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1. Introduction

Extremely popular for statistical inference, Bayesian methods are gaining importance in machine
learning and artificial intelligence problems. Indeed, in many applications, it is important for any
device not only to predict well, but also to provide a quantification of the uncertainty of the prediction.

The main problem when one is to apply Bayesian statistics is that the computation of the estimators
is expensive and sometimes not feasible. Bayesian estimators are based on the posterior distribution
on parameters 6§ given by:

_ LB:0)n(0)
[ L(6;x)7(d6)

where 7 is the prior, x the observations, and L(6;x) the likelihood function. For example,
the computation of the posterior mean [ 67(df|x) requires a difficult evaluation of the integrals.
Thanks to the development of computational power, Bayesian estimation became feasible in the 1980s
and the 1990s through Markov Chain Monte Carlo (MCMC) methods, such as the Metropolis-Hastings
algorithm [1] and the Gibbs sampler [2,3]. These algorithms target the exact posterior distribution.
They proved to be useful in many contexts and are still an active area of research. The performances
and applicability of MCMC were improved by variants such as the Hamiltonian MCMC [4,5],
adaptive MCMC [6-8], etc. We refer the reader to the review [9], the books [10-12], and Part III
in [13] for detailed introductions to MCMC. The surveys [14,15] provide an overview on more recent
advances. The asymptotic theory of Markov chains, ensuring the consistency of these algorithms,
was covered in the monographs [16,17]. A few non-asymptotic results are also available [18].

Sequential Monte Carlo emerged in the 1990s as a way to update sequentially (that is, for each
new data) samples from the posterior in hidden state models. They allow thus the computation of
a Bayesian version of filters (such as the Kalman filter [19]). For this reason, they are also referred to as
“particle filters”. We refer the reader to [20] for the state-of-the-art of the early years and to the recent
books [21,22] for pedagogical introductions and an overview of the most recent progress.

However, many modern models in statistics are simply too complex to use such methodologies.
In machine learning, the volume of the data used in practice makes MCMC too slow to be used: first,
each iteration of the algorithm requires accessing all the data, then the number of iterations required
to reach convergence explodes when the dimension is large. In these cases, it seems that targeting
the exact posterior is no longer a realistic objective. This motivated the development of many new
methodologies, where the target is no longer the exact posterior, but simply a part of the information
contained in it, or an approximation.
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Before a short overview of these approximations techniques, let us mention two important
examples where approximations were an essential ingredient in the application of Bayesian methods.
In 2006, Netflix released a dataset containing movie ratings by its users and challenged the
machine learning community to improve on its own predictions for movies that were not rated [23].
Many algorithms were proposed, including methods based on matrix factorization. Bayesian matrix
factorization is computationally intensive. The first success at scaling Bayesian methods to the
Netflix dataset was based on a mean-field variational approximation of the posterior by [24].
Such approximations will be discussed below.

In computer vision problems, the best performances are reached by deep neural networks [25].
Bayesian neural networks became a popular research direction. A new field of Bayesian deep learning
has emerged that relies on approximate Bayesian inference to provide uncertainty estimates for neural
networks without increasing the computation cost too much [26-29]. In particular, References [28,29]
scaled these algorithms to the size of benchmark datasets such as CIFAR-10 and ImageNet.

2. Approximation in the Modelization

In many practical situations, the statistician is not interested in building a complete model
describing the data, but simply in learning some aspects of it. One can think for example of
a classification problem where one does not want to learn the full distribution of the data, but only
a good classifier. A natural idea is to replace 77(6|x) in (1) by:

exp [—((x;6)] (6)

(0|x) = [ exp [—£(x;6)] 7t(d6) ?

where ((x; ) is a Taylor loss function—for example, the classification error. When £(x; 0) = — log £(6; x),
we recover (1) as a special case. When £(x;0) = —alog £(6; x) for some & # 1, we obtain tempered
posteriors, which appeared for various computational and theoretical reasons in the statistical literature;
see [30-34], respectively. The use of the general form (2) was advocated to the statistical community
by [35].

It appears that this idea was already popular in the machine learning theory community,
where distributions like 77(6|x) are often referred to as Gibbs posteriors or aggregation rules.
The PAC-Bayesian theory was developed to provide upper bounds on the prediction risk of
such distributions [36-38]. We refer the reader to nice tutorials on PAC-Bayes bounds [39,40].
References [41-43] emphasized the connection to information theory. Note that the dropout technique
used in deep learning to improve the performances of neural networks [44] was studied with
PAC-Bayes bounds in [40]; see also [26]. Many publications in the past few years indeed confirmed
that PAC-Bayes bounds are very well suited to analyze the performances of deep learning [45-51].
See [52] for a recent survey on PAC-Bayes bounds.

Such distributions were also well known in game theory and in prediction with expert advice
since the 1990s [53,54]. We refer to the book [55], the recent work [56], and to connected problems such
as bandits [57,58].

Finally, many aggregation procedures studied in high-dimensional statistics can also be written
under the form of (2); see [59-64] with various regression or classification losses. References [65]
used a Gibbs posterior based on the quantile loss to estimate a VaR (Value at Risk, a measure of risk
in finance).

3. Approximation in the Computations

Many works have been done in the past few years to compute estimators based on 7r(6|x) or
71(0]x) in complex problems, or with very large datasets. Very often, this is at the cost of targeting
an approximation rather than the exact posterior. It is then important to analyze the accuracy of
the approximation.
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The nature and accuracy of these approximations are extremely different from one algorithm to the
other, and some of them are not well understood theoretically. Below, we group these algorithms into
three groups. In Section 3.1, we present methods that still essentially rely on simulations. In Section 3.2,
we present asymptotic approximations. Finally, in Section 3.3, we present optimization based methods
(this grouping is for the ease of exposition and is of course a little crude; each subsection mentions
methods that have little to do with each other).

3.1. Non-Exact Monte Carlo Methods

Monte Carlo methods based on Langevin diffusions were introduced in physics in the 1970s [66].
Let (Uy)¢>0 be a diffusion process given by the stochastic differential equation:

dU; = Vlog rt(U|x)dt + V2dw;,

where (W;)i>o is a standard Brownian motion. It turns out that the invariant distribution
of (U;) is 7(+|x). A discretization scheme with step i > 0 leads to the Markov chain
U,y1 = Uy +hVlog mt(Uy|x) + V2hE,, where the (&) are iid standard Gaussian variables.
However, it is important to note that (U,) does not admit 77(-|x) as an invariant distribution.
Thus, the Langevin Monte Carlo method is not exact (it would become exact with 1 — 0).
Reference [67] proposed a correction of this method based on the Metropolis—-Hastings algorithm,
which leads to an exact algorithm, known as the MALA (the Monte Carlo Adjusted Langevin
Algorithm). The Langevin Monte Carlo and MALA became popular in statistics and machine learning
following [68]. This paper studies the asymptotic properties of both algorithms. Surprisingly, the exact
method does not necessarily enjoy the best asymptotic guarantees. More recently, in the case where
log 7(U,|x) is concave, non-asymptotic guarantees where proven for Langevin Monte Carlo with
a running time that depends only polynomially on the dimension of the parameter 6; see [69-74].
Such results are usually not available for exact MCMC methods.

The implementation of the classical Metropolis-Hastings algorithm requires being able to compute
the ratio £(6;x)/L(0'|x) for any 6,6'. In some models with complex likelihoods, or with intractable
normalization constants, this is not possible. This led to a new direction, that is approximations of this
likelihood ratio. A surprising and beautiful fact is that, if each likelihood is computed by an unbiased
Monte Carlo estimator, the algorithm remains exact: this was studied under the name pseudo-marginal
MCMC in [75]. Still, it sometimes requires much work to get unbiased estimates [76,77], when possible
atall. Some authors proposed more general approximations of the likelihood ratio, leading to non-exact
algorithms. References [78-81] proposed estimators based on subsampling when the data x are too
large. Reference [82] proposed an estimator of the likelihood ratio when the likelihood has intractable
constants, as in the exponential random graph model, and proved that, even if the resulting MCMC is
inexact, it remains asymptotically close to the exact chain. A further theory was developed in [83-85].
More on MCMC for big data can be found in [86].

Finally, the ABC (Approximate Bayesian Computation) algorithm was proposed in population
genetics for models where the likelihood is far too complex to be computed, but where it is relatively
easy to sample from it [87,88]. It became extremely popular in some applications; we refer the reader
to the survey [89], to Section 3 in [15], and more recently, to the book [90]. Some theoretical results
were proven in [91]; we also refer the reader to [92-94] for some recent advances.

3.2. Asymptotic Approximations

Laplace’s method provides a Gaussian approximation of the posterior centered on the Maximum
Likelihood Estimator (MLE) and whose covariance matrix is the inverse of the Fisher information.
This approximation can be theoretically justified in parametric models under appropriate regularity
conditions thanks to the Bernstein—von Mises theorem. We refer the reader to Chapter 13 in [95] for
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a complete statement of this result. Integrated Nested Laplace Approximations (INLA) indeed became
very popular in Gaussian latent models to compute approximations of the posterior marginals [96].

The extension of the Bernstein—-von Mises theorem to nonparametric or semiparametric models
is a quite technical and important research direction; see for example [97-101] and Chapter 10 in
the monograph [102]. It is important to keep in mind that even in parametric models, when the
assumptions of the theorem are not met, Laplace approximation can be wrong. The asymptotic of the
posterior in such models was studied in detail in [103].

3.3. Approximations via Optimization

A huge number of methods are based on the idea of using optimization algorithms to find the
best approximation of 77(+|x), or 77(+|x), in a set of probability distributions Q fixed by the statistician.
The difference between the various methods is in the choice of the criterion used to define the “best”
approximation. The set Q can be parametric (e.g., Gaussian distributions, inspired by Laplace’s
method) or not, the choice being prescribed by the feasibility of the optimization problem.

Variational approximations are based on the Kullback-Leibler divergence KL:

#(8]x) = argmin KL(q||7(-|x)) ®)
qeQ
= argnéin {]ngq[— log L(6; x)] +KL(‘7H7T)}I “)
qe

where we remind that KL(q||p) = [log(dq/dp)dp when g is absolutely continuous with respect
to p, and KL(g||p) = +oo otherwise. We refer the reader to the seminal papers [104,105], to the
tutorial [106], and to the recent review of the huge literature on variational approximations [107].
Note that the approximation used in [108] in the early days of neural networks can also be interpreted
as a variational approximation. Besides the aforementioned applications to recommender systems
and to deep learning, variational inference was successfully used in network data analysis [109],
economics and econometrics [110-113], finance [114], natural language processing [115], and video
processing [116], among others. A huge range of optimization algorithm were used, from the
coordinate-wise optimization in the original publications to message passing [117], the gradient
and stochastic gradient algorithm [27,115,118], and the natural gradient [119]. The convexity and
smoothness of the minimization problem were discussed in [120]. The scope of these methods was
extended to models with intractable likelihood in [121]. Reference [122] pointed out a connection
between (4) and PAC-Bayes bounds, which led to the first generalization error bounds for variational
inference for some Gibbs posteriors, as in (2). The analysis was extended to various settings, including
regular posteriors, as in (1), by [123-131]. In particular, Reference [132] proved that variational inference
leads to the optimal estimation of some classes of functions with deep learning. Note that even when Q
is the set of all Gaussian distributions on the parameter space, the approximation can be very different
from the Laplace approximation. Indeed, Reference [129] contains an example of a mixture model
where the MLE is not consistent, but Gaussian variational inference is.

The choice of the Kullback-Leibler divergence in (3) and (4) was initially motivated by the
tractability of the computational program to which it leads. Recently, many authors questioned
that choice and proposed extended definitions of variational inference using other divergences;
for a presentation of the most popular divergences in statistics, see the introduction to information
geometry [133]. Note that if we replace KL by another divergence, (3) and (4) are in general no longer
equivalent, which leads to two possible ways to extend the definition. Reference [134] extended (3) by
replacing the KL term by a Rényi divergence, and Reference [135] used the x? divergence. However,
Reference [136] discussed the computational difficulties induced by these changes, which might
outweigh the benefits. Reference [137] discussed other criteria, including the Wasserstein distance,
and provided some theoretical guarantees. On the other hand, References [138-141] proposed to use
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more general divergences in (3). This can be related to the generalized exponential family of [142] and
the PAC-Bayes bounds in [143,144].

The very popular Expectation Propagation algorithm (EP) was introduced by [145]. EP can
be interpreted as the minimization of the reverse KL, KL(7t(+|x)||q)), instead of (3). This was
detailed in [146], where the author also proposed an extension with a-divergences called power
EP. Algorithmic issues were discussed in [147] and by [148], who proposed stochastic optimization
methods. A first theoretical analysis of EP was proposed in [149]. Let us mention that the textbook [150],
which is a generalist introduction to machine learning, contains a full chapter entirely devoted to
a pedagogical introduction to variational approximations and EP. The paper [151] focuses on the
application of EP to hierarchical models, but also contains a very nice introduction to EP and the
conditions ensuring its stability.

Finally, let us mention approximations by discrete distributions, of the form q = ﬁ M e,
where 0, is the Dirac mass at x. Note that this is typically the kind of approximation provided by
the MCMC and sequential Monte Carlo methods, but in these methods, the 6; are sampled. It is also
possible to try to minimize a distance criterion between g and 7(-|x). Unfortunately, when 7(-|x)
is continuous, both KL(7t(-|x)||q)) = KL(q||7t(-]x))) = +o0, so it is not possible to use variational
inference or EP in this case. An energy based criterion was proposed in [152]. Reference [153] proposed
to use Stein divergences between g and 77(+|x), and the technique became quite successful [154-156].
Another possible research direction is to use the Wasserstein distance [157].

4. Scope of This Special Issue

The objective of this Special Issue is to provide the latest advances in approximate Monte Carlo
methods and in approximations of the posterior: the design of efficient algorithms, the study of the
statistical properties of these algorithms, and challenging applications.

Funding: This research received no external funding.

Acknowledgments: The author gratefully thanks Emtiyaz Khan (RIKEN AIP) and Nicolas Chopin (ENSAE Paris)
for useful comments.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ABC Approximate Bayesian Computation

EP Expectation Propagation

MALA  Monte Carlo Adjusted Langevin Algorithm
MCMC  Markov Chain Monte Carlo

MLE Maximum Likelihood Estimator

PAC Probably Approximately Correct

VaR Value at Risk
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Abstract: We present a coupled variational autoencoder (VAE) method, which improves the accuracy
and robustness of the model representation of handwritten numeral images. The improvement is
measured in both increasing the likelihood of the reconstructed images and in reducing divergence
between the posterior and a prior latent distribution. The new method weighs outlier samples with a
higher penalty by generalizing the original evidence lower bound function using a coupled entropy
function based on the principles of nonlinear statistical coupling. We evaluated the performance of
the coupled VAE model using the Modified National Institute of Standards and Technology (MNIST)
dataset and its corrupted modification C-MNIST. Histograms of the likelihood that the reconstruc-
tion matches the original image show that the coupled VAE improves the reconstruction and this
improvement is more substantial when seeded with corrupted images. All five corruptions evaluated
showed improvement. For instance, with the Gaussian corruption seed the accuracy improves by 101
(from 107572 to 10~*29) and robustness improves by 102 (from 1071992 o 10~87-0), Furthermore, the
divergence between the posterior and prior distribution of the latent distribution is reduced. Thus, in
contrast to the B-VAE design, the coupled VAE algorithm improves model representation, rather than
trading off the performance of the reconstruction and latent distribution divergence.

Keywords: machine learning; entropy; robustness; statistical mechanics; complex systems

1. Introduction

An overarching challenge in machine learning is the development of methodologies
that ensure the accuracy and robustness of models given limited training data. By accuracy,
we refer to the metrics of information theory, such as minimizing the cross-entropy or
divergence of an algorithm. In this paper, we define a measure of robustness based on
a generalization of information theory. The variational autoencoder (VAE) contributes
to improved learning of models by utilizing approximate variational inference [1,2]. By
storing a statistical model rather than a deterministic model at the latent layer, the algorithm
has increased flexibility in its use for reconstruction and other applications. The variational
inference is optimized by minimization of a loss function, the so-called negative evidence
lower bound, which has two components. The first component is a cross-entropy between
the generated and the source data, also known as the expected negative log-likelihood,
while the second is a divergence between the prior and the posterior distributions of the
latent layer.

Our goal in this research is to provide an evaluation as to whether a generalization
of information theory can be applied to improving the robustness of machine learning
algorithms. Robustness of autoencoders to outliers is critical for generating a reliable
representation of particular data types in the encoded space when using corrupted training
data [3]. In this paper, a generalized entropy function is used to modify the negative
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evidence lower bound loss function of a variational autoencoder. With the MNIST hand-
written numerals dataset, we are able to measure the improvement in the robustness of the
reconstruction, using a metric also derived from the generalization of information theory. In
addition, we find that the accuracy of the reconstruction, as measured by Shannon informa-
tion theory, is also improved. Furthermore, the divergence between the latent distribution
posterior and prior is also reduced. This is important to ensure that the reconstruction
improvement is not a result of degrading the latent layer.

Our study builds from the work of Kingma and Welling [4] on variational autoen-
coders and Tran et al. [5] on deep probabilistic programming. Variational autoencoders
are an unsupervised learning method for training encoder and decoder neural networks.
Between the encoder and decoder, the parameters of a multidimensional distribution are
learned to form a compressed latent representation of the training data [6]. It is an effective
method for generating complex datasets such as images and speech. Zalger [7] imple-
mented the application of VAE for aircraft turbomachinery design and Xu et al. [8] used
VAEs to achieve unsupervised anomaly detection for seasonal key performance indica-
tors (KPIs) in web applications. VAEs have been used to construct probabilistic models
of complex physical phenomena [9]. Autoencoders can use a variety of latent variable
models, but restricting the models can enhance performance. Sparse autoencoders add
a penalty for the number of active hidden layer nodes used in the model. Variational
autoencoders further restrict the model to a probability distribution g, (z|x) specified by a
set of encoder parameters ¢ which approximates the actual conditional probability p(z|x).
Variational inference, as reviewed by Blei et al. [10], is used to learn this approximation by
minimizing an objective function such as the Kullback-Liebler divergence. The decoder
learns a set of parameters 6 for a generative distribution gg(x’|z), where z is the latent
variable, and x’ is the output generated data. The complexity of the data distribution p(x)
makes direct computation of the divergence between the approximate and exact latent con-
ditional probabilities intractable; however, a variational or evidence lower bound (ELBO)
is computable and consists of two components, the expected reconstruction log-likelihood
of the generated data (cross-entropy) and the negative of the divergence between the la-
tent posterior conditional probability g4 (z|x) and a latent prior distribution p(z), which
is typically a standard normal distribution but can be more sophisticated for particular
model requirements.

Recently, Higgins et al. [11] proposed a B-VAE framework, which can provide a more
disentangled latent representation z [12] by increasing the weight of the KL-divergence
term of the ELBO. Since the KL-divergence is a regularization that constrains the capacity
of the latent information channel z, increasing the weight of the regularization with g > 1
puts pressure on the learnt posterior so it is more tightly packed. The effect seems to be an
encouragement of each dimension to store distinct information and excess dimensions as
highly packed noise. However, this improvement is a trade-off between the divergence
and reconstruction components of the ELBO metric. We will show that the coupled VAE
algorithm improves both components of the ELBO.

The next section provides an introduction to the design of the variational autoencoder.
A comparison with other generative algorithms is included. Section 3 introduces nonlinear
statistical coupling and its application to defining metrics for the robustness, accuracy,
and decisiveness of decision algorithms. In this paper, use of the uppercase letter for the
terms ‘Robustness’, "Accuracy’, and "Decisiveness’ refers to the specific metrics, which
will be introduced in Section 3.1. Lowercase letters for these terms will be used when
referring to the general properties. Following the definition of the reconstruction assessment
metrics, the generalization of the negative ELBO is defined. This coupled negative ELBO
provides control over the weighting of rare versus common samples in the distribution
of the training set. Additional details of the derivation of the generalized negative ELBO
function and metrics are provided in Appendices A.1 and A.2, respectively. In Section 4,
the improved autoencoder is evaluated using the MNIST handwritten numeral test set.
Measurements of the reconstruction and the characteristics of the posterior latent variables

14



Entropy 2022, 24, 423

are analyzed. Section 5 provides a visualization of the changes in the latent distribution
using a 2-dimensional distribution. Section 6 demonstrates that the coupled VAE algorithm
provides significantly improved stability in the model performance when the input image
is corrupted from the training set. This provides evidence of the improved robustness of the
algorithm. Section 7 provides a discussion, conclusion, and suggestions for future research.

2. The Variational Autoencoder

A variational autoencoder consists of an encoder, a decoder, and a loss function.
Figure 1 represents the basic structure of an autoencoder. The encoder Q is a neural network
that converts high-dimensional information from the input data into a low-dimensional
hidden, latent representation z. Some information is lost during this data compression
because the dimension is reduced. The decoder P decompresses from latent space z to
reconstruct the data. While, in general, autoencoders can learn a variety of representations,
VAE:s especially learn the parameters of a probability distribution. The model used here
learns the means and standard deviations 6 of a collection of multivariate Gaussian distribu-
tions and stores this information in a two-layered space. The training loss function, which
is the negative evidence lower bound, is optimized by using stochastic gradient descent.

/()

Decoder

(P)

‘ Sample z from N(u(X).2(X)) |
f T
PIESS
~ Pl

Encoder

(%)

Figure 1. The variational autoencoder consists of an encoder, a probability model, and a decoder.

2.1. Vae Loss Function

The encoder reads the input data and compresses and transforms it into a fixed-shape la-
tent representation z, while the decoder decompresses and reconstructs the information from
this latent representation, outputting specific distribution parameters to generate a new recon-
struction x’. The true posterior distribution p(z|x()) of z given i*" datapoint x!) is unknown,
but we use the Gaussian approximation ¢(z|x()) with mean vector 1) and covariance
matrix diag(c?, - -, 02) () instead. The goal of the algorithm is to maximize the variational
or evidence lower bound (ELBO) on the marginal density of individual datapoints.

AN
For a dataset X = {x(‘) } . consisting of N independent and identically distributed
i=

samples, the variational lower bound for the i datapoint or image x() in the original VAE
algorithm [4] is

ELBO(x) = —Die. ((2Ix") || p(2)) +E, (0 [log p(x?[2) |. @

The first term on the right-hand side is the negative Kullback-Leibler divergence between
the posterior variational approximation g(z|x) and a prior distribution z which is selected
to be a standard Gaussian distribution. The second term on the right-hand side is denoted
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as the expected reconstruction log-likelihood, and is referred to as the cross-entropy. Let 71,
be the dimensionality of z; then, the Kullback-Leibler divergence simplifies to

—DKL(Q(le [lp(z /q logp() logq<z|x<i>>>dz 0]
%Jg (1 +10g((6)?) — (1)* - (0)). ©

The expected reconstruction log-likelihood (cross-entropy) E a(2lx) [log 4 (x(i) |z>}
can be estimated by sampling, i.e.,

E, o) 08 2 (x12)] = %,é (1og p (1) ), @

where L denotes the number of samples for each datapoint and we set L = 1 in our study.
Supposing data x given z has the following probability density,

My

log p(x|z) = ) (x;logy; + (1 - x;) log(1 - y,)), ®)

i=1

where y is the output of the decoder. Therefore, the loss function can be calculated by

e{s) = -£80(s) = Do) 100) - | £ s (12)).
=1

For our work, the loss function is modified to improve the robustness of the variational
autoencoder, something that will be discussed in Section 4.

2.2. Comparison with Other Generative Machine Learning Methods

The paradigm of generative adversarial networks (GANSs) is a recent advance in
generative machine learning methods. The basic idea of GANs was published in a 2010
blog post by Niemitalo [13], and the name ‘GAN’" was introduced by Goodfellow et al. [14].
In comparison with variational autoencoders, generative adversarial networks are used
for optimizing generative tasks specifically. GANs can produce models with true latent
spaces, as is the case of bidirectional GAN (BiGAN) and adversarially learned inference
(ALI) [15,16], which are designed to improve the performance of GANs. However, GANs
cannot generate reasonable results when data are high-dimensional [17]. By contrast, as
a probabilistic model, the specific goal of a variational autoencoder is to marginalize out
noninformative variables during the training process. The ability to use complex priors in
the latent space enables existing expert knowledge to be incorporated.

Bayesian networks form another generative model. Pearl [18] proposed the Bayesian
network paradigm in 1985. Bayesian networks have a strong ability to capture the symbolic
figures of input information and combine objective probabilities with subjective estimates
for both qualitative and quantitative modeling. The basic concept of Bayesian networks
is built on Bayes’s theorem. Another effective way to solve for the posterior of the distri-
bution derived from neural networks is to train and predict using variational inference
techniques [19]. Compared with the original Bayesian network, the basic building blocks
of deep networks provide multiple loss functions for making multitarget predictions, for
transfer learning, and for varying outputs depending on the situation. The improvement of
the deeper architectures, using VAE specifically, continues to occur.

Other generative models are now commonly combined with a variational autoencoder
to improve performance. Ebbers et al. [20] developed a VAE with a hidden Markov model
(HMM) as the latent model for discovering acoustic units. Dilokthanakul et al. [2] studied the
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use of Gaussian mixture models as the prior distribution of the VAE to perform unsupervised
clustering through deep generative models. They showed a heuristic algorithm called

‘minimum information constraint” and it is capable of improving the unsupervised clustering

performance with this model. Srivastava and Sutton [1] presented the effective autoencoding
variational Bayes-based inference method for latent Dirichlet allocation (LDA). This model
solves the problems caused by autoencoding variational Bayes by the Dirichlet prior and by
component collapsing. Additionally, this model matches traditional methods’ inaccuracy
with much better inference time.

3. Accounting for Risk with Coupled Entropy

Machine learning algorithms, including the VAE, have achieved efficient learning and
inference for many image processing applications. Nevertheless, assuring accurate forecasts
of the uncertainty is still a challenge. Problems such as outliers and overfitting impact the
robustness of scientific prediction and engineering systems. This paper concentrates on
assessing and improving the robustness of the VAE algorithm.

In this study, we draw upon the principles of nonlinear statistical coupling (NSC) [21,22]
to define a generalization to information theory and apply the resulting entropic functions
to the definition of the negative ELBO loss function for the training of the variational autoen-
coder [23]. NSC is derived from nonextensive statistical mechanics [24], which generalizes
the variational calculus of maximum entropy to include constraints related to the nonlinear
dynamics of complex systems and in turn to the nonexponential decay of the maximizing
distributions. The NSC frame focuses this theory on the role of nonlinear coupling « in
generalizing entropy and its related functions. The approach defines a family of heavy-tailed
(positive coupling) and compactly supported (negative coupling) distributions which maxi-
mize a generalized entropy function referred to as coupled entropy. The variational methods
underlying NSC can be applied to a variety of problems in mathematical physics [25,26].
Here, we examine how NSC can broaden the role of approximate variational inference in
machine learning to include sensitivity to the risks of outlier events occurring in the tail of
the distribution of the phenomena being learned.

3.1. Assessing Probabilistic Forecasts with the Generalized Mean

First, proper metrics are needed to evaluate the accuracy and robustness of machine
learning algorithms, such as VAE. The arithmetic mean and the standard deviation are
widely used to measure the central tendency and fluctuation, respectively, of a random
variable. Nevertheless, these are inappropriate for probabilities, which are formed by ratios.
A random variable formed by the ratio of two independent random variables has a central
tendency determined by the geometric mean, as described by McAlister [27]. Information
theory addresses this issue by taking the logarithm of the probabilities, then the arithmetic
mean; however, we will show that the generalizations of information theory are easier to
report and visualize in the probability domain.

In [28], a risk profile was introduced, which is the spectrum of the generalized means
of probabilities and provides an assessment of the the central tendency and fluctuations of

N
probabilistic inferences. The generalized mean (% Y p;)% is a translation of generalized

information-theoretic metrics back to the probabililty domain, and is derived in the next
section. Its use as a metric for evaluating and training inference algorithms is related to
the Wasserstein distance [29], which incorporates the generalized mean. The accuracy of
the likelihoods is measured with robust, neutral, and decisive risk bias using the r = — %,
r = 0 (geometric) and r = 1 (arithmetic) means, respectively. With no risk bias (r = 0), the
geometric mean is equivalent to transforming the cross-entropy between the forecast p;
and the distribution of the test samples to the probability domain. The arithmetic mean
(r = 1) is a simple measure of the Decisiveness (i.e., were the class probabilities in the
right order so that a correct decision can be made?). This measure de-weights probabilities
near zero since increasing r reduces the influence of small probabilities on the average. To
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complement the arithmetic mean, we choose a negative conjugate value. The conjugate

is not the harmonic mean (r = —1) because this turns out to be too severe a test. Instead,
r = f% is chosen based on a dual transformation between heavy-tail (positive x) and

compact-support (negative x) domains of the coupled Gaussian distribution. The risk
sensitivity 7 can be decomposed into the nonlinear coupling and the power and dimension
of the variable r(x, a,d) = 7%. The dual transformation between the positive/negative
domains of the coupled Gaussians has the following relationship: & < 7. Taking & = 2

—2K _ 1 :
Tfx = & = —j3 and the conjugate

and d = 1, the coupling for a risk bias of oneis 1 =

1
values are £ = T = %and P = 1«2%2
weight of probabilities near zero since negative powers invert the probabilities prior to
the average.

For simplicity, we refer to these three metrics as the Robustness, Accuracy, and De-
cisiveness. The label ‘accuracy”’ is used for the neutral accuracy, since ‘neutralness’ is not
appropriate and ‘neutral” does not express that this metric is the central tendency of the
accuracy. Summarizing:

1
3 —

= —% [23]. The Robustness metric increases the

N
Decisiveness (arithmetic mean) : % Z pi- (7)
i=1
N1
Accuracy (geometricmean) : [ p/. (8)
i=1
1y ) 7
Robustness (—2/3mean) : N Yop® . ©)
i=1

Similar to the standard deviation, the arithmetic mean and —2/3 mean play roles as
measures of the fluctuation. Figure 2 shows an example of input images from the MNIST
dataset and the generated output images produced by the VAE. Despite the blur in some
output images, the VAE succeeds in generating very similar images to the input. However,
the histogram in Figure 3, which plots the frequency of the likelihoods over a log scale,
shows that the probabilities of ground truth range over a large scale. The geometric mean
or Accuracy captures the central tendency of the distribution at 1073 . The Robustness and
the Decisiveness capture the span of the fluctuation in the distribution. The —2/3 mean
or Robustness is 10777 and the arithmetic mean or Decisiveness is 10715, The minimal
value of the —2/3 mean metric is an indicator of the poor robustness of the VAE model,
which can be improved. We measure and display the performance in the probability space
in order to simplify the comparison between the three metrics. In the next subsection,
we will show their relationship with a generalization of the log-likelihood. If, however,
we were to plot histograms in the log-space, separate histograms would be required for
each metric. By using the probability space, we can display one histogram overlaid with
three different means. Appendix A.2 describes the origin of the Robustness—Accuracy—
Decisiveness metrics.
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Figure 2. Example set of (a) MNIST input images and (b) VAE-generated output images.
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Figure 3. A histogram of the likelihoods that the VAE-reconstructed images match the input images.
The objective of the coupled VAE research is to demonstrate that the Robustness, which is the —2/3
generalized mean, can be increased by penalizing the cost of producing outlier reconstructions. The
Accuracy is the exponential of the average log-likelihood and the Decisiveness is the arithmetic mean.

In order to improve performance against the robust metric, the training of the vari-
ational autoencoder needs to incorporate this generalized metric. To do so, we derive a
coupled loss function in the next subsection.

3.2. Definition of Negative Coupled ELBO

As we discussed in Section 2, the goal of a VAE algorithm is to optimize a low-
dimensional model of a high-dimensional input dataset. This is accomplished using approx-
imate variational inference by maximizing an evidence lower bound (ELBO). Equivalently,
the negative ELBO defines a loss function which can be minimized, £(x()) = —ELBO(x(!).
In this paper, we provide initial evidence that the accuracy and robustness of the variational
inference can be improved by generalizing the negative ELBO to account for the risk of
outlier events. Here, we provide a definition of the generalization and in Appendix A.1 a
derivation is provided.

The generalized loss function in the coupled variational autoencoder (VAE) method is
defined as follows.

Definition 1. (Negative Coupled ELBO). Given the i" datapoint x\V), the corresponding latent

variable value z, and the output value'y of the decoder using the Bernoulli distribution, then the
loss function for the coupled VAE algorithm is given by

£e(x?) = De(a(z?) | p(2)) + Helxy), (10

where
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JazIx )z,

Di(q(zlx") || p(2))

gz oy 2
5 (In(q(zx) ) = In(p(zj) 7)) dz;

(Zl_,,,i)Z 1+1%TKK ) an
" ( T ) (z-1)? ~Tix .2~
[ (= ) (= ) i
7 4Kk (g-p)? IR oV2m V21
f(a\/lﬁ @) dzj
is the generalized (coupled) KL-divergence in the original loss function in Equation (6), and
1 & 2 2
Hxy) = -5 LY (xitne ()7 ) + (1= xi)ine (1 = y) 7)) (12)

=117

is the generalized reconstruction loss (coupled cross-entropy) in the original loss function in Equation

(6).

In the next section, we show preliminary experimental evidence that the negative
coupled ELBO can be used to improve the robustness and accuracy of the variational
inference. We show that increasing the coupling parameter of the loss function has the
effect of increasing the Accuracy (8) and Robustness (9) metrics of the generated data.
Additionally, we show that the improvement in the generation process is not at the expense
of the divergence between the posterior and the prior latent distributions. Thus, the overall
ELBO is improved, indicating an improvement in the approximate variational inference.
Furthermore, in Section 6, we show that improvements are more substantial when the
algorithm is seeded by images from the corrupted MNIST database. While the experimental
results of this report focus on a two-layer dense neural network and the (corrupted)-MNIST
datasets, the generalization of information-theoretic cost functions for machine learning
training is applicable to a broader range of architectures and datasets. For instance, the
CIFAR-10 reconstruction is typically processed with a deep neural network [30] and is
planned for future research.

4. Results Using the MNIST Handwritten Numerals

The MNIST handwritten digit database is a large database of handwritten digits
consisting of a training set of 60,000 images and a test set of 10,000 images widely used
for evaluating machine learning and pattern recognition methods. The digits have been
size-normalized and centered in fixed-size images. Each image in the database contains
28 by 28 grayscale pixels. Pixel values vary from 0 to 255. Zero means the pixel is white,
or background, while 255 means the pixel is black, or foreground [31]. In this and the
next section, we examine the performance of the coupled VAE algorithm in reconstructing
images of the MNIST database. In Section 6, we show the stability of the coupled VAE
when reconstruction is distorted by samples from the corrupted MNIST database.

For this research, we used the MNIST database as the input since it was used in the
traditional VAE. Specifically, input x is a batch of 28 by 28 pixel photos of handwritten
numbers. The encoder encodes the data, which are 784-dimensional for each image in a
batch into the latent layer space. For our experiment, the dimension of the latent variable
z can be from 2 to 20. Taking the latent layers z as the input, the probability distribution
of each pixel is computed using a Bernoulli or Gaussian distribution by the decoder. The
decoder outputs the corresponding 784 parameters to reconstruct an image. We used
specific numbers of images from the training set as the batch size and a fixed number of
epochs. Additionally, for the learned MNIST manifold, visualizations of learned data and
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(a) Input image

reproduced results were plotted. The algorithm and experiments were developed with
Python and the TensorFlow library. Our Python code can be found in the Data Availability
Statement.

The input images and output images for different values of coupling x are shown in
Figure 4. ¥ = 0 represents the original VAE model. Compared with the original algorithm,
output images generated by the modified coupled VAE model show small improvements
in detail and clarity. For instance, the fifth digit in the first row of the input images is ‘4’,
but the output image in the original VAE is more like ‘9" rather than ‘4, while the coupled
VAE method generates ‘4’ correctly. For the seventh digit ‘4’ in the first row, the generated
image in the coupled VAE has an improved clarity compared to the traditional VAE.

Figure 5 shows the likelihood histograms for 5000 input images with coupling values
of x = 0,0.025, 0.05,0.1. The red, blue, and green lines represent the arithmetic mean
(decisiveness), geometric mean (central tendency), and —2/3 mean (robustness), respec-
tively. When x = 0, the minimal value of the Robustness metric indicates that the original
VAE suffers from poor robustness. As k becomes large, the geometric mean and the
—2/3 mean metrics start to increase while the arithmetic mean metric mostly stays the
same. Since the probability of producing a correct image by a uniform random sampling is
223%28 = 9.8 x 1072%, the accuracy achieved by the VAE algorithm is significantly improved,
even though the absolute value of the Accuracy metric seems small. As the coupling x
increases, the coupled loss function approaches infinity faster. This eventually causes
computational errors. For instance, when x = 0.2, the loss function has a computational
error at the 53" epoch; when x = 0.5, the loss function has a computational error at
the 8!" epoch. Further investigations of the computational bounds of the algorithm are
planned. The specific relationship between coupling x and probabilities for input images
is shown in Table 1. The increased Robustness metric shows that the modified loss does
improve the robustness of the the reconstructed image. In the next section, we also examine
the performance of the divergence between the posterior and prior distributions of the
latent layer.

Furthermore, compared with the original VAE model, the geometric mean, which
measures the accuracy of the input image likelihood, is larger for the coupled algorithm.
The improvement of this metric means that the input images (truth) are assigned to higher
likelihoods on average by the coupled VAE model.

The standard deviation ¢ of latent variables z is shown in rose plots in Figure 6. The
angular position of a bar represents the value of 7, clockwise from 0 to 1. The radius of the
bar measures the frequency of different o values from 0 to 100. As the coupling «x increases,
the range and the average value of these standard deviations decrease. To be specific, when
x = 0, ¢ of all dimensions in all 5000 batches ranges from 0.09 to 0.72; when x = 0.025,
ranges from 0.02 to 0.3; when x = 0.05, o ranges from 0.001 to 0.09; when x = 0.1, o ranges
from 0.00007 to 0.06.
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Figure 4. (a) The MNIST input images and (b) the output images generated by the original VAE.
(c—e) The output images generated by the modified coupled VAE model show small improvements in
detail and clarity. For instance, the fifth digit in the first row of the input images is ‘4’, but the output
image in the original VAE is more like ‘9’ rather than ‘4’, while the coupled VAE method produced
‘4’ correctly.
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Figure 5. The histograms of likelihood for the reconstruction of the input images with various
coupling x values. The red, blue, and green lines represent the arithmetic mean (Decisiveness),
geometric mean (Accuracy), and —2/3 mean (Robustness), respectively. The minimal value of the
Robustness metric indicates that the original VAE suffers from poor robustness. As «k increases, the
Robustness and Accuracy improve while the Decisiveness is mostly unchanged.
Table 1. The Decisiveness, Accuracy, and Robustness of the reconstruction likelihood as a function of
the coupling «.
Coupling « Decisiveness Accuracy Robustness
0 131 x 10715 241 x107% 140 x 10779
0.025 6.61x 1071 5.89 x 10~ 9.91 x 10-8
0.05 7.18 x 10712 5.80 x 10732 131x 10773
0.1 134 x 10712 7.09 x 10-% 257 x 1077
0.00 0.00 0:00- 000
0.04 04
003 o1z 03 ore
002 008 02 050
001 004 o 02s
0004075 025 0.00{075 025 00707% 025| 0001075 025
0.50 0.50 0.50 0.50
(@Q)x=0 (b) x = 0.025 (c) x = 0.05 (d)x=0.1

Figure 6. The rose plots of the various standard deviation values in 20 dimensions. The range and

average values of these standard deviations are reduced as coupling increases.
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We note that as coupling parameter x increases, the variability of the latent space
diminishes. One possible method to address this problem is to use heavy-tail distribution in
the latent layer. Chen et al. [32] and Nelson [23] used the Student’s t as the distribution [33]
of the latent layer to incorporate heavy-tail decay.

We choose samples in which the likelihoods of input images are close to the three
metrics and plot the standard deviation ¢ of each dimension of the latent variable z of these
samples in Figure 7. The red, blue, and green lines represent samples near the decisiveness,
accuracy, and robustness, respectively. It shows that when x = 0, the standard deviations
of z range from 0.1 to 0.7. However, as x increases, values of ¢ fluctuate less and decrease
toward 0. Magnified plots are shown to visualize the results further. The general trend for
0 is to be more significant for samples near decisiveness, intermediate near the accuracy,
and smaller for samples near robustness. An exception is ¥ = 0.025, where ¢ overlaps
for samples near the robustness and accuracy. The histogram likelihood plots with a two-
dimensional latent variable are shown in Figure 8. The increased values of the arithmetic
mean metric and —2/3 mean metric show that the accuracy and robustness of the output
MNIST images in the VAE model have been improved, consistent with the result in the
20-D model. While the performance improvements are modest, we will show in Section 6
that the performance improvements when the algorithm is seeded with corrupted images
is much more substantial. First, we provide a visualization of the changes in the latent
distribution using two dimensions.
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Figure 7. The standard deviation of latent variable samples near the three generalized mean metrics.
The red, blue, and green lines represent samples near the Decisiveness, Accuracy, and Robustness,
respectively. As k increases, values of ¢ fluctuate less and decrease toward 0. Magnified plots are
shown to visualize the results further.
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Figure 8. The histogram likelihood plots with a two-dimensional latent variable. Like the 20-D model,
the increased values of the arithmetic mean metric and —2/3 mean metric show that the accuracy
and robustness of the VAE model have been improved.

5. Visualization of Latent Distribution

In order to understand the relationship between increasing coupling of the loss func-
tion with the means and the standard deviations of the Gaussian model, we examine a
two-dimensional model which can be visualized. Compared with the high-dimensional
model, the probability likelihoods for the two-dimensional model are lower, indicating
that the higher dimensions do improve the model. Nevertheless, like the 20-dimensional
model, the distribution of likelihood is compressed toward higher values as the coupling
increases and, therefore, can be used to analyze the results further. Larger likelihood of
input images along with both means closer to the origin and smaller standard deviations
of latent variables are the primary characteristics as the coupling parameter of the loss
function is increased. As a result, both the robustness and accuracy of likelihoods increase.
To be specific, when «x increases from 0 to 0.075, the geometric mean metric increases from
1.20 x 1079 to 4.67 x 1075, and the —2/3 mean metric increases from 5.03 x 10170 to
5.17 x 1074, while the arithmetic metric does not change very much. In this case, the
reconstructed images have a higher probability of replicating the input image using the
coupled VAE method.

The rose plots in Figure 9 show that the range and variability of the mean values of
latent variables decrease as the coupling « increases. From the view of means, the posterior
distribution of the latent space is closer to the prior, the standard Gaussian distribution.
From the view of standard deviations, the posterior distribution of the latent space is
further from the prior.

24



Entropy 2022, 24, 423

@x=0

/

(b) x = 0.025 (¢) k = 0.05 (d) x = 0.075

Figure 9. The rose plots of the various mean (above four figures) and standard deviation (below four
figures) values in 2 dimensions. The range of means is reduced and mean values become closer to 0
as coupling increases.

The latent space plots shown in Figure 10 are the visualizations of images of the
numerals from 0 to 9. Images are embedded in a 2D map where the axis is the values of the
2D latent variable. The same color represents images that belong to the same numeral, and
they cluster together since they have higher similarity to each other. The distances between
spots represent the similarities of images. The latent space plots show that the different
clusters shrink together more tightly when coupling becomes larger. The plots shown in
Figure 11 are the visualizations of the learned data manifold generated by the decoder
network of the coupled VAE model. A grid of values from a two-dimensional Gaussian
distribution is sampled. The distinct digits each exist in different regions of the latent space
and smoothly transform from one digit to another. This smooth transformation can be
quite useful when the interpolation between two observations is needed. Additionally, the
distribution of distinct digits in the plot becomes more even, and the sharpness of the digits
increases when « increases.

(b) x = 0.025 (¢) k = 0.05 (d) x = 0.075

Figure 10. The plot of the latent space of VAE trained for 200 epochs on MNIST with various x values.
Different numerals cluster together more tightly as coupling x increases.
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(d) x = 0.075

Figure 11. The plot of visualization of learned data manifold for generative models with the axes as
the values of each dimension of latent variables. The distinct digits each exist in different regions of
the latent space and smoothly transform from one digit to another.

As shown in Table 2, as the coupling increases from 0 to 0.075, the negative ELBO
(the loss) decreases from 172.3 to 146.7, the coupled KL-divergence decreases from 5.8 to
5.6, and the coupled reconstruction loss decreases from 166.5 to 141.1. It shows that the
reconstruction loss plays a dominant role (with proportion over 96%), while the divergence
term has a much lower effect (with proportion under 4%) in the loss function. The overall
improvement of coupled loss is based on both the smaller coupled KL-divergence and
the smaller coupled reconstruction error, instead of a trade-off between them. There is a
high degree of variability in this improvement, so there are reasons to be cautious about
the degree of improvement. In addition, since the coupled loss function is adjusting the
metric, the property being measured is also adjusting. Part of our future research plan is to
explore how the relative performance between the reconstruction and the latent space can
be compared.

Table 2. Components of coupled ELBO with a 2-dimensional latent layer under different values of
coupling. The improvement in the coupled KL-divergence is very slight, while it is larger for the

coupled reconstruction loss.

. Coupled . .
Coupling x KL-Divergence Coupled RE Loss Coupled ELBO KL Proportion RE Proportion
0 58+/—17 166.5 +/—52.2 172.3 3.38% 96.62%
0.025 57+/—1.6 156.4 +/—49.8 162.1 3.53% 96.47%
0.05 56+/—1.6 1492 +/—46.6 154.8 3.61% 96.39%
0.075 56+/—17 141.1+/— 446 146.7 3.82% 96.18%

6. Performance with Corrupted Images

We also evaluate the performance of the coupled VAE algorithm when keyed by
images from the corrupted MNIST (C-MNIST) dataset [34]. The reconstructed images
under 5 different corruptions: Gaussian corruption, glass blur corruption, impulse noise
corruption, shot noise corruption and shear corruption, with two coupling values x = 0.0
and « = 0.1 are shown in the Figure 12. Based on the visualization of the generated images,
the qualitative visual improvement in clarity using the coupling is modest.

We also conduct the further analyses for the performance of the coupled VAE with each
corruption. For the MNIST images with Gaussian corruption, as shown in the Figure 13,
when the coupling parameter x increases, all the three metrics—robustness, central ten-
dency, and decisiveness—increase. The robustness improves the most, central tendency
is the next, and decisiveness has the least improvement. Furthermore, we confirm that
the reconstruction improvement is not a trade-off with latent distribution divergence, as
shown in Table 3. This is in contrast to the f-VAE [11] method which merely alters the
weight between the reconstruction and divergence components of the negative ELBO
cost function.
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In the Table 3, analyses of the components of the coupled ELBO are provided. Com-
parisons as the coupling changes are somewhat confusing because the metric itself is
changing. Therefore, as the coupling increases the measure of performance is more difficult.
Nevertheless, there is still an overall tendency towards improved performance, even with
this caveat. The second column shows that the coupled KL-divergence initially increases
when moving away from the standard VAE design with x = 0, however, it then steadily de-
creases with increasing x. This may be due to the distinct difference between the logarithm
and even a slight deviation from the logarithm. The coupled reconstruction loss (column
three) shows steady improvement. The overall negative coupled ELBO shows consistent
improvement as the coupling increases. The relative importance of the divergence and
reconstruction varies as the coupling increases but in each case it is approximately a 15% to
85% relative weighting.

The improvement of the three metrics with glass blur corruption, impulse noise
corruption, shot noise corruption and shear corruption is also observed and shown in
Figures 14-17, respectively. Similar to the Gaussian corruption, all the three metrics
gradually increase as the coupling parameter x increases from 0 to 0.1. The respective
analyses of the components of the coupled ELBO with glass blur corruption, impulse noise
corruption, shot noise corruption and shear corruption are provided in Tables 4-7. The four
corruptions share the consistent results, the coupled KL-divergence initially increases when
moving away from the standard VAE design with x < 0.025, but it then steadily decreases
with increasing k. The overall negative coupled ELBO shows consistent improvement as
x increases. It means that if the coupling parameter is relatively large (> 0.025), both the
KL-divergence and the reconstruction loss will be improved, thus the overall improvement
of the algorithm is not a trade-off between the reconstruction accuracy and the latent
distribution divergence.

Table 3. The components of the coupled ELBO under Gaussian corruptions are provided in the
table. The coupled KL-divergence initially increases when moving away from the standard VAE
design with ¥ = 0 to x = 0.025, however, it then steadily decreases with increasing x. The coupled
reconstruction loss (column three) shows steady improvement. The overall negative coupled ELBO
shows consistent improvement as the coupling increases. The relative importance of the divergence
and reconstruction varies as the coupling increases but in each case it is approximately a 15% to 85%
relative weighting.

Coupling « KL-CSil‘III::;gnce Coupled RE Loss Coupled ELBO KL Proportion RE Proportion
k=0 239+/-3.8 131.6 +/—40.7 155.5 15.34% 84.66%
& = 0.025 29.6+/—23 119.9 +/— 385 149.5 19.80% 80.20%
x = 0.05 26.0+/—-0.9 111.1+/—-36.5 137.1 18.94% 80.06%
« = 0.075 214+/-05 104.4 +/— 343 125.8 16.98% 83.02%
£ =01 184 +/— 0.6 989 +/—32.7 117.3 15.71% 84.28%
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Figure 14. The histograms of marginal likelihood for the MNIST images with glass blur corruption
are shown. All the three metrics increase as the coupling parameter « increases from 0 to 0.1.
Table 4. The components of the coupled ELBO under glass blur corruptions are provided in the table.
The coupled KL-divergence initially increases when moving away from the standard VAE design
with ¥ < 0.025, but it then steadily decreases with increasing k. The coupled reconstruction loss
shows steady improvement. The overall negative coupled ELBO shows consistent improvement as
K increases.
Coupling « Coupled Coupled RE Loss Coupled ELBO KL Proportion RE Proportion
ping KL-Divergence P P 4 P
k=0 223+/-35 196.1 +/—55.3 218.4 10.19% 89.81%
x = 0.025 294 +/-2.0 178.8 +/—50.1 208.2 14.12% 85.88%
x = 0.05 255+/—0.7 164.1+/—457 189.6 13.44% 86.56%
x = 0.075 209 +/—-04 154.0 +/—43.0 174.9 11.96% 88.04%
xk=0.1 18.0+/— 04 145.1 +/—40.0 163.1 11.05% 88.95%
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Figure 15. The histograms of marginal likelihood for the MNIST images with impulse noise corrup-
tion are shown. All the three metrics increase as the coupling x increases from 0 to 0.1.
Table 5. The components of the coupled ELBO under impulse noise corruptions are provided in
the table. The coupled KL-divergence initially increases when moving away from the standard VAE
design with ¥ < 0.025, but it then steadily decreases with increasing x. The overall negative coupled
ELBO shows consistent improvement as « increases.
Coupling & Coupled Coupled RE Loss Coupled ELBO KL Proportion RE Proportion
ping KL-Divergence P P P P
k=0 242+/—-38 170.7 +/— 347 195.0 12.43% 87.57%
x = 0.025 299 +/-22 148.0 +/—31.0 177.9 16.81% 83.19%
x = 0.05 26.0+/—0.8 131.6 +/— 285 157.7 16.52% 83.48%
x = 0.075 214+/—-0.6 1209 +/—26.7 142.3 15.05% 84.95%
£ =0.1 185+/— 0.6 111.8+/—25.2 130.3 14.21% 85.79%
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Figure 16. The histograms of marginal likelihood for the MNIST images with shot noise corruption
are shown. All the three metrics increase as the coupling parameter « increases from 0 to 0.1.
Table 6. The components of the coupled ELBO under shot noise corruptions are provided in the
table. The coupled KL-divergence increases when moving away from the standard VAE design with
x < 0.025, but it then steadily decreases with increasing x. The coupled reconstruction loss shows steady
improvement. The overall negative coupled ELBO shows consistent improvement as x increases.
Coupling & Coupled Coupled RE Loss Coupled ELBO KL Proportion RE Proportion
ping KL-Divergence P P P 4
k=0 239+/-3.8 989 +/—283 122.8 19.45% 80.55%
x = 0.025 299 +/—-24 88.9 +/—26.2 118.8 25.14% 74.86%
x = 0.05 26.1+/—1.0 81.8+/—125.0 108.0 24.21% 75.80%
x = 0.075 21.6+/—0.7 77.6 +/—23.9 99.2 21.80% 78.20%
x=0.1 18.6 +/— 0.6 734 +/—228 92.0 20.17% 79.83%
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Figure 17. The histograms of marginal likelihood for the MNIST images with shear corruption are
shown. All the three metrics increase as the coupling parameter « increases from 0 to 0.1.
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Table 7. The components of the coupled ELBO under shear corruptions are provided. The coupled
KL-divergence increases when moving away from the standard VAE design with x < 0.025, but it
then steadily decreases with increasing . The coupled reconstruction loss shows steady improvement.
The overall negative coupled ELBO shows consistent improvement as x increases.

Coupling « KL-C;il:zg:;gnce Coupled RE Loss Coupled ELBO KL Proportion RE Proportion
k=0 248 +/—4.0 114.1 +/—- 317 138.9 17.85% 82.15%
& = 0.025 304+/—24 102.3 +/—29.0 132.7 22.92% 77.08%
x = 0.05 26.1+/—-0.9 947 +/— 275 120.8 21.61% 78.39%
x = 0.075 21.8+/—-0.7 89.5+/—263 111.3 19.61% 80.39%
x=0.1 18.6 +/— 0.6 84.9 +/—249 103.5 17.97% 82.03%

7. Discussion and Conclusions

This investigation sought to determine whether the accuracy and robustness of varia-
tional autoencoders can be improved using certain statistical methods developed within
the area of complex systems theory. Our investigation provides evidence that the tail shape
of the negative evidence lower bound can be controlled in such a way that the cost of outlier
events is adjustable. We refer to this method as a coupled VAE, since the control parameter
models the nonlinear deviation from the exponential and logarithmic functions of linear
analysis. A positive coupling parameter increases the cost of these tail events and thereby
trains the algorithm to be robust against such outliers. Additionally, this improves both
the accuracy of reconstructed images and reduces the divergence of the posterior latent
distribution from the prior. We have been able to document this improvement using the
histogram of the reconstructed marginal likelihoods. Metrics of the histogram are formed
from the arithmetic mean, geometric mean, and —2/3 mean, which represent Decisiveness,
Accuracy, and Robustness, respectively. Both the accuracy and the robustness are improved
by increasing the coupling of the loss function. There is a limit to such increases in the
coupling beyond which the training process no longer converges.

These performance improvements have been evaluated for the MNIST handwritten
numeral dataset and its corrupted modification C-MNIST. We used a two-layer dense
neural network for the encoder/decoder. The latent layer is a 20-dimensional Gaussian
distribution and for visualization a 2-dimensional distribution was also examined. Without
the corruption, we observed improvements in both components of the negative coupled
ELBO loss function, namely the image reconstruction loss (marginal likelihood) and the
latent distribution (divergence between the prior and posterior). Thus, the coupled VAE
is able to improve the model representation, rather than just trading off reconstruction
and divergence performance, as does the highly cited B-VAE design. The likelihood of the
reconstructed image matching the original improves in Accuracy by 10'° and in Robustness
by 10® when the coupling parameter was increased from x = 0 (the standard VAE) to
& = 0.1 (the largest value of the coupled VAE reported). The Decisiveness did not change
significantly, though there is potential that negative values of the coupling could influence
this metric. The performance improvements when the algorithm is seeded by the C-MNIST
dataset are far more significant, demonstrating the improved stability of the algorithm.
All five corruptions examined (Gaussian, glass blur, impulse noise, shot noise, and shear)
show significant improvement in Robustness and Accuracy and some improvement in
the Decisiveness. For example, under the Gaussian corruption, the improvements in the
reconstruction likelihood for Accuracy are 10 and those for the Robustness are 10?0 when
the coupling parameter is increased from ¥ = 0 (the standard VAE) to x = 0.1. The
significant improvement in Robustness using the corrupted MNIST dataset demonstrates
that the coupled negative ELBO cost function reduces the risk of overfitting by forcing the
network to learn general solutions that are less likely to create outliers.

The modifications of the latent posterior distributions have been further examined
using a two-dimensional representation. We show that the latent variables have both a
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tighter distribution of the mean about its prior value of zero, and a movement of standard
deviations towards zero, away from the prior of one, as coupling « increases. Overall,
the coupled KL-divergence does indeed decrease as the coupling is increased, indicating
improvement in the latent representation. Thus, improvements in the reconstruction
evident from both visual clarity of images and increased accuracy in measured likelihoods
are not due to a trade-off with the latent representation. Rather, the negative coupled ELBO
metric shows improvement in both latent layer divergence and output image reconstruction.
This improvement in the two components of the evidence lower bound provides evidence
that the coupled VAE improves the approximate variational inference of the model.

In future research, we plan to study the coupled Gaussian distribution as the prior
and posterior distribution of the latent layer. This may be helpful for achieving greater
separation between the images into distinct clusters similar to what has been achieved
with t-stochastic neighborhood embedding methods [35]. If so, it may be possible to
improve the decisiveness of the likelihoods in addition to further improvements in the
accuracy and robustness. Since our approach generalizes the training of the decoder and
encoder networks, it is expected to be seamlessly applicable to other datasets and neural
network architectures. We are conducting research to apply our method to a convolutional
neural network design that can process more complex datasets such as CIFAR-10. This
first demonstration of the coupled ELBO cost function has provided experimental results
applied to a shallow neural network but the approach is also applicable to the training of
deep neural networks.
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Appendix A
Appendix A.1. Derivation of Negative Coupled ELBO

Generalizing the negative ELBO is accomplished using the principles of nonlinear
statistical coupling (NSC) to generalize information theory. As described in Section 2.1, the
negative ELBO consists of two components, the KL-divergence between the prior and poste-
rior latent distribution, and the cross-entropy or negative log-likelihood of the reconstructed
image in relation to the original image. NSC is an approach to modeling the statistics of
complex systems that unifies heavy-tailed distributions, generalized information metrics,
and fusion of information. Its application to the cost functions of a VAE provides control
over the trade-off between decisive and robust generative models. Decisive refers to the
characteristic of confident probabilities and robust refers to the characteristic of dampening
extremes in the probabilities.

In the VAE algorithm, the loss function consists of the KL-divergence between the

posterior approximation q(z\x@) and a prior p(z) and the cross-entropy between the
reported probabilities and the training sample distribution.
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NM—‘

£(x) = Dyr (q(2x?) | p(z) )—%i(logp( D1200)), (A1)

=1

where L is the number of reconstructions per test sample, and the KL-divergence is given by

D (a(zx") 11 p(2)) = [ a(zx) (tog(zix?) ~logp(z) Jaz.  (42)

Even though x(1) given z is a grayscaled value, which is not Bernoulli distributed, we
can still use the probability mass function of Bernoulli distribution, then the cross entropy
term is given by

-1 X (logp (x714)) =~

where y = Sigmod(fz(tanh (f1(z)))) while f; and f, are linear models and n, is the
dimensionality of x.

The negative ELBO loss function is modified by coupled generalizations of the KL-
divergence and cross-entropy. The purpose is to increase the weighting of rare events in
the training dataset and thereby improve the robustness of the VAE model. The connection
with the assessment metrics defined in Section 3.1 is that the power of the generalized mean
can be decomposed into functions of the coupling and second parameter g, related to the
power in the distribution of the random variable. For Gaussians and their generalizations,
known as coupled Gaussians, « = 2. Making use of r(x,a,d) = witha = 2,

X

~ [xilogyi+ (1 x)log(1 )|, (A3)
1

»

I=1i

1+d;<

JESS
2\ T2k
the generalized mean is (Z p”’ ) (Z p} ”“) . When the coupling ¥ — 0, the

generalized mean is asymptotically equal to the geometric mean.
The coupled entropy function takes the form of a generalized logarithmic function
applied to the generalized mean [22].

1+ 7

1 2K
2\ 7\ op +x ,%71 1
((Zp I+ ) ) =17ﬂln'€pi = :2K<<Zp,‘l
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43\ 1
*") —1), (A4)

where In, (x) is the generalization of the logarithm function in Equation (A15).
Similar to the generalization of coupled entropy function, the generalized logarithmic
is applied to the KL-divergence. The first term in KL-divergence becomes

a(zx 1+12+—KK
i)y — 2
- [ ot toga(elx)dz > 5 H/]—lwl ne(q(a ) ")z (A9
and the second term in KL-divergence becomes
142
. X 1 1z . z ‘X ) T4+x ,L
f/q(z\x(’))logp Ydz = = H ‘1]—+an(;9(2}) U )dz), (A6)
2t [z e dz;

Therefore, the coupled divergence with 1, as the dimensionality of z can be written as
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The original cross-entropy can also be modified in a similar way. Applying the
generalization of the logarithmic function, the terms log(y;) and log(1 — y;) are modified

to %lnx((y,-)ﬁzk) and %lnx((l - yz-)ﬁ), thus

log p (xV|z") = ; (x%lnk((yi)ﬂ%) +(1-x) i —y,-)ﬁ)). (48)

Therefore, the coupled cross-entropy is the generalization of the cross-entropy term in
Equation (A14), which is defined as

HK(xi/ yz = -

1 & & 2
i E 2 (xitne (s w) +(1—x)ng((1-y) 7). (A9
Adding Equations (A7) and (A9) gives the negative coupled ELBO,

£x(x7) = De(a(21x?) || p(2)) + He(x,y),

as defined in Equations (10)—(12).

(A10)

Appendix A.2. Origin of the Generalized Probability Metrics

The generalized probability metrics derive from a translation of a generalized en-
tropy function back to the probability domain. Use of the geometric mean for Accuracy
derives from the Boltzmann—Gibbs-Shannon entropy, which measures the average uncer-
tainty of a system and is equal to the arithmetic average of the negative logarithm of the

probability distribution,
N N
jnpi=—In{J]p!" ). (A11)
i=1 i=1

H(P) = - Zpllnpl =
Translating the entropy back to the probability domain via the inverse of the negative

logarithm, which is the exponential of the negative, results in the weighted geometric mean
of the probabilities

N
P,ngeXp(—H(P —exp( (szl>>_npii'

The role of this function in defining the central tendency of the y-axis of a density is
illustrated with the Gaussian distribution. Utilizing the continuous definition of entropy

(A12)
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For the Gaussian, the average density is equal to the density at the mean plus the
standard deviation f(y +0).

The use of the geometric mean as a metric for the neutral accuracy in the previous
section is related to the cross-entropy between the reported probability of the algorithm
and the probability distribution of the test set. The cross-entropy between a ‘quoted” or
predicted probability distribution q and the distribution of the test set p is

H(p,q) = =) pilng;. (A14)

In evaluating an algorithm, the actual distribution is defined by the test samples which,
for equally probable independent samples, each have a probability of p; = % Translated
to the probability domain, the cross-entropy becomes the geometric mean of the reported
probabilities (8), thus showing that use of the geometric mean of the probabilities as a
measure of Accuracy for reported probabilities is equivalent to the use of cross-entropy as
a metric of forecasting performance.

Likewise, the use of the generalized mean as a metric for Robustness and Decisiveness
derives from a generalization of the cross-entropy. While there are a variety of proposed
generalizations to information theory, in [22,36-38], the Renyi and Tsallis entropies were
both shown to translate to a generalized mean upon transformation to the probability
domain. Here, we show that the derivation of this transformation uses the coupled entropy,
which derives from the Tsallis entropy, but utilizes a modified normalization. The nonlinear
statistical coupling (or simply the coupling) has been shown to (a) quantify the relative
variance of a superstatistics model in which the variance of exponential distribution fluc-
tuates according to a gamma distribution, and (b) be equal to the inverse of the degree
of freedom of the Student’s t distribution. The coupling is related to the risk bias by the

expression r = %, where the numeral 2 is associated with the power 2 of the Student’s
t distribution, and the ratio r = % is associated with a duality between the positive

and negative domains of the coupling. The coupled entropy uses a generalization of the
logarithmic function,
1

In,(x) = K(x" -1), x>0, (A15)

which provides a continuous set of functions with power. The coupled entropy aggregates
the probabilities of a distribution using the generalized mean and translates this to the
entropy domain using the generalized logarithm. Using the equiprobable for the sample
probabilities, p; = 4, the coupled cross-entropy ‘score’ for the forecasted probabilities q

for the event labels e is
2 1Y 2\ 11N
Sx(e @) = g In(px) <N§qi p N;qi -1], (Al

where g; is the probability of event ¢; which occurred. Thus, the coupled cross-entropy is a
local scoring rule dependent only on the probabilities of the actual events.
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Abstract: When confronted with massive data streams, summarizing data with dimension reduction
methods such as PCA raises theoretical and algorithmic pitfalls. A principal curve acts as a nonlinear
generalization of PCA, and the present paper proposes a novel algorithm to automatically and
sequentially learn principal curves from data streams. We show that our procedure is supported
by regret bounds with optimal sublinear remainder terms. A greedy local search implementation
(called slpc, for sequential learning principal curves) that incorporates both sleeping experts and
multi-armed bandit ingredients is presented, along with its regret computation and performance on
synthetic and real-life data.

Keywords: sequential learning; principal curves; data streams; regret bounds; greedy algorithm;
sleeping experts

1. Introduction

Numerous methods have been proposed in the statistics and machine learning litera-
ture to sum up information and represent data by condensed and simpler-to-understand
quantities. Among those methods, principal component analysis (PCA) aims at identifying
the maximal variance axes of data. This serves as a way to represent data in a more compact
fashion and hopefully reveal as well as possible their variability. PCA was introduced
by [1,2] and further developed by [3]. This is one of the most widely used procedures
in multivariate exploratory analysis targeting dimension reduction or feature extraction.
Nonetheless, PCA is a linear procedure and the need for more sophisticated nonlinear tech-
niques has led to the notion of principal curve. Principal curves may be seen as a nonlinear
generalization of the first principal component. The goal is to obtain a curve which passes
“in the middle” of data, as illustrated by Figure 1. This notion of skeletonization of data
clouds has been at the heart of numerous applications in many different domains, such as
physics [4,5], character and speech recognition [6,7], mapping and geology [5,8,9], to name
but a few.

Figure 1. A principal curve.

1.1. Earlier Works on Principal Curves

The original definition of principal curve dates back to [10]. A principal curve is a
smooth (C*) parameterized curve f(s) = (fi(s), ..., f1(s)) in R? which does not intersect
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itself, has finite length inside any bounded subset of R? and is self-consistent. This last
requirement means that f(s) = E[X|s¢(X) = s], where X € R? is a random vector and
the so-called projection index s¢(x) is the largest real number s minimizing the squared
Euclidean distance between f(s) and x, defined by

se(x) = sup{s : [lx — £(s) 3 = inf [|x — £(7)|3}.

Self-consistency means that each point of f is the average (under the distribution of X) of
all data points projected on f, as illustrated by Figure 2.

Figure 2. A principal curve and projections of data onto it.

However, an unfortunate consequence of this definition is that the existence is not
guaranteed in general for a particular distribution, let alone for an online sequence for
which no probabilistic assumption is made. In order to handle complex data structures,
Ref. [11] proposed principal curves (PCOP) of principal oriented points (POPs) which are
defined as the fixed points of an expectation function of points projected to a hyperplane
minimising the total variance. To obtain POPs, a cluster analysis is performed on the
hyperplane and only data in the local cluster are considered. Ref. [12] introduced the
local principal curve (LPC), whose concept is similar to that of [11], but accelerates the
computation of POPs by calculating local centers of mass instead of performing cluster
analysis, and local principal component instead of principal direction. Later, Ref. [13]
also considered LPC in data compression and regression to reduce the dimension of
predictors space to low-dimension manifold. Ref. [14] extended the idea of localization
to independent component analysis (ICA) by proposing a local-to-global non-linear ICA
framework for visual and auditory signal. Ref. [15] considered principal curves from a
different perspective: as the ridge of a smooth probability density function (PDF) generating
dataset, where the ridges are collections of all points; the local gradient of a PDF is an
eigenvector of the local Hessian, and the eigenvalues corresponding to the remaining
eigenvectors are negative. To estimate principal curves based on this definition, the
subspace constrained mean shift (SCMS) algorithm was proposed. All the local methods
above require strong assumptions on the PDF, such as twice continuous differentiability,
which may prove challenging to be satisfied in the settings of online sequential data.
Ref. [16] proposed a new concept of principal curves which ensures its existence for a large
class of distributions. Principal curves f* are defined as the curves minimizing the expected
squared distance over a class I} of curves whose length is smaller than L > 0; namely,
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f* € arginf A(f),
fedy
where 5
A(f) = E[A(f, X)] = E [inf [|£(s) - X|3].

If E[|X||3 < oo, f* always exists but may not be unique. In practical situations where only
iid. copies Xj,..., X, of X are observed, the method of [16] considers classes J 1, of all
polygonal lines with k segments and length not exceeding L, and chooses an estimator f; ,
of f* as the one within Jj ;, which minimizes the empirical counterpart

An(f) = A(f, X))

|-
.M:

Il
-

1

of A(f). Ttis proved in [17] that if X is almost surely bounded and k o« 11/3, then
A(fn) - o) =0 (n7172).

As the task of finding a polygonal line with k segments and length of at most L that mini-
mizes A, (f) is computationally costly, Ref. [17] proposed a polygonal line algorithm. This
iterative algorithm proceeds by fitting a polygonal line with k segments and considerably
speeds up the exploration part by resorting to gradient descent. The two steps (projection
and optimization) are similar to what is done by the k-means algorithm. However, the
polygonal line algorithm is not supported by theoretical bounds and leads to variable
performance depending on the distribution of the observations.

As the number of segments, k, plays a crucial role (a too small a k value leads to a poor
summary of data, whereas a too-large k yields overfitting; see Figure 3), Ref. [18] aimed to
fill the gap by selecting an optimal k from both theoretical and practical perspectives.
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Figure 3. Principal curves with different numbers (k) of segments. (a) A too small k. (b) Right k. (c) A
too large k.
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Their approach relies strongly on the theory of model selection by penalization intro-
duced by [19] and further developed by [20]. By considering countable classes {Fj ¢} ¢ of
polygonal lines with k segments and total length ¢/ < L, and whose vertices are on a lattice,
the optimal (k2 ) is obtained as the minimizer of the criterion

crit(k, £) = Ay (fk,[> +pen(k, ¢),

where

k 14
pen(k,f)zco\/;JrqE +cz7+52 Skt

is a penalty function where ¢ stands for the diameter of observations and wy ;, denotes
the weight attached to class J} ¢; and it has constants ¢y, c1, co depending on §, maximum
length L and a certain number of dimensions of observations. Ref. [18] then proved that

. N " 2r [m
E[A(F;) - A(F)] < inf {E[ad0) - 8)] +penk 0} + 5750/ 7 @
where X is a numerical constant. The expected loss of the final polygonal line f,%/z is close to
the minimal loss achievable over J ; up to a remainder term decaying as 1/+/1.

1.2. Motivation

The big data paradigm—where collecting, storing and analyzing massive amounts
of large and complex data becomes the new standard—commands one to revisit some of
the classical statistical and machine learning techniques. The tremendous improvements
of data acquisition infrastructures generates new continuous streams of data, rather than
batch datasets. This has drawn great interest to sequential learning. Extending the notion
of principal curves to the sequential settings opens up immediate practical application
possibilities. As an example, path planning for passengers’ locations can help taxi compa-
nies to better optimize their fleet. Online algorithms that could yield instantaneous path
summarization would be adapted to the sequential nature of geolocalized data. Existing
theoretical works and practical implementations of principal curves are designed for the
batch setting [7,16-18,21] and their adaptation to the sequential setting is not a smooth
process. As an example, consider the algorithm in [18]. It is assumed that vertices of
principal curves are located on a lattice, and its computational complexity is of order
O(nNP) where n is the number of observations, N the number of points on the lattice and
p the maximum number of vertices. When p is large, running this algorithm at each epoch
yields a monumental computational cost. In general, if data are not identically distributed
or even adversary, algorithms that originally worked well in the batch setting may not be
ideal when cast onto the online setting (see [22], Chapter 4). To the best of our knowledge,
little effort has been put so far into extending principal curves algorithms to the sequential
context.

Ref. [23] provided an incremental version of the SCMS algorithm [15] which is
based on a definition of a principal curve as the ridge of a smooth probability density
function generating observations. They applied the SCMS algorithm to the input points
that are associated with the output points which are close to the new incoming sample
and leave the remaining outputs unchanged. Hence, this algorithm can be used to deal
with sequential data. As presented in the next section, our algorithm for sequentially
updating principal curve vertices that are close to new data is similar in spirit to that of
incremental SCMS. However, a difference is that our algorithm outputs polygonal lines. In
addition, the computation complexity of our method is O(1n?), and incremental SCMS has
O(n) complexity, where 7 is the number of observations. Ref. [24] considered sequential
principal curves analysis in a fairly different setting in which the goal was to derive in an
adaptive fashion a set of nonlinear sensors by using a set of preliminary principal curves.
Unfolding sequentially principal curves and a sequential path for Jacobian integration were
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considered. The “sequential” in this setting represented the generalization of principal
curves to principal surfaces or even a principal manifold of higher dimensions. This way
of sequentially exploiting principal curves was firstly proposed by [11] and later extended
by [14,25,26] to give curvilinear representations using sequence of local-to-global curves. In
addition, Refs. [15,27,28] presented, respectively, principal polynomial and non-parametric
regressions to capture the nonlinear nature of data. However, these methods are not
originally designed for treating sequential data. The present paper aims at filling this
gap: our goal was to propose an online perspective to principal curves by automatically
and sequentially learning the best principal curve summarizing a data stream. Sequential
learning takes advantage of the latest collected (set of) observations and therefore suffers a
much smaller computational cost.

Sequential learning operates as follows: a blackbox reveals at each time t some
deterministic value x¢,t = 1,2,..., and a forecaster attempts to predict sequentially the
next value based on past observations (and possibly other available information). The
performance of the forecaster is no longer evaluated by its generalization error (as in
the batch setting) but rather by a regret bound which quantifies the cumulative loss of a
forecaster in the first T rounds with respect to some reference minimal loss. In sequential
learning, the velocity of algorithms may be favored over statistical precision. An immediate
use of aforecited techniques [17,18,21] at each time round f (treating data collected until ¢
as a batch dataset) would result in a monumental algorithmic cost. Rather, we propose a
novel algorithm which adapts to the sequential nature of data, i.e., which takes advantage
of previous computations.

The contributions of the present paper are twofold. We first propose a sequential
principal curve algorithm, for which we derived regret bounds. We then present an
implementation, illustrated on a toy dataset and a real-life dataset (seismic data). The
sketch of our algorithm’s procedure is as follows. At each time round ¢, the number of
segments of k; is chosen automatically and the number of segments k., in the next round
is obtained by only using information about k; and a small number of past observations.
The core of our procedure relies on computing a quantity which is linked to the mode of
the so-called Gibbs quasi-posterior and is inspired by quasi-Bayesian learning. The use
of quasi-Bayesian estimators is especially advocated by the PAC-Bayesian theory, which
originated in the machine learning community in the late 1990s, in the seminal works
of [29] and McAllester [30,31]. The PAC-Bayesian theory has been successfully adapted
to sequential learning problems; see, for example, Ref. [32] for online clustering. We refer
to [33,34] for a recent overview of the field.

The paper is organized as follows. Section 2 presents our notation and our online
principal curve algorithm, for which we provide regret bounds with sublinear remainder
terms in Section 3. A practical implementation was proposed in Section 4, and we illustrate
its performance on synthetic and real-life datasets in Section 5. Proofs of all original results
claimed in the paper are collected in Section 6.

2. Notation

A parameterized curve in R? is a continuous function f : [ — R? where I = [a,b] is
a closed interval of the real line. The length of £ is given by

M
L(f) = lim { sup Y lI£(si) _f(sil)2}~

a=sp<s1<--<spy=b i=1

Let xq,x2,...,x7 € B(0, \/HR) c Ribea sequence of data, where B(c, R) stands for the
£p-ball centered in ¢ € R with radius R > 0. Let Qs be a grid over B(0, \/HR), ie.,
Q5 = B(0, VdR) NTs where T; is a lattice in RY with spacing § > 0. Let L > 0 and define
for each k € [1, p] the collection F} | of polygonal lines f with k segments whose vertices
are in Q; and such that £(f) < L. Denote by ¥, = U}’f:l?u all polygonal lines with a
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number of segments < p, whose vertices are in Q5 and whose length is at most L. Finally,
let X(f) denote the number of segments of f € F,. This strategy is illustrated by Figure 4.

Figure 4. An example of a lattice T'y in R? with § = 1 (spacing between blue points) and B(0, 10)
(black circle). The red polygonal line is composed of vertices in Q5 = B(0,10) N Tj.

Our goal is to learn a time-dependent polygonal line which passes through the “mid-
dle” of data and gives a summary of all available observations x1, ..., x;_; (denoted by
(xs)1:(t—1) hereafter) before time . Our output at time  is a polygonal line fi e Jp depend-
ing on past information (s);.(;_1) and past predictions (fs)lj(t_l). When x; is revealed, the
instantaneous loss at time ¢ is computed as

A(fx) = inf 1)~ ®

In what follows, we investigate regret bounds for the cumulative loss based on (2). Given
a measurable space @ (embedded with its Borel o-algebra), we let P(®) denote the set of
probability distributions on ®, and for some reference measure 77, we let P (©) be the set
of probability distributions absolutely continuous with respect to 7.

For any k € [1, p], let 7} denote a probability distribution on Fy ;. We define the prior
monF, = U;F;:l?k,L as

7'[(f) = Z wknk(f)]l{fegkL}r fec i}up,
ke[1,p] ’

where wy, ..., wp, > 0 and Zke[[l,p]] wy = 1.
We adopt a quasi-Bayesian-flavored procedure: consider the Gibbs quasi-posterior
(note that this is not a proper posterior in all generality, hence the term “quasi”):

pi(-) o< exp(=AS:(-)) (),

where A
St(£) = Se—1(£) + Af, 1) + 5 (Af %) — A, )%,

as advocated by [32,35] who then considered realizations from this quasi-posterior. In the
present paper, we will rather focus on a quantity linked to the mode of this quasi-posterior.
Indeed, the mode of the quasi-posterior p;;1 is

t t
argmln{ Y A(f, xs) % Z (£, xt) (ff,xt))ZJr In Z(f) },
%/_/ (iii)

(@) (ii)
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where (i) is a cumulative loss term, (ii) is a term controlling the variance of the prediction f
to past predictions fs,s < t, and (iii) can be regarded as a penalty function on the complexity
of f if 7t is well chosen. This mode hence has a similar flavor to follow the best expert or
follow the perturbed leader in the setting of prediction with experts (see [22,36], Chapters 3
and 4) if we consider each f € J, as an expert which always delivers constant advice.
These remarks yield Algorithm 1.

Algorithm 1 Sequentially learning principal curves.

1: Input parameters: p > 0,17 > 0, 71(z) = e *1 .., and penalty function h : T — RT
2: Initialization: For each f € J),, draw z¢ ~ 7t and Agg = %(h(f) — zg)
3: Fort=1,...,T
4 Get the data x;
5 Obtain

. -1

f; = arginf 2 Ags ¢,

feg, (s=0
where Ags = A(f, x5), s > 1.

6: End for

3. Regret Bounds for Sequential Learning of Principal Curves

We now present our main theoretical results.

Theorem 1. For any sequence (x;)1.r € B(0,VdR), R > 0 and any penalty function h : 5, —
R, let 71(z) = e *1y,sqy. Let0 <1 < 5

W ; then the procedure described in Algorithm 1
satisfies

T
Y Ex {A(ft,m)] < (1 +cole = 1)) Sty + % (1 +In Yy eh(f)) )

t=1 feF,

where cg = d(2R + 8)? and

S = inf inf ZT:A(fX)-‘r@
R ke[Lp] | f€9p |13 o Ui
X(f)=

The expectation of the cumulative loss of polygonal lines fi, . . ., fr is upper-bounded
by the smallest penalized cumulative loss over all k € {1,..., p} up to a multiplicative
term (1 4 co(e — 1)#), which can be made arbitrarily close to 1 by choosing a small enough
17. However, this will lead to both a large /(f) /7 in St,), , and a large %(1 +InYes, e hb),
In addition, another important issue is the choice of the penalty function /. For each f € J,
h(f) should be large enough to ensure a small Ytes, e M%), but not too large to avoid
overpenalization and a larger value for St ,. We therefore set

h(f) > In(pe) +1In |{f € Tp, K(f) = k} (3)

for each f with k segments (where | M| denotes the cardinality of a set M) since it leads to

_ _ 1 1
Let= § oy etic polen
feg, ke[lp] f€F, ke[1,p] p

K (f)=k
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The penalty function h(f) = c;K(f) + coL + c3 satisfies (3), where ¢y, ¢2, ¢3 are constants
depending on R, 4, J, p (this is proven in Lemma 3, in Section 6). We therefore obtain the
following corollary.

Corollary 1. Under the assumptions of Theorem 1, let

— min 1 cip+cl+c3
1 d(2R+0)*"\| co(e — 1) infres, L1y Alf,x1) |

Then

™=

T

] -

E[adhx)] < it { ot {EA“'”‘”* ol 1)”“}
XK (f)=k

+4/cole— 1)rT,,,/L +cole —1)(c1p+ 2L +c3),
where 1 = inffeg'p ):[Tzl A(f, x¢)(c1k + oL + c3).

Proof. Note that
T . T
Z E[A(ft,xt)] < Sty tyco(e—1) inf ) A(f,x¢) +cole —1)(cop + 2L +c3),
=1 913

and we conclude by setting

y = cip+cl+c3
co(e — 1) infres, YL A(f,xp)
|

Sadly, Corollary 1 is not of much practical use since the optimal value for 77 depends
on infgeg, Y., A(f, x;) which is obviously unknown, even more so at time t = 0. We
therefore provide an adaptive refinement of Algorithm 1 in the following Algorithm 2.

Algorithm 2 Sequentially and adaptively learning principal curves.

. . _ y/aptel+tc
1: Input parameters: p > 0, L > 0, 77, hand 19 = Y=

2: Initialization: For each f € ), draw z¢ ~ 71, Agg = %(h(f) —z¢)and fy = a;‘eg;nf Agp
3: Fort=1,...,T !
4: Compute 17; = Vartolis
coy/ (e=1)t
5: Get data x¢ and compute Ay = A(f, x;) + <ﬂ% - 'ﬁ%) (h(f) —z¢)
6: Obtain

-1
£ = arginf { Z Afls}. (4)

fe&"p s=0
7: End for

Theorem 2. For any sequence (x¢)1.7 € B(0,v/dR),R > 0, let h(f) = c;K(f) 4 coL + c3 where
c1, ¢a, c3 are constants depending on R,d, 6, In p. Let 7t(z) = e 1.0y and

_yVaptal+ces _vVaptaoal+tes
o cove—1 ’7t co/(e—1)t
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where t > 1 and cy = d(2R + 6)2. Then the procedure described in Algorithm 2 satisfies

iE[A(E,xt)]g inf { inf {TA(f,xt)+co\/(e—1)T(clk+ch+C3)}}
=1

=1 ke[Lp] | €I
K(F)k

+ 200\/(e —DT(c1p+ 2L +c3).

The message of this regret bound is that the expected cumulative loss of polygonal
lines fl, ey fT is upper-bounded by the minimal cumulative loss over allk € {1,...,p},
up to an additive term which is sublinear in T. The actual magnitude of this remainder
term is v/kT. When L is fixed, the number k of segments is a measure of complexity of the
retained polygonal line. This bound therefore yields the same magnitude as (1), which is
the most refined bound in the literature so far ([18] where the optimal values for k and L
were obtained in a model selection fashion).

4. Implementation

The argument of the infimum in Algorithm 2 is taken over F, = Ule?k,L which has a
cardinality of order |Q;|”, making any greedy search largely time-consuming. We instead
turn to the following strategy: Given a polygonal line f; € Fy,,L with ki segments, we
consider, with a certain proportion, the availability of f;, 1 within a neighborhood U(f;)
(see the formal definition below) of f;. This consideration is well suited for the principal
curves setting, since if observation ¥; is close to f;, one can expect that the polygonal line
which well fits observations xs,s = 1,...,t lies in a neighborhood of f;. In addition, if each
polygonal line f is regarded as an action, we no longer assume that all actions are available
at all times, and allow the set of available actions to vary at each time. This is a model
known as “sleeping experts (or actions)” in prior work [37,38]. In this setting, defining
the regret with respect to the best action in the whole set of actions in hindsight remains
difficult, since that action might sometimes be unavailable. Hence, it is natural to define
the regret with respect to the best ranking of all actions in the hindsight according to their
losses or rewards, and at each round one chooses among the available actions by selecting
the one which ranks the highest. Ref. [38] introduced this notion of regret and studied both
the full-information (best action) and partial-information (multi-armed bandit) settings
with stochastic and adversarial rewards and adversarial action availability. They pointed
out that the EXP4 algorithm [37] attains the optimal regret in the adversarial rewards case
but has a runtime exponential in the number of all actions. Ref. [39] considered full and
partial information with stochastic action availability and proposed an algorithm that runs
in polynomial time. In what follows, we materialize our implementation by resorting
to “sleeping experts”, i.e., a special set of available actions that adapts to the setting of
principal curves.

Let o denote an ordering of |F,| actions, and A; a subset of the available actions at
round t. We let ¢(A;) denote the highest ranked action in A;. In addition, for any action
feJpwe define the reward r¢; of f at round t,t > 0 by

rep = co — A(f, xp).

Itis clear that r¢; € (0, cp). The convention from losses to gains is done in order to facilitate
the subsequent performance analysis. The reward of an ordering ¢ is the cumulative
reward of the selected action at each time:

1=

To(Ap)tr

1

and the reward of the best ordering is max,- ZLO To(A,), (respectively, B [maxg Zthl oA [)/t]
when A; is stochastic).
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”

Our procedure starts with a partition step which aims at identifying the “relevant
neighborhood of an observation x € R? with respect to a given polygonal line, and then
proceeds with the definition of the neighborhood of an action f. We then provide the full
implementation and prove a regret bound.

Partition. For any polygonal line f with k segments, we denote by V = (vy,...,011)
its vertices and by s;,i = 1,.. ., k the line segments connecting v; and v; 1. In the sequel,

we use f(V) to represent the polygonal line formed by connecting consecutive vertices in

V if no confusion arises. Let V;,i = 1,...,k+1and S;,i = 1,..., k be the Voronoi partitions
of R with respect to f, i.e., regions consisting of all points closer to vertex v; or segment s;.
Figure 5 shows an example of Voronoi partition with respect to f with three segments.
Neighborhood. For any x € R?, we define the neighborhood N(x) with respect to f
as the union of all Voronoi partitions whose closure intersects with two vertices connecting
the projection f(s¢(x)) of x to f. For example, for the point x in Figure 5, its neighborhood
N(x) is the union of S, V3, S3 and V,. In addition, let N¢(x) = {x; € N(x),s =1,...,t}
be the set of observations x;,; belonging to N(x) and N;(x) be its average. Let D(M) =
sup, e um ||x — yl[2 denote the diameter of set M C R?. We finally define the local grid

Q5+(x) of x € R at time t as

Qs4(x) = B(N¢(x), D(N¢(x)) N Qs.

flsdx)

Figure 5. An example of a Voronoi partition.

We can finally proceed to the definition of the neighborhood U(f;) of f;. Assume ; has
ki + 1 vertices V = (v1.;, 1, Vi,.j, 1, Vj;:k,+1), Where vertices of (ii) belong to Qs (x¢) while
(i) (ii) (iif)
those of (i) and (iii) do not. The neighborhood U(f;) consists of f sharing vertices (i) and
(iii) with f;, but can be equipped with different vertices (ii) in Qs (x;); i.e.,

u(ft) = {f(V), V= (vlzl}—lrvlzm/ vjt:k,Jrl) }/
where v1.,, € Q;,(x;) and m is given by

jt —ir —1 reduce segments by 1 unit,
m= < j;—i same number of segments,

jt —ir+1 increase segments by 1 unit.
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In Algorithm 3, we initiate the principal curve f as the first component line segment
whose vertices are the two farthest projections of data x1., (fo can be set to 20 in practice)
on the first component line. The reward of f at round f in this setting is therefore r¢; =
co — A(f, x4y++). Algorithm 3 has an exploration phase (when I; = 1) and an exploitation
phase (I; = 0). In the exploration phase, it is allowed to observe rewards of all actions and
to choose an optimal perturbed action from the set F, of all actions. In the exploitation
phase, only rewards of a part of actions can be accessed and rewards of others are estimated

by a constant, and we update our action from the neighborhood U (ft_l) of the previous
action f;_;. This local update (or search) greatly reduces computation complexity since
[U(f1)| < |Fp| when pis large. In addition, this local search will be enough to account for
the case when x; locates in U ( f;_ ). The parameter 8 needs to be carefully calibrated since
it should not be too large to ensure that the condition cond(t) is non-empty; otherwise, all
rewards are estimated by the same constant and thus lead to the same descending ordering
of tuples for both (Zé % Pes f € ?p) and (22:1 fes f € 3",,). Therefore, we may face the

risk of having f41 in the neighborhood of f; even if we are in the exploration phase at time

t 4 1. Conversely, very small 8 could result in large bias for the estimation W of rgy.
t= t
Note that the exploitation phase is close yet different to the label efficient prediction ([40],
Remark 1.1) since we allow an action at time f to be different from the previous one.
Ref. [41] proposed the geometric resampling method to estimate the conditional probability

P (f: = f|H; ) since this quantity often does not have an explicit form. However, due to the

simple exponential distribution of z¢ chosen in our case, an explicit form of P (ft = f|9{t>
is straightforward.

Algorithm 3 A locally greedy algorithm for sequentially learning principal curves.

1: Input parameters: p > 0,R > 0,L > 0, > 0,a > 0,1 > B > 0 and any penalty
function h

2: Initialization: Given (x;)1.,, obtain £, as the first principal component
3: Fort=2,...,T
4 Draw I; ~ Bernoulli(e) and z¢ ~ 7.
5: Let
1
0y = sort| f, Pes — —2zf
( ; T HO+ Mt-1

i.e., sorting all f € J) in descending order according to their perturbed cumulative
reward till t — 1. .
6: If Iy = 1,set A; = Fp and f; = 0%(A;) and observe it

Pep =1 for fe T

8: If I; = 0, set A; = U(f,_1), §; = 0! (A;) and observe oy

P(f=f]7,)

>

T if f e U(F,_1) Ncond(t) and f; = f,
e =
' o otherwise,

where H; denotes all the randomness before time t and cond(t) =
{f €Ty [P’(ft = f|th) > ﬁ} In particular, when t = 1, we set #¢; = r¢; for
all £ € 5, U(f) = @ and 51y (5,11 = O

10: End for
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1
Theorem 3. Assume that p > 6, T > 2|F,|? and let p = |F| Ty = & = X0,
13
e=1—|F,|2 PT—4 and

vep+eol+cs

L AV

Then the procedure described in Algorithm 3 satisfies the regret bound

iE{A(ﬁ,xt)] < inf E 3 +0o(Th).

=1 €Fp

A(f, X[)
1

t=

The proof of Theorem 3 is presented in Section 6. The regret is upper bounded by
1 1
a term of order <|S”p‘7T%>, sublinear in T. The term (1 — ¢€)cyT = c0|§p{7T% is the

price to pay for the local search (with a proportion 1 — €) of polygonal line f; in the
neighborhood of the previous f,_1. If e = 1, we would have that &, = ¢, and the last
two terms in the first inequality of Theorem 3 would vanish; hence, the upper bound
reduces to Theorem 2. In addition, our algorithm achieves an order that is smaller (from
the perspective of both the number |?p| of all actions and the total rounds T) than [39]
since at each time, the availability of actions for our algorithm can be either the whole
action set or a neighborhood of the previous action while [39] consider at each time only
partial and independent stochastic available set of actions generated from a predefined
distribution.

5. Numerical Experiments

We illustrate the performance of Algorithm 3 on synthetic and real-life data. Our
implementation (hereafter denoted by slpc—Sequential Learning of Principal Curves)
is conducted with the R language and thus our most natural competitors are the R
package princurve, which is the algorithm from [10], and incremental, which is the
algorithm from SCMS [23]. Welet p = 50, R = max;—1, 1 Hxﬂz/\/a, L= 0.1p\/HR. The
spacing ¢ of the lattice is adjusted with respect to data scale.

Synthetic data We generate a dataset {xt eR2t=1,.. .,500} uniformly along the
curve y = 0.05 x (x —5)3, x € [0,10]. Table 1 shows the regret (first row) for
e the ground truth (sum of squared distances of all points to the true curve),

e princurve and incremental SCMS (sum of squared distances between observation

X¢4+1 and fitted princurve on observations x.),

*  slpc (regret being equal to Y] E[A(f;1, x;41)] in both cases).

The mean computation time with different values for the time horizons T are also

reported.

Table 1. The first line is the regret (cumulative loss) on synthetic data (average over 10 trials, with
standard deviation in brackets). Second and third lines are the average computation time for two
values of the time horizon T. princurve and incremental SCMS are deterministic, hence the zero
standard deviation for regret.

Ground Truth Princurve Incremental SCMS slpc
248 (0) 26.02 (0) 19.09 (0) 20.83 (3.23)
T =500 0.029 s (0.0001 s) 18.79 s (0.007 s) 1.44 5 (0.030 s)
T = 5000 0.355 (0.006 s) >60s (NA) 4135 (0.807 s)

Table 1 demonstrates the advantages of our method slpc, as it achieved the optimal
tradeoff between performance (in terms of regret) and runtime. Although princurve
outperformed the other two algorithms in terms of computation time, it yielded the largest
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regret, since it outputs a curve which does not pass in “the middle of data” but rather bends
towards the curvature of the data cloud, as shown in Figure 6 where the predicted principal
curves f,, | for princurve, incremental SCMS and slpc are presented. incremental SCMS
and slpc both yielded satisfactory results, although the mean computation time of splc
was significantly smaller than that of incremental SCMS (the reason being that eigenvectors
of the Hessian of PDF need to be computed in incremental SCMS). Figure 7 showed,
respectively, the estimation of the regret of s1pc and its per-round value (i.e., the cumulative
loss divided by the number of rounds) both with respect to the round ¢. The jumps in the
per-round curve occurred at the beginning, due to the initialization from a first principal
component and to the collection of new data. When data accumulates, the vanishing
pattern of the per-round curve illustrates that the regret is sublinear in , which matches
our aforementioned theoretical results.

¥ ¥
£ £
(0) (d)
F
; §
(e) ®

Figure 6. Synthetic data. Black dots represent data x1;. The red point is the new observation
Xt41. princurve (solid red) and slpc (solid green). (a) t = 150, princurve. (b) t = 450, princurve.
(c) t =150, incremental SCMS. (d) t = 450, incremental SCMS. (e) t = 150, slpc. (f) t = 450, slpc.

In addition, to better illustrate the way slpc works between two epochs, Figure 8
focuses on the impact of collecting a new data point on the principal curve. We see that
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only a local vertex is impacted, whereas the rest of the principal curve remains unaltered.
This cutdown in algorithmic complexity is one the key assets of s1lpc.
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Figure 7. Mean estimation of regret and per-round regret of s1pc with respect to time round ¢, for the
horizon T = 500. (a) Mean estimation of the regret of slpc over 20 trials (black line) and a bisection
line (green) with respect to time round t. (b) Per-round of estimated regret of s1pc with respect to t.

% ol T :
(a) (b)

Figure 8. Synthetic data. Zooming in: how a new data point impacts the principal curve only locally.
(a) At time t = 97. (b) And at time f = 98.
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Synthetic data in high dimension. We also apply our algorithm on a dataset {x; € R®,
t=1,2,...,200} in higher dimension. It is generated uniformly along a parametric curve

whose coordinates are
0.5t cos(t)

0.5t sin(f)
0.5t
—t
Vi
2In(t+1)

where t takes 100 equidistant values in [0, 27t]. To the best of our knowledge, [10,16,18]
only tested their algorithm on 2-dimensional data. This example aims at illustrating that
our algorithm also works on higher dimensional data. Table 2 shows the regret for the
ground truth, princurve and slpc.

Table 2. Regret (cumulative loss) on synthetic high dimensional data in (average over 10 trials, with
standard deviation in brackets). princurve and incremental SCMS are deterministic, hence the zero
standard deviation.

Ground Truth Princurve Incremental SCMS slpc

3.290 (0) 14.204 (0) 5.38 (0) 6.797 (0.409)

In addition, Figure 9 shows the behaviour of slpc (green) on each dimension.

o
£ 4 ! o
f o
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i ” 3]
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e
b
i
LAY
‘.
(c)

Figure 9. slpc (green line) on synthetic high dimensional data from different perspectives. Black
dots represent recordings x1.99; the red dot is the new recording xp. (a) slpc, t = 199, 1st and 2nd
coordinates. (b) slpc, t = 199, 3th and 5th coordinates. (c) slpc, t = 199, 4th and 6th coordinates.

Seismic data. Seismic data spanning long periods of time are essential for a thorough
understanding of earthquakes. The “Centennial Earthquake Catalog” [42] aims at provid-
ing a realistic picture of the seismicity distribution on Earth. It consists in a global catalog
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of locations and magnitudes of instrumentally recorded earthquakes from 1900 to 2008.
We focus on a particularly representative seismic active zone (a lithospheric border close
to Australia) whose longitude is between E130° to E180° and latitude between S70° to
N30°, with T = 218 seismic recordings. As shown in Figure 10, slpc recovers nicely the
tectonic plate boundary, but both princurve and incremental SCMS with well-calibrated
bandwidth fail to do so.

Lastly, since no ground truth is available, we used the R? coefficient to assess the
performance (residuals are replaced by the squared distance between data points and their
projections onto the principal curve). The average over 10 trials was 0.990.

(a) (b)

(0) (d)

(e) ()

Figure 10. Seismic data. Black dots represent seismic recordings xi.; the red dot is the new
recording x;y1. (a) princurve, t = 100. (b) princurve, t = 125. (c) incremental SCMS, { = 100.
(d) incremental SCMS, t = 125. (e) slpc, t = 100. (f) slpc, t = 125.
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Back to Seismic Data. Figure 11 was taken from the USGS website (https:/ /earthquake.
usgs.gov/data/centennial /) and gives the global locations of earthquakes for the period
1900-1999. The seismic data (latitude, longitude, magnitude of earthquakes, etc.) used in
the present paper may be downloaded from this website.

Centennial Earthquake Catalog (1900-1888)

o 30°E B0°E 90°E 120°E 150°E 180" 150°W 120°W 0°W BOW 30°W

Figure 11. Seismic data from https:/ /earthquake.usgs.gov/data/centennial /.

Daily Commute Data. The identification of segments of personal daily commuting
trajectories can help taxi or bus companies to optimize their fleets and increase frequencies
on segments with high commuting activity. Sequential principal curves appear to be an
ideal tool to address this learning problem: we tested our algorithm on trajectory data
from the University of Illinois at Chicago (https:/ /www.cs.uic.edu/~boxu/mp2p/gps_
data.html). The data were obtained from the GPS reading systems carried by two of the
laboratory members during their daily commute for 6 months in the Cook county and the
Dupage county of Illinois. Figure 12 presents the learning curves yielded by princurve
and s1pc on geolocalization data for the first person, on May 30. A particularly remarkable
asset of s1pc is that abrupt curvature in the data sequence was perfectly captured, whereas
princurve does not enjoy the same flexibility. Again, we used the R? coefficient to assess
the performance (where residuals are replaced by the squared distances between data
points and their projections onto the principal curve). The average over 10 trials was 0.998.
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@ (b)

(o) (d)
Figure 12. Daily commute data. Black dots represent collected locations x1.;. The red point is the new

observation x; 1. princurve (solid red) and slpc (solid green). (a) t = 10, princurve. (b) t = 127,
princurve. (c) t = 10, slpc. (d) t = 127, slpc.

6. Proofs

This section contains the proof of Theorem 2 (note that Theorem 1 is a straightforward
consequence, with 7y = 7, t = 0,...,T) and the proof of Theorem 3 (which involves
intermediary lemmas). Let us first define for each t = 0,..., T the following forecaster
sequence (ff);

5 = arginf {A¢o} = arginf{lh(f) - lZf},
feF, feg, LU0

t ¢
ff = arginf { ) Afls} = arginf{z Af, xs) + Lh(f) - 1Zf}, t>1.

feF, |s=0 feF, (s=1 Mt-1 M1

Note that ff is an “illegal” forecaster since it peeks into the future. In addition, denote by

L 1
= argil’lf{ Z A(f, xt) + Wh(f)}

feF, t=1

the polygonal line in F, which minimizes the cumulative loss in the first T rounds plus
a penalty term. f* is deterministic, and f; is a random quantity (since it depends on z,
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f € J, drawn from 7). If several f attain the infimum, we chose 7 as the one having the
smallest complexity. We now enunciate the first (out of three) intermediary technical result.

Lemma 1. For any sequence x1, ..., xt in B(0, \/ER),
Z Ay < Z Af* 4 mt-almost surely. (5)

Proof. Proof by induction on T. Clearly (5) holds for T = 0. Assume that (5) holds for
T—-1:

eSS

Ay < JAYYRRE

o Ch = L S

Adding AA?,T to both sides of the above inequality concludes the proof. [

By (5) and the definition of f}, for k > 1, we have rr-almost surely that

T T T
S AGH, %) < Y A x) + Wih(%;) Lz r (L - l) (n@) - z;.)

=1 =1 T nr T Mt-1 Nt '
< iA(f* ¥) + Lh(f) - 7 +2<——l> (h(f*) Z, )
_f:1 7 Xt nr nr f N1 1t tr
T 1 LNV | 1 .
= inf A(f, x;) + —h(f ——Z*-i- <———> h(f) — Zz ),
feffp{t):1 () + ()} g2t L ) () - 24

where 1/7_1 = 0 by convention. The second and third inequality is due to respectively the
definition of £% and f%. Hence

T - T 1
IELZ;A( t,xt)} < mf{ZAfm ﬂh(f)}WTIE[Zf?]

t
ﬁ) (711(%?) +z})]

zell

Il
—

+
g
&

SR

T
< inf A(f, x <———>E sup (—h(f) + Z¢
feiﬂ{g En) + T } ; M M-1 feig,( ) )
— inf LY A ) + Lh(e) b+ LB | sup (i) + Zp
feFy, | (o Y nr - |tes, 7y
where the second inequality is due to IE[ZM = 0and <ﬂ - ﬁ) >0fort=0,1,...,T

since #; is decreasing in t in Theorem 2. In addition, for y > 0, one has
P(—h(f) + Z¢ > y) = e Oy,

Hence, for any y > 0

IP’(sup(h(f)+Zf)>y>< Y P(Zs > h(f) =Y e By = ye v,
feF) feF, feF,
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n(f)

where u =Y ¢ F,e . Therefore, we have

E|sup(—h(f)+Z¢) —Inu| <E

feF,

max<0, sup (—h(f) + Z¢ — lnu))}

fedy

g/w]}" max | 0, sup (—h(f) + Z¢ —Inu) | >y |dy
0 fed,

g/ooIP’ sup (—h(f) +Z¢) > y+1Inu |dy
0 fed,

< /oo ue~ WA qy — 1,
Jo

We thus obtain

E

iA(PX) < inf iA(fx)—&-ih(f) +i 1+]_nze*h(f) (6)
S o nr Uk ’

=1 €9 i £€T,
Next, we control the regret of Algorithm 2.

Lemma 2. Assume that z¢ is sampled from the symmetric exponential distribution in R, i.e.,

7t(z) = e *1y o0y Assume that sup,_; 11 < m, and define cy = d(2R + )% Then
for any sequence (x;) € B(0,v/dR),t=1,...,T,
T . T .
Y E[A(Rx)| < Y1+ miacole —))E[A(Ex) . )
=1 =1

Proof. Let us denote by

F(Zs) = A(ft, xt> =A (arginf (t_zl A(f, x5) + Lh(f) - lZf),Xt)

feT \s—=1 Mt—1 -1

the instantaneous loss suffered by the polygonal line f; when x; is obtained. We have

E[A <ft*, xt)} = /Ft(z — 11 A(F, x¢)) 7t(z)dz
- /Pt(z)n(zm,,l/;(f,xt))dz
_ / Fi(z)e (FHmbEx) g,
> e M-1d(2R+0) /Ft(z)e’zdz
= e—'7f—1d<2R+5>zﬁ[A(ft, %)),
where the inequality is due to the fact that A(f, x) < d(2R + §)? holds uniformly for any

feJpandx € B(0, V/dR). Finally, summing on t on both sides and using the elementary
inequality e* <1+ (e —1)xif x € (0,1) concludes the proof. [
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Lemma 3. For k € [1, p], we control the cardinality of set {f € F, K(f) = k} as

In|{f € F, K(f) = k}| < <ln 8peVd)+3dz 7d)k+ <;:/23+i>L+dln<\/E(2§+5)>

A c1k+ caL +c3,
where Vy denotes the volume of the unit ball in RY,

Proof. First, let Nj 5 denote the set of polygonal lines with k segments and whose vertices
are in Q;. Notice that Ny s is different from {f € F,, X(f) = k} and that

{f€ 5, X(f) =k}| < <Z>|Nk,5|.
Hence
In|{f € 5, K(f) = k}| < In <Z> +1In| Ny

< kin B+ k(n8v, +321 —a) + <ln—2+ d>L+dln<\/a(2R+5)>

Vds o B
< kIn(pe) +k(ln8Vd +3d} fd) + (% + Z>L+dln<\/a(2§+5)>,

where the second inequality is a consequence to the elementary inequality (}) < (%)k
combined with Lemma 2 in [16]. [J

We now have all the ingredients to prove Theorem 1 and Theorem 2.

First, combining (6) and (7) yields that

iE{ f x)]<1nf ZA(fx)Jr—h() L 1+1nze*’1(f>
tr At t nr 2

=1 5,
T A
+cle—1) ) n1E [A(ft*, xt)}
=1
T h(f) 1 (1
< inf inf ZAfxt + = + — 7+1n2e*]’
kelLpl | €7 |15 nr nr\ 2 feT,
XK (f)=k r

T -
+ Co(e - 1) Z 1’]t_1E [A(f?, Xt)} .
t=1

Assume that i = 77, t = 0,..., T and h(f) = c;X(f) + coL + 3 for f € T, then (3 +
Ytes, e ") < 0 and moreover

T T
ZE[A(f,,x,)] < Sty 41 +ln Y e 0 ) 4 eple—1)y ZE{A(f;,xt)]
=1 1 feF, t=1
< ST,h/ry +cole — 1)’75T,h,17
T

< Sy +1co(e —1) flEI':l}f Z A(f,xt) +cole —1)(c1p + oL +c3),
P =1
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where

T
Sty = inf inf {Z A, xt) + h;f)}

ke[Lp] | €T,
K (f)=k

and the second inequality is obtained with Lemma 1. By setting

7= Clp+C2L+C3
co(e — 1) infees, YL A(f, xp)

we obtain

T . T
ZE[A(f,,x,)] < inf inf {Z (£, x) + co(e—l)rT,k,L}

t=1 ke[Lpl | €5y |13
K(£) =k

+4/co(e = 1)Lty +co(e —1)erp +col +c3,

where rry 1 = infreg, Y A(f, x;)(c1k + coL + c3). This proves Theorem 1.

Finally, assume that
c cL+ ¢ c L+ ¢
_VaPFTORTS g o= YOPEeRts T

Co (e_l) co (e—l)t

Since E[A(ft*, xt)] <cpforanyt=1,...,T, wehave

MH

[ ft,xt ] < inf inf iA(f,xt)Jr@ Jri 1+1n Z e )
 ke[Lp] ffgv =1 T T
K(f

x £€F,

T
gle—=1) Y m
t=1

< kelﬁfp]] fiefgp {ZA -‘rCo\/(e— 1)T(C0k+C2L+C3)}
K(f)=

+ ZCO\/(e —1)T(cop + 2L +c3),

which concludes the proof of Theorem 2.

Lemma 4. Using Algorithm 3,if0 <e <1,0< <1, a > % and ‘u(ﬂ,l)‘ > 2 for all
t > 2, where ‘U <ft,1> ‘ is the cardinality of’u<ft,1), then we have

LE

1=

t

I
—_

E i ays] 201~ clap té‘u@,l)).

Proof. First notice that Ay = U (ft,1> if I} = 0, and that fort > 2
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E [rﬂ,t

Hi, It = 0:| =E {rﬁf(‘/q“),f

}ft, It = 0:|

= Y rf/tn»<af(At):f':}{t>+ Yy rf,,IP<€7f(At):f‘i}f¢)

fe AiNcond(t) feAyNcond(t)

> Y gt Y Ca]P’([rt(At) =f J{t>

B fe AiNcond(t) feAyNcond(t)

_ (1 — ‘B) Z rep — Z (0{ — I’f’t)]P)(@’t(At) =f ‘fH:)

fe A Ncond(t) feANcond(t)©
= {%i(ﬂt),t He, It = 0} -(1-B) X i
feAiNcond(t)
- T (o = toa)
feAiNcond(t)°

ZE{?{#(A;)J Hi I = 0} = (1= B)eolAs| — aplA¢]

ZE |:l’>f,1(_/1f),f g‘ft,lt = 0:| — 20([5‘./1[‘,

where cond(t)¢ denotes the complement of set cond(t). The first inequality above is due to
the assumption that for all f € A; N cond(t), we have P( 6f(A;) = £|3(; ) > B. Fort =1,

the above inequality is trivial since Ps (u(t))1 = 0 by its definition. Hence, for t > 1, one

9

has

Hi, Iy = 1:| + (1 — E)E |:1’[7t(A[),t

|:1’{7[(5,~p)/t %tllt = 0:|

J{t} — 20 B| Ayl (8)

E |:rf,,t

=€k
>E {?m

Summing on both sides of inequality (8) over t terminates the proof of Lemma 4. [

Lemma 5. Letéoz%)—&—/X.If0<171:172:---:qrzq<%,thenwehave

T 1 T
max Y Poran: — ﬁh(a(ﬂt)) - E[%f(A,),t] <

t=1 t=1
é%(e —1)yT + éo(e —1)(c1p + 2L + ¢3).

Proof. By the definition of #¢; in Algorithm 3, for any f € ), and t > 1, we have

N r ¢ .
Pgp < max — 4 rep o < maX{Eo,a} < Co,
]P’<ft = f'ﬂ{t>

where in the second inequality we use that r¢; < cg for all f and ¢, and that P’ <ft = f‘ﬂ-(t) >

t— . i i i .
BwhenfeclU <f 1) N cond(t). The rest of the proof is similar to those of Lemmas 1 and 2

In fact, if we define by A(f, x¢) = &y — g, then one can easily observe the following relation
when [} = 1 (similar relation in the case that I; = 0)
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feJ, =
=1
= argmm{ Y A(f xs) + = (h(f) — Zf)}
feF, s=1

Then applying Lemmas 1 and 2 on this newly defined sequence A <ﬂ, xt> ,t=1,...T leads
to the result of Lemma 5. [

The proof of the upcoming Lemma 6 requires the following submartingale inequality:
let Yy, ... Y be a sequence of random variable adapted to random events Hj, ..., Hr such
that for 1 < t < T, the following three conditions hold:

E[Yf‘Hd S 0, Var(Yt|Ht) S az, Yt — E[Yde S b

Then for any A > 0,

T /\2
< -~
]P’(tzlYt>Yo+/\>exp< 2T(a2+b2)>'

The proof can be found in Chung and Lu [43] (Theorem 7.3).

Lemma 6. Assume that 0 < B < b}—l,a > %0 and n > 0, then we have
P

T

— 7h

t; p (o(Ar))

<(1- mmJ o1

Proof. First, we have almost surely that

—-E

T 1
m?X{ Y Pt — ,]h(ﬁ(flt))}

7 =1

2
%O +a2(1—B) + (co +2a)° ln<%> + |Fp|BeoT-

T 1 T 1
max{Zw, - uu} {Z - (ﬂr))}<maxzrftm)

=1 feTy 13

Denote by Yi; = r¢; — ¢ 4. Since

E |:?f’f

th] _ [+ e)a(l - P(ft = f\?ﬁ)) if feU(k_q)ncond(t),
ergp+ (1—e)a otherwise,

and & > ¢ > r¢; uniformly for any f and ¢, we have uniformly that E[Y;|H;] < 0, satisfying
the first condition.
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For the second condition, if f € U (ft,1> Ncond(t), then

Var (Yi|) =E[#3,1%] — (Elpes|90,])°

2

<er?,+(1-¢) +zx<1 —P( = £36))

P(ft L)

— {rf,, +(1 —e)zx(l —IP’(ft = f|ﬂ-£t))]2

5

)

<A a(1-p) < %2)4“062(17‘3).

|

Similarly, for f ¢ U(ft,l) N cond(t), one can have Var(Y;|3(;) < a®. Moreover, for the
third condition, since
]E[Yf,[‘j{t} > *206,

then
Yer — E[Yee|He) < rgp + 200 < o+ 2a.

Setting A = \/ZT{%Z) +a2(1 =)+ (co + Za)z} ln(%> leads to

P(i Yer > /\> <B
=1

Hence the following inequality holds with probability 1 — |F,|B

c2 1

S0 4 a2(1 = B) + (co +20)° ln<7>.

B B

Finally, noticing that maxgc T, Zthl (rer — P¢) < coT almost surely, we terminate the proof
of Lemma 6. [

feFy 1

T
max Z(rflt —fgy) < \j 2T

Proof of Theorem 3. Assume that p > 6, T > 2|F,|? and let

5:|gp|7%T7%' n=

veip+eoLl+c 1.3 1
=ypp=-=gp=X T = e=1—|F,|2"rT 1.
=12 nr Te-1)é Ef

With those values, the assumptions of Lemmas 4, 5 and 6 are satisfied. Combining their
results lead to the following
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=
=

=3
vV

T 1 T R
E [m‘?x{ Y ropans — —h(o(Ar)) H N ‘u(ft_l) ‘
=1 t=1 Ul t=1

—&(e—1)nT —éo(e — 1)(c1p + c2L + c3)

2
— (1= 58) 2T %4‘“2(1—/3)4-(604-2“)2 1“(%) — [Fp|BeoT

>E

T 3
m;ix{ Y et — ;h(U(At))}:| —(1=e)|Fp|"coT

=
— (e —1)yT —éo(e — 1) (c1p + 2L + c3)

2
%0 +a2(1 = B) + (co +2a) 1“(%) = |Fp|BeoT

T 1 1 3
max Zrdﬂt),t—ﬁh(v(/lt)) —O<|ff”p|2T4),
t=1

= (1= [3,[B)y| 2T

>E

where the second inequality is due to the fact that the cardinality ‘u(EH)‘ is upper

3
bounded by |F,|? for t > 1. In addition, using the definition of r¢; that r¢; = co — A(f, x¢)
terminates the proof of Theorem 3. [
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Abstract: “No free lunch” results state the impossibility of obtaining meaningful bounds on the error
of a learning algorithm without prior assumptions and modelling, which is more or less realistic for
a given problem. Some models are “expensive” (strong assumptions, such as sub-Gaussian tails),
others are “cheap” (simply finite variance). As it is well known, the more you pay, the more you
get: in other words, the most expensive models yield the more interesting bounds. Recent advances
in robust statistics have investigated procedures to obtain tight bounds while keeping the cost of
assumptions minimal. The present paper explores and exhibits what the limits are for obtaining tight
probably approximately correct (PAC)-Bayes bounds in a robust setting for cheap models.

Keywords: statistical learning theory; PAC-Bayes theory; no free lunch theorems

1. Introduction

For the sake of clarity, we focus on the supervised learning problem. We collect
a sequence of input-output pairs (X;, Y;)¥, € (X x Y)N, which we assume to be N
independent realisations of a random variable drawn from a distribution P on X' x ). The
overarching goal in statistics and machine learning is to select a hypothesis f over a space
F which, given a new input x in X, delivers an output f(x) in ), hopefully close (in a
certain sense) to the unknown true output y. The quality of f is assessed through a loss
function ¢ which characterises the discrepancy between the true output y and its prediction
f(x), and we define a global notion of risk as

R(f) = E¢xy)~p[¢(f(X), Y)].

The aim of machine learning is to find a good (in the sense of a low risk) hypothesis
f € F. In the generalised Bayes setting, the learning algorithm does not output a single
hypothesis but rather a distribution p over the hypotheses space F and the associated
bounds are called PAC-Bayesian bounds (see [1] for a survey of the topic).

As many probabilistic bounds stated in the statistics and machine learning literature,
PAC-Bayesian bounds (where PAC stands for probably approximately correct—see [2])
commonly requires strong assumptions to hold, such as sub-Gaussian behaviour of some
random variables. These assumptions can be misleading when dealing with true data
as they do not take into account some practical situations, such as outlier contamination.
Many efforts have been made recently to keep tight generalisation bounds valid with a
few set of assumptions about the underlying distribution: this is known as robust learning
[see [3] for a survey of the topic].

In this work we explore the possibility to establish a connection between recent tech-
niques introduced by robust machine learning and PAC-Bayesian generalisation bounds.
The result of our work is negative as we were not able to prove a PAC-Bayes bound in a
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robust statistics setting. However, we found it useful to write down our findings in order
to give the interested reader a review of material involved in both robust statistics and
PAC-Bayes theory and present the fundamental issues we faced as we believe it to be useful
to the community.

Organisation of the paper. We introduce an elementary example and set a basic
notation to illustrate the problem of robustness in Section 2, before providing an overview
of recent advances in robust statistics in Section 3, and briefly introduce the field of PAC-
Bayes learning in Section 4. We then propose in Section 5 a detailed study of the structural
limits which do not allow for PAC-Bayes bounds which are simultaneously tight without
requiring strong assumptions. The paper closes with a discussion in Section 6.

2. About the “No Free Lunch” Results

A class of results in statistics is known as “no free lunch” statements [see [4], Chapter
7]. The “no free lunch” results typically state that if one does not consider the restrictions
on the modelling of the data-generating process, one cannot obtain meaningful deviation
bounds in a non-asymptotic regime. The well-known trade-off is that the more restrictive
the assumptions, the tighter the bounds. Let us illustrate this classical phenomenon by a
simple example.

Assume that we have a dataset consisting in N real observations x1,..., x5 € R
and consider they are independent, identically distributed (iid) realisations of a random
variable X. Our goal is to estimate the mean of X and build a confidence interval for this
estimate. As a start, let us focus on the empirical mean, denoted by & = 4 YN, % As
“no free lunch” results state, we have to consider a class of distributions to which the
data-generating distribution P belongs.

2.1. Expensive and Cheap Models

If there is always a price to pay in order to derive insightful result, there is a variety of
degrees of restrictions. In the remainder of the paper, we will focus on two classical models
corresponding to a different level of demand on the random variables.

A first type of restriction we can make is an “expensive modelling”. For ¢ > 0, let

g be the set of all real-valued random variables X satisfying:

expensive

20.2
log(Efexp{A(X ~ E[X])}]) < *7.

This gxpensive is the class of sub-Gaussian random variables with variance factor
02 [see [5] for a complete coverage of the topic]. We call this model “expensive” as this
restriction is often considered unrealistic for real-life datasets and is hard or impossible to
check in practice.

An alternative type of restriction is a “cheap modelling”. For o > 0, let gheap be the

set of real-valued random variables with a finite variance, upper bounded by ¢2. We call
this model “cheap” as this is considerably less restrictive than the expensive one and is
much more likely to hold in practice.

2.2. Confidence Interval for the Empirical Mean
Proposition 1 (Confidence intervals). Ifweassume that X € P, then forall 5 € (0,1/2),

expensive’
the following random interval is a confidence interval for the mean of X at level 1 — §:

fi%ﬁxdﬂog(%) } )

If we assume that X € é'hmp, then for all 5 € (0,1), the following random interval is a

confidence interval for the mean of X at level 1 — ¢:
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o /1
T+ — \/i . 2
VN 5] @
In the case of a cheap model, there is no hope to obtain a significantly tighter confidence interval
with respect to d if one uses the empirical mean [as proved in [6], Proposition 6.2].

Proof. To establish the first confidence interval (1), we first remark that if X € ngpensive’

then ¥ € PN and E[x] = E[X]. So, applying Theorem 2.1 of [5] to £ — E[X] we obtain,

expensive

foralla > 0:

P(|x —E[X]| > a) = P(x — E[X] > a) + P(x — E[X] < —a)
< 2max(P(x — E[X] > a),P(x — E[X] < —a))

2
< 2exp<—%>.

Setting 6 = exp (— %’;) leads to the expected result. The second confidence interval
(2) is obtained through Chebychev’s inequality. E[x] = E[X] and as X € Peheap Var(x) =

VarT(X)S‘LI\?.Soforalla>O
o2
P(lx — E[X < —.
(lT—E[X]| > 0) < <
Now, setting 6 = 1\% we get

IP(J?—IE[X] > ;N\/D <.

Note that the dependence in 4 is fairly different in both confidence intervals defined
in (1) and (2): for fixed ¢? and N, the v/2 x /2log(1/6) regime (following the lunch
metaphor, the “good lunch”) is much more favourable than the 1/+/5 regime (the “bad
lunch”). We illustrate this in Figure 1, where we plot V2 x /2log(1/6) and 1/ Vb as a
function of § € (0,1/2). We remark that for small values of J, corresponding to a higher
confidence level, the interval (1) will be much tighter than (2).

|

101 — e
—— V2 */2l0g(1/6)
8 -
6 -
4 -
2 4
0.0 0.1 0.2 0.3 0.4 0.5

3

Figure 1. v/2 x \/21og(1/8) and 1/+/3 with respect to J.
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So, while it is clear that the best confidence interval requires more stringent assump-
tions, there have been attempts at relaxing those assumptions—or in other words, keeping
equally good lunches at a cheaper cost.

3. Robust Statistics

Robust statistics address the following question: can we obtain tight bounds with

minimal assumptions—or in other words, can we get a good cheap lunch? In the mean
[

estimation case hinted in Section 2, the question becomes the following: if P € cheaps CaN
we build a confidence interval at level 1 — 6 with a size proportional to <=+/21log(1/6)?

VN
As mentioned above, there is no hope to achieve this goal with the empirical mean.

Different alternative estimators have thus been considered in robust statistics, such as
M-estimators [6] or median-of-means (MoM) estimators [see [7] for a recent survey, and
references therein].

The key idea of MoM estimators is to achieve a compromise between the unbiased but
non-robust empirical mean and the biased but robust median. As before, let us consider
a sample of N real numbers xy,...,xy, assumed to be an iid sequence drawn from a
distribution P. Let K < N be a positive integer and assume for simplicity that K is a
divisor of N. To compute the MoM estimator, the first step consists of dividing the sample
(x1,...,xy) into K non-overlapping blocks By, ..., Bk, each of length N /K. For each block,
we then compute the empirical mean

_ K
XB, = — Xij.
’ Njezs;- !
1

The MoM estimator is defined as the median of those means:
MoMk(x1 ..., xy) = median{%p,, ..., Tp, }-

This estimator has the following nice property.

Proposition 2 ([7], Proposition 12). Assume P € gteap,for 6 =exp (7%)1

{MOMKijN ><41/210g<;>} )

is a confidence interval for the mean of X at the level 1 — §.

This property is quite encouraging, as for a cheap model we obtain a confidence
interval similar, up to a numerical constant, to the best one (1) in Section 2. However, we
also spot here an important limitation. The confidence interval (3) for MoM is only valid
for the particular error threshold 6 = exp(—K/8), which depends on the number of blocks
K (a parameter for the estimator MoMy). The estimator must be changed each time we
want to evaluate a different confidence level.

An ever more limiting feature is that the error threshold J is constrained and cannot
be set arbitrarily small, as in (1) or (2). Obviously, the number of blocks cannot exceed the
sample size N, and the error threshold reaches its lowest tolerable value exp(—N/8). In
other words, the interval defined in (3) can have confidence at most 1 — exp(—N/8).

Is this strong limitation specific to MoM estimators? No, say [8], [Theorem 3.2 and
following remark]. This limitation is universal; over the class gh cap’ there is no estimator
% of the mean such that there exists a constant L > 1 such that

24 \% x L1/210g<;>}
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is a confidence interval at level 1 — 6 for § lower than e O (),
To sum up, a good and cheap lunch is possible, with the limitation that the bound is

no longer valid for all confidence levels.

4. PAC-Bayes

We now briefly introduce the generalised Bayesian setting in machine learning, and
the resulting generalisation bounds, the PAC-Bayesian bounds. PAC-Bayes is a sophis-
ticated framework to derive new learning algorithms and obtain (often state-of-the-art)
generalisation bounds, while maintaining probability distributions over hypotheses; as
such, we are interested in studying how PAC-Bayes is compatible with good and cheap
lunches. We refer the reader to [1,9] and the many references therein for recent surveys
on PAC-Bayes including historical notes and main bounds. We focus on classical bounds
from the PAC-Bayes literature, based on the empirical risk as a risk estimator—and we
instantiate those bounds in two regimes matching the “expensive” and “cheap” models
introduced in Section 2.

4.1. Notation
For any f € F, we define the empirical risk Ry (f) as:

In the following, we consider integrals over the hypotheses space F. To keep the
notation as compact as possible, we will write p[g] = [ gdp if y is a measure over F and
g € F a p-integrable function.

4.2. Generalised Bayes and PAC Bounds

The main advantage of PAC-Bayes over deterministic approaches which output single
hypotheses (through optimisation of a particular criterion such as in model selection, etc.) is
that the distributions allow us to capture uncertainty on hypotheses, and take into account
correlations among possible hypotheses.

Denoting by p the posterior distribution, the quantity to control is:

o[R] = [ R(F)dp(f)

which is an aggregated risk over the class F and represents the expected risk if the predictor
f is drawn from p for each new prediction. The distribution p is usually data-dependent
and is referred to as a “posterior” distribution (by analogy with Bayesian statistics). We
also fix a reference measure 7r over F, called the “prior” (for similar reasons). We refer
to [1,10] for in-depth discussions on the choice of the prior: a recent streamline of work has
further investigated the choice of data-dependent priors [11-14].

The generalisation bounds associated to this setting are known as “PAC-Bayesian”
bounds, where PAC stands for probably approximately correct. One important feature
of PAC-Bayes bounds is that they hold true for any prior 77 and posterior p. In practice,
bounds are optimised with respect to p and possibly 7. In the following, we focus on
establishing bounds for any choice of 77 and p and do not mean to optimise.

4.3. Notion of Divergence

An important notion used in PAC-Bayesian theory is the divergence between two
probability distributions [see [15], for example, for a survey on divergences]. Let £ be a
measurable space and i and v two probability distributions on £. Let f be a non-negative
convex function defined on R such that f(1) = 0, we define the f-divergence between u
and v by
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Df(]i,v) = { ff(%)dv ifp<uv,

+o0 otherwise.

Note that we also use the notation f to denote hypotheses elsewhere in the paper, but we
believe the context to always be clear enough to avoid ambiguity.

Applying Jensen inequality, we have that Df(p, v) is always non-negative and equal to
zero if and only if 1 = v. The class of f-divergences includes many celebrated divergences,
such as the Kullback-Leibler (KL) divergence, the reversed KL, the Hellinger distance, the
total variation distance, y2-divergences, a-divergences, etc. Most PAC-Bayesian generalisa-
tion bounds involve the KL divergence.

A divergence can be thought of as a transport cost between two probability distribu-
tions. This interpretation will be useful for explaining PAC-Bayesian inequalities, where
the divergence plays the role of a complexity term. In the following, we will just use two
types of divergence. The first is the Kullback—Leibler divergence and corresponds to the
choice f(x) = xlogx, which we denote it by

KL(1,v) = flog(%)dy ifu<v,
+o00 otherwise.

The second is linked to Pearson’s x?-divergence and corresponds to the choice f(x) =
x2 — 1. It is referred to as Dy:

a2y 4
Dy(p,v) = { f(dy> dv —1 ifu<v,

+o00 otherwise.

To illustrate the behaviour of these two divergences, consider the case where y and v
are normal distributions on R¥.

Proposition 3. If € = R, yu = N(a,I), and v = N(0, I) (where I stands for the d x d identity
matrix), we have

DZ(H/ 1/) = eHaHZ -1,
KL (p,v) = 5|la|.

Proof. We have:

du(x) = W exp<f%(x —a)T(x — a))dx,

dv(x) = Wexp(f%xTJde,

(x) = exp(—4[~2xTa +a%a] ) = exp(—lal|*/2) exp(x"a).
Then:

1 1
Dy(p,v) exp(—HaHz) /exp <2xTa> @i exp(—ixTx> drx—1
1 1
oxp(~lel?) | Gy exP(*ixTx +2xTa> dv—1

= exp(—HaHz) exp<2Ha||2) /W exp<—%(x —2a)T(x - 2a)>dx -1

— llal? _ 1.
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And finally:

KL(p,v) = /(7@ +xTa> (an)d/z exp(f%(x —a)T(x - a))dx

al>
= —u—k/xTa(znl)d/z exp(—%(x—a)T(x—a)>dx

_llalP? la]?
5

_ 2 _
=L+ )

O

We therefore see that the divergence D, penalises much more strongly the gap between
the means of both distributions than the Kullback-Leibler divergence.

The following technical lemma involving the Kullback-Leibler divergence and a
change of measure from posterior to prior distribution is pivotal in the PAC-Bayes literature:

Lemma 1 ([5-16], Corollary 4.15). Let g be a measurable function g : F — R such that (3]
is finite. Let 7t and p be respectively prior and posterior measures as defined in Section 4.1. The
following inequality holds:

pl8] < log 7t[ef] + KL(p, 7).

4.4. Expensive PAC-Bayesian Bound

The first PAC-Bayesian bound we present is called “expensive PAC-Bayesian bound”
in the spirit of Section 2: it is obtained under a sub-Gaussian tails assumption. More
precisely, we suppose here that for any f € F, the distribution of the random variable

L(f(X),Y) belongs to Pespensives Which means
A2g?
log Eexp{A(£(f(X),Y) = R(f))}] < o VA eR.

In this setting, we have the following bound, close to the ones obtained by [10].

Proposition 4. Assume that for any f € F, ((f(X),Y) € PY, For any prior 7t, posterior

expensive”

o, and any § € (0,1), the following inequality holds true with a probability greater than 1 — &:

p[R] < p[RN] + jﬁ\/2(10g<(15> +KL(p, n)).

Proof. The proof is decomposed in two steps. The first leverages Lemma 1. Let A be a
positive number and apply Lemma 1 to the function A(R — Ry):

p[R] < p[RN] + %(logn{e)‘(R’RN)} + KL(p,n)).

The second step is to control the deviations of log 7t [EA(R*RN )} . With a probability
1 — 6, we have, by Markov’s inequality

cld )

s < 20

By Fubini’s theorem, we can exchange the symbols [E and 7r. Using the assumption

Peypensiver We obtain with a probability greater than 1 — &

- exp{)\zaz/ZN}

] <=2l

73



Entropy 2021, 23, 1529

Now, putting these results together and setting

\/2N<1og(§) +KL(p, 7))

o

A=

we obtain the desired bound. [

A PAC-Bayesian inequality is a bound which treats the complexity in the following
manner:

*  Atfirst, a global complexity measure is introduced with the change of measure and
is characterised by the divergence term, measuring the price to switch from 7 (the
reference distribution) to p (the posterior distribution on which all inference and
prediction is based);

e Next, the stochastic assumption on the data-generating distribution is used to control

7 [eMR=RN)] with high probability:

4.5. Cheap PAC-Bayesian Bounds
4.5.1. Using x* Divergence

The vast majority of works in the PAC-Bayesian literature focuses on an expensive
model. The main reason is that it includes the situation where the loss ¢ is bounded,
a common (yet debatable) assumption in machine learning. The case where ¢(f(X,Y)
belongs to a cheap model has attracted far less attention; recently, ref. [17] have obtained
the following bound.
Proposition 5 ([17], Theorem 1). Assume that for any f € F, ((f(X),Y) € PG, For any
prior 71, posterior p, and any § € (0,1), the following inequality holds true with a probability
greater than 1 — &
o [Dy(p, ) +1
VN s
The proof (see [17]) uses the same elementary ingredients as in the expensive case,

replacing the Kullback-Leibler divergence by D, and the dependence in 6 moves from
2log(1/0) to %. Note the correspondence between these two bounds and the confidence

p[R] < p[RN] +

intervals introduced in Section 2.

4.5.2. Using Huber-Type Losses

With a different approach, ref. [18] obtained asymptotic PAC-Bayesian bounds for
o-dependent risk estimators based on the empirical mean of Huber-type influence functions.
The author of [18] studied in a slightly more restrictive model than Pcheap, assuming in
addition that the order 3 moment of /(f(X),Y) is bounded for f € H. We rephrase here
Theorem 9 of [18]: with a probability greater than 1 — J,

pIR] < plRon] + o (Ko, ) + BT o ) -1) o),

where 713 (F) is a term depending on the quality of the prior. In Remark 10, the author
notes that assuming only finite moments for ¢(f(X),Y), it is impossible in practice to

choose a prior such that % decreases at rate 1/+/N or faster. Then, the dominant term

necessarily converges at a slower rate than that of Proposition 4. However, this bounds
leads to the definition of a robust PAC-Bayes estimator which proves efficient on simulated
data (see Section 5 of [18]).
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5. A Good Cheap Lunch: Towards a Robust PAC-Bayesian Bound?

If we take a closer look at the aforementioned PAC-Bayesian bounds from a robust
statistics perspective, the following question arises: can we obtain a PAC-Bayesian bound
with a y/log(1/J) dependence (possibly up to a numerical constant) in the confidence
level with the cheap model? In this section, we shed light on some structural issues. In the
following, we assume the existence of o > 0 such that for any f € F, {(f(X),Y) € Pé’heap.

5.1. A Necessary Condition

Let R be an estimator of the risk (not necessarily the classical empirical risk). Here is a
prototype of the inequality we are looking for: for any § € (0,1), with probability 1 — §

pIR] < p[R] + %A(p, m,9),

A(p, m,0) o O <\/log(1/5)).

If we choose p = 71 = J; 4, (Dirac mass in the single hypothesis f), the existence of
such a PAC-Bayesian bound valid for all § implies that

where

{ﬁ(f) + \;LN X ¢ log(l/&)}

is a confidence interval for the risk R(f) for any level 1 — 6, where c is a constant.

Thus, a necessary condition for a PAC-Bayesian bound to be valid for all of the risk
level § is to have tight confidence intervals for any f € F.

However, as covered in Section 3, such estimators do not exist over the class Pgheap,
and the possibility to derive a tight confidence interval is limited by the fact that the level ¢

must be greater that a positive constant of the form e~ (V).

5.2. A 6-Dependent PAC-Bayesian Bound?

As a consequence, there is simply no hope for a robust PAC-Bayesian bound valid
for any error threshold ¢, for essentially the same reason which prevents it in the mean
estimation case. The question we address now is the possibility of obtaining a robust
PAC-Bayesian bound, with a dependence of magnitude /2log(1/8) (possibly up to a
constant), with a possible limitation on the error threshold ¢. In the following, we assume
to have an estimator of the risk R and an error threshold & > 0 such that there exists a
constant C > 0 such that for any f € F,

5 o
R(f) £ —= x Cy/log(1/d ]
() 5 *C \og(1/0)

is a confidence interval for R(f) atlevel 1 — 5. MoM is an example of such estimator. Let

us stress that ¢ is fixed and cannot be used as a free parameter.

As seen above, a PAC-Bayesian bound proof proceeds in two steps:

e First, we use a convexity argument to control the target quantity p[R — R] by an
upper-bound involving a divergence term and a term of the form g~! <7‘L’ [g(R — ﬁ)] )
where g is a non-negative, increasing, and convex function;

*  Second, we control the term 7 [g(R - ﬁ)} in high probability, using Markov’s inequality.

The first step does not require any use of a stochastic model on the data, and is always
valid, regardless of whether we have a cheap or an expensive model. The second step uses
the model and introduce the dependence in the error rate J on the right-term of the bound:
g7 1(1/6). In the case of the “expensive bound”, we had ¢ = exp, and the dependence was
log(1/8), the final rate /log(1/J) was obtained by choosing a relevant value for A.
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Let us follow this scheme to obtain a robust PAC-Bayesian bound. The first step gives

pIR] < p[R] +  (1og [**P] 4+ KL(p, m)).
Our goal is now to control 7r {EA(R*E)} in high probability.

5.2.1. The Case T = J{f}

Let us start with a very special case, where the prior is a Dirac mass on some hypothesis
f € F. Then

Tloga[M K] = R(f) - R(p)

Using how R is defined, we can bound this quantity in the following way: with

probability 1 — 6,
R(f) - R(f) < % x Cy/log(1/6).

Another way to formulate this result is to say that there exists an event Ay with a
probability greater than 1 — J such that for all w € Ay, the following holds true:

(RU) = R(f)) < 7 x C\210g(1/0).

In this example, we can control log 7r e’\(R*R)] at the price of a maximal constraint on

the choice of the posterior. Indeed, the only possible choice for p for the Kullback-Leibler
KL(p, 7r) to make sense is p = 77 = 0y ¢}.

5.2.2. The Case = adsy + (1 — a)dyp,)

Consider now a somewhat more sophisticated choice of prior which is a mixture of
two Dirac masses in two distinct hypotheses. We do not fix the mixing proportion & and
allow it to move freely between 0 and 1. The goal is to control the quantity

[ MR = g MRA)-RUD) 4 (1 - @) RUD-RED),

More precisely, for all « € (0,1), we want to find an event A, on which this quantity
is under control. In view of the prior’s structure, the only way to ensure such a control is to
have A, C A 5N A for where A f (resp. A fz) is the favourable event for the concentration
of fl (resp. fz) around its mean.

By the union bound, we have that with a probability greater than 1 — 26

1 R o
<1 MRERI < —— x Cy/log(1/6).
Aogn{e }’WX og(1/9)

We face a double problem here. As above, if we want the final bound to be non-
vacuous, we have to ensure that KL(p, 77) is finite, which restricts the support for the
posterior to be included in the set {f1, f2}. In addition, the PAC-Bayesian bound holds
with a probability greater than 1 — 2J...

5.2.3. Limitation

. which hints at the fact that this will become 1 — K¢ if the support for the prior
contains K distinct hypotheses. If K > 1/J, the bound becomes vacuous. In particular, we
cannot obtain a relevant bound using this approach in the situation where the cardinal of
F is infinite (which is commonly the case in most PAC-Bayes works).

This limiting fact highlights that to derive PAC-Bayesian bounds, we cannot rely on
the construction of confidence interval for all R(f) for a fixed error threshold J. The issue
is that when we want to transfer this local property into a global one (valid for any mixture
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of hypotheses by the prior 77), we cannot avoid a worst-case reasoning by the use of the
union bound.

The established bounds in the PAC-Bayesian literature, both in cheap and expensive
models, repeatedly use the fact that when we assume that for any f € F,

A2g2
AR(f)—L(f(X),Y)) ~Y
logE e B S~ VAER
or
var(¢(f(X),Y)) < 2,

we make an implicit assumption on the integrability of the tail of the distribution of
£(f(X),Y). This argument is crucial for the second step of the PAC-Bayesian proof because,
by Fubini’s theorem, it allows us to convert a local property (the tail distribution of

each /(f(X),Y)) into a global one (the control of 7t [e/\(R_RW] or 7t[(R — Ry))?] in high
probability).

5.3. Is That the End of the Story?

We have identified a structural limitation to derive a tight PAC-Bayesian bound
in a cheap model. We make the case that we cannot replicate the PAC-Bayesian proof
presented in Section 4. To conclude this section, we want to highlight the fact that, up to
our knowledge, no proof of PAC-Bayesian bounds avoids these two steps (see, for example,
the general presentation in [19]).

What if we try to avoid the change of the measure step and try to control directly
0[R] — p[R] in high probability? We remark that p can only be chosen with the information
given by the observation of R(f), where f € F. In particular, we cannot obtain any
information of the concentration of each R(f) around R(f) as such knowledge requires to
know the true risk. So, it seems that a direct control cannot avoid starting as a “worst-case”
bound:

pIR] —p[R] < sup{R(f) = R(f) }-

feF

Then, we have to control sup ;. f{R( ) —R(f )} in high probability (see [20] for a
general presentation on such controls, and [7] for the recent results in the special case where
R is a MoM estimator). However, the obtained bound will take the following prototypic
form:

p[R] < p[R] + complexity term,

where the complexity term does not depend on the distribution p. Thus, the optimisation
of the right term leads to choosing p as the Dirac mass in arg min R(f).
eF
So, the overall procedure amounts to a slightly modiﬁefd empirical risk minimisation
(where the empirical mean is replaced with any estimator of the risk), and will not fall into
the category of generalised Bayesian approaches which take into account the uncertainty
on hypotheses. Pretty much all the strengths of PAC-Bayes would then be lost.

6. Conclusions

The present paper contributes a better understanding of the profound structural
reasons why good cheap lunches (tight bounds under minimal assumptions) are not
possible with PAC-Bayes by walking gently through elementary examples.

From a theoretical perspective, PAC-Bayesian bounds requires too strong assumptions
to adapt robust statistics results (where almost good lunches can be obtained for cheap
models—with the limitation that the confidence level is constrained). The second step of
the proof we have shown requires us to transform a local hypothesis, a control of some
moments of £(f(X),Y), into a global one, valid for all mixture of hypotheses by the prior
7t. As covered above, this transformation seems impossible.
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To close on a more positive note after this negative result, let us stress that even if
the conciliation of PAC-Bayes and robust statistics appears challenging, we believe that
the recent ideas from robust statistics could be used in practical algorithms inspired by
PAC-Bayes. In particular, we leave as an avenue for future work the empirical study of
PAC-Bayesian posteriors (such as the Gibbs measure defined as p o exp(—yR) for any
inverse temperature v > 0) where the risk estimator is not the empirical mean (as in most
PAC-Bayes works) but rather a robust estimator, such as MoM.
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Abstract: Stochastic gradient SG-based algorithms for Markov chain Monte Carlo sampling (SGMCMC)
tackle large-scale Bayesian modeling problems by operating on mini-batches and injecting noise
on SGsteps. The sampling properties of these algorithms are determined by user choices, such as
the covariance of the injected noise and the learning rate, and by problem-specific factors, such
as assumptions on the loss landscape and the covariance of SG noise. However, current SGMCMC
algorithms applied to popular complex models such as Deep Nets cannot simultaneously satisfy
the assumptions on loss landscapes and on the behavior of the covariance of the SG noise, while
operating with the practical requirement of non-vanishing learning rates. In this work we propose
a novel practical method, which makes the SG noise isotropic, using a fixed learning rate that we
determine analytically. Extensive experimental validations indicate that our proposal is competitive
with the state of the art on SGMCMC.

Keywords: Bayesian sampling; stochastic gradients; Monte Carlo integration

1. Introduction

Stochastic gradient (SG) methods have been extensively studied as a means for MCMC-
based Bayesian posterior sampling algorithms to scale to large data regimes. Variants of
SG-MCMC algorithms have been studied through the lens of first [1-3] or second-order [4,5]
Langevin Dynamics, which are mathematically convenient continuous-time processes that
correspond to discrete-time gradient methods with and without momentum, respectively.
The common traits underlying many methods from the literature can be summarized
as follows: they address large data requirements using SG and mini-batching, they in-
ject Gaussian noise throughout the algorithm execution, and they avoid the expensive
Metropolis-Hasting accept/reject tests that use the whole data [1,2,4].

Despite mathematical elegance and some promising results restricted to simple mod-
els, current approaches fall short in dealing with the complexity of the loss landscape
typical of popular modern machine learning models, e.g., neural networks [6,7], for which
stochastic optimization poses some serious challenges [8,9].

In general, SG-MCMC algorithms inject random noise to SG descent algorithms: the
covariance of such noise and the learning rate, or step-size in the stochastic differential equa-
tion simulation community, are tightly related to the assumptions on the loss landscape,
which together with the SG noise, determine the sampling properties of these methods [5].
However, current SG-MCMC algorithms applied to popular complex models such as Deep
Nets, cannot simultaneously satisfy the assumptions on posterior distribution geometry
and on the behavior of the covariance of the SG noise, while operating with the practical
requirement of non-vanishing learning rates. In this paper, in accordance with most of
the Neural Network related literature, we refer to the posterior distribution geometry as
loss landscape. Some recent work [10], instead, argue for fixed step sizes, but settle for
variational approximations of quadratic losses. Although we are not the first to highlight
these issues, including the lack of a unified notation [5], we believe that studying the
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role of noise in SG-MCMC algorithms has not received enough attention, and a deeper
understanding is truly desirable, as it can clarify how various methods compare. Most
importantly, this endeavor can suggest novel and more practical algorithms relying on
fewer parameters and less restrictive assumptions.

In this work we chose a mathematical notation that emphasizes the role of noise
covariances and learning rate on the behavior of SG-MCMC algorithms (Section 2). As a
result, the equivalence between learning rate annealing and extremely large injected noise
covariance becomes apparent, and this allows us to propose a novel practical SG-MCMC
algorithm (Section 3). We derive our proposal, by first analyzing the case where we inject
the smallest complementary noise such that its combined effects with the SG noise result in
an isotropic noise. Thanks to this isotropic property of the noise, it is possible to deal with
intricate loss surfaces typical of deep models, and produce samples from the true posterior
without learning rate annealing. This, however, comes at the expense of cubic complexity
matrix operations. We address such issues through a practical variant of our scheme, which
employs well-known approximations to the SG noise covariance (see, e.g., [11]). The result
is an algorithm that produces approximate posterior samples with a fixed, theoretically
derived, learning rate. Please note that in generic Bayesian deep learning setting, none of
the existing implementations of SG-MCMC methods converge to the true posterior without
learning rate annealing. In contrast, our method automatically determines an appropriate
learning rate through a simple estimation procedure. Furthermore, our approach can
be readily applied to pre-trained models: after a “warmup” phase to compute SG noise
estimates, it can efficiently perform Bayesian posterior sampling.

We evaluate SG-MCMC algorithms (Section 4) through an extensive experimental
campaign, where we compare our approach to several alternatives, including Monte Carlo
Dropout (MCD) [12] and Stochastic Weighted Averaging Gaussians (SWAG, [9]), which have
been successfully applied to the Bayesian deep learning setting. Our results indicate that
our approach offers performance that are competitive to the state of the art, according to
metrics that aim at assessing the predictive accuracy and uncertainty.

2. Preliminaries and Related Work

Consider a dataset of m—dimensional observations D = {U;}Y ;. Given prior p(6)
for a d-dimensional set of parameters, and a likelihood model p(D|0), the posterior is
obtained by means of Bayes theorem as follows:

ploip) = HEEIE) <1)

where p(D) is also known as the model evidence, defined as the integral
p(D) = [ p(D]|6) p(6)d6. Except when the prior and the likelihood function are con-
jugate, Equation (1) is analytically intractable [13]. However, the joint likelihood term in
the numerator is typically not hard to compute; this is a key element of many MCMC algo-
rithms, since the normalization constant p(D) does not affect the shape of the distribution
in any way other than scaling. The posterior distribution is necessary to obtain predictive
distributions for new test observations U, as:

p(U.ID) = [ pU.lo)p(o/D)d0 @

We focus in particular on Monte Carlo methods to obtain an estimate of this predictive
distribution, by averaging over Nyjc samples obtained from the posterior over 6, i.e.,
61 ~ p(6/D)

N

MC .
Y. p(u.]e) ®)
i=1

1
u,D)~—
pULID) ~ )
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We develop our work by working with an unnormalized version of the logarithm of
the posterior density, by expressing the negative logarithm of the joint distribution of the
dataset D and parameters 6 as:

N
— f(8) = )_log p(U;|6) +log p(6). @)
i=1

For computational efficiency, we use a minibatch stochastic gradient g(6), which
guarantees that the estimated gradient is an unbiased estimate of the true gradient V£(8),
and we assume that the randomness due to the minibatch introduces a Gaussian noise:

8(6) ~ N(V£(6),2B(6)), ®)

where the matrix B(0) denotes the SG noise covariance, which depends on the parametric
model, the data distribution and the minibatch size.

A survey of algorithms to sample from the posterior using SG methods can be found
in Ma et al. [5]. In Appendix A we report some well-known facts which are relevant
for the derivations in our paper. As shown in the literature [10,14], there are structural
similarities between SG-MCMC algorithms and stochastic optimization methods, and both
can be used to draw samples from posterior distributions. Notice that the original goal of
stochastic optimization is to find the minimum of a given cost function, and the stochasticity
is introduced by sub-sampling the dataset to scale. SG-MCMC methods instead aim at
sampling from a given distribution, i.e., collecting multiple values, and the stochasticity
is necessary explore the whole landscape. In what follows, we use a unified notation to
compare many existing algorithms in light of the role played by their noise components.

It is well-known [15-17] that stochastic gradient descent (SGD), with and without
momentum, can be studied through the following stochastic differential equation (SDE),
when the learning rate 7 is small enough (In this work we do not consider discretization
errors. The reader can refer to classical SDE texts such as [18] to investigate the topic in

greater depth.):
dZt = S(Zt)dt+ ,/ZUD(zt)th. (6)

where s is usually referred to as driving force and D as diffusion matrix We use a generic
form of the SDE, with variable z instead of 8, which accommodates SGD variants, with and
without momentum. By doing this, we will be able to easily cast the expression for the
two cases in what follows (The operator VT applied to matrix D(z) produces a row vector
whose elements are the divergences of the D(z) columns. Our notation is aligned with
Chen et al. [4]).

Definition 1. A distribution p(z)  exp(—¢(z)) is said to be a stationary distribution for the
SDE of the form (6), if and only if it satisfies the following Fokker-Planck equation (FPE):

0=Te{V|-s(z) p() + VT (D(2)p(2)] } )

Please note that in general, the stationary distribution does not converge to the desired
posterior distribution, i.e., ¢(z) # f(z), as shown by Chaudhari and Soatto [8]. Addition-
ally, given an initial condition for z;, its distribution is going to converge to p(z) only for
t — co. In practice, we observe the SDE dynamics for a finite amount of time: then, we
declare that the process is approximately in the stationary regime once the potential has
reached low and stable values.

Next, we briefly overview known approaches to Bayesian posterior sampling, and
interpret them as variants of an SGD process, using the FPE formalism.
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2.1. Gradient Methods without Momentum

The generalized updated rule of SGD, described as a discrete-time stochastic process,
writes as:

00y = —yP(0,-1)(8(0,-1) +wy), ®)

where P(6,,_1) is a user-defined preconditioning matrix, and w;, is a noise term, dis-
tributed as w, ~ N(0,2C(6y)), with a user-defined covariance matrix C(6,). Then, the
corresponding continuous-time SDE is [15]:

de; = *P(B[)Vf(@f)df#‘ QIZWP(Bt)ZE(O[)th. 9)

In this paper we use the symbol 7 to indicate discrete time, while ¢ for continuous time. We
denote by C(0) the covariance of the injected noise and L(0) the composite noise covariance.
Please note that X(6;) = B(6;) + C(6;) combines the SG and the injected noise. Notice that
our choice of notation is different from the standard one, in which the starting discrete-
time process is in the form 66, = —yP(0,_1)(g(0,—1)) + wy,. By directly grouping the
injected noise with the stochastic gradient we can better appreciate the relationship between
annealing the learning rate and extremely large injected noise. Moreover, as will be
explained in Section 3, this allows derivation of a new sampling algorithm.

We define the stationary distribution of the SDE in Equation (9) as p(8) o exp(—¢(6)).
Please note that when C = 0, the potential ¢(0) differs from the desired posterior f(8) [8].
The following theorem, which is an adaptation of known results in light of our formalism,
states the conditions for which the noisy SGD converges to the true posterior distribution
(proof in Appendix A).

Theorem 1. Consider dynamics of the form (9) and define the stationary distribution p(0) o
exp(—¢(6)). If
Al (2(9)*1> =0" and nP(0) =x(0) !, (10)

then ¢(0) = f(8).

Stochastic Gradient Langevin Dynamics (SGLD) [1] is a simple approach to satisfy
Equation (10); it uses no preconditioning, P(8) = I, and sets the injected noise covariance
to C(6) = y~'I. In the limit for  — 0, it holds that Z(0) = B(0) + 7 'I ~ 5~ 'I.
Then, VT (2(6)71) =4V I =0",and yP(0) = £(0) . Although SGLD succeeds in
(asymptotically) generating samples from the true posterior, its mixing rate is unnecessarily
slow, due to the extremely small learning rate [2].

An extension to SGLD is Stochastic Gradient Fisher Scoring (SGFS) [2], which can be
tuned to switch between sampling from an approximate posterior, using a non-vanishing
learning rate, and the true posterior, by annealing the learning rate to zero. SGFS uses
preconditioning, P(0) « B (6)L. In practice, however, B(8) is ill conditioned for com-
plex models such as deep neural networks. Then, many of its eigenvalues are almost
zero [8], and computing B(6) s problematic. An in-depth analysis of SGFS reveals that
conditions (10) would be met with a non-vanishing learning rate only if, at convergence,
VT(B(8) ') =07, which would be trivially true if B(8) was constant. However, recent
work [6,7] suggest that this condition is difficult to justify for deep neural networks.

The Stochastic Gradient Riemannian Langevin Dynamics (SGRLD) algorithm [3] ex-
tends SGFS to the setting in which V' (B(0) 1 £07. The process dynamic is adjusted by
adding the term V7 (B(6) ). However, the term VT (B(8) ') has not a clear estimation
procedure, restricting SGRLD to cases where it can be computed analytically.

The work by [10] investigates constant-rate SGD (with no injected noise), and deter-
mines analytically the learning rate and preconditioning that minimize the Kullback-Leibler
(KL) divergence between an approximation and the true posterior. Moreover, it shows
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that the preconditioning used in SGFS is optimal, in the sense that it converges to the true
posterior, when B(0) is constant and the true posterior has a quadratic form.

In summary, to claim convergence to the true posterior distribution, existing ap-
proaches require either vanishing learning rates or assumptions on the SG noise covariance
that are difficult to verify in practice, especially when considering deep models. We
instead propose a novel practical method that induces isotropic SG noise and thus satis-
fies Theorem 1. We determine analytically a fixed learning rate, and we require weaker
assumptions on the loss shape.

2.2. Gradient Methods with Momentum

Momentum-corrected methods emerge as a natural extension to SGD approaches. The
general set of update equations for (discrete-time) momentum-based algorithms is:

30, = Wp(erlfl)Milrnf]
Oty = —1A(0y—1)M 11,1 — nP(0,-1)(8(04—1) + wn),

where P(6,_1) is a preconditioning matrix, M is the mass matrix and A(6,,_1) is the friction

matrix, as shown by [4,19]. As with the first order counterpart, the noise term is distributed

as wy ~ N(0,2C(6,))). Then, the SDE to describe continuous-time system dynamics is:
dB/ = P(O[)Milrtdt (11)
dry = —(A(6))M~'ry + P(6;)V £(6;))dt + /27P(6,)2L(6;)dW,.

where P(6;)? = P(68;)P(8;) and we assume P(8;) to be symmetric. The theorem hereafter
describes the conditions for which noisy SGD with momentum converges to the true
posterior distribution (Appendix A).

Theorem 2. Consider dynamics of the form (11) and define the stationary distribution for 6; as
p(6) o exp(—¢(0)). If

VTP0) =0T and A(6) = 4P (0)*L(6), (12)
then ¢(0) = £(6) .

In the naive case, where P(0) = I, A(8) = 0, C(0) = 0, Equation (12) are not satisfied
and the stationary distribution does not correspond to the true posterior [4]. To generate
samples from the true posterior it is sufficient to set P(6) = I, A(6) = nB(6),C(6) =0
(as in Equation (9) in [4]).

Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) [4] suggests that estimating
B(8) can be costly. Hence, the injected noise C(8) is chosen such that C(8) = -1 A(8),
where A(8) is user-defined. When# — 0, the following approximation holds: £(8) ~ C(#).
It is then trivial to check that conditions (12) hold without the need for explicitly estimating
B(6). A further practical reason to avoid setting A(8) = yB(6) is that the computational
cost for the operation A(6,_1)M~'r,_; has O(D?) complexity, whereas if C(8) is diagonal,
this is reduced to O (D). This, however, severely slows down the sampling process.

Stochastic Gradient Riemannian Hamiltonian Monte Carlo (SGRHMC) is an exten-
sion to SGHMC [5]), which considers a generic, space-varying preconditioning matrix
P(0) derived from information geometric arguments [20]. SGRHMC suggests setting
P(0) = G(0) =2, where G(0) is the Fisher Information matrix. To meet the require-
ment V'P(8) =07, it includes a correction term, —V ' P(8). The injected noise is
set to C(8) = n~'I — B(8), consequently Z = ;~'I, and the friction matrix is set to
A(6) = P(6)>. With all these choices, Theorem 2 is satisfied. Although appealing, the
main drawbacks of this method are the need for an analytical expression of VT P(8), and
the assumption for B(6) to be known.
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From a practical standpoint, momentum-based methods suffer from the requirement
to tune many hyperparameters, including the learning rate, and the parameters that govern
the simulation of a second-order Langevin dynamics.

The method we propose in this work can be applied to momentum-based algorithms;
in this case, it could be viewed as an extension of the work in [11], albeit addressing the
complex loss landscapes typical of deep neural networks. However, we leave this avenue
of research for future work.

3. Sampling by Layer-Wise Isotropization

We present a simple and practical approach to inject noise to SGD iterates to perform
Bayesian posterior sampling. Our goal is to sample from the true posterior distribution
(or approximations thereof) using a constant learning rate, and to rely on more lenient
assumptions about the shape of the loss landscape that characterize deep models, compared
to previous works. In general, in modern machine learning applications, we deal with
multi-layer neural networks [21]. We exploit the natural subdivision of the parameters of
these architecture into different layers to propose a practical sampling scheme

Careful inspection of Theorem 1 reveals that the matrices P(6), Z(0) are instrumental
in determining the convergence properties of SG methods to the true posterior. Therefore,
we consider the constructive approach of designing P (0) to obtain a sampling scheme that
meets our goals; we set #P(0) to be a constant, diagonal matrix which we constrain to be
layer-wise uniform:

nP(8) = A~ = diag([A1),..., AM, AN AN (13)

layer 1 layer N;

By properly selecting the set of parameters {A'} we can achieve the simultaneous result of
non-vanishing learning rate and well-conditioned preconditioning matrix. This implies a
layer-wise learning rate (P) = ﬁ for the p-th layer, without further preconditioning.

We can now prove (see Appendix B), as a corollary to Theorem 1, that our design
choices can guarantee convergence to the true posterior distribution.

Corollary 1. (Theorem 1) Consider dynamics of the form (9) and define the stationary distribution
0(0) < exp(—¢(0)). If yP(6) = A L asin (13), C(8) = A — B(0) and C(0) = 0 V0, then
¢(0) = £(6).

If aforementioned conditions are satisfied, it is in fact simple to show that the relevant
matrices satisfy the conditions in Equation (10). The covariance matrix of the composite
noise is said to be isotropic within the layers of (deep) models. In fact, Z(6) = C(6) +
B(6) = diag({A(l),...,A(l),...,A(NI),. . .A(Nl)]). From a practical point of view, we
choose A to be, among all valid matrices satisfying A — B(68) > 0, the smallest (the one
with the smallest A’s). Indeed, larger A induce a smaller learning rate, thus unnecessarily
reducing sampling speed.

Now, let us consider an ideal case, in which we assume the SG noise covariance B(6)
and A to be known in advance. The procedure described in Algorithm 1 illustrates a naive
SG method that uses the injected noise covariance C(8) to sample from the true posterior.
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Algorithm 1 Idealized posterior sampling

{Initialization: 6}

SAMPLE (6, B(0), A):

0 < 6y

loop
§="Vf(®)
n~ N(0,I)
C(0)"* + (£~ B())”
g+ X (g +/2C(8)"n)
0<—0—-g

end loop

This deceivingly simple procedure generate samples from the true posterior, with a
non-vanishing learning rate, as shown earlier. However, it cannot be used in practice as
B(6) and A are unknown. Furthermore, the algorithm requires computationally expensive
operations, i.e., to compute (X — B(B))%, which requires O(d®) operations, and C (6)%,
which costs O(d?) multiplications.

Next, we describe a practical variant of our approach, where we use approximations
at the expense of generating samples from the true posterior distribution. We note that [10]
suggest exploring a related preconditioning, but do not develop this path in their work.
Moreover, the proposed method shares similarities with a scheme proposed in [22] although
the analysis we perform here is different.

3.1. A Practical Method: Isotropic SGD

To render the idealized sampling method practical, it is necessary to consider some
additional assumptions. As we explain at the end of this section, the assumptions that
follow are less strict than other approaches in the literature.

Assumption 1. The SG noise covariance B(0) can be approximated with a diagonal matrix, i.e.,
B(0) = diag(b(0)).

Assumption 2. The signal-to-noise ratio (SNR) of a gradient is small enough such that in the
stationary regime, the second-order moment of the gradient is a good estimate of the true variance.
Hence, combining with Assumption 1, b(0) ~ w, where © indicates the element-

wise produict.

Assumption 3. The sum of the variances of noise components, layer by layer, can be assumed

to constant in the stationary regime. Then, pP) = ¥ b;(0), where I, is the set of indices of
JELp
parameters belonging to py, layer.

The diagonal covariance assumption (i.e., Assumption 1) is common in other works,
such as [2,11]. The small signal-to-noise ratio as stated in Assumption 2 is in line with
recent studies, such as [11,23]. Assumption 3 is similar to those appeared in earlier work,
such as [24]. Please note that Assumptions 2 and 3 must hold in the stationary regime
when the process reaches the bottom valley of the loss landscape. The matrix (b(6)) has
been associated in the literature with the empirical Fisher information matrix [2,25]. As we
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do not consider this matrix for preconditioning purposes, we do not further investigate
this connection.
Given our assumptions, and our design choices, it is then possible to show (see Appendix B)

that the optimal (i.e., the smallest possible) A = [)\(1),. L AL AND /\<Nl)] satisfy-

ing Corollary 1 can be obtained as A(") = B(P). Please note that we do not assume
B(6) to be known, but use a simple procedure to estimate its components by computing:
AlP) = jeZI:p b;(8) = w, where g(P) (8) is the portion of stochastic gradient correspond-
ing to the p-th layer. Then, the composite noise matrix Z = A is a layer-wise isotropic
covariance matrix, which inspires the name of our proposed method as Isotropic SGD
(1-sGD).

The practical implementation of I-SGD is shown in Algorithm 2. The advantage of
I-SGD is that it can either be used to obtain posterior samples starting from a pre-trained
model, or do so by training a model from scratch. In either case, the estimates of B(0) are
used to compute A, as discussed above. An important consideration is that once all A()
have been estimated, the learning rate, layer by layer, is determined automatically. In fact,

for the p-th layer, the learning rate is: 7(?) = A(P) A simpler approach is to use a unique
learning rate for all layers, where the equivalent A is the sum of all A(P).

Algorithm 2 1-SGD: practical posterior sampling

SAMPLE (6)):

6 < 6y
loop
g§=Vf(o)

forp < 1to N, do
n~ N(0,I)
) « (N) —(1)2) <g(p> ®g<p>))
g 1/A0) (g(P) + \/EC(")VZ")
end for
0<—0—-g

end loop

A Remark on Convergence

In summary, I-SGD is a practical method to perform approximate Bayesian posterior
sampling, backed up by solid theoretical foundations. Our assumptions, which are at the
origin of the approximate nature of 1-SGD, are less strict than those used in the literature of
SG-MCMC methods. More precisely, the theory behind I-SGD can explain convergence to the
true posterior with a non-vanishing learning rate in the particular case when Assumption 1
holds and the estimation of B(0) is perfect. Even with perfect estimates, this is not the case
for SGFS, which requires the correction term VT B(8) “1-o. Additionally, both SGRLD and
SGRHMC are more demanding than I-SGD because they require computing V' B(8) 1, for
which an estimation procedure is elusive. Finally, the method by Springenberg et al. [11]
needs a constant, diagonal B(0), a condition that does not necessarily hold for deep models.
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3.2. Computational Cost

The computational cost of I-SGD is as follows. As with [4], we define the cost of
computing a gradient minibatch as C¢(Ny, d). Thanks to Assumptions 1 and 2, the com-
putational cost for estimating the noise covariance scales as O(d) multiplications. The
computational cost of generating random samples with the desired covariance scales as
O(d) square roots and O(d) multiplications (without considering the cost of generating
random numbers). The overall cost of our method is the sum of the above terms. Notice
that the cost of estimating the noise covariance does not depend on the minibatch size Nj,.
We would like to stress that in many modern models, the real computational bottleneck
is the backward propagation for the computation of the gradients. As all the SG-MCMC
methods considered in this work require one gradient evaluation per step, the different
methods have in practice the same complexity.

The space complexity of I-SGD is the same as SGHMC,SGFS and variants: it scales as
O(Nsamd), where Ngam is the number of posterior samples.

4. Experiments

The empirical analysis of our method, and its comparison to alternative approaches
from the literature, is organized as follows. First, we proceed with a validation of 1-SGD
using the standard UCI datasets [26] and a shallow neural network. Then we move to the
case of deeper models: we begin with a simple CNN used on the MNIST [27] dataset, then
move to the standard RESNET-18 [28] deep network using the CIFAR-10 [29] dataset.

We compare I-SGD to other Bayesian sampling methods such as SGHMC [4], SGLD [2],
and to alternative approaches to approximate Bayesian inference, including MCD [12],
SWAG [9] and vSGD [10]. In general, our result indicates that: (1) I-SGD achieves similar or
superior performance regarding competitors, when measuring uncertainty quantification,
even with simple datasets and models; (2) 1-SGD is simple to tune, when compared to
alternatives; (3) I-SGD is competitive when used for deep Bayesian modeling, even when
compared to standard methods used in the literature. In particular, the proposed method
shares some of the strengths of VSGD, such as learning rates determined automatically and
the simplicity of SGLD. Appendix B includes additional implementation details on I-SGD.
Appendix C presents detailed configurations of all methods we compare, and additional
experimental results.

4.1. A Disclaimer on Performance Characterization

It is important to stress a detail on the analysis of the experimental campaign. The
discussion is usually focused on the goodness of the various methods for representing the
true posterior distribution. Different methods can or cannot claim convergence to the true
posterior according to certain assumptions and the nature of the hyperparameters. In the
experimental validation of the results, however, we do not have access to the form of the
true posterior as it is exactly the problem we are trying to solve. The practical solution
adopted is to compare the different methods in terms of proxy metrics evaluated on the
test sets, such as the accuracy and uncertainty metrics. Being better in terms of these
performance metrics does not imply that the sampling method is better at approximating
the posterior distribution, and outperforming competitors in terms of these metric do not
provide sufficient information about the intrinsic quality of the sampling scheme.

4.2. Regression Tasks, with Simple Models

We consider several regression tasks defined on the UCI datasets. We use a simple
neural network configuration with two fully connected layers and a ReLU activation
function; the hidden layer includes 50 units. In this set of experiments, we use the following
metrics: the root mean square error (RMSE) to judge the model predictive performance and
the mean negative log-likelihood (MNLL) as a proxy for uncertainty quantification. We note
that the task of tuning our competitors was far from trivial. We used our own version of
SGHMC, based on [11], to ensure a proper understanding of the implementation internals,
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and we proceeded with a tuning process to find appropriate values for the numerous
hyperparameters. In this set of experiments, we omit results for SWAG, which we keep for
more involved scenarios.

Tables 1 and 2 report a complete overview of our results, for a selection of UCI
datasets. For each method and each dataset, we also included how many out of the 10
splits considered failed to converge, indicated as F = .... As explained in Appendix C we
implemented a temperature scaled version of VSGD. A clear picture emerges from this first
set of experiments: while for the RMSE the performance is similar for different methods, for
the MNLL averaging over multiple samples clearly improves the uncertainty quantification
capabilities. SGHMC is in many cases better than alternatives, considering however the
standard deviation of the results it is difficult to claim clear superiority of one method over
the others.

Table 1. RMSE results for regression on UCI datasets.

Method WINE PROTEIN NAVAL KINSNM POWER BOSTON
SGLD 0.759 + 0.07 5.687 £+ 0.05 0.007 = 0.00 (F =6.000)  0.171 £ 0.07 (F = 3.000) 11.753 £ 3.25 9.602 £ 2.06
1-SGD 0.635 = 0.05 4.699 +0.03 0.001 £ 0.00 0.079 £ 0.00 4.320 +0.13 3.703 £1.19
Baseline 0.641 + 0.05 4.733 +0.05 0.001 £ 0.00 0.080 £ 0.00 4.354 +0.12 3.705 +1.19
VSGD 0.635 &+ 0.05 4.699 +0.03 0.001 £ 0.00 0.079 £ 0.00 4.325+0.13 3.588 + 1.06 (F = 1.000)
SGHMC 0.628 + 0.04 4.712 + 0.03 0.000 £ 0.00 (F =2.000)  0.076 £ 0.00 (F = 1.000) 4.310 £ 0.14 3.659 +£1.24
SGLD T 0.752 = 0.07 5.673 £+ 0.04 0.007 = 0.00 (F =6.000)  0.169 £ 0.07 (F =3.000)  11.351 £ 3.02 9.417 £ 2.07
DROP 0.637 + 0.04 4.968 + 0.05 0.003 £ 0.00 0.139 £ 0.01 4.531 +0.16 3.803 +1.26
SGHMC T 0.628 & 0.04 4.684 +0.03 0.000 =+ 0.00 (F = 6.000) 0.076 £ 0.00 4.326 +0.13 3.692 +1.19
Table 2. MNLL results for regression on UCI datasets.
Method WINE PROTEIN NAVAL KINSNM POWER BOSTON
SGLD 1.546 £ 0.25 5.604 = 0.08 —1.751 £ 0.28 (F = 6.000) 5.140 + 7.05 (F=3.000) 8.429 +3.14 30.386 + 15.77
1-SGD 1.129 £0.15 4.371 +0.03 —2.466 +1.12 —0.460 + 0.65 3.122 +0.07 9.799 £+ 5.69
Baseline 1.182 £ 0.03 3.964 + 0.04 0.920 £ 0.00 0.924 £ 0.00 3.071 £+ 0.06 5421 £2.73
VSGD 1.128 £0.15 4.371 +£0.03 —2.466 +1.12 —0.480 & 0.65 3.088 +0.06  8.413 + 5.89 (F = 1.000)
SGHMC 1.041 £0.12 4.142 +0.02 —2.763 £ 1.33 (F=2.000) —0.798 £0.39 (F=1.000) 2.924 4+ 0.04 3.097 £ 0.83
SGLD T 1.526 +£0.24 5.591 +0.07 —1.752 + 0.28 (F = 6.000) 5.118 + 7.06 (F = 3.000) 8.288 £ 3.04 33.212 £+ 19.69
DROP 1.065 £ 0.12 4.218 + 0.06 —2.322+0.75 —0.086 + 0.41 2.941 £+ 0.04 3.989 + 1.23
SGHMC T 1.104 £0.14 4.191 +0.02 —2.966 £ 1.89 (F = 6.000) —0.756 + 0.42 3.116 = 0.07 9.826 £ 5.72

4.3. Classification Tasks, with Deeper Models

Next, we compare 1-SGD against competitors on image classification tasks. First,
we use the MNIST dataset, and a simple LENET-5 CNN [30]. All methods are com-
pared based on the test accuracy ACC,MNLL and the expected calibration error (ECE,
[31]). Additionally, at test time, we carry out predictions on both MNIST and NOT-
MNIST; the latter is a dataset equivalent to MNIST , but it represents letters rather than
numbers. (http://yaroslavvb.blogspot.com/2011/09 /notmnist-dataset.html, accessed on
24 October 2021) This experimental setup is often used to check whether the entropy of
the predictions on NOT-MNIST is higher than the entropy of the predictions on MNIST (the
entropy of the output of an N,; classes classifier, represented by the vector p, is defined as

Ny
- Zl pilog p;).
i=
Table 3 indicates that all methods are essentially equivalent in terms of accuracy
and MNLL. We consider, together with the classical in and out of distribution entropies
the regions of convergence (ROCS) diagrams comparing detection of out of distribution
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samples and false alarms when using as test statistic the entropy. Results, reported in
Figure 1, clearly shows that: (1) collecting multiple samples improve the uncertainty
quantification capabilities (2) I-SGD is competitive (but not the best scheme) and importantly
outperform the closest approach to ours, i.e., VSGD. The experimental results show that
I-SGD improves the quality of the BASELINE model with respect to all metrics. To test
whether the improvements are due just to “additional training” or are intrinsically due to the
Bayesian averaging properties, we do consider alternative deterministic baselines (details
in Appendix C). For this set of experiments the best performing is BASELINE R. As can be
appreciated by comparing Table 3 and Figure 1, while it is possible to increase the classical
metrics, I-SGD (and other methods) still outperform by a large margin the baselines in
terms of detection of out of distribution samples.

Table 3. Results for classification on MNIST dataset.

Method ACC MNLL Mean Hy ECE Mean H; Failed
1-SGD 9916.3333 + 2.8674  263.5311 + 16.3600 0.0368 + 0.0019 0.0491 + 0.0003 0.4558 + 0.0591 0.0000
SGHMC 9930.6667 + 2.4944 268.2559 + 6.8172 0.0593 £ 0.0018 0.0531 £ 0.0003 1.0369 + 0.0346 0.0000
DROP 9912.6667 + 6.0185  362.8973 + 24.8881 0.0960 £ 0.0090 0.0541 £ 0.0011 0.5507 £ 0.0577 0.0000
BASELINE 9886.6667 &+ 11.0252  352.6640 =+ 20.8622 0.0353 + 0.0058 0.0468 + 0.0001 0.0019 =+ 0.0003 0.0000
BASELINE r 9919.0000 + 9.4163  242.7644 + 17.0736 0.0303 + 0.0001 0.0482 + 0.0006 0.0021 =+ 0.0002 0.0000
SWAG 9917.0000 + 2.8284  308.8182 =+ 20.0979 0.0675 + 0.0108 0.0524 + 0.0011 0.3953 =+ 0.0442 0.0000
SGLD 9927.0000 + 1.0000  279.7685 + 16.6563 0.0556 + 0.0034 0.0531 £ 0.0004 1.3032 £ 0.1942 1.0000
VSGD 9927.3333 + 6.7987  225.3725 + 16.3739 0.0274 + 0.0008 0.0481 =+ 0.0005 0.0414 + 0.0070 0.0000
1-sGD T 9915.6667 + 0.9428  255.9641 + 12.8051 0.0289 + 0.0014 0.0478 + 0.0002 0.0284 + 0.0122 0.0000
SGHMC T 9937.0000 + 0.0000 231.5332 =+ 0.0000 0.0434 + 0.0000 0.0518 =+ 0.0000 0.4623 + 0.0000 2.0000

Paet

ISGD
—— DROP
—— Baseline
—— Baseline R
—— SWAG
—— SGHMC
—— VSGD

Figure 1. Detection/False alarm diagrams for different methods.

We now move on to a classical image classification problem with deep convolutional
networks, whereby we use the CIFAR10 dataset, and the RESNET-18 network architecture.
For this set of experiments, we compare I-SGD, SGHMC, SWAG, and VSGD using again test
accuracy and MNLL, which we report in Table 4. As usual, we compare the results against
the baseline of the individual network resulting from the pre-training phase. Results are
obtained averaging over three independent seeds. Notice, as expanded in Appendix C that
for SWAG we do consider two variants: the Bayesian correct one (SWAG) and a second vari-
ant that has better performance (SWAG wd). We stress again, as highlighted in Section 4.1
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that not always goodness of approximation of the posterior and performance correlate
positively. Additionally in this case, we found 1-SGD to be competitive with other methods
and superior to the baseline. Among the competitors, we found I-SGD to the easiest to
tune, given the feature of a fixed learning rate informed by theoretical considerations; we
believe that this is an important aspect to consider for a wide adoption of our proposal by

practitioners.

Table 4. Results for classification on CIFAR10 10 dataset.

Method ACC MNLL mean Hj ECE

1-SGD 8591.3333 £ 17.4611 4393.3557 £ 107.0878 0.6107 £ 0.0337 0.0731 £ 0.0075
SGHMC 8634.6667 + 5.1854 4357.8998 + 11.2722 0.6300 + 0.0023 0.0819 £ 0.0017
SWAG wd 8740.6667 + 35.5653 3931.9900 + 45.6605 0.4130 £ 0.0066 0.0275 £ 0.0015
SWAG 8061.0000 4 11.4310 5903.2605 £ 62.8167 0.5308 £ 0.0135 0.0163 £ 0.0019
BASELINE 8273.3333 £ 26.7872 8050.4467 4 109.9864 0.2250 + 0.0005 0.0809 =+ 0.0020
VSGD 8255.6667 + 24.1155 8919.8062 + 106.3571 0.1761 £ 0.0078 0.0905 £ 0.0020

5. Conclusions

SG methods allowed Bayesian posterior sampling algorithms, such as MCMC, to regain
relevance in an age when datasets have reached extremely large sizes. However, despite
mathematical elegance and promising results, current approaches from the literature are
restricted to simple models. Indeed, the sampling properties of these algorithms are
determined by simplifying assumptions on the loss landscape, which do not hold for the
kind of complex models which are popular these days, such as deep models. Meanwhile,
SG-MCMC algorithms require vanishing learning rates, which force practitioners to develop
creative annealing schedules that are often model specific and difficult to justify.

We have attempted to target these weaknesses by suggesting a simpler algorithm that
relies on fewer parameters and less strict assumptions compared to the literature on SG-
MCMC. We used a unified mathematical notation to deepen our understanding of the role
of the covariance of the noise of stochastic gradients and learning rate on the behavior of SG-
MCMC algorithms. We then presented a practical variant of the SGD algorithm, which uses
a constant learning rate, and an additional noise to perform Bayesian posterior sampling.
Our proposal is derived from the ideal method, in which it is guaranteed that samples are
generated from the true posterior. When the learning rate and noise terms are empirically
estimated, with no user intervention, our method offers a very good approximation to the
posterior, as demonstrated by the extensive experimental campaign.

We verified empirically the quality of our approach, and compared its performance to
state-of-the-art SG-MCMC and alternative methods. Results, which span a variety of settings,
indicated that our method is competitive to the alternatives from the state-of-the-art, while
being much simpler to use.
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Appendix A. Background and Related Material
Appendix A.1. The Minibatch Gradient Approximation
Starting from the gradient of the logarithm of the posterior density:

N
—~Vf(8) = ; Vlog p(U;|6) + Vlog p(6),

1

it is possible to define its minibatch version by computing the gradient on a random subset

Ty, with cardinality Nj, of all the indices. The minibatch gradient g(8) is computed as

N M
—-g(0) = N, Y Vliogp(U;|6) + Viog p(6),
i=1

By simple calculations it is possible to show that the estimation is unbiased (E(g(6)) = V£(8)).
The estimation error covariance is defined to be E [(g(ﬂ) —Vf(6))(g(6) — Vf(e))T] = 2B(0).

If the minibatch size is large enough, invoking the central limit theorem, we can state
that the minibatch gradient is normally distributed:

8(8) ~ N(V£(6),2B(0)).

Appendix A.2. Gradient Methods without Momentum
Appendix A.2.1. The SDE from Discrete Time
We start from the generalized updated rule of SGD:

66, = —1P(6,-1)(8(04-1) + wn).
Since g(6,_1) ~ N(Vf(6,-1),2B(6,_1)) we can rewrite the above equation as:
805 = =P (0n-1)(Vf (Bn-1) +w,),

where w/n ~ N(0,2%(0,_1)). If we separate deterministic and random component we can
equivalently write:

00, = —nP(0,_1)Vf(0,_1) + 7P(6,_1)w, = —1P(6,_1)Vf(8,_1)+
27P2(0,,-1)Z(8,-1)vn

where v, ~ N(0,,/7I). When 7 is small enough (7 — dt) we can interpret the above
equation as the discrete-time simulation of the following SDE [15]:

dﬂt = —P(Gt)Vf(Gf)dt + \/ZWP(Bt)ZE(ef)th,
where dW; is a d—dimensional Brownian motion.

Appendix A.2.2. Proof of Theorem 1

The stationary distribution of the above SDE, p(0) o exp(—¢(6)), satisfies the follow-
ing FPE

0=Te{V[VT((0))P(0)p(6) + 1V (P(0)E(@)p(6))] },
that we rewrite as

0="Tr{V[V(£(6))P(0)p(8) — 7V (¢(6))P(8)°L(8)p(6) + 7V (P(6)°L(0))p(6)]}.
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The above equation is verified with V£(0) = V¢(0) if

VT (P(8)*Z(6)) =0
nP(6)°L(6) = P(8) — nP(6) = £(0) '

that proves Theorem 1.

Appendix A.3. Gradient Methods with Momentum
Appendix A.3.1. The SDE from Discrete Time
The general set of update equations for (discrete-time) momentum-based algorithms is:

60, = Up(en—l)M_lrn—l
Sty = —1A(0,_ 1)M 11y 1 — 7P (8, 1)(g(08, 1) +wn).

Similarly to the case without momentum, we rewrite the second equation of the system as

8tn = =N A0, 1)M 'y — P (6, 1)(8(6y1) + wn) =

— A8, 1 )M 1,y — P (8,_1)Vf(8,_1) + \/27P*(6,_1)Z(8,_1)vn

where again v, ~ N(0, /77I). If we define the supervariable z = [0, #]T we can rewrite the

system as
b= tlpig ) A o+ DG

where s(z) = [Vf( )},D(z) = {g P(e)gz(e)] and v, ~ N(0, /7I).

As the learning rate goes to zero (7 — dt), similarly to the previous case, we can
interpret the above difference equation as a discretization of the following FPE

0 —P(6; /
dZt = - |:P(9t) A((Bt)):| S(Zf) + ZWD(Zf)th

Appendix A.3.2. Proof of Theorem 2

As before we assume that the stationary distribution has form p(z) o« exp(—¢(z)).
The corresponding FPE is

0=1x( (s [ ey agor 0=+ 1(T T (DEED) ) ).

Notice that since VT D(z) = 0 we can rewrite
0=Te( (s [ gy Aoy o) +17 (D))

el A
=Tr

plo) o)D)~ 17 @EDEE))

o
(s |ofey ey o121~ 17 @] piange))ei=))
(

that is verified with V¢(z) = s(z) if

VTP(#) =0
A(8) = 7P(8)*%(8).
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If VT P(0) = 0in fact

w{e(emarly “B)- ([, ) -
Y (|otey o] )T ([ 0| T(T T @@E)) <0
® o
[} 0

is anti-symmetric while V (V' (¢(z))p(z)) is symmetric.
Thus, we can rewrite

(V(s) oty ace) 212~ @Eg piogiaee) ) =
(V(s) oty ace) 217~V OED]G piopae)|e) ) =
(v (s | plyy Aty 7D~ TT@EDg aln)]r®)) -
(-l 4le) -

and then V¢(z) = s(z) proving Theorem 2.

- T
since V { P

} = 0 and the second term is zero due to the fact that { 0 7P(9)}

P(6) 0

~

Appendix B. 1-sGD Method Proofs and Details
Appendix B.1. Proof of Corollary 1

The requirement C(0) = 0 V6, ensures that the injected noise covariance is valid.
The composite noise matrix is equal to £(8) = A. Since V'L(8) = V'A = 0 and
7P(8) = A1 by construction, then Theorem 1 is satisfied.

Appendix B.2. Proof of Optimality of A

Our design choice is to select Alp ‘B(F’ By the assumptions, the matrix B(0) is
diagonal, and consequently C(6) = A — B(8) is diagonal as well. The preconditioner
A must be chosen to satisfy the positive semidefinite constraint, i.e., C(8);; > 0 Vi, V6.
Equivalently, we must satisfy A(P) — bj(6) > 0 Vj € Ip,Vp, V0, where I, is the set of
indices of parameters belonging to py, layer. By assumption 3, i.e., ‘B(F’ ) = Y ke I, bi(6), itis
easy to show that b;(0), ] € I, is upper bounded as b;(0) < BP). To satisty the positive
semidefinite requirement in all cases the minimum valid set of A(?) is then determined as

Alp) = /3(17),

Appendix B.3. Algorithmic Details

In this section, we provide further details about the practical implementation of the
proposed scheme. At any (discrete) time instant a minibatch version of the gradient is
computed that is distributed, according to the hypotheses of the main paper, as g(0) ~
N(V£(0),2b(8). Since we assumed that the second-order moment is a good approximation
of the variance, we can estimate b(8) as }(g(8) ® g(8)). In practice, we found that the
following running average estimation procedure to be the most robust

1
b(6) « pub(8) + (1 — )5 ((6) © (6)) (A1)
where i1 € (0,1]. In all experiments we considered y = 0.5

After a warmup period, the various A(P), layer per layer, are estimated as A(P) = ¥ I, b (6)
and kept constant until the end. The estimation procedure continues during samphng phase,
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as the quantity A(P) — b(8) is necessary at every step. As the learning rate is derived as ﬁ,
we found that the usage of second-order moments instead of variances, and in certain cases
temperature scaling, kept the simulated trajectories more stable.

Appendix C. Methodology

We hereafter present additional implementation details.

Appendix C.1. Regression Tasks, with Simple Models

For this set of experiments we considered , the BASELINE is obtained by running the
ADAM optimizer for 20,000 steps with learning rate 0.01 and default parameters. At test time
we use 100 samples to estimate the predictive posterior distribution, using Equation (3),
for the sampling methods (I-SGD,SGLD,SGHMC,VSGD), with a keep-every value equal to
1000. The 1-SGD and VSGD sampling methods are started from the BASELINE. For I-SGD
we selected temperature 0.01, while for SGHMC and SGLD we do performed experiments
for temperatures 1 and 0.01. We modified the implementation of VSGD as the original
implementation produced unstable learning rates (as noticed also in [9]). A simple and
effective solution we implement that we kept throughout the experimental campaigns
is to divide the learning rate by the number of parameters (thus performing variational
inference on a tempered version of the posterior). For SGLD the learning rate decay is the
one suggested in [2], with initial and finial learning rate equal to 107¢ and 1078 respectively.
For MCD we collected 1000 samples with standard dropout rate of 0.5. All our experiments
use 10-splits. The considered batch size is 64 for all methods.

Appendix C.2. Classification Task, CONVNET

For the LENET-5 on MNIST experiment, we do consider also the SWAG algorithm.
At test time we use 30 samples for all methods. Baselines are again trained using ADAM
optimizer for 20,000 steps with learning rate 0.01 and default parameters. For I-SGD and
SGHMC we collected samples for the different temperatures of 1 and 0.01. SGLD has initial
and final learning rates of 10~3 and 10~°. For all the sampling methods we do collect
100 samples with a keep-every of 10,000 steps. SWAG results are obtained by collecting the
statistics over 300 epochs using ADAM optimizer and decreasing the learning rate every
epoch in accordance with the original paper schedule [9]. DROP results are obtained by
training the networks with SGD, with learning rate 0.005 and momentum 0.5. The number
of collected samples for this method is 1000. The batch size for all the methods is 128.

As explained in the main text, we performed an ablation study on the considered
baselines. In Table A1 we do report the results for the additional variants obtained by
early stopping (10,000 iterations instead of 20,000) BASELINE S, to ablate overfitting, and
BASELINE L, by training for 30,000 iterations. Finally, we include the best performing
BASELINE R, obtained starting from BASELINE, reducing the learning rate by a factor of 10
and training for 10,000 more iterations.

Table Al. Baselines comparison for classification on MNIST dataset.

Method ACC MNLL Mean H) ECE Mean H; Failed
BASELINE 9886.6667 £ 11.0252  352.6640 =+ 20.8622 0.0353 £ 0.0058 0.0468 £ 0.0001 0.0019 =+ 0.0003 0.0000
BASELINE | 9871.6667 £ 20.7579  389.7142 + 79.0354 0.0378 £ 0.0051 0.0468 =+ 0.0008 0.0025 £ 0.0006 0.0000
BASELINE s 9893.0000 + 4.8990 339.8170 + 7.9855 0.0392 £ 0.0042 0.0477 £ 0.0008 0.0024 £ 0.0001 0.0000
BASELINE r 9919.0000 £ 9.4163 242.7644 £ 17.0736 0.0303 £ 0.0001 0.0482 £ 0.0006 0.0021 £ 0.0002 0.0000

Appendix C.3. Classification Task, Deeper Models

We here report details for the RESNET-18 on CIFAR10 experiments. The BASELINE is
obtained with ADAM optimizer with learning rate 0.01 decreased by a factor of 10 every
50 epochs for a total of 200 epochs and weight decay of 0.05. For this set of experiments no
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temperature scaling was required. We could not find good hyperparameters for the SGLD
scheme. Concerning 1-SGD, SGHMC and VSGD the keep-every value is chosen as 10,000 and
the number of collected samples is 30. For SWAG we used the default parameters described
in [9]. Notice that for SWAG we performed the following ablation study: we trained the
networks considering as loss function the joint log-likelihood and included or not the
suggested weight decay of the original work [9]. From a purely Bayesian perspective no
weight decay should be considered to be the information is implicit in the prior; however,
we found that without the extra decay SWAG was not able to obtain competitive results. As
underlined in Section 4.1, not necessarily a better posterior approximation translates into
better empirical results.

Appendix C.4. Definition of the Metrics

For regression datasets, we consider RMSE and MNLL. Consider a single datapoint
U; = (x;,y;), with x; the input of the model and y; the true corresponding output. The
output of the model, for a single sample of parameters 0, is yej (x;). RMSE is defined as

N N,
¥ lly; — u(x)|[?, where p(x;) is the empirical mean NLMC ZM‘,C g,,/, (x;). MNLL is defined
i=1 =1

N
instead as (% Y <1 log(27o?) + 1 M) , where 07 is the empirical variance.

For classification datasets, we consider ACC,MNLL and entropy. Consider a single
datapoint U; = (x;,y;), with x; the input of the model and y; the true corresponding label.
The output of the model, for a single sample of parameters 8}, is the N vector pg, (x;). The

Nmc
averaged probability vector for a single sample is p(x;) = NL Z po, (x;).ACC is defined

N
as % Y. 1(argmax p(x;) = y;). MNLL is computed as

og(py, (xi)). Entropy, as stated
i-1

HMZ

N
N Z
N
in the main text, is instead computed according to Z

k(xi IOg(pk(xz))>
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Abstract: We present new PAC-Bayesian generalisation bounds for learning problems with un-
bounded loss functions. This extends the relevance and applicability of the PAC-Bayes learning
framework, where most of the existing literature focuses on supervised learning problems with a
bounded loss function (typically assumed to take values in the interval [0;1]). In order to relax this
classical assumption, we propose to allow the range of the loss to depend on each predictor. This
relaxation is captured by our new notion of HY Pothesis-dependent rangE (HYPE). Based on this, we
derive a novel PAC-Bayesian generalisation bound for unbounded loss functions, and we instantiate
it on a linear regression problem. To make our theory usable by the largest audience possible, we
include discussions on actual computation, practicality and limitations of our assumptions.

Keywords: statistical learning theory; PAC-Bayes; generalisation bounds

1. Introduction

Since its emergence in the late 1990s, the PAC-Bayes theory (see the seminal works
of [1-3], the recent survey by [4] and work by [5]) has been a powerful tool to obtain gener-
alisation bounds and to derive efficient learning algorithms. Generalisation bounds are
helpful for understanding how a learning algorithm may perform on future similar batches
of data. While the classical generalization bounds typically address the performance of
individual predictors from a given hypothesis class, PAC-Bayes bounds typically address a
randomized predictor defined by a distribution over the hypothesis class.

PAC-Bayes bounds were originally meant for binary classification problems [6-8],
but the literature now includes many contributions involving any bounded loss function
(without loss of generality, with values in [0; 1]), not just the binary loss. Our goal is to
provide new PAC-Bayes bounds that are valid for unbounded loss functions, and thus
extend the usability of PAC-Bayes to a much larger class of learning problems. To do so,
we reformulate the general PAC-Bayes theorem of [9] and use it as basic building block to
derive our new PAC-Bayes bound.

Some ways to circumvent the bounded range assumption on the losses have been
explored in the recent literature. For instance, one approach consists of assuming a tail
decay rate on the loss, such as sub-gaussian or sub-exponential tails [10,11]; however,
this approach requires the knowledge of additional parameters. Some other works have
also looked into the analysis for heavy-tailed losses, e.g., ref. [12] proposed a polynomial
moment-dependent bound with f-divergences, while [13] devised an exponential bound
that assumes the second (uncentered) moment of the loss is bounded by a constant (with
a truncated risk estimator, as recalled in Section 4 below). A somewhat related approach
was explored by [14], who do not assume boundedness of the loss, but instead control
higher-order moments of the generalization gap through the Efron-Stein variance proxy.
See also [5].

Entropy 2021, 23, 1330. https://doi.org/10.3390/€23101330
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We investigate a different route here. We introduce the HY Pothesis-dependent rangE
(HYPE) condition, which means that the loss is upper-bounded by a term that depends
on the chosen predictor (but does not depend on the data). Thus, effectively, the loss
may have an arbitrarily large range. The HYPE condition allows us to derive an upper
bound on the exponential moment of a suitably chosen functional, which, combined with
the general PAC-Bayes theorem, leads to our new PAC-Bayes bound. To illustrate it,
we instantiate the new bound on a linear regression problem, which additionally serves
the purpose of illustrating that our HYPE condition is easy to verify in practice, given an
explicit formulation of the loss function. In particular, we shall see in the linear regression
setting that a mere use of the triangle inequality is enough to check the HYPE condition.
The technical assumptions on which our results are based are comparable to those of the
classical PAC-Bayes bounds; we state them in full detail, with discussions, for the sake of
clarity and to make our work accessible.

Our contributions are twofold. (i) We propose PAC-Bayesian bounds holding with
unbounded loss functions, therefore overcoming a limitation of the mainstream PAC-
Bayesian literature for which a bounded loss is usually assumed. (ii) We analyse the bound,
its implications, limitations of our assumptions, and their usability by practitioners. We
hope this will extend the PAC-Bayes framework into a widely usable tool for a significantly
wider range of problems, such as unbounded regression or reinforcement learning problems
with unbounded rewards.

Outline. Section 2 introduces our notation and definition of the HYPE condition and
provides a general PAC-Bayesian bound, which is valid for any learning problem comply-
ing with a mild assumption. For the sake of completeness, we present how our approach
(designed for the unbounded case) behaves in the bounded case (Section 3). This section is
not the core of our work, but rather serves as a safety check and particularises our bound
to more classical PAC-Bayesian assumptions. We also provide numerical experiments.
Section 4 introduces the notion of softening functions and particularises Section 2’s PAC-
Bayesian bound. In particular, we make explicit all terms in the right-hand side. Section 5.1
extends our results to linear regression (which has been studied from the perspective of
PAC-Bayes in the literature, most recently by [15]). We also experimentally illustrate the
behaviour of our bound. Finally, Section 6 presents, in detail, related works and Section 7
contains all proofs of the original claims we make in the paper.

2. Framework and Preliminary Results

The learning problem is specified by three variables (#, Z, £) consisting of a set H of
predictors, the data space Z, and a loss function £ : H x Z — Rt.

For a given positive integer m, we consider size-m datasets. The space of all possible
datasets of this fixed size is S = Z™; an arbitrary element of this space is s = (z1,...,zm)-
We denote S as arandom dataset: S = (Zy, ..., Z;;) where the random data points Z; are in-
dependent and sampled from the same distribution i over Z. We call y the data-generating
distribution. The assumption that the Z;’s are independent and identically distributed is typi-
cally called the i.i.d. data assumption. It means that the random sample S (of size m) has
distribution #®™ which is the product of m copies of j.

For any predictor i € H, we define the empirical risk of h over a sample s, denoted
Rs(h), and the theoretical risk of h, denoted R(h), as:

Ri()= LY t(hz) and  R(H) = Ey[t(h,2)

i=1

respectively, where E, [((l, Z)] denotes the expectation with respect to Z ~ u. Finally, we
define the risk gap As(h) = R(h) — Rs(h) forany h € H and s € S. Often, A;(h) is referred
to as the generalisation gap.

Notice that for a random dataset S, the empirical risk Rg(h) is random, with expected
value Ezn[Rs(h)] = R(I), where E cn the expectation under the distribution of the
random sample S.
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In general, E,[-] denotes an expectation under the distribution . When we want to
emphasize the role of the random variable Z ~ y we write Ez[-] or Ez,,["] instead of E,[-].
We use a similar convention for expectations related to any other distributions and random
quantities. We now introduce the key concept to our analysis.

Definition 1. (HYPE). A loss function £ : H x Z — R is said to satisfy the hypothesis-
dependent range (HYPE) condition if there exists a function K : H — RT\{0} such that
sup, . z £(h,z) < K(h) for every predictor h. We then say that £ is HYPE(K) compliant.

Let M (H) be the set of probability distributions on . We assume that all considered
probability measures on H are defined on a fixed o-algebra over #, while the notation
M (H) hides the o-algebra, for simplicity. For P,P' € M; (H), the notation P’ < P
indicates that P’ is absolutely continuous with respect to P (i.e., P'(A) = 0if P(A) = 0 for
measurable A C H). We write P/ ~ P to indicate that P’ < P and P < P/, i.e., these two
distributions are absolutely continuous with respect to each other.

We now recall a result from Germain et al. [9]. Note that while implicit in many
PAC-Bayes works (including theirs), we make it explicit that both the prior P and the
posterior Q must be absolutely continuous with respect to each other. We discuss this
restriction below.

Theorem 1. (Adapted from [9], Theorem 2.1.) For any P € M; (H) with no dependency on
data, for any function F : RY x R — R, define the exponential moment:

X i= EsByp [FRSIDRM]

If F is convex, then for any & € [0;1], with probability of at least 1 — & over random samples
S, simultaneously for all Q € My (M) such that Q ~ P we have:

F(Eno[Rs(h)], EnvglR())) < KL(QIIP) +log().

The proof is deferred to Section 7.1. Note that the proof in [9] requires that P < Q,
although it is not explicitly stated; we highlight this in our own proof. While Q < P is
classical and necessary for the KL(Q||P) to be meaningful, P < Q appears to be more
restrictive. In particular, we have to choose Q such that it has the exact same support as P
(e.g., choosing a Gaussian and a truncated Gaussian is not possible). However, we can still
apply our theorem when P and Q belong to the same parametric family of distributions,
e.g., both “full-support’ Gaussian or Laplace distributions, but these are just two examples
and there are many others.

Note that Alquier et al. [10] (Theorem 4.1) adapted a result from Catoni [8], which
only requires Q < P. This comes at the expense of what Alquier et al. [10] (Definition 2.3)
called a Hoeffding’s assumption, which means that the exponential moment x is assumed to
be bounded by a function depending only on the hyperparameters (such as the dataset
size m or parameters given by Hoeffding’s assumption). Our analysis does not require this
assumption, which might prove restrictive in practice.

Theorem 1 may be seen as a basis to recover many classical PAC-Bayesian bounds.
For instance, F(x,y) = 2m(x — y)z, recovers McAllester’s bound as recalled in [4] (Theo-
rem 1). To get a usable bound, the outstanding task is to bound the exponential moment
X- Note that a previous attempt has been made in [11], as described in Section 6.1 below.
Furthermore, under the assumption that the distribution P has no dependency on the data,
we may swap the order of integration in the exponential moment thanks to Fubini-Tonelli’s
theorem and the positiveness of the exponential:

X= EthES [eF(RS(/l),R(h))] )
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This is the starting point for the way that the exponential moment was handled in sev-
eral works in the PAC-Bayes literature. Essentially, for a fixed /1, one may upper-bound the
innermost expectation (with respect to S) using standard exponential moment inequalities.

In this work, we will use Theorem 1 with F(x,y) = m*D(x,y), where « > 0, and
D :R* x R — Ris a convex function. In this case, the high-probability inequality of the
theorem takes the form:

D (Epq[Rs(h)], Epwq[R(R)]) <
1 (KL(QHP)+IOg< EhNPES em”‘D(Ks(h) (h)))) (1)

Our goal is to control Eg " P(Rs().R(M) for a fixed i, when D(x,y) = y — x. This
will readily give us control on the exponential moment x. To do so, we propose the
following theorem:

Theorem 2. Let h € H be a fixed predictor and o € R. If the loss function { is HYPE(K) compliant,
then for Ag(h) = R(h) — Rg(h) we have:

« K(h)?
Ag(h

Eq [em s( )] < exp (72"11_2"‘ )
Proof. Leth € H. Then:

ES [em‘*As(h)] -k

exp (m"‘l é(l(h, Zi) — R(m))]
=E |:Im—[exp (m'x_l(f(h, Z;) — R(h))>:|
=] E[exp(m'x*l(f(hfzi) - R(h)))}-

We now apply Hoeffding’s lemma, for any i € {1..m}, the random (in Z;) variable
0(h,Z;) — R(h) is centered, taking values in [—K(h); K(h)], so that:

B [exp (mt 1 (¢(h, Z) = R(1)) | < exp <m2a—2%>
and finally:
)< (s ) wen( B2
O

The strength of this result lies in the fact that ﬁ—@;, is a decreasing factor in 1, when
« < 1/2,and more generally, one can control how fast the exponential moment will explode
when m grows by the choice of the hyperparameter .

For convenient cross-referencing, we state the following rewriting of Theorem 1.

Theorem 3. Let the loss { be HYPE(K) compliant. For any P € M (1) with no data dependency,
for any « € R and for any & € [0;1], with probability of at least 1 — & over size-m random samples

S, simultaneously for all Q such that Q ~ P we have:
)2
Eyp [eXP (2,,1(1 )2a )} )

Epg[R(h)] < Ejpog[Rs(h)] + % (KL(Q|P) + log 5
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Proof. We first apply Theorem 1 with F(x,y) = m*(y — x). More precisely, we use
Equation (1) with D(x,y) = y — x. We then conclude with Theorem 2. [

3. Safety Check: The Bounded Loss Case
3.1. Theoretical Results

At this stage, the reader might wonder whether this new approach allows for the
recovery of known results in the bounded case: the answer is yes.

In this section, we study the case where ¢ is bounded by some constant C € R* \ {0}.
In other words, we consider the case that sup;, sup, £(h,z) < C. We provide a bound, valid
for any choice of “priors” P and “posteriors” Q such that P ~ Q, which is an immediate
corollary of Theorem 3.

Proposition 1. Let ¢ be HYPE(K) compliant, with K(h) = C constant, and let « € R. Let
P € M (H) be a distribution with no data dependency. Then, for any & € [0; 1], with probability
of at least 1 — & over random m-samples S, simultaneously for all Q € My (H) such that Q ~ P
we have:

KL(QIIP) +1og(1/0) , C*

Epo[R(1)] < EpglRs(h)] + v R

Remark 1. We provide Proposition 1 to evaluate the robustness of our approach. For instance, by
comparing it with the PAC-Bayesian bound found in Germain et al. [11]. This discussion can be
found in Section 6.1, where the bound from Germain et al. [11] is presented in detail.

Remark 2. At first glance, a naive remark: in order to control the rate of convergence of all the
terms of the bound in Proposition 1 (as is often the case in classical PAC-Bayesian bounds), then the
only case of interest is in fact & = % However, one could notice that the factor C2 is not optimisable,
while the KL is. In this way, if it appears that C? is too big, in practice, one wants to have the
ability to attenuate its influence as much as possible and this may lead us to consider & < 1/2. The
following lemma answers this question.

c2
1

iz reaches its minimum at

Lemma 1. For any given Ky > 0, the function fx, (&) := % +

gy = 1 + _ lo 2
07 2 " 2log(m) s\ ¢z )
Proof. The explicit calculus of the f, II<1 and the resolution of f II<1 () = 0 provides the result. [

Remark 3. Lemma 1 indicates that with a fixed “prior” P and “posterior” Q, taking K; =
KL(Q||P) +log(1/4), gives the optimised value of the bound in Proposition 1. We numerically
show in Section 3.2 (first experiment there) that optimising « leads to significantly better results.

Now the only remaining question is how to optimise the KL divergence. To do so, we
may need to fix an “informed prior” to minimise the KL divergence with an interesting pos-
terior. This idea has been studied by [16,17] and, more recently, by Mhammedi et al. [18],
Rivasplata et al. [5], among others. We will adapt it to our problem in the simplest way.

We now introduce some additional notation. For a sample s = (zi,...,zy) and
k € {1..m}, we define s« := {z1,...,2¢} and s~ := {2k41,...,2Zm}. Then, similarly, for a
random sample S, we have the splits S<; and S~ .

Proposition 2. Let ¢ be HYPE(K) compliant, with constant K(h) = C, and a1, a € R. Consider
any “priors” Py € M7 (H) (possibly dependent on S, /2) and Py € M7 (H) (possibly dependent
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o1 S<yy/2). Then, for any & € [0;1], with probability of at least 1 — & over random size-m samples
S, simultaneously for all Q € My (M) such that Q ~ Py and Q ~ P, we have:

o 2
B o[R()] < B o[Rs(W)] + %<KL(QH(I;11)/;)Lg(2/5) . z(m/Cz)PM)
1 (KL(QIIPz) +log(2/0) c? >
2 (m/2)% 2(m/2) )"

Proof. Let P, P, Q be as stated in Proposition 2. We first notice that by using Proposition
1 on the two halves of the sample, we obtain, with a probability of at least 1 — /2:

m/2

1
i Y U(h, Z;)

i=1

KL(QIIPy) +log(2/6) | C?

+ (m/2)m 2(m/2)i-m

Eng[R(h)] < Epvg

and also with probability at least 1 — 6/2:

m/2

1
2 1:21 L(h, Zyjati)

KL(Q||P,) 4 log(2/95) n c?

Epg[R(h)] < Ejg (m/2) 2(m/2)1-0

+

Hence, with a probability of at least 1 — ¢, both inequalities hold, and the result follows
by adding them and dividing by 2. O

Remark 4. One can notice that the main difference between Proposition 2 and Proposition 1 lies in
the implicit PAC-Bayesian paradigm that our priors must not depend on the data. With this last
proposition, we implicitly allow Py to depend on S,/ and P> on Sy, /5, which can in practice lead
to far more accurate priors. We numerically show this fact in Section 3.2’s second experiment. Note
that this idea is not new and has been studied, for instance, in [19] for the specific case of SVMs.

3.2. Numerical Experiments

Our experimental framework has been inspired by the work of [18].

Settings. We generate synthetic data for classification, and we are using the 0-1
loss. The data spaceis Z = X x J = R? x {0,1} with d € N. The set of predictors
is parameterised with d-dimensional ‘weight’ vectors: H = {hy, : X — Y |w € R4}
For simplicity, we identify 1, with w and we also identify the space H, with the weight
space W = R4, For z (x,y) € Z and w € W, we define the loss as {(w,z) :=
[1{p(w"x) >1/2} —y|, where ¢(r) = H% We want to learn an optimised predictor
given a dataset S = (Z;);—1_,, where Z; = (X;,Y;). To do so, we use regularised logistic
regression and compute:

2 1 m
®(S) := arg min )\@ o i:Zly,- log((,b(wa,-)) +(1—-y) log(l - qb(wa,-)) )

where A is a fixed regularisation parameter.

We also restrict the probability distributions (over W = R?), considered for this
learning problem. We consider the Gaussian distribution A (w, 0%I;) with centre w € R?
and diagonal covariance 0%I; € R?* with 02 > 0.

Parameters. We set 6 = 0.05, A = 0.01. We approximately solve Equation (2) by using
the minimize function of the optimisation module in Python, with the Powell method. To
approximate gaussian expectations, we use Monte-Carlo sampling.

Synthetic data. We generate synthetic data for d = 10 according to the following
process: for a fixed sample size m, we draw Xj, ..., X;;, under the multivariate Gaussian
distribution (0, I;) and for each i we compute the label if X; as: Y; = 1{¢(w* T x;) > 1/2}
where w* is the vector formed by the 4 first digits of the number 7.
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Normalisation trick. Given the predictors shape, we notice that for any w € W:

. 1 1 .
Hp(w'x) >1/2} =1 < T+ exp(—w™x) >5 & wax< 0.

Thus, the value of the prediction is exclusively determined by the sign of the inner
product, and this quantity is definitely not influenced by the norm of the vector. Then,
for any sample S, we call the normalisation trick the fact of considering @(S)/||@(S)||
instead of @(S) in our calculations. This process will not deteriorate the quality of the
prediction and will considerably enhance the value of the KL divergence.

3.2.1. First experiment

Our goal here is to highlight the point discussed in Remark 2, e.g., the influence of
the parameter a in Proposition 1. We arbitrarily fix ¢y = 1/2, and define our naive prior as
Py = N(0,031,). For a fixed dataset S, we define our posterior as P(S) := N (h(S), 021),
with 02 € {1/2,...,1/2]} (for ] = log,(m)) such that it is minimising the bound among
candidates. We computed two curves: first, Proposition 1 with & = 1/2 second, Proposition
1 again with a equals to the value proposed in Lemma 1. Notice that to compute this last
bound, we first optimised our choice of posterior with « = 1/2 and then optimised «,
to be consistent with Lemma 1. Indeed, we proved this lemma by assuming that the KL
divergence was already fixed, hence our optimisation process is in two steps. Note that we
chose to apply the normalisation trick here, we then obtained the left curve of Figure 1.

Discussion. From this curve, we formulate several remarks. First, we remark on this
specific case, our theorem provides a tight result in practice (with an error rate lesser than
10% for the bound with optimised alpha). Second, we can now confirm that choosing an
optimised a leads to a tighter bound. In further studies, it will be relevant to adjust « with
regards to the different terms of our bound instead of looking for an identical convergence
rate for all terms.

3.2.2. Second Experiment

We now study Proposition 2 to see if an informed prior effectively provides a tighter
bound than a naive one. We will use the notations introduced in Proposition 2. For a
dataset S, we define w1 (S) = w(S-,/2) as the vector resulting from the optimisation
of Equation (2) on S, /. Similarly, we define wy(S) := w(S<,/2). We arbitrarily fix
02 = 1/2, and define our informed priors as: Py = N (w;(S), 0311) and P, = N (w2 (S), 021y).
Finally, we define our posterior as P(S) := N (#(S), 021), with 0% € {1/2,...,1/2]} (for
] = log,(m)) with ¢ optimising the bound among the same candidate than the first
experiment. We computed two curves: first, Proposition 1 with « optimised accordingly
to Lemma 1 secondly, Proposition 2 with a1, #; optimised as well, and informed priors as
defined above. We chose to not apply the normalisation trick here, we then obtained the
right curve of Figure 1.

Discussion. It is clear, that with this framework, having an informed prior is a
powerful tool to enhance the quality of our bound. Notice that we voluntarily chose to
not apply the normalisation trick here. The reason is that this trick appears to be too
powerful in practice, and applying it leads to counterproductive results; to highlight our
point: the bound without informed prior would be tighter than the one with informed
prior. Furthermore, this trick is linked to the specific structure of our problem and is not
valid for any classification problem. Thus, the idea of providing informed priors remains
an interesting tool for most cases.
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Figure 1. Above, result of the first experiment which highlight the importance of optimising «. Below,
result of the second experiment which show how effective an informed prior is.

4. PAC Bayesian Bounds with Smoothed Estimator

We now move on to control the right-hand side term in Theorem 3 when K is not
constant. A first step is to consider a transformed estimate of the risk, inspired by the
truncated estimator from [20], also used in [21], and more recently in [13]. The following is
inspired by the results of [13], which we summarise in Section 6.

The idea is to modify the estimator Rg(/) for any & by introducing a threshold ¢ and a
function ¥ which will attenuate the influence of the empirical losses (£(h, Z;))i=1., that
exceed t.

Definition 2. ip-risks. For every t > 0, : Rt — RY, for any h € H, we define the empirical
y-risk Rs y, and the theoretical -risk Ryt as follows:

where 7 ~ p. Notice that B [Rg g+ ()] = Ry,¢(h).

We now focus on what we call softening functions, i.e., functions that will temper high
values of the loss function /.

Definition 3. (Softening function). We say that ¢ : R™ — R is a softening function if:
o Vxel01],y(x) =x,

® 1 is non-decreasing,

e Vx>1,9(x) <ux
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We let F denote the set of all softening functions.

Remark 5. Notice that those three assumptions ensure that  is continuous at 1. For instance, the
functions f:x — xL{x <1} +1{x > 1} and g : x — x1{x <1} + (2y/x = 1)1{x > 1} are
in JF. In Section 6 we compare these softening functions and those used by Holland [13].

Using ¢ € F, for a fixed threshold t > 0, the softened loss function ti (M) verifies

foranyh € H,z € Z:
o5 2o()

because 1 is non-decreasing. In this way, the exponential moment in Theorem 3 can be far
more controllable. The trade-off lies in the fact that softening ¢ (instead of taking directly £)
will deteriorate our ability to distinguish between two bad predictions when both of them
are greater than t. For instance, if we choose ¢ € F such as ¢ = 1 on [1; +00) and t > 0, if
P (L(h,z)/t) = 1 for a certain pair (h, z), then we cannot tell how far ((h,z) is from t and
we only can affirm that ¢(h,z) > t.

We now move on to the following lemma, which controls the shortfall between
Ejo[R(h)] and Ej,g[Ry,+(h)] for all Q € M (H), for a given ¢ and t > 0. To do that, we
assume that K admits a finite moment under any posterior distribution:

VQ € M{(H), EpglK(h)] < +oo. ®)
For instance, in the case of # identified with a weight space W = RV, and if K is
polynomial in ||w|| (where ||.|| denotes the Euclidean norm), then this assumption holds if
we consider Gaussian priors and posteriors.
Lemma 2. Assume that Equation (3) holds, and let p € F, Q € MT("H),t > 0. We have:
Ejo[R(1)] < EjglRys ()] + By K1) L{K() > 1]
Proof. Lety € F, Q € M (H),t > 0. We have, forh € H :

R(h) — Ry,(h)
=Bz, {f(h,z) - tl[J(é(h;Z) ﬂ

and using that Vx € [0,1], p(x) = x,

o(h,2)

=Bz (20, 2) - 19 (U5 ) )1t 2) 2 1)

while using that ¢(h,z) < K(h),

o(h,7)
t

:IEZN;,KK(h,Z) —t1p< ))n{z(h,z) > H1{K(h) > t}}

and continuing:

< Ezoult(h, 2)1{t(h, Z) = t}]1{K(h) > t} (¥ >0)
< K(h)Pzu{l(h, Z) > t}1{K(h) > t} (£(h,Z) < K(h))
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Finally, by crudely bounding the probability by 1, we get:
R(h) < Ry(h) + K(h)1{K(h) > t}.
Hence the result by integrating over H with respect to Q. [

Finally we present the following theorem, which provides a PAC-Bayesian inequality
bounding the theoretical risk by the empirical ¢-risk for ¢ € F.

Theorem 4. Let { be HYPE(K) compliant, and assume K satisfies Equation (3). Then for any
P e M{ (H) with no data dependency, for any « € R, for any ¢ € F and for any 6 € [0;1],

with probability of at least 1 — 6 over size-m random samples S, simultaneously for all Q such that
Q ~ P we have:

Ejg[R(1)] < Epoq[Rs i (h)] + Epg[K(H)L{K(h) > t}]

. KL(QHPy)n:— log(4)
2
o))
)>.

Since 1 is non decreasing, we have for all (h,z) € H x Z:

1
+ w 10g <Eh~l’

Proof. Letp € F, we define the -loss:

lo(h,z) = tl/’(

L(h,z
t

a(h2) < (<) = ).

Thus, we apply Theorem 3 to the learning problem defined with /¢;: for any a and
6 € (0,1), with probability at least 1 — J over size-m random samples S, simultaneously for
all Q such that Q ~ P we have:

KL(Q||P) +log ( }
Eneq[Rys(h)] < Big[Rs ()] + maog(o_)

+ % log (Eh~l’ {QXP ( fnzzgél);“ ) } ) '

We then add [y, [K(h)1{K(h) > t}] on both sides of the latter inequality and apply
Lemma2. [

Remark 6. Notice that the function ¢ : x — x1{x < 1} + 1{x > 1} is such that for any

omi—2a
controlled with a good choice of . Thus the strength of Theorem 4 is to provide a PAC-Bayesian
bound valid for any set of posterior measures verifying Equation (3). The choice of 1 minimising
the bound is still an open problem.

2
given prior P we have E;,p {exp ( £ P <@> )} < +-o00. So the exponential moment can be

5. The Linear Regression Problem
5.1. Theoretical Result

We now focus on the celebrated linear regression problem and see how our theory
translates to that particular learning problem. We assume that the data is a size-m ran-

dom sample S = (Z;);j—1.,; where the Z; are i.i.d. drawn from the distribution y, and
Zi=(X;,Y;) with X; € RN, Y; e R.
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Our goal here is to find the most accurate predictor hy, (with w € RN ), with respect
to the loss function ¢(hy, z) = |(w, x) — y|, where z = (x,y). We will make the following
mild assumption: there exists B, C € R+\{0} such that for all z = (x,y) drawn under u:

|lx[| <B and Jy| < C

where ||.|| is the norm associated to the classical inner product of RN. Under this assump-
tion we note that for all z = (x,y) drawn according to y, we have:

C(hw,2) = [{w,x) —y| < [(w, x)| + |y] < [[w]|].[|x]| + [y < Bw]|[+C.

Thus we define K(hy,) = B||w|| + C for w € RN. If we first restrict ourselves to the
framework of Section 2, we want to use Theorem 3 and doing so, our goal is to bound

2ml-2a

we notice that if P = N (0,0%Iy) with 0 < 02 <

¢:=FEyp [exp( K(w)? )} . The shape of K invites us to consider a Gaussian prior. Indeed,
2

T then ¢ < +oco. Notice that we cannot

12«
take just any Gaussian prior, however with a small &, the condition 0 < ¢2 < " may
become quite loose. Thus, we have the following:

Theorem 5. Let « € Rand N > 6. Assume that the loss { is HYPE(K) compliant with K(h) =
B||h|| + C, with B > 0,C > 0. For a prior distribution, consider any Gaussian P = N (0, 0?Iy)
with o2 = t%, 0 <t < 1. Then, for any § € [0;1], with probability of at least 1 — & over

size-m random samples S, simultaneously for all Q € M (H) such that P ~ Q we have:

o 2
EiolR(9) < By qlRs(] + <AL HI8RI0) - CO oy 1)

N C 1
+ W <10g (1 + (W)) + 10g(m)>

where f(t) = =L

The proof is deferred to Section 7.2. To compare our result with those found in the
literature, we can fix &« = 1/2. Doing so, we lose the dependency in m for the choice of the
variance of the prior (which now only depends on B), but we recover the classic decreasing

factor 1/+/m.

Remark 7. Notice that for now we did not use Section 4, even if we could (because K is polynomial
in ||w|| and we consider Gaussian priors and posteriors, so Equation (3) is satisfied). Doing so,
we obtained a bound which appears to depend linearly on the dimension N. In practice, N may be
too big, and in this case, introducing an adapted softening function i (one can think for instance
of p(x) = x1{x < 1} + 1{x > 1}) is a powerful tool to attenuate the weight of the exponential
moment. This also extends the class of authorised Gaussian priors by avoidance, to stick with a

m 2y <p <.

; 2 _
variance - =t BT

5.2. Numerical Experiment
5.2.1. Setting

In this section we apply Theorem 5 on a concrete linear regression problem. The
situation is as follows: we want to approximate the function f(x) = /(w*, x), where
w* € RY. We assume that W = [—c,c|? so that w* lies in an hypercube centred at 0 of
half-side ¢ > 0, i.e., the set {(w;)i—1._4 | Vi, |w;| < c}. Doing so we have ||w*|| < cV/d.

Furthermore, we assume that input data are drawn inside a hypercube of half-side
e>0,ie, X = [—e e]’. Doing so we have for any data x, ||x|| < eV/d.
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For any data x € RY, we define y = f(x). As before, we identify the hypothesis set H
with the weight space W = R?. As described in Section 5.1, we set £(hz, x,y) = |{w, x) — y|.
We then remark that for any (w, x, y):

E(h, %, y) < [(w, )|+ [y[ < [[w][[[x]] + [/ (@*, 1)}

< eVd||w]| + \/||w*]|||x|] < eVd||w]|| + 1\ cVdevd
< eVid||w|| + Vecde.

Then we can define B = ev/d and C = V/cde to apply Theorem 5. We restrict (as before)
the class of distributions over WV to be d-dimensional Gaussians:

{N(w,azld) |weH,o?e R+},

which is the set of candidate distributions for this learning problem. Recall that in practice,
given a fixed &« € R, we are only allowed to consider priors such that their variance

1-2a
o ¢ }0; -

dataset S = ((Xj,Yi))i=1,..m- To do so, we consider synthetic data.

[. We want to learn an optimised predictor (posterior) given a random

5.2.2. Synthetic Data

We draw w* under a Gaussian (with mean 0 and standard deviation equal to 5)
truncated to the hypercube centered at 0 of the half-side ¢ > 0. We generate synthetic data
according to the following process: for a fixed sample size m, we draw Xj, ..., X;; under
a Gaussian (with mean 0 and standard deviation equal to 5) truncated to the hypercube
centered at 0 of the half-side e > 0.

5.2.3. Experiment
First, we fix c = e = 10. Our goal here is to obtain a generalisation bound on

ml—2a

B2
define our naive prior as Py = N(0,031,). For a given dataset S, we define our posterior
as Q(S) := N(®(S),02ly), with 0 € {03/2,...,03/2/} (] = log,(m)), such that it is
minimising the bound among candidates. Note that all the previously defined parameters
are dependent on «, which is why we choose & € {i/step | 0 < i < step} for stepa
fixed integer (in practice step = 8 or 16) and we take the value of # minimising the bound
among the candidates as well. Figure 2 contains two figures, one with d = 10, the other
with d = 50. On each figure are computed the right-hand side term in Theorem 5 with an
optimised « for each step.

our problem. We fix arbitrarily, for a fixed « € R, tg = 1/2 and 0§ = ty and we

5.2.4. Discussion

To the the best of our knowledge, this is the first attempt to numerically compute PAC-
Bayes bounds for unbounded problems, making it impossible to compare to other results.
We stress, however, that obtaining numerical values for the bound without assuming a
bounded loss is a significant first step. Furthermore, we consider a rather hard problem:
f is not linear, so we cannot rely on a linear approximation fitting perfectly data, and
the larger the dimension, the larger the error, as illustrated by Figure 2. Thus, for any
posterior Q, the quantity E;,o[R(h)] is potentially large in practice and our bound might
not be tight. Finally, notice that optimising « (instead of taking & = 1/2 to recover a
classic convergence rate) leads to a significantly better bound. A numerical example of
this assertion is presented in Section 3.2. We aim to conduct further studies to consider the
convergence rate as an hyperparameter to optimise, rather than selecting the same rate for
all terms in the bound.
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Figure 2. Evaluation of the right hand side in Theorem 5 with d = 10 and d = 50.

6. Existing Work
6.1. Germain et al., 2016

In Germain et al. [11] (Section 4), a PAC-Bayesian bound has been provided for all
sub-gamma losses with a variance > and scale parameter ¢ > 0, under a data distribution

and a prior P, i.e. losses such that for every A € (0, %) the following is satisfied:

tog( 1B, _pEs RM-Rs0) ) < £ (10001 - cA) - ac) < A
og 5 h~P se <3 og c c Saa—ay

Note that a sub-gamma loss (with regards to # and P) is potentially unbounded.
Germain et al. then propose the following PAC-Bayesian bound:

Theorem 6. Ref. [11]. If the loss € is sub-gamma with a variance t> and scale parameter c, under
the data distribution y and a fixed prior P € H, then for any & € [0;1], with probability 1 — & over
size-m random samples, simultaneously for all Q < P we have:

o KL(QIIP) +1og(1/9) £

Epg[R(h)] < Epog[Rs(h)] " 2(1—c¢)’

Theorem 6 will be quoted several times in this paper given that it is a concrete PAC
Bayesian bound provided with the will to overcome the constraint of a bounded loss. It is
also one of the only one found in the literature.

Can we apply this theorem to the bounded case? The answer is yes: we remark
that thanks to Hoeffding’s lemma, if £ is bounded by C > 0, then for any & € H it holds

that Rg(h) — R(h) € [~C,C] almost surely. So, VA € R, log[E;~, [e)‘(RU’)*RS(h)] < #
Therefore, for any prior P, we have:

202
s

log By, pEzy [EA(RU')*RS(}I)] >

Thus, /£ is sub-gamma with variance C? and scale parameter 0. Then, Theorem 6 can
be applied with > = C2, ¢ = 0.

Comparison with Proposition 1. We remark that by taking K = Cand « = 1in
Proposition 1, we are recovering Theorem 6. However, our approach allows us to say that if
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we can obtain a more precise form of K such that Vi € H, K(h) < C and K is non-constant,
Theorem 3, will ensure that:

1 K(h)? C?
por log (Eth {exp (W < ol
Thus, having precise information on the behavior of the loss function ¢, with regards

to the predictor /1, allows us to obtain a tighter control of the exponential moment, and
hence a tighter bound.

Remark 8. We can sce that Theorem 6 cannot control the factor C2/2. However, Ref. [11]
remarked on this apparent weakness and partially corrected this issue [11] (Section 4, Equations
(13) and (14)). Indeed, they proposed to balance the influence of m between the different terms of the
PAC-Bayes bound by providing the same convergence rate in 1/+/m to all terms.

We can then see Proposition 1 as a proper generalisation of Germain et al. [11] (Section 4,
Equations (13) and (14)). Indeed, our bound exhibits properly the influence of the parameter .
Thus, we understand (and Lemma 1 proves it) that the choice of « deserves a study in itself in the
way it is now a parameter of our optimisation problem. This fact has already been highlighted in
Alquier et al. [10] (Theorem 4.1) (where A := m“).

6.2. Holland, 2019

In [13], Holland proposed a PAC Bayesian inequality with unbounded loss. For that,
he introduced a function ¢ verifying a few specific conditions, different to those used
in Section 4 to define our set of softening functions. Indeed, he considered a function
such that:

e 1pisbounded,
®  1pisnon decreasing,
® itexists b > 0 such that forall u € R:

u? u?
—log(l—lt-&-?) Slp(u)glog<l+u+?>. (4)

We remark that, as Holland did, we supposed that our softening functions are non-
decreasing. We chose softening functions to be equal to the identity function (x > x) on
[0,1], which is quite restrictive. However, we are imposing softening functions to be lesser
than the identity on [1, +00); whereas, Holland supposed 1 to be bounded and satisfy
Equation (4). A concrete example of such a function 1, lies in the piecewise polynomial
function of Catoni and Giulini [21], defined by:

—2v2/3 ifu< -2
Yu)=<u—ud/6 ifuc|[-2v2/3,2/2/3]
2v/2/3 otherwise.

As in Section 4, we are considering the y-empirical risk Rg 4 ; for any ¢ > 0. Holland
provided his theorem given the fact the following assumptions are realised:

*  Bounds on lower-order moments. Forall i € H, we have Ez..,[£(h, Z)?] < M, < 40
and ]EZN# [é(h,Z)ﬂ < M3 < +oo.

e Bounds on the risk. For all i € H, we suppose R(h) < /mM,/(4log(6~1).
e Large enough confidence, we require § < e~1/%.

Now we can state Holland’s theorem.
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Theorem 7. Ref. [13]. Let P be a prior distribution on model H. Let the three assumptions listed
above hold. Setting t* = mMy/(21og(671)), then for any 6 € [0;1], with probability of at least
1 — 6 over the random draw of the size-m sample S, simultaneously for all Q it holds that:

Ej-olR(1)] < Epo[Repe(1)] + % (KL(QHP) + %log<87;12\/12> - 1)
1, 1
here:
where. 3 = Eyop [exp(ﬂ(R(h) — Rs,lp,t(h)))]
' Ejplexp(R(h) = Rs ()]
7. Proofs

7.1. Proof of Theorem 1

Proof. Let F : R™ x R" + R be a convex function, P a fixed prior, and 6 € [0,1]. Since
E,p [eF <RS(’1)’R(’1))] is a nonnegative random variable, we know that, by Markov’s inequal-
ity, forany h € H :

P<Eh~p {EF(RS(h),R(h))} - %Es E, p {J(Rgh),R(h))}) <.
So with probability of at least 1 — J, we have:

F(Rs(m)R(M)] < L F(Rs(),R(1)] _ X

0] < B[] 22

Applying the log function on each side of this inequality gives us with probability of
at least 1 — J over samples S:

log (By_p [P RsMIRD]) < log(%(),
We now rename A := log (Eh~p [EF(RS(h),R(h))] )

Furthermore, if we denote by ‘;—g the Radon-Nikodym derivative of Q with respect to
P when Q < P, we then have, for all Q such that Q ~ P:

A =log (]E;INQ {%eF(Rs(h),R(h))} )

dQ\ ! -1
:10g<Eh~Q|:<d§> eF(Mh»R(h))D (45=(9)"

and by concavity of log and Jensen’s inequality,

> ~5).o|log (52 )| + Bu-olF(Rs (k) RM)]
= ~KL(QIIP) + Ey-lF(Rs(k), R(H))]

while by convexity of F with Jensen'’s inequality,

> —KL(Q[|P) 4 F(Ej~q[Rs(h)], Epog[R(H)]).
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Hence, for Q such that Q ~ P,

F(Epg[Rs(h)], Epog[R(h)]) < KL(Q||P) + A

So with probability 1 — J, for Q such that Q ~ P,

F(Enol[Rs(h)], Byg[R(1)]) < KL(QI|P) +log ().
This completes the proof of Theorem 1. [

7.2. Proof of Theorem 5
We first provide a technical property. Recall that:

=S5

Proposition 3. Let « € R. Suppose the loss ¢ is HYPE(K) compliant with K(h ) = B||h|| +C,

with B > 0, C > 0. Then, for any Gaussian prior P = N (0,0?Iy) with 0> = t'”B2 ,0<t<1
and N > 6 we have:

2

N-1
c 1 ¢
o= Zexp(ww“”“”)mv(” <2f(t)m>>

with f(t) = 17,

Proof. We recall that o = t"’;;z

. B||h[| +C)? ||| |*B?
¢= ( 271(7 ) heRN ( 2ml—2a T opml-2a dh
1
= (t)B?||h||*> — 2BC||h|| — C? )dh
( W) -~ P( sz (FOB ] [l - 2)
(1 2 2C||n||  C? )
() fewoe(a (” " wrw )"

B c2 1 » B2f(t) 2
—exp(izml_zaf(t)a+f(t>))—( e /,mRNe"P(‘zml—za (1m1- 575) )dh.

We will use the spherical coordinates in N-dimensional Euclidean space given in [22]:

(h) we thus obtain:

¢ : (l’l], ey hN) — (1’, [ (PN—l)
where especially r = ||| and also the Jacobian of ¢ is given by:
N-2
dNv = N-1 11 sinf(pn_1_x) = N ldgn 1 V.
k=1

Let us also precise that as given in Blumenson [22] (page 66), we have that the surface of
the sphere of radius 1 in N-dimensional space is:

2/

(%)

/ dquV dq)l...dq)N,l =
P17/ PN-1
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where I’ is the Gamma function defined as:

+o0
T'(x) :/ Ple7tdt  for x > —1.
0

[ B2f(t) %
A= /he]RN exp <2m12”‘ <HhH - Bf(t)) >dh

we obtain by a change of variable:

4= ‘/r'(Pl""'(/’N—l &P <ZBI121{(26 <r B BfC(t)>2> dNv drdgy..don_1
VI e 2 N
(i(g)) ~/r:0 exP( zB Jlr(z)a (V* %) >rN 14y
ZﬁN Too c N1 Bzf(t)
B (r@I)) '/’:_% <r+m> exp(fzml—mﬂ)dr

Then, if we set:

2

2y \ NS N1\ € \NTFT e B2f(t ) 2
=\ oy ) 2k Bf(f) /7 c TP\ T’
I‘<7> k=0 S 10
We fix a random variable X such that:

We then have for any k positive integer, if k is even:

+oo Bzf(t) oo Bzf(t)
k 2 k )
./r: c ' exp<72m172ar >d’ < /r r eXp<*2m]72ar )dr

" Bf() rETe

And if k is odd:
00 2 +0co 2
/,7,L * exp<723m{£2 r2> dr < /r—o * exp<ffm{£’;‘)¥ r2>dr
~ Bf(H) -
< M B x (X > 0
2 Bzf() [xF1(x > 0)]
< TEHXV‘]
Bzf(f)
So we have:

\/7N N-1 /N _ C N—k-1 =2
e (VR () ) s

2

As precised in [23], we have for any k:

k
B[] = ( ’“”“) e (8]

B2f ()
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So finally:

~1\/ Cc \NF [ami- kHT(HTl)
< B () () BZf(t)) '(y)
Lemma 3. If N > 6, then: < )
r(s
— L =1

max
k=0.N-1 T (%)

Proof. As precised in the introduction of Srinivasan and Zvengrowski [24], Gauss [25]
(page 147) proved that on the interval [xg, +00) where x( € [1.46,1.47], T is a monotonic
increasing function. So, for N -1 > k > 2,1“(“71) < I'(Y). And because I'(1/2) =
V,T(1) =1, we have:

Because N > 6, and T’ is monotone and increasing on [3; +oo], we have I'(N/2) >
I'(3) > /mt. Hence the result. [

Using Lemma 3 allows us to write:

A<2\/ENI:Z£<Nk—1><B;j(t)>N—k—1< %)k+l

20

We recall that 02 = t’” and f(t) = -5 1=t Then we can write:

ASZﬁNZ]Xgl(N](—l)(Bf(ﬂ)Nkl( 1mizi)kﬂ.

We now conclude with the final bound on &:

¢ < e g (1+ (1)) ez A
< exprSey (14 500) e 25 O ofi) T (VE)
< 2000 (S (14 A0 £ T (55) (Vi kH(\/MT)Nikil
< 2exp (3G (14 £(6) ) T (Nk”)(ﬁﬁm)N ) 1( =)

<2exp(ﬁu+ﬂt>>) N-1 (N-1 c e
= (m)N Zk:O ( k )(W>

2
e Em ) ¢ o v
= (vin)¥ 2f (t)ym1 -2

This completes the proof of Proposition 3. [

Proof of Theorem 5. We combine Theorem 3 with Proposition 3. We also upper-bound
N—-1byN. O
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Abstract: We make two related contributions motivated by the challenge of training stochastic neural
networks, particularly in a PAC-Bayesian setting: (1) we show how averaging over an ensemble of
stochastic neural networks enables a new class of partially-aggregated estimators, proving that these
lead to unbiased lower-variance output and gradient estimators; (2) we reformulate a PAC-Bayesian
bound for signed-output networks to derive in combination with the above a directly optimisable,
differentiable objective and a generalisation guarantee, without using a surrogate loss or loosening the
bound. We show empirically that this leads to competitive generalisation guarantees and compares
favourably to other methods for training such networks. Finally, we note that the above leads to a

simpler PAC-Bayesian training scheme for sign-activation networks than previous work.

Keywords: statistical learning theory; PAC-Bayes theory; deep learning

1. Introduction

The use of stochastic neural networks has become widespread in the PAC-Bayesian
and Bayesian deep learning [1] literature as a way to quantify predictive uncertainty and
obtain generalisation bounds. PAC-Bayesian theorems generally bound the expected
loss of randomised estimators, so it has proven easier to obtain non-vacuous numerical
guarantees on generalisation in such networks.

However, we observe that when training these in the PAC-Bayesian setting, the
objective used is generally somewhat divorced from the bound on misclassification loss
itself, often because non-differentiability leads to difficulties with direct optimisation.
For example, Langford and Caruana [2], Zhou et al. [3], and Dziugaite and Roy [4] all
initially train non-stochastic networks before using them as the mode of a distribution, with
variance chosen, respectively, through a computationally-expensive sensitivity analysis,
as a proportion of weight norms, or by optimising an objective with both a surrogate
loss function and a different dependence on the Kullback-Leibler (KL) divergence from
their bound.

In exploring methods to circumvent this gap, we also note that PAC-Bayesian bounds
can often be straightforwardly adapted to aggregates or averages of estimators, leading
directly to analytic and differentiable objective functions (for example, [5]). Unfortunately,
averages over deep stochastic networks are usually intractable or, if possible, very costly
(as found by [6]).

Motivated by these observations, our main contribution is to obtain a compromise
by defining new and general “partially-aggregated” Monte Carlo estimators for the average
output and gradients of deep stochastic networks (Section 3), with the direct optimisation
of PAC-Bayesian bounds in mind. Although our main focus here is on the use of this
estimator in a PAC-Bayesian application, we emphasise that the technique applies generally
to stochastic networks and thus has links to other variance-reduction techniques for training
them, such as the pathwise estimator used in the context of neural networks by [7] amongst
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many others or Flipout [8]; indeed, it can be used in combination with these techniques.
We provide proofs (Section 4) that this application leads to lower variances than a Monte
Carlo forward pass and lower variance final-layer gradients than REINFORCE [9].

A further contribution of ours is a first application of this general estimator to non-
differentiable “signed-output” networks (with a final output € {—1,+1} and arbitrarily
complex other structure, see Section 4). As well as reducing variances as stated above,
a small amount of additional structure in combination with partial-aggregation enables
us to extend the pathwise estimator to the other layers, which usually requires a fully
differentiable network and eases training by reducing the variance of gradient estimates.

We adapt a binary classification bound (Section 5) from Catoni [10] to these networks,
yielding straightforward and directly differentiable objectives when used in combination
with aggregation. Closing this gap between objectives and bounds leads to improved
theoretical properties.

Further, since most of the existing PAC-Bayes bounds for neural networks have a
heavy dependency on the distance from initialisation of the obtained solution, we would
intuitively expect these lower variances to lead to faster convergence and tighter bounds
(from finding low-error solutions nearer to the initialisation). We indeed observe this
experimentally, showing that training PAC-Bayesian objectives in combination with partial
aggregation leads to competitive experimental generalisation guarantees (Section 6), and
improves upon naive Monte Carlo and REINFORCE.

As a useful corollary, this application also leads us to a similar but simpler PAC-
Bayesian training method for sign-activation neural networks than Letarte et al. [6], which
successfully aggregated networks with all sign activation functions € {+1, -1} and a
non-standard tree structure, but incurred an exponential KL divergence penalty and a
heavy computational cost (so that in practice they often resorted to a Monte Carlo estimate).
Further, the lower variance of our obtained estimator predictions enables us to use the
Gibbs estimator directly (where we draw a single sample function for every new example),
leading to a modified bound on the misclassification loss which is a factor of two tighter
without a significant performance penalty.

We discuss further and outline future work in Section 7.

2. Background

We begin here by setting out our notation and the requisite background.

Generally, we consider parameterised functions, {fy : X — V|6 € © C RN }, in
a specific form, choosing X C R% and an arbitrary output space ) which could be for
example {—1,+1} or R. We wish to find functions minimizing the out-of-sample risk,
R(f) = E(y)~pt(f(x),y), for some loss function ¢, for example the 0-1 misclassification
loss for classification, ¢y_1(y,y") = 1{y # y'}, or the binary linear loss, {,(y,y") =
1(1—yy'), with Y = {+1,—1}. These must be chosen based on an i.i.d. sample S =
{(x4,yi)}/*; ~ D™ from the data distribution D, using the surrogate of in-sample empirical
risk, Rg(f) = % Y, 0(f(x;),yi). We denote the expected and empirical risks under the
misclassification and linear losses, respectively RO-1 Rlin Rgfl and Rlsi“.

In this paper, we consider learning a distribution (PAC-Bayesian posterior), Q, over the
parameters 0. PAC-Bayesian theorems then provide bounds on the expected generalization
risk of randomised classifiers, where every prediction is made using a newly sampled
function from our posterior, fg, 6 ~ Q.

We also consider averaging the above to obtain Q-aggregated prediction functions,

Fo(x) := Egqfo(x). (1)

In the case of a convex loss function, Jensen’s inequality lower bounds the risk of
the randomised function by its Q-aggregate: £(Fo(x),y) < Ef.gf(f(x),y). The equality
is achieved by the linear loss, a fact we will exploit to obtain an easier PAC-Bayesian
optimisation objective in Section 5.
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2.1. Analytic Q-Aggregates for Signed Linear Functions

Q-aggregate predictors are analytically tractable for “signed-output” functions (here
the sign function and “signed” functions have outputs € {+1, —1}, as the terminology
“binary”, used sometimes in the literature, suggests to us too strongly an output € {0,1})
of the form fy,(x) = sign(w - x) under a normal distribution, Q(w) = N(,I), as specifi-
cally considered in a PAC-Bayesian context for binary classification by [5], obtaining an
differentiable objective similar to the SVM. Provided x # 0:

V2|

In Section 4, we will consider aggregating signed output (f(x) € {+1, —1}) functions
of a more general form.

Fo(x) == Eqponp1) sign(w - x) = erf( nox ) ()

2.2. Monte Carlo Estimators for More Complex Q-Aggregates

The framework of Q-aggregates can be extended to less tractable cases (for example,
with fg a randomised or a “Bayesian” neural network, see, e.g., [1]) through a simple and
unbiased Monte Carlo approximation:

T
Fo() = Bo-ofalx) = 1 12 fu () = Falx). Q

If we go on to parameterize our posterior Q by ¢ € ® C RN as Q, and wish to obtain
gradients without a closed form for Fy ¢(x) = Eoq, fo(x), there are two possibilities.
One is REINFORCE [9], which requires only a differentiable density function, g4 () and
makes a Monte Carlo approximation to the left hand side of the identity VyEqg, fo (x) =
Egq, [fo(x) Vg logqe(0)].

The other is the pathwise estimator, which additionally requires that fp(x) be dif-
ferentiable w.r.t. 6, and that the probability distribution chosen has a standardization
function, Sy, which removes the ¢ dependence, turning a parameterised g4 into a non-
parameterised distribution p: for example, S, ,(X) = (X — p)/c to transform a gen-
eral normal distribution into a standard normal. If this exists, the right hand side of
VoEo g, fo(x) = EenpVy fSE ) (x) generally yields lower-variance estimates than REIN-

FORCE (see for a modern survey [11]).

The variance introduced by REINFORCE can make it difficult to train neural networks
when the pathwise estimator is not available, for example when non-differentiable acti-
vation functions are used. Below we find a compromise between the analytically closed
form of (2) and the above estimator that enables us to make differentiable certain classes of
network and extend the pathwise estimator where otherwise it could not be used. Through
this we are able to stably train a new class of network.

2.3. PAC—Bayesian Approach

We use PAC-Bayes in this paper to obtain generalisation guarantees and theoretically-
motivated training methods. The primary bound utilised is based on the following theorem,
valid for a loss taking values in [0, 1]:

Theorem 1 ([10], Theorem 1.2.6). Given probability measure P on hypothesis space F and o« > 1,
for all Q on F with probability at least 1 — 6 over S ~ D™,

. — 14
EfqR(f) < inf &), [Er qRs(f) + TA]

. _ 1—exp(— log a®A
with ;1 (t) = SR and A = KL(Q|P) flog5+210g< e,

121



Entropy 2021, 23, 1280

This slightly opaque formulation (used previously by [3]) gives essentially identical
results when KL /m is large to the better-known “small-kl” PAC-Bayes bounds originated
by Langford and Seeger [12], Seeger et al. [13]. It is chosen because it leads to objectives
that are linear in the empirical loss and KL divergence, like
KL(Q|P
By oRs(f) + “A2P) @

This objective is minimised by a Gibbs distribution and is closely related to the
evidence lower bound (ELBO) usually optimised by Bayesian Neural Networks [1]. Such a
connection has been noted throughout the PAC-Bayesian literature; we refer the reader
to [14] or [15] for a formalised treatment.

3. The Partial Aggregation Estimator

Here we outline our main contribution: a reformulation of Q-aggregation for neural
networks leading to different, lower-variance, Monte Carlo estimators for their outputs
and gradients. These estimators apply to networks with a dense final layer, and arbitrary
stochastic other structure (for example convolutions, residual layers or a non-feedforward
structure). Specifically, they take the form

fo(x) = A(w - g~ (x)) ®)

with 8 = vec(w,07%) € ® C RP, w € RY and 7% € @ C RP~4 the parameter set
excluding w, for the non-final layers of the network. These non-final layers are included
ingg-w : X — A? C R and the final activation is A : R — Y. For simplicity we have
used a one-dimensional output but we note that the formulation and below derivations
trivially extend to a vector-valued function with elementwise activations. We require
the distribution over parameters to factorise like Q(0) = Q% (w)Q ™ (6™"), which is
consistent with the literature.
We recover a similar functional form to that considered in Section 2.1 by rewriting
the function as A(w - a) with a € A? the randomised hidden-layer activations The
“aggregated” activation function on the final layer, which we define as I(a) := [ A(w
a) dQ%(w), may then be analytically tractable. For example, with w ~ ( 7 ]I) and a sign

final activation, we recall (2) where I(a) = erf( \fHuH )
Using these definitions we can write the Q-aggregate in terms of the conditional

distribution on the activations, a, which takes the form Q7% (a|x) := (11(y(x)) 0 Q™ (ie.,
the distribution of #p—w (x)|x, with 67% ~ Q™). The Q-aggregate can then be stated as
Fo(x) == Eguq[fo(¥)]
- [ /]Rd Al s () 4Q° )| 4@ (™)
= / o~ (x)) dQ™(67%)
[ 1@ {01, () ° Q" Ha)
[, (@) 40 (al).

In most cases, the final integral cannot be calculated exactly or involves a large sum-
mation, so we resort to a Monte Carlo estimate, for each x drawing T samples of the ran-
domised activations, {a’}_; ~ Q7™ (alx) to obtain the “partially-aggregated” estimator

T
Fo(x) = [, 1(a) 0™ (alx) = . Y- 1(a') = Fo(o). ©

t=1
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This is quite similar to the original estimator from (3), but in fact the aggregation of
the final layer may significantly reduce the variance of the outputs and also make better
gradient estimates possible, as we will show below.

3.1. Reduced Variance Estimates

Proposition 1. Lower variance outputs: For a neural network as defined by Equation (5) and
the unbiased Q-aggregation estimators defined by Equations (3) and (6),

VolE5(x)] < VolFg(x)).
Proof. Treating a as a random variable, always conditioned on x, we have

Valfo()] - Valf(x)) = Eal a0 ~ Bl ()P
~ 1 Eaa [BulA(w- a) P = [EwA(w- a) ]
= FEaulValA(w- a)]] 20

O

From the above we see that the aggregate outputs estimated through partial-aggregation
have lower variances. Next, we consider the two unbiased gradient estimators for the dis-
tribution over final-layer weights, w, arising from partial-aggregation or REINFORCE (as
would be used, for example, where the final layer is non-differentiable). Assuming Q% has
a density, g4(6%), parameterised by ¢, these use forward samples of {w', gw(b) M as:

. 1 &
G(x) = T ZA(wt . r]t)Vq, logqu(wt)
t=1
. 1 ¢ ;
6" (x) 1= 1 1 Vol ()
t=1

Proposition 2. Lower variance gradients: Under the conditions of Proposition 1 and the
above definitions,
Covg[G*(x)] = Covg[G(x)]

where A < B <= B — A is positive semi-definite. Thus, for all u # 0, V[G*(x) cu] <
V[G(x) - u].
Proof. Writing v := Vlogqs(w) and using the unbiasedness of the estimators,
Covg[Gg(x)] — Covo[GH(x)]
= Eq[Go(x)Go(x)"] — Eg[65 (%) 65 (%))
1
= Eape [Buw[A(w - a)%00") = Vyly, () (Vo (1)) |
1
= fEa‘x[Covw[A(w ~a)Vylogge(w)]] =0
where in the final line we have used that Vylg, (') = VyEu[A(w - 4')] = Eqo[A(w -
t

7], O

3.2. Single Hidden Layer

For clarity (and to introduce notation to be used in Section 4.2) we will briefly consider
the case of a neural network with one hidden layer, fy(x) = Ax(w; - A1(Wix)). The
randomised parameters are 6 = vec(wy, Wy), Wy € Ré1%do 7p, € R% and the elementwise
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activations are A; : R — .A‘lil C R% and A, : R — Y. We choose the distribution
Q(0) =: Qa(w2)Q1 (W) to factorise over the layers. This is identical to the above and sets
fw, (x) = A1 (Wix).

Sampling a is straightforward if sampling W is. Further, if the final layer aggregate is
differentiable, and so is the hidden layer activation A;, we may be able to use the lower-
variance pathwise gradient estimator for gradients with respect to Q;. We note that this
may be possible even if the activation A; is not differentiable, as in Section 4, where we
extend the pathwise estimator where we could not otherwise use it.

Computationally, we may implement the above by analytically finding the distribution
on the “pre-activations” W x (trivial for the normal distribution) before sampling this and
passing through the activation. With the pathwise estimator this is known as the “local
reparameterization trick” [16], which can lead to considerable computational savings on
parallel minibatches compared to direct hierarchical sampling, a = A; (W x) with Wy ~ Q;.
We will utilise this in all our reparameterizable dense networks, and a variation on it to
save computation when using REINFORCE in Sections 4.2 and 6.

4. Aggregating Signed-Output Networks

Here we consider a first practical application of the aggregation estimator to stochastic
neural networks with a final dense sign-activated layer. We have seen above that this
partial aggregation leads to better-behaved training objectives and lower-variance gradient
estimates across arbitrary other network structure, It may also allow use of pathwise
gradients for the other layers, which would not be possible otherwise due to the non-
differentiability of the final layer.

Specifically, these networks take the form of Equation (5) with the final layer activation
a sign function and weights drawn from a unit variance normal distribution, Q% (w) =
N (u,I). The aggregate I(a) is given by Equation (2). Normally-distributed weights are
chosen because of the simple analytic forms for the aggregate (reminiscent of the tanh
activation occasionally used for neural networks) and KL divergence (effectively an L?
regularisation penalty); we note however that closed forms are available for other commonly-
used distributions such as the Laplace.

Using Equations (3) and (6) with independent samples {(w?,67*())}T_| ~ Q and
11 := #g-w,i» (x) leads to the two unbiased estimators for the output (henceforth assuming
the technical condition P, {7 = 0} = 0 that allows aggregation to be well-defined).

Fo(x) := % Y sign(w' 1) @)
t=1
. 1 pe
F == f . 8
%169 Tt;er (\ﬁ”’ﬂ) ()]

It follows immediately from Propositions 1 and 2 that the latter and the associated
gradient estimators have lower variances than the former or the REINFORCE gradient
estimates (which we would otherwise have to use due to the non-differentiability of the
final layer).

4.1. Lower Variance Estimates of Aggregated Sign-Output Networks

We clarify the situation with the lower variance estimates further below. In particular,
we find that the reduction in variance from using the partial-aggregation estimator is
controlled by the norm |||, so that for small ||| (as could be expected early in training)
the difference can be large, while as ||| grows, the difference in variance is controlled
and we could reasonably revert to the Monte Carlo (or Gibbs) estimator. Note also that as
Fo(x) — *£1 (as expected after training), both variances disappear.

We also show that a stricter condition than Proposition 2 holds on the variances of the
aggregated gradients here, and thus that the non-aggregated gradients are noisier in all
cases than the aggregate.
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Proposition 3. With the definitions given by Equation (7), for all x € R%, T € N, and Q with
normally-distributed final layer,
[l ) ?
erf( == .
(2

Proof. The left identity follows directly from Proposition 1. We also have

)

0 < Volfo(x)] = VolEs(x)] < ;<l a

Volfo(x)] ~ VolF3 ()] = 1 Eqs[Vlsign(zw- a)]

1 /|

T (1 —Egx erf(\/§”11”>
\

()

O

Proposition 4. Under the conditions of Proposition 3,

Cov[G* (x)] < Cov[G(x)] + » *TZ/”H.
Thus, for all u with ||ul| =1,

VIG () ] < VIG() -u + 2T
Proof. Itis straightforward to show that

6(x) = 1 Lsgnta 1))

Q)
P
=
I
Sl
1=
{\:ﬁ
e
[e]
pas
ae]
|
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/
—=
=
=5,
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t=1
Cov[G(x)] = %(H - GGT)
Cov[G*(x)] = ;( “7’7|27213‘ fat) | - GGT>

so foru # 0,
Tu” (Cov[G(x)] — Cov[G*(x)])u

A
- |u||2,iE{"|’|,,|’|’2 () } >l (1-2) >0

Above we have brought u inside the term with an expectation, which is then bounded
using Cauchy-Schwarz on |u - g|/||y|| < ||u||, and e~ < 1forallt € R. [

4.2. All Sign Activations

Here we examine an important special case previously examined by Letarte et al. [6]:
a feed-forward network with all sign activations and normal weights. This takes the form

fo(x) = sign(wy, - sign(Wp_1 ...sign(Wix)...))
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with 6 := vec(wp,...,W;) and W; := [wy; ... w;/d]]T; I € {1,..,L} are the layer in-
dices. We choose unit-variance normal distributions on the weights, which factorise into
QW) = Hf’:] q1i(wy ;) with q;; = N'(py5, I3, ). In the notation of Section 3, 59— (x) =
sign(Wr_1 ...sign(Wix)...) is the final layer activation, which could easily be sampled
by mapping x through the first L — 1 layers with draws from the weight distribution.

Instead, we go on to make an iterative replacement of the weight distributions on each
layer by conditionals on the layer activations to obtain the summation

Folx)= ) Qulmlx) x

aye{+1,-1}%
9
~ ML a1 ©)
X Y. Qr-1(aL-1lar ) erf laan )
aLfle{‘Fl/*l}dL*l 2““L—1||

The number of terms is exponential in the depth so we instead hierarchically sample
the a;. Like local reparameterisation, this leads to a considerable computational saving
over sampling a separate weight matrix for every input. The conditionals can be found in
closed form: we can factorise individual hidden units Q;(a;|a;_;) := H?IZ 1Gi(ailai—q),
and find their activation distributions (with a := x and z a dummy variable):

Grilap; = +1a;_) :/0 Nz tpyi-aq, la—q]|?) dz

Hli a1
1+ erf
()]

A marginalised REINFORCE-style gradient estimator for conditional distributions can
then be used; this does not necessarily have better statistical properties but in combination
with the above is much more computationally efficient. This idea of “conditional sampling”
is inspired by the local reinforce trick. Using samples {(af...at )} ~ Q,

1 u pLoap d st |t
a”lll T tze <\/§atLl|> a,ul,i logql,l(al,l‘ulfl)‘ (10)

This formulation along with Equation (9) resembles the PBGNet model of [6], but
derived in a very different way. Indeed both are equivalent in the single-hidden-layer
case, but with more layers PBGNet uses an unusual tree-structured network to make the
individual activations independent and avoid an exponential computational dependency
on the depth in Equation (9). This makes the above summation exactly calculable but is also
still not efficient enough in practice, so they resort further to a Monte Carlo approximation:
informally, this draws new samples for every layer [ based on an average of those from the
previous layer, a;]| {ul(i)l}tT:l ~ % Y Q(aﬂaf?l).

This is all justified within the tree-structured framework but leads to an exponential
KL penalty which—as hinted by Letarte et al. [6] and shown empirically in Section 6—
makes PAC-Bayes bound optimisation strongly favour shallower such networks. Our
formulation avoids this, is more general—applying to alternative network structures—and
we believe it is significantly easier to understand and use in practice.

5. PAC-Bayesian Objectives with Signed-Outputs

We now move to obtain binary classifiers with guarantees for the expected misclassifi-
cation error, R%~1, which we do by optimizing PAC-Bayesian bounds. Such bounds (as in
Theorem 1) will usually involve the non-differentiable and non-convex misclassification
loss £y_1. However, to train a neural network we need to replace this by a differentiable
surrogate, as discussed in the introduction.
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Here we adopt a different approach by using our signed-output networks, where since
f(x) € {+1, -1}, there is an exact equivalence between the linear and misclassification
losses, £o—1(f(x),y) = bin(f(x),y), avoiding an extra factor of two from the inequality
Lo—1 < 20

Although we have only moved the non-differentiability into f, the form of a PAC—Bayesian
bound and the linearity of the loss and expectation allow us to go further and aggregate,

Efolo-1(f(x),y) = Erolin(f(%),y) = lin(Fo(¥),y) (11)

which allows us to use the tools discussed in Section 4 to obtain lower-variance estimates
and gradients. Below we prove a small result to show the utility of this:

Proposition 5. Under the conditions of Proposition 3 and y € {+1, -1},
Vollin (Fy (%), )] < Vollin(Fo(x),y)]
1
< Viglloa(f(x),y)] = (1= [Fo(x)).

Proof.
2

Voltin(Fo(x), )] = Eq| 5 (vFa(®) — vFa(®)| = 3Valfo(x)]

and a similar result for £, f = Fqif T = 1 and 6, (f(x),y) = fo-1(f(x),y). The result
then follows from this and Proposition 3. [

Combining (11) with Theorem 1, we obtain a directly optimizable, differentiable
bound on the misclassification loss without introducing the above-mentioned factor of 2.

Theorem 2. Given Pon 0 and a > 1, for all Q on 0 and A > 1 simultaneously with probability at
least 1 — 6 over S ~ D™,

EooR"™(fo) < @7/, [RE(Fo) + 4]
with ®;1(1) = 21 ZXXP; fg (R4 = {+1,-1},0 € ©, and A = KL(Q|P) — logé +
210g("EE2).
Thus, for each A, which can be held fixed (“fix-A") or simultaneously optimized

throughout training for automatic regularisation tuning (“optim-A"), we obtain a gradient
descent objective:

REN(FY) + L(gp). 12)

6. Experiments

All experiments (Table 1) run on “binary”-MNIST, dividing MNIST into two classes,
of digits 0—4 and 5-9. Neural networks had three hidden layers with 100 units per layer
and sign, sigmoid (sgmd) or relu activations, before a single-unit final layer with sign
activation. Q was chosen as an isotropic, unit-variance normal distribution with initial
means drawn from a truncated normal distribution of variance 0.05. The data-free prior
P was fixed equal to the initial Q, as motivated by Dziugaite and Roy [4] (Section 5 and
Appendix B).
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Table 1. Average (from ten runs) binary-MNIST losses and bounds (6 = 0.05) for the best epoch and
optimal hyperparameter settings of various algorithms. Hyperparameters and epochs were chosen
by bound if available and non-vacuous, otherwise by training linear loss. Bold numbers indicate the
best values and standard deviation is reported in italics.

Reinforce Fix-A Optim-A

ml b
L sign relu sign sgmd relu sign sgmd relu

Train Linear 0.78 872 260 186 877 760 635 671 647 541
error, 1o 0.08 0.08 0.8 1.4 004 019 010 011 018 0.16

Test 0-1 182 526 254 179 873 7838 651 685 684 5.61
error, 1o 016 0.18 1.0 1.5 023 030 019 027 021 0.20
Bound 0-1 - 40.8 100 100 21.7 188 155 226 193 16.0
error, 1o - 0.2 0.0 00 004 017 004 003 031 0.05

The objectives fix-A and optim-A from Section 5 were used for batch-size 256 gradient
descent with Adam [17] for 200 epochs. Every five epochs, the bound (for a minimising
A) was evaluated using the entire training set; the learning rate was then halved if the
bound was unimproved from the previous two evaluations. The best hyperparameters
were selected using the best bound achieved in these evaluations through a grid search of
initial learning rates € {0.1,0.01,0.001}, sample sizes T € {1,10,50,100}. Once these were
selected training was repeated 10 times to obtain the values in Table 1.

A in optim-A was optimised through Theorem 2 on alternate mini-batches with SGD
and a fixed learning rate of 10~* (whilst still using the objective (12) to avoid effectively
scaling the learning rate with respect to empirical loss by the varying A). After preliminary
experiments in fix-A, we set A = m = 60,000, the training set size, as is common in Bayesian
deep learning.

We also report the values of three baselines: reinforce, which uses the fix-A objective
without partial-aggregation, forcing the use of REINFORCE gradients everywhere; mlp,
an unregularised non-stochastic relu neural network with tanh output activation; and the
PBGNet model (pbg) from Letarte et al. [6]. For the latter, a misclassification error bound
obtained through ¢y_; < 2/};, must be used as their test predictions were made through
the sign of a prediction function € [—1, +1], not € {+1, —1}. Further, despite significant
additional hyperparameter exploration, we were unable to train a three layer network
through the PBGNet algorithm directly comparable to our method, likely because of the
exponential KL penalty (in their Equation 17) within that framework; to enable comparison,
we therefore allowed the number of hidden layers in this scenario to vary € {1,2,3}. Other
baseline tuning and setup was similar to the above, see the Appendix A for more details.

During evaluation reinforce draws a new set of weights for every test example,
equivalent to the evaluation of the other models; but doing so during training, with multiple
parallel samples, is prohibitively expensive. Two different approaches to straightforward,
not partially-aggregated, gradient estimation for this case suggest themselves, arising from
different approximations to the Q-expected loss of the minibatch, B C S (with data indices
B). From the identities

VoEoq,R5(fo) = E9~q¢‘;j| Z L(fo(x:),yi)Vplogqe(6)
ZEQNIM; (fo(xi),yi) Vg log qe(6)
‘B‘ ieB

we obtain two slightly different estimators for VyEq.q, R (fp):

1 T
szzf Fou (1), i) Vo log g (67))
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£(for (x:) %)Vzp log %(et)

T M'ﬂ

1
I8l &

The first draws many more samples and has lower variance but is much slower
computationally; even aside from the O(|B|) increase in computation, there is a slowdown
as the optimised BLAS matrix routines cannot be used, and the very large matrices involved
may not fit in memory (see for more information [16]).

Therefore, as is standard in the Bayesian Neural Network literature with the pathwise
estimator, we use the latter formulation, which has a similar computational complexity
to local-reparameterisation and our marginalised REINFORCE estimator (10). We should
note though that in preliminary experiments, the alternate estimator did not appear to lead
to improved results. This clarifies the advantages of marginalised sampling, which can
lead to lower variance with a similar computational cost.

7. Discussion

The experiments demonstrate that partial-aggregation enables training of multi-layer
non-differentiable neural networks in a PAC-Bayesian context, which is not possible with
REINFORCE gradients and a multiple-hidden-layer PBGNet [6]. These obtained only vacuous
bounds, and our misclassification bounds also improve those of a single-hidden-layer PBGNet.

Our experiments raise a couple of questions: firstly, why is it that lower variance
estimates empirically lead to tighter bounds? We speculate that the faster convergence
of SGD in this case takes us to a more “local” minimum of the objective, closer to our
initialisation. Since most existing PAC-Bayes bounds for neural networks have a very
strong dependence on this distance from initialisation through the KL term, this leads to
tighter bounds. This distance could also be reduced through other methods we consider
out-of-scope, such as the data-dependent bounds employed by Dziugaite and Roy [18] and
Letarte et al. [6].

A second and harder question is asking why the non-stochastic mlp model obtains a
lower overall error. The bound optimisation is empirically quite conservative, but does not
necessarily lead to better generalisation; understanding this gap is a key question in the
theory of deep learning.

In future work we will develop significant new tools to extend partial-aggregation
to multi-class classification, and to improve test prediction bounds for sign(Fp(x)) with
T > 1, as in PBGNet, which gave slightly improved predictive performance despite the
inferior theoretical guarantees.
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Appendix A. Further Experimental Details
Appendix A.1. Aggregating Biases with the Sign Function

We used a bias term in our network layers, leading to a simple extension of the above
formulation, omitted in the main text for conciseness:

. _ p-x+p
IEWNN(%D,%N(AUZ) sign(w - x+b) = erf(Z(xTZJC—O—aZ))

sincew-x+b~N(u-x+p,x"Zx+0?) and

IEZNN(,X#Z) signz =P(z > 0) — P(z < 0)
=[1-(-a/p)] — (-a/B)
= 20(a/p) — 1= erf(a/V2p).

The bias and weight co-variances were chosen to be diagonal with a scale of 1, which
leads to some simplification in the above.

Appendix A.2. Dataset Details

We used the MNIST dataset version 3.0.1, available online at http://yann.lecun.com/
exdb/mnist/ (accessed on 4 June 2021), which contains 60,000 training examples and
10,000 test examples, which were used without any further split, and rescaled to lie in the
range [0, 1]. For the “binary”-MINST task, the labels 41 and —1 were assigned to digits in
{5,6,7,8,9} and {0,1,2,3,4}, respectively, and images were scaled into the interval [0, 1].

Appendix A.3. Hyperparameter Search for Baselines

The baseline comparison values offered with our experiments were optimized simi-
larly to the above, for completeness we report everything here.

The MLP model had three hidden ReLu layers of size 100 each trained with Adam,
a learning rate € {0.1,0.01,0.001} and a batch size of 256 for 100 epochs. Complete test
and train evaluation was performed after every epoch, and in the absence of a bound, the
model and epoch with lowest train linear loss was selected.

For PBGNet we choose the values of hyperparameters from within these values giving
the least bound value. Note that, unlike in [6], we do not allow the hidden size to vary
{€ 10,50,100}, and we use the entire MNIST training set as we do not need a validation
set. While attempting to train a three hidden layer network, we also searched through the
hyperparameter settings with a batch size of 64 as in the original, but after this failed, we
returned to the original batch size of 256 with Adam. All experiments were performed using
the code from the original paper, available at https:/ /github.com/gletarte/dichotomize-
and-generalize (accessed on 4 June 2021).

Since we were unable to train a multiple-hidden-layer network through the PBGNet
algorithm, for this model only we explored different numbers of hidden layers € {1,2,3}.

Appendix A.4. Final Hyperparameter Settings

In Table A1 we report the hyperparameter settings used for the experiments in Table 1
after exploration. To save computation, hyperparameter settings that were not learning
(defined as having a whole-train-set linear loss of > 0.45 after ten epochs) were terminated
early. This was also done on the later evaluation runs, where in a few instances the fix-A
sigmoid network failed to train after ten epochs; to handle this we reset the network to
obtain the main experimental results.
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Table Al. Chosen hyperparameter settings and additional details for results in Table 1. Best hyperpa-
rameters were chosen by bound if available and non-vacuous, otherwise by best training linear loss
through a grid search as described in Section 6 and Appendix A.3. Run times are rounded to nearest

5 min.
Reinforce Fix-A Optim-A
mlp  pbg :

sign relu sign relu sgmd sign relu sgmd
Init. LR 0.001  0.01 0.1 0.1 0.01 0.1 0.1 0.01 0.1 0.1
Samples, T - 100 100 100 100 50 10 100 100 10
Hid. Layers 3 1 3 3 3 3 3 3 3 3
Hid. Size 100 100 100 100 100 100 100 100 100 100
Mean KL - 2658 15,020 13,613 2363 3571 3011 5561 3204 4000
Runtime/min 10 5 40 40 35 30 25 35 30 25

For clarity we repeat here the hyperparameter settings and search space:

e Initial Learning Rate € {0.1,0.01,0.001}.

e Training Samples € {1,10,50,100}.

e  Hidden Size = 100.

e  Batch Size = 256.

e  Fix-A, A = m = 60,000.

e Number of Hidden Layers = 3 for all models, except PBGNet € {1,2,3}.

Appendix A.5. Implementation and Runtime

Experiments were implemented using Python and the TensorFlow library [19]. Re-
ported approximate runtimes are for execution on a NVIDIA GeForce RTX 2080 Ti GPU.
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Abstract: Online learning methods, similar to the online gradient algorithm (OGA) and exponen-
tially weighted aggregation (EWA), often depend on tuning parameters that are difficult to set in
practice. We consider an online meta-learning scenario, and we propose a meta-strategy to learn
these parameters from past tasks. Our strategy is based on the minimization of a regret bound. It
allows us to learn the initialization and the step size in OGA with guarantees. It also allows us to
learn the prior or the learning rate in EWA. We provide a regret analysis of the strategy. It allows to
identify settings where meta-learning indeed improves on learning each task in isolation.

Keywords: meta-learning; hyperparameters; priors; online learning; Bayesian inference; online
optimization; gradient descent

1. Introduction

In many applications of modern supervised learning, such as medical imaging or
robotics, a large number of tasks is available but many of them are associated with a small
amount of data. With few datapoints per task, learning them in isolation would give poor
results. In this paper, we consider the problem of learning from a (large) sequence of
regression or classification tasks with small sample size. By exploiting their similarities we
seek to design algorithms that can utilize previous experience to rapidly learn new skills or
adapt to new environments.

Inspired by human ingenuity in solving new problems by leveraging prior experience,
meta-learning is a subfield of machine learning whose goal is to automatically adapt a
learning mechanism from past experiences to rapidly learn new tasks with little available
data. Since it “learns the learning mechanism” it is also referred to as learning-to-learn [1]. It
is seen as a critical problem for the future of machine learning [2]. Numerous formulations
exist for meta-learning and we focus on the problem of online meta-learning where the tasks
arrive one at a time and the goal is to efficiently transfer information from the previous
tasks to the new ones such that we learn the new tasks as efficiently as possible (this has
also been refered to as lifelong learning). Each task is in turn processed online. To sum up,
we have a stream of tasks and for each task a stream of observations.

In order to solve online tasks, diverse well-established strategies exist: perceptron,
online gradient algorithm (OGA), online mirror descent, follow-the-regularized-leader,
exponentially weighted aggregation (EWA, also refered to as generalized Bayes etc.) We refer
the reader to [3-6] for introductions to these algorithms and to so-called regret bounds,
that control their generalization errors. We refer to these algorithms as the within-task
strategies. The big challenge is to design a meta-strategy that uses past experiences to
adapt a within-task strategy to perform better on the next tasks.

In this paper, we propose a new meta-learning strategy. The main idea to learn the
tuning parameters is to minimize its regret bound. We provide a meta-regret analysis for
our strategy. We illustrate our results in the case where the within-task strategy is the
online gradient algorithm, and exponentially weighted aggregation. In the case of OGA,
the tuning parameters considered are the initialization and the gradient steps. For EWA,
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we consider either the learning rate, or the prior. In each case, we compare the regret
incurred when learning the tasks in isolation to our meta-regret bound. This allows us to
identify settings where meta-learning indeed improves on learning in isolation.

1.1. Related Works

Meta-learning is similar to multitask learning [7-9] in the sense that the learner faces
many tasks to solve. However, in multitask learning, the learner is given a fixed number
of tasks, and can learn the connections between these tasks. In meta-learning, the learner
must prepare to face future tasks that are not given yet.

Meta-learning is often referred to as learning-to-learn or lifelong learning. The authors
of [10] proposed the following distinction: “learning-to-learn” for situations where the
tasks are presented simultaneously, and “lifelong learning” for situations where they are
presented sequentially. Following this terminology, learning-to-learn algorithms were
proposed very early in the literature, with generalization guarantees [11-16].

On the other hand, in the lifelong learning scenario, until recently, algorithms were
proposed without generalization guarantees [17,18]. A theoretical study was proposed
by [10], but the strategies in that paper are not feasible in practice. This problem was
recently improved [19-26]. In a similar context, in [27], the authors propose an efficient
strategy to learn the starting point of OGA. However, an application of this strategy to
learning the step size do not show any improvement over learning in isolation [28]. The
closest work to this paper is [29] in which they also suggest a regret bound minimization
strategy. This paper indeed provides a meta-regret bound for learning both the initialization
and the gradient step. Note, however, that this paper remains specific to OGA, while our
work can be potentially applied to any online learning algorithm. Indeed, we provide
another example: the generalized Bayesian algorithm EWA, for which we learn the prior,
or the learning rate. To learn the prior is new in the online setting, to our knowledge. It can
be related to works in the batch setting [11,13,15,16], but the improvement with respect to
learning in isolation is not quantified in these works.

Finally, it is important to note that we focus on the case where the number of tasks
T is large, while the sample size n and algorithmic complexity of each task is moderately
small. When each task is extremely complex, for example training a deep neural network
on a huge dataset, our procedure (as well as those discussed above) will become too
expansive. Alternative approaches were proposed, based on optimization via multi-armed
bandits [30,31].

1.2. Organization of the Paper

In Section 2, we introduce the formalism of meta-learning and the notations that will
be used throughout the paper. In Section 3, we introduce our meta-learning strategy, and
its theoretical analysis. In Section 4, we provide the details of our method in the case of
meta-learning the initialization and the step size in the online gradient algorithm. Based
on our theoretical results, there are also explicit situations where meta-learning indeed
improves on learning the tasks independently. This is confirmed by experiments reported
in this section. In Section 5, we provide the details of our methodology when the algorithm
used within tasks is a generalized Bayesian algorithm: EWA. We show how our meta-
strategy can be used to tune the learning rate; we also discuss how it can be used to learn
priors. The proofs of the main results are given in Section 6.

2. Notations and Preliminaries

By convention, vectors v € R? are seen as d x 1 matrices (columns). Let ||v|| denote the
Euclidean norm of v. Let AT denote the transposition of any d x k matrix A, and I, the d x d
identity matrix. For two real numbers a and b, let a V b = max(a,b) and a A b = min(a, b).
For z € R, z is its positive part z; = z v 0. Given a finite set S, we let card(S) denote the
cardinality of S.
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The learner has to solve tasks t = 1,..., T sequentially. Each task t consists in 1 rounds
i=1,...,n Ateachround i of task t, the learner has to take a decision 6; ; in a decision
space © C RY for some d > 0. Then, a convex loss function lr;: ® — Ris revealed to the
learner, who incurs the loss ¢; ;(6; ;). Classical examples with @ C R? include regression
tasks, where ¢;;(0) = (y:; — xtT’if))2 for some x;; € R? and y;; € R. For classification tasks,
£i(0) =(1— yt,ixzi9)+ for some x;; € RY, y,; € {—1,+1}.

Throughout the paper, we will assume that the learner uses, for each task, an online
decision strategy called within-task strategy, parametrized by a tuning parameter A € A
where A is a closed, convex subset of R? for some p > 0. Example of such strategies include
the online gradient algorithm, given by 6;; = 6;;_1 — ¥V, ;(6;;_1). In this case, the tuning
parameters are the initialization, or starting point, §;; = ¢ and the learning rate, or step
size, ¢. Thatis, A = (8,7), so p = d + 1. The parameter A is kept fixed during the whole
task. It is of course possible to use the same parameter A in all the tasks. However, we
will be interested here in defining meta-strategies that will allow us to improve A task after
task, based on the information available so far. In Section 3, we will define such strategies.
For now, let A; denote the tuning parameter used by the learner all along task t. Figure 1
provides a recap of all the notations.

Meta alg. update A\; — Ao A3 Ap
Within-task strategy Within-task strategy Within-task strategy
Update 6 L Up(ldle (4 L N Update 0
o 0, 02 0,2 0,5 07 0,7
/llﬁwuﬂ S #“*M“H 2l fm*)[wﬂ T b,
Task 1: (1), Task 2: (a);, Task T: (r,);_,

Figure 1. The dynamics of meta-learning.

Let 9?’1- denote the decision at round i of task t when the online strategy is used with
parameter A. We will assume that a regret bound is available for the within-task strategy.
By this, we mean that there is a set @y C © of parameters of interest, and that the learner
knows a function B, : © x A — R such that, for any task ¢, for any A € A,

n
Y 4i(6)) < inf {th )+ B (6, A)} 1)
i=1 0€0y

=:Li(A)

For OGA, regret bounds can be found, for example, in [4,6] (in this case, ®y =
®). Other examples include exponentially weighted aggregation (bounds in [3], here
0 is a finite set of predictors while decisions ® are probability distributions on ®j).
More examples will be discussed in the paper. For a fixed parameter 6, the quantity

"l (Gt):i) —Yi 1 ¢:,i(0) measures the difference between the total loss suffered during
task t, and the loss what one would have suffered using the parameter 6. It is thus called

“the regret with respect to parameter 6”, and B, (6, A) is usually referred to as a “regret

bound”. We will call £;(A) the “meta-loss”. In [29], the authors study a meta-strategy that
minimizes the meta-loss of OGA. Indeed, if (1) is tight, to minimize the right-hand side is
a good way to ensure that the left-hand side, that is, the cumulated loss, is small. In this
work, we will focus on meta-strategies minimizing the meta-loss in a more general context.

The simplest meta-strategy is learning in isolation. That is, we keep A; = A9 € A for
all tasks. The total loss after task T is then given by:

0i(0)9) < 2 Li(A). ¢))

/

=
M:

»
I

—_
Il

—
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However, when the learner uses a meta-strategy to improve the tuning parameter at
the end of each task, the total loss is given by Zthl Yl l( !). We will, in this paper,
investigate strategies with meta-regret bounds; that is, bounds of the form

if 9)"<1nf{2£[ +CT(/\)}. 3)

=11

Of course, such bounds will be relevant only if the right-hand side of (3) is not larger
than the right-hand side of (2), and is significantly smaller in some favourable settings. We
show when this is the case in Section 4.

3. Meta-Learning Algorithms

In this section, we provide two meta-strategies to update A at the end of each task. The
first one is a direct application of OGA to meta-learning. It is computationally simpler, but
feasible only in the special case where we have an explicit formula for the (sub-)gradient of
each £;(A). The second one is an application of implicit online learning to our setting. In
Section 4, we provide an example where this is the case. The second meta-strategy can be
used without this assumption. In both cases, we provide a regret bound as (3), under the
following condition.

Assumption 1. Foranyt € {1,..., T}, the function A — L;(A) is L-Lipschitz and convex.

3.1. Special Case: The Gradient of the Meta-Loss Is Available in Closed Form

As each L; is convex, its subdifferential at each point of A is non-empty. For the sake
of simplicity, we will use the notation A — V£;(A) in the following formulas to denote
any element of its subdifferential at A. We define the online gradient meta-strategy (OGMS)
with step « > 0 and starting point A; € A: forany t > 1,

A =TIp[A 1 —aVL 1 (A1) @)
where I, denotes the orthogonal projection on A.

3.2. The General Case

We now cover the general case, where a formula for the gradient of £;(A) might
not be available. We propose to apply a strategy that was first defined in [32] for online
learning, and studied under the name “implicit online learning” (we refer the reader to [33]
and the references therein). In the meta-learning context, this gives the online proximal
meta-strategy (OPMS) with step « > 0 and starting point A; € A, defined by:

_ 2
At = argmin{ﬁ,,l()\) + M} (5)
AEA 2w

Using classical notations, e.g., [34], we can rewrite this definition with the proximal
operator (hence the name of the method). Indeed A+ = prox,, | (A¢—1) where prox is the
proximal operator given for any x € A and any convex function f : A — R,

proxf(x) = argmin{f(/\) + M} (6)
AEA

This strategy is feasible in practice in the regime we are interested in; that is, when n is
small or moderately large, and T — oco. The learner has to store all the losses of the current
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task £4_11,..., 41, At the end of the task, the learner can use any convex optimization
algorithm to minimize, with respect to (6, 1) € ® x A, the function

1A = AaP?

Zé,, )+ Bu(6,A) + on

@)

We can use a (projected) gradient descent on F; or its accelerated variants [35].

3.3. Regret Analysis

A direct application of known results to the setting of this paper leads to the following
proposition. For the sake of completeness, we still provide the proofs in Section 6.

Proposition 1. Under Assumption 1, using either OGMS or OPMS with step « > 0 and starting
point Ay € A leads to

2 _ 2

ZZ&, b <1nf{2£ R

t=1i=
The proof can be found in Section 6.

4. Example: Learning the Tuning Parameters of Online Gradient Descent

In all this section, we work under the following condition.
Assumption 2. Forany (t,i) € {1,..., T} x {1,...,n}, the function £ ; is T-Lipschitz and convex.

4.1. Explicit Meta-Regret Bound

We study the situation where the learner uses (projected) OGA as a within-task
strategy; thatis, ® = {# € R?: ||| < C} and, for any i > 1,

0 = olb:i—1 — YV i(6:i-1)]- )

With such a strategy, we already mentioned that A = (9,7) € A C ® x Ry contains
an initialization and a step size. An application of the results in Chapter 11 in [3] gives
By(6,A) = Bu(6,(9,7)) = 9T?n/2+ (|6 — 9|/ (27)- So

_ - A
Li((8,7)) = |9H|1<fc{gét’l(9) 5 27} (10

It is quite direct to check Assumption 1. We summarize this in the following proposition.
Proposition 2. Under Assumption 2, assume that the learner uses OGA as an inner algorithm.
Assume A = {8 € R? : ||8]| < C} x [7,%] for some C > 0and 0 < v < § < oco. Then

Assumption 1 is satisfied with

n’T4  4C%  4C*
L= /—+—+—. 11
. 7 + 7 (1)
So, when the learner uses one of the meta-strategies OGMS or OPMS, we can apply
Proposition 1 respectively. This leads to the following theorem.

Theorem 1. Under the assumptions of Proposition 2, with y = 1/ nP for some B > 0and v = C?,
when the learner uses either OGMS or OPMS with
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»

t=1i

NM:

1

04(0)) <

C |4+
a = I T (12)
(where L is given by (11)), we have:
1r(;f @{ Y Eeh 0;) 4+ C(T,C) | n™V?PVT + (nlﬁ + a(elT)\/ﬁ> T} } (13)
T€O i=1i=1
where C(T',C) > 0 depends only on (T, C) and where:
1 ¢ 1 &P
c0]) = | = Y |ler— = Y6 (14)
T t=1 T s=1

Let us compare this result with learning in isolation, as defined in (2); that is, solving
the sequence of tasks with a constant hyperparameter A = (8, ). For the usual choice
® = 0and y = ¢/+/n where c is a constant that does not depend on 1 nor T, OGA leads to
aregretin O(y/n). After T tasks, learning in isolation thus leads to a regret in T/n. Our
strategies with g = 1 lead to a regret in

n*VT + (1 + a(@{)\/ﬁ) T. (15)

The term n2+/T is the price to pay for meta-learning. In the regime we are interested in
(small n, large T), which is smaller than T+/n. Consider the leading term. In the worst case
scenario, this is also Tv/n. However, there are good predictors 0y, ..., 07 for tasks 1,..., T,
respectively, such that ¢7(91T ) is small, and in this case we see the improvement with respect
to learning in isolation. The extreme case is when there is a good predictor 6* that predicts
well for all tasks. In this case, regret with respect to 6; = --- = 0 = 6* is in n>/T + T,
which improves significantly on learning in isolation. Note however that, using a different
meta-strategy, specifically designed for OGA, Ref. [29] obtain a better dependence on T
when ¢ (6]) = 0.

Let us now discuss the implementation of our meta-stategy. We first remark that under
the quadratic loss, it is possible to derive a formula for £;, which allows to use OGMS. We
then discuss OPMS for the general case.

4.2. Special Case: Quadratic Loss
First, consider ¢;; = (y;; — x1,0)* for some y;; € Rand x;; € R?. Assumption 2 is

satisfied if we assume, moreover that all |y ;| < c and ||x; ;|| < b, with T = 2bc + 2b>C. In
this case,

2 6 — 0|2
Et((ﬂ,v))—glnjc{Z(y“ xhe) +’7 n ”27|} (16)

Define Y; = (y¢1,...,Ytn)! and X¢ = (x41]... |x1n)T. The minimizer of Y1 ; (y;; —
xLG)Z + 1|8 — 8||?/ (2y) with respect to 8 is known as the ridge regression estimator:

R I 0
T d T
6, = (Xt X; + 27) (x, Y, + —27>. 17)

This also coincides with the minimizer in the right-hand side of (16) on the condition
that ||§;| < C. In this case, by plugging 6; in (16), we have a close form formula for
L+((9,7)), and an explicit (but cumbersome) formula for its gradient. It is thus possible to
use the OGMS strategy to update A = (8, 7).
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4.3. The General Case
In the general case, denote A1 = (8;_1,7t—1), then Ay = (&, 7;) is obtained by minimizing

T o =8|

n 9—10,_ 2+ — oy, 2
F(6,(8,7)) = Y. 40:(6) + 5 " I all*+ (v —71)
iz

2y 2

(18)

with respect to 6, ¢,y. Any efficient minimization procedure can be used. In our experi-
ments, we used a projected gradient descent, the gradient being given by:

JF; u 0—19

9 _ . v-v 1
3~ L@+, (19)
F,  9—60  9—0, 4

8- o T (20)
OF _ T?n [6-98[*  v— 1

w2 22 . @b

Note that even though we do not stricto sensu obtain the minimizer of F;, we can
get arbitrarily close to it by taking a large enough number of steps. The main difference
between this algorithm and the strategy suggested in [29] is that it is obtained by applying
the general proximal update introduced in Equation (7), while they decoupled the update
for the initialization step and the learning rate.

4.4. Experimental Study

In this section we compare simulated data for the numerical performance of OPMS
w.r.t learning the task in isolation with online gradient descent (I-OGA). To measure
the impact of learning the gradient step -y, we also introduce mean-OPMS that uses the
same strategy as OPMS but only learns the starting point @ (it is thus close to [27]). We
present the results for regression tasks with the mean-squared-error loss, and then for
classification with the hinge loss. The notebooks of the experiments can be found online:
https:/ /dimitri-meunier.github.io/ (accessed on 26 September 2021).

4.4.1. Synthetic Regression

Ateachroundt =1,..., T, the meta learner sequentially receives a regression task that
corresponds to a dataset (X, Yt ;)i=1,. , generated asy;; = xtT,,-Qt + €4, x;; € R The noise
ise;; ~ U([—0?,0?]) and the ¢, are all independent, the inputs are uniformly sampled on
the (d — 1)-unit sphere S Vand 6; = ru+ 6y, u ~ L{(Sd_1>, By € RY, r € R,. We take

d =20,n=30,T = 200,02 = 0.5 and 6 with all components equal to 5. In this setting, 0 is
a common bias between the tasks, 2 is the inter-task variance and r characterizes the tasks
similarity. We experiment with different values of r € {0,5,10,30} to observe the impact of
task similarity on the meta-learning process. The smaller r, the closer are the tasks and for
the extreme case of r = 0 the tasks are identical, in the sense that the parameters 6; of the
tasks are all the same. We draw attention to the fact that a cross-validation procedure to
select « (the parameter of OGMS or OPMS, see Equation (5)) or vy is not valid in the online
settings, as it would require having knowledge of several tasks in advance for the former
and several datapoints in advance for each task for the latter. Moreover, the theoretical
values are based on worst-case analysis and lead in practice to slow learning. In practice,
to set these values to the correct order of magnitude without adjusting the constants led
to better results. So, for mean-OPMS and OPMS we set « = 1/+/T, for OPMS and I-OGA
we set v = 1/+/n. Instead of cross-validation, one can launch several online learners in
parallel with different parameter values to pick the best one (or aggregate them). That is
the strategy we use to select I for OPMS. Note that the exact value of I is usually unkown
in practice; its automatic calibration is an important open question. To solve (18), after
each task we use the exact solution for mean-OPMS and projected Newton descent with 10
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steps for OPMS. We observed that not reaching the exact solution of (18) does not harm
the performance of the algorithm and 10 steps are sufficient to reach convergence. The
results are displayed in Table 1 and Figure 2. On Figure 2, for each task t = 1,..., T, we
report the average end-of-task loss MSE; = Y.I' ; {;;(6:,.) /n averaged over 50 independent
runs (with their confidence intervals). Table 1 reports MSE; averaged over the 100 most
recent tasks. The results confirm our theoretical findings: learning 7y can bring a substantial
benefit over just learning the starting point, which in turn brings a considerable benefit with
respect to learning the tasks in isolation. Learning the gradient step makes the meta-learner
more robust to task dissimilarities (i.e. when r increases) as shown in Figure 2. In the
regime where r is low, learning the gradient step does not help the meta-learner as it takes
more steps to reach convergence. Overall both meta learners are consistently better than
learning the task in isolation since the number of observation per task is low.

r=0 r=5
7 l 7 ‘ |
—— mean-OPMS | —— mean-OPMS
g —— OPMS [ —— OPMS
5 — OGA 5 — |OGA
a
8 g
=, 25
2 2
1 1
o 0
0 5 0 5 100 125 150 75 200 o 5 0 7 100 125 150 75 200
r=10 r=30
° H 1 I
—— mean-OPMS —— mean-OPMS
. —— OPMS 2 —— OPMS
— |OGA 10 — OGA
w w s
K] ]
= =6
5 4
2
0 0
0 5 %0 75 100 125 150 175 200 o % %0 75 100 125 150 175 200
T T

Figure 2. Performance of learning in isolation with OGA (I-OGA), OPMS to learn initialization (mean-OPMS) and OPMS
to learn initialization and step size (OPMS). We report the average end-of-task MSE losses at the end of each task, for
different values of the task-similarity index » € {0,5,10,30}. The results are averaged over 50 independent runs to get
confidence intervals.

Table 1. Average end-of-task MSE of the 100 last tasks (averaged over 50 independent runs).

r=0 r=5 r=10 r=30

I-OGA 6.24 6.44 7.06 13.60
mean OPMS 0.05 0.27 0.93 7.93
OPMS 0.07 0.15 0.49 3.72

4.4.2. Synthetic Classification

Ateachround t = 1,..., T, the meta learner sequentially receives a binary classifi-
cation task with the Hinge loss that corresponds to a dataset (x;, Y1 ;)i-1, - The binary
labels {—1,1} are generated as a logistic model P(y = 1) = (1 +exp(—x'6;))~!. The task
parameters 6; and the inputs are generated as in the regression setting. To add some noise,
we shuffle 10% of the labels. We take d = 10, n = 100, T = 500, r = 2. For mean-OPMS and
OPMS we set « = 1/V/T, for OPMS and I-OGA we set v = 1/+/n. For the optimisation
of F (18) with both OPMS and mean-OPMS we use a projected gradient descent with
50 steps.
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On Figure 3, for each task t = 1,...,T, we report the regret on the end-of-task
losses: R(t) = % i T 4i(6r ), averaged over 10 independent runs (with their
confidence intervals). As the for regression setting, the results confirm our theoretical
findings: by learning v (OPMS), we reach a better overall performance than just learning
the initialization (mean-OPMS) and a substantially stronger than independent task learning
(I-OGA). Note that, in the classification regime, there is no known closed formed expression

for the meta-gradient; therefore, OGMS cannot be used.

—— Mean OPMS
—— OPMS
045 — FOGA

o
=
&

Hinge Loss

o
@
&

0.30

T

Figure 3. Performance of learning in isolation with OGA (I-OGA), OPMS to learn the initialization
(mean-OPMS) and OPMS to learn the initialization and step size (OPMS) on a sequence of classifica-
tion tasks with the Hinge loss. We report the meta-regret of the Hinge loss. The results are averaged
over 10 independent runs (dataset generation) to get confidence intervals.

5. Second Example: Learning the Prior or the Learning Rate in Exponentially
Weighted Aggregation

In this section, we will study a generalized Bayesian method, exponentially weighted
aggregation. Consider a finite set ® = {61,...,0,} C R?. EWA depends on a prior
distribution 77 on @y, and on a learning rate 7 > 0, and returns a decision in ©® =
conv(6y,...,0y) the convex envelope of @. In this section, we work under the follow-
ing condition.

Assumption 3. There is a B € R, such that for any (t,i) € {1,...,T} x {1,...,n}, the
function £y ; is © — [0, B] and convex.

We will sometimes use a stronger assumption.

Assumption 4. There is a C € R, such that for any (t,i) € {1,...,T} x {1,...,n}, the
function 6 — exp(—£;;(8)/C) is concave.

Examples of a situation in which Assumption 4 is satisfied are provided in [3]. Note
that Assumption 4 implies Assumption 3.

5.1. Reminder on EWA
The update in EWA is given by:

O =Y pri(6)0 (22)
0O

where p; ; are weights defined by
exp| -1 T2} 4(0)] (0)

— . 23)
Yoco, eXp {*’l T ft,j(ﬂ)] 7t(8)

Pt,i(o) =
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The strategy is studied in detail in [3]. We refer the reader to [36] and the references
therein for connections to Bayesian inference. We recall the following regret bounds
from [3]. First, under Assumption 3,

n n 2 log =4~
, nnB 8 7(0)
i;ft,i(et/i) < gelg(l] |:l§ 0,i(0) + 3 + 17] . (24)
Moreover, under the stronger Assumption 4,
n n 1
(0.:) < mi . .
= gt,z(gt,z) = grelg; izzlgt,z(e) + Clog 7[(0) (25)

In Section 5.2, we work in the general setting (Assumption 3), and we use our meta-
strategy OPMS or OGMS to learn 7. In Section 5.3, we use OPMS or OGMS to learn 7t
under Assumption 4.

5.2. Learning the Rate 11

Consider the uniform prior 77(6) = 1/M for any 6 € ©p. Then, the regret bound (24)

becomes: ; . )
. nnB log M
(0, ) < .
gém(%) = 525; i;ét,z(s) + 8 + 7

and it is then possible to optimize it explicitly with respect to 7. The value minimizing the
bound is 7 = (2/B)+/21log(M) /n and the regret bound becomes:

(26)

1 1 nlog M
lyi(6;;) < mi li(0)+B . 27
1':21 t,z( t,t) 752&1)1221 t,t( )+ > (27)

In practice, however, while it is often reasonable to assume that the loss function
is bounded (as in Assumption 3), very often one does not know a tight upper bound.
Thus, one may use a constant B that satisfies Assumption 3, but that is far too large. Even
though one does not know a better upper bound than B, one would like a regret bound
that depends on the tightest possible upper bound.

In the meta-learning framework, define:

; 2
o _ nn[maxgceyi<i<n £1i(9)]”  logM
ﬁmﬂ—Q&;&A®+ 3 +=

(28)

fory € A = [1/n,1]. It is immediately necessary to prove that this function is convex and
L-Lipschitz with L = n?log(M) + nB?/8. So, Assumption 1 is satisfied, allowing for the
use of the OPMS or OGMS strategy without needed a tight upper bound on the losses.
Note that, in this context, the OGMS strategy is given by:

2
IS P (. R R ERNC) 17 |
n M1

Theorem 2. Under Assumption 3, using OGMS or OPMS on L(y7), as in (28) with 1 = 1,

L = n*log(M) + nB?/8 and
1 /2
a=1\% 29)
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we have

nlog(M
ft,Gm <me2€“ )+ 0T %

Eol

gl
M:

Il
—
I
-

2
+ Tlog(M) + — + <n2 log M + %) V2T (30)
where
b= ma €:,:(6)]- (31)

st Asis

Let us compare learning in isolation with meta-learning in this context. When learning
in isolation, the hyperparameter 7 is fixed (as in (2)). If we fix it to the value 17y =
(2/B)+/2log(M)/n as in (27), the meta-regret is in BT \/nlog(M)/2. On the other hand,
meta-learning leads to a meta-regret in bT+/n log(M) /2 + n*log M/2T + O(nB>/T + T).
In other words, we replace the potentially loose upper bound B by the tightest possible
bound b, at the cost of an additional #?log Mv/2T + O(nB*\/T + T) term. Here again,
when T is large enough with respect to #, this term is negligible.

5.3. Learning the Prior 7t

Under Assumption 4, we have the regret bound in (25). Without any information on
0, it seems natural to use the uniform prior 77 on ®y = {64, ...,60}, which leads to

n n
Y 4i(6;) < min Y £,;(6) + Clog M. (32)
= 06 =

If some additional information was available, such as, for example: “the best 6 is
always either 6; or 6,”, one would rather chose the uniform prior on {6y, 6, }, and obtain
the bound:

n n
Z £;i(6;;) < min Z £;i(0) 4+ Clog2. (33)
= ISCN i

Unfortunately, such information is generally not available. However, in the context of
meta-learning, we can take advantage of the previous tasks to learn such information.
Thus, let us define, for any task ¢,

n
6; = argmin ) _ ¢, ;(6) (34)
€0 i=1
and
L( ane, + Clog ——— ( 3 (35)
i=1

for w = (7t(61),..., m(0m)) € A with

M 1
A= {x e (R OM: h;xh =landx; > 50 (36)

It is important to check that £ is convex and L-Lipschitz with L = 2CM on A; this
allows us to use OPMS (or OGMS).

Theorem 3. Under Assumption 4, using OPMS on L(70) as in (35) with 1y = (1/M,...,1/M),

L =2CM and 1

= 2CMYT ®7)
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define I* = {05, ...,07} where each 6; is as in (34) and m* = card(I*). We have

£4(6F) + CTlog(2m*) +2CMV/T. (38)

1=
M:
1=
M=

0i(677) <

F,
I
—
Il
—
I

1i

Il
—_

i

When learning in isolation with a uniform prior, the meta-regret is TC log(M). On
the other hand, if m* is small (that is, many of the ;s are similar), meta-learning leads to
a meta-regret in CT log(2m*) + 2CM+/T. For a T that is large enough, this is an impor-
tant improvement.

5.4. Discussion on the Continuous Case

Let us now discuss the possibility of meta-learning for generalized Bayesian methods
when @y is no longer a finite set. There is a general formula for EWA, given by

+ L’;’ ) } (39)

i—1

-
pri(d8) = argmm{EG'vp LZ £5(0)
3 =

where the minimum is taken over for all probability distributions that are absolutely contin-
uous with 77, and where 77 is a prior distribution, 7 > 0 alearning rate and K is the Kullback—
Leibler divergence (KL). Meta-learning for such an update rule is proven in [10,37] but
usually does not lead to feasible strategies. Online variational inference [38,39] consists in
replacing the minimization on the set of all probability distributions by minimization in a
smaller set in order to define a feasible approximation of p; ;. For example, let (q,),cm be a
parametric family of probability distributions, Thus, we define:

K(qu, ) }
7}7 .

i1
Hei = argmin{ngqy [Z £(0)] + (40)
=i

ueM

It is discussed in [40] that, generally, when y is a location-scale parameter and /1 ; is
I-Lipschitz and convex, then £ (1) := Eg~q,[£;;(6)] is 2I-Lipschitz and convex. In this
case, under the assumption that (g, 77) is a-strongly convex in y, a regret bound for such
strategies was derived in [39]:

! . 1 nAr?n  K(qu, )
Eoy [£:(8)] < inf { Ep. g0 21 e L 41
g 0g ;11 (0)] ,}é‘M{ 0~y {; i )] ety (41)

A complete study of meta-learning of the rate 7 > 0 and of the prior 77 in this context
is an important objective (possibly, with a restriction that 77 € {q,, 4 € M}). However, this
raises many problems. For example, the KL divergence K (g, 4,/) is not always convex
with respect to the parameter p/. In this case, it might help to replace it by a convex
relaxation that would allow for the use of OGMS or OPMS. This relates to [41,42], who
advocate going beyond the KL divergence in (39); see also [36] and the references therein.
This will be the object of future works.

6. Proofs
We start with a preliminary lemma that will be used in the proof of Proposition 1.

Lemma 1. Let a, b, ¢ be three vectors in RF. Then:

_ lla—cl? = lla— b — b —c|
5 :

(a=b)(b—c) (42)

Proof. expand ||a —c||? = ||a]|> + ||c||?> — 2aTc in the rh.s, as well as [|a — b||? and ||b — c||2.
Then simplify. [
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We now prove Proposition 1 separately for the general OGMS strategy, and then
for OGMS.

Proof of Proposition 1 for OPMS. As mentioned earlier, this strategy is an application to
the meta-learning setting of implicit online learning [32,33]. We follow here a proof from
Chapter 11 in [3]. We refer the reader to [43] and the references therein for tighter bounds
under stronger assumptions.

First, A; is defined as the minimizer of a convex function in (5). So, the subdifferential
of this function at A; contains 0. In other words, there is a z; € 0L;_1(A¢), such that

A1 =AM
=\ 4
Z P ( 3)
By convexity, for any A, for any z € 0L;_1(Ay),
Liqa(A) > Liq(A)+ (A=A Tz (44)
The choice z = z; gives:
A=A)T (Al — A
a2 Lo () + AT 22 45)
that is,
A=ANT (A — A
Lia(A) < Lyg (M) + ( 2 Ex t=Aem)
_ A=Al = A= Ad? A= Ara?
= L)+ 2u 2u
_ A=Al = A=A Jlze])?
= Lia(A)+ -~ a (46)
where we used Lemma 1. Then, note that
Li-1(A-1) = Li-1(A) + [L-1(Ar-1) — Li-1(Ar)]
< Lia(Ae) + A1 = AL
< L1 (Ae) + al|ze||L. (47)

Combining this inequality with (46) gives

A=A |2 = ||A = A¢)? z¢||2
La(hrn) < g + AR IAZ A (- BIE).

Now, for any x € R, —x2/2 + xL — L?/2 < 0. In particular, ||z||L — ||z]|?/2 < L?/2
and so the above can be rewritten:

A=AqlP= A= A)> aL?
Lia(he) < Lig(h) + A2l ZIAZ AT ol

" 7 (49)
Summing the inequality for t = 2 to T + 1 leads to:
T T 2 2 2
A=MF=A—=A aTL

This ends the proof. [

Proof of Proposition 1 for OGMS. The beginning of the proof follows the proof of Theo-
rem 11.1in [3].
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Note that we can rewrite (4) as

{ At = A —aVLi (A1)
Ap = TIx(Ar)
rearranging the first line, we obtain:
A1 —A
Vﬁtfl(/\tfl) = %~
By convexity, for any A,

Li1(A) = Li1(M—1) + (A = A1) TV L (A1)

A=A )T(Ar = A
:Ltfl(/\tfl)Jr( t 1)“( t—1 t),

that is,

Li1(Mq) € Liq(A) — A=A )T (A1 — }\t).

o

Lemma 1 gives:

< A= Ae)|2 = |A = Ae_q |2 = [|Arq — Ag))?
(/\_/\tfl)T(/\ffl_/\t): H t” ” 1521H H t—1 t“

A = Aelf? = 1A = A = 2 VL1 (A1) |2

2

>

A = Adlf? = 1A = A = 2 VL1 (A1) |2

2
the last step being justified by:

1A = Aell? > [|A = TIA(An) |2 = [|A = A2
for any A € A. Plug (56) in (54) to get:

|A— /\t—le — A= )\t”z + ’XHVEtfl()\tfl)Hz

|
<
Ly 1(M-1) < Li1(A) + P 5

and the Lipschitz assumption gives:

Li1(M—1) < Liq(A) + |

A = Aral? = 1A = Ad]? n al?
2 2

sum the inequality for t =2 to T + 1 to get:

T 2 5 )

A—Al2— A=A aTL
Y L) < Y L) + 1A=l ZH ral? i
t=1 t=1 o

This ends the proof of the statement for OGMS. [

We now provide a lemma that will be useful for the proof of Proposition 2.

(1)

(52)

(33)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

Lemma 2. Let G(u,v) be a convex function of (u,v) € U x V. Define g(u) = inf,cy G(u,0).

Then g is convex.
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Proof. indeed, let A € [0,1] and (x,y) € U?,

gAx+(1-MNy) = gg‘f/G(/\x +(1-A)y,0) (61)
<GAx+ 1=y A+ (1-A)y) (62)
< AG(x,x")+ (1 - A)G(y,y) (63)

where the last two inequalities hold for any (x',y') € V2. Let us now take the infimum
with respect to (x/, ') € V2 in both sides, this gives:

gAx+(1-A)y) < inf AG(x,x') + yi,rg/(l - A)G(y.y') (64)
=Ag(x) + (1= AM)g(y), (65)
that is, g is convex. [
Proof of Proposition 2. Apply Lemma2tou = (9,7),v=0,U= A,V = ©® and

L L

Z 0y 7ty (66)

This shows g(u) = L¢((9, 7)) is convex with respect (8, 7). Additionally, G is differ-
entiable w.r.t u = (8,7), so

G 0-0 3G _ nI> |6 —6|?

3= 7’7 and "2 22 (67)
As a consequence, for (6,9) € ®*and y <y <7,
2 2 2 214 4
4C oG n*I*  4C
H ,and o ST 7 . (68)
This leads to
aG|* _|3G|?
[VuG(u,0)|| = 28 g (69)
n2l* 4C%2  4C*
T T w

that is, for each v, G(u,v) is L-Lipschitz in u. So, g(u) = inf,cy G(u,v) is L-Lipschitz
inu. O

Proof of Theorem 1. Thanks to the Assumption 2, we can apply Proposition 2. That is,
Assumption (1) is satisfied, and we can apply Proposition 1. This gives:

t=1i=1 ~ATEO (B,7)EA | 4

T n
Y Y 40} < inf_ inf {Z{an 0)

Y2 0 =9 | aTL? 9 =d]*+ |y —ml
S TR R I - vy
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We use direct bounds for the last two terms: ||¢ — ;> < 4C? and |y — 71> <
Iy — 1‘2 < 7% = C*. Then note that

T . 1P 1P
YN0 =8l =T|8 = = Y0 + 30— = } 65 (72)
t=1 s=1 t=1 s=1
14|
— _ 2 ) T
=T|® Ts;"” + To?(67). (73)
Upper bounding the infimum on @ in (71) by ¢ = % YT, 65 leads to
T n T n
Y Y (6 infinf { Y)Y 4(00) + ﬂ T
t=1i=1 9 1 01€@ vy | (2o

To?(6T) aTL?  C%(4+4C?)
+27+2+2a . (74)

The right-hand side of (74) is minimized with respect to a if x = % 4+C , which is
the value proposed in the theorem, and we obtain:

u T2 nT To?(6])
Gi(0)) < inf inf }}fe I +CL\/(44+C)T }. 75
H G,UIA%TGG)WGIE,W]{t iz AN 2,), ( ) ( )

[\1:

»

t=11i

Il
—

The infimum with respect to <y in the r.h.s is reached for

First, note that
7*r22nT . <7v t}(&%)) TZ;T 77)
< (2+92D) 5 "
_ rZTgl—ﬁ (6] )FTW 79)
using v = n~F. Then,
Ta;(f{ ) ¢ 1D ( Ly UF(GV; ) (80)
. T022(91T) (% ;g)) (81)
_ Taz éng ) o] )2TT\/E (82)
. TaéﬂlT ) 4 o (6] );Tﬁ’ (83)

using 7 = C? and ¢(0]) < 2C. Plugging (77), (80) and the definition of L into (75) gives
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iiﬂu(eﬁ)f .. inf {22@, 0) +c\/<

t=1i=1 t=1i=1
21 1B
+&+0(91T)T r\/E+l
2 C
n2T4 4AC2n2P AC**PN 1o
{;Z@, (6r) +C\/(4+C2)<4n2v4ﬁ+ VAP + VAP )n f\/T
1

+[f;nlfﬁ+ (r+ %)aw? W}T}

T n
< inf
T 0y,..07€0 Z =

n2h + 4C4n4ﬁ> (4+CHT

2
Zétz (61) ‘l’C\/(4+C2)<1:1 +4Cz+4c4>nlv2ﬁﬁ
t=1i=1

T
)

an‘ + (r + %)a(@{)\/ﬁ} T}

< inf { i Z 6;(6:) +C(T,C) {nmﬁﬁ + <n15 +o(6f )ﬁ) T]

61,..07€0 | ;3775

where we took
2 2 1
C(T,C) = max| Cy/(4+C2) Z+4C2+4C4 ,7,r+6 .

This ends the proof. [

Proof of Theorem 2. A direct application of Proposition 1 gives

2 2

N n7n [maxge@y1<i<n ét,i(ﬁ)]z N logM} N aTL? N (7 —1)2

8 1

Thus, we have

b

2 2w

I
F’J:

I
—

Et,(GU') < inf {Zmln {ZEH

i 11 (=19€00 |i5

Now, plugging in the right-hand side

1 2 [2logM
”—nv<bv p )“f

we obtain:

aTL?

T

T M’ﬂ

" T b? nlog(M)
oty < ¢ Ty B L jog(m
L et < S | £ 0+ /"5 sog(an
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b2 logM TL? —1)2
L2 g }Jrvc PURRY

}.

1

o

(84)

(85)

(86)

(87)

(88)

(89)

(90)

1)

(92)

(93)

(94)

(95)
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Now, we see that the value « = /2/(TL?) leads to:

T
2 +LV2T.  (96)

m=

nlog(M
(6] < Zgreuno{Z/” + +b %jtlog(M)
1

Rearranging terms, and replacing L by its value,

1 VT
£4( 9'7' Zneur;Z[” )+ 0T %()-‘r?-i-Tlog( M)
1=

M:

»

t=117

Il
—_

5 nB?
+ ( n"log M + e V2T, (97)
that is the statement of the theorem. [

Proof of Theorem 3. An application of Proposition 1 leads to

Lo Ll 1 aTL? | || —m?
;; “ <m1n{¥|: £;(6f) + Clog (6 + 5 + o (98)
and so
T n T n 2
1 «TL 1
9’” < min 0::(0f)+Clog ——— | + + (99)
;; neA{t21|:iZi 1i(0F) & 7 (67) 2 sz}

define 7;+ such that 7y« (6;) = 1/(2m*) if j € I* and 711+ (6;) = 1/(2(M — m*)) otherwise.
We have 717 € A and thus

T

)3

t=1i

aTL2 1
7t (100)

[\1:

+

T n
(f[, 97Tt 2 |:Z(“ gt +Clog(2m )

t=1

Il
-

Replace L and a by their values to get the theorem. [

7. Conclusions

We proposed two simple meta-learning strategies together with their theoretical
analysis. Our results clearly show an improvement on learning in isolation if the tasks are
similar enough. These theoretical findings are confirmed by our numerical experiments.
Important questions remain open. In [27], a purely online method is proposed, in the sense
that it does not require storing all of the information of the current task. In the case of OGA,
this method allows us to learn the starting point. However, its application to learn the step
size is not direct [28]. An important question is, then: is there a purely online method that
would provably improve on learning in isolation in this case? Another important question
is the automatic calibration of I'. However, as mentioned in Section 5, we believe that a
very general and efficient meta-learning method for learning priors in Bayesian statistics
(or in generalized Bayesian inference) would be extremely valuable in practice.
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Abstract: We propose cube thinning, a novel method for compressing the output of an MCMC
(Markov chain Monte Carlo) algorithm when control variates are available. It allows resampling
of the initial MCMC sample (according to weights derived from control variates), while imposing
equality constraints on the averages of these control variates, using the cube method (an approach
that originates from survey sampling). The main advantage of cube thinning is that its complexity
does not depend on the size of the compressed sample. This compares favourably to previous
methods, such as Stein thinning, the complexity of which is quadratic in that quantity.

Keywords: control variates; Markov chain Monte Carlo; thinning

1. Introduction

MCMC (Markov chain Monte Carlo) remains, to this day, the most popular approach
to sampling from a target distribution p, in particular in Bayesian computations [1].

Standard practice is to run a single chain, X, ..., Xy according to a Markov kernel
that leaves invariant p. It is also common to discard part of the simulated chain, either to
reduce its memory footprint, or to reduce the CPU cost of later post-processing operations,
or more generally for the user’s convenience. Historically, the two common recipes for
compressing an MCMC output are:

®  burn-in, which allows discarding the b first states;
e thinning, which allows retaining only one out of ¢ (post burn-in) states.

The impact of either recipes on the statistical properties of the subsampled estimates
are markedly different. Burn-in reduces the bias introduced by the discrepancy between p
and the distribution of the initial state X; (since X}, ~ p for b large enough). On the other
hand, thinning always increases the (asymptotic) variance of MCMC estimators [2].

Practitioners often choose b (the burn-in period) and ¢ (the thinning frequency) sepa-
rately, in a somewhat ad hoc fashion (i.e., through visual inspection of the initial chain), or
using convergence diagnosis such as, e.g., those reviewed in [3].

Two recent papers [4,5] cast a new light on the problem of compressing an MCMC
chain by considering, more generally, the problem, for a given M, of selecting the subsample
of size M that best represents (according to a certain criterion) the target distribution p. We
focus for now on [5], for reasons we explain below.

Stein thinning, the method developed in [5], chooses the subsample S of size M which
minimises the following criterion:

D(S) ;:% Y k(X Xa), SC{l..,N}, |S|=M ()

mnesS

where k), is a p-dependent kernel function derived from another kernel function k: X' x
X — R, as follows:

kp(x,y) = V- Vyk(x,y) + (Vak(x,y),5p(y)) + (Vyk(xy), sp(x)) +k(x y) (sp(x),5p(y)
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with (-, -) being the Euclidean inner product, s,(x) := Vlog p(x) is the so-called score
function (gradient of the log target density), and V is the gradient operator.

The rationale behind criterion (1) is that it may be interpreted as the KSD (kernel Stein
discrepancy) between the true distribution p and the empirical distribution of subsample S.
We refer to [5] for more details on the theoretical background of the KSD, and its connection
to Stein’s method.

Stein thinning is appealing, as it seems to offer a principled, quasi-automatic way
to compress an MCMC output. However, closer inspection reveals the following three
limitations.

First, it requires computing the gradient of the log-target density, s,(x) = Vlog p(x).
This restricts the method to problems where this gradient exists and is tractable (and, in
particular, to X' = Rd).

Second, its CPU cost is O(NM?). This makes it nearly impossible to use Stein thin-
ning for M > 100. This cost stems from the greedy algorithm proposed in [5], see
their Algorithm 1, which adds at iteration ¢ the state X; which minimises kp(X;, X;) +
Yies, , kp(Xi, X;), where S;_1 is the sample obtained from the t — 1 previous iterations.

Third, its performance seems to depend in a non-trivial way on the original kernel
function k; the authors of [5] propose several strategies for choosing and scaling k, but none
of them seem to perform uniformly well in their numerical experiments.

We propose a different approach in this paper, which we call cube thinning, and
which addresses these shortcomings to some extent. Assuming the availability of ] control
variates (that is, of functions /; with known expectation under p), we cast the problem of
MCMC compression as that of resampling the initial chain under constraints based on these
control variates. The main advantage of cube thinning is that its complexity is O(NJ?); in
particular, it does not depend on M. That makes it possible to use it for much larger values
of M. We shall discuss the choice of ], but, by and large, | should be of the same order as d,
the dimension of the sampling space. The name stems from the cube method of [6], which
plays a central part in our approach, as we explain in the body of the paper.

The availability of control variates may seem like a strong requirement. However, if
we assume we are able to compute s, (x) = V log p(x), then (for a large class of functions
¢ : R — R?, which we define later)

Ep[¢(x)sp(x) + Vi -¢(x)] =0

where V - ¢ denotes the divergence of ¢. In other words, the availability of the score
function implies, automatically, the availability of control variates. The converse is not true:
there exists control variates, e.g., [7], that are not gradient-based. One of the examples we
consider in our numerical examples feature such non gradient-based control variates; as a
result, we are able to apply cube thinning, although Stein thinning is not applicable.

The supporting methods of [4] do not require control variates. It is thus more generally
applicable than either cube thinning or Stein thinning. On the other hand, when gradients
(and thus control variates) are available, the numerical experiments of [5] suggest that Stein
thinning outperforms support points. From now on, we focus on situations where control
variates are available.

This paper is organised as follows. Section 2 recalls the concept of control variates,
and explains how control variates may be used to reweight an MCMC sample. Section 3
describes the cube method of [6]. Section 4 explains how to combine control variates and
the cube method to perform cube thinning. Section 5 assesses the statistical performance of
cube thinning through two numerical experiments.

We use the following notations throughout: p denotes both the target distribution
and its probability density; p(f) is a short-hand for the expectation of f(X) under p. The
gradient of a function f is denoted by V. f(x), or simply V f(x) when there is no ambiguity.
The i—-th component of a vector v € R is denoted by v[i], and it is transposed by v'. The
vectors of the canonical basis of R? are denoted by ¢;, i.e., ¢;[j] = 1if j = i, 0 otherwise.
Matrices are written in upper-case; the kernel (null space) of matrix A is denoted by
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kerA. The set of functions f : QO — R that are continuously differentiable is denoted by
CH{O,RY).

2. Control Variates
2.1. Definition

Control variates are a very well known way to reduce the variance of Monte Carlo
estimates—see, e.g., the books of [1,8,9].

Suppose we want to estimate the quantity p(f) = E,[f(X)] for a suitable f : R —
R, based on an IID (independent and identically distributed) sample {Xj, ..., Xy} from
distribution p. The generalisation of control variates to MCMC will be discussed in Section 4.

The usual Monte Carlo estimator of p(f) is

1 N
P =5 LX), )

Assume we know ] € N* functions /; : R? — Rforj e {1,...,]} such that p(h;) = 0.
Functions with this property are called control variates. We can use this property to build
an estimate with a lower variance: let us denote h(X) = (h1(X), ..., h;(X))" and write our
new estimate:

N
PoLf) = L FO%0) +BCK) @

with g € R/, Then it is straightforward to show that E[pg(f)] = E[p(f)] = p(f). Depend-
ing on the choice of B, we may have Var[pg(f)] < Var[p(f)]. The next section discusses
how to choose such a .

2.2. Control Variates as a Weighting Scheme

The standard approach to choose § consists of two steps. First, one shows easily that
the value the minimises the variance of estimator (3) is:

B*(f) = Var(h(X))~'Cov(h(X), (X)) *)

where Var(h(X)) is the | x J variance matrix of the vector 1(X) and Cov(h(X), f(X)) is
the ] x 1 vector such that Cov(h(X), f(X));1 = Cov(f(X),hi(X)).

Second, one realises that this quantity may be estimated from the sample Xj, ..., Xy
through a simple linear regression model, where the f(X)s are the outcome, and the
hj(Xy)s are the predictors:

f(Xn) = p+ B'h(Xn) +€n, Elen] =0. ©®)
More precisely, let v € R/ be the vector such that 7' = (i, B*), H = (Hj;) the design
matrix such that Hyy = 1, Hy(j1) = hj(X;), and F = (f(X1),..., f(Xn)). Then, the OLS
(ordinary least squares) estimate of v is
Yous = (H'H)H'F. ©
Since E[f(X,)] = u in this artificial regression model, the first component of oy s:
Px(f) == 7oLs x e1, @)

actually corresponds to estimate (3) when = Boys.
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At first glance, the approach described above seems to require implementing a differ-
ent linear regression for each function f of interest. Ref. [9] noted, however, that one may
re-express (7) as a weighted average:

N
p«(f) = Z:lwnf(xn) (8

where the weights w;, sum to one, and do not depend on f. It is thus possible to compute
these weights once from a given sample (given a certain choice of control variates), and
then quickly compute p,(f) for any function f of interest.

The exact expression of the weights are easily deduced from (7) and (6): w = (wy,) with

w= H(H'H) le;.

2.3. Gradient-Based Control Variates

In this section and the next, we recall generic methods to construct control variates.
This section specifically considers control variates that are derived from the score function,
sp(x) = Vlog p(x). (We therefore assume that this quantity is tractable.)

Under the following two conditions:

1. The probability density p € C'(Q, R) where Q C R is an open set;

Function ¢ € C1(Q, R?) is such that §,, p(x)¢(x) - n(x)S(dx) = 0 where §,, denotes

the integral over the boundary of (), and S(dx) is the surface element at x € 0Q).

The following function:

h(x) = Vi ¢(x) +¢(x) 'Sp(x) (C)]

is a control variate: p(h) = 0, see, e.g., [10] or [11] for further details. To gain some insight,
note that in dimension 1 and assuming the domain of integration is an interval |a, b[C R,
this amounts to an integration by parts with the condition that h(b)p(b) — h(a)p(a) = 0.

Thus, whenever the score function is available (and the conditions above hold), we
are able to construct an infinite number of control variates (one for each function ¢). For
simplicity, we shall focus on the following standard classes of such functions. First, for
i=1,...,4,

¢ RT - RY
X e

which leads to the following d control variates:
hi(x) = sp(x)[i]. (10)

For a Gaussian target, N(y, %), the score is s,(x) = —X7!(x — p), and the control
variates above make it possible to reweight the Monte Carlo sample to make it have the
same expectation as the target distribution.

Second, we consider, fori,j =1,...,d:

¢t RT > R?
x = x[ile;
which leads to the following d? control variates:
hij(x) = 1{i = j} + x[i]sp(x) [ (1
Again, for a Gaussian target N (y,X), this makes it possible to fix the empirical covari-

ance matrix to true covariance X.
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In our simulations, we consider two sets of control variates: the ‘full” set, consisting
of the d control variates defined by (10), and the d? control variates defined by (11), and a
‘diagonal’ set of 2d control variates, where for (11), we only consider the cases where i = j.
Of course, the former set should lead to a better performance (lower variance), but since
the complexity of our approach will be O(J*), where ] is the number of control variates,
taking ] = O(d?) may be too expensive whenever the dimension d is large. In fact, when d
is very large, one might even consider considering only control variates that depend on a
few components of x of interest.

2.4. MCMC-Based Control Variates

We mention in passing other ways to construct control variates, in particular in the
context of MCMC.
For instance, [7] noted that, for a Markov chain {X, }, the quantity

¢(Xn) - E[QD(Xn”Xn:ﬂ

has zero expectations. In particular, if the MCMC kernel is a Gibbs sampler, it is likely that
one is able to compute the conditional expectation of each component, i.e., ¢(x) = x[i] for
i=1,...,d.

See also [12,13] for other ways to construct control variates when the Xj;s are simulated
from a Metropolis kernel.

3. The Cube Method

We review in this section the cube method of [6]. This method originated from survey
sampling and is a way to sample from a finite population under constraints. The first
subsection gives some definitions, the second one explains the flight phase of the cube
method and the third subsection discusses the landing phase of the method.

3.1. Definitions

Suppose we have a finite population {1,..., N} of N individuals and that to each
individual n = 1,..., N is associated a variable of interest i, and | auxiliary variables,
Un = (Un1, - - ., Uny). Without loss of generality, suppose also that the | vectors (Ulj/~ .., Z)Nj)
are linearly independent. We are interested in estimating the quantity Y = YN, y,, using a
subsample of {1, ..., N}. Furthermore, we know the exact value of each sum Vi = ZnN:1 Unj,
and we wish to use this auxiliary information to better estimate Y.

We assign, to each individual #, a sampling probability 7, € [0,1]. We consider
random variables S, such that, marginally, P(S, = 1) = m,. We may then define the
Horvitz-Thompson estimator of Y as

N
o Sn]/n
Y =
Z - (12)
n=1
which is unbiased, and which depends only on selected individuals (i.e., S, = 1).
We define similarly the Horvitz-Thompson estimator of V; as
~ N Spvp;
_ ]
Vi= ) (13)
n=1 n

Our objective is to construct a joint distribution ¢ for the inclusion variables S, such
that Pz(S, = 1) = m, foralln = 1,...,N,and

V =V -almost surely. (14)
where V = (V4,...,V)), V= (Vl,. .., \7/). Such a probability distribution is called a

balanced sampling design.
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3.2. Subsamples as Vertices

We can view all the possible samples from {1,..., N} as the vertices of the hypercube
C = [0,1]N in RN. A sampling design with inclusion probabilities 71, = P(S, = 1) is then
a distribution over the set of these vertices such that E[S] = 7r, where S = (Sy,...,Sn)},
and 77 = (7, ..., 7TN)“ is the vector of inclusion probabilities. Hence, 7t is expressed as a
convex combination of the vertices of the hypercube.

We can think of a sampling algorithm as finding a way to reach any vertex of the cube,
starting at 77, while satisfying the balancing Equation (14). However, before we describe
such a sampling algorithm, we may wonder if it is possible to find a vertex such that (14)
is satisfied.

3.3. Existence of a Solution

The balancing equation, Equation (14), defines a linear system. Indeed, we can re-
express (14) as S, as a solution to As = V, where A = (4},) is of dimension ] x N,
Ajy = gy / 7. This system defines a hyperplane Q of dimension N — ] in RN,

What we want is to find vertices of the hypercube C that also belong to the hyperplane
Q. Unfortunately, it is not necessarily possible, as it depends on how the hyperplane
Q intersects cube C. In addition, there is no way to know beforehand if such a vertex
exists. Since m € Q, we know that K := CNQ # @ and is of dimension N — J. The
only thing we can say is stated Proposition 1 in [6]: if 7 is a vertex of K, then in general
g=card({n: 0<r[n] <1}) <J.

The next section describes the flight phase of the cube algorithm, which generates a
vertex in K when such vertices exist, or which, alternatively, returns a point in X with most
(but not all) components set to zero or one. In the latter case, one needs to implement a
landing phase, which is discussed in Section 3.5.

3.4. Flight Phase

The flight phases simulates a process 77(t) which takes values in = C N Q, and starts
at 771(0) = 7. Atevery time t, one selects a unit vector u(t), then one chooses randomly
between one of the two points that are in the intersection of the hypercube C and the line
parallel to u(t) that passes through 7t(t — 1). The probability of selecting these two points
are set to ensure that 77() is a martingale; in that way, we have E[r;] = 7 at every time
step. The random direction u(t) must be generated to fulfil the following two requirements:
(a) that the two points are in Q, i.e., u(t) € kerA, and (b) whenever 7(¢) reaches one of the
faces of the hypercube, it must stay within that face; thus, u(t)[k] = 0if 7w(t — 1)[k] = 0
or 1.

Algorithm 1 describes one step of the flight phase.

Algorithm 1: Flight phase iteration

Input: 7(t — 1)
Output: 77(t)
1 Sample u(t) in ker A with 1 (¢) = 0 if the k-th component of 77(t — 1) is an integer.
2 Compute A7 and A3, the largest values of A; > 0 and A, > 0 such that:
0<m(t—1)+Au(t) <land 0 < rr(t —1) — Aqu(t) < 1.
3 With probability A5/ (A5 + A3), set 7t(t) <= 7t(t — 1) 4+ Aqu(t); otherwise, set
7t(t) + m(t—1) — Aqu(t).

The flight phase stops when Step 1 of Algorithm 1 cannot be performed (i.e., no vector
u(t) fulfils these conditions). Until this happens, each iteration increases by at least one the
number of components in 77(t) that are either zero or one. Thus, the flight phases completes
at most in N steps.

In practice, to generate u(t), one may proceed as follows: first generate a random vec-
tor v(t) € RN, then project it in the constraint hyperplane: u(t) = I(t)v(t) — I(t) A'(AI(t) A)~
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AI(t)v(t), where I(t) is a diagonal matrix such that Iy (t) is 0 if 7t (¢) is an integer and 1
otherwise, and M~ denotes the pseudo-inverse of the matrix M.

The authors of [14] propose a particular method to generate vector v(t), which ensures
that the complexity of a single iteration of the flight phase is O(J3). This leads to an overall
complexity of O(NJ3) for the flight phase, since it terminates in at most N iterations.

3.5. Landing Phase

Denote by 7t* the value of process 7t(t) when the flight phase terminates. If 77* is a
vertex of C (i.e., all its components are either zero or one), one may stop and return 77*
as the output of the cube algorithm. If 77* is not a vertex, this informs us that no vertex
belongs to . One may implement a landing phase, which aims at choosing randomly a
vertex which is close to 7%, and such that the variance of the components of V is small.

Appendix A gives more details on the landing phase. Note that its worst-case com-
plexity is O(2/). However, in practice, it is typically either much faster, or not required (i.e.,
7t* is already a vertex) as soon as | < N.

4. Cube Thinning

We now explain how the previous ingredients (control variates, and the cube method)
may be combined in order to thin a Markov chain, Xj, ..., Xy, into a subsample of size M.
As before, the invariant distribution of the chain is denoted by p, and we assume we know
of | control variates hj, ie., p(hj) =0forj=1,...,].

4.1. First Step: Computing the Weights

The first step of our method is to use the | control variates to compute the N weights
wy, as defined at the end of Section 2.2. Recall that these weights sum to one, and that they
automatically fulfil the constraints:

N
Z wyhj(Xn) =0 (15)
n=1

forj=1,...,], and that we use them to compute

N
p«(f) = Z Wy f(Xn) (16)
n=1

as a low-variance estimate for p(f) for any f.

Recall that the control variates procedure we described in Section 2 assume that the
input variables, Xy, ..., Xy, are IID. This is obviously not the case in an MCMC context;
however, we follow the common practice [10,11] of applying the procedure to MCMC
points as if they were IID points. This implies that the weighted estimate above corresponds
to a value of B in (3) that does not minimise the (asymptotic) variance of estimator (3). It
is actually possible to estimate the value of f that minimises the asymptotic variance of
an MCMC estimate [7,15]. However, this type of approach is specific to certain MCMC
samplers, and, critically for us, it cannot be cast as a weighting scheme. Thus, we stick to
this standard approach.

We note in passing that, in our experiments (see Figure 1 and the surrounding discus-
sion), the weights w;, make it easy to visually assess the convergence (and thus the burn-in)
of the Markov chain. In fact, since the MCMC points of the burn-in phase are far from the
mass of the target distribution, the procedure must assign a small or negative weight to
these points in order to respect the constraints based on the control variates. Again, see
Section 5.2 for more discussion on this issue. The fact that control variates may be used to
assess MCMC convergence has been known for a long time (e.g., [16]), but the visualisation
of weights makes this idea more expedient.
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Figure 1. Lotka—Volterra example: first 5000 weights of the cube methods, based on full (top) or
diagonal (bottom) set of covariates.

4.2. Second Step: Cube Resampling

The second step consists in resampling the weighted sample (wy, Xy;),=1, N, to obtain
asubsample S = {X,, : S, = 1} where S, are random variables such that (a) E[S,] = wy;
(b) 22]:1 Si=M,and (c)forj=1,...,]:

Y hi(X) = 0.

Sn=1
Condition (a) ensures that the procedure does not introduce any bias:
N

= Z wy f(Xy).

n=1

E Xl:N

1
i Y f(Xn)

Sp=1

Condition (b) ensures that the subsample is exactly of size M.

We would like to use the cube method in order to generate the S;,’s. Specifically, we
would like to assign the inclusion probabilities 77, to w,, and impose the (] + 1) constraints
defined above by conditions (b) and (c). There is one caveat, however: the weights w,, do
not necessarily lie in [0, 1].

4.3. Dealing with Weights Outside of [0, 1]

We rewrite (16) as:

o) N
pelf) = 37 X X Wa x sgn(wa) f(Xa) (17)
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where () = ):2’:1 |w,| and W, = M|wy|/Q. We now have W,, > 0, and ):2]:1 W, =M,
which is required for condition (b) in the previous section. We might have a few points
such that Wy, > 1. In that case, we replace them by |W, | copies, with adjusted weights
Wi/ | Wa].

It then becomes possible to implement the cube method, using as inclusion probabili-
ties the Wy;s, and as the matrix A that defines the | + 1 constraints, the matrix A = (Ajn)
such that Ay, = 1, A(jyq), = sgn(wy)hj(Xy). The cube method samples variables Sy,
which may be used to compute the subsampled estimate

o) = 1 X sgn(wn)f(Xa). a8)

Sp=1

More generally, in our numerical experiments, we shall evaluate to which extent the
random signed measure:

<>

= % Z sgn(wy,)dx, (dx). (19)
Sp=1

is a good approximation of the target distribution p.

5. Experiments

We consider two examples. The first example is taken from [5], and is used to compare
cube thinning with KSD thinning. The second example illustrates cube thinning when used
in conjunction with control variates that are not gradient-based. We also include standard
thinning in our comparisons.

Note that there is little point in comparing these methods in terms of CPU cost, as
KSD thinning is considerably slower than cube thinning and standard thinning whenever
M > 100. (In one of our experiments, for M = 1000, KSD took close to 7 h to run, while
cube thinning with all the covariates took about 30 s.) Thus, our comparison will be in
terms of statistical error, or, more precisely, in terms of how representative of p is the
selected subsample.

In the following (in particular in the plots), “cubeFull” (resp. “cubeDiagonal”) will
refer to our approach based on the full (resp. diagonal) set of control variates, as discussed
in Section 2.3. “NoBurnin” means that burn-in has been discarded manually (hence, no
burn-in in the inputs). Finally, “thinning” denotes the usual thinning approach, “SMPCOV”,
“MED” and “SCLMED” are the same names used in [5] for KSD thinning, based on three
different kernels.

To implement the cube method, we used R package BalancedSampling.

5.1. Evaluation Criteria

We could compare the three different methods in terms of variance of the estimates
of p(f) for certain functions f. However, it is easy to pick functions f that are strongly
correlated with the chosen control variates; this would bias the comparison in favour of
our approach. In fact, as soon as the target is Gaussian-like, the control variates we chose in
Section 2.3 should be strongly correlated with the expectation of any polynomial function
of order two, as we discussed in that section.

Rather, we consider criteria that are indicative of the performance of the methods for
a general class of function. Specifically, we consider three such criteria. The first one is the
kernel Stein discrepency (KSD) as defined in [5] and recalled in the introduction—see (1).
Note that this criterion is particularly favourable for KSD thinning, since this approach
specifically minimises this quantity. (We use the particular version based on the median
kernel in Riabiz et al. [5].)

The second criterion is the energy distance (ED) between p and the empirical distri-
bution defined by the thinning method, e.g., (19) for cube thinning. Recall that the ED
between two distributions F and G is:
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ED(F,G) = 2E||Z — X||> — E||Z — Z'||; — E||X — X/|| 20)
where Z', Z “ Fand X', X Y G, and that this quantity is actually a pseudo-distance:
ED(F,G) > 0,ED(F,G) =0 = F = G, ED(F,G) = ED(G, F), but ED does not fulfil the
triangle inequality [17,18].

One technical difficulty is that (19) is a signed measure, not a probability measure; see
Appendix B on how we dealt with this issue.

Our third criterion is inspired by the star discrepancy, a well-known measure of
the uniformity of N points u, € [0,1]? in the context of quasi-Monte Carlo sampling [9]
(Chapter 15). Specifically, we consider the quantity

@"(P,0) = sup|Py (B) — 09(B)|

where ¢ : RY — [0,1]%, 15‘,, and 7 are the push-forward measures associated to empirical
distributions P = (N —b) "' ©-I_, ., 0x, (dx), and ? as defined in (19), and B is the set of
hyper-rectangles B = [T%_, [0, b;]. In practice, we defined function ¢ as follows: we apply
the linear transform that makes the considered sample to have zero mean and unit variance,
and then we applied the inverse CDF (cumulative distribution function) of a unit Gaussian
to each component.

Additionally, since the sup above is not tractable, we replace it by a maximum over a
finite number of b; (simulated uniformly).

5.2. Lotka—Volterra Model

This example is taken from [5]. The Lotka—Volterra model describes the evolution of a
prey—predator system in a closed environment. We denote the number of prey by u; and
the number of predators by u,. The growth rate of the prey is controlled by a parameter
61 > 0 and its death rate—due to the interactions with the predators—is controlled by a
parameter 6, > 0. In the same way, the predator population has a death rate of 63 > 0 and
a growth rate of 6; > 0. Given these parameters, the evolution of the system is described
by a system of ODEs:

du1

—— = Bug — Ghuqu
dt 141 2U1U2
d

% = 94111142 — 931[2

Ref. [5] set 0 = (64,0,,605,04) = (0.67,1.33,1,1), the initial condition ug = (1,1),
and simulate synthetic data. They assume they observe the populations of prey and
predator at times t;,i = 1,...,2400 where the t; are taken uniformly on [0,25] and
that these observations are corrupted with a centered Gaussian noise with a covari-
ance matrix C = diag(0.22,0.22). Finally, the model is parametrised in terms of x =
(log 61,10g 6, log 03,10g 64) € R* and a standard normal distribution as a prior on x is used.

The authors have provided their code as well as the sampled values they obtained
by running different MCMC chains for a long time. We use the exact same experimental
set-up, and we do not run any MCMC chain on our own, but use the ones they provide
instead, specifically the simulated chain, of length 2 x 10°, from preconditionned MALA.

We compress this chain into a subsample of size either M = 100 or M = 1000. For each
value of M, we run different variations of our cube method 50 times and make a comparison
with the usual thinning method and with the KSD thinning method with different kernels,
see [5]. In Figure 1, we show the first 5000 weights of the cube method. We can see that
after 1000 iterations, the weights seem to stabilise. Based on visual examination of these
weights, we chose a conservative burn-in period of 2000 iterations for the variants where
burn-in is removed manually.

We plot the results of the experiment in Figures 2—4.
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First, we see that regarding the kernel Stein discrepancy metric, Figure 2, the KSD
method performs better than the standard thinning procedure and the cube method. This
is not surprising since, even if this method does not properly minimise the Kernel-Stein
Discrepency, this is still its target. We also see that, for M = 1000, the KSD method performs
a bit better than our cube method which in turn performs better than the standard thinning
procedure. Note that the relative performance of the KSD method to our cube methods
depends on the kernel that is being used and that there is no way to determine which
kernel will perform best before running any experiment.

The picture is different for M = 100: KSD thinning outperforms standard thinning,
which in turn outperforms all of our cube thinning variations. Once again, the fact that
the KSD method performs better than any other method seems reasonable: since it re-
gards minimizing the Kernel-Stein Discrepancy, the KSD method is “playing at home” on
this metric.

If we look at Figure 4, we see that all of our cube methods outperform the KSD method
with any kernel. Interestingly, the standard thinning methods has a similar energy distance
as the cube methods with “diagonal” control variates. These observations are true for both
M = 100 and M = 1000. We can also note that the cube method with the full set of control
variates tends to perform much better than its “diagonal” counterpart, whatever the value of M.

Finally, looking at Figure 3, it is clear that the KSD method—with any kernel—performs
worse than any cube method in terms of star discrepancy.

KsD for M = 100

== Stein SMPCOV
Stein SCLMED
Stein MED
—— Thin

120 - ——

100 -

aubefull cubeDiagonal cubeFullNoBurnin cubeDiagonalNoBurmin

KsD for M = 1000

== Stein SMPCOV

120 - Stein SCLMED

Stein MED
100 - —— Thin
80 -
B0 -
a0 -
? _I_ %
0- i | | i
cubeFull aubeDiagonal ubeFullNoBurnin cubeDiagonalNoBumin

Figure 2. Lotka-Volterra example: box-plots of the kernel Stein discrepency for all the cube method
variations, compared with the KSD method for three kernels and the usual thinning method (hori-
zontal lines). Top: M = 100. Bottom: M = 1000. (In the top plot, standard thinning is omitted to
improve clarity, as corresponding value is too high.)
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Star Discrepency for M = 100
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_______________________________________________ __..— Thinning
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Figure 3. Lotka—Volterra example: box-plots of the star discrepency for all the cube method variations,
compared with the KSD method for three kernels and the usual thinning method (horizontal lines).
Top: M = 100. Bottom: M = 1000.
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Figure 4. Cont.

164



Entropy 2021, 23,1017

ED for M = 1000
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Figure 4. Lotka—Volterra example: boxplots of the energy distance for all the cube method variations,
compared with the KSD method for three kernels and the usual thinning method (horizontal lines).
Top: M = 100. Bottom: M = 1000.

Overall, the relative performance of the cube methods and KSD methods can change
a lot depending on the metric being used and the number of points we keep. In addition,
while all the cube methods tend to perform roughly the same, this is not the case of the
KSD method, whose performances depend on the kernel we use. Unfortunately, we have
no way to determine beforehand which kernel will perform best. This is a problem since
the KSD method is computationally expensive for subsamples of cardinality M >> 100.

Thus, by and large, cube thinning seems much more convenient to use (both in terms
of CPU time and sensitivity to tuning parameters) while offering, roughly, the same level
of statistical performance.

5.3. Truncated Normal

In this example, we use the (random-scan version of) the Gibbs sampler of [1] to
sample from 10-dimensional multivariate normal truncated to [0, c)'?. We generated the
parameters of this truncated normal as follows: the mean was set as the realisation of a
10-dimensional standard normal distribution, while for the covariance matrix X, we first
generated a matrix M € M 19(R) for which each entry was the realisation of a standard
normal distribution. Then, we set & = MT M.

Since we used a Gibbs sampler, we have access to the Gibbs control variates of [7],
based on the expectation of each update (which amounts to simulating from a univariate
Gaussian). Thus, we consider 10 control variates.

The Gibbs sampler was run for N = 10° iterations and no burn-in was performed.
We compare the following estimators of the expectation of the target distribution the
standard estimator, based on the whole chain ("usualEstim" in the plots), the estimator
based on standard thinning ("thinEstim" in the plots), the control variate estimator based
on the whole chain, i.e., (7) ("regressionEstim" in the plots), and finally our cube estimator
described in Section 4 ("cubeEstim" in the plots). For standard thinning and cube thinning,
the thinning sample size was set to M = 100, which corresponds to a compression factor
of 10°.

The results are shown in Figure 5. First, we can see that the control variates we chose
led to a substantial decrease in the variance of the estimates for regressionEstim compared
to usualEstim. Second, the cube estimator performed worse than the regression estimator
in terms of variance, but this was expected, as explained in Section 4. More interestingly,
if we cannot say that the cube estimator performs better than the usual MCMC estimator
in general, we can see that for some components it performed as well or even better,
even though the cube estimator used only M = 100 points while the usual estimator
used 10° points. This is largely due to the good choice of the control variates. Finally,

165



Entropy 2021, 23,1017

the cube estimator outperformed the regular thinning estimator for every component,
sometimes significantly.

Estimators for the 1st component Estimators for the 2nd component
o e L
20
19-
26
18- o
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13- 20-
regressionEstim cubeEstim LsualEstim inEstim regressionEstim cubekstim sualEstim thinEstim
Estimators for the 3rd component Estimators for the 4th component
16 - ° o
78 +
15-
76 T o
14- 74
13- 72 %
— [
70
12 - 8
68
11
66
o
regressionEstim cubeEstim wsualEstim thinEstim regressionEstim cubeEstim wsualEstim thinstim

Figure 5. Truncated normal example: box-plots over 100 independent replicates of each estimator;
see text for more details.
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Appendix A. Details on the Landing Phase

The landing phase seeks to generate a random vector S in {0, 1}V, with expectation 77*
(the output of the flight phase), which minimises the criterion tr(MVar(V|7*)) for a certain
matrix M. (The notation -|7* refers to the distribution of S conditional on 7t(t) = 7v* at the
end of the flight phase.)

Since Var(S) = Var(E[S|7*]) + E[Var(S|77*)] by the law of total variance, and since
the first term is zero (as E[S| "] = 7r*), we have

Var(V) = E[Var(V|7*)] = E[AVar(S|7*)A']. (A1)
and thus:
tr(MVar(V|7*)) = Y p(s|m*)(s — n*) ATMA(s — 7). (A2)
se{0,1}N
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Choosing M = (AA!)~1, as recommended by [6], amounts to minimising the distance
to the hyperplane ‘on average’. Let C(s) = (s — *)!Af(AAY) 71 Al(s — 7*), then the
minimisation program is equivalent to the following linear programming problem over g
variables only:

min ) C(s*)&*(s") (A3)

& () s*eS*
with constraints Y g+ ¢*(s*) = 1,0 < &*(s*) < 1, Lsresejsi=1 ¢*(s*) = mp for every
k € U*and §* = {0,1}9 where g = card(U*) and U* = {k € U : 0 < 7*[k] < 1}. Here, &*
denotes the marginal distribution of the components U* of the sampling design ¢ and C(s*)
must be understood as C(s) with the components of s ¢ U* being fixed by the result of the
flight phase; thus, in this minimisation problem, C is in fact dependent on the components
of s that are in U* only.

The constraints define a bounded polyhedron. By the fundamental theorem of linear
programming, this optimisation problem has at least one solution on a minimal support—
see [6].

The flight phase ends on a vertex of K and, by Proposition 1in [6], ¢ < J—typically
J < N. This means that we are solving a linear programming problem in a dimension
q potentially much lower than the population size N, and if we do not have too many
auxiliary variables, this optimisation problem will not be computationally too expensive.
In practice, a simplex algorithm is used to find the solution.

Appendix B. Estimation of the Energy Distance

There are two difficulties with computing (20). First, it involves intractable expecta-
tions. Second, as pointed out at the end of Section 4.3, the empirical distribution generated
by cube thinning, (19), is actually a signed measure.

Regarding the first issue, we can approximate (20) from our MCMC sample Xj, ..., Xn.
That is, if our subsampled empirical measure writes ¥ = Y, w,,67, and that we approxi-
mate the distribution associated with pby P = (N —b) ' y.I | | dx, where1 <b < Nis
the burn-in of the chain; then, we can estimate ED(f, p) with ED(ji, P).

Regarding the second issue, we can generalize the energy distance to finite measures:
suppose we have two finite and potentially signed measures v; and v, both defined on the
same measurable space (), P(Q))} where Q) = {Xj,..., Xy} and P(Q) denote the set of
parts of Q). Suppose, in addition, that v1(Q) = a7 and 1,(Q)) = ap with ay # 0 and ap # 0.
We define the generalized energy distance as:

" 2
ED"(v1,v2) = [ Il =yl (x)dva(y)
= o e n ()

_ l ! /!
2 Jo 0= a2 ) ).

Then, by negative definiteness of the application ¢(x,y) = ||x — y||» on RN x RN,
ED*(v1,12) > 0 with equality if and only if V= This means that the gener-
1 2

alized energy distance is zero if and only if the two measures are equal up to a non-zero
multiplicative constant—see [17] for a demonstration. This generalized energy distance is
also symmetric, but the triangle inequality does not hold. It is a pseudo-distance.
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Thus, we will use the following criterion, which we will call the energy distance:

I 2 N N o)
ED*(?,P) —mkﬂl ;ﬂﬁsgn(w;c)\lxk*Xn\lzl{skzl}
=

1 N N Q 2
-3 ) E(ﬁ) sgn(wn)sgn(w)||Zx — Zu|21¢s,1y1(s,=1
1

where 7 is defined in (19) and we dropped the last term because it does not depend on 7
and it is a potentially expensive sum of (N — b)? terms.

Note that the probability of 7(Q)) being zero is non-null and then there is a non-
negligible probability of ED*(7, 13) being undefined. However, this event is unlikely

to happen.
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Abstract: Langevin dynamics (LD) has been extensively studied theoretically and practically as
a basic sampling technique. Recently, the incorporation of non-reversible dynamics into LD is at-
tracting attention because it accelerates the mixing speed of LD. Popular choices for non-reversible
dynamics include underdamped Langevin dynamics (ULD), which uses second-order dynamics
and perturbations with skew-symmetric matrices. Although ULD has been widely used in practice,
the application of skew acceleration is limited although it is expected to show superior performance
theoretically. Current work lacks a theoretical understanding of issues that are important to prac-
titioners, including the selection criteria for skew-symmetric matrices, quantitative evaluations of
acceleration, and the large memory cost of storing skew matrices. In this study, we theoretically and
numerically clarify these problems by analyzing acceleration focusing on how the skew-symmetric
matrix perturbs the Hessian matrix of potential functions. We also present a practical algorithm that
accelerates the standard LD and ULD, which uses novel memory-efficient skew-symmetric matrices
under parallel-chain Monte Carlo settings.

Keywords: Markov Chain Monte Carlo; Langevin dynamics; Hamilton Monte Carlo; non-reversible

dynamics

1. Introduction

Sampling is one of the most widely used techniques for the approximation of posterior
distribution in Bayesian inference [1]. Markov Chain Monte Carlo (MCMC) is widely
used to obtain samples. In MCMC, Langevin dynamics (LD) is a popular choice for
sampling from high-dimensional distributions. Each sample in LD moves toward a gradient
direction with added Gaussian noise. LD efficiently explore around a mode of a target
distribution using the gradient information without being trapped by local minima thanks
to added Gaussian noise. Many previous studies theoretically and numerically proved
LD’s superior performance [2-5]. Since non-reversible dynamics generally improves
mixing performance [6,7], research on introducing non-reversible dynamics to LD for better
sampling performance is attracting attention [8].

There are two widely known non-reversible dynamics for LD. One is underdamped
Langevin dynamics (ULD) [9], which uses second-order dynamics. The other introduces
perturbation, which consists of multiplying the skew-symmetric matrix by a gradient [8].
Here, we refer to the matrix as skew matrices for simplicity and this perturbation tech-
nique as skew acceleration. Much research has been done on ULD theoretically [9-11]
and ULD is widely used in practice, which is also known as stochastic gradient Hamil-
ton Monte Carlo [12]. In contrast, the application of the skew acceleration for standard
Bayesian models is quite limited even though it is expected to show superior performance
theoretically [8].

Entropy 2021, 23, 993. https:/ /doi.org/10.3390/e23080993
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For example, skew acceleration has been analyzed focusing on sampling from Gaus-
sian distributions [13-17], although assuming Gaussian distributions in Bayesian models
is restrictive in practice. A recent study [8] theoretically showed that skew acceleration
accelerates the dynamics around the local minima and saddle points for non-convex func-
tions. Another work [18] clarified that the skew acceleration theoretically and numerically
improves mixing speed when used as interactions between chains in parallel sampling
schemes for non-convex Bayesian models.

Compared to ULD, what seems to be lacking for skew acceleration is a theoretical
understanding of issues that are important to practitioners. The most significant problem
is that no theory exists for selecting skew matrices. In existing studies, introducing a skew
matrix into LD results in equal or faster convergence, denoting that a bad choice of skew
matrix results in no acceleration. Thus, choosing appropriate skew matrices is critical.
Furthermore, although ULD’s acceleration has been analyzed quantitatively, existing
studies have only analyzed skew acceleration qualitatively. Thus, it is difficult to justify
the usefulness of skew acceleration in practice compared to ULD. Another issue is that
introducing skew matrices requires a vast memory cost in many practical Bayesian models.

The purpose of this study is to solve these problems from theoretical and numerical
viewpoints and establish a practical algorithm for skew acceleration. The following are the
two major contributions of this work.

Our contribution 1: We present a convergence analysis of skew acceleration for
standard Bayesian model settings, including non-convex potential functions using Poincaré
constants [19]. The major advantage of Poincaré constants is that we can analyze skew
acceleration through a Hessian matrix and its eigenvalues and develop a practical theory
about the selection of | and the quantitative assessment of skew acceleration.

Furthermore, we propose skew acceleration for ULD and present convergence anal-
ysis for the first time. Since ULD shows faster convergence than LD, combining skew
acceleration with ULD is promising.

Our contribution 2: We develop a practical skew accelerated sampling algorithm
for a parallel sampling setting with novel memory-efficient skew matrices. Since a naive
implementation of skew acceleration requires a large memory cost to store skew matrices,
memory-efficiency is critical in practice. We also present a non-asymptotic theoretical
analysis for our algorithm in both LD and ULD settings under a stochastic gradient and
Euler discretization. We clarify that introducing skew matrices accelerates the convergence
of continuous dynamics, although it increases the discretization and stochastic gradient
error. Then to the best of our knowledge, we propose the first algorithm that adaptively
controls this trade-off using the empirical distribution of the parallel sampling scheme.

Finally, we verify our algorithm and theory in practical Bayesian problems and com-
pare it with other sampling methods.

Notations: I; denotes a d x d identity matrix. Capital letters such as X represent
random variables, and lowercase letters such as x represent non-random real values. -, || - ||
and | - | denote Euclidean inner products, distances and absolute values.

2. Preliminaries

In this section, we briefly introduce the basic settings of LD and non-reversible dy-
namics for the posterior distribution sampling in Bayesian inference.

2.1. LD and Stochastic Gradient LD

First, we introduce the notations and the basic settings of LD and stochastic gradient
LD (SGLD), which is a practical extension of LD. Here z; denotes a data point in space Z,
| Z| denotes the total number of data points, and x € R? corresponds to the parameters of a
given model, which we want to sample. Our goal is to sample from the target distribution
with density drr(x) « e PUM)dx, where potential function U(x) is the summation of

12|
= % Z% u(x,z;). Function u(-,-) is continuous and non-
i-

u:RIXZ — R, ie, U(x)
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convex. The explicit assumptions made for it are discussed in Section 3.1. The SGLD
algorithm [2,3] is given as a recursion:

Xpp1 = X — hVU(Xy) + /21 ey, 1)

where I € RY is a step size, e, € R? is a standard Gaussian random vector, § is a
temperature parameter of 7r, and VU(X}) is a conditionally unbiased estimator of true
gradient VU(X}). This unbiased estimate of the true gradient is suitable for large-scale
data set since we can use not the full gradient, but a stochastic version obtained through
a randomly chosen subset of data at each time step. This means that we can reduce the
computational cost to calculate the gradient at each time step.

The discrete time Markov process in Equation (1) is the discretization of the continuous-
time LD [2]:

de = *Vu(Xt)df —+ Zﬁ_ldwf, (2)
where w; denotes the standard Brownian motion in RY. The stationary measure of
Equation (2) is d7r(x) o e PUM) dy.

2.2. Poincaré Inequality and Convergence Speed

In sampling, we are interested in the convergence speed to the stationary measure.
The speed is often characterized by the the generator associated with Equation (2) and
defined as:

LFX) : = tim BU(Xis)1X) = f(X0)

s—0t s

(7vu(xt) v +[—5*1A)f(xt), ®)

where A denotes a standard Laplacian on R and f € D(£) and D(L£) C L?(7t) denote
the £ domain. This —£ is a self-adjoint operator, which has only discrete spectrums
(eigenvalues). 7t with £ has a spectral gap if the smallest eigenvalue of — L (other than 0) is
positive. We refer to it as po(>0). This spectral gap is closely related to Poincaré inequality.
Internal energy is defined:

E(f) =~ [, refan. @)

Please note that £(f) > 0 is satisfied. Then 7t with £ satisfies the Poincaré inequality
with constant ¢, if for any f € D(L), 7w with L satisfies:

/fzdn— </fdn>2 < cE(f). )

The spectral gap characterizes this constant ¢ < pio’ which holds (see Appendix A.2 for
details). We refer to best constant ¢ as the Poincaré constant [19]. For notational simplicity,
we define mg := % and refer to this m as the Poincaré constant.

In sampling, crucially, Poincaré inequality dominates the convergence speed in
X2 divergence:

d 2 _2m
J (8 1) dm = ullm) < F 2ol ©

where p; denotes the measure at time t induced by Equation (2) and p is the initial
measure (see Appendix A.3 for details). Thus, the larger Poincaré constant 1 is, the faster
convergence we have.
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2.3. Non-Reversible Dynamics

In this section, we introduce the non-reversible dynamics. 7t with £ is reversible if for
any test function f, g € D(L), m with L satisfies

/]R fLgdn = /}R sCfdn. @)

If this is not satisfied, 7t with £ is non-reversible [19].
We introduce two non-reversible dynamics for LD. The first is ULD, which is given as

dX; = 7 Widt,

®)
dVi = —VU(Xy)dt — v~ Widt + /2B~ Ldw,

where V € R? is an auxiliary random variable, 7 € R is a positive constant, and X is the
variance of the stationary distribution of auxiliary random variable V. The stationary distri-
bution is 77 1= 7 @ N (0, %) o e PUX 2= II?  where A/ denotes a Gaussian distribution.
The superior performance of ULD compared with LD has been studied rigorously [9-11].
ULD’s convergence speed is also characterized by the Poincaré constant [20]. In practice,
we use discretization and the stochastic gradient for ULD, which is called the stochastic
gradient Hamilton Monte Carlo (SGHMC) [10]. The second non-reversible dynamics is the
skew acceleration given as

AX; = —(1+ ] )VU(X;)dt + /2B 1 dw,, ©)

where | is a real value skew matrix and « € R is a positive constant. We call this dynamics
S-LD. The stationary distribution of S-LD is still 7r, and S-LD shows faster convergence and
smaller asymptotic variance [13-15,18].

3. Theoretical Analysis of Skew Acceleration

In this section, we present a theoretical analysis of skew acceleration in LD and ULD
in standard Bayesian settings. We analyze acceleration through the Poincaré constant and
connect it with the eigenvalues of the Hessian matrix, which allows us to obtain a practical
criterion to choose skew matrices and quantitatively evaluate acceleration. We focus on a
setting where a continuous SDE and a full gradient of the potential function is used in this
section. The discretized SDE and stochastic gradient are discussed in Section 4.

3.1. Acceleration Characterization by the Poincaré Constant

First, we introduce the same four assumptions as a previous work [2], which showed
the existence of the Poincaré constant about 11y for LD (see Appendix C for details).

Assumption 1. (Upper bound of the potential function at the origin) Function u takes nonnegative
real values and is twice continuously differentiable on R, and constants A and B exist such that
forallz € Z,

u(0,2)] < 4, [|Vu(0,2)| < B. (10)

Assumption 2. (Smoothness) Function u has Lipschitz continuous gradients; for all z € Z,
positive constant M exists for all x,y € R,

[Vu(x,z) = Vu(y,2)|| < Ml|x =yl 1n
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Assumption 3. (Dissipative condition) Function u satisfies the (m,b)-dissipative condition for all
z € Z; forall x € RY, m > 0and b > 0 exist such that

—x-Vu(x,z) < —m|x|® +b. (12)

Assumption 4. (Initial condition) Initial probability distribution yg of Xo has a bounded and
strictly positive density po, and for all x € RY,

Ko := log /Rd e”xuzpo(x)dx < oo. (13)

Please note that these assumptions allow us to consider the non-convex potential
functions, which are common in practical Bayesian models. Furthermore, we make the
following assumption about J.

Assumption 5. The operator norm of | is bounded:

172 < 1. (14)

This means that the largest singular value of | is below 1.

Under these assumptions, we present the convergence behavior of skew acceleration
using the Poincaré constant. First, we present the following S-LD result.

Theorem 1. Under Assumptions 1-5, the S-LD of Equation (9) has exponential convergence,

2m(e)

Xlm) <e P (uolim), (15)

where uf is the measure at time t induced by S-LD and m(w) is the Poincaré constant of S-LD
defined by its generator

Lof(x) = <7(I+a])VU(x)-V+/3’1A>f(x). (16)
Furthermore, m(w) satisfies m(a) > my.

The proof is shown in Appendix C. This theorem states that introducing the skew
matrices accelerates the convergence of LD by improving the convergence rate from 1 to
m(a). Although [18] obtained a similar result, we used the Poincaré constant and derived
an explicit criterion when m(a) = mg holds, as we discuss below.

Next, we also introduce skew acceleration in ULD. Since ULD shows faster conver-
gence than LD in standard Bayesian settings [10,11], it is promising to combine skew
acceleration with ULD to obtain a more efficient sampling algorithm. For that purpose,
we propose the following SDE:

dXy = L7Wdt + aq [ VU(X})dt, 17)
dVi = —VU(Xy)dt — y(Z7 + ao o) Vidt + /2B~ Ldwy, (18)

where [; and ], are real value skew matrices and a7 and a, are positive constants. We
assume that J; and |, satisfy Assumption 5. We refer to this method as skew under-
damped Langevin dynamics (S-ULD) whose stationary distribution is & = 7 ® N (0,Z) «
e PUD—IE7M ol gee Appendix B for details, which include discussions on other combina-
tions of skew matrices. As for S-ULD, we need an additional assumption about the initial

condition of Vj:
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Assumption 6. (Initial condition) Initial probability distribution uo(x,v) of (Xo, Vo) has a
bounded and strictly positive density pg that satisfies,

Ko := log ./]de g“x“2+“v“2po((x, Z)))dxdv < 00, (19)

We then provide the following convergence theorem that resembles S-LD.

Theorem 2. Under Assumptions 1-3, 5, 6, S-ULD has exponential convergence in )(2 divergence
and its convergence rate is also characterized by m(a) as defined in Theorem 1. S-ULD’s convergence
equals or exceeds ULD, of which convergence rate is characterized by my.

See Appendix C.2 for details. From these theorems, we confirmed that skew accelera-
tion is effective in both S-LD and S-ULD, and the convergence speed is characterized by
Poincaré constant m(«) defined by Equation (16).

3.2. Skew Acceleration from the Hessian Matrix

Our goal is to clarify what choices of | induce m(a) > m, which leads to acceleration.
Therefore, we discuss how Poincaré constant m(«) is connected to the eigenvalues and
eigenvectors of the perturbed Hessian matrix (I + aJ)V2U(x). Next, we introduce the
notations. We express the Hessian of U(x) as H(x) and the perturbed Hessian matrix
as H'(x) := (I +aJ)H(x). Please note that H is a real symmetric matrix, which has
real eigenvalues and diagonalizable. On the other hand, since H’ is not symmetric, it has
complex eigenvalues, although diagonalization is not assured (see Appendix E). We express
pairs of eigenvectors and eigenvalues of H'(x) as { (v%(x), A%(x))}%_,, which are ordered as
Re(Af(x))) < --- < Re(Aj(x)). Here, Re(A](x)) expresses the real part of complex value
A% and Im denotes the imaginary part. We express those of H(x) as {(v)(x), AY(x))}%,

and order them as AJ(x) < --- < A9(x).

3.2.1. Strongly Convex Potential Function

Assume that U is an m-strongly convex function, where for all x € RY, m < AJ(x)
holds. Poincaré constant m of LD satisfies my = m [19]. For the skew acceleration, since
Poincaré constant satisfies m(a) = m’(a), where m’(a) is the best constant that satisfies,
forall x, m'(ax) < Re(A§(x)) (see Appendix D.1). Therefore, studying the Poincaré constant
is equivalent to studying the smallest (real part of the) eigenvalue of the Hessian matrix.
Thus, the relation between A9 (x) and Re(A%(x)) must be studied. The following theorem
describes how the skew matrices change the smallest eigenvalue.

Theorem 3. For all x € RY, the real parts of the eigenvalues of H' satisfy
m < M(x) < Re(Af(x)) < -+ < Re(Aj(¥)) < Ag(x). (20)

The condition of A9(x) = Re(A%(x)) is shown in Remark 1.
Remark 1. Denote the set of the eigenvectors of eigenvalue Ad(x) as VY. If V) = {v} and
Jo =0, then AY(x) = Re (A% (x)) holds. If the cardinality of set V) is larger than 1, and vectors
0,0' € VQ exist, such that AaJv = (Im(A§))v’ and Ao’ = —(Im(A%))o, then A(x) =
Re(Af (x)) holds.

Refer to Appendix F for the proof. This is an extension of previous work [8,13].

If A9(x) < Re(A%(x)) is satisfied for all x, we have my < m(«), i.e., acceleration occurs.
We discuss how to construct ] such that A?(x) < Re(A%(x)) holds in Section 3.3.
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3.2.2. Non-Convex Potential Function

The previous work [21] clarified that the Poincaré constant of the non-convex function
is characterized by the negative eigenvalue of the saddle point. As shown in Figure 1,
denote x; as the global minima, and x; is the local minima which has the second smallest
value in U(x). We express the saddle point with index one, i.e., there is only one negative
eigenvalue at the point, between x; and x; as x*. This means that the eigenvalues of H(x*)
satisfies A9(x*) < 0 < AJ(x*) < -+ < AY(x*). Ref. [21] clarified that the saddle point x*
characterizes the Poincaré constant as

1, 1 ) -U(x)-U(x))
my " o Ml(x*)‘e 1 . (21)

When skew matrices are introduced, [8] clarified the following relation:
Theorem 4. ([8]) A%(x*) < AY(x*) < 0and equality holds only if Jo% (x*) = 0.

Note Af(x*) is not a complex number. Thus, the skew acceleration reduces the
negative eigenvalue and leads to a larger Poincaré constant (see Appendix D.2) and results
in faster convergence.

Saddle z*

Local minima z»

Global minima z;

Figure 1. Double-potential example: Poincaré constant is related to the eigenvalue at x*.

In conclusion, introducing the skew matrix changes the Hessian’s eigenvalues and
increase the Poincaré constant. If A)(x) # Re(A%(x)) is satisfied, this leads to faster
convergence for both convex and non-convex potential functions.

3.3. Choosing |

In this section, we present a method for choosing ] that leads to A?(x) # Re(A4(x)) to
ensure the acceleration based on the equality conditions in Theorems 3 and 4. Combining
these theorems, we obtain the following criterion:

Remark 2. Given a point x, \d(x) # Re(A%(x)) holds if either the following conditions are
satisfied: (i) when V) = {v}, Jo # 0 is satisfied. (ii) when |V?| > 1, Jo # 0 holds for
any v € V), and for any v,v' € V), Majo = (Im(A%))o' and Aajo' = —(Im(A§))o are
not satisfied.

The first condition (i) is easily satisfied if we choose | such that Ker] = {0}. On the
other hand, the second condition (if) is difficult to verify since H and its eigenvalues
and eigenvectors generally depend on the current position of X;. Instead of evaluating
eigenvalues and eigenvectors of H and H' directly, we use the random matrix property
shown in the next theorem.
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Theorem 5. Suppose the upper triangular entries of | follow a probability distribution that is
absolutely continuous with respect to the Lebesgue measure. If Ker] = {0} is satisfied, then given
apoint x € RY, AD(x) # Re(A¥(x)) holds with probability 1.

The proof is given in Appendix G.1. From this theorem, we simply generate | from
some probability distribution, such as the Gaussian distribution. Then, we check whether
Ker] = {0} holds. If Ker] = {0} does not hold, we generate a random matrix | again.

The above theorem is valid only at a given evaluation point x. We can extend the above
theorem to all the points over the path of the discretized dynamics (see Appendix G.3).
With this procedure, we can theoretically ensure that acceleration occurs with probability
one for discretized dynamics.

3.4. Qualitative Evaluation of The Acceleration

So far, we have discussed skew acceleration qualitatively but not quantitatively. Al-
though acceleration’s quantitative evaluation is critical for practical purposes, to the best
of our knowledge, no existing work has addressed it. In this section, we present a for-
mula that quantitatively assesses skew acceleration by analyzing the eigenvalues of the
Hessian matrix.

Theorem 6. With the identical notation as in Theorem 3, for all x, we have

d /\0 /\0 0 0 2
Re(1(x)) = 10+ 3 LTI

+0(a). (22)

In particular, at saddle point x*, we have

P ) o () Jod () 2
0

O(x*) = A9(x%) +0(): *

d /\O )\
M) = ) +a2 y 1)
k=2 A

The proofs are shown in Appendix H. When focusing on Equation (22), if U(x) is a
strongly convex function, since for all k > 1, Ax(x) > Aj(x) > 0 holds and the second
term in Equation (22) is positive. From this, Re(A%(x)) > AY(x) holds. A similar relation
holds for Re(A%(x)). In Equation (23), A%(x*) < A9(x*) < 0 holds. Thus, the changes of
the Poincaré constants are proportional to a?. With these formulas, we can quantitatively
evaluate the acceleration. We present numerical experiments to confirm our theoretical
findings in Section 6.1.

4. Practical Algorithm for Skew Acceleration

In this section, we discuss skew acceleration in more practical settings compared to
Section 3. First, we discuss the memory issue for storing | and the discretization of SDE and
the stochastic gradient, which are widely used techniques in Bayesian inference. Finally,
we present a practical algorithm for skew acceleration.

4.1. Memory Issue of Skew Acceleration and Ensemble Sampling

For d-dimensional Bayesian models, we need O(d%) memory space to store skew
matrices Js, and this is difficult for high-dimensional models. Instead of storing |, we can
randomly generate s at each time step following Theorem 5. However, we experimen-
tally confirmed that using different Js at each step does not accelerate the convergence
(see Section 6). Thus, we need to use a fixed ] during the iterations.

As discussed below, we found that the previously proposed accelerated parallel
sampling [18] can be a practical algorithm to resolve this memory issue. In that method,
we simultaneously updated N samples of the model’s parameters with correlation. In such
a parallel sampling scheme, a correlation exists among multiple Markov chains, it is
more efficient than a naive parallel-chain MCMC, where the samples are independent.
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We express the n-th sample at time ¢ as Xt(n) € R? and the joint state of all samples at

time t as X?N = (Xtm,. .y X,fm)T € RN, We express the joint stationary measure as

N =@ @ m(x®N) o e PELUGCY) We express the sum of the potential function
as UON := YN U(x()). We then consider the following dynamics:

dXPN = —(Ipy 4 o) VUONXEN)dt 4 /28~ 1dawy, (24)
_ T
VUON(XEN) = (vu(x}”),. . .,vu(xf”>)) . (25)

We call this dynamics skew parallel LD (S-PLD). N-independent parallel LD (PLD) is
coupled with the skew matrix. Since each chain in PLD is independent of the other,
the Poincaré constant of PLD is also m. Ref. [18] argued that the Poincaré constant of
S-PLD, m(a, N), satisfies m(a, N) > my. This means S-PLD shows faster convergence
than PLD. As discussed in Section 3.2, these Poincaré constants are characterized by the
smallest eigenvalue of the Hessian matrix V2U®N (x*N) and (I;y + a]) VZUSN (x@N)
where x®N € R*™N. We denote these smallest eigenvalues as A)(x®N) and ReA$ (x@N).
As discussed in Section 3.2, acceleration occurs if A(x*N) 3£ ReA% (x®N) is satisfied.

In [18], they failed to specify the choice of ] whose naive construction of | requires
O(d>N?) memory cost. To reduce the memory cost, we propose the following skew matrix:

J:==Jo® I, (26)

where Jpisa N x N skew matrix and ® is a Kronecker product. We then have the follow-
ing lemma:

Lemma 1. If ]y is generated based on Theorem 5 and Ker]y = {0} is satisfied, then given a
point x®N, [ does not satisfy the equality condition in Theorems 3,4, which means A9(x*N) #
ReA% (x®N)) with probability 1.

See Appendix G.2 for the proof. Thus, from this lemma, we only need to prepare and
store Jo, which requires O(N?) memory, which does not depend on d. In practical settings,
this is a significant reduction of the memory size since the number of parallel chains is
smaller than the dimension of models. Please note that we can ensure the acceleration with
this J.

Lemma 2. Under Assumptions 1-5, assume | satisfies the condition of Lemma 1. Then S-PLD shows

. 72m(u¢,N)[ . .
KN 7Ny < e F PN AN, 7)

where yi"®N is the measure at time t induced by S-PLD, and ;40®N is the initial measure defined as
the product measure of 1.

See Appendix I.1 for the proofs. Thus, combined with Lemma 2, S-PLD converges
faster than PLD. We also considered the ensemble version of ULD (parallel ULD (PULD))
and its skew accelerated version:

dXpPN = 2T WVENGE 4+ g i VUON (XPN)dt,

(28)
dVEN = —vUON(XENYdE — (271 + ap o) VENL 4 /2B~ 1dwy,

where J; and J, € RIN*4N are real-valued skew-symmetric matrices, and #; and ap € Ry

i T
are positive constants and VN = (Vt(l) ooy Vf(N) ) € RN, We refer to this dynamics as

skew PULD (S-PULD) whose faster convergence can be assured similar to Lemma 2 as
shown in Appendix L.2.
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4.2. Discussion of the Discretization of SDE and Stochastic Gradient and Practical Algorithm

In this section, we further consider practical settings for S-PLD and S-PULD. We dis-
cretize these continuous dynamics, e.g., by the Euler-Maruyama method, and approximate
the gradient by the stochastic gradient. Although introducing skew matrices accelerates
the convergence of continuous dynamics, it simultaneously increases the discretization
and stochastic gradient error, resulting in a trade-off. We present a practical algorithm that
controls this trade-off.

4.2.1. Trade-Off Caused by Discretization and Stochastic Gradient
We consider the following discretization and stochastic gradient for S-PLD and S-PULD:

XEN = XN = h(Igy + o)) VUNXEN) + (218 1ey, (29)
and

XeN = XN + 2 VENR 4 o vIEN (XEN )R

VN = VEN—vUEN (XN h— 2 VEN A [29B ey,

where ¢ € R is a standard Gaussian random vector. VUEN(X®N) is an unbiased
estimator of the gradient VU®N(X®N). We refer to Equation (29) as skew-SGLD and
Equation (30) as skew-SGHMC. For skew-SGHMC, we dropped J, of S-PULD to decrease
the parameters, shown in Appendix B. Please note that skew-SGLD is the identical as the
previous dynamics [18]. We introduce an assumption about the stochastic gradient:

(30)

Assumption 7. (Stochastic gradient) There exists a constant § € [0,1) such that
E[|V0(x) - VU] < 25( M2 x| + B2). G

Given a test function f with Ly lipschitzness, we approximate [ fdm by skew-SGLD

or skew-SGHMC, with estimator + YN ; f (X,E")). The bias of skew-SGLD is upper-
bounded as

Theorem 7. Under Assumptions 1-7, for any k € Nand any h € (0,1 A ;355) obeying kh > 1
and Bm > 2, we have

L ¢ g
By LA, )= [, s

< Ly (Cy(a)kh + Cpe P m(@)kh) (32)
I (i)
0 i

and Cy and Cy depends on the constants of Assumptions 1-7, for the details see Appendix |.

We present a tighter bias bound in Section 4.3 under a stronger assumption. We can
show a similar upper bound for the skew-SGHMC using the same proof strategy. This bound
resembles of a previous one [18]; ours shows improved dependency on kh. The previous
results of [18] are also limited to LD, not including skew-SGHMC.

Please note that (i) corresponds to the discretization and stochastic gradient error and
(i) corresponds to the convergence behavior of S-PLD, which is continuous dynamics.
Since C; () > Cq(a = 0), skew acceleration increases the discretization and stochastic
gradient error. On the other hand, since m(a, N) > my, the convergence of the continuous
dynamics is accelerated. Thus, skew acceleration causes a trade-off. When «a is suffi-
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ciently small, we derive the explicit dependency of a for this trade-off from an asymptotic
expansion. Using the quantitative evaluation of skew acceleration in Theorem 6, we obtain

N
E% ) f(X,((”)) - /Rd fdrt| < (dia + dpa®)kh — o2dge P MM L O (%) + const,  (33)
n=1 :
(i) (i)

where dj to d, are positive constants obtained by the asymptotic expansion. See Appendix K
for the details. In the above expression, (i) and (ii) correspond to (i) and (i7) of Equation (32).
Thus, by choosing appropriate a, we can control the trade-off.

4.2.2. Practical Algorithm Controlling the Trade-Off

Since calculating the optimal « that minimizes Equation (33) at each step is com-
putationally demanding, we adaptively tune the value of & by measuring the acceler-
ation with kernelized Stein discrepancy (KSD) [22]. Our idea is to update samples un-
der different « and a + 77, and compare KSD between the stationary and empirical dis-
tributions of these different interaction strengths. Here, € R* is a small increment of
«. We denote the samples at the (k + 1)th step, which is obtained by Equation (29) as
XN = XEN = h(lan + o)) VUENXEN) + \/2hB ey, (or (30) as X2y, = XN +
- 1V®N h+a]vaeN (X®N )h). We denote the samples, which are obtained by replac-

ing the above a by a + 77, as X,fir}\{ o . We denote the KSD between the measure of X,ﬁ]\{ "

and stationary measure 7t as KSD(k + 1, #) and estimate the differences of empirical KSD:
A:=KSD(k+1,a) —KSD(k+1,a + 1), (34)

where KSD is estimated by

KSD(k, ) = Z i Xka,X] (35)

ug(x,x') := Vy log 7r(x) I(x,x")Vylog t(x') 4+ Vylog 7t(x) TVl (x,x')
+ Vil(x, x/)TVx log w4+ TrV, v1(x, x'), (36)

where | denotes a kernel and we use an RBF kernel. If A > 0, which indicates that the
empirical distribution of Xk Flaty is closer to the stationary distribution than that of X}fﬁ e
Thus, we should increase the interaction strength from a to & + 7. If A < 0, we decrease it to
a — 1. We also update 7 to ¢y where ¢ € (0,1]. The overall process is shown in Algorithm 1.
Detailed discussions of the algorithm including how to select ay, 779, and c are shown in

Appendix L.

Algorithm 1 Tuning «

Input: X® ks &, €
Output: "‘k+1/’7k+1

@N
Calculate Xk oy X St

1: and
2: Calculate A := KSD(k +1,a;) — KSD(k + 1, ay + 175)
3: if A > 0 then

4:  Update a1 = ap + 17

5. Update 741 = 7k

6: else

7. Update ajq = |ay — 1]

8:  Update 1511 = c

9: end if

Finally, we present Algorithm 2, which describes the whole process. We update the
value of « once every k' step. Please note that its computational cost is not much larger
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than that of Equation (30). We only calculate the eigenvalues of | once, which requires
O(N3). The calculation of different KSDs is computationally inexpensive since we can
re-use the gradient, which is the most computationally demanding part.

Algorithm 2 Proposed algorithm

Input: XS’QN, h,a0,1m,K,K,c, (VOX‘N; 7,27
Output: XgVN

1: Make a N x N random matrix Jy and check kerJy = {0}
2: Set]=Jo® Iy

3: fork =0to K do

4 if [f] =0then

5: Update a by Algorithm 1

6:  endif

7. Update X;°™ by Equation (29) (for skew-SGLD)

8  (Update (XN, V¥N) by Equation (30) for skew-SGHMC)
9: end for

4.3. Refined Analysis for the Bias of Skew-SGLD

When using a constant step size for skew-SGLD, the bound in Theorem 7 is meaning-
less since the first term of Equation (32) will diverge. Here, following [23], we present a
tighter bound for the bias of skew-SGLD under a stronger assumption.

Theorem 8. Under Assumptions 1-7, for any k € Nand any h € (0,1 A N) A

4[1\/12 4M2) obeying
kh > 1 and Bm > 2, we have

2 A, Cs(a)
Lf\/ e, Me M@ NREKL (1o | 77) + A(Z,N), (37)

Z = [ fim| <

where
1
( (1+m(a, N)~1BC(my))2me?

and constants C3(«) and C(my) depend on the constants of Assumptions 1-7. Moreover, A(«, N)
satisfies A(a, N) > A(a = 0, N). For the details, see Appendix M.

—1
Ala,N) := + %m(a, N)’1> (38)

Proof is shown in Appendix M. Please note that even if we use a constant step size
for skew-SGLD, the bound in Theorem 8 will not diverge. Here we need the stronger
assumption about a step size compared to Theorem 7. From Equation (37), the convergence
behavior is characterized by A(«, N) and the bias bound become smaller when A(a, N)
become larger. From the definition of A(«, N), the larger m(«, N) is, the larger A(a, N) we
obtain. Thus, as we had seen so far, introducing the skew matrices leads to the larger
Poincaré constant, and thus, this leads to larger A(a, N).

Previous work [18] clarified that if a is sufficiently small, introducing skew ma-
trices improves the Poincaré constant by a constant factor, which means that we have
m(a,N) —mg =~ O(a?), where O(a?) depends on the eigenvector and eigenvalues of the
generator £. On the other hand, from Theorem 8, for any ¢ > 0, to achieve the bias smaller

L .
/\(;N)h In ff IZI/‘\&"O‘")) iterations us-

ing the appropriate step size 1 and under the assumption that § and « are small enough
(see Appendix M.2 for details). Combined with these observations, introducing skew
matrices into SGLD improves the computational complexity for a constant order. Our
numerical experiments show that even constant improvement results in faster convergence
in practical Bayesian models.

than ¢, it suffice to run skew-SGLD at least for k >
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5. Related Work

In this section, we discuss the relationship between our method and other sam-
pling methods.

5.1. Relation to Non-Reversible Methods

As we discussed in Section 1, our work extends the existing analysis of non-reversible
dynamics [8,18] and presents a practical algorithm. Compared to those previous works,
we focus on the practical setting of Bayesian sampling and derive the explicit condition
about | for acceleration. We also derived a formula to quantitatively evaluate skew accel-
eration based on the asymptotic expansion of the eigenvalues of the perturbed Hessian
matrix. A previous work [24], which derived the optimal skew matrices when the target
distribution is Gaussian, requires O(d®) computational cost to derive optimal skew matri-
ces, and it is unclear whether it works for non-convex potential functions. On the other
hand, our construction method for skew matrices is simple, computationally cheap, and
can be applied to general Bayesian models.

Our work analyzes skew acceleration for ULD, which is more effective than LD in
practical problems. Another work [8,18] only analyzed skew acceleration for LD. A previ-
ous work [17] combined a non-reversible drift term with ULD. Unlike our method, this
work’s purpose was to reduce the asymptotic variance of the expectation of a test function
and is mainly focusing on sampling from Gaussian distribution.

To the best of our knowledge, our work is the first to focus on the memory issue of
skew acceleration and develop a memory-efficient skew matrix for ensemble sampling.
Our work also presents an algorithm that controls the trade-off for the first time. Another
work [18] identified the trade-off and handled it by cross-validation, which is computation-
ally inefficient, unfortunately.

Finally, we point out an interesting connection between our skew-SGHMC and the
magnetic HMC (M-HMC) [25]. M-HMC accelerates HMC'’s mixing time by introducing a
“magnetic” term into the Hamiltonian. That magnetic term is expressed by special skew
matrices. Although a previous work [25] argued that M-HMC is numerically superior to a
standard HMC, its theoretical property remains unclear. Thus, our work can analyze the
theoretical behavior of magnetic HMC.

5.2. Relation to Ensemble Methods

Our proposed algorithm is based on ensemble sampling [26]. Ensemble sampling,
in which multiple samples are simultaneously updated with interaction, has been attracting
attention numerically and theoretically because of improvements in memory size, compu-
tational power, and parallel processing computation schemes [26]. There are successful,
widely used ensemble methods, including SVGD [27] and SPOS [28], with which we com-
pare our proposed method numerically in Section 6. Although both show numerically
good performance, it is unclear how the interaction term theoretically accelerates the
convergence since they are formulated as a McKean—-Vlasov process, which is non-linear
dynamics, complicating establishing a finite sample convergence rate. Our algorithm is an
extension of another work [18], where the interaction was composed of a skew-acceleration
term and can be rigorously analyzed. Compared to that previous work [18], we analyzed
skew acceleration, focused on the Hessian matrix, and developed practical algorithms,
as discussed in Section 4.2, and derived the explicit condition when acceleration occurs,
which was unclear [18].

Another difference among SPOS, SVGD, and [18] is that they use first-order methods;
our approach uses the second-order method. Little work has been done on ensemble
sampling for second-order dynamics. Recently a second-order ensemble method was pro-
posed [29], based on gradient flow analysis. Although its method showed good numerical
performance, its theoretical property for finite samples remains unclear since it proposed a
scheme as a finite sample approximation of the gradient flow. In contrast, our proposed
method is a valid sampling scheme with a non-asymptotic guarantee.
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6. Numerical Experiments

The purpose of our numerical experiments is to confirm the acceleration of our
algorithm proposed in Section 4 in various commonly used Bayesian models including
Gaussian distribution (toy data), latent Dirichlet allocation (LDA), and Bayesian neural
net regression and classification (BNN). We compared our algorithm’s performance with
other ensemble sampling methods: SVGD, SPOS, standard SGLD, and SGHMC. In all
the experiments, the values and the error bars are the mean and the standard deviation
of repeated trials. For all the experiments we set v = 1 and £~! = 300 for SGHMC
and Skew-SGHMC. As for the hyperparameters of our proposed algorithm, the selection
criterion is discussed in Appendix L.

6.1. Toy Data Experiment

The target distribution is the multivariate Gaussian distribution, 7 = N(p, Q}) where
we generated Q! = AT A and each element of A € R?*? is drawn from the standard
Gaussian distribution. The dimension of the target distribution is d = 50, we approximate
by 20 samples using the proposed ensemble methods. We tested these toy data because
the LD for this target distribution is known as the Ornstein-Uhlenbeck process, and
its theoretical properties have been studied extensively e.g., [30]. Thus, by studying
the convergence behavior of these toy data, we can understand our proposed method
more clearly.

First, we confirmed how the skew-symmetric matrix affects the eigenvalues of the
Hessian matrix, as discussed in Section 3, where we only showed the asymptotic expansion
for the smallest real part of the eigenvalues and saddle point. Here we can show a similar
expansion for the largest real part:

AN-1 ) NOAO‘UOIUO ‘2
d

Re(Ajy) = Agy + o Y Aok )]io n
k=1 k — YN

+0(a®). (39)

Re()\gN) < /\ZN holds.

Then we observed how the largest and smallest real parts of the eigenvalues of
(I+aJ)Q~! depend on a. The results are shown in Figure 2, where we averaged 10 trials
over a randomly made | with fixed A. The upper-left, upper-right, and lower figures
show Re(Aq(a)), Re(Agn(a)), and Re(Aq(a))/Re(Agn()). These behaviors are consistent
with Theorem 3. When « is small, its behavior is close to the quadratic function proved in
Theorem 3.

Next, we observed the convergence behavior of skew-SGLD and skew-SGHMC. We
measured the convergence by maximum mean discrepancy (MMD) [31] between the
empirical and stationary distributions. For MMD, we used 2000 samples for the target
distribution, and we used the Gaussian kernel whose bandwidth is set to the median
distance of these 2000 samples. We used gradient descent (GD), with step size h = 1 x 107%.
The results are shown in Figure 3. The proposed method shows faster convergence than
naive parallel sampling, which is consistent with Table 2.
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Figure 2. Eigenvalue changes (averaged over ten trials).
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Figure 3. Convergence behavior of toy data in MMD (averaged over ten trials).

6.2. LDA Experiment

We tested with an LDA model using the ICML dataset [32] following the same setting
as [33]. We used 20 samples for all the methods. Minibatch size is 100. We used step size
h = 5 x 10~%. First, we confirmed the effectiveness of our proposed Algorithm 1, which
adaptively tunes « values. For that purpose, we compared the final performance obtained
by our methods with a previous method [18], in which « is selected by cross-validation
(CV). Here instead of CV, we just fixed a during the sampling and refer to it as fixed
«. We also tested the case when | is generated randomly at each step with fixed «, as
discussed in Section 4.1. We refer to it as random J. The results are shown in Figure 4 where
skew-SGLD was used. We found that our method showed competitive performance with
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the best performance of fixed a. For the computational cost, we used k' =2in Algorithm 2,
and our method needed twice the wall clock time than each fixed «. This means that
our algorithm greatly reduces the total computational time since we tried more than two
as in the fixed « for CV. We also found that since using different Js at each step did not
accelerate the performance, we need to store and fix | during the sampling for acceleration.
Next, we compared our method with other ensemble sampling schemes and observed
the convergence speed. The result is shown in Figure 5. Skew-SGLD and skew-SGHMC
outperformed SGLD and SGHMC, which is consistent with our theory.
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Figure 4. Final performances of LDA under different values of « (averaged over ten trials).
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Figure 5. LDA experiments (Averaged over 10 trials).

6.3. BNN Regression and Classification

We tested with the BNN regression task using the UCI dataset [34], following a
previous setting Liu and Wang [27]. We used one hidden layer neural network model with
ReLU activation and 100 hidden units. We used 10 samples for all the methods. We used the
minibatch size 100. We used step size i = 5 x 10~°. The results are shown in Tables 1 and 2.
We also tested on BNN classification task using the MNIST dataset. The result is shown
in Figure 6. We used one hidden layer neural network model with ReLU activation and
100 hidden units. Batchsize is 500 and we set step size i = 5 x 10~°. Our proposed methods
outperformed other ensemble methods. Please note that skew-SGHMC and skew-SGLD
consistently outperformed SGHMC and SGLD.
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Table 1. Benchmark results on test RMSE for regression task.

Dataset

Avg. Test RMSE

SVGD SPOS SGLD Skew-SGLD SGHMC Skew-SGHMC
Concrete 5.709 +£0.040 5.239 +0.199  5.009 + 0.091 4973 +0.057  4.949 + 0.144 4.790 4+ 0.081
Kin8nm 0.0731 £ 0.0006 0.0688 + 0.0003 0.0693 £ 0.0006 0.0689 =+ 0.0005 0.0687 + 0.0001 0.0683 + 0.0003
Energy 0.520 +0.060  0.456 £ 0.030 0.428 +0.045 0.412 £+ 0.045 0.406 4+ 0.019 0.403 4+ 0.008
Bostonhousing  3.306 4 0.005  3.107 4+ 0.173 2,948 +0.084  2.930 £ 0.095 3.053 4+ 0.093 2.986 + 0.143
Winequality 0.619 4+ 0.001 0.618 +0.007  0.641 +0.003  0.634 4+ 0.004 0.614 £+ 0.004 0.613 4+ 0.004
PowerPlant 4219 +0.012 4160 +0.009  4.129 +£0.002  4.118 £0.006  4.112 + 0.009 4.105 + 0.008
Yacht 0.475 4+ 0.049 0.467 + 0.110 0.464 + 0.058  0.442 £+ 0.046 0.464 £+ 0.078 0.432 + 0.051
Table 2. Benchmark results on test negative log likelihood for regression task.
b Avg. Test Negative Log Likelihood
ataset
SVGD SPOS SGLD Skew-SGLD SGHMC Skew-SGHMC
Concrete —3.157 £ 0.008 —3.124 +0.025 —3.052 +£0.009 —3.049 £+ 0.012 —3.046 +0.025 —3.033 + 0.021
Kin8nm 1.153 £0.0084 1.212 £0.008 1.223 £0.002  1.223 +0.005 1.230 £+ 0.0015 1.235 £ 0.0025
Energy —0.816 = 0.102 —0.976 + 0.079 —0.867 + 0.056 —0.845 + 0.021 —0.843 4+ 0.045 —0.844 + 0.041
Bostonhousing  —2.98 +0.000 —2.644 4 0.027 —2.548 £0.016 —2.539 £0.002 —2.574 4+ 0.019 —2.561 £ 0.017
Winequality —1.012 £0.000 —0.959 +0.007 —0.976 4= 0.006 —0.968 £ 0.005 —0.941 +0.007 —0.938 & 0.005
PowerPlant  —2.871 +0.004 —2.850 4+ 0.004 —2.844 + 0.002 —2.842 + 0.001 —2.838 + 0.004 —2.835 =+ 0.003
Yacht —1.184 + 0.06 —1.372+0.07 —1.077 +0.066 —1.078 +0.030 —1.083 4+ 0.030 —1.079 + 0.051
MNIST classification
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Figure 6. MNIST classification (Averaged over ten trials).

7. Conclusions

We studied skew acceleration for LD and ULD from practical viewpoints and con-
cluded that the improved eigenvalues of the perturbed Hessian matrix caused acceleration
and derived the explicit condition for acceleration. We described a novel ensemble sam-
pling method, which couples multiple SGLD or SGHMC with memory-efficient skew
matrices. We also proposed a practical algorithm that controls the trade-off of faster con-
vergence and larger discretization and stochastic gradient error and numerically confirmed
the effectiveness of our proposed algorithm.
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Abbreviations

The following abbreviations are used in this manuscript:

LD Langevin Dynamics
MCMC  Markov Chain Monte Carlo
ULD Underdamped Langevin Dynamics

SGLD Stochastic Gradient Langevin Dynamics
SGHMC  Stochastic Gradient Hamilton Monte Carlo

PLD Parallel Langevin Dynamics
PULD Parallel Underdamped Langevin Dynamics
SLD Skew Langevin Dynamics

S-ULD Skew Underdamped Langevin Dynamics

S-PLD Skew Parallel Langevin Dynamics

S-PULD  Skew Parallel Underdamped Langevin Dynamics
KSD Kernelized Stein Discrepancy

Appendix A. Additional Backgrounds

We introduce additional backgrounds which are used in our Proof.

Appendix A.1. Wasserstein Distance and Kullback—Leibler Divergence

In this paper, we use the Wasserstein distance. Let us define the Wasserstein dis-
tance. Let (E,d) be a metric space (appropriate space such as Polish space) with ¢ field
A, where d(-,-) is A x A-measurable. Let y, v are probability measures on E, and p > 1.
The Wasserstein distance of order p with cost function d between i and v is defined as

Wi(uv) = inf )< [/ d(w)*’dn(w))l/p, (A1)

mell(p,v

where IT(y, v) is the set of all joint probability measures on E x E with marginals y and v.
In this paper, we work on the space R?. As for the distance, we use the Euclidean distance,
|| - |. For simplicity, we express the p-Wasserstein distance with the Euclidean distance as
W,. The various properties of Wasserstein distance are summarized in [35]. We define the
Kullback-Leibler (KL) divergence as

[ log g—;dv, v,

(A2)
400, otherwise.

KL(v|p) = {
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Appendix A.2. Markov Diffusion and Generator

Here we introduce the additional explanation about the generator of the Markov
diffusion process. Given an SDE,

dXy = —VU(X¢)dt + /28 1dw(t), (A3)

and we denote the corresponding Markov semigroup as P = { P}~ and define the Kol-
mogorov operator as Ps which is defined as Ps f(X;) = E[f(X;1s)|X(t)], where f : R — R
is some bounded test function in L?(4). A property Ps1+ = Ps o P; is called Markov property.
A probability measure 77 is the stationary distribution when it satisfies for all measurable
bounded function f and t, [ Py fdm = [z fdm.

We denote the infinitesimal generator of the associated Markov group as £ and we
call it a generator for simplicity. The linearity of the operators of P; with the semigroup
property indicates that £ is the derivative of P; as

1 1
(Pron = Pt) = Py (P = Id) = 5 (P, — Id)P, (A4)

1
h
where Id is the identity map. In addition, taking h — 0, we have 0Py = LP; = P;L. From
the Hille-Yoshida theory [19], there exists a dense linear subspace of L?(7r) on which
L exists. We refer it as D(L). If the Markov semigroup is associated with the SDE of

Equation (A3), the generator can be written as

£fx) = tim XIS _(Cquexy vy pta)ix), a9

where A is the Laplacian in the standard Euclidean space. The generator satisfies

L1=0, [ Lfdr=0.

Appendix A.3. Poincaré Inequality

We use the Poincaré inequality to measure the speed of convergence to the stationary
distribution. In this section, we summarize definitions and useful properties of them and
see [19] for more details. We define the Dirichlet form £(f) for all bounded functions
f € D(L) where D(L) denotes the domain of £ as

E(f) = —/Rdfﬁfdn. (A6)

E(f) > 0 is satisfied. By the partial integration, we have £(f) = — [pi fLfdT =
%./Rd |Vf||?dr. We define a Dirichlet domain, D(&), which is the set of functions
f € L?(7) and satisfies £(f) < oco.

We say that 7w with £ satisfies a Poincaré inequality with a positive constant c if for any
f € D(E), mwith L satisfies,

/ Frdm— < / fdn>2 < cE(f). (A7)

This constant c is closely related to a spectral gap. If the smallest eigenvalue of £, A, is
greater than 0, then it is called the spectral gap. If the spectral gap A > 0 exists, then it is
written as

A= infrepe) { E}{;ﬂ (f#0, [ fan = o}. (A8)
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From this, a constant ¢ which satisfies ¢ > 1/A, can also satisfy the Poincaré inequality.
To check the existence of the spectral gap, one approach is to use the Lyapunov function,
which is developed by Bakry et al. [36].
We can also express the Poincaré inequality via chi divergence. Let us define the x>
divergence for y < 7 as
2
2 N /Rd

Then, we express the Poincaré inequality with a constant ¢ for all p < 7 as

XZ(yHn) §c£<\/s7};>. (A10)

We obtain the following exponential convergence results from the above functional
inequalities for measures.

d‘u_

2
o drm. (A9)

d
2 _||2r
x-(pllr) = Hfln 1

Theorem A1. (Exponential convergence in the variance, Theorem 4.2.5 in [19]) When 7t satisfies
the Poincaré inequality with a constant c, it implies the exponential convergence in the variance
with a rate 2/ c, i.e., for every bounded function f : R 5 R,

Vary (Pif) < e 2/ Var,(f), (A11)

where Vary (f) == [ga f2dm — (fpa fdn)>.

We also introduce the important property of Poincaré inequality as for the product
measures. These relations play important roles in our analysis.

Theorem A2. (Stability under the product, Proposition 4.3.1 in [19]) If i1 and yp on R satisfy
the Poincaré inequalities with a constant c1 and cy, then the product uy ® py on RY @ R? satisfies
the Poincaré inequality with the constant max(cy, ¢2).

Appendix B. Generator of the Underdamped Langevin Dynamics (ULD)
Following [10], we define the infinitesimal generator of the ULD as

Lf(x,0) = —(y0+ VUX)Vof(x,0) + 7B Af(x,0) + 0V f(x,0). (A12)
Then, we define the generator of S-ULD as

Lf(x,0) == —(y0 + VUX))Vof (x,0) + 1B Af (x,0)
+ 0V f(x,0) + a1 1 VU(x) Vi f(x,0) + a1 L oV, f(x,0), (A13)

where the second line corresponds to the interaction terms. Then it is easily to confirm
Jp2a Lf (x,0)d7t = 0, where T := T Q@ N(0,%) e BUG) 3= lol? Thus, the stationary
distribution of S-ULD is 7. We can prove this by simply using the partial integral and using
the property of the skew-symmetric matrix. Thus, the stationary distribution of S-ULD
is 7t.

We consider other combinations the skew matrices with ULD. For example, we can
consider the following more general combination;

dX; = L Wdt + aq [} VU(X)dt 4 a2 o Vidt

(A14)
dVi = —VU(Xp)dt — yZ7Widt 4 aaJ3Vidt + agJy VU (X )dE + 1/ 2yp~ 1dwy,
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compared to S-ULD, there are new two terms are included. We can also derive the in-
finitesimal generator of this Markov process. We express it as £. Then we calculate the
infinitesimal change of the expectation of f

/R L Lf(x0)di £0, (A15)

which suggests that the stationary distribution of Equation (A14) is different form 7.

It is widely known that underdamped Langevin dynamics converges to (overdamped)
Langevin dynamics. Here we observe that S-ULD converges to Skew-LD in [18]. The limit-
ing procedure is widely known, for example, see [17,37,38]. We cite Proposition 1 in [17];
given a stochastic process

dXy = L7Wdt + aq [ VU(X})dt,

(Al6)
dVi = —VU(Xp)dt — yS7Widt — a7 o Vidt + \/2ydw;,
and we rescale it by introducing € which expresses the small mass limit as
X, = 12‘1Wdt+a1]1VU(X,)dt,
61 1 12 1 (a17)
av; = fgvu(xf)dt — 6—272’1‘41# - X L Vidt + g\/Z'ydwt,
and by taking the limit e — 0, the dynamics converges to
dXi = —(aa)y +7) 7 VU(Xe)dt — | VU(Xy) + (a2)2 + )~/ 2dwy. (A18)

See Proposition 1in [17], for the precise statements. Please note that the term related J,
works as preconditioning. Thus, if we set a5 ], = 0, the obtained dynamics are equivalent to
the continuous dynamics of skew-SGLD. Thus, our skew-SGHMC is the natural extension
of skew-SGLD.

Appendix C. Proof of Theorem 1
Appendix C.1. Proof for S-LD

First, under Asuumptions 1-5, LD has a spectral gap, and its Poincaré constant is
upper bounded as

1 < 2C(d +bp)

e o (A19)

2 1
and this is derived in [2].
Next, we introduce the generator of S-LD

Lof (1) = (~VU(x) -V +57A) (),

where VU, (x) := VU(x) + aJVU(x).
The proof is almost similar to [18] of Theorem 12.

Proof of Theorem 1. Since the generator £,— is self-adjoint, and the suitable growth con-
dition, the spectral of £, is discrete [19]. We denote the spectrum of £,—¢ as {)\k};":o eR
and corresponding normalized eigenvectors as {ex }}-;, which are the real functions. We or-
der the spectrumas 0 > Ag > Ay > .... Thus, mg = —A,.

As for L,, although it is not a self-adjoint operator, from Proposition 1 in Franke et al. [39],
it has discrete complex spectrums. We denote the spectrum of £, as A 4 iy € C where
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A, u € R and corresponding normalized eigenvector as u + iv where u, v are the real
functions and then we have

Lo(u+iv) = (A +ip)(u+iv). (A20)

From: this definition, by checking the real parts and complex parts, following relations
are derived

Lot = Au — po, (A21)
Lo = Av + pu. (A22)

Due to the divergence-free drift property, for any bounded real value test func-

tion g(x),
/g([ﬁazo — Ly)gdm = /uzg'y~ng7T =- / wgy - Vgdrn, (A23)

where we used the partial integral. This means that for any bounded real function g(x),

/g[l,xzogdrr = /g[l,xgdn. (A24)

(This only holds for real functions.) Then, we can evaluate the real part of the eigen-
value A as follows,

/uﬁa:()udrer / vLy—gvdrt = /Auﬁaudrr+ / vLyvdr = A</ wldm + / vzdrc> =A  (A25)

Then, by expanding the eigenfunction u, v by the eigenfunction {e;},

A= / UL qqudTt + / 0L g—oudr = ;/\k<< / uekdn)z n < / vekdn>2>
< /\0;«/ uedeE)z n (/ vekdn>2> < Ao (A26)

Thus, the real part of the eigenvalue of £, is smaller than the smallest eigenvalue of L.
This means that the spectral gap of £, is larger than that of L,—, i.e., m(«) > mg holds. [

Appendix C.2. Proof of Theorem 2 (S-ULD)

Proof of Theorem 2. To prove the S-ULD, we use the result of [20], which characterize the
convergence of ULD via the Poincaré constant. Let us denote fi; as the measure induced by
ULD. Then from Theorem 1 of [20], if 7t with £ has the Poincaré constant 1, we have

1+ée g
- v
1-¢°

X2 (||7) < X2 (]| 7). (A27)

where € and A, is given as follows.

A(y,eémin(y,v™h)

A —
v 1+ &min(y,y1)

, (A28)
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where
-1 _ 1
ox 71+m0§71 1
Alre)=——F5——— -5\~ S+4)?+(5-4)% (A29)
S—— = €Anam, (A30)
St = —€(Ryam +727'/2), (A31)
S =qx7 g, (A32)
it A
Apam =1 — (1 + m()ﬁ ) ’ (A33)
e =émin(y,7 1), (A34)

where € is arbitrary sufficiently small positive value such that A(v,Emin(y, 1)) > 0is
satisfies. As for Ry, if there exists a positive constant K, such that V2U > —KI, then
Ruygm < /max{K,2}. In our assumption, this corresponds to BM, thus
Ryam < v/max{BM,2}. From the above definitions, we can see that the larger my is,
i.e., the larger the Poincaré constant is the faster convergence ULD shows.

This can also be confirmed numerically, see Figure Al, which shows how the A
changes under different 9. We set Z~! = 100. From the figure, the larger the Poincaré
constant is, the larger A becomes.
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Figure A1l. The convergence rate of ULD under the different Poincaré constants.

So far, we confirmed that the convergence speed of S-ULD is characterized by the
Poincaré constant of £. When we consider S-ULD, we simply add the skew matrices term
to the generator of the ULD in the proof of Proposition 1 in [20]. This means that we simply
replace the Poincaré constant from g to m(«) in the proof of Proposition 1 in [20]. Then,
mg will be replaced with m(a) that indicates the faster convergence. [

Appendix D. Eigenvalue and Poincaré Constant

In this section, we discuss the relation between eigenvalues of the Hessian matrix and
Poincaré constant.

Appendix D.1. Strongly Convex Potential Function

When we consider LD with m-strongly convex potential function, then the Poincaré
constant is 17, this means exponential convergence with rate 1 (See [19] for the detail).
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-1

We then consider the S-LD with m-strongly convex function. In this setting, by con-
sidering the synchronous coupling technique [11], we can show that the variance decays
exponentially with the rate of the smallest real part of the eigenvalue. This is because that
by preparing two S-LD (X;, Y;) given as

AX; = —(I+ &) VU(X)dt + /28 1dw,  dYy = —(I +a])VU(Y)dt + /28~ dw|.  (A35)

Then we evaluate the behavior of || X; — Y;||>. From Ito lemma and considering the
synchronous coupling, we obtain

72m(o¢)

(VU(Xe) = VUML) <

(e I -wl% (a%6)

d
L% vl = ~(x - vi) -

where m(«) is the constant that satisfies n(x) < ReA{(x) for all x, see Appendix E for

details. This means that variance decays exponentially with the rate 21®) - From the

fundamental property of the Poincaré constant (Theorem 4.2.5 in [19]), m(«) is the Poincaré
constant. Thus the imaginary part has no effect on the continuous dynamics. Thus,
the Poincaré inequality is the smallest real part of the perturbed Hessian matrix.

Appendix D.2. Non-Convex Potential Function

As we discussed in Section 3.1, [21] derived the sharper estimation for the Poincaré
constant for the non-convex potential function. It is easy to verify that their assumptions
are satisfied under our assumption 1-5. Following the main paper, we denote x; global
minima, and x; is the local minima which have the second smallest value in U(x). We
express the saddle point between x; and x; as x*. To be more precise, the saddle point that
characterizes the Poincaré constant is known as the critical point with index one defined as

() = inf{sren[g}] U(Y(s)) : 7 € C([0, 1], RY), 4(0) = x1,7(1) = } (A37)

and the eigenvalue of V2U(x*) has one negative eigenvalue and d — 1 positive eigenvalues.
We express them as Aq (x*) < 0 < Ap(x*) < ..., Ag(x*).

Ref. [21] studied the Poincaré constant by decomposing the non-convex potential
focusing on attractors. By focusing on attractors, they showed that the non-convex potential
can be decomposed into the sum of approximately Gaussian distributions. They proved that
the Poincaré constant is characterized by the local Poincaré constants, these are derived
by the approximate Gaussian distribution on the attractors and their surrounding regions.
In addition, they proved that the dominant term of the Poincaré constant is specified by the
saddle points between the global minima and the point which takes the second smallest
value for U(x). From Theorem 2.12 and Corollary 2.15 in [21], the Poincaré constant is
characterized by

detH(x*) UG)—UGn)-U() o L UG -Uw)-Ulxr)), (A38)

M0 71 () |detH (x) /detH (x3) A1 ()]

where Z is the normalizing constant of eAU(®).

Next, we discuss how this estimate changes when skew matrices are applied. When
the skew matrices are introduced, from lemma A.1 in [40], at the saddle point, there exists
a unique negative real eigenvalue A{(x*) < 0 for the perturbed Hessian matrix even if
(I + aJ)H is not a symmetric matrix.

Then from Proposition 5 in [8], that negative eigenvalue of the perturbed Hessian is
smaller than that of the un-perturbed Hessian matrix at the saddle point. This means that
Af(x*) < Aq(x*) < 0holds.
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Finally, from Theorem 5.1 in [41] and Theorem 2.12 in [21], this improvement of the
negative eigenvalue of the saddle point directly leads to the larger Poincaré constant.

Appendix E. Properties of a Skew-Symmetric Matrix

Here, we introduce the basic properties of the skew-symmetric matrices. Let us con-
sider assume that d x d matrix H' = (I + «J)H is diagonalizable. Then assume that matrix
H’ has [ real eigenvalues Ay, ..., A; and 2m complex eigenvalues, y; = aq £iBy,..., Um =
&y £ iBy. Thus, d = | + 2m. We denote the corresponding eigenvectors as {vj §:1 for
real eigenvalues and {w; = a; + ibj};’;l for complex eigenvalues {;4]};71: 1 and {w;} for
corresponding conjugate eigenvalues. Then, let us define a d x d matrix V as

V= [vl,,..,vl,al,bl,..,,am,bm}. (A39)

Then, we can decompose H’ into a block diagonal matrix [42];

H'V =VD (A40)
A 0
Al 0
o 0 0 ,B]
0 o + B 0 (A41)
Wy 0 0 B
0 apy —Bm 0
=A =B

Thus, D := A + B. Then, from the Taylor expansion and expressing its residual by
integral, by defining H(x) := V2U(x) we have

(=) (4 a)(VUG) = TU) = (6 =) ([ @+ aDHE+ Tl - ) x - e (A22)

Then, let us apply the Jordan canonical form here. If (I + aJ)H is diagonalizable,
and it is decomposable by the Jordan canonical form shown in Equation (A40). Then, we
can decompose (I +«])H as

(I+a])H(x* +7(x(t) —x*)) = VDV L (A43)
Then, we obtain
(=) (4 (VU = TUG) = (=) ([ 0+ aDHO -+ ol - ) - e
= </Ul(x ~y)TV(A+ BV (x— y)dt>
_ </01(x — ) TVAV (x(t) — x*)dt)
< ma)[|x () — x*||. (A44)

where m(a) is the constant that satisfies m(a) < min{Ay,...,A;, a1, ..., 4y} for all x. Thus,
the imaginary part never appears to the upper bound and we only need to focus on the
largest real part of the eigenvalues, if the matrix is diagonalizable. Next subsection describes
when the non-symmetric matrix H' is diagonalizable by focusing on the random matrix.
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Appendix F. Proof of Theorem 3

Proof. Since the potential function is m-strongly convex, the smallest eigenvalue of the
Hessian matrix H is m, which is larger than 0. Thus, H and H 1/2 gre regular matrices. With
this in mind, we consider H + H*/2JH/2 as a similar matrix of H' := (I+7])H. This is
easily confirmed by

H~Y2(H + HY?2JHY?)HY2 = H'. (A45)

This means that to study the eigenvalues of H', we only need to study the similar
matrix A := H+ HY?JH'2. By doing this, A is composed of symmetric and skew-
symmetric matrices, which are easy to treat compared to H’, where the term JH is difficult
to analyze. For simplicity, we omit the dependency of H and H’ on x in this section.

Remark A1. Please note that we can eliminate the strong convexity of U, if H is a regular matrix.
This means that H does not have 0 as an eigenvalue.

For simplicity, we assume that the dimension d is an even number. We assume that
the eigenvalues and eigenvectors of A are expressed as

ij = pjwj = A(ﬂ] + lb]) = (0(] + lnB])(aJ + lb]) (A46)

and a; is ordered as @y < &y, .... In this section, we only consider the setting where all the
eigenvalue and eigenvector are imaginary for notational simplicity. The extension to the
general settings similar to Appendix E and the setting when is d is odd is straightforward.

We denote the eigenvalues and eigenvectors of H as {A;,v; }?:1 and vujs are linearly
independent. In addition, we assume that Ay <, ..., A;. From this definition, by checking
the real parts and complex parts, the following relations are derived

Aa]- = thﬂj - ‘Bh, (A47)
Ab] = DC]b] + ,311/ (A48)

thus, by the skew-symmetric property
al Aaj+b] Abj = a;(||ajl|* + [|bj]|*) = & (A49)
= a]THa]-er/THb-, (A50)
and in the third equality, we used the property

al H'2JH'2a; = b H'/2TH'?b; = 0, (A51)

since H'/2JH'/? is a skew-symmetric matrix. Then, we expand ajand b; by v; as

d
a =Y aj v (A52)
j=1
d
be =Y bl o), (A53)
j=1

since vjs are eigenvalues of H, which can be used as the basis for R?. Then we substitute
this into Equation (A50) and we have

d
we =) Ajlad o) + ZlAj(kavj)Z > MY (a9)% + (b 9))?) = Av. (A54)
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This means that any real part of the eigenvalue of A is larger than Ay which is the
smallest eigenvalue of H. Thus, if the a; is the smallest real part of the eigenvalue of A,
that is larger than the smallest eigenvalue of H. This concludes the proof.

In the same way,

d d
N = Z )\]'(LZ;U]‘)Z + Z )\](b;l]])z < )‘d Z(ll,;rvj)z + (b;?]])z) = /\d, (A55)
j=1 j=1 j=1

which means any real part of the eigenvalues of A is smaller than the largest eigenvalue of
H. Thus, if « is the largest real part of the eigenvalues of A, it is smaller than the largest
eigenvalue of H.

Equality condition:
Next, we discuss when the equality holds for #; = A;. First, we assume that eigen-

values of H are distinct, thus, there is only one eigenvector for A;. Later, we discuss if
eigenvalues are not distinct. From Equation (A54), we have

d
2/\ a; ;) 24 ZA (b vj) 2> Z aj v] + (b v]) ) = A4, (A56)
in general. Please note that if a; and b; does not correspond to vy, then Ajz1 > A must
appear in the summation and equality never holds. So, the condition is
ay,by x vy, (A57)

must hold for the equality.
Based on this, let us assume that wy = caj + ic’b; where ¢ + 2 = 1. We consider the
case a1 = b; = v1. Then we need to solve the simultaneous equations

A(Cﬂ] + iC/bl) = (/\] + iﬁ])(cﬂl + iC/b]) = ()L]C — 0/51)01 + i(Cﬁ1 + )\]C/)U], (A58)
this is obtained by the definition of the eigenvalue of A and
A(cay +ic'by) = AY2c(IM/? + aHY?] )0y +iA}/ 2 (IM/2 + aHY 2 )y, (A59)

this is obtained from the definition of eigenvalues of H. Then multiplying v; from the left,
we obtain ¢f; = 0 and ¢’f; = 0. Thus, $1 = 0. f1 = 0 meansb; = 0 from the property of
the complex eigenvectors. Thus, we obtain wy = a1 = v; for A1 = ay. Then, the following
relation holds,

Moy = Avy = Hoy +aHY2JHY?0; = Aoy + aA)/2HY 2 Jo;. (A60)
Since A; # 0 and H 1/2 has the inverse matrix, this condition indicates that
aJvy = 0. (A61)

This is the condition that A; = a1 holds. The same relation can be derived for A; = a,.

Next, we assume that eigenvalues of H are not distinct. Let us denote the set of
eigenvectors of the eigenvalue AJ as {0{}. Please note that if a; and by does not included in
VP, then Ajz1 > Ay must appear and equality never holds. Thus

a, by € VP (A62)
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must hold for equality. Based on this, let us assume that wy = ca; + ic’b; where 24+c?2=1.
We consider the case a1 # by. Then

H™Y2A(cay +ic'by) = A V(A +iB1) (cay +ic'by)
H™Y2(H + aHY2JHY?)(cay +ic'by) = AV 2c(I+ af)ay + A2 (I +af)by,  (A63)

then we obtain the condition

)\1CD€]{11 = *ﬂlc‘/bl (A64)
Alc,Dé]bl = ﬁlcal. (A65)

O

Appendix G. Proofs of Random Matrices
Appendix G.1. Proof of Theorem 5

Proof. The proof is the straightforward consequence of lemma in [43], that is

Lemma in ([43]) If f(x1,...,%m) is a polynomial in real variables xi, ..., X, which is
not identically zero, then the subset Ny, = {(x1,...,%m)|f(x1,...,%m) = 0} of the Euclidean
m-space R™ has the Lebesgue measure zero.

We use this lemma to prove that the probability of A1 = «; is 0 by showing that the
probability mass of A1 = a1 has Lebesgue measure zero.

We use the same notation as in Appendix F. Recall Equation (A64), which is the condi-
tion of equality about A1 = a1. We express the elements of a; and by as a; = (a%, cee, a‘il)T
and by = (bl,...,b{)T. Then the equality condition can be written as

d

4 d , ,
(Z Alcafl]al + ﬁlC bl 2 + E(Z /\1C,‘X]i,]'b/1 - ﬁlcall))z =0. (A66)
j ==

'M&

i=1

Then we define the polynomial about {J;;}

i d ,
FU - Jaera) = Y_( ZAlca],]a1+/31c b))+ Y ( ZAlc a],, — Bical))? (A67)

i=1 j= i=1 j=

To apply lemma of [43], we must confirm that f (1, ..., J4—14) is not always 0. This
is clear from the definition of f since we generate J; 5, ..., J;_1 4 randomly from the distri-
bution that is absolutely continuous with respect to Lebesgue measure and A1 # 0 and
¢ 4+ ¢’> = 1 and either a, by # 0.

Then, given an evaluation point x, from lemma of [43], the subset of { ]i,j} € Rdd-1)/2
that satisfies f(J12,.-.,Ja-1,4) = 0 has Lebesque measure zero. Thus, if we generate {J; ;}
from the probability measure which is absolutely continuous with respect to Lebesque
measure, (such as Gaussian distribution), f(Ji,2, ..., Ji—14) = 0 holds probability 0. This
concludes the proof. [

Appendix G.2. Proof of Lemma 1

Proof. We first discuss the condition about KerJy = {0}. Since | = Jo ® I;, and we denote
the set of eigenvalues of Jy as {w;}. In general, the eigenvalues of the matrix that is
composed of the Kronecker product with two matrices, e.g., A and B, are given as the
product of each eigenvalue of A and B [44]. Thus, since | is the Kronecker product of Jy
and Iy, if Jo does not have 0 as an eigenvalue, | does not have 0 as an eigenvalue.

Next, we discuss another equality condition. We use the similar notation as in
Appendix F, but now the dimension of the matrix | is dN. We express the eigenvalue which
has the smallest real part as A{ and its eigenvector as w{ = aq + ib;. The elements of a; and
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by asa; = (a%,...,ai’,u”li“,...,a'fN)T e RN and by = (b%".'"blf",'"btfﬂ""’biN)T' We
also express these as a1 = (ug),. . .,agN))—r € RN where ap = (aglfl)dﬂ, o a)T e RY
We use the Kronecker product property:

STCI o)
Jar = (Jo® Ig)ar = <§ Jolia®y -+ Y Joji NGy ) , (A68)
iz iz

where Jy; s indicates the element of i-th row and j-th column of Jo where we use the property
of the Kronecker product and the Vec operator in the second equality [44].

The proof is almost similar to Appendix G.1. Then the equality condition can be
written as

2 2
N . N .
Yo [ Aca Y Jopnal! + Brcv || + Y[ Aca Y Jopabl” + preal” || =0, (A69)
n=1 i n=1 i
where || - || is the d-dimensional Euclidean norm since agn), bg") € R?. Then we define the
polynomial about {J; ;}
N ) 2 N ) 2
fha--- JN-in) = ) ||Arca Zlo\i,naﬁ’) +ﬁ10/b§") + Y ||Mcw Zlo\i,nbi’) +ﬁ1€ﬂg") (A70)
n=1 i n=1 i

In a similar discussion with Appendix G.1, it is clear that f is not always 0. Thus,
given an evaluation point x, from lemma of [43], the subset of { ],-,]-} € RN(N=1)/2 that
satisfies f(J1,2,...,/Jn-14) = 0has Lebesque measure zero. Thus, if we generate {J; ;} from
the probability measure which is absolutely continuous with respect to Lebesque measure,
(such as Gaussian distribution), f(J1 2, ..., Jn—1,5) = 0 holds probability 0. This concludes
the proof. [

Appendix G.3. Extending the Theorem to the Path

About Theorem 5 and Lemma 1, the statement holds true when we fix an evaluation
point x. To ensure the acceleration, we need to extend Theorem 5 and Lemma 1 from
a single evaluation point to the path of the stochastic process for S-LD, S-PLD, S-ULD,
and S-PULD.

First, the condition of KerJy = {0} is not related to the evaluation point. Thus, we
need to consider the equality condition for ReAf = AY. As for this condition, as we had
seen in Theorem 5 and Lemma 1, if we generate the random matrix | which is absolutely
continuous with respect to Lebesgue measure, then the equality condition is not satisfied
with probability 1 at the given evaluation point. The important point in those proof is
to prove that the event when the equality holds has Lebesgue measure 0 at the given
evaluation point using the lemma of [43].

Let us consider when two evaluation points are given (e.g., x1, x2), and we check
whether the random matrix | satisfies the above equality condition or not. We can eas-
ily prove that at each evaluation point, such an event (we express them as S; and Sy)
has Lebesgue measure 0 using the lemma of [43] (We refer to this as P(S;) = 0 and
P(Sp) = 0 where P is the law induced by generating the random matrix that has inde-
pendent d(d — 1) /2 elements). So, the volume of the event of sum of S; and S, are also
0 (P(S1US2 = 0). By repeating this procedure, when given a finite number of evaluation
points, (x1,...,xx), the sum of such probability is 0 (this indicates P(S1 U Sa, . .., U Sg) = 0).

When we consider the discretized dynamics of S-LD, S-PLD, and so on, and update
samples up to k-iterations, then there exist k evaluation points. So, by applying the above
discussion, we can ensure that along the path of the discretized dynamics, the equality con-
dition does not hold with probability 1. On the other hand, as for the continuous dynamics,
the evaluation point is infinite, thus when we cannot conclude that the probability that the
equality does not hold is 1.
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Appendix H. Proof of Theorem 6

We use the same notation as in Appendix F. We consider the expansion concerning «
and we consider the following setting,

Wj = vj + 50] (A71)
]/l] = /\] + 5)\/‘, (A72)

which indicates that by introducing the skew-acceleration terms, the pairs of eigenvalues
and eigenvectors of H’ are expressed by the small perturbation for the eigenvalues and
eigenvectors of H. Since {vj}le are the eigenvalues of H and they can be used as an
orthogonal basis, thus we expand év by this basis. We obtain

d
(5'0]‘ = Z Cjkvk/ (A73)
k#j
where cj = (SDJTU;(,

Appendix H.1. Asymptotic Expansion When the Smallest Eigenvalue of H(x) Is Positive

We work on the similar matrix of H’, that is H + aV where V := HY2JHY2, See
Appendix G.1 for the detail. Please note that this similar matrix only exists when the
smallest eigenvalue of H(x) is positive. Thus, the following discussion cannot apply to the
case at the saddle point, where negative eigenvalues appear. We discuss the saddle point
expansion later.

From the definition, we have

H'w; = Hwj + aVw; = pjw; = (A; + 0A;) (v; + 6vj), (A74)
We rearrange this equation as
Hvj + Hovj + aVo; + aVdv; = Ajvj + A0 + Aj6v; + 6A;00;. (A75)

First, we focus on the first-order expansion. This means we neglect high-order terms.
Then, we have

Huvj + Hovj + aVuj = Ajvj + 0Aj0; + Ajov;. (A76)
By multiplying v; to Equation (A76) from the left-hand side, we have
Aj+ Ajv;-rév]- + zxv]Tij =Aj+6Aj+ )\]-v/-rdvj, (A77)
Since va Vo; = 0 due to the skew-symmetric property of V. Thus, we have
oA =0, (A78)

up to the first-order expansion. Then we substitute this into Equation (A76) and multiplying
v; where i # j, we have

)‘icji + lXUITVU]' = )\jC]','. (A79)
Then we have
OCUIT Vv] (AS0)
cii =
]’ A=A
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Then we obtain

d 91 Vo;
]
dvj=a E ‘7{ vy ;. (A81)
i#j ]

We substitute this into Equation (A75), and multiplying vT, we have

Vv v; TV,
o7 T i o
HIXZA y U,Jrzxv Vv]+ocv chz)\ 7}\
i#] i#j
oy T TVD]
= ())\jvj v]-+)\ “Z o v, +(5A]v Z P 7/\ (A82)
Since v]-T Vo; = 0and v]-Tvi =0and v]-ij =1, we have
22A — Voj TvUﬁM (A83)
iZ
Thus, we have
‘ (0] Vo))?
- dy =iy = Y A,i : (A84)
i#]
Thus, by taking the real part, and note that ReA;(«) = «j, we have
Vo, )2 o Juj)?
, _ 2 (o Vo)~ A 3
Re)j(w) — Aj = aRe; T ; A A +0(@3).  (A85)

This concludes the proof.

Appendix H.2. Expansion of the Eigenvalue at the Saddle Point

Here we derive the formula of the expansion of the eigenvalue at the saddle point.
Since the smallest eigenvalue is negative, we cannot use the similar matrix as shown above.
Instead, we use the relation,

uiHw; = Hpjw; = H(I + ] ) Hw; (A86)

where we used the definition of the eigenvalues and eigenvectors. Here, we express
H' := (I +a])H and its pairs of eigenvalues and eigenvectors as {(1;, w;)}7_,. As intro-
duced in the above, we substitute the expansion to Equation (A86), then we obtam

()\]+(5/\])H(U]+5U]) = H(I+p¢])H(vj+(5v]-) (A87)

Then, in the same way as above, since {0; }}1:1 are the eigenvalues of H and they can
be used as an orthogonal basis, we expand év by this basis. This means

dv; = Z Cik Uk, (A88)

where cj; = 5Uijk. By multiplying v; to Equation (A87) where i # j from left-hand side
and neglecting high-order terms, we have

A.
= ] TaTo:
cji Yy (v ajov;). (A89)
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Next, Then by multiplying v; to Equation (A87) from left-hand side, we have
H(aJ)Hov; = (6A;)(A; + /\]vv]Tszj) (A90)

Then by substituting 6v; with coefficient Equation (A89), we have

v Jv))?
Z LT T 4 O0®d) (A91)
= A A

This concludes the proof.

Appendix I. Convergence Rate of Parallel Sampling Schemes
Appendix 1.1. Proof of Lemma 2

First, we introduce the notations. We express the random variables of S-PLD as YN.
We express the measure induced by S-PLD as p’N («), which uses the a] as an interaction
term. Thus, we express the measure of PLD as y,fil’\' (0), we can decompose the measure

as marginals. We also denote the marginal measure of S-PLD for Yt<") vt(n) (). Please note
that initial distribution is ygoN and its marginals are y( as defined in Assumption 4.

Please note that the marginal measure of PLD is the same as those of LD if the initial
measures are all the same, thus each marginal satisfy the Poincaré constant 71y. This is also the
result of the tensorization property of the spectral gap (Proposition 4.3.1 in Bakry et al. [19]).

As for the initial condition, from the fact that y? divergence is the special case of
Renyi divergence (¢ = 4), and from the tensorization property of the Renyi divergence
(see Theorem 28 in [45]), we have

. B N
PEEN(0), N < o722 (N, wON) = 37 2R (g, 7). (A92)
n=1
Then we have
N (0), N < o722 (N, N = Ne 2P0 (o, ). (A93)

If the skew acceleration is applied, from the same discussion as S-LD (see Appendix C.1),
S-PLD has the Poincaré constant which is larger than . We express it as m(«a, N) (> my).
Then we have

RN (), 7N) < New2 N2, ), (A94)

At first, since there exists a constant N in the convergence bound, this bound seems
not useful. However, as we discussed below, when we bound the bias or variance, these
bound is meaningful For example, let us consider approximating the true expectation

Jflx x) by the ensemble samples 1 N YN f ( ) Then we are interested in bounding
the error
EL i FxMy— [ fdn. (A95)
N n=1 ¢ JRA
For this purpose, we can bound this by 2-Wasserstein distance as
=L 3 o)~ [ fanl, < Lwyu ), 2Y) (A9%)
N = k R ’= \/N kh 4

where we assumed that f shows Ly lipschitzness and used the fact that % YN F(am)
shows L/ V/N lipschitzness.
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To bound the distance, we use the basic relation

WR (), TN) < 2 P (), ), (A97)

where m(a, N) is the Poincaré constant. This is established by the definition of Wasserstein
distance and )cz—divergence, see [46] for the detail. Then combined with above relations,
we obtain the bias bound of S-PLD as

2 -1
< —B~tm(a,N)kh 2 1/2.
<Lpyf @ N)© X~ (4o, ) (A98)

In the same way, we obtain the bias bound of PLD as

2 g1
S Lyyf e (o, )2, (A99)

Thus, while the explicit dependency on N disappeared, but S-PLD shows faster
convergence through the relation of m(a, N) > mgp. Moreover, if we use the skew matrices,
which does not satisfy the equality condition, we have m(x, N) > my.

By LA - [ fam

R
Eﬁgﬂ&>—égm

Appendix 1.2. Proof for S-ULD

We can characterize the convergence rate almost in the same way as Appendix C.2.
The derivation is the same above, thus we only show the result

2 1+e \ ok 200 1172
<Ly )——t/ )
<Ly ) V1 _ée 1/ (v, T) (A100)

where € and A, is given as follows.

l N (n) o
FNgﬂ&)Agm

=i -1
A, = Alnémin(y,y7) (A101)
1+ émin(y,y 1)
and
'Yz_l - -1
14205 1
Are) = ———F—— =5/ (5= =S54 )2+ (5-+)% (A102)
S—— = €Mgm, (A103)
St = —€(Ryam +7271/2), (A104)
Sy =92"l—g, (A105)
—1y\ 1
=1 (1 200 (106
€ =émin(y,v7Y), (A107)

where € is arbitrary sufficiently small positive value such that A(v,émin(y,y~1)) > 0is

satisfies. and
Rpam < y/max{M,2}. (A108)

Appendix J. Proof of Theorem 7
We show our theorem again with explicit constants
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Theorem A3. Under Assumptions 1-7, for any k € Nand any h € (0,1 A 117z ) obeying kh > 1
and Bm > 2, we have

gLy px® d
NZ‘,J(( k ) — Rdfn

n=1

~ = 2 5 172 Vin(a,N)kh
gLf,/cg\/ﬂc%\/ﬁkHL“/WX (g, 1)/ 26~ B m(@N)kT, (A109)

where
<12+8<K0 12b )) BCo + \/E) (A110)
(12+8(K0 +2b+ )) G+ f (A111)
l+0¢2<M2<K0+2<1\/ ><b+2(1+a) BZ+%)>+BZ), (A112)
Cy = 6(1 4 a®)M?(BCo + d), (A113)

Then obtained bound is O (kk - I'/4), which is independent of N. Thus, this result is
much better than those in [18]. Additionally, note that we can derive the similar bias bound
for skew-SGHMC in the same way as skew-SGLD.

Proof. For notational simplicity, we express the random variables of skew-SGLD which
uses the a] as an interaction term as X,?N and those of S-PLD as Y,?N . In this section,
for simplicity, we express them as Xj and Yj. We denote the measure of X and Y} as vEN

kh
and th . We also denote the marginal measure of X( ") and Yk(n> as y,(c? and VIEZ).
Then, we first decompose the bias as
EL Y ) - [ fan
N n=1 k R
_ D s msor) | m F0R)
= N —E N +E N = Jaa fdr
L coxty _ gL §0 iy L oyl [

< | E— _E— — _
< IENZf(Xk ) IE‘.Nnglf(Yk + JEN”;f(Yk )= Jo fdm

Lr ¢ () Lf o (uEN N
P (v (@), i) (@) + I Lol (@), 777, (A114)

(@)

where we used the Jensen inequality for the first term in the last inequality and we move
& YN, outside the | - |. In addition, each expectation only depends on the marginal

measures () in the first term and we use the property of the 2-Wasserstein (2-W) distance.
Furthermore, we decompose the first term as

L ¥ W S ™o ™y 20
ﬁ Z Vin Z Wa( th ) gy (O ))+W2(Hk;, (@), 1y, (0)) |, (A115)
- (if) iii)

where ;4,((? (0) denotes the measure induced by PLD, which is the naive parallel sampling
without a skew-symmetric interaction.

In conclusion, our task is to bound each (i), (if), (iii) terms in the above. Bounding (i)
is already discussed in Appendix I.1.
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Next, we work on (ii) and(iii). Following [10], we use weighted CKP inequality to
bound the 2-W distance. From Bolley and Villani [47], using the weighted CKP inequality,
we can bound each 2-W distance by the relative entropy (KL divergence). This weighted
CKP inequality indicates that

1/4
Wa vy (@), 143 (0)) < €y o | KL (o)1) (0)1/2 + (W) , (Al16)

with

c —2inf( (3410 / M2 g, (1) (o) v (A117)
ue )~ Taso\A\2 8 Jpa Hin ’

and

™ ™ on
KL(ufy () gy (0))
Wa(gu) @), (0)) < C ) | KLGHES (@)l (0)'/2+ ( i 1 R , (A118)

with

c i f §+l / A2 ) (0) 1/2 A9
}l)((h (0) = ln > og Rde Hkh .

We point out that using C 20) not CV ) (@) and C ) (a) in weighted CKP inequality is

klx kh klx
important. This is because since V’l(ch) (0) is the constant based on the parallel-chain Monte
Carlo without skew-symmetric term, thus the parallel chain can be decomposed each
independent chains. Thus, C 0 actually does not depend on i and it does not depend on

N and shows O(d) dependency However, C ) () and C ) ) show O(dN) which shows
Vi kh

linear dependency on N since there is an interaction term between parallel chains and we
cannot decompose the parallel chain easily. Thus, this results in unsatisfactory dependency
on N. This is the reason we introduced ],t]((lh) (0) in our theoretical analysis.

Please note that since y ,(CZ) (0) is induced by the naive parallel chain, each marginal

is independent with each other and takes the same measure if the initial measure is the

same. Thus, y,gl) 0)=---= Vz(mm (0). From now on, we express the marginal as ji;, (0) for
simplicity. Thus, Cuf{}f(o) == C#’Eﬁ,)(O> = Cpp(0)-
Then substituting the above WKP inequalities and using the Jensen inequality, we ob-
tain
1 X 1Y
BN LA -Byg L F05")
N = N =

1/4

N 1%
< LCuo )N ; (KL(th (e) | (0 N2+ (W)

1/4
L) (@)l (0))/2 + (W) )
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< LCuvo) (% KL(th(N)lykh())> + <% KL(th()ykh(”) '

n=1 n=1 2N
KL @)l O)) (& KL (@) (00
+<’121 —— T P N > +(n):1k’ N ) . (A120)

To analyze the discretization error, we use the following key lemma:

Lemma A1. Assume that there exist random variables {X; € O}, and {Y; € Q;}N . We
denote the product space as QPN := () x ... Q. Let us introduce X = (Xy,..., Xy) € Q%N
and Y = (Y1,...,Yn) € QPN Let us express their joint probability measures as expressed as
P(X):=P(Xy,...,XN), Q(Y) := Q(Y1,...,YN), let us denote the marginal measures of each
Xsand Ysas {P;(X;)}N | and {Q;(Y:)}N,. If P; << Q; holds, we have

N
Y KL(P(X:)[1Qi(Y3)) < KL(P(X)[Q(Y)), (A121)
i=1

A proof is given in Appendix J.1. We apply this lemma as

N
; KL(ug |1 (0)) < KL [N (0)), (A122)
N
Y KL ()| (0)) < KL(ugN (a)) [N (0))). (A123)

3
Il
—_

Combining these results with the above bias bound, we obtain

“LC ((KL(VH, @0 >)>2+ (KL(vkh (;A)ﬁw(o))y

+<KL(]¢,§,N(01)I\(]0¢)H%N(U))>%+ (KL(HEL (213]\1% (0 ))) 1). (A124)

Thus, we need to bound KL(ykh( N7 N(0)) and KL(th (oc)|y}<§1N(0)) and Cy,, (0)-
We can upper-bound them using the results of [2]. For that purpose, we need to replace
the constants in [2] as we show in the below. Here, we discuss how the constants in the
assumption are changed in the ensemble scheme. We define

VuN(x2N) = (Vu(xM),..., Vu(x™)) (A125)

First, we focus on the smoothness condition. From Assumption 2 and lemma 8 in [18],
we have

I+ af)VuN (N, 2) — (I +a]) VuN (=N, 2)) | < M(1+a) 2N — y*N||. (A126)

where the norm in the right-hand side is the Euclidean norm in RN,
Next, we discuss the smoothness condition. Define VU, (x®N) := VU®N (x®N) +
aJ VUEN (x®N), Then, Let N € RN and under the assumptions 1 to 6, we have

XN VU (x®N) > m||x®N||2 - bN. (A127)
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Next, we check about the condition of the drift function at the origin: ||Vu(0,z)| < B.
We can calculate in the same way as the smoothness condition. Then we have

[(I+a)VUN(0“N)| < BVN(1 +a). (A128)

Next, we study the condition about the stochastic gradient: E[| VU (x) — VU(x)]]?] <
26(M?||x||? + B?). This can be easily modified to

E[|[(1+a)) VAN (xN) — (I+a) VUN (x*N)|2)
< (1+a)E[VOON (x®N) — vUEN (x2N) 2]

E[VU(xD) = vu(xD)|?) (A129)

M=z

<(1+a)?

[
—

=z

< (1+a)? 25(M2||x<f> 12+ Bz)

NaP.
[l
o

<25(1+a <M2||x®N||2 + NBZ).

Finally, we discuss about the initial condition: g := log [g4 ellx Hzpo(x)dx < co. We

assume that the initial probability distribution is 1§y N (XORN )= yO(Xél)) X e X ‘uo(X(()N) ),
which means that all the marginal probability is the same. Then

X ) N ,
kN = log/ eHxSNHZy‘(?N(x®N)dx®N =log [ (/ el )szg(x("))dx) = Nxo.  (A130)
JRAN =1 R4

In this way, the constants in the assumptions are modified and expressed with N and
«. Then combined with the results of [2], we can derive the following relations

Cop0) = 12+8(Ko +2b + %) (A131)

KL(vgN|ugN (0)) < N(Cops + Cayp)ky, (A132)
‘ ‘ b+d/

KGN @) g 0) < NEw (o + 22 By, (A133)

where
Co=(1+a)? <M2 (xo +2 (1 Vv %) (b +2(1+a)?B* + %)) + B2>, (A134)
Cy = 6(1 4 a®)M*(BCo + d). (A135)
This concludes the proof. [

Appendix |.1. Proof of Lemma Al

Proof. We prove this lemma using the Donsker—Varadhan representation of the relative
entropy [48]. The relative entropy admits the dual representation as:

KL(P(X)[Q(Y)) = sup Epx)[T] —logEqy)le’], (A136)
T:Q9N SR

where supremum is taken over all function T of which the expectation of e’ and T are finite.

We then restrict the function class into a class F(T) = {T(X)|3T; : O — R,s.t.T(X) =
Zfil T;(X;)} where each expectation of eTi and T; are finite. Then by definition,

KL(P(X)[|Q(Y)) = sup Ep(x)[T] —logEqy)[e’] > sup Ep(x) [Z Ti:| —logEqy) [EE‘T‘] (A137)
T:Q—R TeF i
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Then we have
KL(P(X)IQ(Y)) 2 sup T Ep, [T ~ o [ TEq 0[]
€ i i

)

- Z sup Ep(x)[Ti] —logEq,v,) [eTi}

i T;:0;—R

—ZKL (X)1Qi(Y7)). (A138)

O

Appendix K. Order Expansion
Bias Expansion for S-PLD
Recall that the bias of S-PLD is

Lg% g
By LA, )= [, s
<Lf\/C2\[+C2\[k17+LH/ 7)1/ 2B Im@ Nk, (A139)

where
)) (BCo+ V/BGo), (A140)
2= 12+8<K0 Yob+ )><C1+\E) (A141)
1v

1+u¢2<M <x0+2< 1><b+2(1+a)2B2+%)>+B2>, (A142)
Cy = 6(1 4 a®)M%(BCo + d), (A143)

2= (12+8<K0+2b+

First, we discuss the convergence of the continuous dynamics. Using the eigenvalue
expansion in Theorem 6 , with some positive constant dy, we have

m(a, N) ~ my + a2dg + O(a®). (A144)

Then by assuming a2 is small enough and considering the Tayler expansion, we have

2
Ly m(a,N)

2 172, Im(@N)t o 7 .2 1/2 1 do o\ ptmge
X% (po, )% ~ Lex*(po, ) \/E(— 0 _a? e . (A145)
Vi 2m3/?

As for the discretization and stochastic gradient error, using the Taylor expansion,
there exists a positive constant d; and dp, such that

Ly\/C3V6 + C2Vikn =~ (d1a + daa® + Const)kh. (A146)

Combining these terms, we have

< (dr + daa® )k — 2L (1o, 70) /> e Fimt L Const.  (A147)

1N n)
Ex LA - [ fan

1
3/2
Vam;
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Thus, there exists an optimal a*, which minimizes the bias. Please note that at k = 0,
acceleration always occurs. As k goes to infinity, the second third terms 0, thus the first term
will be dominant, which means we have larger discretization and stochastic gradient error.

Appendix L. Hyperparameters of the Proposed Algorithm

Here we discuss how to set hyperparameters in the algorithm. There are three hy-
perparameters, &g, 77, and c. We numerically found that setting c = 0.95 work well for
real dataset including LDA experiment, and Bayesian neural network regression and
classification. For toy dataset, we set ¢ = 0.9.

As for ag and 77, we empirically found that using the following scaling trick works
well for real dataset including LDA experiment, and Bayesian neural network regression
and classification,

1
Ly, vu(x)?

Q

g Nh. (A148)

and using 77 = 0.1xg. The intuition is that the magnitude of the gradient can be very
different in each dimension, so we introduce the scaling by the gradient. We also multiply
h so that the stochastic gradient and discretization error of the skew term will not be
dominant compared to usual gradient term. Finally, we multiply some constant so that ag
will not be too small.

Appendix M. Proof of Theorem 8

In this section, we derive the upper-bound of the bias of skew-SGLD based on [23].
This approach requires us to use the logarithmic Sobolev inequality [19], which is stronger
than the Poincaré inequality. First, we present the definition of the logarithmic Sobolev
inequality. We say that 7w on R¥ with £ satisfies the logarithmic Sobolev inequality with
constant A in case for all function f on R? with Jrd wldm =1,

2
2 2
/Wf In f dngx/RdffL‘fdn. (A149)

This logarithmic Sobolev inequality is stronger than the Poincaré inequality and
induces the convergence in KL divergence. See [19] for details. It was proved in [2,18]
that our dynamics, LD, SLD, PLD, S-PLD, and skew-SGLD satisfy the logarithmic Sobolev
inequalities under our assumptions. We express the constant of the logarithmic Sobolev
inequality for skew-SGLD as A(«, N). This constant depends on the skew matrices and the
Poincaré constant. We estimate this constant in Appendix M.1.

To upper-bound the bias, here we control the KL divergence. We denote the law of
skew-SGLD at iteration k with interaction strength « as yfth («). We upper-bound the bias
by 2-Wasserstein distance

L ¢ g Ly
E— X —/ dn|, < “L Wy (uN (2), 7N, (A150)
Nnglf( ) R"’f JN 2 (Hyg, () )
Then, from the transportation inequality [19],
2 )
< ®N @NY .
Wa (g, 1) < \/A(a,N)KL(th (a)[T=N) (A151)

Thus, we will upper bound the KL divergence using the technique in [23]. However,
in the original proof, a full gradient VU is used so we replace it with the stochastic gradient.
Moreover, we introduce the skew interaction term.
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First, Lemma 11 in [23] is modified to

Eqon[|VUPN|* < —dl\;M. (A152)

Then Lemma 12 in [23] is modified to

2dNM
B

E,|[VUN|? < AM?AKL (| 7Ny + (A153)

for any integrable .
Herein after, we drop ®N from X®N, VU®N, and VU®N for notational simplicity.
We focus on skew-SGLD at iteration k, we consider the following SDE for ¢ € (kh, (k +1)h]

dXy = — (I +a])VU(Xy)dt + /28 1dw, (A154)
where VU (X}) is the stochastic gradient conditioned on Xj. The solution of this SDE is
Xigy1y = Xx — (I + a)VU(Xp)h+ /2B te. (A155)
We would like to derive the continuity equation correspond to Equation (A154).
Following [23], we express X; as x; and X as xg for simplicity. Let po¢(xo, x¢) denote the
joint distribution of (xg, x¢). Then, the conditional and marginal relations are written as
pot (X0, xt) = po(x0)pyo(xe|x0) = e (xt)poj (X0 xt)- (A156)

The conditional density py|o(xt|xo) follows the FP equation

9pyjo(xt|x0)

Py = V- (pr0(xe]x0) (I + a]) VU (x0)) + B~ Apyjo (%t x0), (A157)

Then following [23], to derive the evolution of p;, we take the expectation over py(xp)

9 9010 (xt|x0)
P (x) = /]Rd P’ e %o po(x0)dxo

ot ot
=V (pr(xt)Epq, [(I+ o) VU (x0)|x: = x]) + B~ 100 (). (A158)

Then, we take the expectation regarding for the stochastic gradient in the above
equation and include it into Ky, for notational simplicity. Then following the discussion
of Lemma 3 in [23], we obtain

TG 31NNy 1 28, [ VU (X0) — VU (X0) ]
214 0)2E | VU(X0) — VE(X0) ] + 20°E, [VU(o)|?,  (A159)

where t € (kh, (k+ 1)h] and
Xi = X — t(I 4 a]) VU(X;) + \/2tp e, (A160)
Then, from [18], we can upper-bound the second term by
Epy, [ VU(X0) — VU (X0) 7] < NCys, (Al61)
Ch = 2(M2 (xo + 2(1 % %) (b +2(1+a)?B% + %)) + Bz> (A162)
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and the third term is upper-bounded by

Ep [ VU(Xo) — VEp,, [VU (x0)||*] < 2M?| /x> + 2NB?
< NG}, (A163)

where we used lemma 2 and 7 in [2]. Finally, from the original proof of [23] we obtain

42dNM3  4tdNM?

2B, [ VU(X¢) — VU(X0)|[?] < 82 M*AKL (N [nN) + 5t (Al64)
Then, in conclusion, under 1 € (0,1 A ;17) obeying ki > 1 and pm > 2, we obtain

d 3 ‘ ‘
KL uEN|ONy < 711(;4§N|7T°§N) + 82 M*A (a, N)KL (N [®N)

42dNM®  4tdNM?
B B

+2NCH(6(1 +a)? +a?). (A165)

For simplicity, we assume that i € (0 ) and ;17 < 1, then we obtain

m
7 AM2

%KL uPN|Ny < —ZI(;;?N\HXNH&ZM‘*A(% N)KL(ugN[7®N)
2
4! ”'g’M (m + 4M) + 2NC)(5(1 + a)2 +o2).  (A166)

Then using ¢ € (kh, (k + 1)h], we obtain

KL(up 7o) <em 3 N (14 1673 M KL (N )
+ e*%’“"‘zl\/)h <2thM
B

(1 +4M) + 8hNCH(6(1 + a)? + a2)> . (A167)

Ifh e (0, 4\(/1\/1;) we obtain

BNy < =AM EN| 7N 2h2dNM 2
KL(pN |7 KL(uN | 7Ny + ——— 5 (m +4M) +8hNC)(5(1 + a)? + a?). (A168)
From this one step inequality, we obtain
KL (N )

2
< 87’\(“’N)thL(y§<‘N\7T“N) + 1 (M

1 — e~ Ma,N)h }3

N (hdM(m+4M)+4C0(5(l+u¢) +a¢2)>. (A169)

(m +4M) + 8hNCH(5(1 + a)* + az))

< e—)\(a,N)thL(V%@N‘n@N) + /\(“ N)

Then, finally we obtain
L
Eﬁ nglf(Xk ) - ./Rdfd”

L 2 .
f ®N @N
= VN | Ay < @1

Lf\/ (AZN) \/e*/\(rx,N)thL(VOhT) /\(fm (hdM(m+4M) +4C)(5(1 + )2 +u2>>

2 ) C
<Ly \/W \/e*)‘(A/N)k/’KL(yMn) + A(ifu;\?) , (A170)
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where
Ca(w) := ZthM(m—HLM)+8CO((5(1+04)2+zx2), (A171)
Ch = 2<M2 <K0 +2<1 v %) <b +2(1+a)?B* + %)) + Bz>. (A172)

Moreover, from Appendix M.1, the logarithmic Sobolev constant is

Ala,N) := (A173)

P —
(1+ pm(a, N)=1|C(mp)|)2rte2 ~ 2m(a,N) )’

where

—C(mg) := Een[[[VUN () []/2 + \/ViEan[IIVWN(X)IZP/? (A174)

Appendix M.1. Estimation of the Logarithmic Sobolev Constant

In this section, we estimate the logarithmic Sobolev constants using the technique of
restricted logarithmic Sobolev inequality, which was introduced in [49].

The technique of [49] estimates the constant of the logarithmic Sobolev inequality as
follows. Assume that 7r on RY with L satisfies the Poincaré inequality with constant .
Then, for any function u on R? that satisfies

/ wdr =0 and / W2dr =1, (A175)
R* R*
we find a constant b that satisfies

/]R P nildn < b /R | —uLudn. (A176)

Then the logarithmic constant is larger than 2(b + 2)~'. Thus, we only need to focus
on the restricted function class to estimate a constant b. We slightly change the Lemma 3.2
of [49] that estimate the constant b in Equation (A176) to apply it in our setting. In
Lemma 3.2 of [49], it was proved that if u on R? satisfies the conditions in Equation (A175),
then for any ¢ € (0,1), we have

_ 2 [ 22 _ 1 2 2
/Rd uludrm — tre /Wu Inu“dm > (1 t)ert,B/W( 2£U(x) me“U(x))u~dm, (A177)

where we assume that 7 o e~PU(¥) satisfies the Poincaré inequality with constant . If there
exists a constant C such that

—C> ,B/]Rd(—%llu(x) — U (x))udm > —co, (A178)
then by setting t = m/ (m + |C|), we can show that
./Rd —uLudm —m/ (m+ |C|)rre? /]I'%d w? Inu*dm > 0. (A179)
Thus, the constant b in Equation (A176) is b = t = m/(m + |C|) and the logarithmic
constant is 2(m/(m + |C|) + 2)~L.

Thus, We analyze the constant C. The first term of the integral in Equation (A178) is
lower-bounded bounded by

—Ex[LU(x)1?] > —[Er[U(x) LU (x)] |V |Er [ Lu?] |2 > —2E,[||VU(x)]?]"/2, (A180)
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where we used the property of £, see [19] for details. As for the second term, it is lower-

bounded by
~[Ex[U(x)u] > =/ [E[UP(x)u?] > \/ B[ (U(x)[u) £CU ) [u)]]
> —J%Enmvumuzwz. (a181)
Thus, by setting
8
~C:=EA[| VU@)1'? + \/mIEnHVU(x)Z]”Z, (A182)
0
we can estimate the logarithmic constant as 2(m/ (m + |C|) + )1
In our setting, this is modified to
Ma, N) = ! P o (A183)
T\ + Bm(w, N)LC(mg)|)2mer  2m(a,N) )

where

—C(mp) =B on [[|VUSN (2)[|]/2 + \/ %Eﬂw[llvuw(xﬂlz]m- (A184)

Finally, if we increase m(a, N), A(a, N) increases. Thus, since m(«, N) > m(a =0, N),
we obtain A(a, N) > A(a =0, N).

Appendix M.2. Computational Complexity

To derive the computational complexity, for simplicity, we assume that 6 < & and We
also set a? < I for simplicity. This means that the variance of the stochastic gradient is
small enough and we use small «. Then the bias is

E%éf(xé N~ /R fn| < Lf\/ﬁ\/g%(mmwm(mn) n %
gLf\/%Q/er M) (A185)
where
Cs(a) := h<2’%M(m+4M) +8C6((1+h1/2)2+1)>, (A186)
ch = 2<M2 (xo + 2(1 % %) (b +2(1+1?)2B% + %)) + B2>. (A187)
Then we define
Ch = 2d—M(m+4M) +8CH((1+hY?)? +1), (A188)

P
AMaN)E

and use the step size that satisfies 1 = 7 VAL, . Then when we use

2 L [Kiuln)

Z A R TN 24 (e ) ! (A189)
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we have

N

N |

E% f(Xﬁm)j/Rdfdn §%+ < (A190)

n=1
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Abstract: Variational inference is a powerful framework, used to approximate intractable posteriors
through variational distributions. The de facto standard is to rely on Gaussian variational families,
which come with numerous advantages: they are easy to sample from, simple to parametrize,
and many expectations are known in closed-form or readily computed by quadrature. In this
paper, we view the Gaussian variational approximation problem through the lens of gradient flows.
We introduce a flexible and efficient algorithm based on a linear flow leading to a particle-based
approximation. We prove that, with a sufficient number of particles, our algorithm converges linearly
to the exact solution for Gaussian targets, and a low-rank approximation otherwise. In addition to
the theoretical analysis, we show, on a set of synthetic and real-world high-dimensional problems,
that our algorithm outperforms existing methods with Gaussian targets while performing on a par
with non-Gaussian targets.

Keywords: variational inference; Gaussian; particle flow; variable flow

1. Introduction

Representing uncertainty is a ubiquitous problem in machine learning. Reliable
uncertainties are key for decision making, especially in contexts where the trade-off between
exploitation and exploration plays a central role, such as Bayesian optimization [1], active
learning [2], and reinforcement learning [3]. While Bayesian inference is a principled tool to
provide uncertainty estimation, computing posterior distributions is intractable for many
problems of interest. Most sampling methods struggle to scale up to large datasets [4],
while the diagnosis of convergence is not always straightforward [5]. On the other hand,
Variational Inference (VI) methods can rely on well-understood optimization techniques
and scale well to large datasets, at the cost of an approximation quality depending heavily
on the assumptions made. The Gaussian family is by far the most popular variational
approximation used in VI [6,7]. This is for several reasons. First, Gaussian variational
families are easy to sample from, reparametrize, and marginalize. Second, they are easily
amenable to diagonal covariance approximations, making them scalable to high dimensions.
Third, most expectations are either easily computable by quadrature or Monte Carlo
integration, or known in closed-form.

A large body of work covers different approaches to optimize the Variational Gaussian
Approximation (VGA), with the speed of convergence and the scalability in dimensions
as the main concerns. From the perspective of convergence speed, the major bottleneck
when computing gradients with stochastic estimators is the estimator variance [8]. Particle-
based methods with deterministic paths do not have this issue, and have been proven to
be highly successful in many applications [9-11]. However, can we use a particle-based
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algorithm to compute a VGA? If so, what are its properties and is it competitive with other
VGA methods?

In this paper, we attempt to answer these questions by introducing the Gaussian Particle
Flow (GPF), a framework to approximate a Gaussian variational distribution with particles.
GPF is derived from a continuous-time flow, where the necessary expectations over the
evolving densities are approximated by particles. The complexity of the method grows
quadratically with the number of particles but linearly with the dimension, remaining
compatible with other approximations such as structured mean-field approximations.
Using the same dynamics, we also derive a stochastic version of the algorithm, Gaussian
Flow (GF). To show convergence, we prove the decrease in an empirical version of the free
energy that is valid for a finite number of particles. For the special case of D-dimensional
Gaussian target densities, we show that D + 1 particles are enough to obtain convergence
to the true distribution. We also find, for this case, that convergence is exponentially fast.
Finally, we compare our approach with other VGA algorithms, both in fully controlled
synthetic settings and on a set of real-world problems.

2. Related Work

The goal of Bayesian inference is to carry out computations with the posterior dis-
tribution of a latent variable x € RP given some observations y. By Bayes theorem, the
posterior distribution is p(x|y) = %)y’;(x), where p(y|x) and p(x) are, respectively, the
likelihood and the prior distribution. Even if the likelihood and the prior are known ana-
lytically, marginalizing out high-dimensional variables in the product p(y|x)p(x) in order
to compute quantities such as p(y) is typically intractable. Variational Inference (VI) aims to
simplify this problem by turning it into an optimization one. The intractable posterior is
approximated by the closest distribution within a tractable family, with closeness being
measured by the Kullback-Leibler (KL) divergence, defined by

KL [(x)[[p(x)] = Eq[log q(x) —log p(x)],

where E;[f(x)] = [ f(x)g(x)dx denotes the expectation of f over 4. Denoting by Q a
family of distributions, we look for

argmin KL [q(x)]|p(x[y)]-
qeQ

Since p(y) is not computable in an efficient way, we equivalently minimize the upper
bound F:

KL[g(x)||p(x[y)] < Flg] = —Eq[log p(y|x)p(x)] — Hy, @

where Hy is the entropy of g (—E;[log g(x)]). Here, F is known as the variational free energy
and —F is known as the Evidence Lower BOund (ELBO). A diverse set of approaches to
perform VI with Gaussian families Q have been developed in the literature, which we
review in the following.

2.1. The Variational Gaussian Approximation

The VGA is the restriction of Q to be the family of multivariate Gaussian distributions
q(x) = N'(m,C), where m € RP is the mean and C € {A € RP*P|xT Ax > 0,Vx € RP} is
the covariance matrix, for which the free energy is found to be

1
Flal = =5 log |C| + Eq[p(x)]. 2
where ¢(x) = —log(p(y|x)p(x)). A standard descent algorithm based on gradients of

Equation (2) with respect to variational parameters m, C give rise to some issues. First,
naively computing the gradient of the expectation with respect to the covariance matrix
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C involves unwanted second derivatives of ¢(x) [12], which may not be available or
may be computationally too expensive in a black-box setting. Second, the gradient of the
entropy term I, entails inverting a non-sparse matrix, which we would like to avoid
for higher-dimensional cases. Finally, the positive-definiteness of the covariance matrix
leads to non-trivial constraints on parameter updates, which can lead to a slowdown of
convergence or, if ignored, to instabilities in the algorithm.

To solve these issues, a variety of approaches have been proposed in the literature.
If we focus on factorizable models, we can make a simplification: for problems with
likelihoods that can be rewritten as p(y|x) = [T5_, p(y|x4), the number of independent
variational parameters is reduced to 2D [12,13]. In this special case, the Gaussian expec-
tations in the free energy (2) split into a sum of 1-dimensional integrals, which can be
efficiently computed by using numerical quadrature methods. To extend to the general
case, gradients of the free energy are estimated by a stochastic sampling approach, which
also forms the starting point of our method. This relies on the so-called reparametrization
trick, where the expectation over the parameter-dependent variational density g is replaced
by an expectation over a fixed density q° instead. This facilitates the gradient computation
because unwanted derivatives of the type Vygg(x) are avoided. For the Gaussian case,
the reparametrization trick is a linear transformation of an arbitrary D dimensional Gaus-
sian random variable x ~ gg(x) in terms of a D-dimensional Gaussian random variable
x0 ~ g0 = N(mP,C0):

x =T —m®) +m, 3)

where T € RP*P and m € RP are the variational parameters. We assume that the co-
variance C? is not degenerate and, for simplicity, we set it as the identity. For instance,
the gradient of the expectation given g over a function f given the mean m becomes
ViEq[f(x)] = Ep [Viuf(T(x° —m®) +m)]. This can be simply proved by using the
reparametrization (3) inside the integral and passing the gradient inside; for more de-
tails, see [14].

Given this representation, the free energy is easily obtained as a function of the
variational parameters:

Flg) = ~10g [T + Egp [p(T(x" — m®) + m)]. @

Other representations are possible. Challis and Barber [13] and Ong et al. [15] use a different
reparametrization with a factorized structure of the covariance C = I''T + diag(d), where
I € RP*P and d € RP, with P < D is the rank of T 'T. Other representations assume
special structures of the precision matrix A = C~!, which allow you to enforce special
properties, such as sparsity in [16,17].

In general, these methods tend to scale poorly with the number of dimensions, as one
needs to optimize D (D + 3) /2 parameters. The (structured) Mean-Field (MF) [18,19] approach
imposes independence between variables in the variational distribution. The number of
variational parameters is then 2D, but covariance information between dimensions is lost.

2.2. Natural Gradients

Besides the issue of expectations, more efficient optimizations directions, beyond
ordinary gradient descent, have been considered. These can help to deal with constraints
such as those given for the covariance matrix. Natural gradients [20] are a special case of
Riemannian gradients and utilize the specific Riemannian manifold structure of variational
parameters. They can often deal with constraints of parameters (such as the positive
definiteness of the covariance), accelerate inference, and improve the convergence of
algorithms. The application of such advanced gradient methods typically requires an
estimate of the inverse Fisher information matrix as a preconditioner of ordinary gradients.
Khan and Nielsen [21] and Lin et al. [22] propose a solution that requires extra second
derivatives of the log—posteriors. Salimbeni et al. [23] developed an automatic process to
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compute these without the second derivatives but with instability issues. Lin et al. [17]
solved these issues by using geodesics on the manifold of parameters, at the price of having
to compute inverse matrices as well as Hessians.

2.3. Particle-Based VI

Stochastic gradient descent methods compute expectations (and gradients) at each
time step with new independent Monte Carlo samples drawn from the current approxi-
mation of the variational density. Particle-based methods for variational inference draw
samples only once at the beginning of the algorithm instead. They iteratively construct
transformations of an initial random variable (having a simple tractable density) where the
transformed density leads to the decrease and finally to the minimum of the variational free
energy. The iterative approach induces a deterministic temporal flow of random variables
which depends on the current density of the variable itself. Using an approximation by the
empirical density (which is represented by the positions of a set of “particles’) one obtains a
flow of interacting particles which converges asymptotically to an empirical approximation
of the desired optimal variational density.

The most popular approach is Stein Variational Gradient Descent (SVGD) [24], which
computes a nonparametric transformation based on the kernelized Stein discrepancy [9].
SVGD has the advantage of not being restricted to a parametric form of the variational
distribution. However, using standard distance-based kernels like the squared exponential
kernel (k(x,y) = exp(—|x — y||3/2)) can lead to underestimated covariances and poor pet-
formance in high dimensions [11,25]. Hence, it is interesting to develop particle approaches
that approximate the VGA. We provide a more thorough comparison between our method
and SVGD in Section 3.6.

2.4. GVA in Bayesian Neural Networks

There has been increased interest in making Bayesian Neural Networks (BNN) by adding
priors to Neural Networks parameters. The true form of the posterior is unknown but
VGA has been used due to its ease of use and scalability with the number of dimensions
(typically D > 10%). Most of the aforementioned methods apply to BNN, but techniques
have been specifically tailored with BNN in mind. [26] use the low-rank structure of [13]
but exploit the Local Reparametrization Trick, where each datapoint y; gets a different sample
from g in order to reduce the stochastic gradient estimator variance. Stochastic Weight
Averaging-Gaussian (SWAG) [27], in which a set of particles obtained via stochastic gradient
descent represent a low-rank Gaussian distribution, approximating the true posterior with
a prior posterior produced by the network’s regularization. While easy to implement,
SWAG does not allow you to incorporate an explicit prior, and the resulting distribution
does not derive from a principled Bayesian approach.

2.5. Related Approaches

The closest approach to our proposed method is the Ensemble Kalman Filter (EKF) [28].
It assumes that the posterior is computed in a sequential way, where, at each time step, only
single (or smaller batches) of data observations, represented by their likelihoods, become
available. An ensemble of particles, representing a Gaussian distribution is iteratively
updated with every new batch of observations. EKF allows us to work on high-dimensional
problems with a limited amount of particles but is restricted to factorizable likelihoods for
which a sequential representation is possible. While EKF maintains a representation of a
Gaussian posterior, it is not clear how this relates to the goal of minimizing the free energy
or the KL divergence.

3. Gaussian (Particle) Flow

We introduce Gaussian Particle Flow (GPF) and Gaussian Flow (GF), two computation-
ally tractable approaches, to obtain a Variational Gaussian Approximation (VGA). In the
following, we derive deterministic linear dynamics, which decreases the variational free
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energy. We additionally give some variants with a Mean-Field (MF) approach and prove
theoretical convergence guarantees.

In the following, = e ) indicates the total derivative given time, a( t) partial derivatives
given time, V,(-) gradlents given a vector x.

3.1. Gaussian Variable Flows

We next discuss an alternative approach to generate the desired transformation of
random variables, leading from a simple (prior) Gaussian density to a more complex
Gaussian, which minimizes the variational free energy. It is based on the idea of variable
flows, i.e., recursive deterministic transformations of the random variables defined by a
mapping x"1 = x" + ef"(x") where f" : RP — RP. Well-known examples of flows
are Normalizing Flows [29], where f" are bijections, or Neural ODEs [30] where f" = f is
defined by a neural network and 20 is the input. For simplicity, we will consider small
changes € — 0 and work with flows in the continuous-time limit (+ = ne), which follow a
system of Ordinary Differential Equation (ODE). For the Gaussian case, in the spirit of the
reparametrization trick (3), we choose a linear corresponding map f and write

B ) = A ) ©

where Af is a matrix and m = [ [x] (which is no longer interpreted as an independent
variational parameter). When the initial random variable 10 is Gaussian distributed, the
vectors x! are also Gaussian for any t. To construct a flow that decreases the free energy
over time, we can either compute the time derivative of the specific free energy (2) induced
by the ODE (5), or simply derive the general result valid for smooth maps f (see, e.g., [24]).
To be self contained, we briefly repeat the main steps: We first compute the change of the
free energy in terms of the time derivative of g:

t dt/q ) (log g (x) + () dx
: t X X
:/ aqat (log g (x) + q)(x))dx—i—/qt(x)(aqa(t )qtgx) + a(g(t ))dx

= [ 221 (1o (x) + ()

where we have used the fact that [ aq;ﬁdx =4 [4'(x)dx = 0and a%(tx) = 0. We next use
the continuity equation for the density

L I

related to the deterministic flow to obtain

P _ [V, (60 () (og' () + 9l))d
- /( ()ff( )) - Va(logg' (v) + 9(x)dx
= [(T2 @@ 0) + ' @f (3) - Tagl)dx
= [ V2 (5) - () + ' (D) (x) - Vaplx)d
= By [V f1(3) — 1) Vag(®)]

where we have applied Green’s identity twice and used the fact that lim,_« g:(x) = 0.
Specializing to the linear flow (5), we obtain
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dF(q']
dt

= —trA (A T] = (0) T, (©)
where

AL 1= By [Vag(x) (x = m)T]

by = —Ex[Vp(x)] @)

Equation (6) represents the change in the free energy F for an infinitesimal change in the
variables x given by the flow (5). Obviously, the simplest choices

At=AL b =1l 8)
dFq']

lead to a decrease in the free energy =5/~ < 0. More detailed derivations are given in
Appendix A. Additionally, equality only happens, when

I-E, [Vx(p(x)(x — m)T} =0
Eq[Vrg(x)] =0 ©

Using Stein’s lemma [31], we can show that these fixed-point solutions are equal to the
conditions for the optimal variational Gaussian distribution solution given in [12]. In
Appendix C, we show that our parameter updates can be interpreted as a Riemannian
gradient descent method for the free energy (4). This is based on the metric introduced by
([20], Theorem 7.6) as an efficient technique for learning the mixing matrix in models of
blind source separation. This gradient should not be confused with the so-called natural
gradient obtained by pre-multiplying with the inverse Fischer-information matrix.

Of course, there are other choices for Af and b, which lead to a decrease in the free
energy and the same fixed-point equations. In Section 3.6, we discuss how SVGD, with a
linear kernel, can lead to the same fixed points but with different dynamics.

3.2. From Variable Flows to Parameter Flows

Before we introduce the particle algorithm, we show that the results for the variable
flow can also be converted into a temporal change of the parameters I'Y, m!, as defined
for Equation (3). From this, a corresponding Gaussian Flow (GF) algorithm can be eas-
ily derived. By differentiating the parametrisation x* = T*(x0 — m®) -+ m! (with m! now
considered as free variational parameter) with respect to time t and using (5), we obtain
dm!

(xO—mO)-i-F = Al(xt —m') + 1 (10)

a _ar

dt — dt
By inserting x' = I (x — m®) + m' into the right hand side of (10), and using the optimal
parameters from (7), we obtain

dd—l? =I'—Ep {qul(xt)(xo — mO)T] rirhH T "
d t
77’2 =-Ep [qu’(xt)}

Note that the expectations are over the probability distribution of the initial random
variable x°. Discretizing Equations (11) in time, and estimating the expectations by drawing
independent samples from the fixed Gaussian q° at each time step, we obtain our GF
algorithm to minimize the variational free energy in the space of Gaussian densities.
We summarize the steps of GF in Algorithm 1. Remarkably, this scheme differs from
previous VGA algorithms with Riemannian gradients based on the Fisher information
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metric (see, e.g., [17,32]) because no matrix inversions or second order derivatives of the
function ¢ are required.

GF also allows for the computation of a low-rank VGA by enforcing I' € RP*K and
x0 € RX. This algorithm scales linearly in the number of dimensions and quadratically in
the rank K of the covariance.

It is interesting to note that the reverse construction of a variable flow from a parameter
flow is, in general, not possible. This would require the ability to eliminate all variational
parameters and the initial variables x” in the resulting differential equation for x, and
replace them with functions of x* alone. For instance, if we eliminate the initial variables x°
in terms of (I'*)~! and x* the algorithm of [14], the resulting expression still depends on I'*.

3.3. Particle Dynamics

The main idea of the particle approach is to approximate the Gaussian density 4’ in (7)
by the empirical distribution

g 18 ;
§ =5 Lokx—x) (12)

computed from N samples xf, i=1,...,N. These are initially sampled from the density qo
at time t = 0 and are then propagated using the discretized dynamics of the ODE (5):

dxt N
T = Mg [Vee(x)] - Al (xf — ") (13)
where
A== L Vg — ity
- N xP i
i=1
- iv o(xh) it =L ixt
- — . , — Y o
N i=1 ' N i=1 l

where 77t and 77} are learning rates (We further comment on the use of different optimization
schemes in Section 4.4). Note that although E [Vig(x)(x — )] is a D x D matrix,
changing the matrix multiplication order leads to a computational complexity of O(N?D)
with a storage complexity of O(N(N + D)), since neither the empirical covariance matrix
or A need to be explicitly computed.

Relaxation of Empirical Free Energy and Convergence

We have shown that the continuous-time dynamics (10) of the random variables leads
to a decay of the free energy F(gq') with time t. Assuming that the free energy is bounded
from below, one might conjecture that this property would imply the convergence of the
particle algorithm to a fixed point when learning rates are sufficiently small such that the
discrete-time dynamics are approximated well by the continuous limit. Unfortunately, the
finite number N of particles poses an extra problem. The definition of the free energy F(q)
by the KL-divergence (1) for continuous random variables such as assumes that both g(-)
and p(-|y) are densities with respect to the Lebesgue measure. Hence, F(4) is not defined
if we take ¢ = 4, (12) as the empirical distribution of the finite particle approximation.
Nevertheless, we define a finite N approximation to the Gaussian free energy, which is
also then found to decay under the finite N dynamics. Let us first assume that N > D
and define

F(@) =~ 1081¢" + Eyp(x) (14
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with the empirical covariance matrix

At 1 ¥ ¢ B (ot 0o
CZNZ(":‘*’”)(%‘*’”) (15)

The definition (14) is chosen in such way that in the large N limit, when the empirical
distribution 4! converges to a Gaussian distribution gf, we will also obtain the convergence
of the approximation (14) to F(g"). It can be shown (see Appendix B) that % <0, with
equality only at the fixed points of the dynamics.

In applications of our particle method to high-dimensional problems, the limitations
of computational power may force us to restrict particle numbers to be smaller than the
dimensionality D. For N < D + 1, the empirical covariance C! will be singular, and
typically contain only N — 1 non-zero eigenvalues, which leads to the — log|C| = co and
makes Equation (14) meaningless. We resolve this issue through a regularisation of the
log—determinant term in (14), replacing all zero eigenvalues of C by the values 1, i.e.,
A =0 — A; = 1. We show in Appendix B that the free energy still decays, provided that
the dynamics of the particles stay the same. This regularisation step can be formally stated
as a replacement of the empirical covariance (15) in (14) by

Ct— ¢4 Z et(eh)T

i\%i
i:AfZO

where ef = ith eigenvector of Ct.

3.4. Algorithm and Properties

The algorithm we propose is to sample N particles {xJ,...,x%} where x? € RP from
q° (which can be centered around the MAP for example), and iteratively optimize their
positions using Equation (13). Once convergence is reached, i.e., % = 0, we can easily
make predictions using the converged empirical distribution 4(x) = 4 YN 8(x —xp),
where 6 is the Dirac delta function, or, alternatively, the Gaussian density it represents,
ie., q(x) = N(m,C),wherem = L YN x;and C = 5 N, (x; — m)(x; —m) . To draw
samples from 4, no inversions of the empirical covariance C are needed, as we can obtain
new samples by computing:

N
x:%i;(xifm)o{fﬂrm, (16)

where ¢; are i.i.d. normal variables: ¢ ~ N(0,Ip). This can be shown by defining D,
the deviation matrix, a matrix which columns equal to D; =

N We naturally have
DDT = C which makes D the Cholesky decomposition of C.
All the inference steps are summarized in Algorithm 2 and an illustration in two
dimensions is provided in Figure 1.
We summarize the principal points of our approach:

e Gradients of expectations have zero variance, at the cost of a bias decreasing with the
number of particles and equal to zero for Gaussian target (see Theorem 1);

e It works with noisy gradients (when using subsampling data, for example);

e The rank of the approximated covariance C is min(N — 1,D). When N < D, the
algorithm can be used to obtain a low-rank approximation.

e The complexity of our algorithm is O(N2D) and storing complexity is O(N(N + D)).
By adjusting the number of particles used, we can control the performance trade-off;

e GPF (and GF) are also compatible with any kind of structured MF (see Section 3.5);

*  Despite working with an empirical distribution ,we can compute a surrogate of the
free energy F(g) to optimize hyper-parameters, compute the lower bound of the
log-evidence, or simply monitor convergence.
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Figure 1. lllustration of the Gaussian Particle Flow algorithm, with ¢°(x) and p(x) representing the
initial and target distribution respectively. Particles are iteratively moved according to the gradient
flow starting from q°(x), approximating a new Gaussian distribution g'(x) at each iteration ¢.

Algorithm 1: Gaussian Flow (GF)
Input: Number of samples N, initial distribution g0 = N (u0,T%(T%)7), target
p(x) o e=?(Y), learning rates 771, 17}

Output: Variational dist. q(x) = N (1, ITT)
fortin0:T do

{x? f\il ~ qo # Sample N initial particles from qO
x; = Ft(x? _ VO) +ut, Vi # Reparametrize
i = Vxo(x)), Vi # Compute gradients
yt+1 — Vt _ ’li%zf\il o(x;) # Update u
A= % Y g,-(xgJ — ;40)T(I“t)T # Compute matrix
T+l — 1t L AT # Update I

Algorithm 2: Gaussian Particle Flow (GPF)
Input: Number of particles N, initial distribution ¢°, target p(x) o e 90, learning
rates 171, 17}
Output: Empirical dist. q(x) = & LN, 0vx,
Init: Sample N particles from q° : {x9}N
fortin0:Tdo

gi = Vio(xh), Vi # Compute gradients
m = % Yixi, §= % Y8 # Compute means
A= % Yigi(xt—m)T —1 # Compute matrix
xf.H =xl—nlg — b A(xt —m), Vi # Update particles

3.4.1. Relaxation of Empirical Free Energy

The definition of the free energy F(q) from the KL-divergence (1) for a continuous
random variables assumes that both ¢(-) and p(-|y) are densities with respect to the
Lebesgue measure. Hence, it is not a priori clear that a specific approximation F ('), based
on an empirical distribution 4'(x) = YN 6(x — xt) with a finite number of particles N,
will decrease under the particle flow. Thus we may not be able to guarantee convergence
to a fixed point for finite N. Luckily, as we show in Appendix D, we find that:
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AF () _ 4(Eg [p(x)] — } log|C!])

<
at T <0. (17)

For N < D + 1, the empirical covariance C twill typically contain N — 1 non-zero eigenval-
ues and lead to —log|C| = oo, making Equation (17) meaningless. We resolve this issue
by introducing a regularized free energy F where log|C!| is replaced by ¥;.).~.o log A; where
{A;}P | are the eigenvalues of C*. We show in Appendix D that, given the dynamics from
Equation (5), F is also guaranteed to not increase over time. It can, therefore, be used
as a regularized proxy for the true 7 and used to optimize over hyper-parameters or to
monitor convergence. Note that similar proofs exist for SVGD [33] and were proven to be
highly non-trivial.

3.4.2. Dynamics and Fixed Points for Gaussian Targets

We illustrate our method by some exact theoretical results for the dynamics and the
fixed points of our algorithm when the target is a multivariate Gaussian density. While such
targets may seem like a trivial application, our analysis could still provide some insight
into the performance for more complicated densities.

Theorem 1. If the target density p(x) is a D-dimensional multivariate Gaussian, only D + 1
particles are needed for Algorithm 2 to converge to the exact target parameters.

Proof. The proof is given in Appendix E. [J

Theorem 2. For a target p(x) = N(x | u, A™Y), i.e., with precision matrixA, where x € RP,
and N > D + 1 particles, the continuous time limit of Algorithm 2 will converge exponentially fast
for both the mean and the trace of the precision matrix:

m' —p=e N (m® —p),

—A) = 2r( <C0> o A),

At(

er((Ch) !

where m' and C' are the empirical mean and covariance matrix at time t and exp(—At) is the
matrix exponential.

Proof. The proof is given in Appendix F. [

Our result shows that convergence of the mean m' directly depends on A. How-
ever, we can also precondition the gradient on m by C/, i.e., using the natural gradient
approximation in the Fisher sense, and eventually get rid of the dependency on A when
() ' = A.

The exponential relaxation of fluctuations also manifests itself in the decay of the free
energy towards its minimum. For the Gaussian target, the free energy exactly separates
into two terms corresponding to the mean and fluctuations. We can write F (m!,C") =
%(mf —u)TA(mt — ) + % + ]-'fl(Ct), where the nontrivial fluctuation part (subtracted by
its minimum) is given by

1 1
Fp(Ch = -5 log|C!| + Etr(Acf — ).
We can show that

dIn F4(Ct
L, 4 7i( )24,

t—o0 dt

indicating an asymptotic decrease in Fy;(C ') faster than e~#, independent of the target.
We can also prove the finite time bound
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_ 2t
]_—ﬂ(ct) < ]:ﬂ(CO)e (A1) (tr(A) +|tr((CO)~1-A)) )

The degenerate case N < D + 1
Additionally, we can show the following result for the fixed points:

Theorem 3. Given a D-dimensional multivariate Gaussian target density p(x) = N (x|, £),
using Algorithm 2 with N < D + 1 particles, the empirical mean converges to the exact mean y.
The N — 1 non-zero eigenvalues of C' converge to a subset of the target covariance L. spectrum.
Furthermore, the global minimum of the regularised version F of the free energy (17) corresponds
to the largest eigenvalues of ¥.

Proof. The proof is given in Appendix G. [

This result suggests that C* might typically converge to an optimal low-rank ap-
proximation of X. We show an empirical confirmation in Section 4.2 for this conjecture.
This suggests that it makes sense to apply our algorithm to high-dimensional problems
even when the number of particles is not large. If the target density has significant
support close to a low-dimensional submanifold, we might still obtain a reasonable ap-
proximation.

3.5. Structured Mean-Field

For high-dimensional problems, it may be useful to restrict the variational Gaus-
sian approximation to the posterior to a specific structure via a structured mean-field
approximation. In this way, spurious dependencies between variables that are caused by
finite-sample effects could be explicitly removed from the algorithms. This is most easily
incorporated in our approach by splitting a given collection of latent variables x into M
disjoint subsets x(), We reorder the vector indices in such a way that the first components
correspond to x(l),x(z), and so on. Hence, we obtain x = {x(l),x(z),. .., x(M)}. A struc-
tured mean-field approach is enforced by imposing a block matrix structure for the update
matrix Apr = A1) @ - - - D A(p), where @ is the direct sum operator. It is easy to see that
this construction corresponds to a related block structure of the I' matrix in Equation (3).
This means that the subsets of the random vectors are modeled as independent. Hence,
when the number of particles grows to infinity, one recovers the fixed-point equations
for the optimal MF structured Gaussian variational approximation from our approach.
As previously, as the number of particles grows to infinity, we recover the optimal MF
Gaussian variational approximation. Note that using a structured MF does not change the
complexity of the algorithm but requires fewer particles to obtain a full-rank solution.

3.6. Comparison with SVGD

Given the similarities with the SVGD methods [24],0one could question the differences
of our approach. The model proposed by [10] using a linear kernel k(x,x') = x " x’ 41 has
similar properties to our approach. The variable update becomes:

v 1Y
E = ﬁ izzl(fk(xi, x)V(p(x,-) + VX,'K(XII xi))
= Ef/ I— V(P(X)XT} X — Eq[V(P(x)]

The fixed points are

0 =E4[Ve(x)]
I =E; [V{p(x)xT] =E; [V(p(x)(x - m)T]
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where the last equality holds since E;[V ¢(x)] = 0. This is the same as our algorithm fixed
points (9). Similarly to Theorem 1, D + 1 particles will converge to the exact D-dimensional
multivariate Gaussian target. However, the generated flows are different. The main
difference is that we normalize our flow via the Ly norm, whereas [10] rely on the reproducing
kernel Hilbert space (RKHS) norm, i.e., |¢[|? = ¢ T K~ where ¢; = ¢(x;) and Kij = k(x;, xj).
For a full introduction on RKHS, we recommend [34]. Remarkably, centering the particles
on the mean, namely, using the modified linear kernel k(x,x') = (x —m) T (x' —m) +1,
leads to the same dynamics. Additionally, when using SVGD, there is no direct possibility
of computing the current KL divergence between the variational distribution and the target,
unless some values are accumulated [35]. There is also no clear theory explaining what
happens when the number of particles is smaller than the number of dimensions, for both
distance-based kernels and the linear kernel.

4. Experiments

We now evaluate the efficiency of GPF and GF. First, given a Gaussian target, we
compare the convergence of our approach with popular VGA methods, which are all
described in Section 2. Second, we evaluate the effect of varying the number of particles
for both Gaussian targets and non-Gaussian targets, especially with a low-rank covariance.
Then, we evaluate the efficiency of our algorithm on a range of real-world binary classifi-
cation problems through a Bayesian logistic regression model and a series of BNN on the
MNIST dataset.

All the Julia [36] code and data used to reproduce the experiments are available
at the Github repository: https://github.com/theogt/ParticleFlow_Exp (accessed on
27 July 2021).

4.1. Multivariate Gaussian Targets

We consider a 20-dimensional multivariate Gaussian target distribution. The mean is
sampled from a normal Gaussian y ~ N (0, Ip) and the covariance is a dense matrix defined
as ¥ = UAUT, where U is a unitary matrix and A is a diagonal matrix. A is constructed as
logyo(Aii) = % — 1 where « is the condition number, i.e., kK = Amax/Amin. This
means that, for k = 1, we obtain a X = 0.11, and for x = 100, we obtain eigenvalues ranging
uniformly from 0.1 to 10 in log-space.

We compare GPF and GF to the state-of-the art methods for VGA described in
Section 2, namely Doubly Stochastic VI (DSVI) [14], Factor Covariance Structure (FCS) [15]
with rank p = D, iBayes Learning Rule (IBLR) [17] with a full-rank covariance and their
Hessian approach, and Stein Variational Gradient Descent with both a linear kernel (Linear
SVGD) [10] and a squared-exponential kernel (Sq. Exp. SVGD) [24]. For all methods, we
set the number of particles or, alternatively, the number of samples used by the estimator,
as D + 1, and use standard gradient descent (x'*! = x! + 5¢'(x')) with a learning rate
of # = 0.01 for all particle methods. We use RMSProp [37] with a learning rate of 0.01
for all stochastic methods. We run each experiment 10 times with 30,000 iterations, and
plot the average error on the mean and the covariance with one standard deviation. For
GPF, we additionally evaluate the method with and without using natural gradients for
the mean (i.e., pre-multiplying the averaged gradient with C’), indicated, respectively,
with a dashed and solid line. Figure 2 reports the L, norm of the difference between the
mean and covariance with the true posterior over time for the target condition number
« € {1,10,100}.
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Figure 2. L? norm of the difference between the target mean y (left side) and target covariance

T (right side) with the inferred variational parameters m' and C! against time for 20-dimensional
Gaussian targets with condition number x. We use D + 1 particles/samples and show the mean over
10 runs as well as the 68% credible interval. Methods with dashed curves use natural gradients on
the mean. Note that DSVI, GF and FCS are overlapping and are, at this scale, indistinguishable from
one another.

As Theorem 1 predicts, GPF converges exactly to the true distribution, regardless of the
target. GF and other methods based on stochastic estimators cannot obtain the same precision
as their accuracy is penalized by the gradient noise. IBLR approximate the covariance
perfectly, despite the stochasticity of its estimator; however IBLR needs to compute the true
Hessian at each step. When using a Hessian approximation instead, IBLR performed just like
DSVI; the true benefit of IBLR appears when second-order functions are computed, which
is naturally intractable in high-dimensions. SVGD with a linear kernel, achieves a good
performance but is highly unstable: most of the runs (ignored here) diverge. This is due to
the dot computation x " x which can become extremely high, especially for non-centered data.
For this reason, we do not consider this method for the later experiments. SVGD with a sq.
exp. kernel obtains a good estimate for the mean but fails to approximate the covariance.

227



Entropy 2021, 23, 990

Perhaps surprisingly, GF does not perform much better than DSVI or FCS. This is
potentially due to the benefit of Riemannian gradients being canceled by the gradient noise [38]
providing a strong argument for particle-based methods over stochastic estimators.

Remarkably, we also confirm Theorem 2, that the convergence speed of C! is indepen-
dent of the target X, while the convergence speed of m' has this dependency unless the
natural gradient is used (see the dashed curves). The case ¥ = 1 highlights that natural
gradient do not necessarily improve convergence speed.

4.2. Low-Rank Approximation for Full Gaussian Targets

We explore the effect of the number of particles for both Gaussian and non-Gaussian
targets. We use the same Gaussian target from the previous experiment in 50 dimensions
with a full-rank covariance determined by their condition number x = ﬁ The covariance
eigenvalues A; in log-space range uniformly from 0.1 to 0.1«. For a given target multivariate
Gaussian, we vary the number of particles from 2 to D + 1 and look at the absolute
difference of |tr(C — X)|. The results in D = 50, as well as the corresponding predictions
(in dashed-black), from Theorem 3, are shown on Figure 3.

The empirical results perfectly match the theoretical predictions, confirming that, for
Gaussian targets, the particles determine a low-rank approximation whose spectrum is
equal to the largest eigenvalues from the target.

100}
75}
~
I
8 50¢
—
=
25}
Ot , . ‘ : ;
10 20 30 40 50
# Particles

Figure 3. Trace error for a Gaussian target with D = 50 and condition numbers «x for a varying
number of particles with GPF. Predictions from Theorem 3 are shown in dashed-black.
4.3. High-Dimensional Low-Rank Gaussian Targets

We consider a typical low-rank target case where the dimensionality is high but the
effective rank of the covariance is unknown. The target is given by p(x) = N (p, ) where
# ~ N(0,Ip), the covariance is defined by © = UAU ", where U isa D x D unitary matrix
and A is a diagonal matrix defined by

A, — {N(Z,l), ifi <K

1078, otherwise

where K is the effective rank of the target. We pick D = 500 and vary K € {10,20,30} to
simulate a true problem where the correct K is not known. We test all methods allowing
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for low-rank structure, namely, GPF, GF, FCS and SVGD (Linear and Sq. Exp.). We fix the
rank (or the number of particles) to be 20; therefore, we obtain three cases where the rank is
exact, under-estimated, and over-estimated. For all methods, we use RMSProp [37] for the
stochastic methods, or a diagonal version of it (see Section 4.4) for the particle ones. The
error of the mean and the covariance is shown in Figure 4. Note that the difference in the
initial error on the covariance is due to the difficulty of starting with the same covariance
between particle and stochastic methods.

t_ t_
mt—pl . |Ct-73]
101'6 103.0
1014 1025
102.0
1012 K=10 1o
1010 1010
1016 101 100 10! 102 101 100 10t 102
1015 1035
101,4 103.0
103 10%°
101.2 K= 20 102.0
101.1 101.5
1010 1010
10-1 109 10! 107 10-1 109 10! 107
101.5 103'5
1014 1030
1013 1078
2.0
1002t K=30 10
1011 1072 \
I ‘ | | 1010 : ;
101 10° 10! 107 101 100 10! 107
Time [s] Time [s]
Particle Methods Stochastic Methods
—— GPF — GF
—— SVGD (Linear) — FCS

—— SVGD (Sq. Exp.)

Figure 4. Convergence plot of low-rank methods for a 500-dimensional multivariate Gaussian target
with effective rank K € {10,20,30}. The rank of each method is fixed as 20. The difference in the
starting point for the covariance is due to the initialization difference between each method. We show
the mean over 10 runs for each method with shadowed areas representing the 68% credible interval.

We observe once again that the SVGD with a linear kernel fails to converge due to the
large gradients. All methods perform equally in the estimation of the mean while being
non-influenced by the rank of the target. As expected, the approximation quality for the
covariance degrades when the rank gets bigger, but all algorithms still converge to good
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approximations. SVGD with a sq. exp. kernel performs much worse than the rest of the
methods. This is a known phenomenon where, for high dimensions, the covariance SVGD
is either over- or underestimated.

4.4. Non-Gaussian Target

We now investigate the behavior of our algorithm with non-Gaussian target distribu-
tions. We built a two-dimensional banana distribution: p(x) o exp(—0.5(0.01x% + 0.1(x, +
0.1x% - 10)2)), varied the number of particles used for GPF in {3,5,10,20,50} and com-
pared it with a standard full-rank VGA approach. We also showed the impact of replacing
a fixed n7 with the Adam [39] optimizer for 50 particles. The results are shown in Figure 5.
As expected, increasing the number of particles madesthe distribution obtained via GPF
increasingly closer to the optimal standard VGA, even in a non-Gaussian setting. However,
using a momentum-based optimizer such as Adam breaks the linearity assumption of the
original flow (5) and leads to a twisted representation of the particles. (We observed the
same behavior with other momentum-based optimizers). A simple modification of the
most known optimizers allows the linearity to be maintained while correctly adapting
the learning rate to the shape of the problem. Most optimisers accumulate momentum
or gradients element-wise, and end up modifying the updates as x' ™! = x! + P! @ ¢ (x!),
where P! € RP*D is the preconditioner obtained via the optimiser and ® is the Hadamard
product. By instead taking the average over each dimensions, we obtained the updates
¥l = xt 4 Plot(xt), where P! isa D x D diagonal matrix. The details of the dimension-
wise conditioners for ADAM, AdaGrad and AdaDelta are given in Appendix H.

3 particles 5 particles 10 particles 20 particles 50 particles ADAM

&PK@«F\/‘\@?/‘\

Figure 5. Two-dimensional Banana distribution. Comparison of GPF using an increasing number of
particles and a different optimizer (ADAM) with the standard VGA (rightmost plot).

4.5. Bayesian Logistic Regression

Finally, we considered a range of real-world binary classification problems mod-
eled with a Bayesian logistic regression. Given some data {(x;,y;)}Y, where x; € RP
and y € {—1,1}, we defined the model y; ~ Bernoulli(c(w" x;)) with weight w € RP,
and with ¢ being the logistic function. We set a prior on w: w N (0,10Ip). We bench-
marked the competing approaches over four datasets from the UCI repository [40]: spam
(N =4601,D = 104), krkp (N = 351,D = 111), ionosphere (N = 3196,D = 37) and
mushroom (N = 8124, D = 95). We ran all algorithms discussed in Section 4.1, both with
and without a mean-field approximation; SVGD was omitted since it is too unstable. All
algorithms were run with a fixed learning rate 7 = 10~#, and we used mini-batches of size
100. We show alternative training settings in Appendix I. Note that FCS, for mean-field,
simplifies to DSVI Additionally, we did not consider full-rank IBLR, as it is too expensive,
and we used their reparametrized gradient version for the Hessian. Figure 6 shows the
average negative log-likelihood on 10-fold cross-validation with one standard deviation
for each dataset. While, as expected, the advantages shown for Gaussian targets do not
transfer to non-Gaussian targets, GPF and GF are consistently on par with competitors. On
the other hand, IBLR tends to be outperformed. It is also interesting to note that mean-field
does not seem to have a negative impact on these problems, and performance remains the
same even with a full-rank matrix.

230



Entropy 2021, 23, 990

=== GF — FCS
ionosphere krkp
1.0
0.9
0.8 0.8
4
207 0.6
0.6
0.4
0.5
1071 100 107 1071 10° 10!
mushroom spam
0.9
0.8
0.8
0.6 0.7
o 0.6
=04
0.5
0.2 0.4
0.3
0.0
1071 10° 10! 1071 10° 10!
Time [s] Time [s]

(a) Mean-field approximation

ionosphere krkp
1.0
1.0
0.9
0.8 0.8
3
= 0.7 0.6
0.6
0.4
0.5
1071 10° 107 101 10° 10!
mushroom spam

1.0

0.8

NLL
o o o o
N b o @
o o
> o

0.0

101 10° 10t 10-1  10° 10!
Time [s] Time [s]
(b) No mean-field approximation

Figure 6. Average negative log-likelihood vs. time on a test-set over 10 runs against training time
for a Bayesian logistic regression model applied to different datasets. Top plots use a mean-field
approximation, while bottom plots use a low-rank structure for the covariance with rank L = 100.
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4.6. Bayesian Neural Network

We ran our algorithm on a standard network with two hidden layers each, with
L = 200 neurons and tanh activation functions (we additionally tried ReLU [41], but
some baselines failed to converge). We trained on the MNIST dataset [42] (N = 60,000,
D = 784) and used an isotropic prior on the weights p(w) = N'(0,alp) with a = 1.0.
We additionally compared these with Stochastic Weight Averaging-Gaussian (SWAG) [27]
with an SGD learning rate of 10~° (selected empirically) and Efficient Low-Rank Gaussian
Variational Inference (ELRGVI) [26]. We varied the assumptions on the covariance matrix to
be diagonal (Mean-Field), or to have rank L € {5,10}. Additionally, we showed, for GPF,
the effect of using a structured mean-field assumption by imposing the independence of
the weights between each layer (GPF (Layers)).

We trained each algorithm for 5000 iterations with a batchsize of 128(~10 epochs)
and reported the final average negative log-likelihood, accuracy and expected calibration
error [43] on the test set (N = 10,000) on Table 1. The predictive distribution is given by

ply = kx*, D) = [ ply = Klx*, w)p([D)dw ~ [ ply = kix*, w)q(w)dw,

where D is the training data, and x* is a test sample. We computed the accuracy and the
average negative test log-likelihood as:

1N ;
Acc = Zl 1y, (arg, max p(y = k|x}, D))
=

1 Y .
NLL = -} logp(y = yilx{, D)
i=1

where 1, (x) is the indicator function (equal to 1 for y = x, 0 otherwise). For the definition
of expected calibrated error, we refer the reader to [43]. Additional convergence and
uncertainty calibration plots can be found in Appendix I.

Table 1. Negative Log-Likelihood (NLL), Accuracy (Acc), and Expected Calibration Error (ECE)
for a Bayesian Neural Networks (BNN) on the MNIST dataset. We varied the rank of the variational
covariance from mean-field (all variables are independent) to a low-rank structure with L € {5,10}.
Bold numbers indicated the best performance, and italic bold numbers indicate the best performance
when restricted to VGA methods. Convergence and calibration plots can be found in Appendix I.

Alg Mean-Field L=5 L=10
g NLL Acc ECE NLL Acc ECE NLL Acc ECE
GPF 0.183 0.95 0.0384 0.166 0.96 0.0918 0.172 0.955 0.0869
GPF (Layers) - - - 0.147 0.958 0.0181 0.178 0.952 0.0395
GF 0.178 0.953 0.0706 0.185 0.956 0.136 0.171 0.952 0.0455
DSVI 0.204 0.945 0.11 - - - - - -
SVGD (Sq. Exp) - - - 0.139 0.965 0.0732 0.133 0.967 0.0879
SWAG - - - 0.257 0.957 0.0662 0.287 0.956 0.0878
ELRGVI - - - 0.453 0.901 0.53 0.537 0.882 0.777

Overall, the SVGD method performed best in terms of both accuracy and negative
log-likelihood. However, SVGD is not in the same category as others, since it is not a
VGA. For VGAs, we observed that a low-rank approximation improves upon mean-field
methods. In particular, assuming independence between layers provides a large advantage
to GPF. GPF and GF generally perform equally or better than all the other VGA methods.
Note that, although not reported here, all methods needed approximately the same time
for the 5000 iterations, except for SWAG, which only needed the MAP and a few thousand
iterations of SGD afterward, making it generally faster but also less controlled (a grid
search was needed to find the appropriate learning for SGD).
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5. Discussion

We introduced GPF, a general-purpose and theoretically grounded, particle-based
approach, to perform inference with variational Gaussians as well as GF its parameter
version. We were able to show the convergence of the particle algorithm based on an
empirical approximation of the free energy. We also showed that we can approximate
high-dimensional targets by allowing for low-rank approximations with a small number
of particles. The results for Gaussian targets suggest that the convergence of posterior
covariance approximation may relax asymptotically fast, with small dependence on the
target. This work is the first step in analyzing convergence speed and guarantees in
inference with variational Gaussians, and future work could extend guarantees to non-
Gaussian problems. One could also take advantage of existing particle-based VI methods
to accelerate inference further or reach a better optima [44,45].
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Appendix A. Derivation of the Optimal Parameters
In Section 3, we considered the optimization problem:

- dFq] At b a2 — 12
Arfg}relli it where B = {A",b" : |A"|lz =1, |V']|* =1},

where we have introduced || A?||% = tr(AAT), the Froebius norm and ||b*|, the L, norm and

dF[q']
dt

- ftr[At(Ai)T] — (b)) TBE (A1)

To solve this problem, we used the Lagrange multiplier method. We write the La-
grangian as:

LAY = d];i[tqt] — Aag(AY) = Aph(h),

where g(A) = tr(AAT) — 1 and h(b) = ||b]|3 — 1. For simplicity we can divide the
problem as:

(A = —u[al(a)T] = rag(a’)
£b') == (1) T, — Agh(t')

For A!, we have the constraints:
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VAttr[At(Ai)T] =AaV 4ig(AD)
g(Ah) =0

Computing the gradients is straightforward:

AL =214 A
At
= Al= %
2A4
1
= otr(AL(AD) ) =1
472
tr(AL(ADT)
Ag = N
= Aa 7

which gives us the result A* = H:}HF. Similarly for b*:

Vi () Tbt =1, Vi (b')

h(b') =0.
Replacing the gradients gives:
bt =27, bt
bt
bt —_*
Vo,
= g =1
4)\1%
2
=>Ap = 77
A
which gives us the result bt = th'il\z .

Appendix B. Relaxation of the Empirical Free Energy

We prove the decrease in the empirical free energy (17) under the particle flow when
the covariance C is nonsingular. We define the empirical distribution §(x) = % YN O
with a finite number N of particles. The empirical free energy is defined as

Fld) = Bqlp(x)] - 1 log]c].

We are interested in the temporal change of the free energy, when particles move under a
general linear dynamics

dx;
d—t’ =b+ A(x; —m).

The induced dynamics for F are:

dF Tdi} 1, dC

e Ey {Vx(p(x) i Etr(C T )

For notational simplicity, we introduce g(x) = Vy¢(x) and ¥ = % (similarly riz = 42).
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% Z&U
— i) = ) 7| + By [ = ) (x = 1) ]

—m)(x—m)"]

—F [(
=E, [J’ch +xx| —mm! — mmT]
—F, [

x(x — m)w +E, [(x - m)xw

%]Eq [tr(C e —m)T) 4 we(C e =) T
—F, [xT (g(x) Y (x— m))} (A2)

where we used the permutation properties of the trace.
Plugging the dynamics into Equation (A2), we obtain:

. TRy [3(0)) + By [(x— )" ATg(v)]

(A3)
- E,; {(x —m)TATC N (x — m)]
where we used the fact that b" C~1E,[x — m] = 0.
We next look for conditions on b and A, under Wthh 7 < 0,ie., the dynamics will
lead to a decrease in the free energy. We pick b = —B[E; [g( )], where B > 0, and we
obtain, for the first term in (A3):

—B1llEq[g(0)]]1* < 0.

For A, let us first define ¢ = E,[g(x)(x — m) " | and rewrite the second and last term
of the Equation (A3) as:

]Eq[(x— m)TATg( } tr(]E,,[ m)T])
~tr(a )
Eq|(x—m) ATCT (x—m)| =tr(ATC'C)
=tr(A)

Combining both, we get tr(A”(y —I)). Similarly to the previous step, we pick A =
—Ba2(p — I), where B, > 0, which leads to another negative term:

—Batr((p =) (p = 1)) <0,

where we use the fact that X ' X is a positive semi-definite matrix for any real valued X.

Note that different forms of A (e.g., B> are replaced by a positive definite matrix) could
be used, as long as the trace of the product stays positive. Inserting b and A, the free energy
dynamics become

7 BBy ()~ Bate((p— 1) ()

The variable dynamics are given by
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B BB [5(x)] ~ Baly — D)x —m)
= — BiEy[g(x)]
— B2(Eg [g(0)(x—m) | = 1) (x —m),

which is equivalent to Equation (5), for 81 = B2 = 1. Our result shows that the empirical
approximation of the free energy decreases under the particle flow.

Appendix C. Riemannian Gradient for Matrix Parameter I'

The parameter flow for the matrix I in (11) is given by

dr
=T —Ey [Vap(a) (x = m®) Tt ()T,

This is easily rewritten in terms of the parameter gradient as dd—rtt = %IT T

Similar to natural gradients, which are defined by the metric, which is induced by
the Fisher-matrix, we can rewrite the parameter change in terms of a different Riemannian
gradient. This gradient is the direction of change dI" = T(t + dt) — I'(t), which yields
the steepest descent of the free energy over a small time interval dt. As an extra con-
dition, one keeps the length of dI' (measured by a 'natural’ metric, which has specific
invariance properties) fixed. This is defined by an inner product (the squared length)
(dT,dT)r in the tangent space of small deviations dI" from the matrix I'. Hence, dT is
found by minimising F (I'(t) + dT, m) (for small dT') under the condition that (dT', dT')r(;) is
fixed. Following [20] (Theorem 6), a natural metric in the space of symmetric nonsingular
matrices can be defined as

(dT,dT')y = tr((dr r-H7dr r—l).

This metric is invariant against multiplications of I and dI" by matrices Y, i.e., (dT,dl')r =
(dT Y, dT Y)ry and reduces to the Euclidian metric at the unit matrix I' = I.

The direction of the natural gradient is obtained by expanding the free energy for
small dT" and introducing a Lagrange-multiplier A for the constraint. One ends up with the
quadratic form

oF ~I\T -1
?ﬁ:drﬁ—Au<(drl‘ )Tdr T )
to be minimised by dI'. By taking the derivative with respect to dI', one finds that the

direction of dI" agrees with the right equation of the flow (11).

Appendix D. Regularised Free Energy for N < D

The problem of defining an empirical approximation for N < D particles is that the
empirical covariance becomes singular and typically has N — 1 nonzero eigenvalues, and
thus |C| = 0. Note that the extra 0 eigenvalue is derived from the fact that the empirical
sum of fluctuations must be zero, which provides an additional linear constraint.

We can regularise the log determinant term by replacing the zero eigenvalues of C:
A; =0 — A; = 1. The new covariance C becomes

log\é\ = Z log A,
iA;>0

since log 1 = 0. The dynamics of the particles stays the same. To rewrite this formally in
terms of matrices, we define

C=C+cC,
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where
Ci=Y eef
i:A;=0
and ¢; = ith eigenvector of C. This replaces all 0 eigenvalues by 1. C, is a projector:

C3 =Cpand C (I —C;) = 0. Wealso have tr(C;) = D — (N —1). In the following,
it is useful to introduce the D x N matrix of fluctuations Z, such that C = ZZ' /N. The
column vectors of Z span the subspace of eigenvectors ¢; with A; > 0. Hence, it follows
that C LZ =0.

We want to show that the regularised free energy F decreases under the particle
dynamics for N < D. Since the part of the time derivative of F that depends on %’ is not
changed, we will only discuss the fluctuation part in the following.

It is useful to introduce the matrix:

A=1-C, —gZ"/N=A-Cy,

with ¢ = Vy¢(x) is the D x N matrix of the gradient.

E,; {g(x)Tdd—ﬂ =tr(A) —tr(AT A)

=tr(A4+C)—tr((A+C ) (A+CL))
=tr(A) —tr(AT A).
To obtain this result, we need
tr(CLA) =tr(CLAT)
=tr(C, (I-C,)—C,Zg" /N) =0.

We need to work out

_1d1n|(~:|7
2 dt

where we have used the fact that the eigenvalues A; = 1 of C have a zero time derivative
and can be omitted. We use the linear dynamics % = AZ to obtain:

dac

—_— == T
i CA + AC

=(C—C)(AT+CL)+(A+Cy)(C-Cy)
=CA"+AC+C,C+CC, —AC, —C AT —2C,
=CA" 4+ AC,

where we have used C2l =C,andC; AT = 0. Hence

1, (dC~ 1\ _ ~
—2tr<dtC )—tr(A).
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Finally, the temporal change in the free energy due to the fluctuations is given by

dF o
= = — <0.
= w(ATA) <0

Note that this proof is not only valid for N < D, but also for N > D, as the overall
computations are simplified with C; = 0. A more detailed proof for N > D is, furthermore,
given in Appendix B.

Efficient Computation oflog’é‘

A practical way to compute log |C| without performing an eigenvector expansion is
to define the N x N matrix

R=Z"Z/N+Jun/N,

where [y n is the N x N all-ones matrix. ZTZ /N shares the N — 1 nonzero eigenvalues with
C and has an additional eigenvalue 0 corresponding to the constant eigenvector (ey); =
1/+/N. Adding an all-ones matrix preserves all existing eigenvalues while replacing the 0
one with a constant. This leads to the following result:

1 1 N-1
—Elog\R| =-3 g log A;.

Appendix E. Proof of Theorem 1: Fixed Points for a Gaussian Model (N > d)

Theorem A1 (1). If the target density p(x) is a D-dimensional multivariate Gaussian, only D + 1
particles are needed for Algorithm 2 to converge to the exact target parameters.

The general fixed-point condition for the dynamics (13) of the position x; for particle i
is given by:

(1= [g(x)(x = m) T ]) (s — m) = Eylg(x)] = 0.
fori =1,...,N. By taking the expectation over all particles, we obtain:
E4ls(x)] =0, (A4)

where 4 is the empirical distributions of particles at the the fixed point. Note that this result
is independent of N, i.e., it is also valid for N = 1.

For a D-dimensional Gaussian target p(x) = N (y, £), we will show that empirical
mean and covariance given by the particle algorithm converge to the true mean and
covariance matrix of the Gaussian when we use N > D + 1 particles. In this setting, we
have ¢(x) = %xTZ_lx — xT £y, For simplification, we use the precision matrix A = %!
and get

¢(x) = %xTAx —xTAp.

The gradient g(x) becomes:

g(x) = Alx —p)
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At the fixed points, we have that ‘fj—”: and % are equal to 0. For the mean m:

dm
g, =
= Bylg(x)] =0
ABg[x— ] =0
Am =Ap
m=pu
For the matrix I', we have
dar
i — AT =0

I —Ey, [g(x)(x - m)w =0
Eqg, {A(x —u)(x— m)wl’ =T
=212y, [(x —m)(x — m)T} r=r
ACT =T

AC? =

where we use the result for the mean m = p and right multiplied by T'T as C = I'T . Now,
we can only simplify, as C = A~! = X if C is not singular. This is true only if its rank is
equal to D, needing D + 1 particles.

Appendix F. Proof of Theorem 2: Rates of Convergence for Gaussian Targets

Theorem A2 (2). Fora target p(x) = N'(x | , A=1), where x € RP, and N > D + 1 particles,
the continuous time limit of Algorithm 2 will converge exponentially fast for both the mean and the
trace of the precision matrix:

t

mt—u =eM(

m® — ),
(€)= A) = u((<0) - A),

where m' and C' are the empirical mean and covariance matrix at time t and exp(—At) is the
matrix exponential.

In the following, we assume the target p(x) = N (y, £) We use the notation A = £~
and 6C* = Ct — %.

Appendix F.1. Convergence of the Mean

Given our target p(x), similarly to Appendix E we have g(x) = A(x — u), where
m=Xlyand i = —%Z_l. This transform the first of Equations (11) into

%1 == A(By[x] —p)

—A(m—p)
If now consider the error on m : §m = m — y we obtain:

dém dm
T Tar - Amw

= — Adm.
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Therefore, the mean converges exponentially fast to the true mean. The asymptotic rate
is governed by the largest eigenvalue of A, i.e., the inverse of the smallest eigenvalue of
2, Amin-

Appendix F.2. Convergence of the Covariance Matrix
Let z = x — m, we have from Equation (5), that

dz
i —Az

where A = By, [¢(x)z"] — I. This expectation can further be simplified as
E; [A(x - y)zw =AC, (A5)
where g ~ N (m, C). Hence, we have the exact result

dd—f =(I—-AC)C+C(I—CA). (A6)
We know that the optimal target is C = X. Therefore, we define the error C = C — X.
Linearizing Equation (A6) gives us
doC _ dC
T dr =(I-A(6C+X))(6C+X)
+(C+Z)(I—-(6C+X)A)
=—ASC(6C+X)— (0C+X)JCA
~ — N6CX — XOCA

We were not yet able to find a general solution of this equation, but we can obtain a simple
result for the trace y = tr(6C) at time #:

d t

Yoo —2yt.
dt
We, therefore, have a asymptotic linear convergence: y* « ¢~2'% which is independent of
the parameters of the Gaussian model.

We can also equivalently obtain a non-asymptotic estimate of a specific error measure

for the precision matrix. Using equation (A6), we have the following dynamics for the
precision C1:

dc' __,dC__,4
a - ¢ wc
=—-CYI-AC)—(I-AC)C!
Taking the trace
-1
% = —2tr(C7 1) —2tr(A)
dtr(C™1 — A)

- _ -1_
I =—2tr(C A)

Hence we get the following exact result:

tr((CH™1 = A) = e 2 ((CO) "1 — A)
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which is again independent of the parameters of the Gaussian model.

Additionally, this tells us that if the covariance C is non-singular at time ¢ = 0, it will
remain non-singular for all ¢ (tr(C~!) would be infinite). Hence, if we start with N > d
particles with a proper empirical covariance, they cannot collapse to make C singular.

Appendix F.3. Convergence of the Trace of the Covariance

The asymptotic result on traces obtained previously can be turned into an exact
inequality. We have

‘%C = —ASCE — ZASC — A(6C)? — (5C)°A
Taking the trace, we get
dtr’;ic) — 21(6C) — 2tr(6CASC)

Since CAJC is positive definite, we have —2tr(§CAJC) < 0 and thus

dtr(6C)
dt

< —2tr(6C)
leading to:

tr(6Ct) < tr(6C%)e
by using by Gronwall’s lemma [46]:

Lemma A1 (Gronwall). For an interval Iy = [0,00) and a given function f differentiable
everywhere in Iy and satisfying:

) <BOfE), tel
then f is bounded by the corresponding differential equation ' (t) = B(t)g(t):

£ <50 [ B5)as, ety

The bound is nontrivial only if tr(6C) > 0. This would be natural assumption
for a Bayesian model, if C? is the prior covariance and the eigenvalues of C at t = oo
(corresponding to the posterior) are reduced by the data.

Appendix F.4. Decay of Fluctuation Part of the Free Energy

Still focusing on the Gaussian model, we can further derive a bound on the free energy.
It is easy to see that for the Gaussian case, the free energy in Equation (4) separates into a
sum of two terms. The first one depends on the mean m' only and the second one on only
the fluctuations (i.e., Cf).

We will consider the second, nontrivial part only. We assume that the covariance
matrix is nonsingular (corresponding to N > D). The fluctuation part of the free energy
(minus its minimum) is given by

1 1
.7:f1 = 7§ln|17 B| — Etr(B)
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where we have introduced the matrix B = I — AC. One can show that its eigenvalues are
real and are upper bounded by 1. First, we can show from the equations of motion that

dFs T

T —tr(BB") (A7)
Second, using the elementary bound — In(1 — u) < % valid for u < 1 and applied to the
eigenvalues of B yields

Fn g%tr(B(I —B)"'—B)

:%tr(B(I —B)'—=BUI-B)(I-B)™

1 _
:itr(Bz(I -B)h

:%tr(BZC*lA*) < %tr(BTA’lBC’l)

The last two equalities used the definition B = I — AC. Since BT'A 1B and C ! are both
positive definite, we can bound the last term by (see ([47], Theorem 6.5))

Fp < %tr(BTA_lB)tr(C_l) <
%tr(BBT)tr(A’l)tr(C’l)),
where, in the last line, we have bounded the trace of a product of p.d. matrices a sec-
ond time.
Combining with Equation (A7) we show that
dFs - 2F5

dt = (A Hr(C 1)

We can plug in our result from Theorem 2:

tr(C1) =tr(A) +tr(C 1 = A)
=tr(A) + e 2 ((CO) ™ — A)
<tr(A) +e (€)' —A))
<tr(A) + [ ((CO) ' = A)|

We can plug this in and use Grénwall’s Lemma Al to get an exponential bound

2
]_—ﬂ(ct) < ]-'ﬂ(CO)[ {tr(/\*l)(tr(A)+\£r((C0)*1—A)\)].
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Appendix E5. Asymptotic Decay of the Free Energy:

For large times t, we can do better. Let us analyse the asymptotic decay constant
Fp = e~ Mreet defined by

dF,
dIn(F, =n
Afree = — lim M = —lim -4
t—o0 dt £l

tr(BBT)
—3In|I—B|—te(B) ~
tr(B?)
—1In|I - B| - tr(B)

= lim

lim

In the last inequality, we used tr(BBT) > tr(B?). Everything is expressed by traces of
functions of B, and thus by its eigenvalues. Since B — 0 as t — co (this applies also
to its eigenvalues u), we can use Taylor’s expansion In(1 — u) +u = —u?/2+ O(u®) to
show that

A free >4
which is independent of A.

Appendix G. Proof of Theorem 3: Fixed-Points for Gaussian Model (N < D)

Theorem A3 (3). Given a D-dimensional multivariate Gaussian target density p(x) = N (x|u, Z),
using Algorithm 2 with N < D + 1 particles, the empirical mean converges to the exact mean 1.
The N — 1 non-zero eigenvalues of C' converge to a subset of the target covariance L. spectrum.
Furthermore, the global minimum of the regularised version F of the free energy (17) corresponds
to the largest eigenvalues of ¥.

Applying Equation (A4) to our fixed point equation, we obtain
(Iqu[g(x)(xfm)T])(x,- —m)=0,Vi=1,...,N

Hence, the set of centered positions of the particles S = {x; — m}f\i 1, are all eigenvectors of
the matrix ;[ (x) (x — m) | with eigenvalue 1. S spans a N — 1 dimensional space (we
have Zﬁl(xi —m) =0).

If we specialise to a Gaussian target p(x) = N (x | #,X), (and A = Z~! we have
g(x) = A(x — p) and can reuse the result from Equation (A5):

Eq [g(x)(x - m)T] = AE, [(x —m)(x — m)T}
=AC.
Using the equality above, we get:

AC(x; —m) =(x; —m)
C(x; —m) =%(x; —m), Vi=1,...,N

which shows that the obtained low-rank covariance C and the target covariance X have
N — 1 eigenvectors and eigenvalues in common.
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However, are these the largest ones? We look at the modified free energy (17) (ignoring
the contribution of the mean):

rnin]?min{—1 Z ln/\,'-i-tr(AC)}
i:A;>0

where A; are the eigenvalues of the empirical covariance C. We first note that tr(AC) =
N — 1, independent of which eigenvalues are obtained at the fixed point. This is easily seen
by the following argument: If we use the index-set Z for the common eigenvectors ¢; and
eigenvalues A;, i € Z, we can write

C= 2 6,‘/\,‘6,Tr
i€l
Y= Zei/\,‘EIT
i

From this we obtain
tr(AC) = tr(}_ eiA; Ae ") = N—1
i€l

From this result we obtain

. = 1
min F =max 5 Z InA; — (N —1),
i:A;>0

The term~N — 1 is a constant, but the first term makes a difference: The absolute mini-
mum of F is achieved, when the A; are N — 1 largest eigenvalues of ¥.. Our simulations
empirically show that the algorithm usually converges to the absolute minimum.

Appendix H. Dimension-Wise Optimizers

Here, we list some of the most populars optimizers used and their dimension-wise
versions. In all algorithms, we consider ¢ the matrix created by the concatenation of the
flow of each particle: ¢ = [¢1, ..., n], where ¢, = ¢(x,,) We additionally use the notation
@y, for the i-th dimension of the flow of the n-th particle. The main differences between
the original algorithms and their modified version were put in red.

Appendix H.1. ADAM
The ADAM algorithm is given by:

Algorithm A1l: ADAM

Input: ¢, m' 1, 0!, By, Bo, 1y
Output: A

ml g = pimly L+ (1= B1) gl

2
-1

Vg = Pav, g +(1-p2) (4’?1,(1)

m’n,d

(1=84) (/s (1—B5) T +¢)

An,d =1
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Algorithm A2: Dimension-wise ADAM

Input: ¢, m' 1, 0"~ 1, By, B, 1y
Output: A

ml g = By + (1= B)@),

t t—1 1 N t 2.
Uy = ﬁzvd + (1 - .BZ)N Zn:l ((Pn,d) ’
m;'d

=) (VAP Tre)’

An,d =1

Appendix H.2. AdaGrad
The AdaGrad algorithm is given by:

Algorithm A3: AdaGrad

Input: ¢!, 01,y
Output: A
2
t_ t—1 t
Un/d - vn,d + (q)n,d)
q):z,d

Apg=n—2d
T e

Algorithm A4: Dimension-wise AdaGrad

Input: ¢!, 01,y
Output: A
2
t=1_ 1 yvN
vg =75 +§ Lam (‘Pﬁ,d)
gU;[x/d

An,d =1 \/E*f
:

Appendix H.3. RMSProp
The RMSProp algorithm is given by:

Algorithm A5: RMSProp

Input: ¢!, 0"~ 1, 0,7
Output: A

t t—1 t 2
Un/d = pvn,d + (1 - ,0) (q)n,d)
fl’,tz,d

ol te

1,4

An,d =1

Algorithm A6: Dimension-wise RMSProp

Input: ¢!, 0"~ 1, 0,7
Output: A

2
o = oo+ (1-p)F 201 (0)0)
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Appendix I. Additional Figures
Appendix 1.1. Bayesian Logistic Regression

Similarly to the previous section, we also show results with the RMSProp optimizer
with learning rate 1 x 1074,

--- GPF —— DSVI —— IBLR
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1.0 1.2} ey
09 1.0—_~\ 1.0
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(a) Mean-field approximation

(b) No mean-field approximation

Figure A1l. Similarly to Figure 6, we show the average negative log-likelihood on a test-set over
10 runs against training time on different datasets for a Bayesian logistic regression problem. The
dashed curve represents the low-rank approximation with RMSProp for methods based on stochas-
tic estimators.

Appendix 1.2. Bayesian Neural Network
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Figure A2. Convergence of the classification error and average negative log-likelihood as a function

of time.
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Figure A3. Accuracy vs confidence. Every test sample is clustered in function of its highest predictive
probability. The accuracy of this cluster is then computed. A perfectly calibrated estimator would
return the identity.
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Abstract: We developed a novel approximate Bayesian computation (ABC) framework, ABCDP,
which produces differentially private (DP) and approximate posterior samples. Our framework
takes advantage of the sparse vector technique (SVT), widely studied in the differential privacy
literature. SVT incurs the privacy cost only when a condition (whether a quantity of interest is
above/below a threshold) is met. If the condition is sparsely met during the repeated queries, SVT
can drastically reduce the cumulative privacy loss, unlike the usual case where every query incurs
the privacy loss. In ABC, the quantity of interest is the distance between observed and simulated
data, and only when the distance is below a threshold can we take the corresponding prior sample as
a posterior sample. Hence, applying SVT to ABC is an organic way to transform an ABC algorithm
to a privacy-preserving variant with minimal modification, but yields the posterior samples with a
high privacy level. We theoretically analyzed the interplay between the noise added for privacy and
the accuracy of the posterior samples. We apply ABCDP to several data simulators and show the
efficacy of the proposed framework.

Keywords: approximate Bayesian computation (ABC); differential privacy (DP); sparse vector
technique (SVT)

1. Introduction

Approximate Bayesian computation (ABC) aims to identify the posterior distribution
over simulator parameters. The posterior distribution is of interest as it provides the
mechanistic understanding of the stochastic procedure that directly generates data in many
areas such as climate and weather, ecology, cosmology, and bioinformatics [1-4].

Under these complex models, directly evaluating the likelihood of data is often in-
tractable given the parameters. ABC resorts to an approximation of the likelihood function
using simulated data that are similar to the actual observations.

In the simplest form of ABC called rejection ABC [5], we proceed by sampling multiple
model parameters from a prior distribution 7t: 64, 6,, ... ~ 7. For each 6;, a pseudo dataset
Y} is generated from a simulator (the forward sampler associated with the intractable
likelihood P(y|6)). The parameter 6; for which the generated Y; are similar to the observed
Y*, as decided by p(Y;, Y*) < €, is accepted. Here, p is a notion of distance, for instance,
L2 distance between Y; and Y* in terms of a pre-chosen summary statistic. Whether the
distance is small or large is determined by €., a similarity threshold. The result is samples
{9:}?11 from a distribution, P (8] Y*) « 71(8)P.(Y*|6), where P.(Y*|0) = fB R P(Y|0)dY
and Be(Y*) = {Y : p(Y,Y") < €z} As the likelihood computation is approx1mate, S0
is the posterior distribution. Hence, this framework is named by approximate Bayesian
computation, as we do not compute the likelihood of data explicitly.

Most ABC algorithms evaluate the data similarity in terms of summary statistics
computed by an aggregation of individual datapoints [6-11]. However, this seemingly
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innocuous step of similarity check could impose a privacy threat, as aggregated statistics
could still reveal an individual’s participation to the dataset with the help of combining
other publicly available datasets (see [12,13]). In addition, in some studies, the actual
observations are privacy-sensitive in nature, e.g., Genotype data for estimating tuberculosis
transmission parameters [14]. Hence, it is necessary to privatize the step of similarity check
in ABC algorithms.

In this light, we introduce an ABC framework that obeys the notion of differential
privacy. The differential privacy definition provides a way to quantify the amount of
information that the distance computed on the privacy-sensitive data contains, whether or
not a single individual’s data are included (or modified) in the data [15]. Differential privacy
also provides rigorous privacy guarantees in the presence of arbitrary side information such
as similar public data.

A common form of applying DP to an algorithm is by adding noise to outputs of
the algorithm, called output perturbation [16]. In the case of ABC, we found that adding
noise to the distance computed on the real observations and pseudo-data suffices for the
privacy guarantee of the resulting posterior samples. However, if we choose to simply
add noise to the distance in every ABC inference step, this DP-ABC inference imposes
an additional challenge due to the repeated use of the real observations. The composition
property of differential privacy states that the privacy level degrades over the repeated
use of data. To overcome this challenge, we adopt the sparse vector technique (SVT) [17],
and apply it to the rejection ABC paradigm. The SVT outputs noisy answers of whether
or not a stream of queries is above a certain threshold, where privacy cost incurs only
when the SVT outputs at most ¢ “above threshold” answers. This is a significant saving in
privacy cost, as arbitrarily many “below threshold” answers are privacy cost free.

We name our framework, which combines ABC with SVT, as ABCDP (approximate
Bayesian computation with differential privacy). Under ABCDP, we theoretically ana-
lyze the effect of noise added to the distance in the resulting posterior samples and the
subsequent posterior integrals. Putting together, we summarize our main contributions:

1. We provide a novel ABC framework, ABCDP, which combines the sparse vector technique
(SVT) [17] with the rejection ABC paradigm. The resulting ABCDP framework can
improve the trade-off between the privacy and accuracy of the posterior samples,
as the privacy cost under ABCDP is a function of the number of accepted posterior
samples only.

2. We theoretically analyze ABCDP by focusing on the effect of noisy posterior samples
in terms of two quantities. The first quantity provides the probability of an output
of ABCDP being different from that of ABC at any given time during inference.
The second quantity provides the convergence rate, i.e., how fast the posterior integral
using ABCDP’s noisy samples’ approaches that using non-private ABC’s samples.
We write both quantities as a function of added noise for privacy to better understand
the characteristics of ABCDP.

3. We validate our theory in the experiments using several simulators. The results of
these experiments are consistent with our theoretical findings on the flip probability
and the average error induced by the noise addition for privacy.

Unlike other existing ABC frameworks that typically rely on a pre-specified set of
summary statistics, we use a kernel-based distance metric called maximum mean discrepancy
following K2-ABC [18] to eliminate the necessity of pre-selecting a summary statistic. Using
a kernel for measuring similarity between two empirical distributions was also proposed in
K-ABC [19]. K-ABC formulates ABC as a problem of estimating a conditional mean embed-
ding operator mapping (induced by a kernel) from summary statistics to corresponding
parameters. However, unlike our algorithm, K-ABC still relies on a particular choice of
summary statistics. In addition, K-ABC is a soft-thresholding ABC algorithm, while ours is
a rejection-ABC algorithm.

To avoid the necessity of pre-selecting summary statistics, one could resort to methods
that automatically or semi-automatically learn the best summary statistics given in a
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dataset, and use the learned summary statistics in our ABCDP framework. An example is
semi-auto ABC [6], where the authors suggest using the posterior mean of the parameters
as a summary statistic. Another example is the indirect-score ABC [20], where the authors
suggest using an auxiliary model which determines a score vector as a summary statistic.
However, the posterior mean of the parameters in semi-auto ABC as well as the parameters
of the auxiliary model in indirect-score ABC need to be estimated. The estimation step
can incur a further privacy loss if the real data need to be used for estimating them. Our
ABCDP framework does not involve such an estimation step and is more economical in
terms of privacy budget to be spent than semi-auto ABC and indirect-score ABC.

2. Background

We start by describing relevant background information.

2.1. Approximate Bayesian Computation

Given a set Y* containing observations, rejection ABC [5] yields samples from an
approximate posterior distribution by repeating the following three steps:

6 ~ 7(0), @
Y ={y1,y2...} ~P(yl0), 2
Pe,, (0]Y") ~ Pe,, (Y*|0)7(6), 3

where the pseudo dataset Y is compared with the observations Y* via:

P, (Y*]0) = P(Y|6)dY,
w10 = [ PO0)
Beabu(Y*) = {Y“D(Y, Y*) < eabc}r (4)

where p is a divergence measure between two datasets. Any distance metric can be used
for p. For instance, one can use the L2 distance under two datasets in terms of a pre-chosen
set of summary statistics, i.e., p(Y,Y*) = D(S(Y), S(Y*)), with an L2 distance measure D
on the statistics computed by S.

A more statistically sound choice for p would be maximum mean discrepancy (MMD, [21])
as used in [18]. Unlike a pre-chosen finite dimensional summary statistic typically used in
ABC, MMD compares two distributions in terms of all the possible moments of the random
variables described by the two distributions. Hence, ABC frameworks using the MMD
metric such as [18] can avoid the problem of non-sufficiency of a chosen summary statistic
that may occur in many ABC methods. For this reason, in this paper, we demonstrate our
algorithm using the MMD metric. However, other metrics can be used as we illustrated in
our experiments.

Maximum Mean Discrepancy

Assume that the data Y C & and let k: X' x X be a positive definite kernel. MMD
between two distributions P, Q is defined as

MMD?(P, Q) = Ey v pk(x,x") + By 0k(y,y') — 2B pByok(%, ). (5)

By following the convention in kernel literature, we call MMD? simply MMD.

The Moore-Aronszajn theorem states that there is a unique Hilbert space H on which
k defines an inner product. As a result, there exists a feature map ¢: X — H such that
k(x,y) = (¢(x),¢(v)), where (-,-)4, = (-, ) denotes the inner product on . The MMD
in (5) can be written as

MMD?(P, Q) = [[Exvr[¢(x)] — Eymold )],
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where E, _p[¢(x)] € H is known as the (kernel) mean embedding of P, and exists if
Eypy/k(x,x) < oo [22]. The MMD can be interpreted as the distance between the
mean embeddings of the two distributions. If k is a characteristic kernel [23], then
P — E..p[¢(x)] is injective, implying that MMD(P,Q) = 0, if and only if P = Q.
When P, Q are observed through samples X, = {x;}/"; ~ Pand Y,, = {y;}/.; ~ Q,

0

MMD can be estimated by empirical averages [21] (Equation (3)): MMD (X, Ys) =
# ):?,;:1 k(x;, xj) + ”iz Z?,j:l k(yi,yj) - % }":1 27:1 k(xi,yj). When applied in the ABC
setting, one input to MMD is the observed dataset Y* and the other input is a pseudo
dataset Y; ~ p(+|6;) generated by the simulator given 6; ~ 77(6).

2.2. Differential Privacy

An output from an algorithm that takes in sensitive data as input will naturally
contain some information of the sensitive data D. The goal of differential privacy is to
augment such an algorithm so that useful information about the population is retained,
while sensitive information such as an individual’s participation in the dataset cannot
be learned [17]. A common way to achieve these two seemingly paradoxical goals is by
deliberately injecting a controlled level of random noise to the to-be-released quantity.
The modified procedure, known as a DP mechanism, now gives a stochastic output due to
the injected noise. In the DP framework, a higher level of noise provides stronger privacy
guarantee at the expense of less accurate population-level information that can be derived
from the released quantity. Less noise added to the output thus reveals more about an
individual’s presence in the dataset.

More formally, given a mechanism M (a mechanism takes a dataset as input and
produces stochastic outputs) and neighboring datasets D, D’ differing by a single entry
(either by replacing one’s datapoint with another, or by adding/removing a datapoint
to/from D), the privacy loss of an outcome o is defined by

P(M(D)

) _ 0)
L 7logP(M(D’): ) (6)

The mechanism M is called e-DP if and only if |L(%)| < ¢, for all possible outcomes 0 and
for all possible neighboring datasets D, D’. The definition states that a single individual’s
participation in the data does not change the output probabilities by much; this limits the
amount of information that the algorithm reveals about any one individual. A weaker
or an approximate version of the above notion is (e, d)-DP: M is (e, )-DP if |L(")\ < g
with probability 1 — 6, where ¢ is often called a failure probability which quantifies how
often the DP guarantee of the mechanism fails.

Output perturbation is a commonly used DP mechanism to ensure the outputs of
an algorithm to be differentially private. Suppose a deterministic function h : D +— RP
computed on sensitive data D outputs a p-dimensional vector quantity. In order to make
h private, we can add noise to the output of &, where the level of noise is calibrated to
the global sensitivity [24], Aj,, defined by the maximum difference in terms of some norm
[|h(D) — h(D")|| for neighboring D and D’ (i.e., differ by one data sample).

There are two important properties of differential privacy. First, the post-processing
invariance property [24] tells us that the composition of any arbitrary data-independent
mapping with an (e, §)-DP algorithm is also (€,6)-DP. Second, the composability theo-
rem [24] states that the strength of privacy guarantee degrades with the repeated use of
DP-algorithms. Formally, given an €;-DP mechanism M and an €,-DP mechanism M,
the mechanism M(D) := (M;(D), M2(D)) is (€1 + €2)-DP. This composition is often-
called linear composition, under which the total privacy loss linearly increases with the
number of repeated use of DP-algorithms. The strong composition [17] [Theorem 3.20]
improves the linear composition, while the resulting DP guarantee becomes weaker (i.e.,
approximate (€, 6)-DP). Recently, more refined methods further improve the privacy loss
(e.g., [25]).
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2.3. AboveThreshold and Sparse Vector Technique

Among the DP mechanisms, we will utilize AboveThreshold and sparse vector technique
(SVT) [17] to make the rejection ABC algorithm differentially private. AboveThreshold
outputs 1 when a query value exceeds a pre-defined threshold, or 0 otherwise. This
resembles rejection ABC where the output is 1 when the distance is less than a chosen
threshold. To ensure the output is differentially private, AboveThreshold adds noise to
both the threshold and the query value. We take the same route as AboveThreshold to
make our ABCDP outputs differentially private. Sparse vector technique (SVT) consists of
c calls to AboveThreshold, where c in our case determines how many posterior samples
ABCDP releases.

Before presenting our ABCDP framework, we first describe the privacy setup we
consider in this paper.

3. Problem Formulation

We assume a data owner who owns sensitive data Y* and is willing to contribute to the
posterior inference.

We also assume a modeler who aims to learn the posterior distribution of the parameters
of a simulator. Our ABCDP algorithm proceeds with the two steps:

1. Non-private step: The modeler draws a parameter sample 0; ~ 77(6); then generates a
pseudo-dataset Y;, where Y; ~ P(y|6;) fort = 1,---, T for a large T. We assume these
parameter-pseudo-data pairs {6, Y;}_; are publicly available (even to an adversary).

2. Private step: the data owner takes the whole sequence of parameter-pseudo-data pairs
{(6;,Yy)}_, and runs our ABCDP algorithm in order to output a set of differentially
private binary indicators determining whether or not to accept each 6;.

Note that T is the maximum number of parameter-pseudo-data pairs that are publicly
available. We will run our algorithm for T steps, while our algorithm can terminate as soon
as we output the ¢ number of accepted posterior samples. So, generally, c < T. The details
are then introduced.

4. ABCDP

Recall that the only place where the real data Y* appear in the ABC algorithm is when
we judge whether the simulated data are similar to the real data, i.e., as in (4). Our method
hence adds noise to this step. In order to take advantage of the privacy analysis of SVT, we
also add noise to the ABC threshold and to the ABC distance. Consequently, we introduce
two perturbation steps.

Before we introduce them, we describe the global sensitivity of the distance, as this
quantity tunes the amount of noise we will add in the two perturbation steps. For
p(Y*,Y) = l\ﬁ\_/[TD(Y*, Y) with a bounded kernel, then the sensitivity of the distance is
Ay = O(1/N) as shown in Lemma 1.

Lemma 1 (A, = O(1/N) for MMD). Assume that Y* and each pseudo dataset Y; are of

the same cardinality N. Set p(Y*,Y) = l\m(Y*,Y) with a kernel k bounded by By > 0,
ie., sup, .y k(x,y) < By < co. Then:

* « 2
sup Jo(Y",Y) = p(Y",Y)| < &y = /By
(Y- ")y

and supy. y p(Y*,Y) < 21/B;.

A proof is given in Appendix B. For p = MMD using a Gaussian kernel, k(x,y) =
exp (7%) where [ > 0 is the bandwidth of the kernel, By =1 for any [ > 0.

Now, we introduce the two perturbation steps used in our algorithm summarized in
Algorithm 1.
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Algorithm 1 Proposed c-sample ABCDP

Require: Observations Y*, Number of accepted posterior sample size c, privacy tolerance
€total, ABC threshold €., distance p, and parameter-pseudo-data pairs {(6y, Y;)}I_;,
and option RESAMPLE.

Ensure: €,,-DP indicators {%}]_, for corresponding samples {6;}]_;
1: Calculate the noise scale b by Theorem 1.
2: Privatize ABC threshold: é,,. = €, + m; via (7)

3: Set count=0
4: fort=1,...,T do

5. Privatize distance: p; = p(Y*,Y;) + 14 via (8)
6: if py < &, then

7: Output ; =1

8: count = count+1

9 if RESAMPLE then
10: Eape = €qpe +my via (7)
11: end if
12:  else
13: Output §; =0
14:  end if

15:  if count > c then

16: Break the loop

17:  end if

18: end for

Step 1: Noise for privatizing the ABC threshold.

€abe = €qpe + My (7)

where m; ~ Lap(b), i.e., drawn from the zero-mean Laplace distribution with a scale
parameter b.
Step 2: Noise for privatizing the distance.

pr=p(Y", Yi) + v (8)

where v; ~ Lap(2b).

Due to these perturbations, Algorithm 1 runs with the privatized threshold and
distance. We can choose to perturb the threshold only once, or every time we output 1
by setting RESAMPLE to false or true. After outputting c number of 1’s, the algorithm is
terminated. How do we calculate the resulting privacy loss under the different options
we choose?

We formally state the relationship between the noise scale and the final privacy loss
€10t for the Laplace noise in Theorem 1.

Theorem 1 (Algorithm 1 is €;y,-DP). For any neighboring datasets Y*, ¥ of size N and
any dataset Y, assume that p is such that 0 < SUP (y+ y+) y lo(Y*,Y) — p(Y¥,Y)| < Ay < oo,
Algorithm 1 is €4y4,-DP, where:

)

2chp

o | S5 ifRESAMPLE is False,
il % i RESAMPLE is True.

A proof is given in Appendix A. The proof uses linear composition, i.e., the privacy
level linearly degrading with c. However, using the strong composition or more advanced
compositions can reduce the resulting privacy loss, while these compositions turn pure-DP
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into a weaker, approximate-DP. In this paper, we focus on the pure-DP. For the case of
RESAMPLE = True, the proof directly follows the proof of the standard SVT algorithm
using the linear composition method [17], with an exception that we utilize the quantity
representing the minimum noisy value of any query evaluated on Y*, as opposed to the
maximum utilized in SVT. For the case of RESAMPLE= False, the proof follows the proof
of Algorithm 1 in [26].

Note that the DP analysis in Theorem 1 holds for other types of distance metrics
and not limited to only MMD, as long as there is a bounded sensitivity A, under the
chosen metric. When there is no bounded sensitivity, one could impose a clipping bound
C to the distance by taking the distance from min[p(Y;, Y*), C], such that the resulting
distance between any pseudo data Y; and Y+ with modifying one datapoint in Y* cannot
exceed that clipping bound. In fact, we use this trick in our experiments when there is no
bounded sensitivity.

4.1. Effect of Noise Added to ABC

Here, we would like to analyze the effect of noise added to ABC. In particular, we
are interested in analyzing the probability that the output of ABCDP differs from that of
ABC: P[%; # ©|1] at any given time t. To compute this probability, we first compute the
probability density function (PDF) of the random variables m1; — v; in the following Lemma.

Lemma 2. Recall m; ~ Lap(b), v; ~ Lap(2b). The subtraction of these yields another random
variable Z = m; — vy, where the PDF of Z is given by

fz(z) = 617) {2exp<f%> - exp<f%>}. (10)

Furthermore, for a > 0, Gy(a) == [~ fz(z)dz = L [4exp(—4) — exp(—4%)], and the CDF of
Z is given by Fz(a) = H[a] + (1 — 2H[a])Gy(|a|) where H|a] is the Heaviside step function.

See Appendix C for the proof. Using this PDF, we now provide the following proposition:

Proposition 1. Denote the output of Algorithm 1 at time t by T € {0,1} and the output of ABC
by & € {0,1}. The flip probability, the probability that the outputs of ABCDP and ABC differ
given the output of ABC, is given by P[% # w|t] = Gy(|pr — €apc|), where Gy (a) is defined in
Lemma 2, and p; == p(Y*,Ys).

See Appendix D for proof.

To provide an intuition of Proposition 1, we visualize the flip probability in Figure 1.
This flip probability provides a guideline for choosing the accepted sample size ¢ given the
datasize N and the desired privacy level €;,,;. For instance, if a given dataset is extremely
small, e.g., containing datapoints on the order of 10, c¢ has to be chosen such that the flip
probability of each posterior sample remains low for a given privacy guarantee (€,,). If a
higher number of posterior sam