT infrastructure,
cellular IoT solutions such as narrowband IoT (NB-IoT) and device-to-device (D2D) communications
are key technologies for supporting IoT scenarios and applications. However, some open issues
still need careful investigation. An example is the risk of threats to privacy and security when IoT
mobile services rely on D2D communications. To guarantee efficient and secure connections to IoT
services involving exchange of sensitive data, reputation-based mechanisms to identify and avoid
malicious devices are fast gaining ground. In order to tackle the presence of malicious nodes in the
network, this paper introduces reliability and reputation notions to model the level of trust among
devices engaged in an opportunistic hop-by-hop D2D-based content uploading scheme. To this end,
social awareness of devices is considered as a means to enhance the identification of trustworthy
nodes. A performance evaluation study shows that the negative effects due to malicious nodes can
be drastically reduced by adopting the proposed solution. The performance metrics that proved
to benefit from the proposed solution are data loss, energy consumption, and content uploading time.

Keywords: trustworthiness; D2D communications; 5G systems; Internet of things; NB-IoT

1. Introduction

The expected drastic increase in Internet of things (IoT) connected devices will definitely
produce huge demands for data transmission over wireless systems. At the same time, a plethora
of new IoT use cases are emerging across the domains of intelligent transportation systems, smart
grid automation, remote health care, smart metering, industrial automation and control, remote
manufacturing, and public safety surveillance, among others [1]. Most IoT devices operate through
their virtual representations within a digital overlay information system, built over the physical
world. Therefore, the majority of current IoT solutions rely on cloud services, leveraging on their
virtually unlimited capabilities to effectively exploit the potential of massive tiny sensors and actuators
towards the so-called cloud of things. Given the complexity and the challenging requirements of
future IoT ecosystems, experts in the field share the opinion that the upcoming fifth generation
(5G) cellular systems will represent a strong boost for actual IoT deployment [2]. This vision is
sustained by the fervent activities, aimed at designing IoT-oriented 5G wireless systems, conducted
by academic, industrial, and standardization bodies [3,4], worldwide. Several types of interactions
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may coexist within an IoT ecosystem, including machine-to-machine (M2M), machine-to-human,
human-to-machine, and machine-to-cloud interactions. All require ubiquitous connectivity. For this
purpose, device-to-device (D2D) communications appears as a promising paradigm to support the
interconnection of heterogeneous objects [5].

Short-range D2D cooperation among devices may introduce benefits in terms of improved
spectrum utilization, higher throughput, and lower energy consumption, which is important
for constrained IoT devices. However, there are still several open issues that need to be solved
in order to achieve a seamless, effective, and reliable deployment of proximity-based communications
for IoT systems [6,7].

For an effective implementation of proximity communications, one of the most important
challenges is to understand how the node-originated information shall be processed so as to build
a reliable system on the basis of the objects’ behavior, namely the need for trustworthiness [8].
Indeed, in realistic scenarios, where human interactions and human behavior are also to be considered,
the presence of malicious nodes in the network is a constant threat for successful cooperation.
Accordingly, without effective trust management foundations, attacks and malfunctions are likely
to outweigh any possible cooperation benefits [8].

For the reference scenario in this paper, we consider that groups of devices in close proximity
are willing to upload contents to the Cloud or to a central server and end users may not be aware
of whom they are going to forward the data to. Typical sample scenarios are small-scale crowded
environments (e.g., stadiums, university campuses, music theaters, or fairs) where devices can exploit
opportunistic data forwarding over other devices in proximity. In these contexts, malicious nodes may
decide to drop the data packets they are expected to forward or even modify the data packets before
forwarding the corrupted content. To cope with these threats, reliability and reputation notions will
be considered to model the level of trust among the involved entities.

By taking inspiration from recent social Internet of things (SIoT) models, in this paper we consider
the sociality level of the devices to model the reliability of the communication. The historical reputation
of the cooperative users will be considered to offer rational users the possibility to filter out untrusted
users and avoid unsuccessful opportunistic hop-by-hop D2D interactions. An initial investigation
in this direction was made in our previous paper [9] in long-term evolution-advanced (LTE-A) scenarios
where multihop cooperative uploading is implemented over cellular D2D resources [10]. In this paper
we take forward our research, investigating among other issues the use of the recent narrowband
IoT (NB-IoT) standard [11], which is currently considered the reference cellular technology for IoT
communications for the next 5G systems. The trust constraints for successful D2D-based content
uploading are modeled by including sociality among devices, as a measure of reliability, and historical
reputation. The objective is to define multihop D2D topologies that meet the constraints of reciprocal
user equipment (UE) proximity for the direct links activation and, at the same time, of an adequate trust
level among the cooperating devices. Through simulation-based performance evaluations, we show
that it is possible to significantly reduce the impact of malicious behaviors on the performance
of involved devices, with gains in terms of data loss, energy consumption, and data uploading time.

The remainder of the paper is organized as follows: Section 2 reviews the related work; Section 3
introduces the research background and motivation; the algorithmic solution for the definition
of trusted D2D cooperative topologies is given in Section 4; a detailed description of the proposed
trust model and the sociality concepts is given in Section 5; and numerical results and conclusions are
provided in Section 6 and Section 7, respectively.

2. Related Work

Security is one of the key issues for an effective and widespread adoption of D2D
communications [12] in IoT scenarios [13]. This is particularly relevant in a cooperative context such
as the one studied in this paper, where the multihop D2D data forwarding paradigm is based on the
assumption that the involved devices behave in a trusted and secure way [14]. Unfortunately, this is not
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always the case as malicious nodes may be active in the network by either dropping or manipulating
the data to be forwarded.

Generally, trust is defined as the quantified belief of a truster with respect to the competence,
honesty, security and dependability of a trustee within a specified context [15]. When two users want
to cooperate, one of them (the truster) assumes the role of a service requester and the other (the trustee)
acts as the service provider. Specifically, in our cooperative D2D multihop scenario, the node acting
as relay/gateway towards another node will be the trustee and the source node of the relayed data
is the truster. The cooperative topology formation exploits a game theoretic coalition formation model
as proposed in [10]. Game theoretic approaches have found several applications also in the field of D2D
communications given the potential to model the user behavior (see e.g., [16,17]). The trustworthiness
of the truster with respect to the trustee can be determined by considering reliability and/or reputation.
The former is a direct measure derived by subjective observations of the truster during its interactions
with the trustee; the latter is an indirect measure based on the opinions that other actors in the
community have about the trustee.

In the literature, several trust models have been proposed to represent both reliability and
reputation [15]. A way to reach trustworthiness in communication is to exploit sociality among
devices [9,18]. The mechanism we propose enhances classic trust models through the exploitation
of social relationships among the involved devices (to improve device reliability) and of recommendation
exchange (to the purpose of reputation definition). Socially-aware D2D communications have attracted
high interest in recent research activity, such as for instance in [19–22]. With respect to the works
in the literature, we consider the potential of the SIoT model defined in [23], to embrace the social
networking concepts and build trustworthy relationships among devices [24,25]. In particular, mobility
patterns and relevant context can be considered to configure the appropriate forms of socialization
among the UE. Specifically, the so-called co-location object relationships (C-LOR) and co-work object
relationships (C-WOR) are established between devices in a similar manner as among humans,
when they share personal (e.g., cohabitation) or public (e.g., work) experiences. Another type of
relationship may be defined for the objects owned by a single user, which is named ownership object
relationship (OOR). The parental object relationship (POR) is defined among similar devices built
in the same period by the same manufacturer, where the production batch is considered a family.
Finally, the social object relationship (SOR) is established when objects come into contact, sporadically
or continuously, for reasons related to relations among their owners.

3. NB-IoT and D2D Communications in the 5G Era

The upcoming fifth generation (5G) wireless systems are being considered as the best candidate
to allow effective interworking of IoT devices, thanks to the benefits these offer in terms of enhanced
coverage, high data rate, low latency, low cost per bit, and high spectrum efficiency. There is
a general consensus among academia and industries that 5G will have a huge impact in three
main areas of communication: (1) enhanced mobile broadband (eMBB); (2) massive-machine type
communication (M-MTC); and (3) critical-MTC (c-MTC). In particular, these three areas have different
requirements and applications. Nevertheless, those are not standalone use cases, but may overlap
in some cases. In our work, we take into consideration a use case that is somehow in the middle
between c-MTC and M-MTC. We may think of process automation within a factory or other similar
scenarios. In these cases, available and reliable connections for monitoring and diagnosis of a high
number of industrial elements (i.e., M-MTC) are the most important. Nevertheless, even if the measured
values from the sensors change relatively slowly, it is still important to have reasonable latency (e.g.,
from 20 to 50 ms) in order to react in a timely manner to an issue that can occur on the way (e.g., c-MTC).

With reference to typical machine-type communications (MTC), the Third Generation Partnership
Project (3GPP) has introduced novel features [26] that better support the intrinsic battery-constrained
capabilities of IoT devices and the typical small data packets over licensed bands (e.g., LTE).
In September 2015, 3GPP standardized narrowband IoT (NB-IOT), a new narrowband radio technology
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to address the requirements of the Internet of things (IoT). This new technology provides improved
indoor coverage, support of massive number of low throughput devices, has low delay sensitivity,
ultra-low device cost, low device power consumption and an optimized network architecture.

At the time we are writing this paper, a first release of NB-IoT had been completed by 3GPP.
However, the standardization process is still ongoing and further enhancements and new features
are expected in 3GPP Release 14 (updated according to the last 3GPP meetings) and Release 15.
Further, NB-IoT is expected to be released in a form of a software update for the network operators
and is fully backward compatible with existing 3GPP devices and infrastructure. In particular, given
an available bandwidth of around 200 kHz for both downlink and uplink, the air interface of NB-IoT
is optimized to ensure harmonious coexistence with LTE. In particular, the technology can be deployed
“in-band” using the resource blocks within a normal LTE carrier (an LTE operator can deploy NB-IoT
inside an LTE carrier by allocating one of the physical resource blocks (PRB) of 180 kHz to NB-IoT),
or in the unused resource blocks within a LTE carrier guard-band (for instance, for an LTE bandwidth
of 10 MHz (i.e., 56 resource blocks—RBs), 6 RBs are reserved for guard subcarriers and can be used
for NB-IoT), or in “standalone” manner for deployments in dedicated spectrum [27]. Thanks to this
latter feature whereby NB-IoT may be deployed as a stand-alone carrier using any available spectrum
exceeding 180 kHz, a Global System for Mobile Communications (GSM) operator can also replace
a GSM carrier (200 kHz) with NB-IoT. As reported in the white paper from Nokia [11], the maximum
data rates (i.e., by considering the overall bandwidth) in terms of instantaneous peak rates provided
by the NB-IoT technology are: 170 kbps (Downlink – DL) and 250 kbps (Uplink – UL). To enable the
allocation of small portions of bandwidth, NB-IoT uses tones or subcarriers instead of resource blocks.
The subcarrier bandwidth for NB-IoT is 15 kHz (or 3.75 kHz in some cases), compared with a resource
block, which has an effective bandwidth of 180 kHz. Furthermore, the data rates available for the
single tone in downlink and uplink are 680 bits and 1000 bits, respectively. These values will satisfy
most of the communication requirements for IoT-based services where very small data packets are
usually transferred.

Another form of technology which has gained high momentum in the evolution towards
5G systems is D2D communication where devices communicate directly over cellular resources
or Wi-Fi/Bluetooth technologies without routing the data over a base station (BS) or an access
point (AP). Recent studies showed how D2D communications may find important applications in
IoT/5G integration [6,7]. Indeed, D2D communications not only allow for extending the coverage
and overcoming the limitations of conventional cellular systems, but they represent a fertile ground
for use cases and services (e.g., social interactions and gaming, local information exchange, etc.).
For instance two users can find each other whenever in proximity and share data or play interactive
games. Moreover, social applications, public safety and emergency handling may benefit from
D2D communications as devices can provide local connectivity in case of damage to the network
infrastructure. Other fields of applications may be vehicle-to-vehicle (V2V) communication in
intelligent traffic systems (ITS) where D2D communications can be exploited for traffic control/safety
applications among others.

Several works in the recent literature have investigated the benefits D2D communications can
introduce, making it a very appealing solution for the exacting requirements of IoT emerging 5G
network scenarios [28,29]. The most important of these benefits are [30]: (1) higher data rate in the
communications; (2) reliability in the communications including in the case of network failure;
(3) energy savings due to lower transmission power levels for devices in proximity; (4) reduced
number of cellular connections (known as traffic offloading); and (5) possibility for instantaneous
communications between devices.

In this paper, the potential benefits of NB-IoT and D2D communications are jointly exploited for
cooperative content uploading from a set of devices to the cellular base station, through short-range
multihop relaying. In particular, NB-IoT is exploited for radio links between users and the eNodeB,
whereas proximity-based transmissions (i.e., D2D) are established among devices in mutual proximity.
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However, a necessary condition for such a “cooperative” relaying solution to bring benefits compared
to the ”non-cooperative” case, is that the link quality of the multihop D2D channels is higher than
the one of the separate links to the Internet. This condition is more likely to occur in non-isotropic
propagation environments with obstacles where non-line-of-sight (NLOS) conditions may cause partial
and temporary out-of-coverage conditions, as is the case of the Internet of vehicles, an instance of the
IoT where objects are represented by cars [31]. The content we have in mind for the devices in the
scenario is small data coming for instance from sensing activities, security or monitoring applications
with limited amount of data to transmit, typical of IoT applications. NB-IoT is, in fact, not thought
of for bandwidth-hungry applications, e.g., videos, or big file transmissions. Currently IoT devices
are equipped with a wide range of radio technologies. For instance, Pycom (https://www.pycom.io/)
provides some shields for IoT applications that include both long- and short-range connectivity such
as LoRa, LTE, NB-IoT, Bluetooth, and LTE Cat-M1. The idea we want to investigate is to offload the part
of the traffic that cannot be handled entirely by NB-IoT via short-range links over the D2D technology.

4. Cooperative Multihop D2D-Based Data Uploading

We consider a single LTE-A cell with multiple devices interested in uploading their content
to the Internet by adopting an in-band NB-IOT solution. Data uploading according to the traditional
cellular-mode is performed through the activation of separate links from each device to the eNodeB.
The alternative solution proposed in this paper is the cooperative content uploading controlled by the
eNodeB (i.e., network-assisted D2D), where the UE organizes itself to form a “logical multihop
D2D topology” and cooperates in uploading the content generated by all the involved devices.
The cooperative topology formation is implemented according to a game theoretic coalition formation
model as proposed in [10].

In the formed cooperative topology, the user equipment (UE) located farther from the base station
relays its content to nearby UE and only the UE playing the head-end role in the topology, the so-called
gateway, is in charge of uploading all the contents received from the rest of the UE to the eNodeB.
The UE with the best link quality in the coalition is chosen as the gateway and may receive (if needed)
all the radio resources that would have been separately allocated by the eNodeB to the UE in the
coalition. Of course, since NB-IoT technology is used, in this case the radio resources are “tones” rather
than the classic definition of resource blocks (RBs). For example, a channel bandwidth of 20 Mhz
corresponds to 100 RB of LTE-A. The RB corresponds to the smallest time frequency resource that
can be allocated to a user (12 sub-carriers) in LTE. The intermediate UE in the topology also acts as
relays for the contents received from the upstream UE. In doing this, they benefit from the higher
quality of the short D2D links with respect to the direct cellular link. In the most general configuration,
each relay has one or more links active to receive data from the preceding sources in the topology,
and one single link active to relay data (its own generated traffic and the traffic from the incoming
D2D links) to the subsequent UE in the topology. Each UE operates in half-duplex mode; thus, it either
receives or transmits in a given transmission time interval. We consider a reasonable assumption
for rational self-interested devices, that each UE uploads its own generated content first and then the
content received by the preceding UE in the topology. In particular, the transmission starts only after
the generic UE has received the whole content (in other words, UE uses the decode-and-forward
relaying protocol).

We remark that all the transmission between one single device towards the eNodeB exploits
the NB-IoT tones, whereas D2D links are activated over the legacy LTE spectrum (thus using RBs
instead of tones). The motivation of this choice is driven by the fact that NB-IoT does not yet support
proximity-based transmission even if this feature is actually been discussing during the 3GPP Release
15 standardization.

In realistic scenarios, end-users may not be aware of whom they are going to be connected to and
malicious devices may decide to either modify the received content before forwarding a corrupted
packet or drop data packets they are expected to forward without informing the interested users.
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In the remainder of the paper we will refer to these two different types of malicious nodes as type A
and type B, respectively. Whenever a malicious node in the coalition either modifies or drops the data
packets, we assume that the source node will be informed by the eNodeB and will perform standard
data uploading. This will introduce both a delay in the data delivery and an increase in the energy
consumption for the involved nodes. However, there is a difference, since the effect of a type B malicious
node is identified earlier than the effect of a type A (note that type A malicious nodes are present only
when unencrypted payloads are delivered) node. In fact, if a timeout is enough to identify a packet
dropping, a corrupted packet will first have to reach the eNodeB passing through all the intermediate
nodes before the system is aware of data corruption (we assume the eNodeB will be able to identify
data corruption).

We imagine a possible way for the eNodeB (eNB) to detect a packet to be dropped (when a type B
malicious node is present). A straightforward solution is to rely on the acknowledgment message (ACK)
that has to be sent to the UE once the packet has been received by the network. In this case, once the
UE reaches the maximum number of re-transmitted Protocal Data Units (PDUs), a radio link failure
(RLF) is triggered and sent over the signal radio bearers (SRBs). Since in our work we assume that
malicious nodes of type B drop the packets, we think that the best way to proceed is for the eNB
to send the ACKs directly to each UE of the chain. Then, if a RLF is experienced (due to no ACK
being received, i.e., the gateway does not forward anything), this is triggered separately by each UE
towards the eNB. The identification of a corrupted packet is a bit more complex. This may be done
through the checksum of the packets (i.e., at the higher layer of the protocol stack) or, alternatively,
through the integrity protection that at the moment is done for the SRBs. We are aware that integrity
protection is not present for the data radio bearer (DRBs), but with the ongoing standardization of
5G New Radio (NR) and LTE Evolution (LTE-Evo) we may expect this kind of enhancements or new
features. Other solutions may be applied for detecting a not correct node behavior, but this is out of
the scope of this work.

To cope with the threats coming from the malicious nodes, when defining the cooperative
topologies, countermeasures must be considered to offer rational users the possibility to filter out
untrusted users, block the unsecure links and avoid unsuccessful opportunistic hop-by-hop D2D
interactions, as sketched in Figure 1. The solution we propose for effective and trusted D2D-based
data uploading can be summarized as follows:

Channel quality indicator (CQI) collection: the eNodeB collects the CQI values from each unit
of UE, relevant to the direct links with all its neighbors and to the uplink toward the eNodeB.

Virtual resource allocation: the eNodeB considers the situation where the single UE devices
are transmitting in unicast over their uplink and computes the radio resources according to the
scheduling policy. The so-computed radio resources are considered as “virtual” since they are not yet
allocated to the UE because the UE may actually form a cooperative multihop topology (i.e., a coalition).
Whenever a coalition is formed, the pool of “virtual” resources of all the UE in the coalition will be
assigned to the respective gateway.

Cooperative coalition formation: in this step a set of stable coalitions are determined where
for each coalition the roles for the nodes in the cooperative D2D-based data uploading are defined,
as well as the routing path for the data from each node. To produce stable coalitions, the eNodeB
will rely on a game theoretic model such as the one defined in [10]. A classic merge and split
algorithm is implemented where the device preference to join or leave a coalition is based on
the estimated data uploading time. In the coalition formation algorithm two main constraints are
considered: (1) two consecutive nodes in the data routing path built on a cooperative coalition must
be in coverage for a D2D link (otherwise the data routing would fail); and (2) the devices in the
cooperative coalitions should guarantee a minimum value of trust which we define as feasibility
threshold FT. Indeed, we consider a coalition as not feasible if at least one link i → j in the topology does
not meet the constraint:
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pti,j · di,j ≥ FT (1)

where pti,j → [0, 1] is the player trust that player i (a device in a coalition) associates to player j
(see Section 5). The second term di,j is a binary function taking value 0 if users i and j are not in proximity,
and value 1 otherwise. A link not meeting the mentioned constraint is represented in Figure 1
as a blocked link.

Data transmission configuration: For each coalition that is formed, the eNodeB assigns the
respective pool of virtual radio resources to the gateway, and transmits all the required information
to the UE so that the transmissions can start. The devices in different coalitions are always allocated
to orthogonal frequency resources by the scheduler (we consider a maximum throughput scheduler)
so that mutual interference is avoided. The configuration of the D2D communications assumes that
UE simultaneously transmitting in the same coalition adopts different RBs to avoid any mutual
interference (this leads to a worst case analysis and better results can be obtained with enhanced
interference management).

Figure 1. Cooperative multihop content uploading based on trustworthy device to device (D2D) links.

5. The Social-Aware Trust Model

In our scenario the eNodeB acts as a trusted third party that implements the coalition formation
model based on social-aware trustworthiness. To this aim, we evaluate the potential of the SIoT model
to embrace the social networking concepts and build trustworthy relationships among the devices [25].
The eNodeB will store information about the reliability, reputation and trust of the users in the network.
We define a player trust matrix (PTM) as the data structure stored in the eNodeB containing information
for every pair of devices. This information will be used whenever a new coalition formation is triggered.
Every element (i-th row and j-th column) of the PTM refers to a D2D link connecting the corresponding
i → j nodes in the coalition being considered at time t, where node j is the relay/gateway for the
data he receives from node i (its own and the preceding nodes in the topology); we consider i, j as the
truster and the trustee respectively. The eNodeB will also act as a controller of the data uploading
success as it will send an acknowledgment to the respective source nodes after each cooperative data
transmission. Whenever data loss or data corruption is detected by the eNodeB, malicious behavior
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will be detected and the information about the reliability of the interested devices will be respectively
updated. We assume that control messages (sent over control channels) are very small compared
to the main content to be sent and therefore, the relative transmission time and energy consumption
are assumed to be negligible. The parameters used to define the level of trust are the following:

Social player reliability (spri,j): this parameter has a value in [0, 1] and measures the reliability that
node i assigns to player j based on the social relationship between the two devices;

Player reliability (prt
i,j): this parameter has a value in [0, 1] and is representative of the reliability

at time instant t that player i assigns to player j. To determine this value, each player will consider
both the social player reliability and the outcome of past interactions (only those cases are considered
where player j was expected to act as relay/gateway for player i).

Recommendation reliability (rri,j): this parameter has a value in [0, 1] and is a measure of the
reliability assigned by node i to the recommendations it receives from another device j about
third devices in the network. In our model we consider this parameter to be influenced by the
social relationship between the interested UE.

Player reputation (ppt
i,j): this parameter has a value in [0, 1] and measures the reputation of player

j for player i according to the information he received through the recommendation values from
third players in the network at a given time instant t.

Player trust (ptt
i,j): this parameter has a value in [0, 1] and measures the level of trust for player j

at time t as evaluated by player i. This is the most important parameter as it will determine whether
player i is willing to consider player j as relay/gateway node in a D2D-based cooperative coalition.
For the computation of its value player i will use a weighted combination of the reliability prt

i,j and the
reputation ppt

i,j parameters.
As commented above, the player reliability parameter is a function of the time instant t. In particular,

its value is updated at every time instant based on the experienced behavior of the devices in the
cooperative data uploading. To make this work, for each cooperative interaction the eNodeB sends
an acknowledgment to the source nodes with information about the data being successfully received.
Of note, this does not allow to determine which node in the cooperative topology has actually dropped
or corrupted the data. Therefore, we assume that the eNodeB will associate the outcome value δd to
the node j that was entrusted by node i as relay/gateway forming a D2D link i → j. At time instant
t = 0 the only information the interested devices can exploit for judging the player reliability is social
player reliability (spri,j) which is set according to predefined values (see Table 1). If two communicating
entities are tied by two or more types of relationships, the strongest tie with the highest factor has
to be considered [25]. At subsequent time instants t > 0, the results of cooperative interactions can
be used to determine the player reliability prt

i,j with j acting as relay/gateway for data sent by i.
In particular, we define with Δt

i,j = {δ1, . . . , δd . . . δD} the set of past interactions registered until time
t, where the generic δd ∈ [0, 1] ∈ R is equal to the total percentage of data that has been successfully
forwarded by node j and reached the eNodeB. Summarizing, we define the player reliability prt

i,j
as follows:

prt
i,j =

⎧⎪⎨
⎪⎩

spri,j t = 0

α · spri,j + (1 − α) ·
∑d∈Δt

i,j
δd

|Δt
i,j |

t > 0
(2)

where α ∈ [0, 1] is a weighting factor to give more or less importance to the initial sociality relationship
between the nodes.

The other parameter that is being updated after each cooperative interaction is the player reputation
which is based on the opinions of the community in the network. If, for instance, a player i asks
the opinion about player j to the community, it will receive an opinion from a set of players in the
network. Let us say this set of players is K ⊆ N\{i}, where N is the total set of devices in the network.
The opinion player k will provide is its own measure of trust about player j at time instant t, namely ptt

k,j.

125

Bo
ok
s

M
DP
I



Future Internet 2017, 9, 31

Table 1. Player and recommendation reliability values associated to the social relationship between devices.

Relationship Description
Social player

Reliability (spri,j)
Recommendation
Reliability (rri,j)

Ownership object relationship (OOR) Objects owned by the same person 1 0.9
Co-location object relationship (C-LOR) Objects sharing personal experiences 0.8 0.6
Co-work object relationship (C-WOR) Objects sharing public experiences 0.7 0.5
Social object relationship (SOR) Objects in contact for owner’s relations 0.6 0.5
Parental object relationship (POR) Objects with production relations 0.5 0.4
No relationship 0.1 0.1

To best weigh the opinions received from the other players, a confidence factor called
recommendation reliability (rri,k) is used. In our proposed model this is set according to the social
relationship between the involved devices as reported in Table 1. Note that we assumed the
recommendation reliability to have a lower value with respect to social player reliability in general.
The motivation for this is that the recommendation received by a socially related device may be
influenced by the outcome of past cooperative iterations which affected the ability to provide
an objective recommendation. Given the collected information, the player reputation at time t is
computed as follows:

ppt
i,j =

∑
k∈K

rri,k · ptt
k,j

∑
k∈K

rri,k
(3)

Player i can then determine the player trust value ptt
i,j it associates to player j at time instant t,

as a combination of the player reliability (prt
i,j) and the player reputation (ppt

i,j) weighted by a real
coefficient β ranging in [0, 1] ∈ R:

ptt
i,j =

{
0.5 t = 0

β · prt
i,j + (1 − β) · ppt

i,j t > 0
(4)

The choice to set the initial trust value to 0.5 is caused by whitewashing strategies where
a malicious adviser can whitewash its low trustworthiness starting a new account with the initial
trustworthiness value.

6. Performance Evaluation

In this section we provide the output of an extensive simulation campaign finalized to demonstrate
the robustness of the proposed solution to the presence of malicious nodes. The presented results
are obtained using a built-in simulator in Matlab already used in previous works [9,10]. The proposed
solution, hereafter named trust-based, is compared to an alternative basic approach that does not take
into account any trustworthiness for the involved users and is unable to detect the malicious behavior.
As discussed earlier (see Section 4), we consider two different types of malicious nodes, i.e., (1) type A,
where users forward corrupted packets (for instance) to perform an attack to security, and (2) type B,
where users drop the packets to exploit the benefits given by multi-hop D2D connections without
forwarding any content further in the chain.

The reference scenario is composed by a single LTE-A cell with a 500-m radius and 10-MHz
bandwidth (i.e., 50 RBs available) where 20 UE devices are uniformly distributed. As for the NB-IoT,
we use the “in band” where 6 RBs (for a total number of 288 tones) are allocated for the transmissions
among the selected gateways and eNodeB. The main simulation parameters are listed in Table 2.
The content size for all the nodes is set to 50 MB and radio resources used on a D2D transmission
are limited to the so-called “virtual resources” allocated by the eNodeB to the involved pairs of
UE (see Section 4 for more details). The performance parameters we focus on for the system-level
performance are: (1) data loss; (2) average data uploading time gain; and (3) average energy consumption gain.
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In particular, the latter two parameters represent the gain achieved by the cooperative upload a pure
cellular upload solution where each user uploads directly the content to the network infrastructure by
using standard LTE unicast transmissions.

Table 2. Main simulation parameters. NB-IoT: narrowband Internet of things; CQI: channel quality indicator;
MCS: modulation and coding scheme; TTI: Transmission time interval; TDD: Time division duplex.

Parameter Value

Cell radius 500 m
Maximum D2D link coverage 100 m
TTI 1 ms
TDD configuration (D2D) 0
Carrier frequency 2.1 GHz
Tx Cellular power (NB-IoT) 23 dBm
Tx D2D power −19 dBm
CQI-MCS mapping for D2D links “refer to [32]”
Noise power −174 dBm/Hz
Cellular link model Rayleigh fading channel
D2D link model Rician fading channel
NB-IoT tones 288 (i.e., 6 RBs)
Content size 50 MB
Weighting factors α = β 0.5
Simulation time 100 s
# of Runs 500

The first analysis we discuss is the impact that the two classes of malicious nodes have on the
uploading time and the energy consumption. In particular, we consider three different distributions
of malicious nodes in the system, namely: (1) prevalence of type A (i.e., 75–25%) malicious node;
(2) equal number of type A and type B malicious nodes (i.e., 50–50%); and (3) prevalence of type B
malicious nodes (i.e., 25–75%). As we can observe from Figure 2, the proposed trust-based solution
always performs better compared to the basic strategy (we consider here the sample case with FT = 0.5).
In particular, when there is a prevalence of type A malicious nodes in the system we obtain lower
benefits in terms of uploading time and energy consumption. The motivation behind this is that the
energy consumed for a UE when receiving corrupted packets is added to the energy required to upload
the content with a unicast link to the eNodeB. In the presence of type B malicious nodes (i.e., dropping
packets), instead, the only energy consumption for the UE is due to the unicast uplink transmission
from the UE to the eNodeB. Same motivations yield for the differences observed in the uploading
time gain, which, as shown in Figure 2a, results to be higher when we have a prevalence of type B
malicious nodes.
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Figure 2. Impact of type A and type B malicious nodes (feasility threshold, FT = 0.5). (a) Uploading
time gain; (b) Average energy gain.
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The next analysis shows the results when the percentage of malicious nodes in the system varies in
the range [15–90%]. Here it is assumed that there is an equal number of malicious nodes of type A and
type B and FT = 0.5. As we can observe from the plots in Figure 3a,b, the proposed trust-based solution
obtains better performance. In particular, the average uploading time gain and the energy consumption
gain are higher with the proposed solution. In fact, with our approach users forward data to trusted
devices in proximity by avoiding transmissions with malicious nodes. In details, the achieved gain
compared to the basic solution reaches the value of +5% and +7% (on average) for uploading time and
energy consumption, respectively. This behaviour is also confirmed by curves in Figure 3c showing
the amount of data loss due to malicious nodes. Here, the trust-based solution has a percentage of
data loss that is 19% (on average) less than the data loss with the basic approach.
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Figure 3. Impact of malicious nodes percentage (half of type A and half of type B malicious nodes
are considered, FT = 0.5). (a) Uploading time gain; (b) Average energy gain; (c) Data loss.

The last analysis has the objective to show the effects of the feasibility threshold on the system-level
performance. In Figure 4 results are presented when varying the FT value from 0.2 to 1.0, under the
condition of 50% malicious nodes in the system. Interestingly, the gain achieved in terms of uploading
time increases linearly with the value of FT until reaching a value of 31% (see Figure 4a). However,
this result is obtained at the cost of a higher energy consumption for the nodes. As shown in Figure 4b,
the energy consumption gain decreases with the FT and the proposed solution performs even worse
than the basic one for FT values beyond 0.5. The reason is that the devices select only nodes with
high trustworthiness to forward data. For this reason, the selection of the links to forward the data
is strongly constrained and it may be that transmissions occur over low capacity links which require
more energy. However, users are able to upload their data without requiring additional transmissions
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toward the eNodeB. In the extreme case, when the feasibility threshold is set to 1 the amount of data
loss is about 19 MB compared to 120 MB for the basic solution.
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Figure 4. Impact of feasibility threshold (50% of malicious nodes, half of type A and half of type B).
(a) Uploading time gain; (b) Average energy gain; (c) Data loss. UE: user equipment.

In conclusion, the proposed trust-based approach outperforms the basic solutions. Moreover,
the highest benefits are obtained by tuning the feasibility threshold to the estimated number
of malicious nodes in the system and to the desired performance parameter. In fact, even if a high
feasibility threshold increases the chances of correctly forwarding the data towards to eNodeB with
lower uploading times and data losses, this can result in a higher energy consumption.

7. Conclusions

In this paper we proposed a trust-based solutions for effective D2D-enhanced cooperative content
uploading in narrowband-IoT cellular environments. To limit the impact of the malicious nodes either
dropping or corrupting the data packets in a cooperative multihop coalition, social awareness has been
modeled to evaluate the reliability for the nodes and to suitably weigh the recommendations exchange
for the reputation definition. A simulative analysis validated the proposed solution in a wide range
of settings for small-scale IoT scenarios. The results showed how the social-based trusted solution
guarantees higher gains in the content uploading time, in the energy consumption, and has the ability
to increase the amount of successful cooperative interactions by filtering out the malicious nodes.
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Abstract: The increasing use of social networks such as Facebook, Twitter, and Instagram to share
photos, video streaming, and music among friends has generated a huge increase in the amount of
data traffic over wireless networks. This social behavior has triggered new communication paradigms
such as device-to-device (D2D) and relaying communication schemes, which are both considered as
strong drivers for the next fifth-generation (5G) cellular systems. Recently, the social-aware layer and
its relationship to and influence on the physical communications layer have gained great attention as
emerging focus points. We focus here on the case of relaying communications to pursue the multicast
data dissemination to a group of users forming a social community through a relay node, according
to the extension of the D2D mode to the case of device-to-many devices. Moreover, in our case, the
source selects the device to act as the relay among different users of the multicast group by taking
into account both the propagation link conditions and the relay social-trust level with the constraint
of minimizing the end-to-end content delivery delay. An optimization procedure is also proposed
in order to achieve the best performance. Finally, numerical results are provided to highlight the
advantages of considering the impact of social level on the end-to-end delivery delay in the integrated
social–physical network in comparison with the classical relay-assisted multicast communications for
which the relay social-trust level is not considered.

Keywords: multicast; device-to-device communications; Internet of Things; mobile social networks

1. Introduction

In the incoming fifth-generation (5G) system, device to device (D2D) and relaying communications
are envisaged as enablers to face the huge amount of data traffic due to novel and advanced applications
and services. In particular, the emerging trend of sharing photos, video, and music among friends
requires a large amount of data at a high data rate. In D2D communications, the devices can share the
same relevant contents or help the neighbours to deliver data by establishing a direct link without
(or with limited) involvement of a base station (BS) or eNodeB. As the D2D communications occur over
short distances, they can support a higher data rate with respect to infrastructured communications.
Furthermore, D2D communications enhance the spectral efficiency, lighten areas with elevate traffic
and improve the user quality of experience.

In the foreseen integrated 5G and Internet of Things (IoT) infrastructures, short-range
D2D communications can interconnect heterogeneous devices with lower-energy consumptions
guaranteeing proximity services for 5G/IoT networks. The D2D concept allows for a direct connection
between D2D pairs of devices, considerably (or fully) reducing the exchange of traffic requests with
the BS.

The D2D approach is also useful in the multicast context, where multiple cellular/IoT devices
have to receive the same data from the BS. Various devices can self-organize into clusters, and some of
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these can be selected to act as a relay to help the forwarding of data, particularly to the end-nodes of
the networks and the offloading of traffic from the BS.

Relay-assisted communications have been actively studied and are already considered in the
standardization process of mobile broadband communication systems, such as in the Third Generation
Partnership Program (3GPP) Long-Term Evolution Advanced (LTE-Advanced), IEEE 802.16j and the
IEEE 802.16m [1,2] to improve the cell-edge coverage radius and to provide high data rates to the users
located in the cell-edge or in coverage holes.

In addition, cooperative multicast relaying can improve data rates as a result of the shorter distance
from multicast devices with respect to the direct transmission, for which the worst propagation channel
limits the available transmission rate. In the next generation, 5G networks, cognitive relaying and
cooperative D2D relaying will continue to be the main players.

In cooperative D2D communications, the common concept is that all the devices can relay to each
other, but, for example, the battery charging can often limit data forwarding assistance because of the
energy consumption. If D2D communication is under a partial operator control, the user acting as a
relay can have a bill reduction, or the user can offer his battery and bandwidth consumption only if he
wants to help his friend.

Recently, the increasing demand for social applications, such as Facebook, Twitter, YouTube,
Instagram, and so on, has suggested integrating the social behavior on a cooperative D2D/relaying
design, in which the D2D users can communicate directly with each other and can exchange content
mainly if they are friends. Different social communities, in which each participant has the same
interest in content, can be formed, for example, by tracking friends, kin and colleagues that share
content frequently by online social networks. Social media networking indeed represents a disruptive
paradigm leading the transition to the “Web2.0”. The proliferation of popular applications for
smartphones points out a constant trend for geo-referenced services with an increased level of
integration among different communities, thus making the content dissemination more pervasive and
instantaneous.

Generally, the social trust model for cooperative D2D communications is built by two different
layers that interact each other:

• The online social network layer, which indicates the different levels of relationships among the
D2D users.

• The offline mobile communications network layer, which determines the wireless connections subject
to the channel propagation conditions.

For example, a high level of relationships can exist between two users of the social layer because
they belong to the same group, such as family or colleagues, but the same connection cannot exist in
the physical layer because there is no proximity or there are bad propagation conditions of the link,
as shown in Figure 1.

Social 
Layer

Physical Layer 

Figure 1. Social–physical layers for cooperative device-to-device (D2D) relaying.
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The social-trust level can be evaluated through the analysis of the contents and account
information shared, for example, by tracking online social network services and calculating the ranking
of the user to spread the content (this is related to the number of friends). The social relationships can
be retrieved by matching mobile phones’ contact books: if two users are colleagues or members of the
same family, it is very likely that they have many phone contacts in common.

Moreover, when the D2D relay has received popular content from the BS, it can share this to other
users in proximity through D2D communications, and a new entry in the group of friends can make
available this content, considerably decreasing the traffic load of the BS. The geographical location can
impact this social transfer of the same data; for example, in a school building, it is highly likely that
different students download the same viral video, and thus a proximity area can be a characteristic for
content delivery.

Current researches analyze the cooperative communication gain for proper relay selection by
considering a weighted tradeoff between the social trust information and the physical constraints in
order to maximize the throughput with respect to the direct transmission, mainly for scenarios with
only one destination.

This paper presents a multicast scenario with a source (either the eNodeB or a D2D user), which
transmits the same data content to many destinations through the selection of the best relay among
different alternatives, by taking into account the relay social-trust level and propagation condition links
to optimize the end-to-end delivery delay. This is defined as the time required to deliver data from
the source through the relay to all the destinations belonging to the multicast group (i.e., the social
community). The relay itself is interested in receiving data content because it can belong to a multicast
group. The social-trust level is related to the social relationships of the relay with the source and
represents the part of the transmit power that the relay is available to give as friend to forward the
data to the multicast community and as a consequence, the availability to consume its own battery.
The performance of this social cooperative multicast system is analyzed by considering that the direct
link among the source and destinations is not available because of path loss and shadowing effects
and that all the D2D multicast devices have to receive all the data.

The remainder of the paper is organized as follows. Section 2 provides a literature survey. In
Section 3, the system model is introduced, and in Section 4, we provide the simulation results for the
end-to-end delivery time performance evaluation of the integrated social multicast D2D-based system.
Finally, the conclusions are drawn.

2. Literature Review

D2D communications are foreseen to be of paramount importance in 5G systems for improving
system capacity and for offloading traffic from a BS. In this context, devices can autonomously
establish direct connections sharing the spectrum of cellular systems (underlaid D2D communications)
and resource allocation, and management approaches have to be handled to provide proximity
services [3,4]. Different research proposes interference-avoiding schemes under the management of
network infrastructure to prevent harmful interference among D2D and cellular users or to analyze
autonomous D2D data transmissions with guaranteed limited and tolerable interference on cellular
users. Others challenges faced regard the significant reduction of traffic load and communication
delay [5] and the neighbor discovery methods to detect proximity users in cellular networks with
underlaid D2D communications [6].

As users can self-organize with direct connections, D2D cooperation can be the main means to
improve throughput and energy efficiency. Unfortunately, when D2D users cooperate, the devices
acting as relays expend extraordinary energy for data transmissions, even over short distances. Hence,
it is necessary to select D2D relays among multiple devices by considering whether a device has
already been selected as a relay many times or if it has to handle too many cooperative users to avoid
excessive energy consumption of the relay and to decrease the life-time of the system [7].
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In D2D communications networks, the mobile devices are intermittently connected in an ad hoc
manner, and the topology of the network can be highly dynamic. In [8], a novel opportunistic network
routing protocol based on social rank and intermeeting time is considered. Cooperative multicast
transmissions, for which different devices with good channel conditions are selected as relay nodes,
improve the achievable data rate with respect to the direct transmission from the BS, which suffers
from the constraint of the worst propagation channel as a result of the long distance, for example.
In the literature, various relaying technologies are considered, such as decode and-forward (DF) and
amplify-and-forward (AM) relaying. Different relaying strategies have been proposed, such as relay
selection, in which multiple relay nodes allow for a more efficient use of the system resources through
the selection of the best source–relay and relay–destination channel, and incremental relaying, in which
feedback from the destination about the success or failure of direct source–destination transmission is
used. Full duplex (FD) relays offer high spectral efficiency but suffer from strong self-interference and
loop interference if multiple antennas are installed on each relay. On the other hand, half-duplex (HD)
relays, for which the source transmits information to relays in the broadcast phase and then relays
this forward to destinations in the successive time slots, causes multiplexing loss. Many methods
have recently been proposed to overcome the multiplexing loss in HD relaying. Successive relay
techniques [9] are analyzed to improve the spectral efficiency of HD relays, in which a pair of relays is
selected, and while one relay receives data from the source, the other transmits the previously received
data to the destination. The use of a buffer at the relay nodes, “buffer-aided relaying methods”,
as in [10–15], increases the spectral efficiency with respect to HD relaying without a buffer. This
approach allows for selecting the best HD buffer-aided relay among the various relay–destination
links (opportunistic relaying schemes), to transmit the data if the channel conditions are good or buffer
it otherwise, as in max-max relay selection by Ikhlef et al. [16] or the max-link relay selection scheme
by Krikidis et al. [17].

Recently, several analyses of user behaviors and their social relationships are addressed by
considering the most popular content shared on social networks such as Facebook, Instagram, YouTube,
and WhatsApp, as well what the influences of other friends, media, bloggers and advertising are.
Different probabilistic models are proposed to predict the rate of downloading and the requests’
evolution of some content.

The new vision is to join the social relationships information and proximity-based communications
to build an autonomous, trustworthy network of smart IoT devices. The impact of social relationships
on the overall throughput of a D2D communication system is considered in [18] with the stop–wait
approach for relay selection. The distributed resource allocation, mainly based on cooperative game
theory to exploit diverse social relationships on a physical domain, is analyzed in [19]; a Bayesian model
for social relationships and a coalitional graph game for efficient data distribution is proposed in [20];
the social characteristics are used to help ad hoc peer discovery in [21]; a neighbor discovery method
and a dynamic detection of overlapping social communities is highlighted in [6]. Zhang et al. [22]
propose a model for the delivery of content in the online social level jointly with the optimization of a
traffic offloading process for the D2D communications layer. In [23], the sociality among IoT devices is
used to model the trustworthiness for successful D2D-based content delivery to significantly reduce
the impact of malicious behavior.

In [18], the optimal stopping policy for relay selection is proposed for the case of cooperative D2D
relaying, but the multicast context is not considered. This policy, suitably elaborated for the multicast
case, is considered as the benchmark for our throughput performance. In [24], a cooperative multicast
scheme with underlaid D2D communications is proposed, in which social relationships drive the relay
selection. The selected relay nodes receive broadcast messages from the BS on downlink (DL) band
and then forward these to multicast users in the uplink (UL) band via D2D communications to increase
the multicast transmission rate.

In the proposed paper, a cooperative multicast scenario is also considered as in [24] with the
difference that the best relay is selected to optimize the global end-to-end delivery delay metric.
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Moreover, the same content broadcast from the BS to the relay is distributed to the users of the
multicast group by assuming that one message is delivered only when all the users in the multicast
group have received it. We would like to stress that our focus is on a social–physical scenario, for
which, in particular, the social level trust is considered to have a more general meaning with respect
to classical real-world networks. In particular, the social level trust of a device is related to its need
or interest in receiving a given information flow, for example, according to the novel paradigm of
Fog computing/networking and applications in which clusters of smart devices collaborate toward a
common goal. As a consequence, the end-to-end delivery delay is considered as the most important
parameter to evaluate the optimal social-aware relay selection mechanism in the case of multicast
transmission. Therefore, in this paper, the best relay is selected among the different D2D devices
according to the sociality index, the proximity distance to the multicast users and the links’ propagation
conditions.

3. System Model

We focus on a cooperative multicast context, in which end users receive the requested content not
directly from the BS but via other users acting as a relay in D2D communications.

In the considered social–physical scenario, the users can communicate directly with other
multicast users and exchange shared content mainly if they are friends and according to the quality
of the D2D connection links. In particular, we refer here to the classical social–physical architecture,
which entails two layers, as in Figure 1. In this context, the source (either the eNodeB or a D2D node)
can deliver the same content to a group of D2D devices in a small area, and as the node density
increases, various devices can act as relays to forward multicast traffic to the end-devices of the social
communities and vice versa. The devices selected as relays may also be interested in receiving the
same data content because they could belong to the multicast group. According to the multicast
concept, data is delivered if all the destinations have received it. Moreover, we assume that the D2D
multicast group can be very far from the BS and that the direct path cannot exist or suffers from a deep
attenuation due to path-loss and shadowing effects.

A device can leave or join the multicast community according to his mobility. However, we
assume that the D2D devices remain in the same location during a D2D communication transmission
period (e.g., in the order of milliseconds), while their positions can change across different periods
because of users’ mobility. The D2D social-trust levels and the forwarding metric related to the channel
quality are known at the source and D2D/relays.

We consider a relay-assisted network in which a source S transmits to many destinations Di with
i = 1....M through different relays Rj with j = 1, ...N, as in Figure 2. We assume flat block fading on all
the links, such that the channel coefficients can be assumed to be constant during one time transmission
period and can change from one period to the next. One relay is selected among N to serve the multiple
destinations according to the best joint quality of the social and physical layers. The relay nodes use HD
decoding and the forward relaying mode. The nodes can retrieve their social relationships information,
for example, from the BS, reporting the analysis of content sharing or account information by accessing
online social websites such as Facebook, Twitter, YouTube, Instagram, and so forth. These social trust
values tend to be stable over the time reporting friendships and acquaintances among users. Moreover,
for example, Twitter associates with each tweet the exact location (latitude and longitude), and this
might allow the nodes the possibility to know their related positions and also discover their neighbors
in mobility.
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Figure 2. Multicast model based on social-trust level.

As in [18], the social trust impacts the transmission power of the relay node: if a stronger
social-trust relationship exists between the source and relay, the relay provides more power resources
to help the source node in retransmission.

Therefore, the selected relay Rj transmits to the multiple destinations with a power proportional
to the strength of the social-trust value β j. For each relay–destination link, the γ signal-to-noise ratio
(SNR) at the destination Di is related to the path-loss, the Rayleigh flat fading, and the zero-mean
additive white Gaussian noise (AWGN) with variance σ2

n , and it can be expressed as

γRj ,Di =
PRj |hRj ,Di |2

σ2
ndα

Rj ,Dj

(1)

where PRj is the transmit power of the jth relay, dRj ,Di stands for the distance of relay Rj from
destinations Di, α is the path-loss coefficient, and hRj ,Di are the Rayleigh fading coefficients.

In the multicast transmission mode, minimizing the delivery latency necessary to receive the data
to all the destinations is the main objective.

As a consequence, the aim of this paper is to minimize the end-to-end delivery delay that is
obtained considering Tj, the time needed to transmit from the source to the jth selected relay, and
Tj,I , the overall time for transmission from the relay to the destinations. In the case of multicast
transmission, the time to deliver the data from the relay to destinations is related not only to the
link with the higher delay, because all the destinations have to receive the same content, but also to
the social-trust level of the relay, which allows or does not allow the transmission to destinations.
The quality of physical channels is directly related to the SNR and consequently to the data rate
available, while the social trust β j assures the social link among the nodes. These two aspects, the
social relationship and the channel quality, must to be balanced to optimize the end-to-end delivery
delay for the cooperative multicast D2D relaying.

Accordingly to this, the channel rate Cj for the link between the source and the jth relay is

Cj = W log2(1 + γS,Rj) (2)

where W is the system bandwidth and γS,Rj is the SNR of the link between the source and the jth relay;
the multicast channel rate can be expressed for each link from the jth relay to all the destinations Di
with i = 1...M as

Cj,i = Wlog2(1 + γRj ,Di β j) (3)

The data rate for cooperative D2D relaying is

Cj,I = min
i
(Cj,i) (4)
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Therefore, by considering the impact of the social trust β j, the delivery delays are

Tj �
1
Cj

(5)

Tj,I �
1

Cj,I
(6)

Then, Tj,I is the maximum delivery delay related to the worst link to the relay destinations.
We consider that the transmit power that needs to transmit in two hops, source–relay and
relay–destinations, is not larger than that of the multicast transmission without the use of relays.
Regarding the social-trust level β j, we assume two values, 0 and 1, where a higher value of β j represents
a stronger social trust; moreover, we consider that friends have similar behavior in transmitting shared
data. For example, a D2D user/relay can choose its friends on its own contact list to define who and
how it can help other users for cooperative D2D relaying.

To this end, the optimization problem can be formulated and approximated as

min
j
(Tj + Tj,I) (7)

s.t. Tj, Tj,I > 0 (8)

PSTj + PRj Tj,I < PS1 T1 (9)

The second constraint (Equation (9)) guarantees that the total transmit power for the two hops due
to relay transmission is not larger than that of multicast communication, for which the source transmits
with a power PS1 directly to the destinations over a total time duration equal to T1. The power PS
transmitted by the source for the two hops can be different from the power PS1 .

The optimization problem (Equation (7)) can be solved with a complexity of O(M ∗ N).
An exhaustive search to find the optimal solution is affordable, because in the case of multicast
communications, the number of participants to the multicast cluster, and consequently the subset of
relays, is limited.

In the social relay selection method, we first retrieve the payable transmit power, the geographical
locations of each device, and the channel gains and calculate the SNR for each link. Then, we calculate
the delivery time needed from the source to each relay and the maximum delivery delay for each
group of relay destinations sequentially until the number of relays is reached. We sort the sum related
to these delivery times, and, finally, we select the best relay, which assures the minimum delivery time
from the source to the destinations. These steps are shown in Algorithm 1 following.
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4. Numerical Results

In this section, we provide numerical results concerning the performance of the proposed D2D
multicast social relaying method. In the considered scenario, a single D2D source device with Rj
neighbor relay devices, where j = 1...N, and Di destination devices, where i = 1...M, are located in a
single cell with radius C, which guarantees a reserved channel for the control communications among
these devices. Destination devices are distributed in a restricted area to form a cluster with radius r
and 0 ≤ r ≤ C. Within the D2D multicast area, the ith device is at the location (di, θi) with −r ≤ di ≤ r
and 0 ≤ θi ≤ 2π, and the distance between two nodes is defined as dj,i =

√
d2

j + d2
i − 2djdicos(θj − θi).

We assume that the distance between the source and the destinations is larger than the distance
between any two devices in the multicast group and among the relay and devices and is heavily
attenuated because of obstacles, building, and so on. Therefore, the direct link between the source and
the destinations does not exist, and communications can be established only via relay.

We consider a transmission channel model often assumed in literature [17], including both the
large scale path loss, shadowing variations and zero-mean AWGN. We assume the frequency of
non-selective Rayleigh block fading according to a complex Gaussian distribution with zero mean
and variance σ2

j,i for the ith to jth link, that is, constant during one transmission period and changing

independently from one period to another. The channel gains |hj,i|2 are exponentially distributed,
as in [10,17].

The average SNR for the signal received by a generic D2D destination device from the D2D
source device is defined as γSD, and the standard deviation is defined as σ2

sd. To simulate an urban
environment, we set the γSD value in the region of 0 dB. This choice considers that the direct path
has a heavier attenuation, as a result, for example, of obstacles, buildings, and so on, in a generic real
multicast D2D communication scenario. The average SNR for the signal received by a D2D destination
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device from one of the D2D relays is defined as γRD, and the average SNR for the signal received by a
generic jth D2D relay from the D2D source device is γSR.

Table 1 shows the values of the main parameters. The value of β j, as described in the system
model, varies depending of the friendship level. If the D2D relay has a friendship connection, it sets its
β value equal to 1; instead, if it has no friendship connection, it reduces the value 10-fold. We suppose
that each relay and the D2D source device have the complete knowledge of friendship relations and
channel state in terms of the SNR.

Table 1. Main Simulation Parameters.

Bandwidth 10 MHz

Path-loss coefficient 4
Cell radius 1 Km
Cluster radius 0.03 Km
Number of destinations, M 10
Number of relays, N 5:15
γSD 3 dB
γRD 13–18 dB
Friendship probability 20%
β j for a friend source 1
β j for a non-friend source 0.1
σsd 1 dB
σrd 9 dB
User distribution Uniform

For a comparative perspective, the throughput normalized with respect to the throughput of
direct source–destination transmissions, that is, without the use of relays, is shown in Figure 3 for
the number of relays increasing. First, a comparison of the normalized throughput of our method
with social and physical information with respect to the stopping approach [18] is shown in the top of
Figure 3, for which the direct transmission is added to the source–relay transmission at the receiver,
highlighting similar performance.

Figure 3. Comparison of normalized throughput with respect to the number of relays for the cases
with and without direct transmission.
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If obstacles impact heavily on the transmission, that is, the non-line-of-sight (NLOS) case,
the performance degrades, as in Figure 3; this is the more interesting case to analyze because it
is closer to real environments. Therefore, in the following, the results refer to the case without direct
transmission for the parameter mainly related to the multicast transmission, that is, the end-to-end
delivery delay. To emphasize the relevance of social relations in Figure 4, we compare our method,
the Social Channel Quality Indicator (SCQI), with two alternatives. In the first, the source selects
the relay by taking into account only the friendship level. In particular, it randomly selects a relay
from the friends without considering the other neighbor relays. In the second comparison method,
the D2D source selects the relay with the minimum delay among the source–relays–destination links
only relying on the SNR report. Figure 4 shows the average end-to-end delivery delay for a multicast
transmission among the source and all the destinations through the single relay selected, introduced
by these three alternatives. To simplify the analysis of the results, the average delays are normalized
with respect to the direct-link communication delay obtained for the case that the D2D source can
communicate directly with the destinations. Figure 4 shows the importance of the knowledge of both
friendship and channel conditions. Our method, which considers both of these, guarantees better
performance in terms of transmission delays. Again, the direct link is only shown for reference in
this figure.

To evaluate the performance of our method relative to the probability for the relay to be a
friend with the source in terms of delivery delay, we consider different friendship probability values,
maintaining the same system parameters and channel conditions. The results in Figure 5 show that if
the total number of neighbor relays grows, the influence of friendship probability is reduced. Each
relay addition improves the delivery delay, as we have a greater probability to find friends that offer
their full support in retransmission with the lowest latency in the two-way multicasting.
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Figure 4. Normalized delay with respect to the number of relays for the considered methods; γRD =

13 dB, γSD = 3 dB, σsd = 1 dB, and σrd = 2 dB.
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Figure 5. Normalized delay with respect to the number of relays varying the friendship probability;
γRD = 13 dB, γSD = 3 dB, and σsd = 1 dB.

Finally, Figure 6 shows the performance of our method as a function of different γRD values. From
this figure, we can note a trend: the normalized delay increases as the SNRrd value decreases and
approaches the value of the direct link depending on the number of relays. For example, in the case of
γRD equal to 13 dB, we can note that the direct link is convenient for a number of relays of about seven.
This trend is present in each relay-based model: when γSR, γRD and γSD have similar values, the direct
communication between the source and destinations becomes the best solution.
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Figure 6. Normalized delay with respect to the number of relays for different γRD values; γSD = 3 dB,
and σsd = 1 dB.
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5. Conclusions

In this paper, we propose a relay selection method for D2D multicast communication based on
D2D channel conditions and social-trust levels. We derive the optimal social-aware relay selection
method on the basis of the minimization of the multicast end-to-end delivery time. We further show
that our method for social-aware relay selection exhibits an incremental performance with respect to
the method that does not use the social domain information, and vice versa for the method in which
the relay selection is only based on friendship informations. Numerical results demonstrate that the
proposed mechanism can achieve better performance gain when the difference between the channel
quality in the two-way source–relay–destinations is better with respect to the source–destinations
channel condition.

We have also highlighted the impact of friendship in the decision method. A larger number of
friends in the neighborhood achieves a better average performance in terms of transmission delay.
Our proposed method can be used in a cell where all the multicast participants are distributed within
a small area to reduce the amount of network traffic necessary to deliver digital content to all users
belonging to the same social community.

Future developments can be represented by the extension of this method to multi-hop social-aware
content distribution, in which each destination is interested in sharing the same digital content with a
different community, for example, according to the novel paradigm of fog computing/networking and
applications in which clusters of smart devices collaborate toward a common goal.

Furthermore, we can use real-world human mobility traces such as Intel, Infocom06 or
Brightkite [25] for future simulations by dividing the devices in the network into several groups
to evaluate the system performance in terms of end-to-end delivery delay in realistic environments.
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Abstract: Several applications, from the Internet of Things for smart cities to those for vehicular
networks, need fast and reliable proximity-based broadcast communications, i.e., the ability to
reach all peers in a geographical neighborhood around the originator of a message, as well as
ubiquitous connectivity. In this paper, we point out the inherent limitations of the LTE (Long-Term
Evolution) cellular network, which make it difficult, if possible at all, to engineer such a service
using traditional infrastructure-based communications. We argue, instead, that network-controlled
device-to-device (D2D) communications, relayed in a multihop fashion, can efficiently support this
service. To substantiate the above claim, we design a proximity-based broadcast service which
exploits multihop D2D. We discuss the relevant issues both at the UE (User Equipment), which has to
run applications, and within the network (i.e., at the eNodeBs), where suitable resource allocation
schemes have to be enforced. We evaluate the performance of a multihop D2D broadcasting using
system-level simulations, and demonstrate that it is fast, reliable and economical from a resource
consumption standpoint.

Keywords: proximity services; device-to-device; multihop; resource allocation; mobile networks;
vehicular networks; simulation

1. Introduction

The diffusion of sensors and personal devices has recently made possible a range of networked
applications that have geographical proximity as a key characteristic. Relevant examples abound:
smart-city applications are often based on querying sensors deployed in a certain area (e.g., for
temperature, air pollution, etc.) [1]. In vehicle-to-vehicle (V2V) communications, cars that sense
anomalous conditions (e.g., a collision) should broadcast this information to their neighbors, to instruct
their assisted-driving systems to activate safety maneuvers [2]. Likewise, coordinated robots or drones
need to broadcast their position and status to their neighbors to coordinate swarming [3]. In all the
above cases, the set of potentially interested recipients of a message generated by an application
is defined according to geographical proximity to the originator: anyone close enough should pay
attention to the message, where how close is close enough is actually determined by the application
itself. For instance, still in the case of vehicular collision, it is foreseeable that only cars in a small radius
from the collision point should activate their assisted-driving system and initiate safety maneuvers,
whereas vehicle navigation systems in a much larger radius may benefit from knowing about the
collision and start looking for alternative routes. In other words, the broadcast domain should be
defined directly by the application.

All the above applications need to rely on ubiquitous and reliable and secure connectivity, as well
as mobility support. Another requirement of these applications is small latency, either because of a
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specific deadline, or because the performance of networked applications relying on these broadcast
messages depends on how fast these propagate.

In the last decade, researchers and manufacturers widely investigated the performance of 802.11p
as a technology for vehicular mobile ad hoc networks. On one hand, the latter has proven to be
very scalable and flexible, as it does not need any infrastructure to work. On the other hand, 802.11p
has demonstrated to have limitations in providing bounded delay and QoS (Quality of Service)
guarantees [4]. Recently, both researchers and automotive industries have begun to investigate using
4G cellular networks, such as LTE-A (Long-Term Evolution-Advanced) as an option for vehicular
communications [5]. Research works have evaluated the performance of 4G for various vehicular
applications, showing that it can be considered a viable alternative to 802.11p [6]. The above
considerations also fall into the context of Vehicle-to-Everything (V2X) communications, where one
endpoint of the communications is a vehicle, and the other one can be user cell phones, connected
traffic lights, etc. Moreover, several of the above examples of applications are being mentioned as
use-cases to generate requirements for the definition of the future 5G communications [7]. We are
thus moving towards a context where cellular communications are expected to play a major role as a
unifying technology for multiple services.

The current LTE-Advanced standard, unfortunately, is ill equipped to support this type of
applications. In fact, cellular communications normally have the eNodeB (eNB) as an endpoint of each
layer-2 radio transmission. This requires the User Equipment (UE) application originating the message
to always use the eNB as a relay in a two-hop path, even though the destination is a proximate UE. The
eNB can relay the message using either multicast or unicast downlink transmissions. The multicast
leverages the standard Multicast/Broadcast SubFrame Network, (MBSFN), which was designed for
broadcast services like TV. MBSFN is inflexible for at least three reasons: first, multicast/broadcast
subframes are alternative to unicast ones, and their definition must be configured semi-statically. Thus,
defining MBSFN subframes implies eating into the capacity for downlink unicast transmissions, and
reserving capacity for broadcast ones even when there is nothing to relay. If the network is configured
to have just one MBSFN subframe per frame (a frame being 10 subframes), then unicast transmission
capacity in the downlink is reduced by 10%, and the worst-case delay for a multicast relaying is still
10 ms, which is non negligible. Clearly, this mechanism is tailored to a continuous, periodic traffic,
rather than a sporadic, infrequent one. Second, MBSFN transmissions reach a tracking area, which
corresponds to a set of cells. There is no way to geofence the broadcast to smaller, user-defined areas.
Third, a single transmission format is selected for the whole tracking area: depending on their channel
conditions, some—possibly many—UEs may not be able to decode the message, hence reliable delivery
is not guaranteed.

eNB-driven relaying using unicast transmissions solve all the above three problems: assuming that
the eNB possesses the location of the target UEs (something which is achievable through localization
services, empowered by Mobile-edge Computing (MEC) [8]), the eNB may select which UEs to target
(hence defining its own geofence), use different transmission formats in order to match their channel
conditions, and allocate capacity only on demand. The downside, however, is that this may be
too costly in terms of downlink resources: in fact, the resource occupancy grows linearly with the
number of UEs. If a 40-byte message has to be relayed to 100 UEs, and the average Channel Quality
Indicator (CQI) is 5, three Resource Blocks (RBs) per UE are needed, which means 300 RBs in total, i.e.,
six subframes entirely devoted to relaying the message within the cell in a 10-MHz bandwidth LTE
deployment. This deprives other UEs of bandwidth for a non-negligible time, and consumes energy in
the network.

Starting from the latest releases, the LTE-A standard has incorporated network-controlled
device-to-device (D2D) transmissions, i.e., broadcast transmissions where both endpoints are UEs.
These are also foreseen in the upcoming 5G standard. The eNB still allocates the resources for D2D
transmission on the so-called sidelink (SL), which is often physically allocated in the UL (uplink)
frame [9]. D2D transmissions have a number of attractive features: they do not increase the operator’s
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energy bill, since data-plane transmissions do not involve the eNB. Moreover, they can occur at reduced
power, hence exploit spatial frequency reuse. However, the main downside is that their coverage area
is limited to a UE’s transmission radius, which is often too small.

This paper, which extends our previous work [10], advocates using multihop D2D transmissions
to support geographically constrained broadcast services. Multihopping allows these services to
scale up to a larger geographical reach, while retaining all the benefits of D2D. In order to engineer a
Multihop D2D-based broadcast (MDB) service, it is necessary to enlist the cooperation of both the UE
and the eNB, which are interdependent. In fact, UEs must define the broadcast domain, and—being
the only nodes that can use the SL—decide if and when to relay messages, keeping into account that
an aggressive relaying policy may waste resources or even induce collisions. On the other hand, the
network—and, specifically, the eNBs—must allocate resources to allow the diffusion of the broadcast,
and possibly coordinating with neighboring eNBs. Resource allocation can be either static or dynamic
(i.e., on demand) [11], and both solutions have pros and cons. Our goal is to prove that an MDB service
can be realized by using minimal, standard-compliant cooperation from the network infrastructure
(which need not even be aware of the very existence of the MDB service), and only running relatively
simple application logic within UEs. While several other papers have investigated multihop D2D
transmissions in LTE-A (e.g., [12–17]), this work and its predecessor [10] have been the first paper to
propose multihop D2D as a building block for geofenced broadcast services. A relevant issue, therefore,
is to investigate what performance can be expected from such services, i.e., what latency, resource
consumption, and reliability (i.e., percentage of reached destinations within the broadcast domain) are
in order. This paper extends [10] by presenting a thorough discussion and evaluation of the various
factors that determine the performance of MDB. Moreover, we discuss the impact on the performance
of MDB of different network conditions, such as varying UE density, presence of selfish users, or the
occurrence of near-simultaneous broadcasts related to the same event. Last, but not least, we assess
the performance of a real-life service, i.e., the diffusion of alerts in a vehicular network scenario, run
on MDB. Our results confirm that MDB consumes few resources, that it is reliable, i.e., is able to reach
most of the UEs, and that the latency involved is tolerable, even when the target area is quite large.

The rest of the paper is organized as follows: Section 2 reports background information. Section 3
reviews the related work. Section 4 discusses the role of UEs and eNBs in MDB. Section 5 reports
performance evaluation results, and Section 6 concludes the paper.

2. Background

Hereafter, we describe the LTE-A protocol stack, as well as point-to-multipoint (P2MP)
D2D communications.

An LTE-A network is composed of cells, under the control of a single eNB. UEs are attached to a
eNB, and can change the serving eNB through a handover procedure. The eNBs can communicate
between themselves using the X2 interface, a logical connection generally implemented on a
wired network.

The LTE-A protocol stack incorporates a suite of four protocols, shown in Figure 1, which
collectively make up layer 2 (i.e., the Data-link layer) of the OSI (Open System Interconnection) stack.
The stack is present on both the eNB and the UE. Traversing the LTE-A stack from the top down,
and assuming the viewpoint of the eNB, we first find the Packet Data Convergence Protocol (PDCP),
which receives IP (Internet Protocol) datagrams, performs cyphering and numbering, and sends them
to the Radio Link Control (RLC) layer. RLC Service Data Units (SDUs) are stored in the RLC buffer,
and they are fetched by the underlying MAC (Media Access Control) layer when the latter needs to
compose a subframe transmission. The RLC may be configured to work in three different modes:
transparent (TM), unacknowledged (UM) or acknowledged (AM). The TM mode does not perform
any operation. The UM, instead, segments and concatenates RLC SDUs to match the size requested by
the MAC layer, on the transmission side. On the reception side, RLC-UM reassembles SDUs, it detects
duplicates and performs reordering. The AM adds an ARQ (Automatic Repeat Request) retransmission
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mechanism on top of UM functionalities. The MAC assembles the RLC Protocol Data Units (PDUs)
into Transmission Blocks (TB), adds a MAC header, and sends everything through the physical (PHY)
layer for transmission.

PDCP

MAC

RLC

PHY

to IP from IP

 
Figure 1. LTE-A (Long-Term Evolution-Advanced) protocol stack. IP: Internet Protocol; PDCP: Packet
Data Convergence Protocol; RLC: Radio Link Control; MAC: Media Access Control; PHY: physical.

In LTE-A resources are scheduled by the eNB’s MAC layer, at periods of a Transmission Time
Interval (TTI) (1 ms). On each TTI, a vector of Resource Blocks (RBs) is allocated to backlogged UEs
according to the desired scheduling policy. A TB may occupy a different number of RBs, depending on
the Modulation and Coding Scheme (MCS) chosen by the eNB. The latter is selected based on the CQI
reported by the UE, which is computed by the UE using proprietary algorithms, and corresponds to
the Signal to Interference to Noise Ratio (SINR) perceived by the latter, over a scale of 0 (i.e., very poor)
to 15 (i.e., optimal). Each CQI corresponds to a particular MCS, which in turn determines the number
of bits that one RB can carry. Hereafter, we will often use the term CQI to refer to the (one and only)
MCS that is determined by the former, trading a little accuracy for conciseness.

In the downlink (DL), the eNB transmits the TB to the destination UE on the allocated RBs. In the
uplink (UL), the eNB issues transmission grants to UEs, specifying which RBs and which MCS each
UE can use. In the UL, UEs need means to signal to the eNB that they have backlog. This is done
both in band, by transmitting a Buffer Status Report (BSR) when scheduled, or out band, by starting a
Random ACcess (RAC) procedure, to which the eNB reacts by issuing transmission grants in a future
TTI. RAC requests from different UEs may collide at the eNB. To mitigate these collisions, the UEs
select at random one in 64 preambles, and only RAC requests with the same preamble collide. After a
RAC request, a UE sets a timer: If the timer expires without the eNB having sent a grant, that UE waits
for a backoff period and re-iterates the requests.

The 3rd Generation Partnership Project (3GPP) has standardized Network-controlled D2D
communications for LTE-A in release 12 [11]. These are point-to-multipoint (or one-to-many)
communications having proximate UEs as the endpoints, i.e., without the need to use a two-hop
path having the eNB as a relay. A D2D link is also called sidelink (SL). The SL is often allocated in
the UL spectrum in a Frequency Division Duplex (FDD) system, since the latter can be expected to
be less loaded than the DL one, due to the well-known traffic asymmetry [9]. Under this hypothesis,
D2D-enabled UEs must be equipped with a Single-Carrier Frequency Division Multiple Access
(SC-FDMA) receiver [18]. The phrase network-controlled hints at the fact that the eNB is still in
control of resource allocation on the SL, i.e., it decides which UE can use which resources. Two schemes
have been envisaged to do this: a Scheduled Resource Allocation (SRA), and an Autonomous Resource
Selection (ARS). SRA is an on-demand scheme, similar to resource allocation in the UL for standard
communications: the UE must send a RAC request to the eNB, which grants enough space for it to
send its BSR. Then, the eNB schedules SL resources accordingly and issues the grant to the UE for D2D
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communications, as shown in Figure 2a. On the other hand, in ARS the eNB configures a static resource
pool, e.g., M RBs every T TTIs, and UEs can draw from it without any signaling. With reference to
Figure 2b, the UE has new data to transmit at t = 1, but it needs to wait for the next eligible TTI,
i.e., at t = 4. If more than one UE selects the same resources, then collisions will ensue. Note that
P2MP D2D transmissions are not acknowledged, hence the sender cannot know which neighboring
UEs received a message, and H-ARQ (Hybrid Automatic Repeat reQuest) is disabled. This is because
(N)ACKs should be sent on a dedicated control channel to the sender, but dimensioning the latter
would be impossible: in fact, with P2MP D2D transmission, there is no way to know in advance how
many and which UEs will actually receive the message, or were meant to in the first place. P2MP D2D
transmissions use UM RLC.

1 2 3 4
eNB

5 6

TTI

UE

7 8 9 1110

decoding

(a)

TX opportunity

TX opportunity

1 2 3 4
eNB

5 6 TTI

UE

7 8 9 1110

(b)

Figure 2. (a) Scheduled Resource Allocation (SRA); (b) Autonomous Resource Selection (ARS). Δ is
the time between the generation of new data and the actual transmission. UE: User Equipment;
eNB: eNodeB; RAC: Random ACcess; BSR: Buffer Status Report; TTI: Transmission Time Interval;
TX: transmission.

3. Related Work

Multihop D2D communications in LTE-A networks have been studied in several works,
e.g., [12–17]. In [12], authors consider multihop D2D communications in order to extend the network
coverage and propose a resource allocation strategy to optimize the throughput along the multihop
paths. The study is restricted to two-hop communications where one UE is identified as relay node
for one pair of transmitting and receiving UE, where each hop is a unicast point-to-point (P2P)
D2D transmission. The work in [13] proposes a theoretical formulation for computing the outage
probability of multihop communications. Also in this case, P2P D2D transmissions are considered.
An opportunistic multihop networking scheme for Machine-type Communications is presented in [14].
UEs exploits the Routing for Low-power and Lossy Networks (RPL) algorithm used in Wireless Sensor
Networks (WSNs) to compute the best route toward a given destination. In [15], game theory is applied
to find the best multihop path for uploading content from one UE to the eNB. Both [14,15] differ from
our work as they deal with the problem of delivering messages toward a given destination, instead
of disseminating them to all the UEs within a given target area. Moreover, P2MP communications
are not considered. In [16], P2P D2D communications are considered in order to enhance the evolved
Multimedia Broadcast and Multicast Services (eMBMS) provided by LTE-A networks. In this case, the
eNB transmits its multimedia content to a subset of UEs and the latter exploit D2D links to forward
the data to UEs with poor channel conditions in the downlink, i.e., cell-edge UEs. A similar problem is
tackled in [17], where UEs receiving data from the eNB use one P2MP D2D transmissions to distribute
the data to neighboring UEs. The above paper focuses on finding the best subset of relay UEs so that
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the total power consumption is minimized and the rate requirements for all the UEs are satisfied.
None of the above works address the problem of disseminating UE-generated contents toward all UEs
within a geographical neighborhood.

Centralized resource scheduling is sometimes assumed in Wireless Mesh Networks (WMNs),
although far less often than distributed resource scheduling, (see, e.g., [19,20]). In this context, our
broadcasting problem is superficially similar to the one of channel assignment and/or link scheduling
in WMNs. However, the assumptions are quite different from those made in LTE-A, since nodes in
a WMN are usually equipped with few radios, which can be tuned to a larger number of channels.
In LTE-A, all UEs have as many “radios” and “channels” as the number of RBs, which is in the order
of several tens. More importantly, RBs can be allocated dynamically to UEs, whereas the algorithms
presented in the literature often assume periodic transmissions and long-term, semi-static resource
allocations. Moreover, unicast P2P transmissions are considered. For these reasons, the broadcasting
problem considered in this paper cannot be accommodated using the above algorithms.

Broadcast diffusion problems have been addressed in the context of mobile ad-hoc networks
(MANETs) (e.g., [21,22]), especially to support the dissemination of routing alerts or for gossiping
applications [23]. Unlike LTE-A, where resources are centrally scheduled by the eNB on demand, the
above networks are infrastructureless and have distributed resource allocation. Work [24] reviews and
classifies the broadcasting methods in MANETs, focusing on how they try to limit collisions, the latter
being the key issue in an infrastructureless network. For example, [25] employs similar hypotheses as
this work (no knowledge of the underlying topology, fixed transmission range), although in a different
technology, and proposes a method for limiting the number of broadcast relaying, and thus of collisions,
by preventing nodes transmission based on an adaptive function of the number of received copies
of the same message and the number of its neighbors. The considered function can then be tuned to
trade user reachability with broadcast latency. We show in Section 5 that the latency of MDB is in line
with the ones of [25], but the delivery ratios are higher, in similar scenarios. One of the main purposes
of this paper is in fact to show that MDB can leverage LTE’s centralized scheduling. The combination
of centralized scheduling and distributed transmissions is in fact unique to D2D-enabled LTE-A. Note
that the ASR mode, described in Section 2, does instead allow unscheduled, collision-prone medium
access, similar to what a MANET would do. In Section 5, we will show that such collisions actually
hamper the performance.

4. Multihop D2D Broadcasting

In the following, we consider an LTE-A system composed of several cells, where UEs are
D2D-enabled. UEs run applications that may generate messages (e.g., vehicular collision alerts)
destined to all other UEs running the same application, within an arbitrary target area. Our problem is
to reach as many interested UEs in the target area as possible, using only P2MP D2D transmissions,
relayed by UEs themselves, using as few resources as possible. The system model is shown in Figure 3,
where the shaded UE originates a message that has to be delivered to all the UEs within the circle. The
solid arrows represent the first P2MP D2D transmission, and the dashed ones represent transmissions
relayed by UEs in the first-hop neighborhood of the originating UE. A UE that perceives collisions in
the same time/frequency resources will still attempt to decode the message received with the strongest
power, i.e., it will exploit the so-called capture effect, typical of wireless networks [26].

In multihop D2D broadcast, the eNB does not participate in data plane transmissions, i.e., it does
not send data packets. Data-plane transmissions are instead performed by the UEs themselves,
on behalf of the applications running on them. However, the eNB still controls the resource
allocation, hence can affect the performance of the broadcast. We only assume that the eNB allocates
resources for generic D2D transmissions using standard-compliant means (to be discussed later in this
section), unaware of the fact that multihop relaying is going on for D2D transmissions, or of specific
application requirements (e.g., deadlines, target areas, etc.). In other words, we assume minimal,
standard-compliant support from the infrastructure.
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Figure 3. System model.

Multihop D2D broadcasting requires that applications decide which UEs to target and how
to relay messages, whereas the LTE-A network allocates resources for D2D transmissions to allow
multihop relaying. This implicitly assumes a trusted environment, where UEs behave cooperatively.
Security is notoriously difficult to enforce in broadcast networks, and we refer the interested reader
to [27] for a discussion of security issues in D2D communications in particular. Regarding cooperation,
UEs may be inclined to behave selfishly to save battery or to avoid increasing traffic volumes in
pay-per-use plans. On one hand, suitable incentives and reputation-based schemes, such as those
discussed in [28,29], could mitigate the problem. On the other hand, MDB services are supposed to be
used also by embedded applications (e.g., application software running on cars), which have access
to an energy source (e.g., the vehicle’s battery) and are not under the control of the end user (i.e., the
car owner or pilot). In this last case, manufacturers would clearly benefit from coding cooperative
behaviors in their embedded software. Hereafter, we assume that the UEs running MDB behave
cooperatively. In Section 5 we evaluate the impact of selfish users on the performance.

Hereafter, we first discuss how UE applications should be designed in order to support
broadcasting effectively, and then move on to discussing resource allocation policies in the network.

4.1. Broadcast Management within the UE

The two problems that UE applications should solve are: (i) how to identify the set of potential
recipients; and (ii) when to relay D2D communications. The first problem boils down to identifying all
the UEs running the same application in a certain geographical area. UEs running the same application
can register to a reserved multicast IP address. This is relatively easy to do with IPv6 (Internet Protocol
Version 6), where multicast address format is flexible. As far as defining the target area is concerned,
we argue that the area depends on both the network scenario and the application: in a vehicular use
case, for instance, vehicle collision alerts should reach vehicles in a radius of few hundred meters,
whereas traffic notifications should probably travel larger distances, allowing drivers to route around
congested areas. This means that the application message should contain enough information to allow
a recipient UE to understand whether or not it should relay it. The information regarding the target
area should then be embedded in the application-level message. A simple, but coarse, approach to
do this is via a Time-to-live (TTL) field: the source UE sets the TTL in the application message to a
desired maximum number of hops. Each relaying UE, then, decreases that field by one, and relays the
message only if TTL > 0. While this is relatively simple and economical in space (an 8-bit field should
be enough for must purposes), the downside is that the source UE can exert little control over the area
covered by the broadcast, since the latter ends up depending on both radio parameters (such as the
UEs’ CQI and their transmission power) and network topology (i.e., the position and density of UEs).
The latter, in turn, is unpredictable and changes over time, so that any default value runs the risk of
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being too small or too high. The alternative is to code the target area within the message, by inserting
the originating UE’s coordinates and the boundaries of the target area. Geographic coordinates can be
taken from GPS positioning, or from geolocation services co-located with the network (e.g., using MEC
solutions [8]). Geographic coordinates can be represented by two 32-bit floating points, indicating
latitude and longitude with enough precision. A simple way to constrain the target area is to encode
a maximum target radius, thus making it circular. Assuming that the target radius is represented in
meters, a 16-bit integer should be large enough for most purposes. Encoding originator’s coordinates
and target radius allows one to define with more precision the target area, which becomes independent
of the UE’s density and location. This comes at the cost of using more space in the message (10 bytes
overall instead of one). Increasing the message size, in turn, entails consuming more network resources
for transmission. Obviously, more advanced definitions of target areas can also be envisaged, at the
cost of further increasing the message payload. With a geographical representation of the broadcast
domain, receiving UEs can then check whether their own position falls within the target area before
relaying the message. This can be done by using simple floating-point arithmetic, i.e., by computing
the distance from the originator and checking whether it is smaller than the target radius included in
the message. Given the coordinates of the two points A and B (specified in latitude ϕ and longitude λ),
the Haversine formula [30] is used to compute the shortest distance over the earth’s surface, which is:

d = 2r sin−1

(√
sin2
(

ϕB − ϕA
2

)
+ cos(ϕA) cos(ϕB) sin2

(
λB − λA

2

))
(1)

where r is the earth’s radius.
Note that using a geographical representation (even one with infinite precision) still leaves a

margins of uncertainty as to which UEs will receive the message: in fact any UE which is inside the
target radius will relay the message, hence all UEs within an annulus of one D2D transmission radius
outside the edge of the target area may still receive it.

UE applications should also take care of relaying. In fact, it is at the application level that suitable
algorithms can be run to make relaying efficient. A brute-force relaying, whereby UEs relay all received
messages, would in fact quickly congest the network, since the same UE would receive the message
from several neighbors, and relay them all unnecessarily. This would waste resources that could
otherwise be used for other purposes. In order to make relaying efficient, a suppression mechanism
can be used, e.g., the one of the Trickle algorithm [31]. Trickle is used in WSNs to regulate the relaying
of updates and/or routing information. In that context, Trickle runs on each node participating in the
broadcasting: before sending a message, the node listens to the shared medium in order to figure out if
that information is redundant, i.e., enough neighboring nodes are already sharing it. If so, it abstains
from transmission so as to avoid network flooding. In Trickle, two parameters can be configured: the
Trickle Interval I and a number of duplicates Kmax. A UE selects a random time window Δtrickle in
[I/2, I), and counts the copies of the same message received therein. The UE only relays a message if
it receives fewer than Kmax copies of it. To sum up, Figure 4 depicts the flowchart of the operations
performed by a UE application on reception of a message, when the Trickle suppression algorithm
is employed. First, the UE checks whether the incoming message had already been received. If so, it
abstains from relaying and the procedure terminates. Otherwise, it computes the distance from the
originating UE and compares it with the maximum target radius. If the UE is inside the target area,
then Trickle operations are initiated: the Trickle timer is started and the duplicate counter k is set to
0. Figure 5 shows that k increases on each duplicate reception within Δtrickle. When the above timer
expires, the UE relays the message if k < Kmax.
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Figure 4. Flowchart of UE-side operations at message (msg) reception.
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Figure 5. Relaying operations at the UE application.

Note that, in the absence of Trickle, UEs must be made to wait for a random time chosen uniformly
in [0, Δ) before attempting a relay. Parameter Δ can be tuned to trade collision probability for latency.
In fact, P2MP D2D transmissions will reach several UEs simultaneously. In the absence of random
delays, these UEs will attempt relaying at the same time, since LTE-A is slotted. This may lead
to collisions, regardless of how the eNB allocates resources (an issue which is dealt with in the
next subsection).

So far we have assumed that a message is originated by one UE. However, messages are supposed
to be generated as reactions to events (e.g., a vehicular collision), and the same event may be detected
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by multiple UEs, which might then initiate a broadcast quasi-simultaneously. In fact, whichever the
allocation scheme in the network, there is a time window where all UEs that want to start a broadcast
will be unaware of others doing so, even if they are within D2D hearing range of one another. That time
window is around 10 ms with SRA (i.e., the time it takes to complete a resource allocation handshake),
and equal to the period with ARS. What happens in this case depends on how the application handles
the different broadcasts. A baseline solution is to do nothing. In that case, since the information
included in the messages is not the same, since e.g., originators’ coordinates are different, the latter
will be considered as different broadcasts by the Trickle instances running in the UEs’ applications,
and will be broadcast independently. As a result, multiple, independent broadcasts related to the
same event will traverse the network, with a corresponding increase of the traffic load. On the other
hand, the applications running at the UEs can easily be endowed with the necessary intelligence to
associate two (or more) messages, possibly with a different payload, to the same event: for example,
if the distance between the originators’ is below a threshold, the message type is the same, and the
reception times are again within a predefined window (which may be computed based on the Trickle
window). In this case, merging can occur, i.e., the various broadcasts messages are associated to the
same Trickle instance, thus being perceived as duplicates of the same broadcast process. Note that
MDB can also accommodate messages generated by entities other than UEs, e.g., nodes located in the
Internet, the LTE core network, or—possibly—Mobile-edge Computing servers running applications
on behalf of the UEs. In that case, the network can select one (or more) proxy originator UE(s) and
send them the message from the serving eNB(s) using downlink transmissions. The receiving UE(s)
can, in turn, initiate the broadcasting procedure as described above.

4.2. Resource Allocation in the Network

As discussed in Section 2, the eNB controls resource allocation, and may use either SRA or ARS.
We now compare the two approaches, highlighting their pros and cons in the context of multihop
relaying, also taking into account that multicell relaying may be required.

As far as latency is concerned, using SRA requires each UE to undergo one RAC handshake
per transmission. As shown in Figure 2a, this handshake takes a 10 ms delay in the best of cases,
i.e., when the eNB issues grants immediately. If RAC collisions are experienced, or the eNB delays
scheduling because the UL is congested, the per-hop delay may be even larger. On the other hand,
with ASR, a UE can send a message as soon as a transmission opportunity becomes available, without
the need of going through a RAC/BSR handshake. Thus, with ARS the maximum scheduling delay
is given by the resource allocation period T. Using ASR, especially with small periods, allows faster
access to the medium. However, this entails allocating a large share of resources to P2MP D2D
transmissions statically, thus wasting resources when these are not required, and preventing standard
UL communications to use them. Therefore, with ASR, latency is traded off for resource efficiency.

The two allocation schemes differ greatly regarding collisions. When using SRA, the only possible
collisions are those of simultaneous RAC requests at the eNB. However, these are quite unlikely. The
LTE-A standard requires UEs to select a preamble among 64 possible choices. Simultaneous RAC
requests with different preambles do not collide. Furthermore, when a RAC request is not answered
by the eNB (either because of a RAC collision or because the eNB does not have resources to spare),
the UE simply sends it again after a backoff time. Thus, RAC collisions do delay the broadcast process,
but they also desynchronize relaying UEs, which is a positive side effect. With SRA, data transmission
on the SL is instead interference-free, since the eNB generally grants SL resources to one transmitting
UE at a time. The only exception to that rule is when the eNB exploits a frequency reuse scheme
(such as the one in [32]), in which case faraway, non-interfering UEs may be granted the same RBs
simultaneously. However, this happens exactly because the eNB knows that they will not interfere
with each other. If, instead, ARS allocation is used, UEs claim RBs on the SL for their own transmission
without a central scheduling and without their neighbors knowing, hence the intended receivers face
unpredictable interference. The latter can be mitigated by having the UEs select at random which
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RBs to use, and by dedicating more resources to SL transmissions, which decreases the efficiency.
Moreover, ARS allocation is periodic, hence it implicitly forces synchronization among groups of
UEs: all UEs whose application requests a relay in the same ARS period will end up accessing the
SL at the next ARS opportunity, hence increasing the likelihood of collisions. This would happen at
each hop. Furthermore, since a sender does not know if collisions have occurred, the only possible
countermeasure to increase the reliability of a transmission would be to retransmit the same message
more than once.

As already discussed, a target area may include more than one cell, as shown in Figure 6.
This poses the problem of coordinated resource allocation among neighboring cells. In fact, if each
cell allocates SL resources autonomously, cell-border UEs will be subject to interference from UL
transmissions in the neighboring cells, hence they may be unable to receive P2MP D2D transmissions.
This problem is likely to affect more heavily dense networks [33], where cells are smaller.

eNB1 eNB2

Figure 6. Multicell scenario. UL: uplink.

If the network uses ARS allocation, coordination is fairly easy to achieve: all it takes is that
neighboring cells use the same allocation pattern. If, instead, SRA is used, resources are allocated
on demand, hence the eNB must share information regarding their allocation using the X2 interface.
For instance, an eNB may inform its neighbor(s) about which RBs will be allocated to a cell-border
P2MP D2D transmission in a future TTI, so that the neighboring eNB(s) avoid allocating the same
resources to UL or D2D transmissions in the vicinity of the cell border. This requires the sending eNB
to plan scheduling on the SL (at least for cell-border UEs) with a lookahead of some TTIs, enough
for the above message to reach its neighbor through the X2. With reference to Figure 7, at t = 9 the
eNB informs its neighbor that, in a future TTI, a grant for a cell-border P2MP D2D transmission will
be scheduled on a given set of RBs. The receiving eNB marks the advertised RBs as occupied at the
appointed TTI, and performs its usual scheduling. The lookahead mechanism can be expected to add
a negligible delay to the broadcast diffusion, since the X2 connection is normally wired and low-delay.

The eNBs should also select the MCS of P2MP transmissions. Such choice should strike a tradeoff
between two conflicting objectives, i.e., transmission range and resource consumption. In fact, selecting
more performing MCSs implies reducing the number of RBs required for a transmission, since more
bits will be packed in the same space. However, it will also decrease the transmission range, since
the distance at which the SINR will be high enough to allow successful decoding decreases with the
CQI. This implies that more hops will be required to cover a given target area. Conversely, selecting
less performing MCSs will require fewer hops, but more RBs per transmission. Note that the eNB
must choose the MCS only if it uses SRA allocation: in this case, in fact, the eNB sends D2D grants,
which carry indication of the transmission format. If, instead, ARS is used, UEs may select the MCS
autonomously, at least in principle. In practice, we argue that the eNB should still make that choice,
and possibly advertise it periodically using RRC procedures. In fact, the eNB is in a better position
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than single UEs to assess the UE density or location, hence to select the most suitable cell-wide
transmission format.

1 2 3 4
eNB

5 6 TTI

UE

7 8 9 1110 1312

advertisement

lookaheaddecoding

Figure 7. SRA with coordination among eNBs.

5. Performance Evaluation

In this section, we employ system-level simulations to assess the performance of MDB services.
To do so, we use SimuLTE [34], a simulation framework based on OMNeT++ [35], which models both
eNBs and UEs endowed with a Network Interface Card (NIC) that implements the data plane of the
LTE-A protocol stack, from application- to physical-layer. In particular, it allows one to simulate both
P2P and P2MP D2D communications [36]. For the scope of this paper, we enhanced the simulator with
a new application module running at the UE side, which is able to send messages to neighboring UEs,
leveraging P2MP D2D communications provided by the underlying LTE-A NIC. The receiving UE can
in turn relay the message using again P2MP D2D communications. In the following, we consider a first
scenario where UEs are static and we evaluate the impact of the different application- and MAC-level
mechanisms described in Section 4. Then, we will investigate a vehicular network scenario, where UEs
are mobile, as a use-case for MDB.

5.1. Tuning of the Multihop P2MP Settings

Our first simulation scenario, shown in Figure 8, includes five adjacent eNBs, located at a distance
of 400 m from each other. We initially assume that each eNB serves 30 UEs with P2MP D2D capabilities,
which are deployed randomly in a narrow strip along a straight line. UEs are assumed to be static.
Their transmission power is 30 dBm in the UL and 15 dBm in the SL. The channel model includes
Jakes fading and log-normal shadowing. Table 1 reports physical-layer parameters. We assume that
broadcast messages transport a 4 byte payload, representing a code for indicating the type of the
message. Considering the additional information for the originator’s coordinates and the target radius
discussed in Section 4, we assume a total length of 14 bytes. A message is generated by a random UE
every second, starting a new broadcast. As we will show later, the duration of each broadcast is less
than one second, hence we can consider each message dissemination as an independent event. For each
configuration, we run one instance of 100 s and statistics are obtained by averaging 100 independent
broadcasts. Confidence intervals at the 95% level are shown. In the following, we assume that UEs
relay the same message only once and that the target radius is 1000 m, unless otherwise specified.
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400m

Figure 8. Evaluation scenario.

Table 1. Physical-layer parameters. ITU: International Telecommunication Union; eNB: eNodeB;
UE: User Equipment; UL: uplink; D2D: device-to-device.

Parameter Value

Carrier frequency 2 GHz
Bandwidth 10 MHz (50 RBs)

Fading model Jakes
Path loss model ITU Urban Macro [37]

Noise figure 5 dB
Cable loss 2 dB

eNB Transmission Power 46 dBm
UE Transmission Power-UL 30 dBm

UE Transmission Power-D2D 15 dBm

5.1.1. Varying Application-Level Settings

In this subsection, we evaluate how different settings of the UE’s application layer affect the
performance of the broadcasting and compare MDB with the relaying made by the eNB. We assume
that the eNB uses the SRA allocation policy, using the scheduling algorithm described in [32], where
two or more UEs can reuse the same RBs if they are not interfering each other. In particular, interference
conditions are modeled through a conflict graph [38], which is maintained by the eNBs according to
UEs’ location information. In the conflict graph, two UEs are conflicting if the power they receive
from each other is above a threshold of −50 dBm. In that case, the UEs are placed on different RBs,
otherwise they can share the same RBs.

Figure 9 shows which UEs receive a broadcast message, when either TTL or GPS coordinates
and radius are used. The UE marked with the cross is the one that originates the message, and the
boundary of the target area (i.e., the shaded one) is marked by the vertical dashed line. Note that the
line only looks straight because the scale on the y-axis is stretched. UEs that received the message
are shown as green circles, whereas red triangles represent UEs that did not. Using coordinates and
radius (top left of Figure 9) allows the message to reach all the desired UEs, and few of those outside
the range. When TTL is used, the set of UEs depends on the initial TTL value. If the value is set to 5 or
6, some UEs at the border do not receive the message, whereas setting it to 7 covers the entire target
area. However, if the line is moved in either direction, or the UE density or the network MCS change,
that value stops being optimal and must be recomputed. In order to exemplify the dissemination
process of the message, Figure 10 shows the per-TTI allocation of RBs at the eNBs involved in the
broadcasting process, which is started by a UE served by eNB1. Thus, the latter allocates RBs to UEs
under its control to let them relay the message. After some time, the message reaches UEs served by
eNB2 and eNB3, which in turn start granting transmission resources to them. eNB4 and eNB5 do not
allocate RBs, since their served UEs are outside the target area.
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(a) (b)

(c) (d)

Figure 9. Target area vs. TTL.

 

Figure 10. RB (Resource Block) allocation at different eNBs over time.

We now evaluate the impact of the Trickle suppression mechanism on MDB. In particular, we
consider different settings for its relevant parameters K and I. We recall that a UE relays a message if
fewer than K duplicates are received within a time randomly selected in the range [I/2, I), I being
the Trickle interval. Defining S as the number of transmissions performed by all UEs in the floorplan
to relay a single broadcast, Figure 11 shows E[S], whereas Figure 12 reports the 95th percentile of
the time required to complete the dissemination, computed as te − t0, where t0 is the time at which
the originating UEs starts the broadcast, and te is the time at which none of the UEs that have
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received the message can forward it anymore (either because they already have, or because Trickle
suppressed relaying).

 

Figure 11. Average number of application-level transmissions with different settings of the
Trickle algorithm.

 

Figure 12. 95th percentile of application-level delay with different settings of the Trickle algorithm.

We observe that the combination of large values of I and small values of K allows us to transmit
fewer messages, hence saving in terms of radio resources and power at the UEs. Of course, larger
Trickle intervals result in larger delays, since UEs wait longer before relaying a message. The value of
K has a negligible impact on the latency of the broadcasting. If our primary objective is to provide
fast diffusion of a message, we should then select a short Trickle interval and a small value of the
threshold K.

For the above reasons, we now set the Trickle parameters to K = 3 and I = 10 ms, and compare
the performance of the with and without Trickle broadcasts. Figure 13, left, shows that adding Trickle
increases the mean delay: in fact, Trickle adds delay before a relaying is attempted, and prevents some
UEs from relaying the message at all. These delays add up at each hop. However, Trickle allows
significant resource savings, quantifiable in about half the RBs.
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Figure 13. Average delay (left) and average allocated RBs (right), w and w/o Trickle.

We then evaluate the performance of MDB against unicast eNB relaying. As far as the latter
is concerned, we assume that the source UE sends the message to the eNB, which relays it within
its cell using unicast DL transmissions, and sends it to its neighboring eNB using the X2 interface.
We envisage two options to geofence the broadcast: one (which is called eNB relaying) assumes that the
eNBs relay the message to all UEs in their cell, hence the target area consists of a number of cells. The
other solution (called enhanced eNB relaying) consists in selecting the subset of UEs to target in each
cell based on their geographic position. In both cases, the eNBs must be endowed with an application
layer that sends and receives messages. With eNB relaying, the eNB application in the originating
cell must read the message payload, and—specifically—the GPS coordinates of the source UE and
the target radius, to understand which other neighbors to contact, if any. The eNB applications in the
other cells will just receive the message and request the unicast forwarding. With the enhanced eNB
relaying, instead, all eNB applications must also read the GPS coordinates and radius, find out which
UEs are within the target area, and request the unicast relaying. This entails knowing the position of
the UEs in the cell. As already stated, this can be achieved leveraging MEC solutions, but it can be
expected to have a cost, in terms of added communication latency and overhead.

Figure 14 reports the 95th percentile of the delay and the allocated RBs in the DL subframe.
As expected, the broadcast is completed sooner using unicast relaying, since UEs can be reached in
two radio hops plus, possibly, a (fast) X2 traversal. However, the cost in terms of allocated resources is
non-negligible: a broadcasting occupies 230 RBs in the DL subframe, whereas MDB does not require
the eNB to use the DL spectrum at all. Note that, in a 10 MHz deployment, using 50 RBs per TTI,
unicast relaying would stall the DL for 4–5 consecutive TTIs, which is unadvisable.

 

Figure 14. 95th percentile of delay (left) and average allocated RBs in downlink (DL) (right).
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5.1.2. Varying MAC-Level Settings at the eNB

In the following, we assume that the target area is embedded in the message, and Trickle
suppression is enabled.

We first discuss the tradeoff involved in the choice of the MCS at the cell level. In Figure 15,
the x axis reports the mean of the total number of RBs per broadcast, whereas the y axis shows the
mean reception delay of UEs within the target radius. Resources are allocated via SRA, and the points
represent the CQIs (which determine the MCS). As expected, the number of allocated RBs decrease
with the CQI. In fact, higher CQIs correspond to more performing MCSs, hence to more bits per RB.
A message transmission occupies 11 RBs with CQI 3, and one RB with CQI 15. However, using larger
CQIs increases the number of hops, hence the latency. This is evident in the two segments 7–9 and
10–15, where the same number of RBs is used, but larger latencies are obtained, since the reception
range is reduced. However, latency also increases with too small CQIs. As previously discussed
in Section 3, the probability of correct reception decreases with the number of RBs employed, due
to frequency-selective fading, all else being equal. The MCS corresponding to CQI 7 strikes a good
tradeoff between latency and resource occupancy. While the absolute values in the graph are a function
of the target radius, qualitatively similar results (although on different scales on both axes) are obtained
when the radius is varied. From now on, CQI 7 is used in the simulations.

 

Figure 15. Average allocated RBs and average delay as a function of CQI (Channel Quality Indicator).

We now evaluate the two resource allocation strategies. Figures 16 and 17 report the average and
the 95th percentile of the delay, for different target radiuses, achieved with SRA and ARS. We configured
ARS with four different patterns, consisting of 20 RBs allocated at periods of 5, 10, 20 and 50 ms
respectively. When the period is small enough (i.e., 10 ms or below), ARS is faster than SRA, since the
time to the next transmission opportunity is smaller than the duration of a RAC handshake. This comes
at the price of higher resource consumption: ARS consumes many more resources, which go unused
when there is no traffic. For instance, with a period of 5 ms, one eNB must reserve 8% of its resources
for P2MP D2D broadcasts (still assuming a 10 MHz deployment). SRA, instead, only uses the RBs
requested by the UEs, which are around 130 per broadcast over a 1000-m radius (involving 5 eNBs),
also factoring in BSR transmissions, as shown in Figure 18. A back-of-the-envelope computation shows
that, since UEs send one broadcast per second, then the resource occupancy of SRA is less than 130 RBs
per second in the whole network, against 10 thousand for ARS at 5 ms.
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Figure 16. SRA vs. ARS, average delay.

 

Figure 17. SRA vs. ARS, 95th percentile of delay.

 

Figure 18. SRA, avg. allocated RBs per broadcast.
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Figure 19 reports the percentage of UEs that actually receive the message, which is close to
100% and fairly insensitive to the target radius. Note that the last result is partly due to the
spatial reuse policy, which allows an eNB to schedule more than one D2D transmission on the
same time/frequency resources.

 

Figure 19. SRA vs. ARS, delivery ratio.

To put the above results into context, we observe that the average broadcast latency with SRA and
a radius of 800 m is around 50 ms (see Figure 16), and the corresponding delivery ratio is above 99%
(Figure 19). Compared to [25], which addresses broadcasts in an 802.11-based MANET in a somewhat
similar scenario (although similarities between such different technologies as 802.11 and LTE are to be
taken with a pinch of salt), we note that the latencies are similar, but our delivery ratio is remarkably
higher (99% against 90–98%), despite the fact that LTE relies on much smaller UE D2D transmission
radiuses (100–150 m against 500 m in [25]).

From now on, we use SRA as the resource allocation scheme, since it achieves a good tradeoff
between latency and resource consumption.

5.1.3. Varying the Network Scenario

We now show what happens when network conditions are modified. More specifically, we show
what happens if quasi-simultaneous broadcasts are started at nearby UEs (which may register the
same event, e.g., a collision, and start dissemination independently). Moreover, we discuss how the
performance of MDB is affected by UE density in the network, and the impact of selfish users.

In order to assess the impact of multiple originators for an event, we perform simulations where
two broadcasts are started simultaneously by two UEs located at a maximum distance of 20 m.
Figure 20 shows that the 95th percentile of the delay is slightly smaller than in the case where the
broadcast has a single originator. This is because two UEs transmit simultaneously at the first hop
and their messages can be possibly received by a few more UEs than in the single-originator case.
On the other hand, merging makes little difference as far as delay is concerned, once we assume two
originators. The effects of merging two broadcasts into a single Trickle instance are instead visible
in terms of allocated RBs, as shown in Figure 21. As expected, having two independent broadcasts
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doubles the number of allocated resources, whereas the RB occupation in the case of merged broadcasts
is essentially the same as the case with a single originator.

 

Figure 20. 95th percentile of delay with multiple broadcast sources.

 

Figure 21. Avg. allocated RBs per broadcast with multiple broadcast sources.

We now assess the performance of MDB in denser networks. We increase the number of UEs
served by each eNB from 30 to 150, resulting in a total number of UEs of up to 750. Again, we use
a target area with a 1000 m radius. Figure 22 shows the 95th percentile of the delay. We observe
that the delay decreases with the UE density, and it is slightly above 80 ms with 750 UEs. This is
explained by the larger number of UEs receiving a single broadcast message, hence a larger number
of potential relays. This in turn increases the probability of reaching farther UEs. Clearly, more
transmissions come at the cost of a higher resource consumption, as reported in Figure 23: the number
of allocated RBs per broadcast increase from 130 RBs (with 150 UEs) to about 400 RBs with 750 UEs.
Interestingly, the ratio between the allocated RBs and the number of UEs decreases. In fact, more
transmissions means more duplicates too, hence more UEs abstain from transmission thanks to the
Trickle suppression mechanism.
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Figure 22. 95th percentile of delay, dense scenarios.

 

Figure 23. Avg. allocated RBs per broadcast, dense scenarios.

As discussed in Section 4, some selfish UEs may refuse to relay messages, e.g., to save their battery.
In order to assess the impact of selfish users in MDB, we simulated scenarios with an increasing
percentage of selfish UEs, at different densities. Figures 24 and 25 show respectively the 95th percentile
of the delay and the number of RBs allocated per broadcast. As expected, increasing the percentage
of selfish UEs results in a larger, though tolerable, delay. This is due to the reduced number of
transmissions, which in turn also reduce the number of allocated RBs. In any case, the reliable delivery
of the message is ensured by the Trickle suppression mechanism: in fact, (cooperative) UEs relay the
messages if they perceive that their doing so is necessary to its diffusion. It is worth noting that the
results obtained with 300 UEs and 50% of non-cooperative UEs (rightmost end of the dotted line in
Figures 24 and 25) are similar to those obtained with 150 UEs and no selfish UEs (leftmost end of
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the continuous line in Figures 24 and 25). All things considered, the presence of randomly placed
selfish users can be accounted for as an equivalent reduction in user density as far as latency and RB
utilization are concerned.

 

Figure 24. 95th percentile of delay with non-cooperative UEs.

 

Figure 25. Avg. allocated RBs per broadcast with non-cooperative UEs.

5.2. Multihop D2D Broadcasting in Urban Vehicular Networks

We now discuss how MDB performs in a vehicular network. In this scenario, moving
vehicles should be able to exchange information (like alert messages or traffic updates) with other
vehicles, roadside elements (e.g., traffic lights) and/or pedestrians in a fast and efficient way. The
inherent proximity of the communications makes D2D transmissions (possibly exploiting multihop
transmissions) one of the key enabling technologies for these services.
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For this reason, we recently enhanced SimuLTE so as to make it interoperable with Veins [39,40],
an OMNeT++-based framework for the simulation of vehicular networks, which is widely used by the
research community. This way, it is possible to endow vehicles with an LTE NIC, immersing them into
a cellular infrastructure where they can communicate with other network elements and/or among
them, possibly exploiting D2D transmissions.

We consider the scenario depicted in Figure 26, which is taken from the 3GPP specifications [41].
The latter describes an urban scenario, defined as a grid of size 250 m × 433 m. Streets have two lanes
per direction and each lane is 3.5 m wide. Inter-site distance between eNBs is 500 m. With reference to
Figure 26, we defined four bidirectional vehicle flows, respectively connecting points A-B, C-D, E-F and
G-H. From each entry point A to H, a new vehicle enters the network each 2.5 s. Vehicles are attached
to best serving eNB according to a best-Reference-Signal-Received-Power (RSRP) criterion when they
enter the grid, and they can perform handover to another eNB when they perceive a better RSRP.
Vehicles moves at a speed of 60 Km/h. This means that the distance between vehicles in the same
lane is 41.67 m. As shown in [42], these values for speed and distance correspond to a non-rush-hour
scenario, although they are not very dissimilar to a rush-hour case, where speed and distance in the
rush-hour are respectively 36 Km/h and 20 m. Physical layer parameters are the same as the previous
section and presented in Table 1. We will analyze the broadcast delay with increasing target radius.
For each configuration, we run a simulation for 250 s and, on each second, a randomly chosen vehicle
generates one message and starts the broadcasting. Since vehicles appear in the network dynamically
(hence, there are no vehicles in the network at the beginning of the simulation), we start gathering
statistics after a warm-up period of 50 s.

Figure 26. Urban grid scenario.

The Trickle suppression mechanism is enabled and vehicles relay a message if they are within
the target area defined within the message. MaxC/I is employed as the scheduling algorithm, hence
frequency reuse is not enabled. Resource allocation is performed according to the SRA mode, which
proved to be more efficient, with vehicles transmitting using CQI = 7.
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Figures 27 and 28 shows respectively the average and the 95th percentile of the delay required to
complete the broadcasting, as a function of the target radius.

 

Figure 27. Average broadcasting delay.

 

Figure 28. 95th percentile of broadcasting delay.

By comparing the results with those obtained in the previous section, we can observe that both
average and 95th percentile of the delay are higher in the vehicular case, although not overly so. This
is due to the particular deployment of the vehicles and the definition of the target area as a circle.
With reference to Figure 29, we assume that the circled vehicle (bottom right of the figure) generates a
message to be broadcast within the area defined by the dashed circle. In order to reach the vehicle
highlighted by the square, the message needs to traverse several hops along the roads, since it is too
far to be reached with a single, direct transmission and there are no other vehicles along the straight
path between them.
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Figure 29. Example of broadcasting. The dashed circle delimits the broadcast area.

In any case, Figure 30 shows that the reliability of the dissemination is above 99%. Note that in
this case vehicles are moving, hence they may enter/leave the target area while a broadcast is ongoing
(although this effect is negligible in practice, given the short time it takes for a broadcast to cover the
area). To maintain consistency, we count in the delivery ratio only the vehicles that are within the
target area at time t0. Figure 31 shows that the average number of RBs allocated for each broadcast,
which is around 280 for a target radius of 1000 m. In this case, too, the number of RBs used is of the
same order of the number of UEs, which is quite low.

 
Figure 30. Average delivery ratio.

 
Figure 31. Allocated RBs per broadcast.
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6. Conclusions

In this paper we have presented a solution for message broadcasting in LTE-A, using multihop
P2MP D2D transmissions. This solution relies on application-level intelligence on the UEs, and
leverages standard D2D resource allocation schemes in the network. It allows UEs to specify the target
area, without being constrained by cell boundaries.

We performed simulations in both a static and a vehicular environment, in a multi-cell network.
Our results show that this type of broadcast is fast, taking 80–120 ms to cover a 1000 m target radius at
the 95th percentile. Moreover, it is highly reliable, meaning that the percentage of UEs actually reached
by the message is close to 100%. Last, but not least, it is cheap in terms of resource consumption.
In fact, it does not occupy the DL frame (the SL being carved out of the UL spectrum); this means
that no service disruption occurs in the DL, and that no additional power is consumed by the eNB to
support this service. Moreover, the amount of UL resources consumed is quite limited, thanks to the
possibility of frequency reuse and proximate transmissions with higher CQIs. The RBs consumed for a
broadcast, on average, are less than one per UE, which makes MDB quite economical, and minimally
disruptive of other services that an LTE network would need to carry on simultaneously.

Further research on this topic, ongoing at the time of writing, includes at least two directions: first,
investigating a deeper involvement of the infrastructure, in particular of the eNBs, in the broadcast
relaying process. If the eNB is aware that a multihop transmission on the SL is being required by the
sending applications, then it may allocate grants proactively to speed up the process. The second
direction is to leverage network intelligence and network-wide information to characterize the target
area. With reference to the vehicular case, the alert application could be made more efficient by being
more selective as to which destination UEs it targets. For instance, if the message notifies that the
originating vehicle is suddenly slamming on the brakes, the alert should reach the vehicles that are
following it, and not those preceding it or across a block. This highlights the problem of building
context-aware broadcast domains. On one hand, defining a more detailed area may occupy more space
in the application-level message, which is something to consider carefully if the above-mentioned
benefits are to be retained. On the other, we argue that a context-aware definition of the target area
may not be defined by the vehicles themselves, since they may lack the knowledge of the surrounding
environment and position of neighboring vehicles. Acquiring this knowledge using distributed means
(i.e., inter vehicle communications) may not be viable either, because it would take a non-negligible
message exchange and time, whereas broadcasting alerts should be accomplished in real-time to
meet strict deadline requirements. The emerging MEC paradigm can play an important role in this
respect. With MEC, vehicles could acquire the information about the intended geographical reach of
one message by querying the corresponding service running at an application server located at the
edge of the mobile network. The latter can leverage the location services provided by the network
operator to define which vehicles should be receiving the message, and define a target area on behalf
of the originator. Low latency would be guaranteed by the proximity of the MEC server to the vehicles,
and by single client-server interaction.
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