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Fachrizal Aksan, Michał Jasiński, Tomasz Sikorski, Dominika Kaczorowska, Jacek Rezmer,

Vishnu Suresh, Zbigniew Leonowicz, Paweł Kostyła, Jarosław Szymańda and Przemysław
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Michał Jasiński (Doctor)
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Machine Learning and Data Mining Applications in
Power Systems
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Faculty of Electrical Engineering, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27,
50370 Wroclaw, Poland; michal.jasinski@pwr.edu.pl
* Correspondence: zbigniew.leonowicz@pwr.edu.pl

This Special Issue was intended as a forum to advance research and apply machine-
learning and data-mining methods in order to facilitate the development of modern electric
power systems, grids and devices, smart grids and protection devices, as well as to develop
tools for more accurate and efficient power system analysis.

Conventional signal processing is no longer adequate to extract all the relevant in-
formation from distorted signals through filtering, estimation, and detection to facilitate
decision making and control actions. Machine learning algorithms, optimization tech-
niques and efficient numerical algorithms, distributed signal processing, machine learning,
data-mining statistical signal detection, and estimation may help in solving contemporary
challenges in modern power systems. The increased use of digital information and control
technology can improve the grid’s reliability, security, and efficiency; dynamic optimiza-
tion of grid operations; demand response; incorporation of demand-side resources and
integration of energy-efficient resources; distribution automation; and integration of smart
appliances and consumer devices. Signal processing offers the tools needed to convert
measurement data to information, and to transform information into actionable intelligence.

This Special Issue includes fifteen articles, authored by international research teams
from several countries. For a straightforward browsing of the volume content, the articles
can be grouped into the following subjects:

� Minority oversampling techniques applied to the detection of injection of false data
and commands into communication [1].

� Binary-coded genetic algorithms applied to the intelligent scheduling of smart home
appliances [2].

� Adaptive supervised dictionary learning (SDL) for wide-area stability assessment [3].
� Forecasting of consumption in isolated areas using data sequencing, sequential mining,

and pattern mining to infer the results into a Hidden Markov Model (MAESHA H2020
project) [4].

� Impact of social distancing, implemented as a result of COVID-19, on residential
energy consumption [5].

� Application of the IpDFT spectrum interpolation method to estimate the fundamental
frequency of a power waveform [6].

� Application of an adaptive neuro-fuzzy inference system (ANFIS) maximum power
point-tracking (MPPT) controller for DFIG-based wind-energy conversion systems
(WECS) [7].

� Application of different cluster analysis techniques to evaluate the level of power
quality (PQ) parameters of a virtual power plant [8–10].

� Application of Dynamic Differential Annealed Optimization to design of off-grid rural
electrification in India using renewable energy resources and battery technologies [11].

� Reviews and studies of power supply quality pollution by voltage and current distor-
tion [12–15].

Energies 2022, 15, 1676. https://doi.org/10.3390/en15051676 https://www.mdpi.com/journal/energies
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To conclude, with reference to presented papers, we have seen a broad spectrum
of data-mining and modern machine-learning techniques applied to recent problems of
operation of power systems.

Data mining is a powerful new technology with great potential to help researchers
focus on the most important information in their large databases. Machine learning aims
to build computer systems that can learn how to solve complex problems by themselves.
Deep learning builds a complex mathematical structure (a neural network) based on vast
quantities of data. The two group of methods will eventually merge to provide more
powerful tools for the unsupervised analysis of “big data” sets.

Author Contributions: All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The editors of this Special Issue are grateful to the MDPI Publisher for the
invitation to act as guest editors of this Special Issue. All authors are indebted to the editorial staff of
“Energies” for their kind co-operation, patience and committed engagement.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kumar, A.; Saxena, N.; Jung, S.; Choi, B.J. Improving Detection of False Data Injection Attacks Using Machine Learning with
Feature Selection and Oversampling. Energies 2022, 15, 212. [CrossRef]

2. Tutkun, N.; Burgio, A.; Jasinski, M.; Leonowicz, Z.; Jasinska, E. Intelligent Scheduling of Smart Home Appliances Based on
Demand Response Considering the Cost and Peak-to-Average Ratio in Residential Homes. Energies 2021, 14, 8510. [CrossRef]

3. Dabou, R.T.; Kamwa, I.; Tagoudjeu, J.; Mugombozi, F.C. Sparse Signal Reconstruction on Fixed and Adaptive Supervised
Dictionary Learning for Transient Stability Assessment. Energies 2021, 14, 7995. [CrossRef]

4. Guerard, G.; Pousseur, H.; Taleb, I. Isolated Areas Consumption Short-Term Forecasting Method. Energies 2021, 14, 7914.
[CrossRef]

5. Jang, M.; Jeong, H.C.; Kim, T.; Suh, D.H.; Joo, S.-K. Empirical Analysis of the Impact of COVID-19 Social Distancing on Residential
Electricity Consumption Based on Demographic Characteristics and Load Shape. Energies 2021, 14, 7523. [CrossRef]

6. Borkowski, J.; Szmajda, M.; Mroczka, J. The Influence of Power Network Disturbances on Short Delayed Estimation of Funda-
mental Frequency Based on IpDFT Method with GMSD Windows. Energies 2021, 14, 6465. [CrossRef]

7. Chhipa, A.A.; Kumar, V.; Joshi, R.R.; Chakrabarti, P.; Jasinski, M.; Burgio, A.; Leonowicz, Z.; Jasinska, E.; Soni, R.; Chakrabarti, T.
Adaptive Neuro-Fuzzy Inference System-Based Maximum Power Tracking Controller for Variable Speed WECS. Energies 2021,
14, 6275. [CrossRef]
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Michal Jasiński 1,*, Tomasz Sikorski 1, Dominika Kaczorowska 1,*, Jacek Rezmer 1,

Vishnu Suresh 1, Zbigniew Leonowicz 1, Paweł Kostyla 1, Jarosław Szymańda 1 and
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Abstract: The concept of virtual power plants (VPP) was introduced over 20 years ago but is still actively
researched. The majority of research now focuses on analyzing case studies of such installations. In this
article, the investigation is based on a VPP in Poland, which contains hydropower plants (HPP) and
energy storage systems (ESS). For specific analysis, the power quality (PQ) issues were selected.
The used data contain 26 weeks of multipoint, synchronic measurements of power quality levels
in four related points. The investigation is concerned with the application of a global index to a
single-point assessment as well as an area-related assessment approach. Moreover, the problem of
flagged data is discussed. Finally, the assessment of VPP’s impact on PQ level is conducted.

Keywords: virtual power plant (VPP); power quality (PQ); global index; distributed energy resources
(DER); energy storage systems (ESS); power systems; long-term assessment

1. Introduction

In recent electrical power networks, the number of renewable energy sources (RES) and energy
storage systems (EES) have continuously increased. Thus, different approaches to controlling them have
appeared, such as microgrids and virtual power plants (VPP) [1,2]. Generally, VPPs are autonomous
units equipped with effective power flow control systems. VPPs consist of different elements that
are connected to the distribution network. The indicated elements are generators, loads, and energy
storage systems [2]. Coordinating the work of the entire VPP is a difficult and demanding task.

The operation of VPPs may be analyzed in different areas. This article is related to power quality
(PQ) issues in VPP. Thus, Table 1 presents the current research directions concerning VPPs and PQ.
The literature investigation is based only on articles published in the last 5 years.

Energies 2020, 13, 6578; doi:10.3390/en13246578 www.mdpi.com/journal/energies
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Table 1. Current research trends concern virtal power pland (VPP) and power quality (PQ).

Current Research Trends Concerning VPP

optimal active and reactive power scheduling [3–12]
network voltage control by renewable energy

sources integrated [13–18]

power flow control and analysis [19–24]
frequency control issues with VPP support [25–31]

Electric energy storage (EES) sizing, localization and
management in VPP [32–37]

playing a role in energy market [38–48]
energy management in a VPP [49–58]

real case study analysis
Denmark [59], Germany [60], Ireland [61], Greece [62],

United Kingdom [63], China [64], South Korea [65],
India [66], Australia [67].

Current Research Trends Concerning PQ

development of PQ measurement devices and systems [68–74]
data mining of PQ measurements [75–84]

global power quality indices [85–93]
detection and classification of voltage events [94–102]

vehicle-to-grid (V2G) impact on PQ [103–111]

The possibility of a simple assessment of a virtual power plant’s impact regarding power quality was
the main focus of this paper. The articles that concern PQ issues in VPPs are indicated in this paragraph.
The first example is an article [112] which introduces VPP as vehicles to facilitate the cost-efficient
integration of distributed energy sources (DER) into the existing power system. The article also
presents case studies that demonstrate the application of the concepts on a test system. The result of
the system performance includes energy efficiency, power quality, and security. The authors of [113]
propose extensions of the IEC 61850 standard to enhance the interaction between the VPP controller
and the DER. The article presents the implementation of VPP communication and control architecture
in a real case. The investigated case concerns the PQ recorders’ issues and demands in accordance
with IEC 61850. The authors of [114] attempt to provide a suitable framework for harmonizing the
operations of different units of VPP. The authors indicated that decisions and the generation of profit,
although complying with the required power quality levels and physical network constraints, are an
important element of VPP strategies. The authors of [115] present simulations of a situation with a
VPP during an islanded grid with a thermal power plant for baseload. The indicated VPP consists of
200 MW wind power, 100 MW photovoltaic power, and +/− 250 MW pumped storage. The article
presents different control strategies of the storage plant to highlight the impact of VPP on power quality.
The authors of [116] consider the coordinative operation problem of multi-energy VPP. The bi-objective
dispatch model was established for the optimization of the performance of multi-energy VPP in terms
of economic cost and PQ. A real case study was performed on Hongfeng Eco-town in Southwestern
China. The authors of [117] consider VPP management with priority requirements optimized by the
compromised method. The operation optimization model of the virtual power plant was formulated
as the fuzzy multiple objective optimization problems. This optimization problem considers the
satisfaction of both customers and suppliers, system stability, PQ, and costs with operation limitations.
The proposed method was applied in a test system. However, in the literature, there is a lack of
research that presents the assessment of PQ in different units of VPP. Thus, this article investigates PQ
measurements in long-term performance.

This article presents a case study of analyzing a real VPP that operates in Poland. The investigated
VPP consists of a fragment of both low-voltage (LV) and medium-voltage (MV) distribution networks.
The VPP consists of a hydropower plant (HPP), a photovoltaic system (PV), and energy storage systems
(ESS). In this article, only the part of this VPP is analyzed which is concerned with the 1.25 MW
HPP and associated 0.5 MW ESS. The investigation is based on power quality measurements that
were obtained synchronically in five measurement points, which are HPP, ESS, associated MV line,
and two LV loads. The duration of the measurements was from 1 May 2020 to 28 October 2020.

4
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Therefore, the observable period of time was 26 weeks—182 days. For the indicated time period and
measurement points, the assessment of PQ was realized using the global value. The single parameter
of a single measurement point for such a long period of time demands analysis of a huge dataset. Thus,
this global index approach was used. Moreover, since the measurement points are connected in one
network, the proposition of common analysis was proposed. The analysis of how to use the flagging
concept was indicated for multipoint measurement. Another element of the analysis was to indicate
the different working conditions of the VPP. Fifty of them were indicated concerning HPP and EES
working schedule. Then, the comparison of the indicated working conditions was realized using the
global index.

To summarize the contributions of this article:

• It contains the analysis of multipoint, synchronic, and long-term power quality data;
• PQ assessment is realized for both single-point and area-related approaches;
• Flagging concept is discussed for both single-point and area-related approaches;
• PQ assessment is realized using the global index approach;
• Different working conditions of the VPP are defined, investigated, and compared in terms of

power quality.

To obtain indicated contributions, the article is organized into five sections. In Section 2,
the investigated virtual power plant is presented. Section 3 presents results concerning the use of
the global index for PQ assessment of each measurement point; different working conditions of the
investigated VPP; analyzing the application of the flagging concept for the area-related approach; using
the global index for the assessment of different working conditions of the VPP in both single-point and
area-related approaches. Section 4 presents a discussion of the obtained results. Section 5 indicates
the conclusions.

2. Methodology and Research Object Description

The investigation presented in this article concerns PQ issues in VPP. The proposed approach
concerns the application of the global index. Thus, the selection and customization of the global index
for VPP issues are presented in Section 2.1. Then, the description of the investigated VPP localized in
Poland is presented in Section 2.2. Finally, the specific working conditions of single VPP elements are
indicated in Section 2.3.

2.1. Global Power Quality Index

As a current trend in PQ issues, the global index was indicated. Thus, in this article, there is a
proposition to use one such index. Aggregated data index (ADI) [86,87] was selected. The used index
consists of five classic 10-min PQ parameters, such as:

• frequency—f,
• voltage—U,
• short term flicker severity—Pst,
• asymmetry factor—ku2,
• total harmonic distortion in voltage—THDu,

And additional parameters that are responsible for the enhancement of the sensitivity of the index:

• an envelope of voltage deviation obtained by the difference between the maximum and minimum
of 200-millisecond U values identified during the 10-min aggregation interval,

• a maximum of the 200-millisecond value of THDu, similarly identified in the 10-min aggregation
interval [86,87].

Indicated parameters refer to the demands of the standard IEC 61000-4-30 [118]. Three-phase
values are reduced to one using the mean value of them. All factors that are included in the ADI

5
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are based on the differences between the measured 10-min aggregated power quality data and the
recommended limits of the selected standard. Therefore, the differences are expressed as a percentage
in relation to standard limits. However, to customize the proposed index to VPP issues, the authors
decided to exclude frequency. It is known that local changes do not impact frequency. Therefore,
to conduct an assessment of VPP, impact on local area frequency was omitted. The calculations of ADI
were performed on raw PQ measurement data using Excel software.

2.2. Investigated VPP

The indicated virtual power plant in this article is based on a fragment of the distribution network
in Poland [119,120]. It is supplied by two stations of 110/20 kV. The indicated stations are connected
to a 110 kV electrical power system. However, in this article, only a certain area of one substation is
investigated. The 20 kV network fed from the station is an overhead cable network. The 20 kV network
fed from the second station is mainly an urban cable network. The 20 kV network has earth fault
current compensation. Connected to the VPP are a 1.25 MW HPP and a 0.5 MW battery ESS, both of
which are connected to a medium voltage level.

The simplified scheme of the selected fragment of the VPP area is presented in Figure 1. It consists
of a 20 kV distribution network with a hydropower plant (HPP) and an energy storage system (EES)
connected with the HV/MV substation by MV line (MV_L). HPP and ESS are connected to the same
node of the network. Furthermore, two additional low voltage loads are indicated: LV_L and LV_HE.
LV_L is connected with the indicated MV associated line. LV_HE is connected with the node of the
HPP and EES. The localization of power quality recorders (denoted as “R”) is also indicated in Figure 1.
Due to this, the HPP and EES are connected to one node and their PQ recorders use the same voltage
transformer. In further research, they are treated as one point, indicated as MV_HPP&EES.

T1
115/22kV
25 MVA

T2
20/10kV
1.6 MVA

15

20 kV

G-1
275 kVA

S1

S2

G-2
685 kVA

G-3
800 kVA

10 kV

T3

Skmax=25 MVA

G1 G2 G3

ICSA= 115  A Sk=2447 MVA

EES

20 kV

R

R R R

R

Figure 1. Investigated part of VPP with the placement of PQ recorders.
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2.3. Different Working Conditions of Virtual Power Plant (VPP)

To investigate the working conditions of the VPP, different working conditions of the HPP and
EES were considered. Regarding the HPP, three different working conditions were considered:

• not working—active power level equal to 0 or equal to own consumption;
• working at a part power—active power higher than own consumption but lower than 1 MW;
• working at a maximal power—active power higher than 1 MW.

Regarding EES, five different working conditions were indicated:

• not working—active power level equal to 0 or equal to own consumption;
• a low power charging—charging power higher than 40 kW and lower than 200 kW;
• a high power charging—charging power higher than 200 kW;
• a low power discharging—discharging power higher than 6 kW and lower than 200 kW;
• a high power discharging—discharging power higher than 200 kW.

The values are based on working circumstances that were discussed with the power distribution
company during the VPP settlement.

3. Results

This section presents the results of the investigation of PQ issues in VPP. In Section 3.1, the global
index application is presented. The case is realized for EN 50160 [121] demands and realized for each
measurement point separately. Section 3.2 analyzes the occurrence of different working conditions
of the investigated VPP. Then, in Section 3.3, the flagging concept is applied in accordance with
standard IEC 61000-4-30 [114]. Additionally, the cross-analysis between event occurrence in different
measurement points is conducted. Finally, Section 3.4 presents the assessment of the indicated working
conditions of the VPP using the global index for both single-point and area-related approaches.

3.1. Application of Global Power Quality Index for Single Measurement Points

This section presents the application of ADI to a long-term comparison of power quality level.
As indicated in Section 2.1, VPP frequency is omitted so the frequency importance rate was set
as 0. Standard EN 50160 [121] was selected to obtain global values. The applied limits based on
EN 50160 [121] are presented in Table 2.

Table 2. Limit values of standard EN 50160 [121] used for the global index.

Parameter Value

Ulimit 10% of Ud
Pstlimit 1.0
ku2limit 2%

THDulimit 8%

Ud—declared value of voltage.

For such defined ADI, the assessment of PQ level was conducted for all four measurement points
(Figures 2–5). Moreover, to enable easier analysis, green-yellow-red colors were included in the figures:

• green for ADI ≤ 0.5;
• yellow for 0.5 < ADI ≤ 1;
• red for ADI > 1.
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Figure 2. Global power quality index changeability for MV_Line.

Figure 3. Global power quality index changeability for MV_HPP&EES.

Figure 4. Global power quality index changeability for LV_HE.

8
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Figure 5. Global power quality index changeability for LV_L.

In the analysis, the time when voltage events occurred was excluded. The event data exclusion
was based on the flagging concept of standard IEC 61000-4-30 [118]. Flagged data are represented as
“virtual” value of ADI equal to −0.05. A deeper consideration of these voltage events is presented in
Section 3.3. To summarize ADI levels for selected points in the selected 26 weeks of measurements,
Table 3 was prepared. The results indicated that the highest level of power quality level (the lowest
ADI) was in the MV_Line and the lowest level of power quality (the highest ADI) in LV_L.

Table 3. Limit values of standard EN 50160 [121] used for the global index.

Measurement Point Number of Flagged Data Mean Value of ADI

MV_Line 327 0.069
MV_HPP&EES 294 0.080

LV_HE 111 0.077
LV_L 47 0.087

During the time domain change in ADI level in LV_HE, a specific period was selected. In long-term
assessment, it is challenging to verify the phenomena of this working condition. Therefore, the time
shortage to 4 days that were connected with this working condition is presented in Figure 6. It can be
observed that the PQ problem is noticed only in LV_HE, so this working condition is not connected
with the impact of VPP. However, it is worth noticing that after a continuous (even linear) increase
in ADI, a long event time in the LV_HE measurement point was indicated. In this article, in depth
analysis of the reason for this working condition is omitted but this is a very interesting topic for
future research.

9
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(a) MV_Line (b) MV_HPP&EES (c) LV_L 

   
(d) LV_HE 

Figure 6. Specific working conditions observed in the level of ADI for measurement point (a) MV_Line,
(b) MV_HPP&EES, (c) LV_L, (d) LV-HE.

3.2. Indication of the VPP Different Working Conditions

Based on information about HPP and EES possible operation indicated in Section 2.3,
the investigated VPP working conditions are as follows:

• “0”—HPP is not working and ESS is not working;
• “1”—HPP is working partially and ESS is not working;
• “2”—HPP is working at maximal power and ESS is not working;
• “3”—HPP is not working and ESS is discharging at low power;
• “4”—HPP is working partially and ESS is discharging at low power;
• “5”—HPP is working at maximal power and ESS is discharging at low power;
• “6”—HPP is not working and ESS is discharging at high power;
• “7”—HPP is working partially and ESS is discharging at high power;
• “8”—HPP is working at maximal power and ESS is discharging at high power;
• “9”—HPP is not working and ESS is charging at low power;
• “10”—HPP is working partially and ESS is charging at low power;
• “11”—HPP is working at maximal power and ESS is charging at low power;
• “12”—HPP is not working and ESS is charging at high power;
• “13”—HPP is working partially and ESS is charging at high power;
• “14”—HPP is working at maximal power and ESS is charging at high power.

Initially, it was determined how long a given state of work occurred. The analyzed period of
time was 182 days (26 weeks). Time aggregation of power quality data is 10 min, so the selected period
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is represented by 26,208 10-min data. However, due to the data coverage based on real measurements,
synchronized 10-min data obtained from all points obtained were 25,069. Therefore, data coverage is 97.7%.

Detailed information on the number of 10-min data assigned to the working conditions is included
in Table 4. Figure 7 also presents the occurrence of working conditions in the analyzed time period.
It is worth noting that the state of operation 9 (HPP is not working and EES is charging at low power)
and 12 (HPP is not working and EES is charging at low power) does not occur during measurements.
This is because these working conditions were not permitted during the planning of the VPP. It also
can be observed that the most common working conditions were “0” (HPP is not working and ESS is
not working), “3” (HPP is not working and ESS is discharging at low power), and “2” (HPP is working
at maximal power and ESS is not working).

Table 4. Duration of different working conditions.

VPP Working Condition Number of 10-Min Data
Time of Working Condition Occurring

as Percentage of Whole Time

0 9531 38.02
1 962 3.84
2 3382 13.49
3 8194 32.69
4 177 0.71
5 237 0.95
6 72 0.29
7 60 0.24
8 267 1.07
9 0 0.00
10 391 1.56
11 1538 6.14
12 0 0.00
13 127 0.51
14 131 0.52

Figure 7. VPP working conditions in analyzed period of time.

3.3. Events Analysis as an Introduction to Area-Related Approach

In this section, the analysis of events occurring is performed. Generally, this is not a strict event
analysis such as defining the type of event. The main aim of this subsection is to analyze how events
impact the number of flagged data for both single- and multiple-point approaches. The flagging
concept is introduced in standard IEC 61000-4-30 [118]. It indicates that if an aggregated value contains
the time when an event occurred, these aggregated data must be flagged. This ensures that this
problem is not counted twice as an event and as an extension of other parameter values.
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For analysis of the number of flagged data, the flagged data matrix is proposed in Table 5. It presents
the number of 10-min data that were flagged for single points and together on two measurement points.
It can be observed that the highest number of flagged data was for the MV_Line and the lowest for
the LV_L. It is also worth noticing that the majority of flagged data were common for MV_Line and
MV_HPP&EES measurement points.

Table 5. Matrix of flagged data in analyzed measurement points.

MV_Line MV_HPP&EES LV_HE LV_L

MV_Line 327
MV_HPP&EES 277 294

LV_HE 15 15 111
LV_L 17 29 10 47

The next step was to check how many of these common flagged data were indicated in more than
two points. The results of this investigation are presented in Table 6. The results indicated that the
general number of flagged data that are common for all measurement points is equal to 9.

Table 6. Limit values of standard EN 50160 [121] used to the global index.

Measurement Points Number of Common Flagged Data

MV_Line +MV_HPP&EES + LV_HE 15
MV_Line +MV_HPP&EES + LV_L 17
MV_HPP&EES + LV_HE + LV_L 9

MV_Line +MV_HPP&EES + LV_HE + LV_L 9

The additional investigation included the concept of flagging for all measurement points treated
together (area-related approach). This approach is based on set theory. Each measurement point is a
single set of flagged data and the area-related value is a union of them all. Generally, the flagging for
the whole period for all measurement points together was connected with the flagging of 457 10-min
data. Then, the distribution of different working conditions (defined in Section 3.2) was realized.
Presented in Section 3.4 is a comparative assessment of VPP working conditions. It is worth noticing
that, due to the flagging concept, around 1.7% of data were excluded from the comparative assessment.
Detailed results are presented in Table 7.

Table 7. Impact of flagging concept for area-related approach.

VPP Working
Condition

Number of Data
before Flagging

Number of Data
after Flagging

Change in Percentage to the
Number of Data before Flagging

0 9531 9373 1.7
1 962 951 1.2
2 3382 3247 4.2
3 8194 8092 1.3
4 177 175 1.1
5 237 235 0.9
6 72 71 1.4
7 60 60 0.0
8 267 264 1.1
9 0 0 -
10 391 389 0.5
11 1538 1501 2.5
12 0 0 -
13 127 127 0.0
14 131 127 3.1
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3.4. Assessment of Different Working Conditions of VPP in Area-Related Approach

The next element of this research was the application of ADI to describe the working conditions
of VPP indicated in Section 3.2. The analysis of ADI was realized separately for each of the four
measurement points. The results are presented in Table 8. The assessment of the impact of individual
working conditions of VPP (0–14) was related to the situation when both HPP and the associated EES
are not working (working condition 0). Green was used to indicate conditions that are more positive in
terms of quality in all measurement points, i.e., lower level of VPP. Additionally, a light green and light
red color were introduced to compare the assessment of the ADI of individual measurement points.
Light green was used for more favorable conditions and light red was used for worse conditions.
The results indicated that working conditions 1, 3, 5, 6, 7, 10, 11, 13, 14 are more positive in terms of
power quality than when working condition 0 occurs.

Table 8. Impact of flagging concept for area-related approach.

Working
Condition of VPP

MV_Line MV_HPP&EES LV_HE LV_L
Number of Data

after Flagging

0 0.069 0.081 0.077 0.088 9373
1 0.067 0.074 0.068 0.084 951
2 0.075 0.077 0.083 0.087 3247
3 0.067 0.080 0.079 0.087 8092
4 0.063 0.077 0.074 0.085 175
5 0.067 0.073 0.082 0.088 235
6 0.065 0.078 0.072 0.085 71
7 0.071 0.080 0.069 0.085 60
8 0.076 0.079 0.074 0.093 264
9 - - - - 0
10 0.065 0.072 0.067 0.083 389
11 0.071 0.075 0.071 0.086 1501
12 - - - - 0
13 0.065 0.073 0.071 0.086 127
14 0.068 0.072 0.065 0.081 127
all 0.069 0.079 0.077 0.087 24,612

Green background—condition is more positive in terms of quality for all measurement points. Light green background—
condition is more positive in terms of quality for single measurement point. Light red background—condition is more
positive in terms of quality for single measurement point.

However, analysis of the number of data that represent each working condition indicated that
some of them occur for a short period of time. Therefore, the next element of the research was to make
a connection between them to obtain more numerous working conditions. Thus, the first connection
was made for both conditions of HPP working (HPP is working partially and HPP is working at
maximal power). Both were connected as a working condition, “HPP working”. Moreover, working
conditions that do not occur (9 and 12) are omitted. Therefore, the newly proposed working conditions
are as follows:

• “20”—HPP is not working and ESS is not working;
• “21”—HPP is working and ESS is not working;
• “22”—HPP is not working and ESS is discharging at low power;
• “23”—HPP is working and ESS is discharging at low power;
• “24”—HPP is not working and ESS is discharging at high power;
• “25”—HPP is working and ESS is discharging at high power;
• “26”—HPP is working and ESS is charging at low power;
• “27”—HPP is working and ESS is charging at high power.
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Then, the ADI level for these working conditions is presented in Table 9. Moreover, green/light
green/light red colors are used. The results indicated that working conditions 24 and 27 are more
positive in terms of power quality than when working condition 0 occurs.

Table 9. Impact of flagging concept for area-related approach.

Working
Condition of VPP

MV_Line MV_HPP&EES LV_HE LV_L
Number of Data

after Flagging

20 0.069 0.081 0.077 0.088 9373
21 0.073 0.077 0.080 0.086 4198
22 0.067 0.080 0.079 0.087 8092
23 0.066 0.074 0.079 0.087 410
24 0.065 0.078 0.072 0.085 71
25 0.075 0.079 0.073 0.091 324
26 0.070 0.074 0.070 0.085 1890
27 0.066 0.073 0.068 0.083 254

Green background—condition is more positive in terms of quality for all measurement points. Light green background—
condition is more positive in terms of quality for single measurement point. Light red background—condition is more
positive in terms of quality for single measurement point.

Then, the next connections were made to obtain more numerous working conditions. This time,
connection was made for the ESS at low power and a high-power charging/discharging, which is a new
working condition that refers only to EES charging/discharging. Thus, the newly proposed working
conditions are as follows:

• “30”—HPP is not working and ESS is not working;
• “31”—HPP is working and ESS is not working;
• “32”—HPP is not working and ESS is discharging;
• “33”—HPP is working and ESS is discharging;
• “34”—HPP is not working and ESS is discharging.

Then, the ADI level for these working conditions is presented in Table 10. Moreover, green/light
green/light red colors are used. Finally, as a step in the area-related analysis of the investigated part of
VPP, one value for all measurement points together was calculated. The value of the global index ADI
for the common approach was calculated as a mean value of each measurement point. The results for
single points indicated that working condition 30 is more positive in terms of power quality than when
working condition 0 occurs. The results of this area-related approach indicate that, generally, there
is no negative impact of the different working conditions of HPP and EES in long-term assessment
(equal or lower value of ADI).

Table 10. Impact of flagging concept for area-related approach.

Working
Condition of VPP

MV_Line MV_HPP&EES LV_HE LV_L
Number of Data

after Flagging
ADI for Area-Related

Approach

30 0.069 0.081 0.077 0.088 9373 0.079
31 0.073 0.077 0.080 0.086 4198 0.079
32 0.067 0.080 0.079 0.087 8163 0.078
33 0.070 0.076 0.076 0.089 734 0.078
34 0.070 0.074 0.070 0.085 2144 0.075

Green background—condition is more positive in terms of quality for all measurement points. Light Green background—
condition is more positive in terms of quality for single measurement point. Light red background—condition is more
positive in terms of quality for single measurement point.

Finally, the investigated working conditions were reduced only to two cases:

• “40” when VPP is not working (HPP and EES are not working);
• “41” when VPP is working (HPP or EES is working).
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The results are presented in Table 11. Therefore, the final statement is that VPP in long-term
assessment has a positive impact on power quality assessment.

Table 11. Impact of flagging concept for area-related approach.

VPP Working Condition ADI for Area-Related Approach

40 VPP is not working 0.079
41 VPP is working 0.078

Green background—condition is more positive in terms of quality for all measurement points.

4. Discussion

This article presents a case study analyzing a real VPP that operates in Poland. The investigated
VPP consists of a fragment of both low-voltage (LV) and medium-voltage (MV) distribution network.
Under investigation are the PQ measurements from five (four after reduction) different PQ recorders.
The investigation is concerned with both MV and LV points. The duration of the measurements was
26 weeks (from 1 May 2020 to 28 October 2020).

The first element was an application of the global index ADI [86,87]. This index was successfully
applied for the assessment of the multipoint measurement of the mining industry. Therefore, the authors
also decided to apply this concept to the VPP. However, during the investigation, the frequency as a part
of the global index was omitted because the VPP, even in maximum operational limits, has a negligible
impact on frequency. The standard used to apply limits to the global value was EN 50160 [121].
The results indicated that the highest level of power quality (the lowest ADI) was in the associated MV
line (MV_Line) and the lowest level of power quality (the highest ADI) in the LV measurement point
that is associated with the MV line (LV_L).

During analysis of the changeability of the ADI, specific time periods of LV_HP were denoted.
However, an analysis of only the global value enables us to conclude that the reason for such a situation
is impossible. Thus, using one global index as a first stage to denote specific working conditions seems
interesting. However, after indicating them, a deeper multiparameter assessment is still needed.

As the results concern long-term data, different working conditions occurred. In the first section of
the article, the diverse technique was realized in the point of HPP and EES working. Therefore, fifteen
different working conditions were indicated. Then, the assessment of PQ for each measurement point
using ADI was realized. For the majority of cases, the positive impact of PQ was observed when VPP
operated (working conditions 1, 3, 5, 6, 7, 10, 11, 13, 14 in comparison to 0). However, the majority of these
working conditions were represented by a short period of time. Therefore, additional agglomeration of
working conditions in terms of HPP and EES was realized. The final stage of agglomeration was when
only two states occurred, which were when VPP is working and VPP is not working. Additionally,
to compare this, the area-related value was calculated. This value was obtained as a mean value of ADI
from all measurement points. The conclusion in the long-term approach indicated that the operation
of VPP has a generally positive impact on power quality.

The authors are aware that analyzing a single-point assessment for single PQ parameters appears
to be more valuable. However, for long-term assessment, this work is time-consuming. Moreover,
the main purpose of the VPP is to obtain economic profits, and technical issues are often omitted.
Therefore, the proposition of using the PQ global index seems interesting to extend the assessment of
VPP in a long-term approach.

5. Conclusions

This article proposes the application of a global index to power quality issues in a virtual power
plant. The proposed solution enables simplification of the assessment from many classical power
quality parameters to one global value for each measurement point. However, on the other hand,
including extremum 200-millisecond values of voltage and harmonics parameters is an extension of
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the classical approach. Thus, this approach simplifies the assessment and increases the range of used
parameters during analysis.

The analysis of the global value changeability for long-term data was indicated as useful to the
indication of specific conditions in terms of PQ. However, using this global value enables us to define
the reason for this situation. However, it leads to the definition of the period of occurrence. Then,
for this period, the classic multiparameter assessment may be realized to analyze the reasons.

This article also indicates the general impact of VPP working conditions on the PQ issue.
Both single-point and area-related approaches were realized. The positive and negative results of both
approaches were indicated. However, the most important conclusion is that, generally, VPP impact on
the long-term performance of PQ issues was positive.

The future research directions are:

• research into using the global index for the identification and then assessment of short/specific
working conditions of the selected VPP unit;

• applying data mining techniques to obtain less obvious relations that concern VPP operation and
PQ level.
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76. Jasiński, M.; Sikorski, T.; Borkowski, K. Clustering as a tool to support the assessment of power quality in
electrical power networks with distributed generation in the mining industry. Electr. Power Syst. Res. 2019,
166, 52–60. [CrossRef]
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Abstract: A virtual power plant (VPP) can be defined as the integration of decentralized units into
one centralized control system. A VPP consists of generation sources and energy storage units. In this
article, based on real measurements, the charging and discharging characteristics of the battery energy
storage system (BESS) were determined, which represents a key element of the experimental virtual
power plant operating in the power system in Poland. The characteristics were determined using
synchronous measurements of the power of charge and discharge of the storage and the state of
charge (SoC). The analyzed private network also includes a hydroelectric power plant (HPP) and
loads. The article also examines the impact of charging and discharging characteristics of the BESS
on its operation, analyzing the behavior of the storage unit for the given operation plans. The last
element of the analysis is to control the power flow in the private network. The operation of the VPP
for the given scenario of power flow control was examined. The aim of the scenario is to adjust the
load of the private network to the level set by the function. The tests of power flow are carried out
on the day on which the maximum power demand occurred. The analysis was performed for four
cases: a constant value limitation when the HPP is in operation and when it is not, and two limits set
by function during normal operation of the HPP. Thus, the article deals not only with the issue of
determining the actual characteristics of charging and discharging the storage unit, but also their
impact on the operation of the entire VPP.

Keywords: virtual power plant (VPP); distributed energy resources (DER); battery energy storage
systems (BESS); power systems; smart grids

1. Introduction

VPP is defined as an integration of generators and energy storage systems (ESS). The characteristic
features of a VPP include [1]:

• All the components included in the VPP participate in the energy market as one entity;
• The basic power generators in the VPP are distributed energy resources (DER);
• Electricity consumers in a VPP with DER are called prosumers;
• The prosumers can act as both loads and generators.

Energies 2020, 13, 6670; doi:10.3390/en13246670 www.mdpi.com/journal/energies
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The main advantages of a VPP are environmental protection, high efficiency, synergy, interactivity,
and balance [2].

In the literature, the most frequently discussed topics related to VPP are:

• Topics associated with reducing the peak loads;
• Topics associated with power flow management;
• Topics associated with power quality (frequency, voltage);
• Economy-related topics (costs and profits);
• Energy storage related topics.

1.1. Peak Loads Reduction, Power Flow Management

Due to the constantly growing demand for electricity, the importance of the issue of reducing peak
loads is increasing. On the one hand, there is the possibility of building a conventional power plant that
will work to reduce peak loads, but this is an expensive solution, causing additional carbon dioxide
emissions. On the other hand, there is a continuous increase of renewable energy sources in the power
system. Intelligent management of such sources in cooperation with energy storage is an effective way
to reduce peak loads. The solution for such an integration is a virtual power plant presented in [3].
The application of the VPP to reduce load peaks was also presented in [4]. The authors of the paper
achieved a reduction of load peaks by finding an optimal operating plan for the ESS. The optimization
method was heuristic and the obtained solution was then corrected using genetic algorithm.

One of the difficulties that can be encountered in the case of central management of DER facilities,
which are located in different parts of the system, is the power flow management. The problem is
described in detail in [5]. The authors of the study proposed an algorithm to optimize the power flow.
In general, the topic of power flow optimization is the subject of many interesting studies. In [6],
optimal power flow is achieved by optimizing the installed PV capacity and the ESS parameters.
Optimization is based on the power flow scenario and was performed using particle swarm optimization
algorithm. The results of [7] show optimal power flow for VPP with two levels of DER integration.
The first level includes wind power plants and HPPs. The power generated is dispatched directly to
the grid. The second level is PV and the generated power is consumed in the VPP. The proposed model
is then applied to an actual VPP in Aragon (Spain).

1.2. Power Quality, Electric Vehicles and Economy

The integration of DER within a VPP not only serves to reduce load peaks or to optimize power
flow. In [8], an interesting issue was raised, in which electric vehicles (EV) are connected within a
VPP. Using the energy stored in EVs, the aim is to improve the network frequency response. A similar
problem is presented in [9], where the authors of the paper examined the possibility of using a VPP for
frequency control in the power system, in which the solar thermal system, wind turbine generator,
and electric vehicles have a large share.

The use of EVs in a VPP has been very popular recently. In [10], the use of electric vehicle demand
response to reduce operating costs and improve the reliability of the power system with a large share
of variable renewable sources and electric vehicles is shown. The study was based on the example of
Jeju Island, located in South Korea. Furthermore, reducing operating costs and maximizing profits
in a VPP is also the subject of many interesting studies. For example, the authors of [11] focus on
the problem of maximizing the operating profit of a virtual power plant. Part of this VPP is based
on pumped storage HPP, whose work plan consists of the objective function discussed in the article.
Another example is presented in a study in Western Australia, in which the authors present an analysis
of a VPP profitability [12]. This VPP consists of, among others, a solar power plant, anadium redox
flow battery, and a heat pump for hot water systems. The model analyzed in the article also allows
to control some devices, e.g., washing machines, dishwashers, and dryers, located in apartments,
which are also part of the VPP. Another example where operational costs were minimized is [13].
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The optimization was performed for IEEE 30 and the IEEE 57 bus test cases. Power flow was optimized
using mixed integer distributed ant colony optimization.

A VPP may contain more than one type of power plant using renewable energy sources (RES). It is
possible to use one power plant to support the operation of another, as presented in [14], which details
a case study of a VPP located on the island of Crete, Greece. Additional, unused energy produced by
wind power plants is used to pump water in HPPs.

1.3. Storage of Electric Energy

In the era of the rapid development of renewable energy, a major technological challenge is the
efficient storage of electric energy [15]. Depending on the way the energy is stored, the energy storage
facilities can be classified into [16]:

• Electrochemical (batteries, flow batteries, hydrogen);
• Electromagnetic (electric, magnetic);
• Thermodynamic (pressure, heat);
• Mechanical (gravity, kinetic).

Among the energy storage devices, chemical batteries are increasingly used in the professional
power industry [17]. The desired characteristics of batteries are high energy density, high charging and
discharging power, and a long life cycle. Other aspects are also important, for example, methods to
determine the state of charge and the possibility of recycling [18].

Currently, research on BESS facilities is focused on their optimal distribution, system location,
e.g., to minimize power loss [19], or to improve frequency [20]. A large part of the research is also
devoted to the use of BESS devices to improve energy quality parameters [21,22]. In [23], the authors
analyze an economically interesting case of using old BESS from EVs as a stationary energy storage
system. Studies on the performance of BESS are mostly focused on the diagnosis of the condition of
the storage unit. In [24], the health condition of the BESS is analyzed based on parameters related to
the capacity, internal resistance, and voltage in the open circuit of the battery. This system is located
in a laboratory in Choco, Colombia. The study in [25] focuses on the performance of the power
conversion system performance among four topologies and on estimating the SoC of a lithium-ion
cell by combining two methods: Coulomb and open circuit voltage measurement. The study in [26]
focuses on testing the reliability of BESS, based on Markov models. The BESS models focus on the
electrochemical model, the analytical model, and the substitute circuit model [27,28].

To our best knowledge, there is a shortage of publications analyzing the actual characteristics of
charging and discharging of BESS facilities, as well as models based on these characteristics, especially in
the power systems industry. The publications written so far focus on the study of single battery cells,
like [29], where the discharge voltages are tested depending on aging levels. The analysis is carried
out for lithium nickel–cobalt–manganese-oxide battery cell. The charging and discharging voltages are
also tested in [30]. The study presents charging and discharging voltages for different charging rates.
This test was also carried out for lithium nickel-cobalt-manganese-oxide battery. However, the tests
are also not carried out on BESS but on a single battery. Research close to applications in the power
system industry was conducted in [31]. Although the study was not performed for BESS located in the
power grid, it was performed for EV, which are operating in the distribution grid.

The main contributions of the article include:

1. Analyzing the operation of the actual BESS. The BESS is located in a VPP in Poland;
2. Determining the actual charging and discharging characteristics of the BESS;
3. Using the determined characteristics to create the BESS model;
4. Investigating the possibility of controlling the BESS.

The rest of the article has the following structure. Section 2 presents and discusses the most
frequently used technologies and parameters of BESSs used in VPPs. Attention was paid to the issues
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of appropriate control of energy storage units and the importance of the charging and discharging
characteristics of such facilities. Section 3 presents the results. The structure of the examined VPP.
The methodology of determining the actual charging and discharging characteristics of the BESS
located in the analyzed VPP. The actual charging and discharging characteristics of the BESS were
determined. It was also checked how the determined characteristics performed when the storage
facility followed a given operational plan. The analysis was completed by examining the operation of
the VPP for a given scenario of power flow control on the day with the highest demand. The presented
scenario realizes the adjustment of the VPP operation to a given curve. The study was carried out
for four cases: adjustment of the power consumed from the distribution system to a given level for
normal power plant operation; adjustment of the same to a given level in case of lack of power plant
operation; adjustment of the power consumed from the grid to two curves set as a function for normal
power plant operation. Section 4 contains a discussion of the results obtained. Section 5 finishes with
the conclusions.

2. Battery Energy Storage System

Lithium-ion batteries are most commonly used in BESSs [18,32]. This type of battery is
recommended for long-term use due to its high energy density of 100–250 Wh/kg, high power
density of 230–340 W/kg, and long lifetime of 500–6000 cycles [33]. The disadvantages of a lithium-ion
battery include its high cost and the need to use a ventilation system to ensure the cooling of the
batteries. The battery requires a built-in controller to ensure that each cell operates correctly within
the specified voltage, temperature, and current range during charging and discharging. To optimize
the operation of the battery, the cell controller communicates with the battery management system
(BMS) [33,34].

The battery management system provides many functions. In power system applications, this is
very important because the battery usually operates under difficult conditions. The BMS must react
to external conditions that can cause damage. An important function of the BMS is to determine the
SoC of the battery. The BMS monitors and calculates the SoC of each battery cell. SoC is also used to
determine the end of charging and discharging cycles [35]. Excessive charging and discharging is often
the cause of a battery failure; therefore, the BMS is designed to keep the battery in its operating range
to deliver the required power, and to receive energy without overcharging the cells [33,34].

Especially the charging and discharging speed of the BESS is influenced by:

• Construction;
• State of charge (SoC);
• Temperature.

These factors are described in detail in [34]. For the selected BESS type, it is possible to determine
the dependence of charging (discharging) power based on the SoC [36]. In this case, the charging
(discharging) speed is determined by power expressed in [W] or by a relative value in relation to the
rated power of the storage unit. The SoC can be defined as energy in [Wh] or as a relative value in
relation to the storage capacity.

It should be noted that these characteristics have a double meaning. Firstly, they determine the
operating limitations introduced by the manufacturer, depending on the design, and secondly, they can
be a tool to control the operation of the storage unit by the system operator [32]. In the latter case,
the characteristic parameters must not exceed the limits specified by the manufacturer.

Characteristics of the dependence of the charging and discharging power of the storage facility on
the state of charge are the basic dependencies required to properly control the BESS [37]. An example
of the actual characteristics of a BESS equipped with lithium-ion batteries and supervised by the BMS
is shown in Figure 1. The shape of the characteristics depends on the technical limitations of the
batteries, the manufacturing technology, operating temperature, degree of usage, and the way the
BESS is controlled and managed by the BMS [38,39].
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Figure 1. Dependence of the storage unit power on the state of charge (SoC).

3. Results

The chapter is divided into six subchapters. The first part is a description of the VPP in which
the analyzed energy storage is located. Then, the methodology for determining the charging and
discharging characteristics of the energy storage is discussed. The next part is the determination of the
characteristics based on actual measurements. Then, the analysis of the influence of the characteristics
of the BESS on VPP operation. The chapter ends with the analysis of the operation of the private
network, in which the VPP operates for a given power flow control scenario for four cases. The analysis
is performed for the day of the year with the highest peak demand.

3.1. Virtual Power Plant

In a modern power system, virtual power plants are solutions equipped with efficient and safe
power flow control systems. VPPs are equipped with power generators and storage facilities. A VPP in
connection with local electricity consumers creates a private network [40]. These devices are equipped
with controllers, usually, they are power-electronic converters allowing power control. Most often such
networks are connected to a public distribution network. An appropriate strategy of energy storage in
the BESS allows for optimal use of the electrical energy generated locally [41].

The virtual power plant, designed to simulate the power flow, was designed on the basis of a
simplified scheme of the power system in which the VPP operates in Poland. The private network
consists of the hydroelectric power plant, load (including the power plant’s own needs), and the BESS.
Figure 2 presents a diagram of the dispersed control network connected to the distribution grid.

The regulations governing the operation of the electricity market must take into account the
characteristics of the operation of the power system, such as the need to ensure a continuous balance
of supply and demand and reliable system operation [42,43]. On the other hand, until recently, it was
assumed that there was no possibility of storing energy immediately, which resulted in low energy
price flexibility and limited generation flexibility. The development of DER, microgrid systems in
which large BESS and VPP structures operate is currently of decisive importance in the transformations
taking place in the modern power system.

Therefore, experimental research of the VPP for different power flow control approaches allows to
verify the assumptions, scenarios, and algorithms.

The BESS, which is a part of the experimental VPP, is of key importance for the effective operation
of the system in this case. Therefore, it seems necessary to point out the potential possibilities of using
the storage in experimental research.
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Figure 2. Diagram of the analyzed active grid. PG—power generation, PL—load, PSY—power
distribution system, PST—BESS.

3.2. Experimental Determination of BESS Characteristics

One of the practical ways of utilizing BESS in the private network and as an important resource
of a VPP may be to experimentally determine the characteristics of storage operation. Knowledge of
the basic technical limitations of the installation related to the power of charging and discharging the
storage, which is also associated with the speed of response to changes in covering the power demand
and response to changes in local generation, is the basis for proper and effective control within the VPP.
The adopted and proven method of measuring the characteristics of the energy storage operation will
be able to be used in other installations of this type. The obtained results will allow for correct and
optimal use of the VPP resources.

An effective method of determining the BESS characteristics may be the use of measurements
during the storage facility operation. The prerequisite is access to the synchronized recording of the
storage unit’s charging and discharging power, the SoC, and, if possible, the operating temperature of
the batteries. As shown in [31], with a large number of measurements, it is possible to try to determine
the actual operating characteristics of BESS. The boundary areas of such determined characteristics at
many points of the storage facility operation can then be approximated by the polynomial function.

The proposed way of determining points of the storage characteristics on the basis of current
registrations is schematically presented in Figure 3. With the synchronous measurement of the storage
power P, (P+ for charging, P− for discharging) and SoC, it is possible to determine points of BESS
characteristics for selected points of time.

Based on the technical documentation of the BESS control and parameter monitoring systems,
assumptions have been made about performing measurements of the examined storage.

• The tested energy storage is treated as a uniform unit. This means that the internal design,
the number, and layout of the battery unit connections, as well as the supervisory and security
systems and algorithms are omitted. All technological limitations and those resulting from BMS
procedures are taken into account by the characteristics of the storage unit operation.

• The maximum power of charging and discharging BESS is 500 kW.
• The storage can be charged to a maximum of 100% SoC (500 kWh) and discharged to a minimum

of 20% SoC (100 kWh). The limitation of the discharge results from the warranty provisions.
• Charging the storage unit with full power is only possible during the operation of the HPP, so the

test time with charging sequences can be a maximum of 3 h.
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• Due to the parameters of the control systems implemented in the VPP, the changes in the storage
unit’s operating schedule (charging and discharging power changes) can be performed with a
minimum step of 5 min.

• Measurement of the electric parameters of the storage unit, such as: charging and discharging
power, SoC, voltage, and current can be performed with a step of minimum 1 min (data recorded
in the BMS system).

• The average temperature of the batteries and the ambient temperature is recorded in a 15 min
step. Initially, it is assumed that the storage unit, thanks to the temperature monitoring of the
batteries by the BMS, operates within the permissible range, thus limiting the influence of the
temperature on the charging and discharging characteristics.

Figure 3. The scheme of determining points of BESS characteristics on the basis of current monitoring
of storage operation. P—the power of charging and discharging the storage, SoC—state of charge.

3.3. Results of Short Term Tests for the Identification of the Actual Charging and Discharging Characteristics
of BESS

The characteristics were determined using samples measured at 1 min intervals, obtaining a set of
points describing the characteristics. The measurements are shown in Figure 4.

 

Figure 4. A set of points that forms the charging and discharging characteristics of the BESS for
1 min samples.
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Then the obtained results, for the extreme values, were approximated with the polynomial
function, obtaining the characteristics presented in Figure 5.

 

Figure 5. The result of the approximation of the results with the 1 min data polynomial function.

The final characteristics determined on the basis of 1 min data are as in Figure 6.

Figure 6. Determined charging and discharging characteristics of the BESS based on 1 min data.

The obtained shape of the characteristics approximately corresponds to the shape of typical
characteristics of a storage unit based on chemical batteries, as shown in Figure 1. The difference is the
used range of the storage unit’s state of charge, which indicates that the unit has not been discharged
below 30% SoC. Additionally, the charge and discharge power of the accumulator does not exceed 80%
of the rated power.

Using the 1 min data, a map of “attendance” of the storage unit’s operating states, shown in
Figure 7, was also drawn up. The map allows to check what is the most frequently used power range
and what is the SoC at that time.

The map closely correlates with the charging and discharging characteristics of the storage unit.
The range of work of the storage depicted on the map is within the range of work defined by the
characteristics. In addition, when analyzing the map, it can be seen that the BESS usually works with
SoC in the range 90–100%. However, it rarely works at a low SoC level, within 40%.
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Figure 7. Map of “attendance” of the storage unit operation states during charging (A) and discharging
(B) for 1 min data; the color scale represents a value proportional to the operation time in the P and
SoC range.

Using 1 min data, the dependence of the storage power on the operation plan was also checked
(Figure 8). The points where the BESS worked according to the plan are on a straight line, inclined
at 45◦. Deviations from this line show the difference between the setpoint and actual storage power.
Measurements also show that the system only applied the storage power at levels 50 kW apart.

 

Figure 8. Dependence of storage power on the operation plan.

3.4. Control of the Charging and Discharging Power of the BESS for the Assumed Operation Plan

This chapter presents the results for two operation plans. The first operation plan is shown in
Figure 9 and the simulation results are shown in Figure 10. The second operation plan is shown in
Figure 11, while the results are presented in Figure 12. The capacity of the 500 kWh storage device and
its rated power of 500 kW corresponds to the parameters of the BESS storage device under test.

The conducted simulations allow to determine the changes in the power of the storage unit and
the SoC over time for the determined real characteristics.

The analysis was performed for two storage operation plans, presented in Figures 9 and 11.
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Figure 9. Set operation plan of the BESS.

For the presented plan (Figure 9), the operation of the storage device, resulting from its charging
and discharging characteristics, is presented in Figure 10.

It can be seen that, initially, the storage facility works according to the plan. The difference occurs
after approx. 1.3 h, despite the assumed constant performance, the storage unit gradually reduces the
charging power to 0 kW. Then, after about 1.7 h, the storage facility does not increase the discharge
power to 500 kW, but to about 250 kW.

Figure 10. Operation resulting from the charging and discharging characteristics of the BESS with the
real characteristics; change of energy accumulated in the BESS over time (A); change of BESS charging
and discharging power over time (B).

A similar analysis was performed for the work plan presented in Figure 11.

Figure 11. Set operation plan of the BESS.

For the presented plan (Figure 11), the operation of the storage device, resulting from its charging
and discharging characteristics (Figure 12), is presented.

As before, the storage unit initially works according to the operation plan, the difference occurs
after approx. 0.6 h. The storage starts to reduce the discharge power faster than the plan would
have resulted. In about 0.9 h, the facility reaches a lower maximum charging power than planned.
After approx. 1.3 h, the unit’s output is around 0 kW.
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The difference between the operation plan and the actual operation of the storage device is most
visible in the case of a low SoC (about 200 kWh).

Figure 12. Operation resulting from the charging and discharging characteristics of the BESS with the
real characteristics; change of energy accumulated in the BESS over time (A); change of BESS charging
and discharging power over time (B).

3.5. Controlling the BESS in the Private Network

The main objectives of the VPP systems concern the economic aspects related to electricity trading.
The VPP control algorithms provide for charging the storage facility at low energy prices from the
distribution system and discharging and selling energy at peak demand at high prices.

However, technical issues cannot be overlooked when planning such solutions. For example,
the voltage levels (slow and fast voltage changes) at all points of the distribution network should be
within the range allowed by the standards. The same applies to current values in lines and transformer
windings. Issues concerning the operation of the BESS itself are also important.

The impact of the VPP on the power system can be examined by analyzing the power flows.
The daily analysis should give an answer to the question whether the changes of voltages and currents
in the network caused by the generation and storage control are within acceptable limits.

Simulations of the operation of the 0.5 MWh BESS with the permissible voltage changes at the PCC
site were carried out. The actual measurements of power demand by local loads were used, as well as
measurements of power generation in the hydroelectric power plant. The diagram of the analyzed
private network is presented in Figure 2. For the analysis, the characteristic day with the maximum
power demand in the 110 kV/SN station was selected. The power flow simulation was conducted
using the DC power flow method, which only takes into account only active power. This approach is
often used in developmental analyses, with high data uncertainty [44–47].

The storage control scenario (Figure 13) is based on the technical aspect of reducing the power
taken from the distribution system to a given level. The demand of local electricity consumers for
power exceeding the preset margin should be covered from the local generation and from the BESS.
This is one of the possible scenarios for controlling the storage unit. The comprehensive scenario
should make optimal use of the energy of the BESS both for technical and economic reasons related to
the costs of operating the equipment and current prices on the energy market.

The algorithm works with a given step, using measurement or forecast of power generation, load,
and current SoC. The simulations assume average values on a ten minutes step basis. The basis for
operation of the algorithm is to check in the first step the sum sign of power generation and load. As a
result, it is possible to determine whether the generator itself can cover the demand locally. In the
next steps, the algorithm chooses such power of discharging or charging the energy storage so that the
energy exchange between the private network and the system remains at the set level.
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PM+PG+PL+PSS > 0

PM+PG+PL+PDS > 0

PG+PL+PDS > 0

PG+PL > 0

PSY=-(PG+PL+PDS)
PST=  PDS

PSY=  PM
PST=-(PM+PGEN+PL)

PSY=-(PG+PL+PSS)
PST=  PSS

PSY= -(PG+PL)
PST=   0

PM+PG+PL+PDS < 0

PM+PG+PL+PSS < 0 

PG+PL+PSS > 0

EST= EST-PST*dt

Figure 13. Storage control algorithm, PG—power generation (positive), PL—load (negative),
PSS—storage charging power (negative), PDS—storage discharging power (positive), EST—storage
energy, PM—set level of power exchange between the private network and the distribution system.

The values of power and energy required to control the BESS are forecast (PG—power generation,
PL—load) and measured (EST—storage energy, i.e., SoC). The storage charging or discharging power
(PST) is determined as the amount set to the energy storage controller. The algorithm takes into account
the limitations resulting from the characteristics of the storage facility operation (PSS—permissible
power to charge the storage facility, PDS—permissible power to discharge the storage facility).
The characteristics introduce limits to the storage power depending on the SoC. The discharge power
decreases as the energy in the storage unit decreases to a zero value with a set minimum stored energy.
Changing the shape of the characteristics enables regulation of the BESS power depending on the
parameters of the active network. System power (PSY) is the excess or deficit of power while performing
power balancing in the private network. As an objective function for the scenario, the power exchange
between the private network and the distribution grid (PM) is set. System power (PSY) tries to match
this level in subsequent steps.

It is not necessary to directly indicate the intervals for the variables used by the algorithm,
because the limitations result directly from the adopted characteristics of the storage unit operation
(e.g., at maximum SoC, the charging power reaches zero). Therefore, it is important to correctly define
the energy storage performance.

For the analysis of the impact of the VPP on the conditions of power grid operation, the day on
which the maximum power demand in the 110 kV/SN station occurs was selected, that is 19 January 2017.

3.6. Analysis of Power Flow for the Day of Maximum Demand in 110 kV/SN Station (19 January 2017)

The presented analysis covers 19 January 2017—the hydroelectric power plant operates with a
power of 1 MW between 14:00 and 19:00 and the load peak is between 06:00 and 11:00. In the private
network, there is a BESS with a nominal power of 500 kW and a capacity of 500 kWh. The profile of
generation and load on that day is shown in Figure 14. Four scenarios of the private network operation
have been considered:

• Power exchange margin with the external grid at the level of 400 kW, during normal operation of
the HPP (Figures 15 and 16);

• Power exchange margin with the external grid at 400 kW and no HPP operation (Figures 17 and 18);
• Power exchange margin with the external grid set according to the curve, variable from 300 kW to

600 kW, in normal operation of the HPP (Figures 19 and 20);
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• Power exchange margin with the external grid set according to the step curve, between −400 kW
and 400 kW, in normal operation of the HPP (Figures 21 and 22).

The operation of the private network with a storage facility with the actual charging and
discharging characteristics was examined.

Figure 14. Power generation—PG and load PL in the private network for 19 January 2017.

In the first step, the power flow in the private network for power generation and load was checked
(Figure 14), using a scenario (Figure 13) that reduces the exchange power between the private and
the distribution grid to a set level of 400 kW for a grid with a storage unit with real characteristics
(Figures 15 and 16).

Figure 15. Results of the simulation of the operation of the private network with the BESS with real
characteristics for the set exchange power PM 400 kW; PSY—exchange power with the distribution
grid and PL—load.
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Figure 16. Results of the simulation of the operation of the private network with the BESS with real
characteristics for a set exchange power of PM 400 kW; change of energy accumulated in the BESS
over time.

Analyzing Figure 15, it can be seen that the power taken from the distribution grid is at a set margin
from 00:00 to about 05:00 and then for an hour, about 19:00 to 20:00. From 05:00 to about 13:00 and
from 20:00 to 00:00, the power demand is covered from the distribution grid. Between 13:00 and 19:00,
there is a decrease in the power taken from the network due to the operation of the HPP. The operation
of the private network is reflected in the diagram of the change of energy accumulated in the storage
device in time (Figure 16), it can be seen that the storage device operates mainly between 00:00 and
05:00 and between 19:00 and 20:00, i.e., when the network takes the power from the distribution system
by a given margin.

In the next step, it was checked how the grid will be handled in the same scenario if the HPP is
not in operation. The results are shown in Figures 17 and 18.

Figure 17. Results of the simulation of the operation of the private network with the BESS with real
characteristics for the set PM 400 kW exchange power in the absence of generation; PSY—exchange
power with the distribution grid and PL—load.
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Figure 18. Results of the simulation of the operation of the private network with the BESS with real
characteristics for the set PM 400 kW exchange power in the absence of generation; change of energy
accumulated in the BESS over time.

As in the previous analysis, from 00:00 to 05:00, the private network works with a margin setpoint
power (Figure 17). For the rest of the simulation time, the power of the demand is covered by the
distribution system, except for a few minutes around 20:00. The profile of the VPP operation is also
visible on the graph of energy stored in the storage unit in time (Figure 18). The storage device operates
between 00:00 and 05:00. Between 05:00 and 20:00, the SoC does not change. Around 20:00, the storage
unit discharges to 180 kWh.

In the next step, the power flow for the private network was checked if the power margin is set as
a function between 300–600 kW (Figures 19 and 20).

Figure 19. Results of the simulation of the operation of the private network with the BESS with real
characteristics for the set exchange power according to the curve, variable in the range PM 300–600 kW;
PSY—exchange power with the distribution grid and PL—load.
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Figure 20. Results of the simulation of the operation of the private network with the BESS with real
characteristics for the set exchange power according to the curve, variable in the range PM 300–600 kW;
change of energy accumulated in the BESS over time.

In the case under consideration, the private network works with a power value of the setpoint by
a margin between 00:00 and 01:00, between 04:00 and 05:00, between 13:00 and 14:00 and between
19:00 and 20:00 (Figure 19). The nature of the operation of the private network can be seen on the
diagram of the change of energy accumulated in the storage unit in time (Figure 20). In the analyzed
case, while the network is working on the given margin, the storage unit is charged or discharged.
The exception is the hours from 13:00 to 19:00, when the profile of the private network operation is
dictated by the operation of the HPP.

The last scenario considered was to check the power flow for the private network if the power
margin is set as a step function between −400 and 400 kW (Figures 21 and 22).

Figure 21. Results of the simulation of the operation of the private network with the BESS with real
characteristics for the power margin PM set as a step function between−400 and 400 kW; PSY—exchange
power with the distribution grid and PL—load.
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Figure 22. Results of the simulation of the operation of the private network with the BESS with real
characteristics for the power margin PM set as a step function between −400 and 400 kW; change of
energy accumulated in the BESS over time.

If the margin is set as a step function, the network runs at the set level from 00:00 to about 03:00,
then up to about 13:00 the demand is covered by the distribution system (Figure 21). Between 13:00
and 20:00, the power taken from the distribution network is reduced due to the operation of the HPP.
From 20:00 to 0:00, the demand is again covered by the distribution system. In the diagram of the
change of energy accumulated in the BESS over time (Figure 22), it is possible to see the charging and
discharging of the BESS between hours 00:00 and 03:00—the operation of the network at the set level
and the discharging and charging of the BESS between 14:00 and 17:00—the influence of the operation
of the HPP.

Table 1 shows a summary of the operation of the private network, for different scenarios with a
BESS with real characteristics (Figures 15–22). The table shows the time for which the private network
works exactly on a given margin. The data ARE shown in percentage of when the power exchange
with the grid maintains the set margin to the total simulation time.

Table 1. The time for which the private network works on a given margin.

PM = Const.
PM = 400 kW

PM = Const.
PM = 400 kW

PG = 0 kW

PM � Const.
PM ∈ [300, 600] kW

PM � Const.
PM ∈ [−400, 400] kW

operating time at a
given level 28.97% 24.14% 13.79% 18.62%

For the longest percentage of the time, the private network operates on a preset margin, when it is
set to a straight line with a constant value of 400 kW (28.97% of simulation time). The shortest one,
when it is set with the function between 300–600 kW (13.79% of the simulation time). For the same
margin, 400 kW, the difference between a scenario where the HPP operated from 14:00 to 19:00 and a
scenario where the HPP did not operate is about 5% of simulation time. For the margin set by the step
curve, it was maintained for 18.62% of the simulation time.

The advantage of the applied scenario may be the value of energy transmitted to the distribution
system, which in this case is much smaller. Taking into account the significant length of the line
connecting the storage and the HPP with the distribution system, lower power transferred to the
distribution system guarantees lower power losses.
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4. Discussion

In the fast-growing field of electricity storage, tests are necessary to ensure their efficient operation
and minimize the risk of failure. The development of new standards and guidelines for the energy
storage devices to be delivered to the customer is a continuous process, and documents are constantly
growing. As standard, energy storage facilities are tested according to [48]:

• IEC 61427, IEC 62133, IEC 62619;
• UL 1642, UL 1973, UL 9540A;
• IEEE 1547, IEEE P2030.3.

In particular, IEC 61427 [49] describes the exact procedure of the test, introducing the
“standard cyclic test” and defines on this basis the performance characteristics of the storage. The IEC
61427 standard [49] defines a special method for identifying the parameters of a battery that works
with a RES. The standard test protocol assumes an elevated temperature (40 ◦C) and a series of cycles
that mimic the photovoltaic system. The energy storage test procedure consists of shallow cycles at
low SoC and shallow cycles at high SoC. The test carries out 50 cycles with 30% depth of discharge
(between 5% and 35% SoC), followed by 100 cycles between 75% and 100% SoC. After 150 cycles,
the parameters are measured. The test lasts about 50 days and the total BESS test period requires 3
to 10 tests, which take 5 to 16 months to complete, despite increasing the operating temperature of
the batteries to 40 ◦C, in order to speed up degradation and thus reduce the test time. The article
proposes an alternative way to identify the BESS characteristics by using synchronous recording of
power, BESS charge level, and temperature of the batteries during normal use of the storage. This is of
particular importance at a time when there are limitations in performing tests on industrial facilities.

The article presents an algorithm of control in the active network using active power balances
to determine the value of the power of the energy storage at a given value of power exchanged
with the distribution network. The algorithm assumes that the exchange power should be constant
and its value should depend on the average power of local consumers and generation equipment.
Such an assumption, for technical reasons, has a number of advantages related to generation efficiency,
power supply reliability, and energy quality. In the case of weather-dependent uncontrollable sources
(photovoltaic sources and wind turbines) or with limited controllability (water turbines), it may be
difficult to maintain exchange capacity between the active and the distribution grid. Therefore, it is
possible to set the exchange capacity value at a level determined by a function. Such a function may
depend on the seasons or weather forecasts. Another objective function of the VPP control scenario may
be economic aspects. Then, the level of exchange power will be variable and will depend, for example,
on exchange prices or balancing market prices resulting from the economic forecasting model.

Charging and discharging characteristics were introduced into the BESS control algorithm.
The characteristics introduce limits to the power of the BESS depending on the SoC. The shape of the
characteristics results from the technology of storage of energy in the device and system limitations
introduced by the manufacturer. Typical charging characteristics of a chemical storage facility based
on lithium-ion technology are presented in Figure 1.

The course of charging (discharging) characteristics is conditioned by physical and chemical
changes inside the battery cells. Such charging characteristics are designed to ensure the safety of the
battery and maintain maximum capacity of the cell even after many cycles of operation.

Storage facilities that use other energy storage technology, e.g., supercapacitors, fuel cells,
kinetic storage units, pumped-storage power plants are characterized by different power dependence
on the degree of charge.

In this work, the simulation of power flow control in the active network for the selected scenario
was carried out using the direct-current distribution method. Such an approach is often used in the
first step for design analyses. The obtained results allow to generally determine the way of operation
of the separate system for the proposed control algorithm. Target analyses should also include reactive
power distribution. Therefore, it is justified to test the AC model. The possibility of generating reactive
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power in HPP systems and the BESS allows to regulate voltage levels in network nodes. Additionally,
the reactive power of local consumers should be compensated in order to obtain the required power
factor at the point of connection of the active network to the parent network.

In the private (local) network, the power flow control scenarios should provide for increased
generation and discharge of the energy storage in the morning peaks, while in relation to global
demand, generation and discharge of the storage should be increased in the evening peaks.

The task of the VPP operator is therefore to select and optimize the method. In the VPP control
scenarios, the best economic result is always preferred; however, this is not always related only to
energy market activities. Conducted experiments in the actual network may answer the questions to
what extent one should engage in the energy market and ancillary services.

5. Conclusions

In the article, the method of experimental determination of charging and discharging characteristics
of the BESS located in a real VPP in Poland is presented. However, the presented methodology can also
be applied to other BESS, including ESS based on other technologies. Based on the determined charging
and discharging characteristics, the BESS model was established. Such a methodology for determining
the BESS model can also be applied to the BESS located in the microgrids or in the distribution system
in general.

The article checks how, for the given scenario of power flow control, the private network will be
preserved when a storage device with real characteristics is installed in it. The analysis was performed
for the day when the maximum demand occurred (19th January).

The usefulness of the scenario on the technical market can be twofold. The first concerns the
adoption of an appropriate control strategy and selection of devices already at the stage of designing
the private network (microgrid) and the VPP, the second is related to the application of the VPP concept
to the existing infrastructure. In the first case, greater savings are possible at the investment stage,
in the second case, based on intelligent control algorithms, power flow (current) can be controlled and
reduced, which in consequence may have a positive impact on network equipment, such as electrical
equipment operating in the distribution network which when subject to current exposure, results
in aging, wear and tear and damage. The overloading of current circuits and equipment contacts
leads to excessive heating, which accelerates corrosion processes, reduces their mechanical strength,
and weakens the electrical strength of insulation. The processes of equipment insulation degradation
due to the flow of large currents are associated with changes in the physical properties of the insulation
material and chemical changes in the long term.

The considered private network consists of VPP, BESS and a generator. Using the correct power flow
scenario, it is possible to ensure optimal operation of a private network connected to the distribution grid.
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43. Sikorski, T.; Jasiński, M.; Ropuszyńska-Surma, E.; Węglarz, M.; Kaczorowska, D.; Kostyła, P.; Leonowicz, Z.;
Lis, R.; Rezmer, J.; Rojewski, W.; et al. A Case Study on Distributed Energy Resources and Energy-Storage
Systems in a Virtual Power Plant Concept: Economic Aspects. Energies 2019, 12, 4447. [CrossRef]

44. Ringkjøb, H.-K.; Haugan, P.M.; Solbrekke, I.M. A review of modelling tools for energy and electricity systems
with large shares of variable renewables. Renew. Sustain. Energy Rev. 2018, 96, 440–459. [CrossRef]

45. Zhang, C.; Chen, H.; Liang, Z.; Hua, D. An interval DC power flow analysis through the optimizing-scenarios
method. In Proceedings of the 2017 IEEE Innovative Smart Grid Technologies Asia (ISGT-Asia), Auckland,
New Zealand, 4–7 December 2017; pp. 1–5.

46. De Oliveira Gomes, A.; Meirelles Gouvea, M. DC power flow optimization with a parallel evolutionary
algorithm. In Proceedings of the 2012 Sixth IEEE/PES Transmission and Distribution: Latin America
Conference and Exposition (T&D-LA), Montevideo, Uruguay, 3–5 September 2012; pp. 1–6.

47. Simpson-Porco, J.W. Lossy DC Power Flow. IEEE Trans. Power Syst. 2018, 33, 2477–2485. [CrossRef]
48. Plass, M. Energy Storage System Standards and Test Types. Available online: https://www.dnvgl.com/

services/energy-storage-system-standards-and-test-types-111331 (accessed on 16 December 2020).
49. International Electrotechnical Commission. IEC 61427-1:2013 Secondary Cells and Batteries for Renewable Energy

Storage—General Requirements and Methods of test—Part 1: Photovoltaic Off-Grid Application; IEC: Geneva,
Switzerland, 2013; pp. 1–37.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

44



energies

Article

The Impact of Supply Voltage Waveform Distortion on
Non-Intentional Emission in the Frequency Range 2–150 kHz:
An Experimental Study with Power-Line Communication and
Selected End-User Equipment

Marek Wasowski 1,*, Tomasz Sikorski 1, Grzegorz Wisniewski 1, Pawel Kostyla 1, Jaroslaw Szymanda 1,

Marcin Habrych 1, Lukasz Gornicki 2, Jaroslaw Sokol 2 and Mariusz Jurczyk 2

Citation: Wasowski, M.; Sikorski, T.;

Wisniewski, G.; Kostyla, P.;

Szymanda, J.; Habrych, M.; Gornicki,

L.; Sokol, J.; Jurczyk, M. The Impact

of Supply Voltage Waveform

Distortion on Non-Intentional

Emission in the Frequency Range

2–150 kHz: An Experimental Study

with Power-Line Communication and

Selected End-User Equipment.

Energies 2021, 14, 777. https://

doi.org/10.3390/en14030777

Academic Editor: Akhtar Kalam

Received: 28 December 2020

Accepted: 26 January 2021

Published: 2 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland;
tomasz.sikorski@pwr.edu.pl (T.S.); grzegorz.wisniewski@pwr.edu.pl (G.W.); pawel.kostyla@pwr.edu.pl (P.K.);
jaroslaw.szymanda@pwr.edu.pl (J.S.); marcin.habrych@pwr.edu.pl (M.H.)

2 TAURON Dystrybucja Pomiary Ltd., 33-100 Tarnow, Poland; Lukasz.Gornicki@tauron-dystrybucja.pl (L.G.);
Jaroslaw.Sokol@tauron-dystrybucja.pl (J.S.); Mariusz.Jurczyk@tauron-dystrybucja.pl (M.J.)

* Correspondence: marek.wasowski@pwr.edu.pl

Abstract: Knowledge of the conducted emissions in the frequency range 2–150 kHz contains some
gaps related to the impact of the harmonics in the supply voltage on the nature of these emissions.
It can be noticed that the conducted emissions from non-sinusoidal power supplies have not been
studied sufficiently, and that the impact of this distortion may be greater than the generally known
results of emission tests carried out under standardized test conditions. This paper is aimed at
investigating experimental cases of the influence of supply voltage waveform distortion on non-
intentional emission in the range 2–150 kHz and the efficiency of power line communication based
on selected PRIME (PoweRline Intelligent Metering Evolution) power line communication (PLC)
technology. A series of experimental laboratory studies were investigated, representing the operation
of the investigated PLC system with different types of end-user equipment (LED—Light Emitting
Diode, CFL—Compact Fluorescent Lamp, induction motor with frequency converter) working under
a distorted supply voltage condition obtained by the programmable power supply for different
scenarios of the admissible harmonics contribution in the range 0–2 kHz. The scenarios included
limits defined in standards EN 50160 and IEC 61000-4-13. The researchers used spectral analysis
with a notation to emission limits, compatibility levels, and mains signalling, as well as statistics
of the PLC communication. The obtained results provide important conclusions, which may be
applied both in the development of the design of the appliances in question and the higher frequency
emission testing methods.

Keywords: conducted disturbances; power quality; supraharmonics; 2–150 kHz; Power Line Com-
munications (PLC); intentional emission; non-intentional emission; mains signalling

1. Introduction

Smart meters, which are now present in the majority of households in Europe, often
use power line communication (PLC) over the low-voltage (LV) grid. In countries belonging
to the European Union countries, 123 million electricity meters are read remotely using PLC
transmission, which accounts for 43 percent of all meters installed in the member states.
The most advanced in implementing smart metering are the Swedes, who have already
replaced 100% of their meters with smart meters, Finns (99.8%), Estonians (98.9%), Italians
(98.5% of ~37 million meters) and the Spanish (93.8% of ~28 million meters) [1]. Given that
the member states will continue to update the installation of the smart meter in line with
their new planning and target periods (see Figure 1), it is estimated that 223 million meters
(77%) will be remotely read by 2024, and 266 million meters by 2030 (92%).
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Figure 1. Review of the target completion date for smart electricity meters installation covering at least
80% of all consumers based on the plans of the European Union (EU) member states (based on [1]).

From the point of view of signal categorisation occurring in power networks, power
line communication (hereinafter PLC transmission) is treated as mains signalling and is
considered as intentional emission in the frequency range 2(3)–148.5 kHz [2,3]. However,
intentional emission in LV networks is accompanied by the phenomenon of non-intentional
emission, which is a growing problem in the operation of smart metering systems based
on PLC transmission. All European Union (EU) members stated that, despite the formal
separation of a dedicated 3–95 kHz frequency band for the transmission of metering data in
low-voltage power networks, the phenomenon of harmful non-intentional emission in this
band is increasing. This issue is confirmed by the experiences of power system operators
and from many publications all over the world.

Several main issues have been formulated at this time, including:

• Classification and identification of supraharmonics, signalling on low-voltage electri-
cal installations in the frequency range 2(3) kHz to 148.5 kHz [2–8].

• Accurate assessment of waveform distortion in the presence of supraharmonics [9–15].
• Source of non-intentional emissions and propagation of supraharmonics, interaction

between devices [16–20].
• Potential problems with communication via the power grid [1,20–25].

The analysis of big data from smart electricity meters can contribute to significant
results in terms of grid management. There are many alternative approaches to analysing
data from such systems [26]. In the advanced analysis of the collected measurement data,
there is potential for:

• Improving the security of the system by increasing its observability.
• The use of demand side management (DSM) tools, which is carried out by dynamic

billing of electricity consumers and prosumers.

46



Energies 2021, 14, 777

• Forecasting the amount of energy released to the grid by micro-installations.

The primary motivation for this work is the relatively small number of research studies
concerning the influence of power supply conditions on supraharmonics emissions. The
direction of the investigation was formulated on the basis of observation of the different
levels of non-intentional emission generated by the same class of devices in a different node
of the low-voltage network, which may be characterized by the respective quality of the
voltage or impedance condition. This study led to the formulation of two hypotheses: (a)
the non-intentional emission generated by particular devices may depend on the condition
of the supply voltage; and (b) non-intentional emission generated by particular devices
may depend on the impedances of the supplying circuits in the point of the connection.
This paper is focused on the first hypothesis related to voltage supply waveform distor-
tion. Designated research directions can be initially confirmed by the results of similar
investigations related to harmonic current emissions (0–2 kHz) under the flat-top supply
waveform distortion [27], or detected differences in the performance between compact flu-
orescent lamps (CFLs) and light emitting diode (LED) light sources under different voltage
distortions [17], as well as the effect of supply voltage harmonics on the input current of
a single-phase diode bridge rectifier load [28]. However, although the above-mentioned
works highlight the issue of harmonic current emissions, they do not provide information
about emissions in the range of higher frequencies up to 150 kHz, nor do they express
the influence of the supply voltage distortion on mains signalling (usually expressed in
dBμV). The unit decibel microvolt (dBμV) is directly associated with volt (V) as twenty
decimal logarithms of volt divided by one microvolt. Since the subject of the research is
the phenomenon of primary emission, the observation results can be expressed in volts or
dBμV. It might be interpreted as a coupling coefficient in the point of the connection as a
result of current emission flowing by the network impedances.

Technical measures to improve transmission—that are more software-based than
hardware-based—should also be considered. It is worth paying attention to the context
of using machine learning techniques to solve data transmission problems. For example,
in [29], the authors designed the mechanism based on the matching rule, and further traffic
collision avoidance, channel occupancy, power consumption, and delay in wireless networks.

This paper aims to extend the current state-of-the-art by investigating experimental
cases of the influence of supply voltage waveform distortion on non-intentional emission
in the range 2–150 kHz and the efficiency of selected power line communication systems.
In order to achieve the proposed aim, in Section 2, the gap in the current studies related
to the influence of the supply voltage distortion on supraharmonics emission and effi-
ciency of power line communications is identified. Furthermore, in order to characterize
the background of the investigation, a critical review of the emission limits, compatibil-
ity levels, and immunity tests for conducted disturbances and mains signalling in the
frequency range 2–150 kHz was performed. Section 3 describes in detail the laboratory
setup implemented for the experimental studies including electrical connections, the per-
formance of programmable alternating current (AC) supply, selected devices, applied
power-line communication technology as well as measurement setup for supraharmon-
ics. Additionally, the software for frequency spectrum analysis is described in relation
to current testing and measurement techniques. Section 4 presents a collection of the
experimental results. First, the methodology of the investigation is presented and then
the set of results of non-intentional emission for a different range of supply waveform
distortion and different end-user equipment in the presence of selected power-line commu-
nications is analysed. The results describe the spectra of intentional and non-intentional
emissions and the evaluation of the quality of operation of the PRIME PLC system. Dis-
torted supply voltage conditions consist of different scenarios of the admissible harmonics
contribution, in the range 0–2 kHz, including limits defined in standards EN 50160:2010 [3]
and IEC 61000-4-13 [30]. Section 5 highlights crucial results and constitutes elements of
the discussion.
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2. Literature Review

2.1. Gap in the Research Related to Influence of Supply Voltage Distortion on
Supraharmonics Emission

The phenomenon of electromagnetic emission occurring in the frequency range 2–
150 kHz was termed “supraharmonics” in the literature (hereinafter SH) [2–8]. The lower
limit of the SH range (2 kHz) is taken as the upper limit of traditional energy quality
standards covering emission up to 40th harmonic order. The upper limit of the SH (150 kHz)
range is the lower limit of the electromagnetic compatibility (EMC). This division indicates
that there is an area of insufficiently regulated standards. Hence, several standardisation
committees are currently working on a description of emission and immunity limits and
methods for emission testing in this frequency range.

The scientific reports on the SH problem show that there are three lines of research in
this area. The first concerns research into the impact of emissions generated by different
types of loads on the level of current emissions [8,22,25], which should be considered as
primary emissions. This group of research provides an overview of the types of noises that
affect smart metering using power line communications, including noises coming from
common electronic devices (compact fluorescent lamp (CFL) and light emitting diode (LED)
light sources) and noises coming from photovoltaic inverters or electric vehicle charging
spots, measured in a controlled environment. The previously mentioned studies, however,
ignore the secondary emission in load currents, which is understood as the part of the
current of a tested load that does not originate from its primary emission, but is transferred
through parallel connections from another load. In order to describe the primary and
secondary emission, a simplified model in a system of two loads is presented in Figure 2.
Load 1 is represented by a constant current source Ih1 and impedance z1. The primary
emission from load 1 is denoted as I1. Impedances z1 and z2 are the internal impedances
of load 1 and 2 respectively, and zg is the network impedance. The primary emission (I1)
flows partially into the grid and partially through the impedance of load 2. Thus, the
total emission of load 2 consists of its primary emission I2 superimposed on the secondary
emission caused by load 1 (I1,2). Described relations are true, assuming the sinusoidal rated
voltage. In practice, such conditions are hard to achieve.

Figure 2. A simplified model, describing primary and secondary emissions in a system of two loads,
assuming a sinusoidal rated voltage.

It is worth noting that, in [24], the authors noticed the influence of harmonics on
the operating of electrical energy meters in a network with nonlinear loads. It is shown
that electronic static meters of active energy are tested in the presence of distortions, and
electronic static meters of reactive energy accuracy requirements do not take into account
the possible presence of harmonics.

The second line of research focuses on the so-called resultant emission of loads,
resulting from the simultaneous primary emission of multiple appliances connected to the
same subnetwork. In paper [16], among others, the authors presented interesting results
of research on the effect of gradual incorporating of 1, 10, and 48 compact fluorescent
lamps into one connection point, which shows that the level of current emission at the
connection point does not increase linearly with the growth of loads of the same type. The
authors observed the effect of decreasing the share of low frequencies 0–2 kHz in the total
current while increasing the number of fluorescent lamps. It was observed that in the case
of SH emissions above 2 kHz, some frequency components of currents close through input
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circuits of adjacent loads and some frequency components of currents close through supply
circuits and neutral wires. However, these tests also ignore the issue of low-frequency
emissions from the distorted supply voltage.

In turn, in article [24], the authors outlined the third line of considerations. Based
on tests carried out with the use of LED light sources and compact fluorescent lamps, the
authors confirmed that the share of non-intentional emission introduced into the network
by these loads might be greater than the results of emission tests carried out under the
conditions of emission tests of loads following EN 61000-3-2 standard. Although the
authors observed emission in the frequency band 2–40 kHz, it should be assumed that this
phenomenon might also apply to other frequency ranges.

In each of the three lines of the problem consideration presented above, it can be shown
that the aspect of the harmonic content in the supply voltage, in the range 0–2 kHz, as the
potential origin of the increased level of non-intentional emission of the electrical devices,
in the range 2–150 kHz, has not been (as of yet) sufficiently investigated. Many works
investigate the impact of selected supply voltage parameters on current harmonics up to
2 kHz. Many works also present current supraharmonic emissions of different electrical
devices, but are usually investigated under sinusoidal supply voltage. This work is focused
on the non-intentional emission of the selected electrical devices under non-sinusoidal
supply voltage conditions and their impact on power line communications.

In [27,31], authors attempted to assess the influence of the voltage curve distortion
in the form of a flattening of the peak of a sine wave, which corresponds to an increase in
the harmonic content factor. The authors of these works, using the example of lighting
devices, assessed the harmonic content during parallel operating the devices. The authors
demonstrated, among other findings, that new electronic equipment based on active power
factor correction (PFC) shows a qualitatively different dependence of harmonic emissions
on the degree of distortion (flattening) of the supply voltage concerning loads without PFC.

The influence of voltage distortion on the differences in work efficiency between com-
pact fluorescent lamps (CFL) and light emitting diode (LED) light sources in the low and
high-frequency range was described in [17]. The tests were carried out for three scenarios:
sinusoidal voltage, flat-top distorted voltage (total harmonic distortion in voltage THDV
about 3%), and pointed-top distorted voltage (overswing) (THDV about 4% in accordance
with IEC 61000-4-13), which were used to power a group of 142 lamps manufactured in
2009–2016 (69 CFL sources and 73 LED sources). These lamps worked in various ranges of
rated power (CFL range up to 46 W, LED range up to 17 W).

A frequent phenomenon is also the secondary emission of the load, which is under-
stood as the part of the current of the tested load that is not derived from its primary
emission, but is transferred by parallel connections from another load. The research results
presented in [9,17,18,21] indicate that, due to the use of various input systems of loads,
including EMC filters, and due to the phenomenon of secondary emission from the parallel
operation of loads, the share of higher frequencies in the supply current at the point of
common coupling (PCC) point might be smaller than would result from the emission
of individual loads. It has been observed that in the case of supraharmonic emissions
above 2 kHz, some frequency components of the currents are closed by the input circuits
of neighbouring loads and some of the frequency components of the currents are closed
by the supply and neutral circuits. The issue of secondary emission is also present in the
considerations concerning the influence of loads’ operation on the narrowband PLC trans-
mission. In [23], authors indicate selected disturbances originating from loads connected to
the LV network, which may affect the transmission efficiency in the range of 0–2 kHz and
2–150 kHz. The frequency range of these disturbances coincides with the PLC transmission
frequencies; as a result, the useful signal of PLC transmission is “covered” by the spectrum
of unintentional disturbances.

The authors of [17] also analysed the operation of light sources in the band above
2 kHz. The analyses were performed in three frequency sub-ranges: 9–30 kHz, 30–95 kHz,
and 95–150 kHz. Tests of a representative set of lamps, both compact fluorescent lamps
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and LED lamps, showed clear differences in the current emission not only between the two
types of lamps, but also between lamps within the same type. The discussed results indicate
the influence of the quality of the supply voltage on the content of higher frequencies in
the current of LED lamps in the wide 30–95 kHz range, used by some narrowband and
broadband PLC technologies. Hence, the conclusion that in the case of operation of these
loads in conditions of supply other than sinusoidal, the share of unintentional disturbances
introduced to the network by these loads may be greater than the results of emissivity
obtained during standardized tests.

This paper presents the results of the research devoted to the issue of the impact of
harmonic content in the supply voltage, or more generally, the degree of distortion of the
supply voltage waveform on non-intentional emission in the 2–150 kHz band by loads,
which, according to literature, are responsible for most of the emission of the intentional
PLC transmission. The methodology of the investigation is aimed to cover two issues:
characterisation of the non-intentional emission under the different quality of the supply
voltage as well as the assessment of its influence on continuity of the transmission in the
selected PLC system.

2.2. The Background of the Investigations—Identification of the Emission Limits, Compatibility
Levels, and Immunity Levels for Conducted Disturbances and Signalling in the Frequency Range
2–150 kHz

Due to the manner of interaction between the transmission systems (intentional
emission, mains signalling) and the power grid including loads (non-intentional emission),
it is worth analysing the contents of the standards in terms of permissible levels relating to:

• Levels of non-intentional emission referring to individual equipment and the power
grid (non-intentional emission).

• Compatibility levels in the power grids (compatibility levels, environment characteristics).
• Intentional emission (transmission levels and mains signalling).
• Immunity test levels.

For this reason, in Figure 3, several characteristics in the range 2–150 kHz were
collected. Presented curves express limits defined in applicable standards. Details of
selected standards are given in the legend of the figure. The prominent curve is related to
intentional emission (i.e., mains signalling and power-line communication denoted in the
figure by the lines described using the letter “S”) and non-intentional emission (i.e., network
distortions, denoted in the figure by the line described using the letter “E”). Additionally
the compatibility level in an electrical network is also represented (denoted in the figure,
using letter “C”). The boundary conditions are represented by the curve related to the
immunity test of the communication systems in the range 2–150 kHz (denoted in the figure
by the line described using the letter “I”). Additionally, the figure shows the frequency area
42–89 kHz, which represents the PRIME broadband power-line communication technology
used in the research.

Legend of the curves in Figure 3:
Non-intentional emission referring to IEC 61000-3-8:1997 [4] adopted in the standard for

PLC transmission EN 50065:2012 [2]—it can be treated as background emission, potentially
affecting the communication by the power grid (solid line, green colour, letter “E”).

• Compatibility levels referring to IEC 61000-2-2: AMD1:2017 [5] and AMD2:2018
(dashed line, pink colour, letter “C”).

• Permissible level of intentional emission, mains signalling, referring to IEC 61000-3-
8:1997 [4] interpreted as the permissible level of transmission in power line communi-
cation systems adopted in EN 50065:2012 [2] (solid line, red colour, letter “S”).

• Permissible level of intentional emission, mains signalling, referring to IEC 61000-2-2:
AMD1:2017 [5] (dashed line, red colour, letter “S”) and referring to EN 50160:2012 [3]
(dashed-dot line, red colour, letter “S”).

• Levels of tests for immunity to conducted, differential mode disturbances, and sig-
nalling in the frequency range 2 kHz to 150 kHz at AC power ports referring to
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PN–EN 61000-4–19:2014 [6] (solid line, black colour, notation “P4”—test level with the
reference to environment class 4: severe industrial environment; dashed line, colour
black—notation “P3”—test level with the reference to environment class 3: typical
residential, commercial, and light industrial environment).

Figure 3. Comparison of the emission (E), compatibility (C), mains signalling (S), and immunity
(I) levels for conducted disturbances and signalling in the frequency range 2–150 kHz (based on
standards [16–21].

3. Characteristic of the Laboratory Hardware and Software Setup

The laboratory setup for the analysis of the direct impact of harmonic content in
the supply voltage on the emission of supraharmonics consists of three 3-phase pro-
grammable power supplies KIKUSUI PCR500LA [32], which, together with the standard-
ised reference impedances (for the phase wire zA = (0.24 + j0.15) Ω and the neutral wire
zN = (0.16 + j0.1) Ω) formed the equivalent of a standard low-voltage grid connection point
(Figure 4a). The reference impedances follow the standard IEC 61000-3-3 [33] and are
recommended to realize the equivalent of the power grid used in the calculation and
measurement of the directly measured parameters of voltage changes, voltage fluctuations,
and flicker. The materials used in constructions of the impedances preserve the reference
value of the impedances in a 50Hz system with a nominal current up to 5A. The opera-
tion of power supplies in the three-phase source mode was obtained using 3P03-PCR-LA
three-phase output driver cards [34]. The programmable power supplies were controlled
by the Quick Immunity Sequencer [35] installed on a PC that was used to define power
supply voltage waveform and subsequent test series. Communication between PC and
the programmable AC supply used general purpose interface bus (GPIB interface IB03-
PCR-LA) [36]. Using the authorised software different scenarios were created for the input
signal with pre-sets of harmonics contribution in the range 0–2 kHz. This application real-
ized communication with the programmable power supply and configuration sets for the
harmonics contribution in the supply voltage. It used a waveform bank and the sequence
operation function, which is responsible for transfer, execution, and output control of the
waveform. In this paper, some selected pre-sets of harmonic contributions were considered:
(a) pure sinusoid, (b) limits of harmonics in the low-voltage public network formulated in
EN 50160:2010 [3], (c) low-frequency immunity test levels of the equipment defined in IEC
61000-4-13 [30]. These pre-sets were defined in the waveform bank.
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Figure 4. The laboratory setup: (a) electrical diagram of the test stand, (b) view of the power supply system in the form of
programmable AC power supplies and model with power line communication (PLC) meters.

The PLC transmission was provided by a compact model containing three electricity
meters equipped with PRIME PLC communication modules (two 3-phase and one 1-phase
meter) and a data concentrator working in the same technology. PRIME is a specification for
narrowband power line communication. The PRIME physical layer is based on Orthogonal
Frequency Division Multiplexing (OFDM). The transmission band is 42–89 kHz. In the
course of individual research steps, using functions and reports implemented in the PLC
concentrator software, the statistics of PLC transmission between the concentrator and
the meters were observed and recorded. The view of the constructed laboratory setup is
presented in (Figure 4b).

In terms of information and communication technologies, the test stand was separate,
both physically and logically, local area network (LAN) computer network connecting
computers (in this case, meters, concentrator and the controlling computer). The functional
diagram of the test stand as a local area network (LAN) is presented in Figure 5.
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Figure 5. Information and communications technology (ICT) functional diagram of the test stand as
a local area network (LAN).

The recording of measurement data was carried out by the authorised university
hardware setup based on National Instrument cRIO technology (Figure 6). In detail, the
voltage measurement acquisition is realized by National Instrument C series ±10V voltage
input module with 1 MS/s sampling rate and 16-Bit resolution [37]. In order to adapt the
range of the measured voltage to the voltage input module a voltage transducer provided
by Life Energy Motion Company (LEM) model CV 3-1000 was implemented with a voltage
ratio of 1000:10 and frequency bandwidth to 500 kHz [38]. The obtained measurement setup
allows recording simultaneously four voltage and four current waveforms with a maximum
frequency of 1 MHz per channel. The investigations were focused on voltage measurements.
For the measurements in the frequency range 2–150 kHz, the voltage units (instead of volts)
are expressed in dBμV. Thanks to the use of cables between the concentrator and individual
meters, with a cross-section of 2.5 mm2 and their small length (1–2 m), the impact of power
supply cables on the attenuation of the PLC signal in the voltage line should be considered
insignificant. The accuracy of measurements was validated using commercial spectrum
analysers used in the power line communication investigation: MFA 500 Spectrum Analyser
3–500 kHz by Swemet [39] and USB-SA44B Spectrum Analyser 1 Hz–4.4 GHz by Signal
Hound [40]. The validation was mainly based on the comparison of the spectrum of the
simultaneously recorded signal. The frequencies and magnitudes of spectrum components
were compared. The obtained results were comparable. The advantage of using an
authorized solution based on the cRIO platform is the open possibility to define the
acquisition process e.g., time recording of the waveform.

 

Figure 6. View of 1 MHz voltage and current recorder components.
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Specification of the hardware components of the laboratory test circuits is collected in
Table 1.

Table 1. Specification of the hardware components of the laboratory test circuits.

Programmable AC Source/Kikusui PCR500LA Specification

Power capacity 500 VA
Input voltage variation (with respect to changes in the rated range) ±0.1%

Output current variation (with respect to 0% to 100% changes in
the rating)

Within ±0.1 V/±0.2 V
(output voltage range 100 V/200 V)

Output frequency variation in AC mode (40–999.9 Hz) Within ±0.3%
Ripple noise: DC mode (5 Hz to 1 MHz component) 0.1 Vrms or less

Output frequency stability (with respect to changes in the
rated range) Within ±5 × 10−5

Output voltage waveform distortion 0.3% or less
Output voltage response speed 30 μs

Compliant standards

EMC Directive 89/336/EEC
EN61326:1997/A2:2001 Emission Class A

IEC 61000-3-2:2000
IEC 61000-3-3:1995/A:2001

Reference impedances/authorised university solution Specification

Nominal frequency 50 Hz
Nominal RMS current 5 A

Nominal impedance

Phase wire zA = (0.24 + j0.15)Ω for 50 Hz
RA = 240 mΩ ± 0.2%, LA = 477.5 μH ± 1%
Neutral wire zN = (0.16 + j0.10) Ω for 50 Hz
RN = 160 mΩ ± 0.2%, LN = 318.3 μH ± 1%

Signal recorder/authorised university solution Specification

FPGA platform National Instrument cRIO FPGA 1 MS/s

Voltage input module
National Instrument NI-9223 C Series

±10 V, 1 MS/s, 16-Bit, Simultaneous Input,
4-Differential Channel

Voltage Transducer

LEM CV 3–1000
Primary voltage ±1000 V
Secondary voltage ±10 V

Frequency bandwidth DC ÷ 500 kHz
Accuracy 0.2%

cRIO–compact reconfigurable input output platform, CV–voltage transducer, product of LEM, DC–direct current, EMC–electromagnetic
compatibility, FPGA–field-programmable gate array, IEC–International Electrotechnical Commission, LEM–Life Energy Motion Company,
NI–National Instruments, PCR–programmable power supply, product of Kikusui, RMS–root mean square.

Recently, a wide discussion has taken place in literature referring to the measurements
method for the frequency range 2–150 kHz [9,12,13]. Some consideration is also provided
by the informative annex in IEC 61000-4-30 [15]. One of the suggested approaches is to
implement a discrete Fourier transform (DFT) defined in IEC 61000-4-7 [14] for the fre-
quency range of 2 kHz and extend it above 2 kHz. Traditionally DFT implementation uses a
rectangle data acquisition window with a width of 200 ms, corresponding to approximately
10 (12) periods of power system frequency 50 Hz (60 Hz). Consequently, spectrum resolu-
tion is 5 Hz. Before 2009, the informative annex of this standard suggested implementation
of DFT in the range 2–9 kHz using DFT technique with 10 Hz resolution, realized by a time
windowed signal with a window width equals to 100 ms. The current form of the annex
recommends preserving 5 Hz spectrum resolution also in the range 2–9 kHz, obtained
by using a 200 ms window. Additionally, a grouping concept is also proposed. For the
frequency range 2–9 kHz, it is realized using 200 Hz band centred at frequencies being a
multiplication of 100 Hz. The first group is centred at 2100 Hz. The grouped spectrum has
a final resolution of 100 Hz.
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The intentional transmission signal used by the power line communication systems
has usually time-variant nature. The narrow or broadband signals are transmitted in
time packages. In order to investigate the coexistence of these time-variant spectrum
components and non-intentional emission of the equipment, the short-Fourier transform
(STFT) in the range 2–150 kHz was implemented. The rectangle data acquisition window
without overlapping was used. The window width was 100 ms and the DFT output was
grouped using a 200 Hz band centralized at frequencies being a multiplication of 100 Hz
starting from 2000 Hz. The selection of the shorter window width was dictated by two
conditions. First, the time resolution of the STFT is enhanced by using a short window.
Second, one of the commercial spectrum analyser used for the validation used a 10 Hz
resolution spectrum. Additionally, the inherent effect of short window width is smoothed
by grouping concept with 100 Hz resolution. The recording time was 20 s. Therefore, it was
possible to observe changes in the spectrum and capture the voltage spectra on the load
both with and with communication represented by intentional emission in the 42–89 kHz
frequency band used by the PRIME PLC system.

A set of loads representing end-user equipment was based on:

• LED light sources (the three-phase circuit was made using three single-phase LED
with a power of 8 W connected in a star, the LED have implemented active power
factor correction by an active power filter (APF) in order to keep cosϕ = 0.9).

• CFL compact fluorescent lamps (the three-phase circuit was made of three single-
phase compact fluorescent lamps with the power of 11 W, 18 W and 20 W connected
in a star).

• Three-phase asynchronous induction motor 300 W/400 V/50 Hz rated speed 1390 rpm,
powered by a single-phase frequency converter with input voltage 230 V, output
voltage 3 × 230 V, power 400 W.

4. Results of an Experimental Study with Power-Line Communication and Selected
End-User Equipment

In the conducted experiments, the waveform of supply voltage was shaped by the
superposition of harmonics with set amplitudes. Using programmable power supplies and
dedicated software, the supply voltage was shaped in three scenarios as follows:

• Supply voltage scenario 1: pure sinusoidal voltage.
• Supply voltage scenario 2: distorted voltage with harmonics according to permissible

limits for public networks defined in EN 50160 [3].
• Supply voltage scenario 3: distorted voltage with harmonics used for immunity tests

of load according to IEC 61000-4-13 [30]—equipment with the third class of immunity.

Selected harmonics contributions represent margin waveform distortion. The total
harmonic distortion index (THD) achieved as a sum of permissible harmonics levels
defined in EN 50160 equals 11.62%; however, the normal operating condition of the public
grid is usually 2–8%.The study aimed to assess the impact of supply voltage distortion
on the operation of a commercial PRIME PLC system with the simultaneous presence of
non-intentional emission generated by the loads. In point of the load contribution, several
load conditions were considered:

• Load condition 0: no load.
• Load condition 1: LED light source.
• Load condition 2: compact fluorescent lamp (CFL) light source.
• Load condition 3: induction motor powered by a frequency converter.

The PRIME PLC system is based on recommendation G.9904 [41,42]. The technology
represents narrowband orthogonal frequency division multiplexing power line commu-
nication that uses 97 subcarriers, 96 of which are used for data transmission, where:
first carrier frequency is 41.99 kHz (41,992.18750 Hz), last carrier frequency is 88.87 kHz
(88,867.18750 Hz), the distance between carriers—0.488 kHz (488.28125 Hz). For each
scenario of the supply waveform distortion and each group of loads, the investigation cases
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were performed in order to express the variability of non-intentional emission affecting
intentional emission of the PRIME PLC transmission system. First, characteristic spectra
of the background signal and the transmission signal obtained among 20 s of the STFT
observation were compared with the normative curves identified in Section 2.2 referring
to standards [2–6]. Second, selected spectrum signal parameters were derived. Over the
given frequency interval in the frequency range of the investigated PRIME PLC system, a
single local maximum magnitude of a frequency component of the background signal was
identified. It can be treated as a maximum noise contribution (Nmax). Then, corresponding
to the Nmax a magnitude of the transmission signal (S(Nmax)) related to Nmax was selected.
The parameters are used to derive a local signal-to-noise ratio (SNRlocal), which expresses
the local minimum SNR in the transmission band due to reference to the maximum noise
frequency component:

SNRlocal[dB] = 20 log
S(Nmax)[V]

Nmax[V]
= 20logS(Nmax)[V] − 20logNmax[V] = S(Nmax)[dB] − Nmax[dB]

= S(Nmax)[dBμV] − Nmax[dBμV]

(1)

Additionally, the classical signal-to-noise ratio in the full frequency range of the PRIME
PLC band (SNRband) was calculated using the power of the transmission signal (Psingal)
and power of the background signal (Pnoise) calculated based on M frequency components
belonging to the transmission band:

SNRband[dB] = 10log
Psignal

Pnoise
= 10log

1
M ∑M

m=1 s2
m[V]

1
M ∑M

m=1 N2
m[V]

= Psignal[dB] − Pnoise[dB] (2)

Proposed parametrization using the local and broadband SNR aims to represent the
variability of transmission conditions in the transmission band.

In order to extend the assessment of the communication conditions, the communica-
tion statistics were also analysed, considering the intensification of the connection attempts.
In detail, for particular scenarios of the investigation, the statistics were monitored based
on the total number of the connections, the number of failed connections, the number of
successful connections, and the duration of failed connections in one hour. The statistics
represent 2 h of continuous work of the PLC system. The data were reported using a dedi-
cated ADDAX software solution for residential metering [43]. Following interpretations of
the connection statistics may be defined:

• Increasing the number of attempted connections is the preventive action of the PLC
system to keep the transmission successful and can be interpreted as a symptom of
deteriorated transmission condition.

• Percentage contribution of the number of failed connections is not directly repre-
sentative quantity indicating the deterioration of the transmission condition due to
increasing number of attempted connections.

• Increasing the duration of failed connections is the direct symptom of the problems
with continuity of the communication (referring to ADDAX recommendation the
threshold value for the duration of failed connections indicating communication
problem is 180 s in one hour).

4.1. Case 1 (Supply Voltage Scenario 1, Load Condition 0): Operation of the Tested PRIME PLC
System without Loads during Sinusoidal Supply Voltage—Reference Analysis

As the system itself makes use of the supply voltage (power supplies for meters, meter
displays, concentrator, etc.), it was decided to initially study the impact of voltage distortion
without the loads, first of all. This testing stage serves, in a way, as an immunity test of
transmission efficiency at a different degree of distortion of the supply voltage, but without
the participation of higher frequencies introduced by the loads. At this level of testing,
the transmission efficiency statistics available in the master system of the tested PLC are
mainly used. With the use of PCR-LA-500 generators, a perfectly sinusoidal waveform of
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the supply voltage was defined and the first cycle of observation of the operation of the
tested PLC system was performed. The results of spectral analysis for the considered case
of PRIME PLC system operation in scenario 1 (pure sinusoid supply voltage) without loads
are shown in Figure 7. Figure 7a. presents voltage in the point of the equipment connection,
which is also the point of energy meter connection with PRIME PLC receiver (denoted
in figures as line voltage “uL”). The only impact on the primary voltage distortion, i.e.,
before the PLC communication is switched on, are the currents of the power supplies of
the concentrator and the power supplies of the systems and the meter displays. It should
be noted that the power supply itself is not an ideal appliance. According to the technical
specification, the error of the forced waveform could be up to 0.3%. Figure 7b presents the
time-varying nature of the PRIME PLC communication during 20 s of observation. The
figure was obtained using a sliding 100 ms window of DFT analysis using grouping in the
200 Hz band in 100 Hz central frequency. It can be visible that the investigated technology
uses several packages of broadband signal in the range of 42–89 kHz. In order to identify
details of the communication signal and the frequency spectrum of the reference analysis
(pure sinusoid supply voltage and no load), the maximum and minimum spectra from the
200 local spectra (20 s of observation with 100 ms window) have been selected. Figure 7c
identifies spectra representing voltage, with and without PRIME PLC communication.
As shown in Figure 7c, a supply voltage spectrum in investigated cases is characterised
by a practically constant value (grey colour in the diagram) not exceeding 60 dBμV with
narrow-band components of higher frequencies. This waveform was obtained under the
conditions of supplying the system with a nominal voltage of 400 V, 50 Hz, THDU ≈ 0%.
This characteristic can be treated as a background for the transmission system (noise). The
green line in Figure 7c represents the non-intentional emission limit values, according to
EN 50065 [3]. It can be noted that using the proposed laboratory setup, it is possible to
obtain conditions representing the permissible range of non-intentional emission in the
public grid. The black line in Figure 7c represents the identified spectrum of intentional
emission introduced by PRIME PLC transmission. From the graph, the following PLC
transmission parameters in the 42–89 kHz band can be identified:

• Local maximum of the non-intentional emission level (noise, background):
Nmax = 65.72 dBμV.

• The intentional transmission signal level related to Nmax: S(Nmax) = 87.51 dBμV.
• Local minimum signal-to-noise ratio: SNRlocal = 21.79 dB.
• Signal-to-noise ratio in the full transmission band: SNRband = 31.21 dB.

Such conditions guarantee the correct operation of the PRIME PLC system in the
42–89 kHz band, which has been confirmed by the observation of meter-concentrator
communication PLC statistics. Communication statistics have been also checked during a
continuous system operation for 2 h. The correct transmission between the concentrator
and the energy meters was confirmed.
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a) b)
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Figure 7. Case 1: Results of the analysis of PRIME PLC system operation without loads at pure sinusoidal supply voltage
(reference case); (a) supply voltage waveform; (b) time-frequency representation in the range 2–150 kHz band using 100 ms
window during the 20 s observation; (c) comparison of the spectrum of the corresponding PRIME PLC transmission (black)
and the spectrum of the voltage in the connection point of the load and energy meter (grey) with relation to the normative
curves (uL—line voltage in the point of the equipment connection, which is also the point of energy meter connection with
PRIME PLC).

4.2. Case 2 (Supply Voltage Scenario 1, Load Condition 1): Operation of the Tested PRIME PLC
System with LED Light Sources during Sinusoidal Supply Voltage

The measurements were then repeated for the condition when the sinusoidal voltage
supplied the LED light sources. Figure 8 represents: (a) investigated voltage, (b) time-
frequency plane of 20 s observation of the transmission including non-intentional com-
ponent, (c) comparison of the spectrum of the transmission and non-intentional emission
signals (noise, background for the transmission). In comparison to the no-load condition,
the spectrum of voltage measured in the connection point of the LED and the energy
meter is characterised by an additional narrowband non-intentional component around
60–80 kHz. However, the magnitude of this component did not affect the transmission
signal. Details of the characteristic parameters of the spectrum component in the PRIME
PLC transmission band 42–89 kHz are as follows:

• Local maximum of the non-intentional emission level (noise, background):
Nmax = 75.63 dBμV.

• The intentional transmission signal level related to Nmax: S(Nmax) = 92.67 dBμV.
• Local minimum signal-to-noise ratio: SNRlocal = 17.04 dB.
• Signal-to-noise ratio in the full transmission band: SNRband = 30.63 dB.
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Figure 8. Case 2: results of the analysis of PRIME PLC system operation with LED light sources
at pure sinusoidal voltage supply; (a) supply voltage waveform; (b) time-frequency representation
in the range 2–150 kHz using 100 ms window during the 20 s observation; (c) comparison of the
spectrum of the corresponding PRIME PLC transmission (black) and the spectrum of the voltage in
the connection point of the load and energy meter (grey) with the relation to the normative curves
(uL—line voltage in the point of the equipment connection, which is also the point of energy meter
connection with PRIME PLC).

Communication statistics have been also simultaneously checked. During a continu-
ous system operation for 2 h, correct transmission between the concentrator and the energy
meters was confirmed.

• Statistics of the connection in the presented case are expressed by:
• Total number of the connections: 53 (including 44 successful and 9 failed connections).
• Duration of failed connections in one hour: 2 s.

4.3. Case 3 (Supply Voltage Scenario 2, Load Condition 1): Operation of the Tested PRIME PLC
System with LED Light Sources during Distorted Supply Voltage Referring to Permissible Limits
for Public Grid EN 50160

The tests presented in the previous section have been repeated under operating
conditions with a distorted supply voltage with the maximum harmonic content allowed
by EN 50160:2015 [3] (see Table 2). The supply voltage waveform distortion was achieved
using the programmable AC source and authorised software for harmonic superposition.
The created waveform of the distorted supply voltage is illustrated in Figure 9a. The
waveform is characterised by the total harmonic distortion index equals to 11.62%.
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Table 2. The magnitude of particular harmonics of the supply voltage according to the permissible values of EN 50160:2015 [3].

Odd Harmonics Even Harmonics

Undividable by 3 Dividable by 3

Order Amplitude Order Amplitude Order Amplitude

5 6.0% 3 5.0% 2 2.0%
7 5.0% 9 1.5% 4 1.0%

11 3.5% 15 0.5% 6 . . . 24 0.5%
13 3.0% 21 0.5% >24 0.5%
17 2.0% >21 0.5%
19 1.5%
23 1.5%
25 1.5%

>25 1%

a) b)

c)

Figure 9. Case 3: results of the analysis of PRIME PLC system operation with LED light sources at distorted supply voltage
referring to permissible limits for public grid defined in EN 50160:2015 [3]; (a) supply voltage waveform; (b) time-frequency
representation in the range 2–150 kHz using 100 ms window during the 20 s observation; (c) comparison of the spectrum of
the corresponding PRIME PLC transmission (black) and the spectrum of the voltage in the connection point of the load
(grey) with the relation to the normative curves (uL—line voltage in the point of the equipment connection, which is also
the point of energy meter connection with PRIME PLC).

Spectrum analysis using 200 of 100 ms windows (Figure 9b) allowed identifying the
characteristic spectra of non-intentional emission and PRIME PLC transmission. Observing
Figure 9c it can be concluded that as it results from the distorted voltage supply waveform
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the voltage spectrum of the non-intentional emission in the connection point of the load
and energy meter resulting from the distorted voltage supply waveform is higher than in
the case of operation under reference conditions (sinusoidal rated voltage). From the graph
in Figure 9c, one can read the following signal parameters in the point of the 42–89 kHz
transmission band are expressed by:

• Local maximum of the non-intentional emission level (noise, background):
Nmax = 77.08 dBμV.

• The intentional transmission signal level related to Nmax: S(Nmax) = 93.55 dBμV.
• Local minimum signal-to-noise ratio: SNRlocal = 16.47 dB.
• Signal-to-noise ratio in the full transmission band: SNRband = 23.57 dB.

The SNR value in the PRIME PLC communication band proved to be sufficient for
the transmission of signals in the majority of trials to be effective, as evidenced by the PLC
system statistics. However, going into the details of the statistics it has to be emphasized
that in order protect against the potential loss of the transmission the investigated PRIME
PLC system increased the number of the connection two times in comparison to reference
conditions. The magnitude of the transmission signal was also adapted to worse connection
conditions and increased from 90 dBμV (reference condition) to 95–97 dBμV.

Statistics of the connection in the presented case are expressed by:

• Total number of the connections: 103 (including 83 successful and 20 failed connec-
tions).

• Duration of failed connections in one hour: 187 s.

4.4. Case 4 (Supply Voltage Scenario 4, Load Condition 1) Operation of the Tested PRIME PLC
System with LED Light Sources during Distorted Supply Voltage Referring to Immunity
Test Limits

The final scenario of the supply voltage distortion represents harmonic contribution
used in low-frequency immunity tests, according to IEC 61000-4-13 [30] addressed to the
equipment of the third class of the immunity. Details of the harmonic contents are presented
in Table 3. The distorted supply voltage waveform obtained using the programmable
source is depicted in Figure 10a. The waveform is characterised by the total harmonic
distortion index equals 25.69%. This scenario can be treated as a case that exceeds the
normal operating condition of the equipment significantly.

Table 3. The magnitude of particular harmonics of the supply voltage used in low-frequency immu-
nity tests according to IEC 61000-4-13 [30] addressed to the equipment of third class of the immunity.

The Harmonic Order
h = 3n + 1

Class 3 The Harmonic Order
h = 3n

Class 3

Test Levels in %U1 Test Levels in %U1

5 12 3 9
7 10 9 4

11 7 15 3
13 7 21 2
17 6 27 2
19 6 33 2
23 6 39 2
25 6
29 5
31 3
35 3
37 3
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a) b)

c)

Figure 10. Case 4: results of the analysis of PRIME PLC system operation with LED light sources at distorted supply
voltage referring to permissible limits for low-frequency immunity tests defined in IEC 61000-4-13 [30]; (a) supply voltage
waveform; (b) time-frequency representation in the range 2–150 kHz using 100 ms window during the 20 s observation;
(c) comparison of the spectrum of the corresponding PRIME PLC transmission (black) and the spectrum of the voltage
in the connection point of the load (grey) with the relation to the normative curves (uL—line voltage in the point of the
equipment connection, which is also the point of energy meter connection with PRIME PLC).

In contrast to the previously described scenarios, Figure 10b shows a significant
impact of the distorted supply voltage on the non-intentional emission at the point of the
connection of the LED and energy meter. The characteristic time packages of the broadband
transmission signal in the range 42–89 kHz are not recognized now. It can be generally
concluded that the non-intentional emission “covered” the intentional transmission signal.
A comparison of the characteristic spectra of the intentional and non-intentional emission
is presented in Figure 10c. Following signal parameters in the point of the 42–89 kHz
transmission band can be identified as:

• Local maximum of the non-intentional emission level (noise, background):
Nmax = 89.82 dBμV.

• The intentional transmission signal level related to Nmax: S(Nmax) = 92.96 dBμV.
• Local minimum signal-to-noise ratio: SNRlocal = 3.14 dB.
• Signal-to-noise ratio in the full transmission band: SNRband = 7.61 dB.

In point of the transmission statistics, the transmission was effective in the majority of
trials. However, similar to the previous case, when the distorted supply voltage referring
to permissible levels of harmonics in a public grid was considered, using supply waveform
distortion basing on IEC 61000-4-13 kept increasing number of the connection between
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concentrator and energy meters. The maximum time of failed connection extends the
acceptable 180 s in one hour.

Statistics of the connection in the presented case are expressed by:

• Total number of the connections: 106 (including 86 successful and 20 failed connections).
• Duration of failed connections in one hour: 371 s.

4.5. Comparative Analysis: Operation of the Tested PRIME PLC System under the Different
Scenario of Supply Voltage Distortion and Variant Types of Loads

Previously presented results described in detail cases with LED light sources and
consequently increased level of supply voltage distortion. The presented results aimed to
express the methodology of the investigation with special consideration of the identification
and analysis of the characteristic spectra of voltage in the point of the connection of the load
and energy meter. As already mentioned, the loads responsible for the majority of data
transmission interference in systems based on PLC transmission are LED and CFL light
sources and induction motors powered by a pulse width modulation (PWM) frequency
inverter. Therefore, in order to assess the impact of the power supply voltage distortion
on the operation of the tested PRIME PLC system, with the simultaneous presence of
emissions of these loads, extended investigations were performed using several cases
formulated as mixtures of the different scenario of supply voltage distortion and variant
types of load. It resulted in ten investigation cases for deliberate comparative analysis:

• No-load and sinusoidal supply voltage (reference condition)—1 case.
• LED light sources (sinusoidal, EN 50160, IEC 61000 4-13)—3 cases.
• CFL light sources (sinusoidal, EN 50160, IEC 61000 4-13)—3 cases.
• Induction motor powered by PWM (sinusoidal, EN 50160, IEC 61000 4-13)—3 cases.

Spectral analysis in the range of 2–150 kHz was carried out for the mentioned ten in-
vestigation cases. Figure 11 presents spectra of the investigated voltage in the point of the
connection of the load and energy meter with PRIME PLC communication for: (a) LED, (b)
CFL, and (c) induction motor with PWM converter, respectively. For better representation,
every figure consists of margin characteristic spectra reflecting the background of the trans-
mission obtained for the sinusoidal supply and no-load denoted as reference condition (grey)
as well as spectrum of the signal with PRIME PLC transmission (black). The next three curves
express the investigated voltage spectra for the consequently deteriorating supply voltage
condition (brown—sinusoidal, yellow—EN 50160, orange—IEC 61000-4-13).

The first comment to the obtained results presented in Figure 11 might be addressed to
the comparison of the non-intentional emission of the investigated loads for the sinusoidal
supply voltage (brown) and normative curves representing emission in a power grid. It
can be noticed that, for normative supply conditions, the spectra differ significantly and
are characterised by different frequency components in the observed range 2–150 kHz.
Moreover, temporarily the obtained spectra exceed the curves representing the normative
level of non-intentional emission in the public grid defined in IEC 61000-3-8 [4] adopted in
EN 50065:2012 [2] (green normative curve).

The second comment might be addressed to the influence of the distorted voltage
condition on non-intentional emission in the range 2–150 kHz. As it was shown in Figure 11,
increasing the level of the contribution of the low-frequency component 0–2 kHz in the
supply voltage affected the non-intentional emission in the observed range 2–150 kHz in
the connection point of the loads and energy meter with PRIME PLC transmission (yellow
and orange lines). For the margin condition representing low-frequency contribution used
in the immunity test, according to IEC 61000-4-13, the investigated spectra were very close
to the intentional transmission signal of the PRIME PLC system (black).
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a)

b)

c)

Figure 11. Summary: spectra of the voltage in the connection point of the load and energy meter for
mixture cases representing results of the analysis of PRIME PLC system operation with (a) LED; (b)
CFL; and (c) induction motor with PWM converter; under the different contribution of low-frequency
distortion in the supply voltage (pure sinusoid (brown), EN 50160:2015 [3] (yellow), IEC 61000-4-
13 [30] (orange)) with relation to no-load condition (grey) and PRIME transmission (black) (uL—line
voltage in the point of the equipment connection, which is also the point of energy meter connection
with PRIME PLC).
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Details of the representative parameters of the transmission signal and the non-
intentional emission in the transmission band 42–89 kHz of the investigated PRIME PLC
system were collected in Table 4. It can be noticed that the condition of the transmission
was consequently worse when the distortion of the supply voltage was increased.

Table 4. Characteristic parameters of the signal in the transmission band 42–89 kHz of PRIME PLC during the different
scenarios of supply voltage distortion and variant types of loads.

Sinusoidal Supply Voltage No-Load LED CFL
Induction Motor

with PWM

S(Nmax) (dBμV) 87.51 92.67 94.09 93.43
Nmax (dBμV) 65.72 75.63 73.47 83.32

SNRlocal (dB) 21.79 17.04 20.61 10.11

Psignal (dB) −31.22 −23.63 −25.37 −24.38
Pnoise (dB) −62.42 −54.26 −51.68 −43.35

SNRband (dB) 31.21 30.63 26.31 18.97

Distorted Supply Voltage
EN 50160 (Table 2)

No-Load LED CFL
Induction Motor

with PWM

S(Nmax) (dBμV) 87.51 93.55 92.46 92.92
Nmax (dBμV) 65.72 77.08 78.12 81.22

SNRlocal (dB) 21.79 16.47 14.35 11.70

Psignal (dB) −31.22 −22.84 −23.53 −23.99
Pnoise (dB) −62.42 −46.41 −46.55 −42.42

SNRband (dB) 31.21 23.57 23.02 18.43

Distorted Supply Voltage
IEC 61000-4-13 Class 3 (Table 3)

No-Load LED CFL
Induction Motor

with PWM

S(Nmax) (dBμV) 87.51 92.96 91.80 91.11
Nmax (dBμV) 65.72 89.82 88.86 91.90

SNRlocal (dB) 21.79 3.14 2.94 −0.79

Psignal (dB) −31.22 −24.92 −24.48 −29.45
Pnoise (dB) −62.42 −32.53 −34.22 −31.94

SNRband (dB) 31.21 7.61 9.73 2.49

Nmax—local maximum magnitude of the frequency component of the background signal; S(Nmax)—local magnitude of the frequency
component of the transmission signal related to Nmax; SNRlocal—signal-to-noise ratio derived on the basis of local values of S(Nmax) and
Nmax; Psignal—power of the transmission signal in the transmission band; Pnoise—power of the background signal (noise) in the transmission
band; SNRband—signal-to-noise ration derived on the basis of Psignal and Pnoise.

The impact of the supply voltage distortion on the signal-to-noise ratio (SNR) in the
transmission band 42–89 kHz of the investigated PRIME PLC system is presented in Table 4
and illustrated in Figure 12. In particular:

• With LED load the SNR coefficient decreased from 30.06 dB (SNRband)/17.04 dB
(SNRlocal) for the sinusoidal normal condition to 7.61 dB(SNRband)/3.14 dB (SNRlocal)
for margin distorted condition, which made PLC transmission more difficult;

• With CFL load the SNR coefficient decreased from 26.31 dB (SNRband)/20.61 dB
(SNRlocal) for the sinusoidal normal condition to 9.73 dB (SNRband)/2.94 dB (SNRlocal)
for margin distorted condition, which made PLC transmission more difficult;

• With induction motor powered by PWM converter, the SNR coefficient decreased
from 18.97 dB (SNRband)/10.11 dB (SNRlocal) for the sinusoidal normal condition to
2.49 dB (SNRband)/−0.79dB (SNRlocal) for margin distorted condition, which made
PLC transmissions impossible.
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Figure 12. Impact of the supply voltage distortion grade on the signal to noise ratio (SNR) in the
transmission band 42–89 kHz of the investigated PRIME PLC system.

Direct investigation of a bit error rate (BER) was not performed in the presented study.
However, based on [44,45] it can be roughly estimated that for the achieved range of SNR
reduction from 30.63 dB to 2.94 dB possible increase of BER could be in the range from
10−5 to 10−1.

Details of the connections statistics in the investigated cases are collected in Table 5. It
can be generally noticed that increasing the level of the supply voltage distortion resulted
in increasing the total number of the attempted connections as well as a long duration of
the failed connections during one hour. Figure 13 depicts the impact of the supply voltage
distortion on the duration of the failed connections in one hour of the investigated PRIME
PLC system concerning the different types of the investigated equipment. A prominent
case is represented by waveform distortion used in the immunity test of the equipment.
This case indicates the duration of the failed connections in one hour longer than level
180 s specified by the producer as a margin condition for proper connection. In particular:

• With LED load the number of attempted connections increased two times and the
duration of failed connections increased from 2 s to 371 s when the distortion of the
supply voltage was increasing;

• With CFL load the number of attempted connections were relatively higher than in the
case of LED load and the duration of failed connections increased from 186 s to 366 s;

• With induction motor powered by PWM converter the duration of the failed connec-
tions obtained the highest value of 551 s noticed under the distorted supply condition.
Additionally, in the case of the margin-investigated supply voltage distortion, the
PLC system was not able to retry the connections and the number of the attempted
connection was relatively small.
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Table 5. The statistics of the transmission of the investigated PRIME PLC during the different
scenarios of supply voltage distortion and variant types of loads (2 h continuous work).

Sinusoidal Supply Voltage LED CFL
Induction Motor

with PWM

total number of
attempted connections 53 95 110

number of successful connections 44 76 90
number of failed connections 9 19 20

duration of failed connections in one
hour (s) 2 186 186

Distorted supply voltage
EN 50160 (Table 2) LED CFL Induction motor with

PWM

total number of connections 103 54 93
number of successful connections 83 44 83

number of failed connections 20 10 10
duration of failed connections in one

hour (s) 187 187 551

Distorted supply voltage
IEC 61000-4-13 Class 3 (Table 3) LED CFL Induction motor with

PWM

total number of connections 106 104 28
number of successful connections 80 84 24

number of failed connections 20 20 4
duration of failed connections in one

hour (s) 371 366 192
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Figure 13. Impact of the supply voltage distortion grade on the duration of the failed connections in
one hour of the investigated PRIME PLC system.

5. Discussion

Taking into account the results of the research presented in this paper, it can be stated
that the harmonic content of the supply voltage can be considered as one of the origins
of the increasing level of supraharmonics non-intentional emission. As it was shown in
the paper, successively increased deterioration grade of the supply voltage waveform,
representing respectively harmonic content of permissible level defined for the public grid
as well as for the immunity test, had a direct influence on non-intentional emission in the
range 2–150 kHz, that in consequence affected the transmission of the investigated PRIME
PLC system.
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The obtained results allow us to draw several conclusions, namely:

• For all investigated loads (CFL, LED, the motor with PWM) it was observed that
increasing the content of higher harmonics in the supply voltage from the sinusoidal
condition, by the waveform distortion representing permissible content of harmonic
in a public grid, to the waveform distortion defined in the immunity test of the equip-
ment, resulted in a higher level of non-intentional emission in the range 2–150 kHz.
As a consequence, the SNR derived from the local maximum magnitude of the back-
ground signal and associated with it the local magnitude of the transmission signal
of the investigated PRIME PLC system was consistently decreasing, from 17.04 dB to
3.14 dB (for LED), from 20.61 dB to 2.94 dB (for CFL) and from 10.11 dB to −0.79 dB
(for the motor with PWM). The SNR calculated on the basis of power of the transmis-
sion signal and power of the background signal in the transmission band was also
decreasing, from 30.06 dB to 7.61 dB (for LED), from 26.31 dB to 9.73 dB (for CFL), and
from 18.97 dB to 2.49 dB (for the motor with PWM), respectively.

• An indirect result of the supply voltage distortion is an increasing number of the
connections activated by the investigated PLC system in order to prevent loss of the
connection. However, in case of a high level of supply voltage distortions, the duration
of the failed connections increased significantly. The duration of failed connections
decreased from 2 s to 371 s for the LED load, and from 186 s to 366 s for the CFL load.
The highest value of the duration of failed connections, 551 s, was achieved in the case
of the induction motor powered by PWM.

• The scenarios of the supply voltage distortion used in the investigation represent a
relatively high level of deterioration (direct sum of harmonics permissible harmonic
for public grid is represented by THD equals 11.62%; voltage distortion used in the
immunity test equipment of the third class of immunity is represented by THD equals
25.69%). However, the formulated relation between the condition of the supply voltage
and non-intentional emission suggests extending the discussion about the condition of
the tests of non-intentional emissions, which currently are performed under sinusoidal
conditions. A proposition for an extended test using deteriorated supply voltage,
referring to the permissible level of THD in a low-voltage public network, gradually
increasing from a few percentage points to 8%, can be considered.

• The proposition of extended testing of non-intentional emissions under a distorted
supply voltage might also be valuable for a more effective filter specification and
selection for particular power line communication technologies.
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Abstract: The integration of virtual power plants (VPP) has become more popular. Thus, research on
VPP for different issues is highly desirable. This article addresses power quality issues. The presented
investigation is based on multipoint, synchronic measurements obtained from five points that are
related to the VPP. This article provides a proposition and discussion of using one global index in
place of the classical power quality (PQ) parameters. Furthermore, in the article, one new global
power quality index was proposed. Then the PQ measurements, as well as global indexes, were
used to prepare input databases for cluster analysis. The mentioned cluster analysis aimed to
detect the short-term working conditions of VPP that were specific from the point of view of power
quality. To realize this the hierarchical clustering using the Ward algorithm was realized. The article
also presents the application of the cubic clustering criterion to support cluster analysis. Then the
assessment of the obtained condition was realized using the global index to assure the general
information of the cause of its occurrence. Furthermore, the article noticed that the application of
the global index, assured reduction of database size to around 74%, without losing the features of
the data.

Keywords: virtual power plant; power quality; data mining; clustering; distributed energy resources;
energy storage systems; short term conditions

1. Introduction

The concept of renewable energy sources (RES) and energy storage systems (ESS)
integration into virtual power plants (VPP) includes different areas. This investigation
concerns power quality (PQ) and data mining (DM) issues in VPP.

The article [1] is concerned with standard IEC 61850. It proposed an extension to this
standard as a step to enhance the interaction between the controller of RESs and VPPs.
As one of the elements, the power quality recorders’ issues were included. The demands
for them in point of IEC 61850 are discussed. Finally, the proposed methodology was
verified in the virtual power plant that consists of HPP, PV, and wind power plant as
well as storage systems. The indicated VPP operates on a medium voltage (MV) level.
In Pudjianto et al. [2], the virtual power plant is treated as an instrument to enable a
cost efficient integration of RES with the present power systems. The article includes the
performance analysis of a VPP system from the point of view of different indicators such
as energy efficiency, power quality, and security. The analyzed case consists of fuel cells, a
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wind microturbine PV system, a fly wheel, a combined heat and power plant, and a storage
system. Caldon et al. [3] propose the applicable framework for harmonizing operations of
different VPP units. The authors indicated that decisions and profits although complying
with power quality requirements and real network constraints must be a significant part of
VPP operation strategies. Zhang et al. [4] considered the coordinated operation of VPPs.
The bi objective dispatch model was applied for the performance optimization of multi
energy VPP in terms of both economic and power quality issues. The article concerned
both simulations based on a 118-node IEEE test system and a real case from Hongfeng
Eco-town in China. Gong et al. [5] proposed the optimization issues concerning VPP
management strategies. The customers’ satisfaction, system stability, and PQ were used
together with the economic objective to formulate a multi-objective optimization problem.
The fuzzy multiple objective optimizations were applied to solve optimization problems.
The proposed approach was verified in a test system. Beguin et al. [6] presented simulations
for an islanded grid model of the virtual power plant. The VPP integrates a 0.2 GW
wind power plant, a 0.1 GW PV power plant, and a 0.25 GW pumped storage system.
The outcomes of the research were control strategies of the storage plant. The control
strategies were investigated to highlight VPP on PQ.

Another element of the investigation is using data mining (DM) techniques to obtain
knowledge from dataset. In Ref. [7], one of the DM techniques available is cluster analysis
(CA). The current research connecting CA and VPP are as follows. Luo et al. [8] proposed
demand response schemes based on data mining for electricity trading between VPPs and
their participants. Participants’ bid offers were used to categorize them using ordering
points to identify the clustering structure (OPTICS) algorithm. Yi et al. [9] presented
multi time scale scheduling for VPP. The scheduling contains both a day ahead bidding
and real-time operations. The proposed models were based on the deferrable loads’
aggregation connected with the k-mean cluster analysis. The proposed strategy enables
efficient management of massive deferrable loads. Then it results in a reduction of the
energy management complexity, and increases the general economics. This approach
seems promising for s efficient scheduling of VPPs. Kong et al. [10] presented the robust
stochastic optimal dispatching approach to solve scheduling issues. K-medoids cluster
analysis was used to define typical scenarios of different units, that were integrated into
VPP. Ai et al. [11] proposed a VPP load curve cluster analysis approach. It uses the
principal-component dimension-reduction analysis, aggregation level clustering, and fc-
means clustering. The principal component analysis is applied to determine different
loads, that are aggregated into a VPP. Then hierarchical aggregation and fc-means cluster
analysis was applied to divide all load output curves participating in the aggregation
process. The last step of the investigation was the analysis of clustering results to establish
an evaluation system. The article [12] proposes the methodology concerning distributed
energy sources management. It concerns resource scheduling, aggregation, as well as
remuneration. To realize the aggregation process, the k-means algorithm was proposed.
The calculations of the clusters optimum number were used to determine the best number
of demand response programs to be implemented by the VPP units. The research was based
on 20,000 consumers and 500 DG units. Then, in article [13], the proposed methodology
was extended to investigate other 2592 operation scenarios.

Under this investigation, a VPP that operates at both low voltage (LV) and medium
voltage (MV) distribution networks in Poland was selected. The investigated part of the
VPP consists of a 1250 kW hydropower plant (HPP) and associated 500 kWh battery energy
storage system (BESS) as well as low voltage loads. The investigation is concerned with
power quality issues in the selected part of the VPP. The PQ measurements were performed
synchronically in five measurement points of the VPP area. The measurement points
include the HPP, the BESS, the associated MV line, and two LV loads. The measurements
were conducted for 182 days: from 1 May 2020 to 28 October 2020. Therefore, they are
26 weeks long from the point of view of classical PQ assessment [14].
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The single parameter analysis of each measurement point for such a period of time
would be very time-consuming. Thus, the concept of the global index was introduced.
Such an approach, in the literature, is known under different names e.g., global power
quality index [15,16]; unified power quality index [17,18]; total power quality index [19,20];
or synthetic power quality index [21,22].

This article applied the ADI index proposed in [16], and the newly proposed power
quality pollution index (PQPI). Then both the classic PQ parameters and the global indexes
were used to define datasets for cluster analysis. Global indexes were applied to reduce the
size of the input database, without losing features of the PQ data. Then for those databases,
hierarchical clustering was performed. Cluster analysis aimed to detect short term specific
working conditions of the VPP from the point of power quality. As a tool to realize this, the
cubic clustering criterion was applied for results assessment of hierarchical cluster analysis
with the Ward algorithm for indicated databases. Finally, the application of PQPI was
presented to highlight the difference from the point of PQ level for clusters.

The contributions of this research are as follows:

• The source of the data was multipoint, synchronic, and long-term power quality
measurements, that were obtained from a real VPP.

• The global index approach for PQ issues was discussed, and a new index is proposed.
• The proposed input databases to cluster analysis are concerned with raw PQ data

and global indexes. Global indexes were proposed to reduce the size of the input
databases but the reduction has been realized while maintaining existing features of
the PQ data.

• The cubic clustering criterium for hierarchical cluster analysis results was used to de-
tect short-term working conditions of VPP, that were specific in point of power quality.

• The global index was used for comparative assessment between clusters.

To realize those contributions, the article is organized into five sections. In Section
2 the virtual power plant description, global index proposition, clustering methods, and
input databases are presented. Section 3 presents the results of specific working conditions
detection in view of power quality using hierarchical clustering. Section 4 presents a
discussion of the results. Section 5 concludes the article.

2. Methodology and Research Object Description

This section is based on four elements. The first element is a description of the
real VPP, that operates in Poland. This VPP became a source for long term, synchronic
power quality measurements. Then, the global index approach was discussed. Next the
long-term measurements and the global index were combined to obtain different datasets.
These datasets consisted of classic power quality parameters and global power quality
indexes. Then those datasets were used as an input for hierarchical clustering. The assess-
ment of cluster assignment for those measurement data was realized using cubic clustering
criterion (CCC). The CCC were applied to select the adequate number of clusters, that
will indicate short-term specific working conditions from a power quality point of view.
To summarise the proposed approach, the simplified methodology scheme was presented
in Figure 1.

 

Figure 1. Simplified methodology scheme.

2.1. Virtual Power Plant That Operates in Poland as a Source of Power Quality Measurements

This article deals with a real VPP that operates in Poland, in a region called Lower
Silesia. The virtual power plant consists of a fragment of the distribution network on both
medium voltage (MV) and low voltage (LV) [23]. The two substations 110/20 kV are used
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as points of connection to the 110 kV polish grid. However, under this investigation one
MV network was selected. The network fed from the 110/20 kV station is an overhead
cable network. The selected network has earth fault current compensation [24]. The main
distributed energy resources that are integrated into the virtual power plant are a 1.25 MW
HPP and a 0.5 MW battery ESS. Both are connected to a medium voltage level.

The scheme of the investigated fragment of the VPP is presented in Figure 1. The ana-
lyzed fragment consists of a 20 kV distribution network with a 1.25 MW hydropower plant
(HPP_MV) and an 0.5 MW battery ESS (ESS_MV). Those energy sources are connected with
the HV/MV substation by a 20 kV line (Line_MV). Additionally, representatives of low
voltage loads are indicated: LOAD1_LV and LOAD2_LV. LOAD1_LV is connected with
the indicated medium voltage line (LINE_MV). LOAD2_LV is connected with the node
of the HPP_MV and ESS_MV. This fragment of the VPP is monitored by power quality
recorders. Power quality recorders are indicated as “R”. The location of these recorders is
also included in Figure 2. The HPP_MV and ESS_MV are connected to one node and their
PQ recorders use the same voltage transformer. Thus, in this research, they are treated
as one point for the PQ level (HPP and ESS_MV) and another for the active power level
(HPP_MV and ESS_MV).

Figure 2. The virtual power plant with the power quality (PQ) recorders placements. Where: LINE_MV: medium voltage
line that connects the virtual power plant (VPP) to 110/20 substation; HPP_MW: 1.25 MW hydropower plant; ESS_MW:
0.5 MW electric energy storage; LOAD1_LV: low voltage load related with LINE_MV; LOAD2_LV: low voltage load related
with the hydropower plant (HPP) and ESS substation.

2.2. Global Power Quality Index

Recent research on power quality considers different areas. One of these areas is
a simplification of the assessment using global values. Thus this article is concerned
with the application of the global index-aggregated data index (ADI) [16], as well as the
proposition of a new power quality pollution index (PQPI). ADI consists of seven 10-
min PQ parameters–frequency (f), voltage (U), an envelope of voltage, short term flicker
severity (Pst), unbalance (ku2), total harmonic distortion in voltage (THDu), and maximum
harmonic distortion.
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However, it was decided to exclude frequency as a customization step of the index to
VPP issues as proposed in [16]. Thus, the ADI index corresponds to:

• voltage indicator,
• an envelope of voltage deviation obtained by the difference between the maximum

and minimum of 200-ms U values identified during the 10-min aggregation interval,
• short term flicker severity indicator,
• asymmetry indicator,
• total harmonic distortion in voltage indicator,
• a maximum of the 200-ms value of total harmonic distortion of voltage indicator,

identified in the 10-min aggregation interval [16].

The mentioned indicators are in response to a 10-min aggregation interval proposed
by standard IEC 61000-4-30 [25]. They use the mean value from three phase values to
calculate one as a representative. Those factors of ADI are based on the differences between
the measured 10-min data and the recommended limit as a division. The limits may be
taken differently and based on the object. For VPP that operates in the distribution network
standard EN 50,160 [26] was selected. The applied limits based on EN 50,160 [26] are:

• voltage—10% of the declared voltage,
• short term flicker severity—1.0,
• unbalance—2%,
• total harmonic distortion in voltage—8%.

ADI index responds to the voltage level as well as an envelope of voltage. The same
situation is with total harmonic distortion and maximum total harmonic distortion. So in
view of data features, they are similar. Thus, in this article, the power quality pollution
index (PQPI) is representative of the ADI factor but with the reduction of voltage and
harmonic distortion indicators. This reduction would retain the data features of those
parameters using the envelope of voltage and maximal THDu. Thus, PQPI includes
following indicators:

• voltage distortion that responds to the envelope of voltage,
• unbalance distortion that responds to the asymmetry of voltage,
• flicker distortion that responds to short term flicker severity,
• harmonic distortion that responds to maximal total harmonic distortion in voltage.

2.3. Input Databases Description

During the investigation, three different databases were analyzed. The data for each
parameter or indicator were used in a 10-min aggregation interval. Generally, the applied
variables represented classical PQ parameters, global indexes as well as the active power
level (P). The indicated databases are presented in Table 1.

Table 1. Description of input databases.

Database Parameters
Number of Variables for Each

Measurement Point That Describe
Every 10-Min Data

Database A
PQ parameters data + P: consisting of

classical PQ parameters and active
power levels

20

Database B ADI indicators + P: consists of ADI
components and active power level 7

Database C PQPI indicators + P: consists of PQPI
components and active power level 5
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Database A (PQ parameters + P) consists of classic power quality parameters and
active power level:

• 3 values of U,
• 3 values of 200-ms minimum values of U,
• 3 values of 200-ms maximum values of U,
• 3 values of Pst,
• 1 value of ku2,
• 3 values of THDu,
• 3 values of 200-ms maximum values of THDu,
• 1 value of active power level.

The database B (ADI + P) consists of ADI components and active power

• 1 value that represents U,
• 1 value that represents 200-ms minimum and maximum values of U,
• 1 value that represents Pst,
• 1 value that represents ku2,
• 1 value that represents to THDu
• 1 value that represents 200-ms maximum values of THDu,
• 1 value that active power level.

The third database (PQPI + P) consists of PQPI and active power:

• 1 value that represents 200-ms minimum and maximum values-an envelope of U,
• 1 value that represents Pst,
• 1 value that represents ku2,
• 1 value that represents 200-ms maximum values of THDu,
• 1 value that active power level.

To summarize the database construction a simplified scheme is presented in Figure 3.

PQ
DATABASES

Database A PQ parameters  
& active power level

20 input parameters 
for each measurement 

point

Database B ADI components 
& active power level

7 input parameters 
for each measurement 

point

Database C PQPI components
& active power level

5 input parameters
for each measurement 

point

Figure 3. The comparison between investigated databases for hierarchical clustering.

2.4. Hierarchical Clustering

Clustering is one of the data mining (DM) techniques, that aims to divide data into
groups that represent similar features [27]. Clustering may be realized in two approaches:
a hierarchical or a nonhierarchical [28].

The nonhierarchical algorithms aim toward assigning all observations to the earlier
known number of clusters [29]. The most commonly used methods are e.g., K-mean,
K-median, or expectation maximization [30].

The hierarchical methods constitute x classes of y observations. Hierarchical methods
are also realized by two approaches: agglomerative or divisive. In this research, the
agglomerative approach was selected. Generally, the agglomerative approach represents a
set of observations, when each piece of data is treated as a separate cluster during the first
step. Then, the data are connected into new clusters until one single cluster is established.
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This single cluster contains all the data [31]. The agglomerative methods to obtain clusters
are single linkage, complete linkage, average linkage, weighted pair-group average linkage,
unweighted pair-group centroid linkage, and the Ward method [31,32].

In this article, hierarchical clustering was selected. It determines if the connection is
better realized by a single data point or by a group of similar data (achieved in the previous
agglomeration) to get a final classification. In this article hierarchical clustering is realized
using the Ward algorithm. Ward algorithm cluster analysis is carried out to connect data
concentrated in an average value until the data has a similar value (range). The hierarchical
CA algorithm, that uses the Ward method of minimal variance, is based on six steps [31,33].

• step 1: Initiate an agglomeration clustering -> divide into x clusters from x data ->
calculate the distance between each pair of clusters -> create symmetrical Dis matrix,
that consists of distances.

• step 2: find the one pair of clusters that has the smallest squares sum of the distances
between adequate object and the related cluster center of the object.

• step 3: create the new cluster, that connects those indicated clusters.
• step 4: update the matrix Dis with the distance between a new cluster and other clusters.
• step 5: check if the number of clusters is equal to 1? YES-go to step 6; NO–back to step 2.
• step 6: final classification when all data are connected to one cluster.

In the Ward method, the indicated “finding pair of clusters which have the smallest
sum of squares distance between the object and the cluster center to which this object
belongs” is obtained using Equation (1) [31,33].

Disik =
ni + nk

ni + nj + nk
∗disik +

nj + nk

ni + nj + nk
∗disjk +

−nk
ni + nj + nk

∗disij, (1)

where: [31,33]

Dispr: the distance of a new cluster to cluster of number “k”,
k: the proceed numbers of cluster from “i” to “j”,
disik: the distance of a primary cluster “i” from cluster “k”,
disjk: the distance of a primary cluster “j” from cluster “k”,
disij: the common distance of primary clusters “i” and “j”,
n: number of a single object inside each object.

The big problem in cluster analysis, irrespective of the method, is to determine the
final number of clusters [34]. The solution in literature for the Ward method is the cubic
clustering criterion (CCC). This criterion is obtained by comparing an observed coefficient
of determination (R2) to the approximate expected R2. It is realized using an approximate
variance-stabilizing transformation [35]. The positive values of the cubic clustering criterion
inform us that the obtained coefficient of determination is greater than would be expected
if sampled from a uniform distribution and, therefore, indicate the possible presence of
clusters. The features of the cubic clustering criterion are [35]:

• Extremum of CCC for cluster number greater than two or three indicate good clustering.
• CCC can have several local extremums if the data have a hierarchical structure.
• If CCC values are negative for at least 2 clusters, the distribution is probably unimodal

or long tailed.
• Very negative values of the CCC (e.g., −30), could be caused by the outliers.

The last feature was a contribution to apply CCC criteria to detect short-term working
conditions of VPP that are specific (outliners) in view of PQ.

3. Hierarchical Clustering of Power Quality Measurement Obtained from the Virtual
Power Plant

In this section, the comparison between different databases was performed on the basis
of hierarchical clustering with the Ward algorithm. The assessment of cluster assignment
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was realized using the cubic clustering criterion. Then for the selected number of the cluster
and the PQ, comparison between clusters was performed using PQPI.

3.1. Comparison between Databases Using Cubic Clustering Criterion

The PQ measurement time was from 1 May 2020 to 29 October 2020. The analyzed
number of PQ points were five: Line_MV, HPP_MV, ESS_MV, Load1_LV, Load2_LV. How-
ever, due to the fact that the HPP_MV and ESS_MV PQ records were obtained from the
same voltage transformer they were treated as the same point (HPP and ESS_MV). The only
difference was the active power level. So, for the analysis of HPP and ESS_MV, there is one
more active power parameter than the number of measurement points. For the observed
time period, 26 weeks, there is an analysis of 26,208 single 10-min data points. However, the
coverage of data point is equal to 97.7% due to measurement device problems. Thus 25,069
10-min data points were accessible [24]. However, as a preprocessing of PQ data, the
voltage events connecting data were also excluded as suggested in [36]. Thus, the final
number of 10-min data points was 24,612.

Then, for such defined measurement dataset, the input databases for hierarchical clus-
tering were prepared. The database was a matrix that has 24,612 rows (10-min aggregated
data) and a different number of columns. The number of columns was connected with
the measurement points and the number of variables for each database (check Figure 2).
The size of each database set is as follows:

• Database A: matrix 24,612 × 81 consisting of 1,993,572 single cells,
• Database B: matrix 24,612 × 29 consisting of 713,748 single cells,
• Database C: matrix 24,612 × 21 consisting of 516,852 single cells.

The first aim was the verification of using global indexes (ADI and PQPI) in place of
classic PQ parameters. These global indexes aimed to minimize the size of the database
and retrain the features of data in point of power quality.

The investigated datasets concern long term measurements. During this measurement
time, the specific working conditions (like high/low harmonic content, high low voltage
level or asymmetry), are indicated. Such states are mainly, short. Thus, it may be treated as
an anomaly in view of the general assessment. The selection of such anomalies (specific
short-term working conditions) by analyzing every 10-min data of each PQ parameter
separately may be time-consuming. Thus, in this article the application of the cubic
clustering criterion (CCC) is proposed.

The CCC was used on the databases (A, B, C) for hierarchical clustering with the Ward
algorithm. Under the investigation, the minimum number of clusters was equal to two
and maximum was equal to ten. Ten, as the maximum value, was selected on the basis of
justification presented in e.g., [37] or [38]. The results were presented in Table 2.

Table 2. The results of the cubic clustering criterion for different databases.

Number of Clusters

Cubic Clustering Criterion

Database A
(PQ Parameters + P)

Database B
(ADI Indicators + P)

Database C
(PQPI Indicators + P)

2 −52.14 −41.34 −80.81
3 −81.65 −66.43 −84.94
4 −84.51 −71.51 −86.20
5 −78.08 −69.19 −77.45
6 −67.57 −64.51 −59.78
7 −67.47 −50.28 −40.24
8 −58.11 −35.86 −30.65
9 −57.84 −25.89 −19.91
10 −52.43 −15.95 −8.67

The results in point of CCC values were different for each database for different
clusters, but for each database the extremal value was indicated for a final number of
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clusters equal to 4. It means that this division assured clusters that represent data which are
very different from one another. Thus, four clusters were selected as the most appropriate
to detect the specific short-term working conditions for the investigated measurement.
Furthermore, as for all databases that indicated extremum for CCC the least numerous
input database was selected to further investigate (database C), which uses PQPI indicators
and an active power level.

3.2. Results of Hierarchical Clustering

As it was indicated in the previous subsection the optimal selection in view of the
size of the input database is those that consist of PQPI indicators and active power level
(database C). Thus, in this section, that database was used for hierarchical clustering with
the Ward algorithm.

The main result of the hierarchical clustering is a dendrogram. The dendrogram for
the selected database for 26 measurement weeks is presented in Figure 4. On the vertical
line, the connection distance between clusters is presented. On a horizontal line, each of
24,612 single 10-min data points is indicated.

Figure 4. Dendrogram of the hierarchical clustering.

As it was indicated in the previous subsection, division into four clusters has an
extremum value for cubic clustering criteria. Based on the dendrogram, it was indicated that
for four clusters one is with a small number of 10-min data. The numbers for each cluster
are presented and the cluster assignment in the time-domain is presented in Figure 5. It can
be observed that cluster 4 is a short-term condition that is represented by only 165 10-min
data points. Those 165 10-min data points represent around 0.7% of the measurement time.

Figure 5. Clustering results in the point of cluster size and time domain.
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3.3. Qualitative Assessment of Hierarchical Clustering Results Using the Global Index

In this subsection, the qualitative assessment for indicated clusters is performed.
The assessment is realized using PQPI. Thus, the comparison for voltage indicator (a),
unbalance indicator (b), flicker indicator (c), and harmonic distortion indicator (d) was
presented in Figure 6. The assessment goes towards obtaining knowledge about what
PQ parameters and for which measurement point there was a reason for indicating this
short-term working condition of VPP. Based on this comparison it may be concluded that
cluster 4 represents:

• a problem with voltage indicator in all measurement points. However, a relatively
higher value of the indicator is observed for LINE_MV and HPP and ESS_MV;

• a problem unbalance indicator for HPP and ESS_MV, LOAD1_LV, LOAD2_LV;
• a problem flicker indicator for LINE_MV.

(a) (b) 

 
(c) (d) 

Figure 6. The qualitative comparison between clusters for power quality pollution index (PQPI) indicators: (a) voltage
indicator; (b) unbalance indicator; (c) flicker indicator; (d) harmonic distortion indicator.

4. Discussion

This article is concerned with a virtual power plant that operates in Poland. The pre-
sented research is based on synchronic measurements from five PQ recorders. The PQ
measurements were performed at both medium and low voltage levels. The PQ data
consists of 182 days (26 weeks) (from 1 May 2020 to 28 October 2020). Thus, these data rep-
resent long term data during which different working conditions may occur. This dataset,
in work [24], was used to compare the working conditions that were defined a-priory.
The states were connected with HPP and ESS working condition, and level of active power.
Thus in this work, the conditions were obtained without any predefinition but based on
data features.
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Those long-term measurements were used as the input to define different PQ databases.
The proposed databases were based on classical PQ parameters, PQ global indices as well as
the level of active power. Database A represents classical PQ parameters and active power.
It concerns 20 variables for each measurement point. Database B uses the ADI components
separately and active power level. It concerns seven variables for each measurement point.
Database C consists of PQPI and active power level. It concerns five variables for each
measurement point. It is important to notice that both global indexes (ADI and PQPI) aim
to reduce the amount of data that are analyzed. However, this minimization should not
cause one to lose the data features.

The research aimed to detect short-term working conditions in view of power quality.
This task was realized using hierarchical clustering with the Ward algorithm. For those
three databases, the clustering was realized using the cubic clustering criterion to realize
the qualitative assessment of the clustering process. As it is known from the literature if
CCC has a negative value it may mean that clustered data has anomalies. For all databases,
the CCC was negative for final clusters equal to the range of 2 to 10. Additionally, the
extremum for each database was the same and equal to four clusters. Thus, for further
investigation, the database with the smallest number of variables (database C) was selected.
Furthermore, the final number of clusters was selected as four.

Then, for the indicated circumstances, the comparison between clusters for each mea-
surement point was performed. The PQPI indicators such as voltage indicator, unbalance
indicator, flicker indicator and harmonic distortion indicator was used. Based on a compar-
ison of the above mentioned parameters it was concluded that this short term condition
(anomaly) was connected with problems of voltage, unbalance, and flicker. The harmonic
distortion does not have a significant impact on this condition. It is very important to
notice that this short-term condition was not connected with the voltage event. All data
that contained voltage events were excluded during the preprocessing of measurements.

The appliances of PQPI index and hierarchical clustering indicated the short-term
condition and measurement points, for which it occurs. Thus, the general information
about the outcome in PQ problems was also indicated. However, using all this information,
it is impossible to define the reason for this condition. Thus, the proposed solution seems
essential as a first step of the investigation to define the time period of specific working
condition occurrence.

Furthermore, to generalize the discussion of the results, it is important to notice that:

• The investigation was realized in real VPP that operates in Poland, but it also may be
applied to other VPP, only if long term power quality data would be available.

• The investigation was based on four measurement points but it may be conducted also
for other numbers of points. The minimum number is one, and maximum is limited
to the computer computing capabilities.

• In the investigation the extremal value for CCC was for four clusters. However, if
the other measurement data would be applied to this methodology, another number
would be obtained. However, the most crucial aspect is to select the division when
CCC has an extremum. So, the results should be treated in view of proposition of the
methodology as well as investigation of the real case study.

• The proposed global index was directed only to selected voltage issues (voltage level,
flicker, unbalance and harmonic distortion) and active power level. However, there is
a possibility to add other parameters to the global index to make the division more
sensitive to other phenomes like current parameters or reactive power.

5. Conclusions

The article proposes the application of clustering to long term power quality data
obtained from a virtual power plant. The synchronic, multipoint measurements were used
as common input to prepare different databases. The databases were based on both classic
PQ parameters and global indexes as well as active power level. The selected PQ global
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indexes (ADI and PQPI) enabled reduction of the size of the input databases and retrain
the features of the PQ data.

The application of the global indexes for clustering the input dataset reduced the size
by around 74%. The results for 26 weeks clustering in view of cubic clustering criterion had
an extremum for the same number of clusters and indicated specific short-term working
conditions of the virtual power plant in view of PQ.

Additionally, using the proposed global index PQPI helped decide which measure-
ment points and which group of parameters had caused the specific working condition.
However, it is not possible to define the reason for such a situation. Thus, the single
parameter for a single measurement point assessment is still needed even though the time
period of this short condition is strictly defined. So, the application of global index and
hierarchical clustering may be treated as a first step for deeper analysis.
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Abstract: One of the recent trends that concern renewable energy sources and energy storage systems
is the concept of virtual power plants (VPP). The majority of research now focuses on analyzing case
studies of VPP in different issues. This article presents the investigation that is based on a real VPP.
That VPP operates in Poland and consists of hydropower plants (HPP), as well as energy storage
systems (ESS). For specific analysis, cluster analysis, as a representative technique of data mining,
was selected for power quality (PQ) issues. The used data represents 26 weeks of PQ multipoint
synchronic measurements for 5 related to VPP points. The investigation discusses different input
databases for cluster analysis. Moreover, as an extension to using classical PQ parameters as an
input, the application of the global index was proposed. This enables the reduction of the size of the
input database with maintaining the data features for cluster analysis. Moreover, the problem of the
optimal number of cluster selection is discussed. Finally, the assessment of clustering results was
performed to assess the VPP impact on PQ level.

Keywords: virtual power plant (VPP); cluster analysis (CA); power quality (PQ); global index;
distributed energy resources (DER); energy storage systems (ESS); power systems; smart grids

1. Introduction

Currently, in electrical power networks (EPN), the number of renewable energy
sources (RES) and energy storage systems (ESS) are scientifically increasing [1]. Thus,
different approaches that enable to control them are highly desirable [2,3]. Commonly
known are microgrids and virtual power plants (VPP) [4]. Generally, virtual power plants
are autonomous units, that are equipped with systems for effective power flow control.
VPPs consist of different units that are integrated with the distribution network. The used
elements are, e.g., generators, loads, as well as energy storage systems [5]. Thus, the current
literature analyzes the real cases of VPPs. The international examples are in, e.g., United
Kingdom [6], Denmark [7], Ireland [8], Greece [9], Germany [10], China [11], India [12],
Australia [13], and South Korea [14]. The range of VPP functioning is wide. Thus, there
is a possibility of indicating different research trends that concerns VPP, e.g., network
voltage control by renewable energy sources integrated [15–18], power flow control and
analysis [19–22], playing a role on the energy market [23–26], energy management in
a VPP [27–30], optimal active and reactive power scheduling [31–34], and ESS sizing,
localization, and management in VPP [35–38].
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One of the elements that concerns VPP is power quality (PQ) issues. Reference [39]
introduces the virtual power plant as vehicles to facilitate cost-efficient integration of dis-
tributed energy sources into the existing power system (PS). This research also includes a
demonstration of the application of the test system. The analysis of the system performance
concerns energy efficiency, power quality, and security. Reference [40] proposes the exten-
sions of the standard International Electrotechnical Commission (IEC) 61850 as a solution
to enhance the interaction between the virtual power plant controller and the distributed
energy resources. This research concerns the implementation of virtual power plant com-
munication and control architecture as a real case study. The presented case concerns
the power quality recorders issues and demands presented in IEC 61850. Reference [41]
presents virtual power plant management with the priority requirements optimized by the
compromised methods. The model of operation optimization of a VPP was based on fuzzy
multiple objective optimization problems. The indicated optimization problem concerns
the satisfaction of both customers and suppliers, system stability, power quality, as well
as the costs of operation limitations. The presented method was verified in a test system.
Reference [42] attempts to assure the applicable framework for harmonizing operations of
different units of the virtual power plant. The authors concluded that decisions and obtain-
ing profits, although complying with the required power quality levels and real network
constraints, are a crucial part of virtual power plant strategies. Reference [43] concerns
simulations when a virtual power plant is in islanded grid mode with a thermal power
plant for baseload. The presented virtual power plant consists of 0.2 GW wind power,
0.1 GW photovoltaic power, and ±0.25 GW pumped storage. The research results include
different control strategies of the storage plant to highlight the impact of a virtual power
plant on PQ. Reference [44] presents the coordinative operation problem of multi-energy
virtual power plants. The bi-objective dispatch model was proposed for the optimization
of the performance of a multi-energy virtual power plant in terms of economic issues and
power quality. The presented case study was based on Hongfeng Eco-town in China.

Additionally, literature from 2019 and 2020 also present recent applications of clus-
tering methods to virtual power plant issues. Reference [45] proposes the application
of a robust stochastic optimal dispatching method for solving the scheduling problem.
In this research, the K-medoids clustering is used to obtain typical scenes of different
units integrated into VPP. Reference [46] proposes the virtual power plant multi-timescale
scheduling that contains day-ahead bidding and real-time operation. The models are based
on the deferrable loads’ aggregation model with the k-mean clustering approach. The
introduced strategy helps to obtain efficient management of massive deferrable loads to
reduce the energy management complexity as well as to increase the general economics,
which seems a promising application in the virtual power plant economic scheduling.
Reference [47] presents a data-mining-driven incentive-based demand response scheme
to model electricity trading between a virtual power plant and its participants. In this
article, cluster analysis is used to divide consumers into different categories by their bid-
offers. The algorithm applied in this article was based on ordering points to identify the
clustering structure (OPTICS) algorithm. Reference [48] presents a virtual power plant
load curve cluster analysis approach based on principal-component dimension-reduced
analysis, aggregation level clustering, and fc-means clustering. The principal component
analysis method is used to define the specific different loads in the virtual power plant
aggregation. Then aggregation hierarchical clustering and fc-means clustering are used to
realize the division of all load output curves participating in the aggregation. As a result,
load curve clusters of the same class are obtained. Finally, the cluster analysis results are
analyzed to establish an evaluation system.

Also, the concept of “global/synthetic/unified/total” power quality indices are indi-
cated in the literature, such as total power quality index [49,50], synthetic power quality
index [51,52], unified power quality index [53,54], or global power quality index [55,56].
All of these approaches are aimed toward reducing the number of analyzing power quality
data. However, in the literature, there is a lack of research that uses the global indexes as
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an input to data-mining techniques to reduce the size of the input database. This investiga-
tion therefore verifies whether this approach is possible. The verification is based on real
long-term PQ data obtained from VPP.

This research concerns a case study of a VPP that operates in Poland. The analyzed
VPP is a part of both low-voltage (LV) and medium-voltage (MV) distribution networks.
The main units of the VPP are a hydropower plant (HPP), a photovoltaic system (PV),
and energy storage systems (ESS). This article aims to analyze a fragment of this virtual
power plant that consists of 1.25 MW HPP and associates 0.5 MW ESS as well as LV
loads. The presented research is based on PQ measurements. These measurements were
realized synchronically in five measurement points. The observed measurement points
are HPP, ESS, associated MV line, and two LV loads. The measurements were conducted
from 1 May to 28 October 2020. Thus, the measurement period of time was 26 weeks
(182 days). The analysis for full weeks is used as in classical PQ assessment [57]. From
such a big amount of data, different datasets may be prepared. Thus, in this article,
different databases were obtained. Those databases consist of classic PQ parameters as
well as an application of the global index. Then, these databases were used as an input to
data-mining algorithms. The selected algorithm was k-mean with Euclidean distance. A
comparison of the results and effectiveness was performed. Additionally, the solution for
defining the optimal number of clusters was performed using the v-fold cross-validation
test. Finally, the qualitative assessment of clustering results was presented to respond to
the different working conditions of VPP. All calculations were performed in Statistica 13
software (StatSoft Polska, Kraków, Poland).

To summarize the contributions of this article:

• The data that were used in this article were based on multipoint, synchronic, and
long-term measurement performed in real VPP.

• The different input databases in point of power quality were proposed. The databases
consisted of classic PQ parameters as well as global index values.

• The application of PQ global index enabled the reduction of the size of the input
database while maintaining a similar division of data.

• The article investigated different PQ datasets and proposed a solution to define the
optimal number of clusters selection.

• Application of CA enabled the definition of the different working conditions of the
VPP based on data features. Additionally, the assessment of these working conditions
was realized using the PQ global index.

To realize those contributions, the article is organized into 6 sections. In Section 2,
the clustering methods, global index proposition, and virtual power plant description
are presented. Section 3 presents the construction of different datasets and a comparison
between them. Section 4 presents the optimal number of cluster selection and a qualitative
assessment of the final classification. Section 5 is a discussion of the obtained results.
Section 6 presents the conclusions.

2. Methodology and Research Object Description

This section is based on three main elements of this article. In Section 2.1, the cluster
analysis algorithm is introduced as a representant of the data-mining technique. The
justification of the k-mean algorithm for long-term data is included. Also, methods for
obtaining the optimal number of clusters are presented. Then, the definition of the global
index is proposed. The global index is proposed to minimize the number of parameters
that represent power quality while retaining their features. Finally, the description of the
real virtual power plant is presented. That VPP was used as a source to obtain multipoint
synchronic power quality data.

2.1. Cluster Analysis

Cluster analysis (CA) is one of the data-mining techniques [58]. Generally, the aim
of cluster analysis is to divide data in the point of their features [59]. Clustering may be
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realized in a hierarchical or nonhierarchical approach. The hierarchical methods consti-
tute x classes of y observations. The nonhierarchical approach is based on assigning all
observations to the earlier known number of clusters. The non-hierarchical clustering is
not a tree as in the case of the hierarchical clustering. It assures the division into groups
of the data in order to maximize/minimize some evaluation criteria [60]. The nonhierar-
chical methods most used in the literature are based on, e.g., k-mean algorithm, k-median
algorithm, or expectation maximization (EM) algorithm [61,62]. In this paper, the authors
suggest using the nonhierarchical with the k-mean algorithm with Euclidean distance. The
Euclidean distance was selected because it is not sensitive to the changeability of a single
measurement [63]. It assures the general information about the data difference, especially
for multiparameter input [64].

The k-mean algorithm’s goal is to find the extremum of the objective function. The
k-mean algorithm function with Euclidean distance is defined as [65]:

J (U, M) =
m

∑
i=1

k

∑
j=1

uij ∗
√

∑
i
(xi − yi)

2, (1)

where:
J—objective function,
U—matrix of the object belonging to a cluster,
M—matrix in which a row vector represents the centroids of clusters,
i = 1,2,3, . . . ,m—number of objects,
j = 1,2,3 . . . ,k—number of classes (clusters),
uij—element indicating the fact of assignment of i-th object to the j-th class (cluster),
xi—vector of observations belonging to cluster x,
yi—vector of observations belonging to cluster y.
However, the main disadvantage is that for the nonhierarchical approach, there is

a need to define the final number of clusters for which data may be divided. There are
different approaches to realize this optimal number of cluster selection, e.g., an entropy-
based initialization method [66], gap statistic [67], u-control chart [68], or k-fold cross-
validation test [69]. In this research, the k-fold cross-validation test was selected. This type
of cross-validation is useful for the situation where there is no known test sample: The
user-specified ‘v’ value for v-fold cross-validation. Normally, the v is equal to 3. The v
value determines the number of random subsamples that are used for the learning sample.
Then, the tree of the specified size is computed v times. After each iteration, it leaves out
one of the subsamples from the computations. Then, these subsamples are used as a test
sample for cross-validation. The cross-validation cost is computed for each of the v test
samples that are then averaged to give the v-fold estimate of the cross-validation costs [69].
Then, on the basis of cross-validation cost, the optimal number of clusters is selected.

2.2. Global Power Quality Index

One of the current trends in PQ is using global indexes. Thus, in this article, there
is a proposition of using the synthetic (global) index. The selected index was called the
aggregated data index (ADI) [55,70]. The selected index consists of five classic 10 min PQ
parameters (frequency, voltage, flicker severity, asymmetry, harmonic distortion in voltage),
and two extremal (envelope of voltage deviation and maximum harmonic distortion).

However, it was decided to exclude frequency as a customization step of the index to
VPP issues. Thus, the index corresponds to:

• Voltage—U,
• An envelope of voltage deviation obtained by the difference between the maximum

and minimum of 200 millisecond U values identified during the 10 min aggregation
interval—ΔU,

• Short-term flicker severity—Pst,
• Asymmetry factor—ku2,
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• Total harmonic distortion in voltage—THDu,
• A maximum of the 200 millisecond value of THDu, identified in the 10 min aggregation

interval—THDumax [71].

Selected parameters correspond to the demands of the standard IEC 61000-4-30 [72].
Additionally, the mean value of three phase values is used as a representative. All factors
that are included in the ADI are based on the differences between the measured 10 min
aggregated power quality data and the recommended limits of the selected standard. In
this article, the European standard EN 50160 [73] was selected to obtain global values. The
applied limits based on EN 50160 [73] are presented in Table 1.

Table 1. Acceptable values base on standard EN 50160 [73] used for the global index.

Parameter Value

voltage 10% of declared voltage
short-term flicker severity 1.0

asymmetry 2%
total harmonic distortion in voltage 8%

2.3. Investigated VPP

The investigated VPP is based on a fragment of the distribution network in the Lower
Silesia region in Poland [32]. It is supplied by two substations, 110/20 kV. The mentioned
substations are connected to a 110 kV electrical power system of Poland [74]. However,
in this research, only one substation area was selected. The investigated 20 kV network
fed from the station is an overhead-cable network. The selected MV network fed from
the second station is mainly an urban cable network. This network has earth fault current
compensation. Connected distributed energy resources to the VPP are a 1.25 MW hydro
power plant and a 0.5 MW battery energy storage system. Those resources are connected
to a MV level.

The simplified scheme of the investigated fragment of the virtual power plant area is
presented in Figure 1. It consists of a 20 kV distribution network with 1.25 MW hydropower
plant and an 0.5 MW battery energy storage system (ESS) connected with the HV/MV
substation by MV line (1—MV). HPP and ESS are connected to the same node of the
network. Also, two additional low-voltage loads are indicated: 3—LV and 4—LV. 3—LV
is connected with indicated MV-associated lined. 4—LV is connected with the node of
the HPP and ESS. Power quality recorders are denoted as a “R” and are also presented in
Figure 1. Due to that, the hydro power plant and electric energy storage are connected to
one node and their PQ recorders use the same voltage transformer. In further research, they
are treated as one point indicated as 2 for PQ issues but the active power level is treated
separately as 2-HPP and 2-ESS.
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Figure 1. Investigated part of VPP with the placement of PQ recorders. Where: 1—MV: medium-
voltage line; 2HPP—MW: medium-voltage hydro power plant; 2EES—MW: medium-voltage electric
energy storage; 3—LV: low-voltage load related with MV line; 4—LV: low-voltage load related with
hydro power plant substation.

3. Power Quality Data as an Input to Cluster Analysis Techniques

In this section, the power quality data from VPP were used to prepare three different
input databases. The proposed databases consist of classical power quality measurement
and active power level as well as global power quality index, which was proposed in
Section 2.2. Then, in Section 3.2, the comparison of cluster analysis with the k-mean
algorithm and Euclidean distance was performed for those different input databases.

3.1. Input Databases Describtion

Under this investigation, three different databases were included. Each of the parame-
ters are represented as one value from a 10 min time interval. The indicated databases are:

• Database I—Raw PQ data + Pphase: consists of classical PQ parameters and active
power level for each phase separately. This database consists of 22 variables that
describe each 10 min data point.

• Database II—PQ Global Indicators + Psum: consists of ADI components and active
power level as a sum of each phase. This database consists of 7 variables that describe
each 10 min data point.

• Database III—Global PQ Index + Psum: consists of ADI and active power level as a
sum of each phase. This database consists of 2 variables that describe each 10 min
data point.

The first database (Raw PQ data + Pphase) consists of classic power quality parameters:

• Three phase values of voltage,
• Three phase values of 200 ms minimal values of voltage,
• Three phase values of 200 ms maximal values of voltage,
• Three phase values of short-term flicker severity,
• One value of voltage unbalance,
• Three phase values of total harmonic distortion in voltage,
• Three phase values of 200 ms maximal values of total harmonic distortion in voltage,
• Three phase values of active power level.

The second database (PQ Global Indicators + Psum) consists of ADI index components
and sum of active power from all phases:
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• One value that represents voltage,
• One value that represents 200 ms minimal and maximal values of voltage,
• One value that represents short-term flicker severity,
• One value that represents voltage unbalance,
• One value that represents total harmonic distortion in voltage,
• One value that represents 200 ms maximal values of total harmonic distortion in

voltage,
• One value that represents active power level: sum from three phases.

The third database (Global PQ Index + Psum) consists of ADI index and sum of active
power from all phases:

• One value that represents power quality: ADI,
• One value that represents active power level: sum from three phases.

To summarize database construction, the simplified scheme is presented in Figure 2.

INPUT 
DATABASES

Database I
Classic PQ parameters 

separatly & active power 
of each phase separatly

22 input parameters for 
each measurement point

Database II
ADI components 

separatly & sum of 
active power

7 input parameters for 
each measurement point

Database III ADI & sum active power 2 input parametersfor 
each measurement point

Figure 2. Simplified scheme of the proposed input databases.

3.2. Selection of Optimal Database—Results for 26-Week Measurements

In this section, the measurement from five PQ recorders localized as indicated in
Section 2.2 was used. The observed time was selected from 1 May to 29 October 2020,
which represents 26 weeks of the measurements. Thus, in point of PQ assessment, there
is an analysis of 26,208 single 10 min data points. However, for such a long period of
multipoint measurements, the coverage of data is equal to 97.7%, thus 25,069 data points
were used [71]. Also, as a preprocessing of PQ data, the data that come from the time
when a voltage event occurred were excluded, as suggested in Reference [62]. So, the final
number of 10 min data points was equal to 24,612.

Then, for such a defined measurement dataset, the input databases for cluster analysis
were prepared. The database was a matrix that has 24,612 rows and a different number of
columns. The number of columns was connected with five measurements and features of
the database (check Figure 2). The size of each database set is as follows:

• Dataset I: matrix 24,612 × 91, so concerns 2,421,692 single cells,
• Dataset II: matrix 24,612 × 29, so concerns 713,748 single cells,
• Dataset III: matrix 24,612 × 9, so concerns 221,508 single cells.

The next step of the investigation was to conduct a cluster analysis of the indicated
power quality measurement. The aim was to verify if it is possible to use global indicators in
place of classic PQ parameters to minimize the size of the dataset. As the main representant,
the k-mean algorithm with Euclidean distance was selected. The final number of clusters
was equal to 2. The results of this data-mining process in the time domain are presented in
Figure 3.
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Figure 3. Results of cluster analysis for different input databases. (a) Database I: raw PQ data + Pphase, (b) Database II: ADI
components separately + Psum, (c) Database III: ADI + Psum.

To summarize the results of cluster analysis for those three input databases, Table 2
was prepared. In this table, the number of data that were connected to each cluster is given.
Additionally, to compare the results of the clustering for different databases, the number of
single cells that were included in different clusters compared to database I were calculated.
As it can be observed, generally, the final classification for the k-mean algorithm with
Euclidean distance for each dataset is similar. The difference between classification is no
more than 111 single data, which is only 0.5% of the difference. It is important to notice
that the final classification was obtained with 99.5% similarity and the reduction of the
dataset was at 90%. Thus, the application of the global index as an input to cluster analysis
for general issues is desirable.

Table 2. The number of 10 min data points in each cluster for different input databases, and simplified
comparison.

Database Cluster 1 Cluster 2 Difference to Basic Database

Database I: raw PQ data + Pphase 6579 18,034 -
Database II: ADI components

separately + Psum 6483 18,129 108

Database III: ADI + Psum 6661 17,951 111

4. Cluster Analysis for Identification of Different Working Conditions of Virtual
Power Plant

The previous section indicated that database III is suitable for cluster analysis. The
database uses a global index and sum of active power level for each observed measurement
point. However, the division into two clusters of such a big database may not be sufficient.
Thus, in this section, the investigation of the selection of the optimal number of clusters
using the v-fold cross-validation scheme is performed. Then, for the selected number of
the cluster, the qualitative assessment is realized to compare different working conditions
of VPP.

4.1. Optimal Number of Clusters

As it was indicated in Section 3.2, the selected input database for PQ issues was
database III, which represents global indexes for measurement points and active power
level. However, the cluster analysis for this dataset was realized for the previously deter-

92



Energies 2021, 14, 974

mined number of clusters (2 clusters). But, to analyze the long-term data, the adequate
number of final clusters is unknown at the beginning. Thus, there is a need for the intro-
duction of other methods to obtain this. One of the known solutions is the application of
the v-fold cross-validation.

Thus, the application of v-fold cross-validation was realized for dataset III. As a result,
the chart of the cost sequence was obtained and is presented in Figure 4. The circumstances
for this test were performed for the minimal number of clusters equal to 2 and maximal
equal to 10. The maximal value equal to 10 is then justified and indicated, e.g., as in
References [75,76].

Figure 4. Cost sequence in relation for the number of clusters for v-fold cross-validation for database
III and k-mean algorithm with Euclidean distance.

However, to analyze this cost chart, the minimal percentage decrease was calculated.
The results of these calculations are indicated in Table 3. In the literature, the most com-
monly used value of the range of minimal decrease is equal to 5% [69]. Thus, for the
observed measurement data applied for database III, the optimal number of clusters is 3.

Table 3. The calculations of minimal decrease for v-fold cross-validation test results.

Range of minimal decrease 1% 2% 3–6% ≤7%
Optimal number of clusters 9 clusters 6 clusters 3 clusters 2 clusters

4.2. Qualitative Assessment of Clusters

As indicated in the previous subsection, the optimal number of clusters using v-fold
cross-validation is equal to 3. Thus, in this section, the qualitative comparison is realized for
each cluster. The results are presented in Table 4. Additionally, using the knowledge about
the operation schedule of HPP and ESS, the main feature for each cluster was indicated.

Generally, the cluster analysis indicated one major working condition (cluster 1).
Cluster 1 presents a time when HPP is switched off and ESS is not working with high
power. As it can be observed, these conditions last for around 72% of the time. Cluster 2
corresponds to a time when HPP is generally working with high power that takes around
22% of the time, and during this time, ESS is charged/discharged with low power. Cluster
3 represents a time when ESS is discharged with high power. In point of power quality
level, the most positive working condition is cluster 3, which represents the lowest value
for the global index in each measurement point.
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Table 4. Qualitative assessment between clusters and main defining feature.

Cluster
Global Index Main Feature of Dataset in Point

of VPP
Number of 10

min Data Points1-G 2-G 3-G 4-G

1 0.081 0.068 0.077 0.088 ESS and HPP are not working with
high power 17,765

2 0.076 0.073 0.079 0.087 HPP is working with high power 5432
3 0.073 0.067 0.068 0.084 ESS is discharging with high power 1415

5. Discussion

This research demonstrated a case study of a virtual power plant that operates in the
Lower Silesia in Poland. The presented virtual power plant operates at both low-voltage
(LV) and medium-voltage (MV) levels of the distribution network. The investigation
concerned synchronic measurements from 5 PQ recorders. The measurements were realized
at both MV and LV levels. The measurements were based on 26 weeks (from 1 May to 28
October 2020). Thus, they represent long-term data when different working conditions may
occur, but defining this working condition a priori would lead to missing some specific
data. The solution for this is an application of cluster analysis that assures the division of
data into clusters (that represent different working conditions) based on data features.

The indicated measurements were used as the sources for different databases. The
used parameters were classical PQ parameters, proposed global indices, as well as the level
of active power. Database I consists of classical PQ parameters and active power level for
each phase, separately (22 variables for each measurement point). Database II consists of
ADI components separately and active power level as a sum of each phase (7 variables for
each measurement point). Database III consists of ADI and active power level as a sum of
each phase (2 variables for each measurement point).

The cluster analysis for the k-mean algorithm with Euclidean distance for the three
different databases generally indicated the same final classification for 2 clusters. The
similarity of data clustering results was higher than 99.5%. So, applying the global in-
dex, which represents PQ level, reduced the size of the database by around 90% for the
multipoint approach.

Another element of investigation was the proposition of selecting the optimal number
of clusters. This step is always an important element of the research. In this article, the
v-fold cross-validation was selected. Based on the cost sequence chart, the optimal number
of clusters was equal to 3. However, the 6 and 9 clusters also were indicated if the cost
sequence would be selected as 2% or 1%.

The final element of the investigation was the qualitative assessment of obtained
cluster results. The qualitative comparison was realized for the number of clusters equal
to 3, as indicated by the v-fold cross-validation test. The assessment was realized using
the global index ADI [55,70]. The standard used to apply limits to the global value was
EN 50160 [73]. The results of clustering were related to the working conditions of VPP
units. The indicated results were described as a time when HPP and ESS are not working
with high power (less than half of the nominal values), HPP is working with high power,
and ESS is working with high power. The result of comparison in point of global index
indicated that the most positive working condition was cluster 3 (ESS is working with
high power). This result means that values of PQ parameter were closer to nominal (e.g.,
nominal voltage) or the smallest (e.g., asymmetry level).

The analysis of a single point for single PQ parameters seems more vulnerable. But for
long-term assessment, such analysis is time-consuming. Additionally, the main purpose of
the VPP is generally to achieve economic profits, and technical issues are mostly omitted.
So, the proposition of using cluster analysis for the global index database seems interesting
to extend the assessment of VPP in a long-term approach.

Finally, it is important to notice that the research was realized in a VPP that operates in
Poland, but it may also be applied to other VPPs. Additionally, the proposed solution may
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also be applied only if long-term power quality data would be available and the different
working conditions of monitored objects occur.

6. Conclusions

This article proposed the application of cluster analysis in a virtual power plant. Power
quality measurements were used as input to prepare different databases. The databases
consisted of classic parameters as well as the global indexes. The selected index (ADI)
enabled simplifying the assessment from the number of classical PQ parameters to one
global value as a representant of each measurement point. But, on the other hand, including
extreme 200 ms values of voltage and harmonics parameters represents the extension to the
classical methods. Thus, the global index approach simplifies the assessment and increases
the range of used parameters during analysis.

The application of the global index as an input to the cluster analysis dataset enables
to reduce the size to around 90% for clustering into 2 clusters. The results for 26 weeks of
clustering were similar, with a level over 99.5%. Thus, such applications seem interesting.

The cluster analysis for the global index as an input database was indicated as useful
for the identification of working conditions in point of PQ. Also, it enables to simplify the
assessment between those working conditions, but using this global value does not enable
to define the reason for this situation. However, it is a good first step for deep analysis.
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55. Jasiński, M.; Sikorski, T.; Kostyła, P.; Leonowicz, Z.; Borkowski, K. Combined cluster analysis and global power quality indices

for the qualitative assessment of the time-varying condition of power quality in an electrical power network with distributed
generation. Energies 2020, 13, 2050. [CrossRef]

56. Nourollah, S.; Moallem, M. A data mining method for obtaining global power quality index. In Proceedings of the 2011 2nd
International Conference on Electric Power and Energy Conversion Systems (EPECS), Sharjah, United Arab Emirates, 12 January
2011; pp. 1–7.
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Abstract: The paper presents a power-quality analysis in the utility low-voltage network focusing
on harmonic currents’ pollution. Usually, to forecast the modern electrical and electronic devices’
contribution to increasing the current total harmonic distortion factor (THDI) and exceeding the
regulation limit, analyses based on tests and models of individual devices are conducted. In this
article, a composite approach was applied. The performance of harmonic currents produced by sets
of devices commonly used in commercial and residential facilities’ nonlinear loads was investigated.
The measurements were conducted with the class A PQ analyzer (FLUKE 435) and dedicated to
the specialized PC software. The experimental tests show that the harmonic currents produced by
multiple types of nonlinear loads tend to reduce the current total harmonic distortion factor (THDI).
The changes of harmonic content caused by summation and/or cancellation effects in total current
drawn from the grid by nonlinear loads should be a key factor in harmonic currents’ pollution study.
Proper forecasting of the level of harmonic currents injected into the utility grid helps to maintain
the quality of electricity at an appropriate level and reduce active power losses, which have a direct
impact on the price of electricity generation.

Keywords: nonlinear loads; harmonics, cancellation, and attenuation of harmonics; waveform
distortion; THDi; power quality; low-voltage networks

1. Introduction

Power electronics components and microprocessors are the key entities of the evo-
lution of nonlinear loads and smart devices/systems in commercial and household en-
vironments [1,2]. On one hand, due to their nonlinear V–I characteristics, these devices
introduce power quality (PQ) problems in the electric power distribution system, and on
the other hand they are sensitive to the PQ level. In the case of electrical energy billing,
even the revenue meters that measure electrical quantities may be not immune enough
to the impact generated by disturbing devices [3–5]. Since the intensified integration
of nonlinear components, PQ monitoring is essential to improving the performance of
both power system equipment and the end-user loads. [6,7] Thus, the PQ disturbances
are the responsibility of not only utilities but also end-users, manufacturers as well as
researchers, and engineers. [8,9] The remarkable growth in research and development
work on identifying the avoidable energy losses caused by poor PQ has been observed in
recent years [10–16]. The proper measurements and analysis of the distribution system and
implementation of the evolving methods and techniques to improve the condition of the
supply system are developing areas of present-day electrical engineering [17–19].

Due to the nonlinearity of the electrical devices, the major fault in PQ is observed as
harmonic pollution. The severity of harmonic disturbances contained in the current signal
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can be specified collectively by the current total harmonic distortion factor (THDI), which
can be calculated according to the formula:

THDI =

√
∑∞

h=2 Ih
2

I1
·100%, (1)

where,

Ih—RMS value of the individual harmonic component of order h for current,
I1—RMS value of the fundamental harmonic (a component of order 1) for current.

To forecast how increased nonlinear loads will contribute to the THDI level and
when they may exceed the regulation limit, harmonic impact and propagation studies of
the distribution network need to be performed for future scenarios [20–22]. Distribution
system operators can use these analyses and simulations to take preventive steps to avoid
deterioration and improve the PQ level [23].

Currently, the increase of new technologies and the changing of conventional appli-
ances to power electronic-driven appliances can be observed in residential and commercial
buildings feeding from the LV distribution networks [18,24]. Modern power electronic-
driven appliances can be divided into four groups (Figure 1).

Lighting appliances

•compact fluorescent 
lights (CFLs), 

•phase-angle controlled 
lamp dimmers, 

•light-emitting diode 
lamps (LEDs)

Electrical equipment 
used for a short period 
of time (one wash, etc.)

•cooker, 
•laundry dryers,

• microwave oven, 
•coffee machine, 
•vacuum cleaner, 

•dishwasher

Electrical equipment used 
for a long period of time 

(working hours, etc.)

•personal computers 
(PC),

• monitor, 
• laptop, 
•charger, 

•modem, adjustable 
speed drive (ASD)–

based fridge and 
refrigerator

Entertainment systems

•home theatre system

Figure 1. Groups of modern power electronic-driven appliances.

This nonlinear electrical equipment which, indeed, forms the power system is one
of the main causes of harmonic distortion. Since its AC circuit topology draws, often in a
pulsed manner, a distorted current whose waveform shape does not resemble the applied
voltage waveform shape for the considered cycle, it is non–sinusoidal [21,25].

2. Review

2.1. Problems Caused by Harmonic Currents

The first and major problems caused by harmonic currents in the mains feeding
residential and commercial buildings are those caused by voltage waveform distortion [18].
Due to the propagation of harmonic currents through a finite system impedance, the
vector sum of all individual voltage drops results in the increased voltage total harmonic
distortion factor (THDV), which contributes to significant deterioration of power quality
and affects the effective performance of consumers’ devices connected to the same point of
common coupling (PCC).

Figure 2 shows the power system where multiple customers are connected at PCC
with different operating and load conditions. Because of the significantly distorted supply
voltage waveform, all electrical devices (also linear ones) will generate nonlinear currents
(in different degrees) [25].
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Figure 2. The typical model of the customer’s loads supply system.

The levels of harmonic currents which the customers are allowed to inject into the
power network at the PCC are limited by standards [26,27].

The second problem caused by harmonic currents is associated with the harmonic
currents themselves [28]. The harmonic currents injected into distribution networks cause
high disturbances [22,29], such as:

• overheating and failure of transformers and other power equipment;
• false tripping of protection relays;
• overcurrent on equipment-neutral connection wiring;
• errors in the operation and control of sensitive devices (e.g., microprocessors); and
• interference with communication signals (digital technology), and others.

2.2. Recent Research

The equipment within domestic as well as commercial installations is increasingly
sensitive to some type of electromagnetic interference, both from internal and external
sources [1,18]. Therefore, there is a need to control the electromagnetic environment,
namely by limiting the harmonic pollutions caused by any type of electrical appliance.
Thus, the IEC 61000–3–2 standard [30] classifies all electrical equipment into four categories,
that are presented in Figure 3.

 

Class A

•Balanced three-
phase equipment 

and all other 
equipment not 
belonging to 

classes B, C, and D 

Class B

•Portable tools and 
unprofessional 

welding equipment

Class  C

•Lighting 
equipment 

including dimming 
devices but except 
incandescent lamp 

dimmers

Class D

•Equipment having 
an active input 

power of less than 
600 W and an input 

current with a 
"special 

waveshape" 
measured according 

to the method 
illustrated in the 

standard

Figure 3. Classification of electrical equipment to limit harmonic pollution.

Unlike IEC limits [30] that can be applied to all systems, irrespective of their stiffness,
the IEEE standards (according to IEEE Std 519) [31] introduce the harmonics current
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distortion criteria limits (individual harmonic distortion as well as THDI factors), which
are a function of maximum short circuit current ISC to maximum demand load current IL
at PCC [32,33].

From past literature reviews [34–36], it was found that many harmonic current impact
studies were performed with individual usage of a specific type of nonlinear device or
groups of devices used for the same purpose, often for sinusoidal conditions of the supply
voltage [37].

The effects of harmonics current for fluorescent lamps (FLs) with different ballasts
are studied in [38]. Various configurations of the fluorescent T8 and T5 tube lamps from
different commercial brands were used. The results indicate that with the increased number
of fluorescent T8 lamp (from 4 lamps to 10 lamps) with electromagnetic as well as electronic
ballasts, the percentage of the total harmonic current distortion factor (THDI) has little
change, approximately 0.5–1%, while the consumed power increases significantly. For T8
FLs with electromagnetic ballast, the THDI ≈ 9%, whereas for the T8 FLs with electronic
ballasts the THDI ≈ 10%. The newer technology, fluorescent T5 lamps with electronic
ballasts, generates much more distorted current waveforms (selected in the experiment
low-class lamps). Four T5 FLs show the THDI = 23.7% and 10 T5 FLs demonstrate the
THDI = 27.2%. The authors also present the high class T5 type lighting devices with
electronic ballast, which indicate the current total harmonic distortion factor even less
(3–5%) than the tested electromagnetic ballast for the T8 lamp.

The comprehensive overview conducted by several researchers investigating the
harmonic performance of the utility grid when employing compact fluorescent lamps
(CFLs) on a large sczzale is reviewed in [39]. The authors conclude that power quality
is affected significantly by CFLs. For a typical CFL tested in [39], the THDI is as high as
about 75%. However, in [40] the lamps were tested in varying the RMS terminal voltage
conditions. The results show that the THDI for 12 CFLs of the different manufacturers
is practically constant (THDI ≈ 110%) in the operation range between 80% to 100% of
the nominal voltage of the CFLs. The next research [41] signifies that when connecting
subsequent CFLs, the harmonic content is expected to increase as the more distorted
current is drawn. To anticipate the problems generated by a massive insertion of small
nonlinear loads, several investigations focused on modeling, characterizing, and predicting
the increase of harmonic currents due to the CFLs [40,41]. The results of the research on the
cancellation of harmonics between groups of compact fluorescent lamps are demonstrated
in [42].

Light-emitting diodes (LEDs) and another solid-state lighting (SSL) system’s impact
on power quality is studied in [12,43,44]. For these types of lighting, the individual current
harmonic components as well as the THDI values often exceed the limits set by the IEEE
standard 519 [26]. According to [44], the LED and micro-LED lamps show moderated
harmonic current pollutions. As indicated in [12], as a greater number of LED lamps
are connected to the grid, their performance improves both in terms of power factor and
harmonic distortion. In [45] it is shown that there is a relevant difference in harmonic
pollution behavior of CFLs and LED lamps, not only between the two types of lamps but
also within the same type. Thus, it seems to be sensible to utilize some lamp combinations
to keep harmonic distortion within permissible limits.

Besides the lighting devices, the literature has documented measurements of other
commercial as well as household appliances such as TV sets, personal computers, monitors,
printers, laptops, chargers, etc. [18,41,46]. The conventional main interface of these electrical
devices consists of a diode bridge rectifier followed by a large DC capacitor. In this case,
the current drawn from the AC supply is relatively linear [21]. However, in the newer
technology, switch-mode power supply (SMPS) systems, the rectifier is usually followed
by a converter that can be controlled in different modes to achieve a smooth DC output.
The input current waveform is highly nonlinear and often comes to the load in very
short pulses [47]. Today, single-phase electronic equipment almost universally employs
SMPSs [21,47,48]. Although individual consumption is small, the collective effect can
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be significant because many of them are often connected to the same PCC. Additionally,
to satisfy harmonic standards’ requirements, the latest SMPSs utilize complex circuits
with active power factor correction (PFC) and usually change the equipment classification
to Class A according to the mentioned IEC standard [30]. In [49,50], three main circuit
topologies of these devices are proposed: without PFC, with passive PFC, and with active
PFC. The result is low pollution in the case of sinusoidal supply voltage but often also
increased harmonic currents’ pollution, which then increases the distortion of the supply
voltage as already described.

The experimental measurements of harmonic currents’ generation by a cluster of
desktop personal computers (20 PCs during different operating modes) are described
in [41,51,52]. Generally, the connecting subsequent number of PCs decrease the current
total harmonic distortion factor (THDI). The main reason is the attenuation phenomenon
for the 3rd, 5th, and 7th harmonics [52]. Interestingly, the obtained result shows that when
the number of PCs is increased from 1 to 124, the 3rd current harmonic is reduced from
76% to 24% [41]. Other results [51] provide insight into PC harmonic behavior in different
conditions. Due to voltage change, the THDI of 20 PCs is about 7% lower than that of a
single PC. When a group of 20 PCs is fed from the same supply, the THDI decreases by
more than 15% (in comparison to a single PC) for maximum system impedance. Even with
a group of PCs connected to a single supply, changing the system frequency in the range
50 Hz ± 1% has almost no effect on the generated harmonics. Moreover, the studies [51]
focused on attenuation and diversity phenomena in PC clusters indicate that diversity
effects have a minor impact on the harmonics produced by a cluster of PCs but some kind
of harmonic compensation may occur. Also highlighted is that presented factors affecting
produced harmonics are related to each other, and if nonlinear devices are supplied by
different power systems their harmonics generation and other power quantity levels will
be different [52]. This as well as other relevant experimental data can be useful in harmonic
characterization studies.

In [47], the energy efficiency of power electronic-based home appliances was analyzed.
The authors underline that although most energy-efficient loads based on power electronics
consume considerably less power than their older counterparts, they are harmonic polluters
and inject a relatively large number of harmonic currents into the power grid relative to
their power demand.

2.3. Problem Description

Most of the presented research focuses on the harmonic generated by one type of
commonly used nonlinear loads (NLLs), often in sinusoidal conditions of the supply
voltage. The main general properties of all NLLs can be distinguished as follows [41,42,53]:

• the current harmonic pollutions generated by a load depend on the voltage harmonics’
magnitudes and phase angles. The THDI and individual harmonic currents for a
group of NLLs vary due to the background voltage distortion variations within the
recommended standards limits. This means that changes in one voltage harmonic
lead to changes in multiple current harmonics;

• there are no even harmonics if the waveform has half-wave symmetry; and
• domination in the amplitude of the lower-order harmonics (sequentially, the 3rd, 5th,

and 7th order) is noticeable.

When large amounts of such appliances operate in power distribution systems, the
collective effect on the feeder power quality [54,55] has become a large concern to utilities.
For predicting the harmonic current injection to the utility grid and implementing com-
pensation technique, several theoretical models and simulations of nonlinear loads were
conducted in the past decades [24]. The level of injected harmonic pollutions from a group
of nonlinear loads of the same type operating simultaneously can be predicted by scaling
the typical harmonic current spectrum of one load in proportion to total load power [52].

However, we seldom must deal with such a situation in real life because many different
types of harmonic sources are almost always connected to one point of common coupling
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(PCC) [56]. Thus, the simple combined approach for forecasting the level of harmonic
current injection to the utility grid is not proper anymore [57]. Therefore, a composite
approach is required, which takes into account different nonlinear load types placed in the
PCC at the same time [58].

By applying such an approach, not only can the addition effect of many harmonic
sources be assessed, but the attenuation outcome of future harmonic distortion in the
network can also be better estimated [59]. The main purpose of the experimental tests pre-
sented in this paper is to create a first baseline study for office and domestic environments
in case of deterioration of PQ by harmonic currents.

3. Case study

3.1. Methodology for Case Study

In Stage 1, the problem was defined and detailed, based on the collected knowledge
of the subject, and a description was delivered. The theory of the power quality deteriora-
tion phenomenon associated with the operation of nonlinear loads was provided in the
Introduction section of this paper.

Stage 2 determined relevant aspects to be included in the study and its scope. For the
analysis of the deterioration level of PQ caused by harmonic currents, some sets of various
commercial and residential electrical appliances with different technical specifications were
tested. For comparison, the research was conducted for selected individual devices as well
as for sets of diverse appliances.

Table 1 shows the technical specification of the selected nonlinear loads. The power
value included in the table is the value that the manufacturer declares the device consumes.
All devices are supplied from a single-phase LV network, in a voltage range of 230–240 V,
with a frequency of 50 Hz.

The accuracy of the measurements conducted by PQ Analyser Fluke 435 is as follows:

• THDI measurement: ±2.5%
• % f measurement: ±0.1% ± n × 0.1%
• %r measurement: ±0.1% ± n × 0.4%

Table 1. Technical specifications of the selected equipment.

No. Type Brand Model I (A) P (W)

1 Laptop charger (AC Power Adapter) Samsung A10–090P1A 1.5 90
2 Smartphone Charger Samsung EP–TA20EWE 0.5 0.1
3 Desktop Copier (standby mode) Canon IR2016 2.5 3.6
4 LCD monitor–20” LG L204WT 1.0 45
5 Vacuum cleaner Zelmer 321.0.E01E 6.0 1200
6 Coffee machine Krups EA81 5.5 1450
7 Microwave oven FIF MD 42035 6.5 800
8 Compact fluorescent lamp OSRAM 20 W/865 0.2 20
9 Fluorescent lamp type T8 Philips TLD 18 W 830 0.36 18

10 High intensity discharge lamp Philips ML 160W E27 0.73 160
11 Dimmer and incandescent lamp F&F SCO–812 1.5 60

For each set of devices, the same parameters as those obtained for the appliances
individually are measured. One of these sets consists of some typical domestic electrical
loads used for a short and long time. For the second test, the office electrical equipment is
selected. The third test is conducted for a set of lighting equipment (including an incandes-
cent lamp dimmer) that can be used in both commercial and residential spaces. According
to the IEC 61000–3–2 standards [30], incandescent lamp dimmers are not classified into
Class C (lighting equipment) in the case of the injection of high-order harmonic currents
to the grid, but to Class A, which include difficult-to-classify devices. Thus, the level of
harmonic contained in the current drawn from the LV grid by incandescent lamp dimmers
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is not so strictly limited as other lighting equipment. Table 2 shows the type of set and the
appliances that constitute it.

Table 2. Selected sets of equipment.

No. Type of Loads Group of Loads

1 Household

LCD monitor–20”
Caffe machine
Compact fluorescent lamp
Microwave
AC Power Adapter (Charger)
Vacuum cleaner

2 Office

LCD monitor–20”
Fluorescent lamp type T8
Compact fluorescent lamp
Desktop Copier
AC Power Adapter (Charger)
Adaptive Fast Smartphone Charger

3 Lighting

Compact fluorescent lamp
Fluorescent lamp type T8
High–intensity discharge lamp
Dimmer and incandescent lamp

After the selection of the appliances, the laboratory test stand to assess the impact of
various nonlinear electrical equipment on PQ were constructed. The diagram and photo of
the prepared test stand are shown in Figures 4 and 5.

Figure 4. Diagram of the measurement system.
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Figure 5. Laboratory measurement stand for testing the impact of nonlinear devices on power quality: (a) power supply AC
230 V 50 Hz; (b) power quality analyzer Fluke 435; (c) adapter for measuring voltage in a single-phase circuit; (d) measuring
clamp; (e) PC with FlukeView software; (f) adapter for testing a set of electrical equipment; (g) electrical equipment
under test.

In Stage 3, the indicators of the impact on power quality associated with their operation
were collected. Hence, the current harmonics distortion rate of each of the devices as well
three different sets of them are measured. To conduct the measurements, the class A PQ
analyzer (FLUKE 435) and the associated equipment were used, including 5 A and 20 A
precision current clamps.

In this work, the steady-state operation and respective harmonic pollution of devices
are considered. The power quality analysis was performed by the assessment of the current
distortion level, which was evaluated via the current total harmonic distortion factor
(THDI) in percentage. The power quality analyzer allows the recording of harmonics
up to the 50th order. Thus, the current distortion rate was calculated according to the
expression shown in Equation (2), as defined in IEC 61000–2–2 standard [60].

THDI =

√
∑50

h=2 Ih
2

I1
·100% (2)

For organization of the data, Stage 4 in systematic methodology was conducted using
the simple mouse-controlled PC software FlukeView (version 3.2), which communicates
with the PQ analyzer via the optically isolated OC4USB adapter/cable connected to the
USB of the PC. The software enables saving, opening, and printing the data collected by
the PQ analyzer, or exporting it to other programs.

The next section of this paper presents the obtained measurement results. It is followed
by the discussion section, where the analysis and interpretation of the results are provided
(Stage 5).
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3.2. Results of Case Study

This section presents the measurement results that were conducted in a laboratory
environment with the class A PQ analyzer (FLUKE 435) on the commonly used residential
and commercial appliances to assess their impact on PQ.

In Figure 6, the measurement results for the appliances tested individually are pre-
sented. The input current waveforms are shown in a time domain, the harmonic spec-
tra are represented up to the 50th harmonic, and the current total harmonic distortion
factor (THDI) is obtained in percentage. Additionally, Table 3 was prepared to sum up the
information about appliances and results of THDI .

 
 

1(a) 1(b) 

 
 

2(a) 2(b) 

 
 

3(a) 3(b) 

  
4(a) 4(b) 

Figure 6. Cont.
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7(a) 7(b) 

Figure 6. Measurements obtained for individual devices: (a) current waveform; (b) harmonic spectrum; 1—AC Power
Adapter, 2—Adaptive Fast Smartphone Charger, 3—LCD monitor–20”, 4—Vacuum cleaner, 5—Microwave oven, 6—
Compact fluorescent lamp, 7—Dimmer and incandescent lamp.

Table 3. Current total harmonic distortion factor (THDI) measurements obtained for individual
devices.

No. Appliance THDI

1 AC Power Adapter 35.3%
2 Smartphone Charger 207.3%
3 LCD monitor–20” 145.3%
4 Vacuum cleaner 75.9%
5 Microwave oven 24.6%
6 Compact fluorescent lamp 73.5%
7 Dimmer and incandescent lamp 97.7%

The input current waveforms in all cases are highly non-sinusoidal in each cycle.
They are in different shapes and often flow in a pulsed manner, which indicates a relevant
harmonic content in the signals. The level of harmonic distortion is graphically represented
by bars that represent the individual harmonic magnitudes (as a percentage of the funda-
mental component). In all harmonic spectra, there is visible a clear advantage of the odd
harmonics (gradually decreasing for larger orders) over even harmonics, which suggests
that positive and negative half-cycles of the signals are symmetrical.
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Analyzing the numerical indicator of harmonic current distortions (the THDI) for
each device, it can be seen that all of these values are excessively high, which implies that
harmonic pollution injected into the network is very significant. The highest measured
current distortion rate is equal to 207.3% for the adaptive fast smartphone charger. It is
not difficult to imagine the negative impact of a huge number of these devices, which is
adequate to the number of smartphones, on the distribution network. The smallest THDI
is noticed for the microwave oven, and it is equal to 24.6%.

As established in the IEC 61000–3–2 standards [30], the equipment with a rated
current not greater than or equal to 16 A must not breach specified limits for harmonic
current pollution. The literature [28,30,35] studies in detail whether the commercial and
residential nonlinear loads supplied from the low-voltage utility grids meet the established
criteria or not. This paper presents results that only support the hypothesis that nonlinear
electrical loads are one of the main causes of electrical power quality deterioration and
require appropriate analysis to evaluate their negative impact on the AC power distribution
system.

In subsections below (Sections 3.2.1–3.2.3), the results of experimental tests for sets
of devices are presented. The same parameters as those obtained for the appliances
individually are measured.

3.2.1. Experimental Test 1: Set of household equipment

The set consists of some typical domestic electrical loads used for a short and long
time, such as an LCD monitor–20”, coffee machine, compact fluorescent lamp, microwave
oven, AC power adapter (laptop charger), and vacuum cleaner.

Figure 7 shows the waveforms of applied voltage and current drawn by the set of
household equipment when connected collectively to the single-phase utility LV network,
in the voltage range of 230–240 V. Due to the nonlinear behavior of all connected devices
(see Figure 8) the total current drawn from the grid is significantly distorted by high-order
harmonic currents, while the supplying voltage waveform is almost sinusoidal in shape.

  

(a) (b) 

Figure 7. Set of household equipment: (a) input voltage waveform; (b) input current waveform.

The obtained harmonic spectrum (Figure 8) consists mainly of third (≈25%), fifth
(≈7%), and seventh harmonics (≈4%). The values in brackets indicate the magnitude of
the harmonic current components in percentages of the magnitude of the fundamental
component. The individual amplitudes decrease for larger orders. The THDI factor is
equal to 25. 7%, which means a relatively low impact on PQ.

As previously mentioned, harmonic cancellation and attenuation phenomena in low-
voltage networks occur. The first is due to phase angle diversity between the same-order
harmonics produced by different nonlinear loads; the second is due to system impedance
and the corresponding voltage distortion.
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Thus, the current flowing through the sockets adapter (Figure 6f) has a lower current
total harmonic distortion than each piece of previously individually tested household
equipment.

Figure 8. Set of household equipment: harmonic spectrum and current total harmonic distortion
factor. THDI = 25.7%.

3.2.2. Experimental Test 2: Set of Office Equipment

The set consists of some typical office electrical equipment used for a short and long
time, such as an LCD monitor–20”, fluorescent lamp type T8, compact fluorescent lamp,
desktop copier, AC power adapter (laptop charger), and adaptive fast smartphone charger.

The combination of lighting and office equipment also features the harmonic currents’
cancellation and attenuation effects in the low-voltage network. Figure 9 shows that the
total current drawn in a pulsed manner by the second set of nonlinear loads is strongly
distorted, while supplying voltage is almost free from distortion.

The visible bars in Figure 10 represent the odd harmonic currents’ magnitudes (as a
percentage of the fundamental component). These results demonstrate that the devices
operating simultaneously produce less current distortion (THDI = 74.7%) than individually,
e.g., or one adaptive fast smartphone charger the THDI = 207.3% (Figure 6).

 

(a) 

Figure 9. Cont.
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(b) 

Figure 9. Set of office equipment: (a) input voltage waveform, (b) input current waveform.

 

Figure 10. Set of office equipment: harmonic spectrum and current total harmonic distortion factor.
THDI = 74.7%.

3.2.3. Experimental Test 3: Set of Lighting Equipment

The set consists of some lighting equipment that can be used in both commercial
and residential spaces, such as a: compact fluorescent lamp, fluorescent lamp type T8,
high–intensity discharge lamp, dimmer and incandescent lamp.

Analyzing the harmonics spectrum (Figure 11) for the set of lighting equipment
supplied from one socket adapter, it is evident again that the harmonic currents of different
nonlinear loads are vectorially superposed. The higher magnitude reaches the third
harmonic (c. 35% of the fundamental component). The amplitudes of successive odd
harmonics are lower and do not decrease proportionally (the 17th harmonic ≈ 9%, whereas
the 19th harmonic ≈ 1%, and then the 21st harmonic ≈ 7%). The current total harmonic
distortion factor (THDI) is equal to 46. 3%, and it is reflected in the oscillatory current
waveform shape (Figure 12). This leads to the conclusion that the set of different types of
lighting equipment has less impact on PQ than, e.g., the THDI factor equal to 73.8% for
the CFL operating individually (see Figure 6). However, in general, the harmonic currents
for CFLs are additive in behavior [51].
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(a) 

 
(b) 

Figure 11. Set of lighting equipment: (a) input voltage waveform, (b) input current waveform.

Figure 12. Set of lighting equipment: harmonic spectrum and current total harmonic distortion factor.
THDI = 46.3%.
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4. Discussion

The laboratory experiments demonstrated that the harmonic currents produced by
multiple types of nonlinear loads were reduced. This effect is often less significant for
the 3rd and 5th and 7th harmonics but becomes important for higher-current harmonics.
Thus, the current total harmonic distortion factors (THDI) for the combination of different
residential, commercial, or lighting receivers were typically lower than for the individually
tested units.

Although the results were based on a relatively small sample of electrical appliances,
the obtained results are highly useful. For example, adding from 2 to even 10 CFLs to the
set of different types of lighting sources in a typical house is not as harmonically harmful
as one may expect.

In the obtained results, there were harmonic current summation and cancellation
effects between individual loads working on the same network caused by phase angle
diversity as well as a system impedance and the voltage distortions corresponding to them.
This statement is in accord with harmonic studies about the impact of electric equipment
on the utility grid [26,33,36,41].

Causes of summation and cancellation phenomena are other aspects of the presented
analysis that will be investigated in future work, together with considering the interactions
between different types of loads typically found in the residential and commercial sectors.

In all the different load groups analyzed, it was found that although there is a slight
improvement, the distortion effect on the currents is still high.

There are considerable financial losses associated with poor PQ, and thus associated
with harmonics [61,62]. The harmonic currents generated by nonlinear loads decrease the
power factor, which can be considered an indicator of the quality of the device’s energy
conversion and consequently distortion power. The reactive power and distortion power
lead to actual energy consumption required for these loads’ proper operation that is higher
than declared by the manufacturer. The losses associated with harmonics constantly vary
with the change of the THDI factor and thus with connected and disconnected electrical
equipment. Even if the amount of wasted energy in one residential area may be negligible,
the total amount of energy that is used in the residential and commercial sector is relevant
and the losses cannot be neglected anymore.

Working in accordance with the standards often requires some assumptions to be
made. In the conducted experimental tests described in this paper, it is simplified that the
voltage stays undistorted (sinusoidal, without harmonics); however, in the real low-voltage
grid conditions the THDV changed continuously in respect to time and location. Thus, the
same loads put in two different places in the power system may result in various harmonic
characteristics because of two different distortion values in supplying voltage [63,64].

Often, the additional difficulty is to measure harmonic characteristics for many non-
linear receivers in laboratory conditions due to lack of space and costs. Thus, to simulate
harmonic currents generated by sets of large–scale nonlinear loads and to assess their
impact on power quality, different software packages such as MATLAB, ETAP, CYME,
PSCAD are often used [29]. Some of the research related to the simulation of harmonic
character by using this software is presented in [42,49].

There are typical mitigation techniques used in industry today to reduce harmonic
loading in a system [65]. They include active filtering, series and shunt passive filtering,
multiple pulse rectifiers, and isolation transformers. Each type of these solutions has its
advantages and disadvantages, which are described in more detail in [66–68].

The PQ problems and their mitigation techniques are playing a very important role in
future electrical engineering. Thus, this area requires a continuous process for research and
development.

5. Conclusions

The appliances commonly used in commercial and residential facilities can be signifi-
cant sources of harmonic currents. This is particularly true when the simple approach for
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forecasting the level of harmonic current injection to the utility grid is taken into account.
The composite approach also contributes to the harmonic-producing characteristics of
electrical equipment.

The objective of this paper was to present a comparative study on both approaches.
The measurements were conducted for different nonlinear load types served from the same
feeder at the same time. The study indicates that harmonics in the current waveforms
strongly deteriorate the quality of the electricity. The current harmonic pollution at PCC
depends on the summation and/or cancellation effects in total current drawn from the grid
by nonlinear loads. This should be a key factor used to determine the guidelines that limit
current harmonic pollution in the distribution system.

Another value of this work is the establishment of a framework for comparing the
harmonic effect of various appliances consistently. The next effort is to increase the number
of appliance types measured so a useful database can be established.
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Abstract: Several families in India live in remote places with no access to grid-connected power
supply due to their remoteness. The study area chosen from the Indian state of Odisha does not
have an electrical power supply due to its distant location. As a result, this study analyzed the
electrification process using Renewable Energy (RE) resources available in the locality. However,
these RE resources are limited by their dependency on weather conditions and time. So, a robust
battery storage system is needed for a continuous power supply. Hence, the Nickel Iron (Ni-Fe),
Lithium-Ion (Li-Ion) and Lead Acid (LA) battery technologies have been analyzed to identify a battery
technology that is both technologically and economically viable. Using the available RE resources in
the study area, such as photovoltaic and biomass energy resources, as well as the various battery
technologies, three configurations have been modelled, such as Photovoltaic Panels (PVP)/Biomass
Generator(BIOMG)/BATTERY(Ni-Fe), PV/BIOMG/BATTERY(Li-Ion) and PVP/BMG/BATTERY(LA).
These three configurations have been examined using nine prominent metaheuristic algorithms,
in which the PVP/BIOMG/BATTERY(Ni-Fe) configuration provided the optimal Life Cycle Cost
value of 367,586 USD. Among the all metaheuristic algorithms, the dynamic differential annealed
optimization algorithm was given the best Life Cycle Cost values for all of the three configurations.

Keywords: optimization techniques; different batteries; off-grid microgrid; integrated renewable
energy system

1. Introduction

Despite the fact that freshwater and energy are essential for human survival, existing
and future energy and freshwater demands are having a significant impact on the earth.
Renewable Energy (RE) resources play a critical role in addressing these concerns. This
is especially true in rural and distant areas where the grid expansion is neither feasible
nor cost-effective. For a multitude of reasons, planning and constructing an off-grid
microgrid is difficult from a both technological and economic perspective. One of them is
the reliance of RE resources on meteorological conditions. A suitable battery storage system
is needed for power supply continuity. In order to fulfil the energy requirements, most
off-grid systems are either over or under-sized. While the larger system is more expensive
and produces more energy, the smaller system is incapable of meeting the required load
demands, resulting in a power supply shortage. To overcome these challenges and fully
utilize the benefits of an off-grid microgrid built with RE sources, an Energy Management
Strategy (EMS) is necessary [1]. Furthermore, renewable energy resources, particularly
solar energy resource can be used in a wide range of applications, including solar dryers,
solar home systems, solar cookers, thermal power generation and water heaters. The
biomass generator can produce both heat and electricity. The hydro energy resource can
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be used for irrigation, drinking water supply and hydropower generation. Wind energy
has many applications, including power generation, water pumps and windmills. Some
commercial and residential applications of battery energy storage systems are explained as
follows. From a commercial point of view, battery energy storage systems are useful in the
following applications such as peak shaving, emergency backup, microgrids, load shifting,
grid services and renewable energy resource integration. From a residential standpoint,
battery energy storage systems are useful in the following applications: storing excess
energy produced by the solar PV panels, emergency backup and off-grid applications.

Numerous studies on the sizing of microgrids have been published in reputed journals.
These approaches can be classified into three broad categories, which are categorized
as follows: (i) software tools such as IHOGA, RETScreen, HOMER and HOGA, [2] (ii)
deterministic methodologies such as linear programming, numerical, iterative, graphical
design, analytical and probabilistic methods [3] and (iii) metaheuristic algorithms such as
Grasshopper Optimization Algorithm (GOA), Moth Flame Optimization (MFO), Genetic
Algorithm (GA) and Dragonfly Algorithm (DA). Nevertheless, while software tools are
simple to use the relevant components inside them cannot be picked. Furthermore, its
algorithms and calculations are hidden from users. When it comes to estimating the
size of a microgrid, software tools are constrained by certain assumptions. Deterministic
approaches, on the other hand, outperform the software tools but the solutions are trapped
at the local optima due to its complex design. They are unable to discover the global
best optimal values under such conditions. It should be run several times with random
beginning conditions to prevent the local optima trapping. Hence, the solution is unlikely
to be the global best optimum value. Obtaining the global best optimal solution may
necessitate multiple efforts. Finally, metaheuristic algorithms were chosen as the most
promising methods, and they are widely used for optimization problems [4].

Last decade, metaheuristic algorithms were built to manage microgrid sizing issues.
Surprisingly, certain algorithms, such as Differential Evolutionary Algorithm (DE), Particle
Swarm Optimization (PSO) [5] and GA, are well-known among most software engineers as
well as other researchers from other disciplines. They are adaptable techniques and offer
better results than deterministic methods by preventing the local optima entanglement.
These algorithms offer a range of properties that allow them to tackle any optimization
problem and they solve optimization problems by imitating natural processes. On the
other hand, the No-Free-Lunch theorem states that while a specific metaheuristic algorithm
can produce optimal results for a specific objective function, the same algorithm produces
lower performance in other objective functions. For such reasons, researchers working on
microgrid sizing issues have looked at robust metaheuristic algorithms [6].

A review of the literature on off-grid microgrid size issues revealed that evaluating
the techno-economic feasibility analysis with various battery technologies to deliver an
uninterrupted electrical supply is quite limited. Moreover, researchers can determine
a specific algorithm’s robustness and convergence efficiency using various algorithms.
However, such studies are limited.

The limitations stated above should be addressed while analyzing perfect off-grid
rural electrification from a techno-economic perspective. So, taking these limitations into
account, some research has been undertaken to supply power to four un-electrified villages
in the Indian state of Odisha. After conducting some research in the study area, it was
discovered that the accessible RE resources in the study area are solar and biomass. Solar
energy is the most volatile of the two RE resources due to its time-dependent nature and
weather conditions. So, the power supply is not continuous. Hence, a robust battery
system is essential to ensure a continuous electrical supply. Therefore, in this study, a
detailed analysis with three v kinds of batteries, such as Ni-Fe, Li-Ion and LA, has been
carried out. Three types of configurations are modelled using available RE resources and
battery technologies to identify the most viable configuration for electrifying the study
region, such as Photovoltaic Panels (PVP)/ Biomass Generator (BIOMG)//BATTERY(Ni-Fe),
PVP/BIOMG/BATTERY(Li-Ion) and PVP/BIOMG/BATTERY(LA). In order to find out a
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feasible configuration to electrify the study area, nine proven metaheuristic algorithms
have been used in the study, such as Differential Evolutionary Algorithm (DE) [5], Genetic
Algorithm (GA) [6], Moth Flame Optimization (MFO) [7], Dragonfly Algorithm (DA) [8],
Particle Swarm Optimization (PSO) [9], Ant Lion Optimization (ALO) [10], Grey Wolf
Optimization (GWO) [11], Grasshopper Optimization Algorithm (GOA) [12] and Dynamic
Differential Annealed Optimization Algorithm [13]. Finally, after identifying the optimal
configuration, it is evaluated with various loss of power supply probability values.

The novelty in this work can be summarized as:

• A renewable energy-based plan for electrification of an un-electrified village in a
remote location.

• Identification of a suitable optimization algorithm amongst nine prominent ones in
the literature for energy management.

• Exploration of the most cost-effective and technically suitable battery storage technol-
ogy for the given setup.

• Identify the best configuration cost wise amongst three different possibilities.

2. The Study Area Identification

The study examined the off-grid rural electrification procedure using an off-grid
remote rural area located more than 50 km away. Power supply to this area via grid
connection is not possible due to the area’s hilly terrain and its location in the middle
of a dense forest. Four villages are included in the study area, which are located in the
Chandrapur block of the Rayagada district of Odisha state in India. Figure 1 depicts
the study area’s location on a map of India. The study area’s latitude and longitude
are 19.5927◦ N and 83.8712◦ E, respectively. The whole population of the villages is
accommodated in 153 houses. People in this area continue to rely on candles, kerosene
lanterns and solar lamps for illumination.

 

Figure 1. The position of the research region on the Indian map.
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3. Renewable Energy Resources Identification in the Study Region

Natural RE resources can be exploited to electrify off-grid areas. The study area has
been completely covered by solar and biomass energy resources. The study area’s annual
ambient temperature is 26 ◦C. The simulation used a ten-year average, i.e., from 2005
to 2015, of ambient temperature and solar radiation values obtained from the National
Renewable Energy Laboratory, which are provided, respectively, in Figures 2 and 3. The
study area is located in the middle of a high-density forest, which is around 196 hectares.
With a foliage production assumption of 16 tons per hectare. Each year, the foliage for
the 196 hectares of forest will be 31.36 tons. If the yearly foliage collecting rate is 60%, the
annual foliage collection will be around 19 tons.

Figure 2. Study area’s annual solar radiation.

Figure 3. Study areas ambient temperature.

4. Study Area’s Load Estimation

The load demands have been estimated based on the villagers’ load requirements.
According to villagers’ needs, the total number of load sectors is anticipated to be domestic,
community, agricultural, small scale industrial and commercial. Table 1 clearly explains
the complete load estimation details of the rated power, quantity and time of usage of the
appliances for the study areas winter (November–February) and summer (March–October)
seasons of the study area. Figure 4 depicts the corresponding load demand graphs.
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Figure 4. The daily load demand of the study area.

5. The Components of Mathematical Modelling

The optimal sizing of an off-grid microgrid is primarily determined by the components
utilized in the analysis, hence accurate component analysis is essential before optimal sizing
of the off-grid microgrid. The current study includes PV panels, a biomass generator, a
battery bank and a bi-directional converter with a charge controller. The schematic diagram
is shown in Figure 5.

5.1. Solar Energy System

A variety of approaches can be used to compute the PV output power from the PV
panels. A normal framework was employed in this study to compute the output power
of the PV panels, which was determined by taking into consideration of hourly ambient
temperature and solar radiation values [14]:

PPV(t) = PVrated × (G(t)/Gre f )×
[
1 + KT ×

(
TC − Tre f

)]
(1)

where, Tre f = the standard test condition temperature value i.e., 25◦ degrees Celsius for
PV cells. PVrated = the PV panel’s rated power, KT = at maximum power, the temperature
coefficient, its value is 3.7 × 10−3 (1/◦C) and Gre f = the solar radiation value at reference
condition, its value is 1000 W/m2..

The PV panel cell temperature (TC) can be determined as:

TC = Tamb(t) + (0.0256 × G(t)) (2)

The amount of energy produced by the PV panels (EPV) can be determined as follows:

EPV(t) = NPV × PPV(t)× Δt (3)

where, Δt = time period.
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Figure 5. Schematic diagram of the study area electrification model.

5.2. Biomass Generator

In this study, we are advised to use the down draught gasifier model of biomass
generator. The following equation can be used to calculate the power generated by the
Biomass Generator [1]:

PBMG(t) =
QBM × ηBMG × CVBM × 1000

DOHBMG × 365 × 860
(4)

where, the conversion factor from kcal to kWh is 860, QBM = biomass quantity (tons/year),
ηBMG = efficiency of the biomass generator, DOHBMG = per day operative hours of the
biomass generator and CVBM = the biomass has a calorific value of 4015 kcal/kg.

The biomass generator’s hourly energy output is determined as follows:

EBMG(t) = PBMG(t)× Δt (5)
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5.3. Battery Bank

When RE sources are not available to deliver power, the battery bank will supply
power in off-grid systems. In general, the battery bank stores the extra energy generated
by the RE sources. This phenomenon is known as a battery bank charging process, and it is
expressed by the equation below [14,15]:

EBat(t) = (1 − σ)× EBat(t − 1) + (EG(t)− EL(t)/ηConv)× ηCC × ηrbat (6)

where, EBat(t), and EBat(t − 1) are the energy levels of a battery bank, respectively, at time
“t − 1” and “t”, σ = hourly self-discharge rate of the battery, ηCC = efficiency of the charge
controller, EL = electrical energy demand, EG = generated electrical energy, ηConv = the
bidirectional converter’s efficiency and ηrbat = the battery’s round-trip efficiency.

The total electrical energy generation is calculated as:

EG(t) = [EDC(t) + EAC(t)]× ηConv (7)

where, (EDC) denotes the DC energy produced by the RE resources:

EDC(t) = EPV(t) (8)

The AC energy (EAC) produced by RE sources is calculated as follows:

EAC(t) = EBMG(t) (9)

Whenever the energy produced by the RE sources is inadequate to meet the load
demands or when RE resources completely fail to meet the load demand. The energy in the
battery bank will supply the load demand; this occurrence is known as the battery bank
discharge process, and it is described in the following equation:

EBat(t) = (1 − σ)× EBat(t − 1)− (EL(t)/ηConv − EG(t))/ηrbat (10)

5.4. Bi-Directional Converter with a Charge Controller

The bi-directional converter is essential in off-grid systems because it collects energy
from both DC and AC sources. Its primary function is to convert direct current to alternating
current and vice versa. The charge controller inside the converter is useful for controlling
the battery bank’s overcharging and discharging. The following equation can be used to
compute the converter’s rated power for the off-grid microgrid [2]:

PBDC−CC = ET,max × 1.1 (11)

The multiplication factor 1.1 specifies the converter’s overloading capacity, which
means that the converter power rating should be 10% greater than the system’s peak
load demand.

6. Economic Analysis of the Off-Grid Microgrid

The Life Cycle Cost (LCC) technique is widely used for economic analysis. The LCC
has been estimated in this study by adding the Initial Capital Costs (ICC), Erection Costs
(EREC), the Present Value of O&M Costs (PV,O&M), the Present Value of Replacement
Costs (PV,REP) and the Present Value of Fuel Costs (PV,FUEL) using all system components,
which is expressed as follows [2]:

LCC = ICC + EREC + PV,O&M + PV,REP + PV,FUEL (12)

The initial capital cost (ICC) of the IRES components are calculated as follows [2]:

ICC =

[ (
CBMG,cap

)
+
(

NPV × CPV,cap
)
+(

NBAT × CBAT,cap
)
+
(
CBDC−CC,cap

) ] (13)
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where, CBMG,cap, CPV,cap, CBAT,cap and CBDC−CC,cap are the initial capital costs of the
biomass generator, PV panels, batteries and bi-directional converter with a charge controller
respectively.

The erection costs (EREC) of the IRES components are calculated as follows [2]:

EREC =

⎡
⎢⎢⎢⎣

(NPV × CPV,erect) +

(
(NBAT × CBAT,erect)×

Nr
∑

b=1

(1+x)bNc−1

(1+y)bNc

)
+(

CBDC−CC,erect ×
Nr
∑

d=1

(1+x)dNc−1

(1+y)dNc

)
+

(
CBMG,erect ×

Nr
∑

g=1

(1+x)gNc−1

(1+y)gNc

)
⎤
⎥⎥⎥⎦ (14)

where, CPV,erect, CBAT,erect, CBDC−CC,erect and CBMG,erect are erection costs of the PV panels,
batteries and bi-directional converter with a charge controller and biomass generator,
respectively.

The present value of annual O&M (PV,O&M) costs of the IRES components are calcu-
lated as follows [2]:

PV,O&M =

[
(NPV × CPV,o&m) + (CBMG,o&m)

(NBAT × CBAT,o&m) + (CBDC−CC,o&m)

]
×

N

∑
i=1

(1 + x)i−1

(1 + y)i (15)

where, CPV,o&m, CBMG,o&m, CBAT,o&m and CBDC−CC,o&m are O&M costs of the PV panels,
biomass generator, batteries and bi-directional converter with a charge controller, respec-
tively, and y is defined as follows [2]:

y =
Inom − x

1 + x
. (16)

where, Inom = nominal interest rate, y = discount rate, N = life span of the project and x =
inflation rate of the project.

The IRES components, such as a bi-directional converter with a charge controller,
biomass generator are needed to replace because they have a shortened lifespan than the
project lifetime. The present value of annual replacement cost (PV,REP) of the microgrid is
calculated as follows [2]:

PV,REP =

⎡
⎢⎢⎢⎣
(

NBAT × CBAT,rep ×
Nr
∑

b=1

(1+x)bNc−1

(1+y)bNc

)
+

(
CBMG,rep ×

Nr
∑

g=1

(1+x)gNc−1

(1+y)gNc

)
+

+

(
CBDC−CC,rep ×

Nr
∑

d=1

(1+x)dNc−1

(1+y)dNc

)
⎤
⎥⎥⎥⎦ (17)

where, CBAT,rep, CBMG,rep and CBDC−CC,rep are the replacement costs of the batteries,
biomass generator and bi-directional converter with a charge controller, respectively, and
the Nr is defined as follows [2]:

Nr = int
(

N − Nc

Nc

)
(18)

where, Nr = the number of replacements needed for the system components and Nc = life
span of each system component.

The present value of annual fuel cost (PV,FUEL) of the microgrid is calculated as fol-
lows [2]:

PV,FUEL = [(CBM × QBM)]×
N

∑
i=1

(1 + x)i−1

(1 + y)i (19)

where, QBM and CBM are the quantity and cost of the biomass.
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7. The Objective Function and Its Constraints

The objective function of the system is finding the optimal Life Cycle Cost (LCC) of the
system. The system cost mainly depends on two variable parameters such as the number
of PV panels and batteries. The objective function is defined as follows:

min LCC(NPV , NBAT) =
min

∑
C=PV,BMG,BAT,BDC−CC

(LCC)C (20)

7.1. Upper and Lower Bounds

In this study, the biomass generator is considered as a fixed energy resource. Which is
operational every day for 5 h, i.e., from 6 p.m. to 10 p.m. The biomass generator’s rated
power is considered to be 10 kW. The biomass generator produces around 9 kWh of energy
each hour. As a result, the biomass generator is not bound by any constraints. PV energy is
the remaining energy resource, which is bound by the following constraint.

1 ≤ NPV ≤ NPV−max (21)

where, NPV is the number of PV panels.
The battery bank is bound by the following constraint.

1 ≤ NBAT ≤ NBAT−max (22)

where, NBAT is the number of batteries.

7.2. Battery Bank Energy Storage Limits

During the charging and discharging processes, some energy will be stored or dis-
charged from the battery bank, which will be limited by the following constraints [3]:

EBat_min ≤ EBat(t) ≤ EBat_max (23)

The battery bank’s min-max energy storage levels are computed as follows:

EBat_max =

(
NBAT × VBAT × SBAT

1000

)
× SOCmax−bat. (24)

EBat_min =

(
NBAT × VBAT × SBAT

1000

)
× SOCmin−bat (25)

where, SBAT = rated capacity of the battery (Ah) and VBAT = battery’s voltage.
The battery’s min-max state of charges are computed as follows:

SOCmin−bat = 1 − DOD (26)

SOCmax−bat = SOCmin−bat + DOD (27)

where, DOD is the depth of discharge of the battery.

7.3. Power Reliability Index

A microgrid’s power reliability can be described as its capacity to supply power on a
continuity basis. The LPSP is a critical microgrid criterion that will define the microgrid’s
power supply continuity. Which is calculated as follows [4]:

LPSP =
∑T

t=1 LPS(t)

∑T
t=1 EL(t)

(28)
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where, LPS(t) is the loss of power supply at any hour “t”

LPS(t) =
EL(t)
ηConv

− EG(t)− [(1 − σ)× EBat(t − 1)− EBat_min]× ηrbat (29)

8. Methodology

The methodology of the power flow among the various components used in the study
are explained in the following modes of operation [5]:

Mode 1: In this operating mode, the power produced by the RE sources is equal to the
load demand, hence there is no deficit or excess energy in the system.

Mode 2: In this operating mode, whenever the RE sources generate excess energy, it
will be stored in the battery bank through the charging process of the battery bank.

Mode 3: In this operating mode, both the energy generated by the RE resources and
the energy stored in the bank are at their maximum capacity. At this time, the extra energy
generated will be delivered to the dump load.

Mode 4: This mode of operation demonstrates that whenever the energy provided by
the RE resources is insufficient to supply the load demand, the energy stored in the battery
bank will be delivered to the loads through the discharging process of the battery bank.

Mode 5: In this operating mode, the energy provided by the RE resources does not
meet the load demand and the battery bank is also at its minimum energy storage levels,
resulting in a loss of power supply to the system.

The above-mentioned modes of operation are depicted pictorially in the form of a
flowchart as shown in Figures 6 and 7.
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Figure 6. Modes of operation for the off-grid microgrid.
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Figure 7. Modes of operation for the off-grid microgrid.

9. Results and Discussion

In general, using the existing RE resources, rural distant communities can be electrified.
However, the fundamental disadvantage of RE resources is their inherent nature, as well
as their energy production depends on the metrological conditions in the chosen location.
As a result of the RE resources’ time and metrological dependence, the power supply to
the study area is not continuous.

As a result, while RE resources were used to electrify the study area, one of the key
problems with these resources is that they cannot provide a continuous power supply.
Hence, a reliable battery storage system is required to provide a continuous power supply.
So, three different types of battery technologies have been proposed in this study to provide
a continuous power supply in order to select a battery technology that is technologically
and economically feasible for the study area.

Finally, we have been modelled three different types of configurations employing
available RE resources and battery technologies, such as PVP/BIOMG/BATTERY(Ni-Fe),
PVP/BIOMG/BATTERY(Li-Ion) and PVP/BIOMG/BATTERY(LA) to Identify a configuration
that is technologically and economically feasible to electrify the study area. PV panels and
batteries are the variable parameters in all of the three configurations and their quantities
can be determined using optimization algorithms based on the required load demand
and constraints. However, the biomass generator is regarded as a fixed energy resource,
with a rated power of 10 kW. Hence, no optimization algorithm is required to estimate its
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size because it is already fixed as a 10 kW. The converter size is also considered as a fixed
parameter because it is already predesigned to meet the peak load demands of the study
area. Because the study area’s peak load demand is 35.72 kW, the converter power rating is
set to 40 kW. For safety reasons, the converter power rating is set to be 10% higher than the
peak load demand. As a result, there is no need to use optimization algorithms to optimize
the converter size.

The three above-mentioned configurations have been optimized using well-known
algorithms such as Differential Evolutionary Algorithm (DE) [10], Genetic Algorithm
(GA) [11], Moth Flame Optimization (MFO) [12], Dragonfly Algorithm (DA) [13], Particle
Swarm Optimization (PSO) [14], Ant Lion Optimization (ALO) [15], Grey Wolf Opti-
mization (GWO) [16], Grasshopper Optimization Algorithm (GOA) [17] and Dynamic
Differential Annealed Optimization Algorithm [18]. These algorithms that were run with
their default control parameter values with the population and iterations are considered to
be 100. The technical and cost values used in the study are listed in Tables 2 and 3.

Table 2. The study’s technical and financial values.

Parameters Value Parameters Value

Project lifetime 25 years Erection cost of BIOMG [2] 450.5 USD

Nominal interest rate [2] 13% Rated Power of BIOMG [6] 10 kW

Inflation rate [7] 5% BIOMG Capital cost [6] 9010 USD

Manufacturer of PV Panel [19] Vikram solar AO&M cost of BIOMG [2] $271

Model No. of PV Panel [19] Somera 385 Quantity of biomass 19 tons/year

Rated power of PV Panel [19] 385 Wp Cost of biomass [2] 15 USD/ton

Lifetime of PV Panel [8] 25 years Efficiency of BIOMG [2] 20%

Capital cost of PV Panel [8] 128 USD Rated power of BDC-CC 40 kW

AO&M cost of PV Panel [2] 3.2 USD Lifetime of converter [2] 10 years

Mechanical structure cost of PV Panel
[20] 41 USD C&R of converter [2] 4320 USD

Life time of mechanical structure of PV
panel [20] 25 years AO&M cost of converter [2] 108 USD

Erection cost of PV panel [2] 25.6 USD Efficiency of converter [2] 95%

Erection cost of battery [2] 3% of CC of battery Erection cost of converter [2] 129.6 USD

Table 3. The study’s technical and financial values of the batteries.

Battery Type
Lead Acid
(PbSO4)

Lithium Iron Phosphate
(LiFePO4)

Nickel Iron
(Ni-Fe)

Manufacturer Trojan [21] Victron [22] Iron Edison [23]

Model SSIG 06 490 LFP-12.8/200-a TN 1000

Nominal capacity (SBAT) 490 Ah 300 Ah 1000 Ah

Nominal voltage (VBAT) 6 V 12.8 V 1.2 V

Round trip efficiency (ηrbat) 85% 92% 80%

Lifespan in years 2.5 years 15 years 30 years+

Self-discharge rate (%/day) (σ) 0.3% 0.2% 1%

Capital cost (CC) in USD 410 3317 1057

Annual O&M cost in USD 2.5% of CC No maintenance 2% of CC

Operating temperature −20 ◦C to +45 ◦C −20 ◦C to +50 ◦C −30 ◦C to +60 ◦C

Cycle life of the batteries 750 cycles 5000 cycles 11,000+ cycles
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The results shown in Table 4 were obtained with an LPSP value of 0% for the above-
mentioned three configurations using the algorithms shown above. For each configuration,
this table shows the optimal LCC values as well as the optimal number of PV panels
and batteries.

Table 4. Optimization results of all configurations at an LPSP value of 0%.

Configuration Q&C GA PSO DE GWO ALO DA MFO GOA DDAO

PVP/
BIOMG/

BATTERY(Ni-Fe)

NPV 511 511 513 511 511 513 511 516 511

NBAT 351 351 351 351 352 352 351 352 351

LCC in USD 367,586 367,586 368,088 367,586 368,153 368,655 367,586 369,407 367,586

STIS 8687 8906 20538 8938 8980 9080 8806 8972 8152

PVP/
BIOMG/

BATTERY(LA)

NPV 475 474 474 478 474 476 477 474 474

NBAT 136 136 136 136 136 137 136 136 136

LCC in USD 607,281 607,030 607,030 608,032 607,030 610,821 607,781 607,030 607,030

STIS 8871 8669 20820 9007 8980 9120 8889 8992 8083

PVP/
BIOMG/

BATTERY(Li-Ion)

NPV 436 438 439 436 437 436 436 439 436

NBAT 155 155 157 155 155 155 155 156 155

LCC in USD 1,019,683 1,020,185 1,031,657 1,019,683 1,019,934 1,019,683 1,019,683 1,026,046 1,019,683

STIS 8814 8845 20542 8874 8834 8953 8792 8811 8092

9.1. The Impact of Various Battery Technologies on System Performance

According to the results given in Table 4, the configuration made up of Ni-Fe battery
technology provided the lowest LCC value when compared to the configurations made up
of LA and Li-Ion battery technologies. The Ni-Fe battery configuration offered the optimal
LCC value as 367,586 USD and its required number of PV panels and Ni-Fe batteries to
electrify the study area are 511 and 351, respectively.

The next optimal configuration to electrify the study area is the configuration made
up of LA battery technology, which has provided the optimal LCC value as 607,030 USD,
which is about 65% higher than the LCC value obtained with the Ni-Fe battery technology
and about 41% lower than the LCC obtained with the Li-Ion battery technology. To electrify
the study area using the configuration made up of LA battery technology, 474 PV panels
and 136 LA batteries are required.

The final optimal configuration to electrify the study area is the configuration made
up of Li-Ion battery technology, which produced the optimal LCC value as 1,019,683 USD.
Which is about 177% and 68% higher than the LCCs obtained with the configurations made
up of Ni-Fe and LA battery technologies, respectively. Finally, the number of PV panels
and Li-Ion batteries required to electrify the study area with this configuration are 436 and
155, respectively.

Figure 8 depicts the annual energy production of the PV panels and biomass generator,
as well as the charging and discharging process of the battery bank based on load demand.

9.2. Robustness of the Algorithms

The robustness of the algorithm can be determined by its ability to provide the global
best optimal values for the proposed configurations. Three configurations were modelled
in this study, and these configurations were tested using well-known algorithms as well
as a new proposed metaheuristic algorithm Dynamic Differential Annealed Optimization
(DDAO). For each of these three configurations, the proposed algorithm, DDAO, provided
the optimal LCC values. The number of times each algorithm provided the global best
optimal values for three configurations are shown in Table 5.
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Figure 8. Energy output graph for different components of a Ni-Fe battery configuration over a year.

Table 5. Rankings of algorithms in providing the optimal values.

S.No. Algorithms Optimal Values Given Times Ranking

1 DDAO 3 1

2 GA, PSO, GWO and MFO 2 2

3 DE, DA and GOA 1 3

According to Table 4, when compared to the remaining algorithms in terms of Simu-
lation Time in Seconds (STIS), the DDAO algorithms performed the best in both finding
global best optimal values and simulation completion process.

The convergence curves for the three configurations proposed in the study are depicted
in Figures 9–11.

9.3. Loss of Power Supply Probability

The configuration made up of Ni-Fe battery technology is identified as the optimal
configuration for electrifying the study area. This configuration was examined with various
probabilities of power supply failure. As a result, the optimal configuration was examined
with different LPSP values ranging from 1% to 5%. Table 6 shows the optimal values
for this configuration with various LPSP values. Table 6 and Figure 12 shows that at the
LPSP value of 1%, there is a significant change in all values when compared to the values
obtained at the LPSP value of 0%. When we compare the difference between the 1% LPSP
and the remaining LPSP values ranging from 2% to 5% optimal values, the difference in
LCC and component values is not that much of significant. At an LPSP value of 1%, the
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number of power supply hours lost is also 123 only out of 8760 h. As a result, electrification
of the study area at an LPSP value of 1% is also recommendable.

Figure 9. Convergence curves of the configuration made up of Ni-Fe battery.

Figure 10. Convergence curves of the configuration made up of LA battery.
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Figure 11. Convergence curves of the configuration made up of Li-Ion battery.

Figure 12. The Ni-Fe battery configuration analysis with different LPSP values.
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Table 6. Optimum configuration results for various LPSP values.

Configuration Quantity & Cost LPSP (0%) LPSP (1%) LPSP (2%) LPSP (3%) LPSP (4%) LPSP (5%)

PVP/
BIOMG/

BATTERY
(Ni-Fe)

NPV 511 442 429 412 399 398

NBAT 351 332 322 316 311 301

LCC in USD 367,586 339,523 330,600 322,939 316,847 310,933

LPSH 0 182 317 430 564 632

10. Conclusions

The current study has focused on off-grid rural electrification in a remote rural area
of the Indian state of Odisha. The location is still not electrified due to its remote location
because grid extension to that area is not feasible for two reasons: first, extending the grid
to that area is more expensive because it is more than 50 km away. The second reason is
that grid extension is not a viable option for the location since it is located in a densely
forested area surrounded by hilly mountains. As a result, electrification of the study area is
planned, utilizing the study area’s readily available RE resources, such as solar and biomass.
However, due to the time dependence and metrological weather conditions dependence of
these RE resources, the power supply is not continuous. As a consequence, three different
types of battery technologies have been proposed for the current study. To identify a battery
technology that is technologically and economically suitable for the study area.

The current study used available RE resources and battery technologies to model
three configurations: PVP/BIOMG/BATTERY(Ni-Fe), PVP/BIOMG/BATTERY(Li-Ion) and
PVP/-BIOMG/BATTERY(LA). The main goal here is to identify the configuration that is
appropriate for electrifying the study area. The identification process incorporated with
nine well-known and established algorithms, such as Differential Evolutionary Algorithm,
Genetic Algorithm, Moth Flame Optimization, Dragonfly Algorithm, Particle Swarm Op-
timization, Grey Wolf Optimization, Ant Lion Optimization, Grasshopper Optimization
Algorithm and Dynamic Differential Annealed Optimization (DDAO) Algorithm. When
DDAO was compared to the remaining algorithms, it produced the global best optimal re-
sults. Based on the results, the PVP/BIOMG/BATTERY(Ni-Fe) configuration was identified
as the feasible configuration to electrify the study area.

When compared to the configurations made up of Li-Ion and LA battery, the configu-
ration of Ni-Fe battery provided the lowest LCC value as 367,586 USD, which is 39% and
64% lower in percentage terms. The optimal configuration has been further analyzed with
different loss of power supply probability values ranging from 1% to 5%. According to the
findings, at a loss of power supply probability value of 1%, the optimal configuration may
be recommendable for electrifying the study area.
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Abstract: In this article, a case study is presented on applying cluster analysis techniques to evaluate
the level of power quality (PQ) parameters of a virtual power plant. The conducted research concerns
the application of the K-means algorithm in comparison with the agglomerative algorithm for PQ data,
which have different sizes of features. The object of the study deals with the standardized datasets
containing classical PQ parameters from two sub-studies. Moreover, the optimal number of clusters
for both algorithms is discussed using the elbow method and a dendrogram. The experimental
results show that the dendrogram method requires a long processing time but gives a consistent
result of the optimal number of clusters when there are additional parameters. In comparison, the
elbow method is easy to compute but gives inconsistent results. According to the Calinski–Harabasz
index and silhouette coefficient, the K-means algorithm performs better than the agglomerative
algorithm in clustering the data points when there are no additional features of PQ data. Finally,
based on the standard EN 50160, the result of the cluster analysis from both algorithms shows that
all PQ parameters for each cluster in the two study objects are still below the limit level and work
under normal operating conditions.

Keywords: power quality; cluster analysis; K-means; agglomerative; virtual power plant

1. Introduction

The electrical power system aims to generate electrical power and deliver it through
the transmission and distribution system to customers’ devices in a stable, secure, reliable,
and sustainable manner [1]. However, nowadays, various electronic devices such as
AC/DC converters, switching power supplies, and industrial non-linear load are becoming
the factors responsible for the increasing PQ disturbances{XE “PQ”\t “Power Quality”} [2,3].
These devices tend to significantly distort the waveform of the supply and voltage [4,5]. The
term power quality refers to a wide range of electromagnetic phenomena that characterize
the voltage and current quality at a given time and location in the power system [6].
Generally, PQ disturbances are defined into two types based on the characteristics: voltage
variations [7,8] and voltage events [9,10]. The analysis of PQ can be used to monitor the
characteristic disturbances to capture PQ events that potentially detect faults associated
with power quality problems in electrical power systems [11–13].

Power quality assessment has become a critical issue since the increase in sensitive
electronic equipment in industrial and household applications [14,15]. The original lack of
standardization of the measurement method has led to significant differences in each of the
main parameters calculated by different devices. Thus, the consequences of power quality
disturbances can lead to equipment malfunctions and process shutdowns [16,17]. The IEC
61000-4-30 standard [18] satisfies the standardization problem related to power quality by
specifying a precise procedure, mathematical relationships, and required measurement
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accuracy for power quality analyzers [19,20]. During power quality monitoring, a short
averaging time may be sufficient to evaluate the performance and disturbances related to
PQ problems [21,22]. The ideal analysis time for PQ surveying is usually over one week,
which is typically an integration period set at 10 min [23,24]. A network survey over a long
period means that a large amount of data needs to be collected, which can be difficult and
time-consuming to process. It is necessary to use appropriate tools or techniques to analyze
the power quality measurement data to obtain valuable information or patterns within
the huge amount of data. The data mining technique is one of the proposed solutions to
process the huge amount of power quality measurement data to discover useful information
related to power quality disturbances [25,26]. However, when working with data mining
techniques, a basic understanding of the workflow and processing steps is required to
achieve optimal results [27,28].

This research concerns the application of data mining techniques, especially on the
clustering analysis method with the non-hierarchical and hierarchical approach for power
quality problems in a virtual power plant (VPP). In general, a VPP consists of three effective
components. The components used are the conventional dispatchable power plants, energy
storage systems, and responsive or flexible loads [29]. Since cluster analysis is a part of
unsupervised learning that has no labeling [30], it is used for exploratory data analysis of a
VPP to group a collection of data items that are similar to each other and dissimilar from
data items in other clusters [31].

In terms of a non-hierarchical approach, reference [32] introduces cluster analysis with
the K-means algorithm on the long-term measurement of power quality data in the real
virtual power plant that operates in Poland. The research aimed to identify the different
working conditions of the VPP based on data features. Then, the different input power
quality databases that consist of global index values as PQ parameters were used to identify
how the algorithm works with different input features. In contrast, identifying the optimal
number of clusters was defined by using v-fold cross-validation and a cost sequence
chart. Reference [33] proposed the K-means algorithm to identify the energy features
of the prosumers. The algorithm allows one to obtain the categories of prosumers from
two specific indicators, which can assist the distribution network operators in optimizing
networks’ operation.

On the other hand, with the hierarchical approach, reference [34] proposed the ap-
plication of the Ward algorithm to detect short-term working conditions of a VPP by
analyzing the classical PQ parameters as the input data, and the qualitative assessment
of the clustering process was realized by using the cubic clustering criterion. In compar-
ison, reference [35] involves the same approach but using the dendrogram to select the
final number of clusters, which was the unquestionable disadvantage of the hierarchical
approach. Reference [36] uses the Ward algorithm for a prosumer fair load sharing and
surplus trading approach based on the micro-grid concept of the transactive energy con-
cept. This article presented a dendrogram to separate the daily energy consumption and
maximum power from each micro-grid bus.

The exploration of PQ data in mining electrical power networks has been introduced
in reference [37]. The proposed solution is using both the K-means algorithm and the
Ward algorithm for cluster analysis. The K-means algorithm was used to classify the
non-flagged data and flagged data, while the Ward algorithm was proposed to obtain a
dendrogram for determining the optimal number of clusters in non-flagged data to identify
the different working conditions of the electrical network. Since PQ monitoring collects a
huge amount of measurement data, it is necessary to explore the pattern of data to obtain
useful information that can inform upgrades or changes. Reference [26] proposed the
methodology known as mixture modeling or intrinsic classification to recognize network
problems at medium voltage (MV) electrical distribution systems, while reference [38]
presented the use of the K-means algorithm and a hierarchical method to identify the
reference nodes in distribution generation (DG).
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Due to working with clustering analysis, it is very important to define the optimal
number of clusters of the dataset for further analysis [39] because the main problem in
applying many of the existing clustering techniques is that the optimal number of clusters
needs to be pre-specified before the clustering is carried out [40]. Various methods have
been proposed in the literature for determining the optimal number of clusters. Previous
literature presents the use of a dendrogram and v-fold cross-validation, while reference [41]
proposed the elbow method by calculating a sum of squares at each number of clusters and
graphing. The optimal number of clusters is the one that looks like an arm in the graph.
Reference [11] also proposed applying the elbow method to determine the optimal number
of clusters on the K-means method. The result shows that the algorithm is sensitive to
selecting the initial centroid of the cluster, and the elbow method allows the achievement
of the same number of clusters on different data.

On the other hand, reference [42] reveals that the K-means algorithm is widely used
for processing quantitative data with numeric attributes. However, this algorithm has
drawbacks because it needs to determine the number of clusters before being applied. This
research proposed applying the elbow method to assume the optimal number of clusters
for the initial selection of centroids to fill the basic requirement of the K-means algorithm.
The result shows that the elbow method can reduce 25% of iterations of processing using
the K-means algorithm.

Based on the literature review, cluster analysis is suitable to analyze the power quality
disturbance in a VPP. This research focuses on comparing two cluster analysis algorithms on
a hierarchical approach with a non-hierarchical approach to the power quality measurement
data of a VPP. The analysis concerns the medium voltage distribution network in a VPP,
consisting of a 1.25 MW hydropower plant (HPP) and 0.5 MW energy storage system
(ESS). The research is based on PQ measurements, which were realized synchronically
in measurement points on the HPP, ESS, and associated with medium voltage lines. The
measurement values consist of classic PQ parameters and an application of the global index,
which is taken from the duration 1 May to 29 October 2020. Due to the huge amount of data
collection varying on different feature units and scales, the dataset should be standardized
to achieve a compatible input for the cluster analysis algorithms. The K-means algorithm
has been selected from a non-hierarchical approach, while the agglomerative algorithm is a
representative of a hierarchical approach, and both of the algorithms were performed by
using a Euclidean distance metric. Additionally, the method for determining the optimal
number of clusters for the K-means algorithm using the elbow method and determining the
optimal number of clusters of the agglomerative algorithm was conducted by observing the
dendrogram. Finally, the qualitative assessment of clustering results from both algorithms
was presented to identify the power quality characteristic of a VPP based on the standard
EN 50160 [43]. The analysis research and calculation method was performed using a
scikit-learn machine learning library [44] for python [45] users. The contribution of this
article is described below:

• The power quality dataset based on the long-term measurement in a VPP was stan-
dardized to cluster analysis.

• The proposed K-means algorithm and agglomerative algorithm were performed to
compare the hierarchical and non-hierarchical approach for PQ data, which have
different sizes of input data.

• The elbow method and dendrogram were performed to obtain the optimal number of
clusters for PQ data.

• The global index was used for the comparative assessment of PQ parameters between
clustering results of the K-means algorithm and agglomerative algorithm.

• The cluster algorithm evaluation and comparison are used to determine which algo-
rithm is suitable for the investigation object.

This article is organized into five sections to achieve these contributions. Section 2
contains the description of the VPP, power quality data parameters, and the cluster analysis
methodology. Section 3 presents the optimal number of clusters for PQ data of the VPP and
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the qualitative assessment of PQ for each clustering result. Section 4 reveals the discussion
of the results. Finally, Section 5 covers the conclusion.

2. Research Object Description and Methodology

2.1. Object Investigated

The research object of this article is to study the power quality problem in a virtual
power plant operating in Lower Silesia, Poland. The studied subject refers to reference
research [32], which concerns a case study of a VPP that analyzed medium voltage (MV)
distribution networks. The real VPP consists of a 1.25 MW hydroelectric power plant
(HPP) connected to a 0.5 MW battery energy storage system (ESS), which relies on a 20 kV
distribution network connected to the HV/MV substation via an MV line (1-MV). The
study was conducted by analyzing PQ measurement data from power quality recorders
marked “R” in Figure 1. For further analysis, the research object in this article is divided
into two subsections: the first investigation object and the second investigation object.

Skmax = 25 MVA ICSA = 115A

Figure 1. Investigated object of VPP with the location of PQ recorders, where 2HPP-MV: Hydro
power plant with medium voltage, 2ESS-MV: Medium voltage energy storage system, and 1-MV:
medium voltage line.

2.1.1. First Investigation Object

The first object of study includes the power quality measurement data from PQ
recorders at the measurement points 2HPP-MV and 2EES-MV, presented in Figure 1. They
are treated as one point but reported as two for PQ issues because the hydropower plant and
the energy storage system are connected to one node, and their PQ recorders are connected
to the same voltage transformer [32]. However, the active power level of 2ESS-MV and
2HPP-MV is measured separately.

2.1.2. Second Investigation Object

The second object of study has a wider scope than the previous object. It includes
the PQ data of the first investigation object and additional PQ data from the PQ recorders
of 1-MV, shown in Figure 1. For further analysis, the extension of the dataset into two
sub-datasets is due to observation on how the different sizes and features of the input
dataset will influence the performance of cluster analysis algorithms and on how the
optimal number of clusters will be determined.

2.2. Parameter of Dataset Description

The most common power quality standards used nowadays [46] are IEC 61000-4-
30 [18] and EN 50160 [43]. IEC 61000-4-30 [18] is an IEC standard that specifies procedures
for measuring and interpreting power quality parameters in 50/60 Hz AC networks.
This standard also describes measurement procedures to obtain reliable, repeatable, and
comparable results with any compliant measuring instrument.
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In this section, the PQ measurement parameters from all PQ recorders of the VPP were
used as the input dataset corresponding to the demand of the standard IEC 61000-4-30 [18].
The global power quality index consists of a classical power quality measurement, and
the active power level was included in the proposed dataset. The measurement from PQ
recorders was taken for a 26-week period, which already went through the preprocessing
stage to exclude the voltage events. Thus, the dataset of the VPP that was used has
parameters from a 10-min interval of about 24,612 data points. Since there are two study
objects in this article, the first study object and the second study object, the dataset is
independently divided into two different datasets, as shown in Figure 2.

Power quality 
data of VPP

Dataset I
‘First Investigation 

object at point 2HPP & 
2ESS’

Dataset II
‘Second Investigation 

object at point 
2HPP,2ESS, & 1-MV’

Classic PQ parameters 
separately & active 

power of each phase 
separately 

Size of data:
- 25 features data
- 24612 rows data

Classic PQ parameters 
separately & active 

power of each phase 
separately 

Size of data:
- 47 features data
- 24612 rows data

 

Figure 2. Proposed dataset schema: description of dataset separation, parameters, and size of data.

Dataset I was used for the first study object and contains classical 10-min PQ parame-
ters and active power levels of PQ recorders at points 2HPP-MV and 2ESS-MV. The dataset
has 25 features as input parameters and 24,612-row data, and it contains about 615,300
single cells. On the other hand, dataset II is larger than dataset I, and it contains classical
10-min PQ parameters and active power levels of PQ recorders at points 2HPP-MV, 2ESS-
MV and 1-MV. This dataset is in the form of an array with 47 features as input parameters
and 24,612-row data, and the size of the second dataset is 1,156,764 individual cells. Both
the first and second datasets consist of classical power quality parameters, as shown below:

• Three phases of voltage;
• Three phases of 200 ms minimal voltage;
• Three phases of 200 ms maximal voltage;
• Voltage unbalance;
• Three phases of active power;
• Three phases of total harmonic distortion in voltage;
• Three phases of 200 ms maximum of total harmonic distortion in voltage.

2.3. Proposed Methodology

This section proposes cluster analysis as a data mining technique to group the data
points based on their similarity [47]. The different algorithms were used to compare the
grouping process and clustering result between hierarchical and non-hierarchical methods
in this research approach. K-means is one of the algorithms from the non-hierarchical
family, while the agglomerative technique is representative of the hierarchical method. The
summary of processing steps to explore the dataset by using clustering techniques can be
seen in the following schema in Figure 3.

The proposed methodology schema consists of five major steps: load dataset, feature
engineering, applying clustering algorithm, qualitative assessment of PQ parameters, and
the last is cluster algorithm evaluation and comparison. These five stages are described
below:
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Figure 3. Proposed methodology schema.

2.3.1. Load Dataset

The data are obtained from reliable single or multiple sources. This step is crucial for
clustering since the quantity and quality of the dataset affect the accuracy of the output [41].
The dataset used in this article contains power quality parameters without flagged data. In
this work, two different datasets are loaded to conduct the research: dataset I was used for
the first research object, and dataset II was used for the second research object.

2.3.2. Feature Engineering

Feature engineering is a process of preparing the right input dataset that is compatible
with the requirements of the clustering analysis algorithm with the distance calculation [48],
and it can improve the performance of the clustering analysis model [49]. In this stage,
standardization is needed because the dataset contains features with different measurement
unit scales, where these differences in the ranges of initial features cause trouble for the
clustering algorithm. To prevent this problem, the standardization scaling technique by
the Z-score method was used to transform the features to comparable scales. The authors
used the Standard Scaler library from scikit-learn [50] and Pandas library [51] as tools to
standardize the features of the dataset.

2.3.3. Clustering Approach

In this step, the K-means [52] and the agglomeration [53] methods are used to de-
termine the cluster of the data points. To meet this requirement, the elbow method is
proposed to obtain the optimal number of clusters in the dataset by measuring the value of
the sum of squares within the clusters when using the K-means algorithm. When using
the agglomeration algorithm, the optimal number of clusters does not need to be defined
specifically, but the dendrogram graph was proposed to observe the optimal number of
clusters for this method. After finding the optimal number of clusters for each algorithm,
the authors applied the clustering algorithms to the dataset to assign each data point to
belong to their clusters. The summary of the cluster analysis stage can be seen in Figure 3.

2.3.4. Qualitative Assessment

Qualitative assessment was required to analyze the PQ problems that belong to the
cluster. To perform the power quality assessment, the data points were grouped based
on their cluster, and the statistical value of each cluster was measured to observe the
qualitative data analysis in each cluster and compare the average value of PQ parameters
from each cluster. In this article, the standard limit based on the European standard EN
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50160 [43] was used as an indicator to observe the visualization of the PQ level. The
acceptable values based on the standard used for the global index are presented in Table 1.

Table 1. Voltage characteristic of standard EN 50160 [43] used for the global index.

Parameter Voltage Characteristic

Voltage 10% of declared voltage
Short-term flicker severity 1.0

Total harmonic distortion in voltage 8%
Voltage unbalance 2%

2.3.5. Cluster Algorithm Evaluation and Comparison

Cluster evaluation determines how well the clustering algorithm can separate the
dataset with the optimal number of clusters [54]. Since cluster analysis is not part of su-
pervised learning and is performed as a part of exploratory data analysis, it is challenging
to assess and evaluate the algorithm. However, there are several methods to define the
validation of the clustering result. In this research, the Calinski–Harabasz index and silhou-
ette score were used to evaluate the clustering algorithms. In this article, the metric was
performed by using the scikit-learn library [44]. The silhouette function computes the mean
silhouette coefficient of all samples based on the mean intra-cluster distance and the mean
nearest-cluster distance for each sample. The formula is described mathematically [55,56]:

s =
b − a

max (a, b)
(1)

where:

• s: the silhouette coefficient score;
• a: the mean distance between all other points and a sample in the same class;
• b: the mean distance between all other points and a sample in the next closest cluster.

The Calinski–Harabasz index, also known as the Variance Ratio Criterion, is the ratio
of the sum of the dispersion between clusters and the dispersion between clusters for all
clusters—the higher the value, the better the performance [57,58]. The math formula for
this method is shown below [59]:

CH =
SSB
SSw

x
N − k
k − 1

(2)

where:

• CH: the Calinski–Harabasz score;
• k: the number of clusters;
• N: the total number of observations (data points);
• SSw: the overall within-cluster variance;
• SSB: the overall between-cluster variance.

3. Result

This section presents the observation of the selected optimal number of clusters using
the elbow method and a dendrogram for the first and second investigated object. Then,
after applying the selected optimal number of clusters, the qualitative assessment was
performed to compare the PQ level for different clusters. Finally, the clustering algorithm
evaluation and comparison were calculated to determine which algorithm is suitable as a
cluster analysis algorithm approach for the investigation objects.

3.1. Optimal Number of Clusters

The optimal number of clusters is a fundamental problem in partitioning clustering
such as K-means clustering or hierarchical clustering [60]. It is necessary to know the num-
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ber of clusters to achieve an optimal result. In this section, the optimal number of clusters
of the first investigation object and second investigation object was performed using the
elbow method provided by the Yellowbrick library [61] for machine learning visualization
and the dendrogram provided by using SciPy library [62] for scientific computing.

The first investigation object, the elbow method associated with the K-means algo-
rithm, was performed for the minimal number of clusters equal to 1, and the maximal is
equal to 9. However, the analysis presents that the optimal number of clusters is equal to
3, shown in the elbow curve in Figure 4a, while on a hierarchical approach by using the
agglomerative algorithm with a dendrogram, the optimal number of clusters is determined
equal to 3, as presented in Figure 4b, after truncating the threshold distance at height 300
in the dendrogram.

 
 

(a) (b) 

Figure 4. The optimal number of clusters for the first investigation object: the elbow method (a) shows that the optimal
number of clusters is equal to 3, while on the dendrogram (b), the possibility of the optimal number of clusters is also equal
to 3.

On the other hand, dataset II belongs to the second investigation object with a bigger
input size than the previous object. By using the elbow method associated with the K-
means algorithm as a non-hierarchical approach, the minimal number of clusters is equal to
1, and the maximal is equal to 9. However, the analysis shows that the optimal number of
clusters is equal to 4, which can be seen in the elbow curve presented in Figure 5a. On the
contrary, with the hierarchical approach using a dendrogram, which is shown in Figure 5b,
the optimal number of clusters is equal to 3 after determining to truncate the threshold
distance at height 400 in the dendrogram.
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(a) (b) 

Figure 5. The optimal number of clusters for the second investigation object: the elbow method (a) shows that the optimal
number of clusters is equal to 4, while on the dendrogram (b), the possibility of the optimal number of clusters is also equal
to 3.

3.2. Qualitative Assessment of Clusters

As defined in the previous subsection, the optimal number of clusters has been
determined. Thus, the qualitative assessment from the clustering result of the K-means
algorithm approach and agglomerative algorithm approach is performed in this section.
The authors deal with power quality parameters that are only considered in the elements of
the power quality report [63]: short-term flicker magnitude and total harmonic distortion
in voltage.

The assessment leads to comparing the average value of the selected parameters for
different clusters based on the K-means clustering result and agglomerative clustering
result to achieve knowledge about the PQ parameter level of the investigation object. The
visualization of the PQ parameter was graphed on each cluster to observe the limit level of
the PQ parameter through the standard EN 50160 [43,64].

3.2.1. Qualitative Assessment of the First Investigation Object

The qualitative assessment of the first investigation object, Table 2, shows the compar-
ison of the statistical value of the PQ parameter level for different clusters by the K-means
approach and agglomerative approach at measurement points 2HPP-MV and 2ESS-MV.

The clustering result by the K-means algorithm shows that the average value of cluster
“1” is characterized by a medium level of Pst and a high level of THDu compared to
other clusters. Cluster “2” is characterized by a high level of Pst and a low level of THDu
compared to the other clusters. However, cluster “3” has a low level of Pst and a medium
level of THDu.

On the other approach, by using an agglomerative algorithm, the comparison of the
average value of the PQ level for different clusters presented in Table 2 indicates that cluster
“1” represents a medium level of Pst and a high percentage level of THDu compared to
others. Cluster “2” represents a medium level of THDu with a low level of Pst. Only cluster
“3” has a high value for Pst and a low level of THDu.
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Table 2. Comparison of PQ level for different clusters on the first investigation object.

The PQ Parameter Level at Measurement Points 2HPP-MV and 2ESS-MV

Pst THDu (%)Clustering
Algorithm Cluster Value

L1 L2 L3 L1 L2 L3

Mean 0.111 0.115 0.125 1.3 1.3 1.3
Min 0.032 0.028 0.03 0.6 0.5 0.6Cluster 1
Max 1.358 1.704 1.584 2.2 2.4 2.3

Mean 0.138 0.143 0.147 0.8 0.8 0.8
Min 0.034 0.032 0.04 0.4 0.3 0.4Cluster 2
Max 1.586 1.63 2.788 1.5 1.6 1.6

Mean 0.101 0.107 0.111 1 1 1
Min 0.028 0.024 0.03 0.3 0.3 0.4

K-means
Approach

Cluster 3
Max 2.386 2.18 2.864 1.7 1.8 1.8

Mean 0.104 0.111 0.119 1.158 1.108 1.142
Min 0.028 0.028 0.03 0.36 0.375 0.403Cluster 1
Max 0.36 0.352 0.412 2.234 2.384 2.319

Mean 0.096 0.1 0.104 0.994 1.007 1.031
Min 0.028 0.024 0.03 0.317 0.308 0.378Cluster 2
Max 0.814 0.658 0.82 1.907 1.938 1.99

Mean 0.159 0.163 0.167 0.905 0.886 0.894
Min 0.04 0.038 0.036 0.366 0.345 0.351

Agglomerative
Approach

Cluster 3
Max 2.386 2.18 2.864 1.846 2.011 1.914

The level of PQ parameters by the K-means algorithm approach. Cluster “2” represents
the average of short-term flicker severity (Pst) in each phase at a higher level than the other
clusters, while cluster “1” represents the highest average value of THDu in each phase
compared to the other clusters. This can be seen clearly in Figure 6.

 
Figure 6. Visualization of PQ parameters’ level of the first investigation object at measurement points 2HPP-MV and
2ESS-MV by the K-means algorithm approach.

Based on the standard EN 50160 [43], the visualization of the recorded set of PQ
parameters of the first investigation object that is graphed in Figure 6 indicates that short-
term flicker severity and total harmonic distortion in voltage on each cluster are under
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normal operating conditions due to the fact that all the levels of PQ parameters are below
compatibility for 95% of the time.

The agglomerative algorithm approach shows that cluster “3” is indicated as the group
with the highest average value of Pst in each phase compared to the other clusters, but in
terms of THDu, cluster “1” has the highest average value over 1.1% among other clusters.
This can be proven by the visualization of PQ parameters’ level in Figure 7. According to
the standard EN 50160 [43], the recorded set of THDu and Pst, which are shown in Figure 7,
is below the limit level and working under normal operating conditions during any period.

Figure 7. Visualization of PQ parameters’ level of the first investigation object at measurement points 2HPP-MV and
2ESS-MV by the agglomerative algorithm approach.

3.2.2. Qualitative Assessment of the Second Investigation Object

Table 3 shows the comparison of the statistical value of the PQ level for different
clusters by the K-means algorithm approach and agglomerative algorithm approach at the
measurement points 2HPP-MV and 2ESS-MV and additionally at the measurement point
1-MV for the second investigation object.

With a non-hierarchical approach using the K-means algorithm, when examining the
average values of the PQ level in certain clusters at the measurement point 1-MV, cluster
“1” represents a low level of Pst but an intermediate level of THDu compared to other
clusters. Cluster “2” represents a high level of Pst with a low level of THDu. Cluster “3”
represents a low level of Pst with a high level of THDu. Cluster “4” indicates a medium
level of Pst and THDu compared to other clusters. While the average comparison value
of the PQ level at measurement points 2HPP-MV and 2ESS-MV shows that cluster “1”
has a medium level of Pst and low level of THDu among other clusters, cluster “2” has a
high level of Pst but a low level of THDu, and cluster “3” has a high level of THDu but a
medium level of Pst. Cluster “4” has a low level of Pst and a high level of THDu compared
to the other clusters.

Through a hierarchical approach, the agglomerative algorithm represents the compara-
tive evaluation of the average value of the PQ level in specific clusters. At the measurement
point 1-MV, it reveals that cluster “1” has a high value of Pst and a low value of THDu
compared to the others. Cluster “2” shows a medium level of both the THDu value and
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Pst value. Cluster “3” shows a low level for Pst and a high level for THDu compared to
the other clusters. Regarding the comparative assessment of the average value of the PQ
level in specific clusters at the measurement points 2HPP-MV and 2ESS-MV, it is found
that only cluster “1” has a high Pst value with a low THDu value compared to the others,
while cluster “2” is characterized by a medium value at the THDu level but still has a low
Pst value. Cluster “3” is the opposite of cluster “1” as it has a high THDu value with a
medium Pst value compared to the other clusters.

Table 3. Comparison of PQ level for different clusters on the second investigation object.

The PQ Parameter Level at Measurement Point 1-MV

Pst THDu (%)Clustering
Algorithm Cluster Value

L1 L2 L3 L1 L2 L3

Mean 0.064 0.06 0.058 0.933 0.878 0.913
Min 0.006 0.008 0.006 0.308 0.357 0.4Cluster 1
Max 1.074 1.012 1.154 1.553 1.498 1.422

Mean 0.121 0.113 0.114 0.778 0.785 0.803
Min 0.012 0.014 0.014 0.293 0.354 0.409Cluster 2
Max 3.47 2.864 3.47 1.587 1.584 1.56

Mean 0.065 0.064 0.061 1.382 1.338 1.33
Min 0.004 0 0.006 0.61 0.519 0.671Cluster 3
Max 0.87 0.968 0.844 2.218 2.252 2.191

Mean 0.07 0.068 0.066 1.121 1.082 1.112
Min 0.006 0.002 0.004 0.351 0.397 0.446

K-means
Approach

Cluster 4
Max 1.07 1.226 1.11 1.755 1.743 1.727

Mean 0.148 0.138 0.14 0.758 0.764 0.784
Min 0.014 0.014 0.008 0.293 0.354 0.409Cluster 1
Max 3.47 2.864 3.47 1.953 1.929 1.944

Mean 0.067 0.064 0.063 1.068 1.04 1.071
Min 0.006 0.002 0.004 0.335 0.378 0.433Cluster 2
Max 0.506 0.444 0.654 2.057 1.999 2.014

Mean 0.061 0.06 0.057 1.147 1.096 1.108
Min 0.004 0 0.006 0.308 0.357 0.4

Agglomerative
Approach

Cluster 3
Max 0.57 0.744 0.528 2.218 2.252 2.191

The PQ parameter level at measurement points 2HPP-MV and 2ESS-MV
Mean 0.111 0.119 0.124 0.934 0.874 0.919
Min 0.028 0.028 0.032 0.384 0.378 0.415Cluster 1
Max 0.846 0.766 1.078 1.569 1.526 1.526

Mean 0.152 0.156 0.16 0.81 0.802 0.807
Min 0.04 0.038 0.04 0.36 0.345 0.351Cluster 2
Max 2.386 2.18 2.864 1.471 1.556 1.608

Mean 0.111 0.116 0.125 1.392 1.366 1.383
Min 0.032 0.028 0.03 0.552 0.537 0.613Cluster 3
Max 0.736 0.982 1.254 2.234 2.384 2.319

Mean 0.097 0.1 0.105 1.027 1.033 1.057
Min 0.028 0.024 0.03 0.317 0.308 0.385

K-means
Approach

Cluster 4
Max 0.944 0.942 0.996 1.648 1.727 1.718

Mean 0.171 0.174 0.179 0.792 0.779 0.786
Min 0.04 0.038 0.04 0.366 0.345 0.351Cluster 1
Max 2.386 2.18 2.864 1.801 1.865 1.914

Mean 0.097 0.101 0.105 0.991 1.004 1.026
Min 0.028 0.024 0.03 0.317 0.308 0.378Cluster 2
Max 0.452 0.398 0.602 1.907 1.938 1.99

Mean 0.11 0.117 0.124 1.159 1.11 1.14
Min 0.028 0.028 0.03 0.388 0.391 0.418

Agglomerative
Approach

Cluster 3
Max 0.54 0.742 0.552 2.234 2.384 2.319

Table 3 contains two sets of the statistical value of the PQ parameters at different
measurement point locations. Therefore, the qualitative analysis is performed separately.
Using the K-means algorithm approach, the group of average values at the measurement
point 1-MV shows that cluster “2” has the highest average value of three-phase short-term
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flicker severity with a value above 0.11 for each phase, and cluster “3” is a group with a
high value of THDu (these parameters are visualized in Figure 8a), while the analysis at
the measurement points 2HPP-MV and 2ESS-MV shows that cluster “2” has the highest
average value at the Pst level and cluster “3” has a high average value of THDu, as
presented in Figure 8b. According to the standard EN 50160 [43], the visualization of
the recorded set of PQ parameters on the second investigation object at measurement
points 2HPP-MV and 2ESS-MV (a) and 1-MV (b) by the K-means approach indicates that
short-term flicker severity and total harmonic distortion in voltage on each cluster are
under normal operating conditions, due to the fact that all the levels of PQ parameters are
below compatibility for 95% of the time.

 
(a) 

 
(b) 

Figure 8. Visualization of PQ parameters’ level of the second investigation object by the K-means algorithm approach: Part
(a) is a PQ level’s graph at measurement point 1-MV and part (b) is a PQ level’s graph at measurement points 2HPP-MV
and 2ESS-MV.
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In terms of the agglomerative algorithm approach, the average value of PQ phenomena
at the measurement point 1-MV shows that cluster “1” has the highest mean value of three-
phase short-term flicker severity with an average value on each phase around 0.14, followed
by cluster “2” and cluster “3”. For THDu, cluster “3” represents the highest value among
the other clusters. The PQ parameters’ level at the measurement point 1-MV (a) can be seen
in Figure 9. Therefore, the qualitative evaluation of the PQ data of the measurement points
2HPP-MV and 2ESS-MV shows that cluster “1” has the highest value for Pst compared to
the other clusters, and cluster “3” is the group with a high value for THDu. This can be
observed in the graph of measurement points 2HPP-MV and 2ESS-MV (b), as presented in
Figure 9.

 
(a) 

 
(b) 

Figure 9. Visualization of PQ parameters’ level of the second investigation object by the agglomerative algorithm approach:
Part (a) is a PQ level’s graph at measurement point 1-MV and part (b) is a PQ level’s graph at measurement points 2HPP-MV
and 2ESS-MV.
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When referring to the standard EN 50160 [43], the visualization of the recorded set
of PQ parameters’ level at measurement point 2HPP-MV (b) and the measurement point
1-MV (a), presented in Figure 9, indicates that short-term flicker severity and total harmonic
distortion in voltage on each cluster are under normal operating conditions, due to the fact
that all the levels of PQ parameters are below compatibility for 95% of the time.

3.3. Cluster Algorithm Evaluation and Comparison

In the first study object, dataset I was used to observe the power quality parameter
issues only at measurement points 2HPP-MV and 2ESS-MV. The proposed cluster analysis
algorithms, K-means and the agglomerative method, are considered to conduct qualitative
data analysis on power quality measurement data. In this section, the evaluation of the
algorithms is performed to investigate how well the algorithms group the data points to
belong to their clusters. The silhouette coefficient and Calinski–Harabasz index were used
as the clustering performance evaluation metric.

The silhouette coefficient validates clustering performance by computing the pairwise
difference between and within clusters. Here, the silhouette has a value that expresses
how similar an object is to its cluster compared to other clusters. The coefficient varies
between −1 and 1, where a low value or close to −1 indicates that the object is assigned
to the wrong cluster. A high value or close to 1 means that the object is close to its cluster
and matches well with its cluster [54,65]. At the same time, the Calinski–Harabasz index is
an evaluation index based on the degree of dispersion between clusters. A higher value
indicates that the clusters are dense and well-separated, which is the standard concept of a
cluster [66].

Table 4 contains the optimal number of clusters determined by the elbow method and
the dendrogram and the evaluation of clustering performance scores by the K-means and
agglomeration algorithms performed in dataset I and dataset II.

Table 4. Clustering algorithm performance evaluation on the investigation object.

Object
Dataset

Cluster
Algorithm

Find Optimal
Number
Method

Optimal
Number

of
Clusters

Clustering Performance
Evaluation

Metric

Silhouette
Coefficient

Calinski–
Harabasz

Index

Dataset
I

K-Means Elbow method 3 0.235 7336.44
Agglomerative Dendrogram 3 0.201 5811.29

Dataset
II

K-Means Elbow method 4 0.213 5923.020
Agglomerative Dendrogram 3 0.219 4954.945

The silhouette coefficient score and Calinski–Harabasz index score indicate that the
K-means algorithm performs better than the agglomerative algorithm to cluster the data
points of dataset I, where the optimal number of clusters is equal to 3.

In the second object of study, dataset II was used to investigate the PQ disturbances
at measurement points 2HPP-MV and 2ESS-MV with additional measurement point 1-
MV. By the elbow method associated with the K-means algorithm, the optimal number
of clusters is equal to 4, while the agglomerative algorithm determines that the optimal
number of clusters is equal to 3, based on the consideration of the dendrogram. Due to
the different values for the optimal number of clusters, it is challenging to compare these
algorithms as they lead to a different view. However, according to the silhouette coefficient,
the agglomerative algorithm performs well in separating the data points belonging to their
cluster compared to the K-means algorithm. However, for the Calinski–Harabasz index,
the K-means algorithm performs better than the agglomerative algorithm.

155



Energies 2021, 14, 5902

4. Discussion

This research aimed to apply clustering analysis as a data mining technique to study
the qualitative assessment of the power quality level from a virtual power plant operating
at medium voltage levels of the distribution network in Lower Silesia in Poland. The object
of this study focuses on the analysis of the measurement data of three PQ recorders of the
VPP. The measurement dataset consists of 10 min of classical power quality parameters
with a measurement period of 26 weeks, recorded from 1 May to 29 October 2020. In
previous research [32], the application of the global index was proposed to reduce the
size of the input dataset from all PQ parameters to maintain the data features for cluster
analysis. However, this article is a further development of the reference study [32]. This
study only deals with analyzing a part of the measured data from PQ recorders to obtain
comparative results between two clustering algorithms.

The object of study is divided into two sub-studies for further analysis. The first
study object includes only the measurement data of PQ recorders at the measurement
points 2HPP-MV and 2ESS-MV, which have 25 parameters, while the second study object
for further analysis includes the first study object’s data with the additional dataset of
measurement point 1-MV. Hence, it has 45 features. The reason to extend the dataset into
two sub-datasets is to observe how different sizes and features of the input of the dataset
will influence the algorithm of cluster analysis to separate the data points and how the
optimal number of clusters will be determined.

The measurement data coming from PQ recorders are not standardized. In the first
attempt to perform cluster analysis without scaling the dataset, the optimal number of
clusters from both algorithms was inconsistent. For this reason, the authors are concerned
with the scaling of measurement data parameters to maintain the consistency and regularity
of the value between features, and the standardization of the dataset can also improve the
performance of the clustering analysis model.

Determining the optimal number of clusters is difficult because there is no specific
answer to this question [67,68]. Prior domain knowledge can help choose the optimal
number of clusters [40], but when working with an unknown dataset, it is necessary to
study the dataset to determine the number of clusters [69]. In this article, the elbow method
and the dendrogram are proposed to observe the relationship between the data. The
elbow method is related to the K-means algorithm, and the dendrogram refers to the
application of the agglomerative hierarchical algorithm. All clustering algorithms were
built on Python [45] using Visual Studio Code IDE [70]. The machine learning library
was used to run the K-means algorithm and the agglomerative algorithm is from scikit-
learn [44]. The computer used for this experiment has a processor with a specification of
intel® Core™ i5-4300U CPU@1.90 GHz~2.49 GHz, with 8 GB RAM and a total memory
2160 MB graphics card from intel® HD Graphics Family installed. The operating system of
the computer is Windows 10 Pro 64-bit.

The experimental results of this study show that the execution of the dendrogram
method provided by the SciPy library [62] required a long processing time of about 1350.28
s for dataset I, which belongs to the first study object, and for dataset II, which belongs to
the second study object, the execution time was about 1421.64 s. This method is difficult to
compute, and a crowded graph also makes it challenging to obtain the specific number of
clusters.

On the other hand, the elbow method provided by Yellowbrick [61] requires the fast
computation of the algorithm to calculate the sum of the squared distance between each
point and the centroid in a cluster (WCSS). The execution time of the elbow method for
dataset I, which belongs to the first study object, was about 13.33 s, and for dataset II, which
belongs to the second study object, it was 18.08 s.

A comparison cluster analysis between the two algorithms reveals that in the first
object of study, using the K-means algorithm associated with the elbow method, the optimal
number of clusters is determined to equal 3, while the hierarchical relationship between
the objects in the dendrogram shows that the optimal number of clusters is also equal to
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3, which is suitable for the agglomerative algorithm. On the other hand, for the second
study item, there was a shift in the value of the optimal number of clusters by the elbow
method from 3 to 4. The current study shows that the additional features of the dataset
can change the interpretation of the K-means algorithm for grouping data points based
on their centroid. However, by using the dendrogram, the authors were able to decide on
the optimal number of clusters, which was still set equal to 3 for the dataset of the second
study object.

There are some advantages and disadvantages between the two methods presented.
The elbow method with K-means provides a fast calculation, but it gives an inconsistent
value of the optimal number when there are additional parameters or features, while
the dendrogram for the agglomerative algorithm is hard to calculate but still produces a
consistent result even if there are additional parameters or features.

5. Conclusions

In this article, a case study of the cluster analysis technique for analyzing the power
quality level of a virtual power plant was presented. The algorithm was developed to
compare the qualitative assessment of the dataset. The input dataset was standardized to
have the same scale between the different feature units to achieve a compatible input for
the cluster analysis algorithm. The optimal number of clusters was still difficult to choose
because the additional dataset parameters may affect the performance of the clustering
algorithm. The result shows that the K-means algorithm is a simple algorithm that allows
fast computation, while the agglomerative algorithm is the opposite. In order to run the
K-means algorithm, the specific number of clusters must be determined first, which is a
disadvantage of this algorithm. On the other hand, there is no specific number of clusters
required for the agglomerative algorithm, which must be determined first.

The study at the first object investigation shows that there is a possibility that the
optimal number of clusters is equal to 3, which determines both the elbow method and
the dendrogram. The comparison result of cluster algorithm evaluation in this object
study shows that the K-means algorithm works better than the agglomerative algorithm
to separate the data points of dataset I, with a higher score of silhouette coefficient and
Calinski–Harabasz index of 0.235 and 7336.49, respectively.

When examining the second object, the optimal number of clusters for the two algo-
rithms is different. The elbow method defines 4 as the optimal number of clusters for the
K-means algorithm, while by the dendrogram, it is found that 3 is the optimal number
of clusters for the agglomerative algorithm. Moreover, due to the different values of the
optimal number, it is not fair to compare the cluster evaluation results between the two
algorithms since the score is also generated differently. For the silhouette coefficient, the ag-
glomerative algorithm performs better than the K-means algorithm. However, based on the
Calinski–Harabasz index, the K-means algorithm performs better than the agglomerative
algorithm.

A qualitative assessment was performed to define the comparison of statistical data
analysis between clusters to determine the characteristics of the power quality parameters.
It is necessary to use the standard EN 50160 [43] to consider the work of the electrical
distribution network in normal or abnormal operating conditions. The cluster analysis
results show that all PQ parameters on each cluster for both the first study object and the
second study object indicate that all PQ levels are still below the limit value and work
under normal operating conditions.
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Abstract: This paper proposes an adaptive neuro-fuzzy inference system (ANFIS) maximum power
point tracking (MPPT) controller for grid-connected doubly fed induction generator (DFIG)-based
wind energy conversion systems (WECS). It aims at extracting maximum power from the wind
by tracking the maximum power peak regardless of wind speed. The proposed MPPT controller
implements an ANFIS approach with a backpropagation algorithm. The rotor speed acts as an
input to the controller and torque reference as the controller’s output, which further inputs the rotor
side converter’s speed control loop to control the rotor’s actual speed by adjusting the duty ratio
for the rotor side converter. The grid partition method generates input membership functions by
uniformly partitioning the input variable ranges and creating a single-output Sugeno fuzzy system.
The neural network trained the fuzzy input membership according to the inputs and alter the initial
membership functions. The simulation results have been validated on a 2 MW wind turbine using
the MATLAB/Simulink environment. The controller’s performance is tested under various wind
speed circumstances and compared with the performance of a conventional proportional–integral
MPPT controller. The simulation study shows that WECS can operate at its optimum power for the
proposed controller’s wide range of input wind speed.

Keywords: ANFIS; fuzzy logic; induction generator; MPPT; neural network; renewable energy;
variable speed WECS; wind energy conversion system; wind energy

1. Introduction

Electricity is an undeniable source for the development of any nation. Life cannot be
imagined without electricity in any sector, whether residential, commercial, or industrial.
The generation of electricity depends on fossil fuels such as oil, coal, and natural gases.
About 70% of the world’s electricity generation is done by coal and other fossil fuels. With
the increase in population, the requirement for electricity is also accelerating at an alarming
rate, demanding the increased consumption of fossil fuels. As a result, fossil fuel supplies
exhaust. All these issues can be eliminated promisingly by renewable energy sources.
Wind energy, solar energy, biomass energy, geothermal energy, and tidal energy are some
of the well-established and developed renewable energy sources [1,2].

As a clean and green energy source, wind energy is the most effective option for miti-
gating pollution and meeting energy requirements [3]. Wind energy generation depends

Energies 2021, 14, 6275. https://doi.org/10.3390/en14196275 https://www.mdpi.com/journal/energies
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on weather conditions, so the power generation from wind energy fluctuates and does not
fulfil load demand instantaneously. For reliable operation and performance, an appropriate
control strategy should be adopted. Therefore, the operation of the wind energy conversion
system (WECS) in obtaining optimal power has become critical due to the intermittent
behaviour of wind flow. To resolve this problem and to use WECS more economically and
efficiently, MPPT technology needs to be implemented to extract optimal power at variable
wind speed conditions.

In the literature, mainly two types of wind energy generation (WEG), variable speed
WEG [4], and fixed-speed WEG [5], are available. The variable speed WEG is more
advantageous than fixed-speed WEG; it offers wide wind speed range operation, better
power-capturing capability, and improved overall efficiency. The doubly fed induction
generator (DFIG) is most dominant for variable speed operation applications. It uses
reduced capacity power converters, about one-fourth of the system-rated capacity, and is
less expensive and easier to maintain [6,7]. The DFIG also provides good damping for the
weak grids. The operation and control of wind turbines have been improved today, and
the credit goes to the developments in the power electronics industry.

The drawbacks of both the permanent magnet synchronous generator (PMSG) [8] and
squirrel cage induction generator (SCIG) [9] WECS are that they need a power converter
rated at the total system power rating, which increases their cost. Filters for inverter
outputs and EMI are rated for the rated output power, complicating and increasing filter
design costs. Additionally, converter efficiency has a significant impact on overall system
efficiency throughout the entire operating range.

Most of the WECS are equipped with DFIG using back-to-back power electronic
converters in the wind industry [10,11]. Because the converter does not have to transmit
the total power generated by the DFIG, its power rating is smaller than the overall machine
rating. Such WECS has decreased the cost of inverters because generally, the inverter rating
is one fourth of total system power. Additionally, it decreased the cost of inverter and EMI
filters since filters are rated for one fourth of total system power, and inverter harmonics
represent a smaller proportion of total system harmonics. The higher cost of the wound
rotor induction machine than the SCIG is compensated by the smaller size of the power
converters and increased energy production [12]. The maximum power point tracking
control is implemented utilizing a machine-side control mechanism in such a system.

Maximum power point control (MPPT) algorithms are among the best techniques to
extract the maximum possible power at various wind speeds in wind turbine systems. The
MPPT algorithms protect the system from overload and various lightening surges [13,14].
Additionally, MPPT assists in stabilizing the output voltage in the presence of higher and
lower wind speeds than the rated wind speed.

In the literature [15–17], various MPPT algorithms have extensively been discussed.
The hill-climbing search (HCS), optimum relation-based MPPT (ORB), and the incremental
conductance (INC) are all classified as direct power control (DPC)-based MPPT algo-
rithms. While optimal torque control (OTC), power signal feedback (PSF), and tip-speed
ratio (TSR) algorithms are included in the category of indirect power control (IPC)-based
MPPT algorithms. In addition, fuzzy-logic and neural network-based control has been
developed [18].

HCS, also known as perturbation and observation, is a resilient, unreliable technique
based on previous WT characteristics knowledge. This algorithm provides the local max-
imal point for the given function [19]. The likelihood of identifying the wrong direction
to achieve the most significant power point under a sudden change in wind direction is a
disadvantage of this method. Using a modified version of the HCS method, [20,21] was
able to address the issue of incorrect direction movement under changing wind speeds.

The ideal relationship between quantities such as WT power output, converter DC
voltage, power, current, and speed is required by the ORB-based MPPT algorithm [22,23].
Fast-tracking and no need for sensors are the main advantages of this technique. However,
a thorough understanding of the characteristic curves of turbine power and DC current at
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different wind speeds is required. By observing the optimum current curve, the MPP can
be tracked [24].

The INC algorithms are completely independent of sensor needs and the specifica-
tion of wind turbine and generator parameters. Therefore, systems employed with this
algorithm reduce the system’s cost and improve reliability [25]. According to the authors
in [26,27], the operating point of the MPPT may be determined using the power-speed
slope. The disadvantage of this method is that it becomes unstable when the inertia of
the turbine varies under a variable speed wind scenario [28]. A new method called as
the fractional order INC (FO-INC) is presented in [27] to address the instability issue at
different wind speeds. For fast changes, variable step size is used in tracking the MPP
under variable wind conditions.

The PSF-based MPPT approach makes use of a power control loop which incorporates
information about WT’s maximum power curve [12]. While the TSR-based MPPT controller
is easy to build and highly efficient, it has a high operating cost. The drawback of this
method is it needed optimal power coefficient and optimal tip-speed ratio [29].

The OTC technique involves changing the generator torque based on the most sig-
nificant power reference torque at any given wind speed [18]. The main advantages of
this method are fast response, efficiency, and simplicity. Due to the absence of direct wind
speed measurement, changes in wind speed are not reflected in the reference signal [16].

MPPT control techniques based on fuzzy logic offer the benefits of rapid conver-
gence, parameter independence, and acceptance of noisy and incorrect data [30]. The
articles [31,32] provide a data-driven design approach for generating a Takagi–Sugeno–
Kang (TSK) fuzzy model for MPPT control. Although the fuzzy model offers many
advantages over other techniques, the main drawback is that it cannot be used for ev-
ery issue. Additionally, it necessitates an examination of the parameter used to assign
linguistic variables.

The artificial neural network (ANN) is another method to determine the maximum
power peak by taking various input variables and processing them to obtain the maximum
power [33]. Each neural network (NN) contains an input layer, a hidden layer, and an
output layer. There is really no constraint on the number of nodes assigned, and they
may vary as per the demand. The ANN-based controller is a more efficient and reliable
alternative than conventional controllers for extracting the maximum amount of power
from wind’s available kinetic energy. The disadvantages of NN include their black box
structure, increased computing load, overfitting issue, and empirical nature of model
development. This technique necessitates the use of a look-up table containing predefined
data [34].

The membership function type, number of rules, and correct selection of parameters of
FLC are essential to obtain desired performance in the system. Selecting suitable fuzzy rules,
membership functions, and their definitions in the universe of discourse invariable involves
painstaking trial-error [35]. The adaptive neuro-fuzzy inference system (ANFIS) is a scheme
derived from a synthesis between the neural network and fuzzy inference system [36].
Similar to the method of training a neural network, the membership function parameters
have been fine-tuned using adaptive neuro-learning methods. A neural network enhances
the adaptability of the model. The primary purpose of using the ANFIS approach is to
realize the fuzzy system by using neural network methods automatically. The ANFIS
combines the capability of fuzzy reasoning in handling the uncertainties and the capability
of ANN in learning from processes [36].

In this paper, an ANFIS MPPT controller is used for maximum power tracking. The
generator rotor speed is input to the MPPT controller training input value, and the optimum
torque reference is selected as the target value.

The following is the structure of the paper. Section 1 discusses renewable energy
importance and the literature of MPPT algorithms employed in wind energy conver-
sion systems. The modeling of doubly fed induction generator-based WECS is given
in Section 2. Section 3 deals with rotor side control with maximum power point tracking
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control. Section 4 defines the ANFIS MPPT controller for achieving maximum power
point along with the training process. Section 5 illustrates the performance of the ANFIS
approach. A comparison with another conventional approach is also carried out in this
section. Finally, Section 6 summarizes the conclusion.

2. Modeling of Doubly Fed Induction Generator-Based WECS

Configuration of the grid-connected DFIG-based WECS considered in this study is
shown in Figure 1, which consists of a turbine system connected to the DFIG generator
through a gear system. The stator winding of the DFIG is directly connected to the grid. In
contrast, the rotor of the DFIG is connected to the grid via a back-to-back power converter.
In addition, a MPPT controller is connected to the RSC control of the WECS.

Figure 1. Grid-connected DFIG-based WECS configuration.

2.1. Wind Turbine Modeling

The equation for the amount of power derived by the wind turbine from the wind is
expressed in (1) [37]:

Pt =
1
2

ρπR2V3
v Cp(λ, β) (1)

where ρ is the air density measured in kilograms per cubic meter (kg/m3), R is the rotor
radius of the turbine measured in meter (m), Vv presents the wind speed measured in
meter per second (m/s), Cp(λ, β) presents the power coefficient expressed as a function of
the tip-speed ratio (λ) and the pitch angle (β).

λ is expressed in (2):

λ =
Rωt

Vv
(2)

where ωt is the angular rotational speed of the wind turbine rotor (rad/sec).
Cp(λ, β) is expressed by (3) [37]:

Cp(λ, β) = c1

(
c2

λi
− c3β − c4βc5 − c6

)
.e

−c7
λi . (3)

λi is given in (4):

λi =
1

λ + 0.02β
− 0.003

β3 + 1
(4)
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where c1 = 0.73; c2 = 151; c3 = 0.58; c4 = 0.002; c5 = 2.4; c6 = 13.2; c7 = 18.4 The turbine
generated torque is expressed in (5) [37]:

Tt =
Pt

ωt
(5)

2.2. DFIG Modeling

The following equations describe the DFIG model. The voltage vectors of the stator
and rotor are expressed in (6) and (7), respectively [36]:

→
u s = Rs

→
i s +

d
→
ψ s
dt

+ jωs
→
ψ s ⇒

{
uds = Rsids +

dψds
dt − ωsψqs

uqs = Rsiqs +
dψqs

dt + ωsψds
(6)

→
u r = Rs

→
i r +

d
→
ψr
dt

+ jωr
→
ψr ⇒

{
udr = Rridr +

dψdr
dt − ωrψqr

uqr = Rriqr +
dψqr

dt + ωrψdr
(7)

where uds, uqs, udr, and uqr: Voltages at the stator and rotor in the d–q frame, respectively.
ids, iqs, idr, and iqr: Currents in the stator and rotor in the d–q frame, respectively. Rr, Rs, ωs,
and ωr: Stator and rotor phase resistances and angular velocity, respectively.

The flux vectors for the stator and rotor are denoted in (8) and (9), respectively [37]:

→
ψ s = Ls

→
i s + Lm

→
i r ⇒

{
ψds = Lsids + Lmidr
ψqs = Lsiqs + Lmiqr

(8)

→
ψr = Lm

→
i s + Lr

→
i r ⇒

{
ψdr = Lmids + Lridr
ψqr = Lmiqs + Lriqr

(9)

where
→
ψ s,

→
ψr are the flux vectors for stator and rotor, respectively. ψds, ψqs are the fluxes

along the d–q axis stator. ψdr, ψqr are the fluxes along with the d–q axis rotor. Ls, Lr: Leakage
inductances in the stator and rotor phases, Lm: Mutual inductance between stator and rotor,
p: is the generator pole pair count.

The expression of electromagnetic torque is expressed in (10) [37]:

Tem =
3
2

p
Lm

Ls

(
ψqsidr − ψdsiqr

)
(10)

The active and reactive power equations of the stator and rotor are expressed in (11)
and (12) [37]: {

Ps =
3
2
(
udsids + uqsiqs

)
Qs =

3
2
(
uqsids − udsiqs

) (11)

{
Pr =

3
2
(
udridr + uqriqr

)
Qr =

3
2
(
uqridr − udriqr

) (12)

where Ps, Qs presents stator active and reactive power. Pr, Qr presents rotor active and
reactive power. Tem is the electromagnetic torque.

3. Rotor Side Control with Maximum Power Point Tracking

The RSC is responsible for the voltage applied to the rotor winding of the DFIG. To
derive the voltage equation in dq reference frame, from the DFIG model in the previous
section, replacing Equations (8) and (9) in Equation (7) and considering ψqs = 0 we get the
following equation as a function of the rotor currents and stator flux [37]:

⎧⎨
⎩ udr = Rridr + σLr

didr
dt − ωrσLriqr +

Lm
Ls

d|→ψ s |
dt

uqr = Rriqr + σLr
diqr
dt + ωrσLridr + ωr

Lm
Ls

d|→ψ s |
dt

(13)
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where σ = 1 − L2
m

Ls Lr
. Assuming negligible voltage drop in the stator winding resistance

and stator flux are constant because of the constant grid quantities, consequently, zero.
It can be seen from Equation (13) that dq component of rotor current can be controlled
using regulators. The reactive power proportional–integral (PI) regulator represented as
REG-1. The equal PI regulator for both d and q current loop are chosen as REG-2 and
REG-3, respectively. Actual values are considered for tunning of the gain parameters of the
regulators. The gain parameters for all three regulators are presented in Table 1. The control
must be performed on the dq components, so rotor voltage and current are transformed
into dq components using abc–dq transform. Θs is obtained by first estimate the stator
voltage vector and subtracting angle π/2. The phase-locked loop (PLL) is used for grid
synchronization, which also supports in rejection of minor disturbances. The “u” defines
the stator-rotor turn ratio that is 1/3. Figure 2 illustrates the complete vector control of the
DFIM with MPPT controller.

Table 1. The gain parameters of PI regulators in rotor side control.

Gains REG-1 REG-2 REG-3

Proportional 10,160 0.5771 0.5771
Integral 406,400 491.5995 491.5995

Figure 2. Block diagram of RSC vector control of the DFIG.

The torque expressions in dq frame can be given by:

Tem =
3
2

p
Lm

Ls

(
ψqsidr − ψdsiqr

)⇒ Tem = −3
2

p
Lm

Ls
ψdsiqr ⇒ Tem = Ktiqr (14)

The stator reactive power expressions in dq frame can be given by:

Qs =
3
2
(
uqsids − udsiqs

)
= −3

2
ωs

Lm

Ls
|→ψ s|
⎛
⎝idr −

|→ψ s|
Lm

⎞
⎠⇒ Qs = Kq

⎛
⎝idr −

|→ψ s|
Lm

⎞
⎠ (15)
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Equation (14) reveals that the iqr is proportional to the Tem to control torque with
iqr. Expression in Equation (15) reveals that d component of rotor current idr controls the
Qs. Therefore, because of the orientation chosen, it can be seen that both rotor current
components independently allow us to control the torque and reactive stator power.

4. ANFIS Maximum Power Point Tracking Control

The adaptive neuro-fuzzy inference method is a highly effective technique that in-
corporates both fuzzy control and artificial neural network concepts [31,38,39]. Due to
the combined influence of fuzzy and neural networks, it is an excellent learner and in-
terpreter [40]. The ANFIS controller determines which membership function to use. The
general structure of ANFIS consists of five layers, as shown in Figure 3.

Figure 3. The architecture of the ANFIS controller.

• Layer 1, the adaptive fuzzification layer is composed of user-specified input variables
and membership functions (MF).

• Layer 2, the fuzzy rule layer checks the degree of MF, and the corresponding fuzzy set
is selected and input to the next layer.

• Layer 3, the firing strength normalization layer evaluates weight for each normalized
node.

• Layer 4, the adaptive implication layer outputs values in accordance with inference
rules, and each neuron is normalized.

• Layer 5, the output layer adds all of the inputs from layer 4 and transforms the fuzzy
values to a crisp value.

The developed ANFIS has single input as rotor speed. The instantaneous torque
reference is determined as the output from the ANFIS network. In the developed MPPT
controller, the ANFIS first-order Sugeno model as well as with fuzzy IF-THEN rules of
Takagi and Sugeno type are used. A backpropagation algorithm trains the ANFIS-based
MPPT controller.

Figure 4 illustrates the block diagram of the proposed ANFIS MPPT control. The
generated optimal torque (T∗

em) is used to determine rotor quadrature current reference (i∗qr)
applied to the speed control loop of RSC control that controls the actual rotor speed by
adjusting the duty ratio of the RSC. The control objective of the converter is to maximize
the output power delivered to the grid.

Figure 5 depicts the architecture of the developed ANFIS controller in MATLAB/Simulink
using Neuro-Fuzzy Designer. The ANFIS details are given in Table 2. The trial-and-error
method is used for choosing the number and shape of MFs as there is no exact method
for choosing the MFs in the literature. Seven Gaussian MFs were selected for this study
because they had the lowest root-mean-square error (RMSE) of 0.098280. The primary
reason why Gaussian MFs were chosen is that they have the fewest parameters (Only
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two parameters mean and standard deviation). To define the membership functions and
fuzzy rules, the grid partition method is used, generating input membership functions by
uniformly partitioning the input variable ranges and creating a single-output Sugeno fuzzy
system. Each input membership function combination is represented by a single rule in the
fuzzy rule base.

Figure 4. Block diagram of ANFIS MPPT control.

Figure 5. The architecture of the developed ANFIS-based MPPT controller.

Table 2. The ANFIS parameters information.

Parameter Value Parameter Value

Number of nodes 32 Total number of parameters 28
Number of linear parameters 14 Number of training data pairs 10,000,001

Number of nonlinear parameters 14 Number of fuzzy rules 7

Speed is taken as an input to the ANFIS MPPT controller, and it outputs the torque
reference. The controller is trained for 1000 epochs. The controller has one input with seven
membership functions (MFs). The initial generated input speed membership functions for
training are shown in Figure 6, which utilize seven rules. The details of the initial seven
input membership functions derived from Equation (13) are presented in Table 3.
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Figure 6. Initial input speed membership functions for training.

Table 3. Initial input membership function details.

Membership
Function Name

Type
Parameter

Standard Deviation Mean

Very Small (VS) Gaussian 15.047 −3.3549 × 10−13

Small (S) Gaussian 15.047 35.433
Big Small (BS) Gaussian 15.047 70.865
Medium (M) Gaussian 15.047 106.3

Big Medium (BM) Gaussian 15.047 141.73
Large (L) Gaussian 15.047 177.16

Big Large (BL) Gaussian 15.047 212.6

The neural network tuned input speed membership functions is shown in Figure 7.
The tunned membership functions details are presented in Table 4. As the output function
in the Sugeno fuzzy inference system is selected as a linear function of the input, details of
all seven output membership functions are given in Table 5. Figure 8 shows the step size
increase/decrease during the training. The root-mean-square error is shown in Figure 9.
The expression for the Gaussian membership function is given in Equation (13):

f (x, σ, c) = e
−(x−c)2

2σ2 (16)

where σ is the standard deviation, c is mean, and x is input value.

Figure 7. Neural network tuned input speed membership functions.
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Table 4. Neural network tunned input membership function details.

Membership
Function Name

Type
Parameter

Standard Deviation Mean

Very Small (VS) Gaussian 26.909 5.1594
Small (S) Gaussian 30.952 33.765

Big Small (BS) Gaussian 63.437 89.457
Medium (M) Gaussian 34.224 107.28

Big Medium (BM) Gaussian 33.967 138.56
Large (L) Gaussian 35.116 183.63

Big Large (BL) Gaussian 41.65 199.36

Table 5. Output membership function details.

Membership
Function Name

Type
Parameter

Lower Limit Upped Limit

Very Small (VS) Linear 1.9856 1145.1
Small (S) Linear 7.3276 1244.4

Big Small (BS) Linear −4.8424 −5088.7
Medium (M) Linear −124.22 9248

Big Medium (BM) Linear −143.49 15,022
Large (L) Linear −98.038 7647.7

Big Large (BL) Linear −149.91 17,393

Figure 8. Step size during the training.

Figure 9. Step size during the training.

• The first layer consists of an input node as the variable. This layer is responsible
for transform in input value to the next layer. Here, seven gaussian MFs with
minimum = 0 and maximum = 1 are utilized, and corresponding node equations
are given (17):

O1
i = μAi(ei) (17)
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where i = 1, 2, . . . 7, Oi is the output of ith node in layer one, Ai is the linguistic label,
ei is the input to the node.

• The second layer verifies the weights of individual MFs. It accepts the first layer’s
input values and serves as the MF for the corresponding input variables fuzzy sets.
The second layer has non-adaptive nodes that multiply incoming signals and output
the result as in (18):

wj = μAi(e1)× μBi(e2) (18)

where i = 1, 2, . . . 7 and j = 1, 2, . . . 7. The output from each node represents the firing
strength of a rule.

• Each node in the third layer computes the activation level of each fuzzy rule, with
the number of layers equal to the number of fuzzy rules. Each node of these layers
generates the normalized weights. Each node calculates the ratio of the rule’s firing
strength to the total of all rules’ firing strengths, that is, the normalized firing strength
given in (19):

w∗
j =

wj

w1 + w2 . . . w7
(19)

where j = 1, 2, . . . 7.

• The fourth layer contains the output values obtained through rule inference. Node
function of the fourth layer is given in (20):

O4
j = w∗

j f j = w∗
j
(

pje1 + qje2 + rj
)

(20)

The rule base is given as:

If e1 is A1 and e2 is B1 then f1 = p1e1 + q1e2 + r1;

If e1 is A2 and e2 is B2 then f2 = p1e1 + q2e2 + r2;

If e1 is A7 and e2 is B1 then f7 = p7e1 + q7e2 + r7,

where (pj, qj, rj) is the parameter set and in this layer is referred to as consequent
parameters, O4

j = output of the ith node in layer-4, Ai, Bi = fuzzy membership function,
i = 1,2, . . . 7 and j = 1, 2, . . . 7.

• The fifth layer is the output layer; it aggregates all of the fourth layer’s inputs and
converts the fuzzy classification results into a crisp representation. This layer has a
non-adaptive nature, having a single node with the output given in (21):

y =
7

∑
j=1

w∗
j f j =

7

∑
j=1

((
w∗

j e1

)
pj +
(

w∗
j e2

)
qj +
(

w∗
j

)
rj

)
(21)

In practice, the proposed controller can be implemented using the Simulink HDL
Coder toolbox that can generate code for the DSP’s and FPGA’s family chips of different
vendors. The complete list of supported chips in the HDL coder and more details on this
can be seen from the MathWorks official website [41].

5. Simulation Result and Discussion

The effectiveness of the ANFIS MPPT controller for DFIG-based WECS under variable
wind speed operation has been verified in MATLAB/Simulink environment. The simu-
lation comparison results of the proportional–integral (PI) controller and the proposed
ANFIS MPPT controller are present in the following figures.

In this work, β is set to zero and designed for the rated wind speed of 11 m/s. The
simulated power characteristics at different wind speeds are presented in Figure 10.
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Figure 10. Power and rotor speed characteristics of WT at different wind speed.

Cp − λi characteristics at different value of β is presented in Figure 9. The design
presents that the maximum value Cp max is 0.4411 and the corresponding λ is 7, as shown
in Figure 11. This value Cp max and λ is the optimum value for capturing peak power from
the available wind power. Parameters of the WT are presented in Table 6.

 
Figure 11. Cp − λi characteristics with variation in pitch angle (β).

Table 6. WECS parameters.

Parameter Value Parameter Value

Nominal wind speed 11 m/s Frequency 50 Hz
Air density 1.225 kg/m3 Rated torque 12,732 N·m

Tip-speed ratio 7 Pole pair 2
Pitch angle 0◦ Inertia 127 kg·m2

Power coefficient 0.4411 Gear ratio 100
Nominal power 2 MW Radius of turbine 42 m

Three case studies are considered to analyze the performance of the proposed con-
troller. Different input wind speed profiles are considered for all three cases. Table 7 shows
an overview of all three cases of wind speed during the simulation study.
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Table 7. Input wind speed in all cases.

Time Duration (s)
Input Wind Speed (m/s)

Case-I Case-II Case-III

0–5 6 12 8
5–8 7 11 10
8–11 8 10 9

11–14 9 9 12
14–17 10 8 7
17–20 11 7 7
20–23 12 6 7

Simulation time responses of rotor speed (ωm), electromagnetic torque (Tem), stator
active power (Ps), DC-link voltage (Vdc), stator voltage (Vs), stator current of a-phase
(Isa), rotor current of a-phase (Ira), q-axis rotor current component (iqr), and d and q axis
rotor voltage component (vdr, vqr) with the change in system input wind speed (Vv) for PI
controller and ANFIS controller are presented in following figures below.

5.1. Case-I: Step Increase in Input Wind Speed

In this case, the input wind speed is increased in step manner as shown in Figure 12a
and according to data presented in Table 5. The rotor speed tracking of conventional control
and the proposed controller is shown in Figure 12b. There was a significant difference in
rotor speed response. The electromagnetic torque response is shown in Figure 12c. The
stator active power is observed in Figure 12d. Figure 12e and f present the DC-link voltage
and stator voltage response, respectively.

The single a-phase stator current response comparison during step wind speed change
at t = 14 s from 9 m/s to 10 m/s is shown in Figure 12g. The proposed controller stator
current response remains sinusoidal without any swell condition in current, whereas;
the conventional controller shows the unbalance operation. Figure 12h shows the single
a-phase rotor current response comparison. It can be observed at t = 14 and 17 s when
wind speed increase occurs. The conventional controller shows an unbalance operation
along with overshoot. The quadrature axis current component of rotor side converter (iqr)
response is shown in Figure 12i. Whenever there is wind speed increase operation, the
proposed controller shows a smooth transition, whereas the conventional controller shows
oscillation at each change instant. The quadrature and direct axis voltage component of the
rotor side converter is shown in Figure 12j.

5.2. Case-II: Step Decrease in Input Wind Speed

In this case, the input wind speed is decreased in a step manner, as shown in Figure 13a
and according to data presented in Table 5 Case-II. The rotor speed tracking of conventional
control and the proposed controller are shown in Figure 13b. The electromagnetic torque
response is shown in Figure 13c. The stator active power is observed in Figure 13d.
Figure 13e and f present the DC-link voltage and stator voltage response, respectively.
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Figure 12. Simulated response under step wind speed increase: (a) input wind speed, (b) rotor speed, (c) electromagnetic
torque, (d) stator active power, (e) DC-link voltage, (f) stator voltage, (g) stator current of a-phase, (h) rotor current of
a-phase, (i) q-axis rotor current component, and (j) d and q axis rotor voltage component.
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Figure 13. Simulated response under step wind speed decrease: (a) Input wind speed. (b) Rotor speed. (c) Electromagnetic
torque. (d) Stator active power. (e) DC-link voltage. (f) Stator voltage. (g) Stator current of a-phase. (h) Rotor current of
a-phase. (i) q-axis rotor current component. (j) d and q axis rotor voltage component.

The single a-phase stator current response comparison during step wind speed de-
crease at t = 14 s from 9 m/s to 8 m/s is shown in Figure 13g. The proposed controller
stator current response remains sinusoidal without any swell condition in current whereas,
the conventional controller shows current swell. Figure 13h shows the single a-phase rotor
current response comparison. It can be observed at t = 10 and 18 s when wind speed
decrease occurs, the conventional controller shows unbalanced operation and overshoot.
The quadrature axis current component of rotor side converter (iqr) response is shown
in Figure 13i. Whenever there is a decrease in wind speed operation, the proposed con-
troller shows a smooth transition, whereas the conventional controller shows oscillation at
each change instant. The quadrature and direct axis voltage component of the rotor side
converter is shown in Figure 13j.
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5.3. Case-III: Intermittent Change in Input Wind Speed

In this case, the input wind speed is intermittent and shown in Figure 14a, according
to data presented in Table 5 Case-III. The rotor speed tracking of conventional control and
the proposed controller is shown in Figure 14b. The electromagnetic torque response is
shown in Figure 14c. The stator active power is observed in Figure 14d. Figure 14e,f present
the DC-link voltage and stator voltage response, respectively.

Figure 14. Simulated response under step increase wind speed: (a) input wind speed, (b) rotor speed, (c) electromagnetic
torque, (d) stator active power, (e) DC-link voltage, (f) stator voltage, (g) stator current of a-phase, (h) rotor current of
a-phase, (i) q-axis rotor current component, and (j) d and q axis rotor voltage component.

The single a-phase stator current response comparison during step wind speed de-
crease at t = 8 s from 10 m/s to 9 m/s is shown in Figure 14g. The proposed controller stator
current response remains sinusoidal without any swell condition in current, whereas the
conventional controller shows the current swell. Figure 14h shows the single a-phase rotor
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current response comparison. It can be observed at t = 5, 8, 11, and 14 s when wind speed
change occurs, and the conventional controller shows unbalance operation along with
overshoot. The quadrature axis current component of rotor side converter (iqr) response is
shown in Figure 14i. Whenever there is a change in wind speed operation, the proposed
controller shows smooth transition, whereas the conventional controller shows oscillation
at each change instant. The quadrature and direct axis voltage component of the rotor side
converter is shown in Figure 14j. The performance comparison of ANFIS and PI controller
is presented in Table 8 considering rotor speed and stator active power. Considering all
three cases, there is 3.28% improvement in stator active power.

Table 8. Performance comparison of ANFIS and PI controller.

Case
Study

Simulation Time
Instant (sec)

Wind Speed
Rotor Speed (rad/sec)

Stator Active Power
(MW)

Percentage
Improvement in

Power (%)PI ANFIS PI ANFIS

Case-I

4 6 100.6 103.7 0.4786 0.4878 1.89
7 7 115.9 120.9 0.6261 0.6372 1.74
10 8 133.4 138.2 0.8386 0.8491 1.24
13 9 151.1 155.5 1.0562 1.0683 1.13
16 10 168.2 172.8 1.3150 1.3320 1.28
19 11 185.4 190.2 1.5860 1.6140 1.73
22 12 202.5 207.3 1.8830 1.9200 1.93

Case-II

4 12 195.2 207.3 1.7732 1.8740 5.38
7 11 187.3 190.2 1.5860 1.6380 3.17
10 10 170.5 172.8 1.3150 1.3620 3.45
13 9 153.7 155.5 1.0680 1.1120 3.96
16 8 137.1 138.2 0.8479 0.8894 4.67
19 7 120.2 120.9 0.6533 0.6928 5.70
22 6 101.1 103.7 0.4939 0.5236 5.67

Case-III

4 8 129.1 138.2 0.7889 0.8478 6.95
7 10 165.9 172.8 1.3127 1.3265 1.04
10 9 153.8 155.5 1.0680 1.0970 2.64
13 12 199.9 207.3 1.8830 1.9070 1.26
17 7 120.9 123.4 0.6531 0.7071 7.64

In terms of stabilizing the stator power output, the suggested controller outperforms
the PI controller. In contrast, the PI solution exhibits power oscillations at speed change
instant, while the ANFIS response exhibits smooth tracking.

The voltage reference for the DC-link is 1150 volts. The ANFIS controller DC-link
voltage response is constant during operation compared with the ANFIS response; the PI
response demonstrates that the DC-link voltage oscillates at the instant of speed change
and overshoots at around 3980 volts max, which is 37% greater than the ANFIS response.

6. Conclusions

This paper proposed an ANFIS controller for maximum power extraction from the
wind for grid-connected DFIG-based WECS. The controller has implemented an ANFIS
controller for peak power point tracking. For training, an ANFIS includes input and target
data; in this case, the rotor speed is used as the input data, and the torque reference is used
as the target or output data. The proposed controller has implemented a 2 MW variable
speed wind turbine in MATLAB/Simulink subject to variable wind speed conditions. The
simulation study shows that the proposed ANFIS MPPT controller approach exhibited
good dynamic performance and quick response for wind speed change while ensuring
peak power point tracking. Comparison analysis with a conventional proportional–integral
controller approach showed that the ANFIS approach resulted in smoother power tracking
and reduced chattering than the conventional approach with a wide range of wind speed
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changes. The proposed ANFIS MPPT controller shows a 3.28 percent improvement in
stator active power than the proportional–integral controller.

This research may be further explored, taking into consideration the controller with
multivariable input. The system’s performance may be improved in the future if the
changing pitch angle and the actual power generated are taken into consideration, along
with rotor speed. Furthermore, performance may be compared with that of other intelli-
gent controllers.
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Abstract: This paper presents an application of the IpDFT spectrum interpolation method to estimate
the fundamental frequency of a power waveform. Zero-crossing method (ZC) with signal prefiltering
was used as a reference method. Test models of disturbances were applied, based on real disturbances
recorded in power networks, including voltage harmonics and interharmonics, transient overvoltages,
frequency spikes, dips and noise. It was determined that the IpDFT method is characterized by
much better dynamic parameters with better estimation precision. In an example, in the presence of
interharmonics, the frequency estimation error was three times larger for the reference method than
that for the IpDFT method. Furthermore, during the occurrence of fast transient overvoltages, the
IpDFT method reached its original accuracy about three times faster than the ZC method. Finally,
using IpDFT, it was possible to identify the type of disturbances: impulsive, step changes of frequency
or voltage dips.

Keywords: frequency estimation; spectrum interpolation; power network disturbances; power quality

1. Introduction

Monitoring the frequency of voltage waveforms in power supply networks is one of
the most important parameters from the point of view of, e.g., power quality measure-
ments [1,2] and power network protection automation devices, especially those occurring
in inverters used in the photovoltaic industry [3–5]. In the first industry, incorrect estima-
tion of the fundamental frequency of the waveform results in a so-called spectrum leakage,
and consequently, in an increased uncertainty of measurement of spectral parameters
such as harmonics and interharmonics. On the other hand, incorrect estimation of the
fundamental frequency in the second industry results in large power losses in the case of
frequency mismatch between two different power systems and their phase synchroniza-
tion [6]. This is important both in the case of cooperation among large power systems and
also when connecting a large number of micro photovoltaic power plants to the power
grid [4]. Inverters, which are a key component of such systems, must be equipped with
disturbance-tolerant algorithms that estimate the instantaneous frequency of the electrical
grid. According to [3], the requirements for power generation modules require the use of
the so-called limited frequency sensitive mode at overfrequency (LFSM-O) and limited
frequency sensitive mode at underfrequency (LFSM-U), which consist in a dynamic change
of the generated energy as a function of changes in the grid frequency. Moreover, the
aim of the protection automatics in photovoltaic systems is to protect the systems against
unwanted switching between grid-connected and islanding operating modes [4,7]. For this
purpose, the rate-of-change-of-frequency (ROCOF) method is used, among others. This
method requires calculating the frequency over a number of cycles and comparing with a
specified trigger threshold [3,8].
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There are many algorithms for estimating the fundamental frequency of power wave-
forms. These methods can be divided into time, filter, frequency and other methods (e.g.,
time–frequency methods).

One of the basic temporal methods is the zero-crossing method. This method, due
to its sensitivity to noise found in real power waveforms, is supplemented by prefiltering
or regression least mean squares (LMS) modeling methods [9]. These models [10,11] and
their extended least squares (ELS) extensions [12] are also used independently of the
zero-crossing method.

Filtering methods include the use of Kalman filters [12–15]. In the ROCOF method,
Kalman filters have been used, for example, to reduce the nondetection zone (NDZ) [8].
Furthermore, a combination of Kalman filtering and the least squares (LS) method is used
to improve the dynamic properties of accurate frequency estimation [16].

Spectral methods provide the estimation of the fundamental frequency of the power
waveform based on the spectrum processing obtained by discrete Fourier transform (DFT).
In order to improve the accuracy of the spectrum estimation, its interpolation IpDFT
(which will be discussed later in this paper) or other modifications, such as the so-called
smart DFT (SDFT) with the additional use of the complex-valued least squares (CLS-SDFT)
method [17], are used. The DFT transformation is also used repeatedly [18]. Spectrum
interpolation can also be based on non-Fourier methods, e.g., Prony’s method to model
the signal using exponentially damped sinusoids [19] or the Aboutanios and Mulgrew’s
(HAM) method [20] and the cooperative weighted least squares (WLS) method representing
HAM-WLS [20]. Spectrum estimation is also performed using time–frequency analyses
e.g., discrete wavelet transform (DWT) [21] or Wigner–Ville transform [22].

Finally, the methods can be applied to the analysis of single- and three-phase wave-
forms [23–25].

IpDFT spectrum interpolation methods deserve special attention; the first one was
developed by Rife and Vincent in 1970 [26], but their rapid development has occurred
over the past two decades. These methods combine the advantageous properties of using
nonrectangular time windows, a FFT algorithm and further processing of the resulting
DFT spectrum to reduce errors due to the discrete nature of the resulting spectrum. The
use of such time windows as Hann (often referred to as Hanning windows), Hamming,
Kaiser, Chebyshev and many others, allows a significant reduction of the phenomenon
of spectrum leakage, originating from harmonics and interharmonics in the conditions of
nonsynchronous (noncoherent) sampling with the period of the measured signal. On the
other hand, the use of the FFT algorithm in a modern DSP system with a signal processor
that is optimized for fast execution of such an algorithm makes the computation time
much smaller than the signal measurement time, while maintaining a low cost of the
system. The time window method combined with the FFT algorithm belongs to classical
Fourier analysis and has a reputation for being fast but not very accurate due to the so-
called picket fence effect. This effect is the cyclic nature of the frequency and amplitude
estimation errors when these parameters are determined from the local maximum of the
raw DFT spectrum. Then, the maximum error of frequency estimation is half of the DFT
computational resolution (i.e., ±0.5/NT—half the inverse of the measurement time) and
does not depend on the applied data window. For typical time windows, the maximum
amplitude estimation errors caused by picket fence effect range from −9% to −22% [27].
The essence of IpDFT methods is to further process the raw DFT spectrum to eliminate
errors caused by the discrete nature of the DFT spectrum (picket fence effect) without
significantly increasing the computation time. In this way, IpDFT methods combine the
beneficial properties of classical Fourier analysis methods (high speed and low cost) and
non-Fourier methods (usually much more accurate, but much slower). The latest strands of
IpDFT methods are those that take into account the conjugate component in the spectrum,
developed especially for applications with short measurement times—of the order of a few
signal periods [28–31]. Their latest version [31] is further discussed in a more detailed way
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in Section 3 and its basic flowchart for a real-time grid-monitoring system is presented in
Figure 1.

 

Figure 1. The real-time grid-monitoring system with a sliding time window: (a) the general system
scheme with the definition of the sliding window; (b) the DSP block diagram; (c) the algorithm to
estimate the fundamental frequency f 1 of the grid signal y(t).

The method presented in [31] and in Figure 1 has the following advantages:

• It allows for the estimation in short measurement times with high accuracy because
the conjugate component in the spectrum (i.e., a component with a negative frequency
resulting from the mathematical properties of the Fourier transform) is taken into
account during derivation of the estimating formula;

• The estimation formula used in the calculations only applies a GMSD window, the
FFT algorithm and a simple interpolation formula, which involves three points of the
FFT-resulting spectrum;

• It allows for a cheap implementation, because the calculation time depends mainly on
the calculation time of the FFT algorithm, hence modern cheap signal processors and
microcontrollers optimized for FFT are applicable;

• It can be used for signals with a large THD coefficient, because GMSD windows
significantly eliminate its influence on the accuracy of the estimation.

The basic comparison of the presented method with parametric methods is presented
in Table 1. More quantitative details are provided, e.g., in [29,30]. It shows that the pre-
sented method has very good properties for short, delayed estimation of the fundamental
frequency, as for λ1 ≈ 1 . . . 3 it still maintains its high accuracy and at the same time it
does not require many calculations.

The paper focuses on the influence of the most important disturbances on the esti-
mation results. It is the first systematical study of this aspect of the method [31]. The
models of grid disturbances are presented in Section 2 and the interpolated discrete Fourier
transform is summarized in detail in Section 3. The important role of the proper choice of
the method’s parameters is described in detail in Section 4, as well as a short description
of the characteristics of the zero-crossing (ZC) method used in the paper as a reference
method. The simulations performed in the MATLAB software environment are presented
in Section 5, and they include detailed information about the features of the method when
a grid signal contains various disturbances, as is usually the case. The conclusions are
presented in Section 6.
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Table 1. Qualitative comparison of the IpDFT method with GMSD windows (which takes into account the conjugate
component during derivation of the estimation formula) vs. parametric methods depending on the normalized frequency
λ1 (the number of signal periods in the measurement window).

Measurement Window
Duration

IpDFT-Based Frequency Estimation Methods Parametric Methods

IpDFT Method Which
Takes into Account

Conjugate Component

IpDFT Methods Which Do Not
Take into Account Conjugate

Component

Parametric Methods:
Prony LS,

TLS (Total Least Squares), ESPRIT

Very short window
(λ1 < 1)

Applicable only for low
level of noise

Not applicable
due to great number of systematic

errors

Applicable, especially for high
resolution methods (e.g., ESPRIT)

Short window
(λ1 ≈ 1 . . . 3)

Applicable
Good accuracy

(systematic errors below
the level caused by noise)

Cheap implementation

Not applicable
due to great number of systematic

errors

Applicable, but expensive in
practice due to the great

number of calculations required
(even by a few orders for N > 1000)

Long window
(λ1 >> 3)

Applicable
Good accuracy

Cheap implementation

Applicable
Good accuracy

Cheap implementation

Applicable
Good accuracy

Expensive implementation

2. Disturbances and Its Models in Power Networks

2.1. Disturbances in Power Networks and Power Quality

The voltage electrical waveform in power networks is by definition a strictly deter-
ministic signal. It is modeled by a single sinusoidal waveform with nominal rms value,
symmetric with respect to the 0 V level and nominal frequency. In three-phase networks,
these waveforms are additionally shifted in individual phases by 120◦.

In fact, this waveform additionally contains disturbances of deterministic and non-
stationary character. The first group includes cyclic or permanent disturbances that are
specific to the supply network, for example, the continuous presence of the 5th harmonic,
long-lasting voltage underdeviation or asymmetry. The second group includes distur-
bances appearing every indefinite time, or whose character evolves in time in an unpre-
dictable manner, e.g., voltage overvoltages caused by lightning, momentary changes of
the fundamental frequency under the influence of rapid changes of the load or oscillatory
disturbances occurring during activation of capacitor banks to compensate reactive power.

Some of the disturbances occurring in the supply voltage waveform have a direct
impact on the power quality and on the operation and safety of electrical equipment. These
include all kinds of voltage fluctuations, harmonics, interharmonics, frequency fluctuations
and supply voltage asymmetry. The remainder at least affects the user comfort of electrical
equipment. These disturbances can include, inter alia: the phenomenon of flickering caused
by a series of changes in the rms value of the voltage of the light source supply, dips and
interruptions in power supply. Definitions and acceptable levels of most of the mentioned
disturbances are defined in relevant standards of power quality, such as EN501610 [32],
and electromagnetic compatibility from the IEC 61000 series [33].

Based on the authors’ own research, various types of interference were acquired,
which can be divided into three groups:

- Temporary disturbances—of incidental nature;
- Sustained disturbances—occurring in the power network for a longer period of time;
- Mixed disturbances—containing the two above mentioned types of disturbances.

Figure 2 as well as Figures 3 and 4 present examples of disturbances from the first
group: transient overvoltage, voltage fluctuations and dips and instantaneous frequency
changes, respectively.
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(a) 

 
(b) 

Figure 2. High-frequency damped sinusoidal fast transient overvoltage with oscillation frequency of
4 kHz: (a) signal with the disturbance; (b) expanded disturbance.

The duration of the first one is about 3 ms and it has an oscillatory character with a
frequency of about 4 kHz.

The second disturbance is an example of a voltage drop of about 2.4% and two
consecutive dips of 12% and 24%.

The third disturbance represents changes in the instantaneous frequency of the voltage.
These changes are often of a sustained disturbance nature, which include long-term devi-
ations of the power network frequency within ±1% for 99.5% of the year [32]. However,
dynamic fluctuations of the fundamental frequency are also encountered, caused by rapid
changes in the power network load, which include the frequency fluctuation of 0.3% shown
in Figure 3.
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Figure 3. Waveform with voltage variations: 0–0.4 s voltage drop 2.4%; 0.4–0.8 s voltage dip 12%;
0.8–1.2 s voltage dip 24%; after 1.2 s voltage drop 2%.

 
Figure 4. Temporary changes in fundamental frequency.

The second group of disturbances—sustained disturbances—often involves, among
other things, the occurrence of harmonics and interharmonics, which are generated by
nonlinear loads, in particular by voltage converters, available, for example, in any IT
equipment. These disturbances are parameterized, for example, by so-called spectral
power quality parameters, which include [34]:

- Total distortion factor of harmonic subgroups—Equation (1),

THDSU =

√√√√ hmax

∑
h=hmin

(
Usg,h

Usg,1

)2

(1)

where:

U2
sg,h =

1

∑
k=−1

U2
C,(N×h)+k (2)

U2
sg,h—harmonic subgroup of the h order.

U2
sg,1—first-harmonic subgroup.

UC,l—rms value of the spectral voltage component of the l order.

186



Energies 2021, 14, 6465

N—number of periods of the fundamental component.
h—harmonic order.
hmin—minimum harmonic order: 2.
hmax—maximum harmonic order: 50.

- Centered subgroups of interharmonics—Equation (3),

U2
isg,h =

N−2

∑
k=2

U2
C,(N×h)+k, (3)

where the interpretation of individual parameters is as for Equation (2).
Examples of harmonic disturbances registered in an office building are presented in

Figure 5. The values of particular harmonic subgroups are shown in Table 2. Deformation
of the waveform in the area of minima and maxima is characteristic for this type of
disturbances. Moreover, this type of disturbance usually has a quasi-stationary character
and lasts for a minimum of several dozen periods or persists permanently. As a rule, the
values of even harmonics are minimal, while the dominant ones are the 5th, 7th and 11th
harmonics. The total distortion factor of the harmonic subgroups should remain below 8%
for 95% of the week [32]. The mentioned example represents the exceedance of this value:
10.3%. When interharmonics are present, the distortion factor of the centered interharmonic
subgroups has not yet been defined in the relevant standard.

 
Figure 5. Harmonic disturbance.

Table 2. Parameters of measured harmonics from THDSU = 10.3%.

Parameter
i—Harmonic Number

1 3 5 7 9 11 13 15 17 19 21 23

fi = i· f1[Hz] 50 150 250 350 450 550 650 750 850 950 1050 1150
Usg,i rms [V] 225 0.6 15.2 14.5 1.2 6.4 4.1 0.8 4.6 3.6 0.9 0.6
Usg,i rms [%] 100 0.29 6.74 6.47 0.56 2.91 1.82 0.37 2.04 1.65 0.41 0.26

Noise is also a disturbance that affects the distortion of the waveform spectrum.
Figure 6 shows an example of recorded noise-like interference with a signal-to-noise (SNR)
of 27 dB. Disturbances of this type are also usually of sustained character.
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Figure 6. Noise waveform with SNR of 27 dB.

An example of the third group of disturbances, concerning a combination of both tran-
sient and sustained disturbances, is presented in Figure 7. It shows a harmonic disturbance
with superimposed transient overvoltage of oscillatory nature.

 

Figure 7. Waveform with complex disturbances: harmonics and oscillations.

2.2. Disturbance Modeling

Based on the real disturbances occurring in power grids and on the test procedures
included in the standards for power quality and electromagnetic compatibility, as well as in
the relevant documents related to the requirements imposed on inverters in PV microgrids,
the following disturbance models are proposed. These models will allow us to investigate
the influence of certain types of disturbances on the accuracy of the instantaneous frequency
measurement.

2.2.1. Harmonics and Interharmonics

The parameters of the signal models representing the harmonic and interharmonic
disturbances are presented in Tables 3 and 4, respectively. Due to the specificity of the
power waveforms, harmonics are practically nonexistent and they have not been taken
into account. The amplitudes of the individual harmonics and interharmonics have been
selected based on actual tests. The THDSU parameter exceeds the acceptable threshold
defined in the standards—8% [32].
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Table 3. Harmonic parameters of the signal from THDSU = 10.3%.

Parameter
i—Harmonic Number

1 3 5 7 9 11 13 15 17 19 21 23

fi = i· f1[Hz] 50 150 250 350 450 550 650 750 850 950 1050 1150
Usg,i [V] 225 0.6 15.2 14.5 1.2 6.4 4.1 0.8 4.6 3.6 0.9 0.6

ϕi [°] 0 0 0 0 0 0 0 0 0 0 0 0

Table 4. Interharmonic signal parameters.

Parameter
i—Interharmonic Number

1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

fi = i· f1[Hz] 50 160 165 170 175 180 185 190 195
Uig,i[V] 230 1.5 2 4.5 12 17 4 3 2

ϕi [°] 0 0 0 0 0 0 0 0 0

Graphical representations of the waveforms with harmonic and interharmonic distur-
bance models are shown in Figures 8a and 8b, respectively.

 

(a) 

 

(b) 

Figure 8. Models of (a) harmonic and (b) interharmonic disturbances.
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2.2.2. Transient Overvoltages

The transient overvoltages were modeled using exponentially damped oscillatory
disturbances. Two models were proposed: short duration and long duration. These models
were expressed as (4) and (5):

sI(t) = 2000e−0.0583t sin(2π106t) (4)

sII(t) = 500e−0.00029278t sin(2π103t) (5)

In the first case, the oscillation frequency is equal to 1 MHz, the amplitude is 2000 V,
and the duration after which the waveform is damped 100 times is 15 μs.

In the second case, these parameters are, respectively: 1 kHz, 500 V and 6 ms.
In the case of a short-duration disturbance, its amplitude was limited to 400 V due

to the fact that the input systems of the measuring equipment are practically unable to
transfer such a steep disturbance and in fact, the final waveform to be acquired has an
amplitude of 400 V.

Figure 9a shows the signal with the disturbance expressed by (4), and Figure 9b shows
the superimposed disturbance on the power waveform. Figure 10 shows the above for the
disturbance defined by Equation (5).

 

(a) 

 

(b) 

Figure 9. Model of fast transient disturbance with frequency oscillation of 1 MHz: (a) power signal
and (b) expanded disturbance.
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Figure 10. Model of fast transient disturbance with frequency oscillation of 1 kHz.

2.2.3. Changes in Fundamental Frequency

The model of the signal containing fluctuations of the basic component of the power
waveform consists of five waveforms with the rms value of 230 V and the following
frequencies (6):

y(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

42.50 Hz for t < 0.353 [s]
46.25 Hz for 0.353 < t < 0.677 [s]
50.00 Hz for 0.677 < t < 0.977 [s]
53.375 Hz for 0.977 < t < 1.258 [s]
57.50 Hz for 1.258 < t < 1.600 [s]

(6)

Each waveform contains 16 complete periods at the frequencies specified above.

2.2.4. Multicomponent Disturbances: Harmonics, Dips, Transient Overvoltages

Finally, a model consisting of harmonics, two transient overvoltages and three voltage
dips was used to illustrate the response of the tested frequency measurement method in
the presence of many different types of disturbances. Detailed parameters are shown in
Table 5. Throughout the test run, the fundamental frequency was constant at 50 Hz.

Table 5. Multicomponent disturbance parameters.

Type of Disturbance Parameter Occurrence Time (s)

Harmonics In accordance with Table 2 0–1.6

Transient overvoltages In accordance with Formula (5) 0.6–1.2

Voltage dips

Urms = 230 V 0–0.7
Urms = 215 V 0.7–0.9
Urms = 181 V 0.9–1.1
Urms = 162 V 1.1–1.3
Urms = 230 V 1.3–1.6

Figure 11 presents the signal with disturbances, as described in Table 5.
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Figure 11. Model of multicomponent disturbance.

3. Interpolated Discrete Fourier Transform with the Use of GMSD Windows

The characteristics of the power network signal presented in Section 2 allow us to
define the stationary part of this signal as:

y(t) =
K

∑
m=1

Am sin(2π fmt + ϕm) (7)

where A1, f 1, and ϕ1 are the parameters (amplitude, frequency and phase, respectively)
of the fundamental component, and Ai, fi, and ϕi are the harmonic and interharmonic
parameters. Such a signal is found in many fields of science and technology and is often
referred to as a multifrequency signal because it consists of multiple sinusoidal compo-
nents. For obvious reasons, such a signal is further disturbed by the noise present in each
measurement and a number of additional distortions, which for the case of the mains signal
are described in Section 2. Rms values Ui rms of the sinusoidal components are obtained
from the relation Ui rms = Ai/

√
2. For a complete description of the power network signal,

estimation of all Ai, fi and ]ϕi parameters is required for all i, but the most important of
these is the value of f 1, i.e., the frequency of the power network signal. It is nominally
50 Hz or 60 Hz, and in practice it is a value varying within the range allowed by legal
regulations or exceeding this range in cases of control system failures in the process of
electricity generation. Precise determination of the parameter f 1 determines the remaining
parameters of the power network signal.

Many methods have been developed, parametric and nonparametric, allowing estima-
tion of the parameters of the multifrequency signal modeled by Equation (7). Particularly
noteworthy are spectrum interpolation methods (IpDFT), whose development and range
of applications is constantly increasing. The application of IpDFT methods for the determi-
nation of f 1 is also studied in the context of power network signal parameter estimation for
the following reasons:

- In IpDFT methods, the computation time is much smaller than the signal measurement
time, which significantly reduces the total estimation time of f 1 (the total estimation
time is equal to the sum of the signal measurement time and the duration of calcula-
tions necessary to be performed after the measurement is completed);

- IpDFT methods achieve high estimation accuracy of f 1, even with short signal mea-
surement times, i.e., between one and three signal periods; this allows for a quick
response in systems controlling power generation or disconnecting devices from the
supply network;

- In IpDFT methods, the computational complexity of the estimation algorithm is
much lower than in parametric methods, which lowers the cost of the DSP system
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for determining the parameters of the power network signal; this is particularly
important for small power generation systems (e.g., small photovoltaic installations)
or for power quality monitoring by consumers.

The latest IpDFT methods are based on the complex values of the DFT spectrum
obtained by the FFT algorithm and include in their solution a conjugate component, i.e.,
a component with a negative frequency, resulting from the mathematical properties of
the Fourier transform. The use of the complex values of the DFT spectrum eliminates the
drawbacks of earlier IpDFT methods, which used the DFT spectrum modules. On the other
hand, the inclusion of the conjugate component allows for a significant reduction in signal
measurement time, relative to earlier IpDFT methods, without increasing the systematic
error values. The paper [31] presents the latest version of the IpDFT method taking into
account the conjugate component and using the complex values of the DFT spectrum.
This method uses windows of sinm type, which are, as shown in [31], generalized MSD
windows already used in earlier IpDFT methods. The IpDFT method presented in [31]
uses GMSD windows, which are described by two, mutually equivalent, relations:

wn =
H−1

∑
h=0

(−1)hah cos
[
(2h + z)πn

N
+

zπ
2

]
, n = 0, . . . , N − 1 (8)

wn = sinm
(πn

N

)
= sin2r+z

(πn
N

)
, n = 0, . . . , N − 1 (9)

where wn are the values of the GMSD window function for indices n = 0, . . . , N − 1, N is
the number of samples of the GMSD window, m = 2r + z is a natural number, H = r + 1, z =
0 for even m and z = 1 for odd m, and ah are appropriately chosen coefficients to ensure
that the GMSD window has the largest sidelobes damping for a given H. Relationships (8)
and (9) are equivalent, as shown in [31]. To derive the solution of the method in [31], (8) is
used, and for practical use, the more convenient form (9).

The signal y(t) from (7) is processed in an A/D converter operating at a sampling rate
f s (T = 1/f s is the sampling period) and N signal samples yn = y(nT) are obtained at the
A/D output. After introducing normalized frequencies λm = fmNT in (bins) or (cycles in
range (CiR)) (and in general, λ = fNT) the estimation of f 1 is equivalent to the estimation of
λ1. The use of λ in place of f and λm in place of fm simplifies the mathematical model and
allows a direct frequency reference of f 1 from the power network signal to the duration of
the signal measurement (time window duration). For example, the value of λ1 = 2.5 bin
means that a time window of NT (N samples obtained every sampling period T) contains
2.5 periods of the power network signal.

Applying the time window (8) and (9) to the signal samples (7) reduces to multiplying
yn by wn for all n and then the discrete-time Fourier transform (DtFT) is calculated, i.e., Xλ

defined by:

Xλ = X(λ) =
N−1

∑
n=0

ynwne−j2πnλ/N for any λ (10)

The spectrum Xλ for natural values of λ is a commonly known discrete Fourier
transform (DFT), which is usually calculated with the FFT algorithm. However, the IpDFT
method from [31] requires knowledge of the spectrum X(λ) for λ = 0, 0.5, 1, 1.5, etc. (i.e.,
with a step of 0.5 bin), which is obtained by the FFT algorithm in so-called double zero
padding technique [27].

The most important result in [31] is the dependencies on λ̂1 (and consequently on
f̂1 = λ̂1/NT):

λ̂2
1 = l2

1 + Re{ε1} (11)

ε1 = (m + 2)
(m + 2 + 4l1)Xl1+1 + 2mXl1 + (m + 2 − 4l1)Xl1−1

4(Xl1+1 − 2Xl1 + Xl1−1)
(12)
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where:
l1 = 1, 1.5, 2, 2.5, . . . (13)

This solution means that the spectrum interpolation procedure uses three DtFT spec-
trum points obtained with a step of 1 bin. The value of l1 should be close to the value of λ1,
as this condition minimizes the variance of the estimator and hence the error due to noise
in the signal.

The value λ̂1 differs from λ1 due to the presence of systematic errors (which even
occur for pure sine wave), the influence of harmonics and interharmonics, the presence of
noise in a real measured signal and other signal disturbances. The determination of the
impact of typical disturbances occurring in the power network on the obtained frequency
estimation accuracy f 1 is the goal of the research presented in Section 5 in accordance with
the methodology presented in Section 4.

4. Research Methodology

4.1. Assumptions for IpDFT
4.1.1. Measurement Time (Time Window Duration) NT

Based on the properties of the IpDFT method presented in [31], it was assumed in
this study that the NT time of the power network signal measurement with frequency
f 1 = 50 Hz is NT = 50 ms. This means that the normalized frequency λ1 = 2.5 bin, i.e., that
the measurement window (time window) covers 2.5 periods of the power network signal.
The value of the measurement time NT = 50 ms was chosen in the study as a compromise
value between aiming for the shortest possible measurement time and aiming for the
highest possible accuracy. The IpDFT method of [31] allows accurate signal measurement
for several times smaller measurement times, but then the effect of signal harmonics on
the estimation accuracy increases, causing a significant reduction in accuracy. For such
smaller measurement times (of the order of 1–2 signal periods) it is necessary, to maintain
high accuracy, to use filtering that reduces the influence of harmonics, and this would
degrade the dynamic properties of the method. As demonstrated by the studies presented
in Section 5 adoption of NT = 50 ms (λ1 = 2.5 bin) maintains high estimation accuracy
without the need for additional filtering at the input of the method. In practice the time
window will not cover exactly 2.5 signal periods due to the power network frequency
variation f 1 and because of the characteristics of the A/D converters used, for which a
change in sampling frequency f s = 1/T is not possible continuously, but only among a
limited set of values. However, the most important advantage of IpDFT methods is that
there is no need to precisely synchronize the duration of the measurement window with the
current frequency f 1 of the supply network. This is an essential feature of IpDFT methods
that distinguishes them from methods with so-called coherent sampling. The adoption
of NT = 50 ms is also the condition furthest from coherent sampling, since in coherent
sampling, the duration of the measurement window must be equal to an integer multiple
of the signal period. The lack of significant sensitivity of the IpDFT method tested in
Section 5 to changing the duration of the time window is shown in Section 5.1, where the
accuracy of the method was tested for NT = 50 ms and for two values differing by ca. ± 3%:
NT = 48.44 ms and NT = 51.65 ms. In the other studies (Sections 5.2–5.7), it was also found
that a similar change in NT measurement time does not significantly affect the estimation
results, and therefore only the case of NT = 50 ms was included in the presented graphs to
maintain the readability of the presented figures.

4.1.2. Number of Signal Samples N and Sampling rate f s = 1/T

For most studies in Section 5, the number of samples was assumed to be equal to
N = 1024 and N = 2048. This means, with measurement time NT = 50 ms, that the sampling
rate is, respectively f s = 20,480 Hz and f s = 40,960 Hz. The accuracy of the method for wide-
spectrum signal disturbances (Section 5.3) is also shown for f s = 2,621,440 Hz ≈ 2.62 MHz
(for N = 217), to show that the error for smaller values of f s is caused by the fact that the
conditions of Shannon’s sampling theorem regarding the minimum value of the sampling
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frequency are not satisfied. The increase in the error due to the failure to satisfy the
conditions of Shannon’s sampling theorem is eliminated in practice by the use of an
antialiasing filter at the input of the A/D converter and partly by the limited spectrum of
the coupling systems between the network and the measuring system. With the limited
frequency spectrum of the power network signal, it is possible to use smaller values of N
and f s. For the studies presented in Sections 5.1, 5.2 and 5.5, the following are presented in
addition to the two fundamental cases N = 1024 and 2048 (f s = 20,480 Hz and 40,960 Hz
providing NT = 50 ms) and the results for N = 128, 256 and 512 (f s = 2560 Hz, 5120 Hz and
10,240 Hz providing NT = 50 ms). The presentation of results for five different values of N
from 128 to 2048 provided a better representation of how the parameters N and f s at the
given NT affect the accuracy of the estimation. In many cases, low values of N and f s allow
to obtain satisfactory estimation accuracy under the condition of limited power network
signal bandwidth (e.g., due to the use of antialiasing low-pass filter) and fulfillment of
the condition of Shannon’s theorem for the minimum sampling frequency. It should also
be remembered that increasing the number of samples of the signal N (i.e., increasing the
sampling frequency of f s at a constant NT measurement time value) reduces the effect of
noise on the estimation accuracy, as shown in Section 5.7.

4.1.3. The m Parameter of GMSD Window

The basic parameter of the IpDFT method from [31] is, in addition to N and f s, the m
parameter of the GMSD window defined by (8) and (9). In the studies presented in Section 5
a fixed value of m = 3 was adopted as a compromise between the desire to suppress the
sidelobes as much as possible (long-range spectral leakage) and to widen the main lobe
width as little as possible. An increase in the value of m also results in an increase in the
variance of the estimator, i.e., the error due to noise in the signal. The authors’ studies have
shown that the value of m = 3 is the optimum case for many applications of power network
parameter estimation and can be treated as a universal condition when there is no more
specific other rationale for adopting a different value of m. A study of the effect of other
values of m in the presence of the disturbances considered in Section 5, in the opinion of the
authors, should be studied for individual target applications, which is beyond the scope
of this paper, which aims to present the basic properties of the method for a wide class of
applications.

4.1.4. The Effect of Signal Phase and Sliding Window

The phase ϕ1 of the power network signal described by (7) has important implications
on the accuracy of the estimation. In the case of continuous observation of the signal
(Figure 12), as is the case in network parameter monitoring systems, the phase of the
signal changes over time as the measurement window of duration NT includes the last
N samples of the signal relative to the current instant of time (Figure 12b). Each such
set of consecutive N samples can be referred to as a data frame (Figure 12c). As shown
in [31], the computation time required in a typical DSP system to determine the frequency
f 1 based on a single data frame is much smaller than the NT time of measuring that frame,
which is a well-known advantage of IpDFT methods. Therefore, in this study, it is assumed
that the computation time is negligibly small and that the current estimate f 1 appears
in the output of the method with the last sample of a given frame, i.e., with the end of
the measurement time of that frame. The next estimate f 1 is calculated after a sampling
period T and it takes into account the last N samples of the signal. This updating of the
estimate f 1 with each successive signal sample was adopted in the study in Section 5, in
order to accurately demonstrate the effect of the phase ϕ1 value, which changes with a
small step for successive data frames. In practice, the calculation of the frequency f 1 can be
performed less frequently because successive data frames differ by only one sample, i.e.,
they overlap to a large extent. Frequency calculation of f 1 with every kth sample reduces
the computational power requirements of the DSP system by k times. For example, in the
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DSP system used in [31], the frequency f 1 is updated every second sample of the signal,
i.e., every 2T ≈ 90.7 μs, where T = 1/f s ≈ 45.4 μs (f s = 22.05 kHz).

 

Figure 12. Determination of the frequency estimate f 1 with IpDFT method at every signal sample based on consecutive
data frames: (a) estimation of f 1 based on (11) and (12) in the DSP system; (b) sliding window and phase definition ϕ1 of
the fundamental component relative to the origin point t0 of the window; (c) updating of the estimate f 1 every sampling
period T for successive data frames.

4.2. Assumptions for Zero Crossing Method

The zero-crossing (ZC) method was used as a reference method for the investigated
IpDFT method from [31], since it is one of the most popular methods for estimating the
frequency of a power network signal. This frequency is calculated in the ZC method based
on the last two transitions of the signal through zero, thus by determining the duration
of one half-period of the signal (Figure 13). It is possible to reduce the estimation error by
taking into account many half-periods in one measurement instead of one, but the essential
properties of the ZC method do not change significantly, and additionally the dynamic
properties of the method deteriorate. Therefore, this paper is limited to the determination
of a single signal half-period. In order to precisely determine the moment when the signal
passes through zero, linear interpolation was used (Figure 13b), as is usually the case in the
ZC method.

 

Figure 13. Determining the frequency estimate f 1 by zero-crossing (ZC) method and the maximum estimation error
∣∣∣ f̂1 − f1

∣∣∣
with low-pass prefiltering: (a) three prefiltering options (ZC1, ZC2 and ZC3); (b) estimation of f 1 in ZC method with linear
interpolation.

In the ZC method, low-pass filtering of the input signal is necessary, because without
such filtering any high-frequency (impulse) disturbance introduces too large errors into
the frequency estimation result. A digital filter of order 4–6 is most commonly used;
however, results presented in Section 5.2 showed that higher-order filters are necessary
to significantly reduce the errors of the zero-crossing method for disturbances due to
interharmonics. In the studies presented in Section 5, three versions of a digital Butterwoth
low-pass filter were adopted, each consisting of 1, 2, or 3 sections, respectively, of a 6th-
order Butterworth filter with a cutoff frequency of f c = 60 Hz (Figure 13a). The signal
obtained as a result of such filtering is labeled in Section 5 with the labels ZC1, ZC2 and
ZC3 (Figures 14b and 15b), and this filtering introduces a signal delay that depends on
the filter order (Figure 14b). The results of the frequency estimation of f 1 obtained using
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these three types of filtering are also labeled in Section 5 with the labels ZC1, ZC2 and ZC3
(Figures 14f, 15d–f, 16e, 17e, 18d, 19e,g,i and 20b,c).

 
Figure 14. Effect of harmonics on estimation results: (a) 50 Hz power network signal model of THDSU = 10.3%; (b) delays
brought on by 6th-order (ZC1), 12th-order (ZC2) and 18th-order (ZC3) filters for ZC; (c–e) frequency estimation by IpDFT
for m = 3 and of N samples at measurement times of 50 ms, 48.44 ms and 51.65 ms; (f) comparison of the accuracy of the
IpDFT method for m = 3 and NT = 50 ms with the ZC method for N = 128, 256, 512, 1024 and 2048.

The ZC method is sensitive to the phase shift ϕ0 of the first sample considered in the
calculations with respect to the point where the signal passes through zero (Figure 13b).
Therefore, in the studies in Section 5 for the zero-crossing method, the maximum value of
the estimation error was determined from the set of values calculated for multiple values
of ϕ0.

5. Results

5.1. The Influence of Harmonics

The study of harmonics influence was carried out for a signal containing 12 consecutive
odd harmonics with parameters defined in Table 2 and with THDSU = 10.3% (Figure 9a).
For the duration of the measurement window of 50 ms, the maximum estimation error
depends on the phase ϕ1 of the power network signal relative to the beginning of the time
window, which results in a variation of the estimated value of f 1 on the time axis. Changing
the measurement time by a few (or even by several percent) does not significantly affect
the estimation accuracy (Figure 14c–e illustrates this effect for NT = 48.44 ms, 50 ms and
51.65 ms). In addition, the change in f 1 (as is the case in practice) at a constant NT value
will not result in a significant change in accuracy, since the decisive factor in both of the
above cases (i.e., changing NT at a constant f 1 and the change of f 1 at constant NT) is
the value λ1 = f 1NT = NT/T1, and thus the ratio of the NT window duration to the signal
period of T1. The number of samples N does not affect the error values due to harmonics
in the signal (Figure 14c–e). This property occurs when the condition of the sampling
theorem is satisfied and when the dominant component of the estimation is the error due
to harmonics in the signal. For the ZC method, a different situation occurs because the
estimation error depends on the number of samples N. For N = 128. the estimation error is
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larger than for the IpDFT method, for N = 256 it is, depending on the phase ϕ1, smaller or
larger, and for N ≥ 512, the estimation error for the ZC method is almost always smaller
than for the IpDFT method (Figure 14f). This ability to decrease the estimation error with
increasing N for the ZC method is a beneficial property of the method, but it comes at the
expense of the additional delay (Figure 14b) introduced by the low-pass filtering shown in
Figure 13a. In the case of errors due to harmonics, the order of the filter used (6 for ZC1, 12
for ZC2 and 18 for ZC3) does not affect the results of the ZC estimation (Figure 14f). For
the IpDFT method and for the adopted parameters of this method, the estimation error
does not exceed, depending on the quotient NT/T1 the value, ca. 0.0003 Hz (Figure 14c),
ca. 0.0002 Hz (Figure 14d) and ca. 0.0001 Hz (Figure 14e).

5.2. The Influence of Interharmonics

The study of the effect of harmonics was performed for a signal containing a group
of interharmonics with parameters defined in Table 4 (Figure 15a). The influence of the
interharmonic group on estimation accuracy of f 1 is larger than for the harmonics group.
For the IpDFT method, the estimation error is less than ca. 0.0015 Hz and it does not
depend, as in Section 5.1, on the number of samples N (Figure 15c). For the ZC method, in
order to eliminate the influence of interharmonics, a 12th-order low-pass filter is necessary
(ZC2, Figure 15e) for N < 512, because the filter of order 6 causes a significant increase in
estimation error (ZC1, Figure 15d). For N ≥ 512, a full minimization of errors caused by
interharmonics in the ZC method requires a filter order of 18 (ZC3, Figure 15f), which is
done at the expense of a higher signal delay (the signal with interharmonics after filtering
is shown in Figure 15b, and the values of delays contributed by the filters ZC1, ZC2 and
ZC3 are provided in Figure 14b).

 

Figure 15. Effect of interharmonics on estimation results: (a) 50 Hz power network signal disturbed by interharmonics;
(b) signals at the output of 6th-order (ZC1), 12th-order (ZC2) and 18th-order (ZC3) filters for ZC; (c) IpDFT frequency
estimation for m = 3 at a measurement time of 50 ms and for N = 128, 256, 512, 1024 and 2048; (d–f) comparison of the
accuracy of the IpDFT method for m = 3 and NT = 50 ms with the ZC method for N = 128, 256, 512, 1024 and 2048 and for
the 6th-order (ZC1), 12th-order (ZC2) and 18th-order (ZC3) filters.
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5.3. The Influence of Transient Overvoltages—High-Frequency Pulse

To study the effect of transient overvoltages of short duration, i.e., wide frequency
band, the model (4) with oscillations of 1 MHz was used. Such a signal (Figure 16a) was
added to the power network signal (Figure 16b) and the signal amplitude was limited
to ± 400 V, due to the saturation effect of the input circuits and the A/D converter itself
that occurs in practice. For N = 1024 (f s = 20.48 kHz for NT = 50 ms), the maximum
estimation error of f 1 is 0.1 Hz (Figure 16c). An increase of N by a factor of two to 2048
(i.e., increase by a factor of two of f s) causes the reduction of the maximum error by ca.
two times, i.e., to a value of ca. 0.05 Hz (Figure 16c). However, only adopting N = 217,
f s > 2 × 1 MHz eliminates errors caused by failure to satisfy Shannon’s sampling theorem
(Figure 16d). The comparison of the accuracy of the IpDFT method with the ZC method
shows (Figure 16e) that the maximum errors are at a similar level, but the return to very
low values of the estimation errors after the occurrence of the high-frequency pulse is much
faster for the IpDFT method than for the ZC method. Taking into account the principle
of the ZC method, it is obvious that it is not possible to use this method for this kind of
disturbances without low-pass filtering at the input of the method. For the IpDFT method,
however, the presented results indicate that it is advisable to apply an antialiasing filter
at the input of the A/D converter in order to reduce the impact of such interference on
the result of the estimation, but this is not a necessary condition—when it is not met, the
maximum error is ca. 0.1 Hz (Figure 16c).

 
Figure 16. Effect of high-frequency pulse disturbance on estimation results: (a) disturbing pulse; (b) 50 Hz power network
signal disturbed by the pulse and limited in amplitude to ± 400V; (c,d) estimation result of IpDFT method for m = 3 at
50 ms measurement time and for N = 1024, 2048 and 131072; (e) comparison of accuracy of IpDFT method for m = 3 and
NT = 50 ms with ZC method for N = 1024 and 2048.

5.4. The Influence of Transient Overvoltages—Low-Frequency Pulse

To study the effect of transient overvoltages with long duration, i.e., narrow frequency
band, model (5) with 1 kHz oscillations was used. Such a signal (Figure 17a) was added to
the power network signal (Figure 17b). For N = 1024 and 2048, the conditions of Shannon’s
theorem for sampling frequency are satisfied, and the maximum error of estimation of
f 1 in the IpDFT method does not exceed 0.5 Hz and practically does not depend on N
(Figure 17c). The return to very low estimation errors after a low-frequency pulse is much
faster for the IpDFT method than for the ZC method (Figure 17d,e). The pulse modeled by
(5) results in larger estimation errors than that modeled by (4), even though the condition
of Shannon’s theorem on sampling frequency is satisfied, because the energy contributed
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by pulse (5) is much larger than that by pulse (4). Similar to the study in Section 5.3, it is
clear from the performance of the ZC method that it is not possible to apply this method to
low-frequency pulse disturbances without low-pass filtering at the input of the method.
On the other hand, for the IpDFT method, the results presented show that the error rate
does not exceed ca. 0.5 Hz with a rapid return to low values after the cessation of the
disturbance.

 

Figure 17. Effect of low-frequency pulse interference on estimation results: (a) disturbing pulse; (b) 50 Hz power network
signal disturbed by pulse; (c,d) estimation result of IpDFT method for m = 3 at 50 ms measurement time and for N = 1024
and 2048; (e) Comparison of accuracy of IpDFT method for m = 3 and NT = 50 ms with ZC method for N = 1024 and 2048.

5.5. The Influence of Frequency Changes

The impact of a step change in f 1 on the estimation results was examined for a signal
for which the frequency changed in steps from 42.5 Hz every ca. 0.25–0.35 s (Figure 18a).
Since the IpDFT method determines f 1 based on the last N samples of the signal, then after
time NT the estimation error caused by the frequency step decreases to zero (Figure 18b,c).
In this case, the IpDFT method also recovers much faster after a frequency step to very low
values than the ZC method (Figure 18d).

 

Figure 18. Effect of frequency stepping on the estimation results: (a) frequency change from 42.5 Hz to 57.5 Hz every
15 periods; (b,c) estimation result of IpDFT method for m = 3 at 50 ms measurement time and for N = 128, 256, 512, 1024 and
2048; (d) comparison of accuracy of IpDFT method for m = 3 and NT = 50 ms with ZC method for N = 128, 256, 512, 1024
and 2048.
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5.6. The Composition of Harmonics, Pulse and Voltage Fall and Rise

To compare the influence of different types of disturbances, the estimation accuracy
was determined for the signal in which harmonics, transient overvoltages and voltage dips
occur, with the parameters defined in Table 5 (Figure 19a). In the IpDFT method, there are
large changes in the estimation result (Figure 19d) due to the low-frequency pulse (at time
instants 0.6 s and 1.2 s) and smaller changes due to the amplitude step change (at time
instants 0.7, 0.9, 1.1 and 1.3 s). The determination of the type of disturbance only based on
changes in the estimation result of f 1 does not seem simple, but in combination with the
estimation of the signal amplitude (Figure 19f) there appears, as an effect of the application
of the IpDFT method, an additional possibility of real-time detection and classification
of the types of disturbances of the power network signal. Even the simplest estimation
of the power network signal amplitude seems to be sufficient to perform such detection
and classification. For example, Figure 19f shows the result obtained after determining
the value of the complex spectrum for the determined f 1 (Figure 19d). For this purpose,
one of the methods of determining one point of the spectrum for a given frequency, e.g.,
Goertzel’s algorithm, can be used. The plot of the estimation error on the logarithmic scale
(Figure 19h) shows good dynamic properties of the IpDFT method, i.e., a fast return to very
small estimation errors after the disturbance disappears.

 
Figure 19. Effect of the sum of distortions by harmonics, low-frequency pulse, voltage dip, and
voltage rise on the estimation results: (a) time domain signal distorted with harmonics and two
pulses (at 0.6 s and 1.2 s) and four voltage steps (at 0.7 s, 0.9 s, 1.1 s and 1.3 s); (b,c) filter output
signals for ZC method; (d,h) estimation result of IpDFT method for m = 3 at 50 ms measurement
time and for N = 1024 and 2048; (f) rms measurement of fundamental component for voltage step
detection; (e,g,i) comparison of accuracy of IpDFT method for m = 3 and NT = 50 ms with ZC method
(for ZC1 and ZC3) for N = 1024 and 2048.
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The ZC method gives more than ten times larger estimation errors of f 1 than the IpDFT
method for dip-type disturbances (Figure 19e). The ZC method also has significantly worse
dynamic properties in this case (Figure 19g,i).

5.7. The Influence of Noise

The effect of Gaussian white noise on frequency estimation errors in the IpDFT method
of [31] is described in more detail in [31]. For comparison with the ZC method, sample
noise was added to a signal composed of several disturbances and shown in Section 5.6
and Figure 19a. The estimation results of such a signal with example noise are shown in
Figure 20. According to the properties of the method described in [31] for a pure sinusoid
with noise, the IpDFT method is unbiased, i.e., the error component due to noise is domi-
nant. Moreover, the properties of the method in [31] show that the variance of the frequency
estimator decreases with increasing number of N samples. The results in Figure 20 confirm
these properties. At the moments of interference mentioned in Section 5.6, the estimation
errors caused by these disturbances are larger than those caused by noise in the signal
(Figure 20a). The properties of the IpDFT method for the noisy signal are also clearly more
favorable than in the ZC method (Figure 20b,c) for both values of N (1024 and 2048) and
regardless of the filter order in the ZC method.

 

Figure 20. The effect of white noise with normal distribution and σ = 1 V on the estimation results in the presence of signal
noise in Figure 14a: (a) estimation result of IpDFT method for m = 3 at 50 ms measurement time and for N = 1024 and 2048;
(b,c) comparison of accuracy of IpDFT method for m = 3 and NT = 50 ms with ZC method for N = 1024 and 2048.

6. Conclusions

The paper presents the use of the IpDFT spectrum interpolation method for estimating
the fundamental frequency of power waveforms. The zero-crossing method with pre-
filtering by three types of low-pass filters was used as a reference method. The waveforms
created on the basis of recorded disturbances occurring in low-voltage power networks
were used as test models of signals. The models included: voltage harmonics and inter-
harmonics, oscillatory transient overvoltages exponentially damped with high and low
frequency pulses, frequency spikes and disturbances consisting of harmonics, voltage dips,
transient overvoltages and noise. The results of frequency estimation in the presence of
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modeled disturbances were analyzed as a function of the number of samples—sampling
frequency, measurement window length and in the case of the ZC method for three types
of filters.

Conducted research indicates that there is no significant influence of nonsynchronous
sampling in the case of the IpDFT method, as it is in case of the ZC method. For a larger
number of samples (above 512), the frequency estimation error for the ZC method is smaller
than for IpDFT. A simplified summary of the obtained results are demonstrated in Table 6.

Table 6. Maximum frequency estimation level errors for the grid disturbances described in Section 5. For two cases of N
(1024 and 2048), NT = 50ms and for the presented IpDFT method with the use of GMSD window with parameter m = 3 and
the reference zero-crossing method (ZC1 for one 6th-order filter section, ZC2 and ZC3—for two and three, respectively, filter
sections).

Type of Disturbance Type of Method
For Number of Samples N

Data Source
1024 2048

The influence of harmonics (THDSu
= 10.3%)

IpDFT 3.4 × 10−4 Hz Figure 14f

ZC1 . . . 3 2.0 × 10−6 Hz 1.8 × 10−7 Hz Figure 14f

The influence of interharmonics

IpDFT 0.0016 Hz Figure 15d–f

ZC1 0.0052 Hz Figure 15d

ZC2 9.2 × 10−6 Hz 8.1 × 10−6 Hz Figure 15e

ZC3 1.4 × 10−6 Hz 2.4 × 10−7 Hz Figure 15f

The influence of transient
overvoltages—high-frequency pulse

IpDFT 0.10 Hz in pulse
(above 0.001 Hz for 43 ms 1)

0.051 Hz in pulse
(above 0.001 Hz for 41 ms 1) Figure 16e

ZC1 0.14 Hz in pulse
(above 0.001 Hz for 60 ms 1)

0.068 Hz in pulse
(above 0.001 Hz for 50 ms 1) Figure 16e

ZC2 0.13 Hz in pulse
(above 0.001 Hz for 80 ms 1)

0.067 Hz in pulse
(above 0.001 Hz for 70 ms 1) Figure 16e

ZC3 0.14 Hz in pulse
(above 0.001 Hz for 90 ms 1)

0.071 Hz in pulse
(above 0.001 Hz for 80 ms 1) Figure 16e

The influence of transients
overvoltages—low-frequency pulse

IpDFT 0.41 Hz in pulse (above 0.001 Hz for 45 ms 1) Figure 17d,e

ZC1 0.55 Hz in pulse (above 0.001 Hz for 60 ms 1) Figure 17e

ZC2 0.54 Hz in pulse (above 0.001 Hz for 90 ms 1) Figure 17e

ZC3 0.58 Hz in pulse (above 0.001 Hz for 100 ms 1) Figure 17e

The influence of frequency changes

IpDFT 3.8 Hz in pulse (above 0.001 Hz for 45 ms 1) Figure 18c,d

ZC1 4.1 Hz in pulse (above 0.001 Hz for 100 ms 1) Figure 18d

ZC3 5.0 Hz in pulse (above 0.001 Hz for 150 ms 1) Figure 18d

The influence of voltage fall and rise

IpDFT 0.13 Hz in pulse (above 0.001 Hz for 41 ms 1) Figure 19g–i

ZC1 2.3 Hz in pulse (above 0.001 Hz for 81 ms 1) Figure 19g

ZC3 3.8 Hz in pulse (above 0.001 Hz for 120 ms 1) Figure 19i

The influence of noise
IpDFT 0.014 Hz 0.008 Hz Figure 20a

ZC1 . . . 3 0.020 Hz 0.012 Hz Figure 20b,c
1 The time in milliseconds of the temporary increase of the error above the level 0.001 Hz in the transient state caused by the disturbance.
This time allows us to present the dynamic property of the compared methods.

The effect of harmonics (Section 5.1) in the ZC method is minimal, due to the use of
input prefilters, while for the IpDFT method it does not exceed 0.34 mHz for the harmonic
disturbance model used. The precision of fundamental frequency estimation is similar for
both methods.

In the presence of interharmonic interference in the signal model (Section 5.2), the
frequency estimation error increases from 0.34 mHz to a maximum of 1.6 mHz in the
case of IpDFT. For the ZC method, better accuracies are obtained with higher filter orders
(minimum 12th-order) and larger sample numbers (minimum 256). For example, for the
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filter order 6 (ZC1), the estimation precision is about 5.2 mHz, representing over three
times higher frequency estimation error than for IpDFT.

In the presence of high-frequency damped oscillatory pulses (Section 5.3), the fre-
quency estimation errors are at a comparable level when the disturbance occurs. In contrast,
once the disturbance disappears, the IpDFT method reaches its initial accuracy much faster.
The IpDFT method reaches its initial accuracy after only 43 ms (N = 1024), while the ZC
method with the lowest-order filter reaches it after about 60 ms (N = 1024 ZC1) or 90 ms
(N = 1024 ZC3). It is also noticeable that there is a characteristic short oscillation in the
frequency estimated waveform for IpDFT immediately after the disturbance, which can be
used to identify the disturbance.

Low-frequency pulses (Section 5.4) have a greater impact on the fundamental fre-
quency estimation than do high-frequency pulses. In the former case, the estimation error
is 0.1 Hz (N = 1024), compared to 0.41 Hz (N = 1024) in the latter case. The value of the
error depends primarily on the energy of the disturbance. Comparing with the ZC method,
one observes, similarly to the high-frequency pulse, a significantly increased recovery time
to the original accuracy after the occurrence of the pulse. The situation is very similar when
stepping the frequency (Section 5.5). The time to return to the initial accuracy is at least
three times faster for the IpDFT method than for the ZC method.

Finally, the IpDFT method has better dynamic performance under all types of dis-
turbances (Section 5.6) with good estimation of the fundamental frequency. Moreover,
based on the analysis of frequency estimation error variations and instantaneous amplitude
variations of the fundamental frequency component, it is possible to determine the type of
disturbances: pulse type, rms variations and frequency variations. Tests in the presence of
noise (Section 5.7) also prove better dynamic properties of the IpDFT method in comparison
to ZC, and the frequency estimation accuracy is higher for the first method.

In conclusion, the IpDFT method may find application in protection systems and
measuring devices monitoring rapid changes of the fundamental frequency, even in the
presence of significant disturbances of the power waveform voltage.
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Abstract: Since January 2020, the COVID-19 pandemic has been impacting various aspects of people’s
daily lives and the economy. The first case of COVID-19 in South Korea was identified on 20 January
2020. The Korean government implemented the first social distancing measures in the first week
of March 2020. As a result, energy consumption in the industrial, commercial and educational
sectors decreased. On the other hand, residential energy consumption increased as telecommuting
work and remote online classes were encouraged. However, the impact of social distancing on
residential energy consumption in Korea has not been systematically analyzed. This study attempts
to analyze the impact of social distancing implemented as a result of COVID-19 on residential energy
consumption with time-varying reproduction numbers of COVID-19. A two-way fixed effect model
and demographic characteristics are used to account for the heterogeneity. The changes in household
energy consumption by load shape group are also analyzed with the household energy consumption
model. There some are key results of COVID-19 impact on household energy consumption. Based on
the hourly smart meter data, an average increase of 0.3% in the hourly average energy consumption
is caused by a unit increase in the time-varying reproduction number of COVID-19. For each income,
mid-income groups show less impact on energy consumption compared to both low-income and
high-income groups. In each family member, as the number of family members increases, the change
in electricity consumption affected by social distancing tends to decrease. For area groups, large
area consumers increase household energy consumption more than other area groups. Lastly, The
COVID-19 impact on each load shape is influenced by their energy consumption patterns.

Keywords: COVID-19; time-varying reproduction number; social distancing; load profile; demographic
characteristic; household energy consumption; demand-side management; energy management

1. Introduction

By the end of December 2020, the total number of COVID-19 confirmed cases world-
wide was 80 million, with the death toll reaching 1.7 million. The global pandemic caused
by the rapid and widespread proliferation of COVID-19 affected national policies, indus-
tries, and even the daily lives of people worldwide [1]. In South Korea, the total number of
confirmed cases reached 60,000 by the end of December since the first COVID-19 case in
Korea was identified on 20 January 2020, with the number of confirmed cases increasing
by approximately 1000 cases every day. To cope with this situation, the Korean govern-
ment began implementing and strengthening a policy based on social distancing. As
COVID-19 affected the entire country, authorities across the world had to analyze their
current situations and implement policies to respond to the pandemic. The US government
imposed a lockdown from March 2020 to prevent the spread of COVID-19 in the US, and
energy consumption declined by 20–40% in April and May 2020 [2]. Energy consumption
dropped to weekend levels under lockdown, with dramatic reductions in the services and
industry sectors only partially offset by higher residential use [3,4]. After shutting down on
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22 March 2020 in New York City, weekday energy consumption in apartments increased
by 7%, and weekend use increased by 4%. A load shift was observed during the weekday
morning hours. A ramp-up started at 6 am, rising throughout the morning and early after-
noon after reaching its pre-full morning peak at 9 am, highlighting the impact of this new
stay-at-home behavior. This load shift for weekday mornings and afternoons was also seen
in overall urban level consumption patterns observed by New York Independent System
Operator (NYISO) [5]. India’s energy consumption declined by 9.75% in March–April 2020,
decreasing further in May to 14.16%. Unlike the overall Indian energy system, India’s
household energy consumption increased during the COVID-19 pandemic [6]. An inde-
pendent electricity system operator reported that in Canada, Ontario’s residential energy
consumption increased during the spring and summer months of 2020 compared to the
previous year [7].

In [8], the autoregressive distributed lag (ARDL) model developed by Pesaran et al. [9]
was used to analyze the relationship between COVID-19 and regional energy consump-
tion. India was segmented into five regions, and the effect in GWh was estimated using
COVID-19 data for each region. However, reference [8] only analyzed the impact of
COVID-19 on regional and not residential energy consumption. In [10], the impact of
COVID-19 on household energy consumption was analyzed in Bhutan based on the num-
ber of household members. In 2020, Bhutan’s household energy consumption increased by
6.8% compared to 2019 and 18% compared to 2018. However, reference [10] has limitations
in comparing the total energy consumption used by the household members rather than
estimating the coefficient of the COVID-19 impact. Reference [11] showed that in Brazil,
the increase in home office arrangements caused by the COVID-19 pandemic resulted in
residential energy consumption increasing by 10–13%. Moreover, after dividing Brazil
into five regions, which are north, northeast, southeast-midwest, south, and all areas, the
total energy consumption before/after COVID-19 by region was only analyzed using the
t-test to determine the significance of the reduction in energy consumption using statistical
methods. However, reference [11] only demonstrated the increase in residential energy
consumption due to COVID-19. Apart from lifestyle changes in people’s lives during the
pandemic, other factors affected energy load consumption, such as weekdays, holidays,
weather, etc. [12,13].

In [14], energy consumption of HVAC in the housing sector increased by as much
as 16% during the lockdown period. In addition, the hourly load of lighting and home
appliances at home decreased slightly in the morning and increased significantly from
daytime to evening. There is a limitation as this study only compared the average daily
energy consumption during 23–31 March 2020 and the average during March 2017–2019.
For Australian households, daytime energy use increased by almost 15% compared with
February–May 2019 and the same period in 2020 [15]. In [16], based on the measurement
data from about 7000 dwellings in Warsaw household, the result shows that the average
daily energy consumption has increased during the lockdown of the COVID-19 pandemic
compared to the period of the year before the pandemic. However, refs [15,16] also
only compared the average daily usage pattern during the period of the year before the
pandemic and the lockdown period. This comparison method has the potential problem of
not distinguishing between the impact changed by COVID-19 and the impact changed by
external effects. In addition, there is a disadvantage in that it is not possible to perform an
analysis that reflects the demographic characteristics and energy usage patterns of each
household.

This study analyzes the impact of COVID-19 on household energy consumption
with demographic information of individual residential customers to capture the different
impacts on each group. The model used in this study better analyzes the impact of
COVID-19 by using a two-way fixed effect that captures household heterogeneity. In
particular, this study performs clustering of households for each load shape. The impact of
COVID-19 based on consumers’ pre-social distancing lifestyle patterns is analyzed. The

208



Energies 2021, 14, 7523

results of this study have implications for the planning and operating of Korea’s electrical
utility power systems in response to the COVID-19 pandemic.

Most previous studies have only analyzed the impact of COVID-19 using a dummy
variable. This study proposes the use of the time-varying reproduction number of COVID-19
to check the robustness and persistence of the impact of COVID-19 on household energy
consumption in Korea.

The remainder of this paper is organized as follows. Section 2 describes data used
in this study. Section 3 introduces the method for handling missing data, clustering
the load pattern algorithm, and estimating the COVID-19 impact on household energy
consumption. Section 4 presents the results of the analysis using the proposed method in
this study. Section 5 discuss the results of the study. Finally, Section 6 concludes the study.

2. Data and Description

Household energy consumption data are extracted through smart meters. The repro-
duction number is used to determine the impact of COVID-19 during the social distancing
period. The mean infection rate of a population at a certain point in time is defined as the
time-varying reproduction number—i.e., Rj, which can be repeatedly calculated over time.
Rj is the time-varying reproduction number of COVID-19 for week j in 2020. The instan-
taneous reproductive index is defined as the number of secondary infections expected to
occur at time divided by the number of infected individuals and infectivity at time and is
useful for estimating the number of retrospective or real-time transmission. Korea’s Rj data
show that Rj is high during the eight week of social distancing policy implementation in
Korea as shown in Table 1, but Rj exhibits a continuously declining trend during the social
distancing period [17,18].

Table 1. Estimated Reproduction Number During the Period March to April 2020 in Korea [18].

Week Index on 2020 Rj Issue

6 (2.2–2.8) 1.5
7 (2.9–2.15) 0.81

8 (2.16–2.22) 9.35 1st regional infection in Daegu,
Gyeongbuk (2.20–2.29)

9 (2.23–2.29) 5.66
10 (3.1–3.7) 1.94 First social distancing (2.29–3.21)
11 (3.8–3.14) 0.67

12 (3.15–3.21) 0.45

13 (3.22–3.28) 0.76 Strengthened national social distancing
(3.22–4.19)

14 (3.29–4.4) 0.85
15 (4.5–4.11) 0.67

16 (4.12–4.18) 0.53
17 (4.19–4.25) 0.58
18 (4.26–5.2.) 0.59

For weather data matched with each household, for a total of 1133 houses, the average
temperature and humidity in hour units extracted from the data of the Korea Meteorological
Agency’s Automated Surface Observing System (ASOS) in January–April 2020, which is
closest to the area of the sampled household. The weather data is extracted from nine
meteorological observatories. The household energy consumption extracted in 15-min
intervals on January–April 2020 from the Korea Electric Power Corporation (KEPCO) smart
metering and resampled the average hourly energy consumption. The average electricity
price is calculated based on progressive rate design. If 200 kWh or less is used in a month,
the electricity rate is 88.3 KRW/kWh. If 400 kWh above is used in a month, the electricity
rate is 275.6 KRW/kWh and except for the two preceding conditions, the electricity rate
is 182.9 KRW/kWh. A description and statistic of the time varying data is presented in
Table 2 and demographic characteristic is shown in Table 3.
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Table 2. Summary of time variant variable statistics.

Variable Unit Mean Standard Deviation Min Max Observation 1

Use kWh 0.039 0.67 0.003 6.81 3,290,232
Temp ◦C 6.09 6.13 −13 26.8 3,290,232

Humid % 59.7 22.4 4 100 3,290,232
Price KRW/kWh 99.5 13.6 93.3 234.5 3,290,232

Note: 1 Use is extracted from smart meters, Temp and Humid are extracted from ASOS, and Price is calculated
using Use for each household in January–April 2020.

Table 3. Summary of demographic characteristic.

Characteristic Unit Description Percentage

Income KRW
≤2.4 million 24%

2.41–5.50 million 48%
≥5.51 million 28%

Family member person

≤Two 38%
Three 24%
Four 28%
≥Five 10%

House area m2

33.1–62.8 (i.e., very small) 7%
66.1–95.6 (i.e., small) 21%

99.2–128.9 (i.e., medium) 54%
≥132.2 (i.e., large) 18%

3. Methods for Analysis of the Impact of Social Distancing on Household
Energy Consumption

In this section, a two-way fixed effect model is presented. In addition, a simple hybrid-
imputation method, which combines linear and statistical methods, and a clustering
algorithm based on the load shape is introduced.

3.1. The Method for Estimating the Impact of Social Distancing Using Household Energy
Consumption Model

The proposed analysis method used to identify COVID-19 factors that affected air
pollution [19]. In the previous paper on electricity usage, household energy consumption
is modeled using various factors that affect residential energy usage, such as airborne
particulate matter (PM) with a diameter of 10 microns or less, called air pollutants such as
PM10 and PM2.5, and temperature, [20–22]. The proposed method estimates the energy
consumed by residential customers with time-varying reproduction number during the
COVID-19 pandemic. Furthermore, the proposed model considers demographic character-
istics, such as house area, income quantile, and the number of household members.

The household energy consumption method is often used to predict energy consump-
tion or estimate factors that may affect energy consumption. This model is used for two
reasons. First, this econometric approach provides flexibility in controlling differences in
weather, seasonality, and other factors. Second, using household-specific fixed-effect, panel
data analysis can control time-invariant but unobservable characteristics per household,
which may cause bias in the impact estimation results.

Subsequently, using the household energy consumption model in Equation (1), a
model is created to measure the impact of COVID-19 on household energy consumption:

ln(Useith) = αRj,t + β1tempith + β2temp2
ith + β3humidith + β4 priceith + β5holidayt + δit + δth + εith (1)

where Useith is the energy consumption of household i used in hour h on t day from
January to April 2020, and Rj,t is the time-varying reproduction number of COVID-19 that
represents the risk of infection at week t for each week (from the 6th week 2020, when the
local infection began in Daegu at that time). α is the parameter of most interest, —that
is, a value that estimates the effect of the COVID-19 on the average household energy
consumption, which multiplied by 100 gives the rate of change. This study uses α to
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estimate the impact of COVID-19, which enforce people to stay indoors in the prohibition
period, on the household energy consumption. The people may use less electricity because
they go out to be active. Similarly, a decline in outdoor activity due to social distancing
may result in increase of household electricity usage. tempith and humidith are weather
variables, which are respectively temperature and humidity, of the closed location of the
household i in hour h on t day. In [20–22], the temperature has the relationship between
electricity consumption and temperature shows a U-shape. Therefore, if Equation (1) also
has the U-shape relationship, the robustness of Equation (1) could be checked. In [23], the
residential customer is more sensitive to average price rather than marginal or expected
marginal price. Therefore, priceith is the average electricity price of each household. holidayt
is the dummy variable for holidays. β1–5 are coefficients for each exogenous variable
of residential energy consumption for description and summary statistics of the data
described in Table 2, respectively. In addition, δit is the individual fixed effects of household,
household-month, and household-weekday-month to check the robustness of household
energy consumption model. δth is the time fixed effects of hour-weekday, which captures
weekday specific change of hourly energy consumption. The standard errors were clustered
by each household’s daily level in Equation (1). Equation (1) is used to estimate the impact
of social distancing by each demographic characteristic group.

Furthermore, another important topic is an impact on each groups’ energy usage
pattern. Therefore, the extended models are used to capture the impact of COVID-19
on each group’s hourly energy consumption. Gj

h are dummies for capturing impact on
residential hourly usage in each group. The same notation in Equation (1) is used in
Equation (2). The models are given as follows:

ln(Useith) =
j=24
∑

h=1
∑
j

Gj
h
(
α1,h + α2,hRj,t

)
+ β1tempith + β2tempith

2 + β3humidith+

β4 priceith + β5holidayt + δit + εith

(2)

The household cluster level of standard error is used in these models. A parametric
bootstrapping algorithm is conducted to make mean and confidence intervals of the model
coefficients [21]. The average of hourly consumption in hour h and calculated mean
and 95% confidence intervals are used to estimate the hourly impact of the time-varying
reproduction number 1.94 from 1 March to 7 March 2020, which is the first social distancing
week as shown in Table 1. The model for estimating the hourly impact is given as follows:

Impacth = Useh

(
1 + e1.94×α2,h

)
(3)

3.2. The Method for Hybrid-Imputation Model for Missing Data

To fill in missing data values, a hybrid method combining statistical and linear method
is used. Household energy consumption is driven by human behavior. Therefore, house-
hold energy consumption can be divided into two categories: first, because the consump-
tion is consistent over a short period of time, the short missing intervals can be replaced
with the available surrounding measurements; second, a person’s behavior can be charac-
terized during specific time intervals such as commute/work. Various methods exist to
replace the missing variables. The linear interpolation is a commonly used method and
is often used in short missing intervals that characterize continuous use. yL is the energy
consumption of the time c to be replaced, and yha and yhb

are the energy consumptions at
the time when there is no missing value adjacent to hc, and if the trailing time of ha, hb, and
hc are the preceding times. The linear interpolation method is as follows:

yL
c = yhb

+
yha − yhb

ha − hb
(hc − hb), hb < hc < ha (4)

The linear imputation is fast and simple. However, the linear interpolation method
has a disadvantage in that the performance decreases when the missing interval becomes
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longer [24]. To compensate for this shortcoming, the missing values in long intervals are
replaced by utilizing statistical values in an hour, day of the week, or month. Therefore,
a statistical imputation method is required. Statistical imputation is a method by which
the distribution of the time at which the month and day of the time to be replaced is the
same, and the missing value can be replaced by the median value of the corresponding
time [25]. For example, in the case of a person living alone, because they go to work around
8 a.m. on weekdays, there is no special energy consumption. Consequently, the user’s
behavior pattern of consumption data is contained, and the accuracy of the model can be
improved by performing substitution using the median value. Here, the median value is
used because it is less affected by anomalous data than the average value. The statistical
method is as follows:

yS
h = median(z), where z ∈ yj, j ∈ θh (5)

where θh represents the set of previous h hours that have the same month and day, and z is
the energy consumed during θh time. Hybrid imputation adopts a method that introduces
the Monte Carlo scenario [26] to find optimal point of the above two methods. After
selecting a household with no missing values for a specific month, the missing scenario
is generated randomly, and the RMSE of the two imputations algorithms is calculated to
determine the optimal replacement method.

3.3. The Method for Clustering of Household Load Shape

As an initial stage for grouping, the representative load pattern of each household
energy consumption was derived from median value of hourly energy consumption [27].
Normalization is performed using the maximum and minimum normalization of the
representative load pattern for each household [28]:

Normalized_Li,h =
Li,h − min(Li)

max(Li)− min(Li)
(6)

where Normalized_Li,h is the normalized energy consumption of customer i at time h, Li,h
is the average energy consumption of customer i at time h, and Li is the load profile
of customer i. To use the clustering method for the household load profile, there are
various clustering methods such as Kohonen self-organizing map (SOM), hierarchical
clustering, K-medoids, and Fuzzy C-means. However, there are no statistically significant
improvements compared to K-means in clustering of load shape of household energy
consumption data. Therefore, in this study, the K-means algorithm is chosen for the sake of
simplification [29,30]. The K-means algorithm is used to determine the optimal number
of groups. Moreover, there is no significant difference between the elbow method and
the silhouette score in finding the optimal number K [31]. Therefore, the elbow method
is adopted in this study. The number of groups K is optimized using the elbow method—
the elbow method optimizes the number of groups by using the difference in distance
between the household in the center of each group and the households in the group. It can
determine the optimal point using the sum of squared error (SSE), which is calculated as
follows [32,33]:

SSE =
n

∑
k=1

23

∑
h=0

(ai,h − ck,h)
2 where ai ∈ ck (7)

where n is the number of clusters, ck,h is the normalized energy consumption of the kth
cluster center point at time h, ai is the household in ck and ai,h is the normalized energy
consumption of customer i at time h. If the value of K increases, the SSE decreases.

3.4. Procedure of Proposed Method

The generic procedure for analyzing the impact of social distancing enforced by
COVID-19 on household energy consumption, shown in Figure 1, can be described as
follows:
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Figure 1. Flowchart of the proposed procedure for analyzing the impact of social distancing on household energy consumption.

Step (1) Find optimal point of each imputation method.
Step (2) Impute the missing data by using the proposed hybrid method.
Step (3) Cluster household usage pattern by using k-means.
Step (4) Estimate the impact of the time-varying reproduction number of COVID-19

on household energy consumption by using a two-way fixed effect.
Step (5) Check the robustness of the impact of the time-varying reproduction number

on household energy consumption.
Step (6) Estimate the impact of COVID-19 on household energy consumption by each

demographic characteristic groups.
Step (7) Estimate the impact of COVID-19 on the hourly household energy consump-

tion by load shape.

4. Empirical Results

4.1. Results of Hybrid Imputation and Clustering of Household Load Shape

The Monte Carlo scenario is performed by extracting 200 households with no missing
data and COVID-19 from the energy consumption data for January–February 2020. Figure 2
shows the results indicating the algorithm is more advantageous when it comes to handling
missing values. In intervals that are not grayed out, which means the number of missing
values is less than nine per day, the linear imputation method performs better than the
statistical imputation method. However, the longer the missing interval, the more accurate
the statistical imputation method.

Figure 2. Difference of RMSE between statistical and linear imputation as the number of missing
values increases.
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In Figure 2, the difference between the linear and statistical interpolation RMSE is
negative during the grayed-out intervals, indicating that statistical imputation method
to be advantageous in periods with missing intervals of 10 points or more. Therefore, in
this study, for missing intervals with a length equal to or less than 9 points, the analysis is
performed by interpolating linearly and for missing intervals with a length greater than
9 points, the statistical imputation method is used.

Based on the grouping results, the energy consumption of home customers is divided
into five patterns. Figure 3 shows the optimal number of groups using the elbow method.
In Figure 3, the slope is reduced at point which the sum of the total SSE of five cluster. In
Figure 4, 1133 customers are classified into Day (133 households), M-pattern (326 house-
holds), Stair (278 households), Owl (108 households), and Evening types (288 households)
based on their energy consumption patterns.

Figure 3. Sum of squares error (SSE) of residential customers clustered using K-means and el-
bow method.

 
Figure 4. Results of five residential customer clustering utilizing K-means.

214



Energies 2021, 14, 7523

The day type shows energy use during the day which means that someone uses
appliances in the house at lunchtime. The M-pattern type shows that there is a temporary
increase in energy consumption during the morning period for going to work and no
electricity usage until the evening before energy usage increased during the evening hours
after work. It is assumed in households in this pattern that all family members have a
job. The stair type shows a usage pattern where electricity consumption increases in the
morning, is constant in the afternoon, and increases in the evening. The owl type shows
high energy consumption during the night and maybe the typical energy use pattern of the
single-person residential customer. The evening type shows a group whose consumption
increases briefly in morning hours, then is rarely used during the day, before increasing
again in the evening. The evening type is the typical energy use pattern of customers not
being home in the afternoon and beginning their evening routine after leaving the office.

4.2. Empirical Results for Impact of Social Distancing in Korea

First, the impact of COVID-19 on household energy consumption is analyzed by using
Equation (1) during January–April 2020, which is the period included in social distancing
enforced by COVID-19. To check the robustness of estimating the significance of the
parameter at different sets of household and time dummies, the individual fixed effect
is introduced with three sets of dummies. The household level means estimating each
coefficient for the entire date period for each household. For the household month level,
each coefficient is estimated by clustering by month for each household. Finally, at the
household-month-weekday level, each coefficient is estimated by clustering the weekdays
and weekends of the month for each household. Therefore, the robustness check of the
proposed household energy consumption model was performed by different individual
fixed effects, as shown in Table 4.

Table 4. Models to estimate the impact of COVID-19 on household energy consumption.

Dependent Variable: ln (Use)

M1 M2 M3
Rj 0.004 *** 0.003 *** 0.003 ***

(0.0003) (0.0003) (0.0003)
temp −0.002 *** −0.0004 ** −0.001 ***

(0.0002) (0.0002) (0.0002)
temp2 0.00001 0.00002 0.00002 **

(0.00001) (0.00001) (0.00001)
humid 0.001 *** 0.001 *** 0.001 ***

(0.00003) (0.00003) (0.00003)
holiday 0.008 ** 0.022 *** 0.023 ***

(0.004) (0.003) (0.003)
price 0.0005 *** −0.001 *** −0.001 ***

(0.0001) (0.00005) (0.00004)
Individual fixed effect household-level household-month level household-month-weekday level

Time fixed effect weekday-hour weekday-hour weekday-hour
Observations 3,289,907 3,289,907 3,289,907

R-squared 0.453 0.495 0.503
Adjusted R-squared 0.453 0.495 0.501

*,**,***, significance at 10%, 5%, and 1%.

The inspection of robustness for the interested coefficient of reproduction number
of COVID-19 shows statistical significance in each model although the individual effect
is changed. The time-fixed effect has not changed because it is obvious that household
energy consumption has different patterns on weekends and weekdays. Therefore, the
significant positive impact of the time-varying reproduction number on household energy
consumption is shown. Given all the models presented, the estimated impact is robust
and statistically significant at the level of 0.01. The house energy consumption models
presented in Table 4 show that an average increase of 0.3% in the hourly average energy
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usage is caused by a unit increase in the time-varying reproduction number of COVID-19.
Other statistical control variables such as temperature, humidity, hourly electricity price,
and holiday dummy are also statistically significant. The result of the temperature factor
presents that the relationship between electricity consumption and temperature shows
a U-shape. This shape means that if the temperature rises to a mild level, electricity use
decreases. If the temperature rises to a level beyond mild, the electricity use increases. A
similar result has also been presented in previous impact of climate studies [21,34].

Second, since the M3 model has the highest adjusted R-squared among the models in
Table 4, the M3 model is performed to analyze each target group such as income status,
family member, and housing area. Figure 5 shows whether the impact of the time-varying
reproduction number of COVID-19 on household energy consumption in response to
demographic characteristics for each group. The income group is divided into three groups:
low-income, middle-income, and high-income. The family group is divided into four
groups including under or two, three, four, and five group. Moreover, the area group
consists of four groups, which are very small, small, medium, and large. Detailed statistical
information for each group is given in Table 3.

Figure 5. Change in each groups’ household energy consumption due to increase in the time-varying
reproduction number of COVID-19.

Because The M3 model has most high Adjusted R-squared between Models in Table 4,
the M3 model is performed to conduct regression analysis for each target groups, which
are income status, family member, and house area. In Figure 5, the solid dots represent the
coefficient converted into an impact percentage that measures the impact on household
energy consumption when the time-varying reproduction number of COVID-19 increases
by one unit, and the vertical lines represent 95% confidence levels. Looking at income
group, low income tends to live in house that are not energy efficient and to have appli-
ances with low energy efficiency, as shown in existing studies, which can cause a high
increase in electricity consumption of low-income households compared to mid-income
households. Furthermore, mid-income groups show less impact on energy consumption
compared to both low-income and high-income group, which means mid-income groups
have energy-efficient homes and appliances, compared to low-income and high-income
groups who might need more energy due to large areas occupied and the number of family
members [20,35,36]. According to the results of the number of family members, groups of
two household members or less shows the largest increase in household electricity con-
sumption in response to a unit increase in the time-varying reproduction number. Because
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single-member and two-group consumers have little activity at home during the pre-social
distancing period, working from home during the social distancing period may increase
in electricity consumption. As the number of family members increases, the change in
electricity consumption affected by social distancing tends to decrease, the large number
groups might use more electricity before social distancing. For area groups, large area
consumers increase household energy consumption more than other area groups. The
empirical results imply that if the area of the house is large, there might be many family
members and the income might be high, so the household energy consumption increases
the most during the social distancing period.

Finally, in Figure 6, using Equation (3) with the load shape group for household
consumers, the results show the impact of the time-varying reproduction number of
COVID-19 on the hourly household energy consumption during the first week of social
distancing. The shaded areas, which represent 95% confidence intervals, and solid lines
are generated by the bootstrapping procedure using Equations (2) and (3) [21]. In daytime
hours, all groups’ changes in energy consumption have a positive impact on the household
energy usage. This reflects that people tend to have curtailed outdoor activities during
daytime hours because of social distancing. During night-time hours, the M-pattern type
group was most affected by social distancing, because it usually had the least usage at
night-time compared to other groups as shown in Figure 4. For the opposite reason, the
groups that used electricity at night-time during pre-social distancing period was less
affected than the M-pattern. This means that there is less opportunity to increase indoor
activities at home in the night-time. In morning hours, all groups except for owl and M
type group show the small negative change in energy consumption due to work from home
and remote classes. The reason is that people slept more during morning hours because
there was no need to prepare to go out.

Figure 6. Change in load shape groups’ household hourly energy consumption due to increase in the time-varying
reproduction number of COVID-19.
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5. Discussion

In this study, statistical and linear interpolation methods are applied by creating a
scenario in which missing data occurred using the Monte Carlo technique. If the missing
data are short, the linear interpolation method performs better. The statistical interpolation
method has better results if the missing data is longer. K-means clustering is performed
using the representative load pattern. The elbow method is used to optimize the grouping
of K-means clustering. As a result, 1133 households are classified into five groups, which
are Day type, M-pattern type, Stair type, Owl type, and Evening type.

In the results of household energy consumption model, this study shows three key
implications. First, a numerical time-varying reproduction number of COVID-19 is a
useful factor for reflecting the impact of the COVID-19 pandemic on household energy
consumption. In order to reflect the intensity of the COVID-19 spread situation, a numerical
time-varying reproduction number is used instead of a dummy variable. As a result, an
average increase of 0.3% in the hourly average energy consumption is influenced by a unit
increase in the time-varying reproduction number of COVID-19. This result might seem
rather low compared to the increase rate presented in previous studies [8,14–16]. However,
unlike other countries, Korea has responded to the spread of COVID-19 through social
distancing rather than lock-down [37]. Therefore, the increase in household electricity
consumption would be relatively small as Koreans could move more freely during the
COVID-19 pandemic than people from other countries. Furthermore, whereas previous
studies showed a large percentage of change by estimated in specific industries, regions,
and national sectors [8,14–16,37–39], this study estimated the COVID-19 impact on the
hourly electricity usage of each household during the social distancing period.

Second, the results of this study remind policymakers of the problem that COVID-19
is more impact on low-income families than others. Many countries imposed mandatory
stay-at-home orders and take various actions to discount electricity bills. Therefore, the low-
income families should be more supported by the government if a pandemic is repeated like
in Indonesia. In Indonesia, poor people could use free electricity from 24 April 2020 [40].

Last, The COVID-19 impact on each load shape is related to their energy consumption
patterns. In addition, there are the same patterns as previous studies. As like [16,39],
In morning hours, patterns are shown the negative change in energy consumption due
to work from home and remote classes. However, previous studies showed the greatest
impact in the daytime, otherwise in this paper, when subdivided by pattern and analyzed,
some groups were more affected by social distancing during the night-time hours. This
result indicates that if some households did not used electricity in night-time hours before
the pandemic, their electricity usage could increase significantly in the daytime as well as
night-time.

6. Conclusions

The household energy consumption model is used to analyze the impact of COVID-19
reproduction number on household energy consumption. The impact of COVID-19 repro-
duction numbers is significantly positive; they increase household energy consumption by
0.3%. As a result, if the COVID-19 reproduction number increases due to increasing local
infection, most households’ energy consumption will increase. Most people do not have to
physically go to work and school because they can opt for work from home and remote
classes. This could be seen as a decrease in energy consumption in the early morning.
In addition, the energy consumption from daytime to night-time hours increases. An
analysis of the impact on each demographic characteristic group by using a robust model
is conducted. For income groups, the impact of social distancing on household energy
consumption is small to mid-income groups’ energy consumption. However, low-income
groups’ energy consumption is more affected by social distancing than the mid-income
group. For family member groups, the smaller the number of family members, the greater
the impact of COVID-19 on household electricity consumption. For house area groups, the
change enforced by social distancing in electricity consumption increases as the house area
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increases. The extended household energy consumption model is used to investigate how
the different impacts of COVID-19 reproduction numbers are analyzed by hours depending
on each load shape. According to each load shape, the effect of electricity consumption is
different in the morning, daytime, and night-time hours.

However, there is the limitation of the availability of the time-varying reproduction
number of COVID-19. Because it is not possible to count the number of COVID-19 infected
people in real-time, calculating and adopting the time-varying reproduction number of
COVID-19 in an hour could be physically difficult.

The empirical results show that the method presented with time-varying reproduction
numbers has been able to reach the best estimator of the impact of social distancing. Thus,
the results of this study have implications for electrical utility power systems in response
to the COVID-19 pandemic.
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Abstract: Forecasting consumption in isolated areas represents a challenging problem typically
resolved using deep learning or huge mathematical models with various dimensions. Those models
require expertise in metering and algorithms and the equipment needs to be frequently maintained.
In the context of the MAESHA H2020 project, most of the consumers and producers are isolated.
Forecasting becomes more difficult due to the lack of external data and the significant impact of
human behaviors on those small systems. The proposed approach is based on data sequencing,
sequential mining, and pattern mining to infer the results into a Hidden Markov Model. It only needs
the consumption and production curve as a time series and adapts itself to provide the forecast. Our
method gives a better forecast than other prediction machines and deep-learning methods used in
literature review.

Keywords: time series; Hidden Markov Model; short-term forecast

1. Introduction

The power grid became a smart grid [1]. In fact, from the first electric transmission line
installed by Thomas Edison in 1882 to nowadays super-large electric grids, power systems
evolved with the advance and progress of human industrial civilization. The power grid
has evolved in how electricity is generated and distributed.

Over the decade, electricity forecasting (or energy forecasting) focuses not only on the
grid side of power grids but also on the client-side to balance load and demand. Short-term
consumption forecasting is used to manage, plan, and schedule energy use in various
structures, from small-scale houses to vast complexes as factories, malls, or hospitals. It
makes it possible to monitor energy consumption, reduce losses, minimize risks, maintain
reliability for uninterrupted operation. As a decision-making tool, consumption and
production forecasting are used in simulation to plan future investments and where to
invest, to schedule maintenance, to manage plants use and battery use.

To optimize and regulate energy flows and prices, the electric system requires the
knowledge of future short-term consumption. This means knowing the global consumption
and any local consumption, i.e., scaling from a country to a house, to be able to forecast
their future. Estimating energy consumption is one of the critical challenges of our time
and yet, the interest in this field is still increasing. Besides the energy flow optimization,
predicting energy consumption allows us to acquire a more thorough understanding of
our modes of consumption.

There is currently no standard defining the types of forecasts. Hong and Fan have
classified very short term, short term, medium term, and long term forecasts into cut-off
horizons of 1 day, 2 weeks, and 3 years [2]. In this paper, we consider only very short-term
forecasting with cut-off horizons of 0.5 to 4 h.

Our study’s context concerns the European islands, more especially French May-
otte island through the H2020 MAESHA project (https://www.maesha.eu/, accessed on
15 June 2021). MAESHA is the acronym for “deMonstration of smArt and flexible solutions
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for a decarboniSed energy future in Mayotte and other European islAnds”, but also means
“future” in Shimaore, the local dialect of the French island of Mayotte that will host the
demonstration site. Islands use mainly thermal energies to produce electricity, for example,
Mayotte has sixteen diesel engines producing 95% of its energy in 2018 (Source: French
energies regulator CRE 2020’s report.). Followers include Futuna islands, Saint Barthélémy,
Canary islands, Favignana and Gozo.

The goal of the H2020 MAESHA project is to simulate the grid to improve flexibility
and include renewable energies and demand-side strategies. Indeed, islands are discon-
nected from the mainland grid and are primarily dependent on coal. Since the grid is
impacted by the geography and activities on the island, coal offers the most flexible and
instant source of power to maintain the offer according to the demand. However, the
islands tend to cut off the use of coal to include more renewable energies and batteries.

Islands contain many houses, factories, warehouses, farms only connected to the grid
by one point. One key challenge is to be able to predict the consumption and production of
those isolated areas to manage the offer and demand as well as an appropriate distribution
of energy across the islands. To predict isolated areas, we formulate the hypothesis to be
able to predict the consumption or production of each device of this area. It will provide a
more accurate forecast than a prediction of the whole system.

We define three principal applications of our forecasting tool after being deployed at
Mayotte islands:

1. CONSUMPTION FORECAST: The sum of the forecast of each device produces a predic-
tion of an isolated system.

2. CONSUMPTION SCHEDULING: Since each appliance produces its prediction, one can
schedule their consumption over time with smart appliances or smart house control.

3. DEMAND-SIDE MANAGEMENT: One may determine the effect of demand-side man-
agement strategies on their consumption. It is therefore possible to generate strategies
to reduce consumption, switch off certain devices or reduce consumption of appli-
ances, or to plan their renewable energies and batteries with the market.

Concerning the proposed method, it is based on various processes to optimize the
accuracy of the forecast and to be adapted to any consumption or production curves. Here
are the insights of our paper:

• We provide a method to transform a time series into sequences. Those sequences
represent the cycles of consumption/production of devices.

• The sequences are reworked to limit the noise while keeping recurrent motifs as
well as outliers. This processing produces a more understandable and practical set
of sequences.

• To be able to perform forecasts, we build through ALERGIA algorithm a Hidden
Markov Model for each device based on their reworked sequences. A Hidden Markov
Model is flexible and can be adapted and updated with new data.

• In our paper, we provide a step-by-step analysis of our method. Moreover, we compare
our results with well-known methods used in forecasting.

After presenting the literature review in the following Section 2, we present the
materials and the method in the Section 3. The rest paper is organized as follows:

1. DATASET: first of all, time series are decomposed into sequences (See Section 4).
2. MOTIFS DISCOVERY: to increase the quality of the forecast, a motif discovery algo-

rithm is applied to the sequence (See Section 5).
3. GRAMMATICAL INFERENCE: this method builds a sequence prediction machine as a

Hidden Markov Model (See Section 6).
4. VALIDATION: we also implemented famous forecasting methods to compare with our

method (See Section 7).
5. EXPERIMENTS: the Sections 8 and 9 show a pedagogical instance and the general

results with comparison and step by step analysis.

We conclude the paper in Section 10.
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2. Literature Review

Since energy consumption is a set of ordered values representing an evolution of a
quantity over time, it is handled as a time series forecasting problem. Current contributions
in this field use data-driven models to predict consumption over time. In the following
literature review, we cite popular articles, based on high-rank journals and conferences
(CORE rank). We also privilege current trends, without being exhaustive, by citing less
than five years old articles if possible.

2.1. Context and Surveys

Many surveys list forecasting methods. Zhao et al. [3], Daut et al. [4], Wang et al. [5]
categorize those methods in three categories: mathematical and statistical methods; Artifi-
cial Intelligence (AI) based methods; and hybrid methods, combining the two mentioned.
They also provide useful references and compare those methods. About the two last
categories, Raza et al. [6] references various AI-based and hybrid methods at various
short-term forecasting scales, from building to a country.

Predicting the energy consumption is frequently done in the short term, almost
60% of the studies employing data-driven models make hourly predictions [7]. It is
equally interesting to see that most of the studies focus mainly on the Cooling/Heating
(HVAC) consumption estimation. Indeed, HVAC represents between 40 and 50% of the
overall consumption of vast buildings like offices, faculties or hotels [8]. Forecasting this
consumption is often easier since the HVAC is fairly continuous over time and depends on
external parameters like local weather or time of the year [9]. Note that no study considers
all sockets/appliances of a household to predict the whole system.

Since energy consumption prediction is a time series forecasting problem, it’s not sur-
prising to find familiar methods like AutoRegressive Integrated Moving Average (ARIMA),
applied to this field. As it is shown in this research work [10], the most used techniques are
ARIMA, Support Vector Machines (SVM), and Artificial Neural Networks (ANN). Some
models combine neural networks with more classic models of time series forecasting. This
combination aims to strengthen predictions and increase performance. They are designated
as hybrid models.

2.2. Most-Used Methods

Although getting old, ARIMA is still being used for its simplicity, its accuracy im-
proved by moving average and its confidence interval. ARIMA is unsuited for long-term
prediction and cannot deal with nonlinear relationships. Despite more robust models
being used, making ARIMA less privileged nowadays, this method can be found com-
bined with other techniques as a hybrid model. Making a hybrid model with ARIMA
allows to combine it with techniques that can support non-linear relationships like SVM or
ANN [11–13].

ANNs are the most used method in forecasting building energy consumption. They are
widely employed in this field for their numerous advantages. Indeed, the complexity of this
task is considerable due to several factors/parameters which are a well-suited problem for
ANNs and their capacity to deal with non-linear relationships. ANNs are extremely robust
and flexible, especially MultiLayer Perceptron (MLP). They are easy to implement but
require some specialized knowledge to configure them. They can be employed alone [14],
they can also be combined with other models to get a hybrid model [11,13]. One of the
disadvantages is the massive amount of data required to train the network. If there aren’t
enough data to train the ANN, it will have difficulties to generalize and risks to overfit.

A type of neural network widely used in the field of time series forecasting is the
Long Short-Term Memory (LSTM). It’s an artificial recurrent neural network architecture
that can process entire sequences of data, making it a privileged model for handwriting
recognition, speech recognition, and time-series data. It can be implemented alone [15,16]
or with a convolutional layer for better results [17].
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2.3. Forecasting Isolated Areas

One problem is frequently overlooked or ignored: how to predict the energy consump-
tion of an isolated house, with only its consumption data. Indeed, a single household is
strongly dependant on the inhabitants. Building a good forecasting model is hard due to
the human factor, the lack of external context (no sensors), and the small or null amount of
energy consumed most of the day.

Our study is based on sequence prediction machines. They build a prediction or
decision tree from the time series. Those methods are mostly ignored in energy forecasting
because of the massive number of heterogeneous data. However, those methods provide
outstanding results with a homogeneous dataset like Deoxyribonucleic acid (DNA) fore-
casting. The key challenge of our method is to build an understandable and useful dataset
to be used by sequence prediction machines.

3. Materials and Methods

3.1. Materials

Mayotte island contains various cities and villages close to the coast and rivers as
shown in the density map Figure 1. The mainland is essentially mountains, quickly going
up to 900 m above sea level. The economy of Mayotte is essentially based on agriculture,
fishing, and aquaculture.

The island has only one high voltage line, energy circulates across the island through
low voltage. The network forms the shape of a bubble, but inland areas are mainly served
by linear lines which made the network unstable. Moreover, the two diesel plants are in
the north of the island; in the south many brownouts and blackouts happen every day
(Figure 2). Isolated areas frequently cause discrepancies between demand and distribution,
triggering local outages or even cascading over part of the network. Our study is a necessity
for the network, before considering building new plants and new batteries.

Figure 1. Density map of Mayotte from IGN-Ensee 2020©.

226



Energies 2021, 14, 7914

Figure 2. Electric low voltage network of Mayotte from EDM Open Data 2021©.

Since there are no current data for isolated areas in the Mayotte island, the pro-
posed method has been evaluated on the SMART* (http://traces.cs.umass.edu/index.
php/Smart/Smart, (accessed on 8 May 2021)) databases. This dataset is composed of
seven instrumented and isolated smart homes gathering real-life data each minute for
more than two years. Each device, appliance, or socket gets its time series. Those data
are consolidated, i.e., they do not have missing data or abnormal values. Since we aim to
forecast isolated areas in many European islands, this dataset perfectly suits our goal. The
Table 1 presents a dataset overview. The columns refer respectively to the home ID, the
number of meters, the percent of total energy from renewable energy.

Table 1. Analysis of the dataset.

HomeID # Meters %RE

A 31 0
B 26 0
C 20 10
D 70 39
F 22 73
G 45 0
H 18 0

3.2. Methods

The goal of our method is to build a prediction machine from a time series. Indeed,
in isolated areas, it’s easy to add meters to any socket, but it becomes harder and more
expansive to instrumentalize the area and locally compute a deep-learning method. After
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preprocessing the time series into a set of sequences, we implement clustering methods,
sequence mining, and motif mining (common subsequences) to transform those sequences
into meaningful sequences. They are inferred into a Hidden Markov Model, a data structure
well-known to generate the next items given a sequence. This flexible prediction machine
can learn if the forecast encounters new patterns.

The proposed method contains various steps explained in the following sections. To
be more understandable, we provide in this section an overview of the method with the
goals of each part. Figure 3 presents the steps of the proposed method. We briefly explain
each part with its purpose:

Figure 3. Overview of the method.

1. METERING: Some meters report the consumption or production (we use consumption
for the following explanation) of devices or sockets in the isolated area. Each meter
provides a time series with a timestep in milliseconds.

2. DATASET: Since meters give several values per second, data are preprocessed. The
first step is to cut the time series into sequences of consumption. Then, values are
summed together at a common timestep. Values of consumption are replaced by the
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slope between two values to better reflect the behavior of the device. To limit the
number of unique values, we use two clustering algorithms and a new algorithm
to retrieve extreme values hidden in the clusters. This step produces a meaningful
dataset for any prediction algorithm, especially those based on sequence mining.

3. MOTIF DISCOVERY: To increase the knowledge contained in the sequences, we im-
plement two algorithms to determine recurrent motifs of consumption inside the
sequences. This step increases the range of prediction. Indeed, since a motif starts to
be predicted, the whole motif of consumption is already known.

4. GRAMMATICAL INFERENCE: Most of the sequence prediction machines can only
predict known sequences or cannot predict further than one recognized sequence. To
build a more accurate and complete prediction machine, we transform the sequence
into a Hidden Markov Model, a combination of Markov Process and Automaton. This
model possesses an algorithm to update the probability and to predict future values.

5. FORECASTING: Since we can forecast the consumption for each meter, we can schedule
or sum the future consumption and production of the isolated area.

4. Dataset’s Building

To know the consumption of an appliance, a meter is plugged. Each appliance
produces a curve of consumption. This one saves a time series where each tuple delivers
the following information: ID_device, consumption (in Wh), and date. Each time series
(one per appliance) is cut into various sequences as described below. Those sequences form
the dataset used by our method to produce a forecast.

4.1. Sequence

A sequence of consumption starts from a zero value of consumption to a non-zero
value of consumption on two consecutive time steps. As soon as there is a zero-value
of consumption at the following step, the sequence stops. Some devices may have pro-
grammed cycles of consumption with small break times. The following method merges
two sequences of consumption if it is considered on the same cycle:

ΔB � ΔTi and ΔB � ΔTj

with the following variables: ΔB the break duration; ΔTi the ith sequence of consumption
duration; ΔTj: jth sequence of consumption duration. The Figure 4 presents an example
of merging multiple sequences (separated by vertical lines) to constitute a unique cycle
of consumption.

Figure 4. A washing machine consumption’s cycle.

Since most of the appliance consumes a little amount of energy in idle mode, the time
series must be studied to determine how to set a “zero” value, below this threshold, all

229



Energies 2021, 14, 7914

values are considered as zero. The consumption curve is studied to set the “zero” value
thanks to some mathematical tools as histogram, distribution function before the method,
and square error after appreciating the results. They provide an overview of the data to
find a good threshold for the “zero” value.

Given the enormous number of values that all the sequences of an appliance may
produce, it is relevant to smooth the data by the following methods: a data discretizing
named Discr. Algo., a data clustering named Clust. Algo., an algorithm to retrieve extreme
values named Ext. Value. Algo.

4.2. Data Discretizing

Since most meters provide several values per second, we need to provide a suitable
structure for any time series. Discr. Algo. provide a discretized dataset at a constant timer
which starts at the value of 5 min. Put differently, we sum the instant consumption of the
device for 5 min. Thus, the curve of consumption only shows the consumption value every
5 min.

Once all the consumption’s values are computed in the following dataset discretized
data, the integral of the data curve is compared to the integral of the discretized data curve.
The ratio between those two curves provides an estimation of the loss of information. This
ratio must not exceed a value α.

As long as this ratio is strictly less than α, it is possible to consider the data with a
greater timer between two values. On the contrary, if the ratio is greater than α, one needs
to shorten the timer between two values. The algorithm stops when the ratio is close to α.
The process is described in Algorithm 1.

Algorithm 1: Discr. Algo.
Input : dataset of consumption named 〈data〉
Output : a discretised dataset of consumption named 〈discr〉
α ∈ [0, 1]
ε << α
timer ← 5 min
Function Discretizing(data α) is

〈discr〉 ← empty
Integral_data ← integral of the curve generated by 〈data〉
test ← true
while test do

Integral_discr ← 0
xi ← first value of 〈data〉
insert xi in 〈discr〉
foreach xj from 〈data〉 at a timer ahead xi do

insert xj in 〈discr〉
Integral_discr+ = (

(xj−xi)
2 + min(xi, xj)) ∗ timer

xi ← xj

incr is the incremental difference between 〈discr〉 and 〈data〉
if incr

Integral_data < α − ε then

increase the value of timer
reset 〈discr〉

if incr
Integral_data > α + ε then

decrease the value of timer
reset 〈discr〉

else
test ← f alse
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4.3. Slope between Two Values

We transform the value in each sequence. We don’t consider the value of consump-
tion but compute the slope between two values. The slope provides a more thorough
understanding of the device’s behavior than its consumption in Wh. Indeed, some smart
appliances have similar cycles of consumption but at various scales of consumption.

Each data of a sequence is referenced with: its value, its sequence ID, its position
in the sequence, and from the second position the value refers to the slope between two
consecutive values.

4.4. Data Clustering

The data may contain millions of distinctive slope values. Reducing the noise in each
sequence is useless since sequences have less than one hundred values. In consequence,
we need to reduce the noise in the whole dataset by a clustering method.

Clustering represents the process of determining typical groups, called clusters, in a
dataset. The objective is to find homogeneous clusters that are as distinct as possible from
other clusters. More formally, the grouping should maximize inter-cluster variance while
minimizing intra-cluster variance.

A classification of clustering methods for various static data is proposed in [18]. In
the context of our dataset, agglomerative hierarchical-based clustering is suitable because
it considers the distance between each value. It runs the distance matrix and plots a
dendrogram that displays a hierarchical relationship among the data based on the nearest
neighbors for each value. The metric is the Euclidian distance between each value.

To determine the number of cuts, the Elbow method is employed. The total Within-
cluster Sum of Squares (WSS) in the dataset is computed for various cuts (i.e., in the
function of the number of the cluster). The WSS curve forms an elbow, the number of
cuts is equal to the value where the WSS starts to be stabilized. Then, two hierarchical
algorithms are implemented:

1. DIvise ANAlysis clustering: DIANA is completely described in Kaufmann and
Rousseeuw’s book [19]. At each iteration, the cluster with the largest dissimilar-
ity between any two of its observations is selected. The algorithm selects its most
disparate observation. Those values initiate the splintering process, and the algorithm
reassigns closer observations to both splinters.

2. AGglomerative NESting: AGNES is thoroughly described in Kaufmann and Rousseeuw’s
book [19]. It constructs a hierarchy of clusterings. Initially, each observation remains a
small cluster by itself. Clusters are merged until only one large cluster remains which
contains all the observations. At each stage, the two nearest clusters are combined to
form one larger cluster.

Various methods are implemented as Ward, Complete linkage, or Flexible linkage to
offer various hierarchies to maximize the Silhouette and minimize the WSS.

The Silhouette refers to a method of interpretation and validation of consistency
in data clustering and provides a graphical representation of how well each point has
been classified.

Let a(i) be the average distance between a point i to all other data points in the same
cluster; b(i) be the smallest average distance of point i to any other cluster of which i is not
in the set. The Silhouette of point i is defined as follows:

s(i) =

⎧⎪⎨
⎪⎩

1 − a(i)/b(i), if a(i) < b(i)
0, if a(i) = b(i)
b(i)/a(i)− 1, if a(i) > b(i)

the Silhouette provides a result between −1 and 1. An s(i) close to one means that the data
is appropriately clustered. A value of −1 means the data is in the wrong cluster. In other

231



Energies 2021, 14, 7914

words, the Silhouette qualifies if the data fit in its cluster or not. A mean Silhouette close to
1 induced the lowest WSS.

After the hierarchical cut, the data are assimilated to their respective nearest cluster
center (as the mean of its data). The data with a small Silhouette or with a negative
Silhouette means the value will be replaced with an inappropriate one. To decrease the
loss of information due to a small Silhouette’s value, a K-means algorithm adjusts the
observations to the good cluster. Note that the mean of each cluster and the affectation of
the observations may differ from the hierarchical clustering.

Since the clustering methods computed the distance between data, in consequence, the
dataset must be sampled to avoid memory shortage. The sample must be representative of
the diversity of the values. A Monte-Carlo procedure is employed to re-sample a given
observation at each level of sampling. The expectation is the mean of the re-sampling will
approach Shannon’s diversity index at that sample level.

Since we minimize the WSS, each data is now as close to its cluster center as possible.
At this step, all values of the sequence are now changed to their respective cluster means.
The number of unique values is drastically reduced.

4.5. Extreme Points Retrieval

Once the K-means converges, the Silhouette is computed again. If the Silhouette of
some points is not higher than a threshold 0 < silh < 1, then those points are considered
as noise. Indeed, the more the Silhouette is close to zero, the more the WSS increase. Put
differently, the values with a Silhouette under the threshold silh decrease the quality of
the clustering, they better fit with a new cluster. A new cluster is produced with each
noise point.

Otherwise, if the Silhouette provides a negative value, the point is conceded to the
corresponding cluster. Then, the Silhouette are updated. This process stops when there are
no more noise points. Note that through iterations, some noise points may be grouped.

This process is useful to keep extreme and isolated values that have been erased
through the clustering process. Indeed, those values refer to extreme slope values (mostly
very high values) and we need those to accurately predict the consumption.

The proposed method is linear on numbers of clusters and numbers of iteration, and
log-linear on the number of points. The Algorithm 2 describes how to retrieve the extreme
points Ext. Value. Algo. Following this process, each value is changed to their cluster mean.

Algorithm 2: Ext. Value. Algo.
Input : Kmeans results 〈reduc〉, a Silhouette threshold silh.
Output : 〈reduc〉 with extremal values.
Function Retrieval(〈reduc〉, silh) is

while A cluster has a point with a Silhouette < silh do
foreach Points of this cluster do

if The silhouette is negative then
Give the point to the corresponding cluster

if The silhouette is < silh then
Put the point in a new cluster C

Compute Silhouette

5. Motifs Discovery

At this point, the sequences are meaningful but can include various values. We
formulate the hypothesis that some subsequences appear multiple times in the dataset. A
device may have consumption patterns/schemes which happen in several sequences. To
limit the length of the sequences and to improve the effectiveness of the prediction, those
schemes should be considered as a unique symbol, i.e., once the pattern is detected or
suggested, the prediction will provide all the concerned motifs.
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This section is composed of Disco. Motif. Algo., an algorithm designed to discover a
frequent motif inside the dataset.

Sequential pattern mining is an important data mining method that can extract similar
subsequences while maintaining their order. However, it is critical to identify data intervals
of sequential patterns extracted by sequential pattern mining. Disco. Motif. Algo. is based
on Hirate and Yamana [20] generalized sequential pattern mining with data interval.

Those intervals can be a data gap and/or a time interval. The motif on the consumption
scheme must be continuous and contiguous. The generalized sequential pattern mining is
set on contiguous data with no time interval.

Besides the common subsequence, its Support is indicated. The Support provides the
frequency of this subsequence among the dataset but does not give if the motif is recurrent
inside the same sequence. After finding the motifs, only the ones with the most significant
length and Support are considered without any conflict on data.

To resume, the Disco. Motif. Algo. is as follows:

1. Implement Hirate and Yamana’s Algorithm.
2. Use the algorithm on the dataset 〈reduc〉 from Section 4.4.
3. Return a list of motifs and their support.
4. Merge the symbol of the motif in the dataset from the top motif’s length and Support

to the lowest. Do not merge if data is already in a better motif.

Let’s observe the process through an example. We consider three sequences where each
letter refers to a cluster’s mean: aaabacc, bacaaa, ccbacaaa. Hirate and Yamana’s Algorithm
provides, for example, subsequences bac, aaa, ba, aa with a support of 100% because those
sequences are observed in the three sequences. For example, the subsequence cc has
support of 66% because of its presence in the first and third sequence. In conclusion, we
rewrite the three sequences considering in braces the motif: (aaa)(bac)c, (bac)(aaa) and
cc(bac)(aaa).

Time series motifs are pairs of individual sequences, or subsequences of a longer
sequence, which are extremely similar to each other. One hypothesis is made after Disco.
Motif. Algo.: some recurrent motifs may differ by at least one symbol.

The goal of Ext. Motif. Algo. is to discover extended versions of the motifs in the
sequences. For example, the sequences aaaeaaa and aaa f aaa only differ about one symbol.
If the symbol e and f have close values, the two symbols are considered equal with a new
symbol g = e+ f

2 .
The Figure 5 represents the sequences in Figure 4 after Ext. Motif. Algo. Each motif is

identified by a number and a color (from 1 to 4).

Figure 5. A washing machine consumption’s curve after motif discovery.
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6. Grammatical Inference

Following the previous steps, the cycles of consumption are now composed of cluster’s
means and motifs. The goal of this section is to build a prediction machine from those
sequences. First of all, the sequences are displayed into a frequency prefix tree, also known
as a trie.

Since the trie is PAC-learnable, for Probably Approximately Correct, it is presently
possible to make grammatical inference on it [21]. The grammatical inference has been sig-
nificantly developed by Colin de la Higuera whose works are presented in these books [22,23].
Grammatical inference represents the process of learning a formal grammar of a set of data.
Note that the trie is pre-parsed, the grammatical inference algorithms will be faster and
more efficient.

Many methods of grammatical inference exist, often competing in the PAutomaC [24]
contest, a competition of PAC-learning. Among the algorithms, ALERGIA and MDI are non-
deterministic algorithms allowing the reduction of a probabilistic deterministic automaton.

6.1. ALERGIA

The ALERGIA algorithm is detailed in the following articles [25,26]. ALERGIA has
been applied to information extraction from text or structured documents and speech-
language modeling. ALERGIA follows the same process as the well-known RPNI algorithm:
some sequences, a compatibility test, and a merging operation.

The compatibility test is based on Hoeffding bounds. In the trie, let ni be the number
of subsequences arriving at node i; f denotes the count of the transitions: fi(a) be the
number of subsequences following arc with the value a; fi(.) be the number of sequences
terminating at node i. Calculate the following probabilities: pi(a) = fi(a)

ni
for each transition.

Two nodes i and j are compatible if for each transition (including termination) and
their corresponding children are going to be checked recursively:

∣∣pi(a)− pj(a)
∣∣ <
√

0.5 ln
2
ε

(
1√
ni

+
1√nj

)

where ε is called the acceptance range.
The ALERGIA algorithm checks all pairs of nodes, if no pairs are compatible then the

algorithm stops. ALERGIA produces a deterministic probabilistic finite automaton. As a
compromise between the automaton reduction and the Kullback-Leiber divergence [27], a
value ε = 1

N3 is taken with N the number of states.

6.2. Prediction and Updating

To be able to use efficiently the probabilistic automaton, we transform it into a Hidden
Markov Model (HMM).

The process to transform a stochastic automaton into an HMM is described and
proved by Dupont et al. [28] and Harbrard et al. [29]. The steps of the process are not
discussed in our paper. This process has been developed in previous works and published
in Demessance et al. [30]. The algorithm has been adapted to our context. Let us describe
the structure of an HMM and how to perform a prediction.

An HMM is a graph where nodes and arcs possess probabilities. A set of couples
[item, probability] are referenced on each node where item is a cluster’s means, an outlier,
or a motif; and probability refers to its probability to be generated on this node. The item #
refers to the end of a sequence. By convention, all items are represented in each node, even
if its probability is equal to zero.

The root nodes of an HMM are characterized by an ongoing arc without a start node.
The root nodes are nodes where we can start to read the sequence. They are computed
through the ALERGIA algorithm. Last but not least, arcs possess a probability to go from a
node to another node.
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To perform a prediction, we introduce two operations on an HMM: jump and obser-
vation. The jump process is similar to a random walk in a Markov chain. Then, one can
generate an item on the last node visited. The combination of those two processes is called
observation. The probability to observe an item is equal to the product of the jump and
item generation.

Since we need to predict an item from a given sequence, the first step is to start
the observation from the right node. Indeed, we need to read the given sequence in the
HMM before performing a new observation. This process is done thanks to the Viterbi
algorithm [31]. Given an input sequence, this algorithm computes the most probable
sequence of observations.

Finally, the prediction process occurs at the node of the last observation of this se-
quence. A set of all predicted observations are generated from this node. This means
all jumps from the start node to another node and all generated items at these nodes
are computed.

Each observation produces a couple of (suffix, probability) where su f f ix refers to the
generated item with its probability to be observed. Some couple has the same su f f ix, thus
its probability is summed.

To observe at a range of 2, we produce a new observation starting at the last visited
node of each su f f ix. The new su f f ix is the concatenation of the two observed items. And
so on for a larger range of predictions.

In our context, we want to predict the next slope value (consumption or production)
of a device knowing its past. Following the prediction process, the forecast sequence is
equal to the most probable su f f ix.

Let us show the prediction process with an example (see Figure 6). The HMM has four
nodes named 11, 12, 21, 22. The item and probability in brackets are items for each node.
The weighted arcs between nodes represent the probability to jump. For this example, we
start at node 11 and build the su f f ixes at two steps forward.

Figure 6. Example of Hidden Markov Model.

Concerning the prediction of the next item, there are two possibilities to jump: to 12
with a probability 0.9 and to 11 with a probability 0.1. To perform an observation, each of
these probabilities are multiplied by the probability of each item at nodes. On node 11, we
generate item a at 0.2 and b at 0.8. The probabilities of observations from node 11 to node
11 are: a with a probability 0.1 ∗ 0.2 = 0.02 and b with a probability 0.1 ∗ 0.8 = 0.08. For the
observation from node 11 to node 12, we have: a with a probability 0.9 ∗ 0.3 = 0.27 and b
with a probability 0.9 ∗ 07 = 0.63. Since both a and b are common su f f ixes, we add their
probability to be observed: a with a probability 0.02 + 0.27 = 0.29 and b with a probability
0.08 + 0.63 = 0.71 (note the sum of probabilities of su f f ixes is always equal to 1).

To perform a prediction of two items, we need to compute the next observation
considering we start at node 11 with a probability 0.1 and at node 12 with a probability 0.9.
The predicted item is the su f f ix with the highest probability.
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In our model, the predicted item can be a single value or a motif. If we consider a
timestamp of 5 min, i.e., 5 min between each value, an observation represents a forecast of
at least 5 min. Indeed, predicting a motif extends the range of the forecast. In our model,
we consider a forecast of at least 20 minutes, i.e., at most a prediction of 4 items.

6.3. Update

If the HMM provides not good enough results, or when we face new behaviors, we
must update the HMM.

The update process adapts the probabilities to jump and the probabilities to generate
items for a sequence set. To update the HMM, we use the Baum-Welch algorithm [31,32]. In
our method, we implement this algorithm without any modification, so it isn’t discussed
in this paper.

7. Validation and Comparison

To validate our approach, we compare our results with famous sequence prediction
machines and deep-learning methods.

7.1. Sequence Prediction Machines

The task of sequence prediction consists of predicting the following data of a sequence
based on the previously observed data. Most of the sequence prediction machines are
based on Markov properties as Prediction by Partial Matching (PPM) [33], Dependancy-
Graph (DG) [34], All-K-Order-Markov (AKOM) [35], Transition Directed Acyclic Graph
(TDAG) [36], Probabilistic Suffix Tree (PST) [37], Context Tree Weighting (CTW) [37].

The drawback of these algorithms is the increasing of temporal and spatial complexity
when one wants to increase their accuracy. If the Markovian hypothesis doesn’t hold, the
accuracy severely decrease. Some models are based on compression such as LZ78 [38],
Active Lezi [39] and more recently CPT [40] and CPT+ [41].

To validate our model, we implemented the following methods with the same se-
quence preprocessing: TDAG, CPT+, AKOM. Note that those sequence prediction machines
do not possess an update method.

7.2. Deep-Learning Methods

To validate our method, we implement four deep-learning methods, trained and
tested directly on the time series of the whole house after discretizing. The four methods
are the most known concerning consumption forecasting as seen in the literature review:
CNN-LSTM, CNN, LSTM, and MLP [42].

8. Pedagogical Instance

The data processing (sequencing, evolution of consumption) and the hierarchical
clustering are done with the R Studio software. The sequence prediction machines are
implemented with JAVA using the SPMF Library developed by Fournier-Viger et al. [43].
The deep-learning methods, ALERGIA algorithm, and HMM methods are implemented in
Python language. A Python main script regroups all the processes.

Our method takes one minute to run from the data gathering to the prediction. Tests
are executed on a personal computer running on Windows 10 with a processor Intel Core
i5-6400 CPU at 2.70 Ghz with 8Go DDR RAM, with 250k-1M observations per appliance.
The method requires a similar time with any dataset since it’s sampled.

In pedagogical terms, we consider the dishwasher from Home C, Meter 1.

8.1. Data Analysis

First of all, one must analyze the general trends of the time series shown in Figure 7.
The consumption values present 503,910 observations from 0.0001 Wh to 1.4018 Wh. Over
98% of the values are under 0.5 Wh and represent the idle mode of the dishwasher. In
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consequence, a threshold of 0.5 Wh is used as “zero”. Close to 90% of the total consumption
is kept.

Figure 7. Density of the data.

After sequencing the time series, the dataset provides 748 sequences with an average
of 10.6 values of slopes per sequence for a total of 10,834 values where 92.7% are singletons.
The slope’s percentiles are shown in Figure 8. A representative sample of 1000 slope’s
values is taken from the dataset and is used to reduce the noise through clustering.

Figure 8. Percentile of the slope.

8.2. Method Step by Step Analysis

The first step of clustering is to determine the optimal number of clusters employing
the Elbow method to the sample. The Elbow method executed on the sample gives an
optimal number of clusters of 4 clusters and an estimated WSS at 35.8 by extrapolating to
the whole dataset.

The Figure 9 presents the inertia of AGNES-flexible for 1 to 20 clusters. The inertia tells
how far away the points within a cluster are. As seen with the inertia of the hierarchical
clustering, 4 clusters are a good choice. Indeed, the inertia jumps from a maximal value
of 1.8 to 3.8. With 5 clusters, the inertia will be at 1.6 which has no change compared to
4 clusters.

Subsequently, the method determines the best hierarchical clustering among DIANA
and AGNES algorithms with several metrics. Table 2 presents the average Silhouette, total
WSS, and WSS for each cluster for all the hierarchal clustering algorithms. The suffix
of AGNES denotes the method: Complete, Ward, Flexible. In this example, the highest
average silhouette is given by AGNES with the flexible method.
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Figure 9. Inertia of AGNES-flexible on the sample.

Table 2. Comparison of WSS for each hierarchical clustering.

Algo Silh TWSS WSS

DIANA 0.937 12.8

2.85
2.36
3.46
4.16

AGNES-c 0.94 12.4

1.90
3.01
3.34
4.16

AGNES-w 0.945 12.1

1.64
2.29
3.34
4.83

AGNES-f 0.945 12.1

1.64
2.29
3.34
4.83

The Figure 10 shows the Silhouette after merging the dataset. The average Silhouette
before merging is equal to 0.95. The difference between the Silhouette before and after
merging is −0.01. It may vary depending on the sample. The more the dataset contains a
vast diversity of values, the more the Silhouette will decrease after merging the dataset.
Indeed, the sample is representative of the diversity, not of the distribution.

Figure 10. Silhouette after merging the dataset.
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Finally, the K-means algorithm adjusts the data in the right cluster to maximize the
silhouette. The Figure 11 presents the Silhouette of the dataset after implementing the
K-means algorithm. The average Silhouette is close to the sample. Among the dataset,
586 different data (5.5% of the dataset) have changed their cluster.

Table 3 compares the WSS at each step of our method: after the “zero” threshold (Zero),
after the hierarchical clustering (Hcl), after the K-means (End). The total WSS (TWSS)
slightly decreases between the hierarchic clustering results and the K-means algorithm
results. The WSS is similar for each cluster, and the mean is more adequate to the range
of values.

Figure 11. Silhouette of the dataset after K-means algorithm with 4 clusters.

Table 3. Step by step comparison of the proposed method.

Zero Hcl End

TWSS 35.8 37.7 35.4

WSS none

4.02
9.45

14.11
10.11

8.42
8.92
8.64
9.45

Elements 10,834

10,075
405
232
122

10,179
348
173
134

Mean 0.012

0.001
−0.358
0.057
1.256

0.001
−0.39
0.551
1.225

Min/max −0.631/1.711

−0.19/0.22
−0.63/−0.13

0.22/0.92
0.93/1.71

−0.19/0.27
−0.63/−0.20

0.28/0.89
0.89/1.71

At this point, we retrieve the extreme points with a Silh threshold at 0.25 as shown in
Figure 11. The number of outliers is 11 (0.10% of the dataset), each outlier has its cluster.
Thus, in the beginning, we got 10,834 different values. They are transformed into 15 values,
4 from the means of the clusters, and 11 outliers. We reduce the number of different values
by 99.89%.

Concerning the motif discovery, we start with 748 sequences with an average of
10.6 values. We discover several motifs, from length 16 to length 2. The average number of
values drops to 3.4 values per sequence, reducing the length by 67.9%.
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Finally, we transform the dataset into a stochastic automaton thanks to ALERGIA
algorithm. We do not provide the graph of the HMM since it’s understandable for a
human’s eye (18 nodes, an average of 3 arcs per node, 15 items per node).

We perform some metrics to compare the true consumption to the predicted con-
sumption. First of all, we transform the predicted sequence into a curve that constitutes
the predicted consumption. The HMM prediction has an accuracy (the probability to
predict the right value) of 99.8%. The Mean Square Error (MSE) is 0.0183 Wh and the
Mean Absolute Error (MAE) is 0.0956 Wh which is low compared to the data values: the
minimal consumption is 0.5016 Wk; the maximal consumption is 1.4018Wh; the mean is
1.3047 Wh. The Mean Absolute Percentage Error (MAPE) is 7.4%. The MAPE is relevant
since it quickly increases with small values.

8.3. Impact of Zero Threshold

The accuracy with a value’s threshold at 0.5 Wh is 99.8 with a MAPE at 7.4%. To
determine how the Zero value impacts the results, we perform the same test with a Zero
threshold at 0.1 Wh. Our model’s accuracy drops to 78.8 with a MAPE at 12.8%. As shown,
the threshold must be representative of a device in operation to provide relevant results.

8.4. Impact of the Number of Clusters

The Table 4 presents the accuracy (Acc.), average Silhouette (Sil.), MSE (in 10−3 Wh),
MAE (in 10−3 Wh) and MAPE (in %) in the function of the number of clusters, we don’t
count outliers as clusters. Note that MSE, MAE, and MAPE are computed considering
only true predictions. The average Silhouette drops after 10 clusters because their center
becomes too close to each other. The MSE, MAE, and MAPE decrease with the number of
clusters, but the accuracy becomes quickly low.

Table 4. Prediction efficiency in function of the number of clusters.

# Cluster Acc. Sil. MSE MAE MAPE

4 99.8 0.94 18 96 7.4
5 92.6 0.93 17 96 7.3
6 85.4 0.94 8 64 4.9
7 73.5 0.94 5 50 3.9

10 40.8 0.92 3 42 3.2
15 30.1 0.78 1 31 2.4
20 18.7 0.76 1> 21 1.16

9. Overall Results

This subsection presents the results for various households.
Table 5 presents the results for a sample of 10 appliances taken randomly. The table

shows in order the number of optimal clusters, the accuracy, the average Silhouette, and
the MAPE in percent. Some devices are more suitable for our method than others. The
appliances with the highest accuracy are the most used and those with distinct cycles of
consumption (dishwasher as an example). The appliances with the lowest accuracy are the
less used and those which depend on external parameters or human interaction (ovens
for example).

240



Energies 2021, 14, 7914

Table 5. Results for a sample of 10 appliances.

Test # Cluster Acc MAPE %

1 4 99.8 7.4
2 5 96.1 4.7
3 5 98.3 1.8
4 7 99.9 6
5 9 95.5 1.5
6 3 99.9 5.2
7 5 98.9 0.9
8 4 98.1 1.3
9 4 99.2 4.2

10 8 96.8 1.1

9.1. Comparison with Deep-Learning Methods

To validate our method, we implement four deep-learning methods, trained and tested
on the whole Home C discretized time series. The four methods are CNN-LSTM, CNN,
LSTM, and MLP. Their architecture is shown in Table 6. The window size is optimized
to keep the lowest error. All models are trained to give a 10 min forecast, similar to our
method with a range of 2.

Table 6. Models parameters & architecture.

Models CNN_LSTM CNN LSTM MLP

Architecture

1x Conv1D
2x LSTM
2x Dense
Output

1x Conv1D
1x Flatten
2x Dense
Output

2x LSTM
1x Dense
Output

1x Flatten
2x Dense
Output

Epochs 17 25 30 50

Optimizer Adam Adam Adam
lr = 0.003 Adam

The MAPE results are: 40% for the CNN-LSTM; 47% for CNN; 54% for LSTM and 48%
for MLP. As said in the introduction, deep-learning methods fail to forecast isolated areas
due to the low values and the huge impact of human behavior on the system.

9.2. Comparison with Sequence Prediction Machines

We compare our results with sequence prediction machines: TDAG at order 4, CPT+,
AKOM at order 4. They show similar results as our method with an equal or less MAPE
with no more than 10 points less due to lower accuracy than our method. Note that the
coverage is at 100%, i.e., all the sequences are used to train the model.

In this case, all prediction machines provide outstanding accuracy due to the quality
of the sequence’s processing we propose. Note those prediction machines can only predict
already known sequences, and cannot predict when there are at the end of a sequence.
Videlicet, those prediction machines are useless if they encounter a new behavior and for a
long forecast.

9.3. Algorithms and Best Results

We calculate the number of times an algorithm in the method provides the best result.
Indeed, depending on the distribution function of the values, the clustering methods
(Dividing, agglomerative, Ward, Complete linkage, Flexible linkage) provide different
dendrograms. Thus, the distribution and clusters change, which implies a variation in
WSS and Silhouette and the remaining methods. About the prediction machines, they
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implement various algorithms to reduce the decision tree. Depending on the trie in input,
they may provide another prediction from each other.

We compute the percentage of presence of each clustering method and prediction
machines to obtain the best prediction based on 232 tests in the Table 7. We don’t include
deep-learning methods since they reveal their limits for forecasting isolated areas.

When the values follow a Gaussian distribution, AGNES-ward and AGNES-flexible
are the most used; else DIANA or AGNES-complete give a better clustering. Concerning
the prediction, our method based on HMM gives 91% of time the best accuracy. Sequence
machines have most of the time a lesser or equal accuracy than the HMM due to the outliers.
Those results validate our approach.

Table 7. Used of each algorithms for an optimal solution.

Algo % Use Algo % Use
DIANA 9 TDAG >1

AGNES-c 11 CPT+ 1
AGNES-w 41 AKOM 8
AGNES-f 39 HMM 91

9.4. Forecasting of an Isolated Area

Another application of our method is the consumption schedule. One identifies the
sequences associated with the use of their appliances or the recurrent consumption cycles.
Next, one manipulates them for a job scheduling with knapsack constraints [44].

Since the time series is decomposed into sequences, one can analyze the use of devices
to compute a frequency or recurrence of sequences along days. More information is added
to each sequence: the time when the sequence starts with its frequency as a stochastic
process. Thanks to this, we can schedule the sequences of each device having a recurrent
behavior over the day. The Figure 12 presents the common patterns of consumption of
appliances in Home F during 500 min where each color refers to one appliance. The user
can add more appliances consumption cycle according to its need or according to the most
probable use time.

Figure 12. Manual consumption scheduling of recurrent consumption cycle of 11 appliances.
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9.5. Discussion

Our method works for any time series, without time, season, weather contexts. Those
external factors influence human behavior. Since we determine sequences of consumption
reflecting those behaviors, our method is relevant in any context.

The drawbacks are the lack of flexibility of a prediction machine when it encounters
unknown schemes of consumption and fails to forecast the good motif. The ability to
adapt the HMM thanks to Baum-Welch’s algorithm makes our model more flexible to
new behaviors.

Note that our model performs better than the most used methods in the literature for
isolated areas. This statement becomes false when we need to forecast for a large area as
a region. In this case, deep-learning methods with external factors are the most effective.
Indeed, our method needs a huge amount of knowledge for each place and cannot compete
with some deep-learning methods. Those run with the time series and the weather and
provide results with less than 1% of MAPE over a region.

10. Conclusions

Consumption’s prediction of isolated households represents a complex problem.
Some deep learning methods or mathematical models generate substantial results but are
unsuitable to isolated small prosumers.

We adopt a method principally employed to predict DNA to the energy forecasting
problem. Our method works efficiently on any device (household appliances, industrial
appliances, industrial motors). Moreover, the method is not a black or grey box and it can
be embedded easily in any smart building by anyone.

The result of the sequence processing is used to build an HMM. The latter can provide
a short-term forecast for the device. The sum of the forecast forms the forecast of the area.
The sequences are also used by the owner to schedule its consumption and to be able to
adapt its scheduling according to the demand-side management program.

Our method will be used in Mayotte Island, through the H2020 MAESHA’s project.
It will be included in a multi-agent system to simulate the behavior of the whole island.
This sandbox is useful to test new strategies, renewable plants, and flexible markets on the
island before considering real-world changes.
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Abstract: Fixed and adaptive supervised dictionary learning (SDL) is proposed in this paper for
wide-area stability assessment. Single and hybrid fixed structures are developed based on impulse
dictionary (ID), discrete Haar transform (DHT), discrete cosine transform (DCT), discrete sine trans-
form (DST), and discrete wavelet transform (DWT) for sparse features extraction and online transient
stability prediction. The fixed structures performance is compared with that obtained from transient
K-singular value decomposition (TK-SVD) implemented while adding a stability status term to
the optimization problem. Stable and unstable dictionary learning are designed based on datasets
recorded by simulating thousands of contingencies with varying faults, load, and generator switching
on the IEEE 68-bus test system. This separate supervised learning of stable and unstable scenarios al-
lows determining root mean square error (RMSE), useful for online stability status assessment of new
scenarios. With respect to the RMSE performance metric in signal reconstruction-based stability pre-
diction, the present analysis demonstrates that [DWT], [DHT|DWT] and [DST|DHT|DCT] are better
stability descriptors compared to K-SVD, [DHT], [DCT], [DCT|DWT], [DHT|DCT], [ID|DCT|DST],
and [DWT|DHT|DCT] on test datasets. However, the K-SVD approach is faster to execute in both
off-line training and real-time playback while yielding satisfactory accuracy in transient stability
prediction (i.e., 7.5-cycles decision window after fault-clearing).

Keywords: sparse signal decomposition; supervised dictionary learning; dictionary impulsion;
singular value decomposition; discrete cosine transform; discrete Haar transform; discrete wavelet
transform; transient stability assessment

1. Introduction

Dynamic state estimation (DSE) is a fast-developing tool for stability monitoring
and control [1]. According to the IEEE TF on DSE [2], enhanced system observability
using DSE based internal angle and speed estimates will lead to several breakthroughs
in Wide-Area System Integrity Protection Systems (WA-SIPS) functions, such as faster
out-of-step detection, more realistic location of runaway generator and minimal amount
of generation/load to be shed in order to preserve system integrity without knowing
the topology accurately. However, instrumental in these achievements is the ability to
predict fault-induced instability from DSE based information in real-time, reliably, securely,
and fast enough to enable timely and effective countermeasures [3]. In the context of the
integration of renewable energy, development of smart grids and artificial intelligence, the
authors in [4] proposed a literature review of power system restoration to analyze dynamic
decision-making. More generally, application of AI techniques including supervised

Energies 2021, 14, 7995. https://doi.org/10.3390/en14237995 https://www.mdpi.com/journal/energies
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machine learning in the context of power systems event detection and diagnosis is a field
of growing interest [5].

1.1. Background on Sparse Dictionaries Learning

Sparse signals are characterized by a few non-zero coefficients in one of their trans-
formation domains [6]. Therefore, sparse signal decomposition consists in modelling data
vectors as sparse linear combinations of basis elements. The basis set used in the decom-
position is also called a dictionary. Sparse dictionary learning has attracted widespread
scientific attention in signal processing and power system areas. Sparse signal decom-
position on hybrid dictionaries is used in [7] for detecting and classifying single and
multi-power quality disturbances. In [8], discrete wavelet transform (DWT) and deep
neural networks (DNN) are developed for detecting series arc faults (with accuracy recog-
nition rate of 97.75%) in low-voltage residential power distribution. Alternatively, several
approaches are proposed in [9] for sparse signal decomposition based on DCT+K-SVD,
DCT+ method of optimal directions (MOD), DWT+K-SVD, and DWT+MOD. In [10], new
automatic transient detection and localization approaches are proposed for power qual-
ity analysis based on an over-complete dictionary (OCD) and �− 1 norm minimization.
Dictionary learning sparse decomposition is implemented in [11] for accurate and fast
classification of power quality (PQs) disturbances generated from the IEEE Power Energy
Society database. Damped-sinusoidal functions integrated in a redundant dictionary are
used in [12] to detect and characterize power systems oscillatory transients in the portion of
the time-domain signal based on matching pursuit. A Stockwell transform (ST) approach
is proposed in [13] to extract significant disturbance features, used as the input dataset of
K-nearest neighbor algorithms (K-NN), decision trees (DT) and support vector machines
(SVM). A compressive-information sparse representation based on sparse recovery with
a new high-dimensional convex hull is developed in [14] for fast and reliable PQs event
classification due to the new challenge of smart grids. The sparse representation and
fully connected neural networks based on sparse coding, intelligent features learning, and
neural networks are developed in [15] for extracting and classifying idiographic signal
residential fault. A fault diagnosis approach based on sparse representation and SVM
is used in [16] for computing sub-dictionaries and representing the testing sample while
in [17], K-SVD, compressive sampling matching pursuit, and Gauss random matrix are
used for reconstructing power quality events. For a signal-to noise ratio of 30 dB, a K-SVD-
CoSaMP algorithm reconstructs PQs better than the DCT algorithm.

According to [18], linear sensitivity distribution factor is performed based on injection
shift factor of the line with respect to active power injection at all buses. The phasor data
angle and DC linear power flow reformulation are used in [19] for identifying multiple line
outages based on solving a sparse representation problem via coordinate descent iteration.
The cluster-based sparse coding (CSC) algorithm is proposed in [20] for multiple events
detection, recognition, and temporal localization in large-scale power systems while in [21],
sparse representation classification and random dimensionality reduction projection are
used to extract, reduce feature dimensionality and classify power system faults. The singu-
lar value decomposition (SVD) and total least square estimation via rotational invariance
techniques are used in [22], to analyze and extract amplitude, frequency, attenuation co-
efficient, initial phase of combined PQs. Among all dictionaries-based learning schemes,
which built on K-SVD and OMP algorithms, used e.g., in [23,24] for short-term prediction
of solar power fluctuations, is often considered as the most powerful computationally and
accuracy wise. In [25], the features extracted from active power are incorporated into a
dictionary learning based defense scheme for understanding the cyberattack process in
smart grids. As alternatives to dictionary learning, recurrent neural networks (RNN), long
short-term memory (LSTM), gated recurrent unit (GRU) and convolutional neural network-
LSTM (CNN-LSTM) have also been proposed for time series forecasting of solar irradiance
and photovoltaic power [26]. In the above work, the LSTM achieved the best performance
in terms of the root-mean square error evaluation error (RMSE). As a further application to
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time series, [27] used a nonlinear dictionary learning to decompose electricity signals and
learn the most representative temporal features introduced by operating devices.

1.2. Contributions of the Present Paper

The previous literature review established clearly that dictionary-based learning
applications in power systems have been focused hitherto on PQs analysis and time-
series forecasting and characterization. A timely contribution of this paper is therefore to
extend dictionary-based learning to transient stability assessment. Even though machine
learning has been studied extensively on this problem [28], there is no reported application
of K-SVD + OMP dictionary-based learning of post-disturbance time-responses for fast
stability prediction in the context of WA-SIPS or contingency screening in control rooms.
Furthermore, the paper investigates performance comparisons of single, hybrid, and
adaptive dictionaries for wide-area stability assessment which has not yet been addressed
in power system literature. In order to determine which dictionary learning approach
is the best, according to metrics such as accuracy, reliability, and security, in addition to
on-line and off-line computational requirements, this paper proposes to design twenty
stable and unstable supervised dictionary learning schemes for sparse reconstruction
and classification of stability signal responses based on generator time-series recorded by
PMU in post-disturbance stage. Our findings highlight the reconstruction and classification
performance of single, hybrid (with two and three sub-dictionaries) and learned dictionaries
on the test dataset (rotor speed and corresponding stability status).

The rest of this paper is organized as follows. Section 2 presents design approaches
of fixed and adaptive overcomplete dictionary learning for sparse signal decomposition.
Section 3 presents performance measures of supervised dictionary learning. Section 4
presents a top-down approach of sparse signal decomposition on fixed and adaptive
dictionary learning. Section 5 presents the experimental results of ten supervised dictio-
nary learning algorithms for TSA. Finally, some conclusions and perspectives are given
in Section 6.

2. Design of Fixed and Adaptive Supervised Dictionary Learning

Given Yrs = [y1, . . . , yN ] ∈ R
n×N the post-contingency rotor speed, which contains N

input signals of n dimension. The sparse decomposition of Yrs on dictionaries Drs ∈ R
n×K

(K � n, over-complete dictionary) is computed by:

Yrs =
K

∑
i=1

DirsXirs + εirs (1)

where: Xrs and εirs denote sparse coding and reconstruction errors of Yrs sparse signal
decomposition. The orthogonal matching pursuit (OMP) is the greedy method for sparse
coding mostly used in supervised dictionary learning, for minimizing the response recon-
struction over a finite number of iterations [29]. These dictionaries are used to evaluate the
transient stability which is the ability of the power system to remain in synchronism im-
mediately following a disturbance [30]. The architecture of singles, hybrids, and adaptive
supervised dictionary learning for reconstructing and classifying the signals and rapidly
predicting the transient stability status immediately after clearing a fault is presented
in Figure 1.

2.1. Fixed Single Supervised Dictionary Learning

From the PQD and time-series forecasting experiences, fixed dictionaries can be used
to reconstruct rotor speeds and predict the transient stability of generator responses. For
this purpose, the cosine transform, sine transform, wavelet transform and Haar transform
are simply applied to each signal to extract sparse and redundant features for stability of
signals reconstruction.
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Figure 1. Proposed flowchart of sparse signal decomposition on supervised dictionaries for transient stability assessment.

2.1.1. Discrete Cosine Transform

The discrete cosine transform (DCT) expresses a time-series generator response in
terms of a sum of cosine functions oscillating at different frequencies introduced by the
fault occurrence. The DCT kernel projection is defined by:

DCT = Drs =
√

2
n

[
ξi cos

(
π(2j+1)i

2n

)]

i, j = 0, 1, 2, 3, . . . , K − 1

(2)

where ξi = 1/
√

2 for i = 0, otherwise ξi = 1. The DCT proposes optimal de-correlation
coefficients of the stability signals, while grouping energy contained in the signals in low
frequency coefficients [7].

2.1.2. Discrete Sine Transform

The discrete sine transform (DST) derived from the DCT, allows expressing the signal
as a sum of sinusoids with different frequencies and amplitudes. The DST kernel projection
is computed by:

DST = Drs =
√

2
n

[
ξi sin

(
π(2j+1)(i+1)

2n

)]
i, j = 0, 1, 2, 3, . . . , K − 1

(3)
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where ξi = 1/
√

2 for i = n − 1, otherwise ξi = 1. The DCT and the DST are almost similar
operations to the discrete Fourier transform (DFT). The only difference lies in the projection
kernels, which give real coefficients for the DCT, imaginary coefficients for the DST and
complex coefficients for the DFT [7].

2.1.3. Discrete Haar Transform

Discrete Haar transform (DHT) consists of orthogonal switched rectangular wave-
forms, which can take zero value and sample points in subintervals of t ∈ [0, 1] and where
the amplitude can differ from one function to another as follows [31]:

DHT ≡ Drs =
1√
N

⎧⎪⎪⎨
⎪⎪⎩

2m/2, k−1
2m ≤ t < k−(1/2)

2m

−2m/2, k−(1/2)
2m ≤ t < k

2m

0, otherwise in [0, 1)

r = 2m + k − 1, t = n/N, 0 ≤ r, n ≤ N − 1

(4)

where: m and k represent the integer decomposition of the index r . The time-frequency
Haar function is unitary and invariant under circulant shift.

2.1.4. Discrete Wavelet Transform

The discrete wavelet transform (DWT) is calculated by convolving the post-contingency
signal with a mother wavelet transform Ψm,n [32].

DWT = Drs =
1√
am

0
∑
k

Ψm,n

(
k − nb0am

0
am

0

)
(5)

where: n and m are positive integers. The DWT allows extracting information content
at different positions and scales for subsequently reconstructing post-contingency stabil-
ity signals.

2.1.5. Impulse Dictionary

The impulse dictionary (ID) allows expressing signal as a linear combination of the
Dirac basis vectors representing the frequency response pic [7]. It is constructed as:

ID = Drs = [I]K×K (6)

2.2. Fixed Hybrids Supervised Dictionaries Learning

The fixed hybrid supervised dictionary learning is developed from the concatenation
of DCT, DHT, DST, DWT, and ID, with the aim of improving online reconstruction and
classification of the single dictionaries.

2.2.1. Two Sub-Dictionaries Concatenation

Three concatenations of two sub-dictionaries are constructed for sparse features ex-
traction and classification. Equations (7)–(9) represent these strings of dictionaries joining
single structure end-to end.

Yrsn×N = DrsXK×N = [DHT|DCT ]n×KXK×N (7)

Yrsn×N = DrsXK×N = [DWT|DHT ]n×KXK×N (8)

Yrsn×N = DrsXK×N = [DCT|DWT ]n×KXK×N (9)
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2.2.2. Three Sub-Dictionaries Concatenation

To improve the singles and hybrids structures with two sub-dictionaries, three string
concatenations are developed, see for instances Equations (10)–(12). The fixed predefined
overcomplete dictionary learning enables online TSA.

Yrsn×N = DrsXK×N = [DST|DHT|DCT ]n×KXK×N (10)

Yrsn×N = DrsXK×N = [ID|DCT|DST ]n×KXK×N (11)

Yrsn×N = DrsXK×N = [DWT|DHT|DCT ]n×KXK×N (12)

2.3. Adaptive Supervised Dictionary Learning

The K-SVD is a generalization of a k-means clustering algorithm introduced by [24] for
dictionary learning after estimation of the representation matrix. During the first learning
step of K-SVD, dictionary Drs = [d1 . . . dK] ∈ R

n×K (K � n, over-complete dictionary) is
fixed, and the best sparse coding Xrs = [x1 . . . xN ] ∈ R

K×N is found, under the sparsity
constraint T. The K-SVD approach is evaluated based on solving an optimization problem
defined in Equation (13).

〈Drs, Xrs〉 = argmin
Drs ,Xrs

‖Yrs − DrsXrs‖2
2 subject to ∀i‖xi‖0 ≤ T (13)

The OMP is used for sparse coding fixed, hybrids, and adaptive overcomplete dictio-
nary learning (ODL). Given Drs, the sparse coding Xrs ∈ R

K×N , is evaluated using the �0
norm by:

xirs = argmin
xirs

‖Yrs − DrsXrs‖2
2 subject to ∀i, ‖xi‖0 ≤ T (14)

where: Drs ∈ R
n×K and T denote overcomplete dictionaries and sparsity constraint respec-

tively. The update of each di atom necessarily leads to that of the non-zero entries in a row
vector xT

i �= 0. The dictionary is learned by solving to following minimization problem:

min
di , xi

‖Ei − dixT
i ‖

2
2 subject to ‖d‖2

2 = 1 (15)

where: Ei = Yrs − ∑
j �=i

djxT
j denotes the approximation error matrix, which can be easily

decomposed into UΔVT . The solution dj is a column of U and the coefficient vector xT
j is a

column of V × Δ(1, 1) [33].

3. Performance Measures of Supervised Dictionary Learning

The confusion matrix is used to evaluate the classification performance of the dic-
tionary learning algorithms on the testing database. Three main metrics are calculated
from Table 1.

Table 1. Confusion matrix for TSA classification.

Observation Predicted Class

Positive (Secure) Negative (Insecure)

Actual Positive TP FN

Class Negative FP TN
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The accuracy metric defines the ability of learned dictionaries for correctly classifying
stable and unstable cases in the testing database:

Accuracy (%) =
TP + TN

TP + TN + FN + FP
(16)

The reliability metric in Equation (17) allows for evaluating the performance of learned
dictionaries on the unstable cases:

Reliability (%) =
TN − FN

TN
(17)

The security metric in (18) makes it possible to define the capacity of learned dictio-
naries to predict the stable case:

Security (%) =
TP − FP

TP
(18)

The RMSE defined in (19) is used to evaluate the difference between the predicted
Yrs_pred and observed Yrs_online signal responses:

RMSE =

√
1
n

n

∑
i=1

(
Yirs_online − Yirs_pred)

)2
(19)

4. Top-Down Approach of Sparse Signal Decomposition on Fixed and Adaptive
Dictionaries Learning

The simulation of a hundred faults on the line and generator buses of the IEEE
test system allowed generating generator rotor-speed responses and their stability status.
Figure 2 describes top-down architecture of the proposed system along with the details of
the experiment for an even greater clarity of SLOD.

Seventy percent of signals are used for offline-supervised dictionary learning while
30% are kept aside for online TSA. For an offline learning approach, the training signals are
labelled and separated into two databases: stable rotor speeds (Database 1) and unstable
rotor speeds (Database 2). Database 1 is used as input data for implementing 9 fixed
dictionaries Drs for stable cases reconstruction using: DHT, DCT, DWT, [DHT|DWT],
[DWT|DCT], [DHT|DCT], [DST|DHT|DCT], [ID|DCT|DST] [7], and [DWT|DHT|DCT]
dictionaries. Similarly, Database 1 is used as input data for developing an adaptive stable
dictionary Drs based on K-SVD approach. The second Database 2 is used as input for
establishing fixed dictionaries Drs for unstable case reconstruction using: DHT, DCT, DWT,
[DHT|DWT], [DWT|DCT], [DHT|DCT], [DST|DHT|DCT], [ID|DCT|DST] [7], and
[DWT|DHT|DCT] dictionaries. Similarly, database 2 is used as input data for realizing an
adaptive unstable dictionary Drs based on K-SVD approach.

The orthogonal matching pursuit algorithm is developed to carry out sparse coding
Xrs of rotor speeds from the test database (Database 3). The test database contains both
stable and unstable rotor speed signals Yrs. The stable and unstable sparse coding Xrs are
individually projected onto the 20 learned dictionaries Drs to determine playback degree
of stability. According to the projection result, if RMSE index of the signal obtained from a
stable dictionary is lower than RMSE index predicted by the unstable dictionary, the test
signal is targeted as being stable (stability status = “0”). In the opposite case, the signal
is labelled as being unstable (stability status = “1”). This analysis criterion is used for
evaluating accuracy, reliability (false positive success rate), and security (true negative
success rate) of each supervised dictionary-learning scheme on the testing database.
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Figure 2. Top-down approaches of supervised dictionary learning for TSA.

5. Experimental Results

The analysis of supervised single ([DCT], [DHT], [DWT]) dictionaries, hybrids with
two ([DHT|DCT], [DCT|DWT], [DHT|DWT]) and hybrids with three ([DST|DHT|DCT],
[ID|DCT|DST], and [DWT|DHT|DCT]) sub-dictionaries for TSA was performed on the
IEEE 68 -bus test system. The 75 × 20,216 (i.e., 75 × 8664 allocated for online testing) post-
contingency speed signals used to train dictionary learning are generated by simulating
various types of fault with wide-range of duration applied on each line and at each
generator terminal bus of the test system under various power dispatch and topologies
conditions. The generated generator responses used for learning are summarized in stable
training set (i.e., 75 × 19,477) and unstable training set (i.e., 75 × 739). The unstable cases
thus represent a mere 3.8% of the cases, which means that the dataset is highly skewed
toward stable cases. These two dictionaries learned separately will allow classifying a joint
database containing stable and unstable scenarios. Each of the signals will be projected on
each of the two stable and unstable dictionaries. The learned stable or unstable dictionaries
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that give the lowest RMSE will define the stability status of the new scenario as either
stable or unstable.

5.1. Description of Dataset for TSA

To generate a diversity of cases, fault duration is gradually increased (per step of
0.5 cycle) until critical loss-of synchronism limit is reached along each line and close to each
generator bus of the test system. For each study case, the numerical simulation duration
is set to 10 s and transient fault occurs at t = 1 s. However, for the unstable scenarios,
numerical simulation duration varies according to the time instant of loss-of-synchronous.
For each simulation, only 75 post-contingency samples (sampling rate: 600 samples/s) per
rotor speed are used for dictionary learning which means a time-window of 125 ms for
making decision (7.5 cycles of fundamental). The re-sampling start time of the generator
signal responses varies according to the simulation fault clearing time instant.

In the presence of a disturbance, the differences in the absolute values of rotor angles
of all the combinations (i, m) of the generators are calculated and compared to 180◦. If
the rotor angle does not exceed 180◦, or if the disturbance causing the rotor swing is
promptly removed, the generator may remain in synchronism with the system. Hence,
during fault simulations, the stability of the power system can take two possible status after
fault clearing, “Sss = 0” corresponding to the stable status, or “Sss = 1” corresponding
to the unstable status [34,35]. Figure 3 presents an example of stable (a) and unstable (b)
speed recorded during the search of critical fault clearing time on line 1 of the IEEE 68-bus
test system.

 
(a) 

 
(b) 

Figure 3. Stable (a) and unstable (b) rotor speed obtained by simulating three-phase ground fault.

Table 2 presents the dataset configuration used for reconstructing and classifying the
unknown testing database (containing 8664 signals: 8341 stable scenarios and 323 unstable
scenarios i.e., 3.72% of the cases) based on supervised learning of overcomplete dictionaries.

255



Energies 2021, 14, 7995

Table 2. Configuration of stable and unstable sparse signal decomposition for TSA.

Sparse Signal Offline Online

Decomposition Features Extraction Reconstruction and TSA

Adaptive Dictionary Learning (ADL)
Rotor speed Prediction error

(For Drs and Xrs
computed) (For RMSE computed)

Fixed Dictionaries Learning
(1,2,3H OHD)

Rotor speed Prediction error

(For Drs and Xrs
computed) (For RMSE computed)

5.2. Fixed and Adaptive Sparse Features Extraction

The number of fixed and hybrid features (i.e., 25 indicators) extracted per signal
depends on the number of iterations defined by the orthogonal matching pursuit [36].
However, the adaptive dictionary learning allows extraction of 75 features per generator
response for online transient stability assessment. Table 3 summarizes the sparse signal
decomposition developed off-line and used for online TSA.

Table 3. Parameters used to train single, hybrids and adaptive supervised dictionary learning.

Configuration
Learning

Approaches
Dictionaries/
Feature Size

Sparse Expansion
Coefficient Size

Adaptive dictionary (ADL) K-SVD 75 × 20,216 8700 × 20,216

Single dictionary
(SOD)

DHT

25 × 20,216

75 × 1,617,280
DCT 75 × 1,516,200
DWT 75 × 1,556,632

Two sub-dictionaries
(2H-OHD)

[DHT|DWT] 75 × 3,133,480
[DCT|DWT] 75 × 3,153,696
[DHT|DCT] 75 × 2,304,624

Three sub-dictionaries
(3H-OHD)

[DST|DHT|DCT] 75 × 3,800,608
[ID|DCT|DST] [7] 75 × 4,589,032
[DWT|DHT|DCT] 75 × 3,820,824

The stable K-SVD & OHD dictionaries are initialized and trained with stable signals
as input, while unstable K-SVD & OHD dictionaries are trained with unstable responses
only. For the fixed sparsity (i.e., matrix of numbers that includes many zeros or values
that will not be significant) T = 10, the coefficients are computed using OMP and the
maximum of number iterations in set as 90. K-means is the method used for defining
the maximum iterations able to converge the learning algorithm. It allows defining the
threshold beyond which no point changes during the sparse signal decomposition. This
method supposes that the last iterations have the least contribution to the percent of
correct representation [37]. From the online sparse coding extracted using OMP, stable,
and unstable K-SVD & OHD dictionary learning will allow reconstructing and predicting
transient stability signals. Sample K-SVD Figure 4a and OHD Figure 4b atoms extracted
from the learning of rotor speed responses. Figure 4 presents some examples of adaptive
K-SVD (a) and fixed OHD (b) atoms randomly extracted in the offline rotor speed Yrs.

Adaptive K-SVD atoms well describe the non-stationary and transient response of
generators signals immediately after clearing fault. However, usually sinusoidal fixed
OHD atoms (except DHT) are not satisfactory for analysis of the transient behavior of
generators. To illustrate the atoms performance extracted from the training database, we
selected two signals from the testing database, which are respectively stable and unstable.
Figure 5 presents sparse decomposition of testing signals ID 1 (in blue color) & ID 23 (in
red color) based on a separate stable and unstable K-SVD dictionary learning. The K-SVD
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demonstrates here its ability for an almost perfect fit of the signals in each of the dictionary.
This pattern of success is repeated for all signals in the training dataset.

 
(a) 

(b) 

Figure 4. K SVD (a) and OHD (b) atoms used for TSA reconstruction and classification.

The OHD atoms, such as single (DCT, DWT, DHT) dictionaries, two ([DHT|DCT],
[DCT|DWT], [DHT|DWT]) and three ([DST|DHT|DCT], [ID|DCT|DST], [DWT|DHT|DCT])
sub-dictionaries are next used for reconstructing stable (blue color) & unstable (red color)
rotor speed and tracking online (black color) response, see Figure 6.
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Figure 5. Online & K-SVD reconstruction of stable (blue) and unstable (red) of sample signal’s
response in the test dataset.

 

Figure 6. Online & OHD reconstruction of stable (blue) and unstable (red) of sample signal’s response in the test dataset.

5.3. Online Sparse Features Classification Based Overcomplete Dictionaries Learning

The projection of signals ID 1 & ID 23, on stable and unstable dictionary learning
(SOD, 2H-OHD, 3H-OHD & K-SVD), will allow evaluation of the online stability status
according to the atoms structure which gives the lowest RMSE. Figure 7 presents RMSE
prediction value obtained by projecting signals ID 1 (blue) and ID 23 (red) on stable and
unstable SOD and K-SVD respectively.

According to SOD, the DWT is the best descriptor of stable rotor speed, while for the
unstable scenarios prediction DHT is most indicated. The RMSE resulting from hybrids of
[DHT|DCT], [DCT|DWT] & [DHT|DWT] are similarly used to perform fixed dictionary
learning for online TSA. The projection of signals ID 1 (blue) & ID 23 (red) on two hybrids
dictionaries learned separately, allows for a correct prediction of the online stability status
based on the lowest RMSE, see Figure 8.
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Figure 7. Projections of signals ID 1 and ID 23 on stable and unstable SOD and ADL.

 

Figure 8. Projections of signals ID 1 and ID 23 on stable and unstable 2H-OHD and ADL.

Regarding 2H-OHD, the [DHT|DWT] has lower RMSE predictors for the stable and
unstable stability status responses compared to [DHT|DCT], [DCT|DWT]. The projection
of signals ID 1 (blue) & ID 23 (red) on three hybrids dictionary learning allows effective
prediction of online TSA, with a slightly improved performance compared to single dic-
tionaries & hybrids with two sub-dictionaries, see Figure 9. Regarding 3H-OHD, the
[DST|DHT|DCT] has lower RMSE predictors for the stable and unstable stability status
responses compared to [ID|DCT|DST] and [DWT|DHT|DCT], which means a crisper
separation between stable and unstable cases.

Figure 10 presents the stability degree of signals ID 1 and ID 23, developed based on
stable and unstable dictionary learning. By definition, it is computed as the ratio between
RMSE of unstable dictionary divided by the RMSE of stable dictionary-based reconstruction.
Therefore, a small RMSE results in a high degree of stability meaning a higher probability
of the case being stable while a small value means that the case is likely classified as
unstable. For the stable case ID 1, the K-SVD gives a very large stability degree compared
to [DCT], [DHT], [DWT], [DHT|DCT], [DCT|DWT], [DWT|DHT], [DST|DHT|DCT],
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[ID|DCT|DST], and [DWT|DHT|DCT]. Similarly, K-SVD gives a very low stability degree
of ID 23, which confirms a good stability separability of K-SVD based dictionary.

Figure 9. Projections of signals ID 1 and ID 23 on stable and unstable 3H-OHD and ADL.

 

Figure 10. Stability degree of adaptive, single, hybrids with two and three overcomplete dictionary learning.

5.4. Performance Metrics of Sparse Decomposition on Fixed and Adaptive Overcomplete
Dictionaries Learning

The metrics (namely: accuracy, reliability, and security) are used to evaluate the per-
formance of fixed and adaptive overcomplete dictionary learning. The accuracy metric
defines the ability of learned dictionaries for correctly classifying stable (i.e., 8341 scenarios)
and unstable (i.e., 323 scenarios) in the testing database (i.e., 8664 scenarios). The reliability
metric makes it possible to evaluate the performance of learned dictionaries to predict un-
stable scenarios. The security metric allows defining the capacity of learned dictionaries to
predict the stable scenarios. They broadly succeed in projecting the new transient scenarios
on each stable and unstable dictionary and evaluating the probability for each of them
to have a low RMSE reconstruction. For each signal, the stability status classification is
confirmed or not, according to the absolute values of generators rotor angles. Table 4 sum-
marizes the online TSA effectiveness of each OHD and ADL developed based on separated
training datasets. Moreover, the performance of OHD and K-SVD based stable/unstable
dictionaries are compared to the supervised learning of overcomplete dictionaries (SLOD)
developed in [34], based on both rotor speed and stability status taken as the training input
and using a single dictionary containing both stable and unstable cases. It appears from
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Table 4 that all fixed dictionaries provided a decent performance with right to all metrics
using separate stable/unstable datasets in contrast to K-SVD dictionary whose reliability is
pretty-weak.

Table 4. TSA metric comparisons of fixed and adaptive supervised dictionary learning.

Configuration
Learning

Approaches
Accuracy Reliability Security

Adaptive dictionary (ADL)
(with a separate training dataset) K-SVD 93.42 81.68 93.35

SLOD [34]
(with a joint training dataset) TK-SVD 99.99 99.99 99.99

Single dictionary
(SOD)

(with a separate training dataset)
Two sub-dictionaries

(2H-OHD)
(with a separate training dataset)

Three sub-dictionaries
(3H-OHD)

(with a separate training dataset)

DCT 94.76 93.05 94.52
DHT 95.79 94.10 95.66
DWT 94.96 93.40 94.74

[DHT|DWT] 95.41 93.75 95.24
[DCT|DWT] 94.79 93.05 94.56
[DHT|DCT] 94.82 93.05 94.59

[DST|DHT|DCT] 94.88 93.05 94.66
[ID|DCT|DST] [7] 94.88 93.05 94.66
[DWT|DHT|DCT] 94.81 93.05 94.58

The single dictionary based on DHT seems in average to be the best post-disturbance
stability predictor with a 94.1% reliability success rate and 95.79% overall accuracy. By
contrast, the reliability of the ADL (K-SVD) algorithm is only 81.68%. This compared poorly
with the SLOD (TK-SVD) algorithm proposed in [34], which provided 99.99% success rate
across all performance metrics.

5.5. Computational Efficiency of Fixed and Adaptive Overcomplete Dictionaries Learning

The computational performance of fixed and adaptive dictionary learning was as-
sessed on a DELL computer configured with the Intel processor i7-7700HQ 4-core running
at 2.80 GHz with 16 GB of RAM. Although the CPU time is relatively significant, the
actual code is in Matlab scripting language and can therefore be made faster using C-
programming. Table 5 summarizes all CPU computational time for the offline learning
and online playback for TSA. The proposed adaptive overcomplete dictionaries take more
offline computation time (i.e., 298,475.89 s or about 83 h) for sparse features extraction.
However, K-SVD sparse features enable a very quick online transient stability prediction
(i.e., 4.45 s computation time) based on the generator signal responses (i.e., 8664 scenarios).
Compared to the best dictionary learning algorithm, the SLOD (TK-SVD), which has a
409,744.06 s or about 114 h offline training time and 6.59 s online playback time, the ADL
(K-SVD) is 37% and 48% faster respectively. Moreover, several paths for improving the
performance metrics of the ADL (K-SVD) to fully benefit from this improved computational
performance remains to be investigated, such as a longer data window for decision-making
and enhanced data normalization before dictionary learning, i.e., by using for instance
rotor speed deviation instead of the absolute speed.

Table 6 provides a summary of the advantages and disadvantages of supervised
dictionary learning for transient stability assessment.

The different methods are further compared in Figure 11 using data from Table 4. The
bottom line is that the reconstruction-based TSA is better done with fixed dictionaries. The
DHT turned out to be the best fixed dictionary in terms of both reliability and security
although the difference is not huge across all types of fixed dictionaries.
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Table 5. CPU time (in sec.) of fixed and adaptive supervised dictionary learning.

Configuration
Learning

Approaches

Offline
Processing

Time/s

Online
Processing

Time/s

Adaptive dictionary (ADL)
(with a separate training dataset) K-SVD 298,475.89 4.45

SLOD [34]
(with a joint training dataset) TK-SVD 409,744.06 6.59

Single dictionary
(SOD)

(with a separate training dataset)
Two sub-dictionaries

(2H-OHD)
(with a separate training dataset)

Three sub-dictionaries
(3H-OHD)

(with a separate training dataset)

DHT 16,518.44 6061.06
DCT 42,290.29 17,547.32
DWT 45,882.93 17,366.59

[DHT|DWT] 31,535.18 13,854.68
[DCT|DWT] 52,812.70 18,519.29
[DHT|DCT] 55,830.41 20,278.90

[DST|DHT|DCT] 33,949.11 14,489.51
[ID|DCT|DST] [7] 28,617.70 12,320.68
[DWT|DHT|DCT] 40,062.59 16,521.75

Table 6. Advantages and disadvantages of fixed and adaptive dictionary learning for TSA.

Approaches Advantage Disadvantage

ADL

—Satisfactory accuracy and security;
—Good online CPU time;
—Implemented based on data-driven algorithm (K-SVD);
—Used separate approach for ADL.

—Not satisfactory reliability.
—Takes longer time for offline learning

SLOD [34]

—Good accuracy, reliability, security;
—Satisfactory online CPU time;
—Implemented based on data-driven algorithm (K-SVD);
—Used joint approach for SLOD.

Takes longer time for offline learning.

SOD

—Satisfactory accuracy security and reliability;
—Rectangular waveforms, which can take zero value and sample points
in subintervals of t ∈ [0, 1];
—Grouping energy contained in the signals in low
frequency coefficients;
—Extracting information content at different positions and scales for
subsequently reconstructing post-contingency;
—Used separate approach for SOD.

—Not satisfactory online CPU time;
—Not suitable for transient
signal reconstruction.

2H-OHD

—Satisfactory accuracy security and reliability;
—Allows extracting simultaneously the non-sinusoidal information, the
frequencies of the oscillations and a representation in a unitary
sub-interval, invariant by shifts.
—Allows extracting simultaneously the real low frequency coefficients,
the non-sinusoidal information and the oscillation frequencies;
—Allows extracting simultaneously, a representation in a unit
sub-interval, invariant by shifts and the low frequency real coefficients;
—Used separate approach for SOD.

—Not satisfactory online CPU time;
—Not suitable for transient
signal reconstruction.

3H-OHD

—Satisfactory accuracy security and reliability;
—Allows extracting simultaneously in the stability signals, the
imaginary coefficients, the representations in a unitary sub-interval,
invariant by shifts and the low frequency real coefficients;
—Allows extracting frequency peaks, real low frequency coefficients
and imaginary coefficients;
—Allows extracting in a way, the real coefficients low frequency, the
non-sinusoidal information, scales, representations in a sub-unit
interval, invariant by shifts and the imaginary coefficients;
—Used separate approach for 2H-OHD.

—Not satisfactory online CPU time;
—Not suitable for transient
signal reconstruction.
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Figure 11. Comparison of adaptive, singles, and hybrids with two and three overcomplete dictio-
nary learning.

Giving that DHT takes only about 50% of the computation time of the 3H-OHD
from [7] in both supervised learning and online playback, it is definitely more promising
and warrants further investigation in the TSA context. Additionally, given the short
prediction window (75 ms) and the highly skewed two-data classes characterizing machine
learning based TSA (with the unstable class typically representing only 3 to 10% of the total
data set), the reconstruction-based classification using K-SVD appears unsuitable and rather,
the TK-SVD based supervised learning algorithm of [34] should be further investigated
and compared with the reconstruction-based classification using fixed DHT dictionary.
These two options emerged as the best dictionary-based TSA prediction methods from the
present study.

6. Conclusions

This work aims at reconstructing and predicting transient stability assessment based
on fixed and adaptive overcomplete dictionary learning for online stability signal responses
reconstruction. Practically speaking, this study develops and implements new arrangement
of atoms able to improve wide-area stability monitoring and control using a dual-dictionary
signal reconstruction approach. To this end, fixed and adaptive structures have been
investigated based on DCT, DHT, and DWT dictionary learning for rotor speeds sparse
reconstruction. Afterwards, stability status is determined based on the RMSE of rotor speed
prediction using each stable/unstable dictionary to design the level of belonging to each
class. The ratio of RMSE from these two separated predictions is proposed as measured of
stability (or instability) of the given observed post-disturbance signal over a short 4.5-cyles
data window.

Several concatenations of two (i.e., [DHT|DCT], [DCT|DWT], and [DHT|DWT])
and three (i.e., [DST|DHT|DCT], [ID|DCT|DST], and [DWT|DHT|DCT]) fixed sub-
dictionaries are used to perform similar sparse decomposition on dual-dictionaries. Alter-
natively, the K-SVD adaptive approach is implemented using dual-dictionaries learned
from the stable/unstable generator response datasets. While the adaptive K-SVD demon-
strated a better reconstruction performance, in terms of prediction errors, its reliability
performance was not satisfactory due to the highly skewed dataset derived from the IEEE
68-bus test system (3.8% of stable cases only) and short data frames (75 ms). Overall,
this study proved that [DWT], [DHT|DWT], and [DST|DHT|DCT] fixed dictionaries are
better stability indicators compared to adaptive K-SVD, [DHT], [DWT], [ID|DCT|DST],
and [DWT|DHT|DCT] but none of these methods could match the good performance
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of the method reported in [35]. We will further evaluate the performance of the K-SVD
and DHT based dictionary learning methods for TSA on the combined database of IEEE
39 and 68 -bus test systems in the presence of multi-faults and for various simultaneous
disturbances. Moreover, to reduce the offline training time, we also plan to develop parallel
computer-based dictionary learning of PMU based generator signal responses to enable
online TSA on large-scale power systems.
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Abbreviations

K-SVD K-singular value decomposition
TK-SVD Transient K-singular value decomposition
DST Discrete sine transform
DCT Discrete cosine transform
ADL Adaptive dictionary learning
DWT Discrete wavelet transform
DHT Discrete Haar transform
ID Impulse dictionary
UPE Unstable prediction error
SPE Stable prediction error
OHD Overcomplete hybrid dictionaries
SOD Single overcomplete dictionaries
2H-OHD Two overcomplete hybrid dictionaries
3H-OHD Three overcomplete hybrid dictionaries
[DHT|DCT] Concatenation of discrete Haar and cosine transforms
[DCT|DWT] Concatenation of discrete wavelet and cosine transforms
[DHT|DWT] Concatenation of discrete Haar and wavelet transforms
[DST|DHT|DCT] Concatenation of discrete sine Haar and cosine transforms
[ID|DCT|DST] Concatenation of discrete impulse, cosine and sine transforms
[DWT|DHT|DCT] Concatenation of discrete wavelet, Haar and cosine transforms
Stable DHT DHT dictionary learned from stable dataset
Unstable DHT DHT dictionary learned from unstable dataset
Stable DWT DWT dictionary learned from stable dataset
Unstable DWT DWT dictionary learned from unstable dataset
Stable DCT DCT dictionary learned from stable dataset
Unstable DCT DCT dictionary learned from unstable dataset
Stable [DHT|DCT] [DHT|DCT] dictionary learned from stable dataset
Unstable [DHT|DCT] [DHT|DCT] dictionary learned from unstable dataset
Stable [DCT|DWT] [DCT|DWT] dictionary learned from stable dataset
Unstable [DCT|DWT] [DCT|DWT] dictionary learned from unstable dataset
Stable [DHT|DWT] [DHT|DWT] dictionary learned from stable dataset
Unstable [DHT|DWT] [DHT|DWT] dictionary learned from unstable dataset
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Stable [DST|DHT|DCT] [DST|DHT|DCT] dictionary learned from stable dataset
Unstable [DST|DHT|DCT] [DST|DHT|DCT] dictionary learned from unstable dataset
Stable [ID|DCT|DST] [ID|DCT|DST] dictionary learned from stable dataset
Unstable [ID|DCT|DST] [ID|DCT|DST] dictionary learned from unstable dataset
Stable [DWT|DHT|DCT] [DWT|DHT|DCT] dictionary learned from stable dataset
Unstable [DWT|DHT|DCT] [DWT|DHT|DCT] dictionary learned from unstable dataset
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Abstract: With recent developments, smart grids assured for residential customers the opportunity
to schedule smart home appliances’ operation times to simultaneously reduce both the electricity bill
and the PAR based on demand response, as well as increasing user comfort. It is clear that the multi-
objective combinatorial optimization problem involves constraints and the consumer’s preferences,
and the solution to the problem is a difficult task. There have been a limited number of investigations
carried out so far to solve the indicated problems using metaheuristic techniques like particle swarm
optimization, mixed-integer linear programming, and the grey wolf and crow search optimization
algorithms, etc. Due to the on/off control of smart home appliances, binary-coded genetic algorithms
seem to be a well-fitted approach to obtain an optimal solution. It can be said that the novelty of
this work is to represent the on/off state of the smart home appliance with a binary string which
undergoes crossover and mutation operations during the genetic process. Because special binary
numbers represent interruptible and uninterruptible smart home appliances, new types of crossover
and mutation were developed to find the most convenient solutions to the problem. Although there
are a few works which were carried out using the genetic algorithms, the proposed approach is rather
distinct from those employed in their work. The designed genetic software runs at least ten times,
and the most fitting result is taken as the optimal solution to the indicated problem; in order to ensure
the optimal result, the fitness against the generation is plotted in each run, whether it is converged or
not. The simulation results are significantly encouraging and meaningful to residential customers
and utilities for the achievement of the goal, and they are feasible for a wide-range applications of
home energy management systems.

Keywords: home energy management; binary-coded genetic algorithms; optimal power scheduling;
demand response

1. Introduction

The gradual increase in electricity unit prices, for various reasons, brings an additional
burden, especially for households. Meanwhile, technological developments in this field
have brought new features to both the distribution of electrical energy and the use of
electrical household appliances. This has made it possible to control electrical household
appliances over the internet and to change the unit price of electricity for every hour, or
even for every 15 minutes by means of a smart grid. With these developments, taking into
account the usage characteristics of electrical household appliances and compromising
daily usage habits, a significant reduction in daily energy costs can be achieved under
the predefined constraints and conditions. This can be achieved by shifting the operating
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times of electrical household appliances to the optimal time intervals during the day,
based on electricity tariffs and the avoidance of overload. There are a limited number of
studies that have been conducted on this subject, and some of these studies are listed in the
subsection below.

1.1. Related Works

Setlhaolo and Xia carried out an investigation considering the combined demand side
management strategy for a limited number of houses from two aspects. The first one was
the energy management system (EMS). The EMS considers demand side management
strategies based on the minimization of consumer cost and the reduction of consumption
from the power system, as well as CO2 emission issues through the developed model [1].
Another investigation was carried out by Shakouri and Kazemi in [2]. In the paper, in order
to obtain for the household the lower energy costs, multi-objective mixed integer linear
programming (MILIP) was proposed. Additionally, the validation of the proposed model
based on some scenarios indicated that the reduction of daily energy costs could be on the
acceptable level [2].

The authors in [3] performed the study on home energy management for residential
consumers. The aim of the investigation was to decrease both their electricity bills and
the peak load demand of utility companies. It was assumed that it can be achieved with
a smart energy storage system (ESS) [3]. Zhao et al. were other investigators studying
home EMS to schedule power consumption in households in order to obtain a reduction
of electricity bills and improve the peak-to-average ratio [4]. Paterakis et al. conducted
another study on the home EMS to define the optimal schedule of appliances for the
day of a smart household under hourly pricing, and to reduce peak power based on
demand response (DR) strategies [5]. The authors in [6] proposed a new procedure to
propose the schedule of power consumption in homes equipped with ESS. In this article,
the aim of power scheduling was to reduce electricity bills and improve the peak-to-
average ratio. In the investigation, the comfort of the residents was considered [6]. The
authors of [7] investigated the process of the scheduling of the loads in a home EMS.
This approach considers the multi-objective demand response optimization model. The
indicated approach determines the scheduling of home appliances (HA) considering
the non-dominated sorted genetic algorithm (GA). The authors in [8] presented a new
home EMS controller. The proposed device is based on the genetic harmony search
algorithm. The aim of the controller is to reduce electricity bills and the peak-to-average
ratio, and to maximize user comfort. The investigated range considers a single home
and multiple homes. In the investigation, real-time electricity pricing and critical peak
pricing tariffs were applied. The author in [9] studied interruptible appliances (e.g., electric
water heaters), although some researchers consider the problem of optimal scheduling
for non-interruptible appliances; this problem was commonly formulated with integer
decision variables. Zhu et al. in [10] carried out an investigation to consider the efficient
solution of a complex combinatorial problem. The aim of the investigation was to define
a schedule of household appliances in multiple smart homes. In the investigation, the
improved cooperative heuristic approach was considered. The presented results confirmed
that the proposed algorithm worked correctly. The article [11] proposed a satisfaction
model for different types of household appliances. The aim of the optimization was the
minimization of the energy costs. Different demand response strategies were considered
e.g., demand limit based or injection limit. The article [12] presented an approach based on
the fusion of the grey wolf and crow search optimization algorithm. In the investigation,
the cost of electricity decrease, the extension of the users’ comfort, and the minimization
of the peak-to-average ratio for HA in the presence of real-time price signals using the
indicated technique were taken into account. Adika and Wang proposed the new approach
to residential customer-based demand-side management for smart charging and appliance
scheduling in order to avoid overloading the power consumption, and to minimize the
energy cost [11]. El-Baz and Tzscheutschler presented an algorithm that makes a simple,
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efficient, day-ahead electrical load prediction for any energy management system without
requiring statistical or historical data, or using any kind of measurement sensors [12]. The
authors in [13] performed an experimental study of the problem of scheduling HA from
realistic points of view. Additionally, the problem of scheduling residential loads on the
basis of the minimization of the cost of electricity was solved for consumer preferences [13].
Bouakkaz et al. presented a work that aims to propose the optimal strategy to schedule
energy consumption to support homeowners in the reduction of energy costs, as well as
saving energy in a residential home. The investigated objects were connected to a microgrid
composed of a power grid system and photovoltaic and battery ESS [14]. Merdanoglu
et al. investigated a model that solves the optimal scheduling problem embedded in a
home EMS, enabling users to overcome the major obstacles in the implementation of DR
programs. The investigation proposed the method of finding the minimum energy cost
based on time-varying prices, the generation from RES, the usage demand for each HA,
the battery ESS capacity and the grid constraints [15]. The authors in [16] proposed a new
home energy management architecture with a renewable energy source and ESS, as well
as the power grid, and in this home energy management, some mathematical models for
the energy cost and peak-to-average ratio should be minimized. The applied solution is
based on particle swarm optimization (PSO) and binary PSO during the day [16]. The
results obtained from [16] clearly show that the proposed scheme worked well with the
daily total electricity cost and the peak-to-average ratio, in comparison to those of similar
works. Ahmad et al. worked to minimize the electricity bill using the scheduling of the HA
and ESS in response to the dynamic pricing of the electricity market. In this study, different
metaheuristic algorithms were applied, e.g., GA, binary PSO, wind-driven optimization,
bacterial foraging optimization and hybrid PSO algorithms. The results corresponding to
each algorithm were compared to each other through the proposed scheme [17]. It was
seen that [17] is an exemplary study to test the validity of the approach and the scheme we
propose compared to the studies given above; the results were produced considering the
data used here, and necessary comparisons were made to obtain a better improvement in
the problem of home energy management. The summary in terms of objectives, tariffs, and
methods of investigated literature is given in Table 1.

Table 1. Summary in terms of objectives, tariffs, and methods of investigated literature.

Objective Tariff Algorithm References

Cost TOU, RTEP MILP [15]
cost & PAR TOU, RTEP MILP, GA, NSGA-II, GHSA, GWCSO [2–8,12,16,17]

cost & comfort TOU, RTEP DA, NSGA-II, QBPSO, PSO, MILP [5,9–11]
cost & consumption TOU, RTEP MINLP, MILP, PSO [1,13,14]

1.2. The Original Contribution

The aim of this study is to perform a minimization of the daily total electricity bill
and the peak-to-average ratio by optimizing the start times of the shiftable smart HA
on the basis of hourly day-ahead real-time electricity pricing using binary-coded genetic
algorithms. The designed home energy management system includes smart HA, a power
grid, a solar PV generator, and ESS; in this system, surplus energy is sold to a power
grid when it is most expensive, and deficit energy is purchased from the power grid at
time slots when it is least expensive if possible. There are also a few constraints in the
energy storage system, in which amounts of charging and discharging are not allowed
to be more than 0.3 kWh in a single time slot. Thus, the optimization problem under
consideration was solved for the optimal start times of the shiftable appliances in the home
EMS using the binary-coded genetic algorithm approach. The results are compared to those
obtained from few metaheuristic algorithms, and it appears that there is a considerable
improvement, reducing both the electricity bill and peak-to-average ratio under similar
conditions. This may be explained because, unlike the other meta-heuristic algorithms, the
binary-coded genetic algorithms have more powerful genetic operators—such as selection,
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crossover, mutation, and elitism—to produce a variety of possible solutions and then refine
them to reach the best possible solution over generations. It can be said that this work
has contributed to this field of study, showing that binary-coded genetic algorithms with
powerful genetic operators are highly efficient in improving the daily total electricity bill
and peak-to-average ratio, as well as the comfort of the home.

2. The System Architecture, Problem Definition and Applied Methods

In this part of article, the system architecture, problem definition, and the applied ap-
proach to solve the defined optimization are detailed based on the real-time
pricing scheme.

2.1. System Architecture
2.1.1. Home EMS

In general, a basic home EMS is composed of the metering infrastructure, smart
metering, a home gateway, an energy management controller, smart HA, ESS, and a solar
PV generator, as shown in Figure 1. In this architecture, the smart metering infrastructure
covers a major role in supplying two-way communication between the smart meter and the
utility for real-time electricity pricing. The smart meter installed between the infrastructure
metering and the energy management controller is used to read energy consumption data,
process it, and send it to the energy management controller for further handling. In this
investigation, the smart household appliances are mainly divided into two groups: shiftable
and non-shiftable. For instance, a washing machine or dishwasher is a shiftable home
appliance, as it is operated in any time slot in the day. However, a refrigerator or lighting is
a non-shiftable home appliance, because it must be operated in certain time slots during
the day. Once the optimization procedure is complete, the optimal operating times of the
switchable appliances are transmitted to the energy management controller for scheduling
at the beginning of the day. The smart meter and the home gateway communicate with each
other through Wi-Fi in the home local area network. The energy management controller in
the home gateway schedules the operation time of the appliances after receiving a real-time
electricity price signal from the utility.

 

Figure 1. Basic architecture of the HEMS with a wireless home area network.

Because the first objective aims to reduce the daily electricity bill, shiftable HA—such
as a washing machine, a dishwasher or a dryer for clothes—are expected to operate in
the time slots when the electricity price is lowest; hence, this may lead to the overload of
distribution lines and an increase in power losses beyond the typical values. However,
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householders usually prefer to operate them in the most convenient times for themselves,
regardless of the maximum daily total electricity cost. For instance, the householders may
intend to use the dishwasher after lunch, the washing machine in the morning, or the
clothes dryer in the evening. It is obvious that there is a trade-off between the electricity
cost, the householder’s comfort, and the peak-to-average ratio. It is seen here that there
are three objectives to be optimized, but among them the daily total electricity cost and a
peak-to average ratio are more influential. Thus, it is essential to focus reasonably on these
two objectives to be optimized, both in single and multiple cases. Table 2 shows the smart
household appliances and their possible start- and end-time slots [17].

Table 2. Start, end and operation times of the appliances in use.

Appliance Type Power (kW) Length * Start * End *

Washing machine

Shiftable

0.80 5 1 24
Air conditioner 1.30 10 1 24

Dryer for cloathes 0.70 4 1 24
Water heater 1.00 8 1 24
Dishwasher 0.20 3 1 24

Personnel computers

Non-Shiftable

0.20 18 7 24
Security cameras 0.10 24 1 24
Microwave oven 0.50 7 14 20

Refrigerator 0.90 20 3 22
TV 0.20 8 15 22

Lighting 0.10 6 17 22

* LENGHT is the duration of the work cycle, which is the number of time slots that must be scheduled for each appliance; these slots are
consecutive only if the appliance is an uninterruptible load. START is the first time slot in which the work cycle of an appliance can start;
it is not possible to schedule the start before START. END is the last time slot in which the work cycle of an appliance can end; it is not
possible to schedule the end after END.

2.1.2. Rooftop PV Generator

The generation of electricity by a photovoltaic panel is highly dependent on the
irradiance around the site where the system was built. The maximum power that can be
extracted from a PV panel is usually given by the manufacturer’s datasheet. However, in
some cases it can be changed on the basis of the ambient conditions, e.g., the irradiance
level and temperature, etc. The estimated power generation by a PV system in any time
instant can be determined by the I-V and P-V characteristics after a manipulation. As can
be seen from Figure 1, the rooftop photovoltaic panels generate a maximum of 3 kW power
at certain times in a day. The maximum power output of the PV is defined on the basis of
the maximum power point tracking system at any time instant. The power generated by
the panels is first used to partly or fully supply smart home appliances, and then to charge
the ESS if there is surplus power. The battery bank stores both the surplus energy from
the rooftop PV system and the cheapest energy from the utility, if it is not fully charged at
the slot.

2.1.3. ESS

The ESS has a capacity of 3 kWh, and it is charged from the photovoltaic system when
surplus energy is available, and the grid when the electricity price is the lowest in a day. The
energy storage system is preferred for use when the electricity price is the most expensive,
and when it is urgently needed. However, the disadvantage of the photovoltaic-energy
storage system is that it has a limited lifetime and requires periodic maintenance. In this
investigation, the energy storage system can be formulated as follows:

Let Bs , B(t)
c , B(t)

d , ηc, ηd, Bmax
c and Bmin

d be the storage capacity of the battery bank,
the charging energy during the tth slot, the discharging energy during the tth slot, the
charging efficiency, the discharging efficiency, the maximum energy charging level and the
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minimum energy discharging level, respectively. The state of charge of the energy storage
system during the tth slot can be expressed as

B(t)
b = B(t−1)

b + ηcB(t)
c − B(t)

d
ηd

(1)

where B(t)
b ≤ Bs. It should be noted that the battery cannot be charged or discharged

at the same slot, hence B(t)
c > 0, B(t)

d = 0 or B(t)
c = 0, B(t)

d > 0. Table 3 illustrates the
characteristics of the energy storage system.

Table 3. The characteristics of the ESS in use [17].

Parameter Value

Roundtrip Efficiency 0.95
Charging Efficiency 0.95

Discharging Efficiency 0.95
Maximum Energy Capacity 3 kWh
Minimum Energy Capacity 0.5 kWh

Initially Stored Energy 0.5 kWh
Max. Charging/Discharging Energy 0.3 kWh

2.2. Problem Definition

In order to formulate the optimization problem, one day is divided into 24 equally
spaced time slots, and the minimum time resolution is an hour. Let T denote a set of time
slots; it can be defined by

T = {1, 2, 3, . . . , 120}∀t ∈ T (2)

Let A denote a set of the interruptible, uninterruptible and baseline household appli-
ances:

A = {a1, a2, a3, . . . , ai, . . . , a16} (3)

where ai is the ith appliance of the set.
The power consumption vector for appliance ai can be defined as

Pai =
[

p(1)ai , p(2)ai , . . . , p(t)ai , . . . , p(120)
ai

]
(4)

where p(t)ai is the average power consumption for appliance ai during the tth interval.
Let αai ε T and βai ε T be the start and end times of the operation interval respectively,

and αai < βai for appliance ai. Similarly, let lai be the operation length of appliance ai;
thus, lai must satisfy the constraint βai − αai ≤ lai . It should be emphasized that the
larger βai − αai , the more possible solutions to the problem. Now, we need to assume that
appliance ai operates during lai without interruption. Let sai and eai be the start and end
times of appliance ai, respectively; hence eai = sai + lai and αai ≤ sai ≤ βai − lai .

Now, the power consumption for appliance ai during the tth interval can be expressed as

P(t)
ai =

{
Prai , t ∈ [sai , sai + lai ]

0, t /∈ [sai , sai + lai ]
(5)

where Pai is the average power consumption in kW.
The total daily power consumption can be calculated by

Ptotal =
120

∑
t=1

((
13

∑
i=1

p(t)ai

)
+

(
5

∑
j=1

p(t)bj

))
(6)
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where Pbj
is the average power consumption for the jth fixed time operated appliance in kW.

Although there was a considerable improvement in the reduction of the daily cost,
householder comfort inevitably decreased. Therefore, it is necessary to reduce the delay
time in the scheduled operation as much as possible using the multi-objective optimization
approach. The delay time for appliance ai can be calculated by

Dai = (sai )sch − (sai )unsch (7)

where (sai )sch and (sai )unsch are the start times for appliance ai in the scheduled and
unscheduled operations, respectively.

If the electricity cost is the only objective, the fitness function can be expressed as

fcos t = Min

(
24

∑
t=1

((
5

∑
i=1

p(t)ai

)
+

(
6

∑
j=1

p(t)bj

)))
(8)

If the delay ratio is only objective, the fitness function can be expressed as

fPAR = Min

⎛
⎝ Max

((
∑5

i=1 p(t)ai

)
+
(

∑6
j=1 p(t)bj

))
1

24 ∑24
t=1

((
∑5

i=1 p(t)ai

)
+
(

∑6
j=1 p(t)bj

))
⎞
⎠ (9)

If the cost and the peak-to-average-ratio are the only two objectives, the fitness function
can be expressed as

f = Min(ω1 fcos t + ω2 fPAR ) (10)

where ω1 = 1/3 and ω2 = 2/3.

2.3. Proposed Method

The BCGA is highly fitted for solving the single objective and multi-objective opti-
mization problems for the optimal start times of the shiftable appliances. The flowchart
of BCGA method is presented in Figure 2. First, the start times of the shiftable appliances
were generated by random binary strings, and their fitness values were calculated by
the fitness function. The most fitted individuals were selected through the tournament
selection mechanism, and the selected individuals were copied to the mating pool. A
single point crossover was implemented on the selected population with a probability
of 0.8, and the inverse mutation operation was applied to the current population, with a
probability of 0.1. The elitist strategy was implemented on the mutated population to keep
the best solution through the generations. The indicated process is repeated by the time
the number of generation reaches the maximum number of generation, and the naturally
possible solutions are improved through the successive generations, as expected. During
the genetic process, the population size and the maximum number of generation were 200
and 300, respectively.
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Figure 2. Flowchart of the proposed BCGA optimization.

3. Results and Discussion

In the above section, the simulation results obtained by the applied method are
presented. This simulation includes daily energy cost minimization based on the electricity
prices shown in Figure 3, after the use of electrical appliances in a typical house during the
day. Divided into 24 equal time slots, the first time slot of the day indicates the 00–01-h
interval, the second time slot shows the 01–02-hour interval, and so on. In this study,
the optimization process includes: (I) minimizing the daily total energy cost, and (II)
minimizing both the daily total energy cost and the PAR. Hence, the optimization problem
was solved for an optimal solution for a single objective and two objectives within the
framework of the specified conditions. As in the previous study [17], we have a 3 kWh-
energy storage system and a 2 kW-solar PV system connected to the main grid. The power
demand for the smart home appliances was first met from the solar PV system; in case
it was insufficient, it was met from the energy storage system. If these two are in short
supply, the remaining amount is supplied from the main grid. In the case of surplus power
generated by the solar PV, it is sold to the grid at the grid purchase price. The optimization
problem was solved by a desktop computer with Intel (R) Core (TM) i5-10210U CPU@1.60
GHz 16.0 GB RAM in five minutes. The results obtained by using the proposed method
were compared with previous studies under the same conditions, and it can be said that
they were improved compared to those in [17].

In order to fairly compare the results of our proposed approach, the data and results
of the previous study [17] were used, and the comparison results are given through figures
and tables. In a previous study [17], electrical household appliances were divided into
two groups—non-shiftable and shiftable—as shown in Table 2. As expected, when the
shiftable home appliances are shifted to time slots when the electricity price is cheap, the
total daily energy cost decreases along with the householder’s comfort; however, this is not
a desired case. Here, of course, the householder’s comfort may be expected to be included
in the optimization process, but this is beyond the scope of the study. The solar PV system
consisting of monocrystalline panels generates a maximum power of 2 kW during the day,
and its hourly power generation is shown in Figure 4. The energy storage system used
for this study has the same physical characteristics with the one given in the previous
investigation [17]. Unlike the previous study [17], the scheme we propose is flexible, and
home appliances are first fed from the solar PV system in the daytime, and then from
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the energy storage system if it can provide sufficient power. The surplus energy is first
evaluated in the energy storage system; the remaining energy is sold to the grid, thus
reducing the cost.

Figure 3. The hourly changing electricity prices, with the slots.

Figure 4. The hourly changing power generated by the solar PV power, with the slots.

3.1. Single Objective Optimization

In Equation (8), the weight numbers ω1 = 1 and ω2 = 0 are used as the objective
function to minimize the total daily energy cost while calculating the optimal daily total
cost, and in this calculation, the unit electricity price sold to the grid and the unit purchased
from the grid are the same. The optimization process is detailed below.

Total Energy Cost
The comparison of the proposed approach with the results given in the previous

study [17] for the total daily billing cost and PAR is shown in Figure 5. As seen in Figure 5a,
the total cost of the daily electricity bill with the proposed method is 511.06 cents, which
is better than those obtained with other methods [17]. There is an 8% reduction in the
daily total electricity bill cost when the result is compared with the minimum result in
previous studies [17]. As seen in Figure 5b, the PAR found is greater than only one of the
results obtained from the algorithms used in the previous study [17]. However, in order
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to further improve the current results, it is necessary to solve a bi-objective optimization
problem. In order to understand how this improvement was achieved, the graphs in
Figure 6 should carefully be analysed. As seen in Figure 6a, there is a significant daily
total cost difference between the optimized and non-optimized load dispatch. If attention
is paid, in the scheduled home appliances, there is more power demand for them in the
time intervals where the electricity price is lower, and less power demand in the intervals
when the electricity price is higher. It can be said that this leads to a significant reduction
in the daily total electricity bill. For example, while the electricity price is the lowest in the
fourth time slot, the unscheduled home appliances of 1 kW are increased to 4 kW with an
additional 3 kW. The scheduled average power demand between the 8 and 11 time slots,
where the electricity price is the highest, is less than the unscheduled power demand, and
this plays an important role in the reduction of the total daily billing cost.

(a) (b) 

 

Figure 5. Comparison of the results with previous ones [17]: (a) daily total cost, and (b) PAR.

As seen in Figure 6b, while the energy received from the grid is less than others in
the 8–11 time slots in the case of scheduled HA, the energy transferred from the energy
storage system to home appliances is not available. Another important contribution to the
reduction of the daily total electricity bill cost comes from the solar PV system; hence, this
system feeds a limited number of the home appliances in times when electricity prices are
high, leading to a decrease in the daily total electricity bill cost. In addition, it causes the
daily total cost to decrease by transferring the surplus energy it produces to the ESS and
the grid. However, some energy loss during the charging and discharging of the energy
storage system from the solar PV system reduces the total efficiency of the entire system
by 5%. In this regard, it is preferable to use the power obtained from the solar PV system
to directly feed the household appliances. The operation times of the shiftable household
appliances optimized in the performed simulation are given in Table 4.

Table 4. The optimized operation times of the appliances in SOO.

Type Appliance OT SOO

Shiftable

Washing machine 5 14
Air conditioner 10 3

Dryer for clothes 4 19
Water heater 8 3
Dishwasher 3 3
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(a) 

 

(b) 

Figure 6. (a) The scheduled and unscheduled daily power demand, and (b) the powers delivered to the load. pv2load, PV
to load; bat2load, battery to load; g2load, grid to load; price, electricity price in $.

3.2. Bi-Objective Optimization

The PAR is an important indicator of the behaviour of the householder’s home appli-
ances and significantly affects the performance of the main grid. The PAR rises as expected
when we only focus on minimizing the daily total electricity bill cost. In order to overcome
this problem, it is necessary to optimize both the daily total electricity bill cost and the PAR
at the same time. It is obvious that the problem in question is a bi-objective optimization
problem, and the two objective functions are converted to a single objective function with
the help of constant weight coefficients. The selection of the coefficients is made according
to the principle of the equalization of the maximum values; hence, the bi-objective functions
take in a certain interval, with their sum being equal to unity. In the optimization process,
the input values related to the method used for single optimization are taken as they are,
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except for the fitness function. The simulation time slightly increases because the problem
is a little more complex than the single optimization problem.

While the simulation results illustrated in Figure 7 produce better results compared
to the results obtained from the previously used methods [17], a better improvement was
achieved in the result obtained in the single optimization. As can be seen from Figure 7,
different weight coefficients produce slightly different results, and w1 = 1/3 and w2 = 2/3
yielded the best results among the three selected weight coefficients of w1 = 1/2, w2 = 1/2,
w1 = 2/3 and w2 = 1/3. Contrary to what is expected here, in all three cases, the total daily
cost has almost no change at all, and is very close to the result of the single optimization.
The shiftable optimal operation hours obtained by bi-objective optimization by selecting
appropriate weight coefficients are given in Table 5. As seen in Table 5, while the PAR is
significantly reduced, the starting times of the shiftable household appliances are different
from those obtained by single-objective optimization, and the best result was found when
the weight numbers were ω1 = 1/3 and ω2 = 2/3.

 
(a) 

 

(b) 

Figure 7. The comparison of the results with the previous ones [17]: (a) daily total cost, and (b) PAR.
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Table 5. The optimized operation times of the appliances in BOO.

Type Appliance OT BOO

Shiftable

Washing machine 5 7
Air conditioner 10 1

Dryer for clothes 4 12
Water heater 8 1
Dishwasher 3 1

In the designed bi-objective optimization, the PAR was reduced from 1.859 to 1.24;
therefore, this is a very good improvement on the PAR drop. However, in this optimization
process, the daily total electricity cost surprisingly remained constant at 511 US cents for
three different weight coefficient sets. In the previous study [17], the cost of 475 cents
obtained from the use of the mixed-integer linear programing (MILP) seemed to be a non-
feasible solution, such that if all appliances are operated at the time slot when the electricity
price is the lowest, their daily total cost is 464.80 US cents; this is really nonsense. Actually,
this verifies that a PAR of 2.4 indicates that the household appliances are overlapped in
a certain time slot. The variation of the hourly power demand of household appliances
with the time slots and powers delivered to these appliances are shown in Figure 8. It
can be seen from Figure 8a that the largest power demanded from the main grid is 4.5
kW in the 11th time period, and the large power demands are spread over low-priced
time slots. Although this is the most influential factor that helps to significantly reduce
the large PAR values, the additional power boost from the solar PV system at noon has
a significant share in this decrease. As can be seen from Figure 8b, the reduction in the
daily total cost is intended to meet the power needed by the appliances when the electricity
price is the lowest. Note that here, the power transferred from the energy storage system to
the appliances is not sufficient, as expected. The power boost from the solar PV generator
appears to be effective at between 09 and 18 h, in contrast to the energy storage system
in use.

In the light of all of these results, it can be seen that the proposed method, due to its
nature, produces better results in terms of applicability when compared to other methods
for the reduction of the daily total cost and PAR in the home energy management system.
A one-to-one comparison with the results of a similar study was clearly demonstrated here.
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(a) 

 

(b) 

Figure 8. (a) The scheduled and unscheduled daily power demand, and (b) the powers delivered to the load.pv2load, PV to
load; bat2load, battery to load; g2load, grid to load; price, electricity price in $.

4. Conclusions

Scheduling smart home appliances’ operation times to simultaneously reduce both the
electricity bill and the PAR based on demand response, as well as increasing user comfort,
is an essential task. It is worth noting that in the scheduled operation, the cost is always
lower than in the unscheduled operation. The cost value varies depending on the price of
electricity, the rated power and number of household appliances, as well as the length of
the operation range. Although it is desirable for the user to reduce the cost, this inevitably
leads to a PAR increase in certain time intervals. This is not welcome for either the user
or the utility, as it causes extra losses in power transmission lines. A gradual increase
in the electricity price depending on the consumed power up to a certain level seemed
to be a solution in the previous application, and it can be seen from the results that it is
ineffective to decrease PAR. Instead, it was observed that the simultaneous optimization
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of both the cost and PAR offers better results to the householders. Taking user comfort
into consideration, it was observed that as the user comfort increases, the PAR increases
together with the cost when optimizing the cost, the PAR and the comfort simultaneously.
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Abstract: Critical infrastructures have recently been integrated with digital controls to support
intelligent decision making. Although this integration provides various benefits and improvements,
it also exposes the system to new cyberattacks. In particular, the injection of false data and commands
into communication is one of the most common and fatal cyberattacks in critical infrastructures.
Hence, in this paper, we investigate the effectiveness of machine-learning algorithms in detecting
False Data Injection Attacks (FDIAs). In particular, we focus on two of the most widely used
critical infrastructures, namely power systems and water treatment plants. This study focuses on
tackling two key technical issues: (1) finding the set of best features under a different combination of
techniques and (2) resolving the class imbalance problem using oversampling methods. We evaluate
the performance of each algorithm in terms of time complexity and detection accuracy to meet
the time-critical requirements of critical infrastructures. Moreover, we address the inherent skewed
distribution problem and the data imbalance problem commonly found in many critical infrastructure
datasets. Our results show that the considered minority oversampling techniques can improve the
Area Under Curve (AUC) of GradientBoosting, AdaBoost, and kNN by 10–12%.

Keywords: Data Injection Attack; machine learning; critical infrastructure; smart grid; water treat-
ment plant; power system

1. Introduction

Today, the umbrella term ’Industry 4.0’ represents the integration of digital control,
Information and Communications Technology (ICT), and intelligent decision-making into
critical infrastructures. This upgrade is possible due to the amalgamation of information
and industrial technologies into standard components and processes [1,2]. This shift, from
the traditional system to Industry 4.0, has helped improve the overall performance and
productivity of critical infrastructures that have become the fundamental building blocks
of modern society. For instance, electricity distribution and usage can be optimized in
smart grids. In water systems, in-time data about usage and plant treatment capacity
can reduce water wastage. Along with various benefits and improvements, the addition
of new components into critical infrastructures presents new vulnerabilities [3–5]. This
critical infrastructure is especially sensitive to cyberattacks. Even a low-scale attack that
causes a few critical infrastructure components to malfunction can impact the whole system.
For example, even a short disruption in the power grid can halt the functioning of many
industries and infrastructures, from food processing plants to hospitals. The attack on
the Ukraine grid infrastructure and a recent ransomware attack on a colonial pipeline are
some of the many alarming examples that call for improvements to be made to the defense
techniques which protect critical infrastructures [6,7].

The injection of data or commands at the source or during communication is collec-
tively called False Data Injection Attack (FDIA). Data injection refers to the manipulation
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of the value generated from sensors, actuators, and other devices, while the command ’in-
jection’ refers to changing server-issued instructions. The FDIA is one of the most common
attacks and can be launched on any critical infrastructure by penetrating the communication
sessions between different devices. FDIAs can damage physical components, induce huge
economic losses, and even create life-threatening scenarios [8,9]. Therefore, it is essential
to prevent and detect FDIAs in any critical infrastructure. However, most of the existing
solutions are only theoretical or adopt techniques from the cyber environment, such as
Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS), which are used
to protect conventional computer networks. These existing approaches are missing the
specific security requirements and properties of critical infrastructure, such as a higher rate
of event, the need for real-time interaction and detection, the need for proactive defense,
and complex physical and cyber interfaces. Therefore, this study addresses these limitations
by applying machine learning techniques to detect injection attacks.

This study work addresses two key issues to fulfill the requirements of proactive
detection, low response time, and detection of minority classes of critical infrastructures:
(1) finding the set of best features under different selection techniques and (2) resolving the
class imbalance problem using oversampling. Our work uses a smart power system [10]
and a water treatment plant [11] as case studies. We found the best features using different
filter and wrapper selection methods (top- and bottom-ranked features). We also tested
the performance of various machine-learning algorithms with different sets (with varying
sizes) of the best features. Further, to improve the detection performance, especially for
the minority class, i.e., attack class, we applied different oversampling methods to increase
the sample for the minority class. We also solved common issues in the datasets, such as
missing and corrupted values.

The contribution of this study is summarized below.

1. We provide a comprehensive analysis of machine-learning algorithms for FDIA detec-
tion using the two representative datasets, namely power system and water treatment
datasets.

2. We determine the subset of features which can be used to achieve the best performance
using different filter and wrapper approaches.

3. We mitigate performance bias in imbalanced datasets using four different oversam-
pling methods.

The remainder of the paper is organized as follows. The related works are presented
in Section 2. A detailed explanation of both critical infrastructures (power system and
water treatment plant) from which data about events have been recorded for datasets
creation is presented in Section 3. Section 4 presents the three feature selection approaches
and provides a ranking of the features. The class imbalance issue and oversampling
methods are discussed in Section 5. The results of training and testing and the outcome
of oversampling are presented in Section 6. Lastly, Section 7 provides the conclusion and
future research directions.

2. Related Work

In the section, we present the details of FDIA and other attacks targeted to the Cyber-
Physical System (CPS) and provide a summary of existing FDIA detection methods based
on machine learning. Further, the limitations and research gaps in the existing literature,
which motivated the current study, are discussed.

With the fast transition of the traditional grid to the smart grid, the effective imple-
mentation of FDIA is critical to the success of the smart grid. There have been many FDIA
attacks demonstrated in the literature. In the last five years (2015–2020), some surveys
provided discussion and a comprehensive summary of challenges and countermeasures
regarding FDIA. The role and importance of Artificial Intelligence (AI) and big data tech-
nologies for FDIA detection were also highlighted [9,12–14]. The financial impact of FDIAs
was demonstrated in [8]. The authors assumed an insider attack and simulated an injection
attack by changing the value of the memory location of the Programmable Logic Controller
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(PLC). Experimental results showed that the injection attack could directly impact the
electric usage billing system, generating a manipulated final bill.

Traditionally, state estimation and time-series analysis are the main methods used
for FDIA detection. Recently, many AI-based approaches have been adapted to improve
detection performance [15]. Class labeling and class-balanced datasets are two critical chal-
lenges for developing a machine learning-based FDIA detection system for the smart grid
because of the small sample size for FDIA class and complex labeling. Maglaras et al. [16]
used a One-Class Support Vector Machine (OCSVM) with normal events to resolve these
two challenges for a Supervisory Control and Data Acquisition (SCADA)-based critical
infrastructure. Due to the challenges involved in dataset preparation, FDIA detection
with minimum training and prediction time is required to handle the high rate of data
generation in the smart grid. Reducing the vectors of features using Principal Component
Analysis (PCA) and speeding up the training time using Distributed SVM are used to
achieve low computation requirements of the smart grid [17]. Further, FDIAs in the smart
grid are grouped into ‘direct’ and ‘stealth’, where ‘stealth FDIAs’ are more challenging
to detect than ‘direct FDIAs’. Yan et al. [18] used supervised machine learning to build
FDIA detection systems by formulating the detection as binary classification (direct and
stealth). The authors also tested detection performance for balanced vs. imbalanced class
distribution using the IEEE 30-bus simulation dataset. More recently, the Artificial Neural
Network (ANN) has been applied for FDIA detection. Khanna et al. [4] used ANN and
Extreme Learning Machine (ELM) to detect Data Injection Attacks on the consumer side
of the smart grid and classified electric meters as either benign malicious. The NYISO
load data was mapped to an IEEE 14-bus system for performing simulation, experiments,
and validation of results. Data generation sources in the smart grid can be grouped into
cyber or physical space. Wang et al. [19] have collected simulated and real-world mea-
surements of synchronized PMUs and applied the Margin Setting Algorithm (MSA) for
detection. The ensemble of Machine Learning (ML) algorithms was shown to improve
the detection performance in [15]. In this direction, the performance of ensemble learning
for multi-class classification was tested for a total of 37 classes, including FDIA in [20].
The experiments were executed using a dataset containing measurements of four Phasor
Measurement Units (PMUs) and network communication data to and from the firewall
and IDS of the experimental power system [10]. FDIA detection is also formulated as a
three-class problem, rather than a binary classification, in the literature. Panthi et al. [21]
used machine-learning algorithms and the publicly available power dataset [10] to build a
classifier to group events into natural, no-event, or attack classes.

A fingerprinting-based detection of stealthy cyber-attacks in water treatment plants
was proposed in [22]. An IDS using a semi-supervised system for attack localization
and deep neural network learning for anomaly detection was proposed in [23]. More
recently, a two-level attack-detection framework using a decision tree for detection and
deep learning for attribution was proposed in [24].

Based on the summary of existing literature, we observe that machine learning-based
FDIA detection approaches can improve detection performance and address some of the
key requirements, such as real-time large-scale data generation in the smart grid. Such
improvement will promote machine learning models for FDIA detection in smart grids and
other critical infrastructure. Our literature also indicates that most existing research works
have used the power system dataset and formulated FDIA classification as a multi-class
problem. So, to explore a novel dimension, we consider FDIA classification as a binary
problem and made pre-processing necessary to the dataset to experiment under various
environments. The power system dataset [10] used also contains a binary version that
was formulated the classification as ‘Attack’ and ‘Normal’. In contrast, the classification
problem was formulated as ‘FDIA’ and ‘non-FDIA’ in this study. Feature selection is useful
and required to reduce time complexity but is seldom used with critical infrastructure
datasets. Therefore, we experimented with feature selection methods and machine-learning
algorithms. We aim to find the best performance of classifiers given the selected features.
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As shown in Table 1, the data imbalance issue is rarely addressed. Therefore, we also
performed minority class oversampling to balance the class distribution beyond identifying
the imbalanced dataset’s effect on detection accuracy.

Table 1. Summary of related work on FDIA detection using machine learning

Ref. Method Dataset

Samples
Ratio
(Normal,
Attack)

Feature
Selection

[18]
Supervised Learning
(SVM, kNN, and ENN)

Simulations
IEEE 30-bus system 0.1 No

[4] ANN and ELM
NYISO load data
IEEE 14-bus system NA NA

[19]
Data Centric
(Big Data and MSA)

Simulated
(6 bus power system)
and real-world
(Texas
synchrophasor network)

100 K, 0.334,
0.196, 0.086 No

[20]
Voting on ML-classifier,
dataset divided per PMUs

4 PMUs events
and firewall log [10] Balance Yes

[16] OCSVM Network traces 1570, NA NA

[15] Ensemble Learning
Measurement data and
power system audit logs Balance Yes

[17] Distributed SVM and PCA
IEEE standard
test systems NA Yes

[21]
Machine Learning
(One R, J-Ripper, NB, RF) Power system [10] NA No

[22] Fingerprinting and
OCSVM

Water treatment (SWaT) NA NA

[23] AutoEncoder SWaT NA Yes

[24] DT and Deep learning SWaT and gas pipeline 214 K, 21.86% Yes

3. Critical Infrastructure Experimental Framework

The critical infrastructure is any physical infrastructure, such as a power system,
healthcare [25], or gas pipeline, that is essential to support our daily lives [26]. Hence,
disturbance to these systems has a huge impact on society, the economy, and the environ-
ment [27]. Recently, the development in computer and network technologies has enabled
the fast adoption of ICT in such critical infrastructures. For example, the traditional power
grid is now controlled, operated, and monitored using ICT, migrating the century-old
power grid into a smart grid. Such integration is also evident in almost all critical in-
frastructures. However, cyber involvement in the physical system makes it vulnerable to
various cyber attacks such as FDIA, unauthorized access, etc. In our study, we considered
FDIA detection in power systems and water treatment plants using two very popular
open datasets.

3.1. The Experimental Framework for Power System Data

Power generation, storage, and distribution tasks are continuously performed in the
smart grid. Moreover, the complexity and large scale make it infeasible to experiment
with the real infrastructure. Moreover, data access in the smart grid environment is highly
restricted due to privacy and security concerns. Research is often performed on a reduced
scale or using simulated datasets, such as IEEE 14/30 buses, to accommodate the abovemen-
tioned limitations. In 2015, the Mississippi State University and Oak Ridge National Labora-
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tory dataset (https://www.sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
(accessed on 8 November 2021)) produced a scaled-down version of the power system and
recorded a dataset with various simulated attacks in addition to normal events [10]. The ex-
perimental power system has two power generators (G1 and G2), four Intelligent Electronic
Devices (IEDs) (R1 to R4), and four breakers (BR1 to BR4). Two lines were created in the
power system using the pairs of breakers (BR1 and BR2; BR3 and BR4). The four IEDs, R1
to R4, were configured to open or close the four breakers, BR1 to BR4, respectively. A server
controls the physical part of the power framework in the control room, and these cyber and
physical parts are connected using a switch and a Power Distribution Center (PDC).

3.1.1. Dataset Pre-Processing

The power system environment discussed in Section 3.1 helped to create a suitable
dataset for conducting machine learning-based detection experiments [10]. The complete
dataset is available and being distributed as 15 sets. The dataset comprises 37 power
system events that can be grouped into three main scenarios: (1) Natural, (2) No Events,
and (3) Attack Events (data injection and command injection) containing 8, 1, and 28 events,
respectively. Regrouping and resampling are performed using these three types of events,
and three datasets are created for binary, three-class, and multi-class classifications. For the
multi-class classification, each event type is considered a class therefore, it has 37 classes.
The binary and three-class datasets are distributed in CSV file format. However, the multi-
class dataset is available only as an ARFF (an Attribute-Relation File Format (ARFF) is a file
format created to be used by the Waikato Environment for Knowledge Analysis (WEKA)
tool. It is a Graphical User Interface (GUI) tool for performing machine learning tasks such
as per-processing, training, exporting models, and creating an ML pipeline.).

Building a multi-class machine learning classifier is complex and resource-consuming.
It also creates a dataset’s class imbalance problem. Considering this, we reformulated the
FDIA detection as a binary classification with ‘FDIA’ and ‘Non-FDIA’ classes. However,
the existing dataset was unsuitable for this study, so we grouped samples based on the type
of events. Before resampling, we converted the multi-class ARFF to CSV format to simplify
further pre-processing, training, and testing. Filtering and merging were performed on all
15 sets to group all scenarios into two predefined classes; Normal/non-FDIA classes were
1–6, 13, 14, and 41, while “FDIA” classes were 7–12. Further, the Normal/non-FDIA sample
was labeled as 0, and the FDIA sample was labeled as 1. The total number of samples that
the final pre-processed and resampled dataset contained was 32,296. Figure 1 shows the
class distribution. There are 22,714 samples in the ‘Normal/non-FDIA’ class and 9582 in
the ‘FDIA’ class. As shown in Figure 1 and listed in Table 2, it is clear that the power system
dataset is an imbalanced dataset where ‘Normal/non-FDIA’ is the majority class. All four
features related to impedance for IEDs relays such as ‘R1-PA:Z’ had infinite value, and so,
as a pre-processing step, they were replaced with 0.
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Figure 1. Number of samples per class in the dataset.

Table 2. Distribution of the classes (normal and FDIA) in the dataset.

Class Type Number of Samples

Power System Water Treatment
Normal 22,714 395,298

FDIA 9582 54,621

Total 32,296 449,919

3.1.2. Description of Features

There is a total of 128 features in the dataset, consisting of PMUs measurement and
software logs. A total of 29 measurements were recorded for each PMU, so a total of
116 features were collected from 4 PMUs. The logs were recorded from three sources: snort,
relay, and control panel. Each had 4 values, so logs contributed a total of 12 features. Each
feature was given a name based on the combination of a source of data and type of value.
For example, PMUs features begin with R#−Signal Reference and log features start with the
source of logs such as snort, control_panel, and relay. The # for PMU features was a number
between 1–4, indicating the PMUs number, while postfix Signal Reference was the type of
measurement. These measurements fall into two groups: first, phase angle and magnitude
for voltage and current, and, second, frequency, frequency delta, appearance impedance,
and appearance impedance angle for relays. Details of these features are presented and
explained in the original dataset description document (http://www.ece.uah.edu/~thm0
009/icsdatasets/PowerSystem_Dataset_README.pdf (accessed on 8 November 2021)).

It is important to understand the impact of false data injection on individual features.
We used a data distribution approach and created an overlapped histogram for individual
features. For example, a histogram for R1-PA1:VH features is plotted for all normal and
FDI samples. We can observe from Figure 2 that the count for the specific value range is
higher in the FDI sample, which indicates data injection.
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Figure 2. Histogram comparison of normal, injection, and all dataset events for R1-PA1:VH.

3.2. Water Treatment Plant

For the same reason as for a power system, a testbed, i.e., a scaled-down version of a
real water treatment plant or pipeline, is normally created to experiment and collect data.
In this study, we used a similar dataset, the Secure Water Treatment (SWaT) testbed [11] (a
fully operational scaled-down water treatment plant), for FDIA detection. The configuration
and framework of the experimental water treatment plant are depicted in Figure 3. It has
six processing stages for water treatment labeled P1–P6. In total, the testbed has 24 sensors,
27 actuators, and 6 PLCs (one for each stage). The count for each type of sensor and actuator
is listed in Table 3.

Figure 3. The water treatment plant in [11], where P1–P6 denotes total six stages of processing in
the plant.

3.2.1. Dataset Pre-Processing

In the SWaT testbed, there are PLCs, Human Machine Interfaces (HMIs), SCADA,
and a Historian in a layered communication network. Data from field devices are available
to SCADA via PLCs and transferred to the Historian for analysis. The dataset contains
events from physical and network activities against the 36 predefined attacks. The complete
dataset was collected during a period of 11 days, during which the plant was running
continuously for 24 h each day.
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Table 3. Description of different sensors and actuators used for data generation. Features are
named as combination of type (i.e., MV, P, FIT etc.) and suffix (process number and device number).
For example, FIT-101 can be read as being a first flow meter sensor of process stage 1.

Field Device Type Description
Total
(51)

Actuators
(27)

MV Motorized Valve 6
P Pump 19
LIT Level Transmitter 1
UV Dechlorinator 1

Sensors
(24)

FIT Flow Meter 9
LIT Level Transmitter 2
AIT Analyzer 9

DPIT Differential Pressure
Indicating transmitter 1

PIT Pressure meter 3

3.2.2. Feature Description

The collected dataset contains 449,919 physical events and 51 features mainly gen-
erated from 24 sensors and 27 actuators. Table 3 provides the details of the sensors and
actuators used in the water treatment process. The network data are packets communica-
tion between PLCs and SCADA. They have 18 features based on network attributes such
as date, time, IPs, etc. This sub-part of the dataset is not used in this study. The dataset was
collected, stored, and distributed on CSV files. The attacks on both physical and network
were injection type attacks, i.e., on either the value of sensor or actuators.

The power and water system datasets were obtained using different field devices
and operational environments. In the power system dataset, the majority of features are
measurements of PMUs, whereas, in the water treatment dataset the events were collected
by sensors and actuators. Differences in the data source provide varying data types: PMUs
provide voltage, current phase angles, and magnitude, while sensors and actuators provide
numerical or Boolean values.

4. Feature Selection

A feature represents a characteristic of any object. In ML, a sample is decomposed
into a set of features before training and testing for tasks, such as classification, prediction,
or clustering. The dimension of a feature vector can be small to large, and each feature has
unequal discriminative potential. So, there is a need to select the best possible set of features
without significantly impacting the model’s performance. The different feature-selection
approaches provide various ways to rank and select a set of features. The selection of
features is performed in relation to the output variable that can be a class for classification
or the predictive variable. Feature selection provides two key benefits. First, it helps to
improve the model’s performance in terms of accuracy, precision, and recall. Second, it
reduces the computation cost (time and space) for the training, testing, and deployment
of ML models. As a result of these two benefits, feature selection (as a part of feature
engineering) is critical in the ML model. Based on the technique of feature ranking and
selection, various feature selection methods are grouped into three main classes: the filter,
wrapper, and embedded methods [28].

4.1. Filter Method

The filter method examines the dependency relationship of features X and class labels
Y to select features based on their strength level with Y. The dependency strength level of
the variables is calculated using traditional statistical tests, such as ANOVA, Z-test, T-test,
chi-square, and Pearson Correlation Coefficient. Due to the individual evaluation of each
feature, the filter method is also called univariate selection; it also speedily calculates and
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easily interprets results [28]. In this study, under the filter method, the ANOVA F-value
was used as the statistical test; the dataset features were ranked, and the best set of features
was selected.

Figure 4 and the left four columns of Table 4 show the results of feature selection using
a filter-for-power system and water treatment plant (SWaT dataset) respectively. The results
are represented as feature name and score from the top (ten features) and bottom (ten
features) of the feature rank list. In the case of the power system dataset, from Figure 4,
we can observe that magnitude-related measurement of PMUs achieves larger scores and
is top-ranked using the filter approach. Based on the value of the magnitude features in
the dataset, we can observe that the larger values influence the statistical test. In contrast,
angle-based features fall into a smaller value range (negative to a small positive value),
and the statistical test was given a low score and was lower-ranked.

a Top features b Bottom features

Figure 4. Ten top and bottom features with individual score using filter method.

Table 4. Water Treatment Plant: Ten top and bottom features with their importance values using the
filter and wrapper methods.

Filter Method Wrapper Method

Top Features Bottom Features Top Features Bottom Features

Feature Value Feature Value Feature Value Feature Value

FIT401 6.281 FIT601 0.00066 FIT504 0.223181 P204 0.000403
FIT504 6.218 P602 0.00058 FIT401 0.125924 P206 0.000313
FIT503 6.105 P403 0.00008 P501 0.105114 P402 0.000114
UV401 6.076 P202 0.0 PIT502 0.070205 P403 0.000035
P501 6.075 P301 0.0 FIT503 0.063296 P202 0.000000

PIT501 5.972 P401 0.0 P102 0.040979 P301 0.000000
FIT501 5.906 P404 0.0 LIT301 0.040890 P401 0.000000
PIT503 5.899 P502 0.0 LIT101 0.030181 P404 0.000000
FIT502 5.860 P601 0.0 LIT401 0.027320 P502 0.000000
P402 5.550 P603 0.0 DPIT301 0.022423 P601 0.000000

In the SWaT dataset, the top three features are FIT401, FIT504, and FIT503, and all
these are flow control sensors placed in the crucial stages, i.e., the 4-th and 5-th stages of a
6-stage process. Similarly, other top features also have critical roles and are found in later
stages of the plant process. From Table 4, we can observe that the two bottom features are
P601 and P60. These are two actuators placed in the last stage. Interestingly, these two were
not implemented in SWaT, and the features selection correctly placed these at last. Other
bottom features, P401, P404, and P502, are actuators. These were implemented as backups,
and so, for this reason, they are not considered during attack events.

4.2. Wrapper Method

Compared to the filter method, features ranking is performed concerning a particular
algorithm in the wrapper method. So, the best-selected feature set works well with the
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machine-learning algorithm, and the feature set differs when the selection is made using
another algorithm. Unlike the filter method, the wrapper feature selection process is costly
in terms of time and space. Most wrapper methods use greedy search, which is not optimal,
and suffer from false starts (wrongly choosing the first best feature) [28]. Figure 5 and the
right four columns of Table 4 show the best-selected feature sets and their importance for
the wrapper method for the power system dataset and the water treatment plant dataset
(SWaT dataset), respectively.

a Top features b Bottom features

Figure 5. Ten top and bottom features with individual score using wrapper method.

In the case of the power system dataset, as shown in Figure 5, the features based on
magnitude and angle are top-ranked in a nearly equal proportion, i.e., 6 and 4, respectively.
So, the feature rank list differs from the filter method in which magnitude-related features
were dominating. This study used a tree-based classifier as a wrapper method. In this
approach, features are selected based on their impact on classification accuracy, rather than
number of features. Similar behavior can be observed in the control log features listed at the
bottom of the feature list. These features are Boolean and sparse, and their contribution to
the classification is negligible, i.e., with an importance value of zero.

In the SWaT dataset, FIT401 and FIT504 are ranked as top features. The other top
features, i.e., P501 and PIT502, are the actuator and the sensor for a pump and a pressure
meter, respectively. The bottom features are similar to those from the filter methods, which
verify the importance of ranking these features.

4.3. Embedded Method

The embedded method combines the techniques of the filter and wrapper approaches.
The purpose of the combination is to take advantage of both approaches in terms of the
speed and performance of the filter and wrapper methods, respectively. From the imple-
mentation perspective, feature selection becomes part of training in the embedded method.
The algorithm starts training with the seed feature set (i.e., all features) and recursively
selects a set of best features for the next round of training based on the importance of the
features in the trained model [28]. The retraining continues until the predefined termination
condition, e.g., based on the algorithm’s convergence criteria or expected performance.
The commonly used embedded methods are LASSO and RIDGE regression.

5. Imbalance Dataset: Issue and Solution

In a supervised ML case, if the training sample for each classification class is approx-
imately equal, then the given dataset is considered imbalanced [29–31]. If the dataset is
imbalanced, the training is highly influenced by the majority class sample (i.e., the class
with the largest samples). Hence, the trained model lacks generalization in the real world
and misclassifies the minor class.

The imbalance issue is more prominent in the cases such as this study, where the task is
to detect a rare event, i.e., an anomaly, maliciousness, an attack, etc. In contrast, the normal
events contribute the majority of the dataset. Both of our datasets are of an imbalanced
nature, as can be verified from Table 2 and the bar plots in Figure 1. The power system
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dataset has an imbalance ratio of 1:2.5. In contrast, the water treatment plant dataset has an
imbalance ratio of 1:7.23, meaning that the samples for normal events are 70% and 88% of
the total sample, respectively.

Imbalanced datasets are a major issue and create a bottleneck in machine learning,
so there have been many methods to address and resolve the problem of training with
imbalanced datasets. These techniques mainly work on two principles: oversampling and
under-sampling. Oversampling suggests increasing the sample in the minority class, while
under-sampling is the process of reducing the sample in the majority class. The under-
sampling method goes against the basic principle of machine learning, which mainly aims
to obtain more samples to achieve better performance. So, under-sampling is suitable only
when the dataset has a very large sample for the majority class, and removing the sample
will have a very low or no impact on training. In this study, we adopted the oversampling
technique, given the limited number of samples, and focused on increasing the sample of
the minority class.

5.1. Synthetic Minority Oversampling Technique (SMOTE)

SMOTE is a minority-class oversampling method that creates synthetic examples.
The synthetic examples are created by performing operations in data space and are nearly
free from any particular application domain. The synthetic examples are plotted against
the minority class samples, and the required samples, denoted as k, are randomly selected
as k nearest neighbors [30].

5.2. Borderline-SMOTE

Borderline-SMOTE is also a minority oversampling method. There are two vari-
ants [32]: borderline-SMOTE1 and borderline-SMOTE2. Both the methods only oversample
those minority samples on the borderline of class separation. The algorithm first finds
the borderline samples from minority groups, then generates synthetic examples. It is
assumed that borderline samples of minority classes are more prone to misclassification
than samples far from the classification line.

5.3. Borderline Oversampling

Borderline Oversampling is similar to other oversampling methods that try to create
synthetic samples around the classification line. Support Vector Machine (SVM) can be
used to create a classification line and select boundary samples for oversampling [33].
First, the SVM model is trained on the complete dataset. Later, the trained model is used
to identify the borderline, and synthetic/new samples for minority class are generated
around the borderline. The number of samples, i.e., nearest neighbors, are generated either
using interpolation or extrapolation depending upon the density of majority class instances
around the borderline. This method differs from SMOTE, mentioned above, by choosing a
new sample (i.e., nearest neighbor). SMOTE chooses randomly, while this method chooses
the first k nearest neighbors.

5.4. Adaptive Synthetic (ADASYN) Sampling

Adaptive Synthetic (ADASYN) sampling incorporates weighting for oversampling of
the minority class as per the difficulty level in learning [34]. The method claims to improve
learning in two aspects, first, by reducing the bias induced by class imbalance, and second,
by adapting to the classification decision boundary as per the difficult examples. The diffi-
cult examples are those samples from minority classes close to the decision boundary. They
often result in false classifications. The algorithm starts by calculating the degree of class
imbalance (d), i.e., d = ms/ml , where d ∈ (0, 1) and ms and ml are the number of samples
in the minority and majority classes respectively. The values of d in the used power system
and water treatment plant datasets, respectively, are 0.4, 219 and 0.1, 382. The value of d is
compared with the preset threshold value d-th for the maximum tolerated degree of class
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imbalance. Further, the total required synthetic samples (G) is calculated, and then the
algorithm generates those samples.

Apart from the aforementioned oversampling methods, new methods have been pro-
posed in the recent literature for improving model performance with an imbalanced dataset.
Elyan et al. [35] have proposed class decomposition-based SMOTE (CDSMOTE). The pro-
posed method improves performance by taking two actions: first, to reduce the dominance
of the majority class by applying class decomposition, and second, to increase the rep-
resentation of the minority class by oversampling. Moreover, a two-step hybridization
of minority oversampling (SMOTE) and a novel data cleaning method (Weighted Edited
Nearest Neighbor rule, or WENN) was proposed in [36]. Fajardo et al. [37] have applied
deep conditional generative models for learning to the distribution of minority classes and
then generated synthetic samples for solving the class imbalance in the dataset to improve
the model’s performance. Similarly, Bellinger et al. [38] have proposed a new training
approach of a deep learning model (CNN) which mixes three techniques (batch resampling,
instance mixing, and soft labels) to create a robust model from a long-tailed or imbalanced
dataset. Krawczyk et al. [39] have studied the issues of the imbalanced dataset for multi-
class classification. The authors have proposed a two-step under-sampling approach; in
the first step, a one-class SVM is trained for all classes. An evolutionary under-sampling
approach is applied to each learned classifier in the second step. Using under-sampling on
the set of support vectors instead of on the original dataset, the authors claimed significant
computational and performance improvements.

All the methods mentioned above for handling class imbalances in learning are suitable
for single-model-based learning algorithms. They can be extended to suit ensemble-based
learning algorithms [39]. SVM is a good choice for dealing with imbalanced datasets [33].
All these oversampling methods were tested on the power system dataset, and the results
are presented in Section 6.4 along with explanations.

6. Experiments and Results

This section provides details of various experiments conducted to analyze the perfor-
mance of ML algorithms for feature selection and improvement of minority class detection
for imbalance datasets. Figure 6 illustrates the steps, structures, and components of the
conducted experiments.

Figure 6. A summary of the steps, structures, and components of the conducted experiments.

These experiments were designed to test and validate the different hypotheses. For ex-
ample, performance comparison for the train–test split vs. cross-validation, identifying
the impact of the imbalanced dataset on performance, testing oversampling techniques to
improve the performance, and finding the classifiers’ performance on a different subset of
features (ALL, Top10, Top20, Top30, Top40, and Top50). All the experiments were tested
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against standard performance metrics such as accuracy, precision, recall, and F1-score.
The Receiver Operating Characteristic(ROC) and Area Under ROC(AUC) are additionally
used to show performance.

6.1. Experimental System

The experimental system was prepared with Ubuntu OS in the Python development
environment. The python environment was prepared with required machine learning
modules and frameworks such as Pandas, NumPy, matplotlib, CSV, and Scikit-learn [40].

6.2. Machine Learning Algorithms

In our work, ML algorithms were chosen based on their working principles. We tried
to keep a diverse set of algorithms for a better understanding and performance comparison.
For example, Naive Bayes (NB) works on conditional probability, while kNN applies a
distance function to associate a node to a group or cluster [41]. Based on this, we initially
selected nine algorithms and later, due to relatively much large training time, dropped the
Bagging (SVC) and XBoost algorithms from further experiments. The selected algorithms
were Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF), k-Nearest
Neighbour (kNN), Naive Bayes (NB), Regression, Bagging, and Boosting. Training and
testing with such a diverse set of algorithms helped the authors to understand and find
suitable features and algorithms. All the algorithms were tested with default parameters
available in the scikit-learn framework. However, parameter setting is explicitly mentioned
wherever the default value changes. Some critical parameters for the best performing
model, i.e., random forest, are the number of trees: 100; split method: Gini; and the
minimum number of samples required to split: 2. Hyper-parameter-tuning finds the best
value for the algorithm’s parameters from the search space. This study did not perform
hyper-parameter-tuning; however, this is a possible area of research for future work.

6.3. Training and Testing

The power system and SWaT datasets were divided into training and testing sets.
Each algorithm was trained on the training set, while the performance evaluation of the
model was completed on the testing set. Percentage split and cross-validation are two main
methods for splitting the dataset into training and testing sets. The percentage split simply
divides the original samples into two sets based on the given percentage of the sample to
be considered for training and testing. However, the cross-validation divides the original
samples into N folds containing equal numbers of samples. We used a 70/30 ratio for
percentage split, while 10 folds (i.e., N = 10) were used with cross-validation. As cross-
validation is an iterative process, the algorithm’s performance was taken as the mean
of N rounds of training and testing. In each round, N − 1 folds were used for training,
and the remaining fold was used for testing. Training and testing in multiple folds provide
diversity to the dataset, cross-validation provides robust training, and the trained model
was generalized well on an unseen sample [42].

6.3.1. Percentage Split (70–30)

As mentioned earlier, based on the required percentage for training and testing sam-
ples, the percentage split method divides the samples into two sets. We used 70% for
training and the remaining 30% for testing. This split method randomly selects the sample
from the dataset for training. Training on a train–test dataset (from the split method)
provides an approximate model, because randomly selected training samples do not rep-
resent actual data distribution. As such, the trained model suffers from over-fitting, i.e.,
it performs poorly on unseen samples. We trained and tested all nine algorithms on train-
ing and testing sets obtained from a percentage split (70–30%) to measure training time
and approximate performance of FDI classification. Tables 5 and 6 show the precision,
recall, F1-score, and accuracy of all algorithms for the power system and SWaT dataset,
respectively. Except for accuracy, the other three metrics provide results for both classes
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(Normal and FDI). From Table 5, we can observe that, with an accuracy score 92%, Random
Forest performance is the best performed as an ensemble algorithm, while Decision Tree
has an accuracy score of 85% and is the best performer as a single model. The accuracy
value is biased towards the majority class, and the model suffers for the minority class.
This is evident from the precision, recall, and F1-score value from Table 5 for both classes.
The performance reduced by about 6–10% for best-performing classifiers. In the case of
the SWaT dataset, all the classifiers have an accuracy above 95%. The precision, recall,
and F1-score for the normal class is as per the accuracy but reduced for the FDI class for
many classifiers. From Table 6, we can observe that kNN, DT, and RF show a perfect 100%
score for all metrics; this is indicating over-fitting. Over-fitting can be attributed to the
water treatment dataset having fewer features and many samples. Therefore, kNN, DT,
and RF can memorize the class distribution for training data. We have investigated these
three algorithms further with cross-validation, and the results are presented in Section 6.3.2.

Table 5. Classifiers’ performance in the power dataset.

ML
Model

Precision Recall F1-Score Accuracy

Normal FDI Normal FDI Normal FDI –

NB 0.71 0.33 0.98 0.02 0.82 0.04 0.70
SVM 0.97 0.29 0.01 1.0 0.01 0.46 0.30
kNN 0.86 0.70 0.88 0.66 0.87 0.68 0.82
DT 0.90 0.75 0.90 0.75 0.90 0.75 0.85
RF 0.91 0.93 0.98 0.78 0.94 0.85 0.92
Ada 0.72 0.53 0.96 0.10 0.82 0.16 0.71
LR 0.71 0.49 1.0 0.01 0.83 0.02 0.71

Table 6. Classifiers’ performance in the water treatment dataset.

ML
Model

Precision Recall F1-Score Accuracy

Normal FDI Normal FDI Normal FDI –

NB 0.96 0.98 1.0 0.70 0.98 0.82 0.96
SVM 0.96 0.99 1.0 0.71 0.98 0.83 0.96
kNN 1 1 1 1 1 1 1
DT 1 1 1 1 1 1 1
RF 1 1 1 1 1 1 1
BagSVC 0.96 0.99 1 0.66 0.98 0.80 0.96
LR 0.95 0.99 1 0.62 0.97 0.76 0.95

In critical infrastructure, decision making needs to be quick. So, a low prediction
time is required from the machine learning model. In this study, time is one of the key
performance metrics. So, the time taken for training and testing by each algorithm is
measured. The training time will help find a suitable algorithm for the power system or
other critical infrastructure. Training time is also essential because data generation is fast,
and the models often require retraining. A model with a lower training time will be more
suitable. Table 7 presents the training and testing times (in seconds) of all nine algorithms.
As mentioned earlier, Naive Bayes (NB) is a fast and probabilistic algorithm, because it
uses prior probability values to calculate the posterior. Probability values can be calculated
in advance, so NB training is faster than others. However, conditional independence is one of
the critical assumptions that attributes need in order to be satisfied. Bagging is an ensemble
method that creates multiple base models on the subset of the dataset. These subsets are
created using random sampling. Table 7 shows that NB has the lowest training time of all
algorithms, while Bagging (with SVC) has the highest training time. Hence, the highest
training time is the accumulation of time taken for dataset generation, multiple model
training, and testing.
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Table 7. Training and testing time of machine-learning algorithms.

Classifiers NB SVC kNN DT RF Ada BSVC LR XGB

Time (S) 0.132 9.770 7.280 3.580 17.900 11.800 533.00 1.140 62.0

6.3.2. Testing with Cross-Validation

The previous section shows the detection performance and training time of algorithms
for the training and testing set created using a percentage split. With this initial estimation,
the algorithms were further trained and tested with 10-folds cross-validation to know
the trained model’s generalization capacities. We compared the detection accuracy of all
algorithms for the percentage split and cross-validation of the power-system dataset. We
have two key observations; first, five algorithms (DT, SVC, kNN, GB, and RF) achieved
lower accuracy in the 10-fold cross-validation than the percentage split. Second, four
other algorithms (Adaboost, Bagging (ensemble), LR, and NB) had minimum impact,
i.e., accuracy either reduced with smaller margin or remained constant. Based on these
two observations, we can conclude that the former five algorithms over-fit inherently,
while the latter four algorithms have the inbuilt function to overcome over-fitting during
training. Considering this outcome, for the SWaT dataset, we performed training with
10-fold cross-validation for the three most over-fitted classifiers, i.e., kNN, DT, and RF.
Figure 7 shows the AUC of all classifiers for 10 folds training. For RF, although 4 passes
have an AUC value of 1.0, the mean performance of all three classifiers reduced to 0.79,
0.75, and 0.81 from 1.0 for kNN, DT, and RF, respectively.

Figure 7. AUC with 10-fold cross-validation for the water treatment plant dataset.

The previous section presented the outcome of the filter and wrapper methods. One
further key objective of this study is to test the performance of all algorithms on the
selected set of features. For this, we experimented only on the power-system dataset.
A total of ten datasets were created to train and test different machine-learning algorithms
using sets of the selected top features, five sets each from the filter and wrapper method.
The experimental results are shown as Top10, Top20, Top30, Top40, and Top50 for feature
selection sets, and ALL represents all features. These 11 sets of the dataset were used to
train and test all algorithms in 10-fold cross-validation. Figure 8a shows the results for the
filter method sets. The detection accuracy in Adaboost, SVC, and GB decreased, while the
detection accuracy in DT, kNN, and LR increased. The performance of RF and NB was
unaffected (insignificant change) by the change in the number of features.
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a Filter method b)Wrapper method

Figure 8. Accuracy of classifiers with selected features for power system dataset.

Similarly, five datasets were created using the feature ranking of the wrapper method.
Further, using the 10-fold cross-validation approach, all algorithms were trained and tested
on all five sets. Figure 8b shows the performance of all algorithms. Unlike the filter method
case, there was no change in the performance of Logistic Regression; the performance of
Naive Bayes decreased significantly. In either selection method, kNN had a similar pattern,
i.e., accuracy increased with the number of selected features. However, there was no clear
pattern in the performance change of Adaboost, RF, GB, DT, and SVC. The performance
of RF and DT decreased and had the lowest accuracy with thirty top features, while there
were no significant changes in accuracy with other sets of features (top10, top20, top40,
and top50). In other groups, the accuracy of SVC and Adaboost did not seem related to the
number of features.

6.4. Imbalance Dataset and Impact

As discussed in Section 5, with an imbalanced dataset, ML models suffer performance
degradation while making predictions about minority classes. This is because a model
learns mainly from the majority class or is over-fitted to the majority class. Accuracy is the
most-used metric for measuring the performance of machine-learning algorithms, but it is
not suitable for imbalanced datasets [30]. Values from Tables 5 and 6 verify the performance
degradation of the model with more robust metrics such as precision, recall, and F1-score.

The two main approaches for handling the imbalanced dataset are oversampling the
minority class and under-sampling the majority class. While oversampling is suitable for
maximum use-cases, under-sampling only suits when the majority class has many samples
and the minority class also has enough samples to represent the nature of the distribution.
In this study, we have adopted the oversampling approach, and the minority class is
oversampled using four different sampling techniques. SMOTE is the main technique
for oversampling, and the other three, i.e., Borderline-SMOTE, Borderline-SMOTE with
SVM, and Adaptive Synthetic Sampling, are variants of SMOTE. As explained in Section 5,
in borderline-SMOTE, only the borderline sample from the minority class is used for
oversampling. In the original borderline-SMOTE algorithm [32], kNN is used for sample
selection, while in the modified version (borderline-SMOTE with SVM [33]), SVM is used
for sample selection. To understand and highlight the impact of the imbalanced dataset,
we have used AUC as a performance metric. After applying each oversampling technique,
we trained all ML algorithms on the imbalanced dataset and again trained the algorithms.
Figure 9 depicts the algorithms’ AUC values with the imbalanced dataset, i.e., Figure 9a
and after balancing the dataset (making an equal sample for both classes by oversampling
minority class, i.e., FDI class) using SMOTE, shown in Figure 9b. From Figure 9, it is evident
that imbalance datasets have varying impacts on the different types of ML algorithms.
These are obvious, because each performs training differently. Further, this observation
can be broken down into two: first, some algorithms are not impacted (they can have high
performance, i.e., DT and RF, or low-performance, i.e., NB and LR) by the ratio of samples
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for each class, so oversampling also fails to impact performance. Second, some algorithms
(GradientBoost, AdaBoost, and kNN) have a high impact on the imbalanced dataset, and so
the performance of these algorithms improves after oversampling. Table 8 shows the AUC
values of different classifiers for the imbalanced dataset and after applying four selected
oversampling methods. In Table 8, borderline-SMOTE and SVM-based borderline-SMOTE
is coded as BSMOTE and BSMOTE-SVM. From Table 8 we can observe that all oversampling
techniques improve the AUC values of almost all classifiers. The magnitude of improvement
depends upon the type of algorithm used. As mentioned previously, the best improvement,
i.e., 10–12%, was observed for GradientBoost, and AdaBoost algorithms, while kNN had
a 6–8% improvement with different oversampling techniques. DT and RF are considered
robust against imbalanced datasets, but these algorithms achieved a 2–3% performance
improvement after applying oversampling.

a ROC with imbalance dataset

b ROC after SMOTE

Figure 9. ROC for classifiers with imbalance and SMOTE balance power system dataset.
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Table 8. Comparison of classifiers (on AUC %) for imbalanced datasets and different oversampling
methods for the power system dataset.

Classifiers Imbalance Smote Bsmote Bsmote-Svm Adasyn

LR 0.592 0.590 0.550 0.595 0.565
GNB 0.559 0.548 0.578 0.544 0.596
GBoost 0.747 0.847 0.839 0.839 0.845
BagSVC 0.504 0.505 0.512 0.515 0.513
AdaBoost 0.672 0.783 0.777 0.747 0.785
kNN 0.855 0.924 0.917 0.926 0.910
DT 0.826 0.830 0.835 0.847 0.831
RF 0.974 0.984 0.982 0.988 0.983

In this study, we used robust performance metrics such as precision, recall, and F1-
score calculated using a confusion matrix. In addition to this, to visualize the model’s
performance, we selected the best performing model in both the imbalanced and balanced
dataset and plotted the confusion matrix. Figure 10 shows the results for both cases.
As shown in Figure 10a,b, the detection performance of the attack class improved with a
balanced dataset but decreased for normal class. However, improved attack detection is
critical and required for critical infrastructures.

a Imbalance dataset b Balance dataset (SMOTE)

Figure 10. Confusion matrix for best model (RF) on imbalance and SMOTE balanced power sys-
tem dataset.

6.5. Comparison with Previous Works

In this section, we compare the performance of our best model with those described
in the existing literature. Jingyu wang et al. [43] used deep autoencoder to detect data
manipulation attacks in power systems. Adhikari et al. [44] combined Non-Nested Gen-
eralized Exemplars (NNGEs) and the STate Extraction Method (STEM) for cyber-attack
event detection. Defu Want et al. [20] divided the features as per each PMU and then used
an ensemble approach to combine the results of five classifiers (the authors trained four
classifiers on four PMUs data and the fifth with combined features). Table 9 shows the per-
formance comparison of the best model of earlier studies and this study. The performance
of this study is shown as an AUC value. AUC is a robust metric that represents the total
area under ROC (trade-off between True Positive Rate (TPR) and False Positive rate (FPR)).
A higher AUC value indicates better classification performance of the model. This study
has achieved an AUC value of 0.984, which is better than the existing literature.
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Table 9. Comparison with previous works on FDIA detection for the power system dataset.

Work Algo. Accuracy Precision Recall F1-Measure AUC

[43] DAE 0.941 0.996 0.886 0.938 -
XGBoost 0.848 0.990 0.703 0.82 -

[44] – - 0.96 - 0.95 -

[20] Ensemble 0.9391 - - - -

Current
Study RF - - - - 0.984

7. Conclusions and Future Scope

We examined and improved the performance of machine-learning algorithms for
detecting FDIAs in critical infrastructure by determining the best features and mitigat-
ing imbalanced dataset problems. Performance improvement was tested and validated
through various experimental results. These experiments included feature selection meth-
ods, oversampling techniques, and training and testing ML algorithms on two popular
datasets related to power systems and water treatment plants. Our results show that the
performance of algorithms varies significantly depending on the feature selection and the
number of features. For example, the performance of NB is unaffected by increasing the
number of features in the filter method while decreasing the number wrapper features. We
also found that selection methods rank features differently. We found that RF is generally
suitable for building an FDIA detector based on detection performance and training time
trade-offs. Additionally, model training with 10-fold cross-validation is suitable because
it highlights the over-fitting issues. Moreover, we analyzed the impact of the imbalanced
dataset and applied minority oversampling techniques to improve detection performance.

New sampling techniques based on deep learning and hybrid sampling approaches
are proposed in the literature [35–39]. Future studies can explore these recent techniques
with the power system and other critical infrastructure datasets. The binary classification
formulation in this study can be further divided and reformulated as a multi-class classifi-
cation for training machine-learning algorithms. Moreover, consideration of the space and
computation requirements of critical infrastructures can motivate new research objectives.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
AI Artificial Intelligence
ARFF Attribute-Relation File Format
AUC Area Under Curve
CPPS Cyber-Physical Power System
CPU Central Processing Unit
CSV Comma-Separated Value
DT Decision Tree
FDIA False Data Injection Attack
GB Gradient Boost
GUI Graphical User Interface
HMI Human–Machine Interfaces
ICT Information and Communication Technology
IDS Intrusion Detection System
IPS Intrusion Prevention System
IED Intelligent Electronic Device
kNN k Nearest Negibour
LR Linear Regression
LTS Long Term Support
ML Machine Learning
NB Naive Bayes
OCSVM One-Class Support Vector Machine
PCA Principal Component Analysis
PDC Power Distribution Center
PLC Programmable Logic Controllers
PMU Phasor Measurement Unit
RF Random Forest
ROC Receiver Operating Characteristic
SCADA Supervisory Control and Data Acquisition
SVC Support Vector Classifier
SVM Support Vector Machine
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