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1. Introduction

Extremely popular for statistical inference, Bayesian methods are gaining importance in machine
learning and artificial intelligence problems. Indeed, in many applications, it is important for any
device not only to predict well, but also to provide a quantification of the uncertainty of the prediction.

The main problem when one is to apply Bayesian statistics is that the computation of the estimators
is expensive and sometimes not feasible. Bayesian estimators are based on the posterior distribution
on parameters θ given by:

π(θ|x) = L(θ; x)π(θ)∫
L(θ; x)π(dθ)

(1)

where π is the prior, x the observations, and L(θ; x) the likelihood function. For example,
the computation of the posterior mean

∫
θπ(dθ|x) requires a difficult evaluation of the integrals.

Thanks to the development of computational power, Bayesian estimation became feasible in the 1980s
and the 1990s through Markov Chain Monte Carlo (MCMC) methods, such as the Metropolis–Hastings
algorithm [1] and the Gibbs sampler [2,3]. These algorithms target the exact posterior distribution.
They proved to be useful in many contexts and are still an active area of research. The performances
and applicability of MCMC were improved by variants such as the Hamiltonian MCMC [4,5],
adaptive MCMC [6–8], etc. We refer the reader to the review [9], the books [10–12], and Part III
in [13] for detailed introductions to MCMC. The surveys [14,15] provide an overview on more recent
advances. The asymptotic theory of Markov chains, ensuring the consistency of these algorithms,
was covered in the monographs [16,17]. A few non-asymptotic results are also available [18].

Sequential Monte Carlo emerged in the 1990s as a way to update sequentially (that is, for each
new data) samples from the posterior in hidden state models. They allow thus the computation of
a Bayesian version of filters (such as the Kalman filter [19]). For this reason, they are also referred to as
“particle filters”. We refer the reader to [20] for the state-of-the-art of the early years and to the recent
books [21,22] for pedagogical introductions and an overview of the most recent progress.

However, many modern models in statistics are simply too complex to use such methodologies.
In machine learning, the volume of the data used in practice makes MCMC too slow to be used: first,
each iteration of the algorithm requires accessing all the data, then the number of iterations required
to reach convergence explodes when the dimension is large. In these cases, it seems that targeting
the exact posterior is no longer a realistic objective. This motivated the development of many new
methodologies, where the target is no longer the exact posterior, but simply a part of the information
contained in it, or an approximation.

Entropy 2020, 22, 1272; doi:10.3390/e22111272 www.mdpi.com/journal/entropy
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Before a short overview of these approximations techniques, let us mention two important
examples where approximations were an essential ingredient in the application of Bayesian methods.
In 2006, Netflix released a dataset containing movie ratings by its users and challenged the
machine learning community to improve on its own predictions for movies that were not rated [23].
Many algorithms were proposed, including methods based on matrix factorization. Bayesian matrix
factorization is computationally intensive. The first success at scaling Bayesian methods to the
Netflix dataset was based on a mean-field variational approximation of the posterior by [24].
Such approximations will be discussed below.

In computer vision problems, the best performances are reached by deep neural networks [25].
Bayesian neural networks became a popular research direction. A new field of Bayesian deep learning
has emerged that relies on approximate Bayesian inference to provide uncertainty estimates for neural
networks without increasing the computation cost too much [26–29]. In particular, References [28,29]
scaled these algorithms to the size of benchmark datasets such as CIFAR-10 and ImageNet.

2. Approximation in the Modelization

In many practical situations, the statistician is not interested in building a complete model
describing the data, but simply in learning some aspects of it. One can think for example of
a classification problem where one does not want to learn the full distribution of the data, but only
a good classifier. A natural idea is to replace π(θ|x) in (1) by:

π̃(θ|x) = exp [−�(x; θ)]π(θ)∫
exp [−�(x; θ)]π(dθ)

(2)

where �(x; θ) is a Taylor loss function—for example, the classification error. When �(x; θ) = − log L(θ; x),
we recover (1) as a special case. When �(x; θ) = −α log L(θ; x) for some α �= 1, we obtain tempered
posteriors, which appeared for various computational and theoretical reasons in the statistical literature;
see [30–34], respectively. The use of the general form (2) was advocated to the statistical community
by [35].

It appears that this idea was already popular in the machine learning theory community,
where distributions like π̃(θ|x) are often referred to as Gibbs posteriors or aggregation rules.
The PAC-Bayesian theory was developed to provide upper bounds on the prediction risk of
such distributions [36–38]. We refer the reader to nice tutorials on PAC-Bayes bounds [39,40].
References [41–43] emphasized the connection to information theory. Note that the dropout technique
used in deep learning to improve the performances of neural networks [44] was studied with
PAC-Bayes bounds in [40]; see also [26]. Many publications in the past few years indeed confirmed
that PAC-Bayes bounds are very well suited to analyze the performances of deep learning [45–51].
See [52] for a recent survey on PAC-Bayes bounds.

Such distributions were also well known in game theory and in prediction with expert advice
since the 1990s [53,54]. We refer to the book [55], the recent work [56], and to connected problems such
as bandits [57,58].

Finally, many aggregation procedures studied in high-dimensional statistics can also be written
under the form of (2); see [59–64] with various regression or classification losses. References [65]
used a Gibbs posterior based on the quantile loss to estimate a VaR (Value at Risk, a measure of risk
in finance).

3. Approximation in the Computations

Many works have been done in the past few years to compute estimators based on π(θ|x) or
π̃(θ|x) in complex problems, or with very large datasets. Very often, this is at the cost of targeting
an approximation rather than the exact posterior. It is then important to analyze the accuracy of
the approximation.

2
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The nature and accuracy of these approximations are extremely different from one algorithm to the
other, and some of them are not well understood theoretically. Below, we group these algorithms into
three groups. In Section 3.1, we present methods that still essentially rely on simulations. In Section 3.2,
we present asymptotic approximations. Finally, in Section 3.3, we present optimization based methods
(this grouping is for the ease of exposition and is of course a little crude; each subsection mentions
methods that have little to do with each other).

3.1. Non-Exact Monte Carlo Methods

Monte Carlo methods based on Langevin diffusions were introduced in physics in the 1970s [66].
Let (Ut)t≥0 be a diffusion process given by the stochastic differential equation:

dUt = ∇ log π(Ut|x)dt +
√

2dWt,

where (Wt)t≥0 is a standard Brownian motion. It turns out that the invariant distribution
of (Ut) is π(·|x). A discretization scheme with step h > 0 leads to the Markov chain
Ũn+1 = Ũn + h∇ log π(Un|x) +

√
2hξn, where the (ξn) are i.i.d standard Gaussian variables.

However, it is important to note that (Un) does not admit π(·|x) as an invariant distribution.
Thus, the Langevin Monte Carlo method is not exact (it would become exact with h → 0).
Reference [67] proposed a correction of this method based on the Metropolis–Hastings algorithm,
which leads to an exact algorithm, known as the MALA (the Monte Carlo Adjusted Langevin
Algorithm). The Langevin Monte Carlo and MALA became popular in statistics and machine learning
following [68]. This paper studies the asymptotic properties of both algorithms. Surprisingly, the exact
method does not necessarily enjoy the best asymptotic guarantees. More recently, in the case where
log π(Un|x) is concave, non-asymptotic guarantees where proven for Langevin Monte Carlo with
a running time that depends only polynomially on the dimension of the parameter θ; see [69–74].
Such results are usually not available for exact MCMC methods.

The implementation of the classical Metropolis–Hastings algorithm requires being able to compute
the ratio L(θ; x)/L(θ′|x) for any θ, θ′. In some models with complex likelihoods, or with intractable
normalization constants, this is not possible. This led to a new direction, that is approximations of this
likelihood ratio. A surprising and beautiful fact is that, if each likelihood is computed by an unbiased
Monte Carlo estimator, the algorithm remains exact: this was studied under the name pseudo-marginal
MCMC in [75]. Still, it sometimes requires much work to get unbiased estimates [76,77], when possible
at all. Some authors proposed more general approximations of the likelihood ratio, leading to non-exact
algorithms. References [78–81] proposed estimators based on subsampling when the data x are too
large. Reference [82] proposed an estimator of the likelihood ratio when the likelihood has intractable
constants, as in the exponential random graph model, and proved that, even if the resulting MCMC is
inexact, it remains asymptotically close to the exact chain. A further theory was developed in [83–85].
More on MCMC for big data can be found in [86].

Finally, the ABC (Approximate Bayesian Computation) algorithm was proposed in population
genetics for models where the likelihood is far too complex to be computed, but where it is relatively
easy to sample from it [87,88]. It became extremely popular in some applications; we refer the reader
to the survey [89], to Section 3 in [15], and more recently, to the book [90]. Some theoretical results
were proven in [91]; we also refer the reader to [92–94] for some recent advances.

3.2. Asymptotic Approximations

Laplace’s method provides a Gaussian approximation of the posterior centered on the Maximum
Likelihood Estimator (MLE) and whose covariance matrix is the inverse of the Fisher information.
This approximation can be theoretically justified in parametric models under appropriate regularity
conditions thanks to the Bernstein–von Mises theorem. We refer the reader to Chapter 13 in [95] for
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a complete statement of this result. Integrated Nested Laplace Approximations (INLA) indeed became
very popular in Gaussian latent models to compute approximations of the posterior marginals [96].

The extension of the Bernstein–von Mises theorem to nonparametric or semiparametric models
is a quite technical and important research direction; see for example [97–101] and Chapter 10 in
the monograph [102]. It is important to keep in mind that even in parametric models, when the
assumptions of the theorem are not met, Laplace approximation can be wrong. The asymptotic of the
posterior in such models was studied in detail in [103].

3.3. Approximations via Optimization

A huge number of methods are based on the idea of using optimization algorithms to find the
best approximation of π(·|x), or π̃(·|x), in a set of probability distributions Q fixed by the statistician.
The difference between the various methods is in the choice of the criterion used to define the “best”
approximation. The set Q can be parametric (e.g., Gaussian distributions, inspired by Laplace’s
method) or not, the choice being prescribed by the feasibility of the optimization problem.

Variational approximations are based on the Kullback–Leibler divergence KL:

π̂(θ|x) = argmin
q∈Q

KL(q||π(·|x)) (3)

= argmin
q∈Q

{
Eθ∼q[− log L(θ; x)] + KL(q||π)

}
, (4)

where we remind that KL(q||p) =
∫

log(dq/dp)dp when q is absolutely continuous with respect
to p, and KL(q||p) = +∞ otherwise. We refer the reader to the seminal papers [104,105], to the
tutorial [106], and to the recent review of the huge literature on variational approximations [107].
Note that the approximation used in [108] in the early days of neural networks can also be interpreted
as a variational approximation. Besides the aforementioned applications to recommender systems
and to deep learning, variational inference was successfully used in network data analysis [109],
economics and econometrics [110–113], finance [114], natural language processing [115], and video
processing [116], among others. A huge range of optimization algorithm were used, from the
coordinate-wise optimization in the original publications to message passing [117], the gradient
and stochastic gradient algorithm [27,115,118], and the natural gradient [119]. The convexity and
smoothness of the minimization problem were discussed in [120]. The scope of these methods was
extended to models with intractable likelihood in [121]. Reference [122] pointed out a connection
between (4) and PAC-Bayes bounds, which led to the first generalization error bounds for variational
inference for some Gibbs posteriors, as in (2). The analysis was extended to various settings, including
regular posteriors, as in (1), by [123–131]. In particular, Reference [132] proved that variational inference
leads to the optimal estimation of some classes of functions with deep learning. Note that even when Q
is the set of all Gaussian distributions on the parameter space, the approximation can be very different
from the Laplace approximation. Indeed, Reference [129] contains an example of a mixture model
where the MLE is not consistent, but Gaussian variational inference is.

The choice of the Kullback–Leibler divergence in (3) and (4) was initially motivated by the
tractability of the computational program to which it leads. Recently, many authors questioned
that choice and proposed extended definitions of variational inference using other divergences;
for a presentation of the most popular divergences in statistics, see the introduction to information
geometry [133]. Note that if we replace KL by another divergence, (3) and (4) are in general no longer
equivalent, which leads to two possible ways to extend the definition. Reference [134] extended (3) by
replacing the KL term by a Rényi divergence, and Reference [135] used the χ2 divergence. However,
Reference [136] discussed the computational difficulties induced by these changes, which might
outweigh the benefits. Reference [137] discussed other criteria, including the Wasserstein distance,
and provided some theoretical guarantees. On the other hand, References [138–141] proposed to use
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more general divergences in (3). This can be related to the generalized exponential family of [142] and
the PAC-Bayes bounds in [143,144].

The very popular Expectation Propagation algorithm (EP) was introduced by [145]. EP can
be interpreted as the minimization of the reverse KL, KL(π(·|x)||q)), instead of (3). This was
detailed in [146], where the author also proposed an extension with α-divergences called power
EP. Algorithmic issues were discussed in [147] and by [148], who proposed stochastic optimization
methods. A first theoretical analysis of EP was proposed in [149]. Let us mention that the textbook [150],
which is a generalist introduction to machine learning, contains a full chapter entirely devoted to
a pedagogical introduction to variational approximations and EP. The paper [151] focuses on the
application of EP to hierarchical models, but also contains a very nice introduction to EP and the
conditions ensuring its stability.

Finally, let us mention approximations by discrete distributions, of the form q = 1
M ∑M

i=1 δθi

where δx is the Dirac mass at x. Note that this is typically the kind of approximation provided by
the MCMC and sequential Monte Carlo methods, but in these methods, the θi are sampled. It is also
possible to try to minimize a distance criterion between q and π(·|x). Unfortunately, when π(·|x)
is continuous, both KL(π(·|x)||q)) = KL(q||π(·|x))) = +∞, so it is not possible to use variational
inference or EP in this case. An energy based criterion was proposed in [152]. Reference [153] proposed
to use Stein divergences between q and π(·|x), and the technique became quite successful [154–156].
Another possible research direction is to use the Wasserstein distance [157].

4. Scope of This Special Issue

The objective of this Special Issue is to provide the latest advances in approximate Monte Carlo
methods and in approximations of the posterior: the design of efficient algorithms, the study of the
statistical properties of these algorithms, and challenging applications.
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Abbreviations

The following abbreviations are used in this manuscript:

ABC Approximate Bayesian Computation
EP Expectation Propagation
MALA Monte Carlo Adjusted Langevin Algorithm
MCMC Markov Chain Monte Carlo
MLE Maximum Likelihood Estimator
PAC Probably Approximately Correct
VaR Value at Risk
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Abstract: We present a coupled variational autoencoder (VAE) method, which improves the accuracy
and robustness of the model representation of handwritten numeral images. The improvement is
measured in both increasing the likelihood of the reconstructed images and in reducing divergence
between the posterior and a prior latent distribution. The new method weighs outlier samples with a
higher penalty by generalizing the original evidence lower bound function using a coupled entropy
function based on the principles of nonlinear statistical coupling. We evaluated the performance of
the coupled VAE model using the Modified National Institute of Standards and Technology (MNIST)
dataset and its corrupted modification C-MNIST. Histograms of the likelihood that the reconstruc-
tion matches the original image show that the coupled VAE improves the reconstruction and this
improvement is more substantial when seeded with corrupted images. All five corruptions evaluated
showed improvement. For instance, with the Gaussian corruption seed the accuracy improves by 1014

(from 10−57.2 to 10−42.9) and robustness improves by 1022 (from 10−109.2 to 10−87.0). Furthermore, the
divergence between the posterior and prior distribution of the latent distribution is reduced. Thus, in
contrast to the β-VAE design, the coupled VAE algorithm improves model representation, rather than
trading off the performance of the reconstruction and latent distribution divergence.

Keywords: machine learning; entropy; robustness; statistical mechanics; complex systems

1. Introduction

An overarching challenge in machine learning is the development of methodologies
that ensure the accuracy and robustness of models given limited training data. By accuracy,
we refer to the metrics of information theory, such as minimizing the cross-entropy or
divergence of an algorithm. In this paper, we define a measure of robustness based on
a generalization of information theory. The variational autoencoder (VAE) contributes
to improved learning of models by utilizing approximate variational inference [1,2]. By
storing a statistical model rather than a deterministic model at the latent layer, the algorithm
has increased flexibility in its use for reconstruction and other applications. The variational
inference is optimized by minimization of a loss function, the so-called negative evidence
lower bound, which has two components. The first component is a cross-entropy between
the generated and the source data, also known as the expected negative log-likelihood,
while the second is a divergence between the prior and the posterior distributions of the
latent layer.

Our goal in this research is to provide an evaluation as to whether a generalization
of information theory can be applied to improving the robustness of machine learning
algorithms. Robustness of autoencoders to outliers is critical for generating a reliable
representation of particular data types in the encoded space when using corrupted training
data [3]. In this paper, a generalized entropy function is used to modify the negative
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evidence lower bound loss function of a variational autoencoder. With the MNIST hand-
written numerals dataset, we are able to measure the improvement in the robustness of the
reconstruction, using a metric also derived from the generalization of information theory. In
addition, we find that the accuracy of the reconstruction, as measured by Shannon informa-
tion theory, is also improved. Furthermore, the divergence between the latent distribution
posterior and prior is also reduced. This is important to ensure that the reconstruction
improvement is not a result of degrading the latent layer.

Our study builds from the work of Kingma and Welling [4] on variational autoen-
coders and Tran et al. [5] on deep probabilistic programming. Variational autoencoders
are an unsupervised learning method for training encoder and decoder neural networks.
Between the encoder and decoder, the parameters of a multidimensional distribution are
learned to form a compressed latent representation of the training data [6]. It is an effective
method for generating complex datasets such as images and speech. Zalger [7] imple-
mented the application of VAE for aircraft turbomachinery design and Xu et al. [8] used
VAEs to achieve unsupervised anomaly detection for seasonal key performance indica-
tors (KPIs) in web applications. VAEs have been used to construct probabilistic models
of complex physical phenomena [9]. Autoencoders can use a variety of latent variable
models, but restricting the models can enhance performance. Sparse autoencoders add
a penalty for the number of active hidden layer nodes used in the model. Variational
autoencoders further restrict the model to a probability distribution qφ(z|x) specified by a
set of encoder parameters φ which approximates the actual conditional probability p(z|x).
Variational inference, as reviewed by Blei et al. [10], is used to learn this approximation by
minimizing an objective function such as the Kullback–Liebler divergence. The decoder
learns a set of parameters θ for a generative distribution qθ(x

′|z), where z is the latent
variable, and x′ is the output generated data. The complexity of the data distribution p(x)
makes direct computation of the divergence between the approximate and exact latent con-
ditional probabilities intractable; however, a variational or evidence lower bound (ELBO)
is computable and consists of two components, the expected reconstruction log-likelihood
of the generated data (cross-entropy) and the negative of the divergence between the la-
tent posterior conditional probability qφ(z|x) and a latent prior distribution p(z), which
is typically a standard normal distribution but can be more sophisticated for particular
model requirements.

Recently, Higgins et al. [11] proposed a β-VAE framework, which can provide a more
disentangled latent representation z [12] by increasing the weight of the KL-divergence
term of the ELBO. Since the KL-divergence is a regularization that constrains the capacity
of the latent information channel z, increasing the weight of the regularization with β > 1
puts pressure on the learnt posterior so it is more tightly packed. The effect seems to be an
encouragement of each dimension to store distinct information and excess dimensions as
highly packed noise. However, this improvement is a trade-off between the divergence
and reconstruction components of the ELBO metric. We will show that the coupled VAE
algorithm improves both components of the ELBO.

The next section provides an introduction to the design of the variational autoencoder.
A comparison with other generative algorithms is included. Section 3 introduces nonlinear
statistical coupling and its application to defining metrics for the robustness, accuracy,
and decisiveness of decision algorithms. In this paper, use of the uppercase letter for the
terms ’Robustness’, ’Accuracy’, and ’Decisiveness’ refers to the specific metrics, which
will be introduced in Section 3.1. Lowercase letters for these terms will be used when
referring to the general properties. Following the definition of the reconstruction assessment
metrics, the generalization of the negative ELBO is defined. This coupled negative ELBO
provides control over the weighting of rare versus common samples in the distribution
of the training set. Additional details of the derivation of the generalized negative ELBO
function and metrics are provided in Appendices A.1 and A.2, respectively. In Section 4,
the improved autoencoder is evaluated using the MNIST handwritten numeral test set.
Measurements of the reconstruction and the characteristics of the posterior latent variables
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are analyzed. Section 5 provides a visualization of the changes in the latent distribution
using a 2-dimensional distribution. Section 6 demonstrates that the coupled VAE algorithm
provides significantly improved stability in the model performance when the input image
is corrupted from the training set. This provides evidence of the improved robustness of the
algorithm. Section 7 provides a discussion, conclusion, and suggestions for future research.

2. The Variational Autoencoder

A variational autoencoder consists of an encoder, a decoder, and a loss function.
Figure 1 represents the basic structure of an autoencoder. The encoder Q is a neural network
that converts high-dimensional information from the input data into a low-dimensional
hidden, latent representation z. Some information is lost during this data compression
because the dimension is reduced. The decoder P decompresses from latent space z to
reconstruct the data. While, in general, autoencoders can learn a variety of representations,
VAEs especially learn the parameters of a probability distribution. The model used here
learns the means and standard deviations θ of a collection of multivariate Gaussian distribu-
tions and stores this information in a two-layered space. The training loss function, which
is the negative evidence lower bound, is optimized by using stochastic gradient descent.

Figure 1. The variational autoencoder consists of an encoder, a probability model, and a decoder.

2.1. Vae Loss Function

The encoder reads the input data and compresses and transforms it into a fixed-shape la-
tent representation z, while the decoder decompresses and reconstructs the information from
this latent representation, outputting specific distribution parameters to generate a new recon-
struction x′. The true posterior distribution p(z|x(i)) of z given ith datapoint x(i) is unknown,
but we use the Gaussian approximation q(z|x(i)) with mean vector μ(i) and covariance
matrix diag(σ2

1 , · · · , σ2
d )

(i) instead. The goal of the algorithm is to maximize the variational
or evidence lower bound (ELBO) on the marginal density of individual datapoints.

For a dataset X =
{

x(i)
}N

i=1
consisting of N independent and identically distributed

samples, the variational lower bound for the ith datapoint or image x(i) in the original VAE
algorithm [4] is

ELBO
(

x(i)
)
= −DKL

(
q
(

z|x(i)
)

‖ p(z)
)
+Eq(z|x(i))

[
log p

(
x(i)|z

)]
. (1)

The first term on the right-hand side is the negative Kullback–Leibler divergence between
the posterior variational approximation q(z|x) and a prior distribution z which is selected
to be a standard Gaussian distribution. The second term on the right-hand side is denoted
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as the expected reconstruction log-likelihood, and is referred to as the cross-entropy. Let nz
be the dimensionality of z; then, the Kullback–Leibler divergence simplifies to

−DKL

(
q
(

z|x(i)
)
||p(z)

)
=
∫

q
(

z|x(i)
)(

log p(z)− log q
(

z|x(i)
))

dz (2)

=
1
2

nz

∑
j=1

(
1 + log

((
σj
)2
)

−
(
μj
)2 −

(
σj
)2
)

. (3)

The expected reconstruction log-likelihood (cross-entropy) Eq(z|x(i))

[
log p

(
x(i)|z

)]
can be estimated by sampling, i.e.,

Eq(z|x(i))

[
log p

(
x(i)|z

)]
=

1
L

L

∑
l=1

(
log p

(
x(i)|z(i,l)

))
, (4)

where L denotes the number of samples for each datapoint and we set L = 1 in our study.
Supposing data x given z has the following probability density,

log p(x|z) =
nx

∑
i=1

(xi log yi + (1 − xi) log(1 − yi)), (5)

where y is the output of the decoder. Therefore, the loss function can be calculated by

L
(

x(i)
)
= −ELBO

(
x(i)
)
= DKL

(
q
(

z|x(i)
)

‖ p(z)
)

− 1
L

L

∑
l=1

(
log p

(
x(i)|z(i,l)

))
. (6)

For our work, the loss function is modified to improve the robustness of the variational
autoencoder, something that will be discussed in Section 4.

2.2. Comparison with Other Generative Machine Learning Methods

The paradigm of generative adversarial networks (GANs) is a recent advance in
generative machine learning methods. The basic idea of GANs was published in a 2010
blog post by Niemitalo [13], and the name ‘GAN’ was introduced by Goodfellow et al. [14].
In comparison with variational autoencoders, generative adversarial networks are used
for optimizing generative tasks specifically. GANs can produce models with true latent
spaces, as is the case of bidirectional GAN (BiGAN) and adversarially learned inference
(ALI) [15,16], which are designed to improve the performance of GANs. However, GANs
cannot generate reasonable results when data are high-dimensional [17]. By contrast, as
a probabilistic model, the specific goal of a variational autoencoder is to marginalize out
noninformative variables during the training process. The ability to use complex priors in
the latent space enables existing expert knowledge to be incorporated.

Bayesian networks form another generative model. Pearl [18] proposed the Bayesian
network paradigm in 1985. Bayesian networks have a strong ability to capture the symbolic
figures of input information and combine objective probabilities with subjective estimates
for both qualitative and quantitative modeling. The basic concept of Bayesian networks
is built on Bayes’s theorem. Another effective way to solve for the posterior of the distri-
bution derived from neural networks is to train and predict using variational inference
techniques [19]. Compared with the original Bayesian network, the basic building blocks
of deep networks provide multiple loss functions for making multitarget predictions, for
transfer learning, and for varying outputs depending on the situation. The improvement of
the deeper architectures, using VAE specifically, continues to occur.

Other generative models are now commonly combined with a variational autoencoder
to improve performance. Ebbers et al. [20] developed a VAE with a hidden Markov model
(HMM) as the latent model for discovering acoustic units. Dilokthanakul et al. [2] studied the
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use of Gaussian mixture models as the prior distribution of the VAE to perform unsupervised
clustering through deep generative models. They showed a heuristic algorithm called
‘minimum information constraint’ and it is capable of improving the unsupervised clustering
performance with this model. Srivastava and Sutton [1] presented the effective autoencoding
variational Bayes-based inference method for latent Dirichlet allocation (LDA). This model
solves the problems caused by autoencoding variational Bayes by the Dirichlet prior and by
component collapsing. Additionally, this model matches traditional methods’ inaccuracy
with much better inference time.

3. Accounting for Risk with Coupled Entropy

Machine learning algorithms, including the VAE, have achieved efficient learning and
inference for many image processing applications. Nevertheless, assuring accurate forecasts
of the uncertainty is still a challenge. Problems such as outliers and overfitting impact the
robustness of scientific prediction and engineering systems. This paper concentrates on
assessing and improving the robustness of the VAE algorithm.

In this study, we draw upon the principles of nonlinear statistical coupling (NSC) [21,22]
to define a generalization to information theory and apply the resulting entropic functions
to the definition of the negative ELBO loss function for the training of the variational autoen-
coder [23]. NSC is derived from nonextensive statistical mechanics [24], which generalizes
the variational calculus of maximum entropy to include constraints related to the nonlinear
dynamics of complex systems and in turn to the nonexponential decay of the maximizing
distributions. The NSC frame focuses this theory on the role of nonlinear coupling κ in
generalizing entropy and its related functions. The approach defines a family of heavy-tailed
(positive coupling) and compactly supported (negative coupling) distributions which maxi-
mize a generalized entropy function referred to as coupled entropy. The variational methods
underlying NSC can be applied to a variety of problems in mathematical physics [25,26].
Here, we examine how NSC can broaden the role of approximate variational inference in
machine learning to include sensitivity to the risks of outlier events occurring in the tail of
the distribution of the phenomena being learned.

3.1. Assessing Probabilistic Forecasts with the Generalized Mean

First, proper metrics are needed to evaluate the accuracy and robustness of machine
learning algorithms, such as VAE. The arithmetic mean and the standard deviation are
widely used to measure the central tendency and fluctuation, respectively, of a random
variable. Nevertheless, these are inappropriate for probabilities, which are formed by ratios.
A random variable formed by the ratio of two independent random variables has a central
tendency determined by the geometric mean, as described by McAlister [27]. Information
theory addresses this issue by taking the logarithm of the probabilities, then the arithmetic
mean; however, we will show that the generalizations of information theory are easier to
report and visualize in the probability domain.

In [28], a risk profile was introduced, which is the spectrum of the generalized means
of probabilities and provides an assessment of the the central tendency and fluctuations of

probabilistic inferences. The generalized mean ( 1
N

N
∑

i=1
pr

i )
1
r is a translation of generalized

information-theoretic metrics back to the probability domain, and is derived in the next
section. Its use as a metric for evaluating and training inference algorithms is related to
the Wasserstein distance [29], which incorporates the generalized mean. The accuracy of
the likelihoods is measured with robust, neutral, and decisive risk bias using the r = − 2

3 ,
r = 0 (geometric) and r = 1 (arithmetic) means, respectively. With no risk bias (r = 0), the
geometric mean is equivalent to transforming the cross-entropy between the forecast pi
and the distribution of the test samples to the probability domain. The arithmetic mean
(r = 1) is a simple measure of the Decisiveness (i.e., were the class probabilities in the
right order so that a correct decision can be made?). This measure de-weights probabilities
near zero since increasing r reduces the influence of small probabilities on the average. To
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complement the arithmetic mean, we choose a negative conjugate value. The conjugate
is not the harmonic mean (r = −1) because this turns out to be too severe a test. Instead,
r = − 2

3 is chosen based on a dual transformation between heavy-tail (positive κ) and
compact-support (negative κ) domains of the coupled Gaussian distribution. The risk
sensitivity r can be decomposed into the nonlinear coupling and the power and dimension
of the variable r(κ, α, d) = −ακ

1+dκ . The dual transformation between the positive/negative
domains of the coupled Gaussians has the following relationship: κ̂ ⇔ −κ

1+dκ . Taking α = 2
and d = 1, the coupling for a risk bias of one is 1 = −2κ

1+κ ⇒ κ = − 1
3 and the conjugate

values are κ̂ =
1
3

1− 1
3
= 1

2 and r̂ =
−2· 1

2
1+ 1

2
= − 2

3 [23]. The Robustness metric increases the

weight of probabilities near zero since negative powers invert the probabilities prior to
the average.

For simplicity, we refer to these three metrics as the Robustness, Accuracy, and De-
cisiveness. The label ‘accuracy’ is used for the neutral accuracy, since ‘neutralness’ is not
appropriate and ‘neutral’ does not express that this metric is the central tendency of the
accuracy. Summarizing:

Decisiveness (arithmetic mean) :
1
N

N

∑
i=1

pi. (7)

Accuracy (geometric mean) :
N

∏
i=1

p
1
N
i . (8)

Robustness (−2/3 mean) :

(
1
N

N

∑
i=1

p− 2
3

i

)− 3
2

. (9)

Similar to the standard deviation, the arithmetic mean and −2/3 mean play roles as
measures of the fluctuation. Figure 2 shows an example of input images from the MNIST
dataset and the generated output images produced by the VAE. Despite the blur in some
output images, the VAE succeeds in generating very similar images to the input. However,
the histogram in Figure 3, which plots the frequency of the likelihoods over a log scale,
shows that the probabilities of ground truth range over a large scale. The geometric mean
or Accuracy captures the central tendency of the distribution at 10−37 . The Robustness and
the Decisiveness capture the span of the fluctuation in the distribution. The −2/3 mean
or Robustness is 10−77 and the arithmetic mean or Decisiveness is 10−15. The minimal
value of the −2/3 mean metric is an indicator of the poor robustness of the VAE model,
which can be improved. We measure and display the performance in the probability space
in order to simplify the comparison between the three metrics. In the next subsection,
we will show their relationship with a generalization of the log-likelihood. If, however,
we were to plot histograms in the log-space, separate histograms would be required for
each metric. By using the probability space, we can display one histogram overlaid with
three different means. Appendix A.2 describes the origin of the Robustness–Accuracy–
Decisiveness metrics.

(a) (b)
Figure 2. Example set of (a) MNIST input images and (b) VAE-generated output images.
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Figure 3. A histogram of the likelihoods that the VAE-reconstructed images match the input images.
The objective of the coupled VAE research is to demonstrate that the Robustness, which is the −2/3
generalized mean, can be increased by penalizing the cost of producing outlier reconstructions. The
Accuracy is the exponential of the average log-likelihood and the Decisiveness is the arithmetic mean.

In order to improve performance against the robust metric, the training of the vari-
ational autoencoder needs to incorporate this generalized metric. To do so, we derive a
coupled loss function in the next subsection.

3.2. Definition of Negative Coupled ELBO

As we discussed in Section 2, the goal of a VAE algorithm is to optimize a low-
dimensional model of a high-dimensional input dataset. This is accomplished using approx-
imate variational inference by maximizing an evidence lower bound (ELBO). Equivalently,
the negative ELBO defines a loss function which can be minimized, L(x(i)) = −ELBO(x(i)).
In this paper, we provide initial evidence that the accuracy and robustness of the variational
inference can be improved by generalizing the negative ELBO to account for the risk of
outlier events. Here, we provide a definition of the generalization and in Appendix A.1 a
derivation is provided.

The generalized loss function in the coupled variational autoencoder (VAE) method is
defined as follows.

Definition 1. (Negative Coupled ELBO). Given the ith datapoint x(i), the corresponding latent
variable value z, and the output value y of the decoder using the Bernoulli distribution, then the
loss function for the coupled VAE algorithm is given by

Lκ

(
x(i)
)
= Dκ

(
q
(

z|x(i)
)

‖ p(z)
)
+ Hκ(x, y), (10)

where
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Dκ(q(z|x(i)) ‖ p(z))

≡
nz

∏
j=1

∫ q(zj|x(i))
1+ 2κ

1+κ∫
q(zj|x(i))1+ 2κ

1+κ dzj

1
2
(lnκ(q(zj|x(i))

− 2
1+κ )− lnκ(p(zj)

− 2
1+κ ))dzj

=
nz

∏
j=1

1
2κ

∫ ( 1
σ
√

2π
e−

(zj−μi)
2

2σ2 )

1+ 2κ
1+κ

∫
( 1

σ
√

2π
e−

(zj−μi)
2

2σ2 )

1+ 2κ
1+κ

dzj

·(( 1
σ
√

2π
e−

(zj−μi)
2

2σ2 )

− 2κ
1+κ

− (
1√
2π

e−
zj

2

2 )

− 2κ
1+κ

)dzj

(11)

is the generalized (coupled) KL-divergence in the original loss function in Equation (6), and

Hκ(x, y) ≡ − 1
2L

L

∑
l=1

nx

∑
i=1

(
xilnκ

(
(yi)

2
1+κ

)
+ (1 − xi)lnκ

(
(1 − yi)

2
1+κ

))
(12)

is the generalized reconstruction loss (coupled cross-entropy) in the original loss function in Equation
(6).

In the next section, we show preliminary experimental evidence that the negative
coupled ELBO can be used to improve the robustness and accuracy of the variational
inference. We show that increasing the coupling parameter of the loss function has the
effect of increasing the Accuracy (8) and Robustness (9) metrics of the generated data.
Additionally, we show that the improvement in the generation process is not at the expense
of the divergence between the posterior and the prior latent distributions. Thus, the overall
ELBO is improved, indicating an improvement in the approximate variational inference.
Furthermore, in Section 6, we show that improvements are more substantial when the
algorithm is seeded by images from the corrupted MNIST database. While the experimental
results of this report focus on a two-layer dense neural network and the (corrupted)-MNIST
datasets, the generalization of information-theoretic cost functions for machine learning
training is applicable to a broader range of architectures and datasets. For instance, the
CIFAR-10 reconstruction is typically processed with a deep neural network [30] and is
planned for future research.

4. Results Using the MNIST Handwritten Numerals

The MNIST handwritten digit database is a large database of handwritten digits
consisting of a training set of 60,000 images and a test set of 10,000 images widely used
for evaluating machine learning and pattern recognition methods. The digits have been
size-normalized and centered in fixed-size images. Each image in the database contains
28 by 28 grayscale pixels. Pixel values vary from 0 to 255. Zero means the pixel is white,
or background, while 255 means the pixel is black, or foreground [31]. In this and the
next section, we examine the performance of the coupled VAE algorithm in reconstructing
images of the MNIST database. In Section 6, we show the stability of the coupled VAE
when reconstruction is distorted by samples from the corrupted MNIST database.

For this research, we used the MNIST database as the input since it was used in the
traditional VAE. Specifically, input x is a batch of 28 by 28 pixel photos of handwritten
numbers. The encoder encodes the data, which are 784-dimensional for each image in a
batch into the latent layer space. For our experiment, the dimension of the latent variable
z can be from 2 to 20. Taking the latent layers z as the input, the probability distribution
of each pixel is computed using a Bernoulli or Gaussian distribution by the decoder. The
decoder outputs the corresponding 784 parameters to reconstruct an image. We used
specific numbers of images from the training set as the batch size and a fixed number of
epochs. Additionally, for the learned MNIST manifold, visualizations of learned data and
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reproduced results were plotted. The algorithm and experiments were developed with
Python and the TensorFlow library. Our Python code can be found in the Data Availability
Statement.

The input images and output images for different values of coupling κ are shown in
Figure 4. κ = 0 represents the original VAE model. Compared with the original algorithm,
output images generated by the modified coupled VAE model show small improvements
in detail and clarity. For instance, the fifth digit in the first row of the input images is ‘4’,
but the output image in the original VAE is more like ‘9’ rather than ‘4’, while the coupled
VAE method generates ‘4’ correctly. For the seventh digit ‘4’ in the first row, the generated
image in the coupled VAE has an improved clarity compared to the traditional VAE.

Figure 5 shows the likelihood histograms for 5000 input images with coupling values
of κ = 0, 0.025, 0.05, 0.1. The red, blue, and green lines represent the arithmetic mean
(decisiveness), geometric mean (central tendency), and −2/3 mean (robustness), respec-
tively. When κ = 0 , the minimal value of the Robustness metric indicates that the original
VAE suffers from poor robustness. As κ becomes large, the geometric mean and the
−2/3 mean metrics start to increase while the arithmetic mean metric mostly stays the
same. Since the probability of producing a correct image by a uniform random sampling is

1
228×28 = 9.8 × 10−237, the accuracy achieved by the VAE algorithm is significantly improved,
even though the absolute value of the Accuracy metric seems small. As the coupling κ
increases, the coupled loss function approaches infinity faster. This eventually causes
computational errors. For instance, when κ = 0.2 , the loss function has a computational
error at the 53rd epoch; when κ = 0.5, the loss function has a computational error at
the 8th epoch. Further investigations of the computational bounds of the algorithm are
planned. The specific relationship between coupling κ and probabilities for input images
is shown in Table 1. The increased Robustness metric shows that the modified loss does
improve the robustness of the the reconstructed image. In the next section, we also examine
the performance of the divergence between the posterior and prior distributions of the
latent layer.

Furthermore, compared with the original VAE model, the geometric mean, which
measures the accuracy of the input image likelihood, is larger for the coupled algorithm.
The improvement of this metric means that the input images (truth) are assigned to higher
likelihoods on average by the coupled VAE model.

The standard deviation σ of latent variables z is shown in rose plots in Figure 6. The
angular position of a bar represents the value of σ, clockwise from 0 to 1. The radius of the
bar measures the frequency of different σ values from 0 to 100. As the coupling κ increases,
the range and the average value of these standard deviations decrease. To be specific, when
κ = 0, σ of all dimensions in all 5000 batches ranges from 0.09 to 0.72; when κ = 0.025, σ
ranges from 0.02 to 0.3; when κ = 0.05, σ ranges from 0.001 to 0.09; when κ = 0.1, σ ranges
from 0.00007 to 0.06.

(a) Input image (b) κ = 0 (c) κ = 0.025 (d) κ = 0.05 (e) κ = 0.1

Figure 4. (a) The MNIST input images and (b) the output images generated by the original VAE.
(c–e) The output images generated by the modified coupled VAE model show small improvements in
detail and clarity. For instance, the fifth digit in the first row of the input images is ‘4’, but the output
image in the original VAE is more like ‘9’ rather than ‘4’, while the coupled VAE method produced
‘4’ correctly.
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(a) κ = 0 (b) κ = 0.025

(c) κ = 0.05 (d) κ = 0.1

Figure 5. The histograms of likelihood for the reconstruction of the input images with various
coupling κ values. The red, blue, and green lines represent the arithmetic mean (Decisiveness),
geometric mean (Accuracy), and −2/3 mean (Robustness), respectively. The minimal value of the
Robustness metric indicates that the original VAE suffers from poor robustness. As κ increases, the
Robustness and Accuracy improve while the Decisiveness is mostly unchanged.

Table 1. The Decisiveness, Accuracy, and Robustness of the reconstruction likelihood as a function of
the coupling κ.

Coupling κ Decisiveness Accuracy Robustness

0 1.31 × 10−15 2.41 × 10−39 1.40 × 10−79

0.025 6.61 × 10−15 5.89 × 10−35 9.91 × 10−81

0.05 7.18 × 10−12 5.80 × 10−32 1.31 × 10−73

0.1 1.34 × 10−12 7.09 × 10−29 2.57 × 10−71

(a) κ = 0 (b) κ = 0.025 (c) κ = 0.05 (d) κ = 0.1

Figure 6. The rose plots of the various standard deviation values in 20 dimensions. The range and
average values of these standard deviations are reduced as coupling increases.
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We note that as coupling parameter κ increases, the variability of the latent space
diminishes. One possible method to address this problem is to use heavy-tail distribution in
the latent layer. Chen et al. [32] and Nelson [23] used the Student’s t as the distribution [33]
of the latent layer to incorporate heavy-tail decay.

We choose samples in which the likelihoods of input images are close to the three
metrics and plot the standard deviation σ of each dimension of the latent variable z of these
samples in Figure 7. The red, blue, and green lines represent samples near the decisiveness,
accuracy, and robustness, respectively. It shows that when κ = 0, the standard deviations
of z range from 0.1 to 0.7. However, as κ increases, values of σ fluctuate less and decrease
toward 0. Magnified plots are shown to visualize the results further. The general trend for
σ is to be more significant for samples near decisiveness, intermediate near the accuracy,
and smaller for samples near robustness. An exception is κ = 0.025, where σ overlaps
for samples near the robustness and accuracy. The histogram likelihood plots with a two-
dimensional latent variable are shown in Figure 8. The increased values of the arithmetic
mean metric and −2/3 mean metric show that the accuracy and robustness of the output
MNIST images in the VAE model have been improved, consistent with the result in the
20-D model. While the performance improvements are modest, we will show in Section 6
that the performance improvements when the algorithm is seeded with corrupted images
is much more substantial. First, we provide a visualization of the changes in the latent
distribution using two dimensions.

(a) κ = 0 (b) κ = 0.025

(c) κ = 0.05 (d) κ = 0.1

Figure 7. The standard deviation of latent variable samples near the three generalized mean metrics.
The red, blue, and green lines represent samples near the Decisiveness, Accuracy, and Robustness,
respectively. As κ increases, values of σ fluctuate less and decrease toward 0. Magnified plots are
shown to visualize the results further.
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(a) κ = 0 (b) κ = 0.025

(c) κ = 0.05 (d) κ = 0.1

Figure 8. The histogram likelihood plots with a two-dimensional latent variable. Like the 20-D model,
the increased values of the arithmetic mean metric and −2/3 mean metric show that the accuracy
and robustness of the VAE model have been improved.

5. Visualization of Latent Distribution

In order to understand the relationship between increasing coupling of the loss func-
tion with the means and the standard deviations of the Gaussian model, we examine a
two-dimensional model which can be visualized. Compared with the high-dimensional
model, the probability likelihoods for the two-dimensional model are lower, indicating
that the higher dimensions do improve the model. Nevertheless, like the 20-dimensional
model, the distribution of likelihood is compressed toward higher values as the coupling
increases and, therefore, can be used to analyze the results further. Larger likelihood of
input images along with both means closer to the origin and smaller standard deviations
of latent variables are the primary characteristics as the coupling parameter of the loss
function is increased. As a result, both the robustness and accuracy of likelihoods increase.
To be specific, when κ increases from 0 to 0.075, the geometric mean metric increases from
1.20 × 10−63 to 4.67 × 10−55, and the −2/3 mean metric increases from 5.03 × 10−170 to
5.17 × 10−144, while the arithmetic metric does not change very much. In this case, the
reconstructed images have a higher probability of replicating the input image using the
coupled VAE method.

The rose plots in Figure 9 show that the range and variability of the mean values of
latent variables decrease as the coupling κ increases. From the view of means, the posterior
distribution of the latent space is closer to the prior, the standard Gaussian distribution.
From the view of standard deviations, the posterior distribution of the latent space is
further from the prior.
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(a) κ = 0 (b) κ = 0.025 (c) κ = 0.05 (d) κ = 0.075

Figure 9. The rose plots of the various mean (above four figures) and standard deviation (below four
figures) values in 2 dimensions. The range of means is reduced and mean values become closer to 0
as coupling increases.

The latent space plots shown in Figure 10 are the visualizations of images of the
numerals from 0 to 9. Images are embedded in a 2D map where the axis is the values of the
2D latent variable. The same color represents images that belong to the same numeral, and
they cluster together since they have higher similarity to each other. The distances between
spots represent the similarities of images. The latent space plots show that the different
clusters shrink together more tightly when coupling becomes larger. The plots shown in
Figure 11 are the visualizations of the learned data manifold generated by the decoder
network of the coupled VAE model. A grid of values from a two-dimensional Gaussian
distribution is sampled. The distinct digits each exist in different regions of the latent space
and smoothly transform from one digit to another. This smooth transformation can be
quite useful when the interpolation between two observations is needed. Additionally, the
distribution of distinct digits in the plot becomes more even, and the sharpness of the digits
increases when κ increases.

(a) κ = 0 (b) κ = 0.025 (c) κ = 0.05 (d) κ = 0.075

Figure 10. The plot of the latent space of VAE trained for 200 epochs on MNIST with various κ values.
Different numerals cluster together more tightly as coupling κ increases.
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(a) κ = 0 (b) κ = 0.025 (c) κ = 0.05 (d) κ = 0.075

Figure 11. The plot of visualization of learned data manifold for generative models with the axes as
the values of each dimension of latent variables. The distinct digits each exist in different regions of
the latent space and smoothly transform from one digit to another.

As shown in Table 2, as the coupling increases from 0 to 0.075, the negative ELBO
(the loss) decreases from 172.3 to 146.7, the coupled KL-divergence decreases from 5.8 to
5.6, and the coupled reconstruction loss decreases from 166.5 to 141.1. It shows that the
reconstruction loss plays a dominant role (with proportion over 96%), while the divergence
term has a much lower effect (with proportion under 4%) in the loss function. The overall
improvement of coupled loss is based on both the smaller coupled KL-divergence and
the smaller coupled reconstruction error, instead of a trade-off between them. There is a
high degree of variability in this improvement, so there are reasons to be cautious about
the degree of improvement. In addition, since the coupled loss function is adjusting the
metric, the property being measured is also adjusting. Part of our future research plan is to
explore how the relative performance between the reconstruction and the latent space can
be compared.

Table 2. Components of coupled ELBO with a 2-dimensional latent layer under different values of
coupling. The improvement in the coupled KL-divergence is very slight, while it is larger for the
coupled reconstruction loss.

Coupling κ
Coupled

KL-Divergence
Coupled RE Loss Coupled ELBO KL Proportion RE Proportion

0 5.8 +/− 1.7 166.5 +/− 52.2 172.3 3.38% 96.62%
0.025 5.7 +/− 1.6 156.4 +/− 49.8 162.1 3.53% 96.47%
0.05 5.6 +/− 1.6 149.2 +/− 46.6 154.8 3.61% 96.39%

0.075 5.6 +/− 1.7 141.1 +/− 44.6 146.7 3.82% 96.18%

6. Performance with Corrupted Images

We also evaluate the performance of the coupled VAE algorithm when keyed by
images from the corrupted MNIST (C-MNIST) dataset [34]. The reconstructed images
under 5 different corruptions: Gaussian corruption, glass blur corruption, impulse noise
corruption, shot noise corruption and shear corruption, with two coupling values κ = 0.0
and κ = 0.1 are shown in the Figure 12. Based on the visualization of the generated images,
the qualitative visual improvement in clarity using the coupling is modest.

We also conduct the further analyses for the performance of the coupled VAE with each
corruption. For the MNIST images with Gaussian corruption, as shown in the Figure 13,
when the coupling parameter κ increases, all the three metrics—robustness, central ten-
dency, and decisiveness—increase. The robustness improves the most, central tendency
is the next, and decisiveness has the least improvement. Furthermore, we confirm that
the reconstruction improvement is not a trade-off with latent distribution divergence, as
shown in Table 3. This is in contrast to the β-VAE [11] method which merely alters the
weight between the reconstruction and divergence components of the negative ELBO
cost function.
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In the Table 3, analyses of the components of the coupled ELBO are provided. Com-
parisons as the coupling changes are somewhat confusing because the metric itself is
changing. Therefore, as the coupling increases the measure of performance is more difficult.
Nevertheless, there is still an overall tendency towards improved performance, even with
this caveat. The second column shows that the coupled KL-divergence initially increases
when moving away from the standard VAE design with κ = 0, however, it then steadily de-
creases with increasing κ. This may be due to the distinct difference between the logarithm
and even a slight deviation from the logarithm. The coupled reconstruction loss (column
three) shows steady improvement. The overall negative coupled ELBO shows consistent
improvement as the coupling increases. The relative importance of the divergence and
reconstruction varies as the coupling increases but in each case it is approximately a 15% to
85% relative weighting.

The improvement of the three metrics with glass blur corruption, impulse noise
corruption, shot noise corruption and shear corruption is also observed and shown in
Figures 14–17, respectively. Similar to the Gaussian corruption, all the three metrics
gradually increase as the coupling parameter κ increases from 0 to 0.1. The respective
analyses of the components of the coupled ELBO with glass blur corruption, impulse noise
corruption, shot noise corruption and shear corruption are provided in Tables 4–7. The four
corruptions share the consistent results, the coupled KL-divergence initially increases when
moving away from the standard VAE design with κ ≤ 0.025, but it then steadily decreases
with increasing κ. The overall negative coupled ELBO shows consistent improvement as
κ increases. It means that if the coupling parameter is relatively large (> 0.025), both the
KL-divergence and the reconstruction loss will be improved, thus the overall improvement
of the algorithm is not a trade-off between the reconstruction accuracy and the latent
distribution divergence.

Table 3. The components of the coupled ELBO under Gaussian corruptions are provided in the
table. The coupled KL-divergence initially increases when moving away from the standard VAE
design with κ = 0 to κ = 0.025, however, it then steadily decreases with increasing κ. The coupled
reconstruction loss (column three) shows steady improvement. The overall negative coupled ELBO
shows consistent improvement as the coupling increases. The relative importance of the divergence
and reconstruction varies as the coupling increases but in each case it is approximately a 15% to 85%
relative weighting.

Coupling κ
Coupled

KL-Divergence
Coupled RE Loss Coupled ELBO KL Proportion RE Proportion

κ = 0 23.9 +/− 3.8 131.6 +/− 40.7 155.5 15.34% 84.66%
κ = 0.025 29.6 +/− 2.3 119.9 +/− 38.5 149.5 19.80% 80.20%
κ = 0.05 26.0 +/− 0.9 111.1 +/− 36.5 137.1 18.94% 80.06%

κ = 0.075 21.4 +/− 0.5 104.4 +/− 34.3 125.8 16.98% 83.02%
κ = 0.1 18.4 +/− 0.6 98.9 +/− 32.7 117.3 15.71% 84.28%
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Figure 12. The images with 5 different corruptions are shown in the first row. The reconstructed
images when κ = 0.0 and κ = 0.1 are shown in the second and third rows, respectively. The
qualitative visual improvement in clarity using the coupling is modest.

κ = 0 κ = 0.025 κ = 0.05

κ = 0.075 κ = 0.1

Figure 13. The histograms of marginal likelihood for the MNIST images with Gaussian corruption
shown. All three metrics increase as the coupling parameter κ increases. The robustness improves
the most, central tendency is the next, and decisiveness has the least improvement. From κ = 0.0 to
κ = 0.1, the Robustness improves from 10−109.2 to 10−87.0, the Accuracy improves from 10−57.2 to
10−42.9, and the Decisiveness improves from 10−16.8 to 10−13.6.
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Figure 14. The histograms of marginal likelihood for the MNIST images with glass blur corruption
are shown. All the three metrics increase as the coupling parameter κ increases from 0 to 0.1.

Table 4. The components of the coupled ELBO under glass blur corruptions are provided in the table.
The coupled KL-divergence initially increases when moving away from the standard VAE design
with κ ≤ 0.025, but it then steadily decreases with increasing κ. The coupled reconstruction loss
shows steady improvement. The overall negative coupled ELBO shows consistent improvement as
κ increases.

Coupling κ
Coupled

KL-Divergence
Coupled RE Loss Coupled ELBO KL Proportion RE Proportion

κ = 0 22.3 +/− 3.5 196.1 +/− 55.3 218.4 10.19% 89.81%
κ = 0.025 29.4 +/− 2.0 178.8 +/− 50.1 208.2 14.12% 85.88%
κ = 0.05 25.5 +/− 0.7 164.1 +/− 45.7 189.6 13.44% 86.56%

κ = 0.075 20.9 +/− 0.4 154.0 +/− 43.0 174.9 11.96% 88.04%
κ = 0.1 18.0 +/− 0.4 145.1 +/− 40.0 163.1 11.05% 88.95%

Figure 15. The histograms of marginal likelihood for the MNIST images with impulse noise corrup-
tion are shown. All the three metrics increase as the coupling κ increases from 0 to 0.1.

Table 5. The components of the coupled ELBO under impulse noise corruptions are provided in
the table. The coupled KL-divergence initially increases when moving away from the standard VAE
design with κ ≤ 0.025, but it then steadily decreases with increasing κ. The overall negative coupled
ELBO shows consistent improvement as κ increases.

Coupling κ
Coupled

KL-Divergence
Coupled RE Loss Coupled ELBO KL Proportion RE Proportion

κ = 0 24.2 +/− 3.8 170.7 +/− 34.7 195.0 12.43% 87.57%
κ = 0.025 29.9 +/− 2.2 148.0 +/− 31.0 177.9 16.81% 83.19%
κ = 0.05 26.0 +/− 0.8 131.6 +/− 28.5 157.7 16.52% 83.48%

κ = 0.075 21.4 +/− 0.6 120.9 +/− 26.7 142.3 15.05% 84.95%
κ = 0.1 18.5 +/− 0.6 111.8 +/− 25.2 130.3 14.21% 85.79%
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Figure 16. The histograms of marginal likelihood for the MNIST images with shot noise corruption
are shown. All the three metrics increase as the coupling parameter κ increases from 0 to 0.1.

Table 6. The components of the coupled ELBO under shot noise corruptions are provided in the
table. The coupled KL-divergence increases when moving away from the standard VAE design with
κ ≤ 0.025, but it then steadily decreases with increasing κ. The coupled reconstruction loss shows steady
improvement. The overall negative coupled ELBO shows consistent improvement as κ increases.

Coupling κ
Coupled

KL-Divergence
Coupled RE Loss Coupled ELBO KL Proportion RE Proportion

κ = 0 23.9 +/− 3.8 98.9 +/− 28.3 122.8 19.45% 80.55%
κ = 0.025 29.9 +/− 2.4 88.9 +/− 26.2 118.8 25.14% 74.86%
κ = 0.05 26.1 +/− 1.0 81.8 +/− 25.0 108.0 24.21% 75.80%
κ = 0.075 21.6 +/− 0.7 77.6 +/− 23.9 99.2 21.80% 78.20%

κ = 0.1 18.6 +/− 0.6 73.4 +/− 22.8 92.0 20.17% 79.83%

Figure 17. The histograms of marginal likelihood for the MNIST images with shear corruption are
shown. All the three metrics increase as the coupling parameter κ increases from 0 to 0.1.
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Table 7. The components of the coupled ELBO under shear corruptions are provided. The coupled
KL-divergence increases when moving away from the standard VAE design with κ ≤ 0.025, but it
then steadily decreases with increasing κ. The coupled reconstruction loss shows steady improvement.
The overall negative coupled ELBO shows consistent improvement as κ increases.

Coupling κ
Coupled

KL-Divergence
Coupled RE Loss Coupled ELBO KL Proportion RE Proportion

κ = 0 24.8 +/− 4.0 114.1 +/− 31.7 138.9 17.85% 82.15%
κ = 0.025 30.4 +/− 2.4 102.3 +/− 29.0 132.7 22.92% 77.08%
κ = 0.05 26.1 +/− 0.9 94.7 +/− 27.5 120.8 21.61% 78.39%

κ = 0.075 21.8 +/− 0.7 89.5 +/− 26.3 111.3 19.61% 80.39%
κ = 0.1 18.6 +/− 0.6 84.9 +/− 24.9 103.5 17.97% 82.03%

7. Discussion and Conclusions

This investigation sought to determine whether the accuracy and robustness of varia-
tional autoencoders can be improved using certain statistical methods developed within
the area of complex systems theory. Our investigation provides evidence that the tail shape
of the negative evidence lower bound can be controlled in such a way that the cost of outlier
events is adjustable. We refer to this method as a coupled VAE, since the control parameter
models the nonlinear deviation from the exponential and logarithmic functions of linear
analysis. A positive coupling parameter increases the cost of these tail events and thereby
trains the algorithm to be robust against such outliers. Additionally, this improves both
the accuracy of reconstructed images and reduces the divergence of the posterior latent
distribution from the prior. We have been able to document this improvement using the
histogram of the reconstructed marginal likelihoods. Metrics of the histogram are formed
from the arithmetic mean, geometric mean, and −2/3 mean, which represent Decisiveness,
Accuracy, and Robustness, respectively. Both the accuracy and the robustness are improved
by increasing the coupling of the loss function. There is a limit to such increases in the
coupling beyond which the training process no longer converges.

These performance improvements have been evaluated for the MNIST handwritten
numeral dataset and its corrupted modification C-MNIST. We used a two-layer dense
neural network for the encoder/decoder. The latent layer is a 20-dimensional Gaussian
distribution and for visualization a 2-dimensional distribution was also examined. Without
the corruption, we observed improvements in both components of the negative coupled
ELBO loss function, namely the image reconstruction loss (marginal likelihood) and the
latent distribution (divergence between the prior and posterior). Thus, the coupled VAE
is able to improve the model representation, rather than just trading off reconstruction
and divergence performance, as does the highly cited β-VAE design. The likelihood of the
reconstructed image matching the original improves in Accuracy by 1010 and in Robustness
by 108 when the coupling parameter was increased from κ = 0 (the standard VAE) to
κ = 0.1 (the largest value of the coupled VAE reported). The Decisiveness did not change
significantly, though there is potential that negative values of the coupling could influence
this metric. The performance improvements when the algorithm is seeded by the C-MNIST
dataset are far more significant, demonstrating the improved stability of the algorithm.
All five corruptions examined (Gaussian, glass blur, impulse noise, shot noise, and shear)
show significant improvement in Robustness and Accuracy and some improvement in
the Decisiveness. For example, under the Gaussian corruption, the improvements in the
reconstruction likelihood for Accuracy are 1014 and those for the Robustness are 1020 when
the coupling parameter is increased from κ = 0 (the standard VAE) to κ = 0.1. The
significant improvement in Robustness using the corrupted MNIST dataset demonstrates
that the coupled negative ELBO cost function reduces the risk of overfitting by forcing the
network to learn general solutions that are less likely to create outliers.

The modifications of the latent posterior distributions have been further examined
using a two-dimensional representation. We show that the latent variables have both a
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tighter distribution of the mean about its prior value of zero, and a movement of standard
deviations towards zero, away from the prior of one, as coupling κ increases. Overall,
the coupled KL-divergence does indeed decrease as the coupling is increased, indicating
improvement in the latent representation. Thus, improvements in the reconstruction
evident from both visual clarity of images and increased accuracy in measured likelihoods
are not due to a trade-off with the latent representation. Rather, the negative coupled ELBO
metric shows improvement in both latent layer divergence and output image reconstruction.
This improvement in the two components of the evidence lower bound provides evidence
that the coupled VAE improves the approximate variational inference of the model.

In future research, we plan to study the coupled Gaussian distribution as the prior
and posterior distribution of the latent layer. This may be helpful for achieving greater
separation between the images into distinct clusters similar to what has been achieved
with t-stochastic neighborhood embedding methods [35]. If so, it may be possible to
improve the decisiveness of the likelihoods in addition to further improvements in the
accuracy and robustness. Since our approach generalizes the training of the decoder and
encoder networks, it is expected to be seamlessly applicable to other datasets and neural
network architectures. We are conducting research to apply our method to a convolutional
neural network design that can process more complex datasets such as CIFAR-10. This
first demonstration of the coupled ELBO cost function has provided experimental results
applied to a shallow neural network but the approach is also applicable to the training of
deep neural networks.
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Appendix A

Appendix A.1. Derivation of Negative Coupled ELBO

Generalizing the negative ELBO is accomplished using the principles of nonlinear
statistical coupling (NSC) to generalize information theory. As described in Section 2.1, the
negative ELBO consists of two components, the KL-divergence between the prior and poste-
rior latent distribution, and the cross-entropy or negative log-likelihood of the reconstructed
image in relation to the original image. NSC is an approach to modeling the statistics of
complex systems that unifies heavy-tailed distributions, generalized information metrics,
and fusion of information. Its application to the cost functions of a VAE provides control
over the trade-off between decisive and robust generative models. Decisive refers to the
characteristic of confident probabilities and robust refers to the characteristic of dampening
extremes in the probabilities.

In the VAE algorithm, the loss function consists of the KL-divergence between the
posterior approximation q

(
z|x(i)

)
and a prior p(z) and the cross-entropy between the

reported probabilities and the training sample distribution.

32



Entropy 2022, 24, 423

L
(

x(i)
)
= DKL

(
q
(

z|x(i)
)

‖ p(z)
)

− 1
L

L

∑
l=1

(
log p

(
x(i)|z(i,l)

))
, (A1)

where L is the number of reconstructions per test sample, and the KL-divergence is given by

DKL

(
q
(

z|x(i)
)

‖ p(z)
)
=
∫

q
(

z|x(i)
)(

log q
(

z|x(i)
)

− log p(z)
)

dz. (A2)

Even though x(i) given z is a grayscaled value, which is not Bernoulli distributed, we
can still use the probability mass function of Bernoulli distribution, then the cross entropy
term is given by

− 1
L

L

∑
l=1

(
log p

(
x(i)|z(i,l)

))
= − 1

L

L

∑
l=1

nx

∑
i=1

[
xi log yi + (1 − xi) log(1 − yi)

]
, (A3)

where y = Sigmod(f2(tanh (f1(z)))) while f1 and f2 are linear models and nx is the
dimensionality of x.

The negative ELBO loss function is modified by coupled generalizations of the KL-
divergence and cross-entropy. The purpose is to increase the weighting of rare events in
the training dataset and thereby improve the robustness of the VAE model. The connection
with the assessment metrics defined in Section 3.1 is that the power of the generalized mean
can be decomposed into functions of the coupling and second parameter α, related to the
power in the distribution of the random variable. For Gaussians and their generalizations,
known as coupled Gaussians, α = 2. Making use of r(κ, α, d) = −ακ

1+dκ with α = 2,

the generalized mean is
(

∑ p1+r
i

) 1
r
=

(
∑ p

1− 2κ
1+κ

i

)− 1+κ
2κ

. When the coupling κ → 0, the

generalized mean is asymptotically equal to the geometric mean.
The coupled entropy function takes the form of a generalized logarithmic function

applied to the generalized mean [22].

Hκ(p) ≡ 1
2

lnκ

((
∑ p

1+ 2κ
1+κ

i

)−1
κ

)
≡ p

1+ 2κ
1+κ

i

2 ∑ p
1+2κ
1+κ

i

lnκ p
− 2

1+κ
i ≡ 1

2κ

((
∑ p

1+3κ
1+κ

i

)−1
− 1

)
, (A4)

where lnκ(x) is the generalization of the logarithm function in Equation (A15).
Similar to the generalization of coupled entropy function, the generalized logarithmic

is applied to the KL-divergence. The first term in KL-divergence becomes

−
∫

q(z|x(i))log q(z|x(i))dz ⇒ 1
2

nz

∏
j=1

∫ q(zj|x(i))
1+ 2κ

1+κ∫
q(zj|x(i))1+ 2κ

1+κ dzj

lnκ(q(zj|x(i))−
2

1+κ )dzj, (A5)

and the second term in KL-divergence becomes

−
∫

q(z|x(i))log p(z)dz ⇒ 1
2

nz

∏
j=1

∫ q(zj|x(i))
1+ 2κ

1+κ∫
q(zj|x(i))1+ 2κ

1+κ dzj

lnκ(p(zj)
− 2

1+κ )dzj, (A6)

Therefore, the coupled divergence with nz as the dimensionality of z can be written as
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The original cross-entropy can also be modified in a similar way. Applying the
generalization of the logarithmic function, the terms log(yi) and log(1 − yi) are modified

to 1
2 lnκ

(
(yi)

2
1+κ

)
and 1

2 lnκ
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2
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)
, thus

log p
(

x(i)|z(i,l)
)

⇒
nx

∑
i=1

(
xi

1
2

lnκ

(
(yi)

2
1+κ

)
+ (1 − xi)

1
2

lnκ

(
(1 − yi)

2
1+κ

))
. (A8)

Therefore, the coupled cross-entropy is the generalization of the cross-entropy term in
Equation (A14), which is defined as

Hκ(xi, yi) ≡ − 1
2L
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∑
l=1
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i=1
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xilnκ

(
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2
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Adding Equations (A7) and (A9) gives the negative coupled ELBO,

Lκ

(
x(i)
)
= Dκ

(
q
(

z|x(i)
)

‖ p(z)
)
+ Hκ(x, y), (A10)

as defined in Equations (10)–(12).

Appendix A.2. Origin of the Generalized Probability Metrics

The generalized probability metrics derive from a translation of a generalized en-
tropy function back to the probability domain. Use of the geometric mean for Accuracy
derives from the Boltzmann–Gibbs–Shannon entropy, which measures the average uncer-
tainty of a system and is equal to the arithmetic average of the negative logarithm of the
probability distribution,

H(P) ≡ −
N

∑
i=1

pi ln pi = − ln

(
N

∏
i=1

ppi
i

)
. (A11)

Translating the entropy back to the probability domain via the inverse of the negative
logarithm, which is the exponential of the negative, results in the weighted geometric mean
of the probabilities

Pavg ≡ exp(−H(P)) = exp

(
ln

(
N

∏
i=1

ppi
i

))
=

N

∏
i=1

ppi
i . (A12)

The role of this function in defining the central tendency of the y-axis of a density is
illustrated with the Gaussian distribution. Utilizing the continuous definition of entropy
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for a density f (x) for a random variable x, the neutral accuracy or central tendency of the
density is

favg ≡ exp(−H( f (x))) = exp

⎛⎝∫
X

f (x) ln f (x)dx

⎞⎠. (A13)

For the Gaussian, the average density is equal to the density at the mean plus the
standard deviation f (μ ± σ).

The use of the geometric mean as a metric for the neutral accuracy in the previous
section is related to the cross-entropy between the reported probability of the algorithm
and the probability distribution of the test set. The cross-entropy between a ‘quoted’ or
predicted probability distribution q and the distribution of the test set p is

H(p, q) ≡ − ∑
i

pi ln qi. (A14)

In evaluating an algorithm, the actual distribution is defined by the test samples which,
for equally probable independent samples, each have a probability of pi =

1
N . Translated

to the probability domain, the cross-entropy becomes the geometric mean of the reported
probabilities (8), thus showing that use of the geometric mean of the probabilities as a
measure of Accuracy for reported probabilities is equivalent to the use of cross-entropy as
a metric of forecasting performance.

Likewise, the use of the generalized mean as a metric for Robustness and Decisiveness
derives from a generalization of the cross-entropy. While there are a variety of proposed
generalizations to information theory, in [22,36–38], the Renyi and Tsallis entropies were
both shown to translate to a generalized mean upon transformation to the probability
domain. Here, we show that the derivation of this transformation uses the coupled entropy,
which derives from the Tsallis entropy, but utilizes a modified normalization. The nonlinear
statistical coupling (or simply the coupling) has been shown to (a) quantify the relative
variance of a superstatistics model in which the variance of exponential distribution fluc-
tuates according to a gamma distribution, and (b) be equal to the inverse of the degree
of freedom of the Student’s t distribution. The coupling is related to the risk bias by the
expression r = −2κ

1+κ , where the numeral 2 is associated with the power 2 of the Student’s
t distribution, and the ratio r = −2κ

1+κ is associated with a duality between the positive
and negative domains of the coupling. The coupled entropy uses a generalization of the
logarithmic function,

lnκ(x) ≡ 1
κ
(xκ − 1), x > 0, (A15)

which provides a continuous set of functions with power. The coupled entropy aggregates
the probabilities of a distribution using the generalized mean and translates this to the
entropy domain using the generalized logarithm. Using the equiprobable for the sample
probabilities, pi =

1
N , the coupled cross-entropy ‘score’ for the forecasted probabilities q

for the event labels e is

Sκ(e, q) ≡ −2
1 + κ

ln(−2κ
1+κ )

⎛⎝( 1
N

N

∑
i=1

q
−2κ
1+κ
i

)−1−κ
2κ

⎞⎠ ≡ 1
κ

((
1
N

N

∑
i=1

q
−2κ
1+κ
i

)
− 1

)
, (A16)

where qi is the probability of event ei which occurred. Thus, the coupled cross-entropy is a
local scoring rule dependent only on the probabilities of the actual events.
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Abstract: When confronted with massive data streams, summarizing data with dimension reduction
methods such as PCA raises theoretical and algorithmic pitfalls. A principal curve acts as a nonlinear
generalization of PCA, and the present paper proposes a novel algorithm to automatically and
sequentially learn principal curves from data streams. We show that our procedure is supported
by regret bounds with optimal sublinear remainder terms. A greedy local search implementation
(called slpc, for sequential learning principal curves) that incorporates both sleeping experts and
multi-armed bandit ingredients is presented, along with its regret computation and performance on
synthetic and real-life data.

Keywords: sequential learning; principal curves; data streams; regret bounds; greedy algorithm;
sleeping experts

1. Introduction

Numerous methods have been proposed in the statistics and machine learning litera-
ture to sum up information and represent data by condensed and simpler-to-understand
quantities. Among those methods, principal component analysis (PCA) aims at identifying
the maximal variance axes of data. This serves as a way to represent data in a more compact
fashion and hopefully reveal as well as possible their variability. PCA was introduced
by [1,2] and further developed by [3]. This is one of the most widely used procedures
in multivariate exploratory analysis targeting dimension reduction or feature extraction.
Nonetheless, PCA is a linear procedure and the need for more sophisticated nonlinear tech-
niques has led to the notion of principal curve. Principal curves may be seen as a nonlinear
generalization of the first principal component. The goal is to obtain a curve which passes
“in the middle” of data, as illustrated by Figure 1. This notion of skeletonization of data
clouds has been at the heart of numerous applications in many different domains, such as
physics [4,5], character and speech recognition [6,7], mapping and geology [5,8,9], to name
but a few.

e fir
of data, as

n at the heart of
], character and speech

Figure 1. A principal curve.

1.1. Earlier Works on Principal Curves

The original definition of principal curve dates back to [10]. A principal curve is a
smooth (C∞) parameterized curve f(s) = ( f1(s), . . . , fd(s)) in Rd which does not intersect

Entropy 2021, 23, 1534. https://doi.org/10.3390/e23111534 https://www.mdpi.com/journal/entropy
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itself, has finite length inside any bounded subset of Rd and is self-consistent. This last
requirement means that f(s) = E[X|sf(X) = s], where X ∈ Rd is a random vector and
the so-called projection index sf(x) is the largest real number s minimizing the squared
Euclidean distance between f(s) and x, defined by

sf(x) = sup
{

s : ‖x − f(s)‖2
2 = inf

τ
‖x − f(τ)‖2

2

}
.

Self-consistency means that each point of f is the average (under the distribution of X) of
all data points projected on f, as illustrated by Figure 2.

Figure 2. A principal curve and projections of data onto it.

However, an unfortunate consequence of this definition is that the existence is not
guaranteed in general for a particular distribution, let alone for an online sequence for
which no probabilistic assumption is made. In order to handle complex data structures,
Ref. [11] proposed principal curves (PCOP) of principal oriented points (POPs) which are
defined as the fixed points of an expectation function of points projected to a hyperplane
minimising the total variance. To obtain POPs, a cluster analysis is performed on the
hyperplane and only data in the local cluster are considered. Ref. [12] introduced the
local principal curve (LPC), whose concept is similar to that of [11], but accelerates the
computation of POPs by calculating local centers of mass instead of performing cluster
analysis, and local principal component instead of principal direction. Later, Ref. [13]
also considered LPC in data compression and regression to reduce the dimension of
predictors space to low-dimension manifold. Ref. [14] extended the idea of localization
to independent component analysis (ICA) by proposing a local-to-global non-linear ICA
framework for visual and auditory signal. Ref. [15] considered principal curves from a
different perspective: as the ridge of a smooth probability density function (PDF) generating
dataset, where the ridges are collections of all points; the local gradient of a PDF is an
eigenvector of the local Hessian, and the eigenvalues corresponding to the remaining
eigenvectors are negative. To estimate principal curves based on this definition, the
subspace constrained mean shift (SCMS) algorithm was proposed. All the local methods
above require strong assumptions on the PDF, such as twice continuous differentiability,
which may prove challenging to be satisfied in the settings of online sequential data.
Ref. [16] proposed a new concept of principal curves which ensures its existence for a large
class of distributions. Principal curves f� are defined as the curves minimizing the expected
squared distance over a class FL of curves whose length is smaller than L > 0; namely,
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f� ∈ arg inf
f∈FL

Δ(f),

where
Δ(f) = E[Δ(f, X)] = E

[
inf

s
‖f(s)− X‖2

2

]
.

If E‖X‖2
2 < ∞, f� always exists but may not be unique. In practical situations where only

i.i.d. copies X1, . . . , Xn of X are observed, the method of [16] considers classes Fk,L of all
polygonal lines with k segments and length not exceeding L, and chooses an estimator f̂k,n
of f� as the one within Fk,L, which minimizes the empirical counterpart

Δn(f) =
1
n

n

∑
i=1

Δ(f, Xi)

of Δ(f). It is proved in [17] that if X is almost surely bounded and k ∝ n1/3, then

Δ
(

f̂k,n

)
− Δ(f�) = O

(
n−1/3

)
.

As the task of finding a polygonal line with k segments and length of at most L that mini-
mizes Δn(f) is computationally costly, Ref. [17] proposed a polygonal line algorithm. This
iterative algorithm proceeds by fitting a polygonal line with k segments and considerably
speeds up the exploration part by resorting to gradient descent. The two steps (projection
and optimization) are similar to what is done by the k-means algorithm. However, the
polygonal line algorithm is not supported by theoretical bounds and leads to variable
performance depending on the distribution of the observations.

As the number of segments, k, plays a crucial role (a too small a k value leads to a poor
summary of data, whereas a too-large k yields overfitting; see Figure 3), Ref. [18] aimed to
fill the gap by selecting an optimal k from both theoretical and practical perspectives.

(a) (b)

(c)

Figure 3. Principal curves with different numbers (k) of segments. (a) A too small k. (b) Right k. (c) A
too large k.
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Their approach relies strongly on the theory of model selection by penalization intro-
duced by [19] and further developed by [20]. By considering countable classes {Fk,�}k,� of
polygonal lines with k segments and total length � ≤ L, and whose vertices are on a lattice,
the optimal (k̂, �̂) is obtained as the minimizer of the criterion

crit(k, �) = Δn

(
f̂k,�

)
+ pen(k, �),

where

pen(k, �) = c0

√
k
n
+ c1

�

n
+ c2

1√
n
+ δ2

√
wk,�

2n

is a penalty function where δ stands for the diameter of observations and wk,� denotes
the weight attached to class Fk,�; and it has constants c0, c1, c2 depending on δ, maximum
length L and a certain number of dimensions of observations. Ref. [18] then proved that

E
[
Δ(f̂k̂,�̂)− Δ(f�)

]
≤ inf

k,�

{
E
[
Δ(f̂k,�)− Δ(f�)

]
+ pen(k, �)

}
+

δ2Σ
23/2

√
π

n
, (1)

where Σ is a numerical constant. The expected loss of the final polygonal line f̂k̂,�̂ is close to
the minimal loss achievable over Fk,� up to a remainder term decaying as 1/

√
n.

1.2. Motivation

The big data paradigm—where collecting, storing and analyzing massive amounts
of large and complex data becomes the new standard—commands one to revisit some of
the classical statistical and machine learning techniques. The tremendous improvements
of data acquisition infrastructures generates new continuous streams of data, rather than
batch datasets. This has drawn great interest to sequential learning. Extending the notion
of principal curves to the sequential settings opens up immediate practical application
possibilities. As an example, path planning for passengers’ locations can help taxi compa-
nies to better optimize their fleet. Online algorithms that could yield instantaneous path
summarization would be adapted to the sequential nature of geolocalized data. Existing
theoretical works and practical implementations of principal curves are designed for the
batch setting [7,16–18,21] and their adaptation to the sequential setting is not a smooth
process. As an example, consider the algorithm in [18]. It is assumed that vertices of
principal curves are located on a lattice, and its computational complexity is of order
O(nNp) where n is the number of observations, N the number of points on the lattice and
p the maximum number of vertices. When p is large, running this algorithm at each epoch
yields a monumental computational cost. In general, if data are not identically distributed
or even adversary, algorithms that originally worked well in the batch setting may not be
ideal when cast onto the online setting (see [22], Chapter 4). To the best of our knowledge,
little effort has been put so far into extending principal curves algorithms to the sequential
context.

Ref. [23] provided an incremental version of the SCMS algorithm [15] which is
based on a definition of a principal curve as the ridge of a smooth probability density
function generating observations. They applied the SCMS algorithm to the input points
that are associated with the output points which are close to the new incoming sample
and leave the remaining outputs unchanged. Hence, this algorithm can be used to deal
with sequential data. As presented in the next section, our algorithm for sequentially
updating principal curve vertices that are close to new data is similar in spirit to that of
incremental SCMS. However, a difference is that our algorithm outputs polygonal lines. In
addition, the computation complexity of our method is O(n2), and incremental SCMS has
O(n3) complexity, where n is the number of observations. Ref. [24] considered sequential
principal curves analysis in a fairly different setting in which the goal was to derive in an
adaptive fashion a set of nonlinear sensors by using a set of preliminary principal curves.
Unfolding sequentially principal curves and a sequential path for Jacobian integration were
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considered. The “sequential” in this setting represented the generalization of principal
curves to principal surfaces or even a principal manifold of higher dimensions. This way
of sequentially exploiting principal curves was firstly proposed by [11] and later extended
by [14,25,26] to give curvilinear representations using sequence of local-to-global curves. In
addition, Refs. [15,27,28] presented, respectively, principal polynomial and non-parametric
regressions to capture the nonlinear nature of data. However, these methods are not
originally designed for treating sequential data. The present paper aims at filling this
gap: our goal was to propose an online perspective to principal curves by automatically
and sequentially learning the best principal curve summarizing a data stream. Sequential
learning takes advantage of the latest collected (set of) observations and therefore suffers a
much smaller computational cost.

Sequential learning operates as follows: a blackbox reveals at each time t some
deterministic value xt, t = 1, 2, . . . , and a forecaster attempts to predict sequentially the
next value based on past observations (and possibly other available information). The
performance of the forecaster is no longer evaluated by its generalization error (as in
the batch setting) but rather by a regret bound which quantifies the cumulative loss of a
forecaster in the first T rounds with respect to some reference minimal loss. In sequential
learning, the velocity of algorithms may be favored over statistical precision. An immediate
use of aforecited techniques [17,18,21] at each time round t (treating data collected until t
as a batch dataset) would result in a monumental algorithmic cost. Rather, we propose a
novel algorithm which adapts to the sequential nature of data, i.e., which takes advantage
of previous computations.

The contributions of the present paper are twofold. We first propose a sequential
principal curve algorithm, for which we derived regret bounds. We then present an
implementation, illustrated on a toy dataset and a real-life dataset (seismic data). The
sketch of our algorithm’s procedure is as follows. At each time round t, the number of
segments of kt is chosen automatically and the number of segments kt+1 in the next round
is obtained by only using information about kt and a small number of past observations.
The core of our procedure relies on computing a quantity which is linked to the mode of
the so-called Gibbs quasi-posterior and is inspired by quasi-Bayesian learning. The use
of quasi-Bayesian estimators is especially advocated by the PAC-Bayesian theory, which
originated in the machine learning community in the late 1990s, in the seminal works
of [29] and McAllester [30,31]. The PAC-Bayesian theory has been successfully adapted
to sequential learning problems; see, for example, Ref. [32] for online clustering. We refer
to [33,34] for a recent overview of the field.

The paper is organized as follows. Section 2 presents our notation and our online
principal curve algorithm, for which we provide regret bounds with sublinear remainder
terms in Section 3. A practical implementation was proposed in Section 4, and we illustrate
its performance on synthetic and real-life datasets in Section 5. Proofs of all original results
claimed in the paper are collected in Section 6.

2. Notation

A parameterized curve in Rd is a continuous function f : I −→ Rd where I = [a, b] is
a closed interval of the real line. The length of f is given by

L(f) = lim
M→∞

{
sup

a=s0<s1<···<sM=b

M

∑
i=1

‖f(si)− f(si−1)‖2

}
.

Let x1, x2, . . . , xT ∈ B(0,
√

dR) ⊂ Rd be a sequence of data, where B(c, R) stands for the
�2-ball centered in c ∈ Rd with radius R > 0. Let Qδ be a grid over B(0,

√
dR), i.e.,

Qδ = B(0,
√

dR) ∩ Γδ where Γδ is a lattice in Rd with spacing δ > 0. Let L > 0 and define
for each k ∈ �1, p� the collection Fk,L of polygonal lines f with k segments whose vertices
are in Qδ and such that L(f) ≤ L. Denote by Fp = ∪p

k=1Fk,L all polygonal lines with a
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number of segments ≤ p, whose vertices are in Qδ and whose length is at most L. Finally,
let K(f) denote the number of segments of f ∈ Fp. This strategy is illustrated by Figure 4.

Figure 4. An example of a lattice Γδ in R2 with δ = 1 (spacing between blue points) and B(0, 10)
(black circle). The red polygonal line is composed of vertices in Qδ = B(0, 10) ∩ Γδ.

Our goal is to learn a time-dependent polygonal line which passes through the “mid-
dle” of data and gives a summary of all available observations x1, . . . , xt−1 (denoted by
(xs)1:(t−1) hereafter) before time t. Our output at time t is a polygonal line f̂t ∈ Fp depend-
ing on past information (xs)1:(t−1) and past predictions (f̂s)1:(t−1). When xt is revealed, the
instantaneous loss at time t is computed as

Δ
(

f̂t, xt

)
= inf

s∈I
‖f̂t(s)− xt‖2

2. (2)

In what follows, we investigate regret bounds for the cumulative loss based on (2). Given
a measurable space Θ (embedded with its Borel σ-algebra), we let P(Θ) denote the set of
probability distributions on Θ, and for some reference measure π, we let Pπ(Θ) be the set
of probability distributions absolutely continuous with respect to π.

For any k ∈ �1, p�, let πk denote a probability distribution on Fk,L. We define the prior
π on Fp = ∪p

k=1Fk,L as

π(f) = ∑
k∈�1,p�

wkπk(f) {f∈Fk,L}, f ∈ Fp,

where w1, . . . , wp ≥ 0 and ∑k∈�1,p� wk = 1.
We adopt a quasi-Bayesian-flavored procedure: consider the Gibbs quasi-posterior

(note that this is not a proper posterior in all generality, hence the term “quasi”):

ρ̂t(·) ∝ exp(−λSt(·))π(·),

where
St(f) = St−1(f) + Δ(f, xt) +

λ

2
(
Δ(f, xt)− Δ(f̂t, xt)

)2,

as advocated by [32,35] who then considered realizations from this quasi-posterior. In the
present paper, we will rather focus on a quantity linked to the mode of this quasi-posterior.
Indeed, the mode of the quasi-posterior ρ̂t+1 is

arg min
f∈Fp

{
t

∑
s=1

Δ(f, xs)︸ ︷︷ ︸
(i)

+
λ

2

t

∑
s=1

(
Δ(f, xt)− Δ(f̂t, xt)

)2

︸ ︷︷ ︸
(ii)

+
ln π(f)

λ︸ ︷︷ ︸
(iii)

}
,
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where (i) is a cumulative loss term, (ii) is a term controlling the variance of the prediction f

to past predictions f̂s, s ≤ t, and (iii) can be regarded as a penalty function on the complexity
of f if π is well chosen. This mode hence has a similar flavor to follow the best expert or
follow the perturbed leader in the setting of prediction with experts (see [22,36], Chapters 3
and 4) if we consider each f ∈ Fp as an expert which always delivers constant advice.
These remarks yield Algorithm 1.

Algorithm 1 Sequentially learning principal curves.

1: Input parameters: p > 0, η > 0, π(z) = e−z
�{z>0} and penalty function h : Fp → R+

2: Initialization: For each f ∈ Fp, draw zf ∼ π and Δf,0 = 1
η (h(f)− zf)

3: For t = 1, . . . , T
4: Get the data xt
5: Obtain

f̂t = arg inf
f∈Fp

{
t−1

∑
s=0

Δf,s

}
,

where Δf,s = Δ(f, xs), s ≥ 1.
6: End for

3. Regret Bounds for Sequential Learning of Principal Curves

We now present our main theoretical results.

Theorem 1. For any sequence (xt)1:T ∈ B(0,
√

dR), R ≥ 0 and any penalty function h : Fp →
R+, let π(z) = e−z

�{z>0}. Let 0 < η ≤ 1
d(2R+δ)2 ; then the procedure described in Algorithm 1

satisfies

T

∑
t=1

Eπ

[
Δ(f̂t, xt)

]
≤ (1 + c0(e − 1)η)ST,h,η +

1
η

⎛⎝1 + ln ∑
f∈Fp

e−h(f)

⎞⎠,

where c0 = d(2R + δ)2 and

ST,h,η = inf
k∈�1,p�

⎧⎪⎨⎪⎩ inf
f∈Fp

K(f)=k

{
T

∑
t=1

Δ(f, xt) +
h(f)

η

}⎫⎪⎬⎪⎭.

The expectation of the cumulative loss of polygonal lines f̂1, . . . , f̂T is upper-bounded
by the smallest penalized cumulative loss over all k ∈ {1, . . . , p} up to a multiplicative
term (1 + c0(e − 1)η), which can be made arbitrarily close to 1 by choosing a small enough
η. However, this will lead to both a large h(f)/η in ST,h,η and a large 1

η (1+ ln ∑f∈Fp e−h(f)).
In addition, another important issue is the choice of the penalty function h. For each f ∈ Fp,
h(f) should be large enough to ensure a small ∑f∈Fp e−h(f), but not too large to avoid
overpenalization and a larger value for ST,h,η . We therefore set

h(f) ≥ ln(pe) + ln
∣∣∣∣{f ∈ Fp,K(f) = k}

∣∣∣∣ (3)

for each f with k segments (where |M| denotes the cardinality of a set M) since it leads to

∑
f∈Fp

e−h(f)) = ∑
k∈�1,p�

∑
f∈Fp

K(f)=k

e−h(f) ≤ ∑
k∈�1,p�

1
pe

≤ 1
e

.
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The penalty function h(f) = c1K(f) + c2L + c3 satisfies (3), where c1, c2, c3 are constants
depending on R, d, δ, p (this is proven in Lemma 3, in Section 6). We therefore obtain the
following corollary.

Corollary 1. Under the assumptions of Theorem 1, let

η = min

{
1

d(2R + δ)2 ,

√
c1 p + c2L + c3

c0(e − 1) inff∈Fp ∑T
t=1 Δ(f, xt)

}
.

Then

T

∑
t=1

E
[
Δ(f̂t, xt)

]
≤ inf

k∈�1,p�

⎧⎪⎨⎪⎩ inf
f∈Fp

K(f)=k

{
T

∑
t=1

Δ(f, xt) +
√

c0(e − 1)rT,k,L

}⎫⎪⎬⎪⎭
+
√

c0(e − 1)rT,p,L + c0(e − 1)(c1 p + c2L + c3),

where rT,k,L = inff∈Fp ∑T
t=1 Δ(f, xt)(c1k + c2L + c3).

Proof. Note that

T

∑
t=1

E
[
Δ(f̂t, xt)

]
≤ ST,h,η + ηc0(e − 1) inf

f∈Fp

T

∑
t=1

Δ(f, xt) + c0(e − 1)(c0 p + c2L + c3),

and we conclude by setting

η =

√
c1 p + c2L + c3

c0(e − 1) inff∈Fp ∑T
t=1 Δ(f, xt)

.

Sadly, Corollary 1 is not of much practical use since the optimal value for η depends
on inff∈Fp ∑T

t=1 Δ(f, xt) which is obviously unknown, even more so at time t = 0. We
therefore provide an adaptive refinement of Algorithm 1 in the following Algorithm 2.

Algorithm 2 Sequentially and adaptively learning principal curves.

1: Input parameters: p > 0, L > 0, π, h and η0 =

√
c1 p+c2L+c3

c0
√

e−1

2: Initialization: For each f ∈ Fp, draw zf ∼ π, Δf,0 = 1
η0
(h(f)− zf) and f̂0 = arg inf

f∈Fp

Δf,0

3: For t = 1, . . . , T

4: Compute ηt =

√
c1 p+c2L+c3

c0
√

(e−1)t

5: Get data xt and compute Δf,t = Δ(f, xt) +
(

1
ηt

− 1
ηt−1

)
(h(f)− zf)

6: Obtain

f̂t = arg inf
f∈Fp

{
t−1

∑
s=0

Δf,s

}
. (4)

7: End for

Theorem 2. For any sequence (xt)1:T ∈ B(0,
√

dR), R ≥ 0, let h(f) = c1K(f) + c2L + c3 where
c1, c2, c3 are constants depending on R, d, δ, ln p. Let π(z) = e−z

�{z>0} and

η0 =

√
c1 p + c2L + c3

c0
√

e − 1
, ηt =

√
c1 p + c2L + c3

c0
√
(e − 1)t

,
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where t ≥ 1 and c0 = d(2R + δ)2. Then the procedure described in Algorithm 2 satisfies

T

∑
t=1

E
[
Δ(f̂t, xt)

]
≤ inf

k∈�1,p�

{
inf

f∈Fp
K(f)=k

{ T

∑
t=1

Δ(f, xt) + c0

√
(e − 1)T(c1k + c2L + c3)

}}

+ 2c0

√
(e − 1)T(c1 p + c2L + c3).

The message of this regret bound is that the expected cumulative loss of polygonal
lines f̂1, . . . , f̂T is upper-bounded by the minimal cumulative loss over all k ∈ {1, . . . , p},
up to an additive term which is sublinear in T. The actual magnitude of this remainder
term is

√
kT. When L is fixed, the number k of segments is a measure of complexity of the

retained polygonal line. This bound therefore yields the same magnitude as (1), which is
the most refined bound in the literature so far ([18] where the optimal values for k and L
were obtained in a model selection fashion).

4. Implementation

The argument of the infimum in Algorithm 2 is taken over Fp = ∪p
k=1Fk,L which has a

cardinality of order |Qδ|p, making any greedy search largely time-consuming. We instead
turn to the following strategy: Given a polygonal line f̂t ∈ Fkt ,L with kt segments, we
consider, with a certain proportion, the availability of f̂t+1 within a neighborhood U(f̂t)
(see the formal definition below) of f̂t. This consideration is well suited for the principal
curves setting, since if observation xt is close to f̂t, one can expect that the polygonal line
which well fits observations xs, s = 1, . . . , t lies in a neighborhood of f̂t. In addition, if each
polygonal line f is regarded as an action, we no longer assume that all actions are available
at all times, and allow the set of available actions to vary at each time. This is a model
known as “sleeping experts (or actions)” in prior work [37,38]. In this setting, defining
the regret with respect to the best action in the whole set of actions in hindsight remains
difficult, since that action might sometimes be unavailable. Hence, it is natural to define
the regret with respect to the best ranking of all actions in the hindsight according to their
losses or rewards, and at each round one chooses among the available actions by selecting
the one which ranks the highest. Ref. [38] introduced this notion of regret and studied both
the full-information (best action) and partial-information (multi-armed bandit) settings
with stochastic and adversarial rewards and adversarial action availability. They pointed
out that the EXP4 algorithm [37] attains the optimal regret in the adversarial rewards case
but has a runtime exponential in the number of all actions. Ref. [39] considered full and
partial information with stochastic action availability and proposed an algorithm that runs
in polynomial time. In what follows, we materialize our implementation by resorting
to “sleeping experts”, i.e., a special set of available actions that adapts to the setting of
principal curves.

Let σ denote an ordering of |Fp| actions, and At a subset of the available actions at
round t. We let σ(At) denote the highest ranked action in At. In addition, for any action
f ∈ Fp we define the reward rf,t of f at round t, t ≥ 0 by

rf,t = c0 − Δ(f, xt).

It is clear that rf,t ∈ (0, c0). The convention from losses to gains is done in order to facilitate
the subsequent performance analysis. The reward of an ordering σ is the cumulative
reward of the selected action at each time:

T

∑
t=1

rσ(At),t,

and the reward of the best ordering is maxσ ∑T
t=0 rσ(At),t (respectively, E

[
maxσ ∑T

t=1 rσ(At),t

]
when At is stochastic).
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Our procedure starts with a partition step which aims at identifying the “relevant”
neighborhood of an observation x ∈ Rd with respect to a given polygonal line, and then
proceeds with the definition of the neighborhood of an action f. We then provide the full
implementation and prove a regret bound.

Partition. For any polygonal line f with k segments, we denote by
⇀
V = (v1, . . . , vk+1)

its vertices and by si, i = 1, . . . , k the line segments connecting vi and vi+1. In the sequel,

we use f(
⇀
V) to represent the polygonal line formed by connecting consecutive vertices in

⇀
V if no confusion arises. Let Vi, i = 1, . . . , k + 1 and Si, i = 1, . . . , k be the Voronoi partitions
of Rd with respect to f, i.e., regions consisting of all points closer to vertex vi or segment si.
Figure 5 shows an example of Voronoi partition with respect to f with three segments.

Neighborhood. For any x ∈ Rd, we define the neighborhood N(x) with respect to f

as the union of all Voronoi partitions whose closure intersects with two vertices connecting
the projection f(sf(x)) of x to f. For example, for the point x in Figure 5, its neighborhood
N(x) is the union of S2, V3, S3 and V4. In addition, let Nt(x) = {xs ∈ N(x), s = 1, . . . , t.}
be the set of observations x1:t belonging to N(x) and N̄t(x) be its average. Let D(M) =
supx,y∈M ||x − y||2 denote the diameter of set M ⊂ Rd. We finally define the local grid

Qδ,t(x) of x ∈ Rd at time t as

Qδ,t(x) = B(N̄t(x),D(Nt(x)) ∩ Qδ.

Figure 5. An example of a Voronoi partition.

We can finally proceed to the definition of the neighborhood U(f̂t) of f̂t. Assume f̂t has

kt + 1 vertices
⇀
V = (v1:it−1︸ ︷︷ ︸

(i)

, vit :jt−1︸ ︷︷ ︸
(ii)

, vjt :kt+1︸ ︷︷ ︸
(iii)

), where vertices of (ii) belong to Qδ,t(xt) while

those of (i) and (iii) do not. The neighborhood U(f̂t) consists of f sharing vertices (i) and
(iii) with f̂t, but can be equipped with different vertices (ii) in Qδ,t(xt); i.e.,

U(f̂t) =

{
f(

⇀
V),

⇀
V =

(
v1:it−1, v1:m, vjt :kt+1

)}
,

where v1:m ∈ Qδ,t(xt) and m is given by

m =

⎧⎪⎨⎪⎩
jt − it − 1 reduce segments by 1 unit,
jt − it same number of segments,
jt − it + 1 increase segments by 1 unit.
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In Algorithm 3, we initiate the principal curve f̂1 as the first component line segment
whose vertices are the two farthest projections of data x1:t0 (t0 can be set to 20 in practice)
on the first component line. The reward of f at round t in this setting is therefore rf,t =
c0 − Δ(f, xt0+t). Algorithm 3 has an exploration phase (when It = 1) and an exploitation
phase (It = 0). In the exploration phase, it is allowed to observe rewards of all actions and
to choose an optimal perturbed action from the set Fp of all actions. In the exploitation
phase, only rewards of a part of actions can be accessed and rewards of others are estimated
by a constant, and we update our action from the neighborhood U

(
f̂t−1

)
of the previous

action f̂t−1. This local update (or search) greatly reduces computation complexity since
|U(f̂t−1)| �

∣∣Fp
∣∣when p is large. In addition, this local search will be enough to account for

the case when xt locates in U
(

f̂t−1

)
. The parameter β needs to be carefully calibrated since

it should not be too large to ensure that the condition cond(t) is non-empty; otherwise, all
rewards are estimated by the same constant and thus lead to the same descending ordering
of tuples for both

(
∑t−1

s=1 r̂f,s, f ∈ Fp

)
and

(
∑t

s=1 r̂f,s, f ∈ Fp
)
. Therefore, we may face the

risk of having f̂t+1 in the neighborhood of f̂t even if we are in the exploration phase at time
t + 1. Conversely, very small β could result in large bias for the estimation rf,t

P(f̂t=f|Ht)
of rf,t.

Note that the exploitation phase is close yet different to the label efficient prediction ([40],
Remark 1.1) since we allow an action at time t to be different from the previous one.
Ref. [41] proposed the geometric resampling method to estimate the conditional probability
P
(

f̂t = f|Ht

)
since this quantity often does not have an explicit form. However, due to the

simple exponential distribution of zf chosen in our case, an explicit form of P
(

f̂t = f|Ht

)
is straightforward.

Algorithm 3 A locally greedy algorithm for sequentially learning principal curves.

1: Input parameters: p > 0, R > 0, L > 0, ε > 0, α > 0, 1 > β > 0 and any penalty
function h

2: Initialization: Given (xt)1:t0 , obtain f̂1 as the first principal component
3: For t = 2, . . . , T
4: Draw It ∼ Bernoulli(ε) and zf ∼ π.
5: Let

σ̂t = sort

(
f,

t−1

∑
s=1

r̂f,s − 1
ηt−1

h(f) +
1

ηt−1
zf

)
,

i.e., sorting all f ∈ Fp in descending order according to their perturbed cumulative
reward till t − 1.

6: If It = 1, set At = Fp and f̂t = σ̂t(At) and observe rf̂t ,t
7:

r̂f,t = rf,t for f ∈ Fp.

8: If It = 0, set At = U(f̂t−1), f̂t = σ̂t(At) and observe rf̂t ,t
9:

r̂f,t =

{ rf,t
P(f̂t=f|Ht)

if f ∈ U(f̂t−1) ∩ cond(t) and f̂t = f,

α otherwise,

where Ht denotes all the randomness before time t and cond(t) ={
f ∈ Fp : P

(
f̂t = f|Ht

)
> β
}

. In particular, when t = 1, we set r̂f,1 = rf,1 for

all f ∈ Fp, U
(

f̂0

)
= ∅ and r̂σ̂1(U(f̂0)),1 ≡ 0.

10: End for
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Theorem 3. Assume that p > 6, T ≥ 2|Fp|2 and let β =
∣∣Fp
∣∣− 1

2 T− 1
4 , α = c0

β , ĉ0 = 2c0
β ,

ε = 1 −
∣∣Fp
∣∣ 1

2 − 3
p T− 1

4 and

η1 = η2 = · · · = ηT =

√
c1 p + c2L + c3√

T(e − 1)ĉ0
.

Then the procedure described in Algorithm 3 satisfies the regret bound

T

∑
t=1

E
[
Δ
(

f̂t, xt

)]
≤ inf

f∈Fp
E

[
T

∑
t=1

Δ(f, xt)

]
+O(T

3
4 ).

The proof of Theorem 3 is presented in Section 6. The regret is upper bounded by

a term of order
(∣∣Fp

∣∣ 1
2 T

3
4

)
, sublinear in T. The term (1 − ε)c0T = c0

∣∣Fp
∣∣ 1

2 T
3
4 is the

price to pay for the local search (with a proportion 1 − ε) of polygonal line f̂t in the
neighborhood of the previous f̂t−1. If ε = 1, we would have that ĉ0 = c0, and the last
two terms in the first inequality of Theorem 3 would vanish; hence, the upper bound
reduces to Theorem 2. In addition, our algorithm achieves an order that is smaller (from
the perspective of both the number

∣∣Fp
∣∣ of all actions and the total rounds T) than [39]

since at each time, the availability of actions for our algorithm can be either the whole
action set or a neighborhood of the previous action while [39] consider at each time only
partial and independent stochastic available set of actions generated from a predefined
distribution.

5. Numerical Experiments

We illustrate the performance of Algorithm 3 on synthetic and real-life data. Our
implementation (hereafter denoted by slpc—Sequential Learning of Principal Curves)
is conducted with the R language and thus our most natural competitors are the R
package princurve, which is the algorithm from [10], and incremental, which is the
algorithm from SCMS [23]. We let p = 50, R = maxt=1,...,T ||x||2/

√
d, L = 0.1p

√
dR. The

spacing δ of the lattice is adjusted with respect to data scale.
Synthetic data We generate a dataset

{
xt ∈ R2, t = 1, . . . , 500

}
uniformly along the

curve y = 0.05 × (x − 5)3, x ∈ [0, 10]. Table 1 shows the regret (first row) for

• the ground truth (sum of squared distances of all points to the true curve),
• princurve and incremental SCMS (sum of squared distances between observation

xt+1 and fitted princurve on observations x1:t),
• slpc (regret being equal to ∑T−1

t=0 E[Δ(f̂t+1, xt+1)] in both cases).

The mean computation time with different values for the time horizons T are also
reported.

Table 1. The first line is the regret (cumulative loss) on synthetic data (average over 10 trials, with
standard deviation in brackets). Second and third lines are the average computation time for two
values of the time horizon T. princurve and incremental SCMS are deterministic, hence the zero
standard deviation for regret.

Ground Truth Princurve Incremental SCMS slpc

2.48 (0) 26.02 (0) 19.09 (0) 20.83 (3.23)
T = 500 0.029 s (0.0001 s) 18.79 s (0.007 s) 1.44 s (0.030 s)

T = 5000 0.35 s (0.006 s) >60 s (NA) 4.13 s (0.807 s)

Table 1 demonstrates the advantages of our method slpc, as it achieved the optimal
tradeoff between performance (in terms of regret) and runtime. Although princurve
outperformed the other two algorithms in terms of computation time, it yielded the largest

50



Entropy 2021, 23, 1534

regret, since it outputs a curve which does not pass in “the middle of data” but rather bends
towards the curvature of the data cloud, as shown in Figure 6 where the predicted principal
curves f̂t+1 for princurve, incremental SCMS and slpc are presented. incremental SCMS
and slpc both yielded satisfactory results, although the mean computation time of splc
was significantly smaller than that of incremental SCMS (the reason being that eigenvectors
of the Hessian of PDF need to be computed in incremental SCMS). Figure 7 showed,
respectively, the estimation of the regret of slpc and its per-round value (i.e., the cumulative
loss divided by the number of rounds) both with respect to the round t. The jumps in the
per-round curve occurred at the beginning, due to the initialization from a first principal
component and to the collection of new data. When data accumulates, the vanishing
pattern of the per-round curve illustrates that the regret is sublinear in t, which matches
our aforementioned theoretical results.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Synthetic data. Black dots represent data x1:t. The red point is the new observation
xt+1. princurve (solid red) and slpc (solid green). (a) t = 150, princurve. (b) t = 450, princurve.
(c) t = 150, incremental SCMS. (d) t = 450, incremental SCMS. (e) t = 150, slpc. (f) t = 450, slpc.

In addition, to better illustrate the way slpc works between two epochs, Figure 8
focuses on the impact of collecting a new data point on the principal curve. We see that
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only a local vertex is impacted, whereas the rest of the principal curve remains unaltered.
This cutdown in algorithmic complexity is one the key assets of slpc.

(a)

(b)

Figure 7. Mean estimation of regret and per-round regret of slpc with respect to time round t, for the
horizon T = 500. (a) Mean estimation of the regret of slpc over 20 trials (black line) and a bisection
line (green) with respect to time round t. (b) Per-round of estimated regret of slpc with respect to t.

(a) (b)

Figure 8. Synthetic data. Zooming in: how a new data point impacts the principal curve only locally.
(a) At time t = 97. (b) And at time t = 98.
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Synthetic data in high dimension. We also apply our algorithm on a dataset {xt ∈ R6,
t = 1, 2, . . . , 200} in higher dimension. It is generated uniformly along a parametric curve
whose coordinates are ⎛⎜⎜⎜⎜⎜⎜⎝

0.5t cos(t)
0.5t sin(t)

0.5t
−t√

t
2 ln(t + 1)

⎞⎟⎟⎟⎟⎟⎟⎠
where t takes 100 equidistant values in [0, 2π]. To the best of our knowledge, [10,16,18]
only tested their algorithm on 2-dimensional data. This example aims at illustrating that
our algorithm also works on higher dimensional data. Table 2 shows the regret for the
ground truth, princurve and slpc.

Table 2. Regret (cumulative loss) on synthetic high dimensional data in (average over 10 trials, with
standard deviation in brackets). princurve and incremental SCMS are deterministic, hence the zero
standard deviation.

Ground Truth Princurve Incremental SCMS slpc

3.290 (0) 14.204 (0) 5.38 (0) 6.797 (0.409)

In addition, Figure 9 shows the behaviour of slpc (green) on each dimension.

(a) (b)

(c)

Figure 9. slpc (green line) on synthetic high dimensional data from different perspectives. Black
dots represent recordings x1:99; the red dot is the new recording x200. (a) slpc, t = 199, 1st and 2nd
coordinates. (b) slpc, t = 199, 3th and 5th coordinates. (c) slpc, t = 199, 4th and 6th coordinates.

Seismic data. Seismic data spanning long periods of time are essential for a thorough
understanding of earthquakes. The “Centennial Earthquake Catalog” [42] aims at provid-
ing a realistic picture of the seismicity distribution on Earth. It consists in a global catalog
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of locations and magnitudes of instrumentally recorded earthquakes from 1900 to 2008.
We focus on a particularly representative seismic active zone (a lithospheric border close
to Australia) whose longitude is between E130◦ to E180◦ and latitude between S70◦ to
N30◦, with T = 218 seismic recordings. As shown in Figure 10, slpc recovers nicely the
tectonic plate boundary, but both princurve and incremental SCMS with well-calibrated
bandwidth fail to do so.

Lastly, since no ground truth is available, we used the R2 coefficient to assess the
performance (residuals are replaced by the squared distance between data points and their
projections onto the principal curve). The average over 10 trials was 0.990.

(a) (b)

(c) (d)

(e) (f)

Figure 10. Seismic data. Black dots represent seismic recordings x1:t; the red dot is the new
recording xt+1. (a) princurve, t = 100. (b) princurve, t = 125. (c) incremental SCMS, t = 100.
(d) incremental SCMS, t = 125. (e) slpc, t = 100. (f) slpc, t = 125.
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Back to Seismic Data. Figure 11 was taken from the USGS website (https://earthquake.
usgs.gov/data/centennial/) and gives the global locations of earthquakes for the period
1900–1999. The seismic data (latitude, longitude, magnitude of earthquakes, etc.) used in
the present paper may be downloaded from this website.

Figure 11. Seismic data from https://earthquake.usgs.gov/data/centennial/.

Daily Commute Data. The identification of segments of personal daily commuting
trajectories can help taxi or bus companies to optimize their fleets and increase frequencies
on segments with high commuting activity. Sequential principal curves appear to be an
ideal tool to address this learning problem: we tested our algorithm on trajectory data
from the University of Illinois at Chicago (https://www.cs.uic.edu/~boxu/mp2p/gps_
data.html). The data were obtained from the GPS reading systems carried by two of the
laboratory members during their daily commute for 6 months in the Cook county and the
Dupage county of Illinois. Figure 12 presents the learning curves yielded by princurve
and slpc on geolocalization data for the first person, on May 30. A particularly remarkable
asset of slpc is that abrupt curvature in the data sequence was perfectly captured, whereas
princurve does not enjoy the same flexibility. Again, we used the R2 coefficient to assess
the performance (where residuals are replaced by the squared distances between data
points and their projections onto the principal curve). The average over 10 trials was 0.998.
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(a) (b)

(c) (d)

Figure 12. Daily commute data. Black dots represent collected locations x1:t. The red point is the new
observation xt+1. princurve (solid red) and slpc (solid green). (a) t = 10, princurve. (b) t = 127,
princurve. (c) t = 10, slpc. (d) t = 127, slpc.

6. Proofs

This section contains the proof of Theorem 2 (note that Theorem 1 is a straightforward
consequence, with ηt = η, t = 0, . . . , T) and the proof of Theorem 3 (which involves
intermediary lemmas). Let us first define for each t = 0, . . . , T the following forecaster
sequence (f̂�t )t

f̂�0 = arg inf
f∈Fp

{Δf,0} = arg inf
f∈Fp

{
1
η0

h(f)− 1
η0

zf

}
,

f̂�t = arg inf
f∈Fp

{
t

∑
s=0

Δf,s

}
= arg inf

f∈Fp

{
t

∑
s=1

Δ(f, xs) +
1

ηt−1
h(f)− 1

ηt−1
zf

}
, t ≥ 1.

Note that f̂�t is an “illegal” forecaster since it peeks into the future. In addition, denote by

f� = arg inf
f∈Fp

{
T

∑
t=1

Δ(f, xt) +
1

ηT
h(f)

}

the polygonal line in Fp which minimizes the cumulative loss in the first T rounds plus
a penalty term. f� is deterministic, and f̂�t is a random quantity (since it depends on zf,
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f ∈ Fp drawn from π). If several f attain the infimum, we chose f�T as the one having the
smallest complexity. We now enunciate the first (out of three) intermediary technical result.

Lemma 1. For any sequence x1, . . . , xT in B(0,
√

dR),

T

∑
t=0

Δf̂�t ,t ≤
T

∑
t=0

Δf̂�T ,t, π-almost surely. (5)

Proof. Proof by induction on T. Clearly (5) holds for T = 0. Assume that (5) holds for
T − 1:

T−1

∑
t=0

Δf̂�t ,t ≤
T−1

∑
t=0

Δf̂�T−1,t.

Adding Δf̂�T ,T to both sides of the above inequality concludes the proof.

By (5) and the definition of f̂�T , for k ≥ 1, we have π-almost surely that

T

∑
t=1

Δ(f̂�t , xt) ≤
T

∑
t=1

Δ(f̂�T , xt) +
1

ηT
h(f̂�T)−

1
ηT

Zf̂�T
+

T

∑
t=0

(
1

ηt−1
− 1

ηt

)(
h(f̂�t )− Zf̂�t

)
≤

T

∑
t=1

Δ(f�, xt) +
1

ηT
h(f�)− 1

ηT
Zf� +

T

∑
t=0

(
1

ηt−1
− 1

ηt

)(
h(f̂�t )− Zf̂�t

)
= inf

f∈Fp

{
T

∑
t=1

Δ(f, xt) +
1

ηT
h(f)

}
− 1

ηT
Zf� +

T

∑
t=0

(
1

ηt−1
− 1

ηt

)(
h(f̂�t )− Zf̂�t

)
,

where 1/η−1 = 0 by convention. The second and third inequality is due to respectively the
definition of f̂�T and f�T . Hence

E

[
T

∑
t=1

Δ
(

f̂�t , xt

)]
≤ inf

f∈Fp

{
T

∑
t=1

Δ(f, xt) +
1

ηT
h(f)

}
− 1

ηT
E[Zf�T

]

+
T

∑
t=0

E

[(
1
ηt

− 1
ηt−1

)(
−h(f̂�t ) + Zf̂�t

)]

≤ inf
f∈Fp

{
T

∑
t=1

Δ(f, xt) +
1

ηT
h(f)

}
+

T

∑
t=1

(
1
ηt

− 1
ηt−1

)
E

[
sup
f∈Fp

(−h(f) + Zf)

]

= inf
f∈Fp

{
T

∑
t=1

Δ(f, xt) +
1

ηT
h(f)

}
+

1
ηT

E

[
sup
f∈Fp

(−h(f) + Zf)

]
,

where the second inequality is due to E[Zf�T
] = 0 and

(
1
ηt

− 1
ηt−1

)
> 0 for t = 0, 1, . . . , T

since ηt is decreasing in t in Theorem 2. In addition, for y ≥ 0, one has

P(−h(f) + Zf > y) = e−h(f)−y.

Hence, for any y ≥ 0

P

(
sup
f∈Fp

(−h(f) + Zf) > y

)
≤ ∑

f∈Fp

P(Zf ≥ h(f) + y) = ∑
f∈Fp

e−h(f)e−y = ue−y,
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where u = ∑f∈Fp e−h(f). Therefore, we have

E

[
sup
f∈Fp

(−h(f) + Zf)− ln u

]
≤ E

[
max

(
0, sup

f∈Fp

(−h(f) + Zf − ln u)

)]

≤
∫ ∞

0
P

(
max

(
0, sup

f∈Fp

(−h(f) + Zf − ln u)

)
> y

)
dy

≤
∫ ∞

0
P

(
sup
f∈Fp

(−h(f) + Zf) > y + ln u

)
dy

≤
∫ ∞

0
ue−(y+ln u)dy = 1.

We thus obtain

E

[
T

∑
t=1

Δ
(

f̂�t , xt

)]
≤ inf

f∈Fp

{
T

∑
t=1

Δ(f, xt) +
1

ηT
h(f)

}
+

1
ηT

⎛⎝1 + ln ∑
f∈Fp

e−h(f)

⎞⎠. (6)

Next, we control the regret of Algorithm 2.

Lemma 2. Assume that zf is sampled from the symmetric exponential distribution in R, i.e.,
π(z) = e−z

�{z>0}. Assume that supt=1,...,T ηt−1 ≤ 1
d(2R+δ)2 , and define c0 = d(2R + δ)2. Then

for any sequence (xt) ∈ B(0,
√

dR), t = 1, . . . , T,

T

∑
t=1

E
[
Δ
(

f̂t, xt

)]
≤

T

∑
t=1

(1 + ηt−1c0(e − 1))E
[
Δ
(

f̂�t , xt

)]
. (7)

Proof. Let us denote by

Ft(Zf) = Δ
(

f̂t, xt

)
= Δ

(
arg inf

f∈F

(
t−1

∑
s=1

Δ(f, xs) +
1

ηt−1
h(f)− 1

ηt−1
Zf

)
, xt

)

the instantaneous loss suffered by the polygonal line f̂t when xt is obtained. We have

E[Δ
(

f̂�t , xt

)
] =

∫
Ft(z − ηt−1Δ(f, xt))π(z)dz

=
∫

Ft(z)π(z + ηt−1Δ(f, xt))dz

=
∫

Ft(z)e−(z+ηt−1Δ(f,xt))dz

≥ e−ηt−1d(2R+δ)2
∫

Ft(z)e−zdz

= e−ηt−1d(2R+δ)2
E[Δ
(

f̂t, xt

)
],

where the inequality is due to the fact that Δ(f, x) ≤ d(2R + δ)2 holds uniformly for any
f ∈ Fp and x ∈ B(0,

√
dR). Finally, summing on t on both sides and using the elementary

inequality ex ≤ 1 + (e − 1)x if x ∈ (0, 1) concludes the proof.

58



Entropy 2021, 23, 1534

Lemma 3. For k ∈ �1, p�, we control the cardinality of set
{

f ∈ Fp,K(f) = k
}

as

ln
∣∣{f ∈ Fp,K(f) = k

}∣∣ ≤ (ln(8peVd) + 3d
3
2 − d

)
k +
(

ln 2

δ
√

d
+

d
δ

)
L + d ln

(√
d(2R + δ)

δ

)
Δ
= c1k + c2L + c3,

where Vd denotes the volume of the unit ball in Rd.

Proof. First, let Nk,δ denote the set of polygonal lines with k segments and whose vertices
are in Qδ. Notice that Nk,δ is different from {f ∈ Fp,K(f) = k} and that

∣∣{f ∈ Fp,K(f) = k}
∣∣ ≤ (p

k

)∣∣Nk,δ
∣∣.

Hence

ln
∣∣{f ∈ Fp,K(f) = k}

∣∣ ≤ ln
(

p
k

)
+ ln

∣∣Nk,δ
∣∣

≤ k ln
pe
k

+ k
(

ln 8Vd + 3d
3
2 − d

)
+

(
ln 2√

dδ
+

d
δ

)
L + d ln

(√
d(2R + δ)

δ

)

≤ k ln(pe) + k
(

ln 8Vd + 3d
3
2 − d

)
+

(
ln 2√

dδ
+

d
δ

)
L + d ln

(√
d(2R + δ)

δ

)
,

where the second inequality is a consequence to the elementary inequality (p
k) ≤

( pe
k
)k

combined with Lemma 2 in [16].

We now have all the ingredients to prove Theorem 1 and Theorem 2.

First, combining (6) and (7) yields that

T

∑
t=1

E
[
Δ(f̂t, xt)

]
≤ inf

f∈Fp

{
T

∑
t=1

Δ(f, xt) +
1

ηT
h(f)

}
+

1
ηT

⎛⎝1
2
+ ln ∑

f∈Fp

e−h(f)

⎞⎠
+ c0(e − 1)

T

∑
t=1

ηt−1E
[
Δ(f̂�t , xt)

]

≤ inf
k∈�1,p�

⎧⎪⎨⎪⎩ inf
f∈Fp

K(f)=k

{
T

∑
t=1

Δ(f, xt) +
h(f)
ηT

}⎫⎪⎬⎪⎭+
1

ηT

⎛⎝1
2
+ ln ∑

f∈Fp

e−h(f)

⎞⎠
+ c0(e − 1)

T

∑
t=1

ηt−1E
[
Δ(f̂�t , xt)

]
.

Assume that ηt = η, t = 0, . . . , T and h(f) = c1K(f) + c2L + c3 for f ∈ Fp, then ( 1
2 +

∑f∈Fp e−h(f)) ≤ 0 and moreover

T

∑
t=1

E
[
Δ(f̂t, xt)

]
≤ ST,h,η +

1
η

⎛⎝1
2
+ ln ∑

f∈Fp

e−h(f)

⎞⎠+ c0(e − 1)η
T

∑
t=1

E
[
Δ(f̂�t , xt)

]
≤ ST,h,η + c0(e − 1)ηST,h,η

≤ ST,h,η + ηc0(e − 1) inf
f∈Fp

T

∑
t=1

Δ(f, xt) + c0(e − 1)(c1 p + c2L + c3),
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where

ST,h,η = inf
k∈�1,p�

⎧⎪⎨⎪⎩ inf
f∈Fp

K(f)=k

{
T

∑
t=1

Δ(f, xt) +
h(f)

η

}⎫⎪⎬⎪⎭
and the second inequality is obtained with Lemma 1. By setting

η =

√
c1 p + c2L + c3

c0(e − 1) inff∈Fp ∑T
t=1 Δ(f, xt)

we obtain

T

∑
t=1

E
[
Δ(f̂t, xt)

]
≤ inf

k∈�1,p�

⎧⎪⎨⎪⎩ inf
f∈Fp

K(f)=k

{
T

∑
t=1

Δ(f, xt) +
√

c0(e − 1)rT,k,L

}⎫⎪⎬⎪⎭
+
√

c0(e − 1)LT,p,L + c0(e − 1)c1 p + c2L + c3,

where rT,k,L = inff∈Fp ∑T
t=1 Δ(f, xt)(c1k + c2L + c3). This proves Theorem 1.

Finally, assume that

η0 =

√
c1 p + c2L + c3

c0
√
(e − 1)

and ηt =

√
c1 p + c2L + c3

c0
√
(e − 1)t

, t = 1, . . . , T.

Since E
[
Δ(f̂�t , xt)

]
≤ c0 for any t = 1, . . . , T, we have

T

∑
t=1

E
[
Δ(f̂t, xt)

]
≤ inf

k∈�1,p�

⎧⎪⎨⎪⎩ inf
f∈Fp

K(f)=k

{
T

∑
t=1

Δ(f, xt) +
h(f)
ηT

}⎫⎪⎬⎪⎭+
1

ηT

⎛⎝1 + ln ∑
f∈Fp

e−h(f)

⎞⎠
+ c2

0(e − 1)
T

∑
t=1

ηt−1

≤ inf
k∈�1,p�

⎧⎪⎨⎪⎩ inf
f∈Fp

K(f)=k

{
T

∑
t=1

Δ(f, xt) + c0

√
(e − 1)T(c0k + c2L + c3)

}⎫⎪⎬⎪⎭
+ 2c0

√
(e − 1)T(c0 p + c2L + c3),

which concludes the proof of Theorem 2.

Lemma 4. Using Algorithm 3, if 0 < ε ≤ 1, 0 < β < 1, α ≥ (1−β)c0
β and

∣∣∣U(f̂t−1

)∣∣∣ ≥ 2 for all

t ≥ 2, where
∣∣∣U(f̂t−1

)∣∣∣ is the cardinality of U
(

f̂t−1

)
, then we have

T

∑
t=1

E
[
rf̂t ,t

]
≥

T

∑
t=1

E
[
r̂σ̂t(At),t

]
− 2(1 − ε)αβ

T

∑
t=1

∣∣∣U(f̂t−1

)∣∣∣.
Proof. First notice that At = U

(
f̂t−1

)
if It = 0, and that for t ≥ 2
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E

[
rf̂t ,t

∣∣∣∣Ht, It = 0
]
=E

[
rσ̂t(At),t

∣∣∣∣Ht, It = 0
]

= ∑
f∈At∩cond(t)

rf,tP

(
σ̂t(At) = f

∣∣∣∣Ht

)
+ ∑

f∈At∩cond(t)c
rf,tP

(
σ̂t(At) = f

∣∣∣∣Ht

)

≥ ∑
f∈At∩cond(t)

rf,t + ∑
f∈At∩cond(t)c

αP

(
σ̂t(At) = f

∣∣∣∣Ht

)

− (1 − β) ∑
f∈At∩cond(t)

rf,t − ∑
f∈At∩cond(t)c

(α − rf,t)P

(
σ̂t(At) = f

∣∣∣∣Ht

)

=E

[
r̂σ̂t(At),t

∣∣∣∣Ht, It = 0
]
− (1 − β) ∑

f∈At∩cond(t)
rf,t

− ∑
f∈At∩cond(t)c

(α − rf,t)P

(
σ̂t(At) = f

∣∣∣∣Ht

)

≥E

[
r̂σ̂t(At),t

∣∣∣∣Ht, It = 0
]
− (1 − β)c0|At| − αβ|At|

≥E

[
r̂σ̂t(At),t

∣∣∣∣Ht, It = 0
]
− 2αβ|At|,

where cond(t)c denotes the complement of set cond(t). The first inequality above is due to

the assumption that for all f ∈ At ∩ cond(t), we have P

(
σ̂t(At) = f

∣∣∣∣Ht

)
≥ β. For t = 1,

the above inequality is trivial since r̂σ̂1(U(f̂0)),1 ≡ 0 by its definition. Hence, for t ≥ 1, one
has

E

[
rf̂t ,t

∣∣∣∣Ht

]
= εE

[
rσ̂t(Fp),t

∣∣∣∣Ht, It = 1
]
+ (1 − ε)E

[
rσ̂t(At),t

∣∣∣∣Ht, It = 0
]

≥ E

[
r̂f̂t ,t

∣∣∣∣Ht

]
− 2αβ|At|. (8)

Summing on both sides of inequality (8) over t terminates the proof of Lemma 4.

Lemma 5. Let ĉ0 = c0
β + α. If 0 < η1 = η2 = · · · = ηT = η < 1

ĉ0
, then we have

E

[
max

σ̂

{
T

∑
t=1

r̂σ̂(At),t −
1
η

h(σ̂(At))

}]
−

T

∑
t=1

E
[
r̂σ̂t(At),t

]
≤

ĉ2
0(e − 1)ηT + ĉ0(e − 1)(c1 p + c2L + c3).

Proof. By the definition of r̂f,t in Algorithm 3, for any f ∈ Fp and t ≥ 1, we have

r̂f,t ≤ max

⎧⎪⎪⎨⎪⎪⎩
rf,t

P

(
f̂t = f

∣∣∣∣Ht

) , α, rf,t

⎫⎪⎪⎬⎪⎪⎭ ≤ max
{

c0

β
, α

}
≤ ĉ0,

where in the second inequality we use that rf,t ≤ c0 for all f and t, and that P
(

f̂t = f

∣∣∣∣Ht

)
≥

β when f ∈ U
(

f̂t−1

)
∩ cond(t). The rest of the proof is similar to those of Lemmas 1 and 2.

In fact, if we define by Δ̂(f, xt) = ĉ0 − r̂f,t, then one can easily observe the following relation
when It = 1 (similar relation in the case that It = 0)

61



Entropy 2021, 23, 1534

f̂t = σ̂t(Fp
)
= arg max

f∈Fp

{
t−1

∑
s=1

r̂f,s +
1
η
(zf − h(f))

}

= arg min
f∈Fp

{
t−1

∑
s=1

Δ̂(f, xs) +
1
η
(h(f)− zf)

}
.

Then applying Lemmas 1 and 2 on this newly defined sequence Δ̂
(

f̂t, xt

)
, t = 1, . . . T leads

to the result of Lemma 5.

The proof of the upcoming Lemma 6 requires the following submartingale inequality:
let Y0, . . . YT be a sequence of random variable adapted to random events H0, . . . ,HT such
that for 1 ≤ t ≤ T, the following three conditions hold:

E[Yt|Ht] ≤ 0, Var(Yt|Ht) ≤ a2, Yt −E[Yt|Ht] ≤ b.

Then for any λ > 0,

P

(
T

∑
t=1

Yt > Y0 + λ

)
≤ exp

(
− λ2

2T(a2 + b2)

)
.

The proof can be found in Chung and Lu [43] (Theorem 7.3).

Lemma 6. Assume that 0 < β < 1
|Fp| , α ≥ c0

β and η > 0, then we have

E

[
max

σ

{
T

∑
t=1

rσ(At),t −
1
η

h(σ(At))

}]
−E

[
max

σ̂

{
T

∑
t=1

r̂σ̂(At),t −
1
η

h(σ̂(At))

}]

≤
(
1 −
∣∣Fp
∣∣β)
√√√√2T

[
c2

0
β
+ α2(1 − β) + (c0 + 2α)2

]
ln
(

1
β

)
+
∣∣Fp
∣∣βc0T.

Proof. First, we have almost surely that

max
σ

{
T

∑
t=1

rσ(At),t −
1
η

h(σ(At))

}
− max

σ̂

{
T

∑
t=1

r̂σ̂(At),t −
1
η

h(σ̂(At))

}
≤ max

f∈Fp

T

∑
t=1

(rf,t − r̂f,t).

Denote by Yf,t = rf,t − r̂f,t. Since

E

[
r̂f,t

∣∣∣∣Ht

]
=

{
rf,t + (1 − ε)α

(
1 − P

(
f̂t = f|Ht

))
if f ∈ U(f̂t−1) ∩ cond(t),

εrf,t + (1 − ε)α otherwise,

and α > c0 ≥ rf,t uniformly for any f and t, we have uniformly that E[Yt|Ht] ≤ 0, satisfying
the first condition.
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For the second condition, if f ∈ U
(

f̂t−1

)
∩ cond(t), then

Var(Yt|Ht) =E
[
r̂2

f,t|Ht

]
− (E[r̂f,t|Ht])

2

≤εr2
f,t + (1 − ε)

⎡⎣ r2
f,t

P
(

f̂t = f|Ht

) + α
(

1 − P
(

f̂t = f|Ht

))⎤⎦
−
[
rf,t + (1 − ε)α

(
1 − P

(
f̂t = f|Ht

))]2

≤
r2

f,t

β
+ α2(1 − β) ≤ c2

0
β
+ α2(1 − β).

Similarly, for f �∈ U
(

f̂t−1

)
∩ cond(t), one can have Var(Yt|Ht) ≤ α2. Moreover, for the

third condition, since
E[Yf,t|Ht] ≥ −2α,

then
Yf,t −E[Yf,t|Ht] ≤ rf,t + 2α ≤ c0 + 2α.

Setting λ =

√
2T
[

c2
0
β + α2(1 − β) + (c0 + 2α)2

]
ln
(

1
β

)
leads to

P

(
T

∑
t=1

Yf,t ≥ λ

)
≤ β.

Hence the following inequality holds with probability 1 −
∣∣∣∣Fp

∣∣∣∣β
max
f∈Fp

T

∑
t=1

(rf,t − r̂f,t) ≤

√√√√2T

[
c2

0
β
+ α2(1 − β) + (c0 + 2α)2

]
ln
(

1
β

)
.

Finally, noticing that maxf∈Fp ∑T
t=1(rf,t − r̂f,t) ≤ c0T almost surely, we terminate the proof

of Lemma 6.

Proof of Theorem 3. Assume that p > 6, T ≥ 2|Fp|2 and let

β =
∣∣Fp
∣∣− 1

2 T− 1
4 , α =

c0

β
, ĉ0 =

2c0

β
,

η1 = η2 = · · · = ηT =

√
c1 p + c2L + c3√

T(e − 1)ĉ0
, ε = 1 −

∣∣Fp
∣∣ 1

2 − 3
p T− 1

4 .

With those values, the assumptions of Lemmas 4, 5 and 6 are satisfied. Combining their
results lead to the following
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T

∑
t=1

E
[
rf̂t ,t

]
≥E

[
max

σ

{
T

∑
t=1

rσ(At),t −
1
η

h(σ(At))

}]
− 2αβ(1 − ε)

T

∑
t=1

∣∣∣U(f̂t−1

)∣∣∣
− ĉ2

0(e − 1)ηT − ĉ0(e − 1)(c1 p + c2L + c3)

−
(
1 −
∣∣Fp
∣∣β)
√√√√2T

[
c2

0
β
+ α2(1 − β) + (c0 + 2α)2

]
ln
(

1
β

)
−
∣∣Fp
∣∣βc0T

≥E

[
max

σ

{
T

∑
t=1

rσ(At),t −
1
η

h(σ(At))

}]
− (1 − ε)

∣∣Fp
∣∣ 3

p c0T

− ĉ2
0(e − 1)ηT − ĉ0(e − 1)(c1 p + c2L + c3)

−
(
1 −
∣∣Fp
∣∣β)
√√√√2T

[
c2

0
β
+ α2(1 − β) + (c0 + 2α)2

]
ln
(

1
β

)
−
∣∣Fp
∣∣βc0T

≥E

[
max

σ

{
T

∑
t=1

rσ(At),t −
1
η

h(σ(At))

}]
−O

(∣∣Fp
∣∣ 1

2 T
3
4

)
,

where the second inequality is due to the fact that the cardinality
∣∣∣U(f̂t−1

)∣∣∣ is upper

bounded by
∣∣Fp
∣∣ 3

p for t ≥ 1. In addition, using the definition of rf,t that rf,t = c0 − Δ(f, xt)
terminates the proof of Theorem 3.
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Abstract: “No free lunch” results state the impossibility of obtaining meaningful bounds on the error
of a learning algorithm without prior assumptions and modelling, which is more or less realistic for
a given problem. Some models are “expensive” (strong assumptions, such as sub-Gaussian tails),
others are “cheap” (simply finite variance). As it is well known, the more you pay, the more you
get: in other words, the most expensive models yield the more interesting bounds. Recent advances
in robust statistics have investigated procedures to obtain tight bounds while keeping the cost of
assumptions minimal. The present paper explores and exhibits what the limits are for obtaining tight
probably approximately correct (PAC)-Bayes bounds in a robust setting for cheap models.

Keywords: statistical learning theory; PAC-Bayes theory; no free lunch theorems

1. Introduction

For the sake of clarity, we focus on the supervised learning problem. We collect
a sequence of input–output pairs (Xi, Yi)

N
i=1 ∈ (X × Y)N , which we assume to be N

independent realisations of a random variable drawn from a distribution P on X × Y . The
overarching goal in statistics and machine learning is to select a hypothesis f over a space
F which, given a new input x in X , delivers an output f (x) in Y , hopefully close (in a
certain sense) to the unknown true output y. The quality of f is assessed through a loss
function � which characterises the discrepancy between the true output y and its prediction
f (x), and we define a global notion of risk as

R( f ) = E(X,Y)∼P[�( f (X), Y)].

The aim of machine learning is to find a good (in the sense of a low risk) hypothesis
f ∈ F . In the generalised Bayes setting, the learning algorithm does not output a single
hypothesis but rather a distribution ρ over the hypotheses space F and the associated
bounds are called PAC-Bayesian bounds (see [1] for a survey of the topic).

As many probabilistic bounds stated in the statistics and machine learning literature,
PAC-Bayesian bounds (where PAC stands for probably approximately correct—see [2])
commonly requires strong assumptions to hold, such as sub-Gaussian behaviour of some
random variables. These assumptions can be misleading when dealing with true data
as they do not take into account some practical situations, such as outlier contamination.
Many efforts have been made recently to keep tight generalisation bounds valid with a
few set of assumptions about the underlying distribution: this is known as robust learning
[see [3] for a survey of the topic].

In this work we explore the possibility to establish a connection between recent tech-
niques introduced by robust machine learning and PAC-Bayesian generalisation bounds.
The result of our work is negative as we were not able to prove a PAC-Bayes bound in a

Entropy 2021, 23, 1529. https://doi.org/10.3390/e23111529 https://www.mdpi.com/journal/entropy
67



Entropy 2021, 23, 1529

robust statistics setting. However, we found it useful to write down our findings in order
to give the interested reader a review of material involved in both robust statistics and
PAC-Bayes theory and present the fundamental issues we faced as we believe it to be useful
to the community.

Organisation of the paper. We introduce an elementary example and set a basic
notation to illustrate the problem of robustness in Section 2, before providing an overview
of recent advances in robust statistics in Section 3, and briefly introduce the field of PAC-
Bayes learning in Section 4. We then propose in Section 5 a detailed study of the structural
limits which do not allow for PAC-Bayes bounds which are simultaneously tight without
requiring strong assumptions. The paper closes with a discussion in Section 6.

2. About the “No Free Lunch” Results

A class of results in statistics is known as “no free lunch” statements [see [4], Chapter
7]. The “no free lunch” results typically state that if one does not consider the restrictions
on the modelling of the data-generating process, one cannot obtain meaningful deviation
bounds in a non-asymptotic regime. The well-known trade-off is that the more restrictive
the assumptions, the tighter the bounds. Let us illustrate this classical phenomenon by a
simple example.

Assume that we have a dataset consisting in N real observations x1, . . . , xN ∈ R

and consider they are independent, identically distributed (iid) realisations of a random
variable X. Our goal is to estimate the mean of X and build a confidence interval for this
estimate. As a start, let us focus on the empirical mean, denoted by x̄ = 1

N ∑N
i=1 xi. As

“no free lunch” results state, we have to consider a class of distributions to which the
data-generating distribution P belongs.

2.1. Expensive and Cheap Models

If there is always a price to pay in order to derive insightful result, there is a variety of
degrees of restrictions. In the remainder of the paper, we will focus on two classical models
corresponding to a different level of demand on the random variables.

A first type of restriction we can make is an “expensive modelling”. For σ > 0, let
Pσ

expensive be the set of all real-valued random variables X satisfying:

log(E[exp{λ(X −E[X])}]) ≤ λ2σ2

2
.

This Pσ
expensive is the class of sub-Gaussian random variables with variance factor

σ2 [see [5] for a complete coverage of the topic]. We call this model “expensive” as this
restriction is often considered unrealistic for real-life datasets and is hard or impossible to
check in practice.

An alternative type of restriction is a “cheap modelling”. For σ > 0, let Pσ
cheap be the

set of real-valued random variables with a finite variance, upper bounded by σ2. We call
this model “cheap” as this is considerably less restrictive than the expensive one and is
much more likely to hold in practice.

2.2. Confidence Interval for the Empirical Mean

Proposition 1 (Confidence intervals). If we assume that X ∈ Pσ
expensive, then for all δ ∈ (0, 1/2),

the following random interval is a confidence interval for the mean of X at level 1 − δ:[
x̄ ± σ√

N

√
2 ×
√

2 log
(

1
δ

) ]
. (1)

If we assume that X ∈ Pσ
cheap, then for all δ ∈ (0, 1), the following random interval is a

confidence interval for the mean of X at level 1 − δ:
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[
x̄ ± σ√

N

√
1
δ

]
. (2)

In the case of a cheap model, there is no hope to obtain a significantly tighter confidence interval
with respect to δ if one uses the empirical mean [as proved in [6], Proposition 6.2].

Proof. To establish the first confidence interval (1), we first remark that if X ∈ Pσ
expensive,

then x̄ ∈ Pσ/
√

N
expensive and E[x̄] = E[X]. So, applying Theorem 2.1 of [5] to x̄ −E[X] we obtain,

for all a > 0 :

P(|x̄ −E[X]| > a) = P(x̄ −E[X] > a) + P(x̄ −E[X] < −a)
≤ 2 max(P(x̄ −E[X] > a),P(x̄ −E[X] < −a))

≤ 2 exp
(
− Na2

2σ2

)
.

Setting δ = exp
(
− Na2

2σ2

)
leads to the expected result. The second confidence interval

(2) is obtained through Chebychev’s inequality. E[x̄] = E[X] and as X ∈ Pσ
cheap, Var(x̄) =

Var(X)
N ≤ σ2

N . So for all a > 0

P(|x̄ −E[X]| > a) ≤ σ2

Na2 .

Now, setting δ = σ2

Na2 we get

P

(
|x̄ −E[X]| > σ√

N

√
1
δ

)
≤ δ.

Note that the dependence in δ is fairly different in both confidence intervals defined
in (1) and (2): for fixed σ2 and N, the

√
2 ×

√
2 log(1/δ) regime (following the lunch

metaphor, the “good lunch”) is much more favourable than the 1/
√

δ regime (the “bad
lunch”). We illustrate this in Figure 1, where we plot

√
2 ×
√

2 log(1/δ) and 1/
√

δ as a
function of δ ∈ (0, 1/2). We remark that for small values of δ, corresponding to a higher
confidence level, the interval (1) will be much tighter than (2).

Figure 1.
√

2 ×
√

2 log(1/δ) and 1/
√

δ with respect to δ.
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So, while it is clear that the best confidence interval requires more stringent assump-
tions, there have been attempts at relaxing those assumptions—or in other words, keeping
equally good lunches at a cheaper cost.

3. Robust Statistics

Robust statistics address the following question: can we obtain tight bounds with
minimal assumptions—or in other words, can we get a good cheap lunch? In the mean
estimation case hinted in Section 2, the question becomes the following: if P ∈ Pσ

cheap, can

we build a confidence interval at level 1 − δ with a size proportional to σ√
N

√
2 log(1/δ)?

As mentioned above, there is no hope to achieve this goal with the empirical mean.
Different alternative estimators have thus been considered in robust statistics, such as
M-estimators [6] or median-of-means (MoM) estimators [see [7] for a recent survey, and
references therein].

The key idea of MoM estimators is to achieve a compromise between the unbiased but
non-robust empirical mean and the biased but robust median. As before, let us consider
a sample of N real numbers x1, . . . , xN , assumed to be an iid sequence drawn from a
distribution P. Let K ≤ N be a positive integer and assume for simplicity that K is a
divisor of N. To compute the MoM estimator, the first step consists of dividing the sample
(x1, . . . , xN) into K non-overlapping blocks B1, . . . , BK, each of length N/K. For each block,
we then compute the empirical mean

x̄Bi =
K
N ∑

j∈Bi

xj.

The MoM estimator is defined as the median of those means:

MoMK(x1 . . . , xN) = median
{

x̄B1 , . . . , x̄BK

}
.

This estimator has the following nice property.

Proposition 2 ([7], Proposition 12). Assume P ∈ Pσ
cheap, for δ = exp

(
−K

8

)
,

[
MOMK ± σ√

N
× 4

√
2 log

(
1
δ

)]
(3)

is a confidence interval for the mean of X at the level 1 − δ.

This property is quite encouraging, as for a cheap model we obtain a confidence
interval similar, up to a numerical constant, to the best one (1) in Section 2. However, we
also spot here an important limitation. The confidence interval (3) for MoM is only valid
for the particular error threshold δ = exp(−K/8), which depends on the number of blocks
K (a parameter for the estimator MoMK). The estimator must be changed each time we
want to evaluate a different confidence level.

An ever more limiting feature is that the error threshold δ is constrained and cannot
be set arbitrarily small, as in (1) or (2). Obviously, the number of blocks cannot exceed the
sample size N, and the error threshold reaches its lowest tolerable value exp(−N/8). In
other words, the interval defined in (3) can have confidence at most 1 − exp(−N/8).

Is this strong limitation specific to MoM estimators? No, say [8], [Theorem 3.2 and
following remark]. This limitation is universal; over the class Pσ

cheap, there is no estimator
x̂ of the mean such that there exists a constant L > 1 such that[

x̂ ± σ√
N

× L

√
2 log

(
1
δ

)]
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is a confidence interval at level 1 − δ for δ lower than e−O(N).
To sum up, a good and cheap lunch is possible, with the limitation that the bound is

no longer valid for all confidence levels.

4. PAC-Bayes

We now briefly introduce the generalised Bayesian setting in machine learning, and
the resulting generalisation bounds, the PAC-Bayesian bounds. PAC-Bayes is a sophis-
ticated framework to derive new learning algorithms and obtain (often state-of-the-art)
generalisation bounds, while maintaining probability distributions over hypotheses; as
such, we are interested in studying how PAC-Bayes is compatible with good and cheap
lunches. We refer the reader to [1,9] and the many references therein for recent surveys
on PAC-Bayes including historical notes and main bounds. We focus on classical bounds
from the PAC-Bayes literature, based on the empirical risk as a risk estimator—and we
instantiate those bounds in two regimes matching the “expensive” and “cheap” models
introduced in Section 2.

4.1. Notation

For any f ∈ F , we define the empirical risk RN( f ) as:

RN( f ) =
1
N

N

∑
i=1

�( f (Xi), Yi).

In the following, we consider integrals over the hypotheses space F . To keep the
notation as compact as possible, we will write μ[g] =

∫
gdμ if μ is a measure over F and

g ∈ F a μ-integrable function.

4.2. Generalised Bayes and PAC Bounds

The main advantage of PAC-Bayes over deterministic approaches which output single
hypotheses (through optimisation of a particular criterion such as in model selection, etc.) is
that the distributions allow us to capture uncertainty on hypotheses, and take into account
correlations among possible hypotheses.

Denoting by ρ the posterior distribution, the quantity to control is:

ρ[R] =
∫
F

R( f )dρ( f )

which is an aggregated risk over the class F and represents the expected risk if the predictor
f is drawn from ρ for each new prediction. The distribution ρ is usually data-dependent
and is referred to as a “posterior” distribution (by analogy with Bayesian statistics). We
also fix a reference measure π over F , called the “prior” (for similar reasons). We refer
to [1,10] for in-depth discussions on the choice of the prior: a recent streamline of work has
further investigated the choice of data-dependent priors [11–14].

The generalisation bounds associated to this setting are known as “PAC-Bayesian”
bounds, where PAC stands for probably approximately correct. One important feature
of PAC-Bayes bounds is that they hold true for any prior π and posterior ρ. In practice,
bounds are optimised with respect to ρ and possibly π. In the following, we focus on
establishing bounds for any choice of π and ρ and do not mean to optimise.

4.3. Notion of Divergence

An important notion used in PAC-Bayesian theory is the divergence between two
probability distributions [see [15], for example, for a survey on divergences]. Let E be a
measurable space and μ and ν two probability distributions on E . Let f be a non-negative
convex function defined on R+ such that f (1) = 0, we define the f -divergence between μ
and ν by
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D f (μ, ν) =

{ ∫
f
(

dμ
dν

)
dν if μ � ν,

+∞ otherwise.

Note that we also use the notation f to denote hypotheses elsewhere in the paper, but we
believe the context to always be clear enough to avoid ambiguity.

Applying Jensen inequality, we have that D f (μ, ν) is always non-negative and equal to
zero if and only if μ = ν. The class of f -divergences includes many celebrated divergences,
such as the Kullback–Leibler (KL) divergence, the reversed KL, the Hellinger distance, the
total variation distance, χ2-divergences, α-divergences, etc. Most PAC-Bayesian generalisa-
tion bounds involve the KL divergence.

A divergence can be thought of as a transport cost between two probability distribu-
tions. This interpretation will be useful for explaining PAC-Bayesian inequalities, where
the divergence plays the role of a complexity term. In the following, we will just use two
types of divergence. The first is the Kullback–Leibler divergence and corresponds to the
choice f (x) = x log x, which we denote it by

KL(μ, ν) =

{ ∫
log
(

dμ
dν

)
dμ if μ � ν,

+∞ otherwise.

The second is linked to Pearson’s χ2-divergence and corresponds to the choice f (x) =
x2 − 1. It is referred to as D2:

D2(μ, ν) =

{ ∫ (dμ
dν

)2
dν − 1 if μ � ν,

+∞ otherwise.

To illustrate the behaviour of these two divergences, consider the case where μ and ν
are normal distributions on Rd.

Proposition 3. If E = Rd, μ = N (a, I), and ν = N (0, I) (where I stands for the d × d identity
matrix), we have {

D2(μ, ν) = e‖a‖2 − 1,
KL(μ, ν) = 1

2‖a‖2.

Proof. We have:⎧⎪⎪⎪⎨⎪⎪⎪⎩
dμ(x) = 1

(2π)d/2 exp
(
− 1

2 (x − a)T(x − a)
)

dx,

dν(x) = 1
(2π)d/2 exp

(
− 1

2 xTx
)

dx,
dμ
dν (x) = exp

(
− 1

2
[
−2xTa + aTa

])
= exp

(
−‖a‖2/2

)
exp
(

xTa
)
.

Then:

D2(μ, ν) = exp
(
−‖a‖2

) ∫
exp
(

2xTa
) 1
(2π)d/2 exp

(
−1

2
xTx
)

dx − 1

= exp
(
−‖a‖2

) ∫ 1
(2π)d/2 exp

(
−1

2
xTx + 2xTa

)
dx − 1

= exp
(
−‖a‖2

)
exp
(

2‖a‖2
) ∫ 1

(2π)d/2 exp
(
−1

2
(x − 2a)T(x − 2a)

)
dx − 1

= e‖a‖2 − 1.
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And finally:

KL(μ, ν) =
∫ (

−‖a‖2

2
+ xTa

)
1

(2π)d/2 exp
(
−1

2
(x − a)T(x − a)

)
dx

= −‖a‖2

2
+
∫

xTa
1

(2π)d/2 exp
(
−1

2
(x − a)T(x − a)

)
dx

= −‖a‖2

2
+ ‖a‖2 =

‖a‖2

2
.

We therefore see that the divergence D2 penalises much more strongly the gap between
the means of both distributions than the Kullback–Leibler divergence.

The following technical lemma involving the Kullback–Leibler divergence and a
change of measure from posterior to prior distribution is pivotal in the PAC-Bayes literature:

Lemma 1 ([5–16], Corollary 4.15). Let g be a measurable function g : F �→ R such that π[eg]
is finite. Let π and ρ be respectively prior and posterior measures as defined in Section 4.1. The
following inequality holds:

ρ[g] ≤ log π[eg] + KL(ρ, π).

4.4. Expensive PAC-Bayesian Bound

The first PAC-Bayesian bound we present is called “expensive PAC-Bayesian bound”
in the spirit of Section 2: it is obtained under a sub-Gaussian tails assumption. More
precisely, we suppose here that for any f ∈ F , the distribution of the random variable
�( f (X), Y) belongs to Pσ

expensive, which means

logE[exp{λ(�( f (X), Y)− R( f ))}] ≤ λ2σ2

2
, ∀λ ∈ R.

In this setting, we have the following bound, close to the ones obtained by [10].

Proposition 4. Assume that for any f ∈ F , �( f (X), Y) ∈ Pσ
expensive. For any prior π, posterior

ρ, and any δ ∈ (0, 1), the following inequality holds true with a probability greater than 1 − δ:

ρ[R] ≤ ρ[RN ] +
σ√
N

√
2
(

log
(

1
δ

)
+ KL(ρ, π)

)
.

Proof. The proof is decomposed in two steps. The first leverages Lemma 1. Let λ be a
positive number and apply Lemma 1 to the function λ(R − RN):

ρ[R] ≤ ρ[RN ] +
1
λ

(
log π

[
eλ(R−RN)

]
+ KL(ρ, π)

)
.

The second step is to control the deviations of log π
[
eλ(R−RN)

]
. With a probability

1 − δ, we have, by Markov’s inequality

π
[
eλ(R−RN)

]
≤

E
[
π
[
eλ(R−RN)

]]
δ

.

By Fubini’s theorem, we can exchange the symbols E and π. Using the assumption
Pσ

expensive, we obtain with a probability greater than 1 − δ

π
[
eλ(R−RN)

]
≤ exp

{
λ2σ2/2N

}
δ

.
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Now, putting these results together and setting

λ =

√
2N
(

log
(

1
δ

)
+ KL(ρ, π)

)
σ

we obtain the desired bound.

A PAC-Bayesian inequality is a bound which treats the complexity in the following
manner:

• At first, a global complexity measure is introduced with the change of measure and
is characterised by the divergence term, measuring the price to switch from π (the
reference distribution) to ρ (the posterior distribution on which all inference and
prediction is based);

• Next, the stochastic assumption on the data-generating distribution is used to control

π
[
eλ(R−RN)

]
with high probability.

4.5. Cheap PAC-Bayesian Bounds

4.5.1. Using χ2 Divergence

The vast majority of works in the PAC-Bayesian literature focuses on an expensive
model. The main reason is that it includes the situation where the loss � is bounded,
a common (yet debatable) assumption in machine learning. The case where �( f (X, Y)
belongs to a cheap model has attracted far less attention; recently, ref. [17] have obtained
the following bound.

Proposition 5 ([17], Theorem 1). Assume that for any f ∈ F , �( f (X), Y) ∈ Pσ
cheap. For any

prior π, posterior ρ, and any δ ∈ (0, 1), the following inequality holds true with a probability
greater than 1 − δ

ρ[R] ≤ ρ[RN ] +
σ√
N

√
D2(ρ, π) + 1

δ
.

The proof (see [17]) uses the same elementary ingredients as in the expensive case,
replacing the Kullback–Leibler divergence by D2 and the dependence in δ moves from√

2 log(1/δ) to 1√
δ
. Note the correspondence between these two bounds and the confidence

intervals introduced in Section 2.

4.5.2. Using Huber-Type Losses

With a different approach, ref. [18] obtained asymptotic PAC-Bayesian bounds for
δ-dependent risk estimators based on the empirical mean of Huber-type influence functions.
The author of [18] studied in a slightly more restrictive model than Pcheap, assuming in
addition that the order 3 moment of �( f (X), Y) is bounded for f ∈ H. We rephrase here
Theorem 9 of [18]: with a probability greater than 1 − δ,

ρ[R] ≤ ρ[R̂δ,N ] +
1√
N

(
KL(ρ, π) +

log(8πσδ−2)

2
+ σ + π∗

N(F )− 1
)
+ o
(

1
N

)
,

where π∗
N(F ) is a term depending on the quality of the prior. In Remark 10, the author

notes that assuming only finite moments for �( f (X), Y), it is impossible in practice to

choose a prior such that π∗
N(F )√

N
decreases at rate 1/

√
N or faster. Then, the dominant term

necessarily converges at a slower rate than that of Proposition 4. However, this bounds
leads to the definition of a robust PAC-Bayes estimator which proves efficient on simulated
data (see Section 5 of [18]).
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5. A Good Cheap Lunch: Towards a Robust PAC-Bayesian Bound?

If we take a closer look at the aforementioned PAC-Bayesian bounds from a robust
statistics perspective, the following question arises: can we obtain a PAC-Bayesian bound

with a
√

log(1/δ) dependence (possibly up to a numerical constant) in the confidence

level with the cheap model? In this section, we shed light on some structural issues. In the
following, we assume the existence of σ > 0 such that for any f ∈ F , �( f (X), Y) ∈ Pσ

cheap.

5.1. A Necessary Condition

Let R̂ be an estimator of the risk (not necessarily the classical empirical risk). Here is a
prototype of the inequality we are looking for: for any δ ∈ (0, 1), with probability 1 − δ

ρ[R] ≤ ρ
[

R̂
]
+

σ√
N

A(ρ, π, δ),

where

A(ρ, π, δ) =
δ→0

O
(√

log(1/δ)

)
.

If we choose ρ = π = δ{ f } (Dirac mass in the single hypothesis f ), the existence of
such a PAC-Bayesian bound valid for all δ implies that[

R̂( f )± σ√
N

× c
√

log(1/δ)

]
is a confidence interval for the risk R( f ) for any level 1 − δ, where c is a constant.

Thus, a necessary condition for a PAC-Bayesian bound to be valid for all of the risk
level δ is to have tight confidence intervals for any f ∈ F .

However, as covered in Section 3, such estimators do not exist over the class Pσ
cheap,

and the possibility to derive a tight confidence interval is limited by the fact that the level δ
must be greater that a positive constant of the form e−O(N).

5.2. A δ-Dependent PAC-Bayesian Bound?

As a consequence, there is simply no hope for a robust PAC-Bayesian bound valid
for any error threshold δ, for essentially the same reason which prevents it in the mean
estimation case. The question we address now is the possibility of obtaining a robust
PAC-Bayesian bound, with a dependence of magnitude

√
2 log(1/δ) (possibly up to a

constant), with a possible limitation on the error threshold δ. In the following, we assume
to have an estimator of the risk R̂ and an error threshold δ > 0 such that there exists a
constant C > 0 such that for any f ∈ F ,[

R̂( f )± σ√
N

× C
√

log(1/δ)

]
is a confidence interval for R( f ) at level 1 − δ. MoM is an example of such estimator. Let
us stress that δ is fixed and cannot be used as a free parameter.

As seen above, a PAC-Bayesian bound proof proceeds in two steps:

• First, we use a convexity argument to control the target quantity ρ[R − R̂] by an

upper-bound involving a divergence term and a term of the form g−1
(

π
[

g(R − R̂)
])

where g is a non-negative, increasing, and convex function;
• Second, we control the term π

[
g(R − R̂)

]
in high probability, using Markov’s inequality.

The first step does not require any use of a stochastic model on the data, and is always
valid, regardless of whether we have a cheap or an expensive model. The second step uses
the model and introduce the dependence in the error rate δ on the right-term of the bound:
g−1(1/δ). In the case of the “expensive bound”, we had g = exp, and the dependence was
log(1/δ), the final rate

√
log(1/δ) was obtained by choosing a relevant value for λ.
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Let us follow this scheme to obtain a robust PAC-Bayesian bound. The first step gives

ρ[R] ≤ ρ[R̂] +
1
λ

(
log π

[
eλ(R−R̂)

]
+ KL(ρ, π)

)
.

Our goal is now to control π
[
eλ(R−R̂)

]
in high probability.

5.2.1. The Case π = δ{ f }
Let us start with a very special case, where the prior is a Dirac mass on some hypothesis

f ∈ F . Then
1
λ

log π
[
eλ(R−R̂)

]
= R( f )− R̂( f ).

Using how R̂ is defined, we can bound this quantity in the following way: with
probability 1 − δ,

R( f )− R̂( f ) ≤ σ√
N

× C
√

log(1/δ).

Another way to formulate this result is to say that there exists an event A f with a
probability greater than 1 − δ such that for all ω ∈ A f , the following holds true:

(R( f )− R̂( f , ω)) ≤ σ√
N

× C
√

2 log(1/δ).

In this example, we can control log π
[
eλ(R−R̂)

]
at the price of a maximal constraint on

the choice of the posterior. Indeed, the only possible choice for ρ for the Kullback–Leibler
KL(ρ, π) to make sense is ρ = π = δ{ f }.

5.2.2. The Case π = αδ{ f1} + (1 − α)δ{ f2}
Consider now a somewhat more sophisticated choice of prior which is a mixture of

two Dirac masses in two distinct hypotheses. We do not fix the mixing proportion α and
allow it to move freely between 0 and 1. The goal is to control the quantity

π
[
eλ(R−R̂)

]
= αeλ(R( f1)−R̂( f1)) + (1 − α)eλ(R( f2)−R̂( f2)).

More precisely, for all α ∈ (0, 1), we want to find an event Aα on which this quantity
is under control. In view of the prior’s structure, the only way to ensure such a control is to
have Aα ⊂ A f2 ∩ A f2 , where A f1 (resp. A f2 ) is the favourable event for the concentration
of f̂1 (resp. f̂2) around its mean.

By the union bound, we have that with a probability greater than 1 − 2δ

1
λ

log π
[
eλ(R−R̂)

]
≤ σ√

N
× C
√

log(1/δ).

We face a double problem here. As above, if we want the final bound to be non-
vacuous, we have to ensure that KL(ρ, π) is finite, which restricts the support for the
posterior to be included in the set { f1, f2}. In addition, the PAC-Bayesian bound holds
with a probability greater than 1 − 2δ. . .

5.2.3. Limitation

. . . which hints at the fact that this will become 1 − Kδ if the support for the prior
contains K distinct hypotheses. If K ≥ 1/δ, the bound becomes vacuous. In particular, we
cannot obtain a relevant bound using this approach in the situation where the cardinal of
F is infinite (which is commonly the case in most PAC-Bayes works).

This limiting fact highlights that to derive PAC-Bayesian bounds, we cannot rely on
the construction of confidence interval for all R( f ) for a fixed error threshold δ. The issue
is that when we want to transfer this local property into a global one (valid for any mixture
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of hypotheses by the prior π), we cannot avoid a worst-case reasoning by the use of the
union bound.

The established bounds in the PAC-Bayesian literature, both in cheap and expensive
models, repeatedly use the fact that when we assume that for any f ∈ F ,

logE
[
eλ(R( f )−�( f (X),Y))

]
≤ λ2σ2

2
, ∀λ ∈ R

or
var(�( f (X), Y)) ≤ σ2,

we make an implicit assumption on the integrability of the tail of the distribution of
�( f (X), Y). This argument is crucial for the second step of the PAC-Bayesian proof because,
by Fubini’s theorem, it allows us to convert a local property (the tail distribution of
each �( f (X), Y)) into a global one (the control of π

[
eλ(R−RN)

]
or π

[
(R − RN))

2] in high
probability).

5.3. Is That the End of the Story?

We have identified a structural limitation to derive a tight PAC-Bayesian bound
in a cheap model. We make the case that we cannot replicate the PAC-Bayesian proof
presented in Section 4. To conclude this section, we want to highlight the fact that, up to
our knowledge, no proof of PAC-Bayesian bounds avoids these two steps (see, for example,
the general presentation in [19]).

What if we try to avoid the change of the measure step and try to control directly
ρ[R]− ρ[R̂] in high probability? We remark that ρ can only be chosen with the information
given by the observation of R̂( f ), where f ∈ F . In particular, we cannot obtain any
information of the concentration of each R̂( f ) around R( f ) as such knowledge requires to
know the true risk. So, it seems that a direct control cannot avoid starting as a “worst-case”
bound:

ρ[R]− ρ[R̂] ≤ sup
f∈F

{
R( f )− R̂( f )

}
.

Then, we have to control sup f∈F
{

R( f )− R̂( f )
}

in high probability (see [20] for a
general presentation on such controls, and [7] for the recent results in the special case where
R̂ is a MoM estimator). However, the obtained bound will take the following prototypic
form:

ρ[R] ≤ ρ[R̂] + complexity term,

where the complexity term does not depend on the distribution ρ. Thus, the optimisation
of the right term leads to choosing ρ as the Dirac mass in arg min

f∈F
R̂( f ).

So, the overall procedure amounts to a slightly modified empirical risk minimisation
(where the empirical mean is replaced with any estimator of the risk), and will not fall into
the category of generalised Bayesian approaches which take into account the uncertainty
on hypotheses. Pretty much all the strengths of PAC-Bayes would then be lost.

6. Conclusions

The present paper contributes a better understanding of the profound structural
reasons why good cheap lunches (tight bounds under minimal assumptions) are not
possible with PAC-Bayes by walking gently through elementary examples.

From a theoretical perspective, PAC-Bayesian bounds requires too strong assumptions
to adapt robust statistics results (where almost good lunches can be obtained for cheap
models—with the limitation that the confidence level is constrained). The second step of
the proof we have shown requires us to transform a local hypothesis, a control of some
moments of �( f (X), Y), into a global one, valid for all mixture of hypotheses by the prior
π. As covered above, this transformation seems impossible.
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To close on a more positive note after this negative result, let us stress that even if
the conciliation of PAC-Bayes and robust statistics appears challenging, we believe that
the recent ideas from robust statistics could be used in practical algorithms inspired by
PAC-Bayes. In particular, we leave as an avenue for future work the empirical study of
PAC-Bayesian posteriors (such as the Gibbs measure defined as ρ ∝ exp(−γR̂)π for any
inverse temperature γ > 0) where the risk estimator is not the empirical mean (as in most
PAC-Bayes works) but rather a robust estimator, such as MoM.
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Abstract: Stochastic gradient SG-based algorithms for Markov chain Monte Carlo sampling (SGMCMC)
tackle large-scale Bayesian modeling problems by operating on mini-batches and injecting noise
on SGsteps. The sampling properties of these algorithms are determined by user choices, such as
the covariance of the injected noise and the learning rate, and by problem-specific factors, such
as assumptions on the loss landscape and the covariance of SG noise. However, current SGMCMC

algorithms applied to popular complex models such as Deep Nets cannot simultaneously satisfy
the assumptions on loss landscapes and on the behavior of the covariance of the SG noise, while
operating with the practical requirement of non-vanishing learning rates. In this work we propose
a novel practical method, which makes the SG noise isotropic, using a fixed learning rate that we
determine analytically. Extensive experimental validations indicate that our proposal is competitive
with the state of the art on SGMCMC.

Keywords: Bayesian sampling; stochastic gradients; Monte Carlo integration

1. Introduction

Stochastic gradient (SG) methods have been extensively studied as a means for MCMC-
based Bayesian posterior sampling algorithms to scale to large data regimes. Variants of
SG-MCMC algorithms have been studied through the lens of first [1–3] or second-order [4,5]
Langevin Dynamics, which are mathematically convenient continuous-time processes that
correspond to discrete-time gradient methods with and without momentum, respectively.
The common traits underlying many methods from the literature can be summarized
as follows: they address large data requirements using SG and mini-batching, they in-
ject Gaussian noise throughout the algorithm execution, and they avoid the expensive
Metropolis-Hasting accept/reject tests that use the whole data [1,2,4].

Despite mathematical elegance and some promising results restricted to simple mod-
els, current approaches fall short in dealing with the complexity of the loss landscape
typical of popular modern machine learning models, e.g., neural networks [6,7], for which
stochastic optimization poses some serious challenges [8,9].

In general, SG-MCMC algorithms inject random noise to SG descent algorithms: the
covariance of such noise and the learning rate, or step-size in the stochastic differential equa-
tion simulation community, are tightly related to the assumptions on the loss landscape,
which together with the SG noise, determine the sampling properties of these methods [5].
However, current SG-MCMC algorithms applied to popular complex models such as Deep
Nets, cannot simultaneously satisfy the assumptions on posterior distribution geometry
and on the behavior of the covariance of the SG noise, while operating with the practical
requirement of non-vanishing learning rates. In this paper, in accordance with most of
the Neural Network related literature, we refer to the posterior distribution geometry as
loss landscape. Some recent work [10], instead, argue for fixed step sizes, but settle for
variational approximations of quadratic losses. Although we are not the first to highlight
these issues, including the lack of a unified notation [5], we believe that studying the

Entropy 2021, 23, 1426. https://doi.org/10.3390/e23111426 https://www.mdpi.com/journal/entropy
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role of noise in SG-MCMC algorithms has not received enough attention, and a deeper
understanding is truly desirable, as it can clarify how various methods compare. Most
importantly, this endeavor can suggest novel and more practical algorithms relying on
fewer parameters and less restrictive assumptions.

In this work we chose a mathematical notation that emphasizes the role of noise
covariances and learning rate on the behavior of SG-MCMC algorithms (Section 2). As a
result, the equivalence between learning rate annealing and extremely large injected noise
covariance becomes apparent, and this allows us to propose a novel practical SG-MCMC

algorithm (Section 3). We derive our proposal, by first analyzing the case where we inject
the smallest complementary noise such that its combined effects with the SG noise result in
an isotropic noise. Thanks to this isotropic property of the noise, it is possible to deal with
intricate loss surfaces typical of deep models, and produce samples from the true posterior
without learning rate annealing. This, however, comes at the expense of cubic complexity
matrix operations. We address such issues through a practical variant of our scheme, which
employs well-known approximations to the SG noise covariance (see, e.g., [11]). The result
is an algorithm that produces approximate posterior samples with a fixed, theoretically
derived, learning rate. Please note that in generic Bayesian deep learning setting, none of
the existing implementations of SG-MCMC methods converge to the true posterior without
learning rate annealing. In contrast, our method automatically determines an appropriate
learning rate through a simple estimation procedure. Furthermore, our approach can
be readily applied to pre-trained models: after a “warmup” phase to compute SG noise
estimates, it can efficiently perform Bayesian posterior sampling.

We evaluate SG-MCMC algorithms (Section 4) through an extensive experimental
campaign, where we compare our approach to several alternatives, including Monte Carlo
Dropout (MCD) [12] and Stochastic Weighted Averaging Gaussians (SWAG, [9]), which have
been successfully applied to the Bayesian deep learning setting. Our results indicate that
our approach offers performance that are competitive to the state of the art, according to
metrics that aim at assessing the predictive accuracy and uncertainty.

2. Preliminaries and Related Work

Consider a dataset of m−dimensional observations D = {U i}N
i=1. Given prior p(θ)

for a d-dimensional set of parameters, and a likelihood model p(D|θ), the posterior is
obtained by means of Bayes theorem as follows:

p(θ|D) =
p(D|θ) p(θ)

p(D)
(1)

where p(D) is also known as the model evidence, defined as the integral
p(D) =

∫
p(D|θ) p(θ)dθ. Except when the prior and the likelihood function are con-

jugate, Equation (1) is analytically intractable [13]. However, the joint likelihood term in
the numerator is typically not hard to compute; this is a key element of many MCMC algo-
rithms, since the normalization constant p(D) does not affect the shape of the distribution
in any way other than scaling. The posterior distribution is necessary to obtain predictive
distributions for new test observations U∗, as:

p(U∗|D) =
∫

p(U∗|θ)p(θ|D)dθ (2)

We focus in particular on Monte Carlo methods to obtain an estimate of this predictive
distribution, by averaging over NMC samples obtained from the posterior over θ, i.e.,
θ(i) ∼ p(θ|D)

p(U∗|D) ≈ 1
NMC

NMC

∑
i=1

p(U∗|θ(i)) (3)
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We develop our work by working with an unnormalized version of the logarithm of
the posterior density, by expressing the negative logarithm of the joint distribution of the
dataset D and parameters θ as:

− f (θ) =
N

∑
i=1

log p(U i|θ) + log p(θ). (4)

For computational efficiency, we use a minibatch stochastic gradient g(θ), which
guarantees that the estimated gradient is an unbiased estimate of the true gradient ∇ f (θ),
and we assume that the randomness due to the minibatch introduces a Gaussian noise:

g(θ) ∼ N(∇ f (θ), 2B(θ)), (5)

where the matrix B(θ) denotes the SG noise covariance, which depends on the parametric
model, the data distribution and the minibatch size.

A survey of algorithms to sample from the posterior using SG methods can be found
in Ma et al. [5]. In Appendix A we report some well-known facts which are relevant
for the derivations in our paper. As shown in the literature [10,14], there are structural
similarities between SG-MCMC algorithms and stochastic optimization methods, and both
can be used to draw samples from posterior distributions. Notice that the original goal of
stochastic optimization is to find the minimum of a given cost function, and the stochasticity
is introduced by sub-sampling the dataset to scale. SG-MCMC methods instead aim at
sampling from a given distribution, i.e., collecting multiple values, and the stochasticity
is necessary explore the whole landscape. In what follows, we use a unified notation to
compare many existing algorithms in light of the role played by their noise components.

It is well-known [15–17] that stochastic gradient descent (SGD), with and without
momentum, can be studied through the following stochastic differential equation (SDE),
when the learning rate η is small enough (In this work we do not consider discretization
errors. The reader can refer to classical SDE texts such as [18] to investigate the topic in
greater depth.):

dzt = s(zt)dt +
√

2ηD(zt)dW t. (6)

where s is usually referred to as driving force and D as diffusion matrix We use a generic
form of the SDE, with variable z instead of θ, which accommodates SGD variants, with and
without momentum. By doing this, we will be able to easily cast the expression for the
two cases in what follows (The operator ∇� applied to matrix D(z) produces a row vector
whose elements are the divergences of the D(z) columns. Our notation is aligned with
Chen et al. [4]).

Definition 1. A distribution ρ(z) ∝ exp(−φ(z)) is said to be a stationary distribution for the
SDE of the form (6), if and only if it satisfies the following Fokker-Planck equation (FPE):

0 = Tr
{
∇
[
−s(z)�ρ(z) +∇�(D(z)ρ(z))

]}
. (7)

Please note that in general, the stationary distribution does not converge to the desired
posterior distribution, i.e., φ(z) �= f (z), as shown by Chaudhari and Soatto [8]. Addition-
ally, given an initial condition for zt, its distribution is going to converge to ρ(z) only for
t → ∞. In practice, we observe the SDE dynamics for a finite amount of time: then, we
declare that the process is approximately in the stationary regime once the potential has
reached low and stable values.

Next, we briefly overview known approaches to Bayesian posterior sampling, and
interpret them as variants of an SGD process, using the FPE formalism.
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2.1. Gradient Methods without Momentum

The generalized updated rule of SGD, described as a discrete-time stochastic process,
writes as:

δθn = −ηP(θn−1)(g(θn−1) + wn), (8)

where P(θn−1) is a user-defined preconditioning matrix, and wn is a noise term, dis-
tributed as wn ∼ N(0, 2C(θn)), with a user-defined covariance matrix C(θn). Then, the
corresponding continuous-time SDE is [15]:

dθt = −P(θt)∇ f (θt)dt +
√

2ηP(θt)2Σ(θt)dW t. (9)

In this paper we use the symbol n to indicate discrete time, while t for continuous time. We
denote by C(θ) the covariance of the injected noise and Σ(θ) the composite noise covariance.
Please note that Σ(θt) = B(θt) + C(θt) combines the SG and the injected noise. Notice that
our choice of notation is different from the standard one, in which the starting discrete-
time process is in the form δθn = −ηP(θn−1)(g(θn−1)) + wn. By directly grouping the
injected noise with the stochastic gradient we can better appreciate the relationship between
annealing the learning rate and extremely large injected noise. Moreover, as will be
explained in Section 3, this allows derivation of a new sampling algorithm.

We define the stationary distribution of the SDE in Equation (9) as ρ(θ) ∝ exp(−φ(θ)).
Please note that when C = 0, the potential φ(θ) differs from the desired posterior f (θ) [8].
The following theorem, which is an adaptation of known results in light of our formalism,
states the conditions for which the noisy SGD converges to the true posterior distribution
(proof in Appendix A).

Theorem 1. Consider dynamics of the form (9) and define the stationary distribution ρ(θ) ∝
exp(−φ(θ)). If

∇�
(

Σ(θ)−1
)
= 0� and ηP(θ) = Σ(θ)−1, (10)

then φ(θ) = f (θ).

Stochastic Gradient Langevin Dynamics (SGLD) [1] is a simple approach to satisfy
Equation (10); it uses no preconditioning, P(θ) = I, and sets the injected noise covariance
to C(θ) = η−1 I. In the limit for η → 0, it holds that Σ(θ) = B(θ) + η−1 I � η−1 I.
Then, ∇�

(
Σ(θ)−1

)
= η∇� I = 0�, and ηP(θ) = Σ(θ)−1. Although SGLD succeeds in

(asymptotically) generating samples from the true posterior, its mixing rate is unnecessarily
slow, due to the extremely small learning rate [2].

An extension to SGLD is Stochastic Gradient Fisher Scoring (SGFS) [2], which can be
tuned to switch between sampling from an approximate posterior, using a non-vanishing
learning rate, and the true posterior, by annealing the learning rate to zero. SGFS uses
preconditioning, P(θ) ∝ B(θ)−1. In practice, however, B(θ) is ill conditioned for com-
plex models such as deep neural networks. Then, many of its eigenvalues are almost
zero [8], and computing B(θ)−1 is problematic. An in-depth analysis of SGFS reveals that
conditions (10) would be met with a non-vanishing learning rate only if, at convergence,
∇�(B(θ)−1) = 0�, which would be trivially true if B(θ) was constant. However, recent
work [6,7] suggest that this condition is difficult to justify for deep neural networks.

The Stochastic Gradient Riemannian Langevin Dynamics (SGRLD) algorithm [3] ex-
tends SGFS to the setting in which ∇�(B(θ)−1) �= 0�. The process dynamic is adjusted by
adding the term ∇�(B(θ)−1). However, the term ∇�(B(θ)−1) has not a clear estimation
procedure, restricting SGRLD to cases where it can be computed analytically.

The work by [10] investigates constant-rate SGD (with no injected noise), and deter-
mines analytically the learning rate and preconditioning that minimize the Kullback–Leibler
(KL) divergence between an approximation and the true posterior. Moreover, it shows
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that the preconditioning used in SGFS is optimal, in the sense that it converges to the true
posterior, when B(θ) is constant and the true posterior has a quadratic form.

In summary, to claim convergence to the true posterior distribution, existing ap-
proaches require either vanishing learning rates or assumptions on the SG noise covariance
that are difficult to verify in practice, especially when considering deep models. We
instead propose a novel practical method that induces isotropic SG noise and thus satis-
fies Theorem 1. We determine analytically a fixed learning rate, and we require weaker
assumptions on the loss shape.

2.2. Gradient Methods with Momentum

Momentum-corrected methods emerge as a natural extension to SGD approaches. The
general set of update equations for (discrete-time) momentum-based algorithms is:{

δθn = ηP(θn−1)M−1rn−1

δrn = −ηA(θn−1)M−1rn−1 − ηP(θn−1)(g(θn−1) + wn),

where P(θn−1) is a preconditioning matrix, M is the mass matrix and A(θn−1) is the friction
matrix, as shown by [4,19]. As with the first order counterpart, the noise term is distributed
as wn ∼ N(0, 2C(θn))). Then, the SDE to describe continuous-time system dynamics is:{

dθt = P(θt)M−1rtdt
drt = −(A(θt)M−1rt + P(θt)∇ f (θt))dt +

√
2ηP(θt)2Σ(θt)dW t.

(11)

where P(θt)2 = P(θt)P(θt) and we assume P(θt) to be symmetric. The theorem hereafter
describes the conditions for which noisy SGD with momentum converges to the true
posterior distribution (Appendix A).

Theorem 2. Consider dynamics of the form (11) and define the stationary distribution for θt as
ρ(θ) ∝ exp(−φ(θ)). If

∇�P(θ) = 0� and A(θ) = ηP(θ)2
Σ(θ), (12)

then φ(θ) = f (θ) .

In the naive case, where P(θ) = I, A(θ) = 0, C(θ) = 0, Equation (12) are not satisfied
and the stationary distribution does not correspond to the true posterior [4]. To generate
samples from the true posterior it is sufficient to set P(θ) = I, A(θ) = ηB(θ), C(θ) = 0

(as in Equation (9) in [4]).
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) [4] suggests that estimating

B(θ) can be costly. Hence, the injected noise C(θ) is chosen such that C(θ) = η−1 A(θ),
where A(θ) is user-defined. When η → 0, the following approximation holds: Σ(θ) � C(θ).
It is then trivial to check that conditions (12) hold without the need for explicitly estimating
B(θ). A further practical reason to avoid setting A(θ) = ηB(θ) is that the computational
cost for the operation A(θn−1)M−1rn−1 has O(D2) complexity, whereas if C(θ) is diagonal,
this is reduced to O(D). This, however, severely slows down the sampling process.

Stochastic Gradient Riemannian Hamiltonian Monte Carlo (SGRHMC) is an exten-
sion to SGHMC [5]), which considers a generic, space-varying preconditioning matrix
P(θ) derived from information geometric arguments [20]. SGRHMC suggests setting
P(θ) = G(θ)−

1
2 , where G(θ) is the Fisher Information matrix. To meet the require-

ment ∇�P(θ) = 0�, it includes a correction term, −∇�P(θ). The injected noise is
set to C(θ) = η−1 I − B(θ), consequently Σ = η−1 I, and the friction matrix is set to
A(θ) = P(θ)2. With all these choices, Theorem 2 is satisfied. Although appealing, the
main drawbacks of this method are the need for an analytical expression of ∇�P(θ), and
the assumption for B(θ) to be known.
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From a practical standpoint, momentum-based methods suffer from the requirement
to tune many hyperparameters, including the learning rate, and the parameters that govern
the simulation of a second-order Langevin dynamics.

The method we propose in this work can be applied to momentum-based algorithms;
in this case, it could be viewed as an extension of the work in [11], albeit addressing the
complex loss landscapes typical of deep neural networks. However, we leave this avenue
of research for future work.

3. Sampling by Layer-Wise Isotropization

We present a simple and practical approach to inject noise to SGD iterates to perform
Bayesian posterior sampling. Our goal is to sample from the true posterior distribution
(or approximations thereof) using a constant learning rate, and to rely on more lenient
assumptions about the shape of the loss landscape that characterize deep models, compared
to previous works. In general, in modern machine learning applications, we deal with
multi-layer neural networks [21]. We exploit the natural subdivision of the parameters of
these architecture into different layers to propose a practical sampling scheme

Careful inspection of Theorem 1 reveals that the matrices P(θ), Σ(θ) are instrumental
in determining the convergence properties of SG methods to the true posterior. Therefore,
we consider the constructive approach of designing ηP(θ) to obtain a sampling scheme that
meets our goals; we set ηP(θ) to be a constant, diagonal matrix which we constrain to be
layer-wise uniform:

ηP(θ) = Λ−1 = diag([λ(1), . . . , λ(1)︸ ︷︷ ︸
layer 1

, . . . , λ(Nl), . . . λ(Nl)︸ ︷︷ ︸
layer Nl

])−1. (13)

By properly selecting the set of parameters {λi} we can achieve the simultaneous result of
non-vanishing learning rate and well-conditioned preconditioning matrix. This implies a
layer-wise learning rate η(p) = 1

λ(p) for the p-th layer, without further preconditioning.
We can now prove (see Appendix B), as a corollary to Theorem 1, that our design

choices can guarantee convergence to the true posterior distribution.

Corollary 1. (Theorem 1) Consider dynamics of the form (9) and define the stationary distribution
ρ(θ) ∝ exp(−φ(θ)). If ηP(θ) = Λ−1 as in (13), C(θ) = Λ − B(θ) and C(θ) � 0 ∀θ, then
φ(θ) = f (θ).

If aforementioned conditions are satisfied, it is in fact simple to show that the relevant
matrices satisfy the conditions in Equation (10). The covariance matrix of the composite
noise is said to be isotropic within the layers of (deep) models. In fact, Σ(θ) = C(θ) +

B(θ) = diag
([

λ(1), . . . , λ(1), . . . , λ(Nl), . . . λ(Nl)
])

. From a practical point of view, we
choose Λ to be, among all valid matrices satisfying Λ − B(θ) � 0, the smallest (the one
with the smallest λ’s). Indeed, larger Λ induce a smaller learning rate, thus unnecessarily
reducing sampling speed.

Now, let us consider an ideal case, in which we assume the SG noise covariance B(θ)
and Λ to be known in advance. The procedure described in Algorithm 1 illustrates a naive
SG method that uses the injected noise covariance C(θ) to sample from the true posterior.
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Algorithm 1 Idealized posterior sampling

{Initialization: θ0}

SAMPLE (θ0, B(θ), Λ):

θ ← θ0

loop

g = ∇ f̃ (θ)

n ∼ N(0, I)

C(θ)
1/2 ← (Σ − B(θ))1/2

g ← Σ−1(g +
√

2C(θ)
1/2n)

θ ← θ − g

end loop

This deceivingly simple procedure generate samples from the true posterior, with a
non-vanishing learning rate, as shown earlier. However, it cannot be used in practice as
B(θ) and Λ are unknown. Furthermore, the algorithm requires computationally expensive

operations, i.e., to compute (Σ − B(θ))
1
2 , which requires O(d3) operations, and C(θ)

1
2 ,

which costs O(d2) multiplications.
Next, we describe a practical variant of our approach, where we use approximations

at the expense of generating samples from the true posterior distribution. We note that [10]
suggest exploring a related preconditioning, but do not develop this path in their work.
Moreover, the proposed method shares similarities with a scheme proposed in [22] although
the analysis we perform here is different.

3.1. A Practical Method: Isotropic SGD

To render the idealized sampling method practical, it is necessary to consider some
additional assumptions. As we explain at the end of this section, the assumptions that
follow are less strict than other approaches in the literature.

Assumption 1. The SG noise covariance B(θ) can be approximated with a diagonal matrix, i.e.,
B(θ) = diag(b(θ)).

Assumption 2. The signal-to-noise ratio (SNR) of a gradient is small enough such that in the
stationary regime, the second-order moment of the gradient is a good estimate of the true variance.
Hence, combining with Assumption 1, b(θ) � E[g(θ)�g(θ)]

2 , where � indicates the element-
wise product.

Assumption 3. The sum of the variances of noise components, layer by layer, can be assumed
to constant in the stationary regime. Then, β(p) = ∑

j∈Ip

bj(θ), where Ip is the set of indices of

parameters belonging to pth layer.

The diagonal covariance assumption (i.e., Assumption 1) is common in other works,
such as [2,11]. The small signal-to-noise ratio as stated in Assumption 2 is in line with
recent studies, such as [11,23]. Assumption 3 is similar to those appeared in earlier work,
such as [24]. Please note that Assumptions 2 and 3 must hold in the stationary regime
when the process reaches the bottom valley of the loss landscape. The matrix (b(θ)) has
been associated in the literature with the empirical Fisher information matrix [2,25]. As we
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do not consider this matrix for preconditioning purposes, we do not further investigate
this connection.

Given our assumptions, and our design choices, it is then possible to show (see Appendix B)
that the optimal (i.e., the smallest possible) Λ =

[
λ(1), . . . , λ(1), . . . , λ(Nl), . . . λ(Nl)

]
satisfy-

ing Corollary 1 can be obtained as λ(p) = β(p). Please note that we do not assume
B(θ) to be known, but use a simple procedure to estimate its components by computing:

λ(p) = ∑
j∈Ip

bj(θ) =
||g(p)(θ)||2

2 , where g(p)(θ) is the portion of stochastic gradient correspond-

ing to the p-th layer. Then, the composite noise matrix Σ = Λ is a layer-wise isotropic
covariance matrix, which inspires the name of our proposed method as Isotropic SGD
(I-SGD).

The practical implementation of I-SGD is shown in Algorithm 2. The advantage of
I-SGD is that it can either be used to obtain posterior samples starting from a pre-trained
model, or do so by training a model from scratch. In either case, the estimates of B(θ) are
used to compute Λ, as discussed above. An important consideration is that once all λ(i)

have been estimated, the learning rate, layer by layer, is determined automatically. In fact,

for the p-th layer, the learning rate is: η(p) = λ(p)−1
. A simpler approach is to use a unique

learning rate for all layers, where the equivalent λ is the sum of all λ(p).

Algorithm 2 I-SGD: practical posterior sampling

SAMPLE (θ0):

θ ← θ0

loop

g = ∇ f̃ (θ)

for p ← 1 to Nl do

n ∼ N(0, I)

C(θ)
1/2 ←

(
λ(p) − (1/2)

(
g(p) � g(p)

))
g(p) ← 1/λ(p)

(
g(p) +

√
2C(θ)

1/2n
)

end for

θ ← θ − g

end loop

A Remark on Convergence

In summary, I-SGD is a practical method to perform approximate Bayesian posterior
sampling, backed up by solid theoretical foundations. Our assumptions, which are at the
origin of the approximate nature of I-SGD, are less strict than those used in the literature of
SG-MCMC methods. More precisely, the theory behind I-SGD can explain convergence to the
true posterior with a non-vanishing learning rate in the particular case when Assumption 1
holds and the estimation of B(θ) is perfect. Even with perfect estimates, this is not the case
for SGFS, which requires the correction term ∇�B(θ)−1 = 0. Additionally, both SGRLD and
SGRHMC are more demanding than I-SGD because they require computing ∇�B(θ)−1, for
which an estimation procedure is elusive. Finally, the method by Springenberg et al. [11]
needs a constant, diagonal B(θ), a condition that does not necessarily hold for deep models.
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3.2. Computational Cost

The computational cost of I-SGD is as follows. As with [4], we define the cost of
computing a gradient minibatch as Cg(Nb, d). Thanks to Assumptions 1 and 2, the com-
putational cost for estimating the noise covariance scales as O(d) multiplications. The
computational cost of generating random samples with the desired covariance scales as
O(d) square roots and O(d) multiplications (without considering the cost of generating
random numbers). The overall cost of our method is the sum of the above terms. Notice
that the cost of estimating the noise covariance does not depend on the minibatch size Nb.
We would like to stress that in many modern models, the real computational bottleneck
is the backward propagation for the computation of the gradients. As all the SG-MCMC

methods considered in this work require one gradient evaluation per step, the different
methods have in practice the same complexity.

The space complexity of I-SGD is the same as SGHMC,SGFS and variants: it scales as
O(Nsamd), where Nsam is the number of posterior samples.

4. Experiments

The empirical analysis of our method, and its comparison to alternative approaches
from the literature, is organized as follows. First, we proceed with a validation of I-SGD

using the standard UCI datasets [26] and a shallow neural network. Then we move to the
case of deeper models: we begin with a simple CNN used on the MNIST [27] dataset, then
move to the standard RESNET-18 [28] deep network using the CIFAR-10 [29] dataset.

We compare I-SGD to other Bayesian sampling methods such as SGHMC [4], SGLD [2],
and to alternative approaches to approximate Bayesian inference, including MCD [12],
SWAG [9] and VSGD [10]. In general, our result indicates that: (1) I-SGD achieves similar or
superior performance regarding competitors, when measuring uncertainty quantification,
even with simple datasets and models; (2) I-SGD is simple to tune, when compared to
alternatives; (3) I-SGD is competitive when used for deep Bayesian modeling, even when
compared to standard methods used in the literature. In particular, the proposed method
shares some of the strengths of VSGD, such as learning rates determined automatically and
the simplicity of SGLD. Appendix B includes additional implementation details on I-SGD.
Appendix C presents detailed configurations of all methods we compare, and additional
experimental results.

4.1. A Disclaimer on Performance Characterization

It is important to stress a detail on the analysis of the experimental campaign. The
discussion is usually focused on the goodness of the various methods for representing the
true posterior distribution. Different methods can or cannot claim convergence to the true
posterior according to certain assumptions and the nature of the hyperparameters. In the
experimental validation of the results, however, we do not have access to the form of the
true posterior as it is exactly the problem we are trying to solve. The practical solution
adopted is to compare the different methods in terms of proxy metrics evaluated on the
test sets, such as the accuracy and uncertainty metrics. Being better in terms of these
performance metrics does not imply that the sampling method is better at approximating
the posterior distribution, and outperforming competitors in terms of these metric do not
provide sufficient information about the intrinsic quality of the sampling scheme.

4.2. Regression Tasks, with Simple Models

We consider several regression tasks defined on the UCI datasets. We use a simple
neural network configuration with two fully connected layers and a ReLU activation
function; the hidden layer includes 50 units. In this set of experiments, we use the following
metrics: the root mean square error (RMSE) to judge the model predictive performance and
the mean negative log-likelihood (MNLL) as a proxy for uncertainty quantification. We note
that the task of tuning our competitors was far from trivial. We used our own version of
SGHMC, based on [11], to ensure a proper understanding of the implementation internals,
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and we proceeded with a tuning process to find appropriate values for the numerous
hyperparameters. In this set of experiments, we omit results for SWAG, which we keep for
more involved scenarios.

Tables 1 and 2 report a complete overview of our results, for a selection of UCI

datasets. For each method and each dataset, we also included how many out of the 10
splits considered failed to converge, indicated as F = . . . . As explained in Appendix C we
implemented a temperature scaled version of VSGD. A clear picture emerges from this first
set of experiments: while for the RMSE the performance is similar for different methods, for
the MNLL averaging over multiple samples clearly improves the uncertainty quantification
capabilities. SGHMC is in many cases better than alternatives, considering however the
standard deviation of the results it is difficult to claim clear superiority of one method over
the others.

Table 1. RMSE results for regression on UCI datasets.

Method WINE PROTEIN NAVAL KIN8NM POWER BOSTON

SGLD 0.759 ± 0.07 5.687 ± 0.05 0.007 ± 0.00 (F = 6.000) 0.171 ± 0.07 (F = 3.000) 11.753 ± 3.25 9.602 ± 2.06

I-SGD 0.635 ± 0.05 4.699 ± 0.03 0.001 ± 0.00 0.079 ± 0.00 4.320 ± 0.13 3.703 ± 1.19

Baseline 0.641 ± 0.05 4.733 ± 0.05 0.001 ± 0.00 0.080 ± 0.00 4.354 ± 0.12 3.705 ± 1.19

VSGD 0.635 ± 0.05 4.699 ± 0.03 0.001 ± 0.00 0.079 ± 0.00 4.325 ± 0.13 3.588 ± 1.06 (F = 1.000)

SGHMC 0.628 ± 0.04 4.712 ± 0.03 0.000 ± 0.00 (F = 2.000) 0.076 ± 0.00 (F = 1.000) 4.310 ± 0.14 3.659 ± 1.24

SGLD T 0.752 ± 0.07 5.673 ± 0.04 0.007 ± 0.00 (F = 6.000) 0.169 ± 0.07 (F = 3.000) 11.351 ± 3.02 9.417 ± 2.07

DROP 0.637 ± 0.04 4.968 ± 0.05 0.003 ± 0.00 0.139 ± 0.01 4.531 ± 0.16 3.803 ± 1.26

SGHMC T 0.628 ± 0.04 4.684 ± 0.03 0.000 ± 0.00 (F = 6.000) 0.076 ± 0.00 4.326 ± 0.13 3.692 ± 1.19

Table 2. MNLL results for regression on UCI datasets.

Method WINE PROTEIN NAVAL KIN8NM POWER BOSTON

SGLD 1.546 ± 0.25 5.604 ± 0.08 −1.751 ± 0.28 (F = 6.000) 5.140 ± 7.05 (F=3.000) 8.429 ± 3.14 30.386 ± 15.77

I-SGD 1.129 ± 0.15 4.371 ± 0.03 −2.466 ± 1.12 −0.460 ± 0.65 3.122 ± 0.07 9.799 ± 5.69

Baseline 1.182 ± 0.03 3.964 ± 0.04 0.920 ± 0.00 0.924 ± 0.00 3.071 ± 0.06 5.421 ± 2.73

VSGD 1.128 ± 0.15 4.371 ± 0.03 −2.466 ± 1.12 −0.480 ± 0.65 3.088 ± 0.06 8.413 ± 5.89 (F = 1.000)

SGHMC 1.041 ± 0.12 4.142 ± 0.02 −2.763 ± 1.33 (F = 2.000) −0.798 ± 0.39 (F = 1.000) 2.924 ± 0.04 3.097 ± 0.83

SGLD T 1.526 ± 0.24 5.591 ± 0.07 −1.752 ± 0.28 (F = 6.000) 5.118 ± 7.06 (F = 3.000) 8.288 ± 3.04 33.212 ± 19.69

DROP 1.065 ± 0.12 4.218 ± 0.06 −2.322 ± 0.75 −0.086 ± 0.41 2.941 ± 0.04 3.989 ± 1.23

SGHMC T 1.104 ± 0.14 4.191 ± 0.02 −2.966 ± 1.89 (F = 6.000) −0.756 ± 0.42 3.116 ± 0.07 9.826 ± 5.72

4.3. Classification Tasks, with Deeper Models

Next, we compare I-SGD against competitors on image classification tasks. First,
we use the MNIST dataset, and a simple LENET-5 CNN [30]. All methods are com-
pared based on the test accuracy ACC,MNLL and the expected calibration error (ECE,
[31]). Additionally, at test time, we carry out predictions on both MNIST and NOT-
MNIST; the latter is a dataset equivalent to MNIST , but it represents letters rather than
numbers. (http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html, accessed on
24 October 2021) This experimental setup is often used to check whether the entropy of
the predictions on NOT-MNIST is higher than the entropy of the predictions on MNIST (the
entropy of the output of an Ncl classes classifier, represented by the vector p, is defined as

−
Ncl
∑

i=1
pi log pi).

Table 3 indicates that all methods are essentially equivalent in terms of accuracy
and MNLL. We consider, together with the classical in and out of distribution entropies
the regions of convergence (ROCS) diagrams comparing detection of out of distribution
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samples and false alarms when using as test statistic the entropy. Results, reported in
Figure 1, clearly shows that: (1) collecting multiple samples improve the uncertainty
quantification capabilities (2) I-SGD is competitive (but not the best scheme) and importantly
outperform the closest approach to ours, i.e., VSGD. The experimental results show that
I-SGD improves the quality of the BASELINE model with respect to all metrics. To test
whether the improvements are due just to “additional training” or are intrinsically due to the
Bayesian averaging properties, we do consider alternative deterministic baselines (details
in Appendix C). For this set of experiments the best performing is BASELINE R. As can be
appreciated by comparing Table 3 and Figure 1, while it is possible to increase the classical
metrics, I-SGD (and other methods) still outperform by a large margin the baselines in
terms of detection of out of distribution samples.

Table 3. Results for classification on MNIST dataset.

Method ACC MNLL Mean H0 ECE Mean H1 Failed

I-SGD 9916.3333 ± 2.8674 263.5311 ± 16.3600 0.0368 ± 0.0019 0.0491 ± 0.0003 0.4558 ± 0.0591 0.0000

SGHMC 9930.6667 ± 2.4944 268.2559 ± 6.8172 0.0593 ± 0.0018 0.0531 ± 0.0003 1.0369 ± 0.0346 0.0000

DROP 9912.6667 ± 6.0185 362.8973 ± 24.8881 0.0960 ± 0.0090 0.0541 ± 0.0011 0.5507 ± 0.0577 0.0000

BASELINE 9886.6667 ± 11.0252 352.6640 ± 20.8622 0.0353 ± 0.0058 0.0468 ± 0.0001 0.0019 ± 0.0003 0.0000

BASELINE r 9919.0000 ± 9.4163 242.7644 ± 17.0736 0.0303 ± 0.0001 0.0482 ± 0.0006 0.0021 ± 0.0002 0.0000

SWAG 9917.0000 ± 2.8284 308.8182 ± 20.0979 0.0675 ± 0.0108 0.0524 ± 0.0011 0.3953 ± 0.0442 0.0000

SGLD 9927.0000 ± 1.0000 279.7685 ± 16.6563 0.0556 ± 0.0034 0.0531 ± 0.0004 1.3032 ± 0.1942 1.0000

VSGD 9927.3333 ± 6.7987 225.3725 ± 16.3739 0.0274 ± 0.0008 0.0481 ± 0.0005 0.0414 ± 0.0070 0.0000

I-SGD T 9915.6667 ± 0.9428 255.9641 ± 12.8051 0.0289 ± 0.0014 0.0478 ± 0.0002 0.0284 ± 0.0122 0.0000

SGHMC T 9937.0000 ± 0.0000 231.5332 ± 0.0000 0.0434 ± 0.0000 0.0518 ± 0.0000 0.4623 ± 0.0000 2.0000

Figure 1. Detection/False alarm diagrams for different methods.

We now move on to a classical image classification problem with deep convolutional
networks, whereby we use the CIFAR10 dataset, and the RESNET-18 network architecture.
For this set of experiments, we compare I-SGD, SGHMC, SWAG, and VSGD using again test
accuracy and MNLL, which we report in Table 4. As usual, we compare the results against
the baseline of the individual network resulting from the pre-training phase. Results are
obtained averaging over three independent seeds. Notice, as expanded in Appendix C that
for SWAG we do consider two variants: the Bayesian correct one (SWAG) and a second vari-
ant that has better performance (SWAG wd). We stress again, as highlighted in Section 4.1
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that not always goodness of approximation of the posterior and performance correlate
positively. Additionally in this case, we found I-SGD to be competitive with other methods
and superior to the baseline. Among the competitors, we found I-SGD to the easiest to
tune, given the feature of a fixed learning rate informed by theoretical considerations; we
believe that this is an important aspect to consider for a wide adoption of our proposal by
practitioners.

Table 4. Results for classification on CIFAR10 10 dataset.

Method ACC MNLL mean H0 ECE

I-SGD 8591.3333 ± 17.4611 4393.3557 ± 107.0878 0.6107 ± 0.0337 0.0731 ± 0.0075

SGHMC 8634.6667 ± 5.1854 4357.8998 ± 11.2722 0.6300 ± 0.0023 0.0819 ± 0.0017

SWAG wd 8740.6667 ± 35.5653 3931.9900 ± 45.6605 0.4130 ± 0.0066 0.0275 ± 0.0015

SWAG 8061.0000 ± 11.4310 5903.2605 ± 62.8167 0.5308 ± 0.0135 0.0163 ± 0.0019

BASELINE 8273.3333 ± 26.7872 8050.4467 ± 109.9864 0.2250 ± 0.0005 0.0809 ± 0.0020

VSGD 8255.6667 ± 24.1155 8919.8062 ± 106.3571 0.1761 ± 0.0078 0.0905 ± 0.0020

5. Conclusions

SG methods allowed Bayesian posterior sampling algorithms, such as MCMC, to regain
relevance in an age when datasets have reached extremely large sizes. However, despite
mathematical elegance and promising results, current approaches from the literature are
restricted to simple models. Indeed, the sampling properties of these algorithms are
determined by simplifying assumptions on the loss landscape, which do not hold for the
kind of complex models which are popular these days, such as deep models. Meanwhile,
SG-MCMC algorithms require vanishing learning rates, which force practitioners to develop
creative annealing schedules that are often model specific and difficult to justify.

We have attempted to target these weaknesses by suggesting a simpler algorithm that
relies on fewer parameters and less strict assumptions compared to the literature on SG-
MCMC. We used a unified mathematical notation to deepen our understanding of the role
of the covariance of the noise of stochastic gradients and learning rate on the behavior of SG-
MCMC algorithms. We then presented a practical variant of the SGD algorithm, which uses
a constant learning rate, and an additional noise to perform Bayesian posterior sampling.
Our proposal is derived from the ideal method, in which it is guaranteed that samples are
generated from the true posterior. When the learning rate and noise terms are empirically
estimated, with no user intervention, our method offers a very good approximation to the
posterior, as demonstrated by the extensive experimental campaign.

We verified empirically the quality of our approach, and compared its performance to
state-of-the-art SG-MCMC and alternative methods. Results, which span a variety of settings,
indicated that our method is competitive to the alternatives from the state-of-the-art, while
being much simpler to use.
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Appendix A. Background and Related Material

Appendix A.1. The Minibatch Gradient Approximation

Starting from the gradient of the logarithm of the posterior density:

−∇ f (θ) =
N

∑
i=1

∇ log p(U i|θ) +∇ log p(θ),

it is possible to define its minibatch version by computing the gradient on a random subset
INb with cardinality Nb of all the indices. The minibatch gradient g(θ) is computed as

−g(θ) =
N
Nb

Nb

∑
i=1

∇ log p(U i|θ) +∇ log p(θ),

By simple calculations it is possible to show that the estimation is unbiased (E(g(θ)) = ∇ f (θ)).
The estimation error covariance is defined to be E

[
(g(θ)− ∇ f (θ))(g(θ)− ∇ f (θ))�

]
= 2B(θ).

If the minibatch size is large enough, invoking the central limit theorem, we can state
that the minibatch gradient is normally distributed:

g(θ) ∼ N(∇ f (θ), 2B(θ)).

Appendix A.2. Gradient Methods without Momentum

Appendix A.2.1. The SDE from Discrete Time

We start from the generalized updated rule of SGD:

δθn = −ηP(θn−1)(g(θn−1) + wn).

Since g(θn−1) ∼ N(∇ f (θn−1), 2B(θn−1)) we can rewrite the above equation as:

δθn = −ηP(θn−1)(∇ f (θn−1) + w
′
n),

where w
′
n ∼ N(0, 2Σ(θn−1)). If we separate deterministic and random component we can

equivalently write:

δθn = −ηP(θn−1)∇ f (θn−1) + ηP(θn−1)w
′
n = −ηP(θn−1)∇ f (θn−1)+√

2ηP2(θn−1)Σ(θn−1)vn

where vn ∼ N(0,
√

ηI). When η is small enough (η → dt) we can interpret the above
equation as the discrete-time simulation of the following SDE [15]:

dθt = −P(θt)∇ f (θt)dt +
√

2ηP(θt)2Σ(θt)dW t,

where dW t is a d−dimensional Brownian motion.

Appendix A.2.2. Proof of Theorem 1

The stationary distribution of the above SDE, ρ(θ) ∝ exp(−φ(θ)), satisfies the follow-
ing FPE

0 = Tr
{
∇
[
∇�( f (θ))P(θ)ρ(θ) + η∇�(P(θ)2

Σ(θ)ρ(θ))
]}

,

that we rewrite as

0 = Tr{∇[∇�( f (θ))P(θ)ρ(θ)− η∇�(φ(θ))P(θ)2
Σ(θ)ρ(θ) + η∇�(P(θ)2

Σ(θ))ρ(θ)]}.
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The above equation is verified with ∇ f (θ) = ∇φ(θ) if{
∇�(P(θ)2

Σ(θ)) = 0

ηP(θ)2
Σ(θ) = P(θ) → ηP(θ) = Σ(θ)−1

that proves Theorem 1.

Appendix A.3. Gradient Methods with Momentum

Appendix A.3.1. The SDE from Discrete Time

The general set of update equations for (discrete-time) momentum-based algorithms is:{
δθn = ηP(θn−1)M−1rn−1

δrn = −ηA(θn−1)M−1rn−1 − ηP(θn−1)(g(θn−1) + wn).

Similarly to the case without momentum, we rewrite the second equation of the system as

δrn = −ηA(θn−1)M−1rn−1 − ηP(θn−1)(g(θn−1) + wn) =

− ηA(θn−1)M−1rn−1 − ηP(θn−1)∇ f (θn−1) +
√

2ηP2(θn−1)Σ(θn−1)vn

where again vn ∼ N(0,
√

ηI). If we define the supervariable z = [θ, r]� we can rewrite the
system as

δzn = −η

[
0 −P(θn−1)

P(θn−1) A(θn−1)

]
s(zn−1) +

√
2ηD(zn−1)νn

where s(z) =
[∇ f (θ)

M−1r

]
, D(z) =

[
0 0

0 P(θ)2
Σ(θ)

]
and νn ∼ N(0,

√
ηI).

As the learning rate goes to zero (η → dt), similarly to the previous case, we can
interpret the above difference equation as a discretization of the following FPE

dzt = −
[

0 −P(θt)
P(θt) A(θt)

]
s(zt) +

√
2ηD(zt)dW t

Appendix A.3.2. Proof of Theorem 2

As before we assume that the stationary distribution has form ρ(z) ∝ exp(−φ(z)).
The corresponding FPE is

0 = Tr
(
∇
(

s(z)�
[

0 −P(θ)
P(θ) A(θ)

]
ρ(z) + η

(
∇�(D(z)ρ(z))

)))
.

Notice that since ∇�D(z) = 0 we can rewrite

0 = Tr
(
∇
(

s(z)�
[

0 −P(θ)
P(θ) A(θ)

]
ρ(z) + η∇�(ρ(z))D(z)

))
= Tr

(
∇
(

s(z)�
[

0 −P(θ)
P(θ) A(θ)

]
ρ(z)− η∇�(φ(z))D(z)ρ(z)

))
= Tr

(
∇
(

s(z)�
[

0 −P(θ)
P(θ) A(θ)

]
ρ(z)− η∇�(φ(z))

[
0 0

0 P(θ)2Σ(θ)

]
ρ(z)

))
that is verified with ∇φ(z) = s(z) if{

∇�P(θ) = 0

A(θ) = ηP(θ)2Σ(θ).
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If ∇�P(θ) = 0 in fact

Tr
(
∇
(
∇�(φ(z))ρ(z)

[
0 −P(θ)

P(θ) 0

]))
= ∇�

([
0 −P(θ)

P(θ) 0

]
∇(φ(z))ρ(z)

)
=

∇�
([

0 −P(θ)
P(θ) 0

])
∇(φ(z))ρ(z) + Tr

([
0 −P(θ)

P(θ) 0

]
∇
(
∇�(φ(z))ρ(z)

))
= 0,

since ∇�
[

0 −P(θ)
P(θ) 0

]
= 0 and the second term is zero due to the fact that

[
0 −P(θ)

P(θ) 0

]
is anti-symmetric while ∇

(
∇�(φ(z))ρ(z)

)
is symmetric.

Thus, we can rewrite

Tr
(
∇
(

s(z)�
[

0 −P(θ)
P(θ) A(θ)

]
ρ(z)− η∇�(φ(z))

[
0 0

0 P(θ)2Σ(θ)

]
ρ(z)

))
=

Tr
(
∇
(

s(z)�
[

0 −P(θ)
P(θ) A(θ)

]
ρ(z)− ∇�(φ(z))

[
0 0

0 ηP(θ)2Σ(θ)

]
ρ(z)

))
=

Tr
(
∇
(

s(z)�
[

0 −P(θ)
P(θ) A(θ)

]
ρ(z)− ∇�(φ(z))

[
0 0

0 A(θ)

]
ρ(z)

))
=

Tr
(
∇
((

s(z)� − ∇�(φ(z))
)[ 0 −P(θ)

P(θ) A(θ)

]
ρ(z)

))
= 0

and then ∇φ(z) = s(z) proving Theorem 2.

Appendix B. I-SGD Method Proofs and Details

Appendix B.1. Proof of Corollary 1

The requirement C(θ) � 0 ∀θ, ensures that the injected noise covariance is valid.
The composite noise matrix is equal to Σ(θ) = Λ. Since ∇�Σ(θ) = ∇�Λ = 0 and
ηP(θ) = Λ−1 by construction, then Theorem 1 is satisfied.

Appendix B.2. Proof of Optimality of Λ

Our design choice is to select λ(p) = β(p). By the assumptions, the matrix B(θ) is
diagonal, and consequently C(θ) = Λ − B(θ) is diagonal as well. The preconditioner
Λ must be chosen to satisfy the positive semidefinite constraint, i.e., C(θ)ii ≥ 0 ∀i, ∀θ.
Equivalently, we must satisfy λ(p) − bj(θ) ≥ 0 ∀j ∈ Ip, ∀p, ∀θ, where Ip is the set of
indices of parameters belonging to pth layer. By assumption 3, i.e., β(p) = ∑k∈Ip bk(θ), it is

easy to show that bj(θ), j ∈ Ip, is upper bounded as bj(θ) ≤ β(p). To satisfy the positive
semidefinite requirement in all cases the minimum valid set of λ(p) is then determined as
λ(p) = β(p).

Appendix B.3. Algorithmic Details

In this section, we provide further details about the practical implementation of the
proposed scheme. At any (discrete) time instant a minibatch version of the gradient is
computed that is distributed, according to the hypotheses of the main paper, as g(θ) ∼
N(∇ f (θ), 2b(θ). Since we assumed that the second-order moment is a good approximation
of the variance, we can estimate b(θ) as 1

2 (g(θ) � g(θ)). In practice, we found that the
following running average estimation procedure to be the most robust

b(θ) ← μb(θ) + (1 − μ)
1
2
(g(θ)� g(θ)) (A1)

where μ ∈ (0, 1]. In all experiments we considered μ = 0.5
After a warmup period, the various λ(p), layer per layer, are estimated as λ(p) = ∑k∈Ip bk(θ)

and kept constant until the end. The estimation procedure continues during sampling phase,
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as the quantity λ(p) − b(θ) is necessary at every step. As the learning rate is derived as 2
λ(p) ,

we found that the usage of second-order moments instead of variances, and in certain cases
temperature scaling, kept the simulated trajectories more stable.

Appendix C. Methodology

We hereafter present additional implementation details.

Appendix C.1. Regression Tasks, with Simple Models

For this set of experiments we considered , the BASELINE is obtained by running the
ADAM optimizer for 20,000 steps with learning rate 0.01 and default parameters. At test time
we use 100 samples to estimate the predictive posterior distribution, using Equation (3),
for the sampling methods (I-SGD,SGLD,SGHMC,VSGD), with a keep-every value equal to
1000. The I-SGD and VSGD sampling methods are started from the BASELINE. For I-SGD

we selected temperature 0.01, while for SGHMC and SGLD we do performed experiments
for temperatures 1 and 0.01. We modified the implementation of VSGD as the original
implementation produced unstable learning rates (as noticed also in [9]). A simple and
effective solution we implement that we kept throughout the experimental campaigns
is to divide the learning rate by the number of parameters (thus performing variational
inference on a tempered version of the posterior). For SGLD the learning rate decay is the
one suggested in [2], with initial and finial learning rate equal to 10−6 and 10−8 respectively.
For MCD we collected 1000 samples with standard dropout rate of 0.5. All our experiments
use 10-splits. The considered batch size is 64 for all methods.

Appendix C.2. Classification Task, CONVNET

For the LENET-5 on MNIST experiment, we do consider also the SWAG algorithm.
At test time we use 30 samples for all methods. Baselines are again trained using ADAM

optimizer for 20,000 steps with learning rate 0.01 and default parameters. For I-SGD and
SGHMC we collected samples for the different temperatures of 1 and 0.01. SGLD has initial
and final learning rates of 10−3 and 10−5. For all the sampling methods we do collect
100 samples with a keep-every of 10,000 steps. SWAG results are obtained by collecting the
statistics over 300 epochs using ADAM optimizer and decreasing the learning rate every
epoch in accordance with the original paper schedule [9]. DROP results are obtained by
training the networks with SGD, with learning rate 0.005 and momentum 0.5. The number
of collected samples for this method is 1000. The batch size for all the methods is 128.

As explained in the main text, we performed an ablation study on the considered
baselines. In Table A1 we do report the results for the additional variants obtained by
early stopping (10,000 iterations instead of 20,000) BASELINE S, to ablate overfitting, and
BASELINE L, by training for 30,000 iterations. Finally, we include the best performing
BASELINE R, obtained starting from BASELINE, reducing the learning rate by a factor of 10
and training for 10,000 more iterations.

Table A1. Baselines comparison for classification on MNIST dataset.

Method ACC MNLL Mean H0 ECE Mean H1 Failed

BASELINE 9886.6667 ± 11.0252 352.6640 ± 20.8622 0.0353 ± 0.0058 0.0468 ± 0.0001 0.0019 ± 0.0003 0.0000

BASELINE l 9871.6667 ± 20.7579 389.7142 ± 79.0354 0.0378 ± 0.0051 0.0468 ± 0.0008 0.0025 ± 0.0006 0.0000

BASELINE s 9893.0000 ± 4.8990 339.8170 ± 7.9855 0.0392 ± 0.0042 0.0477 ± 0.0008 0.0024 ± 0.0001 0.0000

BASELINE r 9919.0000 ± 9.4163 242.7644 ± 17.0736 0.0303 ± 0.0001 0.0482 ± 0.0006 0.0021 ± 0.0002 0.0000

Appendix C.3. Classification Task, Deeper Models

We here report details for the RESNET-18 on CIFAR10 experiments. The BASELINE is
obtained with ADAM optimizer with learning rate 0.01 decreased by a factor of 10 every
50 epochs for a total of 200 epochs and weight decay of 0.05. For this set of experiments no
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temperature scaling was required. We could not find good hyperparameters for the SGLD

scheme. Concerning I-SGD, SGHMC and VSGD the keep-every value is chosen as 10,000 and
the number of collected samples is 30. For SWAG we used the default parameters described
in [9]. Notice that for SWAG we performed the following ablation study: we trained the
networks considering as loss function the joint log-likelihood and included or not the
suggested weight decay of the original work [9]. From a purely Bayesian perspective no
weight decay should be considered to be the information is implicit in the prior; however,
we found that without the extra decay SWAG was not able to obtain competitive results. As
underlined in Section 4.1, not necessarily a better posterior approximation translates into
better empirical results.

Appendix C.4. Definition of the Metrics

For regression datasets, we consider RMSE and MNLL. Consider a single datapoint
U i = (xi, yi), with xi the input of the model and yi the true corresponding output. The
output of the model, for a single sample of parameters θj, is ŷθj

(xi). RMSE is defined as

1
N

N
∑

i=1
||yi − μ(xi)||2, where μ(xi) is the empirical mean 1

NMC

NMC
∑

j=1
ŷθj

(xi). MNLL is defined

instead as ( 1
N

N
∑

i=1

(
1
2 log(2πσ2

i ) +
1
2

||yi−μ(xi)||2
σ2

i

)
, where σ2

i is the empirical variance.

For classification datasets, we consider ACC,MNLL and entropy. Consider a single
datapoint U i = (xi, yi), with xi the input of the model and yi the true corresponding label.
The output of the model, for a single sample of parameters θj, is the Ncl vector pθj(xi). The

averaged probability vector for a single sample is p(xi) =
1

NMC

NMC
∑

i=1
pθj(xi).ACC is defined

as 1
N

N
∑

i=1
1(arg max p(xi) = yi). MNLL is computed as 1

N

N
∑

i=1
log
(
pyi (xi)

)
. Entropy, as stated

in the main text, is instead computed according to 1
N

N
∑

i=1

(
Ncl
∑

k=1
pk(xi) log(pk(xi))

)
.
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Abstract: We present new PAC-Bayesian generalisation bounds for learning problems with un-
bounded loss functions. This extends the relevance and applicability of the PAC-Bayes learning
framework, where most of the existing literature focuses on supervised learning problems with a
bounded loss function (typically assumed to take values in the interval [0;1]). In order to relax this
classical assumption, we propose to allow the range of the loss to depend on each predictor. This
relaxation is captured by our new notion of HYPothesis-dependent rangE (HYPE). Based on this, we
derive a novel PAC-Bayesian generalisation bound for unbounded loss functions, and we instantiate
it on a linear regression problem. To make our theory usable by the largest audience possible, we
include discussions on actual computation, practicality and limitations of our assumptions.

Keywords: statistical learning theory; PAC-Bayes; generalisation bounds

1. Introduction

Since its emergence in the late 1990s, the PAC-Bayes theory (see the seminal works
of [1–3], the recent survey by [4] and work by [5]) has been a powerful tool to obtain gener-
alisation bounds and to derive efficient learning algorithms. Generalisation bounds are
helpful for understanding how a learning algorithm may perform on future similar batches
of data. While the classical generalization bounds typically address the performance of
individual predictors from a given hypothesis class, PAC-Bayes bounds typically address a
randomized predictor defined by a distribution over the hypothesis class.

PAC-Bayes bounds were originally meant for binary classification problems [6–8],
but the literature now includes many contributions involving any bounded loss function
(without loss of generality, with values in [0; 1]), not just the binary loss. Our goal is to
provide new PAC-Bayes bounds that are valid for unbounded loss functions, and thus
extend the usability of PAC-Bayes to a much larger class of learning problems. To do so,
we reformulate the general PAC-Bayes theorem of [9] and use it as basic building block to
derive our new PAC-Bayes bound.

Some ways to circumvent the bounded range assumption on the losses have been
explored in the recent literature. For instance, one approach consists of assuming a tail
decay rate on the loss, such as sub-gaussian or sub-exponential tails [10,11]; however,
this approach requires the knowledge of additional parameters. Some other works have
also looked into the analysis for heavy-tailed losses, e.g., ref. [12] proposed a polynomial
moment-dependent bound with f -divergences, while [13] devised an exponential bound
that assumes the second (uncentered) moment of the loss is bounded by a constant (with
a truncated risk estimator, as recalled in Section 4 below). A somewhat related approach
was explored by [14], who do not assume boundedness of the loss, but instead control
higher-order moments of the generalization gap through the Efron-Stein variance proxy.
See also [5].
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We investigate a different route here. We introduce the HYPothesis-dependent rangE
(HYPE) condition, which means that the loss is upper-bounded by a term that depends
on the chosen predictor (but does not depend on the data). Thus, effectively, the loss
may have an arbitrarily large range. The HYPE condition allows us to derive an upper
bound on the exponential moment of a suitably chosen functional, which, combined with
the general PAC-Bayes theorem, leads to our new PAC-Bayes bound. To illustrate it,
we instantiate the new bound on a linear regression problem, which additionally serves
the purpose of illustrating that our HYPE condition is easy to verify in practice, given an
explicit formulation of the loss function. In particular, we shall see in the linear regression
setting that a mere use of the triangle inequality is enough to check the HYPE condition.
The technical assumptions on which our results are based are comparable to those of the
classical PAC-Bayes bounds; we state them in full detail, with discussions, for the sake of
clarity and to make our work accessible.

Our contributions are twofold. (i) We propose PAC-Bayesian bounds holding with
unbounded loss functions, therefore overcoming a limitation of the mainstream PAC-
Bayesian literature for which a bounded loss is usually assumed. (ii) We analyse the bound,
its implications, limitations of our assumptions, and their usability by practitioners. We
hope this will extend the PAC-Bayes framework into a widely usable tool for a significantly
wider range of problems, such as unbounded regression or reinforcement learning problems
with unbounded rewards.

Outline. Section 2 introduces our notation and definition of the HYPE condition and
provides a general PAC-Bayesian bound, which is valid for any learning problem comply-
ing with a mild assumption. For the sake of completeness, we present how our approach
(designed for the unbounded case) behaves in the bounded case (Section 3). This section is
not the core of our work, but rather serves as a safety check and particularises our bound
to more classical PAC-Bayesian assumptions. We also provide numerical experiments.
Section 4 introduces the notion of softening functions and particularises Section 2’s PAC-
Bayesian bound. In particular, we make explicit all terms in the right-hand side. Section 5.1
extends our results to linear regression (which has been studied from the perspective of
PAC-Bayes in the literature, most recently by [15]). We also experimentally illustrate the
behaviour of our bound. Finally, Section 6 presents, in detail, related works and Section 7
contains all proofs of the original claims we make in the paper.

2. Framework and Preliminary Results

The learning problem is specified by three variables (H, Z , �) consisting of a set H of
predictors, the data space Z , and a loss function � : H × Z → R+.

For a given positive integer m, we consider size-m datasets. The space of all possible
datasets of this fixed size is S = Zm; an arbitrary element of this space is s = (z1, . . . , zm).
We denote S as a random dataset: S = (Z1, . . . , Zm) where the random data points Zi are in-
dependent and sampled from the same distribution μ over Z . We call μ the data-generating
distribution. The assumption that the Zi’s are independent and identically distributed is typi-
cally called the i.i.d. data assumption. It means that the random sample S (of size m) has
distribution μ⊗m which is the product of m copies of μ.

For any predictor h ∈ H, we define the empirical risk of h over a sample s, denoted
Rs(h), and the theoretical risk of h, denoted R(h), as:

Rs(h) =
1
m

m

∑
i=1

�(h, zi) and R(h) = Eμ[�(h, Z)]

respectively, where Eμ[�(h, Z)] denotes the expectation with respect to Z ∼ μ. Finally, we
define the risk gap Δs(h) = R(h)− Rs(h) for any h ∈ H and s ∈ S . Often, Δs(h) is referred
to as the generalisation gap.

Notice that for a random dataset S, the empirical risk RS(h) is random, with expected
value Eμ⊗m [RS(h)] = R(h), where Eμ⊗m the expectation under the distribution of the
random sample S.
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In general, Eμ[·] denotes an expectation under the distribution μ. When we want to
emphasize the role of the random variable Z ∼ μ we write EZ[·] or EZ∼μ[·] instead of Eμ[·].
We use a similar convention for expectations related to any other distributions and random
quantities. We now introduce the key concept to our analysis.

Definition 1. (HYPE). A loss function � : H × Z → R+ is said to satisfy the hypothesis-
dependent range (HYPE) condition if there exists a function K : H → R+\{0} such that
supz∈Z �(h, z) ≤ K(h) for every predictor h. We then say that � is HYPE(K) compliant.

Let M+
1 (H) be the set of probability distributions on H. We assume that all considered

probability measures on H are defined on a fixed σ-algebra over H, while the notation
M+

1 (H) hides the σ-algebra, for simplicity. For P, P′ ∈ M+
1 (H), the notation P′ � P

indicates that P′ is absolutely continuous with respect to P (i.e., P′(A) = 0 if P(A) = 0 for
measurable A ⊂ H). We write P′ ∼ P to indicate that P′ � P and P � P′, i.e., these two
distributions are absolutely continuous with respect to each other.

We now recall a result from Germain et al. [9]. Note that while implicit in many
PAC-Bayes works (including theirs), we make it explicit that both the prior P and the
posterior Q must be absolutely continuous with respect to each other. We discuss this
restriction below.

Theorem 1. (Adapted from [9], Theorem 2.1.) For any P ∈ M+
1 (H) with no dependency on

data, for any function F : R+ ×R+ → R, define the exponential moment:

χ := ESEh∼P
[
eF(RS(h),R(h))

]
.

If F is convex, then for any δ ∈ [0; 1], with probability of at least 1 − δ over random samples
S, simultaneously for all Q ∈ M+

1 (H) such that Q ∼ P we have:

F
(
Eh∼Q[RS(h)],Eh∼Q[R(h)]

)
≤ KL(Q||P) + log

(χ

δ

)
.

The proof is deferred to Section 7.1. Note that the proof in [9] requires that P � Q,
although it is not explicitly stated; we highlight this in our own proof. While Q � P is
classical and necessary for the KL(Q||P) to be meaningful, P � Q appears to be more
restrictive. In particular, we have to choose Q such that it has the exact same support as P
(e.g., choosing a Gaussian and a truncated Gaussian is not possible). However, we can still
apply our theorem when P and Q belong to the same parametric family of distributions,
e.g., both ‘full-support’ Gaussian or Laplace distributions, but these are just two examples
and there are many others.

Note that Alquier et al. [10] (Theorem 4.1) adapted a result from Catoni [8], which
only requires Q � P. This comes at the expense of what Alquier et al. [10] (Definition 2.3)
called a Hoeffding’s assumption, which means that the exponential moment χ is assumed to
be bounded by a function depending only on the hyperparameters (such as the dataset
size m or parameters given by Hoeffding’s assumption). Our analysis does not require this
assumption, which might prove restrictive in practice.

Theorem 1 may be seen as a basis to recover many classical PAC-Bayesian bounds.
For instance, F(x, y) = 2m(x − y)2, recovers McAllester’s bound as recalled in [4] (Theo-
rem 1). To get a usable bound, the outstanding task is to bound the exponential moment
χ. Note that a previous attempt has been made in [11], as described in Section 6.1 below.
Furthermore, under the assumption that the distribution P has no dependency on the data,
we may swap the order of integration in the exponential moment thanks to Fubini-Tonelli’s
theorem and the positiveness of the exponential:

χ = Eh∼PES
[
eF(RS(h),R(h))

]
.
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This is the starting point for the way that the exponential moment was handled in sev-
eral works in the PAC-Bayes literature. Essentially, for a fixed h, one may upper-bound the
innermost expectation (with respect to S) using standard exponential moment inequalities.

In this work, we will use Theorem 1 with F(x, y) = mαD(x, y), where α > 0, and
D : R+ ×R+ → R is a convex function. In this case, the high-probability inequality of the
theorem takes the form:

D
(
Eh∼Q[RS(h)],Eh∼Q[R(h)]

)
≤

1
mα

(
KL(Q||P) + log

(
1
δ
Eh∼PES emαD(RS(h),R(h))

))
. (1)

Our goal is to control ES emαD(RS(h),R(h)) for a fixed h, when D(x, y) = y − x. This
will readily give us control on the exponential moment χ. To do so, we propose the
following theorem:

Theorem 2. Let h ∈ H be a fixed predictor and α ∈ R. If the loss function � is HYPE(K) compliant,
then for ΔS(h) = R(h)− RS(h) we have:

ES

[
emαΔS(h)

]
≤ exp

(
K(h)2

2m1−2α

)
.

Proof. Let h ∈ H. Then:

ES

[
emαΔS(h)

]
= E

[
exp

(
mα−1

m

∑
i=1

(l(h, Zi)− R(h))

)]

= E

[
m

∏
i=1

exp
(

mα−1(�(h, Zi)− R(h))
)]

=
m

∏
i=1

E
[
exp
(

mα−1(�(h, Zi)− R(h))
)]

.

We now apply Hoeffding’s lemma, for any i ∈ {1..m}, the random (in Zi) variable
�(h, Zi)− R(h) is centered, taking values in [−K(h); K(h)], so that:

E
[
exp
(

mα−1(�(h, Zi)− R(h))
)]

≤ exp
(

m2α−2 4K(h)2

8

)
and finally:

ES

[
emαΔS(h)

]
≤

m

∏
i=1

exp
(

m2α−2 4K(h)2

8

)
= exp

(
K(h)2

2m1−2α

)
.

The strength of this result lies in the fact that K(h)2

m1−2α , is a decreasing factor in m, when
α ≤ 1/2, and more generally, one can control how fast the exponential moment will explode
when m grows by the choice of the hyperparameter α.

For convenient cross-referencing, we state the following rewriting of Theorem 1.

Theorem 3. Let the loss � be HYPE(K) compliant. For any P ∈ M+
1 (H) with no data dependency,

for any α ∈ R and for any δ ∈ [0; 1], with probability of at least 1 − δ over size-m random samples
S, simultaneously for all Q such that Q ∼ P we have:

Eh∼Q[R(h)] ≤ Eh∼Q[RS(h)] +
1

mα

⎛⎝KL(Q||P) + log
Eh∼P

[
exp
(

K(h)2

2m1−2α

)]
δ

⎞⎠.
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Proof. We first apply Theorem 1 with F(x, y) = mα(y − x). More precisely, we use
Equation (1) with D(x, y) = y − x. We then conclude with Theorem 2.

3. Safety Check: The Bounded Loss Case

3.1. Theoretical Results

At this stage, the reader might wonder whether this new approach allows for the
recovery of known results in the bounded case: the answer is yes.

In this section, we study the case where � is bounded by some constant C ∈ R+ \ {0}.
In other words, we consider the case that suph supz �(h, z) ≤ C. We provide a bound, valid
for any choice of “priors” P and “posteriors” Q such that P ∼ Q, which is an immediate
corollary of Theorem 3.

Proposition 1. Let � be HYPE(K) compliant, with K(h) = C constant, and let α ∈ R. Let
P ∈ M+

1 (H) be a distribution with no data dependency. Then, for any δ ∈ [0; 1], with probability
of at least 1 − δ over random m-samples S, simultaneously for all Q ∈ M+

1 (H) such that Q ∼ P
we have:

Eh∼Q[R(h)] ≤ Eh∼Q[RS(h)] +
KL(Q||P) + log(1/δ)

mα
+

C2

2m1−α
.

Remark 1. We provide Proposition 1 to evaluate the robustness of our approach. For instance, by
comparing it with the PAC-Bayesian bound found in Germain et al. [11]. This discussion can be
found in Section 6.1, where the bound from Germain et al. [11] is presented in detail.

Remark 2. At first glance, a naive remark: in order to control the rate of convergence of all the
terms of the bound in Proposition 1 (as is often the case in classical PAC-Bayesian bounds), then the
only case of interest is in fact α = 1

2 . However, one could notice that the factor C2 is not optimisable,
while the KL is. In this way, if it appears that C2 is too big, in practice, one wants to have the
ability to attenuate its influence as much as possible and this may lead us to consider α < 1/2. The
following lemma answers this question.

Lemma 1. For any given K1 > 0, the function fK1(α) := K1
mα + C2

m1−α reaches its minimum at

α0 =
1
2
+

1
2 log(m)

log
(

2K1

C2

)
.

Proof. The explicit calculus of the f
′
K1

and the resolution of f
′
K1
(α) = 0 provides the result.

Remark 3. Lemma 1 indicates that with a fixed “prior” P and “posterior” Q, taking K1 =
KL(Q||P) + log(1/δ), gives the optimised value of the bound in Proposition 1. We numerically
show in Section 3.2 (first experiment there) that optimising α leads to significantly better results.

Now the only remaining question is how to optimise the KL divergence. To do so, we
may need to fix an “informed prior” to minimise the KL divergence with an interesting pos-
terior. This idea has been studied by [16,17] and, more recently, by Mhammedi et al. [18],
Rivasplata et al. [5], among others. We will adapt it to our problem in the simplest way.

We now introduce some additional notation. For a sample s = (z1, . . . , zm) and
k ∈ {1..m}, we define s≤k := {z1, . . . , zk} and s>k := {zk+1, . . . , zm}. Then, similarly, for a
random sample S, we have the splits S≤k and S>k.

Proposition 2. Let � be HYPE(K) compliant, with constant K(h) = C, and α1, α2 ∈ R. Consider
any “priors” P1 ∈ M+

1 (H) (possibly dependent on S>m/2) and P2 ∈ M+
1 (H) (possibly dependent
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on S≤m/2). Then, for any δ ∈ [0; 1], with probability of at least 1 − δ over random size-m samples
S, simultaneously for all Q ∈ M+

1 (H) such that Q ∼ P1 and Q ∼ P2 we have:

Eh∼Q[R(h)] ≤ Eh∼Q[RS(h)] +
1
2

(
KL(Q||P1) + log(2/δ)

(m/2)α1
+

C2

2(m/2)1−α1

)
+

1
2

(
KL(Q||P2) + log(2/δ)

(m/2)α2
+

C2

2(m/2)1−α2

)
.

Proof. Let P1, P2, Q be as stated in Proposition 2. We first notice that by using Proposition
1 on the two halves of the sample, we obtain, with a probability of at least 1 − δ/2:

Eh∼Q[R(h)] ≤ Eh∼Q

[
1

m/2

m/2

∑
i=1

�(h, Zi)

]
+

KL(Q||P1) + log(2/δ)

(m/2)α1
+

C2

2(m/2)1−α1

and also with probability at least 1 − δ/2:

Eh∼Q[R(h)] ≤ Eh∼Q

[
1

m/2

m/2

∑
i=1

�(h, Zm/2+i)

]
+

KL(Q||P2) + log(2/δ)

(m/2)α2
+

C2

2(m/2)1−α2
.

Hence, with a probability of at least 1 − δ, both inequalities hold, and the result follows
by adding them and dividing by 2.

Remark 4. One can notice that the main difference between Proposition 2 and Proposition 1 lies in
the implicit PAC-Bayesian paradigm that our priors must not depend on the data. With this last
proposition, we implicitly allow P1 to depend on S>m/2 and P2 on S≤m/2, which can in practice lead
to far more accurate priors. We numerically show this fact in Section 3.2’s second experiment. Note
that this idea is not new and has been studied, for instance, in [19] for the specific case of SVMs.

3.2. Numerical Experiments

Our experimental framework has been inspired by the work of [18].
Settings. We generate synthetic data for classification, and we are using the 0–1

loss. The data space is Z = X × Y = Rd × {0, 1} with d ∈ N. The set of predictors H
is parameterised with d-dimensional ‘weight’ vectors: H = {hw : X → Y | w ∈ Rd}.
For simplicity, we identify hw with w and we also identify the space H, with the weight
space W = Rd. For z = (x, y) ∈ Z and w ∈ W , we define the loss as �(w, z) :=
|1
{

φ(w�x) > 1/2
}

− y|, where φ(r) = 1
1+e−r . We want to learn an optimised predictor

given a dataset S = (Zi)i=1..m where Zi = (Xi, Yi). To do so, we use regularised logistic
regression and compute:

ŵ(S) := arg min
w∈W

λ
||w||2

2
− 1

m

m

∑
i=1

yi log
(

φ(w�xi)
)
+ (1 − yi) log

(
1 − φ(w�xi)

)
(2)

where λ is a fixed regularisation parameter.
We also restrict the probability distributions (over W = Rd), considered for this

learning problem. We consider the Gaussian distribution N (w, σ2 Id) with centre w ∈ Rd

and diagonal covariance σ2 Id ∈ Rd×d with σ2 > 0.
Parameters. We set δ = 0.05, λ = 0.01. We approximately solve Equation (2) by using

the minimize function of the optimisation module in Python, with the Powell method. To
approximate gaussian expectations, we use Monte-Carlo sampling.

Synthetic data. We generate synthetic data for d = 10 according to the following
process: for a fixed sample size m, we draw X1, ..., Xm under the multivariate Gaussian
distribution N (0, Id) and for each i we compute the label if Xi as: Yi = 1{φ(w∗�xi) > 1/2}
where w∗ is the vector formed by the d first digits of the number π.
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Normalisation trick. Given the predictors shape, we notice that for any w ∈ W :

1{φ(w�x) > 1/2} = 1 ⇔ 1
1 + exp(−w�x)

>
1
2

⇔ w�x < 0.

Thus, the value of the prediction is exclusively determined by the sign of the inner
product, and this quantity is definitely not influenced by the norm of the vector. Then,
for any sample S, we call the normalisation trick the fact of considering ŵ(S)/||ŵ(S)||
instead of ŵ(S) in our calculations. This process will not deteriorate the quality of the
prediction and will considerably enhance the value of the KL divergence.

3.2.1. First experiment

Our goal here is to highlight the point discussed in Remark 2, e.g., the influence of
the parameter α in Proposition 1. We arbitrarily fix σ2

0 = 1/2, and define our naive prior as
P0 = N (0, σ2

0 Id). For a fixed dataset S, we define our posterior as P(S) := N (ĥ(S), σ2 Id),
with σ2 ∈ {1/2, . . . , 1/2J} (for J = log2(m)) such that it is minimising the bound among
candidates. We computed two curves: first, Proposition 1 with α = 1/2 second, Proposition
1 again with α equals to the value proposed in Lemma 1. Notice that to compute this last
bound, we first optimised our choice of posterior with α = 1/2 and then optimised α,
to be consistent with Lemma 1. Indeed, we proved this lemma by assuming that the KL
divergence was already fixed, hence our optimisation process is in two steps. Note that we
chose to apply the normalisation trick here, we then obtained the left curve of Figure 1.

Discussion. From this curve, we formulate several remarks. First, we remark on this
specific case, our theorem provides a tight result in practice (with an error rate lesser than
10% for the bound with optimised alpha). Second, we can now confirm that choosing an
optimised α leads to a tighter bound. In further studies, it will be relevant to adjust α with
regards to the different terms of our bound instead of looking for an identical convergence
rate for all terms.

3.2.2. Second Experiment

We now study Proposition 2 to see if an informed prior effectively provides a tighter
bound than a naive one. We will use the notations introduced in Proposition 2. For a
dataset S, we define w1(S) = w(S>m/2) as the vector resulting from the optimisation
of Equation (2) on S>m/2. Similarly, we define w2(S) := w(S≤m/2). We arbitrarily fix
σ2

0 = 1/2, and define our informed priors as: P1 = N (w1(S), σ2
0 Id) and P2 = N (w2(S), σ2

0 Id).
Finally, we define our posterior as P(S) := N (ŵ(S), σ2 Id), with σ2 ∈ {1/2, ..., 1/2J} (for
J = log2(m)) with σ2 optimising the bound among the same candidate than the first
experiment. We computed two curves: first, Proposition 1 with α optimised accordingly
to Lemma 1 secondly, Proposition 2 with α1, α2 optimised as well, and informed priors as
defined above. We chose to not apply the normalisation trick here, we then obtained the
right curve of Figure 1.

Discussion. It is clear, that with this framework, having an informed prior is a
powerful tool to enhance the quality of our bound. Notice that we voluntarily chose to
not apply the normalisation trick here. The reason is that this trick appears to be too
powerful in practice, and applying it leads to counterproductive results; to highlight our
point: the bound without informed prior would be tighter than the one with informed
prior. Furthermore, this trick is linked to the specific structure of our problem and is not
valid for any classification problem. Thus, the idea of providing informed priors remains
an interesting tool for most cases.
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Figure 1. Above, result of the first experiment which highlight the importance of optimising α. Below,
result of the second experiment which show how effective an informed prior is.

4. PAC Bayesian Bounds with Smoothed Estimator

We now move on to control the right-hand side term in Theorem 3 when K is not
constant. A first step is to consider a transformed estimate of the risk, inspired by the
truncated estimator from [20], also used in [21], and more recently in [13]. The following is
inspired by the results of [13], which we summarise in Section 6.

The idea is to modify the estimator RS(h) for any h by introducing a threshold t and a
function ψ which will attenuate the influence of the empirical losses (�(h, Zi))i=1..m that
exceed t.

Definition 2. ψ-risks. For every t > 0, ψ : R+ → R+, for any h ∈ H, we define the empirical
ψ-risk RS,ψ,t and the theoretical ψ-risk Rψ,t as follows:

RS,ψ,t(h) :=
t
m

m

∑
i=1

ψ

(
�(h, Zi)

t

)
and Rψ,t(h) = Eμ

[
t ψ

(
�(h, Z)

t

)]
where Z ∼ μ. Notice that ES

[
RS,ψ,t(h)

]
= Rψ,t(h).

We now focus on what we call softening functions, i.e., functions that will temper high
values of the loss function �.

Definition 3. (Softening function). We say that ψ : R+ → R+ is a softening function if:

• ∀x ∈ [0; 1], ψ(x) = x,
• ψ is non-decreasing,
• ∀x ≥ 1, ψ(x) ≤ x.
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We let F denote the set of all softening functions.

Remark 5. Notice that those three assumptions ensure that ψ is continuous at 1. For instance, the
functions f : x �→ x1{x ≤ 1}+ 1{x > 1} and g : x �→ x1{x ≤ 1}+ (2

√
x − 1)1{x > 1} are

in F . In Section 6 we compare these softening functions and those used by Holland [13].

Using ψ ∈ F , for a fixed threshold t > 0, the softened loss function tψ
(
�(h,z)

t

)
verifies

for any h ∈ H, z ∈ Z :

t ψ

(
�(h, z)

t

)
≤ t ψ

(
K(h)

t

)
because ψ is non-decreasing. In this way, the exponential moment in Theorem 3 can be far
more controllable. The trade-off lies in the fact that softening � (instead of taking directly �)
will deteriorate our ability to distinguish between two bad predictions when both of them
are greater than t. For instance, if we choose ψ ∈ F such as ψ = 1 on [1;+∞) and t > 0, if
ψ(�(h, z)/t) = 1 for a certain pair (h, z), then we cannot tell how far �(h, z) is from t and
we only can affirm that �(h, z) ≥ t.

We now move on to the following lemma, which controls the shortfall between
Eh∼Q[R(h)] and Eh∼Q[Rψ,t(h)] for all Q ∈ M+

1 (H), for a given ψ and t > 0. To do that, we
assume that K admits a finite moment under any posterior distribution:

∀Q ∈ M+
1 (H), Eh∼Q[K(h)] < +∞. (3)

For instance, in the case of H identified with a weight space W = RN , and if K is
polynomial in ||w|| (where ||.|| denotes the Euclidean norm), then this assumption holds if
we consider Gaussian priors and posteriors.

Lemma 2. Assume that Equation (3) holds, and let ψ ∈ F , Q ∈ M+
1 (H), t > 0. We have:

Eh∼Q[R(h)] ≤ Eh∼Q[Rψ,t(h)] +Eh∼Q[K(h)1{K(h) ≥ t}].

Proof. Let ψ ∈ F , Q ∈ M+
1 (H), t > 0. We have, for h ∈ H :

R(h)− Rψ,t(h)

= EZ∼μ

[
�(h, Z)− tψ

(
�(h, Z)

t

)]

and using that ∀x ∈ [0, 1], ψ(x) = x,

= EZ∼μ

[(
�(h, Z)− tψ

(
�(h, Z)

t

))
1{�(h, Z) ≥ t}

]
while using that �(h, z) ≤ K(h),

= EZ∼μ

[(
�(h, Z)− tψ

(
�(h, Z)

t

))
1{�(h, Z) ≥ t}1{K(h) ≥ t}

]
and continuing:

≤ EZ∼μ[�(h, Z)1{�(h, Z) ≥ t}]1{K(h) ≥ t} (ψ ≥ 0)

≤ K(h)PZ∼μ{�(h, Z) ≥ t}1{K(h) ≥ t} ( �(h, Z) ≤ K(h))
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Finally, by crudely bounding the probability by 1, we get:

R(h) ≤ Rψ,t(h) + K(h)1{K(h) ≥ t}.

Hence the result by integrating over H with respect to Q.

Finally we present the following theorem, which provides a PAC-Bayesian inequality
bounding the theoretical risk by the empirical ψ-risk for ψ ∈ F .

Theorem 4. Let � be HYPE(K) compliant, and assume K satisfies Equation (3). Then for any
P ∈ M+

1 (H) with no data dependency, for any α ∈ R, for any ψ ∈ F and for any δ ∈ [0; 1],
with probability of at least 1 − δ over size-m random samples S, simultaneously for all Q such that
Q ∼ P we have:

Eh∼Q[R(h)] ≤ Eh∼Q
[
RS,ψ,t(h)

]
+Eh∼Q[K(h)1{K(h) ≥ t}]

+
KL(Q||P) + log

(
1
δ

)
mα

+
1

mα
log

(
Eh∼P

[
exp

(
t2

2m1−2α
ψ

(
K(h)

t

)2
)])

.

Proof. Let ψ ∈ F , we define the ψ-loss:

�2(h, z) = tψ
(
�(h, z)

t

)
.

Since ψ is non decreasing, we have for all (h, z) ∈ H × Z :

�2(h, z) ≤ tψ
(

K(h)
t

)
:= K2(h).

Thus, we apply Theorem 3 to the learning problem defined with �2: for any α and
δ ∈ (0, 1), with probability at least 1 − δ over size-m random samples S, simultaneously for
all Q such that Q ∼ P we have:

Eh∼Q
[
Rψ,t(h)

]
≤ Eh∼Q

[
RS,ψ,t(h)

]
+

KL(Q||P) + log
(

1
δ

)
mα

+
1

mα
log
(
Eh∼P

[
exp
(

K2(h)2

2m1−2α

)])
.

We then add Eh∼Q[K(h)1{K(h) ≥ t}] on both sides of the latter inequality and apply
Lemma 2.

Remark 6. Notice that the function ψ : x �→ x1{x ≤ 1} + 1{x > 1} is such that for any

given prior P we have Eh∼P

[
exp
(

t2

2m1−2α ψ
(

K(h)
t

)2
)]

< +∞. So the exponential moment can be

controlled with a good choice of ψ. Thus the strength of Theorem 4 is to provide a PAC-Bayesian
bound valid for any set of posterior measures verifying Equation (3). The choice of ψ minimising
the bound is still an open problem.

5. The Linear Regression Problem

5.1. Theoretical Result

We now focus on the celebrated linear regression problem and see how our theory
translates to that particular learning problem. We assume that the data is a size-m ran-
dom sample S = (Zi)i=1..m where the Zi are i.i.d. drawn from the distribution μ, and
Zi = (Xi, Yi) with Xi ∈ RN , Yi ∈ R.
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Our goal here is to find the most accurate predictor hw (with w ∈ RN), with respect
to the loss function �(hw, z) = |〈w, x〉 − y|, where z = (x, y). We will make the following
mild assumption: there exists B, C ∈ R+\{0} such that for all z = (x, y) drawn under μ:

||x|| ≤ B and |y| ≤ C

where ||.|| is the norm associated to the classical inner product of RN . Under this assump-
tion we note that for all z = (x, y) drawn according to μ, we have:

�(hw, z) = |〈w, x〉 − y| ≤ |〈w, x〉|+ |y] ≤ ||w||.||x||+ |y| ≤ B||w||+ C.

Thus we define K(hw) = B||w||+ C for w ∈ RN . If we first restrict ourselves to the
framework of Section 2, we want to use Theorem 3 and doing so, our goal is to bound

ξ := Ew∼P

[
exp
(

K(w)2

2m1−2α

)]
. The shape of K invites us to consider a Gaussian prior. Indeed,

we notice that if P = N (0, σ2IN) with 0 < σ2 < m1−2α

B2 , then ξ < +∞. Notice that we cannot

take just any Gaussian prior, however with a small α, the condition 0 < σ2 < m1−2α

B2 may
become quite loose. Thus, we have the following:

Theorem 5. Let α ∈ R and N ≥ 6. Assume that the loss � is HYPE(K) compliant with K(h) =
B||h||+ C, with B > 0, C ≥ 0. For a prior distribution, consider any Gaussian P = N (0, σ2IN)

with σ2 = t m1−2α

B2 , 0 < t < 1. Then, for any δ ∈ [0; 1], with probability of at least 1 − δ over
size-m random samples S, simultaneously for all Q ∈ M+

1 (H) such that P ∼ Q we have:

Eh∼Q[R(h)] ≤ Eh∼Q[RS(h)] +
KL(Q||P) + log(2/δ)

mα
+

C2

2m1−α

(
1 + f (t)−1

)
+

N
mα

(
log

(
1 +

(
C√

2 f (t)m1−2α

))
+ log

(
1√

1 − t

))

where f (t) = 1−t
t .

The proof is deferred to Section 7.2. To compare our result with those found in the
literature, we can fix α = 1/2. Doing so, we lose the dependency in m for the choice of the
variance of the prior (which now only depends on B), but we recover the classic decreasing
factor 1/

√
m.

Remark 7. Notice that for now we did not use Section 4, even if we could (because K is polynomial
in ||w|| and we consider Gaussian priors and posteriors, so Equation (3) is satisfied). Doing so,
we obtained a bound which appears to depend linearly on the dimension N. In practice, N may be
too big, and in this case, introducing an adapted softening function ψ (one can think for instance
of ψ(x) = x1{x ≤ 1}+ 1{x > 1}) is a powerful tool to attenuate the weight of the exponential
moment. This also extends the class of authorised Gaussian priors by avoidance, to stick with a
variance σ2 = t m1−2α

B2 , 0 < t < 1.

5.2. Numerical Experiment
5.2.1. Setting

In this section we apply Theorem 5 on a concrete linear regression problem. The
situation is as follows: we want to approximate the function f (x) =

√
〈w∗, x〉, where

w∗ ∈ Rd. We assume that W = [−c, c]d so that w∗ lies in an hypercube centred at 0 of
half-side c > 0, i.e., the set {(wi)i=1,...,d | ∀i, |wi| ≤ c}. Doing so we have ||w∗|| ≤ c

√
d.

Furthermore, we assume that input data are drawn inside a hypercube of half-side
e > 0, i.e., X = [−e, e]d. Doing so we have for any data x, ||x|| ≤ e

√
d.
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For any data x ∈ Rd, we define y = f (x). As before, we identify the hypothesis set H
with the weight space W = Rd. As described in Section 5.1, we set �(hw, x, y) = |〈w, x〉 − y|.
We then remark that for any (w, x, y):

�(hw, x, y) ≤ |〈w, x〉|+ |y| ≤ ||w||||x||+ |
√

〈w∗, x〉|

≤ e
√

d||w||+
√

||w∗||.||x|| ≤ e
√

d||w||+
√

c
√

d.e
√

d

≤ e
√

d||w||+
√

cde.

Then we can define B = e
√

d and C =
√

cde to apply Theorem 5. We restrict (as before)
the class of distributions over W to be d-dimensional Gaussians:{

N (w, σ2 Id) | w ∈ H, σ2 ∈ R+
}

,

which is the set of candidate distributions for this learning problem. Recall that in practice,
given a fixed α ∈ R, we are only allowed to consider priors such that their variance
σ2 ∈

]
0; m1−2α

B2

[
. We want to learn an optimised predictor (posterior) given a random

dataset S = ((Xi, Yi))i=1,...,m. To do so, we consider synthetic data.

5.2.2. Synthetic Data

We draw w∗ under a Gaussian (with mean 0 and standard deviation equal to 5)
truncated to the hypercube centered at 0 of the half-side c > 0. We generate synthetic data
according to the following process: for a fixed sample size m, we draw X1, . . . , Xm under
a Gaussian (with mean 0 and standard deviation equal to 5) truncated to the hypercube
centered at 0 of the half-side e > 0.

5.2.3. Experiment

First, we fix c = e = 10. Our goal here is to obtain a generalisation bound on
our problem. We fix arbitrarily, for a fixed α ∈ R, t0 = 1/2 and σ2

0 = t0
m1−2α

B2 and we
define our naive prior as P0 = N (0, σ2

0 Id). For a given dataset S, we define our posterior
as Q(S) := N (ŵ(S), σ2 Id), with σ2 ∈ {σ2

0 /2, ..., σ2
0 /2J} (J = log2(m)), such that it is

minimising the bound among candidates. Note that all the previously defined parameters
are dependent on α, which is why we choose α ∈ {i/step | 0 ≤ i ≤ step} for step a
fixed integer (in practice step = 8 or 16) and we take the value of α minimising the bound
among the candidates as well. Figure 2 contains two figures, one with d = 10, the other
with d = 50. On each figure are computed the right-hand side term in Theorem 5 with an
optimised α for each step.

5.2.4. Discussion

To the the best of our knowledge, this is the first attempt to numerically compute PAC-
Bayes bounds for unbounded problems, making it impossible to compare to other results.
We stress, however, that obtaining numerical values for the bound without assuming a
bounded loss is a significant first step. Furthermore, we consider a rather hard problem:
f is not linear, so we cannot rely on a linear approximation fitting perfectly data, and
the larger the dimension, the larger the error, as illustrated by Figure 2. Thus, for any
posterior Q, the quantity Eh∼Q[R(h)] is potentially large in practice and our bound might
not be tight. Finally, notice that optimising α (instead of taking α = 1/2 to recover a
classic convergence rate) leads to a significantly better bound. A numerical example of
this assertion is presented in Section 3.2. We aim to conduct further studies to consider the
convergence rate as an hyperparameter to optimise, rather than selecting the same rate for
all terms in the bound.
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Figure 2. Evaluation of the right hand side in Theorem 5 with d = 10 and d = 50.

6. Existing Work

6.1. Germain et al., 2016

In Germain et al. [11] (Section 4), a PAC-Bayesian bound has been provided for all
sub-gamma losses with a variance t2 and scale parameter c > 0, under a data distribution μ

and a prior P, i.e. losses such that for every λ ∈
(

0, 1
c

)
the following is satisfied:

log
(

1
δ
Eh∼PES eλ(R(h)−RS(h))

)
≤ t2

c2 (− log(1 − cλ)− λc) ≤ λ2t2

2(1 − cλ)
.

Note that a sub-gamma loss (with regards to μ and P) is potentially unbounded.
Germain et al. then propose the following PAC-Bayesian bound:

Theorem 6. Ref. [11]. If the loss � is sub-gamma with a variance t2 and scale parameter c, under
the data distribution μ and a fixed prior P ∈ H, then for any δ ∈ [0; 1], with probability 1 − δ over
size-m random samples, simultaneously for all Q � P we have:

Eh∼Q[R(h)] ≤ Eh∼Q[RS(h)] +
KL(Q||P) + log(1/δ)

m
+

t2

2(1 − c)
.

Theorem 6 will be quoted several times in this paper given that it is a concrete PAC
Bayesian bound provided with the will to overcome the constraint of a bounded loss. It is
also one of the only one found in the literature.

Can we apply this theorem to the bounded case? The answer is yes: we remark
that thanks to Hoeffding’s lemma, if � is bounded by C > 0, then for any h ∈ H it holds
that RS(h) − R(h) ∈ [−C, C] almost surely. So, ∀λ ∈ R, logEz∼μ

[
eλ(R(h)−RS(h)

]
≤ λ2C2

2 .
Therefore, for any prior P, we have:

logEh∼PEz∼μ

[
eλ(R(h)−RS(h)

]
≤ λ2C2

2
.

Thus, � is sub-gamma with variance C2 and scale parameter 0. Then, Theorem 6 can
be applied with t2 = C2, c = 0.

Comparison with Proposition 1. We remark that by taking K = C and α = 1 in
Proposition 1, we are recovering Theorem 6. However, our approach allows us to say that if
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we can obtain a more precise form of K such that ∀h ∈ H, K(h) ≤ C and K is non-constant,
Theorem 3, will ensure that:

1
mα

log
(
Eh∼P

[
exp
(

K(h)2

2m1−2α

)])
≤ C2

2m1−α
.

Thus, having precise information on the behavior of the loss function �, with regards
to the predictor h, allows us to obtain a tighter control of the exponential moment, and
hence a tighter bound.

Remark 8. We can see that Theorem 6 cannot control the factor C2/2. However, Ref. [11]
remarked on this apparent weakness and partially corrected this issue [11] (Section 4, Equations
(13) and (14)). Indeed, they proposed to balance the influence of m between the different terms of the
PAC-Bayes bound by providing the same convergence rate in 1/

√
m to all terms.

We can then see Proposition 1 as a proper generalisation of Germain et al. [11] (Section 4,
Equations (13) and (14)). Indeed, our bound exhibits properly the influence of the parameter α.
Thus, we understand (and Lemma 1 proves it) that the choice of α deserves a study in itself in the
way it is now a parameter of our optimisation problem. This fact has already been highlighted in
Alquier et al. [10] (Theorem 4.1) (where λ := mα).

6.2. Holland, 2019

In [13], Holland proposed a PAC Bayesian inequality with unbounded loss. For that,
he introduced a function ψ verifying a few specific conditions, different to those used
in Section 4 to define our set of softening functions. Indeed, he considered a function ψ
such that:

• ψ is bounded,
• ψ is non decreasing,
• it exists b > 0 such that for all u ∈ R:

− log
(

1 − u +
u2

b

)
≤ ψ(u) ≤ log

(
1 + u +

u2

b

)
. (4)

We remark that, as Holland did, we supposed that our softening functions are non-
decreasing. We chose softening functions to be equal to the identity function (x �→ x) on
[0, 1], which is quite restrictive. However, we are imposing softening functions to be lesser
than the identity on [1,+∞); whereas, Holland supposed ψ to be bounded and satisfy
Equation (4). A concrete example of such a function ψ, lies in the piecewise polynomial
function of Catoni and Giulini [21], defined by:

ψ(u) =

⎧⎪⎨⎪⎩
−2

√
2/3 if u ≤ −

√
2

u − u3/6 if u ∈ [−2
√

2/3, 2
√

2/3]
2
√

2/3 otherwise.

As in Section 4, we are considering the ψ-empirical risk RS,ψ,t for any t > 0. Holland
provided his theorem given the fact the following assumptions are realised:

• Bounds on lower-order moments. For all h ∈ H, we have EZ∼μ[�(h, Z)2] ≤ M2 < +∞
and EZ∼μ[�(h, Z)3] ≤ M3 < +∞.

• Bounds on the risk. For all h ∈ H, we suppose R(h) ≤
√

mM2/(4 log(δ−1).
• Large enough confidence, we require δ ≤ e−1/9.

Now we can state Holland’s theorem.
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Theorem 7. Ref. [13]. Let P be a prior distribution on model H. Let the three assumptions listed
above hold. Setting t2 = mM2/(2 log(δ−1)), then for any δ ∈ [0; 1], with probability of at least
1 − δ over the random draw of the size-m sample S, simultaneously for all Q it holds that:

Eh∼Q[R(h)] ≤ Eh∼Q
[
RS,ψ,t(h)

]
+

1√
m

(
KL(Q||P) + 1

2
log
(

8πM2

δ2

)
− 1
)

+
1√
m

ν∗(H) + O
(

1
m

)
where:

ν∗(H) :=
Eh∼P

[
exp
(√

m(R(h)− RS,ψ,t(h))
)]

Eh∼P
[
exp
(

R(h)− RS,ψ,t(h)
)] .

7. Proofs

7.1. Proof of Theorem 1

Proof. Let F : R+ ×R+ �→ R be a convex function, P a fixed prior, and δ ∈ [0, 1]. Since
Eh∼P

[
eF(RS(h),R(h))

]
is a nonnegative random variable, we know that, by Markov’s inequal-

ity, for any h ∈ H :

P

(
Eh∼P

[
eF(RS(h),R(h))

]
>

1
δ
ES Eh∼P

[
eF(RS(h),R(h))

])
≤ δ.

So with probability of at least 1 − δ, we have:

Eh∼P

[
eF(RS(h),R(h))

]
≤ 1

δ
ES Eh∼P

[
eF(RS(h),R(h))

]
=

χ

δ
.

Applying the log function on each side of this inequality gives us with probability of
at least 1 − δ over samples S:

log
(
Eh∼P

[
eF(RS(h),R(h))

])
≤ log

(χ

δ

)
.

We now rename A := log
(
Eh∼P

[
eF(RS(h),R(h))

])
.

Furthermore, if we denote by dQ
dP the Radon-Nikodym derivative of Q with respect to

P when Q � P, we then have, for all Q such that Q ∼ P:

A = log
(
Eh∼Q

[
dP
dQ

eF(RS(h),R(h))
])

= log

(
Eh∼Q

[(
dQ
dP

)−1
eF(RS(h),R(h))

])
( dP

dQ =
(

dQ
dP

)−1
)

and by concavity of log and Jensen’s inequality,

≥ −Eh∼Q

[
log
(

dQ
dP

)]
+Eh∼Q[F(RS(h), R(h))]

= − KL(Q||P) +Eh∼Q[F(RS(h), R(h))]

while by convexity of F with Jensen’s inequality,

≥ − KL(Q||P) + F
(
Eh∼Q[RS(h)],Eh∼Q[R(h)]

)
.
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Hence, for Q such that Q ∼ P,

F
(
Eh∼Q[RS(h)],Eh∼Q[R(h)]

)
≤ KL(Q||P) + A.

So with probability 1 − δ, for Q such that Q ∼ P,

F
(
Eh∼Q[RS(h)],Eh∼Q[R(h)]

)
≤ KL(Q||P) + log

(χ

δ

)
.

This completes the proof of Theorem 1.

7.2. Proof of Theorem 5

We first provide a technical property. Recall that:

ξ = Eh∼P

[
exp
(

K(h)2

2m1−2α

)]
.

Proposition 3. Let α ∈ R. Suppose the loss � is HYPE(K) compliant with K(h) = B||h|| + C,
with B > 0, C ≥ 0. Then, for any Gaussian prior P = N (0, σ2IN) with σ2 = t m1−2α

B2 , 0 < t < 1
and N ≥ 6 we have:

ξ ≤ 2 exp
(

C2

2m1−2α f (t)
(1 + f (t))

)
1(√

1 − t
)N

(
1 +

(
C√

2 f (t)m1−2α

))N−1

with f (t) = 1−t
t .

Proof. We recall that σ2 = t m1−2α

B2 . By expliciting the expectation and K(h) we thus obtain:

ξ =

(
1√

2πσ2

)N ∫
h∈RN

exp
(
(B||h||+ C)2

2m1−2α
− ||h||2B2

2tm1−2α

)
dh

=

(
1√

2πσ2

)N ∫
h∈RN

exp
(
− 1

2m1−2α

(
f (t)B2||h||2 − 2BC||h|| − C2

))
dh

=

(
1√

2πσ2

)N ∫
h∈RN

exp
(
− B2 f (t)

2m1−2α

(
||h||2 − 2C||h||

B f (t)
− C2

B2 f (t)

))
dh

= exp
(

C2

2m1−2α f (t)
(1 + f (t))

)
1

(
√

2πσ2)N

∫
h∈RN

exp

(
− B2 f (t)

2m1−2α

(
||h|| − C

B f (t)

)2
)

dh.

We will use the spherical coordinates in N-dimensional Euclidean space given in [22]:

ϕ : (h1, ..., hN) → (r, ϕ1, ..., ϕN−1)

where especially r = ||h|| and also the Jacobian of φ is given by:

dNV = rN−1
N−2

∏
k=1

sink(ϕN−1−k) = rN−1dSN−1 V.

Let us also precise that as given in Blumenson [22] (page 66), we have that the surface of
the sphere of radius 1 in N-dimensional space is:

∫
ϕ1,...,ϕN−1

dSN−1 V dϕ1 . . . dϕN−1 =
2
√

π
N

Γ
(

N
2

)
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where Γ is the Gamma function defined as:

Γ(x) =
∫ +∞

0
tx−1e−tdt for x > −1.

Then, if we set:

A :=
∫

h∈RN
exp

(
− B2 f (t)

2m1−2α

(
||h|| − C

B f (t)

)2
)

dh

we obtain by a change of variable:

A =
∫

r,ϕ1,...,ϕN−1

exp

(
− B2 f (t)

2m1−2α

(
r − C

B f (t)

)2
)

dNV drdϕ1...dϕN−1

=

⎛⎝2
√

π
N

Γ
(

N
2

)
⎞⎠∫ +∞

r=0
exp

(
− B2 f (t)

2m1−2α

(
r − C

B f (t)

)2
)

rN−1dr

=

⎛⎝2
√

π
N

Γ
(

N
2

)
⎞⎠∫ +∞

r=− C
B f (t)

(
r +

C
B f (t)

)N−1
exp
(
− B2 f (t)

2m1−2α
r2
)

dr

=

⎛⎝2
√

π
N

Γ
(

N
2

)
⎞⎠ N−1

∑
k=0

(
N − 1

k

)(
C

B f (t)

)N−k−1 ∫ +∞

r=− C
B f (t)

rk exp
(
− B2 f (t)

2m1−2α
r2
)

dr.

We fix a random variable X such that:

X ∼ N
(

0,
m1−2α

B2( f (t)

)
.

We then have for any k positive integer, if k is even:

∫ +∞

r=− C
B f (t)

rk exp
(
− B2 f (t)

2m1−2α
r2
)

dr ≤
∫ +∞

r=−∞
rk exp

(
− B2 f (t)

2m1−2α
r2
)

dr

≤
√

2π
m1−2α

B2 f (t)
E[|X|k].

And if k is odd:∫ +∞

r=− C
B f (t)

rk exp
(
− B2 f (t)

2m1−2α
r2
)

dr ≤
∫ +∞

r=0
rk exp

(
− B2 f (t)

2m1−2α
r2
)

dr

≤
√

2π
m1−2α

B2 f (t)
E[|X|k1(X ≥ 0)]

≤
√

2π
m1−2α

B2 f (t)
E[|X|k].

So we have:

A ≤

⎛⎝2
√

π
N

Γ
(

N
2

)
⎞⎠ N−1

∑
k=0

(
N − 1

k

)(
C

B f (t)

)N−k−1
√

2π
m1−2α

B2 f (t)
E[|X|k].

As precised in [23], we have for any k:

E[|X|k] =
(√

m1−2α

B2 f (t)

)k

2k/2
Γ
(

k+1
2

)
√

π
.
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So finally:

A ≤ 2
√

π
N

N−1

∑
k=0

(
N − 1

k

)(
C

B f (t)

)N−k−1
(√

2m1−2α

B2 f (t)

)k+1 Γ
(

k+1
2

)
Γ
(

N
2

) .

Lemma 3. If N ≥ 6, then:

max
k=0..N−1

Γ
(

k+1
2

)
Γ
(

N
2

) = 1.

Proof. As precised in the introduction of Srinivasan and Zvengrowski [24], Gauss [25]
(page 147) proved that on the interval [x0,+∞) where x0 ∈ [1.46, 1.47], Γ is a monotonic
increasing function. So, for N − 1 ≥ k ≥ 2, Γ( k+1

2 ) ≤ Γ(N
2 ). And because Γ(1/2) =√

π, Γ(1) = 1, we have:

max
k=0..N−1

Γ
(

k+1
2

)
Γ
(

N
2

) = max

⎛⎝ √
π

Γ
(

N
2

) ,
Γ
(

N−1+1
2

)
Γ
(

N
2

)
⎞⎠ = max

⎛⎝ √
π

Γ
(

N
2

) , 1

⎞⎠
Because N ≥ 6, and Γ is monotone and increasing on [3;+∞], we have Γ(N/2) ≥

Γ(3) ≥ √
π. Hence the result.

Using Lemma 3 allows us to write:

A ≤ 2
√

π
N

N−1

∑
k=0

(
N − 1

k

)(
C

B f (t)

)N−k−1
(√

2m1−2α

B2 f (t)

)k+1

.

We recall that σ2 = t m1−2α

B2 and f (t) = 1−t
t . Then we can write:

A ≤ 2
√

π
N

N−1

∑
k=0

(
N − 1

k

)(
C

B f (t)

)N−k−1
⎛⎝√ 2σ2

1 − t

⎞⎠k+1

.

We now conclude with the final bound on ξ:

ξ ≤ exp
(

C2

2m1−2α f (t) (1 + f (t))
)

1
(
√

2πσ2)N A

≤ exp
(

C2

2m1−2α f (t) (1 + f (t))
)

1
(
√

2πσ2)N 2
√

π
N

∑N−1
k=0 (N−1

k )
(

C
B f (t)

)N−k−1
(√

2σ2

1−t

)k+1

≤ 2 exp
(

C2

2m1−2α f (t) (1 + f (t))
)

∑N−1
k=0 (N−1

k )
(

C
B f (t)

)N−k−1(√ 1
1−t

)k+1(√
B2

2tm1−2α

)N−k−1

≤ 2 exp
(

C2

2m1−2α f (t) (1 + f (t))
)

∑N−1
k=0 (N−1

k )

(
C
√

t
(1−t)

√
2m1−2α

)N−k−1(√
1

1−t

)k+1

≤ 2
exp
(

C2

2m1−2α f (t)
(1+ f (t))

)
(
√

1−t)
N ∑N−1

k=0 (N−1
k )

(
C√

2 f (t)m1−2α

)N−k−1

≤ 2
exp
(

C2

2m1−2α f (t)
(1+ f (t))

)
(
√

1−t)
N

(
1 +
(

C√
2 f (t)m1−2α

))N−1
.

This completes the proof of Proposition 3.

Proof of Theorem 5. We combine Theorem 3 with Proposition 3. We also upper-bound
N − 1 by N.
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Abstract: We make two related contributions motivated by the challenge of training stochastic neural
networks, particularly in a PAC–Bayesian setting: (1) we show how averaging over an ensemble of
stochastic neural networks enables a new class of partially-aggregated estimators, proving that these
lead to unbiased lower-variance output and gradient estimators; (2) we reformulate a PAC–Bayesian
bound for signed-output networks to derive in combination with the above a directly optimisable,
differentiable objective and a generalisation guarantee, without using a surrogate loss or loosening the
bound. We show empirically that this leads to competitive generalisation guarantees and compares
favourably to other methods for training such networks. Finally, we note that the above leads to a
simpler PAC–Bayesian training scheme for sign-activation networks than previous work.

Keywords: statistical learning theory; PAC–Bayes theory; deep learning

1. Introduction

The use of stochastic neural networks has become widespread in the PAC–Bayesian
and Bayesian deep learning [1] literature as a way to quantify predictive uncertainty and
obtain generalisation bounds. PAC–Bayesian theorems generally bound the expected
loss of randomised estimators, so it has proven easier to obtain non-vacuous numerical
guarantees on generalisation in such networks.

However, we observe that when training these in the PAC–Bayesian setting, the
objective used is generally somewhat divorced from the bound on misclassification loss
itself, often because non-differentiability leads to difficulties with direct optimisation.
For example, Langford and Caruana [2], Zhou et al. [3], and Dziugaite and Roy [4] all
initially train non-stochastic networks before using them as the mode of a distribution, with
variance chosen, respectively, through a computationally-expensive sensitivity analysis,
as a proportion of weight norms, or by optimising an objective with both a surrogate
loss function and a different dependence on the Kullback–Leibler (KL) divergence from
their bound.

In exploring methods to circumvent this gap, we also note that PAC–Bayesian bounds
can often be straightforwardly adapted to aggregates or averages of estimators, leading
directly to analytic and differentiable objective functions (for example, [5]). Unfortunately,
averages over deep stochastic networks are usually intractable or, if possible, very costly
(as found by [6]).

Motivated by these observations, our main contribution is to obtain a compromise
by defining new and general “partially-aggregated” Monte Carlo estimators for the average
output and gradients of deep stochastic networks (Section 3), with the direct optimisation
of PAC–Bayesian bounds in mind. Although our main focus here is on the use of this
estimator in a PAC–Bayesian application, we emphasise that the technique applies generally
to stochastic networks and thus has links to other variance-reduction techniques for training
them, such as the pathwise estimator used in the context of neural networks by [7] amongst
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many others or Flipout [8]; indeed, it can be used in combination with these techniques.
We provide proofs (Section 4) that this application leads to lower variances than a Monte
Carlo forward pass and lower variance final-layer gradients than REINFORCE [9].

A further contribution of ours is a first application of this general estimator to non-
differentiable “signed-output” networks (with a final output ∈ {−1,+1} and arbitrarily
complex other structure, see Section 4). As well as reducing variances as stated above,
a small amount of additional structure in combination with partial-aggregation enables
us to extend the pathwise estimator to the other layers, which usually requires a fully
differentiable network and eases training by reducing the variance of gradient estimates.

We adapt a binary classification bound (Section 5) from Catoni [10] to these networks,
yielding straightforward and directly differentiable objectives when used in combination
with aggregation. Closing this gap between objectives and bounds leads to improved
theoretical properties.

Further, since most of the existing PAC–Bayes bounds for neural networks have a
heavy dependency on the distance from initialisation of the obtained solution, we would
intuitively expect these lower variances to lead to faster convergence and tighter bounds
(from finding low-error solutions nearer to the initialisation). We indeed observe this
experimentally, showing that training PAC–Bayesian objectives in combination with partial
aggregation leads to competitive experimental generalisation guarantees (Section 6), and
improves upon naive Monte Carlo and REINFORCE.

As a useful corollary, this application also leads us to a similar but simpler PAC–
Bayesian training method for sign-activation neural networks than Letarte et al. [6], which
successfully aggregated networks with all sign activation functions ∈ {+1, −1} and a
non-standard tree structure, but incurred an exponential KL divergence penalty and a
heavy computational cost (so that in practice they often resorted to a Monte Carlo estimate).
Further, the lower variance of our obtained estimator predictions enables us to use the
Gibbs estimator directly (where we draw a single sample function for every new example),
leading to a modified bound on the misclassification loss which is a factor of two tighter
without a significant performance penalty.

We discuss further and outline future work in Section 7.

2. Background

We begin here by setting out our notation and the requisite background.
Generally, we consider parameterised functions, { fθ : X → Y|θ ∈ Θ ⊂ RN}, in

a specific form, choosing X ⊂ Rd0 and an arbitrary output space Y which could be for
example {−1,+1} or R. We wish to find functions minimizing the out-of-sample risk,
R( f ) = E(x,y)∼D�( f (x), y), for some loss function �, for example the 0-1 misclassification
loss for classification, �0−1(y, y′) = 1{y �= y′}, or the binary linear loss, �lin(y, y′) =
1
2 (1 − yy′), with Y = {+1, −1}. These must be chosen based on an i.i.d. sample S =
{(xi, yi)}m

i=1 ∼ Dm from the data distribution D, using the surrogate of in-sample empirical
risk, RS( f ) = 1

m ∑m
i=1 �( f (xi), yi). We denote the expected and empirical risks under the

misclassification and linear losses, respectively R0−1, Rlin, R0−1
S and Rlin

S .
In this paper, we consider learning a distribution (PAC–Bayesian posterior), Q, over the

parameters θ. PAC–Bayesian theorems then provide bounds on the expected generalization
risk of randomised classifiers, where every prediction is made using a newly sampled
function from our posterior, fθ , θ ∼ Q.

We also consider averaging the above to obtain Q-aggregated prediction functions,

FQ(x) := Eθ∼Q fθ(x). (1)

In the case of a convex loss function, Jensen’s inequality lower bounds the risk of
the randomised function by its Q-aggregate: �(FQ(x), y) ≤ E f∼Q�( f (x), y). The equality
is achieved by the linear loss, a fact we will exploit to obtain an easier PAC–Bayesian
optimisation objective in Section 5.
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2.1. Analytic Q-Aggregates for Signed Linear Functions

Q-aggregate predictors are analytically tractable for “signed-output” functions (here
the sign function and “signed” functions have outputs ∈ {+1, −1}, as the terminology
“binary”, used sometimes in the literature, suggests to us too strongly an output ∈ {0, 1})
of the form fw(x) = sign(w · x) under a normal distribution, Q(w) = N(μ, I), as specifi-
cally considered in a PAC–Bayesian context for binary classification by [5], obtaining an
differentiable objective similar to the SVM. Provided x �= 0:

FQ(x) := Ew∼N(μ,I) sign(w · x) = erf

(
μ · x√
2‖x‖

)
. (2)

In Section 4, we will consider aggregating signed output ( f (x) ∈ {+1, −1}) functions
of a more general form.

2.2. Monte Carlo Estimators for More Complex Q-Aggregates

The framework of Q-aggregates can be extended to less tractable cases (for example,
with fθ a randomised or a “Bayesian” neural network, see, e.g., [1]) through a simple and
unbiased Monte Carlo approximation:

FQ(x) = Eθ∼Q fθ(x) ≈ 1
T

T

∑
t=1

fθt(x) := F̂Q(x). (3)

If we go on to parameterize our posterior Q by φ ∈ Φ ⊂ RN as Qφ and wish to obtain
gradients without a closed form for FQφ

(x) = Eθ∼Qφ
fθ(x), there are two possibilities.

One is REINFORCE [9], which requires only a differentiable density function, qφ(θ) and
makes a Monte Carlo approximation to the left hand side of the identity ∇φEθ∼qφ

fθ(x) =
Eθ∼qφ

[ fθ(x)∇φ log qφ(θ)].
The other is the pathwise estimator, which additionally requires that fθ(x) be dif-

ferentiable w.r.t. θ, and that the probability distribution chosen has a standardization
function, Sφ, which removes the φ dependence, turning a parameterised qφ into a non-
parameterised distribution p: for example, Sμ,σ(X) = (X − μ)/σ to transform a gen-
eral normal distribution into a standard normal. If this exists, the right hand side of
∇φEθ∼qφ

fθ(x) = Eε∼p∇φ fS−1
φ (ε)(x) generally yields lower-variance estimates than REIN-

FORCE (see for a modern survey [11]).
The variance introduced by REINFORCE can make it difficult to train neural networks

when the pathwise estimator is not available, for example when non-differentiable acti-
vation functions are used. Below we find a compromise between the analytically closed
form of (2) and the above estimator that enables us to make differentiable certain classes of
network and extend the pathwise estimator where otherwise it could not be used. Through
this we are able to stably train a new class of network.

2.3. PAC–Bayesian Approach

We use PAC–Bayes in this paper to obtain generalisation guarantees and theoretically-
motivated training methods. The primary bound utilised is based on the following theorem,
valid for a loss taking values in [0, 1]:

Theorem 1 ([10], Theorem 1.2.6). Given probability measure P on hypothesis space F and α > 1,
for all Q on F with probability at least 1 − δ over S ∼ Dm,

E f∼QR( f ) ≤ inf
λ>1

Φ−1
λ/m

[
E f∼QRS( f ) +

α

λ
Δ
]

with Φ−1
γ (t) = 1−exp(−γt)

1−exp(−γ)
and Δ = KL(Q|P)− log δ + 2 log

(
log α2λ

log α

)
.
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This slightly opaque formulation (used previously by [3]) gives essentially identical
results when KL/m is large to the better-known “small-kl” PAC–Bayes bounds originated
by Langford and Seeger [12], Seeger et al. [13]. It is chosen because it leads to objectives
that are linear in the empirical loss and KL divergence, like

E f∼QRS( f ) +
KL(Q|P)

λ
. (4)

This objective is minimised by a Gibbs distribution and is closely related to the
evidence lower bound (ELBO) usually optimised by Bayesian Neural Networks [1]. Such a
connection has been noted throughout the PAC–Bayesian literature; we refer the reader
to [14] or [15] for a formalised treatment.

3. The Partial Aggregation Estimator

Here we outline our main contribution: a reformulation of Q-aggregation for neural
networks leading to different, lower-variance, Monte Carlo estimators for their outputs
and gradients. These estimators apply to networks with a dense final layer, and arbitrary
stochastic other structure (for example convolutions, residual layers or a non-feedforward
structure). Specifically, they take the form

fθ(x) = A(w · ηθ¬w(x)) (5)

with θ = vec(w, θ¬w) ∈ Θ ⊂ RD, w ∈ Rd, and θ¬w ∈ Θ¬w ⊂ RD−d the parameter set
excluding w, for the non-final layers of the network. These non-final layers are included
in ηθ¬w : X → Ad ⊆ Rd and the final activation is A : R → Y . For simplicity we have
used a one-dimensional output but we note that the formulation and below derivations
trivially extend to a vector-valued function with elementwise activations. We require
the distribution over parameters to factorise like Q(θ) = Qw(w)Q¬w(θ¬w), which is
consistent with the literature.

We recover a similar functional form to that considered in Section 2.1 by rewriting
the function as A(w · a) with a ∈ Ad the randomised hidden-layer activations. The
“aggregated” activation function on the final layer, which we define as I(a) :=

∫
A(w ·

a)dQw(w), may then be analytically tractable. For example, with w ∼ N(μ, I) and a sign
final activation, we recall (2) where I(a) = erf

(
μ·a√
2‖a‖

)
.

Using these definitions we can write the Q-aggregate in terms of the conditional
distribution on the activations, a, which takes the form Q̃¬w(a|x) := (η(·)(x)) ◦ Q¬w, (i.e.,
the distribution of ηθ¬w(x)|x, with θ¬w ∼ Q¬w). The Q-aggregate can then be stated as

FQ(x) := Eθ∼Q[ fθ(x)]

=
∫

θ¬w

[∫
Rd

A(w · ηθ¬w(x))dQw(w)

]
dQ¬w(θ¬w)

=
∫

θ¬w
I(ηθ¬w(x))dQ¬w(θ¬w)

=
∫
Ad

I(a)d{(η(·)(x)) ◦ Q¬w}(a)

=:
∫
Ad

I(a)dQ̃¬w(a|x).

In most cases, the final integral cannot be calculated exactly or involves a large sum-
mation, so we resort to a Monte Carlo estimate, for each x drawing T samples of the ran-
domised activations, {at}T

t=1 ∼ Q̃¬w(a|x) to obtain the “partially-aggregated” estimator

FQ(x) =
∫
Ad

I(a)dQ̃¬w(a|x) ≈ 1
T

T

∑
t=1

I(at) = F̂∗
Q(x). (6)
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This is quite similar to the original estimator from (3), but in fact the aggregation of
the final layer may significantly reduce the variance of the outputs and also make better
gradient estimates possible, as we will show below.

3.1. Reduced Variance Estimates

Proposition 1. Lower variance outputs: For a neural network as defined by Equation (5) and
the unbiased Q-aggregation estimators defined by Equations (3) and (6),

VQ[F̂∗
Q(x)] ≤ VQ[F̂Q(x)].

Proof. Treating a as a random variable, always conditioned on x, we have

VQ[F̂Q(x)]−VQ[F̂�
Q(x)] = EQ|F̂Q(x)|2 −EQ|F̂�

Q(x)|2

=
1
T
Ea|x

[
Ew|A(w · a)|2 − |Ew A(w · a)|2

]
=

1
T
Ea|x[Vw[A(w · a)]] ≥ 0.

From the above we see that the aggregate outputs estimated through partial-aggregation
have lower variances. Next, we consider the two unbiased gradient estimators for the dis-
tribution over final-layer weights, w, arising from partial-aggregation or REINFORCE (as
would be used, for example, where the final layer is non-differentiable). Assuming Qw has
a density, qφ(θw), parameterised by φ, these use forward samples of {wt, θ¬w,(t)}T

t=1 as:

Ĝ(x) :=
1
T

T

∑
t=1

A(wt · ηt)∇φ log qφ(wt)

Ĝ∗(x) :=
1
T

T

∑
t=1

∇φ Iqφ(η
t).

Proposition 2. Lower variance gradients: Under the conditions of Proposition 1 and the
above definitions,

CovQ[Ĝ∗(x)] " CovQ[Ĝ(x)]

where A " B ⇐⇒ B − A is positive semi-definite. Thus, for all u �= 0, V[Ĝ∗(x) · u] ≤
V[Ĝ(x) · u].

Proof. Writing v := ∇φ log qφ(w) and using the unbiasedness of the estimators,

CovQ[ĜQ(x)]− CovQ[Ĝ�
Q(x)]

= EQ[ĜQ(x)ĜQ(x)T ]−EQ[Ĝ�
Q(x)Ĝ�

Q(x)T ]

=
1
T
Ea|x

[
Ew[A(w · a)2vvT ]− ∇φ Iqφ(η

t)
(
∇φ Iqφ(η

t)T
)]

=
1
T
Ea|x

[
Covw[A(w · a)∇φ log qφ(w)]

]
� 0

where in the final line we have used that ∇φ Iqφ(η
t) = ∇φEw[A(w · ηt)] = Ew[A(w ·

ηt)v].

3.2. Single Hidden Layer

For clarity (and to introduce notation to be used in Section 4.2) we will briefly consider
the case of a neural network with one hidden layer, fθ(x) = A2(w2 · A1(W1x)). The
randomised parameters are θ = vec(w2, W1), W1 ∈ Rd1×d0 , w2 ∈ Rd1 and the elementwise
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activations are A1 : Rd1 → Ad1
1 ⊆ Rd1 and A2 : R → Y . We choose the distribution

Q(θ) =: Q2(w2)Q1(W1) to factorise over the layers. This is identical to the above and sets
ηW1(x) = A1(W1x).

Sampling a is straightforward if sampling W1 is. Further, if the final layer aggregate is
differentiable, and so is the hidden layer activation A1, we may be able to use the lower-
variance pathwise gradient estimator for gradients with respect to Q1. We note that this
may be possible even if the activation A2 is not differentiable, as in Section 4, where we
extend the pathwise estimator where we could not otherwise use it.

Computationally, we may implement the above by analytically finding the distribution
on the “pre-activations” W1x (trivial for the normal distribution) before sampling this and
passing through the activation. With the pathwise estimator this is known as the “local
reparameterization trick” [16], which can lead to considerable computational savings on
parallel minibatches compared to direct hierarchical sampling, a = A1(W1x) with W1 ∼ Q1.
We will utilise this in all our reparameterizable dense networks, and a variation on it to
save computation when using REINFORCE in Sections 4.2 and 6.

4. Aggregating Signed-Output Networks

Here we consider a first practical application of the aggregation estimator to stochastic
neural networks with a final dense sign-activated layer. We have seen above that this
partial aggregation leads to better-behaved training objectives and lower-variance gradient
estimates across arbitrary other network structure, It may also allow use of pathwise
gradients for the other layers, which would not be possible otherwise due to the non-
differentiability of the final layer.

Specifically, these networks take the form of Equation (5) with the final layer activation
a sign function and weights drawn from a unit variance normal distribution, Qw(w) =
N (μ, I). The aggregate I(a) is given by Equation (2). Normally-distributed weights are
chosen because of the simple analytic forms for the aggregate (reminiscent of the tanh
activation occasionally used for neural networks) and KL divergence (effectively an L2

regularisation penalty); we note however that closed forms are available for other commonly-
used distributions such as the Laplace.

Using Equations (3) and (6) with independent samples {(wt, θ¬w,(t))}T
t=1 ∼ Q and

ηt := ηθ¬w,(t) (x) leads to the two unbiased estimators for the output (henceforth assuming
the technical condition Pη|x{η = 0} = 0 that allows aggregation to be well-defined).

F̂Q(x) :=
1
T

T

∑
t=1

sign(wt · ηt) (7)

F̂∗
Q(x) :=

1
T

T

∑
t=1

erf

(
μ · ηt

√
2‖ηt‖

)
. (8)

It follows immediately from Propositions 1 and 2 that the latter and the associated
gradient estimators have lower variances than the former or the REINFORCE gradient
estimates (which we would otherwise have to use due to the non-differentiability of the
final layer).

4.1. Lower Variance Estimates of Aggregated Sign-Output Networks

We clarify the situation with the lower variance estimates further below. In particular,
we find that the reduction in variance from using the partial-aggregation estimator is
controlled by the norm ‖μ‖, so that for small ‖μ‖ (as could be expected early in training)
the difference can be large, while as ‖μ‖ grows, the difference in variance is controlled
and we could reasonably revert to the Monte Carlo (or Gibbs) estimator. Note also that as
FQ(x) → ±1 (as expected after training), both variances disappear.

We also show that a stricter condition than Proposition 2 holds on the variances of the
aggregated gradients here, and thus that the non-aggregated gradients are noisier in all
cases than the aggregate.
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Proposition 3. With the definitions given by Equation (7), for all x ∈ Rd0 , T ∈ N, and Q with
normally-distributed final layer,

0 ≤ VQ[F̂Q(x)]−VQ[F̂∗
Q(x)] ≤ 1

T

(
1 −
∣∣∣∣erf
(‖μ‖√

2

)∣∣∣∣2
)

.

Proof. The left identity follows directly from Proposition 1. We also have

VQ[F̂Q(x)]−VQ[F̂�
Q(x)] =

1
T
Ea|x[Vw[sign(w · a)]]

=
1
T

⎛⎝1 −Ea|x

∣∣∣∣∣erf

(
μ · η√
2‖η‖

)∣∣∣∣∣
2
⎞⎠

≤ 1
T

(
1 −
∣∣∣∣erf
(‖μ‖√

2

)∣∣∣∣2
)

.

Proposition 4. Under the conditions of Proposition 3,

Cov[Ĝ∗(x)] " Cov[Ĝ(x)] +
1 − 2/π

T
I.

Thus, for all u with ‖u‖ = 1,

V[Ĝ∗(x) · u] ≤ V[Ĝ(x) · u] +
1 − 2/π

T
.

Proof. It is straightforward to show that

Ĝ(x) :=
1
T

T

∑
t=1

sign(wt · ηt)(μ − wt)

Ĝ∗(x) :=
1
T

T

∑
t=1

ηt

‖ηt‖

√
2
π

exp

[
−1

2

(
μ · ηt

‖ηt‖

)2
]

Cov[Ĝ(x)] =
1
T

(
I− GGT

)
Cov[Ĝ∗(x)] =

1
T

(
E

[
ηηT

‖η‖2
2
π

e−
(

μ·η
‖η‖
)2
]
− GGT

)

so for u �= 0,

TuT(Cov[Ĝ(x)]− Cov[Ĝ∗(x)]
)
u

= ‖u‖2 − 2
π
E

[
|u · η|2
‖η‖2 e−

(
μ·η
‖η‖
)2
]

≥ ‖u‖2
(

1 − 2
π

)
> 0.

Above we have brought u inside the term with an expectation, which is then bounded
using Cauchy–Schwarz on |u · η|/‖η‖ ≤ ‖u‖, and e−|t| ≤ 1 for all t ∈ R.

4.2. All Sign Activations

Here we examine an important special case previously examined by Letarte et al. [6]:
a feed-forward network with all sign activations and normal weights. This takes the form

fθ(x) = sign(wL · sign(WL−1 . . . sign(W1x) . . . ))
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with θ := vec(wL, . . . , W1) and Wl := [wl,1 . . . wl,dl
]T ; l ∈ {1, ..., L} are the layer in-

dices. We choose unit-variance normal distributions on the weights, which factorise into
Ql(Wl) = ∏dl

i=1 ql,i(wl,i) with ql,i = N (μl,i, Idl−1
). In the notation of Section 3, ηθ¬w(x) =

sign(WL−1 . . . sign(W1x) . . . ) is the final layer activation, which could easily be sampled
by mapping x through the first L − 1 layers with draws from the weight distribution.

Instead, we go on to make an iterative replacement of the weight distributions on each
layer by conditionals on the layer activations to obtain the summation

FQ(x) = ∑
a1∈{+1,−1}d1

Q̃1(a1|x) × . . .

. . . × ∑
aL−1∈{+1,−1}dL−1

Q̃L−1(aL−1|aL−2) erf

(
μL · aL−1√

2‖aL−1‖

)
.

(9)

The number of terms is exponential in the depth so we instead hierarchically sample
the al . Like local reparameterisation, this leads to a considerable computational saving
over sampling a separate weight matrix for every input. The conditionals can be found in
closed form: we can factorise individual hidden units Q̃l(al |al−1) := ∏dl

i=1 q̃l,i(al,i|al−1),
and find their activation distributions (with a0 := x and z a dummy variable):

q̃l,i(al,i = ±1 |al−1) =
∫ ∞

0
N (z; ±μl,i · al−1, ‖al−1‖2)dz

=
1
2

[
1 ± erf

(
μl,i · al−1√

2‖al−1‖

)]
.

A marginalised REINFORCE-style gradient estimator for conditional distributions can
then be used; this does not necessarily have better statistical properties but in combination
with the above is much more computationally efficient. This idea of “conditional sampling”
is inspired by the local reinforce trick. Using samples {(at

1 . . . at
L−1)}T

t=1 ∼ Q̃,

∂FQ(x)
∂μl,i

≈ 1
T

T

∑
t=1

erf

(
μL · at

L−1√
2‖at

L−1‖

)
∂

∂μl,i
log q̃l,i(at

l,i|at
l−1). (10)

This formulation along with Equation (9) resembles the PBGNet model of [6], but
derived in a very different way. Indeed both are equivalent in the single-hidden-layer
case, but with more layers PBGNet uses an unusual tree-structured network to make the
individual activations independent and avoid an exponential computational dependency
on the depth in Equation (9). This makes the above summation exactly calculable but is also
still not efficient enough in practice, so they resort further to a Monte Carlo approximation:
informally, this draws new samples for every layer l based on an average of those from the
previous layer, al |{a(t)

l−1}T
t=1 ∼ 1

T ∑T
t=1 Q̃(al |a(t)

l−1).
This is all justified within the tree-structured framework but leads to an exponential

KL penalty which—as hinted by Letarte et al. [6] and shown empirically in Section 6—
makes PAC–Bayes bound optimisation strongly favour shallower such networks. Our
formulation avoids this, is more general—applying to alternative network structures—and
we believe it is significantly easier to understand and use in practice.

5. PAC–Bayesian Objectives with Signed-Outputs

We now move to obtain binary classifiers with guarantees for the expected misclassifi-
cation error, R0−1, which we do by optimizing PAC–Bayesian bounds. Such bounds (as in
Theorem 1) will usually involve the non-differentiable and non-convex misclassification
loss �0−1. However, to train a neural network we need to replace this by a differentiable
surrogate, as discussed in the introduction.
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Here we adopt a different approach by using our signed-output networks, where since
f (x) ∈ {+1, −1}, there is an exact equivalence between the linear and misclassification
losses, �0−1( f (x), y) = �lin( f (x), y), avoiding an extra factor of two from the inequality
�0−1 ≤ 2�lin.

Although we have only moved the non-differentiability into f , the form of a PAC–Bayesian
bound and the linearity of the loss and expectation allow us to go further and aggregate,

E f∼Q�0−1( f (x), y) = E f∼Q�lin( f (x), y) = �lin(FQ(x), y) (11)

which allows us to use the tools discussed in Section 4 to obtain lower-variance estimates
and gradients. Below we prove a small result to show the utility of this:

Proposition 5. Under the conditions of Proposition 3 and y ∈ {+1, −1},

VQ[�lin(F̂∗
Q(x), y)] ≤ VQ[�lin(F̂Q(x), y)]

≤ V f∼Q[�0−1( f (x), y)] =
1
4
(1 − |FQ(x)|2).

Proof.

VQ[�lin(F̂Q(x), y)] = EQ

∣∣∣∣12 (yFQ(x)− yF̂Q(x))
∣∣∣∣2 =

1
4
VQ[F̂Q(x)]

and a similar result for F̂∗
Q. f = F̂Q if T = 1 and �lin( f (x), y) = �0−1( f (x), y). The result

then follows from this and Proposition 3.

Combining (11) with Theorem 1, we obtain a directly optimizable, differentiable
bound on the misclassification loss without introducing the above-mentioned factor of 2.

Theorem 2. Given P on θ and α > 1, for all Q on θ and λ > 1 simultaneously with probability at
least 1 − δ over S ∼ Dm,

Eθ∼QR0−1( fθ) ≤ Φ−1
λ/m

[
Rlin

S (FQ) +
α

λ
Δ
]

with Φ−1
γ (t) =

1−exp(−γt)
1−exp(−γ)

, fθ : Rd → {+1, −1}, θ ∈ Θ, and Δ = KL(Q|P) − log δ +

2 log
(

log α2λ
log α

)
.

Thus, for each λ, which can be held fixed (“fix-λ”) or simultaneously optimized
throughout training for automatic regularisation tuning (“optim-λ”), we obtain a gradient
descent objective:

Rlin
S (F̂∗

Q) +
KL(Q|P)

λ
. (12)

6. Experiments

All experiments (Table 1) run on “binary”-MNIST, dividing MNIST into two classes,
of digits 0–4 and 5–9. Neural networks had three hidden layers with 100 units per layer
and sign, sigmoid (sgmd) or relu activations, before a single-unit final layer with sign
activation. Q was chosen as an isotropic, unit-variance normal distribution with initial
means drawn from a truncated normal distribution of variance 0.05. The data-free prior
P was fixed equal to the initial Q, as motivated by Dziugaite and Roy [4] (Section 5 and
Appendix B).
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Table 1. Average (from ten runs) binary-MNIST losses and bounds (δ = 0.05) for the best epoch and
optimal hyperparameter settings of various algorithms. Hyperparameters and epochs were chosen
by bound if available and non-vacuous, otherwise by training linear loss. Bold numbers indicate the
best values and standard deviation is reported in italics.

mlp pbg
Reinforce Fix-λ Optim-λ

sign relu sign sgmd relu sign sgmd relu

Train Linear 0.78 8.72 26.0 18.6 8.77 7.60 6.35 6.71 6.47 5.41
error, 1σ 0.08 0.08 0.8 1.4 0.04 0.19 0.10 0.11 0.18 0.16

Test 0–1 1.82 5.26 25.4 17.9 8.73 7.88 6.51 6.85 6.84 5.61
error, 1σ 0.16 0.18 1.0 1.5 0.23 0.30 0.19 0.27 0.21 0.20

Bound 0–1 - 40.8 100 100 21.7 18.8 15.5 22.6 19.3 16.0
error, 1σ - 0.2 0.0 0.0 0.04 0.17 0.04 0.03 0.31 0.05

The objectives fix-λ and optim-λ from Section 5 were used for batch-size 256 gradient
descent with Adam [17] for 200 epochs. Every five epochs, the bound (for a minimising
λ) was evaluated using the entire training set; the learning rate was then halved if the
bound was unimproved from the previous two evaluations. The best hyperparameters
were selected using the best bound achieved in these evaluations through a grid search of
initial learning rates ∈ {0.1, 0.01, 0.001}, sample sizes T ∈ {1, 10, 50, 100}. Once these were
selected training was repeated 10 times to obtain the values in Table 1.

λ in optim-λ was optimised through Theorem 2 on alternate mini-batches with SGD
and a fixed learning rate of 10−4 (whilst still using the objective (12) to avoid effectively
scaling the learning rate with respect to empirical loss by the varying λ). After preliminary
experiments in fix-λ, we set λ = m = 60,000, the training set size, as is common in Bayesian
deep learning.

We also report the values of three baselines: reinforce, which uses the fix-λ objective
without partial-aggregation, forcing the use of REINFORCE gradients everywhere; mlp,
an unregularised non-stochastic relu neural network with tanh output activation; and the
PBGNet model (pbg) from Letarte et al. [6]. For the latter, a misclassification error bound
obtained through �0−1 ≤ 2�lin must be used as their test predictions were made through
the sign of a prediction function ∈ [−1,+1], not ∈ {+1, −1}. Further, despite significant
additional hyperparameter exploration, we were unable to train a three layer network
through the PBGNet algorithm directly comparable to our method, likely because of the
exponential KL penalty (in their Equation 17) within that framework; to enable comparison,
we therefore allowed the number of hidden layers in this scenario to vary ∈ {1, 2, 3}. Other
baseline tuning and setup was similar to the above, see the Appendix A for more details.

During evaluation reinforce draws a new set of weights for every test example,
equivalent to the evaluation of the other models; but doing so during training, with multiple
parallel samples, is prohibitively expensive. Two different approaches to straightforward,
not partially-aggregated, gradient estimation for this case suggest themselves, arising from
different approximations to the Q-expected loss of the minibatch, B ⊆ S (with data indices
B). From the identities

∇φEθ∼qφ
RB( fθ) = Eθ∼qφ

1
|B| ∑

i∈B
�( fθ(xi), yi)∇φ log qφ(θ)

=
1
|B| ∑

i∈B
Eθ∼qφ

�( fθ(xi), yi)∇φ log qφ(θ)

we obtain two slightly different estimators for ∇φEθ∼qφ
RB( fθ):

1
T|B|

T

∑
t=1

∑
i∈B

�( fθ(t,i) (xi), yi)∇φ log qφ(θ
(t,i))
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1
T|B| ∑

i∈B

T

∑
t=1

�( fθt(xi), yi)∇φ log qφ(θ
t).

The first draws many more samples and has lower variance but is much slower
computationally; even aside from the O(|B|) increase in computation, there is a slowdown
as the optimised BLAS matrix routines cannot be used, and the very large matrices involved
may not fit in memory (see for more information [16]).

Therefore, as is standard in the Bayesian Neural Network literature with the pathwise
estimator, we use the latter formulation, which has a similar computational complexity
to local-reparameterisation and our marginalised REINFORCE estimator (10). We should
note though that in preliminary experiments, the alternate estimator did not appear to lead
to improved results. This clarifies the advantages of marginalised sampling, which can
lead to lower variance with a similar computational cost.

7. Discussion

The experiments demonstrate that partial-aggregation enables training of multi-layer
non-differentiable neural networks in a PAC–Bayesian context, which is not possible with
REINFORCE gradients and a multiple-hidden-layer PBGNet [6]. These obtained only vacuous
bounds, and our misclassification bounds also improve those of a single-hidden-layer PBGNet.

Our experiments raise a couple of questions: firstly, why is it that lower variance
estimates empirically lead to tighter bounds? We speculate that the faster convergence
of SGD in this case takes us to a more “local” minimum of the objective, closer to our
initialisation. Since most existing PAC–Bayes bounds for neural networks have a very
strong dependence on this distance from initialisation through the KL term, this leads to
tighter bounds. This distance could also be reduced through other methods we consider
out-of-scope, such as the data-dependent bounds employed by Dziugaite and Roy [18] and
Letarte et al. [6].

A second and harder question is asking why the non-stochastic mlp model obtains a
lower overall error. The bound optimisation is empirically quite conservative, but does not
necessarily lead to better generalisation; understanding this gap is a key question in the
theory of deep learning.

In future work we will develop significant new tools to extend partial-aggregation
to multi-class classification, and to improve test prediction bounds for sign(F̂Q(x)) with
T > 1, as in PBGNet, which gave slightly improved predictive performance despite the
inferior theoretical guarantees.
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Appendix A. Further Experimental Details

Appendix A.1. Aggregating Biases with the Sign Function

We used a bias term in our network layers, leading to a simple extension of the above
formulation, omitted in the main text for conciseness:

Ew∼N (μ,Σ),b∼N (β,σ2) sign(w · x + b) = erf

(
μ · x + β√

2(xTΣx + σ2)

)

since w · x + b ∼ N (μ · x + β, xTΣx + σ2) and

Ez∼N (α,β2) sign z = P(z ≥ 0)− P(z < 0)

= [1 − Φ(−α/β)]− Φ(−α/β)

= 2Φ(α/β)− 1 = erf(α/
√

2β).

The bias and weight co-variances were chosen to be diagonal with a scale of 1, which
leads to some simplification in the above.

Appendix A.2. Dataset Details

We used the MNIST dataset version 3.0.1, available online at http://yann.lecun.com/
exdb/mnist/ (accessed on 4 June 2021), which contains 60,000 training examples and
10,000 test examples, which were used without any further split, and rescaled to lie in the
range [0, 1]. For the “binary”-MINST task, the labels +1 and −1 were assigned to digits in
{5, 6, 7, 8, 9} and {0, 1, 2, 3, 4}, respectively, and images were scaled into the interval [0, 1].

Appendix A.3. Hyperparameter Search for Baselines

The baseline comparison values offered with our experiments were optimized simi-
larly to the above, for completeness we report everything here.

The MLP model had three hidden ReLu layers of size 100 each trained with Adam,
a learning rate ∈ {0.1, 0.01, 0.001} and a batch size of 256 for 100 epochs. Complete test
and train evaluation was performed after every epoch, and in the absence of a bound, the
model and epoch with lowest train linear loss was selected.

For PBGNet we choose the values of hyperparameters from within these values giving
the least bound value. Note that, unlike in [6], we do not allow the hidden size to vary
{∈ 10, 50, 100}, and we use the entire MNIST training set as we do not need a validation
set. While attempting to train a three hidden layer network, we also searched through the
hyperparameter settings with a batch size of 64 as in the original, but after this failed, we
returned to the original batch size of 256 with Adam. All experiments were performed using
the code from the original paper, available at https://github.com/gletarte/dichotomize-
and-generalize (accessed on 4 June 2021).

Since we were unable to train a multiple-hidden-layer network through the PBGNet
algorithm, for this model only we explored different numbers of hidden layers ∈ {1, 2, 3}.

Appendix A.4. Final Hyperparameter Settings

In Table A1 we report the hyperparameter settings used for the experiments in Table 1
after exploration. To save computation, hyperparameter settings that were not learning
(defined as having a whole-train-set linear loss of > 0.45 after ten epochs) were terminated
early. This was also done on the later evaluation runs, where in a few instances the fix-λ
sigmoid network failed to train after ten epochs; to handle this we reset the network to
obtain the main experimental results.
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Table A1. Chosen hyperparameter settings and additional details for results in Table 1. Best hyperpa-
rameters were chosen by bound if available and non-vacuous, otherwise by best training linear loss
through a grid search as described in Section 6 and Appendix A.3. Run times are rounded to nearest
5 min.

mlp pbg
Reinforce Fix-λ Optim-λ

sign relu sign relu sgmd sign relu sgmd

Init. LR 0.001 0.01 0.1 0.1 0.01 0.1 0.1 0.01 0.1 0.1
Samples, T - 100 100 100 100 50 10 100 100 10
Hid. Layers 3 1 3 3 3 3 3 3 3 3
Hid. Size 100 100 100 100 100 100 100 100 100 100
Mean KL - 2658 15,020 13,613 2363 3571 3011 5561 3204 4000
Runtime/min 10 5 40 40 35 30 25 35 30 25

For clarity we repeat here the hyperparameter settings and search space:

• Initial Learning Rate ∈ {0.1, 0.01, 0.001}.
• Training Samples ∈ {1, 10, 50, 100}.
• Hidden Size = 100.
• Batch Size = 256.
• Fix-λ, λ = m = 60,000.
• Number of Hidden Layers = 3 for all models, except PBGNet ∈ {1, 2, 3}.

Appendix A.5. Implementation and Runtime

Experiments were implemented using Python and the TensorFlow library [19]. Re-
ported approximate runtimes are for execution on a NVIDIA GeForce RTX 2080 Ti GPU.
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Abstract: Online learning methods, similar to the online gradient algorithm (OGA) and exponen-
tially weighted aggregation (EWA), often depend on tuning parameters that are difficult to set in
practice. We consider an online meta-learning scenario, and we propose a meta-strategy to learn
these parameters from past tasks. Our strategy is based on the minimization of a regret bound. It
allows us to learn the initialization and the step size in OGA with guarantees. It also allows us to
learn the prior or the learning rate in EWA. We provide a regret analysis of the strategy. It allows to
identify settings where meta-learning indeed improves on learning each task in isolation.

Keywords: meta-learning; hyperparameters; priors; online learning; Bayesian inference; online
optimization; gradient descent

1. Introduction

In many applications of modern supervised learning, such as medical imaging or
robotics, a large number of tasks is available but many of them are associated with a small
amount of data. With few datapoints per task, learning them in isolation would give poor
results. In this paper, we consider the problem of learning from a (large) sequence of
regression or classification tasks with small sample size. By exploiting their similarities we
seek to design algorithms that can utilize previous experience to rapidly learn new skills or
adapt to new environments.

Inspired by human ingenuity in solving new problems by leveraging prior experience,
meta-learning is a subfield of machine learning whose goal is to automatically adapt a
learning mechanism from past experiences to rapidly learn new tasks with little available
data. Since it “learns the learning mechanism” it is also referred to as learning-to-learn [1]. It
is seen as a critical problem for the future of machine learning [2]. Numerous formulations
exist for meta-learning and we focus on the problem of online meta-learning where the tasks
arrive one at a time and the goal is to efficiently transfer information from the previous
tasks to the new ones such that we learn the new tasks as efficiently as possible (this has
also been refered to as lifelong learning). Each task is in turn processed online. To sum up,
we have a stream of tasks and for each task a stream of observations.

In order to solve online tasks, diverse well-established strategies exist: perceptron,
online gradient algorithm (OGA), online mirror descent, follow-the-regularized-leader,
exponentially weighted aggregation (EWA, also refered to as generalized Bayes etc.) We refer
the reader to [3–6] for introductions to these algorithms and to so-called regret bounds,
that control their generalization errors. We refer to these algorithms as the within-task
strategies. The big challenge is to design a meta-strategy that uses past experiences to
adapt a within-task strategy to perform better on the next tasks.

In this paper, we propose a new meta-learning strategy. The main idea to learn the
tuning parameters is to minimize its regret bound. We provide a meta-regret analysis for
our strategy. We illustrate our results in the case where the within-task strategy is the
online gradient algorithm, and exponentially weighted aggregation. In the case of OGA,
the tuning parameters considered are the initialization and the gradient steps. For EWA,

Entropy 2021, 23, 1257. https://doi.org/10.3390/e23101257 https://www.mdpi.com/journal/entropy
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we consider either the learning rate, or the prior. In each case, we compare the regret
incurred when learning the tasks in isolation to our meta-regret bound. This allows us to
identify settings where meta-learning indeed improves on learning in isolation.

1.1. Related Works

Meta-learning is similar to multitask learning [7–9] in the sense that the learner faces
many tasks to solve. However, in multitask learning, the learner is given a fixed number
of tasks, and can learn the connections between these tasks. In meta-learning, the learner
must prepare to face future tasks that are not given yet.

Meta-learning is often referred to as learning-to-learn or lifelong learning. The authors
of [10] proposed the following distinction: “learning-to-learn” for situations where the
tasks are presented simultaneously, and “lifelong learning” for situations where they are
presented sequentially. Following this terminology, learning-to-learn algorithms were
proposed very early in the literature, with generalization guarantees [11–16].

On the other hand, in the lifelong learning scenario, until recently, algorithms were
proposed without generalization guarantees [17,18]. A theoretical study was proposed
by [10], but the strategies in that paper are not feasible in practice. This problem was
recently improved [19–26]. In a similar context, in [27], the authors propose an efficient
strategy to learn the starting point of OGA. However, an application of this strategy to
learning the step size do not show any improvement over learning in isolation [28]. The
closest work to this paper is [29] in which they also suggest a regret bound minimization
strategy. This paper indeed provides a meta-regret bound for learning both the initialization
and the gradient step. Note, however, that this paper remains specific to OGA, while our
work can be potentially applied to any online learning algorithm. Indeed, we provide
another example: the generalized Bayesian algorithm EWA, for which we learn the prior,
or the learning rate. To learn the prior is new in the online setting, to our knowledge. It can
be related to works in the batch setting [11,13,15,16], but the improvement with respect to
learning in isolation is not quantified in these works.

Finally, it is important to note that we focus on the case where the number of tasks
T is large, while the sample size n and algorithmic complexity of each task is moderately
small. When each task is extremely complex, for example training a deep neural network
on a huge dataset, our procedure (as well as those discussed above) will become too
expansive. Alternative approaches were proposed, based on optimization via multi-armed
bandits [30,31].

1.2. Organization of the Paper

In Section 2, we introduce the formalism of meta-learning and the notations that will
be used throughout the paper. In Section 3, we introduce our meta-learning strategy, and
its theoretical analysis. In Section 4, we provide the details of our method in the case of
meta-learning the initialization and the step size in the online gradient algorithm. Based
on our theoretical results, there are also explicit situations where meta-learning indeed
improves on learning the tasks independently. This is confirmed by experiments reported
in this section. In Section 5, we provide the details of our methodology when the algorithm
used within tasks is a generalized Bayesian algorithm: EWA. We show how our meta-
strategy can be used to tune the learning rate; we also discuss how it can be used to learn
priors. The proofs of the main results are given in Section 6.

2. Notations and Preliminaries

By convention, vectors v ∈ Rd are seen as d × 1 matrices (columns). Let ‖v‖ denote the
Euclidean norm of v. Let AT denote the transposition of any d × k matrix A, and Id the d × d
identity matrix. For two real numbers a and b, let a ∨ b = max(a, b) and a ∧ b = min(a, b).
For z ∈ R, z+ is its positive part z+ = z ∨ 0. Given a finite set S, we let card(S) denote the
cardinality of S.
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The learner has to solve tasks t = 1, . . . , T sequentially. Each task t consists in n rounds
i = 1, . . . , n. At each round i of task t, the learner has to take a decision θt,i in a decision
space Θ ⊆ Rd for some d > 0. Then, a convex loss function �t,i : Θ → R is revealed to the
learner, who incurs the loss �t,i(θt,i). Classical examples with Θ ⊂ Rd include regression
tasks, where �t,i(θ) = (yt,i − xT

t,iθ)
2 for some xt,i ∈ Rd and yt,i ∈ R. For classification tasks,

�t,i(θ) = (1 − yt,ixT
t,iθ)+ for some xt,i ∈ Rd, yt,i ∈ {−1,+1}.

Throughout the paper, we will assume that the learner uses, for each task, an online
decision strategy called within-task strategy, parametrized by a tuning parameter λ ∈ Λ
where Λ is a closed, convex subset of Rp for some p > 0. Example of such strategies include
the online gradient algorithm, given by θt,i = θt,i−1 − γ∇�t,i(θt,i−1). In this case, the tuning
parameters are the initialization, or starting point, θt,1 = ϑ and the learning rate, or step
size, γ. That is, λ = (ϑ, γ), so p = d + 1. The parameter λ is kept fixed during the whole
task. It is of course possible to use the same parameter λ in all the tasks. However, we
will be interested here in defining meta-strategies that will allow us to improve λ task after
task, based on the information available so far. In Section 3, we will define such strategies.
For now, let λt denote the tuning parameter used by the learner all along task t. Figure 1
provides a recap of all the notations.

Figure 1. The dynamics of meta-learning.

Let θλ
t,i denote the decision at round i of task t when the online strategy is used with

parameter λ. We will assume that a regret bound is available for the within-task strategy.
By this, we mean that there is a set Θ0 ⊂ Θ of parameters of interest, and that the learner
knows a function Bn : Θ × Λ → R such that, for any task t, for any λ ∈ Λ,

n

∑
i=1

�t,i(θ
λ
t,i) ≤ inf

θ∈Θ0

{
n

∑
i=1

�t,i(θ) + Bn(θ, λ)

}
︸ ︷︷ ︸

=:Lt(λ)

. (1)

For OGA, regret bounds can be found, for example, in [4,6] (in this case, Θ0 =
Θ). Other examples include exponentially weighted aggregation (bounds in [3], here
Θ0 is a finite set of predictors while decisions Θ are probability distributions on Θ0).
More examples will be discussed in the paper. For a fixed parameter θ, the quantity
∑n

i=1 �t,i(θ
λ
t,i)− ∑n

i=1 �t,i(θ) measures the difference between the total loss suffered during
task t, and the loss what one would have suffered using the parameter θ. It is thus called
“the regret with respect to parameter θ”, and Bn(θ, λ) is usually referred to as a “regret
bound”. We will call Lt(λ) the “meta-loss”. In [29], the authors study a meta-strategy that
minimizes the meta-loss of OGA. Indeed, if (1) is tight, to minimize the right-hand side is
a good way to ensure that the left-hand side, that is, the cumulated loss, is small. In this
work, we will focus on meta-strategies minimizing the meta-loss in a more general context.

The simplest meta-strategy is learning in isolation. That is, we keep λt = λ0 ∈ Λ for
all tasks. The total loss after task T is then given by:

T

∑
t=1

n

∑
i=1

�t,i(θ
λ0
t,i ) ≤

T

∑
t=1

Lt(λ0). (2)
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However, when the learner uses a meta-strategy to improve the tuning parameter at
the end of each task, the total loss is given by ∑T

t=1 ∑n
i=1 �t,i(θ

λt
t,i ). We will, in this paper,

investigate strategies with meta-regret bounds; that is, bounds of the form

T

∑
t=1

n

∑
i=1

�t,i(θ
λt
t,i ) ≤ inf

λ∈Λ

{
T

∑
t=1

Lt(λ) + CT(λ)

}
. (3)

Of course, such bounds will be relevant only if the right-hand side of (3) is not larger
than the right-hand side of (2), and is significantly smaller in some favourable settings. We
show when this is the case in Section 4.

3. Meta-Learning Algorithms

In this section, we provide two meta-strategies to update λ at the end of each task. The
first one is a direct application of OGA to meta-learning. It is computationally simpler, but
feasible only in the special case where we have an explicit formula for the (sub-)gradient of
each Lt(λ). The second one is an application of implicit online learning to our setting. In
Section 4, we provide an example where this is the case. The second meta-strategy can be
used without this assumption. In both cases, we provide a regret bound as (3), under the
following condition.

Assumption 1. For any t ∈ {1, . . . , T}, the function λ �→ Lt(λ) is L-Lipschitz and convex.

3.1. Special Case: The Gradient of the Meta-Loss Is Available in Closed Form

As each Lt is convex, its subdifferential at each point of Λ is non-empty. For the sake
of simplicity, we will use the notation λ �→ ∇Lt(λ) in the following formulas to denote
any element of its subdifferential at λ. We define the online gradient meta-strategy (OGMS)
with step α > 0 and starting point λ1 ∈ Λ: for any t > 1,

λt = ΠΛ[λt−1 − α∇Lt−1(λt−1)] (4)

where ΠΛ denotes the orthogonal projection on Λ.

3.2. The General Case

We now cover the general case, where a formula for the gradient of Lt(λ) might
not be available. We propose to apply a strategy that was first defined in [32] for online
learning, and studied under the name “implicit online learning” (we refer the reader to [33]
and the references therein). In the meta-learning context, this gives the online proximal
meta-strategy (OPMS) with step α > 0 and starting point λ1 ∈ Λ, defined by:

λt = argmin
λ∈Λ

{
Lt−1(λ) +

‖λ − λt−1‖2

2α

}
. (5)

Using classical notations, e.g., [34], we can rewrite this definition with the proximal
operator (hence the name of the method). Indeed λt = proxαLt−1

(λt−1) where prox is the
proximal operator given for any x ∈ Λ and any convex function f : Λ → R,

prox f (x) = argmin
λ∈Λ

{
f (λ) +

‖x − λ‖2

2

}
. (6)

This strategy is feasible in practice in the regime we are interested in; that is, when n is
small or moderately large, and T → ∞. The learner has to store all the losses of the current
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task �t−1,1, . . . , �t−1,n. At the end of the task, the learner can use any convex optimization
algorithm to minimize, with respect to (θ, λ) ∈ Θ × Λ, the function

Ft(θ, λ) =
n

∑
i=1

�t,i(θ) + Bn(θ, λ) +
‖λ − λt−1‖2

2α
. (7)

We can use a (projected) gradient descent on Ft or its accelerated variants [35].

3.3. Regret Analysis

A direct application of known results to the setting of this paper leads to the following
proposition. For the sake of completeness, we still provide the proofs in Section 6.

Proposition 1. Under Assumption 1, using either OGMS or OPMS with step α > 0 and starting
point λ1 ∈ Λ leads to

T

∑
t=1

n

∑
i=1

�t,i(θ
λt
t,i ) ≤ inf

λ∈Λ

{
T

∑
t=1

Lt(λ) +
αTL2

2
+

‖λ − λ1‖2

2α

}
. (8)

The proof can be found in Section 6.

4. Example: Learning the Tuning Parameters of Online Gradient Descent

In all this section, we work under the following condition.

Assumption 2. For any (t, i) ∈ {1, . . . , T}× {1, . . . , n}, the function �t,i is Γ-Lipschitz and convex.

4.1. Explicit Meta-Regret Bound

We study the situation where the learner uses (projected) OGA as a within-task
strategy; that is, Θ = {θ ∈ Rd : ‖θ‖ ≤ C} and, for any i > 1,

θt,i = ΠΘ[θt,i−1 − γ∇�t,i(θt,i−1)]. (9)

With such a strategy, we already mentioned that λ = (ϑ, γ) ∈ Λ ⊂ Θ ×R+ contains
an initialization and a step size. An application of the results in Chapter 11 in [3] gives
Bn(θ, λ) = Bn(θ, (ϑ, γ)) = γΓ2n/2 + ‖θ − ϑ‖2/(2γ). So

Lt((ϑ, γ)) = inf
‖θ‖≤C

{
n

∑
i=1

�t,i(θ) +
γΓ2n

2
+

‖θ − ϑ‖2

2γ

}
. (10)

It is quite direct to check Assumption 1. We summarize this in the following proposition.

Proposition 2. Under Assumption 2, assume that the learner uses OGA as an inner algorithm.
Assume Λ = {ϑ ∈ Rd : ‖ϑ‖ ≤ C} × [γ, γ̄] for some C > 0 and 0 < γ < γ̄ < ∞. Then
Assumption 1 is satisfied with

L :=

√
n2Γ4

4
+

4C2

γ2 +
4C4

γ4 . (11)

So, when the learner uses one of the meta-strategies OGMS or OPMS, we can apply
Proposition 1 respectively. This leads to the following theorem.

Theorem 1. Under the assumptions of Proposition 2, with γ = 1/nβ for some β > 0 and γ̄ = C2,
when the learner uses either OGMS or OPMS with
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α =
C
L

√
4 + C2

T
(12)

(where L is given by (11)), we have:

T

∑
t=1

n

∑
i=1

�t,i(θ
λt
t,i ) ≤ inf

θ1,...,θT∈Θ

{
T

∑
t=1

n

∑
i=1

�t,i(θt) + C(Γ, C)

[
n1∨2β

√
T +

(
n1−β + σ(θT

1 )
√

n

)
T

]}
(13)

where C(Γ, C) > 0 depends only on (Γ, C) and where:

σ(θT
1 ) =

√√√√ 1
T

T

∑
t=1

∥∥∥∥∥θt −
1
T

T

∑
s=1

θs

∥∥∥∥∥
2

. (14)

Let us compare this result with learning in isolation, as defined in (2); that is, solving
the sequence of tasks with a constant hyperparameter λ = (ϑ, γ). For the usual choice
ϑ = 0 and γ = c/

√
n where c is a constant that does not depend on n nor T, OGA leads to

a regret in O(
√

n). After T tasks, learning in isolation thus leads to a regret in T
√

n. Our
strategies with β = 1 lead to a regret in

n2
√

T +
(

1 + σ(θT
1 )

√
n
)

T. (15)

The term n2
√

T is the price to pay for meta-learning. In the regime we are interested in
(small n, large T), which is smaller than T

√
n. Consider the leading term. In the worst case

scenario, this is also T
√

n. However, there are good predictors θ1, . . . , θT for tasks 1, . . . , T,
respectively, such that σ(θT

1 ) is small, and in this case we see the improvement with respect
to learning in isolation. The extreme case is when there is a good predictor θ∗ that predicts
well for all tasks. In this case, regret with respect to θ1 = · · · = θT = θ∗ is in n2

√
T + T,

which improves significantly on learning in isolation. Note however that, using a different
meta-strategy, specifically designed for OGA, Ref. [29] obtain a better dependence on T
when σ(θT

1 ) = 0.
Let us now discuss the implementation of our meta-stategy. We first remark that under

the quadratic loss, it is possible to derive a formula for Lt, which allows to use OGMS. We
then discuss OPMS for the general case.

4.2. Special Case: Quadratic Loss

First, consider �t,i = (yt,i − xT
t,iθ)

2 for some yt,i ∈ R and xt,i ∈ Rd. Assumption 2 is
satisfied if we assume, moreover that all |yt,i| ≤ c and ‖xt,i‖ ≤ b, with Γ = 2bc + 2b2C. In
this case,

Lt((ϑ, γ)) = inf
‖θ‖≤C

{
n

∑
i=1

(yt,i − xT
t,iθ)

2 +
γΓ2n

2
+

‖θ − ϑ‖2

2γ

}
. (16)

Define Yt = (yt,1, . . . , yt,n)T and Xt = (xt,1| . . . |xt,n)T . The minimizer of ∑n
i=1(yt,i −

xT
t,iθ)

2 + ‖θ − ϑ‖2/(2γ) with respect to θ is known as the ridge regression estimator:

θ̂t =

(
XT

t Xt +
Id
2γ

)−1(
XT

t Yt +
ϑ

2γ

)
. (17)

This also coincides with the minimizer in the right-hand side of (16) on the condition
that ‖θ̂t‖ ≤ C. In this case, by plugging θ̂t in (16), we have a close form formula for
Lt((ϑ, γ)), and an explicit (but cumbersome) formula for its gradient. It is thus possible to
use the OGMS strategy to update λ = (ϑ, γ).
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4.3. The General Case

In the general case, denote λt−1 = (ϑt−1, γt−1), then λt = (ϑt, γt) is obtained by minimizing

Ft(θ, (ϑ, γ)) =
n

∑
i=1

�t,i(θ) +
γΓ2n

2
+

‖θ − ϑ‖2

2γ
+

‖ϑ − ϑt−1‖2 + (γ − γt−1)
2

2α
(18)

with respect to θ, ϑ, γ. Any efficient minimization procedure can be used. In our experi-
ments, we used a projected gradient descent, the gradient being given by:

∂Ft

∂θ
=

n

∑
i=1

∇�t,i(θ) +
θ − ϑ

γ
, (19)

∂Ft

∂ϑ
=

ϑ − θ

γ
+

ϑ − ϑt−1

α
, (20)

∂Ft

∂γ
=

Γ2n
2

− ‖θ − ϑ‖2

2γ2 +
γ − γt−1

α
. (21)

Note that even though we do not stricto sensu obtain the minimizer of Ft, we can
get arbitrarily close to it by taking a large enough number of steps. The main difference
between this algorithm and the strategy suggested in [29] is that it is obtained by applying
the general proximal update introduced in Equation (7), while they decoupled the update
for the initialization step and the learning rate.

4.4. Experimental Study

In this section we compare simulated data for the numerical performance of OPMS
w.r.t learning the task in isolation with online gradient descent (I-OGA). To measure
the impact of learning the gradient step γ, we also introduce mean-OPMS that uses the
same strategy as OPMS but only learns the starting point ϑ (it is thus close to [27]). We
present the results for regression tasks with the mean-squared-error loss, and then for
classification with the hinge loss. The notebooks of the experiments can be found online:
https://dimitri-meunier.github.io/ (accessed on 26 September 2021).

4.4.1. Synthetic Regression

At each round t = 1, . . . , T, the meta learner sequentially receives a regression task that
corresponds to a dataset (xt,i, yt,i)i=1,...,n generated as yt,i = xT

t,iθt + εt,i, xt,i ∈ Rd. The noise
is εt,i ∼ U ([−σ2, σ2]) and the εt,i are all independent, the inputs are uniformly sampled on

the (d − 1)-unit sphere Sd−1 and θt = ru + θ0, u ∼ U
(
Sd−1

)
, θ0 ∈ Rd, r ∈ R+. We take

d = 20, n = 30, T = 200, σ2 = 0.5 and θ0 with all components equal to 5. In this setting, θ0 is
a common bias between the tasks, σ2 is the inter-task variance and r characterizes the tasks
similarity. We experiment with different values of r ∈ {0, 5, 10, 30} to observe the impact of
task similarity on the meta-learning process. The smaller r, the closer are the tasks and for
the extreme case of r = 0 the tasks are identical, in the sense that the parameters θt of the
tasks are all the same. We draw attention to the fact that a cross-validation procedure to
select α (the parameter of OGMS or OPMS, see Equation (5)) or γ is not valid in the online
settings, as it would require having knowledge of several tasks in advance for the former
and several datapoints in advance for each task for the latter. Moreover, the theoretical
values are based on worst-case analysis and lead in practice to slow learning. In practice,
to set these values to the correct order of magnitude without adjusting the constants led
to better results. So, for mean-OPMS and OPMS we set α = 1/

√
T, for OPMS and I-OGA

we set γ = 1/
√

n. Instead of cross-validation, one can launch several online learners in
parallel with different parameter values to pick the best one (or aggregate them). That is
the strategy we use to select Γ for OPMS. Note that the exact value of Γ is usually unkown
in practice; its automatic calibration is an important open question. To solve (18), after
each task we use the exact solution for mean-OPMS and projected Newton descent with 10
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steps for OPMS. We observed that not reaching the exact solution of (18) does not harm
the performance of the algorithm and 10 steps are sufficient to reach convergence. The
results are displayed in Table 1 and Figure 2. On Figure 2, for each task t = 1, . . . , T, we
report the average end-of-task loss MSEt = ∑n

i=1 �t,i(θt,n)/n averaged over 50 independent
runs (with their confidence intervals). Table 1 reports MSEt averaged over the 100 most
recent tasks. The results confirm our theoretical findings: learning γ can bring a substantial
benefit over just learning the starting point, which in turn brings a considerable benefit with
respect to learning the tasks in isolation. Learning the gradient step makes the meta-learner
more robust to task dissimilarities (i.e. when r increases) as shown in Figure 2. In the
regime where r is low, learning the gradient step does not help the meta-learner as it takes
more steps to reach convergence. Overall both meta learners are consistently better than
learning the task in isolation since the number of observation per task is low.

Figure 2. Performance of learning in isolation with OGA (I-OGA), OPMS to learn initialization (mean-OPMS) and OPMS
to learn initialization and step size (OPMS). We report the average end-of-task MSE losses at the end of each task, for
different values of the task-similarity index r ∈ {0, 5, 10, 30}. The results are averaged over 50 independent runs to get
confidence intervals.

Table 1. Average end-of-task MSE of the 100 last tasks (averaged over 50 independent runs).

r = 0 r = 5 r = 10 r = 30

I-OGA 6.24 6.44 7.06 13.60
mean OPMS 0.05 0.27 0.93 7.93

OPMS 0.07 0.15 0.49 3.72

4.4.2. Synthetic Classification

At each round t = 1, . . . , T, the meta learner sequentially receives a binary classifi-
cation task with the Hinge loss that corresponds to a dataset (xt,i, yt,i)i=1,...,n. The binary
labels {−1, 1} are generated as a logistic model P(y = 1) = (1 + exp(−xtθt))−1. The task
parameters θt and the inputs are generated as in the regression setting. To add some noise,
we shuffle 10% of the labels. We take d = 10, n = 100, T = 500, r = 2. For mean-OPMS and
OPMS we set α = 1/

√
T, for OPMS and I-OGA we set γ = 1/

√
n. For the optimisation

of Ft (18) with both OPMS and mean-OPMS we use a projected gradient descent with
50 steps.
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On Figure 3, for each task t = 1, . . . , T, we report the regret on the end-of-task
losses: R(t) = 1

nt ∑t
k=1 ∑n

i=1 �k,i(θk,n), averaged over 10 independent runs (with their
confidence intervals). As the for regression setting, the results confirm our theoretical
findings: by learning γ (OPMS), we reach a better overall performance than just learning
the initialization (mean-OPMS) and a substantially stronger than independent task learning
(I-OGA). Note that, in the classification regime, there is no known closed formed expression
for the meta-gradient; therefore, OGMS cannot be used.

Figure 3. Performance of learning in isolation with OGA (I-OGA), OPMS to learn the initialization
(mean-OPMS) and OPMS to learn the initialization and step size (OPMS) on a sequence of classifica-
tion tasks with the Hinge loss. We report the meta-regret of the Hinge loss. The results are averaged
over 10 independent runs (dataset generation) to get confidence intervals.

5. Second Example: Learning the Prior or the Learning Rate in Exponentially
Weighted Aggregation

In this section, we will study a generalized Bayesian method, exponentially weighted
aggregation. Consider a finite set Θ0 = {θ1, . . . , θM} ⊂ Rd. EWA depends on a prior
distribution π on Θ0, and on a learning rate η > 0, and returns a decision in Θ =
conv(θ1, . . . , θM) the convex envelope of Θ0. In this section, we work under the follow-
ing condition.

Assumption 3. There is a B ∈ R∗
+, such that for any (t, i) ∈ {1, . . . , T} × {1, . . . , n}, the

function �t,i is Θ → [0, B] and convex.

We will sometimes use a stronger assumption.

Assumption 4. There is a C ∈ R∗
+, such that for any (t, i) ∈ {1, . . . , T} × {1, . . . , n}, the

function θ �→ exp(−�t,i(θ)/C) is concave.

Examples of a situation in which Assumption 4 is satisfied are provided in [3]. Note
that Assumption 4 implies Assumption 3.

5.1. Reminder on EWA

The update in EWA is given by:

θt,i = ∑
θ∈Θ0

pt,i(θ)θ (22)

where pt,i are weights defined by

pt,i(θ) =
exp
[
−η ∑i−1

j=1 �t,j(θ)
]
π(θ)

∑ϑ∈Θ0
exp
[
−η ∑i−1

j=1 �t,j(ϑ)
]
π(ϑ)

. (23)
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The strategy is studied in detail in [3]. We refer the reader to [36] and the references
therein for connections to Bayesian inference. We recall the following regret bounds
from [3]. First, under Assumption 3,

n

∑
i=1

�t,i(θt,i) ≤ min
θ∈Θ0

⎡⎣ n

∑
i=1

�t,i(θ) +
ηnB2

8
+

log 1
π(θ)

η

⎤⎦. (24)

Moreover, under the stronger Assumption 4,

n

∑
i=1

�t,i(θt,i) ≤ min
θ∈Θ0

[
n

∑
i=1

�t,i(θ) + C log
1

π(θ)

]
. (25)

In Section 5.2, we work in the general setting (Assumption 3), and we use our meta-
strategy OPMS or OGMS to learn η. In Section 5.3, we use OPMS or OGMS to learn π
under Assumption 4.

5.2. Learning the Rate η

Consider the uniform prior π(θ) = 1/M for any θ ∈ Θ0. Then, the regret bound (24)
becomes:

n

∑
i=1

�t,i(θt,i) ≤ min
θ∈Θ0

n

∑
i=1

�t,i(θ) +
ηnB2

8
+

log M
η

(26)

and it is then possible to optimize it explicitly with respect to η. The value minimizing the
bound is η = (2/B)

√
2 log(M)/n and the regret bound becomes:

n

∑
i=1

�t,i(θt,i) ≤ min
θ∈Θ0

n

∑
i=1

�t,i(θ) + B

√
n log M

2
. (27)

In practice, however, while it is often reasonable to assume that the loss function
is bounded (as in Assumption 3), very often one does not know a tight upper bound.
Thus, one may use a constant B that satisfies Assumption 3, but that is far too large. Even
though one does not know a better upper bound than B, one would like a regret bound
that depends on the tightest possible upper bound.

In the meta-learning framework, define:

Lt(η) = min
θ∈Θ0

n

∑
i=1

�t,i(θ) +
ηn
[
maxϑ∈Θ0,1≤i≤n �t,i(ϑ)

]2
8

+
log M

η
(28)

for η ∈ Λ = [1/n, 1]. It is immediately necessary to prove that this function is convex and
L-Lipschitz with L = n2 log(M) + nB2/8. So, Assumption 1 is satisfied, allowing for the
use of the OPMS or OGMS strategy without needed a tight upper bound on the losses.
Note that, in this context, the OGMS strategy is given by:

ηt =
1
n

∨
[

ηt−1 − α

(
n
[
maxθ∈Θ0,1≤i≤n �t,i(θ)

]2
8

− log M
η2

t−1

)]
∧ 1.

Theorem 2. Under Assumption 3, using OGMS or OPMS on Lt(η), as in (28) with η1 = 1,
L = n2 log(M) + nB2/8 and

α =
1
L

√
2
T

(29)
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we have

T

∑
t=1

n

∑
i=1

�t,i(θ
ηt
t,i) ≤

T

∑
t=1

min
θ∈Θ0

n

∑
i=1

�t,i(θ) + bT

√
n log(M)

2

+ T log(M) +
b2T

8
+

(
n2 log M +

nB2

8

)√
2T (30)

where
b = max

θ∈Θ0,1≤t≤T,1≤i≤n
|�t,i(θ)|. (31)

Let us compare learning in isolation with meta-learning in this context. When learning
in isolation, the hyperparameter η is fixed (as in (2)). If we fix it to the value η0 =
(2/B)

√
2 log(M)/n as in (27), the meta-regret is in BT

√
n log(M)/2. On the other hand,

meta-learning leads to a meta-regret in bT
√

n log(M)/2+ n2 log M
√

2T +O(nB2
√

T + T).
In other words, we replace the potentially loose upper bound B by the tightest possible
bound b, at the cost of an additional n2 log M

√
2T + O(nB2

√
T + T) term. Here again,

when T is large enough with respect to n, this term is negligible.

5.3. Learning the Prior π

Under Assumption 4, we have the regret bound in (25). Without any information on
Θ0, it seems natural to use the uniform prior π on Θ0 = {θ1, . . . , θM}, which leads to

n

∑
i=1

�t,i(θt,i) ≤ min
θ∈Θ0

n

∑
i=1

�t,i(θ) + C log M. (32)

If some additional information was available, such as, for example: “the best θ is
always either θ1 or θ2”, one would rather chose the uniform prior on {θ1, θ2}, and obtain
the bound:

n

∑
i=1

�t,i(θt,i) ≤ min
θ∈Θ0

n

∑
i=1

�t,i(θ) + C log 2. (33)

Unfortunately, such information is generally not available. However, in the context of
meta-learning, we can take advantage of the previous tasks to learn such information.

Thus, let us define, for any task t,

θ∗
t = argmin

θ∈Θ0

n

∑
i=1

�t,i(θ) (34)

and

Lt(π) =
n

∑
i=1

�t,i(θ
∗
t ) + C log

1
π(θ∗

t )
(35)

for π = (π(θ1), . . . , π(θM)) ∈ Λ with

Λ =

{
x ∈ (R+)

M:
M

∑
h=1

xh = 1 and xh ≥ 1
2M

}
. (36)

It is important to check that Lt is convex and L-Lipschitz with L = 2CM on Λ; this
allows us to use OPMS (or OGMS).

Theorem 3. Under Assumption 4, using OPMS on Lt(π) as in (35) with π1 = (1/M, . . . , 1/M),
L = 2CM and

α =
1

2CM
√

T
, (37)
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define I∗ = {θ∗
1 , . . . , θ∗

T} where each θ∗
t is as in (34) and m∗ = card(I∗). We have

T

∑
t=1

n

∑
i=1

�t,i(θ
πt
t,i ) ≤

T

∑
t=1

n

∑
i=1

�t,i(θ
∗
t ) + CT log(2m∗) + 2CM

√
T. (38)

When learning in isolation with a uniform prior, the meta-regret is TC log(M). On
the other hand, if m∗ is small (that is, many of the θ∗

i s are similar), meta-learning leads to
a meta-regret in CT log(2m∗) + 2CM

√
T. For a T that is large enough, this is an impor-

tant improvement.

5.4. Discussion on the Continuous Case

Let us now discuss the possibility of meta-learning for generalized Bayesian methods
when Θ0 is no longer a finite set. There is a general formula for EWA, given by

ρt,i(dθ) = argmin
ρ

{
Eθ∼ρ

[
i−1

∑
j=1

�t,j(θ)

]
+

K(ρ, π)

η

}
(39)

where the minimum is taken over for all probability distributions that are absolutely contin-
uous with π, and where π is a prior distribution, η > 0 a learning rate and K is the Kullback–
Leibler divergence (KL). Meta-learning for such an update rule is proven in [10,37] but
usually does not lead to feasible strategies. Online variational inference [38,39] consists in
replacing the minimization on the set of all probability distributions by minimization in a
smaller set in order to define a feasible approximation of ρt,i. For example, let (qμ)μ∈M be a
parametric family of probability distributions, Thus, we define:

μt,i = argmin
μ∈M

{
Eθ∼qμ

[
i−1

∑
j=1

�t,j(θ)

]
+

K(qμ, π)

η

}
. (40)

It is discussed in [40] that, generally, when μ is a location-scale parameter and �t,j is
Γ-Lipschitz and convex, then �̄t,i(μ) := Eθ∼qμ

[�t,j(θ)] is 2Γ-Lipschitz and convex. In this
case, under the assumption that K(qμ, π) is α-strongly convex in μ, a regret bound for such
strategies was derived in [39]:

n

∑
i=1

Eθ∼qμt,i
[�t,i(θ)] ≤ inf

μ∈M

{
Eθ∼qμ

[
n

∑
i=1

�t,i(θ)

]
+

η4Γ2n
α

+
K(qμ, π)

η

}
. (41)

A complete study of meta-learning of the rate η > 0 and of the prior π in this context
is an important objective (possibly, with a restriction that π ∈ {qμ, μ ∈ M}). However, this
raises many problems. For example, the KL divergence K(qμ, qμ′) is not always convex
with respect to the parameter μ′. In this case, it might help to replace it by a convex
relaxation that would allow for the use of OGMS or OPMS. This relates to [41,42], who
advocate going beyond the KL divergence in (39); see also [36] and the references therein.
This will be the object of future works.

6. Proofs

We start with a preliminary lemma that will be used in the proof of Proposition 1.

Lemma 1. Let a, b, c be three vectors in Rp. Then:

(a − b)T(b − c) =
‖a − c‖2 − ‖a − b‖2 − ‖b − c‖2

2
. (42)

Proof. expand ‖a − c‖2 = ‖a‖2 + ‖c‖2 − 2aTc in the r.h.s, as well as ‖a − b‖2 and ‖b − c‖2.
Then simplify.
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We now prove Proposition 1 separately for the general OGMS strategy, and then
for OGMS.

Proof of Proposition 1 for OPMS. As mentioned earlier, this strategy is an application to
the meta-learning setting of implicit online learning [32,33]. We follow here a proof from
Chapter 11 in [3]. We refer the reader to [43] and the references therein for tighter bounds
under stronger assumptions.

First, λt is defined as the minimizer of a convex function in (5). So, the subdifferential
of this function at λt contains 0. In other words, there is a zt ∈ ∂Lt−1(λt), such that

zt =
λt−1 − λt

α
. (43)

By convexity, for any λ, for any z ∈ ∂Lt−1(λt),

Lt−1(λ) ≥ Lt−1(λt) + (λ − λt)
Tz. (44)

The choice z = zt gives:

Lt−1(λ) ≥ Lt−1(λt) +
(λ − λt)T(λt−1 − λt)

α
, (45)

that is,

Lt−1(λt) ≤ Lt−1(λ) +
(λ − λt)T(λt − λt−1)

α

= Lt−1(λ) +
‖λ − λt−1‖2 − ‖λ − λt‖2

2α
− ‖λt − λt−1‖2

2α

= Lt−1(λ) +
‖λ − λt−1‖2 − ‖λ − λt‖2

2α
− α

‖zt‖2

2
(46)

where we used Lemma 1. Then, note that

Lt−1(λt−1) = Lt−1(λt) + [Lt−1(λt−1)− Lt−1(λt)]

≤ Lt−1(λt) + ‖λt−1 − λt‖L

≤ Lt−1(λt) + α‖zt‖L. (47)

Combining this inequality with (46) gives

Lt−1(λt−1) ≤ Lt−1(λ) +
‖λ − λt−1‖2 − ‖λ − λt‖2

2α
+ α

(
‖zt‖L − ‖zt‖2

2

)
. (48)

Now, for any x ∈ R, −x2/2 + xL − L2/2 ≤ 0. In particular, ‖zt‖L − ‖zt‖2/2 ≤ L2/2
and so the above can be rewritten:

Lt−1(λt−1) ≤ Lt−1(λ) +
‖λ − λt−1‖2 − ‖λ − λt‖2

2α
+

αL2

2
. (49)

Summing the inequality for t = 2 to T + 1 leads to:

T

∑
t=1

Lt(λt) ≤
T

∑
t=1

Lt(λ) +
‖λ − λ1‖2 − ‖λ − λT+1‖2

2α
+

αTL2

2
. (50)

This ends the proof.

Proof of Proposition 1 for OGMS. The beginning of the proof follows the proof of Theo-
rem 11.1 in [3].

145



Entropy 2021, 23, 1257

Note that we can rewrite (4) as{
λ̃t = λt−1 − α∇Lt−1(λt−1)
λt = ΠΛ(λ̃t)

rearranging the first line, we obtain:

∇Lt−1(λt−1) =
λt−1 − λ̃t

α
. (51)

By convexity, for any λ,

Lt−1(λ) ≥ Lt−1(λt−1) + (λ − λt−1)
T∇Lt−1(λt−1) (52)

= Lt−1(λt−1) +
(λ − λt−1)

T(λt−1 − λ̃t)

α
, (53)

that is,

Lt−1(λt−1) ≤ Lt−1(λ)−
(λ − λt−1)

T(λt−1 − λ̃t)

α
. (54)

Lemma 1 gives:

(λ − λt−1)
T(λt−1 − λ̃t) =

‖λ − λ̃t‖2 − ‖λ − λt−1‖2 − ‖λt−1 − λ̃t‖2

2

=
‖λ − λ̃t‖2 − ‖λ − λt−1‖2 − α2‖∇Lt−1(λt−1)‖2

2
(55)

≥ ‖λ − λt‖2 − ‖λ − λt−1‖2 − α2‖∇Lt−1(λt−1)‖2

2
, (56)

the last step being justified by:

‖λ − λ̃t‖2 ≥ ‖λ − ΠΛ(λ̃t)‖2 = ‖λ − λt‖2 (57)

for any λ ∈ Λ. Plug (56) in (54) to get:

Lt−1(λt−1) ≤ Lt−1(λ) +
‖λ − λt−1‖2 − ‖λ − λt‖2

2α
+

α‖∇Lt−1(λt−1)‖2

2
(58)

and the Lipschitz assumption gives:

Lt−1(λt−1) ≤ Lt−1(λ) +
‖λ − λt−1‖2 − ‖λ − λt‖2

2α
+

αL2

2
(59)

sum the inequality for t = 2 to T + 1 to get:

T

∑
t=1

Lt(λt) ≤
T

∑
t=1

Lt(λ) +
‖λ − λ1‖2 − ‖λ − λT+1‖2

2α
+

αTL2

2
. (60)

This ends the proof of the statement for OGMS.

We now provide a lemma that will be useful for the proof of Proposition 2.

Lemma 2. Let G(u, v) be a convex function of (u, v) ∈ U × V. Define g(u) = infv∈V G(u, v).
Then g is convex.
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Proof. indeed, let λ ∈ [0, 1] and (x, y) ∈ U2,

g(λx + (1 − λ)y) = inf
v∈V

G(λx + (1 − λ)y, v) (61)

≤ G(λx + (1 − λ)y, λx′ + (1 − λ)y′) (62)

≤ λG(x, x′) + (1 − λ)G(y, y′) (63)

where the last two inequalities hold for any (x′, y′) ∈ V2. Let us now take the infimum
with respect to (x′, y′) ∈ V2 in both sides, this gives:

g(λx + (1 − λ)y) ≤ inf
x′∈V

λG(x, x′) + inf
y′∈V

(1 − λ)G(y, y′) (64)

= λg(x) + (1 − λ)g(y), (65)

that is, g is convex.

Proof of Proposition 2. Apply Lemma 2 to u = (ϑ, γ), v = θ, U = Λ, V = Θ and

G(u, v) =
n

∑
i=1

�i,t(θ) +
γΓ2n

2
+

‖ϑ − θ‖2

2γ
. (66)

This shows g(u) = Lt((ϑ, γ)) is convex with respect (ϑ, γ). Additionally, G is differ-
entiable w.r.t u = (ϑ, γ), so

∂G
∂ϑ

=
ϑ − θ

γ
, and

∂G
∂γ

=
nΓ2

2
− ‖ϑ − θ‖2

2γ2 . (67)

As a consequence, for (θ, ϑ) ∈ Θ2 and γ ≤ γ ≤ γ,∥∥∥∥∂G
∂ϑ

∥∥∥∥2
≤ 4C2

γ2 , and
∣∣∣∣∂G

∂γ

∣∣∣∣2 ≤ n2Γ4

4
+

4C4

γ4 . (68)

This leads to

‖∇uG(u, v)‖ =

√∥∥∥∥∂G
∂ϑ

∥∥∥∥2
+

∣∣∣∣∂G
∂γ

∣∣∣∣2 (69)

≤
√

n2Γ4

4
+

4C2

γ2 +
4C4

γ4 =: L, (70)

that is, for each v, G(u, v) is L-Lipschitz in u. So, g(u) = infv∈V G(u, v) is L-Lipschitz
in u.

Proof of Theorem 1. Thanks to the Assumption 2, we can apply Proposition 2. That is,
Assumption (1) is satisfied, and we can apply Proposition 1. This gives:

T

∑
t=1

n

∑
i=1

�t,i(θ
λt
t,i ) ≤ inf

θ1,...,θT∈Θ
inf

(ϑ,γ)∈Λ

{
T

∑
t=1

[
n

∑
i=1

�t,i(θt)

+
γΓ2n

2
+

‖θt − ϑ‖2

2γ

]
+

αTL2

2
+

‖ϑ − ϑ1‖2 + |γ − γ1|2
2α

}
. (71)

147



Entropy 2021, 23, 1257

We use direct bounds for the last two terms: ‖ϑ − ϑ1‖2 ≤ 4C2 and |γ − γ1|2 ≤
|γ − γ|2 ≤ γ2 = C4. Then note that

T

∑
t=1

‖θt − ϑ‖2 = T

∥∥∥∥∥ϑ − 1
T

T

∑
s=1

θs

∥∥∥∥∥
2

+
T

∑
t=1

∥∥∥∥∥θt −
1
T

T

∑
s=1

θs

∥∥∥∥∥
2

(72)

= T

∥∥∥∥∥ϑ − 1
T

T

∑
s=1

θs

∥∥∥∥∥
2

+ Tσ2(θT
1 ). (73)

Upper bounding the infimum on ϑ in (71) by ϑ = 1
T ∑T

s=1 θs leads to

T

∑
t=1

n

∑
i=1

�t,i(θ
λt
t,i ) ≤ inf

θ1,...,θT∈Θ
inf

γ∈[γ,γ]

{
T

∑
t=1

n

∑
i=1

�t,i(θt) +
γΓ2nT

2

+
Tσ2(θT

1 )

2γ
+

αTL2

2
+

C2(4 + C2)

2α

}
. (74)

The right-hand side of (74) is minimized with respect to α if α = C
L

√
4+C2

T , which is
the value proposed in the theorem, and we obtain:

T

∑
t=1

n

∑
i=1

�t,i(θ
λt
t,i ) ≤ inf

θ1,...,θT∈Θ
inf

γ∈[γ,γ]

{
T

∑
t=1

n

∑
i=1

�t,i(θt) +
γΓ2nT

2
+

Tσ2(θT
1 )

2γ
+ CL

√
(4 + C2)T

}
. (75)

The infimum with respect to γ in the r.h.s is reached for

γ∗ =

(
γ ∨ σ(θT

1 )

Γ
√

n

)
∧ γ. (76)

First, note that

γ∗Γ2nT
2

≤
(

γ ∨ σ(θT
1 )

Γ
√

n

)
Γ2nT

2
(77)

≤
(

γ +
σ(θT

1 )

Γ
√

n

)
Γ2nT

2
(78)

=
Γ2Tn1−β

2
+

σ(θT
1 )ΓT

√
n

2
, (79)

using γ = n−β. Then,

Tσ2(θT
1 )

2γ∗ ≤ Tσ2(θT
1 )

2

(
1
γ

∨ Γ
√

n
σ(θT

1 )

)
(80)

≤ Tσ2(θT
1 )

2

(
1
γ
+

Γ
√

n
σ(θT

1 )

)
(81)

=
Tσ2(θT

1 )

2C2 +
σ(θT

1 )ΓT
√

n
2

(82)

≤ Tσ(θT
1 )

C
+

σ(θT
1 )ΓT

√
n

2
, (83)

using γ = C2 and σ(θT
1 ) ≤ 2C. Plugging (77), (80) and the definition of L into (75) gives
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T

∑
t=1

n

∑
i=1

�t,i(θ
λt
t,i ) ≤ inf

θ1,...,θT∈Θ

{
T

∑
t=1

n

∑
i=1

�t,i(θt) + C

√(
n2Γ4

4
+ 4C2n2β + 4C4n4β

)
(4 + C2)T (84)

+
Γ2Tn1−β

2
+ σ(θT

1 )T
(

Γ
√

n +
1
C

)}
(85)

= inf
θ1,...,θT∈Θ

{
T

∑
t=1

n

∑
i=1

�t,i(θt) + C

√
(4 + C2)

(
n2Γ4

4n2∨4β
+

4C2n2β

n2∨4β
+

4C4n4β

n2∨4β

)
n1∨2β

√
T (86)

+

[
Γ2

2
n1−β +

(
Γ +

1
nC

)
σ(θT

1 )
√

n
]

T

}
(87)

≤ inf
θ1,...,θT∈Θ

{
T

∑
t=1

n

∑
i=1

�t,i(θt) + C

√
(4 + C2)

(
Γ2

4
+ 4C2 + 4C4

)
n1∨2β

√
T (88)

+

[
Γ2

2
n1−β +

(
Γ +

1
C

)
σ(θT

1 )
√

n
]

T

}
(89)

≤ inf
θ1,...,θT∈Θ

{
T

∑
t=1

n

∑
i=1

�t,i(θt) + C(Γ, C)

[
n1∨2β

√
T +

(
n1−β + σ(θT

1 )
√

n

)
T

]
(90)

where we took

C(Γ, C) = max

(
C

√
(4 + C2)

(
Γ2

4
+ 4C2 + 4C4

)
,

Γ2

2
, Γ +

1
C

)
. (91)

This ends the proof.

Proof of Theorem 2. A direct application of Proposition 1 gives

T

∑
t=1

n

∑
i=1

�t,i(θ
ηt
t,i) ≤ inf

η≥ 1
n

{
T

∑
t=1

min
θ∈Θ0

[
n

∑
i=1

�t,i(θ)

+
ηn
[
maxϑ∈Θ0,1≤i≤n �t,i(ϑ)

]2
8

+
log M

η

]
+

αTL2

2
+

(η − 1)2

2α

}
. (92)

Thus, we have

T

∑
t=1

n

∑
i=1

�t,i(θ
ηt
t,i) ≤ inf

η≥ 1
n

{
T

∑
t=1

min
θ∈Θ0

[
n

∑
i=1

�t,i(θ) +
ηnb2

8
+

log M
η

]
+

αTL2

2
+

(η − 1)2

2α

}
. (93)

Now, plugging in the right-hand side

η =
1
n

∨
(

2
b

√
2 log M

n

)
∧ 1, (94)

we obtain:

T

∑
t=1

n

∑
i=1

�t,i(θ
ηt
t,i) ≤

T

∑
t=1

min
θ∈Θ0

[
n

∑
i=1

�t,i(θ) +
b2

8
+ b

√
n log(M)

2
+ log(M)

]
+

αTL2

2
+

1
2α

. (95)
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Now, we see that the value α =
√

2/(TL2) leads to:

T

∑
t=1

n

∑
i=1

�t,i(θ
ηt
t,i) ≤

T

∑
t=1

min
θ∈Θ0

[
n

∑
i=1

�t,i(θ) +
b2

8
+ b

√
n log(M)

2
+ log(M)

]
+ L

√
2T. (96)

Rearranging terms, and replacing L by its value,

T

∑
t=1

n

∑
i=1

�t,i(θ
ηt
t,i) ≤

T

∑
t=1

min
θ∈Θ0

n

∑
i=1

�t,i(θ) + bT

√
n log(M)

2
+

b2T
8

+ T log(M)

+

(
n2 log M +

nB2

8

)√
2T, (97)

that is the statement of the theorem.

Proof of Theorem 3. An application of Proposition 1 leads to

T

∑
t=1

n

∑
i=1

�t,i(θ
πt
t,i ) ≤ min

π∈Λ

{
T

∑
t=1

[
n

∑
i=1

�t,i(θ
∗
t ) + C log

1
π(θ∗

t )

]
+

αTL2

2
+

‖π − π1‖2

2α

}
(98)

and so

T

∑
t=1

n

∑
i=1

�t,i(θ
πt
t,i ) ≤ min

π∈Λ

{
T

∑
t=1

[
n

∑
i=1

�t,i(θ
∗
t ) + C log

1
π(θ∗

t )

]
+

αTL2

2
+

1
2α

}
(99)

define πI∗ such that πI∗(θj) = 1/(2m∗) if j ∈ I∗ and πI∗(θj) = 1/(2(M − m∗)) otherwise.
We have π∗

I ∈ Λ and thus

T

∑
t=1

n

∑
i=1

�t,i(θ
πt
t,i ) ≤

T

∑
t=1

[
n

∑
i=1

�t,i(θ
∗
t ) + C log(2m∗)

]
+

αTL2

2
+

1
2α

. (100)

Replace L and α by their values to get the theorem.

7. Conclusions

We proposed two simple meta-learning strategies together with their theoretical
analysis. Our results clearly show an improvement on learning in isolation if the tasks are
similar enough. These theoretical findings are confirmed by our numerical experiments.
Important questions remain open. In [27], a purely online method is proposed, in the sense
that it does not require storing all of the information of the current task. In the case of OGA,
this method allows us to learn the starting point. However, its application to learn the step
size is not direct [28]. An important question is, then: is there a purely online method that
would provably improve on learning in isolation in this case? Another important question
is the automatic calibration of Γ. However, as mentioned in Section 5, we believe that a
very general and efficient meta-learning method for learning priors in Bayesian statistics
(or in generalized Bayesian inference) would be extremely valuable in practice.
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Abstract: We propose cube thinning, a novel method for compressing the output of an MCMC
(Markov chain Monte Carlo) algorithm when control variates are available. It allows resampling
of the initial MCMC sample (according to weights derived from control variates), while imposing
equality constraints on the averages of these control variates, using the cube method (an approach
that originates from survey sampling). The main advantage of cube thinning is that its complexity
does not depend on the size of the compressed sample. This compares favourably to previous
methods, such as Stein thinning, the complexity of which is quadratic in that quantity.

Keywords: control variates; Markov chain Monte Carlo; thinning

1. Introduction

MCMC (Markov chain Monte Carlo) remains, to this day, the most popular approach
to sampling from a target distribution p, in particular in Bayesian computations [1].

Standard practice is to run a single chain, X1, . . . , XN according to a Markov kernel
that leaves invariant p. It is also common to discard part of the simulated chain, either to
reduce its memory footprint, or to reduce the CPU cost of later post-processing operations,
or more generally for the user’s convenience. Historically, the two common recipes for
compressing an MCMC output are:

• burn-in, which allows discarding the b first states;
• thinning, which allows retaining only one out of t (post burn-in) states.

The impact of either recipes on the statistical properties of the subsampled estimates
are markedly different. Burn-in reduces the bias introduced by the discrepancy between p
and the distribution of the initial state X1 (since Xb ≈ p for b large enough). On the other
hand, thinning always increases the (asymptotic) variance of MCMC estimators [2].

Practitioners often choose b (the burn-in period) and t (the thinning frequency) sepa-
rately, in a somewhat ad hoc fashion (i.e., through visual inspection of the initial chain), or
using convergence diagnosis such as, e.g., those reviewed in [3].

Two recent papers [4,5] cast a new light on the problem of compressing an MCMC
chain by considering, more generally, the problem, for a given M, of selecting the subsample
of size M that best represents (according to a certain criterion) the target distribution p. We
focus for now on [5], for reasons we explain below.

Stein thinning, the method developed in [5], chooses the subsample S of size M which
minimises the following criterion:

D(S) :=
1

M2 ∑
m,n∈S

kp(Xm, Xn), S ⊂ {1, . . . , N}, |S| = M (1)

where kp is a p-dependent kernel function derived from another kernel function k: X ×
X → R, as follows:

kp(x, y) = ∇x ·∇yk(x, y)+ 〈∇xk(x, y), sp(y)〉+ 〈∇yk(x, y), sp(x)〉+ k(x, y)〈sp(x), sp(y)〉
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153



Entropy 2021, 23, 1017

with 〈·, ·〉 being the Euclidean inner product, sp(x) := ∇ log p(x) is the so-called score
function (gradient of the log target density), and ∇ is the gradient operator.

The rationale behind criterion (1) is that it may be interpreted as the KSD (kernel Stein
discrepancy) between the true distribution p and the empirical distribution of subsample S.
We refer to [5] for more details on the theoretical background of the KSD, and its connection
to Stein’s method.

Stein thinning is appealing, as it seems to offer a principled, quasi-automatic way
to compress an MCMC output. However, closer inspection reveals the following three
limitations.

First, it requires computing the gradient of the log-target density, sp(x) = ∇ log p(x).
This restricts the method to problems where this gradient exists and is tractable (and, in
particular, to X = Rd).

Second, its CPU cost is O(NM2). This makes it nearly impossible to use Stein thin-
ning for M & 100. This cost stems from the greedy algorithm proposed in [5], see
their Algorithm 1, which adds at iteration t the state Xi which minimises kp(Xi, Xi) +

∑j∈St−1
kp(Xi, Xj), where St−1 is the sample obtained from the t − 1 previous iterations.

Third, its performance seems to depend in a non-trivial way on the original kernel
function k; the authors of [5] propose several strategies for choosing and scaling k, but none
of them seem to perform uniformly well in their numerical experiments.

We propose a different approach in this paper, which we call cube thinning, and
which addresses these shortcomings to some extent. Assuming the availability of J control
variates (that is, of functions hj with known expectation under p), we cast the problem of
MCMC compression as that of resampling the initial chain under constraints based on these
control variates. The main advantage of cube thinning is that its complexity is O(NJ3); in
particular, it does not depend on M. That makes it possible to use it for much larger values
of M. We shall discuss the choice of J, but, by and large, J should be of the same order as d,
the dimension of the sampling space. The name stems from the cube method of [6], which
plays a central part in our approach, as we explain in the body of the paper.

The availability of control variates may seem like a strong requirement. However, if
we assume we are able to compute sp(x) = ∇ log p(x), then (for a large class of functions
φ : Rd → Rd, which we define later)

Ep
[
φ(x)sp(x) +∇x · φ(x)

]
= 0

where ∇x · φ denotes the divergence of φ. In other words, the availability of the score
function implies, automatically, the availability of control variates. The converse is not true:
there exists control variates, e.g., [7], that are not gradient-based. One of the examples we
consider in our numerical examples feature such non gradient-based control variates; as a
result, we are able to apply cube thinning, although Stein thinning is not applicable.

The supporting methods of [4] do not require control variates. It is thus more generally
applicable than either cube thinning or Stein thinning. On the other hand, when gradients
(and thus control variates) are available, the numerical experiments of [5] suggest that Stein
thinning outperforms support points. From now on, we focus on situations where control
variates are available.

This paper is organised as follows. Section 2 recalls the concept of control variates,
and explains how control variates may be used to reweight an MCMC sample. Section 3
describes the cube method of [6]. Section 4 explains how to combine control variates and
the cube method to perform cube thinning. Section 5 assesses the statistical performance of
cube thinning through two numerical experiments.

We use the following notations throughout: p denotes both the target distribution
and its probability density; p( f ) is a short-hand for the expectation of f (X) under p. The
gradient of a function f is denoted by ∇x f (x), or simply ∇ f (x) when there is no ambiguity.
The i−-th component of a vector v ∈ Rd is denoted by v[i], and it is transposed by vt. The
vectors of the canonical basis of Rd are denoted by ei, i.e., ei[j] = 1 if j = i, 0 otherwise.
Matrices are written in upper-case; the kernel (null space) of matrix A is denoted by
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kerA. The set of functions f : Ω → Rd that are continuously differentiable is denoted by
C1(Ω,Rd).

2. Control Variates

2.1. Definition

Control variates are a very well known way to reduce the variance of Monte Carlo
estimates—see, e.g., the books of [1,8,9].

Suppose we want to estimate the quantity p( f ) = Ep[ f (X)] for a suitable f : Rd →
R, based on an IID (independent and identically distributed) sample {X1, . . . , XN} from
distribution p. The generalisation of control variates to MCMC will be discussed in Section 4.

The usual Monte Carlo estimator of p( f ) is

p̂( f ) =
1
N

N

∑
n=1

f (Xn). (2)

Assume we know J ∈ N� functions hj : Rd → R for j ∈ {1, . . . , J} such that p(hj) = 0.
Functions with this property are called control variates. We can use this property to build
an estimate with a lower variance: let us denote h(X) = (h1(X), . . . , hJ(X))t and write our
new estimate:

p̂β( f ) =
1
N

N

∑
n=1

f (Xn) + βth(Xn) (3)

with β ∈ RJ . Then it is straightforward to show that E[ p̂β( f )] = E[ p̂( f )] = p( f ). Depend-
ing on the choice of β, we may have Var[ p̂β( f )] ≤ Var[ p̂( f )]. The next section discusses
how to choose such a β.

2.2. Control Variates as a Weighting Scheme

The standard approach to choose β consists of two steps. First, one shows easily that
the value the minimises the variance of estimator (3) is:

β�( f ) = Var(h(X))−1Cov(h(X), f (X)) (4)

where Var(h(X)) is the J × J variance matrix of the vector h(X) and Cov(h(X), f (X)) is
the J × 1 vector such that Cov(h(X), f (X))i,1 = Cov( f (X), hi(X)).

Second, one realises that this quantity may be estimated from the sample X1, . . . , XN
through a simple linear regression model, where the f (Xn)s are the outcome, and the
hj(Xn)s are the predictors:

f (Xn) ≈ μ + βth(Xn) + εn, E[εn] = 0. (5)

More precisely, let γ ∈ RJ+1 be the vector such that γt = (μ, βt), H = (Hij) the design
matrix such that Hi1 = 1, Hi(j+1) = hj(Xi), and F = ( f (X1), . . . , f (XN)). Then, the OLS
(ordinary least squares) estimate of γ is

γ̂OLS = (Ht H)−1HtF. (6)

Since E[ f (Xn)] = μ in this artificial regression model, the first component of γ̂OLS:

p̂�( f ) := γ̂OLS × e1, (7)

actually corresponds to estimate (3) when β = β̂OLS.
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At first glance, the approach described above seems to require implementing a differ-
ent linear regression for each function f of interest. Ref. [9] noted, however, that one may
re-express (7) as a weighted average:

p̂�( f ) =
N

∑
n=1

wn f (Xn) (8)

where the weights wn sum to one, and do not depend on f . It is thus possible to compute
these weights once from a given sample (given a certain choice of control variates), and
then quickly compute p̂�( f ) for any function f of interest.

The exact expression of the weights are easily deduced from (7) and (6): w = (wn) with

w = H(Ht H)−1e1.

2.3. Gradient-Based Control Variates

In this section and the next, we recall generic methods to construct control variates.
This section specifically considers control variates that are derived from the score function,
sp(x) = ∇ log p(x). (We therefore assume that this quantity is tractable.)

Under the following two conditions:

1. The probability density p ∈ C1(Ω,R) where Ω ⊆ Rd is an open set;
2. Function φ ∈ C1(Ω,Rd) is such that

∮
∂Ω p(x)φ(x) · n(x)S(dx) = 0 where

∮
∂Ω denotes

the integral over the boundary of Ω, and S(dx) is the surface element at x ∈ ∂Ω.

The following function:

h(x) = ∇x · φ(x) + φ(x) · sp(x) (9)

is a control variate: p(h) = 0, see, e.g., [10] or [11] for further details. To gain some insight,
note that in dimension 1 and assuming the domain of integration is an interval ]a, b[⊂ R,
this amounts to an integration by parts with the condition that h(b)p(b)− h(a)p(a) = 0.

Thus, whenever the score function is available (and the conditions above hold), we
are able to construct an infinite number of control variates (one for each function φ). For
simplicity, we shall focus on the following standard classes of such functions. First, for
i = 1, . . . , d,

φi : Rd → Rd

x �→ ei

which leads to the following d control variates:

hi(x) = sp(x)[i]. (10)

For a Gaussian target, N(μ, Σ), the score is sp(x) = −Σ−1(x − μ), and the control
variates above make it possible to reweight the Monte Carlo sample to make it have the
same expectation as the target distribution.

Second, we consider, for i, j = 1, . . . , d:

φij : Rd → Rd

x �→ x[i]ej

which leads to the following d2 control variates:

hij(x) = 1{i = j}+ x[i]sp(x)[j]. (11)

Again, for a Gaussian target N(μ, Σ), this makes it possible to fix the empirical covari-
ance matrix to true covariance Σ.
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In our simulations, we consider two sets of control variates: the ‘full’ set, consisting
of the d control variates defined by (10), and the d2 control variates defined by (11), and a
‘diagonal’ set of 2d control variates, where for (11), we only consider the cases where i = j.
Of course, the former set should lead to a better performance (lower variance), but since
the complexity of our approach will be O(J3), where J is the number of control variates,
taking J = O(d2) may be too expensive whenever the dimension d is large. In fact, when d
is very large, one might even consider considering only control variates that depend on a
few components of x of interest.

2.4. MCMC-Based Control Variates

We mention in passing other ways to construct control variates, in particular in the
context of MCMC.

For instance, [7] noted that, for a Markov chain {Xn}, the quantity

φ(Xn)−E[φ(Xn)|Xn=1]

has zero expectations. In particular, if the MCMC kernel is a Gibbs sampler, it is likely that
one is able to compute the conditional expectation of each component, i.e., φ(x) = x[i] for
i = 1, . . . , d.

See also [12,13] for other ways to construct control variates when the Xns are simulated
from a Metropolis kernel.

3. The Cube Method

We review in this section the cube method of [6]. This method originated from survey
sampling and is a way to sample from a finite population under constraints. The first
subsection gives some definitions, the second one explains the flight phase of the cube
method and the third subsection discusses the landing phase of the method.

3.1. Definitions

Suppose we have a finite population {1, . . . , N} of N individuals and that to each
individual n = 1, . . . , N is associated a variable of interest yn and J auxiliary variables,
vn = (vn1, . . . , vnJ). Without loss of generality, suppose also that the J vectors (v1j, . . . , vNj)

are linearly independent. We are interested in estimating the quantity Y = ∑N
n=1 yn using a

subsample of {1, . . . , N}. Furthermore, we know the exact value of each sum Vj = ∑N
n=1 vnj,

and we wish to use this auxiliary information to better estimate Y.
We assign, to each individual n, a sampling probability πn ∈ [0, 1]. We consider

random variables Sn such that, marginally, P(Sn = 1) = πn. We may then define the
Horvitz–Thompson estimator of Y as

Ŷ =
N

∑
n=1

Snyn

πn
(12)

which is unbiased, and which depends only on selected individuals (i.e., Sn = 1).
We define similarly the Horvitz–Thompson estimator of Vj as

V̂j =
N

∑
n=1

Snvnj

πn
. (13)

Our objective is to construct a joint distribution ξ for the inclusion variables Sn such
that Pξ(Sn = 1) = πn for all n = 1, . . . , N, and

V̂ = V ξ-almost surely. (14)

where V = (V1, . . . , VJ), V̂ = (V̂1, . . . , V̂J). Such a probability distribution is called a
balanced sampling design.
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3.2. Subsamples as Vertices

We can view all the possible samples from {1, . . . , N} as the vertices of the hypercube
C = [0, 1]N in RN . A sampling design with inclusion probabilities πn = Pξ(Sn = 1) is then
a distribution over the set of these vertices such that E[S] = π, where S = (S1, . . . , SN)

t,
and π = (π1, . . . , πN)

t is the vector of inclusion probabilities. Hence, π is expressed as a
convex combination of the vertices of the hypercube.

We can think of a sampling algorithm as finding a way to reach any vertex of the cube,
starting at π, while satisfying the balancing Equation (14). However, before we describe
such a sampling algorithm, we may wonder if it is possible to find a vertex such that (14)
is satisfied.

3.3. Existence of a Solution

The balancing equation, Equation (14), defines a linear system. Indeed, we can re-
express (14) as S, as a solution to As = V, where A = (Ajn) is of dimension J × N,
Ajn = vkn/πn. This system defines a hyperplane Q of dimension N − J in RN .

What we want is to find vertices of the hypercube C that also belong to the hyperplane
Q. Unfortunately, it is not necessarily possible, as it depends on how the hyperplane
Q intersects cube C. In addition, there is no way to know beforehand if such a vertex
exists. Since π ∈ Q, we know that K := C ∩ Q �= ∅ and is of dimension N − J. The
only thing we can say is stated Proposition 1 in [6]: if r is a vertex of K, then in general
q = card({n : 0 < r[n] < 1}) ≤ J.

The next section describes the flight phase of the cube algorithm, which generates a
vertex in K when such vertices exist, or which, alternatively, returns a point in K with most
(but not all) components set to zero or one. In the latter case, one needs to implement a
landing phase, which is discussed in Section 3.5.

3.4. Flight Phase

The flight phases simulates a process π(t) which takes values in K = C ∩ Q, and starts
at π(0) = π. At every time t, one selects a unit vector u(t), then one chooses randomly
between one of the two points that are in the intersection of the hypercube C and the line
parallel to u(t) that passes through π(t − 1). The probability of selecting these two points
are set to ensure that π(t) is a martingale; in that way, we have E[πt] = π at every time
step. The random direction u(t) must be generated to fulfil the following two requirements:
(a) that the two points are in Q, i.e., u(t) ∈ kerA, and (b) whenever π(t) reaches one of the
faces of the hypercube, it must stay within that face; thus, u(t)[k] = 0 if π(t − 1)[k] = 0
or 1.

Algorithm 1 describes one step of the flight phase.

Algorithm 1: Flight phase iteration

Input: π(t − 1)
Output: π(t)

1 Sample u(t) in ker A with uk(t) = 0 if the k-th component of π(t − 1) is an integer.
2 Compute λ�

1 and λ�
2, the largest values of λ1 > 0 and λ2 > 0 such that:

0 ≤ π(t − 1) + λ1u(t) ≤ 1 and 0 ≤ π(t − 1)− λ2u(t) ≤ 1.
3 With probability λ�

2/(λ�
1 + λ�

2), set π(t) ← π(t − 1) + λ1u(t); otherwise, set
π(t) ← π(t − 1)− λ2u(t).

The flight phase stops when Step 1 of Algorithm 1 cannot be performed (i.e., no vector
u(t) fulfils these conditions). Until this happens, each iteration increases by at least one the
number of components in π(t) that are either zero or one. Thus, the flight phases completes
at most in N steps.

In practice, to generate u(t), one may proceed as follows: first generate a random vec-
tor v(t) ∈ RN , then project it in the constraint hyperplane: u(t) = I(t)v(t)− I(t)At(AI(t)At)−
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AI(t)v(t), where I(t) is a diagonal matrix such that Ikk(t) is 0 if πk(t) is an integer and 1
otherwise, and M− denotes the pseudo-inverse of the matrix M.

The authors of [14] propose a particular method to generate vector v(t), which ensures
that the complexity of a single iteration of the flight phase is O(J3). This leads to an overall
complexity of O(NJ3) for the flight phase, since it terminates in at most N iterations.

3.5. Landing Phase

Denote by π� the value of process π(t) when the flight phase terminates. If π� is a
vertex of C (i.e., all its components are either zero or one), one may stop and return π�

as the output of the cube algorithm. If π� is not a vertex, this informs us that no vertex
belongs to K. One may implement a landing phase, which aims at choosing randomly a
vertex which is close to π�, and such that the variance of the components of V̂ is small.

Appendix A gives more details on the landing phase. Note that its worst-case com-
plexity is O(2J). However, in practice, it is typically either much faster, or not required (i.e.,
π� is already a vertex) as soon as J � N.

4. Cube Thinning

We now explain how the previous ingredients (control variates, and the cube method)
may be combined in order to thin a Markov chain, X1, . . . , XN , into a subsample of size M.
As before, the invariant distribution of the chain is denoted by p, and we assume we know
of J control variates hj, i.e., p(hj) = 0 for j = 1, . . . , J.

4.1. First Step: Computing the Weights

The first step of our method is to use the J control variates to compute the N weights
wn, as defined at the end of Section 2.2. Recall that these weights sum to one, and that they
automatically fulfil the constraints:

N

∑
n=1

wnhj(Xn) = 0 (15)

for j = 1, . . . , J, and that we use them to compute

p̂�( f ) =
N

∑
n=1

wn f (Xn) (16)

as a low-variance estimate for p( f ) for any f .
Recall that the control variates procedure we described in Section 2 assume that the

input variables, X1, . . . , XN , are IID. This is obviously not the case in an MCMC context;
however, we follow the common practice [10,11] of applying the procedure to MCMC
points as if they were IID points. This implies that the weighted estimate above corresponds
to a value of β in (3) that does not minimise the (asymptotic) variance of estimator (3). It
is actually possible to estimate the value of β that minimises the asymptotic variance of
an MCMC estimate [7,15]. However, this type of approach is specific to certain MCMC
samplers, and, critically for us, it cannot be cast as a weighting scheme. Thus, we stick to
this standard approach.

We note in passing that, in our experiments (see Figure 1 and the surrounding discus-
sion), the weights wn make it easy to visually assess the convergence (and thus the burn-in)
of the Markov chain. In fact, since the MCMC points of the burn-in phase are far from the
mass of the target distribution, the procedure must assign a small or negative weight to
these points in order to respect the constraints based on the control variates. Again, see
Section 5.2 for more discussion on this issue. The fact that control variates may be used to
assess MCMC convergence has been known for a long time (e.g., [16]), but the visualisation
of weights makes this idea more expedient.
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Figure 1. Lotka–Volterra example: first 5000 weights of the cube methods, based on full (top) or
diagonal (bottom) set of covariates.

4.2. Second Step: Cube Resampling

The second step consists in resampling the weighted sample (wn, Xn)n=1,...,N , to obtain
a subsample S = {Xn : Sn = 1} where Sn are random variables such that (a) E[Sn] = wn;
(b) ∑N

n=1 Sn = M, and (c) for j = 1, . . . , J:

∑
Sn=1

hj(Xn) = 0.

Condition (a) ensures that the procedure does not introduce any bias:

E

[
1
M ∑

Sn=1
f (Xn)

∣∣∣∣X1:N

]
=

N

∑
n=1

wn f (Xn).

Condition (b) ensures that the subsample is exactly of size M.
We would like to use the cube method in order to generate the Sn’s. Specifically, we

would like to assign the inclusion probabilities πn to wn, and impose the (J + 1) constraints
defined above by conditions (b) and (c). There is one caveat, however: the weights wn do
not necessarily lie in [0, 1].

4.3. Dealing with Weights Outside of [0, 1]

We rewrite (16) as:

p̂�( f ) =
Ω
M

×
N

∑
n=1

Wn × sgn(wn) f (Xn) (17)
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where Ω = ∑N
n=1 |wn| and Wn = M|wn|/Ω. We now have Wn ≥ 0, and ∑N

n=1 Wn = M,
which is required for condition (b) in the previous section. We might have a few points
such that Wn > 1. In that case, we replace them by 'Wn( copies, with adjusted weights
Wn/'Wn(.

It then becomes possible to implement the cube method, using as inclusion probabili-
ties the Wns, and as the matrix A that defines the J + 1 constraints, the matrix A = (Ajn)
such that A1n = 1, A(j+1)n = sgn(wn)hj(Xn). The cube method samples variables Sn,
which may be used to compute the subsampled estimate

ν̂( f ) =
Ω
M ∑

Sn=1
sgn(wn) f (Xn). (18)

More generally, in our numerical experiments, we shall evaluate to which extent the
random signed measure:

ν̂ =
Ω
M ∑

Sn=1
sgn(wn)δXn(dx). (19)

is a good approximation of the target distribution p.

5. Experiments

We consider two examples. The first example is taken from [5], and is used to compare
cube thinning with KSD thinning. The second example illustrates cube thinning when used
in conjunction with control variates that are not gradient-based. We also include standard
thinning in our comparisons.

Note that there is little point in comparing these methods in terms of CPU cost, as
KSD thinning is considerably slower than cube thinning and standard thinning whenever
M & 100. (In one of our experiments, for M = 1000, KSD took close to 7 h to run, while
cube thinning with all the covariates took about 30 s.) Thus, our comparison will be in
terms of statistical error, or, more precisely, in terms of how representative of p is the
selected subsample.

In the following (in particular in the plots), “cubeFull” (resp. “cubeDiagonal”) will
refer to our approach based on the full (resp. diagonal) set of control variates, as discussed
in Section 2.3. “NoBurnin” means that burn-in has been discarded manually (hence, no
burn-in in the inputs). Finally, “thinning” denotes the usual thinning approach, “SMPCOV”,
“MED” and “SCLMED” are the same names used in [5] for KSD thinning, based on three
different kernels.

To implement the cube method, we used R package BalancedSampling.

5.1. Evaluation Criteria

We could compare the three different methods in terms of variance of the estimates
of p( f ) for certain functions f . However, it is easy to pick functions f that are strongly
correlated with the chosen control variates; this would bias the comparison in favour of
our approach. In fact, as soon as the target is Gaussian-like, the control variates we chose in
Section 2.3 should be strongly correlated with the expectation of any polynomial function
of order two, as we discussed in that section.

Rather, we consider criteria that are indicative of the performance of the methods for
a general class of function. Specifically, we consider three such criteria. The first one is the
kernel Stein discrepency (KSD) as defined in [5] and recalled in the introduction—see (1).
Note that this criterion is particularly favourable for KSD thinning, since this approach
specifically minimises this quantity. (We use the particular version based on the median
kernel in Riabiz et al. [5].)

The second criterion is the energy distance (ED) between p and the empirical distri-
bution defined by the thinning method, e.g., (19) for cube thinning. Recall that the ED
between two distributions F and G is:
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ED(F, G) = 2E||Z − X||2 −E||Z − Z′||2 −E||X − X′||2 (20)

where Z′, Z iid∼ F and X′, X iid∼ G, and that this quantity is actually a pseudo-distance:
ED(F, G) ≥ 0, ED(F, G) = 0 ⇒ F = G, ED(F, G) = ED(G, F), but ED does not fulfil the
triangle inequality [17,18].

One technical difficulty is that (19) is a signed measure, not a probability measure; see
Appendix B on how we dealt with this issue.

Our third criterion is inspired by the star discrepancy, a well-known measure of
the uniformity of N points un ∈ [0, 1]d in the context of quasi-Monte Carlo sampling [9]
(Chapter 15). Specifically, we consider the quantity

d�(P̂, ν̂) = sup
B∈B

∣∣P̂ψ(B)− ν̂ψ(B)
∣∣

where ψ : Rd → [0, 1]d, P̂ψ and ν̂ψ are the push-forward measures associated to empirical
distributions P̂ = (N − b)−1 ∑N

n=b+1 δXn(dx), and ν̂ as defined in (19), and B is the set of
hyper-rectangles B = ∏d

i=1[0, bi]. In practice, we defined function ψ as follows: we apply
the linear transform that makes the considered sample to have zero mean and unit variance,
and then we applied the inverse CDF (cumulative distribution function) of a unit Gaussian
to each component.

Additionally, since the sup above is not tractable, we replace it by a maximum over a
finite number of bi (simulated uniformly).

5.2. Lotka–Volterra Model

This example is taken from [5]. The Lotka–Volterra model describes the evolution of a
prey–predator system in a closed environment. We denote the number of prey by u1 and
the number of predators by u2. The growth rate of the prey is controlled by a parameter
θ1 > 0 and its death rate—due to the interactions with the predators—is controlled by a
parameter θ2 > 0. In the same way, the predator population has a death rate of θ3 > 0 and
a growth rate of θ4 > 0. Given these parameters, the evolution of the system is described
by a system of ODEs:

du1

dt
= θ1u1 − θ2u1u2

du2

dt
= θ4u1u2 − θ3u2

Ref. [5] set θ = (θ1, θ2, θ3, θ4) = (0.67, 1.33, 1, 1), the initial condition u0 = (1, 1),
and simulate synthetic data. They assume they observe the populations of prey and
predator at times ti, i = 1, . . . , 2400 where the ti are taken uniformly on [0, 25] and
that these observations are corrupted with a centered Gaussian noise with a covari-
ance matrix C = diag(0.22, 0.22). Finally, the model is parametrised in terms of x =
(log θ1, log θ2, log θ3, log θ4) ∈ R4 and a standard normal distribution as a prior on x is used.

The authors have provided their code as well as the sampled values they obtained
by running different MCMC chains for a long time. We use the exact same experimental
set-up, and we do not run any MCMC chain on our own, but use the ones they provide
instead, specifically the simulated chain, of length 2 × 106, from preconditionned MALA.

We compress this chain into a subsample of size either M = 100 or M = 1000. For each
value of M, we run different variations of our cube method 50 times and make a comparison
with the usual thinning method and with the KSD thinning method with different kernels,
see [5]. In Figure 1, we show the first 5000 weights of the cube method. We can see that
after 1000 iterations, the weights seem to stabilise. Based on visual examination of these
weights, we chose a conservative burn-in period of 2000 iterations for the variants where
burn-in is removed manually.

We plot the results of the experiment in Figures 2–4.
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First, we see that regarding the kernel Stein discrepancy metric, Figure 2, the KSD
method performs better than the standard thinning procedure and the cube method. This
is not surprising since, even if this method does not properly minimise the Kernel–Stein
Discrepency, this is still its target. We also see that, for M = 1000, the KSD method performs
a bit better than our cube method which in turn performs better than the standard thinning
procedure. Note that the relative performance of the KSD method to our cube methods
depends on the kernel that is being used and that there is no way to determine which
kernel will perform best before running any experiment.

The picture is different for M = 100: KSD thinning outperforms standard thinning,
which in turn outperforms all of our cube thinning variations. Once again, the fact that
the KSD method performs better than any other method seems reasonable: since it re-
gards minimizing the Kernel–Stein Discrepancy, the KSD method is “playing at home” on
this metric.

If we look at Figure 4, we see that all of our cube methods outperform the KSD method
with any kernel. Interestingly, the standard thinning methods has a similar energy distance
as the cube methods with “diagonal” control variates. These observations are true for both
M = 100 and M = 1000. We can also note that the cube method with the full set of control
variates tends to perform much better than its “diagonal” counterpart, whatever the value of M.

Finally, looking at Figure 3, it is clear that the KSD method—with any kernel—performs
worse than any cube method in terms of star discrepancy.

Figure 2. Lotka–Volterra example: box-plots of the kernel Stein discrepency for all the cube method
variations, compared with the KSD method for three kernels and the usual thinning method (hori-
zontal lines). Top: M = 100. Bottom: M = 1000. (In the top plot, standard thinning is omitted to
improve clarity, as corresponding value is too high.)
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Figure 3. Lotka–Volterra example: box-plots of the star discrepency for all the cube method variations,
compared with the KSD method for three kernels and the usual thinning method (horizontal lines).
Top: M = 100. Bottom: M = 1000.

Figure 4. Cont.
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Figure 4. Lotka–Volterra example: boxplots of the energy distance for all the cube method variations,
compared with the KSD method for three kernels and the usual thinning method (horizontal lines).
Top: M = 100. Bottom: M = 1000.

Overall, the relative performance of the cube methods and KSD methods can change
a lot depending on the metric being used and the number of points we keep. In addition,
while all the cube methods tend to perform roughly the same, this is not the case of the
KSD method, whose performances depend on the kernel we use. Unfortunately, we have
no way to determine beforehand which kernel will perform best. This is a problem since
the KSD method is computationally expensive for subsamples of cardinality M & 100.

Thus, by and large, cube thinning seems much more convenient to use (both in terms
of CPU time and sensitivity to tuning parameters) while offering, roughly, the same level
of statistical performance.

5.3. Truncated Normal

In this example, we use the (random-scan version of) the Gibbs sampler of [1] to
sample from 10-dimensional multivariate normal truncated to [0, ∞)10. We generated the
parameters of this truncated normal as follows: the mean was set as the realisation of a
10-dimensional standard normal distribution, while for the covariance matrix Σ, we first
generated a matrix M ∈ M10,10(R) for which each entry was the realisation of a standard
normal distribution. Then, we set Σ = MT M.

Since we used a Gibbs sampler, we have access to the Gibbs control variates of [7],
based on the expectation of each update (which amounts to simulating from a univariate
Gaussian). Thus, we consider 10 control variates.

The Gibbs sampler was run for N = 105 iterations and no burn-in was performed.
We compare the following estimators of the expectation of the target distribution the
standard estimator, based on the whole chain ("usualEstim" in the plots), the estimator
based on standard thinning ("thinEstim" in the plots), the control variate estimator based
on the whole chain, i.e., (7) ("regressionEstim" in the plots), and finally our cube estimator
described in Section 4 ("cubeEstim" in the plots). For standard thinning and cube thinning,
the thinning sample size was set to M = 100, which corresponds to a compression factor
of 103.

The results are shown in Figure 5. First, we can see that the control variates we chose
led to a substantial decrease in the variance of the estimates for regressionEstim compared
to usualEstim. Second, the cube estimator performed worse than the regression estimator
in terms of variance, but this was expected, as explained in Section 4. More interestingly,
if we cannot say that the cube estimator performs better than the usual MCMC estimator
in general, we can see that for some components it performed as well or even better,
even though the cube estimator used only M = 100 points while the usual estimator
used 105 points. This is largely due to the good choice of the control variates. Finally,
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the cube estimator outperformed the regular thinning estimator for every component,
sometimes significantly.

Figure 5. Truncated normal example: box-plots over 100 independent replicates of each estimator;
see text for more details.
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Appendix A. Details on the Landing Phase

The landing phase seeks to generate a random vector S in {0, 1}N , with expectation π�

(the output of the flight phase), which minimises the criterion tr(MVar(V̂|π�)) for a certain
matrix M. (The notation ·|π� refers to the distribution of S conditional on π(t) = π� at the
end of the flight phase.)

Since Var(S) = Var(E[S|π�]) + E[Var(S|π�)] by the law of total variance, and since
the first term is zero (as E[S|π�] = π�), we have

Var(V̂) = E[Var(V̂|π�)] = E[AVar(S|π�)At]. (A1)

and thus:
tr(MVar(V̂|π�)) = ∑

s∈{0,1}N

p(s|π�)(s − π�)t At MA(s − π�). (A2)
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Choosing M = (AAt)−1, as recommended by [6], amounts to minimising the distance
to the hyperplane ‘on average’. Let C(s) = (s − π�)t At(AAt)−1 At(s − π�), then the
minimisation program is equivalent to the following linear programming problem over q
variables only:

min
ξ�(.)

∑
s�∈S�

C(s�)ξ�(s�) (A3)

with constraints ∑s�∈S� ξ�(s�) = 1, 0 ≤ ξ�(s�) ≤ 1, ∑s�∈S� |s�k=1 ξ�(s�) = π�
k for every

k ∈ U� and S� = {0, 1}q where q = card(U�) and U� = {k ∈ U : 0 < π�[k] < 1}. Here, ξ�

denotes the marginal distribution of the components U� of the sampling design ξ and C(s�)
must be understood as C(s) with the components of s /∈ U� being fixed by the result of the
flight phase; thus, in this minimisation problem, C is in fact dependent on the components
of s that are in U� only.

The constraints define a bounded polyhedron. By the fundamental theorem of linear
programming, this optimisation problem has at least one solution on a minimal support—
see [6].

The flight phase ends on a vertex of K and, by Proposition 1 in [6], q ≤ J—typically
J � N. This means that we are solving a linear programming problem in a dimension
q potentially much lower than the population size N, and if we do not have too many
auxiliary variables, this optimisation problem will not be computationally too expensive.
In practice, a simplex algorithm is used to find the solution.

Appendix B. Estimation of the Energy Distance

There are two difficulties with computing (20). First, it involves intractable expecta-
tions. Second, as pointed out at the end of Section 4.3, the empirical distribution generated
by cube thinning, (19), is actually a signed measure.

Regarding the first issue, we can approximate (20) from our MCMC sample X1, . . . , XN .
That is, if our subsampled empirical measure writes ν̂ = ∑M

m=1 wmδZm and that we approxi-
mate the distribution associated with p by P̂ = (N − b)−1 ∑N

n=b+1 δXn where 1 ≤ b ≤ N is
the burn-in of the chain; then, we can estimate ED(μ̂, p) with ED(μ̂, P̂).

Regarding the second issue, we can generalize the energy distance to finite measures:
suppose we have two finite and potentially signed measures ν1 and ν2, both defined on the
same measurable space (Ω, P(Ω)} where Ω = {X1, . . . , XN} and P(Ω) denote the set of
parts of Ω. Suppose, in addition, that ν1(Ω) = α1 and ν2(Ω) = α2 with α1 �= 0 and α2 �= 0.
We define the generalized energy distance as:

ED�(ν1, ν2) =
2

α1α2

∫
Ω

||x − y||2dν1(x)dν2(y)

− 1
α2

1

∫
Ω

||x − x′||2dν1(x)dν1(x′)

− 1
α2

2

∫
Ω

||y − y′||2dν2(y)dν2(y′).

Then, by negative definiteness of the application φ(x, y) = ||x − y||2 on RN × RN ,

ED�(ν1, ν2) ≥ 0 with equality if and only if
1
α1

ν1 =
1
α2

ν2. This means that the gener-

alized energy distance is zero if and only if the two measures are equal up to a non-zero
multiplicative constant—see [17] for a demonstration. This generalized energy distance is
also symmetric, but the triangle inequality does not hold. It is a pseudo-distance.
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Thus, we will use the following criterion, which we will call the energy distance:

ED�(ν̂, P̂) =
2

(N − b)α1

N

∑
k=1

N

∑
n=b+1

Ω
M

sgn(wk)||Xk − Xn||21{Sk=1}

− 1
α2

1

N

∑
n=1

N

∑
k=1

(
Ω
M

)2
sgn(wn)sgn(wk)||Zk − Zn||21{Sk=1}1{Sn=1}

where ν̂ is defined in (19) and we dropped the last term because it does not depend on ν̂
and it is a potentially expensive sum of (N − b)2 terms.

Note that the probability of ν̂(Ω) being zero is non-null and then there is a non-
negligible probability of ED�(ν̂, P̂) being undefined. However, this event is unlikely
to happen.
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Abstract: Langevin dynamics (LD) has been extensively studied theoretically and practically as
a basic sampling technique. Recently, the incorporation of non-reversible dynamics into LD is at-
tracting attention because it accelerates the mixing speed of LD. Popular choices for non-reversible
dynamics include underdamped Langevin dynamics (ULD), which uses second-order dynamics
and perturbations with skew-symmetric matrices. Although ULD has been widely used in practice,
the application of skew acceleration is limited although it is expected to show superior performance
theoretically. Current work lacks a theoretical understanding of issues that are important to prac-
titioners, including the selection criteria for skew-symmetric matrices, quantitative evaluations of
acceleration, and the large memory cost of storing skew matrices. In this study, we theoretically and
numerically clarify these problems by analyzing acceleration focusing on how the skew-symmetric
matrix perturbs the Hessian matrix of potential functions. We also present a practical algorithm that
accelerates the standard LD and ULD, which uses novel memory-efficient skew-symmetric matrices
under parallel-chain Monte Carlo settings.

Keywords: Markov Chain Monte Carlo; Langevin dynamics; Hamilton Monte Carlo; non-reversible
dynamics

1. Introduction

Sampling is one of the most widely used techniques for the approximation of posterior
distribution in Bayesian inference [1]. Markov Chain Monte Carlo (MCMC) is widely
used to obtain samples. In MCMC, Langevin dynamics (LD) is a popular choice for
sampling from high-dimensional distributions. Each sample in LD moves toward a gradient
direction with added Gaussian noise. LD efficiently explore around a mode of a target
distribution using the gradient information without being trapped by local minima thanks
to added Gaussian noise. Many previous studies theoretically and numerically proved
LD’s superior performance [2–5]. Since non-reversible dynamics generally improves
mixing performance [6,7], research on introducing non-reversible dynamics to LD for better
sampling performance is attracting attention [8].

There are two widely known non-reversible dynamics for LD. One is underdamped
Langevin dynamics (ULD) [9], which uses second-order dynamics. The other introduces
perturbation, which consists of multiplying the skew-symmetric matrix by a gradient [8].
Here, we refer to the matrix as skew matrices for simplicity and this perturbation tech-
nique as skew acceleration. Much research has been done on ULD theoretically [9–11]
and ULD is widely used in practice, which is also known as stochastic gradient Hamil-
ton Monte Carlo [12]. In contrast, the application of the skew acceleration for standard
Bayesian models is quite limited even though it is expected to show superior performance
theoretically [8].

Entropy 2021, 23, 993. https://doi.org/10.3390/e23080993 https://www.mdpi.com/journal/entropy
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For example, skew acceleration has been analyzed focusing on sampling from Gaus-
sian distributions [13–17], although assuming Gaussian distributions in Bayesian models
is restrictive in practice. A recent study [8] theoretically showed that skew acceleration
accelerates the dynamics around the local minima and saddle points for non-convex func-
tions. Another work [18] clarified that the skew acceleration theoretically and numerically
improves mixing speed when used as interactions between chains in parallel sampling
schemes for non-convex Bayesian models.

Compared to ULD, what seems to be lacking for skew acceleration is a theoretical
understanding of issues that are important to practitioners. The most significant problem
is that no theory exists for selecting skew matrices. In existing studies, introducing a skew
matrix into LD results in equal or faster convergence, denoting that a bad choice of skew
matrix results in no acceleration. Thus, choosing appropriate skew matrices is critical.
Furthermore, although ULD’s acceleration has been analyzed quantitatively, existing
studies have only analyzed skew acceleration qualitatively. Thus, it is difficult to justify
the usefulness of skew acceleration in practice compared to ULD. Another issue is that
introducing skew matrices requires a vast memory cost in many practical Bayesian models.

The purpose of this study is to solve these problems from theoretical and numerical
viewpoints and establish a practical algorithm for skew acceleration. The following are the
two major contributions of this work.

Our contribution 1: We present a convergence analysis of skew acceleration for
standard Bayesian model settings, including non-convex potential functions using Poincaré
constants [19]. The major advantage of Poincaré constants is that we can analyze skew
acceleration through a Hessian matrix and its eigenvalues and develop a practical theory
about the selection of J and the quantitative assessment of skew acceleration.

Furthermore, we propose skew acceleration for ULD and present convergence anal-
ysis for the first time. Since ULD shows faster convergence than LD, combining skew
acceleration with ULD is promising.

Our contribution 2: We develop a practical skew accelerated sampling algorithm
for a parallel sampling setting with novel memory-efficient skew matrices. Since a naive
implementation of skew acceleration requires a large memory cost to store skew matrices,
memory-efficiency is critical in practice. We also present a non-asymptotic theoretical
analysis for our algorithm in both LD and ULD settings under a stochastic gradient and
Euler discretization. We clarify that introducing skew matrices accelerates the convergence
of continuous dynamics, although it increases the discretization and stochastic gradient
error. Then to the best of our knowledge, we propose the first algorithm that adaptively
controls this trade-off using the empirical distribution of the parallel sampling scheme.

Finally, we verify our algorithm and theory in practical Bayesian problems and com-
pare it with other sampling methods.

Notations: Id denotes a d × d identity matrix. Capital letters such as X represent
random variables, and lowercase letters such as x represent non-random real values. ·, ‖ · ‖
and | · | denote Euclidean inner products, distances and absolute values.

2. Preliminaries

In this section, we briefly introduce the basic settings of LD and non-reversible dy-
namics for the posterior distribution sampling in Bayesian inference.

2.1. LD and Stochastic Gradient LD

First, we introduce the notations and the basic settings of LD and stochastic gradient
LD (SGLD), which is a practical extension of LD. Here zi denotes a data point in space Z,
|Z| denotes the total number of data points, and x ∈ Rd corresponds to the parameters of a
given model, which we want to sample. Our goal is to sample from the target distribution
with density dπ(x) ∝ e−βU(x)dx, where potential function U(x) is the summation of

u : Rd × Z → R, i.e., U(x) =
1

|Z|
|Z|
∑
i=1

u(x, zi). Function u(·, ·) is continuous and non-
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convex. The explicit assumptions made for it are discussed in Section 3.1. The SGLD
algorithm [2,3] is given as a recursion:

Xk+1 = Xk − h∇Û(Xk) +
√

2hβ−1εk, (1)

where h ∈ R+ is a step size, εk ∈ Rd is a standard Gaussian random vector, β is a
temperature parameter of π, and ∇Û(Xk) is a conditionally unbiased estimator of true
gradient ∇U(Xk). This unbiased estimate of the true gradient is suitable for large-scale
data set since we can use not the full gradient, but a stochastic version obtained through
a randomly chosen subset of data at each time step. This means that we can reduce the
computational cost to calculate the gradient at each time step.

The discrete time Markov process in Equation (1) is the discretization of the continuous-
time LD [2]:

dXt = −∇U(Xt)dt +
√

2β−1dwt, (2)

where wt denotes the standard Brownian motion in Rd. The stationary measure of
Equation (2) is dπ(x) ∝ e−βU(x)dx.

2.2. Poincaré Inequality and Convergence Speed

In sampling, we are interested in the convergence speed to the stationary measure.
The speed is often characterized by the the generator associated with Equation (2) and
defined as:

L f (Xt) : = lim
s→0+

E( f (Xt+s)|Xt)− f (Xt)

s

=
(
−∇U(Xt) · ∇+ β−1Δ

)
f (Xt), (3)

where Δ denotes a standard Laplacian on Rd and f ∈ D(L) and D(L) ⊂ L2(π) denote
the L domain. This −L is a self-adjoint operator, which has only discrete spectrums
(eigenvalues). π with L has a spectral gap if the smallest eigenvalue of −L (other than 0) is
positive. We refer to it as ρ0(>0). This spectral gap is closely related to Poincaré inequality.
Internal energy is defined:

E( f ) := −
∫
Rd

fL f dπ. (4)

Please note that E( f ) > 0 is satisfied. Then π with L satisfies the Poincaré inequality
with constant c, if for any f ∈ D(L), π with L satisfies:

∫
f 2dπ −

(∫
f dπ

)2
≤ cE( f ). (5)

The spectral gap characterizes this constant c ≤ 1
ρ0

, which holds (see Appendix A.2 for
details). We refer to best constant c as the Poincaré constant [19]. For notational simplicity,
we define m0 := 1

c and refer to this m0 as the Poincaré constant.
In sampling, crucially, Poincaré inequality dominates the convergence speed in

χ2 divergence:

∫ (dμt

dπ
− 1
)2

dπ := χ2(μt‖π) ≤ e−
2m0

β t
χ2(μ0‖π), (6)

where μt denotes the measure at time t induced by Equation (2) and μ0 is the initial
measure (see Appendix A.3 for details). Thus, the larger Poincaré constant m0 is, the faster
convergence we have.
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2.3. Non-Reversible Dynamics

In this section, we introduce the non-reversible dynamics. π with L is reversible if for
any test function f , g ∈ D(L), π with L satisfies∫

Rd
fLgdπ =

∫
Rd

gL f dπ. (7)

If this is not satisfied, π with L is non-reversible [19].
We introduce two non-reversible dynamics for LD. The first is ULD, which is given as

dXt = Σ−1Vtdt,

dVt = −∇U(Xt)dt − γΣ−1Vtdt +
√

2γβ−1dwt,
(8)

where V ∈ Rd is an auxiliary random variable, γ ∈ R is a positive constant, and Σ is the
variance of the stationary distribution of auxiliary random variable V. The stationary distri-
bution is π̃ := π ⊗ N (0, Σ) ∝ e−βU(x)− 1

2 Σ−1‖v‖2
, where N denotes a Gaussian distribution.

The superior performance of ULD compared with LD has been studied rigorously [9–11].
ULD’s convergence speed is also characterized by the Poincaré constant [20]. In practice,
we use discretization and the stochastic gradient for ULD, which is called the stochastic
gradient Hamilton Monte Carlo (SGHMC) [10]. The second non-reversible dynamics is the
skew acceleration given as

dXt = −(I + αJ)∇U(Xt)dt +
√

2β−1dwt, (9)

where J is a real value skew matrix and α ∈ R+ is a positive constant. We call this dynamics
S-LD. The stationary distribution of S-LD is still π, and S-LD shows faster convergence and
smaller asymptotic variance [13–15,18].

3. Theoretical Analysis of Skew Acceleration

In this section, we present a theoretical analysis of skew acceleration in LD and ULD
in standard Bayesian settings. We analyze acceleration through the Poincaré constant and
connect it with the eigenvalues of the Hessian matrix, which allows us to obtain a practical
criterion to choose skew matrices and quantitatively evaluate acceleration. We focus on a
setting where a continuous SDE and a full gradient of the potential function is used in this
section. The discretized SDE and stochastic gradient are discussed in Section 4.

3.1. Acceleration Characterization by the Poincaré Constant

First, we introduce the same four assumptions as a previous work [2], which showed
the existence of the Poincaré constant about m0 for LD (see Appendix C for details).

Assumption 1. (Upper bound of the potential function at the origin) Function u takes nonnegative
real values and is twice continuously differentiable on Rd, and constants A and B exist such that
for all z ∈ Z,

|u(0, z)| ≤ A, ‖∇u(0, z)‖ ≤ B. (10)

Assumption 2. (Smoothness) Function u has Lipschitz continuous gradients; for all z ∈ Z,
positive constant M exists for all x, y ∈ Rd,

‖∇u(x, z)− ∇u(y, z)‖ ≤ M‖x − y‖. (11)
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Assumption 3. (Dissipative condition) Function u satisfies the (m,b)-dissipative condition for all
z ∈ Z; for all x ∈ Rd, m > 0 and b ≥ 0 exist such that

−x · ∇u(x, z) ≤ −m‖x‖2 + b. (12)

Assumption 4. (Initial condition) Initial probability distribution μ0 of X0 has a bounded and
strictly positive density p0, and for all x ∈ Rd,

κ0 := log
∫
Rd

e‖x‖2
p0(x)dx < ∞. (13)

Please note that these assumptions allow us to consider the non-convex potential
functions, which are common in practical Bayesian models. Furthermore, we make the
following assumption about J.

Assumption 5. The operator norm of J is bounded:

‖J‖2 ≤ 1. (14)

This means that the largest singular value of J is below 1.

Under these assumptions, we present the convergence behavior of skew acceleration
using the Poincaré constant. First, we present the following S-LD result.

Theorem 1. Under Assumptions 1–5, the S-LD of Equation (9) has exponential convergence,

χ2(μα
t ‖π) ≤ e−

2m(α)
β t

χ2(μ0‖π), (15)

where μα
t is the measure at time t induced by S-LD and m(α) is the Poincaré constant of S-LD

defined by its generator

Lα f (x) :=
(
−(I + αJ)∇U(x) · ∇+ β−1Δ

)
f (x). (16)

Furthermore, m(α) satisfies m(α) ≥ m0.

The proof is shown in Appendix C. This theorem states that introducing the skew
matrices accelerates the convergence of LD by improving the convergence rate from m0 to
m(α). Although [18] obtained a similar result, we used the Poincaré constant and derived
an explicit criterion when m(α) = m0 holds, as we discuss below.

Next, we also introduce skew acceleration in ULD. Since ULD shows faster conver-
gence than LD in standard Bayesian settings [10,11], it is promising to combine skew
acceleration with ULD to obtain a more efficient sampling algorithm. For that purpose,
we propose the following SDE:

dXt = Σ−1Vtdt + α1 J1∇U(Xt)dt, (17)

dVt = −∇U(Xt)dt − γ(Σ−1 + α2 J2)Vtdt +
√

2γβ−1dwt, (18)

where J1 and J2 are real value skew matrices and α1 and α2 are positive constants. We
assume that J1 and J2 satisfy Assumption 5. We refer to this method as skew under-
damped Langevin dynamics (S-ULD) whose stationary distribution is π̃ = π ⊗ N (0, Σ) ∝
e−βU(x)− 1

2 Σ−1‖v‖2
. See Appendix B for details, which include discussions on other combina-

tions of skew matrices. As for S-ULD, we need an additional assumption about the initial
condition of V0:
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Assumption 6. (Initial condition) Initial probability distribution μ0(x, v) of (X0, V0) has a
bounded and strictly positive density p0 that satisfies,

κ0 := log
∫
R2d

e‖x‖2+‖v‖2
p0((x, v))dxdv < ∞. (19)

We then provide the following convergence theorem that resembles S-LD.

Theorem 2. Under Assumptions 1–3, 5, 6, S-ULD has exponential convergence in χ2 divergence
and its convergence rate is also characterized by m(α) as defined in Theorem 1. S-ULD’s convergence
equals or exceeds ULD, of which convergence rate is characterized by m0.

See Appendix C.2 for details. From these theorems, we confirmed that skew accelera-
tion is effective in both S-LD and S-ULD, and the convergence speed is characterized by
Poincaré constant m(α) defined by Equation (16).

3.2. Skew Acceleration from the Hessian Matrix

Our goal is to clarify what choices of J induce m(α) > m0, which leads to acceleration.
Therefore, we discuss how Poincaré constant m(α) is connected to the eigenvalues and
eigenvectors of the perturbed Hessian matrix (I + αJ)∇2U(x). Next, we introduce the
notations. We express the Hessian of U(x) as H(x) and the perturbed Hessian matrix
as H′(x) := (I + αJ)H(x). Please note that H is a real symmetric matrix, which has
real eigenvalues and diagonalizable. On the other hand, since H′ is not symmetric, it has
complex eigenvalues, although diagonalization is not assured (see Appendix E). We express
pairs of eigenvectors and eigenvalues of H′(x) as {(vα

i (x), λα
i (x))}d

i=1, which are ordered as
Re(λα

1(x))) ≤ · · · ≤ Re(λα
d(x)). Here, Re(λα

1(x)) expresses the real part of complex value
λα

1 and Im denotes the imaginary part. We express those of H(x) as {(v0
i (x), λ0

i (x))}d
i=1

and order them as λ0
1(x) ≤ · · · ≤ λ0

d(x).

3.2.1. Strongly Convex Potential Function

Assume that U is an m-strongly convex function, where for all x ∈ Rd, m ≤ λ0
1(x)

holds. Poincaré constant m0 of LD satisfies m0 = m [19]. For the skew acceleration, since
Poincaré constant satisfies m(α) = m′(α), where m′(α) is the best constant that satisfies,
for all x, m′(α) ≤ Re

(
λα

1(x)
)

(see Appendix D.1). Therefore, studying the Poincaré constant
is equivalent to studying the smallest (real part of the) eigenvalue of the Hessian matrix.
Thus, the relation between λ0

1(x) and Re
(
λα

1(x)
)

must be studied. The following theorem
describes how the skew matrices change the smallest eigenvalue.

Theorem 3. For all x ∈ Rd, the real parts of the eigenvalues of H′ satisfy

m ≤ λ0
1(x) ≤ Re(λα

1(x)) ≤ · · · ≤ Re(λα
d(x)) ≤ λ0

d(x). (20)

The condition of λ0
1(x) = Re

(
λα

1
(

x)) is shown in Remark 1.

Remark 1. Denote the set of the eigenvectors of eigenvalue λ0
1(x) as V0

1 . If V0
1 = {v} and

Jv = 0, then λ0
1(x) = Re

(
λα

1
(

x)) holds. If the cardinality of set V0
1 is larger than 1, and vectors

v, v′ ∈ V0
1 exist, such that λ0

1αJv = (Im
(
λα

1
)
)v′ and λ0

1αJv′ = −(Im
(
λα

1
)
)v, then λ0

1(x) =
Re
(
λα

1
(
x)) holds.

Refer to Appendix F for the proof. This is an extension of previous work [8,13].
If λ0

1(x) < Re
(
λα

1(x)
)

is satisfied for all x, we have m0 < m(α), i.e., acceleration occurs.
We discuss how to construct J such that λ0

1(x) < Re
(
λα

1(x)
)

holds in Section 3.3.
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3.2.2. Non-Convex Potential Function

The previous work [21] clarified that the Poincaré constant of the non-convex function
is characterized by the negative eigenvalue of the saddle point. As shown in Figure 1,
denote x1 as the global minima, and x2 is the local minima which has the second smallest
value in U(x). We express the saddle point with index one, i.e., there is only one negative
eigenvalue at the point, between x1 and x2 as x∗. This means that the eigenvalues of H(x∗)
satisfies λ0

1(x∗) < 0 < λ0
2(x∗) < · · · < λ0

d(x∗). Ref. [21] clarified that the saddle point x∗

characterizes the Poincaré constant as

m−1
0 ∝

1
|λ1(x∗)| eβ(U(x∗)−U(x1)−U(x2)). (21)

When skew matrices are introduced, [8] clarified the following relation:

Theorem 4. ([8]) λα
1(x∗) ≤ λ0

1(x∗) < 0 and equality holds only if Jvα
1(x∗) = 0.

Note λα
1(x∗) is not a complex number. Thus, the skew acceleration reduces the

negative eigenvalue and leads to a larger Poincaré constant (see Appendix D.2) and results
in faster convergence.

−5 −4 −3 −2 −1 0 1 2

−1000

−500

0

500

1000 U(x)
Saddle x∗

Local minima x2

Global minima x1

Figure 1. Double-potential example: Poincaré constant is related to the eigenvalue at x∗.

In conclusion, introducing the skew matrix changes the Hessian’s eigenvalues and
increase the Poincaré constant. If λ0

1(x) �= Re
(
λα

1(x)
)

is satisfied, this leads to faster
convergence for both convex and non-convex potential functions.

3.3. Choosing J

In this section, we present a method for choosing J that leads to λ0
1(x) �= Re

(
λα

1(x)
)

to
ensure the acceleration based on the equality conditions in Theorems 3 and 4. Combining
these theorems, we obtain the following criterion:

Remark 2. Given a point x, λ0
1(x) �= Re

(
λα

1(x)
)

holds if either the following conditions are
satisfied: (i) when V0

1 = {v}, Jv �= 0 is satisfied. (ii) when |V0
1 | > 1, Jv �= 0 holds for

any v ∈ V0
1 , and for any v, v′ ∈ V0

1 , λ0
1αJv = (Im

(
λα

1
)
)v′ and λ0

1αJv′ = −(Im
(
λα

1
)
)v are

not satisfied.

The first condition (i) is easily satisfied if we choose J such that KerJ = {0}. On the
other hand, the second condition (ii) is difficult to verify since H and its eigenvalues
and eigenvectors generally depend on the current position of Xt. Instead of evaluating
eigenvalues and eigenvectors of H and H′ directly, we use the random matrix property
shown in the next theorem.
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Theorem 5. Suppose the upper triangular entries of J follow a probability distribution that is
absolutely continuous with respect to the Lebesgue measure. If KerJ = {0} is satisfied, then given
a point x ∈ Rd, λ0

1(x) �= Re
(
λα

1(x)
)

holds with probability 1.

The proof is given in Appendix G.1. From this theorem, we simply generate J from
some probability distribution, such as the Gaussian distribution. Then, we check whether
KerJ = {0} holds. If KerJ = {0} does not hold, we generate a random matrix J again.

The above theorem is valid only at a given evaluation point x. We can extend the above
theorem to all the points over the path of the discretized dynamics (see Appendix G.3).
With this procedure, we can theoretically ensure that acceleration occurs with probability
one for discretized dynamics.

3.4. Qualitative Evaluation of The Acceleration

So far, we have discussed skew acceleration qualitatively but not quantitatively. Al-
though acceleration’s quantitative evaluation is critical for practical purposes, to the best
of our knowledge, no existing work has addressed it. In this section, we present a for-
mula that quantitatively assesses skew acceleration by analyzing the eigenvalues of the
Hessian matrix.

Theorem 6. With the identical notation as in Theorem 3, for all x, we have

Re(λα
1(x)) = λ0

1(x) + α2
d

∑
k=2

λ0
1(x)λ0

k(x)|v0
k(x)Jv0

1(x)|2
λ0

k(x)− λ0
1(x)

+O(α3). (22)

In particular, at saddle point x∗, we have

λα
1(x∗) = λ0

1(x∗) + α2
d

∑
k=2

λ0
1(x∗)λ0

k(x∗)|v0
k(x∗)Jv0

1(x∗)|2
λ0

k(x∗)− λ0
1(x∗)

+O(α3). (23)

The proofs are shown in Appendix H. When focusing on Equation (22), if U(x) is a
strongly convex function, since for all k > 1, λk(x) > λ1(x) > 0 holds and the second
term in Equation (22) is positive. From this, Re

(
λα

1(x)
)
> λ0

1(x) holds. A similar relation
holds for Re(λα

d(x)). In Equation (23), λα
1(x∗) < λ0

1(x∗) < 0 holds. Thus, the changes of
the Poincaré constants are proportional to α2. With these formulas, we can quantitatively
evaluate the acceleration. We present numerical experiments to confirm our theoretical
findings in Section 6.1.

4. Practical Algorithm for Skew Acceleration

In this section, we discuss skew acceleration in more practical settings compared to
Section 3. First, we discuss the memory issue for storing J and the discretization of SDE and
the stochastic gradient, which are widely used techniques in Bayesian inference. Finally,
we present a practical algorithm for skew acceleration.

4.1. Memory Issue of Skew Acceleration and Ensemble Sampling

For d-dimensional Bayesian models, we need O(d2) memory space to store skew
matrices Js, and this is difficult for high-dimensional models. Instead of storing J, we can
randomly generate Js at each time step following Theorem 5. However, we experimen-
tally confirmed that using different Js at each step does not accelerate the convergence
(see Section 6). Thus, we need to use a fixed J during the iterations.

As discussed below, we found that the previously proposed accelerated parallel
sampling [18] can be a practical algorithm to resolve this memory issue. In that method,
we simultaneously updated N samples of the model’s parameters with correlation. In such
a parallel sampling scheme, a correlation exists among multiple Markov chains, it is
more efficient than a naive parallel-chain MCMC, where the samples are independent.
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We express the n-th sample at time t as X(n)
t ∈ Rd and the joint state of all samples at

time t as X⊗N
t := (X(1)

t , . . . , X(N)
t )� ∈ RdN . We express the joint stationary measure as

π⊗N := π ⊗ · · · ⊗ π(x⊗N) ∝ e−β ∑N
i=1 U(x(i)). We express the sum of the potential function

as U⊗N := ∑N
i=1 U(x(i)). We then consider the following dynamics:

dX⊗N
t =−(IdN + αJ)∇U⊗N(X⊗N

t )dt+
√

2β−1dwt, (24)

∇U⊗N(X⊗N
t ) :=

(
∇U(X(1)

t ), . . . , ∇U(X(N)
t )

)�
. (25)

We call this dynamics skew parallel LD (S-PLD). N-independent parallel LD (PLD) is
coupled with the skew matrix. Since each chain in PLD is independent of the other,
the Poincaré constant of PLD is also m0. Ref. [18] argued that the Poincaré constant of
S-PLD, m(α, N), satisfies m(α, N) ≥ m0. This means S-PLD shows faster convergence
than PLD. As discussed in Section 3.2, these Poincaré constants are characterized by the
smallest eigenvalue of the Hessian matrix ∇2U⊗N(x⊗N) and (IdN + αJ)∇2U⊗N(x⊗N)
where x⊗N ∈ RdN . We denote these smallest eigenvalues as λ0

1(x⊗N) and Reλα
1(x⊗N).

As discussed in Section 3.2, acceleration occurs if λ0
1(x⊗N) �= Reλα

1(x⊗N) is satisfied.
In [18], they failed to specify the choice of J whose naive construction of J requires

O(d2N2) memory cost. To reduce the memory cost, we propose the following skew matrix:

J := J0 ⊗ Id, (26)

where J0 is a N × N skew matrix and ⊗ is a Kronecker product. We then have the follow-
ing lemma:

Lemma 1. If J0 is generated based on Theorem 5 and KerJ0 = {0} is satisfied, then given a
point x⊗N, J does not satisfy the equality condition in Theorems 3,4, which means λ0

1(x⊗N) �=
Reλα

1(x⊗N) with probability 1.

See Appendix G.2 for the proof. Thus, from this lemma, we only need to prepare and
store J0, which requires O(N2) memory, which does not depend on d. In practical settings,
this is a significant reduction of the memory size since the number of parallel chains is
smaller than the dimension of models. Please note that we can ensure the acceleration with
this J.

Lemma 2. Under Assumptions 1–5, assume J satisfies the condition of Lemma 1. Then S-PLD shows

χ2(μα,⊗N
t ‖π⊗N) ≤ e−

2m(α,N)
β t

χ2(μ⊗N
0 ‖π⊗N), (27)

where μα,⊗N
t is the measure at time t induced by S-PLD, and μ⊗N

0 is the initial measure defined as
the product measure of μ0.

See Appendix I.1 for the proofs. Thus, combined with Lemma 2, S-PLD converges
faster than PLD. We also considered the ensemble version of ULD (parallel ULD (PULD))
and its skew accelerated version:

dX⊗N
t = Σ−1V⊗N

t dt + α1 J1∇U⊗N(X⊗N
t )dt,

dV⊗N
t = −∇U⊗N(X⊗N

t )dt − γ(Σ−1 + α2 J2)V⊗N
t dt +

√
2γβ−1dwt,

(28)

where J1 and J2 ∈ RdN×dN are real-valued skew-symmetric matrices, and α1 and α2 ∈ R+

are positive constants and V⊗N
t =

(
V(1)

t , . . . , V(N)
t

)�
∈ RdN. We refer to this dynamics as

skew PULD (S-PULD) whose faster convergence can be assured similar to Lemma 2 as
shown in Appendix I.2.
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4.2. Discussion of the Discretization of SDE and Stochastic Gradient and Practical Algorithm

In this section, we further consider practical settings for S-PLD and S-PULD. We dis-
cretize these continuous dynamics, e.g., by the Euler-Maruyama method, and approximate
the gradient by the stochastic gradient. Although introducing skew matrices accelerates
the convergence of continuous dynamics, it simultaneously increases the discretization
and stochastic gradient error, resulting in a trade-off. We present a practical algorithm that
controls this trade-off.

4.2.1. Trade-Off Caused by Discretization and Stochastic Gradient

We consider the following discretization and stochastic gradient for S-PLD and S-PULD:

X⊗N
k+1 = X⊗N

k − h(IdN + αJ)∇Û⊗N(X⊗N
k ) +

√
2hβ−1εk, (29)

and

X⊗N
k+1 = X⊗N

k + Σ−1V⊗N
k h + αJ∇Û⊗N(X⊗N

k )h

V⊗N
k+1 = V⊗N

k −∇Û⊗N(X⊗N
k )h−γΣ−1V⊗N

k h+
√

2γβ−1hεk,
(30)

where εk ∈ RdN is a standard Gaussian random vector. ∇Û⊗N(X⊗N) is an unbiased
estimator of the gradient ∇U⊗N(X⊗N). We refer to Equation (29) as skew-SGLD and
Equation (30) as skew-SGHMC. For skew-SGHMC, we dropped J2 of S-PULD to decrease
the parameters, shown in Appendix B. Please note that skew-SGLD is the identical as the
previous dynamics [18]. We introduce an assumption about the stochastic gradient:

Assumption 7. (Stochastic gradient) There exists a constant δ ∈ [0, 1) such that

E[‖∇Û(x)− ∇U(x)‖2] ≤ 2δ
(

M2‖x‖2 + B2
)

. (31)

Given a test function f with L f lipschitzness, we approximate
∫

f dπ by skew-SGLD

or skew-SGHMC, with estimator 1
N ∑N

n=1 f (X(n)
k ). The bias of skew-SGLD is upper-

bounded as

Theorem 7. Under Assumptions 1–7, for any k ∈ N and any h ∈ (0, 1 ∧ m
4M2 ) obeying kh ≥ 1

and βm ≥ 2, we have∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣ ≤ L f (C1(α)kh︸ ︷︷ ︸
(i)

+C2e−β−1m(α,N)kh︸ ︷︷ ︸
(ii)

) (32)

and C1 and C2 depends on the constants of Assumptions 1–7, for the details see Appendix J.

We present a tighter bias bound in Section 4.3 under a stronger assumption. We can
show a similar upper bound for the skew-SGHMC using the same proof strategy. This bound
resembles of a previous one [18]; ours shows improved dependency on kh. The previous
results of [18] are also limited to LD, not including skew-SGHMC.

Please note that (i) corresponds to the discretization and stochastic gradient error and
(ii) corresponds to the convergence behavior of S-PLD, which is continuous dynamics.
Since C1(α) ≥ C1(α = 0), skew acceleration increases the discretization and stochastic
gradient error. On the other hand, since m(α, N) ≥ m0, the convergence of the continuous
dynamics is accelerated. Thus, skew acceleration causes a trade-off. When α is suffi-

178



Entropy 2021, 23, 993

ciently small, we derive the explicit dependency of α for this trade-off from an asymptotic
expansion. Using the quantitative evaluation of skew acceleration in Theorem 6, we obtain∣∣∣∣∣E 1

N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣ ≤ (d1α + d2α2)kh︸ ︷︷ ︸
(i)

− α2d0e−β−1m0kh︸ ︷︷ ︸
(ii)

+O(α3) + const, (33)

where d0 to d2 are positive constants obtained by the asymptotic expansion. See Appendix K
for the details. In the above expression, (i) and (ii) correspond to (i) and (ii) of Equation (32).
Thus, by choosing appropriate α, we can control the trade-off.

4.2.2. Practical Algorithm Controlling the Trade-Off

Since calculating the optimal α that minimizes Equation (33) at each step is com-
putationally demanding, we adaptively tune the value of α by measuring the acceler-
ation with kernelized Stein discrepancy (KSD) [22]. Our idea is to update samples un-
der different α and α + η, and compare KSD between the stationary and empirical dis-
tributions of these different interaction strengths. Here, η ∈ R+ is a small increment of
α. We denote the samples at the (k + 1)th step, which is obtained by Equation (29) as
X⊗N

k+1,α := X⊗N
k,α − h(IdN + αJ)∇Û⊗N(X⊗N

k,α ) +
√

2hβ−1εk, (or (30) as X⊗N
k+1,α := X⊗N

k +

Σ−1V⊗N
k h + αJ∇Û⊗N(X⊗N

k )h). We denote the samples, which are obtained by replac-
ing the above α by α + η, as X⊗N

k+1,α+η . We denote the KSD between the measure of X⊗N
k+1,α

and stationary measure π as KSD(k + 1, α) and estimate the differences of empirical KSD:

Δ := ˆKSD(k + 1, α)− ˆKSD(k + 1, α + η), (34)

where KSD is estimated by

ˆKSD(k, α) =
1

N(N − 1)

N

∑
i=1

uq(X(i)
k,α, X(j)

k,α), (35)

uq(x, x′) := ∇x log π(x)�l(x, x′)∇x log π(x′) +∇x log π(x)�∇x′ l(x, x′)

+∇xl(x, x′)�∇x log π + Tr∇x,x′ l(x, x′), (36)

where l denotes a kernel and we use an RBF kernel. If Δ > 0, which indicates that the
empirical distribution of X⊗N

k+1,α+η is closer to the stationary distribution than that of X⊗N
k+1,α.

Thus, we should increase the interaction strength from α to α+ η. If Δ < 0, we decrease it to
α − η. We also update η to cη where c ∈ (0, 1]. The overall process is shown in Algorithm 1.
Detailed discussions of the algorithm including how to select α0, η0, and c are shown in
Appendix L.

Algorithm 1 Tuning α

Input: X⊗N
k , ηk, αk, c

Output: αk+1, ηk+1
1: Calculate X⊗N

k+1,αk
and X⊗N

k+1,αk+ηk
.

2: Calculate Δ := ˆKSD(k + 1, αk)− ˆKSD(k + 1, αk + ηk)
3: if Δ > 0 then
4: Update αk+1 = αk + ηk
5: Update ηk+1 = ηk
6: else
7: Update αk+1 = |αk − ηk|
8: Update ηk+1 = cηk
9: end if

Finally, we present Algorithm 2, which describes the whole process. We update the
value of α once every k′ step. Please note that its computational cost is not much larger
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than that of Equation (30). We only calculate the eigenvalues of J once, which requires
O(N3). The calculation of different KSDs is computationally inexpensive since we can
re-use the gradient, which is the most computationally demanding part.

Algorithm 2 Proposed algorithm

Input: X⊗N
0 , h, α0, η, k′, K, c, (V⊗N

0 , γ, Σ−1)

Output: X⊗N
K

1: Make a N × N random matrix J0 and check kerJ0 = {0}
2: Set J = J0 ⊗ Id
3: for k = 0 to K do
4: if ' k

k′ ( = 0 then
5: Update α by Algorithm 1
6: end if
7: Update X⊗N

k by Equation (29) (for skew-SGLD)
8: (Update (X⊗N

k , V⊗N
k ) by Equation (30) for skew-SGHMC)

9: end for

4.3. Refined Analysis for the Bias of Skew-SGLD

When using a constant step size for skew-SGLD, the bound in Theorem 7 is meaning-
less since the first term of Equation (32) will diverge. Here, following [23], we present a
tighter bound for the bias of skew-SGLD under a stronger assumption.

Theorem 8. Under Assumptions 1–7, for any k ∈ N and any h ∈ (0, 1 ∧ λ(α,N)

4
√

2M2 ∧ m
4M2 ) obeying

kh ≥ 1 and βm ≥ 2, we have∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣ ≤ L f

√
2

λ(α, N)

√
e−λ(α,N)khKL(μ0|π) +

C3(α)

λ(α, N)
, (37)

where

λ(α, N) :=
(

1
(1 + m(α, N)−1βC(m0))2πe2 +

3
2

m(α, N)−1
)−1

(38)

and constants C3(α) and C(m0) depend on the constants of Assumptions 1–7. Moreover, λ(α, N)
satisfies λ(α, N) ≥ λ(α = 0, N). For the details, see Appendix M.

Proof is shown in Appendix M. Please note that even if we use a constant step size
for skew-SGLD, the bound in Theorem 8 will not diverge. Here we need the stronger
assumption about a step size compared to Theorem 7. From Equation (37), the convergence
behavior is characterized by λ(α, N) and the bias bound become smaller when λ(α, N)
become larger. From the definition of λ(α, N), the larger m(α, N) is, the larger λ(α, N) we
obtain. Thus, as we had seen so far, introducing the skew matrices leads to the larger
Poincaré constant, and thus, this leads to larger λ(α, N).

Previous work [18] clarified that if α is sufficiently small, introducing skew ma-
trices improves the Poincaré constant by a constant factor, which means that we have
m(α, N)− m0 ≈ O(α2), where O(α2) depends on the eigenvector and eigenvalues of the
generator L. On the other hand, from Theorem 8, for any ξ > 0, to achieve the bias smaller

than ξ, it suffice to run skew-SGLD at least for k ≥ 2
λ(α,N)h ln

L f
ξ

√
KL(μ0|π)
2λ(α,N)

iterations us-

ing the appropriate step size h and under the assumption that δ and α are small enough
(see Appendix M.2 for details). Combined with these observations, introducing skew
matrices into SGLD improves the computational complexity for a constant order. Our
numerical experiments show that even constant improvement results in faster convergence
in practical Bayesian models.
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5. Related Work

In this section, we discuss the relationship between our method and other sam-
pling methods.

5.1. Relation to Non-Reversible Methods

As we discussed in Section 1, our work extends the existing analysis of non-reversible
dynamics [8,18] and presents a practical algorithm. Compared to those previous works,
we focus on the practical setting of Bayesian sampling and derive the explicit condition
about J for acceleration. We also derived a formula to quantitatively evaluate skew accel-
eration based on the asymptotic expansion of the eigenvalues of the perturbed Hessian
matrix. A previous work [24], which derived the optimal skew matrices when the target
distribution is Gaussian, requires O(d3) computational cost to derive optimal skew matri-
ces, and it is unclear whether it works for non-convex potential functions. On the other
hand, our construction method for skew matrices is simple, computationally cheap, and
can be applied to general Bayesian models.

Our work analyzes skew acceleration for ULD, which is more effective than LD in
practical problems. Another work [8,18] only analyzed skew acceleration for LD. A previ-
ous work [17] combined a non-reversible drift term with ULD. Unlike our method, this
work’s purpose was to reduce the asymptotic variance of the expectation of a test function
and is mainly focusing on sampling from Gaussian distribution.

To the best of our knowledge, our work is the first to focus on the memory issue of
skew acceleration and develop a memory-efficient skew matrix for ensemble sampling.
Our work also presents an algorithm that controls the trade-off for the first time. Another
work [18] identified the trade-off and handled it by cross-validation, which is computation-
ally inefficient, unfortunately.

Finally, we point out an interesting connection between our skew-SGHMC and the
magnetic HMC (M-HMC) [25]. M-HMC accelerates HMC’s mixing time by introducing a
“magnetic” term into the Hamiltonian. That magnetic term is expressed by special skew
matrices. Although a previous work [25] argued that M-HMC is numerically superior to a
standard HMC, its theoretical property remains unclear. Thus, our work can analyze the
theoretical behavior of magnetic HMC.

5.2. Relation to Ensemble Methods

Our proposed algorithm is based on ensemble sampling [26]. Ensemble sampling,
in which multiple samples are simultaneously updated with interaction, has been attracting
attention numerically and theoretically because of improvements in memory size, compu-
tational power, and parallel processing computation schemes [26]. There are successful,
widely used ensemble methods, including SVGD [27] and SPOS [28], with which we com-
pare our proposed method numerically in Section 6. Although both show numerically
good performance, it is unclear how the interaction term theoretically accelerates the
convergence since they are formulated as a McKean–Vlasov process, which is non-linear
dynamics, complicating establishing a finite sample convergence rate. Our algorithm is an
extension of another work [18], where the interaction was composed of a skew-acceleration
term and can be rigorously analyzed. Compared to that previous work [18], we analyzed
skew acceleration, focused on the Hessian matrix, and developed practical algorithms,
as discussed in Section 4.2, and derived the explicit condition when acceleration occurs,
which was unclear [18].

Another difference among SPOS, SVGD, and [18] is that they use first-order methods;
our approach uses the second-order method. Little work has been done on ensemble
sampling for second-order dynamics. Recently a second-order ensemble method was pro-
posed [29], based on gradient flow analysis. Although its method showed good numerical
performance, its theoretical property for finite samples remains unclear since it proposed a
scheme as a finite sample approximation of the gradient flow. In contrast, our proposed
method is a valid sampling scheme with a non-asymptotic guarantee.
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6. Numerical Experiments

The purpose of our numerical experiments is to confirm the acceleration of our
algorithm proposed in Section 4 in various commonly used Bayesian models including
Gaussian distribution (toy data), latent Dirichlet allocation (LDA), and Bayesian neural
net regression and classification (BNN). We compared our algorithm’s performance with
other ensemble sampling methods: SVGD, SPOS, standard SGLD, and SGHMC. In all
the experiments, the values and the error bars are the mean and the standard deviation
of repeated trials. For all the experiments we set γ = 1 and Σ−1 = 300 for SGHMC
and Skew-SGHMC. As for the hyperparameters of our proposed algorithm, the selection
criterion is discussed in Appendix L.

6.1. Toy Data Experiment

The target distribution is the multivariate Gaussian distribution, π = N(μ, Ω) where
we generated Ω−1 = A�A and each element of A ∈ R2d×d is drawn from the standard
Gaussian distribution. The dimension of the target distribution is d = 50, we approximate
by 20 samples using the proposed ensemble methods. We tested these toy data because
the LD for this target distribution is known as the Ornstein–Uhlenbeck process, and
its theoretical properties have been studied extensively e.g., [30]. Thus, by studying
the convergence behavior of these toy data, we can understand our proposed method
more clearly.

First, we confirmed how the skew-symmetric matrix affects the eigenvalues of the
Hessian matrix, as discussed in Section 3, where we only showed the asymptotic expansion
for the smallest real part of the eigenvalues and saddle point. Here we can show a similar
expansion for the largest real part:

Re(λα
dN) = λ0

dN + α2
dN−1

∑
k=1

λdN0λ0
k |v0

k Jv0
dN |2

λ0
k − λ0

dN
+O(α3). (39)

Re
(
λα

dN
)
≤ λα

dN holds.
Then we observed how the largest and smallest real parts of the eigenvalues of

(I + αJ)Ω−1 depend on α. The results are shown in Figure 2, where we averaged 10 trials
over a randomly made J with fixed A. The upper-left, upper-right, and lower figures
show Re(λ1(α)), Re(λdN(α)), and Re(λ1(α))/Re(λdN(α)). These behaviors are consistent
with Theorem 3. When α is small, its behavior is close to the quadratic function proved in
Theorem 3.

Next, we observed the convergence behavior of skew-SGLD and skew-SGHMC. We
measured the convergence by maximum mean discrepancy (MMD) [31] between the
empirical and stationary distributions. For MMD, we used 2000 samples for the target
distribution, and we used the Gaussian kernel whose bandwidth is set to the median
distance of these 2000 samples. We used gradient descent (GD), with step size h = 1 × 10−4.
The results are shown in Figure 3. The proposed method shows faster convergence than
naive parallel sampling, which is consistent with Table 2.
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Figure 2. Eigenvalue changes (averaged over ten trials).
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Figure 3. Convergence behavior of toy data in MMD (averaged over ten trials).

6.2. LDA Experiment

We tested with an LDA model using the ICML dataset [32] following the same setting
as [33]. We used 20 samples for all the methods. Minibatch size is 100. We used step size
h = 5 × 10−4. First, we confirmed the effectiveness of our proposed Algorithm 1, which
adaptively tunes α values. For that purpose, we compared the final performance obtained
by our methods with a previous method [18], in which α is selected by cross-validation
(CV). Here instead of CV, we just fixed α during the sampling and refer to it as fixed
α. We also tested the case when J is generated randomly at each step with fixed α, as
discussed in Section 4.1. We refer to it as random J. The results are shown in Figure 4 where
skew-SGLD was used. We found that our method showed competitive performance with
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the best performance of fixed α. For the computational cost, we used k′ = 2 in Algorithm 2,
and our method needed twice the wall clock time than each fixed α. This means that
our algorithm greatly reduces the total computational time since we tried more than two
αs in the fixed α for CV. We also found that since using different Js at each step did not
accelerate the performance, we need to store and fix J during the sampling for acceleration.
Next, we compared our method with other ensemble sampling schemes and observed
the convergence speed. The result is shown in Figure 5. Skew-SGLD and skew-SGHMC
outperformed SGLD and SGHMC, which is consistent with our theory.
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Figure 4. Final performances of LDA under different values of α (averaged over ten trials).
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Figure 5. LDA experiments (Averaged over 10 trials).

6.3. BNN Regression and Classification

We tested with the BNN regression task using the UCI dataset [34], following a
previous setting Liu and Wang [27]. We used one hidden layer neural network model with
ReLU activation and 100 hidden units. We used 10 samples for all the methods. We used the
minibatch size 100. We used step size h = 5 × 10−5. The results are shown in Tables 1 and 2.
We also tested on BNN classification task using the MNIST dataset. The result is shown
in Figure 6. We used one hidden layer neural network model with ReLU activation and
100 hidden units. Batchsize is 500 and we set step size h = 5 × 10−5. Our proposed methods
outperformed other ensemble methods. Please note that skew-SGHMC and skew-SGLD
consistently outperformed SGHMC and SGLD.
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Table 1. Benchmark results on test RMSE for regression task.

Dataset
Avg. Test RMSE

SVGD SPOS SGLD Skew-SGLD SGHMC Skew-SGHMC

Concrete 5.709 ± 0.040 5.239 ± 0.199 5.009 ± 0.091 4.973 ± 0.057 4.949 ± 0.144 4.790 ± 0.081
Kin8nm 0.0731 ± 0.0006 0.0688 ± 0.0003 0.0693 ± 0.0006 0.0689 ± 0.0005 0.0687 ± 0.0001 0.0683 ± 0.0003
Energy 0.520 ± 0.060 0.456 ± 0.030 0.428 ± 0.045 0.412 ± 0.045 0.406 ± 0.019 0.403 ± 0.008

Bostonhousing 3.306 ± 0.005 3.107 ± 0.173 2.948 ± 0.084 2.930 ± 0.095 3.053 ± 0.093 2.986 ± 0.143
Winequality 0.619 ± 0.001 0.618 ± 0.007 0.641 ± 0.003 0.634 ± 0.004 0.614 ± 0.004 0.613 ± 0.004
PowerPlant 4.219 ± 0.012 4.160 ± 0.009 4.129 ± 0.002 4.118 ± 0.006 4.112 ± 0.009 4.105 ± 0.008

Yacht 0.475 ± 0.049 0.467 ± 0.110 0.464 ± 0.058 0.442 ± 0.046 0.464 ± 0.078 0.432 ± 0.051

Table 2. Benchmark results on test negative log likelihood for regression task.

Dataset
Avg. Test Negative Log Likelihood

SVGD SPOS SGLD Skew-SGLD SGHMC Skew-SGHMC

Concrete −3.157 ± 0.008 −3.124 ± 0.025 −3.052 ± 0.009 −3.049 ± 0.012 −3.046 ± 0.025 −3.033 ± 0.021
Kin8nm 1.153 ± 0.0084 1.212 ± 0.008 1.223 ± 0.002 1.223 ± 0.005 1.230 ± 0.0015 1.235 ± 0.0025
Energy −0.816 ± 0.102 −0.976 ± 0.079 −0.867 ± 0.056 −0.845 ± 0.021 −0.843 ± 0.045 −0.844 ± 0.041

Bostonhousing −2.98 ± 0.000 −2.644 ± 0.027 −2.548 ± 0.016 −2.539 ± 0.002 −2.574 ± 0.019 −2.561 ± 0.017
Winequality −1.012 ± 0.000 −0.959 ± 0.007 −0.976 ± 0.006 −0.968 ± 0.005 −0.941 ± 0.007 −0.938 ± 0.005
PowerPlant −2.871 ± 0.004 −2.850 ± 0.004 −2.844 ± 0.002 −2.842 ± 0.001 −2.838 ± 0.004 −2.835 ± 0.003

Yacht −1.184 ± 0.06 −1.372 ± 0.07 −1.077 ± 0.066 −1.078 ± 0.030 −1.083 ± 0.030 −1.079 ± 0.051
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Figure 6. MNIST classification (Averaged over ten trials).

7. Conclusions

We studied skew acceleration for LD and ULD from practical viewpoints and con-
cluded that the improved eigenvalues of the perturbed Hessian matrix caused acceleration
and derived the explicit condition for acceleration. We described a novel ensemble sam-
pling method, which couples multiple SGLD or SGHMC with memory-efficient skew
matrices. We also proposed a practical algorithm that controls the trade-off of faster con-
vergence and larger discretization and stochastic gradient error and numerically confirmed
the effectiveness of our proposed algorithm.
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Abbreviations

The following abbreviations are used in this manuscript:

LD Langevin Dynamics
MCMC Markov Chain Monte Carlo
ULD Underdamped Langevin Dynamics
SGLD Stochastic Gradient Langevin Dynamics
SGHMC Stochastic Gradient Hamilton Monte Carlo
PLD Parallel Langevin Dynamics
PULD Parallel Underdamped Langevin Dynamics
SLD Skew Langevin Dynamics
S-ULD Skew Underdamped Langevin Dynamics
S-PLD Skew Parallel Langevin Dynamics
S-PULD Skew Parallel Underdamped Langevin Dynamics
KSD Kernelized Stein Discrepancy

Appendix A. Additional Backgrounds

We introduce additional backgrounds which are used in our Proof.

Appendix A.1. Wasserstein Distance and Kullback–Leibler Divergence

In this paper, we use the Wasserstein distance. Let us define the Wasserstein dis-
tance. Let (E, d) be a metric space (appropriate space such as Polish space) with σ field
A, where d(·, ·) is A × A-measurable. Let μ, ν are probability measures on E, and p ≥ 1.
The Wasserstein distance of order p with cost function d between μ and ν is defined as

Wd
p (μ, ν) = inf

π∈Π(μ,ν)

(∫ ∫
d(x, y)pdπ(x, y)

)1/p
, (A1)

where Π(μ, ν) is the set of all joint probability measures on E × E with marginals μ and ν.
In this paper, we work on the space Rd. As for the distance, we use the Euclidean distance,
‖ · ‖. For simplicity, we express the p-Wasserstein distance with the Euclidean distance as
Wp. The various properties of Wasserstein distance are summarized in [35]. We define the
Kullback–Leibler (KL) divergence as

KL(ν‖μ) =

{∫
log dν

dμ dν, ν � μ,

+∞, otherwise.
(A2)
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Appendix A.2. Markov Diffusion and Generator

Here we introduce the additional explanation about the generator of the Markov
diffusion process. Given an SDE,

dXt = −∇U(Xt)dt +
√

2β−1dw(t), (A3)

and we denote the corresponding Markov semigroup as P = {Pt}t>0 and define the Kol-
mogorov operator as Ps which is defined as Ps f (Xt) = E[ f (Xt+s)|X(t)], where f : Rd → R

is some bounded test function in L2(μ). A property Ps+t = Ps ◦ Pt is called Markov property.
A probability measure π is the stationary distribution when it satisfies for all measurable
bounded function f and t,

∫
Rd Pt f dπ =

∫
Rd f dπ.

We denote the infinitesimal generator of the associated Markov group as L and we
call it a generator for simplicity. The linearity of the operators of Pt with the semigroup
property indicates that L is the derivative of Pt as

1
h
(Pt+h − Pt) = Pt

1
h
(Ph − Id) =

1
h
(Ph − Id)Pt, (A4)

where Id is the identity map. In addition, taking h → 0, we have ∂Pt = LPt = PtL. From
the Hille–Yoshida theory [19], there exists a dense linear subspace of L2(π) on which
L exists. We refer it as D(L). If the Markov semigroup is associated with the SDE of
Equation (A3), the generator can be written as

L f (Xt) : = lim
h→0+

E( f (Xt+h)|Xt)− f (Xt)

h
=
(
−∇U(Xt) · ∇+ β−1Δ

)
f (Xt), (A5)

where Δ is the Laplacian in the standard Euclidean space. The generator satisfies
L1 = 0,

∫
Rd L f dπ = 0.

Appendix A.3. Poincaré Inequality

We use the Poincaré inequality to measure the speed of convergence to the stationary
distribution. In this section, we summarize definitions and useful properties of them and
see [19] for more details. We define the Dirichlet form E( f ) for all bounded functions
f ∈ D(L) where D(L) denotes the domain of L as

E( f ) := −
∫
Rd

fL f dπ. (A6)

E( f ) > 0 is satisfied. By the partial integration, we have E( f ) = −
∫
Rd fL f dπ =

1
β

∫
Rd ‖∇ f ‖2dπ. We define a Dirichlet domain, D(E), which is the set of functions

f ∈ L2(π) and satisfies E( f ) < ∞.
We say that π with L satisfies a Poincaré inequality with a positive constant c if for any

f ∈ D(E), π with L satisfies,

∫
f 2dπ −

(∫
f dπ

)2
≤ cE( f ). (A7)

This constant c is closely related to a spectral gap. If the smallest eigenvalue of L, λ, is
greater than 0, then it is called the spectral gap. If the spectral gap λ > 0 exists, then it is
written as

λ := inf f∈D(E)

{ E( f )∫
f 2dπ

: f �= 0,
∫

f dπ = 0
}

. (A8)
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From this, a constant c which satisfies c ≥ 1/λ, can also satisfy the Poincaré inequality.
To check the existence of the spectral gap, one approach is to use the Lyapunov function,
which is developed by Bakry et al. [36].

We can also express the Poincaré inequality via chi divergence. Let us define the χ2

divergence for μ � π as

χ2(μ‖π) :=
∥∥∥∥ dμ

dπ
− 1
∥∥∥∥2

L2
π

=
∫
Rd

∣∣∣∣ dμ

dπ
− 1
∣∣∣∣2dπ. (A9)

Then, we express the Poincaré inequality with a constant c for all μ � π as

χ2(μ‖π) ≤ c E
(√

dμ

dπ

)
. (A10)

We obtain the following exponential convergence results from the above functional
inequalities for measures.

Theorem A1. (Exponential convergence in the variance, Theorem 4.2.5 in [19]) When π satisfies
the Poincaré inequality with a constant c, it implies the exponential convergence in the variance
with a rate 2/c, i.e., for every bounded function f : Rd → R,

Varπ(Pt f ) ≤ e−2t/cVarπ( f ), (A11)

where Varπ( f ) :=
∫
Rd f 2dπ −

(∫
Rd f dπ

)2.

We also introduce the important property of Poincaré inequality as for the product
measures. These relations play important roles in our analysis.

Theorem A2. (Stability under the product, Proposition 4.3.1 in [19]) If μ1 and μ2 on Rd satisfy
the Poincaré inequalities with a constant c1 and c2, then the product μ1 ⊗ μ2 on Rd ⊗Rd satisfies
the Poincaré inequality with the constant max(c1, c2).

Appendix B. Generator of the Underdamped Langevin Dynamics (ULD)

Following [10], we define the infinitesimal generator of the ULD as

L f (x, v) := −(γv +∇U(x))∇v f (x, v) + γβ−1Δ f (x, v) + v∇x f (x, v). (A12)

Then, we define the generator of S-ULD as

L f (x, v) := −(γv +∇U(x))∇v f (x, v) + γβ−1Δ f (x, v)

+ v∇x f (x, v) + α1 J1∇U(x)∇x f (x, v) + α1 J2Σ−1v∇v f (x, v), (A13)

where the second line corresponds to the interaction terms. Then it is easily to confirm∫
R2d L f (x, v)dπ̃ = 0, where π̃ := π ⊗ N (0, Σ) ∝ e−βU(x)− 1

2 Σ−1‖v‖2
. Thus, the stationary

distribution of S-ULD is π̃. We can prove this by simply using the partial integral and using
the property of the skew-symmetric matrix. Thus, the stationary distribution of S-ULD
is π̃.

We consider other combinations the skew matrices with ULD. For example, we can
consider the following more general combination;

dXt = Σ−1Vtdt + α1 J1∇U(Xt)dt + α2Σ−1 J2Vtdt

dVt = −∇U(Xt)dt − γΣ−1Vtdt + α3 J3Vtdt + α4 J4∇U(Xt)dt +
√

2γβ−1dwt,
(A14)
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compared to S-ULD, there are new two terms are included. We can also derive the in-
finitesimal generator of this Markov process. We express it as L̃. Then we calculate the
infinitesimal change of the expectation of f∫

R2d
L̃ f (x, v)dπ̃ �= 0, (A15)

which suggests that the stationary distribution of Equation (A14) is different form π̃.
It is widely known that underdamped Langevin dynamics converges to (overdamped)

Langevin dynamics. Here we observe that S-ULD converges to Skew-LD in [18]. The limit-
ing procedure is widely known, for example, see [17,37,38]. We cite Proposition 1 in [17];
given a stochastic process

dXt = Σ−1Vtdt + α1 J1∇U(Xt)dt,

dVt = −∇U(Xt)dt − γΣ−1Vtdt − α2Σ−1 J2Vtdt +
√

2γdwt,
(A16)

and we rescale it by introducing ε which expresses the small mass limit as

dXt =
1
ε

Σ−1Vtdt + α1 J1∇U(Xt)dt,

dVt = −1
ε
∇U(Xt)dt − 1

ε2 γΣ−1Vtdt − 1
ε

2
α2Σ−1 J2Vtdt +

1
ε

√
2γdwt,

(A17)

and by taking the limit ε → 0, the dynamics converges to

dXt = −(α2 J2 + γ)−1∇U(Xt)dt − α1 J1∇U(Xt) + (α2 J2 + γ)−1
√

2γdwt. (A18)

See Proposition 1 in [17], for the precise statements. Please note that the term related J2
works as preconditioning. Thus, if we set α2 J2 = 0, the obtained dynamics are equivalent to
the continuous dynamics of skew-SGLD. Thus, our skew-SGHMC is the natural extension
of skew-SGLD.

Appendix C. Proof of Theorem 1

Appendix C.1. Proof for S-LD

First, under Asuumptions 1–5, LD has a spectral gap, and its Poincaré constant is
upper bounded as

1
m0

≤ 2C(d + bβ)

mβ
exp
(

2
m
(M + B)(bβ + d) + β(A + B)

)
+

1
mβ(d + bβ)

. (A19)

and this is derived in [2].
Next, we introduce the generator of S-LD

Lα f (x) =
(
−∇Uα(x) · ∇+ β−1Δ

)
f (x),

where ∇Uα(x) := ∇U(x) + αJ∇U(x).
The proof is almost similar to [18] of Theorem 12.

Proof of Theorem 1. Since the generator Lα=0 is self-adjoint, and the suitable growth con-
dition, the spectral of Lα=0 is discrete [19]. We denote the spectrum of Lα=0 as {λk}∞

k=0 ∈ R

and corresponding normalized eigenvectors as {ek}∞
k=0, which are the real functions. We or-

der the spectrum as 0 > λ0 > λ1 > . . . . Thus, m0 = −λ0.
As for Lα, although it is not a self-adjoint operator, from Proposition 1 in Franke et al. [39],

it has discrete complex spectrums. We denote the spectrum of Lα as λ + iμ ∈ C where
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λ, μ ∈ R and corresponding normalized eigenvector as u + iv where u, v are the real
functions and then we have

Lα(u + iv) = (λ + iμ)(u + iv). (A20)

From this definition, by checking the real parts and complex parts, following relations
are derived

Lαu = λu − μv, (A21)

Lαv = λv + μu. (A22)

Due to the divergence-free drift property, for any bounded real value test func-
tion g(x), ∫

g(Lα=0 − Lα)gdπ =
∫

αgγ · ∇gdπ = −
∫

αgγ · ∇gdπ, (A23)

where we used the partial integral. This means that for any bounded real function g(x),∫
gLα=0gdπ =

∫
gLαgdπ. (A24)

(This only holds for real functions.) Then, we can evaluate the real part of the eigen-
value λ as follows,∫

uLα=0udπ +
∫

vLα=0vdπ =
∫

uLαudπ +
∫

vLαvdπ = λ

(∫
u2dπ +

∫
v2dπ

)
= λ. (A25)

Then, by expanding the eigenfunction u, v by the eigenfunction {ek},

λ =
∫

uLα=0udπ +
∫

vLα=0vdπ = ∑
k

λk

((∫
uekdπ

)2
+

(∫
vekdπ

)2
)

≤ λ0 ∑
k

((∫
uekdπ

)2
+

(∫
vekdπ

)2
)

≤ λ0. (A26)

Thus, the real part of the eigenvalue of Lα is smaller than the smallest eigenvalue of Lα.
This means that the spectral gap of Lα is larger than that of Lα=0, i.e., m(α) ≥ m0 holds.

Appendix C.2. Proof of Theorem 2 (S-ULD)

Proof of Theorem 2 . To prove the S-ULD, we use the result of [20], which characterize the
convergence of ULD via the Poincaré constant. Let us denote μ̃t as the measure induced by
ULD. Then from Theorem 1 of [20], if π with L has the Poincaré constant m0, we have

χ2(μ̃t‖π̃) ≤ 1 + ε̄

1 − ε̄
e−λγtχ2(μ̃t‖π̃). (A27)

where ε̄ and λγ is given as follows.

λγ =
Λ(γ, ε̄ min(γ, γ−1))

1 + ε̄ min(γ, γ−1)
, (A28)
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where

Λ(γ, ε) =

γΣ−1 − 1

1+ m0Σ−1
β

2
− 1

2

√
(S−− − S++)2 + (S−+)2, (A29)

S−− = ελham, (A30)

S−+ = −ε(Rham + γΣ−1/2), (A31)

S++ = γΣ−1 − ε, (A32)

λham = 1 −
(

1 +
m0Σ−1

β

)−1

, (A33)

ε = ε̄ min(γ, γ−1), (A34)

where ε̄ is arbitrary sufficiently small positive value such that Λ(γ, ε̄ min(γ, γ−1)) > 0 is
satisfies. As for Rham, if there exists a positive constant K, such that ∇2U ≥ −KI, then
Rham ≤

√
max{K, 2}. In our assumption, this corresponds to βM, thus

Rham ≤
√

max{βM, 2}. From the above definitions, we can see that the larger m0 is,
i.e., the larger the Poincaré constant is the faster convergence ULD shows.

This can also be confirmed numerically, see Figure A1, which shows how the Λ
changes under different m0. We set Σ−1 = 100. From the figure, the larger the Poincaré
constant is, the larger Λ becomes.
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Figure A1. The convergence rate of ULD under the different Poincaré constants.

So far, we confirmed that the convergence speed of S-ULD is characterized by the
Poincaré constant of L. When we consider S-ULD, we simply add the skew matrices term
to the generator of the ULD in the proof of Proposition 1 in [20]. This means that we simply
replace the Poincaré constant from m0 to m(α) in the proof of Proposition 1 in [20]. Then,
m0 will be replaced with m(α) that indicates the faster convergence.

Appendix D. Eigenvalue and Poincaré Constant

In this section, we discuss the relation between eigenvalues of the Hessian matrix and
Poincaré constant.

Appendix D.1. Strongly Convex Potential Function

When we consider LD with m-strongly convex potential function, then the Poincaré
constant is m, this means exponential convergence with rate m (See [19] for the detail).
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We then consider the S-LD with m-strongly convex function. In this setting, by con-
sidering the synchronous coupling technique [11], we can show that the variance decays
exponentially with the rate of the smallest real part of the eigenvalue. This is because that
by preparing two S-LD (Xt, Yt) given as

dXt = −(I + αJ)∇U(Xt)dt +
√

2β−1dwt, dYt = −(I + αJ)∇U(Yt)dt +
√

2β−1dw′
t. (A35)

Then we evaluate the behavior of ‖Xt − Yt‖2. From Ito lemma and considering the
synchronous coupling, we obtain

d
dt

‖Xt − Yt‖2 = −(Xt − Yt) ·
(I + αJ)

β
(∇U(Xt)− ∇U(Yt)) ≤ −2m(α)

β
‖Xt − Yt‖2, (A36)

where m(α) is the constant that satisfies m(α) ≤ Reλα
1(x) for all x, see Appendix E for

details. This means that variance decays exponentially with the rate 2m(α)
β . From the

fundamental property of the Poincaré constant (Theorem 4.2.5 in [19]), m(α) is the Poincaré
constant. Thus the imaginary part has no effect on the continuous dynamics. Thus,
the Poincaré inequality is the smallest real part of the perturbed Hessian matrix.

Appendix D.2. Non-Convex Potential Function

As we discussed in Section 3.1, [21] derived the sharper estimation for the Poincaré
constant for the non-convex potential function. It is easy to verify that their assumptions
are satisfied under our assumption 1–5. Following the main paper, we denote x1 global
minima, and x2 is the local minima which have the second smallest value in U(x). We
express the saddle point between x1 and x2 as x∗. To be more precise, the saddle point that
characterizes the Poincaré constant is known as the critical point with index one defined as

U(x∗) = inf
{

max
s∈[0,1]

U(γ(s)) : γ ∈ C([0, 1],Rd), γ(0) = x1, γ(1) = x2

}
, (A37)

and the eigenvalue of ∇2U(x∗) has one negative eigenvalue and d − 1 positive eigenvalues.
We express them as λ1(x∗) < 0 < λ2(x∗) < . . . , λd(x∗).

Ref. [21] studied the Poincaré constant by decomposing the non-convex potential
focusing on attractors. By focusing on attractors, they showed that the non-convex potential
can be decomposed into the sum of approximately Gaussian distributions. They proved that
the Poincaré constant is characterized by the local Poincaré constants, these are derived
by the approximate Gaussian distribution on the attractors and their surrounding regions.
In addition, they proved that the dominant term of the Poincaré constant is specified by the
saddle points between the global minima and the point which takes the second smallest
value for U(x). From Theorem 2.12 and Corollary 2.15 in [21], the Poincaré constant is
characterized by

m−1
0 ≈

√
detH(x∗)√

Z|λ1(x∗)|detH(x1)
√

detH(x2)
eβ(U(x∗)−U(x1)−U(x2)) ∝

1
|λ1(x∗)| eβ(U(x∗)−U(x1)−U(x2)), (A38)

where Z is the normalizing constant of e−βU(x).
Next, we discuss how this estimate changes when skew matrices are applied. When

the skew matrices are introduced, from lemma A.1 in [40], at the saddle point, there exists
a unique negative real eigenvalue λα

1(x∗) < 0 for the perturbed Hessian matrix even if
(I + αJ)H is not a symmetric matrix.

Then from Proposition 5 in [8], that negative eigenvalue of the perturbed Hessian is
smaller than that of the un-perturbed Hessian matrix at the saddle point. This means that
λα

1(x∗) ≤ λ1(x∗) < 0 holds.
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Finally, from Theorem 5.1 in [41] and Theorem 2.12 in [21], this improvement of the
negative eigenvalue of the saddle point directly leads to the larger Poincaré constant.

Appendix E. Properties of a Skew-Symmetric Matrix

Here, we introduce the basic properties of the skew-symmetric matrices. Let us con-
sider assume that d × d matrix H′ = (I + αJ)H is diagonalizable. Then assume that matrix
H′ has l real eigenvalues λ1, . . . , λl and 2m complex eigenvalues, μ1 = α1 ± iβ1, . . . , μm =
αm ± iβm. Thus, d = l + 2m. We denote the corresponding eigenvectors as {vj}l

j=1 for
real eigenvalues and {wj = aj + ibj}m

j=1 for complex eigenvalues {μj}m
j=1 and {w̄j} for

corresponding conjugate eigenvalues. Then, let us define a d × d matrix V as

V = [v1, . . . , vl , a1, b1, . . . , am, bm]. (A39)

Then, we can decompose H′ into a block diagonal matrix [42];

H′V = VD (A40)

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1
. . .

λl
α1 0
0 α1

. . .
αm 0
0 αm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

:=A

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
. . .

0
0 β1

−β1 0
. . .

0 βm
−βm 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

:=B

. (A41)

Thus, D := A + B. Then, from the Taylor expansion and expressing its residual by
integral, by defining H(x) := ∇2U(x) we have

(x − y)�(I + αJ)(∇U(x)− ∇U(y)) = (x − y)�
(∫ 1

0
(I + αJ)H(y + τ(x − y))(x − y)dτ

)
. (A42)

Then, let us apply the Jordan canonical form here. If (I + αJ)H is diagonalizable,
and it is decomposable by the Jordan canonical form shown in Equation (A40). Then, we
can decompose (I + αJ)H as

(I + αJ)H(x∗ + τ(x(t)− x∗)) = VDV−1. (A43)

Then, we obtain

(x − y)�(I + αJ)(∇U(x)− ∇U(y)) = (x − y)�
(∫ 1

0
(I + αJ)H(y + τ(x − y))(x − y)dτ

)
=

(∫ 1

0
(x − y)�V(A + B)V−1(x − y)dt

)
=

(∫ 1

0
(x − y)�VAV−1(x(t)− x∗)dt

)
≤ m(α)‖x(t)− x∗‖2. (A44)

where m(α) is the constant that satisfies m(α) ≤ min{λ1, . . . , λl , α1, . . . , αm} for all x. Thus,
the imaginary part never appears to the upper bound and we only need to focus on the
largest real part of the eigenvalues, if the matrix is diagonalizable. Next subsection describes
when the non-symmetric matrix H′ is diagonalizable by focusing on the random matrix.
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Appendix F. Proof of Theorem 3

Proof. Since the potential function is m-strongly convex, the smallest eigenvalue of the
Hessian matrix H is m, which is larger than 0. Thus, H and H1/2 are regular matrices. With
this in mind, we consider H + H1/2 JH1/2 as a similar matrix of H′ := (I + J)H. This is
easily confirmed by

H−1/2(H + H1/2 JH1/2)H1/2 = H′. (A45)

This means that to study the eigenvalues of H′, we only need to study the similar
matrix A := H + H1/2 JH1/2. By doing this, A is composed of symmetric and skew-
symmetric matrices, which are easy to treat compared to H′, where the term JH is difficult
to analyze. For simplicity, we omit the dependency of H and H′ on x in this section.

Remark A1. Please note that we can eliminate the strong convexity of U, if H is a regular matrix.
This means that H does not have 0 as an eigenvalue.

For simplicity, we assume that the dimension d is an even number. We assume that
the eigenvalues and eigenvectors of A are expressed as

Awj = μjwj ⇔ A(aj + ibj) = (αj + iβ j)(aj + ibj). (A46)

and αj is ordered as α1 ≤ α2, . . . . In this section, we only consider the setting where all the
eigenvalue and eigenvector are imaginary for notational simplicity. The extension to the
general settings similar to Appendix E and the setting when is d is odd is straightforward.

We denote the eigenvalues and eigenvectors of H as {λj, vj}d
j=1 and vjs are linearly

independent. In addition, we assume that λ1 ≤, . . . , λd. From this definition, by checking
the real parts and complex parts, the following relations are derived

Aaj = αjaj − βbj, (A47)

Abj = αjbj + βaj. (A48)

thus, by the skew-symmetric property

a�
j Aaj + b�

j Abj = αj(‖aj‖2 + ‖bj‖2) = αj (A49)

= a�
j Haj + b�

j Hbj, (A50)

and in the third equality, we used the property

a�
j H1/2 JH1/2aj = b�

j H1/2 JH1/2bj = 0, (A51)

since H1/2 JH1/2 is a skew-symmetric matrix. Then, we expand aj and bj by vj as

ak =
d

∑
j=1

a�
k vj (A52)

bk =
d

∑
j=1

b�
k vjvj, (A53)

since vjs are eigenvalues of H, which can be used as the basis for Rd. Then we substitute
this into Equation (A50) and we have

αk =
d

∑
j=1

λj(a�
k vj)

2 +
d

∑
j=1

λj(b�
k vj)

2 ≥ λ1

d

∑
j=1

(a�
k vj)

2 + (b�
k vj)

2) = λ1. (A54)
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This means that any real part of the eigenvalue of A is larger than λ1 which is the
smallest eigenvalue of H. Thus, if the α1 is the smallest real part of the eigenvalue of A,
that is larger than the smallest eigenvalue of H. This concludes the proof.

In the same way,

αk =
d

∑
j=1

λj(a�
k vj)

2 +
d

∑
j=1

λj(b�
k vj)

2 ≤ λd

d

∑
j=1

(a�
k vj)

2 + (b�
k vj)

2) = λd, (A55)

which means any real part of the eigenvalues of A is smaller than the largest eigenvalue of
H. Thus, if α is the largest real part of the eigenvalues of A, it is smaller than the largest
eigenvalue of H.

Equality condition:

Next, we discuss when the equality holds for α1 = λ1. First, we assume that eigen-
values of H are distinct, thus, there is only one eigenvector for λ1. Later, we discuss if
eigenvalues are not distinct. From Equation (A54), we have

α1 =
d

∑
j=1

λj(a�
1 vj)

2 +
d

∑
j=1

λj(b�
1 vj)

2 ≥ λ1

d

∑
j=1

(a�
1 vj)

2 + (b�
1 vj)

2) = λ1, (A56)

in general. Please note that if a1 and b1 does not correspond to v1, then λj �=1 > λ1 must
appear in the summation and equality never holds. So, the condition is

a1, b1 ∝ v1, (A57)

must hold for the equality.
Based on this, let us assume that w1 = ca1 + ic′b1 where c2 + c

′2 = 1. We consider the
case a1 = b1 = v1. Then we need to solve the simultaneous equations

A(ca1 + ic′b1) = (λ1 + iβ1)(ca1 + ic′b1) = (λ1c − c′β1)v1 + i(cβ1 + λ1c′)v1, (A58)

this is obtained by the definition of the eigenvalue of A and

A(ca1 + ic′b1) = λ1/2
1 c(Iλ1/2

1 + αH1/2 J)v1 + iλ1/2
1 c′(Iλ1/2

1 + αH1/2 J)v1, (A59)

this is obtained from the definition of eigenvalues of H. Then multiplying v1 from the left,
we obtain cβ1 = 0 and c′β1 = 0. Thus, β1 = 0. β1 = 0 meansb1 = 0 from the property of
the complex eigenvectors. Thus, we obtain w1 = a1 = v1 for λ1 = α1. Then, the following
relation holds,

λ1v1 = Av1 = Hv1 + αH1/2 JH1/2v1 = λ1v1 + αλ1/2
1 H1/2 Jv1. (A60)

Since λ1 �= 0 and H1/2 has the inverse matrix, this condition indicates that

αJv1 = 0. (A61)

This is the condition that λ1 = α1 holds. The same relation can be derived for λd = αd.
Next, we assume that eigenvalues of H are not distinct. Let us denote the set of

eigenvectors of the eigenvalue λ0
1 as {v0

1}. Please note that if a1 and b1 does not included in
V0

1 , then λj �=1 > λ1 must appear and equality never holds. Thus

a1, b1 ∈ V0
1 (A62)
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must hold for equality. Based on this, let us assume that w1 = ca1 + ic′b1 where c2 + c
′2 = 1.

We consider the case a1 �= b1. Then

H−1/2 A(ca1 + ic′b1) = λ−1/2
1 (λ1 + iβ1)(ca1 + ic′b1)

H−1/2(H + αH1/2 JH1/2)(ca1 + ic′b1) = λ1/2
1 c(I + αJ)a1 + iλ1/2

1 c′(I + αJ)b1, (A63)

then we obtain the condition

λ1cαJa1 = −β1c′b1 (A64)

λ1c′αJb1 = β1ca1. (A65)

Appendix G. Proofs of Random Matrices

Appendix G.1. Proof of Theorem 5

Proof. The proof is the straightforward consequence of lemma in [43], that is
Lemma in ([43]) If f (x1, . . . , xm) is a polynomial in real variables x1, . . . , xm, which is

not identically zero, then the subset Nm = {(x1, . . . , xm)| f (x1, . . . , xm) = 0} of the Euclidean
m-space Rm has the Lebesgue measure zero.

We use this lemma to prove that the probability of λ1 = α1 is 0 by showing that the
probability mass of λ1 = α1 has Lebesgue measure zero.

We use the same notation as in Appendix F. Recall Equation (A64), which is the condi-
tion of equality about λ1 = α1. We express the elements of a1 and b1 as a1 = (a1

1, . . . , ad
1)

�

and b1 = (b1
1, . . . , bd

1)
�. Then the equality condition can be written as

d

∑
i=1

(
d

∑
j=1

λ1cαJi,ja
j
1 + β1c′bi

1))
2 +

d

∑
i=1

(
d

∑
j=1

λ1c′αJi,jb
j
1 − β1cai

1))
2 = 0. (A66)

Then we define the polynomial about {Ji.j}

f (J1,2, . . . , Jd−1,d) =
d

∑
i=1

(
d

∑
j=1

λ1cαJija
j
1 + β1c′bi

1))
2 +

d

∑
i=1

(
d

∑
j=1

λ1c′αJijb
j
1 − β1cai

1))
2. (A67)

To apply lemma of [43], we must confirm that f (J1,2, . . . , Jd−1,d) is not always 0. This
is clear from the definition of f since we generate J1,2, . . . , Jd−1,d randomly from the distri-
bution that is absolutely continuous with respect to Lebesgue measure and λ1 �= 0 and
c2 + c′2 = 1 and either a1, b1 �= 0.

Then, given an evaluation point x, from lemma of [43], the subset of {Ji,j} ∈ Rd(d−1)/2

that satisfies f (J1,2, . . . , Jd−1,d) = 0 has Lebesque measure zero. Thus, if we generate {Ji,j}
from the probability measure which is absolutely continuous with respect to Lebesque
measure, (such as Gaussian distribution), f (J1,2, . . . , Jd−1,d) = 0 holds probability 0. This
concludes the proof.

Appendix G.2. Proof of Lemma 1

Proof. We first discuss the condition about KerJ0 = {0}. Since J = J0 ⊗ Id, and we denote
the set of eigenvalues of J0 as {ωi}. In general, the eigenvalues of the matrix that is
composed of the Kronecker product with two matrices, e.g., A and B, are given as the
product of each eigenvalue of A and B [44]. Thus, since J is the Kronecker product of J0
and Id, if J0 does not have 0 as an eigenvalue, J does not have 0 as an eigenvalue.

Next, we discuss another equality condition. We use the similar notation as in
Appendix F, but now the dimension of the matrix J is dN. We express the eigenvalue which
has the smallest real part as λα

1 and its eigenvector as ωα
1 = a1 + ib1. The elements of a1 and
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b1 as a1 = (a1
1, . . . , ad

1, ad+1
1 , . . . , adN

1 )� ∈ RdN and b1 = (b1
1, . . . , bd

1, . . . , bd+1
1 , . . . , bdN

1 )�. We

also express these as a1 = (a(1)1 , . . . , a(N)
1 )� ∈ RdN where a(i)1 = (a(i−1)d+1

1 , . . . , aid
1 )

� ∈ Rd.
We use the Kronecker product property:

Ja1 = (J0 ⊗ Id)a1 =

(
N

∑
i=1

J0|i,1a(i)1 , . . . ,
N

∑
i=1

J0|i,N a(i)1

)�
, (A68)

where J0|i,j indicates the element of i-th row and j-th column of J0 where we use the property
of the Kronecker product and the Vec operator in the second equality [44].

The proof is almost similar to Appendix G.1. Then the equality condition can be
written as

N

∑
n=1

∥∥∥∥∥λ1cα ∑
i

J0|i,na(i)1 + β1c′b(n)1

∥∥∥∥∥
2

+
N

∑
n=1

∥∥∥∥∥λ1c′α ∑
i

J0|i,nb(i)1 + β1ca(n)1

∥∥∥∥∥
2

= 0, (A69)

where ‖ · ‖ is the d-dimensional Euclidean norm since a(n)1 , b(n)1 ∈ Rd. Then we define the
polynomial about {Ji.j}

f (J1,2, . . . , JN−1,N) =
N

∑
n=1

∥∥∥∥∥λ1cα ∑
i

J0|i,na(i)1 + β1c′b(n)1

∥∥∥∥∥
2

+
N

∑
n=1

∥∥∥∥∥λ1c′α ∑
i

J0|i,nb(i)1 + β1ca(n)1

∥∥∥∥∥
2

. (A70)

In a similar discussion with Appendix G.1, it is clear that f is not always 0. Thus,
given an evaluation point x, from lemma of [43], the subset of {Ji,j} ∈ RN(N−1)/2 that
satisfies f (J1,2, . . . , JN−1,d) = 0 has Lebesque measure zero. Thus, if we generate {Ji,j} from
the probability measure which is absolutely continuous with respect to Lebesque measure,
(such as Gaussian distribution), f (J1,2, . . . , JN−1,N) = 0 holds probability 0. This concludes
the proof.

Appendix G.3. Extending the Theorem to the Path

About Theorem 5 and Lemma 1, the statement holds true when we fix an evaluation
point x. To ensure the acceleration, we need to extend Theorem 5 and Lemma 1 from
a single evaluation point to the path of the stochastic process for S-LD, S-PLD, S-ULD,
and S-PULD.

First, the condition of KerJ0 = {0} is not related to the evaluation point. Thus, we
need to consider the equality condition for Reλα

1 = λ0
1. As for this condition, as we had

seen in Theorem 5 and Lemma 1, if we generate the random matrix J which is absolutely
continuous with respect to Lebesgue measure, then the equality condition is not satisfied
with probability 1 at the given evaluation point. The important point in those proof is
to prove that the event when the equality holds has Lebesgue measure 0 at the given
evaluation point using the lemma of [43].

Let us consider when two evaluation points are given (e.g., x1, x2), and we check
whether the random matrix J satisfies the above equality condition or not. We can eas-
ily prove that at each evaluation point, such an event (we express them as S1 and S2)
has Lebesgue measure 0 using the lemma of [43] (We refer to this as P(S1) = 0 and
P(S2) = 0 where P is the law induced by generating the random matrix that has inde-
pendent d(d − 1)/2 elements). So, the volume of the event of sum of S1 and S2 are also
0 (P(S1

⋃
S2 = 0). By repeating this procedure, when given a finite number of evaluation

points, (x1, . . . , xk), the sum of such probability is 0 (this indicates P(S1
⋃

S2, . . . ,
⋃

Sk) = 0).
When we consider the discretized dynamics of S-LD, S-PLD, and so on, and update

samples up to k-iterations, then there exist k evaluation points. So, by applying the above
discussion, we can ensure that along the path of the discretized dynamics, the equality con-
dition does not hold with probability 1. On the other hand, as for the continuous dynamics,
the evaluation point is infinite, thus when we cannot conclude that the probability that the
equality does not hold is 1.
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Appendix H. Proof of Theorem 6

We use the same notation as in Appendix F. We consider the expansion concerning α
and we consider the following setting,

wj := vj + δvj (A71)

μj := λj + δλj, (A72)

which indicates that by introducing the skew-acceleration terms, the pairs of eigenvalues
and eigenvectors of H′ are expressed by the small perturbation for the eigenvalues and
eigenvectors of H. Since {vj}d

j=1 are the eigenvalues of H and they can be used as an
orthogonal basis, thus we expand δv by this basis. We obtain

δvj =
d

∑
k �=j

cjkvk, (A73)

where cjk = δv�
j vk.

Appendix H.1. Asymptotic Expansion When the Smallest Eigenvalue of H(x) Is Positive

We work on the similar matrix of H′, that is H + αV where V := H1/2 JH1/2. See
Appendix G.1 for the detail. Please note that this similar matrix only exists when the
smallest eigenvalue of H(x) is positive. Thus, the following discussion cannot apply to the
case at the saddle point, where negative eigenvalues appear. We discuss the saddle point
expansion later.

From the definition, we have

H′wj = Hwj + αVwj = μjwj = (λj + δλj)(vj + δvj), (A74)

We rearrange this equation as

Hvj + Hδvj + αVvj + αVδvj = λjvj + δλjvj + λjδvj + δλjδvj. (A75)

First, we focus on the first-order expansion. This means we neglect high-order terms.
Then, we have

Hvj + Hδvj + αVvj = λjvj + δλjvj + λjδvj. (A76)

By multiplying vj to Equation (A76) from the left-hand side, we have

λj + λjv�
j δvj + αv�

j Vvj = λj + δλj + λjv�
j δvj, (A77)

Since v�
j Vvj = 0 due to the skew-symmetric property of V. Thus, we have

δλj = 0, (A78)

up to the first-order expansion. Then we substitute this into Equation (A76) and multiplying
vi where i �= j, we have

λicji + αv�
i Vvj = λjcji. (A79)

Then we have

cji =
αv�

i Vvj

λj − λi
. (A80)

198



Entropy 2021, 23, 993

Then we obtain

δvj = α
d

∑
i �=j

v�
i Vvj

λj − λi
vi. (A81)

We substitute this into Equation (A75), and multiplying v�
j , we have

v�
j Hα

d

∑
i �=j

v�
i Vvj

λj − λi
vi + αv�

j Vvj + αv�
j Vα

d

∑
i �=j

v�
i Vvj

λj − λi
vi

= δλjv�
j vj + λjv�

j α
d

∑
i �=j

v�
i Vvj

λj − λi
vi + δλjv�

j α
d

∑
i �=j

v�
i Vvj

λj − λi
vi. (A82)

Since v�
j Vvj = 0 and v�

j vi = 0 and v�
j vj = 1, we have

α2
d

∑
i �=j

v�
i Vvj

λj − λi
v�

j Vvi = δλj. (A83)

Thus, we have

μj − λj = αj + iβ j − λj = −α2
d

∑
i �=j

(v�
i Vvj)

2

λj − λi
. (A84)

Thus, by taking the real part, and note that Reλj(α) = αj, we have

Reλj(α)− λj = α2Re
d

∑
i �=j

(v�
i Vvj)

2

λi − λj
+O(α3) = α2

d

∑
i �=j

λiλj(v�
i Jvj)

2

λi − λj
+O(α3). (A85)

This concludes the proof.

Appendix H.2. Expansion of the Eigenvalue at the Saddle Point

Here we derive the formula of the expansion of the eigenvalue at the saddle point.
Since the smallest eigenvalue is negative, we cannot use the similar matrix as shown above.
Instead, we use the relation,

μjHwj = Hμjwj = H(I + αJ)Hwj (A86)

where we used the definition of the eigenvalues and eigenvectors. Here, we express
H′ := (I + αJ)H and its pairs of eigenvalues and eigenvectors as {(μi, wi)}d

i=1. As intro-
duced in the above, we substitute the expansion to Equation (A86), then we obtain

(λj + δλj)H(vj + δvj) = H(I + αJ)H(vj + δvj) (A87)

Then, in the same way as above, since {vj}d
j=1 are the eigenvalues of H and they can

be used as an orthogonal basis, we expand δv by this basis. This means

δvj =
d

∑
k=1

cjkvk, (A88)

where cjk = δv�
j vk. By multiplying vi to Equation (A87) where i �= j from left-hand side

and neglecting high-order terms, we have

cji =
λj

λj − λi
(v�

i αJvi). (A89)
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Next, Then by multiplying vj to Equation (A87) from left-hand side, we have

vj H(αJ)Hδvj = (δλj)(λj + λjv�
j δvj) (A90)

Then by substituting δvj with coefficient Equation (A89), we have

δλj = α2
d

∑
i �=j

λiλj(v�
i Jvj)

2

λi − λj
+O(α3) (A91)

This concludes the proof.

Appendix I. Convergence Rate of Parallel Sampling Schemes

Appendix I.1. Proof of Lemma 2

First, we introduce the notations. We express the random variables of S-PLD as Y⊗N
t .

We express the measure induced by S-PLD as μ⊗N
t (α), which uses the αJ as an interaction

term. Thus, we express the measure of PLD as μ⊗N
kh (0), we can decompose the measure

as marginals. We also denote the marginal measure of S-PLD for Y(n)
t ν

(n)
t (α). Please note

that initial distribution is μ⊗N
0 and its marginals are μ0 as defined in Assumption 4.

Please note that the marginal measure of PLD is the same as those of LD if the initial
measures are all the same, thus each marginal satisfy the Poincaré constant m0. This is also the
result of the tensorization property of the spectral gap (Proposition 4.3.1 in Bakry et al. [19]).

As for the initial condition, from the fact that χ2 divergence is the special case of
Renyi divergence (α = 4), and from the tensorization property of the Renyi divergence
(see Theorem 28 in [45]), we have

χ2(μ⊗N
t (0), π⊗N) ≤ e−2β−1m0tχ2(μ⊗N

0 , π⊗N) =
N

∑
n=1

e−2β−1m0tχ2(μ0, π). (A92)

Then we have

χ2(μ⊗N
t (0), π⊗N) ≤ e−2β−1m0tχ2(μ⊗N

0 , π⊗N) = Ne−2β−1m0tχ2(μ0, π). (A93)

If the skew acceleration is applied, from the same discussion as S-LD (see Appendix C.1),
S-PLD has the Poincaré constant which is larger than m0. We express it as m(α, N)(≥ m0).
Then we have

χ2(μ⊗N
t (α), π⊗N) ≤ Ne−2β−1m(α,N)tχ2(μ0, π). (A94)

At first, since there exists a constant N in the convergence bound, this bound seems
not useful. However, as we discussed below, when we bound the bias or variance, these
bound is meaningful. For example, let us consider approximating the true expectation∫

f (x)dπ(x) by the ensemble samples 1
N ∑N

n=1 f (X(n)
t ). Then we are interested in bounding

the error ∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣. (A95)

For this purpose, we can bound this by 2-Wasserstein distance as∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣, ≤ L f√
N

W2(μ
⊗N
kh (α), π⊗N) (A96)

where we assumed that f shows L f lipschitzness and used the fact that 1
N ∑N

n=1 f (x(n))
shows L f /

√
N lipschitzness.
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To bound the distance, we use the basic relation

W2
2 (νkh(α), π⊗N) ≤ 2

1
m(α, N)

χ2(μ⊗N
kh (α), π⊗N), (A97)

where m(α, N) is the Poincaré constant. This is established by the definition of Wasserstein
distance and χ2-divergence, see [46] for the detail. Then combined with above relations,
we obtain the bias bound of S-PLD as∣∣∣∣∣E 1

N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣ ≤ L f

√
2

m(α, N)
e−β−1m(α,N)khχ2(μ0, π)1/2. (A98)

In the same way, we obtain the bias bound of PLD as∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣ ≤ L f

√
2

m0
e−β−1m0khχ2(ν0, π)1/2. (A99)

Thus, while the explicit dependency on N disappeared, but S-PLD shows faster
convergence through the relation of m(α, N) ≥ m0. Moreover, if we use the skew matrices,
which does not satisfy the equality condition, we have m(α, N) > m0.

Appendix I.2. Proof for S-ULD

We can characterize the convergence rate almost in the same way as Appendix C.2.
The derivation is the same above, thus we only show the result∣∣∣∣∣E 1

N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣ ≤ L f

√
2

m(α, N)

√
1 + ε̄

1 − ε̄
e−λγ/2khχ2(ν0

0 , π)1/2. (A100)

where ε̄ and λγ is given as follows.

λγ =
Λ(γ, ε̄ min(γ, γ−1))

1 + ε̄ min(γ, γ−1)
, (A101)

and

Λ(γ, ε) =

γΣ−1 − 1

1+ m0Σ−1
β

2
− 1

2

√
(S−− − S++)2 + (S−+)2, (A102)

S−− = ελham, (A103)

S−+ = −ε(Rham + γΣ−1/2), (A104)

S++ = γΣ−1 − ε, (A105)

λham = 1 −
(

1 +
m(α, N)Σ−1

β

)−1

, (A106)

ε = ε̄ min(γ, γ−1), (A107)

where ε̄ is arbitrary sufficiently small positive value such that Λ(γ, ε̄ min(γ, γ−1)) > 0 is
satisfies. and

Rham ≤
√

max{M, 2}. (A108)

Appendix J. Proof of Theorem 7

We show our theorem again with explicit constants
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Theorem A3. Under Assumptions 1–7, for any k ∈ N and any h ∈ (0, 1 ∧ m
4M2 ) obeying kh ≥ 1

and βm ≥ 2, we have∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣
≤ L f

√
C̃2

0

√
δ + C̃2

1

√
hkη + L f

√
2

m(α, N)
χ2(μ0, π)1/2e−β−1m(α,N)kh. (A109)

where

C̃2
0 =

(
12 + 8

(
κ0 + 2b +

2d
β

))(
βC0 +

√
βC0

)
, (A110)

C̃2
1 =

(
12 + 8

(
κ0 + 2b +

2d
β

))(
C1 +

√
C1

)
(A111)

C0 = (1 + α)2
(

M2
(

κ0 + 2
(

1 ∨ 1
m

)(
b + 2(1 + α)2B2 +

d
β

))
+ B2

)
, (A112)

C1 = 6(1 + α2)M2(βC0 + d), (A113)

Then obtained bound is O(kh · h1/4), which is independent of N. Thus, this result is
much better than those in [18]. Additionally, note that we can derive the similar bias bound
for skew-SGHMC in the same way as skew-SGLD.

Proof. For notational simplicity, we express the random variables of skew-SGLD which
uses the αJ as an interaction term as X⊗N

k and those of S-PLD as Y⊗N
k . In this section,

for simplicity, we express them as Xk and Yk. We denote the measure of Xk and Yk as ν⊗N
kh

and μ⊗N
kh . We also denote the marginal measure of X(n)

k and Y(n)
k as μ

(n)
kh and ν

(n)
kh .

Then, we first decompose the bias as∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣
=

∣∣∣∣∣E∑N
n=1 f (X(n)

k )

N
−E

∑N
n=1 f (Y(n)

k )

N
+E

∑N
n=1 f (Y(n)

k )

N
−
∫
Rd

f dπ

∣∣∣∣∣
≤
∣∣∣∣∣E 1

N

N

∑
n=1

f (X(n)
k )−E

1
N

N

∑
n=1

f (Y(n)
k )

∣∣∣∣∣+
∣∣∣∣∣E 1

N

N

∑
n=1

f (Y(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣
≤

L f

N

N

∑
i=1

W2(ν
(n)
kh (α), μ

(n)
kh (α)) +

L f√
N

W2(μ
⊗N
kh (α), π⊗N)︸ ︷︷ ︸

(i)

, (A114)

where we used the Jensen inequality for the first term in the last inequality and we move
1
N ∑N

i=1 outside the | · |. In addition, each expectation only depends on the marginal
measures μ(i) in the first term and we use the property of the 2-Wasserstein (2-W) distance.
Furthermore, we decompose the first term as

L f

N

N

∑
n=1

W2(μ
(n)
kh (α), ν

(n)
kh (α)) ≤

L f

N

⎛⎜⎜⎝ N

∑
n=1

W2(ν
(n)
kh (α), μ

(n)
kh (0))︸ ︷︷ ︸

(ii)

+W2(μ
(n)
kh (α), μ

(n)
kh (0))︸ ︷︷ ︸

iii)

⎞⎟⎟⎠, (A115)

where μ
(n)
kh (0) denotes the measure induced by PLD, which is the naive parallel sampling

without a skew-symmetric interaction.
In conclusion, our task is to bound each (i), (ii), (iii) terms in the above. Bounding (i)

is already discussed in Appendix I.1.

202



Entropy 2021, 23, 993

Next, we work on (ii) and(iii). Following [10], we use weighted CKP inequality to
bound the 2-W distance. From Bolley and Villani [47], using the weighted CKP inequality,
we can bound each 2-W distance by the relative entropy (KL divergence). This weighted
CKP inequality indicates that

W2(ν
(n)
kh (α), μ

(n)
kh (0)) ≤ C

μ
(n)
kh (0)

⎛⎜⎝KL(ν(n)kh (α)|μ(n)
kh (0))1/2 +

⎛⎝KL(ν(n)kh (α)|μ(n)
kh (0))

2

⎞⎠1/4
⎞⎟⎠, (A116)

with

C
μ
(n)
kh (0)

= 2 inf
λ>0

(
1
λ

(
3
2
+ log

∫
Rd

eλ‖x(n)‖2
dμ

(n)
kh (0)

))1/2
. (A117)

and

W2(μ
(n)
kh (α), μ

(n)
kh (0)) ≤ C

μ
(n)
kh (0)

⎛⎜⎝KL(μ(n)
kh (α)|μ(n)

kh (0))1/2 +

⎛⎝KL(μ(n)
kh (α)|μ(n)

kh (0))
2

⎞⎠1/4
⎞⎟⎠, (A118)

with

C
μ
(n)
kh (0)

= 2 inf
λ>0

(
1
λ

(
3
2
+ log

∫
Rd

eλ‖x(n)‖2
dμ

(n)
kh (0)

))1/2
. (A119)

We point out that using C
μ
(i)
kh (0)

not C
ν
(i)
kh (α)

and C
μ
(i)
kh (α)

in weighted CKP inequality is

important. This is because since μ
(i)
kh (0) is the constant based on the parallel-chain Monte

Carlo without skew-symmetric term, thus the parallel chain can be decomposed each
independent chains. Thus, C

μ
(i)
kh

actually does not depend on i and it does not depend on

N and shows O(d) dependency. However, C
ν
(i)
kh (α)

and C
μ
(i)
kh (α)

show O(dN) which shows

linear dependency on N since there is an interaction term between parallel chains and we
cannot decompose the parallel chain easily. Thus, this results in unsatisfactory dependency
on N. This is the reason we introduced μ

(i)
kh (0) in our theoretical analysis.

Please note that since μ
(n)
kh (0) is induced by the naive parallel chain, each marginal

is independent with each other and takes the same measure if the initial measure is the
same. Thus, μ

(1)
kh (0) = · · · = μ

(N)
kh (0). From now on, we express the marginal as μkh(0) for

simplicity. Thus, C
μ
(1)
kh (0)

= · · · = C
μ
(N)
kh (0)

= Cμkh(0).

Then substituting the above WKP inequalities and using the Jensen inequality, we ob-
tain ∣∣∣∣∣E 1

N

N

∑
n=1

f (X(n)
k )−E

1
N

N

∑
n=1

f (Y(n)
k )

∣∣∣∣∣
≤ L f Cμkh(0)

1
N

N

∑
n=1

⎛⎝KL(ν(n)kh (α)|μkh(0))
1/2 +

(
KL(ν(n)kh (α)|μkh(0))

2

)1/4

+KL(μ(n)
kh (α)|μkh(0))

1/2 +

(
KL(μ(n)

kh (α)|μkh(0))
2

)1/4⎞⎠

203



Entropy 2021, 23, 993

≤ L f Cμkh(0)

⎛⎜⎝( N

∑
n=1

KL(ν(n)kh (α)|μkh(0))
N

) 1
2

+

(
N

∑
n=1

KL(ν(n)kh (α)|μkh(0))
2N

) 1
4

+

(
N

∑
n=1

KL(μ(n)
kh (α)|μkh(0))

N

) 1
2

+

(
N

∑
n=1

KL(μ(n)
kh (α)|μkh(0))

2N

) 1
4

⎞⎟⎠. (A120)

To analyze the discretization error, we use the following key lemma:

Lemma A1. Assume that there exist random variables {Xi ∈ Ωi}N
i=1 and {Yi ∈ Ωi}N

i=1. We
denote the product space as Ω⊗N := Ω1 × . . . ΩN. Let us introduce X = (X1, . . . , XN) ∈ Ω⊗N

and Y = (Y1, . . . , YN) ∈ Ω⊗N. Let us express their joint probability measures as expressed as
P(X) := P(X1, . . . , XN), Q(Y) := Q(Y1, . . . , YN), let us denote the marginal measures of each
Xs and Ys as {Pi(Xi)}N

i=1 and {Qi(Yi)}N
i=1. If Pi << Qi holds, we have

N

∑
i=1

KL(Pi(Xi)‖Qi(Yi)) ≤ KL(P(X)‖Q(Y)), (A121)

A proof is given in Appendix J.1. We apply this lemma as

N

∑
n=1

KL(μ(n)
kh |μkh(0)) ≤ KL(ν⊗N

kh |μ⊗N
kh (0)), (A122)

N

∑
n=1

KL(μ(n)
kh (α)|μkh(0)) ≤ KL(μ⊗N

kh (α))|μ⊗N
kh (0))). (A123)

Combining these results with the above bias bound, we obtain∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−E

1
N

N

∑
n=1

f (Y(n)
k )

∣∣∣∣∣
≤ L f Cμkh(0)

⎛⎝(KL(ν⊗N
kh (α)|μ⊗N

kh (0))
N

) 1
2

+

(
KL(ν⊗N

kh (α)|μ⊗N
kh (0))

2N

) 1
4

+

(
KL(μ⊗N

kh (α)(α)|μ⊗N
kh (0))

N

) 1
2

+

(
KL(μ⊗N

kh (α)|μ⊗N
kh (0))

2N

) 1
4
⎞⎠. (A124)

Thus, we need to bound KL(μ(i)
kh (α)|μ⊗N

kh (0)) and KL(ν⊗N
kh (α)|μ⊗N

kh (0)) and Cμkh(0).
We can upper-bound them using the results of [2]. For that purpose, we need to replace
the constants in [2] as we show in the below. Here, we discuss how the constants in the
assumption are changed in the ensemble scheme. We define

∇u⊗N(x⊗N) := (∇u(x(1)), . . . , ∇u(x(N))) (A125)

First, we focus on the smoothness condition. From Assumption 2 and lemma 8 in [18],
we have

‖(I + αJ)∇u⊗N(x⊗N , z)− (I + αJ)∇u⊗N(y⊗N , z))‖ ≤ M(1 + α)‖x⊗N − y⊗N‖. (A126)

where the norm in the right-hand side is the Euclidean norm in RdN .
Next, we discuss the smoothness condition. Define ∇Uα(x⊗N) := ∇U⊗N(x⊗N) +

αJ∇U⊗N(x⊗N). Then, Let x⊗N ∈ RdN and under the assumptions 1 to 6, we have

x⊗N · ∇Uα(x⊗N) ≥ m‖x⊗N‖2 − bN. (A127)
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Next, we check about the condition of the drift function at the origin: ‖∇u(0, z)‖ ≤ B.
We can calculate in the same way as the smoothness condition. Then we have

‖(I + αJ)∇U⊗N(0⊗N)‖ ≤ B
√

N(1 + α). (A128)

Next, we study the condition about the stochastic gradient: E[‖∇Û(x)− ∇U(x)‖2] ≤
2δ
(

M2‖x‖2 + B2). This can be easily modified to

E[‖(I + αJ)∇Û⊗N(x⊗N)− (I + αJ)∇U⊗N(x⊗N)‖2]

≤ (1 + α)2E[∇Û⊗N(x⊗N)− ∇U⊗N(x⊗N)‖2]

≤ (1 + α)2
N

∑
i=1

E[∇Û(x(i))− ∇U(x(i))‖2] (A129)

≤ (1 + α)2
N

∑
i=1

2δ
(

M2‖x(i)‖2 + B2
)

≤ 2δ(1 + α)2
(

M2‖x⊗N‖2 + NB2
)

.

Finally, we discuss about the initial condition: κ0 := log
∫
Rd e‖x‖2

p0(x)dx < ∞. We

assume that the initial probability distribution is μ⊗N
0 (X⊗N

0 ) = μ0(X(1)
0 )× · · · × μ0(X(N)

0 ),
which means that all the marginal probability is the same. Then

κ⊗N
0 := log

∫
RdN

e‖x⊗N‖2
μ⊗N

0 (x⊗N)dx⊗N = log
N

∏
n=1

(∫
Rd

e‖x(n)‖2
μ0(x(n))dx

)
= Nκ0. (A130)

In this way, the constants in the assumptions are modified and expressed with N and
α. Then combined with the results of [2], we can derive the following relations

Cνkh(0) ≤ 12 + 8
(

κ0 + 2b +
2d
β

)
, (A131)

KL(ν⊗N
kh |μ⊗N

kh (0)) ≤ N(C0βδ + C1η)kη, (A132)

KL(μ⊗N
kh (α)|μ⊗N

kh (0)) ≤ N
β

2
α2M2(κ0 +

b + d/β

m
)kη, (A133)

where

C0 = (1 + α)2
(

M2
(

κ0 + 2
(

1 ∨ 1
m

)(
b + 2(1 + α)2B2 +

d
β

))
+ B2

)
, (A134)

C1 = 6(1 + α2)M2(βC0 + d). (A135)

This concludes the proof.

Appendix J.1. Proof of Lemma A1

Proof. We prove this lemma using the Donsker–Varadhan representation of the relative
entropy [48]. The relative entropy admits the dual representation as:

KL(P(X)‖Q(Y)) = sup
T:Ω⊗N→R

EP(X)[T]− logEQ(Y)[e
T ], (A136)

where supremum is taken over all function T of which the expectation of eT and T are finite.
We then restrict the function class into a class F (T) = {T(X)|∃Ti : Ωi → R, s.t.T(X) =

∑N
i=1 Ti(Xi)} where each expectation of eTi and Ti are finite. Then by definition,

KL(P(X)‖Q(Y)) = sup
T:Ω→R

EP(X)[T]− logEQ(Y)[e
T ] ≥ sup

T∈F
EP(X)

[
∑

i
Ti

]
− logEQ(Y)

[
e∑i Ti

]
. (A137)
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Then we have

KL(P(X)‖Q(Y)) ≥ sup
T∈F

∑
i
EPi(Xi)

[Ti]− log ∏
i
EQi(Yi)

[
eTi
]

= sup
T∈F

∑
i

(
EPi(Xi)

[Ti]− logEQi(Yi)

[
eTi
])

= ∑
i

sup
Ti :Ωi→R

EPi(Xi)
[Ti]− logEQi(Yi)

[
eTi
]

=
N

∑
i=1

KL(Pi(Xi)‖Qi(Yi)). (A138)

Appendix K. Order Expansion

Bias Expansion for S-PLD

Recall that the bias of S-PLD is∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣
≤ L f

√
C̃2

0

√
δ + C̃2

1

√
hkη + L f

√
2

m(α, N)
χ2(μ0), π)1/2e−β−1m(α,N)kh. (A139)

where

C̃2
0 =

(
12 + 8

(
κ0 + 2b +

2d
β

))(
βC0 +

√
βC0

)
, (A140)

C̃2
1 =

(
12 + 8

(
κ0 + 2b +

2d
β

))(
C1 +

√
C1

)
(A141)

C0 = (1 + α)2
(

M2
(

κ0 + 2
(

1 ∨ 1
m

)(
b + 2(1 + α)2B2 +

d
β

))
+ B2

)
, (A142)

C1 = 6(1 + α2)M2(βC0 + d), (A143)

First, we discuss the convergence of the continuous dynamics. Using the eigenvalue
expansion in Theorem 6 , with some positive constant d0, we have

m(α, N) ≈ m0 + α2d0 +O(α3). (A144)

Then by assuming α2 is small enough and considering the Tayler expansion, we have

L f

√
2

m(α, N)
χ2(μ0, π)1/2e−β−1m(α,N)t ≈ L f χ2(μ0, π)1/2

√
2

(
1√
m0

− d0

2m3/2
0

α2

)
e−β−1m0t. (A145)

As for the discretization and stochastic gradient error, using the Taylor expansion,
there exists a positive constant d1 and d2, such that

L f

√
C̃2

0

√
δ + C̃2

1

√
hkη ≈ (d1α + d2α2 + Const)kh. (A146)

Combining these terms, we have∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣ ≤ (d1α + d2α2)kh − α2L f χ2(μ0, π)1/2 1√
2m3/2

0

e−β−1m0t + Const. (A147)
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Thus, there exists an optimal α∗, which minimizes the bias. Please note that at k = 0,
acceleration always occurs. As k goes to infinity, the second third terms 0, thus the first term
will be dominant, which means we have larger discretization and stochastic gradient error.

Appendix L. Hyperparameters of the Proposed Algorithm

Here we discuss how to set hyperparameters in the algorithm. There are three hy-
perparameters, α0, η, and c. We numerically found that setting c = 0.95 work well for
real dataset including LDA experiment, and Bayesian neural network regression and
classification. For toy dataset, we set c = 0.9.

As for α0 and η, we empirically found that using the following scaling trick works
well for real dataset including LDA experiment, and Bayesian neural network regression
and classification,

α0 ≈ 1√
1

N2 ∑n ∇U(x(n)0 )2
Nh. (A148)

and using η ≈ 0.1α0. The intuition is that the magnitude of the gradient can be very
different in each dimension, so we introduce the scaling by the gradient. We also multiply
h so that the stochastic gradient and discretization error of the skew term will not be
dominant compared to usual gradient term. Finally, we multiply some constant so that α0
will not be too small.

Appendix M. Proof of Theorem 8

In this section, we derive the upper-bound of the bias of skew-SGLD based on [23].
This approach requires us to use the logarithmic Sobolev inequality [19], which is stronger
than the Poincaré inequality. First, we present the definition of the logarithmic Sobolev
inequality. We say that π on Rd with L satisfies the logarithmic Sobolev inequality with
constant λ in case for all function f on Rd with

∫
Rd u2dπ = 1,∫

Rd
f 2 ln f 2dπ ≤ 2

λ

∫
Rd

− fL f dπ. (A149)

This logarithmic Sobolev inequality is stronger than the Poincaré inequality and
induces the convergence in KL divergence. See [19] for details. It was proved in [2,18]
that our dynamics, LD, SLD, PLD, S-PLD, and skew-SGLD satisfy the logarithmic Sobolev
inequalities under our assumptions. We express the constant of the logarithmic Sobolev
inequality for skew-SGLD as λ(α, N). This constant depends on the skew matrices and the
Poincaré constant. We estimate this constant in Appendix M.1.

To upper-bound the bias, here we control the KL divergence. We denote the law of
skew-SGLD at iteration k with interaction strength α as μ⊗N

kh (α). We upper-bound the bias
by 2-Wasserstein distance∣∣∣∣∣E 1

N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣, ≤ L f√
N

W2(μ
⊗N
kh (α), π⊗N). (A150)

Then, from the transportation inequality [19],

W2(μk, π) ≤
√

2
λ(α, N)

KL(μ⊗N
kh (α)|π⊗N). (A151)

Thus, we will upper bound the KL divergence using the technique in [23]. However,
in the original proof, a full gradient ∇U is used so we replace it with the stochastic gradient.
Moreover, we introduce the skew interaction term.
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First, Lemma 11 in [23] is modified to

Eπ⊗N‖∇U⊗N‖2 ≤ dNM
β

. (A152)

Then Lemma 12 in [23] is modified to

Eμ‖∇U⊗N‖2 ≤ 4M2λKL(μ|π⊗N) +
2dNM

β
, (A153)

for any integrable μ.
Herein after, we drop ⊗N from X⊗N , ∇U⊗N , and ∇Û⊗N for notational simplicity.

We focus on skew-SGLD at iteration k, we consider the following SDE for t ∈ (kh, (k + 1)h]

dXt = −(I + αJ)∇Ũ(Xk)dt +
√

2β−1dwt, (A154)

where ∇Ũ(Xk) is the stochastic gradient conditioned on Xk. The solution of this SDE is

X(k+1) = Xk − (I + αJ)∇Ũ(Xk)h +
√

2β−1ε. (A155)

We would like to derive the continuity equation correspond to Equation (A154).
Following [23], we express Xt as xt and Xk as x0 for simplicity. Let ρ0t(x0, xt) denote the
joint distribution of (x0, xt). Then, the conditional and marginal relations are written as

ρ0t(x0, xt) = ρ0(x0)ρt|0(xt|x0) = ρt(xt)ρ0|t(x0|xt). (A156)

The conditional density ρt|0(xt|x0) follows the FP equation

∂ρt|0(xt|x0)

∂t
= ∇ · (ρt|0(xt|x0)(I + αJ)∇Ũ(x0)) + β−1Δρt|0(xt|x0), (A157)

Then following [23], to derive the evolution of ρt, we take the expectation over ρ0(x0)

∂ρt(x)
∂t

=
∫
Rd

∂ρt|0(xt|x0)

∂t
ρ0(x0)dx0

= ∇ · (ρt(xt)Eρ0|t [(I + αJ)∇Ũ(x0)|xt = x]) + β−1Δρt(x). (A158)

Then, we take the expectation regarding for the stochastic gradient in the above
equation and include it into Eρ0|t for notational simplicity. Then following the discussion
of Lemma 3 in [23], we obtain

∂KL(μt|π)

∂t
≤ −3

4
I(μ⊗N

t |π⊗N) + 2Eρ0t [‖∇U(Xt)− ∇U(X0)‖2]

+ 2(1 + α)2Eρ0t [‖∇U(X0)− ∇Ũ(X0)‖2] + 2α2Eρ0t [∇U(x0)‖2], (A159)

where t ∈ (kh, (k + 1)h] and

Xt = Xk − t(I + αJ)∇U(Xk) +
√

2tβ−1ε. (A160)

Then, from [18], we can upper-bound the second term by

Eρ0t [‖∇U(X0)− ∇Ũ(X0)‖2] ≤ NC′
0δ, (A161)

C′
0 := 2

(
M2
(

κ0 + 2
(

1 ∨ 1
m

)(
b + 2(1 + α)2B2 +

d
β

))
+ B2

)
(A162)
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and the third term is upper-bounded by

Eρ0t [‖∇U(X0)− ∇Eρ0t [∇U(x0)‖2] ≤ 2M2‖x0‖2 + 2NB2

≤ NC′
0, (A163)

where we used lemma 2 and 7 in [2]. Finally, from the original proof of [23] we obtain

2Eρ0t [‖∇U(Xt)− ∇U(X0)‖2] ≤ 8t2M4λKL(μ⊗N
k |π⊗N) +

4t2dNM3

β
+

4tdNM2

β
. (A164)

Then, in conclusion, under h ∈ (0, 1 ∧ m
4M2 ) obeying kh ≥ 1 and βm ≥ 2, we obtain

d
dt

KL(μ⊗N
t |π⊗N) ≤ −3

4
I(μ⊗N

t |π⊗N) + 8t2 M4λ(α, N)KL(μ⊗N
k |π⊗N)

+
4t2dNM3

β
+

4tdNM2

β
+ 2NC′

0(δ(1 + α)2 + α2). (A165)

For simplicity, we assume that h ∈ (0, m
4M2 ) and m

4M2 < 1, then we obtain

d
dt

KL(μ⊗N
t |π⊗N) ≤ −3

4
I(μ⊗N

t |π⊗N)+8t2 M4λ(α, N)KL(μ⊗N
k |π⊗N)

+
t2dNM

β
(m + 4M) + 2NC′

0(δ(1 + α)2 + α2). (A166)

Then using t ∈ (kh, (k + 1)h], we obtain

KL(μ⊗N
k+1|π⊗N) ≤e−

3
2 λ(α,N)h

(
1 + 16h3M4λ

)
KL(μ⊗N

k |π⊗N)

+ e−
3
2 λ(α,N)h

(
2hdNM

β
(m + 4M) + 8hNC′

0(δ(1 + α)2 + α2)

)
. (A167)

If h ∈ (0, λ(α,N)

4
√

2M2 ), we obtain

KL(μ⊗N
k+1|π⊗N) ≤ e−λ(α,N)hKL(μ⊗N

k |π⊗N) +
2h2dNM

β
(m + 4M) + 8hNC′

0(δ(1 + α)2 + α2). (A168)

From this one step inequality, we obtain

KL(μ⊗N
k |π⊗N)

≤ e−λ(α,N)khKL(μ⊗N
0 |π⊗N) +

1
1 − e−λ(α,N)h

(
2h2dNM

β
(m + 4M) + 8hNC′

0(δ(1 + α)2 + α2)

)
≤ e−λ(α,N)khKL(μ⊗N

0 |π⊗N) +
2N

λ(α, N)

(
hdM

β
(m + 4M) + 4C′

0(δ(1 + α)2 + α2)

)
. (A169)

Then, finally we obtain∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣
≤

L f√
N

√
2

λ(α, N)
KL(μ⊗N

kh (α)|π⊗N)

≤ L f

√
2

λ(α, N)

√
e−λ(α,N)khKL(μ0|π) +

2
λ(α, N)

(
hdM

β
(m + 4M) + 4C′

0(δ(1 + α)2 + α2)

)

≤ L f

√
2

λ(α, N)

√
e−λ(α,N)khKL(μ0|π) +

C3(α)

λ(α, N)
, (A170)
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where

C3(α) := 2
hdM

β
(m + 4M) + 8C′

0(δ(1 + α)2 + α2), (A171)

C′
0 := 2

(
M2
(

κ0 + 2
(

1 ∨ 1
m

)(
b + 2(1 + α)2B2 +

d
β

))
+ B2

)
. (A172)

Moreover, from Appendix M.1, the logarithmic Sobolev constant is

λ(α, N) :=
(

1
(1 + βm(α, N)−1|C(m0)|)2πe2 +

3
2m(α, N)

)
, (A173)

where

−C(m0) := Eπ⊗N [‖∇U⊗N(x)‖]1/2 +

√
8

m0
Eπ⊗N [‖∇U⊗N(x)‖2]1/2. (A174)

Appendix M.1. Estimation of the Logarithmic Sobolev Constant

In this section, we estimate the logarithmic Sobolev constants using the technique of
restricted logarithmic Sobolev inequality, which was introduced in [49].

The technique of [49] estimates the constant of the logarithmic Sobolev inequality as
follows. Assume that π on Rd with L satisfies the Poincaré inequality with constant m.
Then, for any function u on Rd that satisfies∫

Rd
udπ = 0 and

∫
Rd

u2dπ = 1, (A175)

we find a constant b that satisfies∫
Rd

u2 ln u2dπ ≤ b
∫
Rd

−uLudπ. (A176)

Then the logarithmic constant is larger than 2(b + 3
m )−1. Thus, we only need to focus

on the restricted function class to estimate a constant b. We slightly change the Lemma 3.2
of [49] that estimate the constant b in Equation (A176) to apply it in our setting. In
Lemma 3.2 of [49], it was proved that if u on Rd satisfies the conditions in Equation (A175),
then for any t ∈ (0, 1), we have∫

Rd
−uLudπ − tπe2

∫
Rd

u2 ln u2dπ ≥ (1 − t)m + tβ
∫
Rd
(−1

2
LU(x)− πe2U(x))u2dπ, (A177)

where we assume that π ∝ e−βU(x) satisfies the Poincaré inequality with constant m. If there
exists a constant C such that

−C ≥ β
∫
Rd
(−1

2
LU(x)− πe2U(x))u2dπ > −∞, (A178)

then by setting t = m/(m + |C|), we can show that∫
Rd

−uLudπ − m/(m + |C|)πe2
∫
Rd

u2 ln u2dπ > 0. (A179)

Thus, the constant b in Equation (A176) is b = t = m/(m + |C|) and the logarithmic
constant is 2(m/(m + |C|) + 3

m )−1.
Thus, We analyze the constant C. The first term of the integral in Equation (A178) is

lower-bounded bounded by

−Eπ [LU(x)u2] ≥ −|Eπ [U(x)LU(x)]|1/2|Eπ [u2Lu2]|1/2 ≥ −2Eπ [‖∇U(x)‖2]1/2, (A180)
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where we used the property of L, see [19] for details. As for the second term, it is lower-
bounded by

−|Eπ [U(x)u2] ≥ −
√

|Eπ [U2(x)u2] ≥ −
√

1
m

|Eπ [(U(x)|u|)L(U(x)|u|)]|

≥ −
√

8
m
Eπ [‖∇U(x)‖2]1/2. (A181)

Thus, by setting

−C := Eπ [‖∇U(x)‖]1/2 +

√
8

m0
Eπ [‖∇U(x)‖2]1/2, (A182)

we can estimate the logarithmic constant as 2(m/(m + |C|) + 3
m )−1.

In our setting, this is modified to

λ(α, N) =

(
1

(1 + βm(α, N)−1|C(m0)|)2πe2 +
3

2m(α, N)

)−1
. (A183)

where

−C(m0) := Eπ⊗N [‖∇U⊗N(x)‖]1/2 +

√
8

m0
Eπ⊗N [‖∇U⊗N(x)‖2]1/2. (A184)

Finally, if we increase m(α, N), λ(α, N) increases. Thus, since m(α, N) ≥ m(α = 0, N),
we obtain λ(α, N) ≥ λ(α = 0, N).

Appendix M.2. Computational Complexity
To derive the computational complexity, for simplicity, we assume that δ ≤ h and We

also set α2 ≤ h for simplicity. This means that the variance of the stochastic gradient is
small enough and we use small α. Then the bias is∣∣∣∣∣E 1

N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣ ≤ L f

√
2

λ(α, N)

√
e−λ(α,N)khKL(μ0|π) +

C3(α)

λ(α, N)

≤ L f

√
2

λ(α, N)

(√
e−λ(α,N)khKL(μ0|π) +

√
C3(α)

λ(α, N)

)
, (A185)

where

C3(α) := h
(

2
dM

β
(m + 4M) + 8C′

0((1 + h1/2)2 + 1)
)

, (A186)

C′
0 := 2

(
M2
(

κ0 + 2
(

1 ∨ 1
m

)(
b + 2(1 + h1/2)2B2 +

d
β

))
+ B2

)
. (A187)

Then we define

C′
3 := 2

dM
β

(m + 4M) + 8C′
0((1 + h1/2)2 + 1), (A188)

and use the step size that satisfies h = λ(α,N)ξ

2
√

2C′
3L f

. Then when we use

k ≥ 2
λ(α, N)h

ln
L f

ξ

√
KL(μ0|π)

2λ(α, N)
, (A189)
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we have ∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣ ≤ ξ

2
+

ξ

2
≤ ξ. (A190)
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Abstract: Variational inference is a powerful framework, used to approximate intractable posteriors
through variational distributions. The de facto standard is to rely on Gaussian variational families,
which come with numerous advantages: they are easy to sample from, simple to parametrize,
and many expectations are known in closed-form or readily computed by quadrature. In this
paper, we view the Gaussian variational approximation problem through the lens of gradient flows.
We introduce a flexible and efficient algorithm based on a linear flow leading to a particle-based
approximation. We prove that, with a sufficient number of particles, our algorithm converges linearly
to the exact solution for Gaussian targets, and a low-rank approximation otherwise. In addition to
the theoretical analysis, we show, on a set of synthetic and real-world high-dimensional problems,
that our algorithm outperforms existing methods with Gaussian targets while performing on a par
with non-Gaussian targets.

Keywords: variational inference; Gaussian; particle flow; variable flow

1. Introduction

Representing uncertainty is a ubiquitous problem in machine learning. Reliable
uncertainties are key for decision making, especially in contexts where the trade-off between
exploitation and exploration plays a central role, such as Bayesian optimization [1], active
learning [2], and reinforcement learning [3]. While Bayesian inference is a principled tool to
provide uncertainty estimation, computing posterior distributions is intractable for many
problems of interest. Most sampling methods struggle to scale up to large datasets [4],
while the diagnosis of convergence is not always straightforward [5]. On the other hand,
Variational Inference (VI) methods can rely on well-understood optimization techniques
and scale well to large datasets, at the cost of an approximation quality depending heavily
on the assumptions made. The Gaussian family is by far the most popular variational
approximation used in VI [6,7]. This is for several reasons. First, Gaussian variational
families are easy to sample from, reparametrize, and marginalize. Second, they are easily
amenable to diagonal covariance approximations, making them scalable to high dimensions.
Third, most expectations are either easily computable by quadrature or Monte Carlo
integration, or known in closed-form.

A large body of work covers different approaches to optimize the Variational Gaussian
Approximation (VGA), with the speed of convergence and the scalability in dimensions
as the main concerns. From the perspective of convergence speed, the major bottleneck
when computing gradients with stochastic estimators is the estimator variance [8]. Particle-
based methods with deterministic paths do not have this issue, and have been proven to
be highly successful in many applications [9–11]. However, can we use a particle-based
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algorithm to compute a VGA? If so, what are its properties and is it competitive with other
VGA methods?

In this paper, we attempt to answer these questions by introducing the Gaussian Particle
Flow (GPF), a framework to approximate a Gaussian variational distribution with particles.
GPF is derived from a continuous-time flow, where the necessary expectations over the
evolving densities are approximated by particles. The complexity of the method grows
quadratically with the number of particles but linearly with the dimension, remaining
compatible with other approximations such as structured mean-field approximations.
Using the same dynamics, we also derive a stochastic version of the algorithm, Gaussian
Flow (GF). To show convergence, we prove the decrease in an empirical version of the free
energy that is valid for a finite number of particles. For the special case of D–dimensional
Gaussian target densities, we show that D + 1 particles are enough to obtain convergence
to the true distribution. We also find, for this case, that convergence is exponentially fast.
Finally, we compare our approach with other VGA algorithms, both in fully controlled
synthetic settings and on a set of real-world problems.

2. Related Work

The goal of Bayesian inference is to carry out computations with the posterior dis-
tribution of a latent variable x ∈ RD given some observations y. By Bayes theorem, the
posterior distribution is p(x|y) = p(y|x)p(x)

p(y) , where p(y|x) and p(x) are, respectively, the
likelihood and the prior distribution. Even if the likelihood and the prior are known ana-
lytically, marginalizing out high-dimensional variables in the product p(y|x)p(x) in order
to compute quantities such as p(y) is typically intractable. Variational Inference (VI) aims to
simplify this problem by turning it into an optimization one. The intractable posterior is
approximated by the closest distribution within a tractable family, with closeness being
measured by the Kullback-Leibler (KL) divergence, defined by

KL [q(x)||p(x)] = Eq[log q(x)− log p(x)],

where Eq[ f (x)] =
∫

f (x)q(x)dx denotes the expectation of f over q. Denoting by Q a
family of distributions, we look for

arg min
q∈Q

KL [q(x)||p(x|y)].

Since p(y) is not computable in an efficient way, we equivalently minimize the upper
bound F :

KL[q(x)||p(x|y)] ≤ F [q] = −Eq[log p(y|x)p(x)]−Hq, (1)

where Hq is the entropy of q (−Eq[log q(x)]). Here, F is known as the variational free energy
and −F is known as the Evidence Lower BOund (ELBO). A diverse set of approaches to
perform VI with Gaussian families Q have been developed in the literature, which we
review in the following.

2.1. The Variational Gaussian Approximation

The VGA is the restriction of Q to be the family of multivariate Gaussian distributions
q(x) = N (m, C), where m ∈ RD is the mean and C ∈ {A ∈ RD×D|x�Ax ≥ 0, ∀x ∈ RD} is
the covariance matrix, for which the free energy is found to be

F [q] = −1
2

log |C|+Eq[ϕ(x)]. (2)

where ϕ(x) = − log(p(y|x)p(x)). A standard descent algorithm based on gradients of
Equation (2) with respect to variational parameters m, C give rise to some issues. First,
naively computing the gradient of the expectation with respect to the covariance matrix
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C involves unwanted second derivatives of ϕ(x) [12], which may not be available or
may be computationally too expensive in a black-box setting. Second, the gradient of the
entropy term Hq entails inverting a non-sparse matrix, which we would like to avoid
for higher-dimensional cases. Finally, the positive-definiteness of the covariance matrix
leads to non-trivial constraints on parameter updates, which can lead to a slowdown of
convergence or, if ignored, to instabilities in the algorithm.

To solve these issues, a variety of approaches have been proposed in the literature.
If we focus on factorizable models, we can make a simplification: for problems with
likelihoods that can be rewritten as p(y|x) = ∏D

d=1 p(y|xd), the number of independent
variational parameters is reduced to 2D [12,13]. In this special case, the Gaussian expec-
tations in the free energy (2) split into a sum of 1-dimensional integrals, which can be
efficiently computed by using numerical quadrature methods. To extend to the general
case, gradients of the free energy are estimated by a stochastic sampling approach, which
also forms the starting point of our method. This relies on the so-called reparametrization
trick, where the expectation over the parameter-dependent variational density qθ is replaced
by an expectation over a fixed density q0 instead. This facilitates the gradient computation
because unwanted derivatives of the type ∇θqθ(x) are avoided. For the Gaussian case,
the reparametrization trick is a linear transformation of an arbitrary D dimensional Gaus-
sian random variable x ∼ qθ(x) in terms of a D-dimensional Gaussian random variable
x0 ∼ q0 = N (m0, C0):

x = Γ(x0 − m0) + m, (3)

where Γ ∈ RD×D and m ∈ RD are the variational parameters. We assume that the co-
variance C0 is not degenerate and, for simplicity, we set it as the identity. For instance,
the gradient of the expectation given q over a function f given the mean m becomes
∇mEq[ f (x)] = Eq0

[
∇m f (Γ(x0 − m0) + m)

]
. This can be simply proved by using the

reparametrization (3) inside the integral and passing the gradient inside; for more de-
tails, see [14].

Given this representation, the free energy is easily obtained as a function of the
variational parameters:

F (q) = − log |Γ|+Eq0

[
ϕ(Γ(x0 − m0) + m)

]
. (4)

Other representations are possible. Challis and Barber [13] and Ong et al. [15] use a different
reparametrization with a factorized structure of the covariance C = Γ�Γ + diag(d), where
Γ ∈ RD×P and d ∈ RD, with P ≤ D is the rank of Γ�Γ. Other representations assume
special structures of the precision matrix Λ = C−1, which allow you to enforce special
properties, such as sparsity in [16,17].

In general, these methods tend to scale poorly with the number of dimensions, as one
needs to optimize D(D + 3)/2 parameters. The (structured) Mean-Field (MF) [18,19] approach
imposes independence between variables in the variational distribution. The number of
variational parameters is then 2D, but covariance information between dimensions is lost.

2.2. Natural Gradients

Besides the issue of expectations, more efficient optimizations directions, beyond
ordinary gradient descent, have been considered. These can help to deal with constraints
such as those given for the covariance matrix. Natural gradients [20] are a special case of
Riemannian gradients and utilize the specific Riemannian manifold structure of variational
parameters. They can often deal with constraints of parameters (such as the positive
definiteness of the covariance), accelerate inference, and improve the convergence of
algorithms. The application of such advanced gradient methods typically requires an
estimate of the inverse Fisher information matrix as a preconditioner of ordinary gradients.
Khan and Nielsen [21] and Lin et al. [22] propose a solution that requires extra second
derivatives of the log–posteriors. Salimbeni et al. [23] developed an automatic process to
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compute these without the second derivatives but with instability issues. Lin et al. [17]
solved these issues by using geodesics on the manifold of parameters, at the price of having
to compute inverse matrices as well as Hessians.

2.3. Particle-Based VI

Stochastic gradient descent methods compute expectations (and gradients) at each
time step with new independent Monte Carlo samples drawn from the current approxi-
mation of the variational density. Particle-based methods for variational inference draw
samples only once at the beginning of the algorithm instead. They iteratively construct
transformations of an initial random variable (having a simple tractable density) where the
transformed density leads to the decrease and finally to the minimum of the variational free
energy. The iterative approach induces a deterministic temporal flow of random variables
which depends on the current density of the variable itself. Using an approximation by the
empirical density (which is represented by the positions of a set of ’particles’) one obtains a
flow of interacting particles which converges asymptotically to an empirical approximation
of the desired optimal variational density.

The most popular approach is Stein Variational Gradient Descent (SVGD) [24], which
computes a nonparametric transformation based on the kernelized Stein discrepancy [9].
SVGD has the advantage of not being restricted to a parametric form of the variational
distribution. However, using standard distance-based kernels like the squared exponential
kernel (k(x, y) = exp(−‖x − y‖2

2/2)) can lead to underestimated covariances and poor per-
formance in high dimensions [11,25]. Hence, it is interesting to develop particle approaches
that approximate the VGA. We provide a more thorough comparison between our method
and SVGD in Section 3.6.

2.4. GVA in Bayesian Neural Networks

There has been increased interest in making Bayesian Neural Networks (BNN) by adding
priors to Neural Networks parameters. The true form of the posterior is unknown but
VGA has been used due to its ease of use and scalability with the number of dimensions
(typically D & 105). Most of the aforementioned methods apply to BNN, but techniques
have been specifically tailored with BNN in mind. [26] use the low-rank structure of [13]
but exploit the Local Reparametrization Trick, where each datapoint yi gets a different sample
from q in order to reduce the stochastic gradient estimator variance. Stochastic Weight
Averaging-Gaussian (SWAG) [27], in which a set of particles obtained via stochastic gradient
descent represent a low-rank Gaussian distribution, approximating the true posterior with
a prior posterior produced by the network’s regularization. While easy to implement,
SWAG does not allow you to incorporate an explicit prior, and the resulting distribution
does not derive from a principled Bayesian approach.

2.5. Related Approaches

The closest approach to our proposed method is the Ensemble Kalman Filter (EKF) [28].
It assumes that the posterior is computed in a sequential way, where, at each time step, only
single (or smaller batches) of data observations, represented by their likelihoods, become
available. An ensemble of particles, representing a Gaussian distribution is iteratively
updated with every new batch of observations. EKF allows us to work on high-dimensional
problems with a limited amount of particles but is restricted to factorizable likelihoods for
which a sequential representation is possible. While EKF maintains a representation of a
Gaussian posterior, it is not clear how this relates to the goal of minimizing the free energy
or the KL divergence.

3. Gaussian (Particle) Flow

We introduce Gaussian Particle Flow (GPF) and Gaussian Flow (GF), two computation-
ally tractable approaches, to obtain a Variational Gaussian Approximation (VGA). In the
following, we derive deterministic linear dynamics, which decreases the variational free
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energy. We additionally give some variants with a Mean-Field (MF) approach and prove
theoretical convergence guarantees.

In the following, d(·)
dt indicates the total derivative given time, ∂(·)

∂t partial derivatives
given time, ∇x(·) gradients given a vector x.

3.1. Gaussian Variable Flows

We next discuss an alternative approach to generate the desired transformation of
random variables, leading from a simple (prior) Gaussian density to a more complex
Gaussian, which minimizes the variational free energy. It is based on the idea of variable
flows, i.e., recursive deterministic transformations of the random variables defined by a
mapping xn+1 = xn + ε f n(xn) where f n : RD → RD. Well-known examples of flows
are Normalizing Flows [29], where f n are bijections, or Neural ODEs [30] where f n = f is
defined by a neural network and x0 is the input. For simplicity, we will consider small
changes ε → 0 and work with flows in the continuous-time limit (t = nε), which follow a
system of Ordinary Differential Equation (ODE). For the Gaussian case, in the spirit of the
reparametrization trick (3), we choose a linear corresponding map f and write

dxt

dt
= f t(xt) = At(xt − mt) + bt, (5)

where At is a matrix and mt .
= Eqt [x] (which is no longer interpreted as an independent

variational parameter). When the initial random variable x0 is Gaussian distributed, the
vectors xt are also Gaussian for any t. To construct a flow that decreases the free energy
over time, we can either compute the time derivative of the specific free energy (2) induced
by the ODE (5), or simply derive the general result valid for smooth maps f (see, e.g., [24]).
To be self contained, we briefly repeat the main steps: We first compute the change of the
free energy in terms of the time derivative of qt:

dF [qt]

dt
=

d
dt

∫
qt(x)

(
log qt(x) + ϕ(x)

)
dx

=
∫

∂qt(x)
∂t

(
log qt(x) + ϕ(x)

)
dx +

∫
qt(x)

(
∂qt(x)

∂t
1

qt(x)
+

∂ϕ(x)
∂t

)
dx

=
∫

∂qt(x)
∂t

(
log qt(x) + ϕ(x)

)
dx

where we have used the fact that
∫ ∂qt(x)

∂t dx = d
dt

∫
qt(x)dx = 0 and ∂ϕ(x)

∂t = 0. We next use
the continuity equation for the density

∂qt(x)
∂t

= −∇x ·
(
qt(x) f t(x)

)
,

related to the deterministic flow to obtain

dF [qt]

dt
=
∫

∇x ·
(
qt(x) f t(x)

)(
log qt(x) + ϕ(x)

)
dx

=−
∫ (

qt(x) f t(x)
)
· ∇x

(
log qt(x) + ϕ(x)

)
dx

=
∫ (

∇x · (qt(x) f t(x)) + qt(x) f t(x) · ∇x ϕ(x)
)
dx

=
∫

∇xqt(x) · f t(x) + qt(x) f t(x) · ∇x ϕ(x)dx

=−Eqt
[
∇x · f t(x)− f t(x) · ∇x ϕ(x)

]
where we have applied Green’s identity twice and used the fact that limx→∞ qt(x) = 0.
Specializing to the linear flow (5), we obtain
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dF [qt]

dt
= −tr[At(At

�)
�]− (bt)�bt

�, (6)

where

At
�

.
=I −Eqt

[
∇x ϕ(x)(x − mt)�

]
bt
�

.
=−Eqt [∇x ϕ(x)] (7)

Equation (6) represents the change in the free energy F for an infinitesimal change in the
variables x given by the flow (5). Obviously, the simplest choices

At ≡ At
� bt ≡ bt

� (8)

lead to a decrease in the free energy dF [qt ]
dt ≤ 0. More detailed derivations are given in

Appendix A. Additionally, equality only happens, when

I −Eq

[
∇x ϕ(x)(x − m)�

]
= 0

Eq[∇x ϕ(x)] = 0 (9)

Using Stein’s lemma [31], we can show that these fixed-point solutions are equal to the
conditions for the optimal variational Gaussian distribution solution given in [12]. In
Appendix C, we show that our parameter updates can be interpreted as a Riemannian
gradient descent method for the free energy (4). This is based on the metric introduced by
([20], Theorem 7.6) as an efficient technique for learning the mixing matrix in models of
blind source separation. This gradient should not be confused with the so-called natural
gradient obtained by pre-multiplying with the inverse Fischer-information matrix.

Of course, there are other choices for At and bt, which lead to a decrease in the free
energy and the same fixed-point equations. In Section 3.6, we discuss how SVGD, with a
linear kernel, can lead to the same fixed points but with different dynamics.

3.2. From Variable Flows to Parameter Flows

Before we introduce the particle algorithm, we show that the results for the variable
flow can also be converted into a temporal change of the parameters Γt, mt, as defined
for Equation (3). From this, a corresponding Gaussian Flow (GF) algorithm can be eas-
ily derived. By differentiating the parametrisation xt = Γt(x0 − m0) + mt (with mt now
considered as free variational parameter) with respect to time t and using (5), we obtain

dxt

dt
=

dΓt

dt
(x0 − m0) +

dmt

dt
= At(xt − mt) + bt (10)

By inserting xt = Γt(x0 − m0) + mt into the right hand side of (10), and using the optimal
parameters from (7), we obtain

dΓt

dt
=Γt −Eq0

[
∇x ϕ(xt)(x0 − m0)�

]
Γt(Γt)�

dmt

dt
=−Eq0

[
∇x ϕ(xt)

] (11)

Note that the expectations are over the probability distribution of the initial random
variable x0. Discretizing Equations (11) in time, and estimating the expectations by drawing
independent samples from the fixed Gaussian q0 at each time step, we obtain our GF
algorithm to minimize the variational free energy in the space of Gaussian densities.
We summarize the steps of GF in Algorithm 1. Remarkably, this scheme differs from
previous VGA algorithms with Riemannian gradients based on the Fisher information
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metric (see, e.g., [17,32]) because no matrix inversions or second order derivatives of the
function ϕ are required.

GF also allows for the computation of a low-rank VGA by enforcing Γ ∈ RD×K and
x0 ∈ RK. This algorithm scales linearly in the number of dimensions and quadratically in
the rank K of the covariance.

It is interesting to note that the reverse construction of a variable flow from a parameter
flow is, in general, not possible. This would require the ability to eliminate all variational
parameters and the initial variables x0 in the resulting differential equation for xt, and
replace them with functions of xt alone. For instance, if we eliminate the initial variables x0

in terms of (Γt)−1 and xt the algorithm of [14], the resulting expression still depends on Γt.

3.3. Particle Dynamics

The main idea of the particle approach is to approximate the Gaussian density qt in (7)
by the empirical distribution

q̂t .
=

1
N

N

∑
i=1

δ(x − xt
i ) (12)

computed from N samples xt
i , i = 1, . . . , N. These are initially sampled from the density q0

at time t = 0 and are then propagated using the discretized dynamics of the ODE (5):

dxt
i

dt
= −ηt

1Eq̂t [∇x ϕ(x)]− ηt
2 Ât(xt

i − m̂t) (13)

where

Ât = I − 1
N

N

∑
i=1

∇x ϕ(x)(xt
i − m̂t)�

b̂t =
1
N

N

∑
i=1

∇x ϕ(xt
i ), m̂t =

1
N

N

∑
i=1

xt
i

where ηt
1 and ηt

2 are learning rates (We further comment on the use of different optimization
schemes in Section 4.4). Note that although Eq̂t

[
∇x ϕ(x)(x − m̂t)�

]
is a D × D matrix,

changing the matrix multiplication order leads to a computational complexity of O(N2D)
with a storage complexity of O(N(N + D)), since neither the empirical covariance matrix
or At need to be explicitly computed.

Relaxation of Empirical Free Energy and Convergence

We have shown that the continuous-time dynamics (10) of the random variables leads
to a decay of the free energy F (qt) with time t. Assuming that the free energy is bounded
from below, one might conjecture that this property would imply the convergence of the
particle algorithm to a fixed point when learning rates are sufficiently small such that the
discrete-time dynamics are approximated well by the continuous limit. Unfortunately, the
finite number N of particles poses an extra problem. The definition of the free energy F (q)
by the KL–divergence (1) for continuous random variables such as assumes that both q(·)
and p(·|y) are densities with respect to the Lebesgue measure. Hence, F (q̂) is not defined
if we take q ≡ q̂, (12) as the empirical distribution of the finite particle approximation.
Nevertheless, we define a finite N approximation to the Gaussian free energy, which is
also then found to decay under the finite N dynamics. Let us first assume that N > D
and define

F̃ (q̂t)
.
= −1

2
log |Ĉt|+Eq̂t [ϕ(x)] (14)
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with the empirical covariance matrix

Ĉt =
1
N

N

∑
i=1

(
xt

i − mt)(xt
i − mt)� (15)

The definition (14) is chosen in such way that in the large N limit, when the empirical
distribution q̂t converges to a Gaussian distribution qt, we will also obtain the convergence

of the approximation (14) to F (qt). It can be shown (see Appendix B) that dF̃ (q̂t)
dt ≤ 0, with

equality only at the fixed points of the dynamics.
In applications of our particle method to high-dimensional problems, the limitations

of computational power may force us to restrict particle numbers to be smaller than the
dimensionality D. For N < D + 1, the empirical covariance Ct will be singular, and
typically contain only N − 1 non-zero eigenvalues, which leads to the − log

∣∣Ĉ∣∣ = ∞ and
makes Equation (14) meaningless. We resolve this issue through a regularisation of the
log–determinant term in (14), replacing all zero eigenvalues of Ĉ by the values 1, i.e.,
λi = 0 → λ̃i = 1. We show in Appendix B that the free energy still decays, provided that
the dynamics of the particles stay the same. This regularisation step can be formally stated
as a replacement of the empirical covariance (15) in (14) by

Ĉt → Ĉt + ∑
i:λt

i=0

et
i (e

t
i )

�

where et
i = ith eigenvector of Ĉt.

3.4. Algorithm and Properties

The algorithm we propose is to sample N particles {x0
1, . . . , x0

N} where x0
i ∈ RD from

q0 (which can be centered around the MAP for example), and iteratively optimize their
positions using Equation (13). Once convergence is reached, i.e., dF

dt = 0, we can easily
make predictions using the converged empirical distribution q̂(x) = 1

N ∑N
i=1 δ(x − xi),

where δ is the Dirac delta function, or, alternatively, the Gaussian density it represents,
i.e., q(x) = N (m, C), where m = 1

N ∑N
i=1 xi and C = 1

N ∑N
i=1(xi − m)(xi − m)�. To draw

samples from q̂, no inversions of the empirical covariance C are needed, as we can obtain
new samples by computing:

x =
1√
N

N

∑
i=1

(xi − m) ◦ ξi + m, (16)

where ξi are i.i.d. normal variables: ξi ∼ N (0, ID). This can be shown by defining D,
the deviation matrix, a matrix which columns equal to Di = xi−m√

N
. We naturally have

DD� = C which makes D the Cholesky decomposition of C.
All the inference steps are summarized in Algorithm 2 and an illustration in two

dimensions is provided in Figure 1.
We summarize the principal points of our approach:

• Gradients of expectations have zero variance, at the cost of a bias decreasing with the
number of particles and equal to zero for Gaussian target (see Theorem 1);

• It works with noisy gradients (when using subsampling data, for example);
• The rank of the approximated covariance C is min(N − 1, D). When N ≤ D, the

algorithm can be used to obtain a low-rank approximation.
• The complexity of our algorithm is O(N2D) and storing complexity is O(N(N + D)).

By adjusting the number of particles used, we can control the performance trade-off;
• GPF (and GF) are also compatible with any kind of structured MF (see Section 3.5);
• Despite working with an empirical distribution ,we can compute a surrogate of the

free energy F (q) to optimize hyper-parameters, compute the lower bound of the
log-evidence, or simply monitor convergence.
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Figure 1. Illustration of the Gaussian Particle Flow algorithm, with q0(x) and p(x) representing the
initial and target distribution respectively. Particles are iteratively moved according to the gradient
flow starting from q0(x), approximating a new Gaussian distribution qt(x) at each iteration t.

Algorithm 1: Gaussian Flow (GF)

Input: Number of samples N, initial distribution q0 = N (μ0, Γ0(Γ0)�), target
p(x) ∝ e−ϕ(x), learning rates ηt

1, ηt
2

Output: Variational dist. q(x) = N
(
μ, ΓΓ�)

for t in 0 : T do

{x0
i }N

i=1 ∼ q0 # Sample N initial particles from q0

xi = Γt(x0
i − μ0) + μt, ∀i # Reparametrize

gi = ∇x ϕ(xi), ∀i # Compute gradients
μt+1 = μt − ηt

1
1
N ∑N

i=1 ϕ(xi) # Update μ

A = 1
N ∑i gi(x0

i − μ0)�(Γt)� # Compute matrix
Γt+1 = Γt − ηt

2 AΓt # Update Γ

Algorithm 2: Gaussian Particle Flow (GPF)

Input: Number of particles N, initial distribution q0, target p(x) ∝ e−ϕ(x), learning
rates ηt

1, ηt
2

Output: Empirical dist. q(x) = 1
N ∑N

i=1 δx,xi

Init: Sample N particles from q0 : {x0
i }N

i=1
for t in 0 : T do

gi = ∇x ϕ(xt
i ), ∀i # Compute gradients

m = 1
N ∑i xi, g = 1

N ∑i gi # Compute means
A = 1

N ∑i gi(xt
i − m)� − I # Compute matrix

xt+1
i = xt

i − ηt
1g − ηt

2 A(xt
i − m), ∀i # Update particles

3.4.1. Relaxation of Empirical Free Energy

The definition of the free energy F (q) from the KL–divergence (1) for a continuous
random variables assumes that both q(·) and p(·|y) are densities with respect to the
Lebesgue measure. Hence, it is not a priori clear that a specific approximation F (q̂t), based
on an empirical distribution q̂t(x) .

= 1
N ∑N

i=1 δ(x − xt
i ) with a finite number of particles N,

will decrease under the particle flow. Thus we may not be able to guarantee convergence
to a fixed point for finite N. Luckily, as we show in Appendix D, we find that:
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dF (q̂t)

dt
=

d(Eq̂t [ϕ(x)]− 1
2 log

∣∣Ct
∣∣)

dt
≤ 0. (17)

For N < D + 1, the empirical covariance Ct will typically contain N − 1 non-zero eigenval-
ues and lead to − log|C| = ∞, making Equation (17) meaningless. We resolve this issue
by introducing a regularized free energy F̃ where log

∣∣Ct
∣∣ is replaced by ∑i:λi>0 log λi where

{λi}D
i=1 are the eigenvalues of Ct. We show in Appendix D that, given the dynamics from

Equation (5), F̃ is also guaranteed to not increase over time. It can, therefore, be used
as a regularized proxy for the true F and used to optimize over hyper-parameters or to
monitor convergence. Note that similar proofs exist for SVGD [33] and were proven to be
highly non-trivial.

3.4.2. Dynamics and Fixed Points for Gaussian Targets

We illustrate our method by some exact theoretical results for the dynamics and the
fixed points of our algorithm when the target is a multivariate Gaussian density. While such
targets may seem like a trivial application, our analysis could still provide some insight
into the performance for more complicated densities.

Theorem 1. If the target density p(x) is a D-dimensional multivariate Gaussian, only D + 1
particles are needed for Algorithm 2 to converge to the exact target parameters.

Proof. The proof is given in Appendix E.

Theorem 2. For a target p(x) = N (x | μ, Λ−1), i.e., with precision matrixΛ, where x ∈ RD,
and N ≥ D + 1 particles, the continuous time limit of Algorithm 2 will converge exponentially fast
for both the mean and the trace of the precision matrix:

mt − μ =e−Λt(m0 − μ),

tr(
(
Ct)−1 − Λ) =e−2ttr(

(
C0
)−1

− Λ),

where mt and Ct are the empirical mean and covariance matrix at time t and exp(−Λt) is the
matrix exponential.

Proof. The proof is given in Appendix F.

Our result shows that convergence of the mean mt directly depends on Λ. How-
ever, we can also precondition the gradient on m by Ct, i.e., using the natural gradient
approximation in the Fisher sense, and eventually get rid of the dependency on Λ when(
Ct)−1 ≈ Λ.

The exponential relaxation of fluctuations also manifests itself in the decay of the free
energy towards its minimum. For the Gaussian target, the free energy exactly separates
into two terms corresponding to the mean and fluctuations. We can write F (mt, Ct) =
1
2 (m

t − μ)�Λ(mt − μ) + D
2 +F f l(Ct), where the nontrivial fluctuation part (subtracted by

its minimum) is given by

F f l(Ct) = −1
2

log
∣∣Ct∣∣+ 1

2
tr(ΛCt − I).

We can show that

− lim
t→∞

d ln F f l(Ct)

dt
≥ 4,

indicating an asymptotic decrease in F f l(Ct) faster than e−4t, independent of the target.
We can also prove the finite time bound
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F f l(Ct) ≤ F f l(C0)e
−
[

2t
tr(Λ−1)(tr(Λ)+|tr((C0)−1−Λ)|)

]
.

The degenerate case N < D + 1

Additionally, we can show the following result for the fixed points:

Theorem 3. Given a D-dimensional multivariate Gaussian target density p(x) = N (x|μ, Σ),
using Algorithm 2 with N < D + 1 particles, the empirical mean converges to the exact mean μ.
The N − 1 non-zero eigenvalues of Ct converge to a subset of the target covariance Σ spectrum.
Furthermore, the global minimum of the regularised version F̃ of the free energy (17) corresponds
to the largest eigenvalues of Σ.

Proof. The proof is given in Appendix G.

This result suggests that Ct might typically converge to an optimal low-rank ap-
proximation of Σ. We show an empirical confirmation in Section 4.2 for this conjecture.
This suggests that it makes sense to apply our algorithm to high-dimensional problems
even when the number of particles is not large. If the target density has significant
support close to a low-dimensional submanifold, we might still obtain a reasonable ap-
proximation.

3.5. Structured Mean-Field

For high-dimensional problems, it may be useful to restrict the variational Gaus-
sian approximation to the posterior to a specific structure via a structured mean-field
approximation. In this way, spurious dependencies between variables that are caused by
finite-sample effects could be explicitly removed from the algorithms. This is most easily
incorporated in our approach by splitting a given collection of latent variables x into M
disjoint subsets x(i). We reorder the vector indices in such a way that the first components
correspond to x(1), x(2), and so on. Hence, we obtain x = {x(1), x(2), . . . , x(M)}. A struc-
tured mean-field approach is enforced by imposing a block matrix structure for the update
matrix AMF = A(1) ⊕ · · · ⊕ A(M), where ⊕ is the direct sum operator. It is easy to see that
this construction corresponds to a related block structure of the Γ matrix in Equation (3).
This means that the subsets of the random vectors are modeled as independent. Hence,
when the number of particles grows to infinity, one recovers the fixed-point equations
for the optimal MF structured Gaussian variational approximation from our approach.
As previously, as the number of particles grows to infinity, we recover the optimal MF
Gaussian variational approximation. Note that using a structured MF does not change the
complexity of the algorithm but requires fewer particles to obtain a full-rank solution.

3.6. Comparison with SVGD

Given the similarities with the SVGD methods [24],one could question the differences
of our approach. The model proposed by [10] using a linear kernel k(x, x′) = x�x′ + 1 has
similar properties to our approach. The variable update becomes:

dx
dt

=
1
N

N

∑
i=1

(−k(xi, x)∇ϕ(xi) +∇xi K(xl , xi))

= Eq̂

[
I − ∇ϕ(x)x�

]
x −Eq̂[∇ϕ(x)]

The fixed points are

0 =Eq̂[∇ϕ(x)]

I =Eq̂

[
∇ϕ(x)x�

]
= Eq̂

[
∇ϕ(x)(x − m)�

]
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where the last equality holds since Eq̂[∇ϕ(x)] = 0. This is the same as our algorithm fixed
points (9). Similarly to Theorem 1, D + 1 particles will converge to the exact D-dimensional
multivariate Gaussian target. However, the generated flows are different. The main
difference is that we normalize our flow via the L2 norm, whereas [10] rely on the reproducing
kernel Hilbert space (RKHS) norm, i.e., ‖ϕ‖2

k = ϕ�K−1 ϕ where ϕi = ϕ(xi) and Kij = k(xi, xj).
For a full introduction on RKHS, we recommend [34]. Remarkably, centering the particles
on the mean, namely, using the modified linear kernel k(x, x′) = (x − m)�(x′ − m) + 1,
leads to the same dynamics. Additionally, when using SVGD, there is no direct possibility
of computing the current KL divergence between the variational distribution and the target,
unless some values are accumulated [35]. There is also no clear theory explaining what
happens when the number of particles is smaller than the number of dimensions, for both
distance-based kernels and the linear kernel.

4. Experiments

We now evaluate the efficiency of GPF and GF. First, given a Gaussian target, we
compare the convergence of our approach with popular VGA methods, which are all
described in Section 2. Second, we evaluate the effect of varying the number of particles
for both Gaussian targets and non-Gaussian targets, especially with a low-rank covariance.
Then, we evaluate the efficiency of our algorithm on a range of real-world binary classifi-
cation problems through a Bayesian logistic regression model and a series of BNN on the
MNIST dataset.

All the Julia [36] code and data used to reproduce the experiments are available
at the Github repository: https://github.com/theogf/ParticleFlow_Exp (accessed on
27 July 2021).

4.1. Multivariate Gaussian Targets

We consider a 20-dimensional multivariate Gaussian target distribution. The mean is
sampled from a normal Gaussian μ ∼ N (0, ID) and the covariance is a dense matrix defined
as Σ = UΛU�, where U is a unitary matrix and Λ is a diagonal matrix. Λ is constructed as

log10(Λii) =
log10(κ)(i−1)

D−1 − 1 where κ is the condition number, i.e., κ = Λmax/Λmin. This
means that, for κ = 1, we obtain a Σ = 0.1I, and for κ = 100, we obtain eigenvalues ranging
uniformly from 0.1 to 10 in log-space.

We compare GPF and GF to the state-of-the art methods for VGA described in
Section 2, namely Doubly Stochastic VI (DSVI) [14], Factor Covariance Structure (FCS) [15]
with rank p = D, iBayes Learning Rule (IBLR) [17] with a full-rank covariance and their
Hessian approach, and Stein Variational Gradient Descent with both a linear kernel (Linear

SVGD) [10] and a squared-exponential kernel (Sq. Exp. SVGD) [24]. For all methods, we
set the number of particles or, alternatively, the number of samples used by the estimator,
as D + 1, and use standard gradient descent (xt+1 = xt + ηϕt(xt)) with a learning rate
of η = 0.01 for all particle methods. We use RMSProp [37] with a learning rate of 0.01
for all stochastic methods. We run each experiment 10 times with 30,000 iterations, and
plot the average error on the mean and the covariance with one standard deviation. For
GPF, we additionally evaluate the method with and without using natural gradients for
the mean (i.e., pre-multiplying the averaged gradient with Ct), indicated, respectively,
with a dashed and solid line. Figure 2 reports the L2 norm of the difference between the
mean and covariance with the true posterior over time for the target condition number
κ ∈ {1, 10, 100}.
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Figure 2. L2 norm of the difference between the target mean μ (left side) and target covariance
Σ (right side) with the inferred variational parameters mt and Ct against time for 20-dimensional
Gaussian targets with condition number κ. We use D + 1 particles/samples and show the mean over
10 runs as well as the 68% credible interval. Methods with dashed curves use natural gradients on
the mean. Note that DSVI, GF and FCS are overlapping and are, at this scale, indistinguishable from
one another.

As Theorem 1 predicts, GPF converges exactly to the true distribution, regardless of the
target. GF and other methods based on stochastic estimators cannot obtain the same precision
as their accuracy is penalized by the gradient noise. IBLR approximate the covariance
perfectly, despite the stochasticity of its estimator; however IBLR needs to compute the true
Hessian at each step. When using a Hessian approximation instead, IBLR performed just like
DSVI; the true benefit of IBLR appears when second-order functions are computed, which
is naturally intractable in high-dimensions. SVGD with a linear kernel, achieves a good
performance but is highly unstable: most of the runs (ignored here) diverge. This is due to
the dot computation x�x which can become extremely high, especially for non-centered data.
For this reason, we do not consider this method for the later experiments. SVGD with a sq.
exp. kernel obtains a good estimate for the mean but fails to approximate the covariance.
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Perhaps surprisingly, GF does not perform much better than DSVI or FCS. This is
potentially due to the benefit of Riemannian gradients being canceled by the gradient noise [38]
providing a strong argument for particle-based methods over stochastic estimators.

Remarkably, we also confirm Theorem 2, that the convergence speed of Ct is indepen-
dent of the target Σ, while the convergence speed of mt has this dependency unless the
natural gradient is used (see the dashed curves). The case κ = 1 highlights that natural
gradient do not necessarily improve convergence speed.

4.2. Low-Rank Approximation for Full Gaussian Targets

We explore the effect of the number of particles for both Gaussian and non-Gaussian
targets. We use the same Gaussian target from the previous experiment in 50 dimensions
with a full-rank covariance determined by their condition number κ = λmax

λmin
. The covariance

eigenvalues λi in log-space range uniformly from 0.1 to 0.1κ. For a given target multivariate
Gaussian, we vary the number of particles from 2 to D + 1 and look at the absolute
difference of |tr(C − Σ)|. The results in D = 50, as well as the corresponding predictions
(in dashed-black), from Theorem 3, are shown on Figure 3.

The empirical results perfectly match the theoretical predictions, confirming that, for
Gaussian targets, the particles determine a low-rank approximation whose spectrum is
equal to the largest eigenvalues from the target.

Figure 3. Trace error for a Gaussian target with D = 50 and condition numbers κ for a varying
number of particles with GPF. Predictions from Theorem 3 are shown in dashed-black.

4.3. High-Dimensional Low-Rank Gaussian Targets

We consider a typical low-rank target case where the dimensionality is high but the
effective rank of the covariance is unknown. The target is given by p(x) = N (μ, Σ) where
μ ∼ N (0, ID), the covariance is defined by Σ = UΛU�, where U is a D × D unitary matrix
and Λ is a diagonal matrix defined by

Λii =

{
N (2, 1), if i ≤ K
10−8, otherwise

where K is the effective rank of the target. We pick D = 500 and vary K ∈ {10, 20, 30} to
simulate a true problem where the correct K is not known. We test all methods allowing
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for low-rank structure, namely, GPF, GF, FCS and SVGD (Linear and Sq. Exp.). We fix the
rank (or the number of particles) to be 20; therefore, we obtain three cases where the rank is
exact, under-estimated, and over-estimated. For all methods, we use RMSProp [37] for the
stochastic methods, or a diagonal version of it (see Section 4.4) for the particle ones. The
error of the mean and the covariance is shown in Figure 4. Note that the difference in the
initial error on the covariance is due to the difficulty of starting with the same covariance
between particle and stochastic methods.

Figure 4. Convergence plot of low-rank methods for a 500-dimensional multivariate Gaussian target
with effective rank K ∈ {10, 20, 30}. The rank of each method is fixed as 20. The difference in the
starting point for the covariance is due to the initialization difference between each method. We show
the mean over 10 runs for each method with shadowed areas representing the 68% credible interval.

We observe once again that the SVGD with a linear kernel fails to converge due to the
large gradients. All methods perform equally in the estimation of the mean while being
non-influenced by the rank of the target. As expected, the approximation quality for the
covariance degrades when the rank gets bigger, but all algorithms still converge to good
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approximations. SVGD with a sq. exp. kernel performs much worse than the rest of the
methods. This is a known phenomenon where, for high dimensions, the covariance SVGD
is either over- or underestimated.

4.4. Non-Gaussian Target

We now investigate the behavior of our algorithm with non-Gaussian target distribu-
tions. We built a two-dimensional banana distribution: p(x) ∝ exp(−0.5(0.01x2

1 + 0.1(x2 +
0.1x2

1 − 10)2)), varied the number of particles used for GPF in {3, 5, 10, 20, 50} and com-
pared it with a standard full-rank VGA approach. We also showed the impact of replacing
a fixed η with the Adam [39] optimizer for 50 particles. The results are shown in Figure 5.
As expected, increasing the number of particles madesthe distribution obtained via GPF
increasingly closer to the optimal standard VGA, even in a non-Gaussian setting. However,
using a momentum-based optimizer such as Adam breaks the linearity assumption of the
original flow (5) and leads to a twisted representation of the particles. (We observed the
same behavior with other momentum-based optimizers). A simple modification of the
most known optimizers allows the linearity to be maintained while correctly adapting
the learning rate to the shape of the problem. Most optimisers accumulate momentum
or gradients element-wise, and end up modifying the updates as xt+1 = xt + Pt � ϕt(xt),
where Pt ∈ RD×D is the preconditioner obtained via the optimiser and � is the Hadamard
product. By instead taking the average over each dimensions, we obtained the updates
xt+1 = xt + Pt ϕt(xt), where Pt is a D × D diagonal matrix. The details of the dimension-
wise conditioners for ADAM, AdaGrad and AdaDelta are given in Appendix H.

Figure 5. Two-dimensional Banana distribution. Comparison of GPF using an increasing number of
particles and a different optimizer (ADAM) with the standard VGA (rightmost plot).

4.5. Bayesian Logistic Regression

Finally, we considered a range of real-world binary classification problems mod-
eled with a Bayesian logistic regression. Given some data {(xi, yi)}N

i=1 where xi ∈ RD

and y ∈ {−1, 1}, we defined the model yi ∼ Bernoulli(σ(w�xi)) with weight w ∈ RD,
and with σ being the logistic function. We set a prior on w: w N (0, 10ID). We bench-
marked the competing approaches over four datasets from the UCI repository [40]: spam
(N = 4601, D = 104), krkp (N = 351, D = 111), ionosphere (N = 3196, D = 37) and
mushroom (N = 8124, D = 95). We ran all algorithms discussed in Section 4.1, both with
and without a mean-field approximation; SVGD was omitted since it is too unstable. All
algorithms were run with a fixed learning rate η = 10−4, and we used mini-batches of size
100. We show alternative training settings in Appendix I. Note that FCS, for mean-field,
simplifies to DSVI Additionally, we did not consider full-rank IBLR, as it is too expensive,
and we used their reparametrized gradient version for the Hessian. Figure 6 shows the
average negative log-likelihood on 10-fold cross-validation with one standard deviation
for each dataset. While, as expected, the advantages shown for Gaussian targets do not
transfer to non-Gaussian targets, GPF and GF are consistently on par with competitors. On
the other hand, IBLR tends to be outperformed. It is also interesting to note that mean-field
does not seem to have a negative impact on these problems, and performance remains the
same even with a full-rank matrix.
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(a) Mean-field approximation

(b) No mean-field approximation

Figure 6. Average negative log-likelihood vs. time on a test-set over 10 runs against training time
for a Bayesian logistic regression model applied to different datasets. Top plots use a mean-field
approximation, while bottom plots use a low-rank structure for the covariance with rank L = 100.
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4.6. Bayesian Neural Network

We ran our algorithm on a standard network with two hidden layers each, with
L = 200 neurons and tanh activation functions (we additionally tried ReLU [41], but
some baselines failed to converge). We trained on the MNIST dataset [42] (N = 60,000,
D = 784) and used an isotropic prior on the weights p(w) = N (0, αID) with α = 1.0.
We additionally compared these with Stochastic Weight Averaging-Gaussian (SWAG) [27]
with an SGD learning rate of 10−6 (selected empirically) and Efficient Low-Rank Gaussian
Variational Inference (ELRGVI) [26]. We varied the assumptions on the covariance matrix to
be diagonal (Mean-Field), or to have rank L ∈ {5, 10}. Additionally, we showed, for GPF,
the effect of using a structured mean-field assumption by imposing the independence of
the weights between each layer (GPF (Layers)).

We trained each algorithm for 5000 iterations with a batchsize of 128(∼10 epochs)
and reported the final average negative log-likelihood, accuracy and expected calibration
error [43] on the test set (N = 10,000) on Table 1. The predictive distribution is given by

p(y = k|x∗, D) =
∫

p(y = k|x∗, w)p(w|D)dw ≈
∫

p(y = k|x∗, w)q(w)dw,

where D is the training data, and x∗ is a test sample. We computed the accuracy and the
average negative test log-likelihood as:

Acc =
1
N

N

∑
i=1

1yi (argk max p(y = k|x∗
i , D))

NLL = − 1
N

N

∑
i=1

log p(y = yi|x∗
i , D)

where 1y(x) is the indicator function (equal to 1 for y = x, 0 otherwise). For the definition
of expected calibrated error, we refer the reader to [43]. Additional convergence and
uncertainty calibration plots can be found in Appendix I.

Table 1. Negative Log-Likelihood (NLL), Accuracy (Acc), and Expected Calibration Error (ECE)
for a Bayesian Neural Networks (BNN) on the MNIST dataset. We varied the rank of the variational
covariance from mean-field (all variables are independent) to a low-rank structure with L ∈ {5, 10}.
Bold numbers indicated the best performance, and italic bold numbers indicate the best performance
when restricted to VGA methods. Convergence and calibration plots can be found in Appendix I.

Alg.
Mean-Field L = 5 L = 10

NLL Acc ECE NLL Acc ECE NLL Acc ECE

GPF 0.183 0.95 0.0384 0.166 0.96 0.0918 0.172 0.955 0.0869
GPF (Layers) - - - 0.147 0.958 0.0181 0.178 0.952 0.0395

GF 0.178 0.953 0.0706 0.185 0.956 0.136 0.171 0.952 0.0455
DSVI 0.204 0.945 0.11 - - - - - -

SVGD (Sq. Exp) - - - 0.139 0.965 0.0732 0.133 0.967 0.0879
SWAG - - - 0.257 0.957 0.0662 0.287 0.956 0.0878

ELRGVI - - - 0.453 0.901 0.53 0.537 0.882 0.777

Overall, the SVGD method performed best in terms of both accuracy and negative
log-likelihood. However, SVGD is not in the same category as others, since it is not a
VGA. For VGAs, we observed that a low-rank approximation improves upon mean-field
methods. In particular, assuming independence between layers provides a large advantage
to GPF. GPF and GF generally perform equally or better than all the other VGA methods.
Note that, although not reported here, all methods needed approximately the same time
for the 5000 iterations, except for SWAG, which only needed the MAP and a few thousand
iterations of SGD afterward, making it generally faster but also less controlled (a grid
search was needed to find the appropriate learning for SGD).
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5. Discussion

We introduced GPF, a general-purpose and theoretically grounded, particle-based
approach, to perform inference with variational Gaussians as well as GF its parameter
version. We were able to show the convergence of the particle algorithm based on an
empirical approximation of the free energy. We also showed that we can approximate
high-dimensional targets by allowing for low-rank approximations with a small number
of particles. The results for Gaussian targets suggest that the convergence of posterior
covariance approximation may relax asymptotically fast, with small dependence on the
target. This work is the first step in analyzing convergence speed and guarantees in
inference with variational Gaussians, and future work could extend guarantees to non-
Gaussian problems. One could also take advantage of existing particle-based VI methods
to accelerate inference further or reach a better optima [44,45].
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Appendix A. Derivation of the Optimal Parameters

In Section 3, we considered the optimization problem:

min
At ,bt∈B

dF [qt]

dt
where B = {At, bt : ‖At‖2

F = 1, ‖bt‖2 = 1},

where we have introduced ‖A2‖2
F = tr(AA�), the Froebius norm and ‖bt‖, the L2 norm and

dF [qt]

dt
= −tr

[
At(At

�)
�
]
− (bt)�bt

� (A1)

To solve this problem, we used the Lagrange multiplier method. We write the La-
grangian as:

L(At, bt) =
dF [qt]

dt
− λAg(At)− λbh(bt),

where g(A) = tr(AA�) − 1 and h(b) = ‖b‖2
2 − 1. For simplicity we can divide the

problem as:

L(At) =− tr
[

At(At
�)

�
]
− λAg(At)

L(bt) =− (bt)�bt
� − λbh(bt)

For At, we have the constraints:
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∇At tr
[

At(At
�)

�
]
=λA∇At g(At)

g(At) =0

Computing the gradients is straightforward:

At
� =2λA At

⇒ At =
At
�

2λA

⇒ 1
4λ2

A
tr(At

�(At
�)

�) =1

⇒ λA =

√
tr(At

�(At
�)

�)
4

.

which gives us the result At = At
�

‖At
�‖F

. Similarly for bt:

∇bt(bt)�bt
� =λb∇bt h(bt)

h(bt) =0.

Replacing the gradients gives:

bt
� =2λbbt

⇒ bt =
bt
�

2λb

⇒ 1
4λ2

b
‖bt

�‖2
2 = 1

⇒ λb =
2

‖bt
�‖2

which gives us the result bt = bt
�

‖bt
�‖2

.

Appendix B. Relaxation of the Empirical Free Energy

We prove the decrease in the empirical free energy (17) under the particle flow when
the covariance C is nonsingular. We define the empirical distribution q̂(x) = 1

N ∑N
i=1 δx,xi

with a finite number N of particles. The empirical free energy is defined as

F [q̂] = Eq̂[ϕ(x)]− 1
2

log |C|.

We are interested in the temporal change of the free energy, when particles move under a
general linear dynamics

dxi
dt

= b + A(xi − m).

The induced dynamics for F are:

dF
dt

= Eqt

[
∇x ϕ(x)�

dx
dt

]
− 1

2
tr(C−1 dC

dt
)

For notational simplicity, we introduce g(x) = ∇x ϕ(x) and ẋ = dx
dt (similarly ṁ = dm

dt ).

234



Entropy 2021, 23, 990

dC
dt

=
d
dt
Eq

[
(x − m)(x − m)�

]
=Eq

[
(ẋ − ṁ)(x − m)�

]
+Eq

[
(x − m)(ẋ − ṁ)�

]
=Eq

[
ẋx� + xẋ� − ṁm� − mṁ�

]
=Eq

[
ẋ(x − m)�

]
+Eq

[
(x − m)ẋ�

]

dF
dt

=Eq

[
g(x)� ẋ

]
−

1
2
Eq

[
tr(C−1 ẋ(x − m)�) + tr(C−1(x − m)� ẋ�)

]
=Eq

[
ẋ�
(

g(x)− C−1(x − m)
)]

(A2)

where we used the permutation properties of the trace.
Plugging the dynamics into Equation (A2), we obtain:

dF
dt

=b�Eq[g(x)] +Eq

[
(x − m)�A�g(x)

]
−Eq

[
(x − m)�A�C−1(x − m)

] (A3)

where we used the fact that b�C−1Eq[x − m] = 0.
We next look for conditions on b and A, under which dF

dt < 0, i.e., the dynamics will
lead to a decrease in the free energy. We pick b = −β1Eq[g(x)], where β1 > 0, and we
obtain, for the first term in (A3):

−β1‖Eq[g(x)]‖2 ≤ 0.

For A, let us first define ψ = Eq
[
g(x)(x − m)�

]
and rewrite the second and last term

of the Equation (A3) as:

Eq

[
(x − m)�A�g(x)

]
=tr
(
Eq

[
A�g(x)(x − m)�

])
=tr
(

A�ψ
)

Eq

[
(x − m)�A�C−1(x − m)

]
=tr
(

A�C−1C
)

=tr(A)

Combining both, we get tr
(

A�(ψ − I)
)
. Similarly to the previous step, we pick A =

−β2(ψ − I), where β2 ≥ 0, which leads to another negative term:

−β2tr((ψ − I)�(ψ − I)) ≤ 0,

where we use the fact that X�X is a positive semi-definite matrix for any real valued X.
Note that different forms of A (e.g., β2 are replaced by a positive definite matrix) could

be used, as long as the trace of the product stays positive. Inserting b and A, the free energy
dynamics become

dF
dt

=− β1‖Eq[g(x)]‖2 − β2tr((ψ − I)�(ψ − I))

The variable dynamics are given by
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dx
dt

=− β1Eq[g(x)]− β2(ψ − I)(x − m)

=− β1Eq[g(x)]

− β2

(
Eq

[
g(x)(x − m)�

]
− I
)
(x − m),

which is equivalent to Equation (5), for β1 = β2 = 1. Our result shows that the empirical
approximation of the free energy decreases under the particle flow.

Appendix C. Riemannian Gradient for Matrix Parameter Γ

The parameter flow for the matrix Γ in (11) is given by

dΓt

dt
=Γt −Eq0

[
∇x ϕ(xt)(x0 − m0)�

]
Γt(Γt)�.

This is easily rewritten in terms of the parameter gradient as dΓt

dt = ∂F
∂Γ ΓΓ�

Similar to natural gradients, which are defined by the metric, which is induced by
the Fisher–matrix, we can rewrite the parameter change in terms of a different Riemannian
gradient. This gradient is the direction of change dΓ = Γ(t + dt) − Γ(t), which yields
the steepest descent of the free energy over a small time interval dt. As an extra con-
dition, one keeps the length of dΓ (measured by a ’natural’ metric, which has specific
invariance properties) fixed. This is defined by an inner product (the squared length)
〈dΓ, dΓ〉Γ in the tangent space of small deviations dΓ from the matrix Γ. Hence, dΓ is
found by minimising F (Γ(t) + dΓ, m) (for small dΓ) under the condition that 〈dΓ, dΓ〉Γ(t) is
fixed. Following [20] (Theorem 6), a natural metric in the space of symmetric nonsingular
matrices can be defined as

〈dΓ, dΓ〉Γ
.
= tr

(
(dΓ Γ−1)�dΓ Γ−1

)
.

This metric is invariant against multiplications of Γ and dΓ by matrices Y, i.e., 〈dΓ, dΓ〉Γ =
〈dΓ Y, dΓ Y〉ΓY and reduces to the Euclidian metric at the unit matrix Γ = I.

The direction of the natural gradient is obtained by expanding the free energy for
small dΓ and introducing a Lagrange–multiplier λ for the constraint. One ends up with the
quadratic form

∂F
∂Γ

dΓ + λtr
(
(dΓ Γ−1)�dΓ Γ−1

)
to be minimised by dΓ. By taking the derivative with respect to dΓ, one finds that the
direction of dΓ agrees with the right equation of the flow (11).

Appendix D. Regularised Free Energy for N ≤ D

The problem of defining an empirical approximation for N ≤ D particles is that the
empirical covariance becomes singular and typically has N − 1 nonzero eigenvalues, and
thus |C| = 0. Note that the extra 0 eigenvalue is derived from the fact that the empirical
sum of fluctuations must be zero, which provides an additional linear constraint.

We can regularise the log determinant term by replacing the zero eigenvalues of C:
λi = 0 → λ̃i = 1. The new covariance C̃ becomes

log |C̃| = ∑
i:λi>0

log λi,

since log 1 = 0. The dynamics of the particles stays the same. To rewrite this formally in
terms of matrices, we define

C̃ = C + C⊥
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where

C⊥ = ∑
i:λi=0

eie�i

and ei = ith eigenvector of C. This replaces all 0 eigenvalues by 1. C⊥ is a projector:
C2

⊥ = C⊥ and C⊥(I − C⊥) = 0. We also have tr(C⊥) = D − (N − 1). In the following,
it is useful to introduce the D × N matrix of fluctuations Z, such that C = ZZ�/N. The
column vectors of Z span the subspace of eigenvectors ei with λi > 0. Hence, it follows
that C⊥Z = 0.

We want to show that the regularised free energy F̃ decreases under the particle
dynamics for N ≤ D. Since the part of the time derivative of F̃ that depends on dm

dt is not
changed, we will only discuss the fluctuation part in the following.

It is useful to introduce the matrix:

Ã .
= I − C⊥ − gZ�/N = A − C⊥,

with g = ∇x ϕ(x) is the D × N matrix of the gradient.

Eq

[
g(x)�

dx
dt

]
=tr(A)− tr(A�A)

=tr(Ã + C⊥)− tr((Ã + C⊥)
�(Ã + C⊥))

=tr(Ã)− tr(Ã� Ã).

To obtain this result, we need

tr(C⊥ Ã) =tr(C⊥ Ã�)

=tr(C⊥(I − C⊥)− C⊥Zg�/N) = 0.

We need to work out

−1
2

d ln |C̃|
dt

=− 1
2

tr

(
dC̃
dt

C̃−1

)

=− 1
2

tr
(

dC
dt

C̃−1
)

where we have used the fact that the eigenvalues λi = 1 of C̃ have a zero time derivative
and can be omitted. We use the linear dynamics dZ

dt = AZ to obtain:

dC
dt

= = CA� + AC

=(C̃ − C⊥)(Ã� + C⊥) + (Ã + C⊥)(C̃ − C⊥)

=C̃Ã� + ÃC̃ + C⊥C̃ + C̃C⊥ − ÃC⊥ − C⊥ Ã� − 2C⊥

=C̃Ã� + ÃC̃,

where we have used C2
⊥ = C⊥ and C⊥ Ã� = 0. Hence

−1
2

tr

(
dC̃
dt

C̃−1

)
=− tr(Ã).
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Finally, the temporal change in the free energy due to the fluctuations is given by

dF̃
dt

= −tr(Ã� Ã) ≤ 0.

Note that this proof is not only valid for N ≤ D, but also for N > D, as the overall
computations are simplified with C⊥ = 0. A more detailed proof for N > D is, furthermore,
given in Appendix B.

Efficient Computation of log
∣∣∣C̃∣∣∣

A practical way to compute log |C̃| without performing an eigenvector expansion is
to define the N × N matrix

R .
= Z�Z/N + JN,N/N,

where JN,N is the N × N all-ones matrix. Z�Z/N shares the N − 1 nonzero eigenvalues with
C and has an additional eigenvalue 0 corresponding to the constant eigenvector (eN)i =
1/

√
N. Adding an all-ones matrix preserves all existing eigenvalues while replacing the 0

one with a constant. This leads to the following result:

−1
2

log |R| = −1
2

N−1

∑
i=1

log λi.

Appendix E. Proof of Theorem 1: Fixed Points for a Gaussian Model (N > d)

Theorem A1 (1). If the target density p(x) is a D-dimensional multivariate Gaussian, only D + 1
particles are needed for Algorithm 2 to converge to the exact target parameters.

The general fixed-point condition for the dynamics (13) of the position xi for particle i
is given by:

(I −Eq̂

[
g(x)(x − m)�

]
)(xi − m)−Eq̂[g(x)] = 0.

for i = 1, . . . , N. By taking the expectation over all particles, we obtain:

Eq̂[g(x)] = 0, (A4)

where q̂ is the empirical distributions of particles at the the fixed point. Note that this result
is independent of N, i.e., it is also valid for N = 1.

For a D-dimensional Gaussian target p(x) = N (μ, Σ), we will show that empirical
mean and covariance given by the particle algorithm converge to the true mean and
covariance matrix of the Gaussian when we use N ≥ D + 1 particles. In this setting, we
have ϕ(x) = 1

2 x�Σ−1x − x�Σ−1μ. For simplification, we use the precision matrix Λ = Σ−1

and get

ϕ(x) =
1
2

x�Λx − x�Λμ.

The gradient g(x) becomes:

g(x) = Λ(x − μ)
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At the fixed points, we have that dm
dt and dΓ

dt are equal to 0. For the mean m:

dm
dt

= Eq̂[g(x)] =0

ΛEq̂[x − μ] =0

Λm =Λμ

m =μ

For the matrix Γ, we have

dΓ
dt

= −AΓ =0

Γ −Eq0

[
g(x)(x − m)�

]
Γ =0

Eq0

[
Λ(x − μ)(x − m)�

]
Γ =Γ

−2η2Eq0

[
(x − m)(x − m)�

]
Γ =Γ

ΛCΓ =Γ

ΛC2 =C

where we use the result for the mean m = μ and right multiplied by Γ� as C = ΓΓ�. Now,
we can only simplify, as C = Λ−1 = Σ if C is not singular. This is true only if its rank is
equal to D, needing D + 1 particles.

Appendix F. Proof of Theorem 2: Rates of Convergence for Gaussian Targets

Theorem A2 (2). For a target p(x) = N (x | μ, Λ−1), where x ∈ RD, and N ≥ D + 1 particles,
the continuous time limit of Algorithm 2 will converge exponentially fast for both the mean and the
trace of the precision matrix:

mt − μ =e−Λt(m0 − μ),

tr(
(
Ct)−1 − Λ) =e−2ttr(

(
C0
)−1

− Λ),

where mt and Ct are the empirical mean and covariance matrix at time t and exp(−Λt) is the
matrix exponential.

In the following, we assume the target p(x) = N (μ, Σ) We use the notation Λ .
= Σ−1

and δCt = Ct − Σ.

Appendix F.1. Convergence of the Mean

Given our target p(x), similarly to Appendix E we have g(x) = Λ(x − μ), where
η1 = Σ−1μ and η2 = − 1

2 Σ−1. This transform the first of Equations (11) into

dm
dt

=− Λ(Eq̂[x]− μ)

=− Λ(m − μ)

If now consider the error on m : δm = m − μ we obtain:

dδm
dt

=
dm
dt

= −Λ(m − μ)

=− Λδm.
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Therefore, the mean converges exponentially fast to the true mean. The asymptotic rate
is governed by the largest eigenvalue of Λ, i.e., the inverse of the smallest eigenvalue of
Σ, λmin.

Appendix F.2. Convergence of the Covariance Matrix

Let z = x − m, we have from Equation (5), that

dz
dt

= −Az

where A = Eq0

[
g(x)z�]− I. This expectation can further be simplified as

Eq̂

[
Λ(x − μ)z�

]
=ΛC, (A5)

where q ∼ N (m, C). Hence, we have the exact result

dC
dt

= (I − ΛC)C + C(I − CΛ). (A6)

We know that the optimal target is C = Σ. Therefore, we define the error δC = C − Σ.
Linearizing Equation (A6) gives us

dδC
dt

=
dC
dt

=(I − Λ(δC + Σ))(δC + Σ)

+ (δC + Σ)(I − (δC + Σ)Λ)

=− ΛδC(δC + Σ)− (δC + Σ)δCΛ

≈ − ΛδCΣ − ΣδCΛ

We were not yet able to find a general solution of this equation, but we can obtain a simple
result for the trace yt .

= tr(δC) at time t:

dyt

dt
� −2yt.

We, therefore, have a asymptotic linear convergence: yt ∝ e−2ty0 which is independent of
the parameters of the Gaussian model.

We can also equivalently obtain a non-asymptotic estimate of a specific error measure
for the precision matrix. Using equation (A6), we have the following dynamics for the
precision C−1:

dC−1

dt
=− C−1 dC

dt
C−1

=− C−1(I − ΛC)− (I − ΛC)C−1

Taking the trace

dtr(C−1)

dt
=− 2tr(C−1)− 2tr(Λ)

dtr(C−1 − Λ)

dt
=− 2tr(C−1 − Λ)

Hence we get the following exact result:

tr((Ct)−1 − Λ) = e−2ttr((C0)−1 − Λ)
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which is again independent of the parameters of the Gaussian model.
Additionally, this tells us that if the covariance C is non-singular at time t = 0, it will

remain non-singular for all t (tr(C−1) would be infinite). Hence, if we start with N > d
particles with a proper empirical covariance, they cannot collapse to make C singular.

Appendix F.3. Convergence of the Trace of the Covariance

The asymptotic result on traces obtained previously can be turned into an exact
inequality. We have

dδC
dt

= −ΛδCΣ − ΣΛδC − Λ(δC)2 − (δC)2Λ

Taking the trace, we get

dtr(δC)
dt

= −2tr(δC)− 2tr(δCΛδC)

Since δCΛδC is positive definite, we have −2tr(δCΛδC) ≤ 0 and thus

dtr(δC)
dt

≤ −2tr(δC)

leading to:

tr(δCt) ≤ tr(δC0)e−2t

by using by Grönwall’s lemma [46]:

Lemma A1 (Grönwall). For an interval I0 = [0, ∞) and a given function f differentiable
everywhere in I0 and satisfying:

f ′(t) ≤ β(t) f (t), t ∈ I0

then f is bounded by the corresponding differential equation g′(t) = β(t)g(t):

f (t) ≤ f (0)
∫ t

0
β(s)ds, t ∈ I0

The bound is nontrivial only if tr(δC) ≥ 0. This would be natural assumption
for a Bayesian model, if C0 is the prior covariance and the eigenvalues of Ct at t = ∞
(corresponding to the posterior) are reduced by the data.

Appendix F.4. Decay of Fluctuation Part of the Free Energy

Still focusing on the Gaussian model, we can further derive a bound on the free energy.
It is easy to see that for the Gaussian case, the free energy in Equation (4) separates into a
sum of two terms. The first one depends on the mean mt only and the second one on only
the fluctuations (i.e., Ct).

We will consider the second, nontrivial part only. We assume that the covariance
matrix is nonsingular (corresponding to N > D). The fluctuation part of the free energy
(minus its minimum) is given by

F f l = −1
2

ln |I − B| − 1
2

tr(B)
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where we have introduced the matrix B .
= I − ΛC. One can show that its eigenvalues are

real and are upper bounded by 1. First, we can show from the equations of motion that

dF f l

dt
= −tr(BB�) (A7)

Second, using the elementary bound − ln(1 − u) ≤ u
1−u valid for u ≤ 1 and applied to the

eigenvalues of B yields

F f l ≤1
2

tr(B(I − B)−1 − B)

=
1
2

tr(B(I − B)−1 − B(I − B)(I − B)−1)

=
1
2

tr(B2(I − B)−1)

=
1
2

tr(B2C−1Λ−1) ≤ 1
2

tr(B�Λ−1BC−1)

The last two equalities used the definition B = I − ΛC. Since B�Λ−1B and C−1 are both
positive definite, we can bound the last term by (see ([47], Theorem 6.5))

F f l ≤ 1
2

tr(B�Λ−1B)tr(C−1) ≤
1
2

tr(BB�)tr(Λ−1)tr(C−1)),

where, in the last line, we have bounded the trace of a product of p.d. matrices a sec-
ond time.

Combining with Equation (A7) we show that

dF f l

dt
≤ −

2F f l

tr(Λ−1)tr(C−1)

We can plug in our result from Theorem 2:

tr(C−1) =tr(Λ) + tr(C−1 − Λ)

=tr(Λ) + e−2ttr((C0)−1 − Λ)

≤tr(Λ) + e−2t|tr((C0)−1 − Λ)|
≤tr(Λ) + |tr((C0)−1 − Λ)|

We can plug this in and use Grönwall’s Lemma A1 to get an exponential bound

F f l(Ct) ≤ F f l(C0)e
−
[

2t
tr(Λ−1)(tr(Λ)+|tr((C0)−1−Λ)|)

]
.
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Appendix F.5. Asymptotic Decay of the Free Energy:

For large times t, we can do better. Let us analyse the asymptotic decay constant
F f l � e−λ f reet defined by

λ f ree
.
= − lim

t→∞

d ln(F f l)

dt
= − lim

dF f l
dt

F f l

= lim
tr(BB�)

− 1
2 ln |I − B| − 1

2 tr(B)
≥

lim
tr(B2)

− 1
2 ln |I − B| − 1

2 tr(B)

In the last inequality, we used tr(BB�) ≥ tr(B2). Everything is expressed by traces of
functions of B, and thus by its eigenvalues. Since B → 0 as t → ∞ (this applies also
to its eigenvalues u), we can use Taylor’s expansion ln(1 − u) + u = −u2/2 + O(u3) to
show that

λ f ree ≥ 4

which is independent of Λ.

Appendix G. Proof of Theorem 3: Fixed-Points for Gaussian Model (N ≤ D)

Theorem A3 (3). Given a D-dimensional multivariate Gaussian target density p(x) = N (x|μ, Σ),
using Algorithm 2 with N < D + 1 particles, the empirical mean converges to the exact mean μ.
The N − 1 non-zero eigenvalues of Ct converge to a subset of the target covariance Σ spectrum.
Furthermore, the global minimum of the regularised version F̃ of the free energy (17) corresponds
to the largest eigenvalues of Σ.

Applying Equation (A4) to our fixed point equation, we obtain

(I −Eq̂

[
g(x)(x − m)�

]
)(xi − m) = 0, ∀i = 1, . . . , N

Hence, the set of centered positions of the particles S = {xi − m}N
i=1, are all eigenvectors of

the matrix Eq̂
[
g(x)(x − m)�

]
with eigenvalue 1. S spans a N − 1 dimensional space (we

have ∑N
i=1(xi − m) = 0).

If we specialise to a Gaussian target p(x) = N (x | μ, Σ), (and Λ = Σ−1 we have
g(x) = Λ(x − μ) and can reuse the result from Equation (A5):

Eq̂

[
g(x)(x − m)�

]
= ΛEq̂

[
(x − m)(x − m)�

]
=ΛC.

Using the equality above, we get:

ΛC(xi − m) =(xi − m)

C(xi − m) =Σ(xi − m), ∀i = 1, . . . , N

which shows that the obtained low-rank covariance C and the target covariance Σ have
N − 1 eigenvectors and eigenvalues in common.
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However, are these the largest ones? We look at the modified free energy (17) (ignoring
the contribution of the mean):

min F̃ =min

{
−1

2 ∑
i:λi>0

ln λi + tr(ΛC)

}

where λi are the eigenvalues of the empirical covariance C. We first note that tr(ΛC) =
N − 1, independent of which eigenvalues are obtained at the fixed point. This is easily seen
by the following argument: If we use the index–set I for the common eigenvectors ei and
eigenvalues λi, i ∈ I , we can write

C = ∑
i∈I

eiλie�i

Σ = ∑
i

eiλie�i

From this we obtain

tr(ΛC) = tr(∑
i∈I

eiλ
−1
i λie�) = N − 1

From this result we obtain

min F̃ =max
1
2 ∑

i:λi>0
ln λi − (N − 1),

The term N − 1 is a constant, but the first term makes a difference: The absolute mini-

mum of F̃ is achieved, when the λi are N − 1 largest eigenvalues of Σ. Our simulations
empirically show that the algorithm usually converges to the absolute minimum.

Appendix H. Dimension-Wise Optimizers

Here, we list some of the most populars optimizers used and their dimension-wise
versions. In all algorithms, we consider ϕ the matrix created by the concatenation of the
flow of each particle : ϕ = [ϕ1, . . . , ϕN ], where ϕn = ϕ(xn) We additionally use the notation
ϕn,i for the i-th dimension of the flow of the n-th particle. The main differences between
the original algorithms and their modified version were put in red.

Appendix H.1. ADAM

The ADAM algorithm is given by:

Algorithm A1: ADAM

Input: ϕt, mt−1, vt−1, β1, β2, η
Output: Δ
mt

n,d = β1mt−1
n,d + (1 − β1)ϕt

n,d

vt
n,d = β2vt−1

n,d + (1 − β2)
(

ϕt
n,d

)2

Δn,d = η
mt

n,d

(1−βt
1)
(√

vt
n,d(1−βt

2)
−1+ε

)
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Algorithm A2: Dimension-wise ADAM

Input: ϕt, mt−1, vt−1, β1, β2, η
Output: Δ
mt

n,d = β1mt−1
n,d + (1 − β1)ϕt

n,d;

vt
d = β2vt−1

d + (1 − β2)
1
N ∑N

n=1

(
ϕt

n,d

)2
;

Δn,d = η
mt

n,d

(1−βt
1)
(√

vt
d(1−βt

2)
−1+ε

) ;

Appendix H.2. AdaGrad

The AdaGrad algorithm is given by:

Algorithm A3: AdaGrad

Input: ϕt, vt−1, η
Output: Δ

vt
n,d = vt−1

n,d +
(

ϕt
n,d

)2

Δn,d = η
ϕt

n,d√
vt

n,d+ε

Algorithm A4: Dimension-wise AdaGrad

Input: ϕt, vt−1, η
Output: Δ

vt
d = vt−1

d + 1
N ∑N

n=1

(
ϕt

n,d

)2

Δn,d = η
ϕt

n,d√
vt

d+ε

Appendix H.3. RMSProp

The RMSProp algorithm is given by:

Algorithm A5: RMSProp

Input: ϕt, vt−1, ρ, η
Output: Δ

vt
n,d = ρvt−1

n,d + (1 − ρ)
(

ϕt
n,d

)2

Δn,d = η
ϕt

n,d√
vt

n,d+ε

Algorithm A6: Dimension-wise RMSProp

Input: ϕt, vt−1, ρ, η
Output: Δ

vt
d = ρvt−1

d + (1 − ρ) 1
N ∑N

n=1

(
ϕt

n,d

)2

Δn,d = η
ϕt

n,d√
vt

d+ε
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Appendix I. Additional Figures

Appendix I.1. Bayesian Logistic Regression

Similarly to the previous section, we also show results with the RMSProp optimizer
with learning rate 1 × 10−4.

(a) Mean-field approximation (b) No mean-field approximation

Figure A1. Similarly to Figure 6, we show the average negative log-likelihood on a test-set over
10 runs against training time on different datasets for a Bayesian logistic regression problem. The
dashed curve represents the low-rank approximation with RMSProp for methods based on stochas-
tic estimators.

Appendix I.2. Bayesian Neural Network

Figure A2. Convergence of the classification error and average negative log-likelihood as a function
of time.

Figure A3. Accuracy vs confidence. Every test sample is clustered in function of its highest predictive
probability. The accuracy of this cluster is then computed. A perfectly calibrated estimator would
return the identity.
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Abstract: We developed a novel approximate Bayesian computation (ABC) framework, ABCDP,
which produces differentially private (DP) and approximate posterior samples. Our framework
takes advantage of the sparse vector technique (SVT), widely studied in the differential privacy
literature. SVT incurs the privacy cost only when a condition (whether a quantity of interest is
above/below a threshold) is met. If the condition is sparsely met during the repeated queries, SVT
can drastically reduce the cumulative privacy loss, unlike the usual case where every query incurs
the privacy loss. In ABC, the quantity of interest is the distance between observed and simulated
data, and only when the distance is below a threshold can we take the corresponding prior sample as
a posterior sample. Hence, applying SVT to ABC is an organic way to transform an ABC algorithm
to a privacy-preserving variant with minimal modification, but yields the posterior samples with a
high privacy level. We theoretically analyzed the interplay between the noise added for privacy and
the accuracy of the posterior samples. We apply ABCDP to several data simulators and show the
efficacy of the proposed framework.

Keywords: approximate Bayesian computation (ABC); differential privacy (DP); sparse vector
technique (SVT)

1. Introduction

Approximate Bayesian computation (ABC) aims to identify the posterior distribution
over simulator parameters. The posterior distribution is of interest as it provides the
mechanistic understanding of the stochastic procedure that directly generates data in many
areas such as climate and weather, ecology, cosmology, and bioinformatics [1–4].

Under these complex models, directly evaluating the likelihood of data is often in-
tractable given the parameters. ABC resorts to an approximation of the likelihood function
using simulated data that are similar to the actual observations.

In the simplest form of ABC called rejection ABC [5], we proceed by sampling multiple
model parameters from a prior distribution π: θ1, θ2, . . . ∼ π. For each θt, a pseudo dataset
Yt is generated from a simulator (the forward sampler associated with the intractable
likelihood P(y|θ)). The parameter θt for which the generated Yt are similar to the observed
Y∗, as decided by ρ(Yt, Y∗) < εabc, is accepted. Here, ρ is a notion of distance, for instance,
L2 distance between Yt and Y∗ in terms of a pre-chosen summary statistic. Whether the
distance is small or large is determined by εabc, a similarity threshold. The result is samples
{θt}M

t=1 from a distribution, P̃ε(θ|Y∗) ∝ π(θ)P̃ε(Y∗|θ), where P̃ε(Y∗|θ) =
∫

Bε(Y∗) P(Y|θ)dY
and Bε(Y∗) = {Y : ρ(Y, Y∗) < εabc}. As the likelihood computation is approximate, so
is the posterior distribution. Hence, this framework is named by approximate Bayesian
computation, as we do not compute the likelihood of data explicitly.

Most ABC algorithms evaluate the data similarity in terms of summary statistics
computed by an aggregation of individual datapoints [6–11]. However, this seemingly

Entropy 2021, 23, 961. https://doi.org/10.3390/e23080961 https://www.mdpi.com/journal/entropy
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innocuous step of similarity check could impose a privacy threat, as aggregated statistics
could still reveal an individual’s participation to the dataset with the help of combining
other publicly available datasets (see [12,13]). In addition, in some studies, the actual
observations are privacy-sensitive in nature, e.g., Genotype data for estimating tuberculosis
transmission parameters [14]. Hence, it is necessary to privatize the step of similarity check
in ABC algorithms.

In this light, we introduce an ABC framework that obeys the notion of differential
privacy. The differential privacy definition provides a way to quantify the amount of
information that the distance computed on the privacy-sensitive data contains, whether or
not a single individual’s data are included (or modified) in the data [15]. Differential privacy
also provides rigorous privacy guarantees in the presence of arbitrary side information such
as similar public data.

A common form of applying DP to an algorithm is by adding noise to outputs of
the algorithm, called output perturbation [16]. In the case of ABC, we found that adding
noise to the distance computed on the real observations and pseudo-data suffices for the
privacy guarantee of the resulting posterior samples. However, if we choose to simply
add noise to the distance in every ABC inference step, this DP-ABC inference imposes
an additional challenge due to the repeated use of the real observations. The composition
property of differential privacy states that the privacy level degrades over the repeated
use of data. To overcome this challenge, we adopt the sparse vector technique (SVT) [17],
and apply it to the rejection ABC paradigm. The SVT outputs noisy answers of whether
or not a stream of queries is above a certain threshold, where privacy cost incurs only
when the SVT outputs at most c “above threshold” answers. This is a significant saving in
privacy cost, as arbitrarily many “below threshold” answers are privacy cost free.

We name our framework, which combines ABC with SVT, as ABCDP (approximate
Bayesian computation with differential privacy). Under ABCDP, we theoretically ana-
lyze the effect of noise added to the distance in the resulting posterior samples and the
subsequent posterior integrals. Putting together, we summarize our main contributions:

1. We provide a novel ABC framework, ABCDP, which combines the sparse vector technique
(SVT) [17] with the rejection ABC paradigm. The resulting ABCDP framework can
improve the trade-off between the privacy and accuracy of the posterior samples,
as the privacy cost under ABCDP is a function of the number of accepted posterior
samples only.

2. We theoretically analyze ABCDP by focusing on the effect of noisy posterior samples
in terms of two quantities. The first quantity provides the probability of an output
of ABCDP being different from that of ABC at any given time during inference.
The second quantity provides the convergence rate, i.e., how fast the posterior integral
using ABCDP’s noisy samples’ approaches that using non-private ABC’s samples.
We write both quantities as a function of added noise for privacy to better understand
the characteristics of ABCDP.

3. We validate our theory in the experiments using several simulators. The results of
these experiments are consistent with our theoretical findings on the flip probability
and the average error induced by the noise addition for privacy.

Unlike other existing ABC frameworks that typically rely on a pre-specified set of
summary statistics, we use a kernel-based distance metric called maximum mean discrepancy
following K2-ABC [18] to eliminate the necessity of pre-selecting a summary statistic. Using
a kernel for measuring similarity between two empirical distributions was also proposed in
K-ABC [19]. K-ABC formulates ABC as a problem of estimating a conditional mean embed-
ding operator mapping (induced by a kernel) from summary statistics to corresponding
parameters. However, unlike our algorithm, K-ABC still relies on a particular choice of
summary statistics. In addition, K-ABC is a soft-thresholding ABC algorithm, while ours is
a rejection-ABC algorithm.

To avoid the necessity of pre-selecting summary statistics, one could resort to methods
that automatically or semi-automatically learn the best summary statistics given in a
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dataset, and use the learned summary statistics in our ABCDP framework. An example is
semi-auto ABC [6], where the authors suggest using the posterior mean of the parameters
as a summary statistic. Another example is the indirect-score ABC [20], where the authors
suggest using an auxiliary model which determines a score vector as a summary statistic.
However, the posterior mean of the parameters in semi-auto ABC as well as the parameters
of the auxiliary model in indirect-score ABC need to be estimated. The estimation step
can incur a further privacy loss if the real data need to be used for estimating them. Our
ABCDP framework does not involve such an estimation step and is more economical in
terms of privacy budget to be spent than semi-auto ABC and indirect-score ABC.

2. Background

We start by describing relevant background information.

2.1. Approximate Bayesian Computation

Given a set Y∗ containing observations, rejection ABC [5] yields samples from an
approximate posterior distribution by repeating the following three steps:

θ ∼ π(θ), (1)

Y = {y1, y2, . . .} ∼ P(y|θ), (2)

Pεabc(θ|Y∗) ∼ Pεabc(Y
∗|θ)π(θ), (3)

where the pseudo dataset Y is compared with the observations Y∗ via:

Pεabc(Y
∗|θ) =

∫
Bεabc (Y

∗)
P(Y|θ)dY,

Bεabc(Y
∗) = {Y|ρ(Y, Y∗) ≤ εabc}, (4)

where ρ is a divergence measure between two datasets. Any distance metric can be used
for ρ. For instance, one can use the L2 distance under two datasets in terms of a pre-chosen
set of summary statistics, i.e., ρ(Y, Y∗) = D(S(Y), S(Y∗)), with an L2 distance measure D
on the statistics computed by S.

A more statistically sound choice for ρ would be maximum mean discrepancy (MMD, [21])
as used in [18]. Unlike a pre-chosen finite dimensional summary statistic typically used in
ABC, MMD compares two distributions in terms of all the possible moments of the random
variables described by the two distributions. Hence, ABC frameworks using the MMD
metric such as [18] can avoid the problem of non-sufficiency of a chosen summary statistic
that may occur in many ABC methods. For this reason, in this paper, we demonstrate our
algorithm using the MMD metric. However, other metrics can be used as we illustrated in
our experiments.

Maximum Mean Discrepancy

Assume that the data Y ⊂ X and let k : X × X be a positive definite kernel. MMD
between two distributions P, Q is defined as

MMD2(P, Q) = Ex,x′∼Pk(x, x′) +Ey,y′∼Qk(y, y′)− 2Ex∼PEy∼Qk(x, y). (5)

By following the convention in kernel literature, we call MMD2 simply MMD.
The Moore–Aronszajn theorem states that there is a unique Hilbert space H on which

k defines an inner product. As a result, there exists a feature map φ : X → H such that
k(x, y) = 〈φ(x), φ(y)〉H, where 〈·, ·〉H = 〈·, ·〉 denotes the inner product on H. The MMD
in (5) can be written as

MMD2(P, Q) =
∥∥Ex∼P[φ(x)]−Ey∼Q[φ(y)]

∥∥2
H,
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where Ex∼P[φ(x)] ∈ H is known as the (kernel) mean embedding of P, and exists if
Ex∼P

√
k(x, x) < ∞ [22]. The MMD can be interpreted as the distance between the

mean embeddings of the two distributions. If k is a characteristic kernel [23], then
P �→ Ex∼P[φ(x)] is injective, implying that MMD(P, Q) = 0, if and only if P = Q.
When P, Q are observed through samples Xm = {xi}m

i=1 ∼ P and Yn = {yi}n
i=1 ∼ Q,

MMD can be estimated by empirical averages [21] (Equation (3)): M̂MD
2
(Xm, Yn) =

1
m2 ∑m

i,j=1 k(xi, xj) +
1

n2 ∑n
i,j=1 k(yi, yj) − 2

mn ∑m
i=1 ∑n

j=1 k(xi, yj). When applied in the ABC

setting, one input to M̂MD is the observed dataset Y∗ and the other input is a pseudo
dataset Yt ∼ p(·|θt) generated by the simulator given θt ∼ π(θ).

2.2. Differential Privacy

An output from an algorithm that takes in sensitive data as input will naturally
contain some information of the sensitive data D. The goal of differential privacy is to
augment such an algorithm so that useful information about the population is retained,
while sensitive information such as an individual’s participation in the dataset cannot
be learned [17]. A common way to achieve these two seemingly paradoxical goals is by
deliberately injecting a controlled level of random noise to the to-be-released quantity.
The modified procedure, known as a DP mechanism, now gives a stochastic output due to
the injected noise. In the DP framework, a higher level of noise provides stronger privacy
guarantee at the expense of less accurate population-level information that can be derived
from the released quantity. Less noise added to the output thus reveals more about an
individual’s presence in the dataset.

More formally, given a mechanism M (a mechanism takes a dataset as input and
produces stochastic outputs) and neighboring datasets D, D′ differing by a single entry
(either by replacing one’s datapoint with another, or by adding/removing a datapoint
to/from D), the privacy loss of an outcome o is defined by

L(o) = log
P(M(D) = o)
P(M(D′) = o)

. (6)

The mechanism M is called ε-DP if and only if |L(o)| ≤ ε, for all possible outcomes o and
for all possible neighboring datasets D, D′. The definition states that a single individual’s
participation in the data does not change the output probabilities by much; this limits the
amount of information that the algorithm reveals about any one individual. A weaker
or an approximate version of the above notion is (ε, δ)-DP: M is (ε, δ)-DP if |L(o)| ≤ ε,
with probability 1 − δ, where δ is often called a failure probability which quantifies how
often the DP guarantee of the mechanism fails.

Output perturbation is a commonly used DP mechanism to ensure the outputs of
an algorithm to be differentially private. Suppose a deterministic function h : D �→ Rp

computed on sensitive data D outputs a p-dimensional vector quantity. In order to make
h private, we can add noise to the output of h, where the level of noise is calibrated to
the global sensitivity [24], Δh, defined by the maximum difference in terms of some norm
||h(D)− h(D′)|| for neighboring D and D′ (i.e., differ by one data sample).

There are two important properties of differential privacy. First, the post-processing
invariance property [24] tells us that the composition of any arbitrary data-independent
mapping with an (ε, δ)-DP algorithm is also (ε, δ)-DP. Second, the composability theo-
rem [24] states that the strength of privacy guarantee degrades with the repeated use of
DP-algorithms. Formally, given an ε1-DP mechanism M1 and an ε2-DP mechanism M2,
the mechanism M(D) := (M1(D), M2(D)) is (ε1 + ε2)-DP. This composition is often-
called linear composition, under which the total privacy loss linearly increases with the
number of repeated use of DP-algorithms. The strong composition [17] [Theorem 3.20]
improves the linear composition, while the resulting DP guarantee becomes weaker (i.e.,
approximate (ε, δ)-DP). Recently, more refined methods further improve the privacy loss
(e.g., [25]).
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2.3. AboveThreshold and Sparse Vector Technique

Among the DP mechanisms, we will utilize AboveThreshold and sparse vector technique
(SVT) [17] to make the rejection ABC algorithm differentially private. AboveThreshold
outputs 1 when a query value exceeds a pre-defined threshold, or 0 otherwise. This
resembles rejection ABC where the output is 1 when the distance is less than a chosen
threshold. To ensure the output is differentially private, AboveThreshold adds noise to
both the threshold and the query value. We take the same route as AboveThreshold to
make our ABCDP outputs differentially private. Sparse vector technique (SVT) consists of
c calls to AboveThreshold, where c in our case determines how many posterior samples
ABCDP releases.

Before presenting our ABCDP framework, we first describe the privacy setup we
consider in this paper.

3. Problem Formulation

We assume a data owner who owns sensitive data Y∗ and is willing to contribute to the
posterior inference.

We also assume a modeler who aims to learn the posterior distribution of the parameters
of a simulator. Our ABCDP algorithm proceeds with the two steps:

1. Non-private step: The modeler draws a parameter sample θt ∼ π(θ); then generates a
pseudo-dataset Yt, where Yt ∼ P(y|θt) for t = 1, · · · , T for a large T. We assume these
parameter-pseudo-data pairs {θt, Yt}T

t=1 are publicly available (even to an adversary).
2. Private step: the data owner takes the whole sequence of parameter-pseudo-data pairs

{(θt, Yt)}T
t=1 and runs our ABCDP algorithm in order to output a set of differentially

private binary indicators determining whether or not to accept each θt.

Note that T is the maximum number of parameter-pseudo-data pairs that are publicly
available. We will run our algorithm for T steps, while our algorithm can terminate as soon
as we output the c number of accepted posterior samples. So, generally, c � T. The details
are then introduced.

4. ABCDP

Recall that the only place where the real data Y∗ appear in the ABC algorithm is when
we judge whether the simulated data are similar to the real data, i.e., as in (4). Our method
hence adds noise to this step. In order to take advantage of the privacy analysis of SVT, we
also add noise to the ABC threshold and to the ABC distance. Consequently, we introduce
two perturbation steps.

Before we introduce them, we describe the global sensitivity of the distance, as this
quantity tunes the amount of noise we will add in the two perturbation steps. For
ρ(Y∗, Y) = M̂MD(Y∗, Y) with a bounded kernel, then the sensitivity of the distance is
Δρ = O(1/N) as shown in Lemma 1.

Lemma 1 (Δρ = O(1/N) for MMD). Assume that Y∗ and each pseudo dataset Yt are of
the same cardinality N. Set ρ(Y∗, Y) = M̂MD(Y∗, Y) with a kernel k bounded by Bk > 0,
i.e., supx,y∈X k(x, y) ≤ Bk < ∞. Then:

sup
(Y∗ ,Y∗′ ),Y

|ρ(Y∗, Y)− ρ(Y∗′
, Y)| ≤ Δρ :=

2
N

√
Bk

and supY∗ ,Y ρ(Y∗, Y) ≤ 2
√

Bk.

A proof is given in Appendix B. For ρ = M̂MD using a Gaussian kernel, k(x, y) =

exp
(
−‖x−y‖2

2l2

)
where l > 0 is the bandwidth of the kernel, Bk = 1 for any l > 0.

Now, we introduce the two perturbation steps used in our algorithm summarized in
Algorithm 1.
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Algorithm 1 Proposed c-sample ABCDP

Require: Observations Y∗, Number of accepted posterior sample size c, privacy tolerance
εtotal , ABC threshold εabc, distance ρ, and parameter-pseudo-data pairs {(θt, Yt)}T

t=1,
and option RESAMPLE.

Ensure: εtotal-DP indicators {τ̃t}T
t=1 for corresponding samples {θt}T

t=1

1: Calculate the noise scale b by Theorem 1.
2: Privatize ABC threshold: ε̂abc = εabc + mt via (7)
3: Set count=0
4: for t = 1, . . . , T do
5: Privatize distance: ρ̂t = ρ(Y∗, Yt) + νt via (8)
6: if ρ̂t ≤ ε̂abc then
7: Output τ̃t = 1
8: count = count+1
9: if RESAMPLE then

10: ε̂abc = εabc + mt via (7)
11: end if
12: else
13: Output τ̃t = 0
14: end if
15: if count ≥ c then
16: Break the loop
17: end if
18: end for

Step 1: Noise for privatizing the ABC threshold.

ε̂abc = εabc + mt (7)

where mt ∼ Lap(b), i.e., drawn from the zero-mean Laplace distribution with a scale
parameter b.

Step 2: Noise for privatizing the distance.

ρ̂t = ρ(Y∗, Yt) + νt (8)

where νt ∼ Lap(2b).
Due to these perturbations, Algorithm 1 runs with the privatized threshold and

distance. We can choose to perturb the threshold only once, or every time we output 1
by setting RESAMPLE to false or true. After outputting c number of 1’s, the algorithm is
terminated. How do we calculate the resulting privacy loss under the different options
we choose?

We formally state the relationship between the noise scale and the final privacy loss
εtot for the Laplace noise in Theorem 1.

Theorem 1 (Algorithm 1 is εtotal-DP). For any neighboring datasets Y∗, Y∗′
of size N and

any dataset Y, assume that ρ is such that 0 < sup
(Y∗ ,Y∗′ ),Y |ρ(Y∗, Y)− ρ(Y∗′

, Y)| ≤ Δρ < ∞.
Algorithm 1 is εtotal-DP, where:

εtotal =

{
(c+1)Δρ

b if RESAMPLE is False,
2cΔρ

b if RESAMPLE is True.
(9)

A proof is given in Appendix A. The proof uses linear composition, i.e., the privacy
level linearly degrading with c. However, using the strong composition or more advanced
compositions can reduce the resulting privacy loss, while these compositions turn pure-DP
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into a weaker, approximate-DP. In this paper, we focus on the pure-DP. For the case of
RESAMPLE = True, the proof directly follows the proof of the standard SVT algorithm
using the linear composition method [17], with an exception that we utilize the quantity
representing the minimum noisy value of any query evaluated on Y∗, as opposed to the
maximum utilized in SVT. For the case of RESAMPLE= False, the proof follows the proof
of Algorithm 1 in [26].

Note that the DP analysis in Theorem 1 holds for other types of distance metrics
and not limited to only MMD, as long as there is a bounded sensitivity Δρ under the
chosen metric. When there is no bounded sensitivity, one could impose a clipping bound
C to the distance by taking the distance from min[ρ(Yt, Y∗), C], such that the resulting
distance between any pseudo data Yt and Y∗′

with modifying one datapoint in Y∗ cannot
exceed that clipping bound. In fact, we use this trick in our experiments when there is no
bounded sensitivity.

4.1. Effect of Noise Added to ABC

Here, we would like to analyze the effect of noise added to ABC. In particular, we
are interested in analyzing the probability that the output of ABCDP differs from that of
ABC: P[τ̃t �= τt|τt] at any given time t. To compute this probability, we first compute the
probability density function (PDF) of the random variables mt − νt in the following Lemma.

Lemma 2. Recall mt ∼ Lap(b), νt ∼ Lap(2b). The subtraction of these yields another random
variable Z = mt − νt, where the PDF of Z is given by

fZ(z) =
1
6b

[
2 exp

(
−|z|

2b

)
− exp

(
−|z|

b

)]
. (10)

Furthermore, for a ≥ 0, Gb(a) :=
∫ ∞

a fZ(z)dz = 1
6
[
4 exp

(
− a

2b
)
− exp

(
− a

b
)]

, and the CDF of
Z is given by FZ(a) = H[a] + (1 − 2H[a])Gb(|a|) where H[a] is the Heaviside step function.

See Appendix C for the proof. Using this PDF, we now provide the following proposition:

Proposition 1. Denote the output of Algorithm 1 at time t by τ̃t ∈ {0, 1} and the output of ABC
by τt ∈ {0, 1}. The flip probability, the probability that the outputs of ABCDP and ABC differ
given the output of ABC, is given by P[τ̃t �= τt|τt] = Gb(|ρt − εabc|), where Gb(a) is defined in
Lemma 2, and ρt := ρ(Y∗, Yt).

See Appendix D for proof.
To provide an intuition of Proposition 1, we visualize the flip probability in Figure 1.

This flip probability provides a guideline for choosing the accepted sample size c given the
datasize N and the desired privacy level εtotal . For instance, if a given dataset is extremely
small, e.g., containing datapoints on the order of 10, c has to be chosen such that the flip
probability of each posterior sample remains low for a given privacy guarantee (εtotal). If a
higher number of posterior samples are needed, then one has to reduce the desired privacy
level for the posterior sample of ABCDP to be similar to that of ABC. Otherwise, with a
small εtotal with a large c, the accepted posterior samples will be poor. On the other hand,
if the dataset is bigger, then a larger c can be taken for a reasonable level of privacy.
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Figure 1. Visualization of flip probability derived in Proposition 1, the probability that the outputs of ABCDP and
ABC differ given an output of ABC, with different dataset size N and accepted posterior sample size c. We simulated
ρ ∼ Uniform[0, 1] (drew 100 values for ρ) and used εabc = 0.2: (A) This column shows the flip probability at a regime
of extremely small datasets, N = 10. Top plot shows the probability at c = 10, middle plot at c = 100, and bottom plot
at c = 1000. In this regime, even εtotal = 100 cannot reduce the flip probability to perfectly zero when c = 10. The flip
probability remains high when we accept more samples, i.e., c = 1000; (B) the flip probability at N = 100; (C) the flip
probability at N = 1000. As we increase the dataset size N (moving from the left to right columns), the flip probability
approaches zero at a smaller privacy loss εtotal .

4.2. Convergence of Posterior Expectation of Rejection-ABCDP to Rejection-ABC.

The flip probability studied in Section 4.1 only accounts for the effect of noise added
to a single output of ABCDP. Building further on this result, we analyzed the discrepancy
between the posterior expectations derived from ABCDP and from the rejection ABC. This
analysis requires quantifying the effect of noise added to the whole sequence of outputs of
ABCDP. The result is presented in Theorem 2.

Theorem 2. Given Y∗ of size N, and {(θt, Yt)}T
t=1 as input, let τ̃t ∈ {0, 1} be the output from

Algorithm 1 where τ̃t = 1 indicates that (θt, Yt) is accepted, for t = 1, . . . , T. Similarly, let τt denote
the output from the traditional rejection ABC algorithm, for t = 1, . . . , T. Let f be an arbitrary
vector-valued function of θ. Assume that the numbers of accepted samples from Algorithm 1, and the
traditional rejection ABC algorithm are c := ∑T

t=1 τ̃t ≥ 1 and c′ := ∑T
t=1 τt ≥ 1, respectively. Let

b = 4c
√

Bk
εtotal N if RESAMPLE=True, and b = 2(c+1)

√
Bk

εtotal N if RESAMPLE=False (see Theorem 1). Define
KT := maxt=1,...,T ‖ f (θt)‖2. Then, the following statements hold for both RESAMPLE options:

1. Eτ̃1,...,τ̃T

∥∥∥∥ 1
c ∑T

t=1 f (θt)τ̃t − 1
c′ ∑T

t=1 f (θt)τt

∥∥∥∥
2

≤ 2KT
c′ ∑T

t=1 Gb(|ρt − εabc|), where the

decreasing function Gb(x) ∈ (0, 1
2 ] for any x ≥ 0 is defined in Lemma 2;

2. Eτ̃1,...,τ̃T

∥∥∥∥ 1
c ∑T

t=1 f (θt)τ̃t − 1
c′ ∑T

t=1 f (θt)τt

∥∥∥∥
2
→ 0 as N → ∞;
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3. For any a > 0:

P
(∥∥∥∥1

c

T

∑
t=1

f (θt)τ̃t −
1
c′

T

∑
t=1

f (θt)τt

∥∥∥∥
2
≤ a
)

≥ 1 − 4KT
3ac′

T

∑
t=1

exp
(
−|ρt − εabc|

2b

)
where the probability is taken with respect to τ̃1, . . . , τ̃T.

Theorem 2 contains three statements. The first states that the expected error between
the two posterior expectations of an arbitrary function f is bounded by a constant factor
of the sum of the flip probability in each rejection/acceptance step. As we have seen
in Section 4.1, the flip probability is determined by the scale parameter b of the Laplace
distribution. Since b = O(1/N) (see Theorem 1 and Lemma 1), it follows that the expected
error decays as N increases, giving the second statement.

The third statement gives a probabilistic bound on the error. The bound guarantees
that the error decays exponentially in N. Our proof relies on establishing an upper bound
on the error as a function of the total number of flips ∑T

t=1 |τ̃t − τt| which is a random
variable. Bounding the error of interest then amounts to characterizing the tail behavior
of this quantity. Observe that in Theorem 2, we consider ABCDP and rejection ABC with
the same computational budget, i.e., the same total number of iterations T performed.
However, the number of accepted samples may be different in each case (c for ABCDP and
c′ for reject ABC). The fact that c itself is a random quantity due to injected noise presents
its own technical challenge in the proof. Our proof can be found in Appendix E.

5. Related Work

Combining DP with ABC is relatively novel. The only related work is [27], which
states that a rejection ABC algorithm produces posterior samples from the exact posterior
distribution given perturbed data, when the kernel and bandwidth of rejection ABC are
chosen in line with the data perturbation mechanism. The focus of [27] is to identify the
condition when the posterior becomes exact in terms of the kernel and bandwidth of the
kernel through the lens of data perturbation. On the other hand, we use the sparse vector
technique to reduce the total privacy loss. The resulting theoretical studies including the
flip probability and the error bound on the posterior expectation are new.

6. Experiments

6.1. Toy Examples

We start by investigating the interplay between εabc and εtotal , in a synthetic dataset
where the ground truth parameters are known. Following [18], we also consider a symmet-
ric Dirichlet prior π and a likelihood p(y|θ) given by a mixture of uniform distributions as

π(θ) = Dirichlet(θ; 1),

P(y|θ) =
5

∑
i=1

θiUniform(y; [i − 1, i]). (11)

A vector of mixing proportions is our model parameters θ, where the ground truth is
θ∗ = [0.25, 0.04, 0.33, 0.04, 0.34]� (see Figure 2). The goal is to estimate E[θ|Y∗] where Y∗ is
generated with θ∗.

We first generated 5000 samples for Y∗ drawn from (11) with true parameters θ∗. Then,
we tested our two ABCDP frameworks with varying εabc and εtotal . In these experiments,
we set ρ = M̂MD with a Gaussian kernel. We set the bandwidth of the Gaussian kernel
using the median heuristic computed on the simulated data (i.e., we did not use the real
data for this, hence there is no privacy violation in this regard).

We drew 5000 pseudo-samples for Yt at each time. We tested various settings,
as shown in Figure 3, where we vary the number of posterior samples, c = {10, 100, 1000},
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εabc = {0.05, 0.1, 0.2, 0.5} and εtotal = {0.5, 1.0, 10, ∞}. We showed the result of ABCDP for
both RESAMPLE options in Figure 3.

1

0

0.2

0.4

2 3 4 5

(a) True parameters.

00

100

1 2 3 4 5

(b) Observations, where the x axis
indicates the range of the values of

observations.

Figure 2. Synthetic data. (a): 5-dimensional true parameters; (b): observations sampled from the
mixture of uniform distributions in (11) with the true parameters.
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Figure 3. ABCDP on synthetic data. Mean-squared error (between true parameters and posterior
mean) as a function of similarity threshold εabc given each privacy level. We ran ABCDP with
the following options: RESAMPLE = True (denoted by R and solid line); or RESAMPLE = False
(without R and dotted line) for 60 independent runs. (Top Left) When cstop = 10 at different values
of εabc, ABCDP and non-private ABC (black trace) achieved the highest accuracy (lowest MSE) at the
smallest εabc (εabc = 0.01). Notice that ABCDP RESAMPLE = False (dotted) outperformed ABCDP
RESAMPLE=True (solid) for the same privacy tolerance (εtotal) at small values of εabc. (Top Right)
MSE for cstop = 100 at different values of εabc; (Bottom Left) MSE for cstop = 1000 at different values
of εabc. We can observe when εabc is large, ABCDP (gray) marginally outperforms non-private ABC
(black) due to the excessive noise added in ABCDP.
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6.2. Coronavirus Outbreak Data

In this experiment, we modelled coronavirus outbreak in the Netherlands using a poly-
nomial model consisting of four parameters a0, a1, a2, a3, which we aimed to infer, where:

y(t) = a3 + a2t + a1t2 + a0t3. (12)

The observed (https://www.ecdc.europa.eu/en/publications-data/download-todays-
data-geographic-distribution-COVID-19-cases-worldwide, accessed on 10 October 2020)
data are the number of cases of the coronavirus outbreak from 27 February to 17 March
2020, which amounts to 18 datapoints (N = 18). The presented experiment imposes privacy
concern as each datapoint is a count of the individuals who are COVID positive at each
time. The goal is to identify the approximate posterior distribution P̃(a0, a1, a2, a3|y∗) over
these parameters, given a set of observations.

Recalling from Figure 1 that the small size of data worsens the privacy and accuracy
trade-off, the inference is restricted to a small number of posterior samples (we chose
c = 5) since the number of datapoints is extremely limited in this dataset. We used the
same prior distributions for the four parameters as ai ∼ N (0, 1) for all i = 0, 1, 2, 3. We
drew 50, 000 samples from the Gaussian prior, and performed our ABCDP algorithm with
εtotal = {13, 22, 44} and εabc = 0.1, as shown in Figure 4.

time time

esp_tot = 44

esp_tot = 13esp_tot = 22

Figure 4. COVID-19 outbreak data (N = 18) and simulated data under different privacy guarantees.
Red dots show observed data, and gray dots show simulated data drawn from 5 posterior samples
accepted in each case. The blue crosses are simulated data given the posterior mean in each case:
(Top left) simulated data by non-private ABC; (Top right) simulated data by ABCDP with εtotal = 44
are relatively well aligned with regard to the extremely small size of the data. Note that we use a
different scale for left and right plots for better visibility. If we use the same y scale in both plots,
the simulated and observed points are not distinguishable on the left plot: (Bottom left) the simulated
data given 5 posterior samples exhibit a large variance when εtotal = 22; and (Bottom right) when
εtotal = 13, the simulated data exhibit an excessively large variance.

6.3. Modeling Tuberculosis (TB) Outbreak Using Stochastic Birth–Death Models

In this experiment, we used the stochastic birth–death models to model Tubercu-
losis (TB) outbreak. There are four parameters that we aim to infer, which go into the
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communicable disease outbreak simulator as inputs: burden rate β, transmission rate
t1, reproductive numbers R1 and R2. The goal is to identify the approximate posterior
distribution p̃(R1, t1, R2, β|y∗) over these parameters given a set of observations. Please
refer to Section 3 in [28] for the description of the birth–death process of the model. We
used the same prior distributions for the four parameters as in [28]: β ∼ N (200, 30),
R1 ∼ Unif(1.01, 20), R2 ∼ Unif(0.01, (1 − 0.05R1)/0.95), t1 ∼ Unif(0.01, 30).

To illustrate the privacy and accuracy trade-off, we first generated two sets of obser-
vations y∗ (n = 100 and n = 1000) by some true model parameters (shown as black bars
in Figure 5). We then tested our ABCDP algorithm with a privacy level ε = 1. We used
the summary statistic described in Table 1 in [28] and used a weighted L2 distance as ρ as
done in [28], together with εabc = 150. Since there is no bounded sensitivity in this case, we
impose an artificial boundedness by clipping the distance by C (we set C = 200) when the
distance goes beyond C.

As an error metric, we computed the mean absolute distance between each posterior
mean and the true parameter values. The top row in Figure 5 shows that the mean of the
prior (red) is far from the true value (black) that we chose. As we increase the data size from
n = 100 (middle) to n = 1000 (bottom), the distance between true values and estimates
reduces, as reflected in the error from 4.71 to 2.20 for RESAMPLE = True; and from 4.51 to
2.10 for RESAMPLE=False.

Figure 5. Posterior samples for modeling tuberculosis (TB) outbreak. In all ABCDP methods, we set
εtotal = 1. True values in black. Mean of samples in red: (R) indicates ABCDP with Resampling = True.
(1st row): Histogram of 50 samples drawn from the prior (we used the same prior as [28]); (2nd row):
10 posterior samples from ABCDP with (R) given n = 100 observations; (3rd row): 10 posterior
samples from ABCDP without (R) given n = 100 observations; (4th row): 10 posterior samples from
ABCDP with (R) given n = 1000 observations; and (5th row): 10 posterior samples from ABCDP
without (R) given n = 1000 observations. The distance between the black bar (true) and red bar
(estimate) reduces as the size of data increases from 100 to 1000. ABCDP with Resampling=False
performs better regardless of the data size.

7. Summary and Discussion

We presented the ABCDP algorithm by combining DP with ABC. Our method outputs
differentially private binary indicators, yielding differentially private posterior samples.
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To analyze the proposed algorithm, we derived the probability of flip from the rejection
ABC’s indicator to the ABCDP’s indicator, as well as the average error bound of the
posterior expectation.

We showed experimental results that output a relatively small number of posterior
samples. This is due to the fact that the cumulative privacy loss increases linearly with the
number of posterior samples (i.e., c) that our algorithm outputs. For a large-sized dataset
(i.e., N is large), one can still increase the number of posterior samples while providing a
reasonable level of privacy guarantee. However, for a small-sized dataset (i.e., N is small),
a more refined privacy composition (e.g., [29]) would be necessary to keep the cumulative
privacy loss relatively small, at the expense of providing an approximate DP guarantee
rather than the pure DP guarantee that ABCDP provides.

When we presented our work to the ABC community, we often received the question
of whether we could apply ABCDP to other types of ABC algorithms such as the sequential
Monte Carlo algorithm which outputs the significance of each proposal sample, as opposed
to its acceptance or rejection as in the rejection ABC algorithm. Directly applying the
current form of ABCDP to these algorithms is not possible, while applying the Gaussian
mechanism to the significance of each proposal sample can guarantee differential privacy
for the output of the sequential Monte Carlo algorithm. However, the cumulative privacy
loss will be relatively large, as now it is a function of the number of proposal samples,
whether they are taken as good posterior samples or not.

A natural by-product of ABCDP is differentially private synthetic data, as the simulator
is a public tool that anybody can run and hence differentially private posterior samples
suffice for differentially private synthetic data without any further privacy cost. Applying
ABCDP to generate complex datasets is an intriguing future direction.
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Appendix A. Proof of Theorem 1

Proof of Theorem 1. Case I: RESAMPLE = True. We prove the case of c = 1 first. The case
of c > 1 is a c-composition of the case of c = 1, where the privacy loss linearly increases
with c.

Given any neighboring datasets Y∗ and Y∗′
of size N and any dataset Y, assume that

ρ is such that 0 < sup(Y∗ ,Y∗′ ),Y | ρ(Y∗, Y)− ρ(Y∗′
, Y) |< Δρ < ∞ and ρ is bounded by Bρ.

Let A denote the random variable that represents the outputs Algorithm 1 given
({(θt, Yt)}T

t=1, Y∗, ρ, εabc, ε) and A′ the random variable that represents the outputs given
({(θt, Yt)}T

t=1, Y∗′
, ρ, εabc, ε). The output of the algorithm is some realization of these

variables, τ ∈ {1, 0}k where 0 < k ≤ T and for all t < k, τt = 0 and τk = 1. For the rest
of the proof, we will fix the arbitrary values of ν1, ..., νk−1 and take probabilities over the
randomness of νk and εabc. We define the deterministic quantity (ν1, ..., νk−1 are fixed):

g(Y∗) = min
t<k

(ρ(Yt, Y∗) + νt) (A1)

that represents the minimum noised value of the distance evaluated on any dataset Y∗.

261



Entropy 2021, 23, 961

Let P[ε̂abc = a] be the pdf of ε̂abc evaluated on a and P[νk = v] the pdf of νk evaluated
on v, and 1[x] the indicator function of event x. We have:

Pêabc ,νk [A = τk] = P[ε̂abc < g(Y∗)

and:
ρ(Yk, Y∗) + νk ≤ ε̂abc] = P[ε̂abc ∈ [ρ(Yk, Y∗) + νk, g(Y∗))]

=
∫ ∞

−∞

∫ ∞

−∞
P[νk = v]P[ε̂abc = a]1[a ∈ [ρ(Yk, Y∗) + νk, g(Y∗))]dvda

Now, we define the following variables:

â = a + g(Y∗)− g(Y∗′
)

v̂ = vs. + g(Y∗)− g(Y∗′
) + ρ(Yk, Y∗′

)− ρ(Yk, Y∗)

We know that for each Y∗, Y∗′
, ρ is Δρ-sensitive and hence, the quantity g(Y∗) is Δρ-

sensitive as well. In this way, we obtain that | â − a |≤ Δρ and | v̂ − vs. |≤ 2Δρ. Applying
these changes of variables, we have:

=
∫ ∞

−∞

∫ ∞

−∞
P[νk = v̂]P[ε̂abc = â]1[a + g(Y∗)− g(Y∗′

) ∈ [v + g(Y∗)− g(Y∗′
)+

ρ(Yk, Y∗′
), g(Y∗))]dvda

=
∫ ∞

−∞

∫ ∞

−∞
P[νk = v̂]P[ε̂abc = â]1[a ∈ [v + ρ(Yk, Y∗′

), g(Y∗′
))]dvda

≤
∫ ∞

−∞

∫ ∞

−∞
exp
( ε

2

)
P[νk = v] exp

( ε

2

)
P[ε̂abc = a]1[a ∈ [v + ρ(Yk, Y∗′

), g(Y∗′
))]dvda

≤ exp (ε)
∫ ∞

−∞

∫ ∞

−∞
P[νk = v]P[ε̂abc = a]1[a ∈ [v + ρ(Yk, Y∗′

)), g(Y∗′
))]dvda

= exp (ε)P[ε̂abc < g(Y∗′
) and ρ(Yk, Y∗′

) + νk ≤ ε̂abc] = exp (ε)Pêabc ,νk [A
′
= τk]

where the inequality comes from the bounds considered throughout the proof (i.e.,
| â − a |≤ Δρ and | v̂ − vs. |≤ 2Δρ) and the form of the cdf for the Laplace distribution.

Case II: RESAMPLE = False. In this case, the proof follows the proof of Algorithm 1
in [26], with an exception that positive events for [26] become negative events for us and
vice versa as we find the value below a threshold, where [26] finds the value above a
threshold.

Appendix B. Proof of Lemma 1

Proof of Lemma 1. We will establish Δρ when ρ is MMD. Recall that (Y∗, Y∗′
) is a pair of

neighboring datasets, and Y is an arbitrary dataset. Without loss of generality, assume
that Y∗ = {x1, . . . , xN}, Y∗′

= {x′
1, . . . , x′

N} such that xi = x′
i for all i = 1, . . . , N − 1, and

Y = {y1, . . . , ym}. We start with:
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sup
(Y∗ ,Y∗′ ),Y

|ρ(Y∗, Y)− ρ(Y∗′
, Y)|

= sup
(Y∗ ,Y∗′ ),Y

|M̂MD(Y∗, Y)− M̂MD(Y∗′
, Y)|

= sup
(Y∗ ,Y∗′ ),Y

∣∣∣∣ ∥∥∥∥ 1
N

N

∑
i=1

φ(xi)−
1
m

m

∑
j=1

φ(yj)

∥∥∥∥
H

−
∥∥∥∥ 1

N

N

∑
i=1

φ(x′
i)−

1
m

m

∑
j=1

φ(yj)

∥∥∥∥
H

∣∣∣∣
(a)
≤ sup

(X,X′)

∥∥∥∥ 1
N

N

∑
i=1

φ(xi)−
1
N

N

∑
i=1

φ(x′
i)

∥∥∥∥
H

= sup
(xN ,x′

N)

∥∥∥∥ 1
N

φ(xN)−
1
N

φ(x′
N)

∥∥∥∥
H

= sup
(xN ,x′

N)

1
N

√
k(xN , xN) + k(x′

N , x′
N)− 2k(xN , x′

N)

≤ 2
N

√
Bk,

where at (a), we use the reverse triangle inequality. Furthermore:

sup
Y∗ ,Y

ρ(Y∗, Y)

≤ sup
Y∗ ,Y

√√√√∥∥∥∥ 1
N

N

∑
i=1

φ(xi)−
1
m

m

∑
i=1

φ(yi)

∥∥∥∥2

H

= sup
Y∗ ,Y

√√√√ 1
N2

N

∑
i,j=1

k(xi, xj) +
1

m2

m

∑
i,j=1

k(yi, yj)−
2

mn

N

∑
i=1

m

∑
j=1

k(xi, yj)

=
√

Bk + Bk + 2Bk = 2
√

Bk.

Appendix C. Proof of Lemma 2

Proof of Lemma 2. The PDF is computed from the convolution of two PDFs:

fmt−νt(z) =
∫ ∞

−∞
fmt(x) fνt(x − z)dx, (A2)

where fmt(x) = 1
2b exp(−|x|

b ) and fνt(y) =
1
4b exp(−|y|

2b ):

fmt−νt(z) =
1

8b2

∫ ∞

−∞
exp
(
−|x|

b
− |x − z|

2b

)
dx (A3)

For case z ≥ 0:
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fmt−νt (z) =
1

8b2

∫ 0

−∞
exp
(

x
b
+

x − z
2b

)
dx +

1
8b2

∫ z

0
exp
(
− x

b
+

x − z
2b

)
dx

+
1

8b2

∫ ∞

z
exp
(
− x

b
− x − z

2b

)
dx, (A4)

=
1

8b2

∫ 0

−∞
exp
(

3x − z
2b

)
dx +

1
8b2

∫ z

0
exp
(−x − z

2b

)
dx

+
1

8b2

∫ ∞

z
exp
(−3x + z

2b

)
dx (A5)

=
exp
(−z

2b
)

8b2

∫ 0

−∞
exp
(

3x
2b

)
dx +

exp
(−z

2b
)

8b2

∫ z

0
exp
(−x

2b

)
dx

+
exp
( z

2b
)

8b2

∫ ∞

z
exp
(−3x

2b

)
dx (A6)

=
exp
(−z

2b
)

8b2
2b
3

− exp
(−z

2b
)

8b2 2b
(

exp
(−z

2b

)
− 1
)
+

exp
( z

2b
)

8b2
2b
3

exp
(−3z

2b

)
, (A7)

=
1

12b

[
exp
(−z

2b

)
+ 3 exp

(−z
2b

)(
1 − exp

(−z
2b

))
+ exp

(−z
b

)]
, (A8)

=
1

12b

[
4 exp

(−z
2b

)
− 2 exp

(−z
b

)]
, (A9)

=
1
6b

[
2 exp

(−z
2b

)
− exp

(−z
b

)]
(A10)

For case z < 0:

fmt−νt(z) =
1

8b2

∫ z

−∞
exp
(

x
b
+

x − z
2b

)
dx +

1
8b2

∫ 0

z
exp
(

x
b

− x − z
2b

)
dx

+
1

8b2

∫ ∞

0
exp
(
− x

b
− x − z

2b

)
dx, (A11)

=
1

8b2

∫ z

−∞
exp
(

3x − z
2b

)
dx +

1
8b2

∫ 0

z
exp
(

x + z
2b

)
dx

+
1

8b2

∫ ∞

0
exp
(−3x + z

2b

)
dx (A12)

=
exp
(−z

2b
)

8b2

∫ z

−∞
exp
(

3x
2b

)
dx +

exp
( z

2b
)

8b2

∫ 0

z
exp
( x

2b

)
dx

+
exp
( z

2b
)

8b2

∫ ∞

0
exp
(−3x

2b

)
dx (A13)

=
exp
(−z

2b
)

8b2
2b
3

exp
(

3z
2b

)
+

exp
( z

2b
)

8b2 2b
(

1 − exp
( z

2b

))
+

exp
( z

2b
)

8b2
2b
3

, (A14)

=
1

12b

[
exp
( z

b

)
− 3 exp

( z
2b

)(
exp
( z

2b

)
− 1
)
+ exp

( z
2b

)]
, (A15)

=
1

12b

[
−2 exp

( z
b

)
+ 4 exp

( z
2b

)]
, (A16)

=
1
6b

[
2 exp

( z
2b

)
− exp

( z
b

)]
. (A17)

With the obtained PDF fZ(z) = 1
6b

[
2 exp

(
−|z|

2b

)
− exp

(
−|z|

b

)]
. for Z := mt − νt, it is

straightforward to compute Gb(a) :=
∫ ∞

a fZ(z)dz = 1
6
[
4 exp

(
− a

2b
)
− exp

(
− a

b
)]

for a ≥ 0.
In other words, Gb(a) = 1 − FZ(a) for a ≥ 0 where FZ denotes the CDF of Z.

To show that the CDF of Z is FZ(a) = H[a] + (1 − 2H[a])Gb(|a|) where H[a] is the
Heaviside step function, we note that the density fZ(z) is an even function, i.e., fZ(z) =
fZ(−z) for any z. It follows that if a < 0, 1 − Fz(a) = 1 − Gb(−a). This means that:

1 − FZ(a) =

{
Gb(a) if a ≥ 0,
1 − Gb(−a) if a < 0,
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or equivalently:

FZ(a) =

{
1 − Gb(a) if a ≥ 0,
Gb(−a) if a < 0.

More concisely:

FZ(a) = (1 − Gb(|a|))I[a ≥ 0] + Gb(|a|)I[a < 0]

= I[a ≥ 0] + (I[a < 0]− I[a ≥ 0])Gb(|a|)
(a)
= H[a] + (1 − 2H[a])Gb(|a|),

where at (a), we use (I[a < 0]− I[a ≥ 0]) = (1 − 2H[a]).

Appendix D. Proof of Proposition 1

Proof of Proposition 1. Using this pdf above, we can compute the following probabilities:

P[τ̃t = 1|τt = 0] (A18)

= P[0 ≤ ρt − εabc ≤ Z], (A19)

=
∫ ∞

ρt−εabc

f (z)dz, where ρt − εabc ≥ 0 (A20)

=
∫ ∞

ρt−εabc

1
6b

[
2 exp

(
−|z|

2b

)
− exp

(
−|z|

b

)]
dz, by definition of f (z) (A21)

=
∫ ∞

ρt−εabc

1
6b

[
2 exp

(
− z

2b

)
− exp

(
− z

b

)]
dz, because ρt − εabc ≥ 0 (A22)

=
1
6b

[
4b exp

(
−ρt − εabc

2b

)
− b exp

(
−ρt − εabc

b

)]
, (A23)

=
1
6

[
4 exp

(
−ρt − εabc

2b

)
− exp

(
−ρt − εabc

b

)]
, where ρt − εabc ≥ 0, (A24)

and:

P[τ̃t = 0|τt = 1]

= P[Z ≤ ρt − εabc ≤ 0], (A25)

=
∫ ρt−εabc

−∞
f (z)dz, where ρt − εabc ≤ 0, (A26)

=
∫ ρt−εabc

−∞

1
6b

[
2 exp

( z
2b

)
− exp

( z
b

)]
dz, (A27)

=
1
6b

[
4b exp

(
ρt − εabc

2b

)
− b exp

(
ρt − εabc

b

)]
, (A28)

=
1
6

[
4 exp

(
ρt − εabc

2b

)
− exp

(
ρt − εabc

b

)]
, where ρt − εabc ≤ 0. (A29)

So:

P[τ̃t �= τt|τt] =

{
P[τ̃t = 1|τt = 0], if ρt ≥ εabc

P[τ̃t = 0|τt = 1], otherwise
(A30)

=

⎧⎨⎩
1
6

[
4 exp

(
− ρt−εabc

2b

)
− exp

(
− ρt−εabc

b

)]
, if ρt ≥ εabc

1
6

[
4 exp

(
ρt−εabc

2b

)
− exp

(
ρt−εabc

b

)]
, otherwise.

The two cases can be combined with the use of an absolute value to give the result.
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Appendix E. Proof of Theorem 2

Proof of Theorem 2. Let H(x) be the Heaviside step function. Recall from our algorithm
that each accepted sample (θ, Y) is associated with two independent noise realizations:
mt ∼ Lap(b) (i.e., ε̂abc = εabc + mt) and νt ∼ Lap(2b) (added to ρ(Y∗, Yt)). With this
notation, we have τ̃t = H[εabc − ρ(Yt, Y∗) + mt − νt] for t = 1, . . . , T. Similarly, τt :=
H[εabc − ρ(Yt, Y∗)]. For brevity, we define ρt := ρ(Yt, Y∗). It follows that τ̃t ∼ Bernoulli(pt)
where pt := P(mt − νt > ρt − εabc) = P(τ̃ = 1).

Proof of the first claim: we start by establishing an upper bound for:∥∥∥∥1
c

T

∑
t=1

f (θt)τ̃t −
1
c′

T

∑
t=1

f (θt)τt

∥∥∥∥
2

=

∥∥∥∥1
c

T

∑
t=1

f (θt)τ̃t−
1
c′

T

∑
t=1

f (θt)τ̃t +
1
c′

T

∑
t=1

f (θt)τ̃t −
1
c′

T

∑
t=1

f (θt)τt

∥∥∥∥
2

≤
∣∣∣∣1c − 1

c′

∣∣∣∣∥∥∥∥ T

∑
t=1

f (θt)τ̃t

∥∥∥∥+ 1
c′

∥∥∥∥ T

∑
t=1

f (θt)τ̃t −
T

∑
t=1

f (θt)τt

∥∥∥∥
=

1
c′
∣∣c′ − c

∣∣1
c

∥∥∥∥ T

∑
t=1

f (θt)τ̃t

∥∥∥∥+ 1
c′

∥∥∥∥ T

∑
t=1

f (θt)(τ̃t − τt)

∥∥∥∥
≤ 1

c′

∣∣∣∣∣ T

∑
t=1

τt −
T

∑
t=1

τ̃t

∣∣∣∣∣1c
∥∥∥∥ T

∑
t=1

f (θt)τ̃t

∥∥∥∥+ 1
c′

T

∑
t=1

‖ f (θt)‖2|τ̃t − τt|

≤ 1
c′

T

∑
t=1

|τ̃t − τt|
1
c

∥∥∥∥ T

∑
t=1

f (θt)τ̃t

∥∥∥∥+ KT
c′

T

∑
t=1

|τ̃t − τt|, (A31)

where KT := maxt=1,...,T ‖ f (θt)‖2. Consider 1
c

∥∥∥∥∑T
t=1 f (θt)τ̃t

∥∥∥∥. We can show that it is

bounded by KT by

1
c

∥∥∥∥ T

∑
t=1

f (θt)τ̃t

∥∥∥∥ ≤ 1
c

T

∑
t=1

‖ f (θt)‖2τ̃t ≤ KT
c

T

∑
t=1

τ̃t = KT .

Combining this bound with (A31), we have:∥∥∥∥1
c

T

∑
t=1

f (θt)τ̃t −
1
c′

T

∑
t=1

f (θt)τt

∥∥∥∥
2
≤ 2KT

c′
T

∑
t=1

|τ̃t − τt| (A32)

We will need to characterize the distribution of |τ̃t − τt|. Let Zt := mt − νt. By Lemma 2,
we have:

pt = P(τ̃t = 1) = P(Zt > ρt − εabc) = 1 − FZ(ρt − εabc)

= 1 − H[ρt − εabc] + (2H[ρt − εabc]− 1)Gb(|ρt − εabc|)
= τt + (1 − 2τt)Gb(|ρt − εabc|),

where the decreasing function Gb(x) ∈ (0, 1
2 ] for any x ≥ 0 is defined in Lemma 2. We

observe that |τ̃t − τt| ∼ Bernoulli(qt) where qt := P(τ̃t �= τt) = (1 − pt)τt + pt(1 − τt). We
can rewrite qt as

qt = τt + pt(1 − 2τt)

= τt + [τt + (1 − 2τt)Gb(|ρt − εabc|)](1 − 2τt)

= Gb(|ρt − εabc|).
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To prove the first claim, we take the expectation on both sides of (A32):

Eτ̃1,...,τ̃T

∥∥∥∥1
c

T

∑
t=1

f (θt)τ̃t −
1
c′

T

∑
t=1

f (θt)τt

∥∥∥∥
2
≤ 2KT

c′
Eτ̃t

[
T

∑
t=1

|τ̃t − τt|
]

=
2KT

c′
μT ,

where μT = Eτ̃t

[
∑T

t=1 |τ̃t − τt|
]
= ∑T

t=1 Gb(|ρt − εabc|) and we use the fact that Eτ̃t |τ̃t −
τt| = qt. Note that these are T independent, marginal expectations, i.e., they do not depend
on the condition that noise is added to the ABC threshold.

Proof of the second claim: observe that Gb(|ρt − εabc|) → 0 as b → 0. The claim
follows by noting that b = O(1/N).

Proof of the third claim: based on (A32), characterizing the tail bound of∥∥∥∥ 1
c ∑T

t=1 f (θt)τ̃t − 1
c′ ∑T

t=1 f (θt)τt

∥∥∥∥
2

amounts to establishing a tail bound on ST := ∑T
t=1 |τ̃t −

τt|. By Markov’s inequality:

P(ST ≤ s) ≥ 1 −E[ST ]/s

= 1 − 1
s

T

∑
t=1

Gb(|ρt − εabc|)

= 1 − 1
s

T

∑
t=1

1
6

[
4 exp

(
−|ρt − εabc|

2b

)
− exp

(
−|ρt − εabc|

b

)]

≥ 1 − 2
3s

T

∑
t=1

exp
(
−|ρt − εabc|

2b

)
.

Applying this bound to (A32) gives:

P
(

2KT
c′

ST ≤ 2KT
c′

s
)
= P(ST ≤ s).

With a reparametrization a := 2KT
c′ s so that s = ac′

2KT
, we have:

P
(

2KT
c′

ST ≤ a
)

≥ 1 − 4KT
3ac′

T

∑
t=1

exp
(
−|ρt − εabc|

2b

)
,

Since
∥∥∥∥ 1

c ∑T
t=1 f (θt)τ̃t − 1

c′ ∑T
t=1 f (θt)τt

∥∥∥∥
2
≤ 2KT

c′ ST , we have:

P
(∥∥∥∥1

c

T

∑
t=1

f (θt)τ̃t −
1
c′

T

∑
t=1

f (θt)τt

∥∥∥∥
2
≤ a
)

≥ P
(

2KT
c′

ST ≤ a
)

.

which gives the result in the third claim.
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Abstract: Accurate evaluation of Bayesian model evidence for a given data set is a fundamental
problem in model development. Since evidence evaluations are usually intractable, in practice
variational free energy (VFE) minimization provides an attractive alternative, as the VFE is an upper
bound on negative model log-evidence (NLE). In order to improve tractability of the VFE, it is
common to manipulate the constraints in the search space for the posterior distribution of the latent
variables. Unfortunately, constraint manipulation may also lead to a less accurate estimate of the NLE.
Thus, constraint manipulation implies an engineering trade-off between tractability and accuracy of
model evidence estimation. In this paper, we develop a unifying account of constraint manipulation
for variational inference in models that can be represented by a (Forney-style) factor graph, for which
we identify the Bethe Free Energy as an approximation to the VFE. We derive well-known message
passing algorithms from first principles, as the result of minimizing the constrained Bethe Free Energy
(BFE). The proposed method supports evaluation of the BFE in factor graphs for model scoring and
development of new message passing-based inference algorithms that potentially improve evidence
estimation accuracy.

Keywords: Bayesian inference; Bethe free energy; factor graphs; message passing; variational free
energy; variational inference; variational message passing

1. Introduction

Building models from data is at the core of both science and engineering applications.
The search for good models requires a performance measure that scores how well a
particular model m captures the hidden patterns in a data set D. In a Bayesian framework,
that measure is the Bayesian evidence ppD|mq, i.e., the probability that model m would
generate D if we were to draw data from m. The art of modeling is then the iterative
process of proposing new model specifications, evaluating the evidence for each model
and retaining the model with the most evidence [1].

Unfortunately, Bayesian evidence is intractable for most interesting models. A popu-
lar solution to evidence evaluation is provided by variational inference, which describes
the process of Bayesian evidence evaluation as a (free energy) minimization process,
since the variational free energy (VFE) is a tractable upper bound on Bayesian (negative
log-)evidence [2]. In practice, the model development process then consists of proposing
various candidate models, minimizing VFE for each model and selecting the model with
the lowest minimized VFE.

The difference between VFE and negative log-evidence (NLE) is equal to the Kullback–
Leibler divergence (KLD) [3] from the (perfect) Bayesian posterior distribution to the
variational distribution for the latent variables in the model. The KLD can be interpreted
as the cost of conducting variational rather than Bayesian inference. Perfect (Bayesian)
inference would lead to zero inference costs (KLD “ 0), and the KLD increases as the
variational posterior diverges further from the Bayesian posterior. As a result, model
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development in a variational inference context is a balancing act, where we search for
models that have both large amounts of evidence for the data and small inference costs
(small KLD). In other words, in a variational inference context, the researcher has two
knobs to tune models. The first knob alters the model specification, which affects model
evidence. The second knob relates to constraining the search space for the variational
posterior, which may affect the inference costs.

In this paper, we are concerned with developing algorithms for tuning the second
knob. How do we constrain the range of variational posteriors so as to make variational
inferences both tractable and accurate (resulting in low KLD)? We present our framework
in the context of a (Forney-style) factor graph representation of the model [4,5]. In that
context, variational inference can be understood as an automatable and efficient message
passing-based inference procedure [6–8].

Traditional constraints include mean-field [6] and Bethe approximations [9,10]. How-
ever, more recently it has become clear how alternative local constraints, such as posterior
factorization [11], expectation and chance constraints [12,13], and local Laplace approxi-
mation [14], may impact both tractability and inference accuracy, and thereby potentially
lead to lower VFE. The main contribution of the current work lies in unifying the various
ideas on local posterior constraints into a principled method for deriving variational mes-
sage passing-based inference algorithms. The proposed method derives existing message
passing algorithms, but also supports the development of new message passing variants.

Section 2 reviews Forney-style Factor Graphs (FFGs) and variational inference by
minimizing the Bethe Free Energy (BFE). This review is continued in Section 3, where
we discuss BFE optimization from a Lagrangian optimization viewpoint. In Appendix A,
we include an example to illustrate that the Bayes rule can be derived from Lagrangian
optimization with data constraints. Our main contribution lies in Section 4, which pro-
vides a rigorous treatment of the effects of imposing local constraints on the BFE and
the resulting message update rules. We build upon several previous works that describe
how manipulation of (local) constraints and variational objectives can be employed to
improve variational approximations in the context of message passing. For example,
ref. [12] shows how inference algorithms can be unified in terms of hybrid message
passing by Lagrangian constraint manipulation. We extend this view by bringing form
(Section 4.2) and factorization constraints (Section 4.1) into a constrained optimization
framework. In [15], a high-level recipe for generating message passing algorithms from
divergence measures is described. We apply their general recipe in the current work,
where we adhere to the view on local stationary points for region-based approximations on
general graphs [16]. In Appendix B, we also show that locally stationary solutions are also
the global stationary solutions. In Section 5, we develop an algorithm for VFE evaluation
in an FFG. In previous work, ref. [17] describes a factor softening approach to evaluate the
VFE for models with deterministic factors. We extend this work in Section 5, and show
how to avoid factor softening for both free energy evaluation and inference of posteriors.
We show an example of how to compute VFE for a deterministic node in Appendix C. A
more detailed comparison to related work is given in Section 7.

In the literature, proofs and descriptions of message passing-based inference algo-
rithms are scattered across multiple papers and varying graphical representations, in-
cluding Bayesian networks [6,18], Markov random fields [16], bi-partite (Tanner) factor
graphs [12,17,19] and Forney-style factor graphs (FFGs) [5,11]. In Appendix D, we provide
first-principle proofs for a large collection of familiar message passing algorithms in the
context of Forney-style factor graphs, which is the preferred framework in the information
and communication theory communities [4,20].

2. Factor Graphs and the Bethe Free Energy

2.1. Terminated Forney-Style Factor Graphs

A Forney-style factor graph (FFG) is an undirected graph G “ pV , Eq with nodes V
and edges E Ď V ˆ V . We denote the neighboring edges of a node a P V by Epaq. Vice
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versa, for an edge i P E , the notation Vpiq collects all neighboring nodes. As a notational
convention, we index nodes by a, b, c and edges by i, j, k, unless stated otherwise. We will
mainly use a and i as summation indices and use the other indices to refer to a node or
edge of interest.

In this paper, we will frequently refer to the notion of a subgraph. We define an edge-
induced subgraph by Gpiq “ pVpiq, iq, and a node-induced subgraph by Gpaq “ pa, Epaqq.
Furthermore, we denote a local subgraph by Gpa, iq “ pVpiq, Epaqq, which collects all local
nodes and edges around i and a, respectively.

An FFG can be used to represent a factorized function,

f psq “
ź
aPV

fapsaq , (1)

where sa collects the argument variables of factor fa. We assumed that all the factors are
positive. In an FFG, a node a P V corresponds to a factor fa, and the neighboring edges
Epaq correspond to the variables sa that are the arguments of fa.

As an example model, the following factorization (2), the corresponding FFG of which
is shown in Figure 1.

f ps1, . . . , s5q “ faps1q fbps1, s2, s3q fcps2q fdps3, s4, s5q feps5q . (2)

fa fb

fc

fd fe
s1

s2

s3

s4

s5

Figure 1. Example Forney-style factor graph for the model of (2).

The FFG of Figure 1 consists of five nodes V “ ta, . . . , eu, as annotated by their
corresponding factor functions, and five edges E “ tpa, bq, . . . , pd, equ as annotated by their
corresponding variables. An edge that connects to only one node (e.g., the edge for s4)
is called a half-edge. In this example, the neighborhood Epbq “ tpa, bq, pb, cq, pb, dqu and
Vppb, cqq “ tb, cu.

In the FFG representation, a node can be connected to an arbitrary number of edges,
while an edge can only be connected to at most two nodes. Therefore, FFGs often contain
“equality nodes” that constrain connected edges to carry identical beliefs, with the implica-
tion that these beliefs can be made available to more than two factors. An equality node
has the factor function

fapsi, sj, skq “ δpsj ´ siq δpsj ´ skq , (3)

for which the node-induced subgraph Gpaq is drawn in Figure 2.
If every edge in the FFG has exactly two connected nodes (including equality nodes),

then we designate the graph as a terminated FFG (TFFG). Since multiplication of a function
f psq by 1 does not alter the function, any FFG can be terminated by connecting any half-
edge i to a node a that represents the unity factor fapsiq “ 1.

“
si

sk

sj

Figure 2. Visualization of the node-induced subgraph for an equality node. If the node function
fa is known, a symbol representing the node function is often substituted within the node (““” in
this case).
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In Section 4.2 we discuss form constraints on posterior distributions. If such a con-
straint takes on a Dirac-delta functional form, then we visualize the constraint on the FFG
by a small circle in the middle of the edge. For example, the small shaded circle in Figure 11
indicates that the variable has been observed. In Section 4.3.2 we consider form constraints
in the context of optimization, in which case the circle annotation will be left open (see, e.g.,
Figure 14).

2.2. Variational Free Energy

Given a model f psq and a (normalized) probability distribution qpsq, we can define a
Variational Free Energy (VFE) functional as

Frq, f s fi
ż

qpsq log
qpsq
f psq ds . (4)

Variational inference is concerned with finding solutions to the minimization problem

q p̊sq “ arg min
qPQ

Frq, f s , (5)

where Q imposes some constraints on q.
If q is unconstrained, then the optimal solution is obtained for q p̊sq “ ppsq, with

ppsq “ 1
Z f psq being the exact posterior, and Z “ ş

f psq ds a normalizing constant that is
commonly referred to as the evidence. The minimum value of the free energy then follows
as the negative log-evidence (NLE),

Frq ,̊ f s “ ´ log Z ,

which is also known as the surprisal. The NLE can be interpreted as a measure of model
performance, where low NLE is preferred.

As an unconstrained search space for q grows exponentially with the number of
variables, the optimization of (5) quickly becomes intractable beyond the most basic models.
Therefore, constraints and approximations to the variational free energy (4) are often
utilized. As a result, the constrained variational free energy with q˚ P Q bounds the NLE by

Frq ,̊ f s “ ´ log Z `
ż

q p̊sq log
q p̊sq
ppsq ds , (6)

where the latter term expresses the divergence from the (intractable) exact solution to the
optimal variational belief.

In practice, the functional form of qpsq “ qps; θq is often parameterized, such that gra-
dients of F can be derived w.r.t. the parameters θ. This effectively converts the variational
optimization of Frq, f s to a parametric optimization of Fpθq as a function of θ. This problem
can then be solved by a (stochastic) gradient descent procedure [21,22].

In the context of variational calculus, while form constraints may lead to interesting
properties (see Section 4.2), they are generally not required. Interestingly, in a variational
optimization context, the functional form of q is often not an assumption, but rather a result
of optimization (see Section 4.3.1). An example of variational inference is provided in
Appendix A.

2.3. Bethe Free Energy

The Bethe approximation enjoys a unique place in the landscape of Q, because the
Bethe free energy (BFE) defines the fundamental objective of the celebrated belief propa-
gation (BP) algorithm [17,23]. The origin of the Bethe approximation is rooted in tree-like
approximations to subgraphs (possibly containing cycles) by enforcing local consistency
conditions on the beliefs associated with edges and nodes [24].
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Given a TFFG G “ pV , Eq for a factorized function f psq “ ś
aPV fapsaq (1), the Bethe

free energy (BFE) is defined as [25]:

Frq, f s fi
ÿ
aPV

ż
qapsaq log

qapsaq
fapsaq dsalooooooooooooomooooooooooooon

Frqa , fas

`
ÿ
iPE

ż
qipsiq log

1
qipsiq dsiloooooooooooomoooooooooooon

Hrqis

(7)

such that the factorized beliefs

qpsq “
ź
aPV

qapsaq
ź
iPE

qipsiq´1 (8)

satisfy the following constraints:ż
qapsaq dsa “ 1 , for all a P V (9a)ż

qapsaq dsazi “ qipsiq , for all a P V and all i P Epaq . (9b)

Together, the normalization constraint (9a) and marginalization constraint (9b) imply that
the edge marginals are also normalized:ż

qipsiq dsi “ 1 , for all i P E . (10)

The Bethe free energy (7) includes a local free energy term Frqa, fas for each node
a P V , and an entropy term Hrqis for each edge i P E . Note that the local free energy also
depends on the node function fa, as specified in the factorization of f (1), whereas the
entropy only depends on the local belief qi.

The Bethe factorization (8) and constraints are summarized by the local polytope [26]

LpGq “ tqa for all a P V s.t. (9a), and qi for all i P Epaq s.t. (9b)u , (11)

which defines the constrained search space for the factorized variational distribution (8).

2.4. Problem Statement

In this paper, the problem is to find the beliefs in the local polytope that minimize the
Bethe free energy

q p̊sq “ arg min
qPLpGq

Frq, f s , (12)

where q is defined by (8), and where q P LpGq offers a shorthand notation for optimizing
over the individual beliefs in the local polytope. In the following sections, we will follow
the Lagrangian optimization approach to derive various message passing-based inference
algorithms.

2.5. Sketch of Solution Approach

The problem statement of Section 2.4 defines a global minimization of the beliefs in
the Bethe factorization. Instead of solving the global optimization problem directly, we
employ the factorization of the variational posterior and local polytope to subdivide the
global problem statement in multiple interdependent local objectives.

From the BFE objective (12) and local polytope of (11), we can construct the Lagrangian
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Lrq, f s “
ÿ
aPV

Frqa, fas `
ÿ
aPV

ψa

„ż
qapsaq dsa ´ 1

j
`

ÿ
aPV

ÿ
iPEpaq

ż
λiapsiq

„
qipsiq ´

ż
qapsaq dsazi

j
dsi

`
ÿ
iPE

Hrqis `
ÿ
iPE

ψi

„ż
qipsiq dsi ´ 1

j
, (13)

where the Lagrange multipliers ψa, ψi and λia enforce the normalization and marginal-
ization constraints of (9). It can be seen that this Lagrangian contains local beliefs qa and
qi, which are coupled through the λia Lagrange multipliers. The Lagrange multipliers λia
are doubly indexed, because there is a multiplier associated with each marginalization
constraint. The Lagrangian method then converts a constrained optimization problem
of Frq, f s to an unconstrained optimization problem of Lrq, f s. The total variation of the
Lagrangian (13) can then be approached from the perspective of variations of the individual
(coupled) local beliefs.

More specifically, given a locally connected pair b P V , j P Epbq, we can rewrite the
optimization of (12) in terms of the local beliefs qb, qj, and the constraints in the local
polytope

LpGpb, jqq “ �
qb s.t. (9a), and qj s.t. (9b)

(
, (14)

that pertains to these beliefs. The problem then becomes finding local stationary solutions

tqb̊ , qj̊ u “ arg min
LpGpb,jqq

Frq, f s . (15)

Using (13), the optimization of (15) can then be written in the Lagrangian form

qb̊ “ arg min
qb

Lbrqb, fbs , (16a)

qj̊ “ arg min
qj

Ljrqjs , (16b)

where the Lagrangians Lb and Lj include the local polytope of (14) to rewrite (13) as an
explicit functional of beliefs qb and qj (see, e.g., Lemmas 1 and 2). The combined stationary
solutions to the local objectives then also comprise a stationary solution to the global
objective (Appendix B).

The current paper shows how to identify stationary solutions to local objectives of the
form (15), with the use of variational calculus, under varying constraints as imposed by
the local polytope (14). Interestingly, the resulting fixed-point equations can be interpreted
as message passing updates on the underlying TFFG representation of the model. In the
following Sections 3 and 4, we derive the local stationary solutions under a selection of
constraints and show how these relate to known message passing update rules (Table 1). It
then becomes possible to derive novel message updates and algorithms by simply altering
the local polytope.
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Table 1. Relation between local constraints and derived message updates. The rows refer to different
constraints that relate to factor–variable combinations, factors, and variables, respectively. Note
that each message passing algorithm combines a set of constraints. Abbreviations: Sum-Product
(SP), Structured Variational Message Passing (SVMP), Mean-Field Variational Message Passing
(MFVMP), Data Constraint (DC), Laplace Propagation (LP), Mean-Field Variational Laplace (MFVLP),
Expectation Maximization (EM), and Expectation Propagation (EP).

Local Constraint SP SVMP MFVMP DC LP MFVLP EM EP

Normalization � � � � � � � �
Marginalization � � � � � � � �

Moment-Matching �
Structured Mean-Field � �

Naive Mean-Field � �
Laplace Approximation � �

Dirac-delta � �
Estimation �

3. Bethe Lagrangian Optimization by Message Passing

3.1. Stationary Points of the Bethe Lagrangian

We wish to minimize the Bethe free energy under variations of the variational density.
As the Bethe free energy factorizes over factors and variables (7), we first consider variations
on separate node- and edge-induced subgraphs.

Lemma 1. Given a TFFG G “ pV , Eq, consider the node-induced subgraph Gpbq (Figure 3). The
stationary points of the Lagrangian (16a) as a functional of qb,

Lbrqb, fbs “ Frqb, fbs ` ψb

„ż
qbpsbq dsb ´ 1

j
`

ÿ
iPEpbq

ż
λibpsiq

„
qipsiq ´

ż
qbpsbq dsbzi

j
dsi ` Cb , (17)

where Cb collects all terms that are independent of qb, which are of the form

qbpsbq “
fbpsbq

ź
iPEpbq

μibpsiq
ż

fbpsbq
ź

iPEpbq
μibpsiqdsb

. (18)

Proof. See Appendix D.1.

The μibpsiq are any set of positive functions that makes (18) satisfy (9b), and will be
identified in Theorem 1.

fb
...

μ
lbÑsl

μ kbÑ
sk

Ð
μjb

sj

Figure 3. The subgraph around node b with indicated messages. Ellipses indicate an arbitrary
(possibly zero) amount of edges.

Lemma 2. Given a TFFG G “ pV , Eq, consider an edge-induced subgraph Gpjq (Figure 4). The
stationary points of the Lagrangian (16b) as a functional of qj,
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Ljrqjs “ Hrqjs ` ψj

„ż
qjpsjq dsj ´ 1

j
`

ÿ
aPVpjq

ż
λjapsjq

„
qjpsjq ´

ż
qapsaq dsazj

j
dsj ` Cj , (19)

where Cj collects all terms that are independent of qj, are of the form

qjpsjq “ μjbpsjqμjcpsjqż
μjbpsjqμjcpsjqdsj

. (20)

Proof. See Appendix D.2.

fb fc

μjcÑ
Ð
μjb

sj

Figure 4. An edge-induced subgraph Gpjq with indicated messages.

3.2. Minimizing the Bethe Free Energy by Belief Propagation

We now combine Lemmas 1 and 2 to derive the sum-product message update.

Theorem 1 (Sum-Product Message Update). Given a TFFG G “ pV , Eq, consider the induced
subgraph Gpb, jq (Figure 5). Given the local polytope LpGpb, jqq of (14), then the local stationary
solutions to (15) are given by

qb̊ psbq “
fbpsbq

ź
iPEpbq

μi̊bpsiq
ż

fbpsbq
ź

iPEpbq
μi̊bpsiqdsb

(21a)

qj̊ psjq “
μ j̊bpsjqμ j̊cpsjqż
μ j̊bpsjqμ j̊cpsjqdsj

, (21b)

with messages μ j̊cpsjq corresponding to the fixed points of

μ
pk`1q
jc psjq “

ż
fbpsbq

ź
iPEpbq

i‰j

μ
pkq
ib psiqdsbzj , (22)

with k representing an iteration index.

Proof. See Appendix D.3.

fb fc
...

μ
lbÑsl

μ kbÑ
sk

μjcÑ
Ð
μjb

sj

Figure 5. Visualization of a subgraph with indicated sum-product messages.

The sum-product algorithm has proven to be useful in many engineering applica-
tions and disciplines. For example, it is widely used for decoding in communication
systems [4,20,27]. Furthermore, for a linear Gaussian state space model, Kalman filtering
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and smoothing can be expressed in terms of sum-product message passing for state infer-
ence on a factor graph [28,29]. This equivalence has inspired applications ranging from
localization [30] to estimation [31].

The sum-product algorithm with updates (22) obtains the exact Bayesian posterior
when the underlying graph is a tree [24,25,32]. Application of the sum-product algorithm
to cyclic graphs is not guaranteed to converge and might lead to oscillations in the BFE over
iterations. Theorems 3.1 and 3.2 in [33] show that the BFE of a graph with a single cycle is
convex, which implies that the sum-product algorithm will converge in this case. Moreover,
ref. [19] shows that it is possible to obtain a double-loop message passing algorithm if
the graph has a cycle such that the stable fixed points will correspond to local minima of
the BFE.

Example 1. A Linear Dynamical System Considering a Linear Gaussian state space model specified
by the following factors:

g0px0q “ N px0|mx0 , Vx0q (23a)

gtpxt´1, zt, Atq “ δpzt ´ Atxt´1q (23b)

htpx1
t, zt, Qtq “ N px1

t|zt, Q´1
t q (23c)

ntpxt, x1
t, x2

t q “ δpxt ´ x1
tqδpxt ´ x2

t q (23d)

mtpot, x2
t , Btq “ δpot ´ Btx2

t q (23e)

rtpyt, ot, Rtq “ N pyt|ot, R´1
t q . (23f)

The FFG corresponding to the one time segment of the state space model is given in Figure 6. We
assumed that we know the following matrices that are used to generate the data:

Ât “
„

cospθq ´ sinpθq
sinpθq cospθq

j
, Q̂´1

t “
„

3 0.1
0.1 2

j
, B̂t “

„
1 0
0 1

j
, R̂´1

t “
„

10 2
2 20

j
(24)

with θ “ π{8. Given a collection of observations ŷ “ tŷ1, . . . , ŷTu, we constrain the latent states
x “ tx0, . . . , xTu by local marginalization and normalization constraints (for brevity we omit
writing the normalization constraints explicitly) in accordance with Theorem 1, i.e.,ż

qpxt´1, zt, Atqdxt´1dzt “ qpAtq,
ż

qpxt´1, zt, AtqdAt “ qpzt|xt´1qqpxt´1q (25a)ż
qpx1

t, zt, Qtqdx1
tdzt “ qpQtq,

ż
qpx1

t, zt, QtqdztdQt “ qpx1
tq,

ż
qpx1

t, zt, Qtqdx1
tdQt “ qpztq (25b)

qpxt, x1
t, x2

t q “ qpxtqδpxt ´ x1
tqδpxt ´ x2

t q (25c)ż
qpot, x2

t , Btqdot, dx2
t “ qpBtq,

ż
qpot, x2

t , BtqdBt “ qpot|x2
t qqpx2

t q (25d)ż
qpot, yt, Rtqdotdyt “ qpRtq,

ż
qpot, yt, RtqdRtdot “ qpytq,

ż
qpot, yt, RtqdRtdyt “ qpotq (25e)

Moreover, we use data constraints in accordance with Theorem 3 (explained in Section 4.2.1) for the
observations, state transition matrices and precision matrices, i.e.,

qpytq “ δpyt ´ ŷtq, qpAtq “ δpAt ´ Âtq, qpBtq “ δpBt ´ B̂tq, qpQtq “ δpQt ´ Q̂tq, qpRtq “ δpRt ´ R̂tq .

Computation of sum-product messages by (22) is analytically tractable and detailed algebraic
manipulation can be found in [31]. If the backwards messages are not passed, then the resulting
sum-product message passing algorithm is equivalent to Kalman filtering and if both forward and
backward messages are propagated, then the Rauch–Tung–Striebel smoother is obtained [34] (Ch. 8).

We generated T “ 100 observations ŷ using the matrices specified in (24) and the initial
condition x̂0 “ r5, ´5sJ. Due to (23a), we have μx0g1 “ N pmx0 , Vx0 q. We chose Vx0 “ 100 ¨ I
and mx0 “ x̂0. Under these constraints, the results of sum-product message passing and Bethe free
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energy evaluation is given in Figure 6. As the underlying graph is a tree, sum-product message
passing results are exact and the evaluated BFE corresponds to negative log-evidence. In the
follow-up Example 2, we will modify the constraints and give a comparative free energy plot for the
examples in Figures 10 and 16.

ŷt
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Ð
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Figure 6. (Left) One time segment of the FFG corresponding to the linear Gaussian state space model specified in Example 1,
with the sum-product messages computed according to (22). The three small dots at both sides of the graph indicate
identical continuation of the graph over time. (Right) The small dots indicate the noisy observations that are synthetically
generated by the linear state space model of (23) using parameter matrices as specified in (24). The posterior distribution for
the hidden states are inferred by sum-product message passing and are drawn with shaded regions, indicating plus and
minus the variance. The Bethe free energy evaluates to Frq, f s “ 580.698.

4. Message Passing Variations through Constraint Manipulation

For generic node functions with arbitrary connectivity, there is no guarantee that the
sum-product updates can be solved analytically. When analytic solutions are not possible,
there are two ways to proceed. One way is to try to solve the sum-product update equations
numerically, e.g., by Monte Carlo methods. Alternatively, we can add additional constraints
to the BFE that leads to simpler update equations at the cost of inference accuracy. In the
remainder of the paper, we explore a variety of constraints that have proven to yield useful
inference solutions.

4.1. Factorization Constraints

Additional factorizations of the variational density qapsaq are often assumed to ease
computation. In particular, we assumed a structured mean-field factorization such that

qbpsbq fi
ź

nPlpbq
qn

b psn
b q , (26)

where n indicates a local cluster as a set of edges. To define a local cluster rigorously, let
us first denote by Ppaq the power set of an edge set Epaq, where the power set is the set
of all subsets of Epaq. Then, a mean-field factorization lpaq Ď Ppaq can be chosen such
that all elements in Epaq are included in lpaq exactly once. Therefore, lpaq is defined as a
set of one or multiple sets of edges. For example, if Epaq “ ti, j, ku, then lpaq “ ttiu, tj, kuu
is allowed, as is lpaq “ tti, j, kuu itself, but lpaq “ tti, ju, tj, kuu is not allowed, since the
element j occurs twice. More formally, in (26), the intersection of the super- and subscript
collects the required variables, see Figure 7 for an example. The special case of a fully
factorized lpbq for all edges i P Epbq is known as the naive mean-field factorization [11,24].
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We will analyze the effect of a structured mean-field factorization (26) on the Bethe
free energy (7) for a specific factor node b P V . Substituting (26) in the local free energy for
factor b yields

Frqb, fbs “ Frtqn
b u, fbs “

ÿ
nPlpbq

ż
qn

b psn
b q log qn

b psn
b q dsn

b ´
ż ! ź

nPlpbq
qn

b psn
b q

)
log fbpsbq dsb . (27)

We are then interested in

qm,˚
b “ arg min

qm
b

Lm
b rqm

b , fbs , (28)

where the Lagrangian Lm
b (Lemma 3) enforces the normalization and marginalization

constraints ż
qm

b psm
b q dsm

b “ 1 , (29a)ż
qm

b psm
b q dsm

bzi “ qipsiq, for all i P m , m P lpbq . (29b)

fb

...

μ
lbÑsl

Ñ
μ kbsk

Ð
μjb

sj
...

μ
lbÑslqm

b psm
b q

Ñ
μ kbsk

qr
bpsr

bq
Ð
μjb

sj
qn

b psn
b q

Figure 7. A node-induced subgraph Gpbq with shaded sections that enclose the edges of an exemplary
structured mean-field factorization lpbq “ tm, n, ru. Note that, in this example, the cluster n only
encompasses the single edge j, such that qn

b psn
b q “ qjpsjq. In general, the assignment and number of

edges in a cluster can be arbitrary.

Lemma 3. Given a terminated FFG G “ pV , Eq, consider a node-induced subgraph Gpbq with
a structured mean-field factorization lpbq (e.g., Figure 7). Then, local stationary solutions to the
Lagrangian

Lm
b rqm

b s “
ż

qm
b psm

b q log qm
b psm

b q dsm
b ´

ż ! ź
nPlpbq

qn
b psn

b q
)

log fbpsbq dsb`

ψm
b

„ż
qm

b psm
b q dsm

b ´ 1
j

`
ÿ
iPm

ż
λibpsiq

„
qipsiq ´

ż
qm

b psm
b q dsmzi

j
dsi ` Cm

b , (30)

where Cm
b collects all terms independent of qm

b , which are of the form

qm
b psm

b q “
f̃ m
b psm

b q
ź
iPm

μibpsiqż
f̃ m
b psm

b q
ź
iPm

μibpsiqdsm
b

, (31)

where

f̃ m
b psm

b q “ exp
ˆ ż ! ź

nPlpbq
n‰m

qn
b psn

b q
)

log fbpsbq dszm
b

˙
. (32)

Proof. See Appendix D.4.
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4.1.1. Structured Variational Message Passing

We now combine Lemmas 2 and 3 to derive the structured variational message passing
algorithm.

Theorem 2. Structured variational message passing: Given a TFFG G “ pV , Eq, consider the
induced subgraph Gpb, jq with a structured mean-field factorization lpbq Ď Ppbq, with local clusters
n P lpbq. Let m P lpbq be the cluster where j P m (see, e.g., Figure 8). Given the local polytope

LpGpb, jqq “ �
qn

b for all n P lpbq s.t. (29a), and qj s.t. (29b)
(

, (33)

then local stationary solutions to

tqm,˚
b , qj̊ u “ arg min

LpGpb,jqq
Frq, f s , (34)

are given by

qm,˚
b psm

b q “ f̃ m,˚
b psm

b q ś
iPm μi̊bpsiqż

f̃ m,˚
b psm

b q
ź
iPm

μi̊bpsiqdsm
b

(35a)

qj̊ psjq “
μ j̊bpsjqμ j̊cpsjqż
μ j̊bpsjqμ j̊cpsjqdsj

, (35b)

with messages μ j̊cpsjq corresponding to the fixed points of

μ
pk`1q
jc psjq “

ż
f̃ m,pkq
b psm

b q
ź
iPm
i‰j

μ
pkq
ib psiqdsm

bzj , (36)

with iteration index k, and where

f̃ m,pkq
b “ exp

ˆ ż ! ź
nPlpbq
n‰m

qn,pkq
b psn

b q
)

log fbpsbq dszm
b

˙
. (37)

Proof. See Appendix D.5.
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qn
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b q

Figure 8. An example subgraph corresponding to Gpb, jq. Dashed ellipses enclose the edges of an
exemplary exact cover lpbq “ tm, n, ru. In general, the assignment and number of edges in a cluster
can be arbitrary.

The structured mean-field factorization applies the marginalization constraint only
to the local cluster beliefs, as opposed to the joint node belief. As a result, computation
for the local cluster beliefs might become tractable [24] (Ch.5). The practical appeal of
Variational Message Passing (VMP) based inference becomes evident when the underlying
model is composed of conjugate factor pairs from the exponential family. When the
underlying factors are conjugate exponential family distributions, the message passing
updates (36) amounts to adding natural parameters [35] of the underlying exponential
family distributions. Structured variational message passing is popular in acoustic signal
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modelling, e.g., [36], as it allows one to be able to keep track of correlations over time.
In [37], a stochastic variant of structured variational inference is utilized for Latent Dirichlet
Allocation. Structured approximations are also used to improve inference in auto-encoders.
In [38], inference involving non-parametric Beta-Bernoulli process priors is improved by
developing a structured approximation to variational auto-encoders. When the data being
modelled are time series, structured approximations reflect the transition structure over
time. In [39], an efficient structured black-box variational inference algorithm for fitting
Gaussian variational models to latent time series is proposed.

Example 2. Consider the linear Gaussian state space model of Example 1. Let us assume that the
precision matrix for latent-state transitions Qt is not known and can not be constrained by data.
Then, we can augment state space model by including a prior for Qt and try to infer a posterior over
Qt from the observations. Since Qt is the precision of a normal factor, we chose a conjugate Wishart
prior and assumed that Qt is time-invariant by adding the following factors

w0pQ0, V, νq “ WpQ0|V, νq (38a)

wtpQt´1, Qt, Qt`1q “ δpQt´1 ´ QtqδpQt ´ Qt`1q, for every t “ 1, . . . , T . (38b)

It is certainly possible to assume a time-varying structure for Qt; however, our purpose is to
illustrate a change in constraints rather than analyzing time-varying properties. This is why we
assume time-invariance.

In this setting, the sum-product equations around the factor ht are not analytically tractable.
Therefore, we changed the constraints associated with ht (25b) to those given in Theorem 2 as follows

ż
qpx1

t, zt, Qtqdx1
tdzt “ qpQtq,

ż
qpx1

t, zt, QtqdQt “ qpx1
t, ztq (39a)ż

qpQtqdQt “ 1,
ż

qpx1
t, ztqdx1

tdzt “ 1 . (39b)

We removed the data constraint on qpQtq and instead included data constraints on the hyper-
parameters

qpVq “ δpV ´ V̂q, qpνq “ δpν ´ ν̂q . (40)

With the new set of constraints ((39a) and (39b)), we obtained a hybrid of the sum-product and
structured VMP algorithm, where structured messages around the factor ht are computed by (36)
and the rest of the messages are computed by the sum-product (22). One time segment of the
modified FFG along with the messages is given Figure 9. We used the same observations ŷ that were
generated in Example 1 and the same initialization for the hidden states. For the hyper-parameters of
the Wishart prior, we chose V̂ “ 0.1 ¨ I and ν̂ “ 2. Under these constraints, the result of structured
variational message passing results along with the Bethe free energy evaluation is given in Figure 9.

4.1.2. Naive Variational Message Passing

As a corollary of Theorem 2, we can consider the special case of a naive mean-field
factorization, which is defined for node b as

qbpsbq “
ź

iPEpbq
qipsiq . (41)

The naive mean-field constraint (41) transforms the local free energy into

Frqb, fbs “ Frtqiu, fbs
“

ÿ
iPEpbq

ż
qipsiq log qipsiq dsi ´

ż ! ź
iPEpbq

qipsiq
)

log fbpsbq dsb . (42)
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ŷt
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Figure 9. (Left) One time segment of the FFG corresponding to the linear Gaussian state space model specified in Example 2
with the sum-product messages computed according to (36). (Right) The small dots indicate the noisy observations
that are synthetically generated by the linear state space model of (23) using matrices specified in (24). The posterior
distribution of the hidden states inferred by structured variational message passing is depicted with shaded regions
representing plus and minus one variances. The minimum of the evaluated Bethe free energy over all iterations is
Frq, f s “ 586.178 (compared to Frq, f s “ 580.698 in Example 1). The posterior distribution for the precision matrix is given

by Q „ W
˜«

0.00266 0.000334
0.00034 0.00670

ff
, 102.0

¸
.

Corollary 1. Naive Variational Message Passing: Given a TFFG G “ pV , Eq, consider the induced
subgraph Gpb, jq with a naive mean-field factorization lpbq “ tisuch that for all i P Epbqu. Let
m P lpbq be the cluster where j “ m. Given the local polytope of (33), the local stationary solutions
to (34) are given by

qm,˚
b psm

b q “ qj̊ psjq “
μ j̊bpsjqμ j̊cpsjqż

μ j̊bpsjqμ j̊cpsjq dsj

,

where the messages μ j̊cpsjq are the fixed points of the following iterations

μ
pk`1q
jc psjq “ exp

ˆ ż ! ź
iPEpbq

i‰j

qpkq
i psiq

)
log fbpsbq dsbzj

˙
, (43)

where k is an iteration index.

Proof. See Appendix D.6.

The naive mean-field factorization limits the search space of beliefs by imposing strict
constraints on the variational posterior. As a result, the variational posterior also loses
flexibility. To improve inference performance for sparse Bayesian learning, the authors
of [40] proposes a hybrid mechanism by augmenting naive mean-field VMP with sum-
product updates. This hybrid scheme reduces the complexity of the sum-product algorithm,
while improving the accuracy of the naive VMP approach. In [41], naive VMP is applied to
semi-parametric regression and allows for scaling of regression models to large data sets.
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Example 3. As a follow up on Example 2, we relaxed the constraints in ((39a) and (39b)) to the
following constraints presented in Corollary 1 asż

qpx1
t, zt, Qtqdx1

tdzt “ qpQtq,
ż

qpx1
t, zt, QtqdQt “ qpx1

t, ztq “ qpx1
tqqpztq (44a)ż

qpQtqdQt “ 1,
ż

qpx1
tqdx1

t “ 1,
ż

qpztqdzt “ 1 . (44b)

The FFG remains the same and we use identical data constraints as in Example 2. Together with
constraint (44), we obtained a hybrid of naive variational message passing and sum-product message
passing algorithm where the messages around the factor ht are computed by (43) and the rest of the
messages by sum-product (22). Using the same data as in Example 1, the results for naive VMP are
given in Figure 10 along with the evaluated Bethe free energy.
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Figure 10. (Left) The small dots indicate the noisy observations that were synthetically generated by the linear state
space model of (23) using matrices specified in (24). The posterior distribution for the hidden states inferred by naive
variational message passing is depicted with shaded regions representing plus and minus one variances. The minimum
of the evaluated Bethe free energy over all iterations is Frq, f s “ 617.468, which is more than for the less-constrained
Example 2 (with Frq, f s “ 586.178) and Example 1 (with Frq, f s “ 580.698). The posterior for the precision matrix is given

by Q „ W
˜«

0.00141 ´6.00549e´5

´6.00549e´5 0.00187

ff
, 102.0

¸
. (Right) A comparison of the Bethe free energies for sum-product,

structured and naive variational message passing algorithms for the data generated in Example 1.

4.2. Form Constraints

Form constraints limit the functional form of the variational factors qapsaq and qipsiq.
One of the most widely used form constraints, the data constraint, is also illustrated in
Appendix A.

4.2.1. Data Constraints

A data constraint can be viewed as a special case of (9b), where the belief qj is con-
strained to be a Dirac-delta function [42], such thatż

qapsaq dsazj “ qjpsjq “ δpsj ´ ŝjq , (45)

where ŝj is a known value, e.g., an observation.

Lemma 4. Given a TFFG G “ pV , Eq, consider the node-induced subgraph Gpbq (Figure 3). Then
local stationary solutions to the Lagrangian
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Lbrqb, fbs “ Frqb, fbs ` ψb

„ż
qbpsbq dsb ´ 1

j
`

ÿ
iPEpbq

i‰j

ż
λibpsiq

„
qipsiq ´

ż
qbpsbq dsbzi

j
dsi`

ż
λjbpsjq

„
δpsj ´ ŝjq ´

ż
qbpsbq dsbzj

j
dsj ` Cb . (46)

where Cb collects all terms that are independent of qb, are of the form

qbpsbq “
fbpsbq

ź
iPEpbq

μibpsiq
ż

fbpsbq
ź

iPEpbq
μibpsiqdsb

. (47)

Proof. See Appendix D.7.

Theorem 3. Data-Constrained Sum-Product: Given a TFFG G “ pV , Eq, consider the induced
subgraph Gpb, jq (Figure 11). Given the local polytope

LpGpb, jqq “ tqb s.t. (45)u , (48)

the local stationary solutions to

qb̊ “ arg min
LpGpb,jqq

Frq, f s ,

are of the form

qb̊ psbq “
fbpsbq

ź
iPEpbq

μi̊bpsiq
ż

fbpsbq
ź

iPEpbq
μi̊bpsiqdsb

, (49)

with message

μ j̊bpsjq “ δpsj ´ ŝjq . (50)

Proof. See Appendix D.8.

fb δ fc
...

μ
lbÑsl

μ kbÑ
sk

μbjÑ
Ð
μjb

sj
μjcÑ
Ð
μcj

Figure 11. Visualization of a subgraph Gpb, jq with indicated messages, where the dark circled delta
indicates a data constraint—i.e., the variable sj is constrained to have a distribution of the form
δpsj ´ ŝjq.

Note that the resulting message μ j̊bpsjq to node b does not depend on messages from
node c, as would be the case for a sum-product update. By the symmetry of Theorem 3 for
the subgraph LtGpc, jqu, (A32) identifies
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μcjpsjq “
ż

fcpscq
ź

iPEpcq
i‰j

μicpsiq dsczj ‰ δpsj ´ ŝjq .

This implies that messages incoming to a data constraint (such as μcj) are not further
propagated through the data constraint. The data constraint thus effectively introduces a
conditional independence between the variables of neighboring factors (conditioned on
the shared constrained variable). Interestingly, this is similar to the notion of an interven-
tion [43], where a decision variable is externally forced to a realization.

Data constraints allow information from data sets to be absorbed into the model.
Essentially, (variational) Bayesian machine learning is an application of inference in a
graph with data constraints. In our framework, data are a constraint, and machine learning
via Bayes rule follows naturally from the minimization of the Bethe free energy (see also
Appendix A).

4.2.2. Laplace Propagation

A second type of form constraint we consider is the Laplace constraint, see also [14].
Consider a second-order Taylor approximation on the local log-node function

Lapsaq “ log fapsaq , (51)

around an approximation point ŝa, as

L̃apsa; ŝaq “ Lapŝaq ` ∇JLapŝaqpsa ´ ŝaq ` 1
2

psa ´ ŝaqJ∇2Lapŝaqpsa ´ ŝaq . (52)

From this approximation, we define the Laplace-approximated node function as

f̃apsa; ŝaq fi exp
`
L̃apsa; ŝaq˘

, (53)

which is substituted in the local free energy to obtain the Laplace-encoded local free
energy as

Frqa, f̃a; ŝas “
ż

qapsaq log
qapsaq

f̃apsa; ŝaq dsa . (54)

It follows that the Laplace-encoded optimization of the local free energy becomes

qå “ arg min
qa

Larqa, f̃a; ŝas , (55)

where the Lagrangian La imposes the marginalization and normalization constraints of (9)
on (54).

Lemma 5. Given a TFFG G “ pV , Eq, consider the node-induced subgraph Gpbq (Figure 12). The
stationary points of the Laplace-approximated Lagrangian (55) as a functional of qb,

Lbrqb, f̃b; ŝbs “ Frqb, f̃b; ŝbs ` ψb

„ż
qbpsbq dsb ´ 1

j
`

ÿ
iPEpbq

ż
λibpsiq

„
qipsiq ´

ż
qbpsbq dsbzi

j
dsi ` Cb , (56)

where Cb collects all terms that are independent of qb, which are of the form
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qbpsbq “
f̃bpsb; ŝbq

ź
iPEpbq

μibpsiq
ż

f̃bpsb; ŝbq
ź

iPEpbq
μibpsiqdsb

. (57)

Proof. See Appendix D.9.

f̃b
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μ
lbÑsl
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sk

Ð
μjb

sj

Figure 12. The subgraph around a Laplace-approximated node b with indicated messages.

We can now formulate Laplace propagation as an iterative procedure, where the
approximation point ŝb is chosen as the mode of the belief qbpsbq.

Theorem 4. Laplace Propagation: Given a TFFG G “ pV , Eq, consider the induced subgraph
Gpb, jq (Figure 13) with the Laplace-encoded factor f̃b as per (53). We write the model (1) with the
Laplace-encoded factor f̃b substituted for fb, as f̃ . Given the local polytope LpGpb, jqq of (14), the
local stationary solutions to

tqb̊ , qj̊ u “ arg min
LpGpb,jqq

Frq, f̃ ; ŝbs , (58)

are given by

qb̊ psbq “
f̃bpsb; ŝb̊ q

ź
iPEpbq

μi̊bpsiq
ż

f̃bpsb; ŝb̊ q
ź

iPEpbq
μi̊bpsiqdsb

qj̊ psjq “
μ j̊bpsjqμ j̊cpsjqż
μ j̊bpsjqμ j̊cpsjqdsj

,

with ŝb̊ and the messages μ j̊cpsjq the fixed points of

ŝpkq
b “ arg max

sb
log qpkq

b psbq

qpk`1q
b psbq “

f̃bpsb; ŝpkq
b q

ź
iPEpbq

μ
pkq
ib psiq

ż
f̃bpsb; ŝpkq

b q
ź

iPEpbq
μ

pkq
ib psiqdsb

μ
pk`1q
jc psjq “

ż
f̃bpsb; ŝpkq

b q
ź

iPEpbq
i‰j

μ
pkq
ib psiqdsbzj .

Proof. See Appendix D.10.
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Figure 13. Visualization of a subgraph with indicated Laplace propagation messages. The node
function fb is denoted by f̃b according to (53).

A Laplace propagation is introduced in [14] as an algorithm that propagates mean
and variance information when exact updates are expensive to compute. Laplace prop-
agation has found applications in the context of Gaussian processes and support vector
machines [14]. In the jointly normal case, Laplace propagation coincides with sum-product
and expectation propagation [14,18].

4.2.3. Expectation Propagation

Expectation propagation can be derived in terms of constraint manipulation by relax-
ing the marginalization constraints to expectation constraints. Expectation constraints are
of the form ż

qapsaqTipsiqdsa “
ż

qipsiqTipsiqdsi , (59)

for a given function (statistic) Tipsiq. Technically, the statistic Tipsiq can be chosen arbitrar-
ily. Nevertheless, they are often chosen as sufficient statistics of an exponential family
distribution. An exponential family distribution is defined by

qipsiq “ hpsiq exp
´

ηJ
i Tipsiq ´ log Zpηiq

¯
, (60)

where ηi is the natural parameter, Zpηiq is the partition function, Tipsiq is the sufficient
statistics and hpsiq is a base measure [24]. The reason Tipsiq is a sufficient statistic is
because if there are observed values of the random variable si, then the parameter ηi can be
estimated by using only the statistics Tipsiq. This means that the estimator of ηi will depend
only on the statistics.

The idea behind expectation propagation [18] is to relax the marginalization con-
straints with moment-matching constraints by choosing sufficient statistics from expo-
nential family distributions [12]. Relaxation allows approximating the marginals of the
sum-product algorithm with exponential family distributions. By keeping the marginals
within the exponential family, the complexity of the resulting computations is reduced.

Lemma 6. Given a TFFG G “ pV , Eq, consider the node-induced subgraph Gpbq (Figure 3). The
stationary points of the Lagrangian

Lbrqb, fbs “ Frqb, fbs ` ψb

„ż
qbpsbq dsb ´ 1

j
`

ÿ
iPEpbq

i‰j

ż
λibpsiq

„
qipsiq ´

ż
qbpsbq dsbzi

j
dsi`

ηJ
jb

„ż
qjpsjqTjpsjqdsj ´

ż
qbpsbqTjpsjqdsb

j
` Cb , (61)

with sufficient statistics Tj, and where Cb collects all terms that are independent of qb, are of the form

qbpsbq “
fbpsbq

ź
iPEpbq

μibpsiq
ż

fbpsbq
ź

iPEpbq
μibpsiqdsb

, (62)
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with incoming exponential family message

μjbpsjq “ exṕ ηJ
jb Tjpsjq

¯
. (63)

Proof. See Appendix D.11.

Lemma 7. Given a TFFG G “ pV , Eq, consider an edge-induced subgraph Gpjq (Figure 4). The
stationary solutions of the Lagrangian

Ljrqjs “ Hrqjs ` ψj

„ż
qjpsjq dsj ´ 1

j
`

ÿ
aPVpjq

ηJ
ja

„ż
qjpsjqTjpsjqdsj ´

ż
qapsaqTjpsjqdsa

j
` Cj ,

with sufficient statistics Tjpsjq, and where Cj collects all terms that are independent of qj, are of the
form

qjpsjq “
exṕ rηjb ` ηjcsJTjpsjq

¯
ż

exṕ rηjb ` ηjcsJTjpsjq
¯

dsj

. (64)

Proof. See Appendix D.12.

Theorem 5. Expectation Propagation: Given a TFFG G “ pV , Eq, consider the induced subgraph
Gpb, jq (Figure 5). Given the local polytope

LpGpb, jqq “ �
qb s.t. (9a), and qj s.t. (59) and (10)

(
, (65)

and μjbpsjq “ exṕ ηJ
jb Tjpsjq

¯
an exponential family message (from Lemma 6). Then, the local

stationary solutions to (15) are given by

qb̊ psbq “
fbpsbq

ź
iPEpbq

μi̊bpsiq
ż

fbpsbq
ź

iPEpbq
μi̊bpsiqdsb

(66a)

qj̊ psjq “
exṕ rη j̊b ` η j̊csJTjpsjq

¯
ż

exṕ rη j̊b ` η j̊csJTjpsjq
¯

dsj

, (66b)

with η j̊b, η j̊c and μ j̊cpsjq being the fixed points of the iterations

μ̃
pkq
jc psjq “

ż
fbpsbq

ź
iPEpbq

i‰j

μ
pkq
ib psiq dsbzj

q̃pkq
j psjq “

μ
pkq
jb psjqμ̃

pkq
jc psjqż

μ
pkq
jb psjqμ̃

pkq
jc psjqdsj

.

By moment-matching on q̃pkq
j psjq, we obtain the natural parameter η̃

pkq
j . The message update then

follows from

η
pkq
jc “ η̃

pkq
j ´ η

pkq
jb

μ
pk`1q
jc psjq “ exp

´
TjpsjqJη

pkq
jc

¯
.
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Proof. See Appendix D.13.

Moment-matching can be performed by solving [24] (Proposition 3.1)

∇ηj log Zjpηjq “
ż

q̃jpsjq Tjpsjq dsj

for ηj, where

Zjpηjq “
ż

exṕ ηJ
j Tjpsjq

¯
dsj .

In practice, for a Gaussian approximation, the natural parameters can be obtained by
converting the matched mean and variance of q̃jpsjq to the canonical form [18]. Computing
the moments of q̃jpsjq is often challenging due to lack of closed form solutions of the
normalization constant. In order to address the computation of moments in EP, Ref. [44]
proposes to evaluate challenging moments by quadrature methods. For multivariate
random variables, moment-matching by spherical radial cubature would be advantageous
as it will reduce the computational complexity [45]. Another popular way of evaluating
the moments is through importance sampling [46] (Ch. 7) and [47].

Expectation propagation has been utilized in various applications ranging from time
series estimation with Gaussian processes [48] to Bayesian learning with stochastic natural
gradients [49]. When the likelihood functions for Gaussian process classification are not
Gaussian, EP is often utilized [50] (Chapter 3). In [51], a message passing-based expectation
propagation algorithm is developed for models that involve both continuous and discrete
random variables. Perhaps the most practical applications of EP are in the context of
probabilistic programming [52], where it is heavily used in real-world applications.

4.3. Hybrid Constraints

In this section, we consider hybrid methods that combine factorization and form
constraints, and formalize some well-known algorithms in terms of message passing.

4.3.1. Mean-Field Variational Laplace

Mean-field variational Laplace applies the mean-field factorization to the Laplace-
approximated factor function. The appeal of this method is that all messages outbound
from the Laplace-approximated factor can be represented by Gaussians.

Theorem 6. Mean-field variational Laplace: Given a TFFG G “ pV , Eq, consider the induced
subgraph Gpb, jq (Figure 13) with the Laplace-encoded factor f̃b as per (53). We write the model (1)
with substituted Laplace-encoded factor f̃b for fb, as f̃ . Furthermore, assume a naive mean-field
factorization lpbq “ ttiu for all i P Epbqu. Let m P lpbq be the cluster where j “ m. Given the local
polytope of (33), the local stationary solutions to

tqm,˚
b , qj̊ u “ arg min

LpGpb,jqq
Frq, f̃ ; ŝbs , (67)

are given by

qm,˚
b psm

b q “ qj̊ psjq “
μ j̊bpsjqμ j̊cpsjqż

μ j̊bpsjqμ j̊cpsjq dsj

,

where μ j̊c represents the fixed points of the following iterations

μ
pk`1q
jc psjq “ exp

ˆ ż ´ ź
iPEpbq

i‰j

qpkq
i psiq

¯
log f̃bpsb; ŝpkq

b q dsbzj

˙
, (68)
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with

ŝpkq
b “ arg max

sb
log qpkq

b psbq .

Proof. See Appendix D.14.

Conveniently, under these constraints, every outbound message from node b will
be proportional to a Gaussian. Substituting the Laplace-approximated factor function,
we obtain:

log μ
pkq
jc psjq “

ż ´ ź
iPEpbq

i‰j

qpkq
i psiq

¯
L̃bpsb; ŝpkq

b q dsbzj ` C .

Resolving this expectation yields a quadratic form in sj, which after completing the square
leads to a proportionally Gaussian message μjcpsjq . This argument holds for any edge
adjacent to b, and therefore for all outbound messages from node b. Moreover, if the
incoming messages are represented by Gaussians as well (e.g., because these are also
computed under the mean-field variational Laplace constraint), then all beliefs on the
adjacent edges to b will also be Gaussian. This significantly simplifies the procedure of
computing the expectations, which illustrates the computational appeal of mean-field
variational Laplace.

Mean-field variational Laplace is widely used in dynamic causal modeling [53] and
more generally in cognitive neuroscience, partly because the resulting computations are
deemed neurologically plausible [54–56].

4.3.2. Expectation Maximization

Expectation Maximization (EM) can be viewed as a hybrid algorithm that combines a
structured variational factorization with a Dirac-delta constraint, where the constrained
value itself is optimized. Given a structured mean-field factorization lpaq Ď Ppaq, with a
single-edge cluster m “ j, then expectation maximization considers local factorizations of
the form

qapsaq “ δpsj ´ θjq
ź

nPlpaq
n‰m

qn
a psn

a q, (69)

where the belief for sj is constrained by a Dirac-delta distribution, similar to Section 4.2.1.
In (69), however, the variable sj represents a random variable with (unknown) value θj P Rd,
where d is the dimension of the random variable sj. We explicitly use the notation θj (as
opposed to ŝj for the data constraint in Section 4.2.1) to clarify that this value is a parameter
for the constrained belief over sj that will be optimized—that is, θj does not represent a
model parameter in itself. To make this distinction even more explicit, in the context of
optimization, we will refer to Dirac-delta constraints as point-mass constraints.

The factor-local free energy Frqa, fa; θjs then becomes a function of the θj parameter.

Theorem 7. Expectation maximization: Given a TFFG G “ pV , Eq, consider the induced subgraph
Gpb, jq (Figure 14) with a structured mean-field factorization lpbq Ď Ppbq, with local clusters
n P lpbq. Let m P lpbq be the cluster where j “ m. Given the local polytope

LpGpb, jqq “ �
qn

b for all n P lpbq s.t. (29a)
(

, (70)

the local stationary solutions to

θ j̊ “ arg min
LpGpb,jqq

Frq, f ; θjs ,
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are given by the fixed points of

μ
pk`1q
bj psjq “ exp

ˆ ż ! ź
nPlpbq
n‰m

qn,pkq
b psn

b q
)

log fbpsbq dsbzj

˙
(71a)

θ
pk`1q
j “ arg max

sj

ˆ
log μ

pk`1q
bj psjq ` log μ

pk`1q
cj psjq

˙
. (71b)

Proof. See Appendix D.15.

fb δ fc
...

μ
lbÑsl

μ kbÑ
sk

μbjÑ sj

Ð
μcj

Figure 14. Visualization of a subgraph Gpb, jq with indicated messages. The open circle indicates a
point-mass constraint of the form δpsj ´ θjq, where the value θj is optimized.

Expectation maximization was formulated in [57] as an iterative method that optimizes
log-expectations of likelihood functions, where each EM iteration is guaranteed to increase
the expected log-likelihood. Moreover, under some differentiability conditions, the EM
algorithm is guaranteed to converge [57] (Theorem 3). A detailed overview of EM for
exponential families is available in [24] (Ch. 6). A formulation of EM in terms of message
passing is given by [58], where message passing for EM is applied in a filtering and system
identification context. In [58], derivations are based on [57] (Theorem 1), whereas our
derivations directly follow from variational principles.

Example 4. Now suppose we do not know the angle θ for the state transition matrix At in
Example 2 and would like to estimate the value of θ. Moreover, further suppose that we are
interested in estimating the hyper-parameters for the prior mx0 and Vx0 , as well as the precision
matrix for the state transitions Qt. For this purpose, we changed the constraints of (25a) into EM
constraints in accordance with Theorem 7:

qpxt´1, zt, Atpθqq “ δpAtpθq ´ Atpθ̂qqqpzt|xt´1, Atpθqqqpxt´1q (72a)

qpx0, mx0 , Vx0 q “ qpx0qδpmx0 ´ m̂x0qδpVx0 ´ V̂x0q , (72b)

where we optimize θ̂, V̂x0 and m̂x0 with EM (V̂x0 is further constrained to be positive definite during
the optimization procedure). With the addition of the new EM constraints, the resulting FFG
is given in Figure 15. The hybrid message passing algorithm consists of structured variational
messages around the factor ht, and sum-product messages around wt, nt, mt and rt, and EM
messages around g0 and gt. We used identical observations as in the previous examples. The results
for the hybrid SVMP-EM-SP algorithm are given in Figure 16 along with the evaluated Bethe free
energy over all iterations.
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ŷt

rtR̂t

mtB̂t

nthtgt
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Ât

......

... ...

g0m̂x0

V̂x0

w0ν̂

V̂

Ð
μQ0w0

μQ0w1Ñμνw0Ñ

ÓμVw0

Ð
μg0mx0

μg0Vx0
Ò

μx0g1Ñ
Ð

μx0g0

μytrt Ò

μRtrtÑ

μx2
t nt

Ò
Óμx2

t mt

μotmt Ò
Óμotrt

μx1
t ntÑ

Ð
μx1

t ht

μzthtÑ
Ð

μztgt

μQtwt Ò

ÓμQtht

μgt Ât
Ò

μxt´1gtÑ
Ð

μxt´1nt´1

μxtgt`1Ñ
Ð

μxtnt

μBtmtÑ

μQt´1wtÑ
Ð

μQt´1wt´1

μQt`1wt`1Ñ
Ð

μQt`1wt

Figure 15. The FFG of the linear Gaussian state space model augmented with the EM constraints in
Example 4.
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Figure 16. (Left) The small dots indicate the noisy observations that are synthetically generated by the linear state space
model of (23) using matrices specified in (24). The posterior distribution of the hidden states inferred by structured
variational message passing is depicted with shaded regions representing plus and minus one variances. The minimum of
the evaluated Bethe free energy over iterations is Frq, f s “ 583.683. Moreover, the posterior distribution for the precision

matrix is given by Q „ W
˜«

0.00286 0.00038
0.00038 0.0.00691

ff
, 102.0

¸
. The EM estimates are θ “ π{7.821, m̂x0 “ r7.23, ´7.016s and

V̂x0 “
«

11.028 ´1.926
´1.926 10.918

ff
. (Right) Free energy plots of the 4 algorithms discussed in Examples 1–4 on the same data set.

4.4. Overview of Message Passing Algorithms

In Sections 4.1–4.3, following a high-level recipe pioneered by [15], we presented first-
principle derivations of some of the popular message passing-based inference algorithms
by manipulating the local constraints of the Bethe free energy. The results are summarized
in Table 1.
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Crucially, the method of constrained BFE minimization goes beyond the reviewed
algorithms. Through creating a new set of local constraints and following similar deriva-
tions based on variational calculus, one can obtain new message passing-based inference
algorithms that better match the specifics of the generative model or application.

5. Scoring Models by Minimized Variational Free Energy

As discussed in Section 2.2, the variational free energy is an important measure of
model performance. In Sections 5.1 and 5.2, we discuss some problems that occur when
evaluating the BFE on a TFFG. In Section 5.3, we propose an algorithm that evaluates the
constrained BFE as a summation of local contributions on the TFFG.

5.1. Evaluation of the Entropy of Dirac-Delta Constrained Beliefs

For continuous variables, data and point-mass constraints, as discussed in
Sections 4.2.1 and 4.3.2 and Appendix A, collapse the information density to infinity, which
leads to singularities in entropy evaluation [59]. More specifically, for a continuous variable
sj, the entropies for beliefs of the form qjpsjq “ δpsj ´ ŝjq and qapsaq “ qa|jpsazj|sjqδpsj ´ ŝjq
both evaluate to ´8.

In variational inference, it is common to define the VFE only with respect to the latent
(unobserved) variables [2] (Section 10.1). In contrast, in this paper, we explicitly define the
BFE in terms of an iteration over all nodes and edges (7), which also includes non-latent
beliefs in the BFE definition. Therefore, we define

qjpsjq “ δpsj ´ ŝjq ñ Hrqjs fi 0 ,

qapsaq “ qa|jpsazj|sjqδpsj ´ ŝjq ñ Hrqas fi Hrqazjs ,

where qa|jpsazj|sjq indicates the conditional belief and qazjpsazjq is the joint belief. These
definitions effectively remove the entropies for observed variables from the BFE evaluation.
Note that although qazjpsazjq is technically not a part of our belief set (7), it can be obtained
by marginalization of qapsaq (9b).

5.2. Evaluation of Node-Local Free Energy for Deterministic Nodes

Another difficulty arises with the evaluation of the node-local free energy Frqas for
factors of the form

fapsaq “ δphapsaqq . (73)

This type of node function reflects deterministic operations, e.g., hpx, y, zq “ z ´ x ´ y
corresponds to the summation z “ x ` y. In this case, directly evaluating Frqas again leads
to singularities.

There are (at least) two strategies available in the literature that resolve this issue. The
first strategy “softens” the Dirac-delta by re-defining:

fapsaq fi
1?
2πε

exp
ˆ

´ 1
2ε

hapsaq2
˙

,

with 0 ă ε ! 1 [17]. A drawback of this approach is that it may alter the model definition
in a numerically unstable way, leading to a different inference solution and variational free
energy than originally intended.

The second strategy combines the deterministic factor fa with a neighboring stochastic
factor fb into a new composite factor fc, by marginalizing over a shared variable sj, leading
to [60]

fcpscq fi
ż

δphapsaqq fbpsbq dsj ,

293



Entropy 2021, 23, 807

where sc “ tsa Y sbuzsj. This procedure has drawbacks for models that involve many
deterministic factors—namely, the convenient model modularity and resulting distributed
compatibility are lost when large groups of factors are compacted in model-specific com-
posite factors. We propose here a third strategy.

Theorem 8. Let fapsaq “ δphapsaqq, with hapsaq “ sj ´ gapsazjq, and node-local belief qapsaq “
qj|apsj|sazjq qazjpsazjq. Then, the node-local free energy evaluates to

Frqa, fas “
#

´Hrqazjs if qj|apsj|sazjq “ δpsj ´ gapsazjqq
8 otherwise.

Proof. See Appendix D.16.

An example that evaluates the node-local free energy for a non-trivial deterministic
node can be found in Appendix C.

The equality node is a special case deterministic node, with a node function of the
form (3). The argument of (Theorem 8) does not directly apply to this node. As the equality
node function comprises two Dirac-delta functions, it can not be written in the form of
Theorem 8. However, we can still reduce the node-local free energy contribution.

Theorem 9. Let fapsaq “ δpsj ´ siq δpsj ´ skq, with node-local belief qapsaq “ qik|jpsi, sk|sjq qjpsjq.
Then, the node-local free energy evaluates to

Frqa, fas “
#

´Hrqjs if qik|jpsi, sk|sjq “ δpsj ´ siq δpsj ´ skq
8 otherwise.

Proof. See Appendix D.17.

5.3. Evaluating the Variational Free Energy

We propose here an algorithm that evaluates the BFE on a TFFG representation of a
factorized model. The algorithm is based on the following results:

• The definitions for the computation of data-constrained entropies ensure that only
variables with associated stochastic beliefs count towards the Bethe entropy. This
makes the BFE evaluation consistent with Theorems 3 and 7, where the single-variable
beliefs for observed variables are excluded from the BFE definition;

• We assume that a local mean-field factorization lpaq is available for each a P V
(Section 4.1). If the mean-field factorization is not explicitly defined, we assume
lpaq “ tau is the unfactored set;

• Deterministic nodes are accounted for by Theorem 8, which reduces the joint entropy
to an entropy over the “inbound” edges. Although the belief over the “inbounds”
qazjpsazjq is not a term in the Bethe factorization (8), it can simply be obtained by
marginalization of qapsaq;

• The equality node is a special case, where we let the node entropy discount the
degree of the associated variable in the original model definition. While the BFE
definition on a TFFG (7) does not explicitly account for edge degrees, this mechanism
implicitly corrects for “double-counting” [17]. In this case, edge selection for counting
is arbitrary, because all associated edges are (by definition) constrained to share the
same belief (Section 2.1, Theorem 9).

The decomposition of (7) shows that the BFE can be computed by an iteration over the
nodes and edges of the graph. As some contributions to the BFE might cancel each other,
the algorithm first tracks counting numbers ua for the average energies

Uarqas “ ´
ż

qapsaq log fapsaq dsa ,
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and counting numbers hk for the (joint) entropies

Hrqks “ ´
ż

qkpskq log qkpskq dsk ,

which are ultimately combined and evaluated. We used an index k to indicate that the
entropy computation may include not only the edges but a generic set of variables. We will
give the definition of the set that k belongs to in Algorithm 1.

Algorithm 1 Evaluation of the Bethe free energy on a Terminated Forney-style factor graph.

given a TFFG G “ pV , Eq
given a local mean-field factorization lpaq for all a P V
define qjpsjq “ δpsj ´ ŝjq ñ Hrqjs fi 0 Ź Ignore entropy of Dirac-delta constrained
beliefs
define qapsaq “ qa|jpsazj|sjqδpsj ´ ŝjq ñ Hrqas fi Hrqazjs Ź Reduce entropy of Dirac-delta
constrained joint beliefs
define K “ ta, azi, n, for all a P V , i P Epaq, n P lpaqu the set of (joint) belief indices
initialize counting numbers ua “ 0 for all a P V , hk “ 0 for all k P K

for all nodes a P V do

if a is a stochastic node then

ua `“ 1 Ź Count the average energy
for all clusters n P lpaq do

hn `“ 1 Ź Count the (joint) cluster entropy
end for

else if a is an equality node then

Select an edge j P Epaq
hj `“ 1 Ź Count the variable entropy

else Ź Deterministic node a
Obtain the node function fapsaq “ δpsj ´ gapsazjqq
hazj `“ 1 Ź Count the (joint) entropy of the inbounds

end if

end for

for all edges i P E do

hi ´“ 1 Ź Discount the variable entropy
end for

U “ ř
aPV uaUarqas

H “ ř
kPK hk Hrqks

return F “ U ´ H

6. Implementation of Algorithms and Simulations

We have developed a probabilistic programming toolbox ForneyLab.jl in the Julia
language [61,62]. The majority of algorithms that are reviewed in Table 1 have been
implemented in ForneyLab along with variety of demos (https://github.com/biaslab/
ForneyLab.jl/tree/master/demo, accessed on 23 June 2021). ForneyLab is extendable and
supports postulating new local constraints of the BFE for the creation of custom message
passing-based inference algorithms.
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In order to limit the length of this paper, we refer the reader to the demonstration
folder of ForneyLab and to several of our previous papers with code. For instance, our
previous work in [63] implemented a mean-field variational Laplace propagation for
the hierarchical Gaussian filter (HGF) [64]. In the follow-up work [65], inference results
improved by changing to structured factorization and moment-matching local constraints.
In that case, modification of local constraints created a hybrid EP-VMP algorithm that
better suited the model. Moreover, in [13], we formulated the idea of chance constraints
in the form of violation probabilities leading to a new message passing algorithm that
supports goal-directed behavior within the context of active inference. A similar line of
reasoning led to improved inference procedures for auto-regressive models [66].

7. Related Work

Our work is inspired by the seminal work [17], which discusses the equivalence
between the fixed points of the belief propagation algorithm [32] and the stationary points
of the Bethe free energy. This equivalence is established through a Lagrangian formalism,
which allows for the derivation of Generalized Belief Propagation (GBP) algorithms by
introducing region-based graphs and the region-based (Kikuchi) free energy [16].

Region graph-based methods allows for overlapping clusters (Section 4.1) and thus
offer a more generic message passing approach. The selection of appropriate regions (clus-
ters), however, proves to be difficult, and the resulting algorithms may grow prohibitively
complex. In this context, Ref. [67] addresses how to manipulate regions and manage the
complexity of GBP algorithms. Furthermore, Ref. [68] also establishes a connection between
GBP and expectation propagation (EP) by introducing structured region graphs.

The inspirational work of [15] derives message passing algorithms by minimization
of α-divergences. The stationary points of α-divergences are obtained by a fixed point
projection scheme. This projection scheme is reminiscent of the minimization scheme of
the expectation propagation (EP) algorithm [18]. Compared to [15], our work focuses on a
single divergence objective (namely, the VFE). The work of [12] derives the EP algorithm
by manipulating the marginalization and factorization constraints of the Bethe free energy
objective (see also Section 4.2.3). The EP algorithm is, however, not guaranteed to converge
to a minimum of the associated divergence metric.

To address the convergence properties of the algorithms that are obtained by region
graph methods, the outstanding work of [33] derives conditions on the region counting
numbers that guarantee the convexity of the underlying objective. In general, however, the
constrained Bethe free energy is not guaranteed to be convex and therefore the derived
message passing updates are not guaranteed to converge.

8. Discussion

The key message in this paper is that a (variational) Bayesian model designer may
tune the tractability-accuracy trade-off for evidence and posterior evaluation through
constraint manipulation. It is interesting to note that the technique to derive message
passing algorithms is always the same. We followed the recipe pioneered in [15] to derive a
large variety of message passing algorithms solely through minimizing constrained Bethe
free energy. This minimization leads to local fixed-point equations, which we can interpret
as message passing updates on a (terminated) FFG. The presented lemmas showed how
the constraints affect the Lagrangians locally. The presented theorems determined the
stationary solutions of the Lagrangians and obtained the message passing equations. Thus,
if a designer proposes a new set of constraints, then the first place to start is to analyze
the effect on the Lagrangian. Once the effect of the constraint on the Lagrangian is known,
then variational optimization may result in stationary solutions that can be obtained by a
fixed-point iteration scheme.

In this paper, we selected the Forney-style factor graph framework to illustrate our
ideas. FFGs are mathematically comparable to the more common bi-partite factor graphs
that associate round nodes with variables and square nodes with factors [20]. Bi-partite
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factor graphs require two distinct types of message updates (one leaving variable nodes and
one leaving factor nodes), while message passing on a (T)FFG requires only a single type
of message update [69]. The (T)FFG paradigm thus substantially simplifies the derivations
and resulting message passing update equations.

The message passing update rules in this paper are presented without guarantees on
convergence of the (local) minimization process. In practice, however, algorithm conver-
gence can be easily checked by evaluating the BFE (Algorithm 1) after each belief update.

In future work, we plan on extending the treatment of constraints to formulate
sampling-based algorithms such as importance sampling and Hamiltonian Monte Carlo in
a message passing framework. While introducing SVMP, we have limited the discussion to
local clusters that are not overlapping. We plan to extend variational algorithms to include
local clusters that are overlapping without altering the underlying free-energy objective or
the graph structure [16,67].

9. Conclusions

In this paper, we formulated a message-passing approach to probabilistic inference
by identifying local stationary solutions of a constrained Bethe free energy objective
(Sections 3 and 4). The proposed framework constructs a graph for the generative model
and specifies local constraints for variational optimization in a local polytope. The con-
straints are then imposed on the variational objective by a Lagrangian construct. Uncon-
strained optimization of the Lagrangian then leads to local expressions of stationary points,
which can be obtained by iterative execution of the resulting fixed point equations, which
we identify with message passing updates.

Furthermore, we presented an approach to evaluate the BFE on a (terminated) Forney-
style factor graph (Section 5). This procedure allows an algorithm designer to readily assess
the performance of algorithms and models.

We have included detailed derivations of message passing updates (Appendix D)
and hope that the presented formulation inspires the discovery of novel and customized
message passing algorithms.
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Abbreviations

The following abbreviations are used in this manuscript:

BFE Bethe Free Energy
BP Belief Propagation
DC Data Constraint
EM Expectation Maximization
EP Expectation Propagation
FFG Forney-style Factor Graph
GBP Generalized Belief Propagation
LP Laplace Propagation
MFVLP Mean-Field Variational Laplace
MFVMP Mean-Field Variational Message Passing
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NLE Negative Log-Evidence
TFFG Terminated Forney-style Factor Graph
VFE Variational Free Energy
VMP Variational Message Passing
SVMP Structured Variational Message Passing
SP Sum-Product

Appendix A. Free Energy Minimization by Variational Inference

In this section, we present a pedagogical example of inductive inference. After we
establish an intuition, we apply the same principles to a more general context in the
further sections. We follow Caticha [42,70], who showed that a constrained free energy
functional can be interpreted as a principled objective measure for inductive reasoning, see
also [71,72]. The calculus of variations offers a principled method for optimizing this free
energy functional.

In this section, we assume an example model

f py, θq “ fypy, θq fθpθq , (A1)

with observed variables y and a single parameter θ.
We define the (variational) free energy (VFE) as

Frq, f s “
ĳ

qpy, θq log
qpy, θq
f py, θq dy dθ . (A2)

The goal is to find a posterior

q˚ “ arg min
qPQ

Frq, f s (A3)

that minimizes the free energy subject to some pre-specified constraints. These constraints
may include form or factorization constraints on q (to be discussed later) or relate to
observations of a signal y.

As an example, assume that we obtained some measurements y “ ŷ and wish to
obtain a posterior marginal belief q˚pθq over the parameter. We can then incorporate the
data in the form of a data constraintż

qpy, θq dθ “ δpy ´ ŷq , (A4)

where δ defines a Dirac-delta. The constrained free energy can be rewritten by including
Lagrange multipliers as

Lrq, f s “ Frq, f s ` γ

ˆĳ
qpy, θq dy dθ ´ 1

˙
`

ż
λpyq

ˆż
qpy, θq dθ ´ δpy ´ ŷq

˙
dy , (A5)

where the first term specifies the (to be minimized) free energy objective, the second term a
normalization constraint, and the third term the data constraint. Optimization of (A5) can
be performed using variational calculus.

Variational calculus considers the impact of a variation in qpy, θq on the Lagrangian
Lrq, f s. We define the variation as

δqpy, θq Δ“ εφpy, θq ,

where ε Ñ 0, and φ is a continuous and differentiable “test” function. The fundamental
theorem of variational calculus states that the stationary solutions q˚ are obtained by
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setting δL{δq “ 0, where the functional derivative δL{δq is implicitly defined by Appendix
D in [2]:

dLrq ` εφ, f s
dε

ˇ̌̌
ˇ
ε“0

“
ĳ

δL
δq

py, θq φpy, θq dy dθ . (A6)

Equation (A6) provides a way to derive the functional derivative through ordinary differ-
entiation. For example, we take the Lagrangian defined by (A5) and work out the left hand
side of (A6):

dLrq ` εφ, f s
dε

ˇ̌̌
ˇ
ε“0

“ dFrq ` εφ, f s
dε

ˇ̌̌
ˇ
ε“0

` d
dε

γ

ĳ
pq ` εφq dy dθ

ˇ̌̌
ˇ
ε“0

` d
dε

ż
λpyq

ż
pq ` εφq dθ dy

ˇ̌̌
ˇ
ε“0

(A7a)

“
ĳ

d
dε

ˆ
pq ` εφq log

pq ` εφq
f

˙ˇ̌̌
ˇ
ε“0

dy dθ ` γ

ĳ
d
dε

pq ` εφq
ˇ̌̌
ˇ
ε“0

dy dθ

`
ż

λpyq
ż

d
dε

pq ` εφq
ˇ̌̌
ˇ
ε“0

dθ dy (A7b)

“
ĳ ”

log
qpy, θq
f py, θq ` 1 ` γ ` λpyqloooooooooooooooomoooooooooooooooon

δLrq, f s{δq

ı
φpy, θq dy dθ . (A7c)

Note that, since (A7c) has been written in similar form as (A6), it is easy to identify
the functional derivative. This procedure is one of many ways to obtain the functional
derivatives [73].

Setting δLrq, f s{δq “ 0 we find the stationary solution as

q˚py, θq “ expp´1 ´ γ ´ λpyqq f py, θq (A8a)

“ 1
Z

expp´λpyqq f py, θq , (A8b)

with Z “ ť
expp´λpyqq f py, θq dy dθ “ exppγ ` 1q. In order to determine the Lagrange

multipliers γ and λpyq, we must substitute the stationary solution (A8b) back into the
constraints. The normalization constraint evaluates to

1
Z

ĳ
expp´λpyqq f py, θq dy dθ “ 1. (A9)

We find that (A9) is always satisfied since Z “ ť
expp´λpyqq f py, θq dy dθ by definition.

Note, however, that the computation of the normalization constant still depends on the
undetermined Lagrange multiplier λpyq.

The data constraint evaluates toż
q˚py, θq dθ “ 1

Z
expp´λpyqq

ż
f py, θq dθ “ δpy ´ ŷq (A10)

which can be rewritten as
expp´λpyqq

Z
“ δpy ´ ŷqş

f py, θq dθ
. (A11)

Equation (A11) shows that λpyq can satisfy this constraint only if it is proportional to
δpy ´ ŷq. Indeed, substitution of (A11) into (A8b) gives

q˚py, θq “ f py, θqş
f py, θq dθ

δpy ´ ŷq ,

299



Entropy 2021, 23, 807

and the posterior for the parameters evaluates to

q˚pθq “
ż

q˚py, θqdy

“
ż

f py, θqş
f py, θq dθ

δpy ´ ŷqdy

“ f pŷ, θqş
f pŷ, θq dθ

“ fypŷ, θq fθpθqş
fypŷ, θq fθpθq dθ

,

which we recognize as the Bayes rule.
Note that the Bayes rule was derived here as a special case of constrained variational

free energy minimization when data constraints are present. This derivation of the Bayes
rule seems unnecessarily tedious but the value of this approach to inductive inference is
that the same principle applies when other (not data) constraints on q are present.

Appendix B. Lagrangian Optimization and the Dual Problem

With the addition of Lagrange multipliers to the Bethe functional, the resulting La-
grangian depends both on the variational distribution qpsq and the Lagrange multipliers
Ψpsq. Formally, the introduction of the Lagrange multipliers allows us to rewrite the
constrained optimization on the local polytope as an unconstrained optimization. We
follow [33], and write

min
qPLpGq

Frqs “ min
q

max
Ψ

Lrq, Ψs .

Weak duality [74] (Chapter 5) then states that

min
q

max
Ψ

Lrq, Ψs ě max
Ψ

min
q

Lrq, Ψs .

The minimization with respect to q then yields a solution that depends on the Lagrange
multipliers, as

q˚ps; Ψq “ arg min
q

Lrq, Ψs .

For any given q the Lagrangian is concave in Ψ. Therefore, substituting q˚ in the Lagrangian,
the maximization over Lrq˚, Ψs yields the unique solution

Ψ˚psq “ arg max
Ψ

Lrq˚, Ψs .

Stationary solutions are then given by

q˚ps; Ψ˚q “ arg min
qPLpGq

Frqs .

In the current paper, we consider factorized q’s (e.g., (8)), and consider variations with
respect to the individual factors. We then need to show that the combined stationary points
of the individual factors also constitute a stationary point of the total objective.

Consider a Lagrangian having multiple arguments, i.e.,

Lrqs “ Lrq1, . . . , qn, . . . , qNs (A12)

q fi rq1, . . . , qNsJ . (A13)
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We want to determine the first total variation of the Lagrangian given by

δL “ Lrq ` εφs ´ Lrqs (A14)

φpsq fi rφ1psq, . . . , φNpsqsJ . (A15)

By a Taylor series expansion on ε we obtain [73] (A.14) and [75] (Equation (23.2))

Lrq ` εφs ´ Lrqs “
Kÿ

k“1

1
k!

d
dεk

´
Lkrq ` εφs

¯
εk ` OpεK`1q . (A16)

Omitting all terms higher than the first order, we obtain the first variation as

δL “ d
dε

pLrq ` εφsqε . (A17)

Rearranging the terms and letting ε vanish, we obtain the following expression

lim
εÑ0

δL
ε

“ d
dε

pLrq ` εφsq
ˇ̌̌
ˇ
ε“0

. (A18)

Let us assume that the Frechet derivative exists [73] such that we can obtain the following
integral representation (It should be noted that this integral expression is not always
possible for a generic Lagrangian. That is why we need to assume that the Frechet derivative
exists)

d
dε

pLrq ` εφsq
ˇ̌̌
ˇ
ε“0

“
ż

φpsqJ δL
δq

ds (A19)

where δL
δq is the variational derivative

δL
δq

“
„

δL
δq1

, . . . ,
δL

δqN

jJ
(A20)

δqn “ εφnpsq . (A21)

This means that (A19) can be written as [75] (Equation (22.5)) (Here, we use a more generic
Lagrangian and our notation is different than in [75]; howeverm the expression is motivated
again by a Taylor series expansion on ε)

lim
εÑ0

δL
ε

“ d
dε

pLrq ` εφsq
ˇ̌̌
ˇ
ε“0

“
ÿ
n

ż
φpsq δL

δqn
ds . (A22)

Fundamental theorem of variational calculus states that in order for a point to be stationary,
the first variation needs to vanish. In order for the first variation to vanish, it is sufficient to
have vanishing of the variational derivatives

δL
δqn

“ 0 for every n “ 1, . . . , N . (A23)

Vanishing of individual variational derivatives will mean that that the local stationary
points will also correspond to a global stationary point.

Appendix C. Local Free Energy Example for a Deterministic Node

Theorem 8 tells us how to evaluate the node-local free energy for a deterministic node.
As an example, consider the node function fapy, xq “ δpy ´ sgnpxqq, with y P t´1, 1u and
x P R as depicted in Figure A1.
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sgn
μxaÑ
Ð
μax

x
μayÑ
Ð
μya

y

Figure A1. Messages around a “sign” node.

Interestingly, there is information loss in this node because the “sign” mapping is
not bijective. Given an incoming Bernoulli distributed message μyapyq “ Berpy|pq, the
backward outgoing message is derived as

μaxpxq “
ż

μyapyq δpy ´ sgnpxqq dy

“
#

p if x ě 0
1 ´ p if x ă 0 .

Given a Gaussian distributed incoming message μxapxq “ Npx|m, ϑq, the resulting belief
then becomes

qxpxq “ μxapxq μaxpxqş
μxapxq μaxpxq dx

“
# p

p`Φ´2pΦ Npx|m, ϑq if x ě 0
1´p

p`Φ´2pΦ Npx|m, ϑq if x ă 0 ,

with Φ “ ş0
´8 Npx|m, ϑq dx . We define a truncated Gaussian distribution as

Tpx|m, ϑ, a, bq “
#

1
Φpa,b;m,ϑqNpx|m, ϑq if a ď x ď b ,

0 otherwise,

with Φpa, b; m, ϑq “ şb
a Npx|m, ϑq dx. This leads to

qxpxq “ pp1 ´ Φq
p ` Φ ´ 2pΦlooooooomooooooon

K

Tpx|m, ϑ, ´8, 0q ` p1 ´ pqΦ
p ` Φ ´ 2pΦlooooooomooooooon

1´K

Tpx|m, ϑ, 0, 8q ,

as a truncated Gaussian mixture.
The node-local free energy then evaluates to

Frqa, fas “ ´Hrqxs

“
ż 0

´8
qxpxq log qxpxq dx `

ż 8

0
qxpxq log qxpxq dx

“ ´KHrTpm, ϑ, ´8, 0qs ` K log K ´ p1 ´ KqHrTpm, ϑ, 0, 8qs ` p1 ´ Kq logp1 ´ Kq
“ ´KHrTpm, ϑ, ´8, 0qs ´ p1 ´ KqHrTpm, ϑ, 0, 8qs ´ HrBerpKqs ,

as a weighted sum of entropies, which can be computed analytically.

Appendix D. Proofs

Appendix D.1. Proof of Lemma 1

Proof. We apply the variation εφb to qb and, as discussed in Appendix A, we can identify
the functional derivative δLb{δqb through ordinary differentiation as

dLbrqb ` εφb, fbs
dε

ˇ̌̌
ˇ
ε“0

“
ż ˜ δLb{δqbhkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkj

log
qbpsbq
fbpsbq ` 1 ` ψb ´

ÿ
iPEpbq

λibpsiq
¸

φbpsbq dsb .
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Setting the functional derivative to zero and identifying

μibpsiq “ exppλibpsiqq (A24)

ψb “ log
ż

fbpsbq
ź

iPEpbq
μibpsiqdsb ´ 1 (A25)

yields the stationary solutions (18) in terms of Lagrange multipliers that are to be deter-
mined.

Appendix D.2. Proof of Lemma 2

Proof. We follow the same procedure as in Appendix D.1, where we apply a variation εφj
to qj (instead of qb), and identify the functional derivative δLj{δqj through

dLjrqj ` εφjs
dε

ˇ̌̌
ˇ
ε“0

“
ż ˜ δLj{δqjhkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkj

´ log qjpsjq ´ 1 ` ψj `
ÿ

aPVpjq
λjapsjq

¸
φjpsjq dsj .

As the TFFG is terminated, each edge has 2 degrees and the node-induced edge set has
only 2 factors, which we denote by fb and fc. Then, setting the functional derivative to zero
and identifying

μjapsjq “ exp
`
λjapsjq

˘
(A26)

ψj “ ´ log
ż

μjbpsjqμjcpsjqdsj ` 1 (A27)

yields the stationary solution of (20) in terms of the Lagrange multipliers.

Appendix D.3. Proof of Theorem 1

Proof. The local polytope of (14) constructs the Lagrangians of (17) and (19). Substituting
the stationary solutions from Lemmas 1 and 2 in the marginalization constraint,

qjpsjq “
ż

qbpsbq dsbzj ,

we obtain the following relation

μjbpsjqμjcpsjq
Zj

“ 1
Zb

ż
fbpsbq

ź
iPEpbq

μibpsiq dsbzj ,

where we defined the following normalization constants to ensure that the computed
marginals are normalized:

Zj “
ż

μjbpsjqμjcpsjqdsj

Zb “
ż

fbpsbq
ź

iPEpbq
μibpsiqdsb .

Extracting μjb from the integral
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μjbpsjqμjcpsjq
Zj

“ μjbpsjq
Zb

ż
fbpsbq

ź
iPEpbq

i‰j

μibpsiq dsbzj ,

μjcpsjq “ Zj

Zb

ż
fbpsbq

ź
iPEpbq

i‰j

μibpsiq dsbzj (A28)

and cancelling μjb on both sides then yields the condition on the functional form of the
message μjc.

We now need to show that the fixed points of (22) satisfy (A28). Let us assume that
the fixed points exist, such that μ

pkq
jc “ μ

pk`1q
jc for some k. Then, we want to show that at the

fixed points the following equality holds:

μ
pkq
jc psjq “

Zpkq
j

Zpkq
b

ż
fbpsbq

ź
iPEpbq

i‰j

μ
pkq
ib psiq dsbzj .

Substituting (22), we need to show that

μ
pkq
jc psjq “

Zpkq
j

Zpkq
b

μ
pk`1q
jc psjq .

Since μ
pkq
jc “ μ

pk`1q
jc , we can rearrange

μ
pkq
jc

¨
˝1 ´

Zpkq
j

Zpkq
b

˛
‚“ 0 .

From Zb, we obtain

Zpkq
b “

ż
μ

pkq
jb psjq

ż
fbpsbq

ź
iPEpbq

i‰j

μ
pkq
ib psiq dsbzjdsj

“
ż

μ
pkq
jb psjqμ

pk`1q
jc psjqdsj

“
ż

μ
pkq
jb psjqμ

pkq
jc psjqdsj

“ Zpkq
j ,

which implies that the fixed points satisfy the desired condition. This proves that the
stationary solutions to the BFE within the local polytope can be obtained as fixed points of
the sum-product update equations.

Appendix D.4. Proof of Lemma 3

Proof. Substituting the definition of (32), we can re-write the second term of Lagrangian (30)
as ż ! ź

nPlpbq
qm

b psm
b q

)
log fbpsbq dsb “

ż
qm

b psm
b q

ˆ ż ! ź
nPlpbq
n‰m

qn
b psn

b q
)

log fbpsbq dszm
b

˙
dsm

b

“
ż

qm
b psm

b q log f̃ m
b psm

b q dsm
b .
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We apply the variation εφm
b to qm

b and identify the functional derivative δLm
b {δqm

b , as

dLm
b rqm

b ` εφm
b s

dε

ˇ̌̌
ˇ
ε“0

“
ż ˜ δLm

b {δqm
bhkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkj

log
qm

b psm
b q

f̃ m
b psm

b q ` 1 ` ψm
b ´

ÿ
iPm

λibpsiq
¸

φm
b psm

b q dsm
b ,

whose functional form we recognize from Appendix D.1. Setting the functional derivative
to zero and again identifying μibpsiq “ exp λibpsiq, yields the stationary solutions of (31).

Appendix D.5. Proof of Theorem 2

Proof. The local polytope of (33) constructs the Lagrangians Lm
b and Lj as (30) and (19),

respectively. We substitute the stationary solutions of Lemmas 2 and 3 in the local marginal-
ization constraint (29b), which yields

qjpsjq “
ż

qm
b psm

b q dsm
bzj .

Following the structure of the proof in Appendix D.3, we obtain the following condition
for the stationary solutions in terms of messages:

μjbpsjqμjcpsjq
Zj

“ μjbpsjq
Zm

b

ż
f̃ m
b psm

b q
ź
iPm
i‰j

μibpsiqdsm
bzj

μjcpsjq
Zj

“ 1
Zm

b

ż
f̃ m
b psm

b q
ź
iPm
i‰j

μibpsiqdsm
bzj . (A29)

Now we want to show that the fixed points of the message updates (36) satisfy (A29). Let
us assume that the fixed points exists for some k such that μ

pk`1q
jc “ μ

pkq
jc . Then, we will

show that the fixed points satisfy

μ
pkq
jc psjq
Zpkq

j

“ 1

Zm,pkq
b

ż
f̃ m,pkq
b psm

b q
ź
iPm
i‰j

μ
pkq
ib psiqdsm

bzj . (A30)

Similar to Appendix D.3, it will suffice to show that Zm,pkq
b “ Zpkq

j at the fixed points.

Arranging the order of integration in normalization constant Zm,pkq
b , we obtain

Zm,pkq
b “

ż
μ

pkq
jb psjq

ż
f̃ m,pkq
b psm

b q
ź
iPm
i‰j

μ
pkq
ib psiqdsm

bzjdsj

“
ż

μ
pkq
jb psjqμ

pk`1q
jc psjqdsj

“
ż

μ
pkq
jb psjqμ

pkq
jc psjqdsj

“ Zpkq
j .

By the same line of reasoning as in Appendix D.3, this shows that the fixed points of
the message updates (36) leads to stationary distributions of the Bethe free energy with
structured factorization constraints.
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Appendix D.6. Proof of Corollary 1

Proof. For a fully factorized local variational distribution (41), the augmented node func-
tion f̃ m

b psm
b q of (32) reduces to

f̃ jpsjq “ exp
ˆ ż ! ź

iPEpbq
i‰j

qipsiq
)

log fbpsbq dsbzj

˙
. (A31)

The message of (36) then reduces to

μjcpsjq “ f̃ jpsjq ,

which, after substitution, recovers (43).

Appendix D.7. Proof of Lemma 4

Proof. When we apply the variation εφb to qb and identify the functional derivative δLb{δqb,
we recover the result from Appendix D.1, which leads to a solution of the form (47).

Appendix D.8. Proof of Theorem 3

Proof. We construct the Lagrangian of (46), which by Lemma 4 leads to a solution of the
form (47). Substituting this solution in the constraint of (45) leads to

„ μbjpsjqhkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkjż
fbpsbq

ź
iPEpbq

i‰j

μibpsiq dsbzj

j
μjbpsjq “ δpsj ´ ŝjq . (A32)

This equation is then satisfied by (50), which proves the theorem.

Appendix D.9. Proof of Lemma 5

Proof. The proof follows directly from Appendix D.1, with f̃bpsb; ŝbq substituted for
fbpsbq.

Appendix D.10. Proof of Theorem 4

Proof. Given the result of Lemma 5, the proof follows Appendix D.3, where Laplace
propagation chooses the expansion point to be the fixed point ŝb “ arg max log qbpsbq.

For all second-order fixed points of the Laplace iterations, it holds that ŝb is a fixed
point if and only if it is a local optimum of qb. The proof is then concluded by Lemma 1
in [76].

Appendix D.11. Proof of Lemma 6

Proof. We note that the Lagrange multiplier ηjb does not depend on sj because the expecta-
tion removes all the functional dependencies on sj. Furthermore, the expectations of Tjpsjq
have the same dimension as the function Tjpsjq. This means that the dimension of ηjb needs
to be compatible with that of Tjpsjq so that we can write the constraint as an inner product.

We apply the variation εφb to qb and identify the functional derivative δLb{δqb, as

dLbrqb ` εφb, fbs
dε

ˇ̌̌
ˇ
ε“0

“
ż ˜ δLb{δqbhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

log
qbpsbq
fbpsbq ` 1 ` ψb ´

ÿ
iPEpbq

i‰j

λibpsiq ´ ηJ
jb Tjpsjq

¸
φbpsbq dsb .

306



Entropy 2021, 23, 807

Setting the functional derivative to zero and identifying μibpsiq “ exp λibpsiq for i ‰ j and
identifying μjbpsjq “ exṕ ηJ

jb Tjpsjq
¯

yields the functional form of the stationary solution
as (62).

Appendix D.12. Proof of Lemma 7

Proof. We follow a similar procedure as in Appendix D.11 and apply the variation εφj to
qj, which identifies the functional derivative δLj{δqj, as

dLrqj ` εφjs
dε

ˇ̌̌
ˇ
ε“0

“
ż ˜ δLj{δqjhkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkj

´ log qjpsjq ´ 1 ` ψj `
ÿ

aPVpjq
ηJ

ja Tjpsjq
¸

φjpsjq dsj .

Setting the functional derivative to zero and following the same procedure as in
Appendix D.2 yields (64).

Appendix D.13. Proof of Theorem 5

Proof. By substituting the stationary solutions given by Lemmas 6 and 7 into the moment-
matching constraint (59), we obtain the following condition:ż

Tjpsjqqjpsjq dsj “
ż

Tjpsjqqbpsbq dsb

1
Zj

ż
Tjpsjq exṕ rηjb ` ηjcsJTjpsjq

¯
dsj “ 1

Z̃j

ż
Tjpsjq

μjbpsjqhkkkkkkkikkkkkkkj
exṕ ηJ

jb Tjpsjq
¯ „ μ̃jcpsjqhkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkjż

fbpsbq
ź

iPEpbq
i‰j

μibpsiq dsbzj

j
dsj

“
ż

Tjpsjqq̃jpsjq dsj ,

where we recognize the sum-product message μ̃jcpsjq, which we multiply by the incoming
exponential family message μjbpsjq and normalize to obtain q̃jpsjq. By defining ηj “ ηjb ` ηjc,
normalization constants are given by

Zjpηjq “
ż

exṕ ηJ
j Tjpsjq

¯
dsj

Z̃j “
ż

exp
´

ηJ
jb Tjpsjq

¯
μ̃jcpsjqdsj .

Computing the moments allows us to determine the exponential family parameter by
solving the following equation [24] (Proposition 3.1)

∇ηj log Zjpηjq “
ż

q̃jpsjq Tjpsjq dsj .

Suppose you obtain a solution to this equation denoted by η̃j, this allows us to approximate
the sum-product message μ̃jcpsjq by an exponential family message whose parameter is
given by

ηjc “ η̃j ´ ηjb .

Now let us assume that the fixed points of the sum-product iterations μ̃
pkq
jc psjq “

μ̃
pk`1q
jc psjq and the incoming exponential family messages μ

pkq
jb psjq “ μ

pk`1q
jb psjq exist for

some k. Then, we need to show that the existence of these fixed points implies the existence
of the fixed points of μ

pk`1q
jc “ μ

pkq
jc .
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By moment-matching, we have

η
pk`1q
jc “ η̃

pk`1q
j ´ η

pk`1q
jb

“ η̃
pkq
j ´ η

pkq
jb

“ η
pkq
jc ,

which proves the existence of the fixed point of μjc if μ̃jc and μjbpsjq have fixed points.

Appendix D.14. Proof of Theorem 6

Proof. The proof follows directly from substituting the Laplace-approximated factor-
function (53) in the naive mean-field result of Corollary. 1.

Appendix D.15. Proof of Theorem 7

Proof. In order to obtain the optimal parameter value θ j̊ , we view the free energy as a
function of θj. As there are two node-local free energies that depend upon θj, this leads to

θ j̊ “ arg min
θj

ˆ
Frqb, fb; θjs ` Frqc, fc; θjs

˙

“ arg max
θj

ˆ ż !
δpsj ´ θjq

ź
nPlpbq
n‰m

qn
b psn

b q
)

log fbpsbq dsb `
ż !

δpsj ´ θjq
ź

nPlpcq
n‰m

qn
c psn

c q
)

log fcpscq dsc

˙

“ arg max
θj

ˆ ż ! ź
nPlpbq
n‰m

qn
b psn

b q
)

log fbpsbzj, θjq dsbzj `
ż ! ź

nPlpcq
n‰m

qn
c psn

c q
)

log fcpsczj, θjq dsczj

˙

“ arg max
sj

ˆ
log μbjpsjq ` log μcjpsjq

˙
,

where in the last step we replaced θj with sj for convenience. Here, we recognize μbj and
μcj as the structured variational updates of Theorem 2. Identification of the fixed points
can then be obtained by [57] (Corollary 2). For a rigorous discussion on convergence of the
EM algorithm, we refer to [77] (Corollary 32), [24] (Chapter 6) and [57] (Section 3).

Appendix D.16. Proof of Theorem 8

Proof. Substituting for qapsaq, the node-local free energy becomes

Frqa, fas “
ż

qapsaq log
qapsaq
fapsaq dsa

“
ż

qapsaq log
qj|apsj|sazjq

fapsaq dsa `
ż

qapsaq log qazjpsazjq dsa

“
ż

qazjpsazjqqj|apsj|sazjq log
qj|apsj|sazjq

fapsaq dsa `
ż

qazjpsazjqqj|apsj|sazjq log qazjpsazjq dsa

“
ż

qazjpsazjq
«ż

qj|apsj|sazjq log
qj|apsj|sazjq

fapsaq dsj

ff
dsazj `

ż
qazjpsazjq log qazjpsazjq dsazj

“ Eqazj

”
D

”
qj|a} fa

ıı
´ Hrqazjs ,
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where the first term expresses an expected Kullback–Leibler divergence, and the second
term is a negative entropy. The only possibility for the local free energy to becomes finite,
is when qj|apsj|sazjq “ fapsaq “ δpsj ´ gapsazjqq. We then have:

Frqa, fas “
#

´Hrqazjs if qj|apsj|sazjq “ δpsj ´ gapsazjqq
8 otherwise.

Appendix D.17. Proof of Theorem 9

Proof. The proof is similar to Appendix D.16. Substituting for qapsaq, the node-local free
energy becomes

Frqa, fas “
ż

qapsaq log
qapsaq
fapsaq dsa

“
ż

qapsi, sj, skq log
qik|jpsi, sk|sjq
fapsi, sj, skq dsi dsj dsk `

ż
qjpsjq log qjpsjq dsj

“ Eqj

”
D

”
qik|j} fa

ıı
´ Hrqjs .

In contrast to Appendix D.16, here we have a joint belief within the divergence with a
single conditioning variable. Conditioning on sj (or by symmetry si or sk) determines the
realization of the other variables. Therefore, we have:

Frqa, fas “
#

´Hrqjs if qik|jpsi, sk|sjq “ δpsj ´ siq δpsj ´ skq
8 otherwise.
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Abstract: Network analysis provides a rich framework to model complex phenomena, such as human
brain connectivity. It has proven efficient to understand their natural properties and design predictive
models. In this paper, we study the variability within groups of networks, i.e., the structure of
connection similarities and differences across a set of networks. We propose a statistical framework
to model these variations based on manifold-valued latent factors. Each network adjacency matrix
is decomposed as a weighted sum of matrix patterns with rank one. Each pattern is described as
a random perturbation of a dictionary element. As a hierarchical statistical model, it enables the
analysis of heterogeneous populations of adjacency matrices using mixtures. Our framework can
also be used to infer the weight of missing edges. We estimate the parameters of the model using
an Expectation-Maximization-based algorithm. Experimenting on synthetic data, we show that the
algorithm is able to accurately estimate the latent structure in both low and high dimensions. We
apply our model on a large data set of functional brain connectivity matrices from the UK Biobank.
Our results suggest that the proposed model accurately describes the complex variability in the data
set with a small number of degrees of freedom.

Keywords: network modeling; network variability; Stiefel manifold; MCMC-SAEM; data imputation

1. Introduction

Network science is at the core of an ever-growing range of applications. Network
analysis [1] aims at studying the natural properties of complex systems of interacting com-
ponents or individuals through their connections. It provides a large number of tools to
detect communities [2], predict unknown connections [3] and covariates [4], measure popu-
lation characteristics [5,6] or build unsupervised low-dimensional representations [7]. The
need to understand and model networks arises in multiple fields, such as social networks
analysis [8], recommender systems [9], gene interactions networks [10], neuroscience [11]
or chemistry [12]. Network analysis allows accounting for very diverse phenomenons
in similar mathematical frameworks, which lend themselves to theoretical and statistical
analysis [13]. In this paper, we are interested in groups of undirected networks that are
defined on the same set of nodes. This situation describes the longitudinal evolution of a
given network throughout time or the case where the nodes define a standard structure
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identical across the networks. The former is of interest in computational social science,
which studies the evolution of interactions within a fixed population [14]. The latter arises
naturally in neuroscience, where the connections between well-defined brain regions are
studied on large groups of subjects. The analysis of brain networks is the main application
of the present study. It has proven an efficient tool to discover new aspects of the anatomy
and function of the human brain [15] and remains a very active research topic [16].

In this study, we are interested in the variability of undirected graph data sets, i.e., how
graphs defined on a common set of nodes vary from one network to another. Accounting
for this variability is a crucial issue in neuroscience: predicting neurodegenerative diseases
or understanding the complex mechanisms of aging requires robust, coherent statistical
frameworks that model the diversity among a population. Working on such graphs sharing
the same nodes allows comparing them to one another through their adjacency matrices.

The comparison and statistical modeling of such matrices are difficult problems.
If all the graphs have n nodes, a Gaussian model on the n × n adjacency matrices has a
covariance matrix with n4 coefficients, which is hard to interpret and difficult to estimate
from a reasonable number of observations. Considering adjacency matrices as large vectors
allows using classical statistical methods, such as Principal Component Analysis (PCA), but
does not take advantage of the strong structures underlying the interactions between the
nodes. Tailored kernel methods can be employed to evaluate distances between networks,
but many theoretically interesting graph kernels require solving NP-hard problems [17].
In the field of brain network analysis, graphs are often modeled and summarized by
features like the average shortest path length, which only partially characterize their
structure [6]. Recent methods relying on graphs neural networks often consider the nodes
of the network to be permutation invariant, whereas nodes in brain networks play a specific
role likely to remain stable across subjects [15,18].

In this paper, we propose a generative statistical model to express the variability in
undirected graph data sets. We decompose the network adjacency matrices as a weighted
sum of orthonormal matrix patterns with rank one. The patterns and their weights vary
around their mean values. Using rank-one patterns allows understanding each decom-
position term, while using only a small number of parameters. This is comparable to
PCA where each observation is decomposed onto orthogonal elements, which in this case
would be matrices. The orthogonal patterns are seen as elements of the Stiefel manifold
of rectangular matrices X such that X�X is the identity matrix [19]. This model allows
us to use known distributions and perform a statistical estimation of the mean patterns
and weights. We use a restricted number of patterns to get a robust model, which captures
the main structures and their variations. This low-dimensional parametric representation
provides a simple interpretation of the structure and the variability of the distribution. Our
model accounts for two sources of variability: the perturbations of the patterns and their
weight. In contrast, current approaches in the literature only consider one of them, as with
dictionary-based models and graph auto-encoders.

The proposed framework is expressed as a generative statistical model so that it
can easily be generalized to analyze heterogeneous populations. This corresponds to a
mixture of several copies of the former model where each cluster has its own center and
variance parameters.

In Section 2, we recall relevant literature references for network modeling and statistics
on the Stiefel manifold. Section 3 defines our model and further motivates its structure.
Section 4 proposes an algorithm based on Expectation-Maximization (EM) to perform
Maximum Likelihood Estimation of the model parameters. In Section 5, we present
numerical experiments on synthetic and real data. We use our model to predict missing
links using the parameters given by the algorithm. We show how our model can be used
to perform clustering on network data sets, allowing to distinguish different modes of
variability better than a classical clustering algorithm. Applying our method to the UK
Biobank collection of brain functional connectivity networks, we demonstrate that our
model is able to capture a complex variability with a limited number of parameters. Note
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that the tools we present here could also be used on any type of network, such as the ones
we mentioned above or gene interaction networks.

2. Background

2.1. Statistical Modeling for Graphs Data Sets

The analysis of graph data sets is a wide area of research that overlaps with many
application domains. In this section, we review the principal trends of this field that are
used in statistics and machine learning.

The first category of statistical models characterizes graphs in a data set (with possibly
varying number of nodes) by a set of features that can be compared across networks,
rather than matching the nodes of one graph to those of another. These features can be,
for example, the average shortest path length, the clustering coefficient, or the occurrence
number of certain patterns. Two examples of such models are Exponential Random
Graphs Models [20] and graph kernel methods [17]. Other models are defined by a simple,
interpretable generative procedure that allows testing hypotheses on complex networks.
The Erdős–Rényi model [21] assumes that each node has an equal probability of connecting
with one another. The Stochastic Block Model (SBM, [22]) extends this model and introduces
communities organized in distinct clusters with simple interactions. In the limit of a large
number of nodes, the same idea gives rise to the graphon model, which has also recently
been used to model graph data sets [23]. Finally, recent machine learning models leverage
the power of graph neural networks [24] to perform classification or regression tasks. They
are used, for instance, in brain network analysis to predict whether a patient is affected by
Alzheimer’s disease or how the disease will evolve [25,26].

In this paper, we consider undirected graphs on a fixed given set of n nodes connected
by weighted or binary edges. This situation arises when studying the evolution of a given
network across time [27] or when considering several subjects whose networks have the
same structure, for instance, brain networks and protein or gene interaction networks. This
constraint allows building models based on the ideas of mean and covariance of adjacency
matrices, otherwise ill-defined when the nodes change across networks. In particular, little
work has been done in the literature so far on the analysis of the variability of graphs in
a data set sharing a common set of nodes. Dictionary-based graph analysis models [28]
and graph auto-encoders [25,29] are interesting frameworks in that regard. They allow
concisely representing a network in a form that compresses the O(n2) adjacency matrix
representation into a smaller space of dimension O(p) or O(np) (where p is the encoding
dimension that characterizes the model). However, they each focus on one aspect of the
variability of graph data sets, either the variations of patterns for graph auto-encoders or
the variations of patterns weights for dictionary-based models. The model proposed in
Section 3 builds on these ideas and accounts for both sources of variability in two latent
variables that are combined to obtain the adjacency matrices. These variables are the
dominant eigenvalues and the related eigenvectors.

These eigenvectors are regrouped in matrices with orthonormal columns, which
makes them points on the Stiefel manifold introduced in the next section. Statistical
modeling of these matrices requires taking their geometry into account with manifold-
valued distributions.

2.2. Models and Algorithms on the Stiefel Manifold
2.2.1. Compact Stiefel Manifolds of Orthonormal Frames

In this paper, we will be considering latent variables belonging to the compact Stiefel
manifold Vn,p, defined as the set of n-dimensional orthonormal p-frames (with p ≤ n):
Vn,p = {X ∈ Rn×p | X�X = Ip}. Since an element of Vn,p can be obtained by tak-
ing the p first columns of an orthogonal matrix, the Stiefel manifold can be seen as a
quotient manifold from the orthogonal group, and thus inherits a canonical Riemannian
manifold structure. A detailed and clear introduction to algorithms for optimization and
geodesic path computation on the Stiefel Manifold can be found in [30]. More recently,
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Zimmermann [31] proposed an algorithm to compute the Riemannian logarithm associated
with the canonical metric, solving the inverse problem of the geodesic computation.

2.2.2. Von Mises–Fisher Distributions

Various difficulties arise when dealing with statistical distributions on Riemannian
manifolds: for instance, computing the barycenter of a set of points can be a difficult prob-
lem, if not even ill-posed. The normalizing constant of a distribution is often impossible to
compute analytically from its non-normalized density, so Maximum Likelihood Estimation
cannot be performed by standard optimization.

Luckily, tractable distributions on the Stiefel manifolds circumventing some of these
problems have been brought up and studied over the last decades in the research field
of directional statistics. The most well-studied of them is the von Mises–Fisher (vMF)
distribution (also called the Matrix Langevin distribution in some papers) first introduced
in [32], which is the one we will be using in this paper. Given a matrix-valued parameter
F ∈ Rn×p, the von Mises–Fisher distribution on the Stiefel Manifold is defined by its density:
pvMF(X) ∝ exp(Tr(F�X)). Written differently, if we denote by f1, ..., fp the columns of F
and by x1, ..., xp those of X, we have

pvMF(X) ∝ exp(〈 f1, x1〉+ ... + 〈 fp, xp〉) .

In this expression, each xi is drawn toward fi/| fi| (up to the orthogonality constraint).
The norm | fi| can be interpreted as a concentration parameter that determines the strength
of the attraction toward fi/| fi|. The von Mises–Fisher distribution can be considered
analogous to a Euclidean Gaussian distribution with a diagonal covariance matrix: the
density imposes no interaction between the components of X, so that the only dependency
between the columns is the orthogonality constraint. The equivalent of the Gaussian mode
(which is the same as the Gaussian mean) is given by the following lemma:

Lemma 1. The von Mises–Fisher distribution with parameter F reaches its maximum density
value at X = πV(F), where πV is an orthogonal projection onto the Stiefel manifold.

Proof. From the definition of the von Mises–Fisher density, we have:

argmaxX�X=Ip
Tr(F�X) = argmaxX�X=Ip

−1
2

Tr(F�F) + Tr(F�X)− 1
2

Tr(X�X)

= argminX�X=Ip

1
2
‖F − X‖2 ,

with ‖·‖ the Frobenius norm. Hence, by definition, πV(F) maximizes the von Mises–Fisher
density. Note that the projection onto the Stiefel manifold is not uniquely defined, as Vn,p
is not convex.

The following lemma allows us to compute such a projection.

Lemma 2. Let M ∈ Rn×p, and M = UDV� (U ∈ Rn×p, D ∈ Rp×p, V ∈ Rp×p) the Singular
Value Decomposition of M. If M has full rank, then UV� is the unique projection of M onto the
Stiefel manifold Vn,p.

Proof. Let us consider the Lagrangian related to the constrained optimization problem
πV(M) ∈ argminX�X=Ip

1
2‖M − X‖2:

L(X, Λ) =
1
2
‖M − X‖2 − Tr(Λ�(Ip − X�X)) .
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Then the Karush–Kuhn–Tucker theorem [33] shows that, if X∗ is a local extremum
of X �→ 1

2‖X − M‖2 over Vn,p, then there exists Λ∗ such that ∇XL(X∗, Λ∗) = 0. This
gradient writes:

∇XL(X∗, Λ∗) = X∗ − M + X∗(Λ∗ + Λ∗�)

= X∗(I + Λ∗ + Λ∗�)− M = 0 .

Since X ∈ Vn,p and M has full rank, the symmetric matrix Ω = I + Λ∗ + Λ∗� must be
invertible, so that X∗ = MΩ−1. Hence

Ip = X∗�X∗ = Ω−1M�MΩ−1 ⇐⇒ Ω2 = M�M = VD2V� .

The matrix square roots of M�M are exactly given by the Ω’s of the form VRV�, with R =
Diag(±D11, ..., ±Dpp). We get X∗ = MΩ−1 = UDR−1V�, which gives the following
objective function:

‖M − X∗‖2 =
∥∥∥U(D − DR−1)V�

∥∥∥2
=
∥∥∥D − DR−1

∥∥∥2
.

As D has a positive diagonal, this function is globally minimized by R = D, so that
the unique projection is X∗ = UV�.

The simple, interpretable density of the von Mises–Fisher distribution comes with
several important advantages. First, it allows using classical Markov Chain Monte Carlo
(MCMC) methods to sample efficiently from the distribution (see Figure 1 for examples of
distributions over V3,2). Next, the form of the density makes it a member of the exponential
family, which is a key requirement to perform latent variable inference with the MCMC-
Stochastic Approximation Expectation-Maximization algorithm (MCMC-SAEM, [34]) used
in this paper. Finally, reasonably efficient algorithms exist to perform Maximum Likelihood
Estimation (MLE) of the parameter F. This point will be further developed in Section 4.

Figure 1. One thousand samples of three von Mises–Fisher distributions on V3,2. The mode of the distribution is represented
by two red arrows along the x and z axes, and the two vectors in each matrix by two blue points. The concentration
parameters are set to | fz| = 10 and | fx| ∈ [10, 100, 500] (from left to right). Samples are drawn with an adaptive Metropolis–
Hastings sampler using the transition kernel described in Section 4. A stronger concentration of the x vector impacts the
spread of the z vector.

2.2.3. Application to Network Modeling

Statistical modeling on the Stiefel manifold has proven relevant to analyze networks.
By considering the matrix of the p eigenvectors associated with the largest eigenvalues
of an adjacency matrix as an element of Vn,p, Hoff and colleagues [35–38] showed that
probabilistic modeling of the eigenvector matrix on the Stiefel manifold provides a robust
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representation while allowing to quantify the uncertainty of each edge and estimate the
probability of missing links. In these papers, the eigenvectors follow a uniform prior
distribution. In the present study, we propose to model the eigenvectors of several networks
as samples of a common distribution on Vn,p concentrated around a mode.

3. A Latent Variable Model for Graph Data Sets

3.1. Motivation

We model graphs in a data set by studying the eigendecomposition of their adjacency
matrices. Given such a symmetric weighted adjacency matrix A ∈ Rn×n, the spectral
theorem grants the existence of a unique decomposition A = XΛX� = ∑r

i=1 λixix�
i , where

r is the rank of A, and λ1 ≥ ... ≥ λr and x1, ..., xr are the eigenvalues and the orthonormal
eigenvectors of the matrix. This decomposition is unique up to the sign of the eigenvectors,
as long as the non-zero eigenvalues values have multiplicity-one, which always holds in
practice. The interest of this decomposition for graph adjacency matrices is threefold.

First, the eigendecomposition of the adjacency matrix reflects the modularity of a
network, i.e., the extent to which its nodes can be divided into separate communities.
For instance, in the case of the Stochastic Block Model (SBM), each node i is randomly
assigned to one cluster c(i) among p possible ones. Nodes in clusters c, c′ are connected
independently with probability Pcc′ . In expectation, the adjacency matrix is equal to the
matrix (Pc(i)c(j)), which has the rank of p at most. In samples of the SBM as well as real
modular networks, the decay of the eigenvalues allows estimating the number of clusters.
The eigenvectors related to non-zero eigenvalues are used to perform clustering on the
nodes to retrieve their labels.

Furthermore, this decomposition provides a natural expression of A as a sum of
rank-one patterns xix�

i . Modeling vectors as a weighted sum of patterns is at the core of
dictionary learning-based and mixed effects models, which have proven of great interest
to the statistics and machine learning research communities. In the specific case of graph
data sets, such a model was recently proposed by D’Souza et al. [28] in the context of brain
networks analysis. The authors learn a set of rank-one patterns without orthogonality
constraints, and estimate the adjacency matrices as weighted sums of these patterns,
in order to use the weights as regression variables. However, they consider the patterns
as population-level variables only. This choice prevents taking into account potential
individual-level variations.

Finally, the dominant eigenvectors yield strong patterns that are likely to remain
stable among various networks in a data set, up to a certain variability. In other words,
given N adjacency matrices A(1), ..., A(N) and their eigendecompositions (X(1), Λ(1)), ...,
(X(N), Λ(N)), the first columns of the X(k)’s should remain stable among subjects (up
to a column permutation and/or change of sign). On the contrary, smaller eigenvalues
should be expected to correspond to eigenvectors with greater variability. The recent work
of Chen et al. [39] takes stock of this remark to analyze the Laplacian matrices of brain
networks (the Laplacian is a positive matrix that can be computed from the adjacency
matrix). The authors propose to compute the L1 mean of the X(k)’s first p columns in order
to get a robust average X representative of the population. As the X(k)’s are composed
of p orthonormal vectors, their average should have the same property: it ensures that
the obtained matrix can be interpreted as a point that best represents the distribution.
Its definition thus formulates as an optimization problem over the Stiefel manifold Vn,p.
The authors show that taking this geometric consideration into account leads to better
results than computing a Euclidean mean.

In the next section, we introduce our statistical analysis framework. We model the
perturbations of the adjacency matrix eigendecomposition to account for the variability
within a network data set.
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3.2. Model Description

We propose to account for the variability in a set of networks by considering the
random perturbation of both the patterns (X variable) that compose the networks and
their weight (λ variable). In this study, we consider each pattern xi (column of X) and
each weight λi to be independent of one another. This assumption, although a first
approximation, leads to a tractable inference problem and interpretable results. Future
works could consider interactions between the xi’s or the λi’s, as well as the dependency
between both.

The model decomposition of each adjacency matrix A(k) in a data set writes

A(k) = X(k)Diag(λ(k))X(k)� + ε(k) (1)

with X(k) a pattern matrix, λ(k) the pattern weight vector and ε(k) the symmetric resid-
ual noise. The X(k) and λ(k) are independent unobserved variables that determine the
individual-level specificity of network k. We model these variables as follows:⎧⎪⎪⎨⎪⎪⎩

X(k) i.i.d∼ vMF(F)

λ(k) i.i.d∼ N (μ, σ2
λ Ip)

ε(k)
i.i.d∼ N (0, σ2

ε In(n+1)/2).

(2)

The matrix F ∈ Rn×p parametrizes a von Mises–Fisher distribution for the eigen-
vectors matrix X(k), and the eigenvalues λ(k) follow a Gaussian distribution with mean
μ ∈ Rp and independent components with variance σ2

λ. We further impose that the
columns of F are orthogonal: this constraint ensures that the maximum of the log-density
〈 f1, x1〉+ ... + 〈 fp, xp〉 is reached at πV(F) = ( f1/| f1|, ..., fp/| fp|). In this model, the matrix
πV(F) is the mode of the distribution of patterns and plays a role similar to the mean of
a Gaussian distribution. The mode of the full distribution of latent variables thus refers
to (πV(F), μ). In the particular case where F has orthogonal columns, the column norms
of F correspond to its singular values. In the remainder of the paper we call them the
concentration parameters of the distribution. The variability of the adjacency matrices is thus
fully characterized by σε, σλ and the concentration parameters. The pattern weights λ(k)

are the eigenvalues of the X(k)Diag(λ(k))X(k)� term, and we thus call them eigenvalues
even though they are not the actual spectrum of the real adjacency matrices A(k). Our
model is summarized in Figure 2.

F, μ, σλ, σε, (π)

X(1), λ(1), (z(1)) X(k), λ(k), (z(k)) X(N), λ(N), (z(N))

Parameters

Latent variables

ObservationsA(1) A(k) A(N)

Figure 2. Graphical model for a data set of adjacency matrices A1, ..., AN . The variables π and z(k)

can be added to get a mixture model.

Note that this model may be adapted to deal with other types of adjacency matrices.
The distribution for λ(k) can be effortlessly changed to a log-normal distribution to model
data sets of positive matrices like covariance matrices. Binary networks can be modeled by
removing the ε(k) noise and adding a Bernoulli sampling step, considering X(k)λ(k)X(k)� as
a logit. Adjacency matrices with positive coefficients are considered by adding the softplus
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function x �→ log(1 + ex) in Equation (1). These extensions bring a wide range of possible
statistical models for adjacency matrices for which the estimation procedure is the same as
the one developed below.

Equation (1) theoretically requires each A(k) to be close to a rank p matrix. While
this assumption is reasonable for well-clustered networks like samples of an SBM, some
real-life networks exhibit heavy eigenvalue tails and cannot be approximated accurately
using low rank matrices. While our model should not be expected to provide a perfect
fit on general networks data sets, its main goal is to retrieve the principal modes of
variability and their weight in an interpretable way, comparable to probabilistic Principal
Component Analysis (PCA) or probabilistic Independent Component Analysis (ICA) [40].
An important difference with these methods is that our model expresses each of the p
components using only an n-dimensional vector, whereas PCA and ICA require an n × n
matrix per component to model adjacency matrices.

In the case of well clustered networks, our model can be seen as a refinement of the
SBM better suited to data sets of networks. The SBM is designed to handle one single
network and mainly addresses the problem of identifying the communities. In the case of
network data sets, all subjects share the same node labels and the communities can be more
easily identified by averaging the edge weights over the subjects. The main assumption of
the SBM that the connections between the nodes are independent of one another prevents
from further analyzing individual-level variability. In contrast, our model can account for
the impact of a node variation on its connections, as well as pattern variations affecting the
whole network. In the limit where the concentration parameters become very large and the
weight variance is small, the patterns become constant and our model becomes equivalent
to an SBM for networks organized in distinct clusters.

Another remark can be made on the identifiability of the model: the manifold of
matrices of the form XDiag(λ)X� with X ∈ Vn,p, λ ∈ Rp (also known as the non-compact
Stiefel manifold) has a tangent space T with dimension dim(Vn,p) + p = np − p(p − 1)/2
at X(k)Diag(λ(k))X(k)�. The noise ε(k) can be decomposed into components in T and its
orthogonal complement T� with dimension n2 − np + p(p − 1)/2. The component in T
thus induces an implicit source of variability on X and λ, which depends on σε. We show
in the experiment section that it may lead to underestimating the concentration parameters
(| f1|, ..., | fp|). While aware of this phenomenon, we consider it an acceptable trade-off
regarding the simple formulation of Equation (2).

3.3. Mixture Model

The matrix distribution introduced in the previous section can be integrated in a
mixture model to account for heterogeneous populations with a multi-modal distribution
and variability. It amounts to considering K clusters with, for each cluster, a probability πc

and a parameter θc = (Fc, μc, σc
ε , σc

λ). The mixture model writes hierarchically:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
z(k) ∼ Categorical(π)

(X(k) | z(k) = c) ∼ vMF(Fc)

(λ(k) | z(k) = c) ∼ N (μc, (σc
λ)

2 Ip)

(A(k) | X(k), λ(k), z(k) = c) ∼ N (X(k)Diag(λ(k))X(k)�, (σc
ε )

2 In(n+1)/2).

(3)

We show in the next section on parameter estimation that the mixture layer only comes
at a small algorithmic cost.

4. A Maximum Likelihood Estimation Algorithm

We now turn to the problem of estimating the model parameters θ = (F, μ, σλ, σε)
given a set of observations (A(k))N

k=1. Let us denote λ · X = XDiag(λ)X�. The complete
likelihood is expressed as:
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p((A(k)), (X(k)), (λ(k)); θ) =
N

∏
k=1

1
K(θ)

p(A(k) | X(k), λ(k); θ)p(X(k); θ)p(λ(k); θ)

with⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p(A(k) | X(k), λ(k); θ) = 1

|σε |n2 (2π)n2/2
exp
[
− 1

2σ2
ε
‖A(k) − λ(k) · X(k)‖2

]
p(X(k); θ) = 1

Cn,p(F) exp
[
Tr(F�X(k))

]
p(λ(k); θ) = 1

|σλ |p(2π)p/2 exp
[
− 1

2σ2
λ

‖λ(k) − μ‖2
]

We compute the maximum of the observed likelihood p((A(k)); θ) using the MCMC-
SAEM algorithm introduced in the next section. The MLE is not unique, as a permutation
or a change of sign in the columns of X (together with a permutation of λ) yield the same
model. This invariance can be broken by sorting the eigenvalues μ in increasing order as
long as they are sufficiently spread. However, in practice, several eigenvalues may be close,
and imposing such an order hinders the convergence of the algorithm. We thus choose to
leave the optimization problem unchanged and deal with the permutation invariance by
adding a supplementary step to the MCMC-SAEM algorithm.

4.1. Maximum Likelihood Estimation for Exponential Models with the MCMC-SAEM Algorithm

When dealing with latent variable models, the standard tool for MLE is the Expectation-
Maximization (EM) algorithm [41]. Given a general parametric model p(y, z; θ) with y
an observed variable and z a latent variable, performing MLE amounts to maximizing
log p(y; θ) = log

∫
p(y, z; θ)dz, which is intractable in practice with classical optimization

routines. The EM algorithm allows indirectly maximizing this objective by looping over
two alternating steps:

1. E-step: Using the current value of the parameter θt, compute the expectation

Qt(θ) = Ep(z|y;θt)[log p(y, z; θ)] ;

2. M-step: Find θt+1 ∈ argmaxθ Qt(θ).

While the EM algorithm proves efficient to deal with simple models like mixtures of
Gaussian distributions, it requires adaptation for the cases of more complicated models
where the expectation in the Qt(θ) function is intractable, and the distribution p(z | y, θn)
cannot be explicitly sampled from to approximate the expectation.

The Markov Chain Monte Carlo–Stochastic Approximation EM algorithm (MCMC-
SAEM) developed by [34] aims at overcoming these hurdles in the case of models be-
longing to the Curved Exponential Family. For such models, the log-density expresses
as log p(y, z; θ) = 〈S(y, z), ϕ(θ)〉+ ψ(θ), where S(y, y) is a sufficient statistic. The Qt func-
tion then simply rewrites Qt(θ) = 〈Ep(z|y;θt)[S(y, z)], ϕ(θ)〉+ ψ(θ). In the MCMC-SAEM
algorithm, the expectation of sufficient statistics is computed throughout iterations using
Stochastic Approximation. The samples from p(z | y; θt) are drawn using a MCMC kernel
q(z | zt; θt) with invariant distribution p(z | y; θt). The procedure is recalled in Algorithm 1.
Under additional assumptions on the model and the Markov kernel, the MCMC-SAEM
algorithm converges toward a critical point of the initial objective log p(y; θ) [42,43].

In the case of the model proposed in this paper, the MCMC-SAEM is well suited to the
problem at hand as we have to deal with a latent variable model. In a setting with manifold-
valued latent variables, the E-step of the SAEM algorithm becomes intractable; using the
MCMC-SAEM allows overcoming this hurdle. Following the outline of Algorithm 1, we
need to draw samples from p(X(k), λ(k) | A(k); θ) and perform the maximization step using
the stochastic approximation of sufficient statistics.
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Algorithm 1: The MCMC-SAEM Algorithm
Initialize θ0, z0 and S0
repeat

Simulate zt+1 ∼ q(· | zt; θt) using MCMC
Update St+1 = (1 − αt)St + αtS(y, zt+1)
Find θt+1 ∈ argmaxθ〈St+1, ϕ(θ)〉+ ψ(θ)

until convergence
return θT, (zt)T

t=1

4.2. E-Step with Markov Chain Monte Carlo
4.2.1. Transition Kernel

The target density p(X(k), λ(k) | A(k); θ) is known up to a normalizing constant, and
it is sufficient to use MCMCs based on the Metropolis–Hastings acceptance rule [44].
The MCMC is structured as a Gibbs sampler alternating simulations of X(k) and λ(k) for
each individual. Note that conditional density p(λ(k) | X(k), A(k); θ) is a Gaussian dis-
tribution. However, when experimenting with the MCMC-SAEM, we find that using
Metropolis–Hastings-based transitions rather than sampling directly from the true condi-
tional distribution accelerates the Markov chain convergence. This is why we perform a
Metropolis–Hastings within Gibbs sampler for both variables [45]. We generate proposals
for λ with a symmetric Gaussian kernel with adaptive variance in order to reach a target
acceptance rate. We also use a Metropolis Hastings transition for X, with the constraint
that the variable stays on the Stiefel manifold. Several techniques can be used to generate
such proposals. The most natural equivalent of the symmetric random walk consists of a
geodesic random walk generated by normally distributed tangent vectors. This method can
be employed as the exponential map on the Stiefel manifold has a closed-form expression
relying on the matrix exponential [30]. Another option is to use the curves given by the Cay-
ley transform as in [46]: Cayley curves can be considered a fast first-order approximation
of the exponential map. Finally, a more direct approach consists of making non-manifold
Gaussian transitions and projecting the result back onto the manifold using Lemma 2.
In our experiments these three approaches turn out to give very similar performances,
and in practice we use the last method, which is also the fastest.

Remark 1. Our numerical implementation offers the possibility to use the Metropolis Adjusted
Langevin Algorithm (MALA) instead of Metropolis–Hastings, as the gradient of the log-likelihood
can be computed explicitly. While the experiments we have presented rely on the Metropolis–
Hastings kernel, which is faster overall, we find that in some cases where the dimensions n and p
grow large the MALA kernel allows accelerating the convergence.

4.2.2. Permutation Invariance Problem

The non-uniqueness of the MLE translates into a practical hurdle to the convergence
of the MCMC: if two eigenvalues μi, μj are close, we get (μi, μj) · (xi, xj) � (μj, μi) · (xi, xj).
As a consequence, the distribution p(X(k), λ(k) | A(k); θ) is multi-modal in X(k), with a
dominant mode close to πV(F) and other modes corresponding to column sign variations
and permutations among similar eigenvalues. These modes are numerical artifacts rather than
likely locations for the true value of X(k). Exploring them in the MCMC-SAEM hinders the
global convergence: they encourage the samples to spread over the Stiefel manifold, which in
turn yields a very bad estimation of F by inducing a bias toward the uniform distribution.

We address the permutation invariance problem by adding a column matching step
every five SAEM iterations for the first third of the SAEM iterations. This step is a greedy
algorithm that aims at finding the column permutation of a sample X(k) that makes it closest to
M = πV(F). It proceeds recursively by choosing the columns mi, xj with the greatest absolute
correlation. The steps are summarized in Algorithm 2. The greedy permutation algorithm
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causes the MCMC samples to stabilize around a single mode, allowing estimation of the F
parameter.

Algorithm 2: Greedy column matching

input F ∈ Rn×p, X ∈ Vn,p

Compute M = πV(F), D = (〈mi, xj〉)p
i,j=1

Let I = J = {1, ..., p}
Let σ = (0, ..., 0) (column order), η = (0, ..., 0) (column sign)
for t ∈ [1, ..., n] do

Find it, jt ∈ argmaxi∈I,j∈J |Dij|
Set σ(jt) = it, η(it) = sign(Dit jt)
Set I = I\{it}, J = J\{jt}

end
return σ, η

4.3. M-Step with Saddle-Point Approximations

The maximization step of the MCMC-SAEM algorithm has a closed form expression,
except for the parameter F. In this section, we recall a method to estimate F in a general set-
ting and apply this method to get the optimal model parameters given sufficient statistics.

4.3.1. Maximum Likelihood Estimation of Von Mises–Fisher Distributions

The main obstacle to retrieving the parameter F given samples X1, ..., XN is the normal-
izing constant of the distribution: though analytically known, it is hard to compute in practice
(see Pal et al. [47] for a computation procedure when n = 2). Jupp and Mardia [48] proved
that the MLE exists and is unique as long as p < n and N ≥ 2, or p = n and N ≥ 3. Khatri
and Mardia [32], who first studied the properties of the MLE, showed the following result:

Theorem 1 ([32]). Let X1, ..., XN be N samples from a von Mises–Fisher distribution and X =
1
n ∑n

i=1 Xi. Let X = UDV� be the Singular Value Decomposition (SVD) of X. Then the Maximum
Likelihood Estimator can be written under the form F̂ = UDiag(ŝ)V�, with ŝ ∈ R

p
+.

Maximizing the log-likelihood of samples X1, ..., XN is thus equivalent to solving the
optimization problem

argmaxs∈Rp Tr[VDiag(s)U�X]− log Cn,p(UDiag(s)V�), (4)

where Cn,p(F) is the normalizing constant of the vMF distribution.
Several methods were proposed to solve this problem: the authors of [32] provide

approximate formulas when the singular values of F are all either very large or very small. The
authors of [49] propose a method to approximate the normalizing constant, which in turn
yields a surrogate objective for the MLE giving satisfactory results. Finally, in [50], a different
formula is proposed, which applies when the singular values are small. When experimenting
with von Mises–Fisher distributions, we found that the method proposed by [49] gives the
most robust results for a wide range of singular values of F, even in a high-dimensional setting.

4.3.2. Application to the Proposed Model

Computational details for the likelihood rearrangement are deferred to Appendix A.
The model belongs to the curved exponential family, and its sufficient statistics are:

S(A, X, λ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S1 = 1
N ∑N

k=1 X(k)

S2 = 1
N ∑N

k=1 λ(k)

S3 = 1
N ∑N

k=1

∥∥∥λ(k)
∥∥∥2

S4 = 1
N ∑N

k=1

∥∥∥A(k) − λ(k) · X(k)
∥∥∥2

.
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These sufficient statistics are updated using the MCMC samples (X(k)
t , λ

(k)
t )N

k=1 with
the stochastic approximation St+1 = (1 − αt)St + αtS(A, Xt, λt). The optimization problem
defined by the M-step of the SAEM algorithm gives the following results:

θ̂t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F̂ = F̂(S1

t )

μ̂ = S2
t

σ̂2
λ = 1

p

(
‖μ̂‖2 − 2〈μ̂, S2

t 〉+ S3
t

)
σ̂2

ε = 1
n2 S4

t ,

(5)

where F̂(S1
t ) denotes the MLE of the von Mises–Fisher distribution. As explained in the section

above, the method proposed by Kume et al. [49] allows estimating the normalizing constant of
general Fisher–Bingham distributions. The approximation relies on rewriting the constant to
make it depend on a density that fits into the framework of Saddle-Point Approximations [51].
We recall the main steps of the computation procedure for this approximation in Appendix A
for the specific, simple case of vMF distributions.

In the definition of our model, we impose that the columns of F are orthogonal. As recalled
in Section 2.2, the MLE for the vMF mode is M = UV�, where X = UDV� is the SVD of
the empirical arithmetic mean of samples. Since the column norms correspond to the singular
values when the columns are orthogonal, the MLE under this constraint can be sought under
the form MDiag(s). Hence, the optimization problem is used to estimate F:

argmaxs∈Rp Tr[Diag(s)M�X]− log Ĉn,p(MDiag(s)) , (6)

with Ĉn,p the approximation of the normalizing constant. We solve this optimization
problem using the open source optimization library scipy.optimize.

The complete procedure is summarized in Algorithm 3.

4.4. Algorithm for the Mixture Model

The mixture model adds a cluster label z(k) for each subject and a list π of cluster
probabilities. The model still remains in the curved exponential family, and the MCMC-
SAEM algorithm can still be used. The Gibbs sampler now also updates z(k): it consists
of sampling from the probabilities p(z(k) | X(k), λ(k), A(k); π, θ), which can be computed
explicitly. The sufficient statistics S1, S2, S3, S4 are defined and stored for each cluster.
The statistics of cluster c are updated using only the indices k such that z(k) = c. The variable
π adds new sufficient statistics: Sπ = (#{k | z(k) = c}/N)K

c=1. The related MLE estimate of
π is π̂ = Sπ .

In our implementation, we initialize the clusters using the K-Means algorithm. We use
the tempering proposed by [52] for the z sampling step in order to encourage points moving
between clusters at the beginning of the algorithm. The vMF parameters Fc are aligned
every 5 SAEM iterations using Algorithm 2 in order to allow the latent variables to move
between the regions of influence of different clusters through small Metropolis–Hastings
steps. The resulting algorithm is detailed in Appendix C.

4.5. Numerical Implementation Details

We initialize the algorithm by taking the first eigenvectors and eigenvalues of each
adjacency matrix. Algorithm 2 is used to align the eigenvectors between samples. In order
to accelerate the convergence, we perform a small number of hybrid MCMC-SAEM steps
at the start of the algorithm, where the MCMC step on X is replaced with a gradient ascent
step on the log-likelihood. These first steps move the X(k)’s to an area of Vn,p with high
posterior probability, which accelerate the convergence of the MCMC, as the X variable is
the slowest to evolve along the MCMC-SAEM iterations. The Riemannian gradient ascent
is detailed in Appendix B.
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Algorithm 3: Maximum Likelihood Estimation algorithm for θ = (F, μ, σε, σλ)

Initialize θ0, X0, λ0 and S0
for t = 1 to T do

if t ≤ T/3 and (t mod 5) = 0 then
for k = 1 to N do

Use Algorithm 2 to align X(k)
t with πV(Ft).

Permute λ
(k)
t accordingly.

end

end

Set X̃(k)
0 = X(k)

t and λ̃
(k)
0 = λ

(k)
t

for � = 1 to nMCMC do
for k = 1 to N do

Sample X̃(k)
� from the Metropolis kernel qX(· | X̃(k)

�−1, λ̃
(k)
�−1; θt) targetting

p(X(k) | A(k), λ̃
(k)
�−1; θt)

Sample λ̃
(k)
� from the Metropolis kernel qλ(· | X̃(k)

� , λ̃
(k)
�−1; θt) targetting

p(λ(k) | A(k), X̃(k)
�−1; θt)

end

end

Set X(k)
t+1 = X̃(k)

nMCMC and λ
(k)
t+1 = λ̃

(k)
nMCMC

Update the sufficient statistics St+1 = (1 − αt)St + αtS(A, Xt+1, λt+1)
Compute μt+1, (σε)t+1 and (σλ)t+1 using Equation (5).
Compute Ft+1 by solving problem (6).

end

return θT, (Xt, λt)T
t=1

The Metropolis–Hastings transition variance is selected adaptively throughout the
iterations using stochastic approximation. At SAEM step t + 1, the proportion of accepted
Metropolis transitions is computed. The logarithm of the variance is then incremented
according to the rule log σt+1

MH = log σt
MH + �t/2t0.6, with �t = ±1 depending on whether

the proportion of accepted jumps should be increased or decreased.
During the first half of the T iterations we set αt = 1 in order to minimize the impact

of poor initializations. Then αt decreases as 1/(t − T/2)0.6, which ensures the theoretical
convergence of the algorithm.

The algorithms as well as all the experiments presented in this paper are implemented
with Python 3.8.6. The package Numba [53] is used to accelerate the code. We provide
a complete implementation (https://github.com/cmantoux/graph-spectral-variability,
accessed on 19 April 2021), which allows reproducing the experiments on synthetic data
and running the algorithm on new data sets.

5. Experiments

5.1. Experiments on Synthetic Data
5.1.1. Parameters Estimation Performance

First we investigate the ability of the algorithm to retrieve the correct parameters when
the data are simulated according to Equations (1) and (2). We test the case (n = 3, p = 2),
referred to as low-dimensional, where X can be visualized in three dimensions as well as
the case (n = 40, p = 20), referred to as high-dimensional.

Small Dimension

We choose F with two orthogonal columns uniformly in V3,2 with column norms
(25, 10). Using these low concentration parameters makes the results simple to visualize.
We set μ = (20, 10) and σλ = 2, and generate N = 100 matrices A(k) with σε = 0.1 and 100
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other matrices with the same X(k)’s and λ(k)’s but a much stronger noise standard deviation
σε = 4. We run the MCMC-SAEM algorithm for 100 iterations with 20 MCMC steps for
each maximization step. The results are shown in Figure 3. In both cases, the mode of the
vMF distribution πV(F) is well recovered. In the small noise case, the posterior X samples
closely match the true X samples, and the estimated concentration parameters (23.7, 8.0)
remain close to ground truth. In the strong noise case, the posterior samples spread much
farther around F̂ than the true samples: the estimated concentration is (9.9, 2.8). This result
highlights the remark in Section 3.2 on the bias induced by the Gaussian noise on the latent
variable spread: the best X variable to estimate the matrix A(k) is moved apart from the
true X(k) in a random direction because of the noise ε(k) living outside the manifold.

Figure 3. True latent variables X(k) and their posterior MCMC mean estimation. The red arrows represent the true πV(F)
parameter and its estimate πV(F̂). (a) The true mode and samples. (b) Mode and samples estimates when σε = 0.1. (c)
Mode and samples estimates when σε = 4. The columns are rearranged using Algorithm 2 to ease visualization. The latent
variables are accurately estimated when the noise is small. A stronger noise causes the estimated latent variables to spread
over the Stiefel manifold.

High Dimension

We now consider a synthetic data set of N = 200 samples generated from 20 latent
patterns in dimension 40 and σε = 1, σλ = 2, with various sizes of concentration parameters
and eigenvalues, pairing large eigenvalues together with high concentrations. We run the
MCMC-SAEM algorithm for 100 iterations with 20 MCMC steps per SAEM iteration to
obtain convergence. The convergence of the parameters is shown in Figure 4. For both
the concentration parameters and the eigenvalues, the algorithm starts by finding the
highest values, only identifying lower values progressively afterward. The lowest values
are associated to patterns with low weight, hence their recovery is naturally more difficult.
As in the previous sections, the concentration parameters tend to be underestimated,
indicating wider spreading around the mode vectors fi/| fi| than the original latent variable.
However, the ordering and orders of magnitude of the concentrations stay coherent, which,
in practice, allows interpreting them and comparing them to each other. The estimation
F̂ matches the true parameter with a relative Root Mean Square Error (rRMSE) of 28%.
As can be seen in Figure 5, the estimated normalized columns closely correspond to the
original ones except when the concentration parameters get too small to allow for a good
estimation, as explained above.

We use this example to illustrate the role of the algorithm hyperparameters on the
practical convergence, namely the number of MCMC steps per SAEM iteration and the
column matching step. We consider the same data set, but we initialize the MCMC-SAEM
algorithm with random latent variables instead of the method described in Section 4: this
worst-case initialization highlights the differences between the settings more easily. It is
also closer to the case of real data sets: the MCMC and model parameters are slower to
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converge on real data, as the adjacency matrices are not actual samples of the theoretical
model distribution. For different numbers of MCMC steps per SAEM iterations, we run the
MCMC-SAEM algorithm for 200 iterations 10 times to average out the random initialization
dependency, with and without the column matching step. Then we compute the relative
RMSE of the parameters F and μ at the end of the algorithm. The rRMSE averaged over the
10 runs is shown in Figure 6. It can be seen that when the column matching step is used,
increasing the number of MCMC steps at a fixed number of SAEM iterations improves
the estimation. It allows accelerating the convergence, as MCMC steps are faster than the
maximization step (which requires repeated vMF normalizing constant computations).
However, when the number of MCMC steps gets too large, the performance improvement
stagnates while the execution time increases. We find that, in practice, using between 20 and
40 MCMC steps per SAEM iterations is a good compromise in terms of convergence speed.
Figure 6 also illustrates the need for the column matching step proposed in Section 4: when
not used, the parameters hardly converge to the right values, even with a large number
of MCMC steps per SAEM iteration. When the eigenvectors are permuted differently
across the samples, the related eigenvalues cannot be estimated accurately, as they mix
together when averaged in the maximization step. The abscence of permutations also
spreads the eigenvectors over the Stiefel manifold, which prevents estimating the von
Mises–Fisher parameter. Since Algorithm 2 is very fast to execute, it is not a computational
bottleneck. In our experiments, the number of SAEM iterations between successive column
permutation steps did not have a significant impact as long as it was not too high: values
between 5 and 20 produced similar results.

Model Selection

In all the experiments on simulated data presented in this paper, we use the correct
number of columns p, which we assume to be known. However, when studying real data
sets, classical model selection procedures like the Bayesian Information Criterion cannot be
applied to our model: they require computing the complete probability of the observations
p(A | θm) =

∫
Vn,p

∫
Rpm p(A | X, λ, θm)dX dλ for each model θm. This probability cannot be

computed explicitly, as it requires integrating over the Stiefel manifold, which results in
intractable expressions using the matrix hypergeometric function [49].

Figure 4. Convergence of the concentration parameters (| f1|, . . . , | fp|) (left) and the mean eigenvalues μ (right) over the
SAEM iterations. The red lines represent the values of the parameters along the iterations. The black dotted lines represent
the true values, which are grouped in batches to ease visualization. The convergence is fastest for the large eigenvalues
and concentration parameters. At the start of the algorithm, the biggest changes in the parameters come from the greedy
permutation performed every 5 iterations. As explained in the text, the concentration parameters are underestimated.
However, they keep the right order of magnitude, which allows interpreting the output of the algorithm in practice.
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Figure 5. Von Mises-Stiefel distribution parameter F and its estimation F̂. (Top row): the two
parameters and their difference. (Bottom row): mode of the true distribution (given by πV(F)), mode
of the estimated distribution πV(F̂) and their difference. The images show each matrix as an array
of coefficients, with pixel color corresponding to coefficient amplitude. Since the matrix columns
are orthonormal, the projection just consists of normalizing the columns. The columns are sorted by
decreasing the concentration parameter. The normalized columns of F corresponding to the smallest
concentration parameters are estimated with less precision.

Figure 6. Relative RMSE of parameters F and μ after 100 MCMC-SAEM iterations depending on the
number of MCMC steps per SAEM iteration. Results are averaged over 10 experiments to reduce the
variance. The shaded areas indicate the extremal values across the repeated experiments. When using
the greedy permutation, the rRMSE decreases rapidly when the number of MCMC steps increases
before stabilizing. On the other hand, without the permutation step, the performance stays poor
for any number of MCMC steps per maximization, as the parameters cannot be estimated correctly.
In this experiment only, the latent variables are initialized at random to highlight the result.
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In practice, several tools can be used to choose the number of latent patterns. First,
the marginal likelihood p(A | X, λ; θ) or the error ‖A − λ · X‖ can be used to evaluate
the model expressiveness. As p increases, the error will naturally diminish and should
be very small for p = n. As with linear models, the proportion of the variance captured
by λ · X can be computed to evaluate the improvement gained by adding new patterns.
The concentration parameters of the von Mises–Fisher distribution also give important
information on pattern relevance: if a pattern has a very low concentration parameter, it
means that the related eigenvectors are widely spread across the Stiefel manifold. Smaller
concentrations are thus related to overfitting, as they do not correspond to actual patterns
contributing to the data set variability. The relative importance of concentration parameters
can be compared numerically with the vMF concentration obtained on samples from the
uniform distribution gathered with Algorithm 2.

Remark 2. In this paper, we approximate the posterior mean of MCMC samples of X(k) by
projecting their arithmetic mean over the Stiefel manifold. We find this procedure a very convenient
alternative to computing the Fréchet mean (i.e., the Riemannian center of mass) over the manifold
for two reasons. First, computing the Fréchet mean requires an extensive use of the Riemannian
logarithm. Although a recent paper [31] allows computing this logarithm, the proposed algorithm
heavily relies on matrix logarithm computations and requires points to remain very close to the mean.
Similar iterative algorithms to compute the mean based on other retraction and lifting maps than the
Riemannian exponential and logarithm were proposed and analyzed in [54], but in our experiments,
these alternatives also turn out to require samples close to the mean point, especially in high
dimensions. Second, projecting the mean sample onto the Stiefel manifold amounts to computing the
mode of a vMF distribution. As shown in Appendix D, the vMF distribution is symmetric around
its mode, which makes this mode a summary variable similar to the Gaussian mean.

5.1.2. Missing Links Imputation

Once the parameters θ̂ are estimated from adjacency matrices A1, ..., AN , missing links
can be inferred on a new adjacency matrix A. Suppose that only a subset Ω of the edge
weights is known: the weights of masked edges Ω can be obtained by considering the
posterior distribution p(AΩ | AΩ; θ). This distribution is obtained as a marginal of the full
posterior p(AΩ, X, λ | AΩ; θ). Sampling from this distribution yields a posterior mean as
well as confidence intervals for the value of missing links. In the case of binary networks,
the posterior distribution gives the probability of a link existing for each masked edge.
Samples are obtained by Gibbs sampling using the same method as in Section 4. We also
compute the Maximum A Posteriori (MAP) by performing gradient ascent on the posterior
density of (AΩ, X, λ) given AΩ.

We generate a synthetic data set of N = 200 adjacency matrices with n = 20 nodes
and p = 5. The noise level σε is chosen such that the average relative difference between
the coefficients of A(k) and λ(k) · X(k) is 25%. We estimate the model parameters using the
MCMC-SAEM algorithm. Then, we generate another 200 samples from the same model.
We mask 16% of the edge weights corresponding to the interactions between the last eight
nodes. The posterior estimation is compared with the ground truth for one matrix in
Figure 7. Both the MAP and posterior mean allow to estimate the masked coefficients better
than the mean sample (A1 + ... + AN)/N, which is the base reference for missing data
imputation. They achieve, respectively, 58% (±28%) and 57% (±24%) rRMSE on average,
whereas the mean sample has an 85% (±10% over the data set) relative difference to the
samples on average. Finally, we perform the same experiment except we select the masked
edges uniformly at random, masking 40% of the edges. This problem is easier than the
former despite the larger amount of hidden coefficients because the missing connections
are not aligned with each other. The posterior mean and the MAP achieve, respectively, 34%
(±9% over the data set) and 35% (±7%) rRMSE, against 75% (±5%) for the mean sample.
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Figure 7. Result for missing link inference using the posterior distribution. (a) Ground truth input matrix A. (b) Posterior
mean of the masked coefficients. (c) MAP estimator. (d) Mean of model samples for comparison. The area of masked edges
is highlighted by a black square. Above each matrix is the rRMSE with the ground truth. Both the posterior mean and the
MAP give a reasonable estimation for the missing weights, significantly better than the empirical mean of all adjacency
matrices, which is the base reference for missing data imputation. The images show each matrix as an array of coefficients,
with pixel color corresponding to coefficient amplitude.

Link prediction has been a very active research topic in network analysis for several
decades, and numerous methods can be employed to address this problem depending on
the setting [3,55,56]. However, the most commonly used approaches are designed to per-
form inference on a single network or consider the nodes as permutation invariant. In turn,
the new approach we propose allows for population-informed prediction and uncertainty
quantification. It could be used in practice to compare specific connection weights of a new
subject with their distribution given the other coefficients and the population parameters.
This comparison provides a tool to detect anomalies in the subject’s connectivity network
stepping out of the standard variability.

Remark 3. The error uncertainties reported in this paper refer to the variance of the estimation
error across the adjacency matrices.

5.1.3. Clustering on Synthetic Data

As explained in Section 3.3, our model can be used within a mixture to account for
multi-modal distributions of networks. When experimenting with the clustering version of
our algorithm on data sets with distinctly separated clusters, we noticed that the algorithm
provides results similar to running K-Means and estimating the parameters on each K-
Means cluster separately. However, the clusters in complex populations often overlap,
and the ideal case where all groups are well separated rarely occurs. In this section, we
show two examples of simulated data sets where the variabilities of the clusters makes
them hard to distinguish with the sole application of the K-Means algorithm.

Small Dimension

We test the mixture model estimation in the small dimensional case (n = 3, p = 2)
where results can be visualized. We simulate three clusters of matrices as in Section 5.1.1
with N = 500 samples overall. In order to make the problem difficult, we use the same
mean eigenvalues for two clusters. We set the Stiefel modes of these clusters to be very
close, differing mainly by their concentration parameters. We run the tempered MCMC-
SAEM for 1000 iterations with a decreasing temperature profile Tt = 1 + 50/t0.6. Once the
convergence is achieved, the estimated clusters are mapped to the true clusters. The eigen-
value parameters are estimated accurately with 2% rRMSE. The original and estimated
von Mises–Fisher distributions are compared in Figure 8. We can see that each cluster
distribution is well recovered. In particular, the overlapping distributions of cluster 1 and 2
are separated, and the higher concentration of cluster 1 is recovered in the estimation. This
example also highlights the relevance of the MCMC-SAEM clustering procedure compared
with its K-Means initialization: up to a label permutation, 50.4% of the K-Means proposed
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labels are correct, whereas the posterior distribution p(z(k) | A(k); θ̂) computed with the
final MCMC samples predicts the correct answer for 79.6% of the model samples.

Figure 8. True latent variables X(k) and their posterior mean estimation for the clustering problem. (Top row): the plots (a–c)
represent the true vMF modes (in red), as well as the true X(k) samples (in green) in their true class. (Bottom row): the plots
(d–f) represent the three estimated vMF central modes (in red) and the estimated X(k) in their estimated class (in blue).
The cluster centers are well recovered, as well as the concentration parameters. In particular, the two first clusters, which
mainly differ by their concentration parameters, are correctly separated.

Larger Dimension

We now test the mixture model on a synthetic data set of 500 samples in dimension
(n = 20, p = 10). We generate four clusters with Stiefel modes close to one another,
with equal concentration parameters. The modes mainly differ by their mean eigenvalues
μc. The eigenvalue standard deviation σλ is set to be of the same order of magnitude as
the means μ, larger than most of its coefficients. The resulting data set is hard to estimate
with classical clustering: the K-Means algorithm retrieves 53.6% of correct labels at best.
In contrast, running the tempered MCMC-SAEM algorithm for 1000 iterations yields 99.4%
of correct labels. The algorithm achieves this result by identifying the template patterns of
each cluster despite the large variation in their weights. Once these template patterns are
learned, the proportion of correctly classified samples increases and the mean eigenvalues
of each cluster converge to a good estimation.

Model Selection

Selecting the number of clusters K is a known problem adressed for general mixture
models [57]. Although it is well understood for simple Gaussian mixture models or for
low dimensional data, other cases remain challenging problems. For the model proposed
in this paper, likelihood-based procedures cannot be applied, as the complete likelihood is
an integral over the Stiefel manifold (see Section 5.1.1). As with the selection of parameter
p, the concentration parameters and the reconstruction errors could be used to choose
the number of clusters. Using a K that is too small will result in stretching the latent von
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Mises–Fisher distributions toward low concentration parameters and large reconstruction
errors. The reconstruction error should decrease slower once the right number of clusters
has been reached.

Remark 4. The link prediction procedure described in Section 5.1.2 could also be applied in the
mixture model to infer the coefficients of new networks of which the class is unknown.

5.2. Experiments on Brain Connectivity Networks

We test our model on the UK Biobank data repository [58]. The UK Biobank is a large
scale data collection project, gathering brain imaging data on more than 37,000 subjects.
In this paper, we are interested more specifically in the resting-state functional Magnetic
Resonance Imaging data (rs-fMRI). The rs-fMRI measures the variations of blood oxygena-
tion levels (BOLD signals) across the whole brain while the subject is in a resting state,
i.e., receives no stimulation. The brain is then divided into regions through a spatial ICA
that maximizes the signal coherence within each region [59]. Smaller regions give more
detail on the brain structure but are less consistent across individuals. Finally, the raw imag-
ing data are processed to obtain a matrix that gathers the temporal correlations between
the mean blood oxygenation levels in each region. This matrix thus represents the way
brain regions activate and deactivate with one another. It is called the functional connectivity
network of the brain, as it provides information on the role of the regions rather than their
physical connections. In the UK Biobank data used in the present study, the connectivity
matrices are defined on a parcellation of the brain into n = 21 regions. These connectivity
matrices illustrate our purpose well: as shown in Figure 9, the data set has a very large
diversity of networks that express in patterns with varying weights.

5.2.1. Parameter Estimation

We run our algorithm on N = 1000 subjects for 1000 SAEM iterations with 20 MCMC
steps per SAEM iteration. Working on a restricted number of samples allows for a fast
convergence toward the final values. Indeed, we noticed that, while most of the parameters
stabilize relatively fast, the time to convergence of the concentration parameters grows
with the number of samples. Apart from these concentration parameters, we obtained
very similar results when taking all the UK Biobank subjects. In this section, we consider
a decomposition into p = 5 patterns. In Appendix E.1, we show the results obtained by
taking different values of p.

In Figure 10, we show the p normalized patterns fi f �i /‖ fi‖2 obtained once the al-
gorithm has converged. Patterns 3 and 5 have very high concentration parameters and
only use a small subset of the nodes. The three other patterns have smaller concentration
parameters. However, these concentrations are still high enough for the related columns
of X to be significantly more concentrated than a uniform distribution: the average Eu-
clidean distance between these three columns of X(k) and the related mode columns is 1.1
(±0.2 over the data set). Comparatively, the average distance between two points drawn
uniformly on the Stiefel manifold is 2.4 (±0.2) (over 10,000 uniform samples).

Figure 11 displays data set matrices A(k) alongside the respective mean posterior
estimates of λ(k) · X(k). For comparison purpose, we also compute the approximation
given by the projection onto the subspace of the first five PCA components of the full
data set, where each component has been vectorized. The λ · X matrices capture the
main structure, whereas the PCA approximation relying on the same number of base
components provides a less accurate reconstitution. Quantitatively, the λ · X term has a
47% (±5% over the data set) relative distance to A, whereas the PCA approximation has
a 92% (±12%) relative distance to A. The λ · X representation accounts for 60% of the
total variance, whereas the corresponding PCA representation only accounts for 35%. This
difference highlights the benefits of taking into account the variations of the patterns across
individuals. In a classical dictionary-based representation model, the patterns do not vary
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among individuals. In contrast, accounting for the pattern variability only adds a small
number of parameters (one per pattern) and increases the representation power.

Figure 9. Functional connectivity matrices (21 × 21 ) of 25 UK Biobank subjects. The connectivity structure changes a lot
depending on the subject, with various patterns expressing with different weights. The matrices in the data set have no
diagonal coefficients; hence, the diagonals are shown as zero.

Figure 10. Normalized rank-one connectivity patterns. The matrix i represents sign(μi) fi f �i /‖ fi‖2. The caption above
each pattern gives the related concentration parameter and mean eigenvalue. The diagonal coefficients are set to zero,
as they do not correspond to values in the data set. The images show each matrix as an array of coefficients, with pixel color
corresponding to coefficient amplitude.
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Figure 11. (a) UK Biobank connectivity matrices for 5 subjects. (b) Corresponding posterior mean value of λ · X estimated
by the MCMC-SAEM. (c) Projection of the true connectivity matrices onto the subspace of the first five PCA components.
The posterior mean matrix achieves a better rRMSE than PCA by capturing the main patterns of each individual matrix.
As in Figure 10, the diagonal cofficients are set to zero.

5.2.2. Pattern Interpretation

Once the patterns are identified, they can be interpreted based on the function of
the related involved brain regions. All brain regions can be found on a web page of the
UK Biobank project (https://www.fmrib.ox.ac.uk/datasets/ukbiobank/group_means/
rfMRI_ICA_d25_good_nodes.html, accessed on 19 April 2021). The regions analyzed in
this section can be visualized on brain cuts in Appendix E.2.

Pattern 3 mainly represents the anti-correlation between regions 1 and 3. Region 1
comprises, among others, the inner part of the orbitofrontal cortex and the precuneus.
These regions are parts of the Default Mode Network (DMN) of the brain, which is a
large-scale functional brain network known to be active when the subject is at rest or
mind-wandering [60]. Region 3 comprises part of the insular cortex and the post-central
gyrus, which both play a role in primary sensory functions. The anti-correlation between
regions 1 and 3 is a consequence of external sensations activating the sensory areas and
decreasing the DMN activity. This anti-correlation is also one of the strongest coefficients
in pattern 1.

Pattern 5 mainly features the dependency between nodes 2, 4, 8, 9, and 19, which are
all related to the visual functions. Node 2 represents the parts of the occipital and temporal
lobes forming the ventral and dorsal streams: they are theorized to process the raw sensory
vision and hearing to answer the questions “what?” and “where?” [61]. Region 4 features
the cuneus, which is a primary visual area in the occipital lobe. Region 8 spans over the
whole occipital lobe, covering primary visual functions and associative functions like the
recognition of color or movement. Region 9 comprises the continuation of the ventral and
dorsal streams of region 2 in the parietal and medial temporal areas. Finally, Region 19
represents the V1 area that processes the primary visual information. Pattern 5 involving
these regions has a very high concentration parameter, which means that this structure
remains very stable among the subjects.

Considering that the subject’s activity in the MRI scanner mainly consists of looking
around and laying still, it is coherent that the most stable patterns (i.e., with highest
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concentration parameters) during the resting-state fMRI measurement are the activity of
the vision system and the anti-correlation between the DMN and sensory areas.

Pattern 4 also shows the interaction between the visual areas 2, 4, 8, and 19. It also
includes the strong correlation between nodes 9, 10, 11, 12, and 17. Regions 10, 11, and 12
are involved in motor functions. Region 10 features part of the pre-central gyrus, which is
central in the motor control function, and part of the post-central gyrus, which is involved
in sensory information processing. Region 11 encompasses the entire pre-central gyrus.
Region 12 includes a part of the motor and pre-motor cortex in the frontal lobe and the
insular cortex. It also includes the cerebellum, which plays an important role in motor
control, and the insular cortex, which also acts on the motor control, for instance, in the
face and hands motion control [62]. Region 17 comprises the medial face of the superior
temporal gyrus and the hippocampus, which are involved in short and long-term memory
and spatial navigation.

Pattern 2 combines, to some extent, the structure contained in patterns 4 and 5. It
features, among others, interactions between the visual areas and the correlation between
the motor function areas.

Remark 5. The results and interpretation we present in this experiment depend on the state of
the subjects—in this case, a resting state—and the brain parcellation used to obtain the definition
of the regions. If we were to analyze another data set of subjects performing a different task,
the connectivity patterns X would likely differ from their resting-state counterpart. It follows from
the fact that two different phenomenons naturally require two different base dictionaries. Analyzing
the pattern difference would thus provides a way to interpret the structure difference between the
two settings. For instance, the role of the occipital lobe in the vision-involved patterns would likely
change for tasks related to vision. However, if the brain regions are defined differently in the two
experiments, the comparison can only be made in a qualitative way.

5.2.3. Link Prediction

We evaluate the relevance of our model on fMRI data by testing the missing link
imputation method introduced in the previous section. First we fit the model on N = 1000
subjects. Then we take 1000 other test subjects and mask the edges corresponding to
the interactions between the last nine nodes (except the diagonal coefficients, which are
unknown and thus considered null). We compute the MAP estimator of the masked
coefficients. For comparison purposes, we perform a linear regression to predict the
masked coefficients given the visible ones. Finally, we truncate the matrix with masked
coefficients to only keep the p dominant eigenvalues. This technique is at the core of low-
rank matrix completion methods [63], and it relates naturally with the estimation derived
from our model relying on low-rank variability. The result is shown for one sample in
Figure 12. The linear model and the MAP estimator give comparable estimates, both close
to the true masked coefficients. Over the 1000 test subjects, these estimators achieve on
average 58% (±14% over the samples) rRMSE for the linear model and 65% (±15%) rRMSE
for the MAP. Interestingly, our model uses only np + p + 2 = 112 degrees of freedom,
whereas the linear prediction model has dimension 26,640 and was specifically trained for
the regression purpose.

Our model captures a faithful representation of the fMRI data set and uses far fewer
coefficients than other models like PCA and linear regression by accounting for the struc-
ture of the interactions between the network nodes. It provides an explanation of the
network variability using simple interpretable patterns, which correspond to known spe-
cific functions and structures of the brain. The variations of these patterns and their weight
allow for a representation rich enough to explain a significant proportion of the variance
and impute the value of missing coefficients.
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Figure 12. From left to right: (a) True connectivity matrix A. (b) MAP estimator for the masked coefficients framed in a
black square. (c) Linear model prediction for the masked coefficients. (d) Rank 5 truncation of the matrix A with masked
coefficients set to zero. (e) Mean of all data set matrices. Above each matrix is the rRMSE with the ground truth.

6. Conclusions

This paper introduces a new model for the analysis of undirected graph data sets.
The adjacency matrices are expressed as a weighted sum of rank-one matrix patterns.
The individual-level deviations from the population average translate into variations of the
patterns and their weight. Sample graphs are characterized by these variations in a way
similar to PCA. The form of the decomposition allows for a simple interpretation: each
pattern corresponds to a matrix with rank one and is thus represented by a vector of node
coefficients. The variability of this decomposition is captured within a small number of
variance and concentration parameters.

We use the MCMC-SAEM algorithm to estimate the model parameters as well as the
individual-level variable. The parameter of von Mises–Fisher distributions is recovered
by estimating the vMF normalizing constant, which allows retrieving both the mode
and its concentration parameters. Future work could further investigate the role of the
approximation error induced by the use of saddle-point approximations, comparing its
performance with a recently proposed alternative method [64]. The impact of noise on the
underestimation of the vMF distribution concentration also requires further analysis.

Experiments on synthetic data show that the algorithm yields good approximations of
the true parameters and covers the posterior distributions of the latent variables. Our model
can be used to infer the value of masked or unknown edge weights once the parameters are
estimated. In practice, the posterior distribution could be compared to the real connections
to detect anomalous connections that step out of the expected individual variability.

The model we introduce is a hierarchical generative statistical model, which easily
extends to mixture models. We show that a mixture of decomposition models can be
estimated with a similar algorithmic procedure and allow disentangling between modes of
variability that are indistinguishable by a traditional clustering method.

We demonstrate the relevance of the proposed approach for the modeling of func-
tional brain networks. Using few parameters, it explains the main components of the
variability. The induced posterior representation is more accurate than PCA and gives
a link prediction performance similar to a linear model, which has a comparably simple
structure, but requires far more coefficients and was trained specifically to that purpose.
The estimated connectivity patterns have a simple structure and lead to an interpretable
representation of the functional networks. We show that our model identifies specific
patterns for the visual information processing system or the motor control. The related
concentration parameters allow measuring the variability of the function of the related
brain regions across the subjects.

This work focuses on cross-sectional network data sets, i.e., populations where each
adjacency matrix belongs to a different subject and is independent of the others. Our model
could also be used as a base framework for longitudinal network modeling using the tools
proposed by Schiratti et al. [65]. This would consist of considering time-dependent latent
variables X and λ for each subject, evolving close to a population-level reference trajectory
in the latent space.

Future work could investigate the dependencies between the latent variables of the
model. Correlation can be introduced between the patterns by using Fisher–Bingham
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distributions on the Stiefel manifold [38] and between pattern weights with full Gaussian
covariance matrices. Another direction to develop is the quantification of the uncertainty:
by adding prior distributions on F and μ, a Bayesian analysis would naturally provide pos-
terior confidence regions for the model parameters [47]. Finally, our framework could be
adapted to model graph Laplacian matrices instead of adjacency matrices. The analysis of
the eigenvalues and eigenvectors of the graph Laplacian has proven of great theoretical [66]
and practical [67] interest in network analysis. Understanding the variability of the eigen-
decomposition of graph Laplacians could help to design robust models relying on spectral
graph theory.
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Appendix A. SAEM Maximization Step

Appendix A.1. Maximum Likelihood Estimates for μ, σ2
λ, σ2

ε

Up to a constant normalization term c, the complete log-likelihood of the model in the
Gaussian case writes:

log p((A(k)), (X(k)), (λ(k)); θ) =
N

∑
k=1

log p(A(k), X(k), λ(k); θ)

=
N

∑
k=1

[
− 1

2σ2
ε

∥∥∥A(k) − λ(k) · X(k)
∥∥∥2

− 1
2σ2

λ

∥∥∥λ(k) − μ
∥∥∥2

+ Tr(F�X(k))

]
(A1)

− Nn2 log σ − Np log σλ − N log Cn,p(F) + c

= N

[
Tr(F�S1) + 〈S2,

1
2σ2

λ

μ〉 − S3
1

2σ2
λ

− S4
1

2σ2
ε
+ Ψ(θ)

]

337



Entropy 2021, 23, 490

with Ψ(θ) = −n2 log σε − p log σλ − log Cn,p(F) + c, and⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S1 = 1
N ∑N

k=1 X(k)

S2 = 1
N ∑N

k=1 λ(k)

S3 = 1
N ∑N

k=1

∥∥∥λ(k)
∥∥∥2

S4 = 1
N ∑N

k=1

∥∥∥A(k) − λ(k) · X(k)
∥∥∥2

The model thus belongs to the curved exponential family, and its sufficient statistics
are given by (S1, S2, S3, S4). The log-likelihood is componentwise convex in μ, σ2

λ and σ2
ε .

Computing its gradient yields one single critical point, which is thus the maximum value.
In the case of the binary model, the log-likelihood writes:

log p((A(k)), (X(k)), (λ(k)); θ) =
N

∑
k=1

n

∑
i,j=1

[
A(k)

ij log h(λ(k) · X(k))ij + (1 − A(k)
ij ) log(1 − h)(λ(k) · X(k))ij

]
+

N

∑
k=1

− 1
2σ2

λ

∥∥∥λ(k) − μ
∥∥∥2

+ Tr(F�X(k))

− Np log σλ − N log Cn,p(F) + c

with h(x) = 1/(1 + exp(−x)) the sigmoid function, which applies component-wise on
matrices. The distribution (A | λ, X) is non parametric and needs no estimation. Hence,
for all the model parameters F, μ, σλ the MLE remains unchanged.

Appendix A.2. Saddle-Point Approximation of Cn,p(F)

We recall the main steps to compute the approximation of Cn,p(F) proposed by Kume
et al. [49]. For more details on the justification of the approximation and applications to
more general distributions, we refer the reader to the original paper. Our implementation
provides a function spa.log_vmf, which computes this approximation. The approximation
Ĉn,p(F) for von Mises–Fisher distributions is written in Equation (16) of [49]:

Ĉn,p(F) =
2p(2π)np/2−p(p+1)/4

|K̂′′|1/2|Ĉ|1/2
exp

{
1
2

vec(F)�Ĉ−1vec(F)−
p

∑
i=1

ϑ̂ii

}
exp(T − p/2) . (A2)

Using the following definitions:

• C(ϑ) = −2Inp − 2 ∑1≤i≤j≤p ϑij(Jij + Jji). The matrix Jij is composed of p2 blocks.
Block (i, j) is the identity In and all the other blocks are set to zero.

• K(ϑ) = − 1
2 log |C(ϑ)| − 1

2 μ�C(ϑ)−1μ − 1
2 vec(μ)�vec(μ). In this formula, μ is the

n × p diagonal matrix with diagonal p singular values ω of F. The function K(ϑ) is
the cumulant generating function.

• ϑ̂ is the unique solution of the so-called saddle-point equation K′(ϑ) = ϑ. It has the

explicit expression ϑ̂ = −1/(2Diag(φ̂)), with φ̂r =
(

n +
√

n2 + 4ω2
r

)
/(2ω2

r )

• Ĉ is given by C(ϑ̂) and K̂′′ by K′′(ϑ̂).
• K̂′′ can be computed explicitly:

K̂′′
(r1,s1),(r2,s2)

=

⎧⎪⎨⎪⎩
0 r1 �= r2 or s1 �= s2,
nφ̂rφ̂s + φ̂rφ̂s(ω2

r φ̂r + ω2
s φ̂s) r1 = r2 < s1 = s2,

2nφ̂2
r + 4ω2

r φ̂3
r r1 = r2 = s1 = s2

• The parameter T is defined in Equation (8) of [49] and computed in the supplementary
material of the paper in the case of vMF distributions. In first approximation, T can be
considered zero.
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As in the original paper, we validate our implementation by comparing the result with the
Monte Carlo estimate of the normalizing constant produced by uniform sampling on the
Stiefel manifold.

Remark A1. The −p/2 factor comes from using B = −In×p/2 (and thus V = In×p) and
compensating with Equation (22) of [49] to handle vMF distributions, which otherwise have B = 0.
This point is not stated explicitly in the main text of the paper but it is explained in the related
MATLAB implementation provided by the authors.

Appendix B. Gradient Formulas

The MCMC-SAEM initialization heuristic, as well as the MALA transition kernel,
require the gradients of the log-likelihood with respect to the latent variables. In this
section, we compute these gradients for the model with Gaussian perturbation and the
model with binary coefficients.

Appendix B.1. Model with Gaussian Perturbation

Consider the log-likelihood for the variables of only one subject (X, λ, A). Using the
formula in Equation (A1), we can compute its gradients with respect to X and λ. For λ,
it writes:

∇λ log p(X, λ, A; θ) = −
(

1
σ2

ε
+

1
σ2

λ

)
λ +

1
σ2 (x�

i Axi)
p
i=1 +

1
σ2

λ

μ ,

with (xi)
p
i=1 the columns of X. Similarly, the Euclidean gradient for X is given by

∇X log p(X, λ, A; θ) =
1
σ2

ε
AXDiag(λ) + F + 4XDiag(λ)X�XDiag(λ)

Following Edelman et al. [30], the Riemannian gradient on the Stiefel manifold is then
given by:

∇V
X log p(X, λ, A; θ) = ∇X log p(X, λ, A; θ)X(k)� − X∇X log p(X, λ, A; θ)

Appendix B.2. Binary Model

Similarly, the log-likelihood gradients can be derived for the binary model. Let x̃i be
the i-th row of X and � denote the entrywise product. We have:

∇λ log p(X, λ, A; θ) = − 1
σ2

λ

(λ − μ) +
n

∑
i,j=1

[Aijh(−(λ · X)ij)− (1 − Aij)h((λ · X)ij)](x̃i � x̃j)

∇X log p(X, λ, A; θ) = F + ∑
i �=j

[Aijh(−(λ · X)ij)− (1 − Aij)h((λ · X)ij)]Hij

+
n

∑
i=1

[Aiih(−(λ · X)ii)− (1 − Aii)h((λ · X)ii)]Ki .

In the latter formula, Hij is a n × p matrix with zeros everywhere except the i-th
row equal to λ � x̃j and the j-th row equal to λ � x̃i. Ki is the n × p matrix with zeros
everywhere except the i-th row equal to 2λ � x̃i.
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Appendix C. Algorithm for the Clustering Model

We summarize in Algorithm A1 the procedure to estimate the MLE of a mixture model.

Algorithm A1: Maximum Likelihood Estimation of θ = (F, μ, σε, σλ, π) for the mixture model
Initialize θ0 and S0.
Initialize X0, λ0 and z0 using the K-Means algorithm.
for t = 1 to T do

if (t mod 5) = 0 then

Align together the parameters (Fc, μc)K
c=1 of each cluster using Algorithm 2.

end
if t ≤ T/3 and (t mod 5) = 0 then

for k = 1 to N do

Use Algorithm 2 to align X(k)
t with πV

(
Fz(k)t

t

)
.

Permute λ
(k)
t accordingly.

end

end

Set X̃(k)
0 = X(k)

t , λ̃
(k)
0 = λ

(k)
t , z̃(k)0 = z(k)t

for � = 1 to nMCMC do
for k = 1 to N do

Sample X̃(k)
� from the Metropolis kernel qX(· | X̃(k)

�−1, λ̃
(k)
�−1, z̃(k)�−1; θt) targetting

p(X(k) | A(k), λ̃
(k)
�−1, z̃(k)�−1; θt).

Sample λ̃
(k)
� from the Metropolis kernel qλ(· | X̃(k)

� , λ̃
(k)
�−1, z̃(k)�−1; θt) targetting

p(λ(k) | A(k), X̃(k)
� , z̃(k)�−1; θt).

Sample z̃(k)� from the distribution p(z(k) | A(k), X̃(k)
� , λ̃

(k)
� ; θt).

end

end

Set X(k)
t+1 = X̃(k)

nMCMC , λ
(k)
t+1 = λ̃

(k)
nMCMC and z(k)t+1 = z̃(k)nMCMC.

Update the sufficient statistics St+1 = (1 − αt)St + αtS(A, Xt+1, λt+1).
Compute πt+1 using the proportion of samples z(k)t+1 belonging to each cluster.
for c = 1 to K do

Compute μc
t+1, (σc

ε )t+1 and (σc
λ)t+1 with Equation (5) using only the k such that z(k)t+1 = c.

Compute Fc
t+1 by solving problem (6), using only the k such that z(k)t+1 = c.

end

end

return θT, (Xt, λt, zt)T
t=1

Appendix D. Symmetry of Von Mises–Fisher Distributions

Let F be the parameter of a von Mises–Fisher distribution. Let expX be the Riemannian
exponential map at X. We have the following result:

Proposition A1. Suppose that the columns of F are orthogonal. Let M = πV(F) be the mode
of the vMF distribution and D ∈ TMVn,p a tangent vector at M. Then pvMF(expM(D)) =
pvMF(expM(−D)), i.e., the vMF distribution is symmetric around its mode.

Proof. Since the columns of F are orthogonal, we can write F = MΛ with M = πV(F) ∈
Vn,p and Λ = Diag(λ). Let D ∈ TMVn,p. As proven in [30], the geodesic Xt starting at M
with X′(0) = D is then given by

Xt = (M, M⊥) exp(tKM(D))In,p ,
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where exp is the matrix exponential, M⊥ ∈ Vn,n−p is such that M�M⊥ = 0 and KM(D) is
skew-symmetric: KM(D)� = −KM(D). Therefore, the von Mises–Fisher log-density along
Xt writes as:

Tr(F�Xt) = Tr(ΛM�(M, M⊥) exp(tKM(D))In,p)

= Tr(ΛIp,n exp(tKM(D))In,p)

= Tr(I�n,p exp(tKM(D))� I�p,nΛ�)

= Tr(Ip,n exp(tKM(D)�)In,pΛ)

= Tr(ΛIp,n exp(−tKM(D))In,p)

= Tr(F�X−t)

Therefore the von Mises–Fisher density is symmetric around its mode.

Appendix E. Additional Details on the UK Biobank Experiment

Appendix E.1. Impact of the Number p of Patterns

We perform the same experiment as in Section 5.2 with different numbers of patterns,
p ∈ {2, 5, 10}, always running the MCMC-SAEM for 1000 iterations with 20 MCMC steps
per SAEM iteration. We call the related models M2, M5, and M10. The normalized patterns
of M2 and M10 are reproduced in Figures A1 and A2. The patterns of M2 correspond to
patterns 1 and 2 of M5 and M10. Similarly, the patterns of M5 correspond to patterns 1 to 5 of
M10. This result confirms that our model acts in a way comparable to PCA, selecting first the
dominant patterns with the largest eigenvalues. Figure A3 compares the posterior means
of λ · X given by M2, M5 and M10 for 5 subjects. Coherently, the approximation λ(k) · X(k)

refines and gets closer to A(k) as p increases. Over the 1000 subjects, these posterior means
achieve, respectively, 57% (±7%), 47% (±5%) and 35% (±4%) relative RMSE.

However, this observation does not assess whether higher values of p provide addi-
tional relevant features to represent the network structure. The following result illustrates
this idea. We repeat the experiment of missing link MAP imputation on models M2 and
M10. We find that both M2 and M10 yield a worse prediction than M5 on this task: model
M2 gets 70% (±16%) rRMSE and M10 gets 76% (±16%) rRMSE, whereas model M5 gets
65% (±15%) rRMSE. While the prediction performance of M2 is expected to be worse
than M5’s, observing a worse prediction performance in M10 means that the information
captured by the additional components does not help infer the network structure. As with
PCA, the components with lesser amplitude are less relevant to perform regression tasks;
this idea is at the core of Partial Least Square Regression [68].

Figure A1. Normalized connectivity patterns when p = 2, computed as in Figure 10.
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Figure A2. Normalized connectivity patterns when p = 10, computed as in Figure 10.

Figure A3. (a) UK Biobank connectivity matrices for 5 subjects. (b) M10 posterior mean value of λ · X. (c) M5 posterior
mean value of λ · X. (d) M2 posterior mean value of λ · X. The rRMSE coherently increases as p decreases.

Therefore, the parameter p should be chosen with care when using our model for
predictive purposes. The experiment presented above can be used to quantify the relevance
of the obtained representation, but other methods could be explored. Future work could
investigate the question of parameter selection by adapting Bayesian model selection
methods to our method, as well as likelihood ratio tests or criteria like BIC and AIC.
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Appendix E.2. Brain Regions of the UK Biobank fMRI Correlation Networks

As explained in Section 5.2, the Regions Of Interest (ROIs) that define the correlation
networks are detected automatically using a spatial ICA [59]. Each component of the ICA
attributes a weight to each brain voxel. The brain regions are visualized by selecting the
voxels with weight above a certain threshold. The obtained level set may be scattered over
the brain, which sometimes makes their interpretation difficult. In Figure A4, we show
the brain regions mentioned in the interpretation of the patterns identified by our model,
namely regions 1, 2, 3, 4, 8, 9, 10, 11, 12, 17, 19. In this figure, as well as online, the ICA
weight threshold value is set to 5.

Figure A4. Frontal, sagittal, and transverse cuts of the brain for the UK Biobank fMRI brain regions analyzed in this paper.
As explained in Section 5.2, region 1 comprises part of the Default Mode Network of the brain, which characterizes its
activity at rest. Region 3, which is anti-correlated to region 1, is related to sensory functions. Regions 2, 4, 8, 9, and 19
are involved in the visual functions. Regions 10, 11, 12 correspond to motor control. Region 17 is involved in memory
and spatial navigation. The L/R letters distinguish the left and right hemispheres. The black axes on each view give the
three-dimensional position of the cut. The color strength corresponds to the truncated ICA weight.

343



Entropy 2021, 23, 490

References

1. Newman, M.E.J. Networks—An Introduction; Oxford University Press: Oxford, UK, 2012.
2. Ni, C.C.; Lin, Y.Y.; Luo, F.; Gao, J. Community Detection on Networks with Ricci Flow. Sci. Rep. 2019, 9, 9984. [CrossRef]
3. Martínez, V.; Berzal, F.; Cubero, J.C. A Survey of Link Prediction in Complex Networks. ACM Comput. Surv. 2016, 49, 1–33.

[CrossRef]
4. Shen, X.; Finn, E.S.; Scheinost, D.; Rosenberg, M.D.; Chun, M.M.; Papademetris, X.; Constable, R.T. Using Connectome-Based

Predictive Modeling to Predict Individual Behavior from Brain Connectivity. Nat. Protoc. 2017, 12, 506–518. [CrossRef]
5. Banks, D.; Carley, K. Metric Inference for Social Networks. J. Classif. 1994, 11, 121–149. [CrossRef]
6. Rubinov, M.; Sporns, O. Complex Network Measures of Brain Connectivity: Uses and Interpretations. NeuroImage

2010, 52, 1059–1069. [CrossRef] [PubMed]
7. Simonovsky, M.; Komodakis, N. GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders.

In Artificial Neural Networks and Machine Learning—ICANN 2018; Lecture Notes in Computer Science; Kůrková, V.,
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Abstract: We conduct a case study in which we empirically illustrate the performance of different
classes of Bayesian inference methods to estimate stochastic volatility models. In particular, we
consider how different particle filtering methods affect the variance of the estimated likelihood. We
review and compare particle Markov Chain Monte Carlo (MCMC), RMHMC, fixed-form variational
Bayes, and integrated nested Laplace approximation to estimate the posterior distribution of the
parameters. Additionally, we conduct the review from the point of view of whether these methods
are (1) easily adaptable to different model specifications; (2) adaptable to higher dimensions of the
model in a straightforward way; (3) feasible in the multivariate case. We show that when using the
stochastic volatility model for methods comparison, various data-generating processes have to be
considered to make a fair assessment of the methods. Finally, we present a challenging specification
of the multivariate stochastic volatility model, which is rarely used to illustrate the methods but
constitutes an important practical application.

Keywords: Bayesian inference; Markov Chain Monte Carlo; Sequential Monte Carlo; Riemann
Manifold Hamiltonian Monte Carlo; integrated nested laplace approximation; fixed-form variational
Bayes; stochastic volatility

1. Introduction

The field of Bayesian statistics and machine learning has advanced in recent years
quite rapidly. The methods that have been developed do not often find fast assimilation
across different fields. In this review, we aim to provide the reader with methodologies
that try to solve the estimation problem in models with latent variables and intractable
likelihoods. We are in particular interested in the methods that can be used to estimate
nonlinear state-space models and in particular stochastic (latent) volatility models. There
are multiple studies that conducted review and comparison of the methods of estimation
of the stochastic volatility models [1–3]. We briefly mention some of the methods that have
been reviewed; however, most of the methods considered in this paper have not entered
those reviews. In this paper, we focus in particular on comparing methods that target
posterior distribution exactly and the methods that try to approximate it. We also conduct
the review from the point of view of estimating multivariate models with these methods
and discuss what the bottleneck is in each of them when extending to higher-dimensional
stochastic volatility (SV) models. We consider different data-generating processes for
simulating data in the empirical studies and conclude that the choice of the data-generating
process can heavily affect performance of a method. Thus, illustrating the performance of a
method on just one data generating process or one real-world data set is not sufficient.

In financial econometrics literature, GARCH-type models prevail since they are much
simpler to estimate. Stochastic (latent) volatility models, however, can be more natural
frameworks for modeling asset returns. They can provide flexible and intuitive tools for
applications in financial econometrics as well as some other disciplines. In particular,
multivariate stochastic volatility models offer an attractive framework for detection and
measuring volatility spillover effects. Volatility spillovers in this framework can be defined
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through Granger-causal links in the latent (unobservable) volatility process, which is mod-
eled with a Vector Autoregressive model (VAR(p)). Insights about the causal structure
can help to identify the relationship (Granger-causality or/and contemporaneous corre-
lation) between the financial markets. Such information can be insightful and helpful in
the decision-making process of portfolio managers and policymakers. These models are,
however, rarely considered in practice. Multiple Bayesian inference methods have been
proposed for the estimation of this class of models in recent years. In this paper, we identify
the bottlenecks in different classes of methods for the estimation of these models in the
multivariate case.

One of the stepping stones of estimation of the nonlinear state-space models in general
(and stochastic volatility models in particular) lies in the intractability of the likelihood,
which is the result of the presence of an unobservable process in the model and nonlinear
dependence between this process and the observed data. The likelihood can be estimated
with particle filter methods, also known as Sequential Monte Carlo. This is a computation-
ally intensive procedure; however, depending on the problem and the data, it can provide
excellent results. The second stepping stone of the estimation is the intractable posterior
distribution. A standard starting point for sampling from the posterior distribution is the
Metropolis-Hastings algorithm, which is a general method and can be applied straightfor-
wardly to different models. It works well when the number of parameters in the model is
small. However, the convergence of the algorithm can be slow in larger models, due to
inefficiency of the sampling with random walk proposals. Particle Metropolis-Hastings [4]
combines Sequential Monte Carlo for the likelihood estimation with Metropolis-Hastings
for the sampling from the posterior, which results in a state-of-the-art method in terms of
the estimation quality since it targets the exact posterior. The downside of this method
is that it is computationally extremely demanding. Note that, while we consider particle
Metropolis-Hastings in this paper, the class of methods from [4] is more general.

Two main downsides of particle Metropolis-Hastings are random walk behavior of
the proposals and computational burden. One of the possible solutions to the first problem
are the algorithms that use gradient information for the construction of the proposal
distribution and thus explore the parameter space more efficiently. An additional step in
improving these algorithms is defining them on a Riemann manifold instead of Euclidean
space as proposed in [5]. The resulting algorithm, which we consider for the comparison in
this paper, is Riemann Manifold Hamiltonian Monte Carlo. For extensive comparison of the
methods that exploit gradient information and Langevin dynamics—such as Metropolis-
adjusted Langevin algorithm, Hamiltonian Monte Carlo, Riemann manifold Metropolis
adjusted Langevin algorithm, andRiemann Manifold Hamiltonian Monte Carlo—we refer
to [5].

Thus far, we have discussed the methods that target the posterior distribution exactly
and have a high computational burden, which makes empirical investigation of their
performance in high-dimensional cases infeasible. In the last decade, a large number
of methods have been published on approximate posterior inference thaat allow much
faster computations, but lose in terms of precision of the estimation. In this paper, we
consider two such methods that deal with different types of approximation. Fixed-form
variational Bayes, proposed in [6], assumes hierarchical factorization of the prior and
posterior distributions, and the factorized distributions are approximated by an analytically
tractable distribution from a certain family of distributions q(·). Then, instead of solving
integration problem, one solves the optimization problem of minimizing the Kullback–
Leibler divergence between q(·) and p(·), where p(·) is the target distribution. The second
approximate method that we consider is the integrated nested Laplace approximation
(INLA) [7]. The method relies on the nested version of the classical Laplace approximation.
It became very popular in recent years and made computations in many models feasible.

In this review paper, we focus our attention on the following methodologies and
provide a comparison for some of the methods via a simulation study. We consider how
the variance of the estimated likelihood is affected by choosing different particle-filtering
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algorithms. Unlike previous studies, we consider the variance of the estimated likelihood
over the whole parameter space and notice that it is affected by some parameters of the
model more than by the others. We compare particle Metropolis-Hastings with Riemann
Manifold Hamiltonian Monte Carlo as two state-of-the-art sampling methods for this type
of problem. We asses how well the INLA method performs in the task of the estimation of
the parameters of stochastic volatility model and finally, compare fixed-form variational
Bayes methods with sampling by RMHMC. All the between-methods comparisons are
performed on multiple simulated data sets with different underlying parameters. We
illustrate that, for fair comparison and performance assessment, illustration only on data
sets is not sufficient.

The paper is organized as follows. In Section 2, we introduce the model and its
different specifications. While in simulation studies we use univariate model, we do
introduce multivariate stochastic volatility models with Granger-causal feedback as the
model of interest for high-dimensional inference. In Section 3, we review the methods
that can be used for the estimation of this class of models. We introduce major ideas
behind these methods, and for the details of the derivations we refer to the original papers.
In Section 4, we perform empirical case study on different simulated data sets and compare
the methods on two real-world time series. We in particular focus on the precision loss of
parameter estimation when using approximate methods and how adaptable the methods
are to perform multivariate estimation and estimation of various model specifications.

2. Model

2.1. Univariate Stochastic Volatility Model

In this section, we introduce the model of interest that we will use in the simulation
studies. Stochastic volatility (SV) models are concerned with modeling asset prices or asset
returns depending on how the model is formulated. Let Pt be the price of the asset at time
t or the exchange rate at time t (we consider two applications to real data in Section 3.5:
one to exchange rate and one to log-returns). Then the log-return yt is

yt = log(1 + Rt) = log
Pt

Pt−1
. (1)

Stochastic volatility models are built in such a way that they can mimic stylized facts about
financial markets and log-returns yt. Stylized facts are empirically observed statistical
properties of asset prices and asset returns. Typical examples of stylized facts are

• Volatility clustering and persistence: the big changes in asset returns tend to be followed
by big changes, and small changes in asset returns tend to be followed by small
changes; in other words, there are periods of large fluctuations and small fluctua-
tions [8].

• Leverage effect: the changes in stock prices may be negatively related to the changes in
volatility [9].

• Co-movements: different stocks tend to exhibit co-movements, which means that if the
volatility of one stock changes in a specific direction, volatilities of the other stocks
tend to change in the same direction [9].

One of the earlier works that received much attention in the financial literature and
proposed a mathematical model that tried to explain the dynamics of financial markets
is [10]. Numerous continuous-time stochastic volatility models have been proposed since
then, and among the first ones, multiple variants should be mentioned [11–14]. The model
we will be considering in this chapter can be viewed as a discrete version of the model
in [13] derived by using Euler–Maruyama approximation. The stochastic volatility model
in continuous time can be written as

ds(t) = σ(t)dB1(t), (2)

ln σ2(t) = μ + β ln σ2(t)dt + σηdB2(t), (3)
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where s(t) is log of asset price, σ2(t) is the volatility, B1(t) and B2(t) are Brownian motions
that satisfy corr(B1(t), B2(t)) = ρ. If ρ < 0, there is leverage effect present. Thus, log of
asset price follows diffusion and its volatility parameter also follows diffusion [15]. As we
often get the data in discrete time, usually the discrete time approximation of the model is
used in practice. The discrete model then follows by using Euler–Maruyama approximation

yt = σtεt, (4)

ln σ2
t+1 = μ + φ ln σ2

t + σηηt+1, (5)

where yt is logarithmic return, εt = B1(t + 1)− B1(t), ηt+1 = B2(t + 1)− B2(t), φ = 1 + β.
Further, εt ∼ N(0, 1) and ηt ∼ N(0, 1), corr(εt, ηt+1) = ρ.

We get state-space representation of the model that is commonly used by defining
ht = ln σ2

t and σ2
t = exp(h2)

yt = exp(ht/2)εt, (6)

ht+1 = μ + φht + ηt+1, (7)

where yt are log-returns that are observed and volatility ht is latent and drives the dynam-
ics of yt. Figure 1 illustrates this structure of the model. Note that the latent volatility
process has an autoregressive form. However, unlike in the standard autoregressive model,
the latent volatility is not observed and thus has to be estimated together with the model
parameters μ, φ, and ση , which are the scale, the volatility persistence and the noise vari-
ance of the latent volatility process, respectively. The persistence parameter φ reflects one
of the stylized facts of financial returns, namely volatility persistence. The intuition is
as follows: if φ > 0 and exp(ht−1/2) is large, then exp(ht/2) will tend to be large too.
Hence, the model can account for volatility clustering. In this paper, we consider stationary
volatility cases with |φ| < 1. Finally, one can also incorporate leverage effects by defining
negative correlation between noise terms εt and ηt+1. Intuitive interpretation of the lever-
age effect goes as follows: bad news tends to decrease the price, which means that financial
leverage increases, the firm becomes riskier, and thus expected volatility also increases.
The leverage effects in this model have been studied in [16]. The stochastic volatility model
can be parametrized in multiple ways; often, the following alternatives are considered [2].
Other ways to parametrize this model are presented in Equarions (8) and (9). The left-hand
side version of the model corresponds to that of [17]. The right-hand side version is a
different way to define the scaling parameter; in this case, it is β. For identifiability reasons,
only β or μ as in Equation (7) should be included in the model.

yt =
√

htεt yt = β exp(ht/2)εt (8)

log ht = μ + φ log ht−1 + ηt ht = φht−1 + ηt. (9)

Note that the authors of [17] define the leverage effect as correlation between εt and ηt,
so the correlation between noise terms is contemporaneous while [16] model correlation
between εt and ηt+1, which corresponds to correlation of the returns with one-step-ahead
volatility. Reference Yu [18] shows that the approach of [16] is preferable. In particular,
while in case of [16] the model is a martingale difference sequence, i.e., the past does not
help to predict the future of the time series, in the case of [17], it is not. Hence, in the latter
case, the efficient market hypothesis is violated.

In the remainder of this manuscript, we will work with either specification of the
model defined in Equations (6) and (7) or in right-hand side of Equations (8) and (9). These
models are equivalent, and we interchange the representation either for the convenience
of using some of the methods or for comparison with other work. In the literature, both
specifications are frequently used, and in some papers (for example, ref. [19]) the transition
from one specification to another is conducted by observing that β = exp(μ/2).
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Under the assumption that |φ| < 1, the unconditional first and second moments of
the latent process ht are

E(ht) =
μ

1 − φ
, Var(ht) =

σ2
η

1 − φ2 . (10)

The challenge of the estimation of the model lies in the intractability of the likelihood
and posterior distribution. The likelihood factorizes as

L(y|θ) =
T

∏
t=1

p(yt|y1:t−1, θ), (11)

where the terms in the product can be computed recursively, and it becomes clear that the
likelihood is a high-dimensional integral

p(yt|y1:t−1, θ) =
∫

p(yt|ht, θ)p(ht|y1:t−1, θ)dht. (12)

There is no analytical solution to the integral in Equation (12), and in this paper, we consider
methods to estimate it using sequential Monte Carlo methods.

h1 h2 h3 hT−1 hT

y1 y2 y3 yT−1 yT

Figure 1. Graphical representation of stochastic volatility model. Observations yt represented by
shaded edges depend at each time point on the state of the latent volatility process ht.

2.2. Multivariate Stochastic Volatility Model

In this section, we introduce the multivariate stochastic volatility model, which is
rarely used in practice due to the challenges of estimation. One of the objectives of this
paper is to assess whether modern methods in Bayesian inference are capable of the
estimation of these models in high-dimensional case. Multivariate or high dimensional
application of this class of models can give insightful information to practitioners. We
deal with the same set-up as before; however, we now consider multiple time series of
logarithmic returns that are interconnected through the latent volatility process

yt = Ωtεt, (13)

where εt ∼ N(0, R) and R is a correlation matrix with entries rii = 1, i = 1, . . . , n on the
diagonal. Furthermore, Ωt is a diagonal matrix that contains time-varying volatilities that
are driven by an independent stochastic process ht,

Ωt = diag(exp(ht/2)).

The process ht of log-volatilities follows a VAR(p) process

ht = μ +
p

∑
k=1

Φk (ht−i − μ) + ηt, (14)

where Φk =
(
φij,k
)

i,j=1,...,n are n × n coefficient matrices. Introducing the matrices Φk =(
φij,k
)

i,j=1,...,n allows us to model connectivity in financial time series through the concept
of Granger-causality in latent volatility process. We say that hi does not Granger-cause hj
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if all
(
φij,k
)

k=1,...,p = 0. The standard conditions on stationarity of a vector autoregressive
model apply: the root of |I− λΦ| = 0 should lie outside the unit circle, and the errors ηt are
independent and identically normally distributed with mean zero and variance-covariance
matrix Σ = diag(σ2

1 , . . . , σ2
n). Equations (13) and (14) are multivariate extensions of the

model described in Equations (6) and (7). The representation from the right-hand side of
Equations (8) and (9) can be obtained by including a vector of parameters β into Ωt and
removing μ from Equation (14). As before, for identifiability, only one vector of the scale
parameters—either μ or β—should be included in the model.

The above MSV model can also be viewed as a non-linear state-space model where (14)
is the state equation of the latent process ht and (13) is the observation equation that
depends non-linearly on the latent state. Note that, in this model, the time series are
interconnected and the relationship between them can be interpreted through the concept
of Granger-causality in latent volatility processes.

3. Methods

3.1. Bayesian Inference

In this paper, we review various methods that sample from or approximate the poste-
rior distribution of the parameters of the model θ. The sampling or approximate methods
are necessary since we are working in the framework when the posterior distribution and
the likelihood are analytically intractable. The Bayes’ rule allows us to write posterior
distribution in the form

p(θ|y) = π(θ)g(y|θ)
m(y)

, (15)

where π(θ) is the prior distribution of the parameters of the model, g(y|θ) is the likelihood
of the data given parameters of the model, and m(y) is the marginal density of y, which
can be viewed as normalizing constant and which we will ignore in this paper. In the
remainder of the paper we will work with the Bayes’ rule in proportionality terms:

p(θ|y) ∝ π(θ)g(y|θ). (16)

Note that in the stochastic volatility model we have to estimate parameters of the model
θ = (μ, φ, σ2) and the latent vector of volatilities h. Thus, we are interested in the following
form of the Bayes’ rule

p(θ, h|y) ∝ g(y|θ, h) f (h|θ)π(θ). (17)

Multiple approaches can be used for the estimation of p(θ, h|y). One of the challenges is
that neither posterior p(θ, h|y) nor the likelihood g(y|θ, h) is tractable. We start our review
by considering sequential Monte Carlo methods, also known as particle filtering, for the
estimation of the likelihood g(y|θ, h). We then discuss Metropolis-Hastings algorithm for
sampling from the posterior and how these two algorithm can be combined into particle
Metropolis-Hastings for sampling from the posterior distribution. We continue the review
of the methods by considering RMHMC method in which the parameters and volatilities
are sampled within the same framework. Finally, we review two approximate methods:
integrated nested Laplace approdximation and fixed-form variational Bayes, two different
ways of approximating posterior distribution.

3.2. Sequential Monte Carlo for the Estimation of the Likelihood

The Sequential Monte Carlo (SMC) method, also known in the literature as particle
filtering, is considered a state-of-the-art method for estimation of the intractable likelihoods
in nonlinear state-space models. The general idea behind this method lies in the estimation
of the latent states by drawing multiple samples (particles) and then propagating them
in time according to corresponding importance weights. By combining the weights over
all time steps, one obtains a marginal likelihood estimate. Standard and well-known
schemes are Bootstrap particle filter (BPF) [20], Seqiential Importance Sampling (SIS), and
Seqiential Importance Resampling (SIR) [21]. Sequential Monte Carlo methods were elegantly
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combined with Markov Chain Monte Carlo in [4], and the method was named particle
Markov Chain Monte Carlo (PMCMC). This method provides a powerful and coherent
approach for Bayesian inference in a wide range of complex models. In the later subsections,
we will discuss how sequential Monte Carlo methods are combined with Markov Chain
Monte Carlo for fully Bayesian inference in stochastic volatility models. One of the concerns
when using and implementing SMC for the likelihood estimation is the variance of the
estimated likelihood. Standard SMC techniques such as SIS are prone to have high variance
of the estimated likelihood once the dimensionality of the problem increases [22]. A number
of studies have tried to address this problem. The common choice of proposal for sample
of particles in standard schemes is f (ht|ht−1). Pitt and Shephard [23] propose an auxiliary
particle filter as a solution that is using proposal for particles which takes into account the
current observation q(ht|ht−1, yt) and not only the dynamics of the latent process itself.
Scharth and Kohn [24] suggest using efficient importance sampling [25] inside the PMCMC
procedure. Guarniero et al. [26] use twisted representation of the model and use the
look-ahead type of particle filtering to address the issue of high variance of the estimated
likelihood. Johansen and Doucet [27] compare sequential importance resampling (SIR)
with auxiliary particle filter and find that APF does not always outperform SIR. Often,
the variance of the estimated likelihood is analyzed in the true value of the parameters,
such as in [24]. However, when using particle Markov Chain Monte Carlo, it is also of
interest whether the same conclusions hold in different points of the parameter space.
In particular, we never start running the algorithm at the point of the true parameter values.
This means that if the variance of the estimated likelihood is much larger in some areas of
the parameter space, the convergence of the algorithm can be affected. Having insights
into how the variance of the estimated likelihood is different in the parameter space can
help to make a more efficient choice of the starting point for the algorithm.

We first review the sequential Monte Carlo methods for the estimation of the likelihood.
After that, we discuss Metropolis-Hastings algorithm and how SMC and Metropolis-
Hastings can be combined for Bayesian inference in general and stochastic volatility models
in particular.

3.2.1. Sequential Monte Carlo

Assume that we are in the framework with an observed time series process yt and a
latent Markovian process ht. Since we never observe the latent process, we need to infer
it. The objective that can be achieved with Sequential Monte Carlo (SMC) is also known as
particle filtering. The method operates in sequential manner with arriving observations yt.
The posterior distribution of the latent process can be computed sequentially

p(h0:t|y1:t) = p(h0:t−1|y0:t−1)
g(y1:t|h0:t) f (ht|ht−1)

p(yt|yt−1)
. (18)

The denominator of Equation (18) is not analytically tractable, which can be also seen from
Equation (12) earlier. SMC allows us to estimate the posterior distribution p(h0:t|y1:t) and
additionally get the estimate of the likelihood

L(y1:T) =
∫

p(y1:T , h1:T)dh1:T =
∫

g(y1:T |h1:T)p(h1:T)dh1:T

=
∫

g(y1|h1)p(h1)
T

∏
t=2

g(yt|ht) f (ht|ht−1)dh1 . . . hT .
(19)

The basic procedure of particle filtering in this setting can be summarized by three crucial
steps: prediction, updating, and resampling. The outline of a basic particle filter can be
summarized in the following way.

• Initialization: given the prior distribution π(θ0), we draw N independent random
samples {h0

i }N
i=1; these samples we call particles.
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• Prediction: we sample particles according to the importance density

h(i)t ∼ q(ht|h(i)t−1, yt). (20)

• Updating: During updating, we assign a weight w(i)
t to every particle

w(i)
t =

p(yt|h(i)t ) f (h(i)t |h(i)t−1)

p(yt|y1:t−1)qt(h
(i)
t |h(i)0:t−1)

(21)

and normalize these weights to sum to 1. Every weight can be interpreted as our
“confidence” about a particle.

• Resampling: resample the particles if the effective number of particles,

Ne f f =
1

∑N
i=1(ω

(i)
t )2

, (22)

is too low. In Equation (22), ω
(i)
t is the normalized weight of particle i at the time

step k. The threshold for the resampling step is set depending on whether particle
degeneracy is a problem. In general, we perform resampling when Ne f f < N/c,
where c is a constant.

The resampling step is performed to find the trade-off between two well-documented
problems: particle degeneracy and particle impoverishment [28]. The former happens when
the resampling step is ignored or is not performed frequently enough. In this case, one
ends up with a particle set that has zero weights. The latter problem happens when the
particle set is resampled too frequently; then, eventually one gets one particle with a large
weight and hence the particle set lacks the diversity. The way to find the balance between
these two problems is resampling when the efficient number of particles is smaller than a
certain threshold.

In this paper, we consider two particle filters: bootstrap and auxiliary particle filters.
A generic particle filter is presented in Algorithm A1 [28]. The bootstrap filter is a variation
of a more general approach—sequential importance sampling (resampling). The distinction
of the bootstrap filter is the proposal mechanism for the particles. In the bootstrap particle
filter the proposals for the particles are made on the basis of the dynamics of the model
f (ht|ht−1). If q(ht|yt, ht−1) = f (ht|ht−1), then the term f (ht |ht−1)

q(ht |yt ,ht−1)
is equal to 1. In the case

of the auxiliary particle filter, we also incorporate the current observation into the proposal
mechanism q(ht|ht−1, yt). Incorporating the current observation into the proposal for the
particles in some cases allows us to reduce the variance of the estimated likelihood. In our
case, there is no analytical expression for the proposal density. In the next subsection, we
discuss how it can be approximated as proposed in [23].

3.2.2. Auxiliary Particle Filter for SV Model

Incorporating knowledge of yt into proposals for particles q(ht|ht−1, yt) can help to
reduce the variance of the estimated likelihood and improve the approximation of the
filtering distribution p(ht|y1:t). Note, however, that it is not always the case as has been
shown in [27]. Only in the case of linear Gaussian state-space models does the proposal den-
sity from Equation (A2) have an analytical expression. Hence, for the stochastic volatility
models, this term must be approximated. Pitt and Shephard [23] propose using non-
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blind proposals for the next generation of particles by first expanding log g(yt+1|ht+1) to a
second-order term around μk

t+1 via Taylor expansion

log g(yt+1|ht+1, μk
t+1) = log p(yt+1|μk

t+1)
′ ×

∂ log p(yt+1|μk
t+1)

∂ht+1
+

1
2

× (ht+1 − μk
t+1)

′ ×
∂2 log p(yt+1|μk

t+1)

∂ht+1h′
t+1

× (ht+1 − μk
t+1)

(23)

For deriving the expression for log g(yt+1|ht+1, μk
t+1), recall that yt ∼ N(0, exp(ht)) and hence

g(yt|ht) =
1√

2π exp(ht)
exp
{
− y2

t
2 exp(ht)

}
=

1√
2π

exp
{
− y2

t
exp(ht)

− ht

2

} (24)

and further note that f (ht|ht−1) = N(μ + φ(ht−1 − μ), σ2
η); thus

f (ht|ht−1) =
1√

2πσ2
η

exp

{
(ht − μ − φ(ht−1 − μ))2

2σ2
η

}
. (25)

It follows that the proposal for particles at time t + 1 when taking into account the observa-
tion of the same period is

q(ht+1 | h(k)t , yt+1; μ
(k)
t+1) = N

(
μ
(k)
t+1 +

σ2

2

(
y2

t
β2 exp(−μ

(k)
t+1)− 1

)
, σ2
)

. (26)

3.2.3. Metropolis–Hastings

In this section, we consider the problem of sampling from the posterior distribution
and a general algorithm to construct such a sampling scheme. With the Metropolis–
Hastings algorithm, we sample from the posterior distribution by proposing a transition
θ → θ∗ with the density q(θ∗|θ), which we accept with probability

α(θ, θ∗) = min
{

1,
p̃(θ∗)
p̃(θ)

q(θ|θ∗)
q(θ∗|θ)

}
, (27)

where p̃(·) is a function proportional to our target distribution. A common choice for the
proposal distribution is a random-walk, which we also use when applying PMCMC later in
this paper, q(θ∗|θ) = N(θ∗|θ, Σ). The Metropolis–Hastings algorithm is one of the off-the-
shelf MCMC methods in the statistical community. It is quite general and can be applied
to various problems. The implementation of the Metropolis–Hastings algorithm requires
specification of multiple quantities. We need to specify a conditional density q(θ∗|θ) that is
a proposal distribution, generally q(θ∗|θ) should be such that we can easily simulate from
it. In many applications, including ours, it is reasonable to take the Gaussian distribution
as proposal distribution. In this case, it is also symmetric, meaning q(θ∗|θ) = q(θ|θ∗).
The Metropolis-Hastings iteration is outlined in the Algorithm 1.

In this algorithm, α(θ, θ∗) is the Metropolis–Hastings acceptance probability, where
θ is the current state of the chain and θ∗ is the candidate state of the parameter vector.
Generally, in the simulations, it is desired to have around 25% of proposed candidate
values accepted [29]. The idea is that when the proposal steps are too large (we make a
proposal that is far away from the current state, θ, in the Markov chain), we do not explore
local regions sufficiently well; moreover many of the candidates are then very likely to be
rejected. When the proposal steps are very small, the acceptance rate will be very high,

355



Entropy 2021, 23, 466

however, then we are not likely to leave regions of the local maximum or the convergence
will happen very slowly.

Algorithm 1 Metropolis-Hastings Algorithm.

1: Given θ(t),
2: Generate θ∗

t ∼ q(θ∗ | θ(t)),
3: Take

θ(t+1) =

{
θ∗

t , with probability α(θ(t), θ∗
t )

θ(t) with probability 1 − α(θ(t), θ∗
t ),

where

α(θ, θ∗) = min
(

1,
p̃(θ∗)
p̃(θt)

q(θ | θ∗)
q(θ∗ | θ)

)

The performance of Metropolis–Hastings depends on the choice of q(·) proposal
distribution. In the simulation studies, we consider random-walk proposals of the form
θ∗

i+1 = θi + εi, where i is iteration of the algorithm and εi is assumed to be Gaussian. More
information on the theoretical properties of this algorithm can be found in [30].

3.2.4. Particle Metropolis-Hastings

Particle Markov Chain Monte Carlo (PMCMC) methods were introduced in [4]. The ba-
sic idea is that MCMC methods, and in particular, Metropolis–Hastings algorithm, which
is of interest to us, can be combined with Sequential Monte Carlo to make draws from the
posterior distributions of the parameters. Algorithm 2 presents the particle Metropolis–
Hastings algorithm. The difference from the standard Metropolis-Hastings is in the quantity
p̂θ∗(y1:T), which is the estimate of the likelihood obtained with a particle filter conditioning
on the parameters vector θ. In this algorithm, q(θ(i − 1)|θ∗) is the proposal distribution
(which cancels out when it is symmetric), and π(·) is prior distribution.

Algorithm 2 Particle Metropolis-Hastings.

1: Initialize algorithm at i = 0 and initialize parameters θ(0)
2: Run an SMC algorithm targeting p

θ(0)
(h1:T | y1:T), sample h(0)1:T ∼ p̂

θ(0)
(· | y1:T) and let

p̂(0)θ (y1:T) denote the marginal likelihood estimate for the initialized parameters
3: for i = 1, . . . , M do
4: Generate θ∗ ∼ q(θ∗ | θ(i−1)),
5: Run an SMC algorithm targeting pθ∗(h1:T | y1:T), sample h∗

1:T ∼ p̂θ∗(· | y1:T) and
let ˆpθ∗(y1:T) denote the marginal likelihood estimate for the proposed parameters θ∗

6: With probability

min

{
1,

p̂θ∗(y1:T)

p̂
θ(i−1) (y1:T)

π(θ∗)

π(θ(i−1))

q(θ(i−1)|θ∗)

q(θ∗|θ(i−1))

}
(28)

7: Set θ(i) = θ∗, h(i)1:T = h∗
1:T and p̂

θ(i)
(y1:T) = p̂θ∗(y1:T);

8: Otherwise set θ(i) = θ(i−1), h(i)1:T = h(i−1)
1:T and p̂

θ(i)
(y1:T) = p̂

θ(i−1) (y1:T).
9: end for

3.3. MCMC with Gradient Information

In this section, we discuss Riemann Manifold Langevin Hamiltonial Monte Carlo
methods that are introduced in [5] and in particular can be applied to stochastic volatil-
ity models.

The method originates in physics statistical literature and provides a tool that allows
one to make large transitions with high acceptance probability, something that standard
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methods such as Metropolis–Hastings fail to achieve. The idea of HMC is based on relation
between differential geometry and statistical theory (MCMC in particular). Girolami and
Calderhead [5] propose the Metropolis-adjusted Langevin algorithm and Hamiltonian
Monte Carlo sampling algorithms that are defined on the Riemann manifold. Their methods
allow us to overcome the problem of sampling from high-dimensional densities that may
show strong correlation. We further provide the general background and summary of the
algorithms together with the necessary quantities for their implementation in the case of
stochastic volatility models. It is not our goal to provide theoretical foundations of these
methods in this article. For deeper theoretical foundations, see [31–33].

In standard MCMC setting, one uses probability distribution to make a proposal for
the next state of the Markov chain. Hamiltonian Monte Carlo methods exploit physical
system dynamics to make proposals for the next state. It can improve the mixing drastically
and result in a more efficient algorithm. Especially since we are interested in multivariate
modeling, a more efficient exploration of the posterior distribution is of interest. Once
the dimension of the model grows with standard random walk, it is very hard to make
proposals that would be accepted frequently enough and result in a good mixing Markov
chain. We first introduce some basic ideas on which Hamiltonian Monte Carlo method is
built; for an extensive introduction, we refer to [33].

3.3.1. Metropolis-Adjusted Langevin Algorithm

Previously we have discussed the Metropolis-Hastings algorithm. The idea of the
Metropolis-Hastings algorithm is to make a new proposal θ∗ using random walk. Then
this proposal is accepted with probability.

α(θ, θ∗) = min
{

1,
p̃(θ∗)
p̃(θ)

q(θ|θ∗)
q(θ∗|θ)

}
. (29)

Although this algorithm benefits from desirable theoretical guarantees, the random walk
proposal is not efficient, especially when the number of parameters in the model becomes
large. Metropolis-adjusted Langevin algorithm (MALA), originally proposed in [34], is de-
signed to solve the same problem—sample from the target distribution. The big advantage
of MALA in comparison to Metropolis–Hastings is the construction for the proposal of the
candidate parameter θ∗. The proposal mechanism for MALA originates from the stochastic
differential equation based on Langevin diffusion; the proposal mechanism reads

θ∗ = θn + ε2∇θL(θn)/2 + εzn, (30)

where we define L(θn) = log(p(θ)) and z ∼ N(z|0, I) and ε—integration step size. Con-
vergence for this proposal is not guaranteed unless we employ a Metropolis acceptance
probability after every integration step. For convenience, let us define

μ(θn, ε) = θn +
ε2

2
∇θ L(θn); (31)

then the proposal density can be written as q(θ∗|θn) = N(θ∗|μ(θn, ε), ε2 I). The standard
acceptance probability follows

min{1, p(θ∗)q(θn|θ∗)/p(θn)q(θ∗|θn)}. (32)

The type of proposal in Equation (29) is inefficient for strongly correlated parameters θ.
To solve this issue, one can use a preconditioning matrix M

θ∗ = θn + ε2M∇θL(θn)/2 + ε
√

Mzn. (33)

Unfortunately there is no principled way to choose matrix M. As we will see later, HMC
encounters the same problem. Generally, MALA iterates between two general steps.
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First, Langevin dynamics is used for the proposals, and it exploits the gradients of the
target. Second, the proposals are accepted or rejected similarly to those of the Metropolis–
Hastings algorithm.

3.3.2. Hamiltonian Monte Carlo Algorithm

The HMC algorithm [31] also uses gradient information for constructing the proposal
of the parameters in the MCMC scheme. In particular, it exploits the ideas from simulating
the behavior of the physical systems. Similarly to describing the behavior of the physi-
cal system, HMC performs sampling by exploiting Hamiltonian dynamics. A conceptual
introduction to this class of methods and its relationship to differential geometry can be
found in [33]. In this section, we discuss the general idea behind the algorithm without
performing detailed derivations. We focus on the final proposal machinery that can be
used in practice and investigate which quantities need to be manually computed before
implementing the algorithm and which variables need to be calibrated for the successful
performance of the algorithm. First, let us consider a general set-up. In Hamiltonian Monte
Carlo, we consider a Hamiltonian function

H(θ, p) = − log p(θ) +
1
2

log{(2π)D|M|}+ 1
2

pT M−1 p, (34)

which consists of potential energy in the system E(θ) = −L(θ) and kinetic energy K(p) =
1
2 log{(2π)D|M|}+ 1

2 pT M−1 p; variables p are called momentum variables. The dynamics
of the system then evolves according to Hamiltonian equations

dθ

dτ
=

∂H
∂p

= M−1 p, (35)

dp
dτ

= −∂H
∂θ

= ∇θL(θ), (36)

where by τ in physical interpretation of the system we denote continuous time. Practical
implementation requires discretization, and the commonly used scheme for this purpose is
the leapfrog discretezation:

p(τ + ε/2) = p(τ) + ε∇θL{θ(τ)}/2, (37)

θ(τ + ε) = θ(τ) + εM−1 p(τ + ε/2), (38)

p(τ + ε) = p(τ + ε/2) + ε∇θL{θ(τ + ε)}/2. (39)

This scheme does not sample from the target distribution and to correct for that, implemen-
tation of Metropolis acceptance probability is necessary. For a proposal (θ, p) → (θ∗, p∗),
acceptance probability in this algorithm is defined as

min{1, exp{−H(θ∗, p∗) + H(θ, p)}.

Thus, HMC iterates between updating momentum variables, proposal for the parame-
ter values, additional update to the momentum variables, and then an acceptance/rejection
step. The Gibbs sampler provides a good understanding for the system evolution in this
algorithm:

pn+1|θn ∼ p(pn+1|θn) = p(pn+1) = N(pn+1|0, M), (40)

θn+1|pn+1 ∼ p(θn+1|pn+1) (41)

Similarly to MALA, the choice of matrix M is crucial for good performance of HMC.
While the choice of the step size and the leapfrog steps can be tuned relatively easily by
considering acceptance rate, the choice of the matrix M is challenging, and there is no
principled way to define it. Leapfrog step and step size proposal are two variables that
need to be calibrated when implementing HMC. Usually, different combinations of these
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two variables are considered, and the combination leading to the highest acceptance rate
is picked.

3.4. Riemann Manifold Hamiltonian Monte Carlo

The further improvement of HMC and MALA can done by defining the algorithms
on Riemann manifold instead of Euclidean space. Proposals guided by Riemann metric
instead of Euclidean distance have the potential to explore parameter space more efficiently,
especially in the cases when the target density is high-dimensional or exhibits strong corre-
lation [5]. The method originally proposed in [5] and multiple algorithms were compared
in the paper: MALA, MMALA, HMC, and RMHMC. For detailed comparison between
these methods, we refer to [5], while in our simulation studies, we will focus on comparing
RMHMC and particle Metropolis–Hastings for the estimation of parameters in stochastic
volatility models.

Girolami and Calderhead [5] define HMC methods in the form of Riemann manifold,
and this can be seen as generalization of HMC. The Hamiltonian on the Riemann manifold
is defined as follows

H(θ, p) = − log p(θ) +
1
2

log((2π)n | G(θ) |) + 1
2

pTG(θ)p (42)

with exp(−H(θ, p)) = p(θ, p) = p(θ)p(p | θ) and the marginal target density

p(θ) ∝
∫

exp(−H(θ, p))dp =
exp{log p(θ)}√

2πn | G(θ) |

∫
exp
{
−1

2
pTG(θ)−1 p

}
dp

= exp(log p(θ)).
(43)

The general idea behind the updates in RMHMC is similar to that of HMC, and
the updates for the momentum variables and parameters of the model are defined in
Equations (44)–(46).

p(τ +
ε

2
) = p(τ)− ε

2
∇θH

{
θ(τ), p(τ +

ε

2
)
}

, (44)

θ(τ + ε) = θ(τ) + ε/2
[
∇pH

{
θ(τ), p(τ +

ε

2
)
}
+∇p H

{
θ(τ + ε), p(τ +

ε

2
)
}]

, (45)

p(τ + ε) = p(τ +
ε

2
)− ε

2
∇θH

{
θ(τ + ε), p(τ +

ε

2
)
}

(46)

Therefore, as in standard HMC algorithm, we iterate between half-step update of the mo-
mentum variables, and then we update position variables, and we finish iteration with ad-
ditional half-step update of the momentum variables and Metropolis acceptance/rejection
step with the probability

min{1, exp{−H(θ∗, p∗) + H(θn, pn+1)}}.

Similarly to HMC, RMHMC can be viewed as a Gibbs sampling scheme

pn+1|θn ∼ p(pn+1|θn) = N{pn+1|0, G(θn)}, (47)

θn+1|pn+1 ∼ p(θn+1|pn+1). (48)

Recall that in the case of MALA and HMC, matrix M has to be chosen manually and
there is no principled way to choose it. In RMHMC, matrix G(θ) is defined at each step by
underlying geometry; see for more details [5]. Below we discuss quantities that need to
be computed for the implementation of RMHMC in the case of stochastic volatility model
and in particular G(θ).
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Recall stochastic volatility model parametrized through β

yt = β exp(ht/2)εt, (49)

ht+1 = φht + ηt+1, (50)

εt ∼ N(0, 1), ηt ∼ N(0, σ2), with h1 ∼ N(0, σ2/(1 − φ2)).
The joint likelihood of the model is

p(y, h, β, φ, σ) =
T

∏
t=1

p(yt | ht, β)
T

∏
t=2

p(ht | ht−1, φ, σ)π(β)π(φ)π(σ) (51)

The prior distributions are chosen as follows

β ∝ exp(β), σ2 ∼ Inv − χ2(10, 0.05), (φ + 1)/2 ∼ Beta(20, 1.5). (52)

Further, following [5], we write the partial derivatives for L = p(y, h | β, φ, σ)

∂L
∂β

= −T
β
+

T

∑
t=1

y2

β3 exp(ht)
, (53)

∂L
∂φ

= − φ

(1 − φ2)
+

φh2
1

σ2 +
T

∑
t=2

ht−1(ht − φht−1)

σ2 , (54)

∂L
∂σ

= −T
σ
+

h2
1(1 − φ2)

σ3 +
T

∑
t=2

(ht − φht−1)
2

σ3 . (55)

To implement the algorithms, we require the expressions for the individual components of
the metric tensor for the likelihood. Following [5], the expressions are

E

{
∂L
∂β

∂L
∂β

}
=

2T
β2 , E

{
∂L
∂σ

∂L
∂σ

}
=

2T
σ2 , E

{
∂L
∂β

∂L
∂σ

}
= E

{
∂L
∂β

∂L
∂φ

}
= 0, (56)

E

{
∂L
∂σ

∂L
∂φ

}
=

2φ

σ3(1 − φ2)
, E

{
∂L
∂φ

∂L
∂φ

}
=

2φ2

(1 − φ2)2 +
T − 1
1 − φ2 . (57)

Furthermore, the expressions for the metric tensor for the likelihood and its partial
derivatives follow

G(φ, σ, β) =

⎡⎢⎢⎣
2T
β2 0 0

0 2T
σ2

2φ

σ3(1−φ2)

0 2φ

σ3(1−φ2)
2φ2

(1−φ2)2 +
T−1
1−φ2

⎤⎥⎥⎦, (58)

∂G
∂β

=

⎡⎢⎣−
4T
β3 0 0

0 0 0
0 0 0

⎤⎥⎦, (59)

∂G
∂σ

=

⎡⎢⎣0 0 0
0 − 4T

σ3 − 6φ

σ4(1−φ2)

0 − 6φ

σ4(1−φ2)
0

⎤⎥⎦, (60)

∂G
∂φ

=

⎡⎢⎢⎣
0 0 0

0 0 2
σ3(1−φ2)

+ 4φ2

σ3(1−φ2)2

0 2
σ3(1−φ2)

+ 4φ2

σ3(1−φ2)2
2φ(1+T)
(1−φ2)2 + 6φ3

(1−φ2)3

⎤⎥⎥⎦. (61)
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The proposal machinery in RMHMC provides advantages for exploring parameter
space efficiently. However, it is not easily adaptable for different model specifications,
especially when increasing the model’s dimensionality, as we discussed in Section 1.
In particular, although matrix G can be computed in the multivariate model specified in
Equations (12) and (13) exactly, it scales quadratically with the number of parameters. This
might be one of the reasons why the method has not been used on multivariate stochastic
volatility models we introduced in Section 1. However, probabilistic programming lan-
guages [35,36] and automatic differentiation possibilities developed in recent years allow
the efficient and adaptable implementation of these algorithms in practice.

3.5. Integrated Nested Laplace Approximation

Integrated Nested Laplace Approximation was introduced in [7]. The method is based
on the nested version of the classical Laplace approximation and was introduced for latent
Gaussian models (LGMs). It became a popular approach in Bayesian inference due to its
good performance in the variety of models in the class of LGMs and its computational
advantages over other methods in Bayesian literature. The computational appeal of
this method comes from the possibility of exploiting sparse matrix computations when
evaluating certain approximations. INLA has found its applications in many fields in the
models where high-dimensional problems arise. Stochastic volatility models have been
analyzed using INLA in [37,38]. Bivariate stochastic volatility model has been considered
in [39], where the authors present and solve some issues that arise in using INLA in the
multivariate case of the model. One of the conclusions of this study was that INLA loses its
computational advantage with increased dimensionality of the stochastic volatility model.
We further discuss the details of the method and the implementation shortcomings in
a multivariate case and present the reader with a simulation study that illustrates the
discussed approach’s performance.

Stochastic volatility model can be written in the form of LGMs

y | h, θ1 ∼ ∏
i∈I

π(yi | hi, θ1), (62)

h | θ2 ∼ N(μ(θ2), Q−1(θ2)). (63)

As before, yt is the data that we observe and ht is the latent volatility process, and we are
interested in the posterior distribution of the parameters of the model θ and the latent
process given the data

p(h, θ | y) ∝ p(θ)p(h | θ)
T

∏
t=1

p(y | ht, θ). (64)

The outline of the INLA approach can be summarized in the following steps [7,37]

1. Build an approximation p(θ | y)
2. Build an approximation to p(ht | θ, y)
3. Compute an approximation to p(ht | y) using the approximations from steps 1 and 2.

The first approximation p(θ | y) relies on the Gaussian approximation of the form

p(x | y, θ) ∝ exp
{
−1

2
xTQx + ∑ gt(ht)

}
, (65)

where x = (μ, h), gt(ht) = log p(yt | ht, θ). By matching the mode and curvature in the
mode, we obtain the Gaussian approximation for our model

p̃G(x | y, θ) = K1 exp
{
−1

2
(x − μ)T(Q + diag(c))(x − m)

}
, (66)
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where K1 is a normalizing constant, m is the modal value of p(x | y, θ), the vector c contains
the second order terms in the Taylor expansion of ∑ gt(ht) at the modal value m, and Q is
the precision matrix that has the form

Q =

⎡⎢⎢⎢⎢⎢⎣
1 −φ

−φ 1 + φ2 −φ
. . . . . . . . .

−φ 1 + φ2 −φ
−φ 1

⎤⎥⎥⎥⎥⎥⎦. (67)

The sparsity of the precision matrix above allows one to exploit efficient sparse matrix
computational methods and thus gain computational speed. Note that in the multivariate
case, this advantage disappears since the matrix Q is not sparse anymore.

When it comes to the estimation of stochastic volatility models, approximation of the
marginals p(ht | θ, y) is always the most challenging task. The solution that is proposed
in [7] is (simplified) Laplace approximation of the form

log p̃SLA(xt | θ, y) = const − 1
2

x2
t + γ

(1)
t (θ)xt +

1
6

x3
t γ3

t (θ) + . . . , (68)

where γ
(1)
t and γ

(3)
t are the terms in the Taylor expansion. The final step of the method is

to approximate p(xt | y) with the numerical integration scheme

p̃(xt | y) = ∑
k

p̃(xt | θk, y) p̃(θk | y) �k, (69)

for some θk of θ, where θk is selected by creating a grid of points that covers the area of
high density for p̃(θ | y). For more details on implementation of the simplified Laplace
approximation and the selection of grid of points for θk, see [7,37].

3.6. Fixed-Form Variational Bayes

In this section, we discuss how the posterior distribution can be approximated using
the fixed-form variational Bayes method proposed in [6]. The general idea of fixed-form
variational inference consists in assuming a certain factorization of the prior distribution,
which naturally leads to the factorized structure of the posterior. The factorizing distri-
butions of the posterior are then assumed to come from a certain parametric family of
distributions (for example, exponential) and instead of a sampling task, as in the previous
section, we would perform the optimization task of minimizing the distance between the
approximating distribution and the unknown posterior distribution.

As before, assume we observe a process {yt}T
t=1 that is driven by an unobservable

or latent process {ht}T
t=1. Recall that Bayes’ rule gives us the posterior distribution of the

parameters of the system
p(h | y) ∝ g(y | h)π(h). (70)

In the Bayesian framework, we formulate our prior beliefs, which we update once we
acquire more data. In general, Variational Bayes methods focus on approximating the
posterior distribution p(h | y) with some distribution q(h | y). Further, it is common to
choose blocks of the parameters and impose independence for these blocks

p(h | y) ≈ q(h | y) = q(h1 | y)q(h2 | y). (71)

By construction, the posterior of the blocks of the parameters is independent. In the
literature, this is referred to as the mean-field assumption. To find the optimal approximation,
we minimize the Kullback–Leibler (KL) divergence from q(h | y) to p(h | y)

p̃(h | y) = arg min
q(h1|·)q(h2|·)

KL(q(h1 | y)q(h2 | y) || p(h | y)). (72)
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Distributional approximation can be viewed as an optimization problem; i.e., an optimal
distribution has to be chosen from the space of all possible distributions, and the KL
divergence is chosen as a loss function [40]. Salimans et al. [6] propose a specific approach
to the minimization problem of KL divergence, which is based on the similarities between
the optimal solution to the problem and linear regression. The general idea of the approach
is summarized as comprising the following steps:

• initialize all the posterior approximations q(θ);
• iterate over the parameters updating every one of them given the others;
• repeat until convergence.

Consider the stochastic volatility model

yt = β exp(ht/2)εt (73)

ht+1 = φht + ηt+1, (74)

with h1 ∼ N(0, σ2/(1 − φ2)) and εt ∼ N(0, 1), ηt ∼ N(0, σ2
η). We specify our a priori

beliefs in the following manner

p(β) ∝ β−1 (φ + 1)/2 ∼ Beta(20, 1.5), σ2 ∼ IG(5, 0.25). (75)

To apply the Variational Bayes method, we need to specify the posterior approximations
q(θ). It is convenient to assume a hierarchical structure of the prior, in which case it
factorizes to

p(φ, σ2, β, f ) = p(φ)p(σ2)p( f | φ, σ2)p(y | f ), (76)

where f = (log(β), h′). The hierarchical structure of the prior leads to the following
factorization of the posterior approximation

qξ(σ
2
η , f | f ) = qξ(σ

2
η)qξ( f | φ, σ2) =

qξ(σ
2
η | φ)p( f | φ, σ2)qξ(y | f )

qξ(y | φ, σ2)
. (77)

Thus, the posterior approximations can be chosen as follows

qξ((φ + 1)/2) = Beta(ξ1, ξ2), (78)

qξ(σ
2 | φ) ∼ IG(ξ3, ξ4 + ξ5φ2), (79)

q(log(β), h | φ, σ2) = N(m, V), (80)

where
V−1 = P(φ, σ2) + ξ6, m = V−1ξ7,

with P(φ, σ2) precision matrix of p(log(β), h | φ, σ2).
Once the posterior approximations are initialized, we proceed with the next step and

iterate over the parameters. The parameters are updated in blocks that correspond to the
factorization of the posterior approximations. First, we update the block for the persistence
parameter in the latent process qξ(φ)

φ∗ = s1(ξ, z∗
1), with s1() and z∗

1 such that σ2∗ ∼ qξ(σ
2 | φ∗), (81)

σ2∗ = s2(ξ, z∗
2, φ∗), with s2() and z∗

2 such that σ2∗ ∼ qξ(σ
2 | φ∗), (82)

Ĉ1 = ∇ξ [s1(ξ, z∗
1)]∇φ[T1(φ

∗)], (83)

ĝ1 ≈ ∇ξ [s1(ξ, z∗
1)]{∇φ[log p(φ∗) + log qξ(y | φ∗, σ2∗)− log qξ(σ

2∗ | φ∗)]}. (84)

Second, we update the block for the variance of the latent process qξ(σ
2 | φ)

Ĉ2 = ∇ξ [s2(ξ, z∗
2, φ∗)]∇σ2 [T2(σ

2∗)] (85)
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ĝ2 ≈ ∇ξ [s2(ξ, z2∗
2 , φ∗)]∇σ2 [log p(σ2∗) + log qξ(y | φ∗, σ2∗)], (86)

where T2(σ
2∗) are the sufficient statistics of qξ(σ

2 | φ). The last update is the update of the
likelihood approximation

at+1 = (1 − ω)at + ωEqξ ( f |φ∗ ,σ2∗)[∇ f log p(y | f )], (87)

zt+1 = (1 − ω)zt + ωEqξ ( f |φ∗ ,σ2∗)[ f ], (88)

ξ6,t+1 = (1 − ω)ξ6,t − ωEqξ ( f |φ∗ ,σ2∗)[∇ f ∇ f log p(y | f )], (89)

ξ7,t+1 = at+1 + ξ6,t+1zt+1. (90)

For more extensive derivations of the updates, we refer the reader to [6]. Further, one might
wonder how the latent process is estimated in this procedure. Salimans et al. [6] propose
using the Kalman filter to estimate the filtering distribution. Even though it is a valid
approach that is also undertaken in quasi-maximum likelihood method [41], its weakness
lies in the linearization of the observation equation which implies that the distribution of
the noise process is not longer Gaussian.

4. Results

In this section, we present results for the comparison of the discussed methods. We
compare two particle filters (bootstrap and auxiliary particle filters) on the basis of bias,
variance and on the estimated effective number of particles. We choose the better per-
forming procedure of the two for using in the particle Metropolis–Hastings algorithm.
We compare particle Metropolis–Hastings (PMH), Riemann Manifold Hamiltonian Monte
Carlo (RMHMC), integrated nested Laplace approximation (INLA), and fixed-form varia-
tional Bayes (VB) on the basis of how well the posterior distributions obtained with these
methods capture the ground truth (e.g., true parameter values). The ability of the methods
to recover ground truth is assessed based on five simulated data sets with different under-
lying parameters. We additionally provide effective sample sizes for the comparison of
the sampling methods (PMH and RMHMC). For illustration purposes, we also provide
comparison on two real-world data sets.

4.1. Variance of the Estimated Likelihood

As we mentioned before, the marginal likelihood can be approximated sequentially
through particle filtering. The marginal likelihood approximation of the parameters θ reads

p(y1:T |θ) ≈ ∏
t

p̂(yt|y1:t−1, θ), (91)

where the right hand side is obtained by running particle filter presented in Algorithm A1.
In practice, usually the log-likelihood

log pθ(y1:T) = log pθ(y1) +
T

∑
t=2

log pθ(yt|y1:t−1) (92)

is estimated for the purpose of numerical stability (as the product of small weights would
lead to unstable results). The estimate of the log-likelihood is the by-product of the particle
filtering, as it is the average over log-weights that are assigned to the particles at every
time step. In this section, we compare the bootstrap (BPF) and auxiliary particle filters
(APF) in terms of bias, variance, and number of effective particles. Both of them can be
used for obtaining simulated likelihood estimates, which can be further used in the particle
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Metropolis–Hastings algorithm. We denote by L̂ the estimate of the likelihood obtained
with a particle filter. Then, the bias and the variance can be estimated as follows

Bias = 5000−1
K

∑
i=1

M

∑
j=1

(log L̂j − log L̄(yi)), (93)

Variance = 5000−1
K

∑
i=1

M

∑
j=1

(log L̂j − log L̄(yi))2, (94)

where yi is the i-th time series, and log L is the “true” log-likelihood value. For the compar-
ison, we use K = 50 different time series generated from the stochastic volatility model and
M = 100 Monte Carlo iterations. We use N = 100, N = 1000, and N = 10,000 number of
particles for this study. As the true value of the likelihood is not available, we substitute it
with an estimate that is obtained with N = 1,000,000 number of particles. First, we conduct
the analysis of the variance of the estimated likelihood in true parameter values as dis-
cussed in [24]. The authors of, ref. [27] showed theoretically that the asymptotic variance is
not always smaller for the APF in comparison to the BPF. We run additional simulation
studies to examine whether the variance of the estimated likelihood varies in the parameter
space. Since we are interested in using the estimated likelihood in the Markov Chain Monte
Carlo setting, it is relevant how the variance behaves in different points of the parameter
space. If we start far away from the true value and the variance of the estimated likelihood
is larger in that part of the parameter space, it can affect the convergence and calibration of
the algorithm. Table 1 shows variance of the estimated likelihood for bootstrap and auxil-
iary particle filters. N indicates the number of the particles that we used for the estimation
of the likelihood. It is clear that, on average, APF performs better in terms of the variance
of the estimated likelihood. Table 2 indicates results for a similar experiment, but on the
level of individual times series. We consider different data-generating processes and find
that, in particular, higher variance of the latent volatility process is associated with higher
variance of the estimated likelihood. Finally, in Figures 2–4, we illustrate that the variance
of the estimated likelihood changes depending on the location in the parameter space, and
these changes can be specific to a data-generating process. These figures correspond to
the experiments with time series 2, 3, and 4 from Table 2. The likelihood was estimated
with N = 1000 particles. We observe that the variance of the latent process has a strong
effect on the landscape of the variance of the estimated likelihood in the parameter space.
From Figure 4c,d, we see that the variance of the estimated likelihood obtained with the
bootstrap particle filter appears to be more strongly affected by the location in the parame-
ter space than the variance of the estimated likelihood obtained with the auxiliary particle
filter. In Figure 3, we observe that the variance of the estimated likelihood is affected by
the scale parameter β in the case of auxiliary particle filter, but not so much in the case
of the bootstrap particle filter. Thus, initialization of PMCMC and the choice of number
of particles should be considered with care for the optimal performance of the algorithm
as the variance of the estimated likelihood can differ in the parameter space, and these
changes can vary across different time series.

Table 1. Variance, bias, and number of effective particles Ne f f for the estimated likelihood with
bootstrap particle filter (BPF) and auxiliary particle filter (APF) averaged over 50 time series. Ne f f is
computed as in Equation (22). Variance and bias are computed as in Equations (93) and (94).

Variance Bias Ne f f

BPF APF BPF APF BPF APF

N = 100 778.46 3.36 19.95 −0.68 64.07 23.52
N = 1000 805.79 0.20 20.32 −0.07 640.23 224.65
N = 10,000 808.40 0.02 20.36 −0.01 6402.11 2233.59
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Table 2. Variance of the estimated likelihood for 10 different data-generating processes (TS). We
consider different settings for the number of particles N.

Bootstrap Particle Filter Auxiliary Particle Filter True Parameters

TS N = 100 N = 1000 N = 10,000 N = 100 N = 1000 N = 10,000 β φ ση

1 511.26 556.01 559.85 2.436 0.251 0.017 0.36 0.96 0.13
2 128.50 138.05 139.19 0.688 0.040 0.005 1.18 0.95 0.08
3 18,143.0 18,883.0 18,945.0 259.3 9.669 0.993 1.93 0.89 0.43
4 79.085 84.045 83.510 0.517 0.045 0.005 0.9 0.96 0.07
5 51.753 52.112 52.078 0.066 0.005 0.001 0.93 0.76 0.08
6 4.2531 4.2704 4.2961 0.026 0.003 0.000 1.43 0.79 0.04
7 2684.2 2780.2 2790.5 5.076 0.339 0.032 1.58 0.91 0.27
8 137.22 140.65 140.48 0.210 0.018 0.002 0.09 0.85 0.11
9 8.5151 13.541 13.419 0.808 0.067 0.008 0.94 0.98 0.10

10 3601.2 3665.6 3670.4 25.32 2.614 0.291 0.55 0.84 0.21

a Variance of logL̂ estimated
with BPF, with β = 1.0

b Variance of logL̂ estimated
with APF, with β = 1.0

c Variance of logL̂ estimated
with BPF, with φ = 0.95

d Variance of logL̂ estimated
with APF, with φ = 0.95

e Variance of logL̂ estimated
with BPF, with ση = 0.15

f Variance of logL̂ estimated
with BPF, with ση = 0.15

Figure 2. Variance of the estimated likelihood in different points of the parameter space for TS = 2
from Table 2.
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a Variance of logL̂ estimated
with BPF, with β = 1.9

b Variance of logL̂ estimated
with APF, β = 1.9

c Variance of logL̂ estimated
with BPF, φ = 0.9

d Variance of logL̂ estimated
with APF, φ = 0.9

e Variance of logL̂ estimated
with BPF, ση = 0.45

f Variance of logL̂ estimated
with APF, ση = 0.45

Figure 3. Variance of the estimated likelihood in different points of the parameter space for TS = 3
from Table 2.
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a Variance of logL̂ estimated
with BPF, with β = 1.0

b Variance of logL̂ estimated
with APF, with β = 1.0

c Variance of logL̂ estimated
with BPF with φ = 0.95

d Variance of logL̂ estimated
with APF, with φ = 0.95

e Variance of logL̂ estimated
with BPF, with ση = 0.05

f Variance of logL̂ estimated
with APF, with ση = 0.05

Figure 4. Variance of the estimated likelihood in different points of the parameter space for TS = 4
from Table 2.

4.2. Particle Metropolis–Hastings and Riemann Manifold Hamiltonian Monte Carlo

In this section, we compare particle Metropolis–Hastings (PMH) and Riemann Mani-
fold Hamiltonian Monte Carlo. We evaluate the algorithms based on how well they recover
the true parameters of the model β, φ, and ση and on the basis of the effective sample size.
We obtained 20,000 samples and discarded the first 1000 as burn-in. Further, Figure 5 and
Figures A1–A4 show results for both samplers: trace plots, histograms, and autocorrelation
function are depicted. Table 3 presents the moments and highest posterior density intervals
for the parameters of the model. The marginal likelihood in PMH was estimated with
auxiliary particle filter as discussed in [23]. The Metropolis–Hastings part of the algorithm
was calibrated to achieve 20–40% acceptance rate. RMHMC was implemented as in [5] with
openly available implementation of the method by the authors. Both PMH and RMHMC
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require careful calibration of the step-size, and RMHMC additionally needs calibration
of the number of the leapfrog steps; thus in Table A1, we additionally present results for
the no-u-turn sampler (NUTS). NUTS is an extension of HMC algorithm that allows one
to tune the algorithm automatically. From Figure 5 and Figures A1–A4, we observe that
autocorrelation of the samples indicated in the third column of the plots decreases faster
for PMH than for RMHMC, in particular for the parameters φ and ση . Effective sample
size is similarly high for parameter β for both samplers. Effective sample size for the
parameters φ and ση is lower in the case of RMHMC. However, if we compute the ESS
per second as presented in the last column of Table 3, this advantage disappears. This
result is not surprising since PMH is the most computationally intensive procedure we
are considering. Both the likelihood and the posterior use sequential sampling methods,
which makes computations very demanding. Nevertheless, PMH allows us to recover the
underlying parameters more accurately. In particular, in most of the presented examples,
true variance of the latent volatility process lies inside the 95% highest posterior density
interval for PMH. RMHMC tends to overestimate this parameter. As Table A1 indicates,
the highest posterior density intervals obtained with NUTS are larger than those obtained
with PMH and RMHMC. Number of gradient evaluations for RMHMC are 69718, 70042,
69802, 69801, and 70041 for Experiments 1–5, respectively.

Table 3. Posterior moments for the samples obtained with particle Metropolis–Hastings (PMH)
and Riemann Manifold Hamiltonian Monte Carlo (RMHMC) for the parameters β, φ and ση of the
stochastic volatility model. Experiments 1, 2, 3, 4, and 5 correspond to TS 2, 4, 5, 9, and 10 from
Table 2.

Experiment 1: Posterior Moments Obtained with PMH

Mean Mode 95% HPDl 95% HPDu True ESS ESS/s

β 1.1985 1.2140 1.0771 1.3034 1.189 2783.2 0.054
φ 0.9713 0.9732 0.9392 0.9987 0.959 1516.8 0.029

ση 0.0537 0.0514 0.0260 0.0828 0.089 2280.7 0.044

Experiment 1: Posterior Moments Obtained with RMHMC

Mean Mode 95% HPDl 95% HPDu True ESS ESS/s

β 1.18628 1.16608 1.10609 1.26526 1.189 3580.7 50.57
φ 0.83824 0.78390 0.71272 0.93643 0.959 188.6244 2.66

ση 0.21889 0.17203 0.14846 0.30072 0.0828 93.5265 1.32

Experiment 2: Posterior Moments Obtained with PMH

Mean Mode 95% HPDl 95% HPDu True ESS ESS/s

β 0.8629 0.8780 0.7870 0.9385 0.903 2909.6 0.045
φ 0.9644 0.9843 0.9077 0.9987 0.967 1157.2 0.017

ση 0.0534 0.0504 0.0233 0.0912 0.076 1694.3 0.026

Experiment 2: Posterior Moments Obtained with RMHMC

Mean Mode 95% HPDl 95% HPDu True ESS ESS/s

β 0.85071 0.82888 0.79927 0.90418 0.903 4108.8 76.26
φ 0.79293 0.73992 0.62454 0.92638 0.967 186.8240 3.46

ση 0.22291 0.23163 0.14751 0.30825 0.076 72.6236 1.34
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Table 3. Cont.

Experiment 3: Posterior Moments Obtained with PMH

Mean Mode 95% HPDl 95% HPDu True ESS ESS/s

β 0.9579 0.9623 0.9090 1.0043 0.938 3330.7 0.071
φ 0.9079 0.9583 0.7974 0.9885 0.764 2178.9 0.046

ση 0.0429 0.0317 0.0184 0.0725 0.08 2690.1 0.057

Experiment 3: Posterior Moments Obtained with RMHMC

Mean Mode 95% HPDl 95% HPDu True ESS ESS/s

β 0.94395 0.90574 0.89572 0.99246 0.938 8112.2 164.83
φ 0.67333 0.43245 0.42649 0.88097 0.764 116.9159 2.37

ση 0.19759 0.18142 0.13385 0.27098 0.08 98.9095 2.0

Experiment 4: Posterior Moments Obtained with PMH

Mean Mode 95% HPDl 95% HPDu True ESS ESS/s

β 0.8865 0.8932 0.7297 1.0485 0.942 3046.7 0.057
φ 0.9826 0.9892 0.9672 0.9961 0.981 1781.9 0.033

ση 0.1100 0.1011 0.0702 0.1503 0.1 1609.9 0.031

Experiment 4: Posterior Moments Obtained with RMHMC

Mean Mode 95% HPDl 95% HPDu True ESS ESS/s

β 0.90560 0.80476 0.74840 1.07499 0.942 445.7 9.22
φ 0.96391 0.96149 0.93865 0.98672 0.981 336.5 6.96

ση 0.17588 0.15766 0.13452 0.22005 0.1 130.0 2.69

Experiment 5: Posterior Moments Obtained with PMH

Mean Mode 95% HPDl 95% HPDu True ESS ESS/s

β 0.5836 0.5893 0.5359 0.6293 0.553 2733.8 0.0552
φ 0.9497 0.9970 0.8890 0.9970 0.840 2733.8 0.0552

ση 0.0756 0.0525 0.0294 0.1331 0.215 1589.1 0.032

Experiment 5: Posterior Moments Obtained with RMHMC

Mean Mode 95% HPDl 95% HPDu True ESS ESS/s

β 0.56805 0.57215 0.53372 0.60258 0.553 3276.6 75.41
φ 0.77895 0.79364 0.60134 0.92411 0.840 130.7 3.0

ση 0.22905 0.21974 0.14799 0.31755 0.215 64.9 1.49
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a Trace plots (left), histograms (middle) and ACF plots (right)
obtained with Particle Metropolis-Hastings
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Figure 5. Results of the sampling from the posterior distribution with PMH and RMHMC for TS = 2
from Table 2. The first column corresponds to the trace plots, the middle column to histograms
obtained with the samples from the posterior distribution, and the last column corresponds to
autocorrelation function for the samples.
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4.3. Integrated Nested Laplace Approximation

We provide two simulation studies for the integrated nested Laplace approximation.
First, we replicate and extend the simulation study provided in [38] by analyzing data-
generating processes with different values of μ and ση since the estimation of the variance
parameter appears to be a challenge for existing methods. Table 4 replicates results from [38]
with the parametrization of the model with the scale parameter μ, and Table 5 presents
results for the parametrization with the scale parameter β and different data-generating
processes. Both Monte Carlo studies are conducted with 1000 iterations. Our findings
are comparable to those of [38]: the mean of the volatility process and the persistence
parameter are estimated quite accurately, while the variance of the latent volatility process
estimated with INLAis biased—usually, it is overestimated. Second, we provide the
posterior moments for INLA similarly to Table 3 for PMH and RMHMC. These results are
presented in Table 6. These results also suggest that the variance of the latent volatility
process tends to be overestimated with INLA to a larger degree than with RMHMC, which
also overestimates this parameter, as can be seen from the Table 3. Moreover, highest
posterior density intervals for the parameter φ obtained with INLA are larger than those
obtained with PMH and RMHMC.

Table 4. Bias and square root of the mean squared error for integrated nested Laplace approximation
(INLA) parametrized with scale parameter μ.

μtrue φtrue σηtrue bias (μ) smse (μ) bias (φ) smse (φ) bias (ση) smse (ση)

0.1366 0.9 0.0186 −0.0672 0.01804 −0.6138 0.5403 0.29183 0.0912
−0.2143 0.9 0.0366 −0.0565 0.0092 −0.5803 0.4953 0.2739 0.0815
−0.0658 0.9 0.0636 −0.0664 0.0151 −0.5817 0.5176 0.2494 0.0704
−0.0289 0.95 0.0186 −0.0675 0.0151 −0.6354 0.5550 0.2883 0.0900

0.0203 0.95 0.0366 −0.0705 0.0207 −0.5796 0.4843 0.2677 0.0795
−0.0630 0.95 0.0636 −0.0931 0.0333 −0.4142 0.3250 0.2129 0.0592
−0.0174 0.98 0.0186 −0.0763 0.0222 −0.6173 0.5458 0.2788 0.0874

0.1343 0.98 0.0366 −0.1534 0.0797 −0.4329 0.3650 0.2228 0.0654
0.0584 0.98 0.0636 −0.2596 0.1379 −0.2095 0.1710 0.1280 0.034

Table 5. Bias and square root of the mean squared error for INLA parametrized with scale parameter β.

βtrue φtrue σηtrue bias (μ) smse (μ) bias (φ) smse (φ) bias (ση) smse (ση)

0.367 0.965 0.134 −0.2295 0.0526 −0.0083 0.0001 0.4725 0.2233
1.188 0.959 0.088 0.2000 0.0400 −0.1909 0.0364 0.3466 0.1201
1.937 0.897 0.433 1.6162 2.6122 −0.0021 0.0000 0.5926 0.3512
0.902 0.966 0.075 −0.1888 0.0356 −0.3049 0.0930 0.3153 0.0994
0.938 0.764 0.080 −0.0515 0.0026 −0.4921 0.2421 0.1468 0.0215
1.435 0.793 0.048 0.6014 0.3616 −0.3872 0.1499 0.2155 0.0464
1.588 0.919 0.275 0.2539 0.0644 0.0202 0.0004 0.4786 0.2291
0.092 0.857 0.109 −0.0841 0.0070 −0.7490 0.5610 0.1341 0.0179
0.942 0.980 0.100 −0.3246 0.1054 0.0192 0.0003 95.8384 9185. 0
0.553 0.840 0.214 −0.2384 0.0568 −0.3904 0.1524 0.1918 0.0368
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Table 6. Posterior results for estimation of the stochastic volatility (SV) model with INLA. Experi-
ments 1, 2, 3, 4, and 5 correspond to TS 2, 4, 5, 9, and 10 from Table 2.

Experiment 1

mean mode 95% HPDl 95% HPDu true

β 1.1786 1.1753 1.0937 1.2797 1.189
φ 0.7717 0.9986 0.2029 0.9945 0.959

ση 0.4368 0.4918 0.3048 0.6665 0.089

Experiment 2

mean mode 95% HPDl 95% HPDu true

β 0.8457 0.8426 0.7807 0.9367 0.903
φ 0.7480 0.9993 −0.0844 0.9996 0.967

ση 0.4155 0.9111 0.2631 0.7726 0.076

Experiment 3

mean mode 95% HPDl 95% HPDu true

β 0.9446 0.9403 0.8672 1.0798 0.938
φ 0.3827 0.9999 −0.7491 0.9999 0.764

ση 0.2328 4.5772 0.1327 0.5202 0.080

Experiment 4

mean mode 95% HPDl 95% HPDu true

β 0.0892 0.0893 0.0847 0.0939 0.942
φ 0.1266 1.0000 −0.9470 0.9994 0.981

ση 0.2405 0.3196 0.1407 0.4447 0.100

Experiment 5

mean mode 95% HPDl 95% HPDu true

β 0.5614 0.5604 0.5286 0.5993 0.553
φ 0.4567 0.9980 −0.3055 0.9726 0.840

ση 0.4067 0.4538 0.2888 0.5680 0.215

4.4. Fixed-Form Variational Bayes

In this section, we discuss results for the simulation study with fixed-form variational
Bayes. We consider the same time series as in the case of comparison between PMH and
RMHMC. In Table 7, we present estimated variational parameters and in Figure 6, com-
parison of the posterior with fixed-form variational Bayes (in blue), RMHMC (histograms
from the posterior samples), and INLA (green). It is clear that in some cases, the variational
Bayes method performs quite well; in particular, parameter β is very well estimated in
most of the cases. Only in Figure 6j is the approximate posterior for β far from the truth.
The variance parameter is underestimated in all cases with VB; this is less severe in the
cases when the true variance is relatively small. However, when the true variance is rela-
tively large, the discrepancy between VB estimate and the true value increases, as can be
seen from Figure 6o. We observe the opposite picture with INLA: it tends to overestimate
the variance of the latent volatility process. Overestimation of the variance of the latent
volatility process for stochastic volatility models with INLA has been previously reported
in [38]. Additionally, it is reported in [38] that this effect decreases with larger values of
ση . The source of this has to be investigated further. RMHMC overestimates the variance
to a lesser degree than INLA, and as can be seen from Figure 6o, this is also connected to
the value of the ground truth for ση : with larger true value of ση , RMHMC provides more
accurate results.
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Figure 6. Illustration of the Fixed-form Variational Bayes in comparison to RMHMC and INLA.
Subfigures illustrate the posterior distributions estimated with different methods for the different
data-generating processes. (a–c) correspond to Experiment 1 from Tables 2 and 6, (d–f) correspond to
Experiment 2, (g–i) correspond to Experiment 3, (j–l) correspond to experiment 4, and (m–o) corre-
spond to Experiment 5. Red vertical lines indicate true parameter values.
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Table 7. Parameters of the posterior distribution obtained with fixed-form Variational Bayes. Exp. 1–5
correspond to the Experiments 1–5 in Tables 3 and 6.

Exp. ξ1 ξ2 ξ3 ξ4 ξ5

1 31.1347 9.3573 19.1852 0.4658 −0.2051
2 28.2720 5.2039 12.6658 0.4510 −0.1812
3 30.3353 7.1038 13.9647 0.4563 −0.2039
4 38.8151 2.1501 17.9035 0.7568 −0.4296
5 38.8151 2.1501 17.9035 0.7568 −0.4296

4.5. Comparison of the Methods on the Real Data

In this section, we present posterior distributions of the parameters estimated with
different Bayesian inference methods on two real-world time series. First, we consider
the mean corrected log-returns of the Australian dollar against the US dollar. The data
range from January 1994 to December 2003 with a total of 519 weekly observations. Re-
sulting posterior distributions obtained with different inference methods are presented in
Figure 7. Second, we consider daily log-returns for the DAX index from 3 January 2000
until 17 May 2001, which in total constitute 1000 observations. We provide descriptive
statistics for both time series in Table A2. Resulting posterior distributions for this time
series are presented in Figure 8. The main discrepancies between the methods are largest
in the estimation of the parameter ση for both time series, and the results are consistent
with the simulation studies in terms of the difference of these discrepancies. As we can see
from Figures 7c and 8d, the posterior distribution of ση obtained with variational Bayes
is concentrated in smaller values in comparison to the other methods. INLA suggests the
higher values for ση in comparison to the other methods. The posterior samples obtained
with RMHMC are concentrated in values higher than the ones obtained with PMH. Both
sampling methods appear to give results larger than VB but smaller than INLA for the
parameter ση .

In Table 8, we present results for efficient sample size (ESS) for both empirical applica-
tions and both samplers. Similarly to what is found in simulation studies, ESS is higher
in the case of the PMH algorithm. However, if the computational time were taken into
account, this advantage would have disappeared, similarly to the results in Table 2.

Table 8. Efficient sample size (ESS) for PMH and RMHMC in real-world time series applications:
weekly log-returns for the exchange rate of Australian/US dollars and daily log-returns of DAX index.

Australian/US Dollars Exchange Rate

ESS PMH ESS RMHMC

β 3373.9 906.2
φ 1546.4 481
ση 2439 208.3

DAX Index

ESS PMH ESS RMHMC

β 3868.4 3962.3
φ 915.3 134.6
ση 2439 79.6
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Figure 7. Comparison of PMH (pink), VB (blue), INLA (green), and RMHMC (yellow) on the
weekly log-returns of the Australian dollar against the US dollar. Subfigures illustrate the posterior
distributions for different parameters of the model obtained with different methods. (a) Corresponds
to the posterior distribution for the parameter β. (b) Corresponds to the posterior distribution of the
parameter φ. (c) Corresponds to the posterior distribution of the parameter ση .
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Figure 8. Comparison of PMH (pink), VB (blue), INLA (green), and RMHMC (yellow) on the daily
log-returns of DAX index. Subfigures illustrate the posterior distributions for different parameters
of the model obtained with different methods. (a,b) correspond to the posterior distribution of the
parameter β. (c) corresponds to the posterior distribution of the parameter φ. (d) corresponds to the
posterior distribution of the parameter ση .
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5. Discussion

This paper reviewed multiple methods for the estimation of nonlinear state-space
modes and stochastic volatility modes in particular that appear in Bayesian statistics
and machine learning. We in particular focused on representative inference methods
from different classes: methods that can recover the posterior distribution ‘exactly’ and
the ones that build an approximation. We discussed which methods have the potential
to be applied in a multivariate or high-dimensional situation and why they have this
potential. Finally, we discovered that while stochastic volatility models are common for
use in simulation studies for demonstrating the performance of the methods, usually
not enough possible data-generating processes are considered to make a fair comparison.
In particular, the performance of the methods is heavily connected to the variance of the
latent volatility process.

State-space models can be powerful tools for modeling latent variables in different
scientific fields. However, already for univariate time series, they are challenging to
estimate. This paper’s main aim was to review and understand the existing classes of
methods of estimation (targeting exact posterior or approximating it) and define the
direction one can undertake for the estimation of multivariate nonlinear state-space models.
The challenge arises from both statistical and computational perspectives. By this, we
mean it is hard to develop methods that both provide sufficiently good results from the
estimation point of view and are computationally feasible. We have reviewed a number of
methods that allow a trade-off between these two aspects. In particular, we have considered
particle Markov Chain Monte Carlo and reviewed multiple particle filtering approaches for
this method, Riemann Manifold Langevin Hamiltonian Monte Carlo, Integrated Nested
Laplace Approximation, and Variational Bayes. All these methods are equipped with the
ability to estimate models with intractable likelihoods.

5.1. Sequential Monte Carlo

We compared the auxiliary particle filter with the bootstrap particle filter in terms of
the variance of the estimated likelihood. We found that the auxiliary particle filter outper-
formed the bootstrap particle filter for most of the data-generating processes. As discussed
in [27], auxiliary particle filter does not always have a smaller variance of the estimated like-
lihood. Additionally, we looked into how the variance of the estimated likelihood changes
in the parameter space. We found that, in particular, the variance of the latent process
affects the variance of the estimated likelihood. This implies that one has to find the balance
for the number of particles used in Sequential Monte Carlo and a clever way of finding
initial parameter values for the sampling from the posterior, especially when considering
multivariate models. The advantage of the auxiliary particle filter from the methodological
point of view is that it takes into account current observation yt when constructing the
proposal for the particles q(ht | ht−1, yt). The method that we did not include in our simu-
lation study, but that possibly can solve the problem with the variance of the estimated
likelihood, is the iterated auxiliary particle filter (iAPF): for the proposal of the particles,
it uses not only current observation yt, but all observations q(ht | ht−1, y1:T). A backward
sequential procedure with an optimization step is used in this proposal mechanism for
the particles, which makes the algorithm computationally intensive. The multivariate
application of the stochastic volatility model in [26] considers only diagonal case of the
matrix Φ, and the proposed procedure for the particle proposals does not incorporate such
dependence. While this method does introduce an additional computational burden on
already computationally intensive method (particle Metropolis–Hastings), it is promising
for getting state-of-the-art results for the task of parameter estimation.

5.2. Particle Metropolis-Hastings

Metropolis-Hastings is a general MCMC method that is easy to implement and works
well for the univariate model. The estimation results are satisfying when it is properly
calibrated, and good mixing of the chains is achieved. It works well in low-dimensional
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problems but is unlikely to be successful in the case of multivariate stochastic volatility
models. Considering the non-diagonal matrix Φ in a five-dimensional case, we would
have 45 parameters to be estimated. The random walk proposal would be very inefficient
even with a reasonable sparseness assumption on Φ. Nevertheless, in the low-dimensional
model, we get the best estimation results with particle Metropolis–Hastings, where the
particle filtering scheme is chosen to be an auxiliary particle filter. From the methods
considered in this paper, particle Markov Chain Monte Carlo methods are easiest to adapt
to different specifications of the model and are easiest to implement.

5.3. Riemann Manifold Hamiltonian Monte Carlo Methods

Hamiltonian Monte Carlo is a very attractive method for high-dimensional problems
as it allows us to explore the parameter space efficiently. In particular, the gain in efficiency
comes from avoiding random walk behavior in the proposals. The disadvantage comes
from the need of careful calibration since there is no principled way of choosing matrix
M. RMHMC avoids this problem by exploiting underlying geometry in the proposal
mechanism. In our study, we notice that RMHMC results in good mixing of the Markov
chains, and the method is generally easy to calibrate, but the estimation of the parameters
is not very good. In particular, it appears that the variance of the latent volatility process is
challenging for the method. It is not surprising that the PMH algorithm performs better
in terms of parameter estimation since we use an auxiliary particle filter for the volatility
process estimation and thus take current observation yt for the particle proposals. RMHMC
does not benefit from similar information when estimating model parameters. Therefore,
improved estimation of the volatility process can be one of the directions for improving the
performance of RMHMC for the parameter estimation of stochastic volatility models.

5.4. Variational Bayes

As one can see from the illustrative example, in some cases, variational Bayes performs
quite well; however, there are also situations when it is far off from the underlying truth.
The challenge with stochastic volatility models remains the same: it is difficult to estimate
the latent states. In the approach of [6], this is done via Kalman filtering. Therefore, the
drawback of linearization of the model will remain and will show in the final results. In this
respect, the possible combination of VB and SMC can be of interest. Some advances in this
direction have already been made [42].

5.5. Integrated Nested Laplace Approximation

Integrated Nested Laplace Approximation is another approach that works well consid-
ering how fast the method is, but it clearly overestimates the variance of the latent volatility
process. Additionally, the sparse matrix computation that is used in univariate models is
not applicable to the multivariate case. In the multivariate case, the precision matrix in
Equation (67) is not sparse, and thus, the method does not benefit from fast sparse matrix
computation. An approach that we have not considered in this paper is the Expectation
Propagation algorithm. In particular, the authors of [43] propose a way to improve ap-
proximate marginals p(xt | θ, y) in latent Gaussian fields by using EP. The motivation of
the approach builds on the fact that EP can give better approximations than the Laplace
approximation in this case. The improvements, however, would come at computational
costs. In the univariate case, the extra computational costs do not play a significant role as
the algorithm can be parallelized. However, it is hard to say how big the difference would
be in the multivariate model, both in terms of improvement in the estimation and loss in
computational speed.

6. Conclusions

We reviewed multiple Bayesian inference methods, which both target the exact poste-
rior distribution and approximate it. By comparing methods on various data-generating
processes, we notice that variational Bayes tends to underestimate the latent volatility
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process variance, while INLA and RMHMC, in the cases considered, overestimated this
parameter. We also get similar disposition of the results on two real-world data sets. We
achieved the best performance with PMH in terms of recovering ground truth and uncer-
tainty quantification. In PMH, the particle filtering step was performed with an auxiliary
particle filter. This indicates that filtering with look-ahead approaches, which include
current (or future) observations into proposal machinery can improve the performance
of the inference method. It is important to note that different data-generating processes
for simulation studies would indicate different performance results. Thus, we stress that
when using stochastic volatility models, more than one data-generating process should
be considered for methods comparison. This practice would allow indicating in which
situation a method can fail or perform differently. Our results indicate that fixed-form
variational Bayes tends to underestimate the variance of the latent process, while RMHMC
and INLA overestimated this parameter. To estimate the stochastic volatility model in the
multivariate case, the combination of different strategies appears to be necessary. In a
high-dimensional case, the random-walk proposal would become extremely inefficient.
At the same time, approximate methods lose their outstanding computational advantage
(for example, INLA), and the implementation of these methods in the multivariate case is
not straightforward.
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a Trace plots (left), histograms (middle) and ACF plots (right)
obtained with Particle Metropolis-Hastings
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Figure A1. Results of the sampling from the posterior distribution with PMH and RMHMC for
TS = 4 from Table 2. The first column corresponds to the trace plots, the middle column to histograms
obtained with the samples from the posterior distribution, and the last column to autocorrelation
function for the samples.
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a Trace plots (left), histograms (middle) and ACF plots (right)
obtained with Particle Metropolis-Hastings
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Figure A2. Results of the sampling from the posterior distribution with PMH and RMHMC for
TS = 5 from Table 2. The first column corresponds to the trace plots, the middle column to histograms
obtained with the samples from the posterior distribution, and the last column to autocorrelation
function for the samples.
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a Trace plots (left), histograms (middle) and ACF plots (right)
obtained with Particle Metropolis-Hastings
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Figure A3. Results of the sampling from the posterior distribution with PMH and RMHMC for
TS = 9 from Table 2. The first column corresponds to the trace plots, the middle column to histograms
obtained with the samples from the posterior distribution, and the last column to autocorrelation
function for the samples.
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a Trace plots, histograms and ACF plots obtained with Particle
Metropolis-Hastings
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manifold Hamiltonian Monte Carlo

Figure A4. Results of the sampling from the posterior distribution with PMH and RMHMC for TS =

10 from Table 2. The first column corresponds to the trace plots, the middle column to histograms
obtained with the samples from the posterior distribution, and the last column to autocorrelation
function for the samples.
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Appendix A.2.

Although we do not give details for the NUTS sampler [44] in the main text, we
present here experiments for this sampler using the same experiments as in the main
text. The results in Table A1 are obtained with the sampler implemented in RStan [45].
The method provides large confidence intervals for the parameters φ and ση . Similarly to
RMHMC, the variance of the latent volatility process tends be overestimated based on the
mean and the mode of the posterior distribution. The confidence intervals obtained with
NUTS appear to be quite large, especially for the parameters φ and ση . The multivariate
version of the stochastic volatility model can provide additional challenges since different
parameters might require different step sizes and the sampler can get stuck in the regions of
space where a small step size is needed to achieve target acceptance rate. In the univariate
case, NUTS appears to be more efficient than both PMH and RMHMC as can be seen from
the last two columns of Table A1. The applicability of this particular implementation can
be limited due to the large 95% highest posterior intervals as uncertainty about parameters
φ and ση is very large in most cases.

Table A1. Posterior results for estimation of the SV model with INLA. Experiments 1, 2, 3, 4, and 5
correspond to TS 2, 4, 5, 9, and 10 from Table 2.

Experiment 1

mean mode 95% HPDl 95% HPDu true ESS ESS/s

β 1.1785 1.1779 1.1053 1.2567 1.189 18794 87.31
φ 0.6266 0.8366 0.0886 0.9773 0.959 18704 86.89

ση 0.3117 0.2985 0.0961 0.5397 0.089 18534 86.10

Experiment 2

mean mode 95% HPDl 95% HPDu true ESS ESS/s

β 0.8498 0.8509 0.7978 0.9004 0.903 18694 42.08
φ 0.4033 0.7162 −0.3309 0.9912 0.967 17888 40.26

ση 0.2944 0.3064 0.0547 0.5127 0.076 18789 42.29

Experiment 3

mean mode 95% HPDl 95% HPDu true ESS ESS/s

β 0.9510 0.9510 0.9074 0.9960 0.938 19001 42.31
φ 0.0188 −0.2263 −0.8129 0.8727 0.764 18168 40.46

ση 0.1259 0.0276 0.0000 0.2906 0.080 19001 42.31

Experiment 4

mean mode 95% HPDl 95% HPDu true ESS ESS/s

β 0.9096 0.9042 0.7178 1.1550 0.942 18587 39.88
φ 0.9753 0.9784 0.9525 0.9965 0.981 18529 39.75

ση 0.1398 0.1317 0.0876 0.1923 0.100 18397 39.47

Experiment 5

mean mode 95% HPDl 95% HPDu true ESS ESS/s

β 0.5631 0.5632 0.5329 0.5958 0.553 18819 42.40
φ 0.2804 0.3784 −0.3789 0.8847 0.840 18703 42.14

ση 0.3648 0.3910 0.1657 0.5445 0.215 18248 41.11

Appendix A.3.

Algorithm A1 is a generic particle filter. We use auxiliary version of it proposed in [23].
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Algorithm A1 Approximation of marginal likelihood with ASIR algorithm.

1: Draw N samples h(i)0 from the prior

h(i)0 ∼ π(h0 | θ), i = 1, . . . , N (A1)

and set w(i)
0 = 1/N, for all i = 1, . . . , N.

2: For each t = 1, . . . , T do the following
3: Draw samples h(i)t from the importance distribution

h(i)t ∼ q(ht | h(i)t−1, y1:t, θ), i = 1, . . . , N. (A2)

4: Compute the following weights

w(i)
t =

g(yt | h(i)t , θ) f (h(i)t | h(i)t−1, θ)

q(h(i)t | h(i)t−1, y1:t, θ)
(A3)

and compute the estimate of p(yt | y1:t−1, θ) as

p̂(yt | y1:t−1, θ) = ∑
i

W(i)
t−1w(i)

t . (A4)

5: Compute normalized weights as

W(i)
t ∝ W(i)

t−1w(i)
t . (A5)

6: If the effective number of particles is too low, perform resampling.

Appendix A.4.

Table A2. Descriptive statistics for time series from the empirical example in Section 3.5: daily
log-returns for DAX index and weekly log-returns for Australian/US dollar exchange rate.

DAX Australia/US

Mean −0.001 −0.04
Std.dev. 0.013 1.00

Skewness 0.202 0.06
Kurtosis 3.253 3.37

References

1. Shephard, N.; Torben, G. Stochastic volatility: Origins and overview. In Handbook of Financial Time Series; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 233–254.

2. Platanioti, K.; McCoy, E.; Stephens, D. A Review of Stochastic Volatility: Univariate and Multivariate Models; Technical Report,
Working Paper; Imperial College London: London, UK, 2005.

3. Asai, M.; McAleer, M.; Yu, J. Multivariate stochastic volatility: A review. Econom. Rev. 2006, 25, 145–175. [CrossRef]
4. Andrieu, C.; Doucet, A.; Holenstein, R. Particle Markov chain Monte Carlo methods. J. R. Stat. Soc. Ser. B 2010, 72, 269–342.

[CrossRef]
5. Girolami, M.; Calderhead, B. Riemann Manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. Ser. B

(Stat. Methodol.) 2011, 73, 123–214. [CrossRef]
6. Salimans, T.; Knowles, D.A. Fixed-form variational posterior approximation through stochastic linear regression. Bayesian Anal.

2013, 8, 837–882. [CrossRef]
7. Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian inference for latent Gaussian models by using Integrated Nested Laplace

Approximations. J. R. Stat. Soc. Ser. B 2009, 71, 319–392. [CrossRef]
8. Mandelbrot, B.B. The variation of certain speculative prices. In Fractals and Scaling in Finance; Springer: New York, NY, USA,

1997; pp. 371–418.

385



Entropy 2021, 23, 466

9. Black, F. Studies of stock price volatility changes. In Proceedings of the 1976 Meeting of the Business and Economic Statistics Section;
American Statistical Association: Washington, DC, USA, 1976; pp. 177–181.

10. Black, F.; Scholes, M. The pricing of options and corporate liabilities. J. Political Econ. 1973, 81, 637–654. [CrossRef]
11. Hull, J.; White, A. The pricing of options on assets with stochastic volatilities. J. Financ. 1987, 42, 281–300. [CrossRef]
12. Johnson, H.; Shanno, D. Option pricing when the variance is changing. J. Financ. Quant. Anal. 1987, 22, 143–151. [CrossRef]
13. Wiggins, J.B. Option values under stochastic volatility: Theory and empirical estimates. J. Financ. Econ. 1987, 19, 351–372.

[CrossRef]
14. Heston, S.L. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev.

Financ. Stud. 1993, 6, 327–343. [CrossRef]
15. Campbell, J.Y.; Champbell, J.J.; Campbell, J.W.; Lo, A.W.; Lo, A.W.; MacKinlay, A.C. The Econometrics of Financial Markets;

Princeton University Press: Princeton, NJ, USA, 1997.
16. Harvey, A.C.; Shephard, N. Estimation of an asymmetric stochastic volatility model for asset returns. J. Bus. Econ. Stat. 1996,

14, 429–434.
17. Jacquier, E.; Polson, N.G.; Rossi, P.E. Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. J. Econom.

2004, 122, 185–212. [CrossRef]
18. Yu, J. On leverage in a stochastic volatility model. J. Econom. 2005, 127, 165–178. [CrossRef]
19. Kim, S.; Shephard, N.; Chib, S. Stochastic volatility: Likelihood inference and comparison with ARCH models. Rev. Econ. Stud.

1998, 65, 361–393. [CrossRef]
20. Gordon, N.J.; Salmond, D.J.; Smith, A.F. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F

(Radar Signal Process.) 1993, 140, 107–113. [CrossRef]
21. Doucet, A.; de Freitas, N.; Gordon, N. Sequential Monte Carlo Methods in Practice; Springer: New York, NY, USA, 2001.
22. Chopin, N. Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann. Stat. 2004,

32, 2385–2411. [CrossRef]
23. Pitt, M.K.; Shephard, N. Filtering via simulation: Auxiliary particle filters. J. Am. Stat. Assoc. 1999, 94, 590–599. [CrossRef]
24. Scharth, M.; Kohn, R. Particle efficient importance sampling. J. Econom. 2016, 190, 133–147. [CrossRef]
25. Richard, J.F.; Zhang, W. Efficient high-dimensional importance sampling. J. Econom. 2007, 141, 1385–1411. [CrossRef]
26. Guarniero, P.; Johansen, A.M.; Lee, A. The iterated auxiliary particle filter. J. Am. Stat. Assoc. 2017, 112, 1636–1647. [CrossRef]
27. Johansen, A.M.; Doucet, A. A note on auxiliary particle filters. Stat. Probab. Lett. 2008, 78, 1498–1504. [CrossRef]
28. Särkkä, S. Bayesian Filtering and Smoothing; Cambridge University Press: Cambridge, UK, 2013; Volume 3.
29. Roberts, G.O.; Gelman, A.; Gilks, W.R. Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl.

Probab. 1997, 7, 110–120. [CrossRef]
30. Robert, C.P.; Casella, G. Monte Carlo Statistical Methods; Springer Texts in Statistics; Springer: New York, NY, USA, 2005.
31. Duane, S.; Kennedy, A.D.; Pendleton, B.J.; Roweth, D. Hybrid Monte Carlo. Phys. Lett. B 1987, 195, 216–222. [CrossRef]
32. Neal, R.M. MCMC Using Hamiltonian Dynamics. In Handbook of Markov Chain Monte Carlo; CRC Press: Boca Raton, FL, USA,

2011; Volume 2.
33. Betancourt, M. A Conceptual Introduction to Hamiltonian Monte Carlo. arXiv 2017, arXiv:1701.02434.
34. Roberts, G.O.; Rosenthal, J.S. Optimal scaling of discrete approximations to Langevin diffusions. J. R. Stat. Soc. Ser. B 1998,

60, 255–268. [CrossRef]
35. Gelman, A.; Lee, D.; Guo, J. Stan: A probabilistic programming language for Bayesian inference and optimization. J. Educ. Behav.

Stat. 2015, 40, 530–543. [CrossRef]
36. Salvatier, J.; Wiecki, T.V.; Fonnesbeck, C. Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. 2016, 2, e55.

[CrossRef]
37. Martino, S.; Aas, K.; Lindqvist, O.; Neef, L.R.; Rue, H. Estimating stochastic volatility models using integrated nested Laplace

approximations. Eur. J. Financ. 2011, 17, 487–503. [CrossRef]
38. Ehlers, R.; Zevallos, M. Bayesian Estimation and Prediction of Stochastic Volatility Models via INLA. Commun. Stat.-Simul.

Comput. 2015, 44, 683–693. [CrossRef]
39. Martino, S. Approximate Bayesian Inference for Multivariate Stochastic Volatility Models; Technical Report; Department of Mathematical

Sciences, Norwegian University of Science and Technology: Trondheim, Norway, 2007.
40. Šmídl, V.; Quinn, A. The Variational Bayes Method in Signal Processing; Springer Science & Business Media: Dordrecht,

The Netherlands, 2006.
41. Ruiz, E. Quasi-maximum likelihood estimation of stochastic volatility models. J. Econom. 1994, 63, 289–306. [CrossRef]
42. Naesseth, C.; Linderman, S.; Ranganath, R.; Blei, D. Variational Sequential Monte Carlo. In Proceedings of the Twenty-First

International Conference on Artificial Intelligence and Statistics, Playa Blanca, Lanzarote, Canary Islands, Spain, 9–11 April 2018;
pp. 968–977.

43. Cseke, B.; Heskes, T. Approximate marginals in latent Gaussian models. J. Mach. Learn. Res. 2011, 12, 417–454.
44. Hoffman, M.D.; Gelman, A. The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach.

Learn. Res. 2014, 15, 1593–1623.
45. Stan Development Team. RStan: The R Interface to Stan; R Package Version 2.21.2. Available online: http://mc-stan.org/

(accessed on 6 April 2021).

386



entropy

Article

PAC-Bayes Bounds on Variational Tempered Posteriors for
Markov Models

Imon Banerjee 1, Vinayak A. Rao 1,*,† and Harsha Honnappa 2,†

Citation: Banerjee, I.; Rao, V. A.;

Honnappa, H. PAC-Bayes Bounds on

Variational Tempered Posteriors for

Markov Models. Entropy 2021, 23,

313. https://doi.org/10.3390/

e23030313

Academic Editor: Pierre Alquier

Received: 8 February 2021

Accepted: 4 March 2021

Published: 6 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Statistics, Purdue University, West Lafayette, IN 47907, USA; ibanerj@purdue.edu
2 School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA; honnappa@purdue.edu
* Correspondence: varao@purdue.edu
† These authors contributed equally to this work.

Abstract: Datasets displaying temporal dependencies abound in science and engineering applica-
tions, with Markov models representing a simplified and popular view of the temporal dependence
structure. In this paper, we consider Bayesian settings that place prior distributions over the param-
eters of the transition kernel of a Markov model, and seek to characterize the resulting, typically
intractable, posterior distributions. We present a Probably Approximately Correct (PAC)-Bayesian
analysis of variational Bayes (VB) approximations to tempered Bayesian posterior distributions,
bounding the model risk of the VB approximations. Tempered posteriors are known to be robust to
model misspecification, and their variational approximations do not suffer the usual problems of
over confident approximations. Our results tie the risk bounds to the mixing and ergodic properties
of the Markov data generating model. We illustrate the PAC-Bayes bounds through a number of
example Markov models, and also consider the situation where the Markov model is misspecified.

Keywords: ergodicity; Markov chain; probably approximately correct; variational Bayes

1. Introduction

This paper presents probably approximately correct (PAC)-Bayesian bounds on vari-
ational Bayesian (VB) approximations of fractional or tempered posterior distributions
for Markov data generation models. Exact computation of either standard or tempered
posterior distributions is a hard problem that has, broadly speaking, spawned two classes
of computational methods. The first, Markov chain Monte Carlo (MCMC), constructs
ergodic Markov chains to approximately sample from the posterior distribution. MCMC is
known to suffer from high variance and complex diagnostics, leading to the development
of variational Bayesian (VB) [1] methods as an alternative in recent years. VB methods
pose posterior computation as a variational optimization problem, approximating the
posterior distribution of interest by the ‘closest’ element of an appropriately defined class
of ‘simple’ probability measures. Typically, the measure of closeness used by VB methods
is the Kullback–Leibler (KL) divergence. Excellent introductions to this so-called KL-VB
method can be found in [2–4]. More recently, there has also been interest in alternative
divergence measures, particularly the α-Rényi divergence [5–7], though in this paper, we
focus on the KL-VB setting.

Theoretical properties of VB approximations, and in particular asymptotic frequentist
consistency, have been studied extensively under the assumption of an independent and
identically distributed (i.i.d.) data generation model [4,8,9]. On the other hand, the
common setting where data sets display temporal dependencies presents unique challenges.
In this paper, we focus on homogeneous Markov chains with parameterized transition
kernels, representing a parsimonious class of data generation models with a wide range of
applications. We work in the Bayesian framework, focusing on the posterior distribution
over the unknown parameters of the transition kernel. Our theory develops PAC bounds

Entropy 2021, 23, 313. https://doi.org/10.3390/e23030313 https://www.mdpi.com/journal/entropy
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that link the ergodic and mixing properties of the data generating Markov chain to the
Bayes risk associated with approximate posterior distributions.

Frequentist consistency of Bayesian methods, in the sense of concentration of the
posterior distribution around neighborhoods of the ‘true’ data generating distribution,
have been established in significant generality, in both the i.i.d. [10–12] and in the non-i.i.d.
data generation setting [13,14]. More recent work [14–16] has studied fractional or tempered
posteriors, a class of generalized Bayesian posteriors obtained by combining the likelihood
function raised to a fractional power with an appropriate prior distribution using Bayes’
theorem. Tempered posteriors are known to be robust against model misspecification: in
the Markov setting we consider, the associated stationary distribution as well as mixing
properties are sensitive to model parameterization. Further, tempered posteriors are known
to be much simpler to analyze theoretically [14,16]. Therefore, following [14–16] we focus
on tempered posterior distributions on the transition kernel parameters, and study the rate
of concentration of variational approximations to the tempered posterior. Equivalently, as
shown in [16] and discussed in Section 1.1, our results also apply to so-called α-variational
approximations to standard posterior distributions over kernel parameters. The latter are
modifications of the standard KL-VB algorithm to address the well-known problem of
overconfident posterior approximations.

While there have been a number of recent papers studying the consistency of ap-
proximate variational posteriors [5,8,15] in the large sample limit, rates of convergence
have received less attention. Exceptions include [9,15,17], where an i.i.d. data generation
model is assumed. [15] establishes PAC-Bayes bounds on the convergence of a varia-
tional tempered posterior with fractional powers in the range [0, 1), while [9] considers
the standard variational posterior case (where the fractional power equals 1). [17], on the
other hand, establishes PAC-Bayes bounds for risk-sensitive Bayesian decision making
problems in the standard variational posterior setting. The setting in [15] allows for model
misspecification and the analysis is generally more straightforward than that in [9,17]. Our
work extends [15] to the setting of a discrete-time Markov data generation model.

Our first results in Theorem 1 and Corollary 1 of Section 2 establish PAC-Bayes bounds for
sequences with arbitrary temporal dependence. Our resultsgeneralize [15], [Theorem 2.4] to the
non-i.i.d. data setting in a straightforward manner. Note that Theorem 1 also recovers ([16],
[Theorem 3.3]), which is established under different ‘existence of test’ conditions. Our
objective in this paper is to explicate how the ergodic and mixing properties of the Markov
data generating process influences the PAC-Bayes bound. The sufficient conditions of our
theorem, bounding the mean and variance of the log-likelihood ratio of the data, allows for
developing this understanding, without the technicalities of proving the existence of test
conditions intruding on the insights.

In Section 3, we study the setting where the data generating model is a stationary
α-mixing Markov chain. Stationarity means that the Markov chain is initialized with the
invariant distribution corresponding to the parameterized transition kernel, implying all
subsequent states also follow this marginal distribution. The α-mixing condition ensures
that the variance of the likelihood ratio of the Markov data does not grow faster than linear
in the sample size. Our main results in this setting are applicable when the state space
of the Markov chain is either continuous or discrete. The primary requirement on the
class of data generating Markov models is for the log-likelihood ratio of the parameterized
transition kernel and invariant distribution to satisfy a Lipschitz property. This condition
implies a decoupling between the model parameters and the random samples, affording
a straightforward verification of the mean and variance bounds. We highlight this main
result by demonstrating that it is satisfied by a finite state Markov chain, a birth-death
Markov chain on the positive integers, and a one-dimensional Gaussian linear model.

In practice, the assumption that the data generating model is stationary is unlikely to
be satisfied. Typically, the initial distribution is arbitrary, with the state distribution of the
Markov sequence converging weakly to the stationary distribution. In this setting, we must
further assume that the class of data generating Markov chains are geometrically ergodic.
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We show that this implies the boundedness of the mean and variance of the log-likelihood
ratio of the data generating Markov chain. Alternatively, in Theorem 4 we directly impose
a drift condition on random variables that bound the log-likelihood ratio. Again, in this
more general nonstationary setting, we illustrate the main results by showing that the
PAC-Bayes bound is satisfied by a finite state Markov chain, a birth-death Markov chain
on the positive integers, and a one-dimensional Gaussian linear model.

In preparation for our main technical results starting in Section 2 we first note relevant
notations and definitions in the next section.

1.1. Notations and Definitions

We broadly adopt the notation in [15]. Let the sequence of random variables
Xn = (X0, . . . , Xn) ⊂ Rm×(n+1) represent a dataset of n + 1 observations drawn from
a joint distribution P(n)

θ0
, where θ0 ∈ Θ ⊆ Rd is the ‘true’ parameter underlying the data

generation process. We assume the state space S ⊆ Rm of the random variables Xi is either
discrete-valued or continuous, and write {x0, . . . , xn} for a realization of the dataset. We
also adopt the convention that 0 log(0/0) = 0.

For each θ ∈ Θ, we will write p(n)θ as the probability density of P(n)
θ with respect

to some measure Q(n), i.e., p(n)θ := dP(n)
θ

dQ(n) , where Q(n) is either Lebesgue measure or the
counting measure. Unless stated otherwise, all probabilities, expectations and variances,
which we represent as P, E[X] and Var[X], are with respect to the true distribution P(n)

θ0
.

Let π(θ) be a prior distribution with support Θ. The αte-fractional posterior is defined as

πn,αte |Xn(dθ) :=
e−αtern(θ,θ0)(Xn)π(dθ)∫
e−αtern(θ,θ0)(Xn)π(dθ)

, (1)

where, for θ0, θ ∈ Θ, rn(θ, θ0)(·) := log

(
p(n)θ0

(·)

p(n)θ (·)

)
, is the log-likelihood ratio of the corre-

sponding density functions, and αte ∈ (0, ∞) is a tempering coefficient. Setting αte = 1
recovers the standard Bayesian posterior. Note that we will use superscripts to distinguish
different quantities that are referred to just as α in the literature.

The Kullback–Leibler (KL) divergence between distributions P, Q is defined as

K(P, Q) :=
∫
X

log
(

p(x)
q(x)

)
p(x)dx,

where p, q are the densities corresponding to P, Q on some sample space X . In particular,
the KL divergence between the distributions parameterized by θ0 and θ is

K(P(n)
θ0

, P(n)
θ ) :=

∫
log

⎛⎝ p(n)θ0
(x0, . . . , xn)

p(n)θ (x0, . . . , xn)

⎞⎠p(n)θ0
(x0, . . . , xn)dx0 · · · dxn

=
∫

rn(θ, θ0)(x0, . . . , xn)pn
θ0
(x0, . . . , xn)dx0 · · · dxn. (2)

The αre-Rényi divergence Dαre(P(n)
θ , P(n)

θ0
) is defined as

Dαre (P(n)
θ , P(n)

θ0
) :=

1
αre − 1

log
∫

exp(−αrern(θ, θ0)(x0, . . . , xn))p(n)θ0
(x0, . . . , xn)dx0 · · · dxn, (3)

where αre ∈ (0, 1). As αre → 1, the αre-Rényi divergence recovers the KL divergence.
Let F be some class of distributions with support in Rd and such that any distribution

P in F is absolutely continuous with respect to the tempered posterior: P � πn,αte |Xn .
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Many choices of F exist; for instance (see also [15]), F can be the set of Gaussian
measures, denoted FΦ

id :

FΦ
id = {Φ(dθ; μ, Σ) : μ ∈ Rd, Σd×d ∈ P.D.}, (4)

where P.D. references the class of positive definite matrices. Alternately, F can be the family
of mean-field or factored distributions where the components θi of θ are independent of each
other. Let π̃n,αte |Xn be the variational approximation to the tempered posterior, defined as

π̃n,αte |Xn := arg min
ρ∈F

K(ρ, πn,αte |Xn) (5)

It is easy to see that finding π̃n,αte |Xn in Equation (5) is equivalent to the following optimiza-
tion problem:

π̃n,αte |Xn := arg max
ρ∈F

[∫
rn(θ, θ0)(x0, . . . , xn)ρ(dθ)−

(
αte)−1K(ρ, π)

]
. (6)

Setting αte = 1 again recovers the usual variational solution that seeks to approximate
the posterior distribution with the closest element of F (the right-hand side above is
called the evidence lower bound (ELBO)). Other settings of αte constitute αte-variational
inference [16], which seeks to regularize the ‘overconfident’ approximate posteriors that
standard variational methods tend to produce.

Our results in this paper focus on parametrized Markov chains. We term a Markov
chain as ‘parameterized’ if the transition kernel pθ(·|·) is parametrized by some θ ∈ Θ ⊆
Rd. Let q(0)(·) be the initial density (defined with respect to the Lebesgue measure over
Rm) or initial probability mass function. Then, the joint density is p(n)θ (x0, . . . , xn) =

q(0)(x0)∏n−1
i=0 pθ(xi+1|xi); recall, this joint density p(n)θ (x0, . . . , xn) corresponds to the walk

probability of a time-homogeneous Markov chain. We assume that corresponding to each
transition kernel pθ , θ ∈ Θ, there exists an invariant distribution q(∞)

θ ≡ qθ that satisfies

qθ(x) =
∫

pθ(x|y)qθ(dy) ∀x ∈ Rm, θ ∈ Θ.

We will also use qθ to designate the density of the invariant measure (as before,
this is with respect to the Lebesgue or counting measure for continuous or discrete state
spaces, respectively). A Markov chain is stationary if its initial distribution is the invariant
probability distribution, that is, X0 ∼ qθ .

Our results in the ensuing sections will be established under strong mixing condi-
tions [18] on the Markov chain. Specifically, recall the definition of the α-mixing coefficients
of a Markov chain {Xn}:

Definition 1 (α-mixing coefficient). Let Mj
i denote the σ-field generated by the Markov chain

{Xk : i ≤ k ≤ j} parameterized by θ ∈ Θ. Then, the α-mixing coefficient is defined as

αk = sup
t>0

sup
(A,B)∈Mt

−∞×M∞
t+k

|Pθ(A ∩ B)− Pθ(A)Pθ(B)|. (7)

Informally speaking, the α-mixing coefficients {αk} measure the dependence between
any two events A (in the ‘history’ σ-algebra) and B (in the ‘future’ σ-algebra) with a time
lag k. We note that we do not use superscripts to identify these α parameters, since they are
the only ones with subscripts, and can be identified through this.
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2. A Concentration Bound for the αre-Rényi Divergence

The object of analysis in what follows is the probability measure π̃n,αte |Xn(θ), the
variational approximation to the tempered posterior. Our main result establishes a bound
on the Bayes risk of this distribution; in particular, given a sequence of loss functions
�n(θ, θ0), we bound

∫
�n(θ, θ0)π̃n,αte |Xn(θ)dθ. Following recent work in both the i.i.d. and

dependent sequence settings [14–16], we will use �n(θ, θ0) = Dαre(P(n)
θ , P(n)

θ0
), the αre-Rényi

divergence between P(n)
θ and P(n)

θ0
as our loss function. Unlike loss functions like Euclidean

distance, Rényi divergence compares θ and θ0 through their effect on observed sequences,
so that issues like parameter identifiability no longer arise. Our first result generalizes [15],
[Theorem 2.1] to a general non-i.i.d. data setting.

Proposition 1. Let F be a subset of all probability distributions on Θ. For any αre ∈ (0, 1),
ε ∈ (0, 1) and n ≥ 1, the following probabilistic uniform upper bound on the expected αre-Rényi
divergence holds:

P

[
sup
ρ∈F

∫
Dαre(P(n)

θ , P(n)
θ0

)ρ(dθ) ≤ αre

1 − αre

∫
rn(θ, θ0)ρ(dθ) +

K(ρ, π) + log( 1
ε )

1 − αre

]
≥ 1 − ε. (8)

The proof of Proposition 1 follows easily from [15], and we include it in Appendix B.1.1
for completeness. Mirroring the comments in [15], when ρ = π̃n,αte this result is pre-
cisely [14, Theorem 3.4]. We also note from [14] that ∀ αre, β ∈ (0, 1] αre-Rényi divergences
are all equivalent through the following inequality αre(1−β)

β(1−αre)
Dβ ≤ Dαre ≤ Dβ ∀ αre ≤ β.

Hence, for the subsequent results, we simplify by assuming that αte = αre. This proba-
bilistic bound implies the following PAC-Bayesian concentration bound on the model risk
computed with respect to the fractional variational posterior:

Theorem 1. Let F be a subset of all probability distributions parameterized by Θ, and assume
there exist εn > 0 and ρn ∈ F such that

i.
∫

K(P(n)
θ0

, P(n)
θ )ρn(dθ) =

∫
E[rn(θ, θ0)]ρn(dθ) ≤ nεn,

ii.
∫

Var(rn(θ, θ0))ρn(dθ) ≤ nεn, and
iii. K(ρn, π) ≤ nεn.

Then, for any αre ∈ (0, 1) and (ε, η) ∈ (0, 1)× (0, 1),

P

⎡⎣∫ Dαre(P(n)
θ , P(n)

θ0
)π̃n,αre(dθ|X(n)) ≤

(αre + 1)nεn + αre
√

nεn
η − log(ε)

1 − αre

⎤⎦ ≥ 1 − ε − η. (9)

The proof of Theorem 1 is a generalization of [15] (Theorem 2.4) to the non-i.i.d. setting,
and a special case of [16] (Theorem 3.1), where the problem setting includes latent variables.
We include a proof for completeness. As noted in [15], the sufficient conditions follow
closely from [13] and we will show that they hold for a variety of Markov chain models.

A direct corollary of Theorem 1 follows by setting η = 1
nεn

, ε = e−nεn and using the
fact that e−nεn ≥ 1

nεn
. Note that Equation (9) is vacuous if η + ε > 1. Therefore, without

loss of generality, we restrict ourselves to the condition 2
nεn

< 1.

Corollary 1. Assume ∃ εn > 0, ρn ∈ F such that the following conditions hold:

i.
∫

K(P(n)
θ0

, P(n)
θ )ρn(dθ) =

∫
E[rn(θ, θ0)]ρn(dθ) ≤ nεn ,

ii.
∫

Var(rn(θ, θ0))ρn(dθ) ≤ nεn , and
iii. K(ρn, π) ≤ nεn.
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Then, for any αre ∈ (0, 1),

P
[ ∫

Dαre(P(n)
θ , P(n)

θ0
)π̃n,αre(dθ|X(n)) ≤ 2(αre + 1)εn

1 − αre

]
≥ 1 − 2

nεn
. (10)

We observe that Theorem 1 and Corollary 1 place no assumptions on the nature of
the statistical dependence between data points. However, verification of the sufficient
conditions is quite hard, in general. One of our key contributions is to verify that under
reasonable assumptions on the smoothness of the transition kernel, the sufficient conditions
of Theorem 1 and Corollary 1 are satisfied by ergodic Markov chains.

Observe that the first two conditions in Corollary 1 ensure that the distribution ρn
concentrates on parameters θ ∈ Θ around the true parameter θ0, while the third condition
requires that ρn not diverge from the prior π rapidly as a function of the sample size n. In
general, verifying the first and third conditions is relatively straightforward. The second
condition, on the other hand, is significantly more complicated in the current setting of
dependent data, as the variance of rn(θ, θ0) includes correlations between the observations
{X0, . . . , Xn}. In the next section, we will make assumptions on the transition kernels (and
corresponding invariant densities) that ’decouple’ the temporal correlations and the model
parameters in the setting of strongly mixing and ergodic Markov chain models, and allow
for the verification of the conditions in Corollary 1. Towards this, Propositions 2 and 3
below characterize the expectation and variance of the log-likelihood ratio rn(·, ·) in terms
of the one-step transition kernels of the Markov chain. First, consider the expectation of
rn(·, ·) in condition (i).

Proposition 2. Fix θ1, θ2 ∈ Θ and consider the parameterized Markov transition kernels pθ1 and

pθ2 , and initial distributions q(0)θ1
and q(0)θ2

. Let p(n)θ1
and p(n)θ2

be the corresponding joint probability
densities; that is,

p(n)θj
(x0, . . . , xn) = q(0)θj

(x0)
n

∏
i=1

pθi (xi|xi−1) (11)

for j ∈ {1, 2}. Then, for any n ≥ 1, the log-likelihood ratio rn(θ2, θ1) satisfies

Eθ1 [rn(θ2, θ1)] =
n

∑
i=1

Eθ1

[
log
(

pθ1(Xi|Xi−1)

pθ2(Xi|Xi−1)

)]
+ Eθ1 [Z0], (12)

where Z0 := log

(
q(0)θ1

(X0)

q(0)θ2
(X0)

)
. The expectation in the first term is with respect to the joint density

function pθ1(y, x) = pθ1(y|x)q
(i−1)
θ1

(x) where the marginal density satisfies

q(i−1)
θ1

(x) =

{∫
p(i−1)

θ1
(x0, . . . , xi−2, x)dx0 · · · dxi−2 for i > 1, and

q(0)θ1
(x) for i = 1.

If the Markov chain is also stationary under θ1, then Equation (12) simplifies to

Eθ1 [rn(θ2, θ1)] = nEθ1

[
log
(

pθ1(X1|X0)

pθ2(X1|X0)

)]
+ Eθ1 [Z0]. (13)

Notice that Eθ1 [rn(θ2, θ1)] is precisely the KL divergence, K(P(n)
θ1

, P(n)
θ2

). Next, the
following proposition uses [19] (Lemma 1.3) to upper bound the variance of the log-
likelihood ratio.

Proposition 3. Fix θ1, θ2 ∈ Θ and consider parameterized Markov transition kernels pθ1

and pθ2 , with initial distributions q(0)θ1
and q(0)θ2

. Let p(n)θ1
and p(n)θ2

be the corresponding joint
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probability densities of the sequence (x0, . . . , xn), and q(i)θj
the marginal density for i ∈ {1, . . . , n}

and j ∈ {1, 2}. Fix δ > 0 and, for each i ∈ {1, . . . , n}, define

C(i)
θ1,θ2

:=
∫ ∣∣∣∣log

(
pθ1(xi|xi−1)

pθ2(xi|xi−1)

)∣∣∣∣2+δ

pθ1(xi|xi−1)q
(i−1)
θ1

(xi−1)dxidxi−1.

Similarly, define Z0 := log

(
q(0)θ1

(X0)

q(0)θ2
(X0)

)
, and D1,2 := Eθ1 |Z0|2+δ. Suppose the Markov chain

corresponding to θ1 is α-mixing with coefficients {αk}. Then,

Var(rn(θ1, θ2)) <
n

∑
i,j=1

(
4
n
+ 2nδ/2(C(i)

θ1,θ2
+ C(j)

θ1,θ2
+

√
C(i)

θ1,θ2
C(j)

θ1,θ2
)

)(
α

δ/(2+δ)
|i−j|−1

)

+
n

∑
i=1

(
4
n
+ 2nδ/2(C(i)

θ1,θ2
+ D1,2 +

√
C(i)

θ1,θ2
D1,2)

)(
α

δ/(2+δ)
i−1

)
(14)

+ Cov(Z0, Z0). (15)

Note that this result holds for any parameterized Markov chain. In particular, when
the Markov chain is stationary, C(i)

θ1,θ2
= C(1)

θ1,θ2
∀ i and ∀θ ∈ Θ, and Equation (14) simplifies

to

Var(rn(θ1, θ2)) < n
(

4
n
+ 6nδ/2C(1)

θ1,θ2

)(
∑
k≥0

α
δ/(2+δ)
k

)

+

(
4
n
+ 2nδ/2(C(1)

θ1,θ2
+ D1,2 +

√
C(1)

θ1,θ2
D1,2)

)(
∑
k≥1

α
δ/(2+δ)
k

)
+ Cov(Z0, Z0). (16)

If the sum ∑k≥0 α
δ/(2+δ)
k is infinite, the bound is trivially true. For it to be finite, of course,

the coefficients αk must decay to zero sufficiently quickly. For instance, Theorem A.1.2
shows that if the Markov chain is geometrically ergodic, then the α-mixing coefficients are
geometrically decreasing. We will use this fact when the Markov chain is non-stationary, as
in Section 4. In the next section, however, we first consider the simpler stationary Markov
chain setting where geometric ergodic conditions are not explicitly imposed. We also note
that unless only a finite number of αk are nonzero, the sum ∑k≥0 α

δ/(2+δ)
k is infinite when

δ = 0, and our results will typically require δ > 0.

3. Stationary Markov Data-Generating Models

Observe that the PAC-Bayesian concentration bound in Corollary 1 specifically re-
quires bounding the mean and variance of the log-likelihood ratio rn(θ, θ0). We ensure this
by imposing regularity conditions on the log-ratio of the one-step transition kernels and
the corresponding invariant densities. Specifically, we assume the following conditions
that decouple the model parameters from the random samples, allowing us to verify the
bounds in Corollary 1.

Assumption 1. There exist positive functions M(1)
k (·, ·) and M(2)

k (·), k ∈ {1, 2, . . . , m} such
that for any parameters θ1, θ2 ∈ Θ, the log of the ratio of one-step transition kernels and the log of
the ratio of the invariant distributions satisfy, respectively,

| log pθ1(x1|x0)− log pθ2(x1|x0)| ≤
m

∑
k=1

M(1)
k (x1, x0)| f (1)k (θ2, θ1)| ∀ (x0, x1), and (17)
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| log qθ1(x)− log qθ2(x)| ≤
m

∑
k=1

M(2)
k (x)| f (2)k (θ2, θ1)| ∀ x. (18)

We further assume that for some δ > 0, the functions f (1)k , f (2)k and M(1)
k satisfy the following:

i. there exist constants C(t)
k and measures ρn ∈ F such that

∫
| f (t)k (θ, θ0)|2+δρn(dθ) <

C(t)
k
n

for t ∈ {1, 2}, n ≥ 1 and k ∈ {1, 2, . . . , m}, and
ii. there exists a constant B such that

∫
M(1)

k (x1, x0)
2+δ pθj(x1|x0)q

(0)
θj

(x0)dx1dx0 < B, k ∈
{1, . . . , m} and j ∈ {1, 2}.

The following examples illustrate Equations (17) and (18) for discrete and continuous
state Markov chains.

Example 1. Suppose {X0, . . . , Xn} is generated by the birth-death chain with parameterized
transition probability mass function,

pθ(j|i) =
{

θ if j = i − 1,
1 − θ if j = i + 1.

In this example, the parameter θ denotes the probability of birth. We shall see that, m = 3:
M(1)

1 (X1, X0) = I[X1=X0+1], M(1)
2 (X1, X0) = I[X1=X0−1], and M(1)

3 (X1, X0) = 1. We also

define M(2)
1 (X0) = 1, and set M(2)

2 (X0) and M(2)
3 (X0) both to X0 − 1. Let f (1)1 (θ, θ0) =

log
[

θ0
θ

]
, f (1)2 (θ, θ0) = log

[
1−θ0
1−θ

]
, f (1)3 (θ, θ0) = 0, f (2)1 (θ, θ0) = − f (2)3 (θ, θ0) = log

[
1−θ0
1−θ

]
,

and f (2)2 (θ, θ0) = log
[

θ0
θ

]
. The derivation of these terms and that they satisfy the conditions of

Assumption 1 is provided in the proof of Proposition 6.

Example 2. Suppose {X0, . . . , Xn} is generated by the ‘simple linear’ Gauss–Markov model

Xn = θXn−1 + Wn,

where {Wn} is a sequence of i.i.d. standard Gaussian random variables. Then, m = 2, with
M(1)

1 (Xn, Xn−1) = |XnXn−1|, M(1)
2 (Xn, Xn−1) = X2

n, M(2)
1 (x) = x2

2 and M(2)
2 (X) = 0. Cor-

responding to these, we have f (1)1 (θ, θ0) = (θ − θ0), f (1)2 (θ, θ0) = (θ2
0 − θ2), f (2)1 (θ0, θ0) =

(θ2
0 − θ2) and f (2)2 (θ0, θ0) = 0. The derivation of these quantities and that these satisfy the

conditions of Assumption 1 under appropriate choice of ρn is shown in the proof of Proposition 10.

Note that assuming the same number m of M(1)
k and M(2)

k involves no loss of gener-
ality, since these functions can be set to 0. Both Equations (17) and (18) can be viewed as
generalized Lipschitz-smoothness conditions, recovering the usual Lipschitz-smoothness
when m = 1 and when f (t)k is Euclidean distance. Our generalized conditions are
useful for distributions like the Gaussian, where Lipschitz smoothness does not apply.

From Jensen’s inequality we have
∫

| f (t)k (θ, θ0)|ρn(dθ)| ≤
[∫

| f (t)k (θ, θ0)|2+δρn(dθ)
] 1

2+δ ,
and Assumption 1(i) above implies that for some constant C > 0 and k ∈ {1, 2, . . . , m}, t ∈
{1, 2}, ∫

| f (t)k (θ, θ0)|ρn(dθ) ≤ C
n1/(2+δ)

<
C√

n
. (19)

Assumption 1(i) is satisfied in a variety of scenarios, for example, under mild assumptions
on the partial derivatives of the functions f (t)k . To illustrate this, we present the following
proposition.
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Proposition 4. Let f (θ, θ0) be a function on a bounded domain with bounded partial derivatives
with f (θ0, θ0) = 0. Let {ρn(·)} be a sequence of probability densities on θ such that Eρn [θ] = θ0

and Varρn [θ] =
σ2

n for some σ > 0. Then, for some C > 0,∫
| f (θ, θ0)|2+δρn(dθ) <

C
n

. (20)

Proof. Define ∂θ f (θ, θ0) := ∂ f (θ,θ0)
∂θ as the partial derivative of the function f . By the mean

value theorem, | f (θ, θ0)| = |θ − θ0||∂θ f (θ∗, θ0)|, for some θ∗ ∈ [min{θ, θ0}, max{θ, θ0}].
Since the partial derivatives are bounded, there exists L ∈ R such that ∂θ f (θ∗, θ0) < L, and∫

| f (θ, θ0)|2+δρn(dθ) < L2+δ
∫

|θ − θ0|2+δρn(dθ). Choose G > 0 be such that |θ| < G, then∣∣∣ θ−θ0
2G

∣∣∣2+δ
<
∣∣∣ θ−θ0

2G

∣∣∣2. Therefore,
∫

|θ − θ0|2+δρn(dθ) < (2G)2+δVar
[

θ
2G

]
< (2G)δ σ2

n . Now

choosing (2G)δσ2 as C completes the proof.

If ∂θ f (t)k is continuous and Θ is compact, then ∂θ f (t)k is always bounded. Furthermore,

observe that if E
[

M(1)
k (X1, X0)

2+δ
]
< B, without loss of generality we can use Jensen’s

inequality to conclude that, for all 0 < a < 2 + δ, E
[

M(1)
k (X1, X0)

a
]
< B

a
2+δ < B.

We can now state the main theorem of this section.

Theorem 2. Let {X0, . . . , Xn} be generated by a stationary, α-mixing Markov chain parametrized
by θ0 ∈ Θ. Suppose that Assumption 1 holds and that the α-mixing coefficients satisfy

∑k≥1 α
δ/(2+δ)
k < +∞. Furthermore, assume that K(ρn, π) ≤ √

nC for some constant C > 0.

Then, the conditions of Corollary 1 are satisfied with εn = O
(

max( 1√
n , nδ/2

n )
)

.

Theorem 2 is satisfied by a large class of Markov chains, including chains with count-
able and continuous state spaces. In particular, if the Markov chain is geometrically ergodic,
then it follows from Equation (A4) (in the appendix) that ∑k≥1 α

δ/(2+δ)
k < +∞. Observe

that in order to achieve O( 1√
n ) convergence, we need δ ≤ 1. Key to the proof of Theorem 2

is the fact that the variance of the log-likelihood ratio can be controlled via the application
of Assumption 1 and Proposition 3. Note also that as δ decreases, satisfying the condition

∑k≥1 α
δ/(2+δ)
k requires the Markov chain to be faster mixing.

We now illustrate Theorem 2 for a number of Markov chain models. First, consider a
birth-death Markov chain on a finite state space.

Proposition 5. Suppose the data-generating process is a birth-death Markov chain, with one-
step transition kernel parametrized by the birth probability θ0 ∈ Θ. Let F be the set of all Beta
distributions. We choose the prior to be a Beta distribution. Then, the conditions of Theorem 2 are
satisfied and εn = O

(
1√
n

)
.

Proof. The proof of Proposition 5 follows from the more general Proposition 8, by fixing the
initial distribution to the invariant distribution under θ0. Therefore it has been omitted. We
simply refer to the proof of Proposition 8 under a more general setup in Appendix B.3.

The birth-death chain on the finite state space is, of course, geometrically ergodic and
the α-mixing coefficients αk decay geometrically. Note that the invariant distribution of
this Markov chain is uniform over the state space, and consequently this is a particularly
simple example. A more complicated and more realistic example is a birth-death Markov
chain on the nonnegative integers. We note that if the probability of birth θ in a birth-death
Markov chain on positive integers is greater than 0.5, then the Markov chain is transient,
and consequently, not ergodic. Hence, our prior should be chosen to have support within
(0, 0.5). For that purpose, we define the class of scaled beta distributions.
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Definition 2 (Scaled Beta). If X is a beta distribution on with parameters a and b, then Y is said
to be a scaled beta distribution with same parameters on the interval (c, m + c) if

Y = mx + c ; (m, c) ∈ R2

and in that case, the pdf of Y is obtained as

f (y) =

⎧⎨⎩ 1
mBeta(a,b)

(
y−c
m

)a−1(
1 − y−c

m

)b−1
if y ∈ (c, m + c),

0 otherwise.
.

Here, E[Y] = m a
a+b + c and Var[Y] = m2 ab

(a+b)2(a+b+1) . For the birth-death chain, we

set m = 0.5 and c = 0 giving it support on (0, 1
2 ). Setting m = 2 and c = −1 gives a beta

distribution rescaled to have support on (−1, 1).

Proposition 6. Suppose the data-generating process is a positive recurrent birth-death Markov
chain on the positive integers parameterized by the birth probability θ0 ∈ (0, 1

2 ). Further let F be
the set of all Beta distributions rescaled to have support (0, 1

2 ). We choose the prior to be a scaled
Beta distribution on (0, 1/2) with parameters a and b. Then, the conditions of Theorem 2 are
satisfied with εn = O

(
1√
n

)
.

Proof. The proof of Proposition 6 (for the stationary case) follows from the more general
Proposition 9 (the nonstationary case) by fixing the initial distribution to the invariant
distribution under θ0. We omit the proof and simply refer to the proof of Proposition 9
under a more general setup in Appendix B.3.

Unlike with the finite state-space, the invariant distribution now depends on the
parameter θ ∈ Θ, and verification of the conditions of the proposition is more involved.
In Appendix A.2, we prove that the class of scaled beta distributions satisfy the condition
K(ρn, π) ≤ nεn when the prior π is a beta or an uniform distribution. This fact will allow
us to prove the above propositions.

Both Proposition 5 and Proposition 6 assume a discrete state space. The next example
considers a strictly stationary simple linear model (as defined in Example 2), which has a
continuous, unbounded state space.

Proposition 7. Suppose the data-generating model is a stationary simple linear model:

Xn = θ0Xn−1 + Wn, (21)

where {Wn} are i.i.d. standard Gaussian random variables and |θ0| < 1. Suppose that F is the
class of all beta distributions rescaled to have the support (−1, 1). Then, the conditions of Theorem 2
are satisfied with εn = O

(
1√
n

)
.

Proof. This is a special case of the more general non-stationary simple linear model
which is detailed in Proposition 10. Therefore, the proof of the fact that the simple linear
model satisfies Assumption 1 when starting from stationarity is deferred to the proof
of Proposition 10. The simple linear model with |θ0| < 1 has geometrically decreasing
(and therefore summable) α-mixing coefficients as a consequence of [20] (eq. (15.49))
and Theorem A.1.2. Combining these two facts, it follows that the conditions of Theorem 2
are satisfied.

Observe that Theorem 1 (and Corollary 1) are general, and hold for any dependent
data-generating process. Therefore, there can be Markov chains that satisfy these, but do
not satisfy Assumption 1 which entails some loss of generality. However, as our examples
demonstrate, common Markov chain models do indeed satisfy the latter assumption.
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4. Non-Stationary, Ergodic Markov Data-Generating Models

We call a time-homogeneous Markov chain non-stationary if the initial distribu-
tion q(0) is not the invariant distribution. There are two sets of results in this setting:
in Theorem 3 and Theorem 4 we explicitly impose the α-mixing condition, while in The-
orem 5 we impose a f -geometric ergodicity condition (Definition A.1.2 in the appendix).
As seen in Equation (A4) (in the appendix) if the Markov chain is also geometrically er-
godic, then ∀ δ > 0, ∑ α

δ/(2+δ)
k < ∞. This condition can be relaxed, albeit at the risk of

more complicated calculations that, nonetheless, mirror those in the geometrically ergodic
setting. A common thread through these results is that we must impose some integrability
or regularity conditions on the functions M(1)

k .

First, in Theorem 3 we assume that the M(1)
k functions in Assumption 1 are uniformly

bounded and that the α-mixing condition is satisfied. This result holds for both discrete
and continuous state space settings.

Theorem 3. Let {X0, . . . , Xn} be generated by an α-mixing Markov chain parametrized by θ0 ∈ Θ
with transition probabilities satisfying Assumption 1 and with known initial distribution q(0). Let
{αk} be the α-mixing coefficients under θ0, and assume that ∑k≥1 α

δ/(2+δ)
k < +∞. Suppose that

there exists B ∈ R such that supx,y |M(1)
k (x, y)| < B for all k ∈ {1, 2, . . . , m} in Assumption

1. Furthermore, assume that there exists ρn ∈ F such that K(ρn, π) ≤ √
nC for some constant

C > 0. If the initial distribution q(0) satisfies Eq(0) |M
(2)
k (X0)|2 < +∞ for all k ∈ {1, 2, . . . , m},

then the conditions of Corollary 1 are satisfied with εn = O
(

max( 1√
n , nδ/2

n )
)

.

The following result in Proposition 8 illustrates Theorem 3 in the setting of a finite
state birth-death Markov chain.

Proposition 8. Suppose the data-generating process is a finite state birth-death Markov chain,
with one-step transition kernel parametrized by the birth probability θ0. Let F be the set of all Beta
distributions. We choose the prior on θ0 to be a Beta distribution. Then, the conditions of Theorem 3
are satisfied with εn = O

(
1√
n

)
for any initial distribution q(0).

Theorem 3 also applies to data generated by Markov chains with countably infinite
state spaces, so long as the class of data-generating Markov chains is strongly ergodic and
the initial distribution has finite second moments. The following example demonstrates
this in the setting of a birth-death Markov chain on the positive integers, where the initial
distribution is assumed to have finite second moments.

Proposition 9. Suppose the data-generating process is a birth-death Markov chain on the non-
negative integers, parameterized by the probability of birth θ0 ∈ (0, 1

2 ). Further let F be the set
of all Beta distributions rescaled upon the support (0, 1

2 ). Let q(0) be a probability mass function
on non-negative integers such that ∑∞

i=1 i2q(0)(i) < +∞. We choose the prior to be a scaled Beta
distribution on (0, 1/2) with parameters a and b. Then, the conditions of Theorem 3 are satisfied
with εn = O

(
1√
n

)
.

Since continuous functions on a compact domain are bounded, we have the following
(easy) corollary (stated without proof).

Corollary 2. Let {X0, . . . , Xn} be generated by an α-mixing Markov chain parametrized by
θ0 ∈ Θ on a compact state space, and with initial distribution q(0). Suppose the α-mixing coefficients
satisfy ∑k≥1 α

δ/(2+δ)
k < +∞, and that Assumption 1 holds with continuous functions M(1)

k (·, ·),
k ∈ {1, 2, . . . , m}. Furthermore, assume that there exists ρn such that K(ρn, π) ≤ √

nC for some
constant C. Then, Theorem 3 is satisfied with εn = O

(
max( 1√

n , nδ/2

n )
)

.
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In general, the M(1)
k functions will not be uniformly bounded (consider the case of

the Gauss–Markov simple linear model in Example 2), and stronger conditions must be
imposed on the data-generating Markov chain itself. The following assumption imposes a
‘drift’ condition from [21]. Specifically, [21] (Theorem 2.3) shows that under the conditions
of Assumption 2, the moment generating function of an aperiodic Markov chain {Xn} can
be upper bounded by a function of the moment generating function of X0. Together with
the α-mixing condition, Assumption 2 implies that this Markov data generating process
satisfies Corollary 1.

Assumption 2. Consider a Markov chain {Xn} parameterized by θ0 ∈ Θ. Let Mn
−∞ de-

note the σ-field generated by {X−∞, . . . , Xn−1, Xn}. Denote the stochastic process {Mk
n} :=

{M(1)
k (Xn, Xn−1)}; recall M(1)

k , for each k = 1, . . . , m1, are defined in Assumption 1. For each
k = 1, . . . , m, assume the process {Mk

n} satisfies the following conditions:

• The drift condition holds for {Mk
n}, i.e., E

[
Mk

n − Mk
n−1|Mn−1

−∞ , Mk
n−1 > a

]
≤ −ε for some

ε, a > 0.
• For some λ > 0 and D > 0, E

[
eλ(Mk

n−Mk
n−1)|Mn−1

−∞

]
≤ D.

Under this drift condition, the next theorem shows that Corollary 1 is satisfied.

Theorem 4. Let {X0, . . . , Xn} be generated by an aperiodic α-mixing Markov chain parametrized
by θ0 ∈ Θ and initial distribution q(0). Suppose that Assumption 1 and Assumption 2 hold, and that
the α-mixing coefficients satisfy ∑k≥1 α

δ/(2+δ)
k < +∞. Furthermore, assume K(ρn, π) ≤ √

nC

for some constant C > 0. If
∫

eλM(1)
k (y,x)pθ0(y|x)q

(0)
1 (x)dx < +∞ for all k = 1, . . . , m1, then the

conditions of Corollary 1 are satisfied with εn = O
(

max( 1√
n , nδ/2

n )
)

.

Verifying the conditions in Theorem 4 can be quite challenging. Instead, we sug-
gest a different approach that requires f -geometric ergodicity. Unlike the drift condition
in Assumption 2, f -geometric ergodicity additionally requires the existence of a petite
set. As noted before, geometric ergodicity implies α-mixing with geometrically decaying
mixing coefficients. As with Theorem 4, we assume for simplicity that the Markov chain is
aperiodic.

Theorem 5. Let {X0, . . . , Xn} be generated by an aperiodic Markov chain parametrized by
θ0 ∈ Θ with known initial distribution q(0), and assumed to be V-geometrically ergodic for
some V : Rm → [1, ∞). Suppose that Assumption 1 holds and

∫
M(1)

k (y, x)2+δ pθ0(y|x)dy <
V(x) ∀ k, x and some δ > 0. Furthermore, assume that K(ρn, π) ≤ √

nC for some constant
C > 0. If the initial distribution q(0) satisfies Eq(0) [V(X0)] < +∞, then the conditions of Corollary

1 are satisfied with εn = O
(

max( 1√
n , nδ/2

n )
)

.

The following Proposition 10 shows, the simple linear model satisfies Theorem 5 when
the parameter θ0 is suitably restricted.

Proposition 10. Consider the simple linear model satisfying the equation

Xn = θ0Xn−1 + Wn, (22)

where {Wn} are i.i.d. standard Gaussian random variables and |θ0| < 2
1

4+2δ −1 for δ > 0. Let F be
the space of all scaled Beta distributions on (−1, 1) and suppose the prior π is a uniform distribution
on (−1, 1). Then, the conditions of Theorem 5 are satisfied with εn = O

(
max( 1√

n , nδ/2

n )
)

, if the

initial distribution q(0) satisfies Eq(0) [X
4+2δ
0 ] < +∞.
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5. Misspecified Models

We show next how our results can be extended to the misspecified model setting.
Assume that the true data generating distribution is parametrized by θ0 �∈ Θ. Let θ∗

n :=
arg minθ∈Θ K(P(n)

θ0
, P(n)

θ ) represent the closest parametrized distribution in the variational
family to the data-generating distribution. Further, assume our usual conditions:

i.
∫

E[rn(θ, θ∗
n)]ρn(dθ) ≤ nεn,

ii.
∫

Var(rn(θ, θ∗
n))ρn(dθ) ≤ nεn.

Now, since rn(θ, θ0) = rn(θ, θ∗
n) + rn(θ∗

n, θ0), we have∫
K(P(n)

θ0
, P(n)

θ )ρn(dθ) ≤ E[rn(θ0, θ∗
n)] + nεn. (23)

Similarly, decomposing the variance it follows that

Var[rn(θ, θ0)] = Var[rn(θ, θ∗
n)] + Var[rn(θ

∗
n, θ0)] + 2Cov[rn(θ, θ∗

n), rn(θ
∗
n, θ0)]. (24)

Using the fact that 2ab ≤ a2 + b2 on the covariance term 2Cov[rn(θ, θ∗
n), rn(θ∗

n, θ0)] =
2E[(rn(θ, θ∗

n)− E[rn(θ, θ∗
n)])(rn(θ∗

n, θ0)− E[rn(θ∗
n, θ0)])], we have

Var[rn(θ, θ0)] ≤ 2Var[rn(θ, θ∗
n)] + 2Var[rn(θ

∗
n, θ0)]. (25)

Integrating both sides with respect to ρn(dθ) we get

∫
Var[rn(θ, θ0)]ρn(dθ) ≤ 2

∫
Var[rn(θ, θ∗

n)]ρn(dθ) + 2
∫

Var[rn(θ
∗
n, θ0)]ρn(dθ)

≤ 2nεn + 2Var[rn(θ
∗
n, θ0)]. (26)

Consequently, we arrive at the following result:

Theorem 6. Let F be a subset of all probability distributions parameterized by Θ. Let θ∗
n =

arg minθ∈Θ K(P(n)
θ0

, P(n)
θ ) and assume there exist εn > 0 and ρn ∈ F such that

i.
∫

E[rn(θ, θ∗
n)]ρn(dθ) ≤ nεn,

ii.
∫

Var(rn(θ, θ∗
n))ρn(dθ) ≤ nεn, and

iii. K(ρn, π) ≤ nεn.

Then, for any αre ∈ (0, 1) and (ε, η) ∈ (0, 1)× (0, 1),

P

[ ∫
Dαre(P(n)

θ , P(n)
θ0

)π̃n,αre(dθ|X(n)) ≤

(αre + 1)nεn + E[rn(θ0, θ∗
n)] + αre

√
2nεn+2Var[rn(θ∗

n ,θ0)]
η − log(ε)

1 − αre

]
≥ 1 − ε − η. (27)

The proof of this theorem is straightforward and follows from the proof of Theorem 1
by plugging in the upper bounds for KL-divergence from Equation (23), and variance from
Equation (26) to Equation (A13). A sketch of the proof is presented in the appendix.

6. Conclusions

Concentration of the KL-VB model risk, in terms of the expected αre-Rényi divergence,
is well established under the i.i.d. data generating model assumption. Here, we extended
this to the setting of Markov data generating models, linking the concentration rate to the
mixing and ergodic properties of the Markov model. Our results apply to both stationary
and non-stationary Markov chains, as well as to the situation with misspecified models.
There remain a number of open questions. An immediate one is to extend the current
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analysis to continuous-time Markov chains and Markov jump processes, possibly using
uniformization of the continuous time model. Another direction is to extend this to
the setting of non-homogeneous Markov chains, where analogues of notions such as
stationarity are less straightforward. Further, as noted in the introduction, [14] establish
PAC-Bayes bounds under slightly weaker ‘existence of test functions’ conditions, while
our results are established under the stronger conditions used by [15] for the i.i.d. setting.
Weakening the conditions in our analysis is important, but complicated. A possible path is
to build on results from [22], who provides conditions form the existence of exponentially
powerful test functions exist for distinguishing between two Markov chains. It is also
known that there exists a likelihood ratio test separating any two ergodic measures [23].
However, leveraging these to establish the PAC-Bayes bounds for the KL-VB posterior is
a challenging effort that we leave to future papers. Finally it is of interest to generalize
our PAC-bounds to posterior approximations beyond KL-variational inference, such as αre-
Rényi posterior approximations [6], and loss-calibrated posterior approximations [24,25].
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Appendix A. Technical Desiderata

Appendix A.1. Definitions Related to Markov Chains

As noted before, ergodicity plays an acute role in establishing our results. We con-
solidate various definitions used throughout the paper in this appendix. Recall that we
assume the parameterized Markov chain possesses an invariant probability density or
mass function qθ under parameter θ ∈ Θ. Our results in Section 4 also rely on the ergodic
properties of the Markov chain, and we assume that the Markov chain is f -geometrically
ergodic [20] (Chapter 15). First, refer to the definition of the functional norm ‖ · ‖ f , from
Definition A.1.1,

Definition A.1.1 ( f -norm). The functional norm in f -metric of a measure v, or the f -norm of
v is

‖v‖ f = sup
g:|g|< f

∣∣∣∣∫ gdv
∣∣∣∣, (A1)

where f and g are any two functions.

An immediate consequence of this definition is that if f1, f2 are two functions such
that f1 < f2 (i.e., for all points in the support of the functions), then

‖v‖ f1 ≤ ‖v‖ f2 . (A2)

Now that we have defined the ‖ · ‖ f norm, we can now define f -geometric ergodicity.
In the following, we assume the Markov chain is positive Harris; see [20] for a definition.
This is a mild and fairly standard assumption in Markov chain theory.
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Definition A.1.2 ( f -geometric ergodicity). For any function f , Markov chain {Xn} parameter-
ized by θ ∈ Θ is said to be f -geometrically ergodic if it is positive Harris and there exists a constant
r f > 1, that depends on f , such that for any A ∈ B(X),

n

∑
n=1

rn
f

∥∥∥∥Pθ(Xn ∈ A|X0 = x)−
∫

A
qθ(y)dy

∥∥∥∥
f
< ∞. (A3)

It is straightforward to see that this is equivalent to∥∥∥∥Pθ(Xn ∈ A|X0 = x)−
∫

qθ(y)dy
∥∥∥∥

f
≤ Cr−n

f

for an appropriate constant C (which may depend on the state x), that is, the Markov chain
approaches steady state at a geometrically fast rate. If a Markov chain is f -geometrically
ergodic for f ≡ 1, then, it is simply termed as geometrically ergodic. It is straightforward to
see (via Theorem A.1.2 in the Appendix) that a geometrically ergodic Markov chain is also
α-mixing, with mixing coefficients satisfying

∑
k≥0

αυ
k < ∞ ∀ υ > 0, (A4)

showing that, under geometric ergodicity, the α-mixing coefficients raised to any positive
power υ are finitely summable. We note here that the most standard procedure to establish
f -geometric ergodicity for any Markov chain is through the verification of the drift condi-
tion. The drift condition is a sufficient condition for a Markov chain to be f -geometrically
ergodic, as long as there exists a set (called petite set) towards which the Markov chain
drifts to (see Assumption A.1.1 in the appendix). If a Markov chain is f -geometrically
ergodic with f ≡ V, for some particular function V, then we call it V-geometrically ergodic.

We defined V-geometric ergodicity in the previous sections. In this section, we provide
a sufficient condition for a Markov chain to be V-geometrically ergodic. First, we recall the
definition of resolvent from [20] (Chapter 5).

Definition A.1.3 (Resolvent). Let n ∈ {0, 1, 2, . . . } and qn be such that qn ≥ 0 ∀ n and
∑∞

n=1 qn = 1. Note that qn can be thought of being a probability mass function for a random
variable "q" taking values on non-negative integers. Then, the resolvent of a Markov chain with
respect to q is given by Kq(x, A) where,

Kq(x, A) =
∞

∑
n=0

qnP(Xn ∈ A|X0 = x). (A5)

Then, the definition of petite sets follows (see, for Reference, [20] (Chapter 5)).

Definition A.1.4 (Petite Sets). Let X0, . . . , Xn be n samples from a Markov chain taking values
on the state space X . Let C be a set. We shall call C to be vq petite if

Kq(x, B) ≥ υq(B)

for all x ∈ C and B ∈ B(X ), and a non-trivial measure υq on B(X ), and a probability mass
function q on {1, 2, 3, . . . }

Now, let ΔV(x) := E[V(Xn)|Xn−1 = x]− V(x) for V : S → [1, ∞).
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Assumption A.1.1 (Drift condition). [20] (Chapter 5) Suppose the chain {Xn} is, aperiodic and
ψ-irreducible . Let there exists a petite set C, constants b < ∞, β > 0, and a non-trivial function
V : S → [1, ∞) satisfying

ΔV(x) ≤ −βV(x) + bIx∈C ∀x ∈ S. (A6)

If a Markov chain drifts towards a petite set then it is V-geometrically ergodic. Sup-
pose, for simplicity, that V(x) = |X|. Then, the drift condition becomes E[|Xn‖Xx−1] −
|Xn−1| = −β|Xn| + bIXn∈C. The left hand side of this equation represents the
change in the state of the Markov chain in one time epoch. Thus, the condition in
Assumption A.1.1 essentially states that the Markov chain drifts towards a petite set
C and then, once it reaches that set, moves to any point in the state space with at least some
probability independent of C.

Theorem A.1.1 (Geometrically ergodic theorem). Suppose that {Xn} is satisfies
Assumption A.1.1. Then, the set SV = {x : V(x) < ∞} is absorbing, i.e., Pθ(X1 ∈ SV |X0 =
x) = 1 ∀x ∈ SV, and full, i.e., ψ(Sc

V) = 0. Furthermore, ∃ constants r > 1, R < ∞ such that,
for any A ∈ B(S), ∥∥∥∥Pθ(Xn ∈ A|X0 = x)−

∫
A

qθ(y)dy
∥∥∥∥

V
≤ Rr−nV(x). (A7)

Any aperiodic and ψ-irreducible Markov chain satisfying the drift condition is geomet-
rically ergodic. A consequence of Equation (A2) is that if, {Xn} is V-geometrically ergodic,
then for any other function U, such that |U| < V, it is also U-geometrically ergodic. In
essence, a geometrically ergodic Markov chain is asymptotically uncorrelated in a precise
sense. Recall ρ-mixing coefficients defined as follows. Let A be a sigma field and L2(A) be
the set of square integrable, real valued, A measurable functions.

Definition A.1.5 (ρ-mixing coefficient). Let Mj
i denote the sigma field generated by the

measures Xk, where i ≤ k ≤ j. Then,

ρk = sup
t>0

sup
( f ,g)∈L2(Mt

−∞)×L2(M∞
t+k)

|Corr( f , g)|, (A8)

where Corr is the correlation function.

Theorem A.1.2. If Xn is geometrically ergodic, then it is α-mixing. That is, there exists a constant
c > 0 such that αk = O(e−ck).

Proof. By [26] (Theorem 2) it follows that a geometrically ergodic Markov chain is
asymptotically uncorrelated with ρ-mixing coefficients (see Definition A.1.5) that sat-
isfy ρk = O(e−ck). Furthermore, it is well known that [18,26] αk ≤ 1

4 ρk, implying
αk = O(e−ck).

Appendix A.2. Bounding the KL-Divergence between Beta Distributions

The following results will be utilized in the proofs of Propositions 8–10.

Lemma A.2.1. Let θ0 ∈ (0, 1). Let, ρn be a sequence of Beta distributions with parameters
an = nθ0 and bn = n(1 − θ0). Let π denote an uniform distribution, U(0, 1). Then, K(ρn, π) <
C + 1

2 log(n), for some constant C > 0.

Proof. Without loss of generality, we can assume an > 1 and bn > 1. The same form of the
result can be obtained in all the other cases, by appropriate use of the bounds presented in
the proof. We write the KL divergence K(ρn, π) as

∫
log
( ρn

π

)
ρn(dθ). Since π is uniform,
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π(θ) = 1 whenever θ ∈ (0, 1). Hence, the KL-divergence can be written as the negative of
the entropy of ρn

∫ 1
0 log(ρn(θ))ρn(dθ), which can be written as

K(ρn, π) = (an − 1)ψ(an) + (bn − 1)ψ(bn)− (an + bn − 2)ψ(an + bn)

− log Beta(an, bn), (A9)

where ψ is the digamma function. Using Stirling’s approximation on Beta(an, bn) yields,

Beta(an, bn) =
√

2π
aan−1/2

n bbn−1/2
n

(an + bn)an+bn−1/2 (1 + o(1)).

Hence, setting C1 = log(2
√

π), we can write − log Beta(an, bn) as,

− log Beta(an, bn) = C1 − (an − 1
2
) log(an)− (bn − 1

2
) log(bn)

+ (an + bn − 1
2
) log(an + bn) + log(1 + o(1)).

From [27] we have that log(x) − 1
x < ψ(x) < log(x) − 1

2x ∀ x > 0. Since we assumed
an > 1 and bn > 1, the fact that ψ(x) < log(x)− 1

2x implies

(an − 1)ψ(an) < (an − 1) log(an)−
an − 1

2an
and,

(bn − 1)ψ(bn) < (bn − 1) log(bn)−
bn − 1

2bn
.

Finally, using the fact that log(x)− 1
x < ψ(x), we get,

−(an + bn − 2)ψ(an + bn) < −(an + bn − 2) log(an + bn) +
an + bn − 2

an + bn
.

Therefore, after much cancellation, the KL-divergence

(an − 1)ψ(an) + (bn − 1)ψ(bn)− (an + bn − 2)ψ(an + bn)− log Beta(an, bn)

can be upper bounded by

−1
2

log(an)−
1
2

log(bn) +
3
2

log(an + bn) +
an + bn − 2

an + bn
− an − 1

2an
− bn − 1

2bn
.

Now, plugging in the values of an and bn, we get Plugging in the values of an and bn, we
get as upper bound for the KL-divergence as,

K(ρn, π) < −1
2

log(nθ0)−
1
2

log(n(1 − θ0)) +
3
2

log(n) +
n − 2

n
− nθ0 − 1

2nθ0
− n(1 − θ0)− 1

2n(1 − θ0)

=
1
2

log(n)− 1
2
(log(θ0) + log(1 − θ0)) + 3 − 2

n
− 1

2nθ0
− 1

2n(1 − θ0)

< C +
1
2

log(n),

for some large enough positive constant C. This completes our proof.

Proposition A.2.1. Let θ0 ∈ (0, 1). Let, ρn be a sequence of Beta distributions with parameters
an = nθ0 and bn = n(1 − θ0). Let π denote an Beta distribution, with parameters (a, b). Then,
K(ρn, π) < C + 1

2 log(n), for some constant C > 0.

403



Entropy 2021, 23, 313

Proof. Without loss of generality, we assume a > 1 and b > 1. As mentioned in the proof
of Lemma A.2.1, the other cases follows similarly. We write the KL-divergence between ρn
and π as,

K(ρn, π) =
∫

log
(ρn

π

)
ρn(dθ) =

∫
log
(ρn

U

)
ρn(dθ) +

∫
log
(

U
π

)
ρn(dθ),

where, U is an uniform distribution on (0, 1). We analyze the second term in the above
expression. The second term can be written as,

∫
log
(

U
π

)
ρn(dθ) =

∫
log

⎛⎝ 1
1

Beta(a,b) θa−1(1 − θ)b−1

⎞⎠ρn(dθ)

= C1 − (a − 1)
∫

log(θ)ρn(dθ)− (b − 1)
∫

log(1 − θ)ρn(dθ),

where C1 is log(Beta(a, b)). Since, ρn follows a Beta distribution with parameters an = nθ0
and bn = n(1 − θ0), we get that,

∫
log
(

U
π

)
ρn(dθ) = C1 − (a − 1)[ψ(an)− ψ(an + bn)]− (b − 1)[ψ(bn)− ψ(an + bn)]

Since, log(x)− 1
x < ψ(x) < log(x)− 1

2x , looking at the term [ψ(an)− ψ(an + bn)], we get
that,

−[ψ(an)− ψ(an + bn)] = −[ψ(nθ0)− ψ(nθ0 + n(1 − θ0))]

= −[ψ(nθ0)− ψ(n)].

Using the lower bound on ψ(nθ0) and the upper bound on ψ(n), we get

−[ψ(an)− ψ(an + bn)] < − log(nθ0) +
1

nθ0
+ log(n)− 1

2n

= − log(θ0) +
2 − θ0

2nθ0
.

Furthermore, similarly, we get that,

−[ψ(bn)− ψ(an + bn)] < − log(1 − θ0) +
2 − (1 − θ0)

2n(1 − θ0)
.

Therefore it follows that

max{−(a − 1)[ψ(an)− ψ(an + bn)], −(b − 1)[ψ(bn)− ψ(an + bn)]}

< max
{
(a − 1)

[
− log(θ0) +

2 − θ0

2nθ0

]
, (b − 1)

[
− log(1 − θ0) +

2 − (1 − θ0)

2n(1 − θ0)

]}
< C,

for a large positive constant C. Using the above bounds, we finally show that,

C1 − (a − 1)[ψ(an)− ψ(an + bn)]− (b − 1)[ψ(bn)− ψ(an + bn)]

< C1 + 2C,

which can be upper bounded by C′ for some large constant C′. Finally, we upper bound∫
log
( ρn

U
)
ρn(dθ) by Lemma A.2.1 thereby completing the proof.
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Appendix B. Proofs of Main Results

Appendix B.1. Proofs for A Concentration Bound for the αre-Rényi Divergence

Appendix B.1.1. Proof of Proposition 1

We start by recalling the variational formula of Donsker and Varadhan [28].

Lemma B.1.1 (Donsker-Varadhan). For any probability distribution function π on Θ, and for
any measurable function h : Θ → R, if

∫
ehdπ < ∞, then

log
∫

ehdπ = sup
ρ∈M+(Θ)

{∫
hdρ − K(ρ, π)

}
(A10)

Now, fix αre ∈ (0, 1), and θ ∈ Θ. First, observe that by the definition of the αre-Rényi
divergence we have

E(n)
θ0

[exp(−αrern(θ, θ0))] = exp[−(1 − αre)Dαre(P(n)
θ , P(n)

θ0
)]

Multiplying both sides of the equation by exp[(1 − αre)Dαre(P(n)
θ , P(n)

θ0
) and integrating

with respect to (w.r.t.) π(θ) it follows that

∫
E(n)

θ0

[
exp
(
−αrern(θ, θ0) + (1 − αre)Dαre(P(n)

θ , P(n)
θ0

)
)]

π(dθ) = 1, or

E(n)
θ0

[∫
exp
(
−αrern(θ, θ0) + (1 − αre)Dαre(P(n)

θ , P(n)
θ0

)
)

π(dθ)

]
= 1.

Define h(θ) := −αrern(θ, θ0) + (1 − αre)Dαre(P(n)
θ , P(n)

θ0
). Then, applying Lemma B.1.1 to

the integrand on the left hand side (l.h.s.) above, it follows that

E(n)
θ0

[
exp

(
sup

ρ∈M+(Θ)

[∫
h(θ)ρ(dθ)− K(ρ, π)

])]
= 1.

Multiply both sides of this equation by ε > 0 to obtain

E(n)
θ0

[
exp

(
sup

ρ∈M+(Θ)

[∫
h(θ)ρ(dθ)− K(ρ, π) + log(ε)

])]
= ε.

Now, by Markov’s inequality, we have

P(n)
θ0

[
sup

ρ∈M+(Θ)

∫
(−αrern(θ, θ0) + (1 − αre)Dαre (P(n)

θ , P(n)
θ0

))ρ(dθ)− K(ρ, π) + log(ε) ≥ 0
]

≤ ε. (A11)

Thus, it follows via complementation that

P(n)
θ0

[
∀ρ ∈ F (Θ)

∫
Dαre(P(n)

θ , P(n)
θ0

)ρ(dθ) ≤ αre

(1 − αre)

∫
rn(θ, θ0)ρ(dθ)+

K(ρ, π)− log(ε)
1 − αre

]
≥ 1 − ε,

thereby completing the proof.

Appendix B.1.2. Proof of Theorem 1

Recall the definition of the fractional posterior and the VB approximation,

πn,αre |Xn =
exp−αrern(θ,θ0)(Xn) π(dθ)∫
exp−αrern(γ,θ0)(Xn) π(dγ)

, π̃n,αre |Xn = arg min
ρ∈F

K(ρ, πn,αre |X(n) ).
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It follows by definition of the KL divergence that

π̃n,αre |Xn = arg min
ρ∈F

{
−αre

∫
rn(θ, θ0)ρ(dθ) +K(ρ, π)

}
, (A12)

where π is the prior distribution. Following Proposition 1 it follows that for any ε > 0∫
Dαre(P(n)

θ , P(n)
θ0

)π̃(dθ|Xn) ≤ αre

(1 − αre)

∫
rn(θ, θ0)ρ(dθ) +

K(ρ, π)− log(ε)
1 − αre ,

with probability 1 − ε. We fix an η ∈ (0, 1). Using Chebychev’s inequality, we have

P(n)
θ0

[
αre

1 − αre

∫
rn(θ, θ0)ρn(dθ) ≥ αre

1 − αre

∫
E[rn(θ, θ0)]ρn(dθ)

+
αre

1 − αre

√
Var[

∫
rn(θ, θ0)ρn(dθ)]

η
+

K(ρn, π)

1 − αre

]

= P(n)
θ0

[
αre

1 − αre

∫
rn(θ, θ0)ρn(dθ)− αre

1 − αre

∫
E[rn(θ, θ0)]ρn(dθ)− K(ρn, π)

1 − αre

≥ αre

1 − αre

√
Var[

∫
rn(θ, θ0)ρn(dθ)]

η

]

≤
Var
[

αre

1−αre

∫
rn(θ, θ0)ρn(dθ)− αre

1−αre

∫
E[rn(θ, θ0)]ρn(dθ)− K(ρn ,π)

1−αre

]
(αre)2

(1−αre)2
Var[

∫
rn(θ,θ0)ρn(dθ)]

η

.

Note that αre

1−αre

∫
E(rn(θ, θ0))ρn(dθ) and K(ρn ,π)

1−αre are constants with respect to the data,
implying

Var
[

αre

1 − αre

∫
rn(θ, θ0)ρn(dθ)− αre

1 − αre

∫
E[rn(θ, θ0)]ρn(dθ)− K(ρn, π)

1 − αre

]
=

(αre)2

(1 − αre)2 Var
[∫

rn(θ, θ0)ρn(dθ)

]
.

Therefore, we have

P(n)
θ0

[
αre

1 − αre

∫
rn(θ, θ0)ρn(dθ) ≥ αre

1 − αre

∫
E[rn(θ, θ0)]ρn(dθ)

+
αre

1 − αre

√
Var[

∫
rn(θ, θ0)ρn(dθ)]

η
+

K(ρn, π)

1 − α

]
≤ η.

From Proposition 1, with probability 1 − ε the following holds

∫
Dαre(P(n)

θ , P(n)
θ0

)π̃n,αre |Xn(dθ) ≤ αre ∫ rn(θ, θ0)ρn(dθ) +K(ρn, π)− log(ε)
1 − αre .
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Therefore, with probability 1 − η − ε the following statement holds∫
Dαre(P(n)

θ , P(n)
θ0

)π̃n,αre |Xn(dθ) ≤ αre

1 − αre

∫
K(P(n)

θ0
, P(n)

θ )ρn(dθ) (A13)

+
αre

1 − αre

√
Var[

∫
rn(θ, θ0)ρn(dθ)]

η

+
K(ρn, π)− log(ε)

1 − αre .

Next, we observe that

Var
[∫

rn(θ, θ0)ρn(dθ)

]
= E(n)

θ0

[∣∣∣∣∫ rn(θ, θ0)ρn(dθ)− E
[∫

rn(θ, θ0)ρn(dθ)

]∣∣∣∣2
]

≤
∫

Var[rn(θ, θ0)]ρn(dθ),

by a straightforward application of Jensen’s inequality to the inner integral on the left hand
side. Finally, following the hypotheses (i), (ii) and (iii), we have,

∫
Dαre (P(n)

θ , P(n)
θ0

)π̃n,αre |Xn (dθ) ≤ αre

1 − αre

∫ (
K(P(n)

θ0
, P(n)

θ ) +

√∫
Var[rn(θ, θ0)]ρn(dθ)

η

)
ρn(dθ)

+
1

αre (K(ρn, π)− log(ε))

≤
αre(εn +

√
nεn

η )

1 − αre +
nεn − log(ε)

1 − αre ,

thereby concluding the proof.

Appendix B.1.3. Proof of Proposition 2

We define Yi := log
(

pθ1
(Xi |Xi−1)

pθ2
(Xi |Xi−1)

)
for i = 1, . . . , n, and Z0 = log

(
q(0)1 (X0)

q(0)2 (X0)

)
. Then,

using the Markov property we can see that the Kullback–Leibler divergence between
the joint distributions P(n)

θ1
and P(n)

θ2
satisfies K

(
P(n)

θ1
, P(n)

θ2

)
= ∑n

i=1 Eθ1 [Yi] + Eθ1 [Z0]. If the

Markov chain {Xi} is stationary under θ1, so is {Yi}. Hence Yi
d
= Y1 and the above equation

reduces to,

K
(

P(n)
θ1

, P(n)
θ2

)
= nEθ1 [Y1] + Eθ1 [Z0]. (A14)

Appendix B.1.4. Proof of Proposition 3

First, recall the following result from [19].

Lemma B.1.2. [19] (Lemma 1.2) Let X−∞, . . . , X1, X2, . . . be an α-mixing Markov chain with
α-mixing coefficients given by αk. Let Mb

a be the sigma-field generated by the subsequence
(Xa, Xa+1, . . . , Xb). Let ηt ∈ Mt

−∞ and τt ∈ M∞
t+k be adapted random variables such that

|ηt| ≤ 1, |τt| ≤ 1. Then,

sup
t

sup
ηt ,τt

|E[ηtτt]− E[ηt]E[τt]| ≤ 4αk. (A15)

This lemma provides an upper bound on the covariance of events η and τ, as shown
next.
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Lemma B.1.3. Let η ∈ Mt
−∞ τ ∈ M∞

t+k be such that, E|η|2+δ ≤ C1, E|τ|2+δ ≤
C2 for some δ > 0. Then, for a fixed n < +∞, we have

|Eητ − EηEτ| ≤
(

4
n
+ 2nδ/2(C1 + C2) + 2nδ/2

√
C1C2

)
α

2δ/(2+δ)
k . (A16)

Proof. Let N < +∞ be a fixed number. We get from the triangle inequality that

|Eητ − EηEτ| ≤ |Eητ I[|η|≤N,|τ|≤N] − Eη I[|η|≤N]Eτ I[|τ|≤N]| (A17)

+ |Eητ I[|η|≥N,|τ|≤N] − Eη I[|η|≥N]Eτ I[|τ|≤N]|
+ |Eητ I[|η|≤N,|τ|≥N] − Eη I[|η|≤N]Eτ I[|τ|≥N]|
+ |Eητ I[|η|≥N,|τ|≥N] − Eη I[|η|≥N]Eτ I[|τ|≥N]|.

Multiplying and dividing the first term by N2 and applying Lemma B.1.2, we get
|Eητ I[|η|≤N,|τ|≤N] − Eη I[|η|≤N]Eτ I[|τ|≤N]| ≤ 4N2αk. For the second term, if |τ| ≤ N, then
τ ≤ N and τ ≥ −N. Plugging this in the second term we get,

|Eητ I[|η|≥N,|τ|≤N]−Eη I[|η|≥N]Eτ I[|τ|≤N]| ≤
∣∣∣NEη I[|η|≥N + N

[
Eη I[|η|≥N]

]∣∣∣ (A18)

= 2N|Eη I[|η|≥N]|. (A19)

Since |η| ≥ N, we have 1 ≤ |η|1+δ

N1+δ . Following this,

|2NEη I[|η|≥N]| ≤ 2N
∣∣∣∣E[ |η|2+δ

N1+δ
I[|η|≥N]

]∣∣∣∣ (A20)

≤ 2N
1

N1+δ
|Eη2+δ| ≤ 2

C1

Nδ
. (A21)

Similarly, we can also write for the third term, |Eητ I[|η|≤N,|τ|≥N] − Eη I[|η|≤N]Eτ I[|τ|≥N]| ≤
2 C2

Nδ . Finally, for the last term we get that by Cauchy-Schwarz inequality,

|EητI[|η|≥N,|τ|≥N] − Eη I[|η|≥N]Eτ I[|τ|≥N]| ≤
√

Var
[
η I[|η|≥N]

]
Var
[
τ I[|τ|≥N]

]
(A22)

< 2
√

Var
[
η I[|η|≥N]

]
Var
[
τ I[|τ|≥N]

]
(A23)

≤ 2
√

E
[
η2 I[|η|≥N]

]
E
[
τ2 I[|τ|≥N]

]
. (A24)

Since |η| > N, 1 < |η|δ
Nδ . Similarly, 1 < |τ|δ

Nδ . Plugging these in the previous equation, we
get, √

E
[
η2 I[|η|≥N]

]
E
[
τ2 I[|τ|≥N]

]
≤
√

1
N2δ

E
[
|η|2+δ I[|η|≥N]

]
E
[
|τ|2+δ I[|τ|≥N]

]
(A25)

≤ 1
Nδ

√
C1C2. (A26)

Combining the four upper bounds above, we get,

|Eητ − EηEτ| ≤ 4N2αk +
2

Nδ
(C1 + C2) +

2
Nδ

√
C1C2. (A27)
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Now, in particular, setting N = n−1/2α
−1/(2+δ)
k it follows that

|Eητ − EηEτ| ≤ 4
n

α
δ/(2+δ)
k + 2nδ/2α

δ/(2+δ)
k (C1 + C2) + 2nδ/2α

δ/(2+δ)
k

√
C1C2 (A28)

=

(
4
n
+ 2nδ/2(C1 + C2) + 2nδ/2

√
C1C2

)
α

δ/(2+δ)
k . (A29)

Lemma B.1.4. Let {Xt} be an α-mixing Markov chain with mixing coefficient αk. Further assume
that E|Xt|2+δ ≤ C1 and E|Xt+k|2+δ ≤ C2 for some δ > 0. Then, for any t and any n > 0

|Cov(Xt, Xt+k)| ≤
(

4
n
+ 2nδ/2(C1 + C2) + 2nδ/2

√
C1C2

)
α

δ/(2+δ)
k . (A30)

Proof. Set η = Xt, τ = Xt+k in Lemma B.1.3.

We also need to establish the following technical lemma.

Lemma B.1.5. Let {Xt} be an α-mixing Markov Chain with mixing coefficients {αt}. Then the

process {Yt} where Yt := log
(

pθ0
(Xt |Xt−1)

pθ(Xt |Xt−1)

)
is also α-mixing with mixing coefficients {α̃t} where

α̃t = αt−1.

Proof. By Zi denote the paired random measure (Xi, Xi−1). Let Mj
i denote the sigma

field generated by the measures Xk, where i ≤ k ≤ j. By G j
i denote the sigma field

generated by the measures Zk, where i ≤ k ≤ j. Let C ∈ Mj
i−1. Then, C can be expressed

as (Ci−1 × Ci × · · · × Cj). for Ci−1 ∈ Mi−1
i−1, Ci ∈ Mi

i . . . and so on. Now, consider a

map. Tj
i : (Ci−1 × Ci × · · · × Cj) −→ (Ci−1 × Ci × Ci × · · · × Cj−1 × Cj−1 × Cj). Note that,

Tj
i (C) ∈ G j

i . It is easy to see that G j
i = Tj

i (M
j
i−1) ∪ M∗j

i−1, where Tj
i (M

j
i−1) is obtained by

applying the map Tj
i to each element of Mj

i−1. If we assume this latter set to be the range

and Mj
i−1 to be the domain, then, by construction, Tj

i is a bijection. Furthermore, the two

classes are made of disjoint sets, i.e., if A ∈ Tj
i (M

j
i−1) and A∗ ∈ M∗j

i−1, then A ∩ A∗ = φ.

Furthermore, note that Mj∗
i−1 is made of impossible sets. i.e., P(A∗) = 0 ∀ A∗ ∈ Mj∗

i−1.
Now consider the α-mixing coefficients for Zi. By definition, it is given by

αz
k = sup

i
sup

A∈G i
−∞ ,B∈G∞

i+k

|P(A ∩ B)− P(A)P(B)|

= sup
i

sup
A∈G i

−∞ ,B∈G∞
i+k

|P((Ao ∪ A∗) ∩ (Bo ∪ B∗))− P((Ao ∪ A∗))P((Bo ∪ B∗))|.

where,

A = (Ao ∪ A∗) B = (Bo ∪ B∗)
Ao ∈ T i

−∞(Mi
−∞) A∗ ∈ M∗i

−∞
Bo ∈ T∞

i+k−1(M∞
j+k−1) B∗ ∈ M∗∞

j+k−1.

Then, the expression for the α-mixing coefficient can be reduced into

αz
k = sup

i
sup

Ao∈Ti
−∞(Mi

−∞),Bo∈T∞
i+k−1(M∞

i+k−1)

|P(Ao ∩ Bo)− P(Ao)P(Bo)|.
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Note that, by bijection property of Tj
i , we can find A′ ∈ Mi

−∞ and B′ ∈ M∞
i+k−1 such that

αz
k = sup

i
sup

A′∈Mi
−∞ ,B′∈M∞

i+k−1

|P(Ti
−∞(A′) ∩ T∞

i+k−1(B′))− P(Ti
−∞(A′))P(T∞

i+k−1(B′))|.

= αk−1.

Now, log
(

pθ0
(Xn |Xn−1)

pθ(Xn |Xn−1)

)
is just a function of the paired Markov chain Zi, therefore it has

α-mixing coefficient αk−1.

We now proceed to the proof of Proposition 3. Let {Xk} be a stationary α-mixing
Markov chain under θ1 with mixing coefficients {αk}. Observe that the log-likelihood can
be expressed as

rn(θ2, θ1) =
n

∑
i=1

log
(

pθ1(Xi|Xi−1)

pθ2(Xi|Xi−1)

)
+ log

(
q(0)1 (X0)

q(0)2 (X0)

)

≡
n

∑
i=1

Yi + Z0.

Therefore, the variance of the log-likelihood ratio is simply

Varθ1 [rn(θ2, θ1)] = Varθ1

[
n

∑
i=1

Yi + Z0

]

=
n

∑
i,j=1

Covθ1(Yi, Yj) +
n

∑
i=1

Covθ1(Yi, Z0) + Covθ1(Z0, Z0).

It follows from Lemma B.1.5 that {Yk} is a stochastic process with α-mixing coefficients
αk−1. Therefore, using Lemma B.1.4 we have

|Covθ1(Yi, Yj)| = |Eθ1YiYj − Eθ1YiEθ1Yj|

<

(
4
n
+ 2nδ/2(Eθ1 |Yi|2+δ + Eθ1 |Yj|2+δ

+
√

Eθ1 |Yi|2+δEθ1 |Yj|2+δ)

)
α

δ/(2+δ)
|j−i|−1

=

(
4
n
+ 2nδ/2(C(i)

θ1,θ2
+ C(j)

θ1,θ2
+

√
C(i)

θ1,θ2
C(j)

θ1,θ2
)

)
α

δ/(2+δ)
|j−i|−1 .

Similarly, as above we can also say

|Covθ1(Yi, Z0)| <
(

4
n
+ 2nδ/2(C(i)

θ1,θ2
+ D1,2 +

√
C(i)

θ1,θ2
D1,2)

)(
α

δ/(2+δ)
i−1

)
Combining, the two upper bounds above, we get the first result:

Varθ1

[
rn(θ2, θ1)

]
<

n

∑
i,j=1

(
4
n
+ 2nδ/2(C(i)

θ1,θ2
+ C(j)

θ1,θ2
+

√
C(i)

θ1,θ2
C(j)

θ1,θ2
)

)(
α

δ/(2+δ)
|i−j|−1

)

+
n

∑
i=1

(
4
n2 + 2nδ/2(C(i)

θ1,θ2
+ D1,2 +

√
C(i)

θ1,θ2
D1,2)

)(
α

δ/(2+δ)
i−1

)
+ Var[Z0, Z0].
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If {Xi} is stationary under θ1, so is {Yi}. Therefore, Eθ1 |Yi|2+δ = Eθ1 |Y1|2+δ = C(1)
θ1,θ2

∀ i,
and

n

∑
i,j=1

Covθ1(Yi, Yj) ≤
n

∑
i,j=1

(
4
n
+ 6nδ/2C(1)

θ1,θ2

)
α

δ/(2+δ)
|j−i|−1

≤ n
(

4
n
+ 6nδ/2C(1)

θ1,θ2

)(
∑
h≥1

α
δ/(2+δ)
h−1

)
. (A31)

Again, using Lemma B.1.4 on Covθ1(Yi, Z0), yields

n

∑
i=1

Covθ1(Yi, Z0) ≤
(

4
n
+ 2nδ/2(Cθ + D1,2 +

√
Cθ D1,2)

)(
∑
h≥1

α
δ/(2+δ)
h

)
. (A32)

Finally, using Equations (A31) and (A32) we have

Varθ1 [rn(θ2, θ1)] ≤ n
(

4
n
+ 6nδ/2C(1)

θ1,θ2

)(
∑
h≥1

α
δ/(2+δ)
h−1

)
+(

4
n
+ 2nδ/2(C(1)

θ1,θ2
+ D1,2 +

√
C(1)

θ1,θ2
D1,2)

)(
∑
h≥1

α
δ/(2+δ)
h

)
+ Covθ1(Z0, Z0).

Appendix B.2. Proofs for Stationary Markov Data-Generating Models

Proof of Theorem 2

Part 1: Verifying condition (i) of Corollary 1.
We substitute the true parameter θ0 for θ1 and θ for θ2. We also set q(0)1 to be the

invariant distribution of the Markov chain under θ0, q0, and q(0)2 as the invariant distribution
of the Markov chain under θ, qθ . Applying the fact that these Markov chains are stationary
to Proposition 2, we have

K(P(n)
θ0

, P(n)
θ ) = nE

[
log
(

pθ0(X1|X0)

pθ(X1|X0)

)]
+ E[Z0],

≤ n
m

∑
j=1

E
[

M(1)
j (X1, X0)

]
| f (1)j (θ, θ0)|+

m

∑
k=1

E[M(2)
k (X0)]| f (2)k (θ, θ0)|, (A33)

where the inequality follows from Assumption 1. Therefore, it follows that

∫
K(P(n)

θ0
, P(n)

θ )ρn(dθ) ≤ n
m

∑
j=1

E
[

M(1)
j (X1, X0)

] ∫
| f (1)j (θ, θ0)|ρn(dθ)

+
m

∑
k=1

E[M(2)
k (X0)]|

∫
f (2)k (θ, θ0)|ρn(dθ).

By Assumption 1(i), it follows that

∫
K(P(n)

θ0
, P(n)

θ )ρn(dθ) ≤ n
m

∑
j=1

E
[

M(1)
j (X1, X0)

] C√
n
+

m

∑
k=1

E[M(2)
k (X0)]

C√
n

≤ nε
(1)
n ,
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where ε
(1)
n = O

(
1√
n

)
.

Part 2: Verifying condition (ii) of Corollary 1. Again, using Proposition 3 along with the fact
that the Markov chain is stationary we have

Var[rn(θ, θ0)] ≤ n
(

4
n
+ 6nδ/2C(1)

θ0,θ

)(
∑
k≥0

α
δ/(2+δ)
k

)

+

(
4
n2 + 2nδ/2(C(1)

θ0,θ + Dθ0,θ +

√
C(1)

θ0,θ Dθ0,θ)

)(
∑
k≥1

α
δ/(2+δ)
k

)
+ Var[Z0].

It then follows that

∫
Var[rn(θ, θ0)]ρn(dθ) ≤ n

(
4
n
+ 6nδ/2

∫
C(1)

θ0,θρn(dθ)

)(
∑
k≥1

α
δ/(2+δ)
k−1

)
+
∫

Var[Z0]ρn(dθ)

+

(
4
n2 + 2nδ/2(

∫
C(1)

θ0,θρn(dθ)

+
∫

Dθ0,θρn(dθ) +
∫ √

C(1)
θ0,θ Dθ0,θρn(dθ))

)(
∑
k≥1

α
δ/(2+δ)
k

)
.

First, consider the term
∫

C(1)
θ0,θρn(θ), and observe that

∫
C(1)

θ0,θρn(dθ) =
∫

E log
∣∣∣∣ pθ0(X1|X0)

pθ(X1|X0)

∣∣∣∣2+δ

ρn(dθ).

By Assumption 1, we have

∫
E log

∣∣∣∣ pθ0(X1|X0)

pθ(X1|X0)

∣∣∣∣2+δ

ρn(dθ) ≤
∫

E

[
m

∑
j=1

M(1)
j (X1, X0)| f (1)k (θ, θ0)|

]2+δ

ρn(dθ).

Since the function x �→ x2+δ is convex, we can apply Jensen’s inequality to obtain,

(
m

∑
j=1

M(1)
j (X1, X0)| f (1)k (θ, θ0)|

)2+δ

≤ m1+δ
m

∑
k=1

M(1)
j (X1, X0)

2+δ| f (1)k (θ, θ0)|2+δ.

Therefore, it follows that

∫
E log

∣∣∣∣ pθ0(X1|X0)

pθ(X1|X0)

∣∣∣∣2+δ

ρn(dθ) ≤ m1+δ
m

∑
k=1

E[M(1)
k (X1, X0)

2+δ]

×
∫

| f (1)k (θ, θ0)|2+δρn(dθ).

By Assumption 1,
∫

| fk(θ, θ0)|2+δρn(dθ) < C
n and E[M(1)

k (X1, X0)
2+δ] < B, implying that

∫
C(1)

θ0,θρn(dθ) ≤ m1+δ
m

∑
k=1

B
C
n
= m2+δ BC

n
.
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Since
(

∑k≥0 α
δ/(2+δ)
k

)
< ∞, it follows that

(
4
n + 6nδ/2

∫
C(1)

θ0,θρn(dθ)
)(

∑k≥1 α
δ/(2+δ)
k−1

)
=

O( nδ/2

n ). Similarly, we can show that
∫

Dθ0,θρn(dθ) = O( 1
n ), and

∫
Var[Z0]ρn(dθ) = O( 1

n ).

For the final term
∫ √

C(1)
θ0,θ Dθ0,θρn(dθ), use the Cauchy-Schwarz inequality to obtain

the upper bound
(∫

C(1)
θ0,θρn(dθ)

∫
Dθ0,θρn(dθ)

)1/2
which is also of order O( 1

n ). Combining
all of these together we have ∫

Var[rn(θ, θ0)]ρn(dθ) ≤ nε
(2)
n ,

for some ε
(2)
n = O( nδ/2

n ).

Since K(ρn, π) <
√

nC = n C√
n , it follows that K(ρn, π) < nε

(3)
n , where ε

(3)
n =

O(1/
√

n) as before. Finally, by choosing εn = max(ε(1)n , ε
(2)
n , ε

(3)
n ), our theorem is proved.

Appendix B.3. Proofs for Non-Stationary, Ergodic Markov Data-Generating Models

Appendix B.3.1. Proof of Theorem 3

Part 1: Verifying condition (i) of Corollary 1: As in the proof of Theorem 2 substitute the
true parameter θ0 for θ1 and θ for θ2 in . We also set q(0)1 and q(0)2 to the distribution q(0).
Applying Proposition 2 to the corresponding transition kernels and initial distribution we
have,

K(P(n)
θ0

, P(n)
θ ) =

n

∑
i=1

E
[

log
(

pθ0(Xi|Xi−1)

pθ(Xi|Xi−1)

)]
+ E
[

log
(

D(X0)

D(X0)

)]
(A34)

=
n

∑
i=1

E
[

log
(

pθ0(Xi|Xi−1)

pθ(Xi|Xi−1)

)]
.

Now, applying Assumption 1, we can bound the previous equation as follows,

K(P(n)
θ0

, P(n)
θ ) ≤

n

∑
i=1

E

[
m

∑
k=1

M(1)
k (Xi, Xi−1)| f (1)k (θ, θ0)|

]

=
n

∑
i=1

m

∑
k=1

E
[

M(1)
k (Xi, Xi−1)

]
| f (1)k (θ, θ0)|. (A35)

Since M(1)
k ’s are bounded there exists a constant Q so that,

∫
K(P(n)

θ0
, P(n)

θ )ρn(dθ) ≤ Q
∫ n

∑
i=1

m

∑
k=1

| f (1)k (θ, θ0)|ρn(dθ)

= Qn
m

∑
k=1

∫
| f (1)k (θ, θ0)|ρn(dθ).

By Assumption 19 in Assumption 1, it follows that

∫
K(P(n)

θ0
, P(n)

θ )ρn(dθ) ≤ Qn
m

∑
k=1

C√
n
= nmQ

C√
n
= nε

(1)
n ,

for some ε
(1)
n = O( 1√

n ).
Part 2: Verifying condition (ii) of Corollary 1: As in the previous part, Z0 = 0, implying

that Dθ,θ0 . Applying Proposition 3 and integrating with respect to ρn, we obtain
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∫
Var[rn(θ, θ0)]ρn(dθ) ≤

n

∑
i=1

(
4
n
+ 2nδ/2

∫
C(i)

θ0,θρn(dθ)

)(
α

δ/(2+δ)
i−1

)
+

n

∑
i,j=1

(
4
n
+ 2nδ/2(

∫
C(i)

θ0,θρn(dθ) +
∫

C(j)
θ0,θρn(dθ) +

∫ √
C(i)

θ0,θC(j)
θ0,θρn(dθ))

)

×
(

α
δ/(2+δ)
|i−j|−1

)
. (A36)

First, consider the term
∫

C(i)
θ0,θρn(dθ). Using Assumption 1, we can upper bound C(i)

θ0,θ as,

C(i)
θ0,θ ≤ E

[
m

∑
k=1

M(1)
k (Xi, Xi−1)| f (1)k (θ, θ0)|

]2+δ

≤
m

∑
k=1

m1+δE
[(

M(1)
k (Xi, Xi−1)| f (1)k (θ, θ0)|

)2+δ
]

(by Jensen’s inequality)

=
m

∑
k=1

m1+δE
[

M(1)
k (Xi, Xi−1)

2+δ
]
| f (1)k (θ, θ0)|2+δ.

Since M(1)
k ’s are upper bounded by Q, it follows from the previous expression that, C(i)

θ0,θ ≤
∑m

k=1 m1+δQ2+δ| f (1)k (θ, θ0)|2+δ.

Hence, from Assumption 1, we get,

∫
C(i)

θ0,θρn(dθ) ≤
m

∑
k=1

m1+δQ2+δ
∫

| f (1)k (θ, θ0)|2+δρn(dθ) ≤ (mQ)2+δ C
n

.

Using the upper bound above, we can say for an L large enough,
∫

C(i)
θ0,θρn(dθ) ≤

L
n . Next, by the Cauchy-Schwarz inequality, we have that

∫ √
C(i)

θ0,θC(j)
θ0,θρn(dθ)) <√∫

C(i)
θ0,θρn(dθ)

∫
C(j)

θ0,θρn(dθ)) ≤ L
n . Thus, we have the following upper bound.

∫
Var[rn(θ, θ0)]ρn(dθ) ≤

n

∑
i=1

(
4
n
+ 2nδ/2 L

n

)(
α

δ/(2+δ)
i−1

)
+

n

∑
i,j=1

(
4
n
+ 2nδ/2(

L
n
+

L
n
+

L
n
)

)(
α

δ/(2+δ)
|i−j|−1

)

=

(
4
n
+ 2nδ/2 L

n

)( n

∑
i=1

α
δ/(2+δ)
i−1

)

+

(
4
n
+ 6nδ/2 L

n

)( n

∑
i,j=1

α
δ/(2+δ)
|i−j|−1

)
.

Since ∑n
i,j=1 α

δ/(2+δ)
|i−j|−1 < n ∑k≥1 α

δ/(2+δ)
k−1 < ∞, we have that for some ε

(2)
n = O( nδ/2

n ),

∫
Var[rn(θ, θ0)]ρn(dθ) < nε

(2)
n .

Since K(ρn, π) ≤ √
nC, following the concluding argument in Theorem 2 completes the

proof.
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Appendix B.3.2. Proof of Proposition 8

We verify Assumption 1 and the proof follows from Theorem 3. For i ∈ {1, 2, . . . , K − 1},

pθ(j|i) =
{

θ if j = i − 1,
1 − θ if j = i + 1.

If i = 0 or i = K, then the Markov chain goes back to 1 or K − 1, respectively, with
probability 1. With the convention log 0

0 = 0, the log ratio of the transition probabilities
becomes,

| log pθ0(X1|X0)− log pθ(X1|X0)| = I[X1=X0+1] log
(

θ0

θ

)
+ I[X1=X0−1] log

(
1 − θ0

1 − θ

)
.

In this case, m = 2. M(1)
1 (X1, X0) = I[X1=X0+1] and M(1)

2 (X1, X0) = I[X1=X0−1], both of

which are bounded. Let f (1)1 (θ, θ0) := log
(

θ0
θ

)
suppose f (1)2 (θ, θ0) := log

(
1−θ0
1−θ

)
.

The stationary distribution qθ(i) = 1
K ∀ i ∈ 1, 2, . . . , K. Hence the log of the ratio of

the invariant distribution becomes

log q0(x)− log qθ(x) = 0, (A37)

and we can set M(2)
i (·) := 1 and f (2)i (·, ·) := 0 for i ∈ {1, 2}. Thus, to prove the concen-

tration bound for this Markov chain it is enough to assume that δ = 1 and show that∫
[ f (1)1 (θ, θ0)]

3ρn(dθ) < C
n and

∫
[ f (1)2 (θ, θ0)]

3ρn(dθ) < C
n for some constant C > 0.

As given, {ρn} is a sequence of beta probability distribution functions, with parameters
an, bn that satisfy the constraint an

an+bn
= θ0. Specifically, we choose an = nθ0 and (therefore)

bn = n(1 − θ0). Thus, we get the following,

∫
| f (1)1 (θ, θ0)|3ρn(dθ) =

∫ ∣∣∣∣log
(

θ0

θ

)∣∣∣∣3ρn(dθ)

<
∫ ∣∣∣∣ θ0

θ
− 1
∣∣∣∣3ρn(dθ)

=
1

Beta(an, bn)

∫ 1

0

∣∣∣∣ θ0 − θ

θ

∣∣∣∣3θan−1(1 − θ)bn−1dθ.

Since θ0, θ ∈ (0, 1), so is |θ0−θ|
2 , giving |θ0 − θ|3 < 2(θ0 − θ)2. We use that fact to arrive at

∫
| f (1)1 (θ, θ0)|3ρn(dθ) ≤ 2

Beta(an, bn)

∫ 1

0
(θ0 − θ)2θan−4(1 − θ)bn−1dθ

=
2Beta(an − 3, bn)

Beta(an, bn)

(an − 3)(bn)

(an + bn − 3)2(an + bn − 2)
.

From our choice of an and bn, 2Beta(an−3,bn)
Beta(an ,bn)

= O(1), and plugging the values of an and

bn into (an−3)(bn)
(an+bn−3)2(an+bn−2) , we get (an−3)(bn)

(an+bn−3)2(an+bn−2) = 1
n
(θ0− 3

n )(1−θ0)

(1− 3
n )

2(1− 2
n )

, which is upper

bounded by C1
n for some constant C1 > 0. Hence,∫

| f (1)1 (θ, θ0)|3ρn(dθ) <
C1

n
.

Similarly, we can also show that,∫
| f (1)2 (θ, θ0)|3ρn(dθ) <

C2

n
.
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Finally, from Proposition A.2.1, we get that K(ρn, π) < C+ 1
2 log(n) for some large constant

C. Hence, K(ρn, π) < C3
√

n for some constant C3 > 0. Choosing C = max(C1, C2, C3), we
satisfy all the conditions of Assumption 1 and Theorem 3.

Appendix B.3.3. Proof of Proposition 9

For the purpose of this proof, we choose ρn’s with scaled Beta distribution with
parameters an = n(θ0/2) and bn = n(1 − θ0/2). Since, ρn is a scaled Beta distribution with
the scaling factors m = 0.5 and c = 0, the pdf of ρn is given by

ρn(θ) =
2

Beta(an, bn)
(2θ)an(1 − 2θ)bn

Since this is a scaled distribution, Eρn [θ] = 2 an
an+bn

= θ0 and there exists a constant σ > 0,

Varρn [θ] =
σ2

n . Now, we analyse the transition probabilities. For i ∈ {1, 2, . . . }, the Birth-
Death process has transition probabilities

pθ(j|i) =
{

θ if j = i − 1,
1 − θ if j = i + 1.

If i = 0, then the Markov chain goes to 1 with probability 1. Hence with the convention
log 0

0 = 0 the ratio of the log of the transition probabilities becomes,

| log pθ0(X1|X0)− log pθ(X1|X0)| = I[X1=X0+1] log
[

θ0

θ

]
+ I[X1=X0−1] log

[
1 − θ0

1 − θ

]
.

In this case, m = 3. M(1)
1 (X1, X0) = I[X1=X0+1] and M(1)

2 (X1, X0) = I[X1=X0−1]. De-

fine M(1)
3 (X1, X0) := 1. All these random variables are bounded. Define f (1)1 (θ, θ0) :=

log
[

θ0
θ

]
, f (1)2 (θ, θ0) := log

[
1−θ0
1−θ

]
and f (1)3 (θ, θ0) := 0. Similarly as in the proof on Proposi-

tion 8, ∫
[ f (1)1 (θ, θ0)]

3ρn(dθ) <
C1

n
, and∫

[ f (1)2 (θ, θ0)]
3ρn(dθ) <

C2

n
.

The stationary distribution is given by qθ(i) = ( θ
1−θ )

i−1qθ(1) ∀ i ∈ 1, 2, . . ., so that qθ(i) =
(1 − θ)( θ

1−θ )
i−1 Hence the log of the ratio of the invariant distribution becomes

log q0(i)− log qθ(i) = log
[

1 − θ0

1 − θ

]
+ (i − 1) log

[
θ0

θ

]
− (i − 1) log

[
1 − θ0

1 − θ

]
(A38)

We define M(2)
1 (X0) := 1, and M(2)

2 (X0) = M(2)
3 (X0) := X0 − 1. We can write

Eq(0) [M
(2)
2 (X0)]

2 = ∑∞
i=1(i − 1)2q(0)(i) < ∑∞

i=1 i2q(0)(i). We have chosen q(0) such that

∑∞
i=1 i2q(0)(i) is bounded. Hence, Eq(0) [M

(2)
2 (X0)]

2 < ∞. To verify Assumption i define,

f (2)1 (θ, θ0) = − f (2)3 (θ, θ0) := log
[

1−θ0
1−θ

]
, and define f (2)2 (θ, θ0) := log

[
θ0
θ

]
. Therefore fol-

lowing the proof of Proposition 8,∫
| f (2)1 (θ, θ0)|3ρn(dθ) =

∫
| f (2)3 (θ, θ0)|3ρn(dθ) =

∫
| f (1)2 (θ, θ0)|3ρn(dθ) <

C2

n
, and ,∫

| f (2)2 (θ, θ0)|3ρn(dθ) =
∫

| f (1)1 (θ, θ0)|3ρn(dθ) <
C1

n
.
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Finally, we take the KL-divergence K(ρn, π). ρn follows a scaled Beta distribution on
(0, 1/2) with parameters an = n(θ0/2) and bn = n(1 − θ0/2), while π follows a scaled Beta
distribution on (0, 1/2) with parameters a and b. Thus,

K(ρn, π) =
∫ 1

2

0
log
(

ρn(θ)

π(θ)

)
ρn(dθ),

which, by substituting t = 2θ, we get,

K(ρn, π) = 2
∫ 1

0
log
(

ρn(t)
π(t)

)
ρn(dt).

∫ 1
0 log

(
ρn(t)
π(t)

)
ρn(dt) is the KL-divergence between a Beta distribution with parameters an and

bn and a Beta distribution with parameters a and b. An application of Proposition A.2.1 gives
us for a constant C1 > 0, ∫ 1

0
log
(

ρn(t)
π(t)

)
ρn(dt) < C1 +

1
2

log(n).

Hence we can say, K(ρn, π) < 2
[
C1 +

1
2 log(n)

]
. Thus, we now get that for some constant

C3 > 0,

K(ρn, π) < C3
√

n.

Choosing C = max(C1, C2, C3) we satisfy all of the conditions of Assumption 1 and thus
by Theorem 3, we are complete the proof.

Appendix B.3.4. Proof of Theorem 4

Part 1: Verifying condition (i) of Corollary 1 As in the proof of Theorem 2 substitute the
true parameter θ0 for θ1 and θ for θ2. We also set our initial distributions q(0)1 and q(0)2 to the
known initial distribution q(0). A method similar to Equation (A35), yields

K(P(n)
θ0

, P(n)
θ ) ≤

n

∑
i=1

m

∑
k=1

E
[

M(1)
k (Xi, Xi−1)

]
| f (1)k (θ, θ0)|.

Because M(1)
k s satisfy Assumption 2, it follows by the application of Theorem 2.3, [21] that

∃ λ > 0 such that for any 0 < κ ≤ λ, and for some ζ ∈ (0, 1) possibly depending upon λ,

E
[

eκM(1)
k (Xi ,Xi−1)

∣∣∣∣X1, X0] ≤ ζ i−1eκM(1)
k (X1,X0) +

1 − ζ i

1 − ζ
Deκa for all i > 1.

We rewrite E
[

M(1)
k (Xi, Xi−1)|X1, X0

]
as follows:

E
[

M(1)
k (Xi, Xi−1)|X1, X0

]
=

E[κM(1)
k (Xi, Xi−1)|X1, X0]

κ

≤ E[eκM(1)
k (Xi ,Xi−1)|X1, X0]

κ
.
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Therefore, ∑n
i=1 E

[
M(1)

k (Xi, Xi−1)
]

can be upper bounded as,

n

∑
i=1

E
[

M(1)
k (Xi, Xi−1)

]
=

n

∑
i=1

E
[
κM(1)

k (Xi, Xi−1)|X1, X0

]
κ−1

≤
n

∑
i=1

[
ζ i−1EeκM(1)

k (X1,X0) +
1 − ζ i

1 − ζ
Deκa

]
κ−1.

Since, ζ ∈ (0, 1), ζ i < 1. Hence, we can write that,

n

∑
i=1

[
ζ i−1EeκM(1)

k (X1,X0) +
1 − ζ i

1 − ζ
Deκa

]
κ−1 ≤

n

∑
i=1

[
ζ i−1EeκM(1)

k (X1,X0) +
1

1 − ζ
Deκa

]
κ−1

=

[
1 − ζn

1 − ζ
EeκM(1)

k (X1,X0) +
n

1 − ζ
Deκa

]
κ−1

≤ nL,

for a large constant L. Therefore
∫

K(P(n)
θ0

, P(n)
θ )ρn(dθ) can be upper bounded as follows,

∫
K(P(n)

θ0
, P(n)

θ )ρn(dθ) ≤
∫ m

∑
k=1

nL| f (1)k (θ, θ0)|ρn(dθ)

=
m

∑
k=1

nL
∫

| f (1)k (θ, θ0)|ρn(dθ).

By Assumption 1,
∫

| f (1)k (θ, θ0)|ρn(dθ) < C
n , hence,

∫
K(P(n)

θ0
, P(n)

θ )ρn(dθ) ≤ nL
C√

n
.

Hence, for some ε
(1)
n = O( 1√

n ), we have obtained that,
∫

K(P(n)
θ0

, P(n)
θ )ρn(dθ) ≤ nε

(1)
n .

Part 2: Verifying condition (ii) of Corollary 1: Similar to as in the proof of Theorem 3, we
upper bound

∫
Var[rn(θ, θ0)]ρn(dθ) by

∫
Var[rn(θ, θ0)]ρn(dθ) ≤

n

∑
i,j=1

(
4
n
+ 2nδ/2

(∫
C(i)

θ0,θρn(dθ) +
∫

C(j)
θ0,θρn(dθ) (A39)

+
∫ √

C(i)
θ0,θC(j)

θ0,θρn(dθ)

))(
α

δ/(2+δ)
|i−j|−1

)
(A40)

+
n

∑
i=1

(
4
n
+ 2nδ/2

∫
C(i)

θ0,θρn(dθ)

)(
α

δ/(2+δ)
i−1

)
,

where Cθ0,θ is upper bounded as

C(i)
θ0,θ ≤

m

∑
k=1

m1+δE
[

M(1)
k (Xi, Xi−1)

]2+δ
| f (1)k (θ, θ0)|2+δ.

There exists a constant Cδ depending upon δ such that,

[M(1)
k ]2+δ(Xi, Xi−1) =

κ2+δ[M(1)
k ]2+δ(Xi, Xi−1)

2+δ

κ2+δ

≤ eκM(1)
k (Xi ,Xi−1) + Cδ

κ2+δ
.
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By expressing E
[

M(1)
k (Xi, Xi−1)

2+δ
]
= E

[
E
[

M(1)
k (Xi, Xi−1)

2+δ|X1, X0

]]
and following a

method similar to the previous part, we get,

E
[

M(1)
k (Xi, Xi−1)

2+δ
]
≤

[
ζ iEeκM(1)

k (X1,X0) + 1−ζ i

1−ζ Deκa
]
+ Cδ

κ2+δ
.

The fact that 0 < ζ < 1 implies that 0 < ζ i < ζ. This gives us the following,

E
[

M(1)
k (Xi, Xi−1)

2+δ
]
≤

[
ζEeκM(1)

k (X1,X0) + 1
1−ζ Deκa

]
+ Cδ

κ2+δ
.

Since κ < λ, by the application of Jensen’s inequality, we get

E
[

M(1)
k (Xi, Xi−1)

2+δ
]
≤

[
ζEeλM(1)

k (X1,X0) + 1
1−ζ Deκa

]
+ Cδ

κ2+δ

=

[
ζ
∫

eλM(1)
k (x1,x0)pθ0(x1|x0)D(x0)dx1dx0 +

1
1−ζ Deκa

]
+ Cδ

κ2+δ
.

We know that
∫

| f (1)k (θ, θ0)|2+δρn(dθ) < C
n . Thus, following Assumption 1 we can say that,

for a large constant L,
∫

C(i)
θ0,θρn(dθ) ≤ L

n . The rest of the proof follows similarly as in the

proof of Theorem 3, and we obtain an ε
(2)
n = O( nδ/2

n ), such that,∫
Var[rn(θ, θ0)]ρn(dθ) < nε

(2)
n .

Since, K(ρn, π) ≤ √
nC, similar arguments as in the proof of Theorem 2 holds. The theorem

is thus proved.

Appendix B.3.5. Proof of Theorem 5

Part 1: Verifying condition (i) of Corollary 1 As in the proof of Theorem 2 substitute
the true parameter θ0 for θ1 and θ for θ2. We also set q(0)1 and q(0)2 to the known initial
distribution q(0). Similar to the steps leading to Equation (A35), we get

K(P(n)
θ0

, P(n)
θ ) ≤

n

∑
i=1

m

∑
k=1

E
[

M(1)
k (Xi, Xi−1)

]
| f (1)k (θ, θ0)|.

Consider the term E
[

M(1)
k (Xi, Xi−1)

]
. With q(i−1)

θ0
the marginal distribution of Xi−1, we

have

E
[

M(1)
k (Xi, Xi−1)

]
=
∫

M(1)
k (xi, xi−1)pθ0(xi|xi−1)q

(i−1)
θ0

(xi−1)dxidxi−1.

E
[

M(1)
k (Xi, Xi−1)

]
=
∫

M(1)
k (xi, xi−1)pθ0(xi|xi−1)pi−1

θ0
(xi−1|x0)q

(0)
θ0

(x0)dx0dxidxi−1

Recall that the marginal density satisfies q(i−1)
θ0

(xi−1) =
∫

pi−1
θ0

(xi−1|x0)q
(0)
θ0

(x0)d(x0),
where pi

θ0
(·|x0) is the i-step transition probability. Then

E
[

M(1)
k (Xi, Xi−1)

]
=
∫

E
[

M(1)
k (Xi, xi−1)|xi−1

]
pi−1

θ0
(xi−1|x0)q

(0)
θ0

(x0)dx0dxi−1.
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Since the Markov chain {Xn} satisfies Assumption A.1.1, we know by the application of
Theorem A.1.1 that {Xn} is V-geometrically ergodic. Hence, ∃ τ < 1, R < ∞ such that
∀ | f | < V

|
∫

f (xi−1)pi−1
θ0

(xi−1|x0)dxi−1 −
∫

f (xi−1)qθ0(xi−1)dxi−1| < RV(x0)τ
i−1,

where qθ0 is the stationary distribution, implying that

∫
f (xi−1)pi−1

θ0
(xi−1|x0)dxi−1 <

∫
f (xi−1)qθ0(xi−1)dxi−1 + RV(x0)τ

i−1.

By the application of Jensen’s inequality we get
(

E
[

M(1)
k (Xi, Xi−1)|Xi−1

])2+δ
≤

E
[

M(1)
k (Xi, Xi−1)

2+δ|Xi−1

]
< V(Xi−1). Since V(·) ≥ 1, it follows from the previous

expression that E
[

M(1)
k (Xi, Xi−1)|Xi−1

]
< V(Xi−1)

1/(2+δ) ≤ V(Xi−1). Thus, setting

f (x) = E
[

M(1)
k (Xi, Xi−1)|Xi−1 = x

]
, we obtain

E
[

M(1)
k (Xi, Xi−1)

]
<
∫ [

E
[

M(1)
k (Xi, Xi−1)|Xi−1

]
qθ0(xi)dxi−1 + RV(x0)τ

i−1
]
q(0)(x0)dx0

= E[M(1)
k (X1, X0)] + τi−1

∫
RV(x0)q(0)(x0)dx0.

Summing from i = 1 to n, we get

n

∑
i=1

E
[

M(1)
k (xi, xi−1)

]
< nE[M(1)

k (X1, X0)] +
n

∑
i=1

τi−1
∫

RV(x0)q(0)(x0)dx0

= nE[M(1)
k (X1, X0)] +

1 − τn

1 − τ

∫
RV(x0)q(0)(x0)dx0.

This gives us the following bound on
∫

K(P(n)
θ0

, P(n)
θ )ρn(dθ):

∫
K(P(n)

θ0
, P(n)

θ )ρn(dθ) ≤
m

∑
k=1

[
nE[M(1)

k (X1, X0)] +
1 − τn

1 − τ

∫
RV(x0)D(x0)dx0

]
×
∫

| f (1)k (θ, θ0)|ρn(dθ).

By Assumption 1,
∫

| f (1)k (θ, θ0)|ρn(dθ) < C√
n . Hence, we can rewrite the previous expres-

sion as∫
K(P(n)

θ0
, P(n)

θ )ρn(dθ) ≤
m

∑
k=1

[
nE[M(1)

k (X1, X0)] +
1 − τn

1 − τ

∫
RV(x1)D(x1)dx1

]
C√

n

= nm
[

E[M(1)
k (X1, X0)] +

1 − τn

n(1 − τ)

∫
RV(x0)D(x0)dx0

]
C√

n
.

Since, τ < 1, 0 < 1 − τn < 1, and we rewrite the previous equation as,

∫
K(P(n)

θ0
, P(n)

θ )ρn(dθ) ≤ nm
[

E[M(1)
k (X1, X0)] +

1
n(1 − τ)

∫
RV(x0)D(x0)dx0

]
C√

n
.

Hence, there exists an ε
(1)
n = O( 1√

n ) such that
∫

K(P(n)
θ0

, P(n)
θ )ρn(dθ) ≤ nε

(1)
n .
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Part 2: Verifying condition (ii) of Corollary 1: Similar to as in the proof of Theorem 3, we upper
bound

∫
Var[rn(θ, θ0)]ρn(dθ) by

∫
Var[rn(θ, θ0)]ρn(dθ) ≤

n

∑
i,j=1

(
4
n
+ 2nδ/2

(∫
C(i)

θ0,θρn(dθ) +
∫

C(j)
θ0,θρn(dθ) (A41)

+
∫ √

C(i)
θ0,θC(j)

θ0,θρn(dθ)

))(
α

δ/(2+δ)
|i−j|−1

)
(A42)

+
n

∑
i=1

(
4
n
+ 2nδ/2

∫
C(i)

θ0,θρn(dθ)

)(
α

δ/(2+δ)
i−1

)
,

where Cθ0,θ is upper bounded as

C(i)
θ0,θ ≤

m

∑
k=1

m1+δE
[

M(1)
k (Xi, Xi−1)

]2+δ
| f (1)k (θ, θ0)|2+δ.

Since E
[

M(1)
k (Xi, Xi−1)

2+δ|Xi−1

]
< V(Xi−1), by a similar application of V-geometric er-

godicity, we can say that, ∃ 0 < τ < 1, such that

E
[

M(1)
k (Xi, Xi−1)

]2+δ
≤ nE[M(1)

k (X1, X0)]
2+δ + τi−1

∫
RV(x0)D(x0)dx0,

which, by the fact that τi−1 < τ, gives us,

E
[

M(1)
k (Xi, Xi−1)

]2+δ
≤ E[M(1)

k (X1, X0)]
2+δ + τ

∫
RV(x0)D(x0)dx0.

By Assumption 1, we know that,
∫

| f (1)k (θ, θ0)|2+δρn(dθ) < C
n . Hence, for a large constant

L,
∫

C(i)
θ0,θρn(dθ) ≤ L

n . We also see that since the chain is geometrically ergodic, by the

application of Equation (A4), ∑k≥1 α
δ/(2+δ)
k < +∞. The rest of the proof follows similarly

as in the proof of Theorem 3, and we obtain an ε
(2)
n = O( nδ/2

n ), such that,∫
Var[rn(θ, θ0)]ρn(dθ) < nε

(2)
n .

Since, K(ρn, π) ≤ √
nC, similar arguments as in the proof of Theorem 2 holds. The theorem

is thus proved.

Appendix B.3.6. Proof of Proposition 10

For the purpose of the proof, we choose ρn’s with scaled Beta distribution with
parameters an = n 1+θ0

2 and bn = n 1−θ0
2 . Since, ρn is a scaled Beta distribution with the

scaling factors m = 2 and c = −1, the pdf of ρn is given by

ρn(θ) =
1

2Beta(an, bn)

(
1 + θ

2

)an(1 − θ

2

)bn

Since this is a scaled distribution, Eρn [θ] = 2 an
an+bn

− 1 = θ0 and there exists a constant

σ > 0, Varρn [θ] =
σ2

n . We now analyse the log-ratio of the transition probabilities for the
Markov chain,

log pθ0(Xn|Xn−1)− log pθ(Xn|Xn−1) = 2XnXn−1(θ − θ0) + X2
n−1(θ

2
0 − θ2).
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Observe that in this setting, M(1)
1 (Xn, Xn−1) = |XnXn−1| and M(1)

2 (Xn, Xn−1) = X2
n. Next,

using the fact that

E[|Xn|2+δ|Xn−1] = E[|Xn − θ0Xn−1 + θ0Xn−1|2+δ|Xn−1],

and by an application of triangle inequality, we obtain

E[|Xn|2+δ|Xn−1] ≤ E
[
(|Xn − θ0Xn−1|+ |θ0Xn−1|)2+δ|Xn−1

]
= E

[(
2
|Xn − θ0Xn−1|+ |θ0Xn−1|

2

)2+δ

|Xn−1

]

= E

[
22+δ

( |Xn − θ0Xn−1|+ |θ0Xn−1|
2

)2+δ

|Xn−1

]
.

Now by using Jensen’s inequality we get,

E[|Xn|2+δ|Xn−1] ≤ E
[

22+δ

( |Xn − θ0Xn−1|2+δ + |θ0Xn−1|2+δ

2

)
|Xn−1

]
= 21+δE

[
|Xn − θ0Xn−1|2+δ|Xn−1

]
+ 21+δ|θ0Xn−1|.

We know if Y ∼ N(μ, σ2), then E|Y − μ|p = σp 2
p
2 Γ( p+1

2 )
√

π
. Consequently,

E[|Xn|2+δ|Xn−1] ≤ 21+δ

[
2

2+δ
2 Γ( 3+δ

2 )

√
π

]
+ 21+δ|θ0Xn−1|2+δ. (A43)

It follows that,

E[M(1)
1 (Xn, Xn−1)

2+δ|Xn−1] ≤ 21+δ

[
2

2+δ
2 Γ( 3+δ

2 )

√
π

]
|Xn−1|2+δ + 21+δ|θ0|2+δ|Xn−1|4+2δ

≤
(

21+δ

[
2

2+δ
2 Γ( 3+δ

2 )

√
π

]
+ 21+δ|θ0|2+δ

)
(|Xn−1|4+2δ + 1).

Since θ0 < 1, we can say,

E[M(1)
1 (Xn, Xn−1)

2+δ|Xn−1] ≤
(

21+δ

[
2

2+δ
2 Γ( 3+δ

2 )

√
π

]
+ 21+δ

)
(|Xn−1|4+2δ + 1).

Define a constant Cδ :=
(

21+δ

[
2

2+δ
2 Γ( 3+δ

2 )
√

π

]
+ 21+δ

)
. The above term then becomes,

E[M(1)
1 (Xn, Xn−1)

2+δ|Xn−1] ≤ Cδ(|Xn−1|4+2δ + 1).

Next we analyse the term M(1)
2 (Xn, Xn−1).

E
[

M(1)
2 (Xn, Xn−1)

2+δ|Xn−1

]
= E[X4+2δ

n−1 |Xn−1]

= X4+2δ
n−1

≤ Cδ(X4+2δ
n−1 + 1).
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Then, defining V(x) := Cδ(x4+2δ + 1) it follows that,

E[V(Xn)|Xn−1] = E
[
Cδ(X4+2δ

n + 1)|Xn−1

]
.

Using a technique similar to Equation (A43) we get,

E
[
Cδ(X4+2δ

n + 1)|Xn−1

]
≤
[

Cδ(23+2δ

[
2

4+2δ
2 Γ( 5+2δ

2 )

√
π

]
+ 23+2δ|θ0Xn−1|4+2δ + 1)

]
.

Define another constant C′
δ := Cδ

(
23+2δ

[
2

4+2δ
2 Γ( 5+2δ

2 )
√

π

]
− 23+2δ|θ0|4+2δ + 1

)
. Since δ > 0,

2
4+2δ

2 Γ( 5+2δ
2 )

√
π

> 1. Furthermore, since |θ0| < 1, so is |θ0|4+2δ. Hence,

23+2δ

[
2

4+2δ
2 Γ( 5+2δ

2 )

√
π

]
− 23+2δ|θ0|4+2δ > 0.

Hence, we have shown that,

E[V(Xn)|Xn−1] ≤ (23+2δ|θ0|4+2δ)Cδ(X4+2δ
n−1 + 1) + C′

δ.

Since |θ0| < 2
1

4+2δ −1, 23+2δ|θ0|4+2δ < 1, and we can express the above equation as,

E[V(Xn)|Xn−1] ≤ V(Xn−1) + C′
δ.

Define the set C(m) := {x : |x|4+2δ + 1 ≤ m}. From Proposition 11.4.2, [20], for a large
enough m, C(m) forms a petite set. Thus, we have proved that V(x) as defined in this
example satisfies Assumption A.1.1, and {Xn} is V-geometrically ergodic. The f (1)j ’s

corresponding to Assumption 1 are given by f (1)1 (θ, θ0) = (θ − θ0) and f (1)2 (θ, θ0) =
(θ2

0 − θ2). Therefore, it follows that,

∂θ f (1)1 = 1,

∂θ f (1)2 = −2θ and

−2 < −2θ < 2.

Since f (1)1 (θ0, θ0) = f (1)2 (θ0, θ0) = 0, We just showed that they also have bounded partial

derivatives. We also know that |θ| < 1. Hence, by Proposition 4 f (1)j ’s satisfy the conditions
of Assumption 1.

The invariant distribution for the simple linear model Markov-chain under parameter
θ is given by a gaussian distribution with mean 0 and variance 1

1−θ2 . In other words,

qθ(x) =
1√
2π

e−
1−θ2

2 x2
.

Analyzing the log likelihood yields,

log q0(x)− log qθ(x) = − x2

2
(1 − θ2

0) +
x2

2
(1 − θ2)

=
x2

2
(θ2

0 − θ2).
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Let f (2)1 (θ0, θ0) = (θ2
0 − θ2) and f (2)1 (θ0, θ0) = 0. Since f (2)1 (θ0, θ0) = f (1)2 (θ0, θ0), by follow-

ing arguments similar as before, can conclude that f (2)1 (θ0, θ0) also satisfies the requirements

of Assumption 1. Let M(2)
1 (x) = x2

2 and define M(2)
2 (x) := 1. Let X0 ∼ q(0)1 . As long as∫

x4+2δq(0)1 (x)dx < ∞, we satisfy all the conditions required for Theorem 5. Finally we need
to verify the condition that K(ρn, π) < C

√
n for some constant C > 0. The KL-divergence∫

log
(

ρn(θ)
π(θ)

)
ρn(dθ) becomes,

K(ρn, π) =
∫ 1

−1
log

(
1

2Beta(an, bn)

(
1 + θ

2

)an(1 − θ

2

)bn
)

× 1
2Beta(an, bn)

(
1 + θ

2

)an(1 − θ

2

)bn

dθ.

Substituting, y = 1+θ
2 , we get,

K(ρn, π) =
∫ 1

0
log
(

1
2Beta(an, bn)

(y)an(1 − y)bn

)
1

2Beta(an, bn)
(y)an(1 − y)bn dy

=
∫ 1

0
log
(

1
2

)
1

Beta(an, bn)
(y)an(1 − y)bn dy

+
∫ 1

0
log
(

1
Beta(an, bn)

(y)an(1 − y)bn

)
1

Beta(an, bn)
(y)an(1 − y)bn .

The first term integrates up to log(1/2). The second term is the KL-divergence between
a Uniform and Beta distribution with parameters an = n 1+θ0

2 and bn = n(1 − 1+θ0
2 ) and

support [0, 1]. Following Lemma A.2.1 it follows that K(ρn, π) is upper bounded by,

K(ρn, π) < log(1/2) + C1 +
1
2

log(n) < C
√

n,

for some large constant C. This completes the proof.

Appendix B.4. Proofs for Misspecified Models

Proof of Theorem 6

As in the proof of Theorem 1, following Equation (A13), we note that,

∫
Dαre(P(n)

θ , P(n)
θ0

)π̃n,αre |Xn(dθ) ≤ αre

1 − αre

∫
K(P(n)

θ0
, P(n)

θ )ρn(dθ)

+
αre

1 − αre

√
Var[

∫
rn(θ, θ0)ρn(dθ)]

η
+

K(ρn, π)− log(ε)
1 − αre . (A44)

Following from Equations (23) and (26), we get that,∫
K(P(n)

θ0
, P(n)

θ )ρn(dθ) ≤ E[rn(θ0, θ∗
n)] + nεn,

and ∫
Var[rn(θ, θ0)]ρn(dθ) ≤ 2nεn + 2Var[rn(θ

∗
n, θ0)].

Plugging these into Equation (A44), we are done.
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Abstract: Many real-life processes are black-box problems, i.e., the internal workings are inaccessible
or a closed-form mathematical expression of the likelihood function cannot be defined. For continuous
random variables, likelihood-free inference problems can be solved via Approximate Bayesian
Computation (ABC). However, an optimal alternative for discrete random variables is yet to be
formulated. Here, we aim to fill this research gap. We propose an adjusted population-based MCMC
ABC method by re-defining the standard ABC parameters to discrete ones and by introducing a novel
Markov kernel that is inspired by differential evolution. We first assess the proposed Markov kernel
on a likelihood-based inference problem, namely discovering the underlying diseases based on a
QMR-DTnetwork and, subsequently, the entire method on three likelihood-free inference problems:
(i) the QMR-DT network with the unknown likelihood function, (ii) the learning binary neural
network, and (iii) neural architecture search. The obtained results indicate the high potential of the
proposed framework and the superiority of the new Markov kernel.

Keywords: Approximate Bayesian Computation; differential evolution; MCMC; Markov kernels;
discrete state space

1. Introduction

In various scientific domains, an accurate simulation model can be designed, yet
formulating the corresponding likelihood function remains a challenge. In other words,
there is a simulator of a process available that, when provided an input, returns an output,
but the inner workings of the process are not analytically available [1–5]. Thus far, the ex-
isting tools for solving such problems are typically limited to continuous random variables.
Consequently, many discrete problems are reparameterized to continuous ones via, for ex-
ample, the Gumbel-softmax trick [6] rather than being solved directly. In this paper, we aim
at providing a solution to this problem by translating the existing likelihood-free inference
methods to discrete space applications.

Commonly, likelihood-free inference problems for continuous data are solved via a
group of methods known under the term Approximate Bayesian Computation (ABC) [2,7].
The main idea behind ABC methods is to model the posterior distribution by approximating
the likelihood as a fraction of accepted simulated data points from the simulator model,
by the use of a distance measure δ and a tolerance value ε. The first approach, known
as the ABC-rejection scheme, has been successfully applied in biology [8,9], and since,
then many alternative versions of the algorithm have been introduced, with the three
main groups represented by Markov Chain Monte Carlo (MCMC) ABC [10], Sequential
Monte Carlo (SMC) ABC [11], and neural network-based ABC [12,13]. In the current paper,
we focus on the MCMC-ABC version [14] for discrete data application, as it can be more
readily implemented and the computational costs are lower [15]. Thus, the efficiency of
our newly proposed likelihood-free inference method will depend on two parts, namely (i)
on the design of the proposal distribution for the MCMC algorithm and (ii) the selected
hyperparameter values for the ABC algorithm.

Entropy 2021, 23, 312. https://doi.org/10.3390/e23030312 https://www.mdpi.com/journal/entropy
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Our main focus is on optimal proposal distribution design as there is no “natural”
notion of the search direction and scale for discrete data spaces. Hence, the presented
solution is inspired by Differential Evolution (DE) [16], which has been shown to be an
effective optimization technique for many likelihood-free (or black-box) problems [17,18].
We propose to define a probabilistic DE kernel for discrete random variables that allows
us to traverse the search space without specifying any external parameters. We evaluate
our approach on four test-beds: (i) we verify our proposal on a benchmark problem of
the QMR-DTnetwork presented by [19]; (ii) we modify the first problem and formulate it
as a likelihood-free inference problem; (iii) we assess the applicability of our method for
high-dimensional data, namely training binary neural networks on MNIST data; (iv) we
apply the proposed approach to Neural Architecture Search (NAS) using the benchmark
dataset proposed by [20].

The contribution of the present paper is as follows. First, we introduce an alternative
version of the MCMC-ABC algorithm, namely a population-based MCMC-ABC method,
that is applicable to likelihood-free inference tasks with discrete random variables. Second,
we propose a novel Markov kernel for likelihood-based inference methods in a discrete state
space. Third, we present the utility of the proposed approach on three binary problems.

2. Likelihood-Free Inference and ABC

Let x ∈ X be a vector of parameters or decision variables, where X = RD or X =
{0, 1}D, and y ∈ RM is a vector of observable variables. Typically, for a given collection of
observations of y, ydata = {yn}N

n=1, we are interested in solving the following optimization
problem (we note that the logarithm does not change the optimization problem, but it is
typically used in practice):

x∗ = arg max ln p(ydata|x), (1)

where p(ydata|x) is the likelihood function. Sometimes, it is more advantageous to calculate
the posterior:

ln p(x|ydata) = ln p(ydata|x) + ln p(x)− ln p(ydata), (2)

where p(x) denotes the prior over x and p(ydata) is the marginal likelihood. The posterior
p(x|ydata) could be further used in Bayesian inference.

In many practical applications, the likelihood function is unknown, but it is possible to
obtain (approximate) samples from p(y|x) through a simulator. Such a problem is referred
to as likelihood-free inference [3] or a black-box optimization problem [1]. If the problem
is about finding the posterior distribution over x while only a simulator is available, then
it is considered as an Approximate Bayesian Computation (ABC) problem, meaning that
p(ydata|x) is assumed to be given represented as the simulator.

3. Population-Based MCMC

Typically, a likelihood-free inference problem or an ABC problem is solved through
sampling. One of the most well-known sampling methods is the Metropolis–Hastings algo-
rithm [21], where the samples are generated from an ergodic Markov chain, and the target
density is estimated via Monte Carlo sampling. In order to speed up the computations, it is
proposed to run multiple chains in parallel rather than sampling from a single chain. This
approach is known as population-based MCMC methods [22]. A population-based MCMC
method operates over a joint state space with the following distribution:

p(x1, . . . , xC) = ∏
c∈C

pc(xc) (3)

where C denotes the population of chains and at least one of pc(xc) is equivalent to the
original distribution we want to sample from (e.g., the posterior distribution p(x|ydata)).

Given a population of chains, a question of interest is what is the best proposal
distribution for an efficient sampling convergence. One approach is parallel tempering. It
introduces an additional temperature parameter and initializes each chain at a different
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temperature [23,24]. However, the performance of the algorithm highly depends on an
appropriate cooling schedule rather than a smart interaction between the chains. A different
approach proposed by [25] relies on a suitable proposal that is able to adapt the shape of
the population at a single temperature. We further expand on this idea by formulating
population-based proposal distributions that are inspired by evolutionary algorithms.

3.1. Continuous Case

Reference [26] successfully formulated a new proposal called Differential Evolution
Markov Chain (DE-MC) that combines the ideas of differential evolution and population-
based MCMC. In particular, he redefined the DE-1 equation [16] by adding noise, ε, to it:

xnew = xi + γ(xj − xk) + ε, (4)

where ε is sampled from a Gaussian distribution, γ ∈ R+. The created proposal automati-
cally implies the invariance of the underlying distribution, as the reversibility condition is
satisfied:

• Reversibility is met, because the suggested proposal could be inverted to obtain xi.

Furthermore, the created Markov chain is ergodic, as the following two conditions
are met:

• Aperiodicity is met, because the Markov chain follows a random walk.
• Irreducibility is solved by applying the noise.

Hence, the resulting Markov chain has a unique stationary distribution. The results
presented by [26] indicate an advantage of DE-MC over conventional MCMC with respect
to the speed of calculations, convergence, and applicability to multimodal distributions,
therefore positioning DE as an optimal method for choosing an appropriate scale and
orientation of the jumping distribution for a population-based MCMC.

3.2. Discrete Case

In this paper, we focus on binary variables, because categorical variables could always
be transformed to a binary representation. Hence, the most straightforward proposal for
binary variables is the independent sampler that utilizes the product of Bernoulli:

q(x) = ∏
d

B(θd), (5)

where B(θd) denotes the Bernoulli distribution with a parameter θd. However, the above
proposal does not utilize the information available across the population; hence, the perfor-
mance could be improved by allowing the chains to interact. Exactly this possibility we
investigate in the following section.

4. Our Approach

4.1. Markov Kernels

We propose to utilize the ideas outlined by [26], but in a discrete space. For this
purpose, we need to relate the DE-1 equation to logical operators, as now the vector x is
represented by a string of bits, X = {0, 1}D, and properly defined noise. Following [19],
we propose to use the xoroperator between two bits b1 and b2:

b1 ⊗ b2 =

{
1, b1 �= b2
0, b1 = b2

(6)

instead of the subtraction in (4). Next, we define a difference between two chains xi and
xj as δk = xi ⊗ xj and a set of all possible differences between two chains, Δ = {δk :
∀xi ,xj∈C δk = xi ⊗ xj} (a similar construction could be done for the continuous case). We
can construct a distribution over δk as a uniform distribution:
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q(δ|C) = 1
|Δ| ∑

δk∈Δ
I
[
δk = δ

]
, (7)

where |Δ| denotes the cardinality of Δ and I[·] is an indicator function such that I[δk =
δ] = 1 if δk = δ and zero otherwise. Now, we can formulate a binary equivalence of the
DE-1 equation by adding a difference drawn from q(δ|C):

xnew = xi ⊗ δk. (8)

However, the proposal defined in (8) is not a valid ergodic Markov kernel, as is shown in
the following Proposition.

Remark 1. The proposal defined in (8) fulfills reversibility and aperiodicity, but it does not meet
the irreducibility requirement.

Proof. Reversibility is met, as xi can be re-obtained by applying the difference to the left
side of (8). Aperiodicity is met because the general setup of the Markov chain is kept
unchanged (it resembles a random walk). However, the operation in (8) is deterministic;
thus, it violates the irreducibility assumption.

The missing property of (8) could be fixed by including the following mutation (mut)
operation:

xl =

{
1 − xl if p f lip ≥ u

xl otherwise
(9)

where p f lip ∈ (0, 1) corresponds to an independent probability of flipping a bit and U(0, 1)
denotes the uniform distribution. Then, the following proposal could be formulated [19] as
in Proposition 1.

Proposition 1. The proposal defined as a mixture qmut+xor(x|C) = πqmut(x|C) + (1 − π)qxor
(x|C), where π ∈ (0, 1), qmut(x|C) is defined by (9) and qxor(x|C) is defined by (8), is a proper
Markov kernel.

Proof. Reversibility and aperiodicity were shown in Proposition 1. The irreducibility is
met, because the mut proposal assures that there is a positive transition probability across
the entire search space.

However, we notice that there are two potential issues with the mixture proposal
mut+xor. First, it introduces another hyperparameter, π, that needs to be determined.
Second, improperly chosen π could negatively affect the convergence speed, i.e., a fixed
value that is either too frequent or scarce would drastically halt the convergence.

In order to overcome these issues, we propose to apply the mut operation in (9) directly
to δk, in a similar manner as the Gaussian noise is added to γ(xi − xj) in the proposition
of [26]. As a result, we obtain the following proposal:

xnew = xi ⊗ (mut(δk)). (10)

Importantly, this proposal fulfills all requirements for an ergodic Markov kernel.

Proposition 2. The proposal defined in (10) is a valid ergodic Markov kernel.

Proof. Reversibility and aperiodicity are met in the same manner as shown in Proposition
1. Adding the mutation operation directly to δk allows obtaining all possible states in the
discrete space; thus, the irreducibility requirement is met.

We refer to this new Markov kernel for discrete random variables as the discrete
differential evolution Markov chain (dde-mc).
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4.2. Population-MCMC-ABC

Since we formulated a proposal distribution that utilizes a population of chains,
we propose to use a population-based MCMC algorithm for the discrete ABC problems.
The core of the MCMC-ABC algorithm is to use a proxy of the likelihood-function defined
as an ε-ball from the observed data, i.e., ‖y − ydata‖ ≤ ε, where ε > 0 and ‖ · ‖ is a chosen
metric. The convergence speed and the acceptance rate highly depend on the value of
ε [27–29]. In this paper, we consider two approaches to determine the ε value: (i) by setting
a fixed value and (ii) by sampling ε ∼ Exp(τ) [30]. See the Appendix A for details.

A single step of the population-MCMC-ABC algorithm is presented in Algorithm 1.
Notice that in Line 5, we take advantage of the symmetricity of all the proposal. Moreover,
in the procedure, we skip an outer loop over all chains for clarity. Without loss of generality,
we assume a simulator to be a probabilistic program denoted by p̃(y|x).

Algorithm 1 Population-MCMC-ABC.

1: Given x ∈ {0, 1}D

2: x′ ∼ q(x|C) � Either (5), mut+xor or dde-mc.
3: Simulate y ∼ p̃(y|x′).
4: if ‖y − ydata‖ ≤ ε then

5: α = min{1, p(x′)
p(x) }

6: u ∼ U(0, 1)
7: if u ≤ α then
8: x = x′

9: return x

5. Experiments

In order to verify our proposed approach, we use four test-beds:

1. QMR-DT network (likelihood-based case): First, we validate the novel proposal,
dde-mc, on a problem when the likelihood is known.

2. QMR-DT network (likelihood-free case): Second, we verify the performance of the
presented proposal by modifying the first test-bed as a likelihood-free problem.

3. Binarized Neural Network Learning: Third, we investigate the performance of the
proposed approach on a high-dimensional problem, namely learning binary neural
networks.

4. Neural architecture search: Lastly, we consider a problem of Neural Network Archi-
tecture Search (NAS).

With each test-bed, we increase the complexity of the problem. Hence, the number of
iterations chosen varies per experiment. The code of the methods and all experiments is
available at the following link: https://github.com/IlzeAmandaA/ABCdiscrete (accessed
on 5 March 2021).

5.1. A Likelihood-Based QMR-DT Network
5.1.1. Implementation Details

The overall setup was designed as described by [19], i.e., we considered a QMR-DT
network model. The architecture of the network follows a two-level or bipartite graphical
model, where the top level of the graph contains nodes for the diseases and the bottom level
contains nodes for the findings [31]. The following density model captures the relations
between the diseases (x) and findings (y):

p(yi = 1|x) = 1 − (1 − qi0)∏
l
(1 − qil)

xl (11)

where yi is an individual bit of string y and qi0 is the corresponding leak probability, i.e., the
probability that the finding is caused by means other than the diseases included in the
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QMR-DT model [31]. qil is the association probability between disease l and finding i,
i.e., the probability that the disease l alone could cause the finding i to have a positive
outcome. For a complete inference, the prior p(x) is specified. We follow the assumption
made by [19] that the diseases are independent:

p(x) = ∏
l

pxl
l (1 − pl)

(1−xl) (12)

where pl is the prior probability for disease l.
We compare the performance of the dde-mc kernel to the mut proposal, the mut-xor

proposal, the mut+crx proposal (see [19] for details), and the independent sampler (ind-
samp) as in (5) with sampling probability θd = 0.5. We expect the DE-inspired proposals
to outperform ind-samp, and dde-mc to perform similarly, if not surpass, mut+xor. Out
of the possible parameter settings we investigate, the following population sizes C =
{8, 12, 24, 40, 60}, as well as bit-flipping probabilities p f lip = {0.1, 0.05, 0.01, 0.005}. All
experiments were run for 10,000 iterations, as in earlier work by [19], it was observed that
the performance differences after 10,000 steps were negligible, and initial experiments
revealed that in the current work, all proposals approximately converged at this mark.
Furthermore, the performance was validated over 80 random problem instances, and the
resulting mean and its standard error are reported.

In this experiment, we used the error that is defined as the average Hamming distance
between the real values of x and the most probable values found by the population-MCMC
with different proposals. The number of diseases was set to m = 20, and the number of
findings was n = 80.

5.1.2. Results and Discussion

DE-inspired proposals, dde-mc and mut+xor, are superior to kernels stemming from
genetic algorithms or random search, i.e., mut+crx, mut, and ind-samp (Figure 1). In partic-
ular, dde-mc converged the fastest (see the first 4000 evaluations in Figure 1), suggesting
that an update via a single operator rather than a mixture is most effective. As expected,
ind-samp requires many evaluations to obtain a reasonable performance. Even more so,
the obtained difference in wall-clock time between dde-mc and ind-samp was negligible,
148 versus 117 min, respectively, even though the computational complexity of the new
method is theoretically higher: given a search space of {0, 1}D, the dde-mc proposal costs
O(D), while the time complexity of ind-samp is O(1).

Based on the obtained results, the subsequent experiments were carried out only with
dde-mc, mut+xor, and ind-samp as a baseline. mut+crx and mut were not selected due to to
their very slow convergence with high-dimensional problems.
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Figure 1. A comparison of the considered proposals using the population average error. The obtained
mean and its corresponding standard error (shaded area) across 80 random problem instances are
plotted. The following settings were used: C = 24, p f lip = 0.01, pcross = 0.5. The corresponding
equations for each proposal are as follows: mut as in (9), ind-samp as in (5), dde-mc as in (10), and
mut+xor, mut+crx as in [19].

5.2. A Likelihood-Free QMR-DT Network
5.2.1. Implementation Details

In this test-bed, the QMR-DT network is redefined as a simulator model, i.e., the
likelihood is assumed to be intractable. The Hamming distance is selected as the distance
metric, but due to its equivocal nature for high-dimensional data, the dimensionality of the
problem is reduced. In particular, the number of diseases and observations (i.e., findings)
are decreased to 10 and 20, respectively, while the probabilities of the network are sampled
from a beta distribution, Beta(0.15, 0.15). The resulting network is more deterministic
as the underlying density distributions are more peaked; thus, the stochasticity of the
simulator is reduced. Multiple tolerance values are investigated to find the optimal settings,
ε = {0.5, 0.8, 1., 1.2, 1.5, 2.}, respectively. The minimal value is chosen to be 0.5 due to
variability across the observed data ydata. Additionally, we checked sampling ε from
the exponential distribution. All experiments were cross-evaluated 80 times, and each
experiment was initialized with different underlying parameter settings.

5.2.2. Results and Discussion

First, for the fixed value of ε, we notice that dde-mc converged faster and to a better
(local) optimum than mut+xor. However, this effect could be explained by a lower dimen-
sionality of the problem compared to the first experiment. Second, utilizing the exponential
distribution had a profound positive effect on the convergence rate of both dde-mc and
mut+xor (Figure 2). This confirmed the expectation that an adjustable ε has a better balance
between exploration and exploitation. In particular, ε ∼ Exp(2) brought the best results
with dde-mc converging the fastest, followed by mut+xor and ind-samp. This is in line with
the corresponding acceptance rates for the first 10,000 iterations (Table 1), i.e., the use of
a smarter proposal allows increasing the acceptance probability, as the search space is
investigated more efficiently.
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Figure 2. A comparison of the considered proposals using the population error for exponentially
adjusted ε and the fixed ε (indicated by *). The shaded area corresponds to the standard error across
80 random problem instances. The parameter settings are as follows: C = 24, p f lip = 0.01, ε = 2.0.
The following equations describe the proposal distributions utilized in Algorithm 1: ind-samp as in
(5), dde-mc as in (10), and mut+xor as in [19].

Table 1. Percentage of acceptance ratio, α.

Proposal Mean (std)

dde-mc 24.47 (1.66)
mut+xor 25.81 (1.38)
ind-samp 13.14 (0.33)

Furthermore, the final error obtained by the likelihood-free inference approach is
comparable with the results reported for the likelihood-based approach (Figures 1 and 2).
This is a positive outcome as any approximation of the likelihood will always be inferior to
an exact solution. In particular, the final error obtained by the dde-mc proposal is lower;
however, this is accounted for by the reduced dimensionality of the problem. Interestingly,
despite approximating the likelihood, the computational time only increased twice, while
the best performing chain was already identified after 4000 evaluations (Figure 3).

Figure 3. A comparison of the considered proposal using the minimum average error (i.e., the lowest
error found by the population) on QMR-DTwith adjusted ε. The shaded area corresponds to the
standard error across 80 random problem instances. The parameter settings are as follows: C = 24,
p f lip = 0.01, ε = 2.0. The corresponding equations represent the proposal distributions: ind-samp in
(5), dde-mc in (10), and mut+xor as in [19].
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Lastly, the obtained results were validated by comparing the true approximate poste-
rior distribution to the approximate posterior distribution of the last five generations of
the multi-chain ensemble. In Figure 4, the negative logarithm of the posterior distribution
is plotted. The main conclusion is that all proposals converge towards the approximate
posterior, yet the obtained distributions are more dispersed.

Figure 4. Approximate posterior distribution. The approximate posterior distribution, p(x|ydata) ≈
p(ydata|x) ∗ p(x), was computed using the last population of each chain for all 80 random problem
instances. To reconstruct the true posterior, the true underlying parameters were used.

5.3. Binary Neural Networks
5.3.1. Implementation Details

In the following experiment, we aimed at evaluating our approach on a high-dimensional
optimization problem. We trained a Binary Neural Network (BinNN) with a single fully-
connected hidden layer on the image dataset of ten handwritten digits (MNIST [32]).
We used 20 hidden units, and the image was resized from 28px × 28px to 14px × 14px.
Furthermore, the image was converted to polar values of +1 or −1, while the network
was created in accordance to [33], where the weights and activations of the network were
binary, meaning that they were constrained to +1 or −1 as well. We simplified the problem
to a binary classification by only selecting two digits from the dataset. As a result, the total
number of weights equaled 3940. We used the tanhactivation function for the hidden units
and the sigmoid activation function for the outputs. Consequently, the distance metric
becomes the classification error:

‖ydata − y‖ = 1 − 1
N

N

∑
n=1

I[yn = yn(x)], (13)

where N denotes the number of images, I[·] is an indicator function, yn is the true label
for the n-th image, and yn(x) is the n-th label predicted by the binary neural net with
weights x.

For the Metropolis acceptance rule, we define a Boltzmann distribution over the prior
distribution of the weights x inspired by the work of [34]:

p(x) =
h(x)

∑i h(xi)
, (14)

where h(x) = exp(− 1
D ∑D

i=1 xi) and D denotes the dimensionality of x. As a result, the prior
distribution acts as a regularization term as it favors parameter settings with fewer active
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weights. The distribution is independent of the data y thus, the partition function ∑i h(xi)
cancels out in the computation of the Metropolis ratio:

α =
p(x′)
p(x)

=
h(x′)
h(x)

. (15)

The original dataset consists of 60,000 training examples and 10,000 test examples.
For our experiment, we selected the digits 0 and 1; hence, the dataset size was reduced
to 12,665 training and 2115 test examples. Different tolerance values were investigated
to obtain the best convergence, ranging from 0.03 to 0.2, and each experiment was run
for at least 200,000 iterations. All experiments were cross-evaluated five times. Lastly, we
evaluated the performance by computing both the minimum test error obtained by the
final population, as well as the test error obtained by using a Bayesian approach, i.e., we
computed the true predictive distribution via majority voting by utilizing an ensemble of
models. In particular, we selected the five last updated populations, resulting in 5 × 24 × 5
= 600 models per run, and we repeated this with different seeds 10 times.

Because the classification error function in (13) is non-differentiable, the problem
could be treated as a black-box objective. However, we want to emphasize that we do not
propose our method as an alternative to gradient-based learning methods. In principle, any
gradient-based approach will be superior to a derivative-free method, as what a derivative-
free method tries to achieve is to implicitly approximate the gradient [1]. Therefore,
the purpose of the presented experiment is not to showcase a state-of-the-art classification
accuracy, as that already has been done with gradient-based approaches for BinNN [33],
but rather showcase the population-MCMC-ABC applicability to a high-dimensional
optimization problem.

5.3.2. Results and Discussion

For the high-dimensional data problem, the mut+xor proposal converged the fastest
towards the optimal solution in the search space (Figure 5). In particular, the minimum
error on the training set was already found after 100,000 iterations, and a tolerance thresh-
old of 0.05 had the best trade-off between the Markov chain error and the likelihood
approximation bias.

With respect to the error within the entire population (Figure 6), dde-mc converged
the fastest, although its performance was on par with ind-samp. In general, the drop
in performance with respect to the convergence rate of the entire population could be
explained by the high dimensionality of the problem, i.e., the higher the dimensionality,
the more time is needed for every chain to explore the search space. This observation
was confirmed by computing the test error via utilizing all the population members in
a majority-voting setting. In particular, the test error based on the ensemble approach
was alike across all three proposals, yet the minimum error (i.e., for a single best model)
was better for dde-mc and mut+xor compared to ind-samp (Table 2). This result suggests
that there seems to be an added advantage of utilizing DE-inspired proposals in faster
convergence towards a local optimal solution.
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Figure 5. A comparison of the considered proposals using the minimum training error on MNIST.
The mean minimum error across five cross-evaluations is plotted with the shaded area corresponding
to the standard error. Tolerance is set to ε = Exp(0.05), with the prior and the Metropolis ratio as
described in (14) and (15). The following equations describe the proposals: ind-samp in (5), dde-mc in
(10), and mut+xor as in [19].

Figure 6. A comparison of the considered proposals using the avg. training error on MNIST. The mean
population error across five cross-evaluations is plotted with the shaded area corresponding to the
standard error. Tolerance is set to ε = Exp(0.05), with the prior and the Metropolis ratio as described
in (14) and (15). The following equations describe the proposals: ind-samp in (5), dde-mc in (10), and
mut+xor as in [19].

Table 2. Test error of BinNN on MNIST.

Proposal Error (ste)
Single Best Ensemble

dde-mc 0.045 (0.002) 0.013 (0.001)
mut+xor 0.046 (0.002) 0.014 (0.002)
ind-samp 0.051 (0.002) 0.012 (0.001)
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5.4. Neural Architecture Search
5.4.1. Implementation Details

In the last experiment, we aimed at investigating whether the proposed approach is
applicable for efficient neural architecture search. In particular, we made use of the NAS-
Bench-101 dataset, the first public architecture dataset for NAS research [20]. The dataset is
represented as a table, which maps neural architectures to their training and evaluations
metrics, and as such, it represents an efficient solution for querying different neural topolo-
gies. Each topology is captured by a directed acyclic graph represented by an adjacency
matrix. The number of vertices was set to seven, while the maximum amount of edges
was nine. Apart from these restrictions, we limited the search space by constricting the
possible operations for each vertex. Consequently, the simulator was captured by querying
the dataset, while the distance metric now was simply the validation error. The prior
distribution was kept the same as for the previous experiment.

Every experiment was run for at least 120,000 iterations, with five cross-evaluations.
To find the optimal performance, the following tolerance threshold values were investigated
ε = {0.01, 0.1, 0.2, 0.3}. As we are approaching the problem as an optimization task, the aim
is to find a chain with the lowest test error, rather than covering the entire distribution.
Therefore, to evaluate the performance, we plot the minimum error obtained through the
training process, as well as the lowest test error obtained by the final population.

5.4.2. Results and Discussion

dde-mc identified the best solution the fastest with ε set to ε ∼ Exp(0.2) (Figure 7).
The corresponding test error is reported in Table 3, and it follows the same pattern, namely
dde-mc is superior. Interestingly, here, the mut+xor proposal performed almost on par with
the ind-samp proposal for the first 10,000 iterations, and then, both methods converged
to almost the same result. Our proposed Markov kernel obtained again the best result,
and also it was the fastest.

Figure 7. A comparison of the considered proposals using the minimum training error on NAS-
Bench-101. The mean minimum error with its corresponding standard error (shaded area) across five
cross-evaluations is plotted. Tolerance is set to ε = Exp(0.2). The prior distribution is as described in
(14), with the corresponding Metropolis ratio (15). The following equations describe the proposals:
ind-samp in (5), dde-mc in (10), and mut+xor as in [19].
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Table 3. Test error on NAS-Bench-101.

Proposal Error (ste)

dde-mc 0.058 (0.001)
mut+xor 0.060 (<0.001)
ind-samp 0.062 (<0.001)

6. Conclusions

In this paper, we note that there is a gap in the available methods for likelihood-free
inference on discrete problems. We propose to utilize ideas known from evolutionary
computing similarly to [26], in order to formulate a new Markov kernel, dde-mc, for a
population-based MCMC-ABC algorithm. The obtained results suggest that the newly
designed proposal is a promising and effective solution for intractable problems in a
discrete space.

Furthermore, Markov kernels based on differential evolution are also effective to
traverse a discrete search space. Nonetheless, great attention has to be paid to the choice of
the tolerance threshold for the MCMC-ABC methods. In other words, if the tolerance is set
too high, then the performance of the DE-based proposals drops to that of an independent
sampler, i.e., the error of the Markov chain is high. For high-dimensional problems,
the proposed kernel seems to be most promising; however, its population error becomes
similar to that of ind-samp. This is accounted for by the fact that for high dimensions, it
takes more time for the entire population to converge.

In conclusion, we would like to highlight that the present work offers new research di-
rections:

• Alternative ABC algorithms like SMC should be further investigated.
• In this work, we focused on calculating distances in the data space. However, utilizing

summary statistics is almost an obvious direction for future work.
• As the whole algorithm is based on logical operators and the input variables are

also binary, the algorithm could be encoded using only bits, thus saving consider-
able amounts of memory storage. Consequently, any matrix multiplication could
be replaced by an XNORoperation followed by a sum, thus reducing the computa-
tion costs and possibly allowing implementing the algorithm on relatively simple
devices. Therefore, a natural consequence of this work would be a direct hardware
implementation of the proposed methods.

• In this paper, we outline a number of potential applications of the presented method-
ology and indicate that the obtained results are of great practical potential. From the
optimization perspective, a discrete ABC gives an opportunity to solve a problem in a
principled manner. This is extremely important for applications associated with deep
learning, e.g., NAS [20,35], neural network quantization, and learning binary neural
networks, but also in other domains like topology or relationship discovery in biologi-
cal networks (e.g., Boolean networks) [36]. Moreover, ABC as a Bayesian framework
allows calculating model evidence that is crucial for model selection. In practice, very
often, a problem is of combinatorial (discrete) nature, e.g., contamination control or
pest control [35]. Therefore, our approach could be seemingly applied without the
necessity of dequantizing a problem.
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Abbreviations

ABC Approximate Bayesian Computation
SMC Sequential Monte Carlo
DE Differential Evolution
MCMC Markov Chain Monte Carlo
DE-MC Differential Evolution Markov Chain
mut+xor a mixture of a mutation-based proposal and an xor-based proposal
dde-mc discrete differential evolution Markov chain
Population-MCMC-ABC a population-based MCMC ABC
NAS Neural Network Architecture Search
ind-samp independent sampler
mut+crx a mixture of a mutation-based proposal and a cross-over-based proposal
BinNN a binary neural network

Appendix A. ε Determination

The choice of ε defines which data points are going to be accepted; as such, it implicitly
models the likelihood. Setting the value too high will result in a biased estimate; however,
it will improve the performance of Monte Carlo as more samples are utilized per unit time.
Hence, as [4] already has stated: “the goal is to find a good balance between the bias and
the Monte Carlo error”.

Appendix A.1. Fixed ε

The first group of tolerance selection methods are all based on a fixed ε value. The pos-
sible approaches are summarized as follows:

• Determine a desirable acceptance ratio: For example, define a proportion, 1%, of the
simulated samples that should be accepted ([2]).

• Re-use the generated samples: Determine the optimal cutoff value by a leave-one-out
cross-validation approach of the underlying parameters of the generated simulations.
In particular, minimize the Root Mean Squared Error (RMSE) for the validation
parameter values [28].

• Use a pilot run to tune: Based on the rates of convergence [27], define fixed alterations
to the initial tolerance value in order to either increase the number of accepted samples,
reduce the mean-squared error, or increase the (expected) running time.

• Set ε to be proportional to N−1/(d+5)
s : where d is the number of dimensions (for a

complete overview, see [4]).

Nonetheless, setting ε to a fixed value hinders the convergence as it clearly is a sub-
optimal approach due to its static nature. Ideally, we want to promote exploration at the
beginning of the algorithm and, subsequently, move towards exploitation, hence alluding
to the second group of tolerance selection methods: adaptive ε.
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Appendix A.2. Adaptive ε

In general, the research on adaptive tolerance methods for MCMC-ABC is very limited
as traditionally, adaptive tolerance is seen as part of SMC-ABC. In the current literature,
two adaptive tolerance methods for MCMC-ABC are mentioned:

• An exponential cooling scheme: Reference [29] suggested using an exponential tem-
perature scheme combined with a cooling scheme for the covariance matrix ∑t.

• Sample from the exponential distribution: Similarly, Reference [30] assumed a pseudo-
prior for ε : π(ε), where π(ε) ∼ Exp(τ) and τ = 1/10, thus allowing occasionally
generating larger tolerance values to adjust mixing.

In order to establish a clear baseline for MCMC-ABC in a discrete space, we decided to
implement both fixed and adaptive ε. Such an approach allows us to evaluate what is the
effect of an adaptive ε in comparison to a fixed ε in a discrete space, as well as to compare
how well our observations are in line with the observations drawn in a continuous space.
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Abstract: In this work, a framework to boost the efficiency of Bayesian inference in probabilistic
models is introduced by embedding a Markov chain sampler within a variational posterior approx-
imation. We call this framework “refined variational approximation”. Its strengths are its ease of
implementation and the automatic tuning of sampler parameters, leading to a faster mixing time
through automatic differentiation. Several strategies to approximate evidence lower bound (ELBO)
computation are also introduced. Its efficient performance is showcased experimentally using state-
space models for time-series data, a variational encoder for density estimation and a conditional
variational autoencoder as a deep Bayes classifier.

Keywords: variational inference; MCMC; stochastic gradients; neural networks

1. Introduction

Bayesian inference and prediction in large, complex models, such as in deep neural
networks or stochastic processes, remains an elusive problem [1–3]. Variational approxi-
mations (e.g., automatic differentiation variational inference (ADVI) [4]) tend to be biased
and underestimate uncertainty [5]. On the other hand, depending on the target distribu-
tion, Markov Chain Monte Carlo (MCMC) [6] methods, such as Hamiltonian Monte Carlo
(HMC) [7]), tend to be exceedingly slow [8] in large scale settings with large amounts of
data points and/or parameters. For this reason, in recent years, there has been increasing
interest in developing more efficient posterior approximations [9–11] and inference tech-
niques that aim to be as general and flexible as possible so that they can be easily used with
any probabilistic model [12,13].

It is well known that the performance of a sampling method depends heavily on
the parameterization used [14]. This work proposes a framework to automatically tune
the parameters of a MCMC sampler with the aim of adapting the shape of the posterior,
thus boosting the Bayesian inference efficiency. We deal with a case in which the latent
variables or parameters are continuous. Our framework can also be regarded as a prin-
cipled way to enhance the flexibility of variational posterior approximation in search of
an optimally tuned MCMC sampler; thus the proposed name of our framework is the
variationally inferred sampler (VIS).

The idea of preconditioning the posterior distribution to speed up the mixing time
of a MCMC sampler has been explored recently in [15,16], where a parameterization was
learned before sampling via HMC. Both papers extend seminal work in [17] by learning an
efficient and expressive deep, non-linear transformation instead of a polynomial regression.
However, they do not account for tuning the parameters of the sampler, as introduced in
Section 3, where a fully, end-to-end differentiable sampling scheme is proposed.

The work presented in [18] introduced a general framework for constructing more
flexible variational distributions, called normalizing flows. These transformations are one
of the main techniques used to improve the flexibility of current variational inference (VI)
approaches and have recently pervaded the approximate Bayesian inference literature with
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developments such as continuous-time normalizing flows [19] (which extend an initial
simple variational posterior with a discretization of Langevin dynamics) or householder
flow for mixtures of Gaussian distributions [20]. However, they require a generative
adversarial network (GAN) [21] to learn the posterior, which can be unstable in high-
dimensional spaces. We overcome this problem with our novel formulation; moreover, our
framework is also compatible with different optimizers, rather than only those derived
from Langevin dynamics [22]. Other recent proposals create more flexible variational
posteriors based on implicit approaches typically requiring a GAN, as presented in [23] and
including unbiased implicit variational inference (UIVI) [24] or semi-implicit variational
inference (SIVI) [25]. Our variational approximation is also implicit but uses a sampling
algorithm to drive the evolution of the density, combined with a Dirac delta approximation
to derive an efficient variational approximation, as reported through extensive experiments
in Section 5.

Closely related to our framework is the work presented in [26], where a variational
autoencoder (VAE) is learned using HMC. We use a similar compound distribution as the
variational approximation, yet our approach allows any stochastic gradient MCMC to be
embedded, as well as facilitating the tuning of sampler parameters via gradient descent.
Our work also relates to the recent idea of sampler amortization [27]. A common problem
with these approaches is that they incur in an additional error—the amortization gap [28]—
which we alleviate by evolving a set of particles through a stochastic process in the latent
space after learning a good initial distribution, meaning that the initial approximation bias
can be significantly reduced. A recent related article was presented in [29], which also
defined a compound distribution. However, our focus is on efficient approximation using
the reverse KL divergence, which allows sampler parameters to be tuned and achieves
superior results. Apart from optimizing this kind of divergence, the main point is that
we can compute the gradients of sampler parameters (Section 3.3), whereas in [29] the
authors only consider a parameterless sampler: thus, our framework allows for greater
flexibility, helping the user to tune sampler hyperparameters. In the Coupled Variational
Bayes (CVB) [30] approach, optimization is in the dual space, whereas we optimize the
standard evidence lower bound (ELBO). Note that even if the optimization was exact, the
solutions would coincide, and it is not clear yet what happens in the truncated optimization
case,other than performing empirical experiments on given datasets. We thus feel that
there is room for implicit methods that perform optimization in the primal space (besides
this, they are easier to implement). Moreover, the previous dual optimization approach
requires the use of an additional neural network (see the paper on the Coupled Variational
Bayes (CVB) approach or [31]). This adds a large number of parameters and requires
another architecture decision. With VIS, we do not need to introduce an auxiliary network,
since we perform a “non-parametric” approach by back-propagating instead through
several iterations of SGLD. Moreover, the lack of an auxiliary network simplifies the
design choices.

Thus, our contributions include a flexible and consistent variational approximation to
the posterior, embedding an initial variational approximation within a stochastic process;
an analysis of its key properties; the provision of several strategies for ELBO optimization
using the previous approximation; and finally, an illustration of its power through relevant
complex examples.

2. Background

Consider a probabilistic model p(x|z) and a prior distribution p(z), where x denotes
the observations and z ∈ Rd the unobserved latent variables or parameters, depending
on the context. Whenever necessary for disambiguation purposes, we shall distinguish
between z for latent variables and θ for parameters. Our interest is in performing inference
regarding the unobserved z by approximating its posterior distribution

p(z|x) = p(z)p(x|z)∫
p(z)p(x|z)dz

=
p(x, z)
p(x)

.
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The integral assessing the evidence p(x) =
∫

p(z)p(x|z)dz is typically intractable.
Thus, several techniques have been proposed to perform approximate posterior infer-
ence [3].

2.1. Inference as Optimization

Variational inference (VI) [4] tackles the problem of approximating the posterior p(z|x)
with a tractable parameterized distribution qφ(z|x). The goal is to find the parameters φ so
that the variational distribution qφ(z|x) (also referred to as variational guide or variational
approximation) can be as close as possible to the actual posterior. Closeness is typically
measured through the Kullback–Leibler divergence KL(qφ||p), reformulated into the ELBO
as follows:

ELBO(q) = Eqφ(z|x)
[
log p(x, z)− log qφ(z|x)

]
, (1)

This is the objective to be optimized, typically through stochastic gradient descent tech-
niques. To enhance flexibility, a standard choice for qφ(z|x) is a Gaussian distribution
N (μφ(x), σφ(x)), with the mean and covariance matrix defined through a deep, non-linear
model conditioned on observation x.

2.2. Inference as Sampling

HMC [7] is an effective sampling method for models whose probability is pointwise
computable and differentiable. When scalability is an issue, as proposed by the authors
in [32], a formulation of a continuous-time Markov process that converges to the target
distribution p(z|x) can be used, which is based on the Euler–Maruyama discretization of
Langevin dynamics

zt+1 ← zt + ηt∇z log p(x, zt) +N (0, 2ηt I), (2)

where ηt is the step size at time period t, and I is the identity matrix. The required gradient
∇ log p(zt, x) can be estimated using mini-batches of data. Several extensions of the original
Langevin sampler have been proposed to increase its mixing speed, such as in [33–36]. We
refer to these extensions as stochastic gradient MCMC samplers (SG-MCMC) [37].

3. A Variationally Inferred Sampling Framework

In standard VI, the variational approximation is analytically tractable and typically
chosen as a factorized Gaussian, as mentioned above. However, it is important to note that
other distributions can be adopted as long as they are easily sampled and their log-density
and entropy values evaluated. However, in the rest of this paper, we focus on the Gaussian
case, as the usual choice in the Bayesian deep learning community. Stemming from this
variational approximation, we introduce several elements to construct the VIS.

Our first major modification of standard VI proposes the use of a more flexible distri-
bution, approximating the posterior by embedding a sampler through

qφ,η(z|x) =
∫

Qη,T(z|z0)q0,φ(z0|x)dz0, (3)

where q0,φ(z|x) is the initial and tractable density qφ(z|x) (i.e., the starting state for the
sampler). We designate this as refined variational approximation. The conditional distri-
bution Qη,T(z|z0) refers to a stochastic process parameterized by η and used to evolve the
original density q0,φ(z|x) for T periods, so as to achieve greater flexibility. Specific forms
for Qη,T(z|z0) are described in Section 3.1. Observe that when T = 0, no refinement steps
are performed and the refined variational approximation coincides with the original one;
on the other hand, as T increases, the approximation will be closer to the exact posterior,
assuming that Qη,T is a valid MCMC sampler in the sense of [37].

We next maximize a refined ELBO objective, replacing in Equation (1) the original qφ

by qφ,η :
ELBO(qφ,η) = Eqφ,η(z|x)

[
log p(x, z)− log qφ,η(z|x)

]
(4)
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This is done to optimize the divergence KL(qφ,η(z|x)||p(z|x)). The first term of Equation (4)
requires only being able to sample from qφ,η(z|x); however, the second term, the entropy
−Eqφ,η(z|x)

[
log qφ,η(z|x)

]
, also requires the evaluation of the evolving, implicit density.

Section 3.2 describes efficient methods to approximate this evaluation. As a consequence,
performing variational inference with the refined variational approximation can be regarded
as using the original variational guide while optimizing an alternative, tighter ELBO,
as Section 4.2 shows.

The above facilitates a framework for learning the sampler parameters φ, η using
gradient-based optimization, with the help of automatic differentiation [38]. For this,
the approach operates in two phases. First, in a refinement phase, the sampler parameters
are learned in an optimization loop that maximizes the ELBO with the new posterior.
After several iterations, the second phase, focused on inference, starts. We allow the
tuned sampler to run for sufficient iterations, as in SG-MCMC samplers. This is expressed
algorithmically as follows.

Refinement phase:
Repeat the following until convergence:

1. Sample an initial set of particles, z0 ∼ q0,φ(z|x).
2. Refine the particles through the sampler, zT ∼ Qη,T(z|z0).
3. Compute the ELBO objective from Equation (4).
4. Perform automatic differentiation on the objective wrt parameters φ, η to update them.

Inference phase:
Once good sampler parameters φ∗, η∗ are learned,

1. Sample an initial set of particles, z0 ∼ q0,φ∗(z|x).
2. Use the MCMC sampler zT ∼ Qη∗ ,T(z|z0) as T → ∞.

Since the sampler can be run for a different number of steps depending on the phase,
we use the following notation when necessary: VIS-X-Y denotes T = X iterations during
the refining phase and T = Y iterations during the inference phase.

Let us specify now the key elements.

3.1. The Sampler Qη,T(Z|Z0)

As the latent variables z are continuous, we evolve the original density q0,φ(z|x)
through a stochastic diffusion process [39]. To make it tractable, we discretize the Langevin
dynamics using the Euler–Maruyama scheme, arriving at the stochastic gradient Langevin
dynamics (SGLD) sampler (2). We then follow the process Qη,T(z|z0), which represents T
iterations of the MCMC sampler.

As an example, for the SGLD sampler zt = zt−1 + η∇ log p(x, zt−1) + ξt, where t
iterates from 1 to T. In this case, the only parameter is the learning rate η and the noise is
ξt ∼ N (0, 2η I). The initial variational distribution q0,φ(z|x) is a Gaussian parameterized
by a deep neural network (NN). Then, after T iterations of the sampler Q are parameterized
by η, we arrive at qφ,η .

An alternative arises by ignoring the noise ξ [22], thus refining the initial variational
approximation using only the stochastic gradient descent (SGD). Moreover, we can use
Stein variational gradient descent (SVGD) [40] or a stochastic version [36] to apply repulsion
between particles and promote more extensive explorations of the latent space.

3.2. Approximating the Entropy Term

We propose four approaches for the ELBO optimization which take structural advan-
tage of the refined variational approximation.

446



Entropy 2021, 23, 123

3.2.1. Particle Approximation (VIS-P)

In this approach, we approximate the posterior qφ,η(z|x) by a mixture of Dirac deltas
(i.e., we approximate it with a finite set of particles), by sampling z(1), . . . , z(M) ∼ qφ,η(z|x)
and setting

qφ,η(z|x) =
1
M

M

∑
m=1

δ(z − z(m)).

In this approximation, the entropy term in (4) is set to zero. Consequently, the sample
converges to the maximum posterior (MAP). This may be undesirable when training gen-
erative models, as the generated samples usually have little diversity. Thus, in subsequent
computations, we add to the refined ELBO the entropy of the initial variational approxima-
tion, Eq0,φ(z|x)

[
log q0,φ(z|x)

]
, which serves as a regularizer alleviating the previous problem.

When using SGD as the sampler, the resulting ELBO is tighter than that without refinement,
as shown in Section 4.2.

3.2.2. MC Approximation (VIS-MC)

Instead of performing the full marginalization in Equation (3), we approximate it with
qφ,η(zT , . . . , z0|x) = ∏T

t=1 qη(zt|zt−1)q0,φ(z0|x); i.e., we consider the joint distribution for
the refinement. However, in inference we only keep the zT values. The entropy for each
factor in this approximation is straightforward to compute. For example, for the SGLD
case, we have

zt = zt−1 + η∇ log p(x, zt−1) +N (0, 2η I), t = 1, ..., T.

This approximation tracks a better estimate of the entropy than VIS-P, as we are not
completely discarding it; rather, for each t, we marginalize out the corresponding zt using
one sample.

3.2.3. Gaussian Approximation (VIS-G)

This approach is targeted at settings in which it could be helpful to have a posterior
approximation that places density over the whole z space. In the specific case of using SGD
as the inner kernel, we have

z0 ∼ q0,φ(z0|x) = N (z0|μφ(x), σφ(x))

zt = zt−1 + η∇ log p(x, zt−1), t = 1, . . . , T.

By treating the gradient terms as points, the refined variational approximation can be
computed as qφ,η(z|x) = N (z|zT , σφ(x)). Observe that there is an implicit dependence on
η through zT .

3.2.4. Fokker–Planck Approximation (VIS-FP)

Using the Fokker–Planck equation, we derive a deterministic sampler via iterations of
the form

zt = zt−1 + η(∇ log p(x, zt−1)− ∇ log qt(zt−1)), t = 1, ..., T.

Then, we approximate the density qφ,η(z|x) using a mixture of Dirac deltas. A detailed
derivation of this approximation is given in Appendix A.

3.3. Back-Propagating through the Sampler

In standard VI, the variational approximation q(z|x; φ) is parameterized by φ. The pa-
rameters are learned employing SGD, or variants such as Adam [41], using the gradient
∇φELBO(q). We have shown how to embed a sampler inside the variational guide. It is
therefore also possible to compute a gradient of the objective with respect to the sampler
parameters η (see Section 3.1). For instance, we can compute a gradient ∇ηELBO(q) with
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respect to the learning rate η from the SGLD or SGD processes to search for an optimal
step size at every VI iteration. This is an additional step apart from using the gradient
∇φELBO(q) which is used to learn a good initial sampling distribution.

4. Analysis of Vis

Below, we highlight key properties of the proposed framework.

4.1. Consistency

The VIS framework is geared towards SG-MCMC samplers, where we can compute
the gradients of sampler hyperparameters to speed up mixing time (a common major
drawback in MCMC [42]). After back-propagating for a few iterations through the SG-
MCMC sampler and learning a good initial distribution, one can resort to the learned
sampler in the second phase, so standard consistency results from SG-MCMC apply as
T → ∞ [43].

4.2. Refinement of ELBO

Note that, for a refined guide using the VIS-P approximation and M = 1 samples, the
refined objective function can be written as

Eq(z0|x)[log p(x, z0 + η∇ log p(x, z0))− log q(z0|x)]

noting that z = z0 + η∇ log p(x, z0) when using SGD for T = 1 iterations. This is equiv-
alent to the refined ELBO in (4). Since we are perturbing the latent variables in the
steepest direction, we show easily that, for a moderate η, the previous bound is tighter
than Eq(z0|x)[log p(x, z0)− log q(z0|x)], the one for the original variational guide q(z0|x).
This reformulation of ELBO is also convenient since it provides a clear way of implementing
our refined variational inference framework in any probabilistic programming language
(PPL) supporting algorithmic differentiation.

Respectively, for the VIS-FP case, we find that its deterministic flow follows the same
trajectories as SGLD: based on standard results of MCMC samplers [44], we have

KL(qφ,η(z|x)||p(z|x)) ≤ KL(q0,φ(z|x)||p(z|x)).

A similar reasoning applies to the VIS-MC approximation; however, it does not hold
for VIS-G since it assumes that the posterior is Gaussian.

4.3. Taylor Expansion

This analysis applies only to VIS-P and VIS-FP. As stated in Section 4.2, within the
VIS framework, optimizing the ELBO resorts to the performance of maxz log p(x, z + Δz),
where Δz is one iteration of the sampler; i.e., Δz = η∇ log p(x, z) in the SGD case (VIS-P),
or Δz = η∇(log p(x, z)− log q(z)) in the VIS-FP case. For notational clarity, we consider
the case T = 1, although a similar analysis follows in a straightforward manner if more
refinement steps are performed.

Consider a first-order Taylor expansion of the refined objective

log p(x, z + Δz) ≈ log p(x, z) + (Δz)ᵀ∇ log p(x, z).

Taking gradients with respect to the latent variables z, we arrive at

∇z log p(x, z + Δz) ≈ ∇z log p(x, z) + η∇z log p(x, z)ᵀ∇2
z log p(x, z),

where we have not computed the gradient through the Δz term (i.e., we treated it as a
constant for simplification). Then, the refined gradient can be deemed to be the original
gradient plus a second order correction. Instead of being modulated by a constant learning
rate, this correction is adapted by the chosen sampler. The experiments in Section 5.4 show
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that this is beneficial for the optimization as it typically takes fewer iterations than the
original variant to achieve lower losses.

By further taking gradients through the Δz term, we may tune the sampler parameters
such as the learning rate as presented in Section 3.3. Consequently, the next subsection
describes two differentiation modes.

4.4. Two Automatic Differentiation Modes for Refined ELBO Optimization

For the first variant, remember that the original variant can be rewritten (which we
term Full AD) as

Eq[log p(x, z + Δz)− log q(z + Δz|x)]. (5)

We now define a stop gradient operator ⊥ (which corresponds to detach in Pytorch or
stop_gradient in tensorflow) that sets the gradient of its operand to zero—i.e., ∇x⊥(x) =
0—whereas in a forward pass, it acts as the identity function—that is, ⊥(x) = x. With this,
a variant of the ELBO objective (which we term Fast AD) is

Eq[log p(x, z +⊥(Δz))− log q(z +⊥(Δz)|x)]. (6)

Full AD ELBO enables a gradient to be computed with respect to the sampler parame-
ters inside Δz at the cost of a slight increase in computational burden. On the other hand,
the Fast AD variant may be useful in numerous scenarios, as illustrated in the experiments.

Complexity

Since we need to back propagate through T iterations of an SG-MCMC scheme,
using standard results of meta-learning and automatic differentiation [45], the time com-
plexity of our more intensive approach (Full-AD) is O(mT), where m is the dimension of
the hyperparameters (the learning rate of SG-MCMC and the latent dimension). Since for
most use cases, the hyperparameters lie in a low-dimensional space, the approach is
therefore scalable.

5. Experiments

The following experiments showcase the power of our approach as well as illustrating
the the impact of various parameters on its performance, guiding their choice in practice.
We also present a comparison with standard VIS and other recent variants, showing that
the increased computational complexity of computing gradients through sampling steps is
worth the gains in flexibility. Moreover, the proposed framework is compatible with other
structured inference techniques, such as the sum–product algorithm, as well as serving to
support other tasks such as classification.

Within the spirit of reproducible research, the code for VIS has been released at
https://github.com/vicgalle/vis. The VIS framework is implemented with Pytorch [46],
although we have also released a notebook for the first experiment using Jax to highlight
the simple implementation of VIS. In any case, we emphasize that the approach facilitates
rapid iterations over a large class of models.

5.1. Funnel Density

We first tested the framework on a synthetic yet complex target distribution. This ex-
periment assessed whether VIS is suitable for modeling complex distributions. The target
bi-dimensional density was defined through

z1 ∼ N (0, 1.35)

z2 ∼ N (0, exp(z1)).

We adopted the usual diagonal Gaussian distribution as the variational approximation.
For VIS, we used the VIS-P approximation and refined it for T = 1 steps using SGLD.
Figure 1 top shows the trajectories of the lower bound for up to 50 iterations of variational

449



Entropy 2021, 23, 123

optimization with Adam: our refined version achieved a tighter bound. The bottom figures
present contour curves of the learned variational approximations. Observe that the VIS
variant was placed closer to the mean of the true distribution and was more disperse than
the original variational approximation, illustrating the fact that the refinement step helps in
attaining more flexible posterior approximations.

Figure 1. Top: Evolution of the negative evidence lower bound (ELBO) loss objective over 50 iterations. Darker lines depict
means along different seeds (lighter lines). Bottom left: Contour curves (blue–turquoise) of the variational approximation
with no refinement (T = 0) at iteration 30 (loss of 1.011). Bottom right: Contour curves (blue–turquoise) of refined
variational approximation (T = 1) at iteration 30 (loss of 0.667). Green–yellow curves denote target density.

5.2. State-Space Markov Models

We tested our variational approximation on two state-space models: one for discrete
data and another for continuous observations. These experiments also demonstrated that
the framework is compatible with standard inference techniques such as the sum–product
scheme from the Baum–Welch algorithm or Kalman filter. In both models, we performed
inference on their parameters θ. All the experiments in this subsection used the Fast AD
version (Section 4.4) as it was not necessary to further tune the sampler parameters to
obtain competitive results. Full model implementations can be found in Appendix B.1,
based on funsor (https://github.com/pyro-ppl/funsor/), a PPL on top of the Pytorch
autodiff framework.

Hidden Markov Model (HMM): The model equations are

p(x1:τ , z1:τ , θ) =
τ

∏
t=1

p(xt|zt, θem)p(zt|zt−1, θtr)p(θ), (7)
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where each conditional is a categorical distribution taking five different classes. The prior
is p(θ) = p(θem)p(θtr) based on two Dirichlet distributions that sample the observation
and state transition probabilities, respectively.

Dynamic Linear Model (DLM): The model equations are as in (7), although the
conditional distributions are now Gaussian and the parameters θ refer to the observation
and transition variances.

For each model, we generated a synthetic dataset and used the refined variational ap-
proximation with T = 0, 1, 2. For the original variational approximation to the parameters
θ, we used a Dirac delta. Performing VI with this approximation corresponded to MAP
estimation using the Baum–Welch algorithm in the HMM case [47] and the Kalman filter
in the DLM case [48], as we marginalized out the latent variables z1:τ . We used the VIS-P
variant since it was sufficient to show performance gains in this case.

Figure 2 shows the results. The first row reports the experiments related to the HMM,
the second row those for the DLM. We report the evolution of the log-likelihood during
inference in all graphs; the first column reports the number of ELBO iterations, and the
second column portrays clock times as the optimization takes place. They confirm that VIS
(T > 0) achieved better results than standard VI (T = 0) for a comparable amount of time.
Note also that there was not as much gain when changing from T = 1 to T = 2 as there
is from T = 0 to T = 1, suggesting the need to carefully monitor this parameter. Finally,
the top-right graph for the case T = 0 is shorter as it requires less clock time.

Figure 2. Results of ELBO optimization for state-space models. Top-left (Hidden Markov Model (HMM)): Log-likelihood
against the number of ELBO gradient iterations. Top-right (HMM): Log-likelihood against clock time. Bottom-left (Dynamic
Linear Model (DLM)): Log-likelihood against number of ELBO gradient iterations. Bottom-right (DLM): Log-likelihood
against against clock time.
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5.2.1. Prediction with an HMM

With the aim of assessing whether ELBO optimization helps in attaining better auxil-
iary scores, results in a prediction task are also reported. We generated a synthetic time
series of alternating values of 0 and 1 for τ = 105 timesteps. We trained the previous HMM
model on the first 100 points and report in Table 1 the accuracy of the predictive distribution
p(yt) averaged over the final five time-steps. We also report the predictive entropy as it
helps in assessing the confidence of the model in its predictions, as a strictly proper scoring
rule [49]. To guarantee the same computational budget time and a fair comparison, the
model without refinement was run for 50 epochs (an epoch was a full iteration over the
training dataset), whereas the model with refinement was run for 20 epochs. It can be
observed that the refined model achieved higher accuracy than its counterpart. In addition,
it was more correctly confident in its predictions.

Table 1. Prediction metrics for the HMM.

T = 0 T = 1

accuracy 0.40 0.84
predictive entropy 1.414 1.056
logarithmic score −1.044 −0.682

5.2.2. Prediction with a DLM

We tested the VIS framework on Mauna Loa monthly CO2 time-series data [50]. We
used the first 10 years as a training set, and we tested over the next 2 years. We used a
DLM composed of a local linear trend plus a seasonal block of periodicity 12. Data were
standardized to a mean of zero and standard deviation of one. To guarantee the same
computational budget time, the model without refining was run for 10 epochs, whereas
the model with refinement was run for 4 epochs. Table 2 reports the mean absolute error
(MAE) and predictive entropy. In addition, we computed the interval score [49], as a
strictly proper scoring rule. As can be seen, for similar clock times, the refined model
not only achieved a lower MAE, but also its predictive intervals were narrower than the
non-refined counterpart.

Table 2. Prediction metrics for the DLM.

T = 0 T = 1

MAE 0.270 0.239
predictive entropy 2.537 2.401

interval score (α = 0.05) 15.247 13.461

5.3. Variational Autoencoder

The third batch of experiments showed that VIS was competitive with respect to
other algorithms from the recent literature, including unbiased implicit variational infer-
ence (UIVI [24]), semi-implicit variational inference (SIVI [25]), variational contrastive
divergence (VCD [29]), and the HMC variant from [26], showing that our framework can
outperform those approaches in similar experimental settings.

To this end, we tested the approach with a variational autoencoder (VAE) model [51].
The VAE defines a conditional distribution pθ(x|z), generating an observation x from a
latent variable z using parameters θ. For this task, our interest was in modeling the 28 × 28
image distributions underlying the MNIST [52] and the fashion-MNIST [53] datasets.
To perform inference (i.e., to learn the parameters θ) the VAE introduces a variational
approximation qφ(z|x). In the standard setting, this distribution is Gaussian; we instead
used the refined variational approximation comparing various values of T. We used the
VIS-MC approximation (although we achieved similar results with VIS-G) with the Full
AD variant given in Section 4.4.
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For the experimental setup, we reproduced the setting in [24]. For pθ(x|z), we used
a factorized Bernoulli distribution parameterized by a two layer feed-forward network
with 200 units in each layer and relu activations, except for a final sigmoid activation.
As a variational approximation qφ(z|x), we used a Gaussian with mean and (diagonal)
covariance matrix parameterized by two distinct neural networks with the same structure
as previously used, except for sigmoid activation for the mean and a softplus activation for
the covariance matrix.

Results are reported in Table 3. To guarantee fair comparison, we trained the VIS-
5-10 variant for 10 epochs, whereas all the other variants were trained for 15 epochs
(fMNIST) or 20 epochs (MNIST), so that the VAE’s performance was comparable to that
reported in [24]. Although VIS was trained for fewer epochs, by increasing the number
T of MCMC iterations, we dramatically improved the test log-likelihood. In terms of
computational complexity, the average time per epoch using T = 5 was 10.46 s, whereas
with no refinement (T = 0), the time was 6.10 s (which was the reason behind our decision
to train the refined variant for fewer epochs): a moderate increase in computing time may
be worth the dramatic increase in log-likelihood while not introducing new parameters
into the model, except for the learning rate η.

Table 3. Test log-likelihood on binarized MNIST and fMNIST. Bold numbers indicate the best
results. UIVI: unbiased implicit variational inference; SIVI: semi-implicit variational inference; VAE:
variational autoencoder; VCD: variational contrastive divergence; HMC-DLGM: Hamiltonian Monte
Carlo for Deep Latent Gaussian Models; VIS: variationally inferred sampler.

Method MNIST fMNIST

Results from [24]

UIVI −94.09 −110.72
SIVI −97.77 −121.53
VAE −98.29 −126.73

Results from [29]

VCD −95.86 −117.65
HMC-DLGM −96.23 −117.74

This paper

VIS-5-10 −82.74 ± 0.19 −105.08 ± 0.34
VIS-0-10 −96.16 ± 0.17 −120.53 ± 0.59

VAE (VIS-0-0) −100.91 ± 0.16 −125.57 ± 0.63

Finally, as a visual inspection of the VAE reconstruction quality trained with VIS,
Figures 3 and 4, respectively, display 10 random samples of each dataset.

Figure 3. Top: original images from MNIST. Bottom: reconstructed images using VIS-5-10 at
10 epochs.
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Figure 4. Top: original images from fMNIST. Bottom: reconstructed images using VIS-5-10 at
10 epochs.

5.4. Variational Autoencoder as a Deep Bayes Classifier

In the final experiments, we investigated whether VIS can deal with more general
probabilistic graphical models and also perform well in other inference tasks such as classi-
fication. We explored the flexibility of the proposed scheme to solve inference problems
in an experiment with a classification task in a high-dimensional setting with the MNIST
dataset. More concretely, we extended the VAE model, conditioning it on a discrete variable
y ∈ Y = {0, 1, . . . , 9}, leading to a conditional VAE (cVAE). The cVAE defined a decoder
distribution pθ(x|z, y) on an input space x ∈ RD given a class label y ∈ Y , latent vari-
ables z ∈ Rd and parameters θ. Figure 5 depicts the corresponding probabilistic graphic
model. Additional details regarding the model architecture and hyperparameters are given in
Appendix B.

Figure 5. Probabilistic graphical model for the deep Bayes classifier.

To perform inference, a variational posterior was learned as an encoder qφ(z|x, y) from
a prior p(z) ∼ N (0, I). Leveraging the conditional structure on y, we used the generative
model as a classifier using the Bayes rule,

p(y|x) ∝ p(y)p(x|y) = p(y)
∫

pθ(x|z, y)qφ(z|x, y)dz ≈ 1
M

M

∑
m=1

pθ(x|z(m), y)p(y), (8)

where we used M Monte Carlo samples z(m) ∼ qφ(z|x, y). In the experiments, we set
M = 5. Given a test sample x, the label ŷ with the highest probability p(y|x) is predicted.

For comparison, we performed several experiments changing T in the transition
distribution Qη,T of the refined variational approximation. The results are given in Table 4,
which reports the test accuracy at end of the refinement phase. Note that we are comparing
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different values of T depending on their use in refinement or inference phases (in the latter,
the model and variational parameters were kept frozen). The model with Tre f = 5 was
trained for 10 epochs, whereas the other settings were for 15 epochs, to give all settings a
similar training time. Results were averaged over three runs with different random seeds.
In all settings, we used the VIS-MC approximation for the entropy term. From the results,
it is clear that the effect of using the refined variational approximation (the cases when
T > 0) is crucially beneficial to achieve higher accuracy. The effect of learning a good initial
distribution and inner learning rate by using the gradients ∇φELBO(q) and ∇ηELBO(q)
has a highly positive impact in the accuracy obtained.

On a final note, we have not included the case of only using an SGD or an SGLD
sampler (i.e., without learning an initial distribution q0,φ(z|x)) since the results were much
worse than those in Table 4 for a comparable computational budget. This strongly suggests
that, for inference in high-dimensional, continuous latent spaces, learning a good initial
distribution through VIS may accelerate mixing time dramatically.

Table 4. Results on digit classification task using a deep Bayes classifier.

Tre f Tin f Acc. (Test)

0 0 96.5 ± 0.5 %
0 10 97.7 ± 0.7 %
5 10 99.8 ± 0.2 %

6. Conclusions

In this work, we have proposed a flexible and efficient framework to perform large-
scale Bayesian inference in probabilistic models. The scheme benefits from useful properties
and can be employed to efficiently perform inference with a wide class of models such as
state-space time series, variational autoencoders and variants such as the conditioned VAE
for classification tasks, defined through continuous, high-dimensional distributions.

The framework can be seen as a general approach to tuning MCMC sampler pa-
rameters, adapting the initial distributions and learning rate. Key to the success and
applicability of the VIS framework are the ELBO approximations based on the introduced
refined variational approximation, which are computationally cheap but convenient.

Better estimates of the refined density and its gradient may be a fruitful line of research,
such as the spectral estimator used in [54]. Another alternative is to use a deterministic
flow (such as SGD or SVGD), keeping track of the change in entropy at each iteration using
the change of the variable formula, as in [55]. However, this requires a costly Jacobian
computation, making it unfeasible to combine with our approach of back-propagation
through the sampler (Section 3.3) for moderately complex problems. We leave this for
future exploration. Another interesting and useful line of further research would be to
tackle the case in which the latent variables z are discrete. This would entail adapting the
automatic differentiation techniques to be able to back-propagate the gradients through
the sequences of acceptance steps necessary in Metropolis–Hastings samplers.

In order to deal with the implicit variational density, it may be worthwhile to consider
optimizing the Fenchel dual of the KL divergence, as in [31]. However, this requires the use
of an auxiliary neural network, which may entail a large computational price compared
with our simpler particle approximation.

Lastly, probabilistic programming offers powerful tools for Bayesian modeling. A PPL
can be viewed as a programming language extended with random sampling and Bayesian
conditioning capabilities, complemented with an inference engine that produces answers
to inference, prediction and decision-making queries. Examples include WinBUGS [56],
Stan [57] or the recent Edward [58] and Pyro [59] languages. We plan to adapt VIS into
several PPLs to facilitate the adoption of the framework.
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Appendix A. Fokker-Planck Approximation (Vis-Fp)

The Fokker–Planck equation is a PDE that describes the temporal evolution of the
density of a random variable under a (stochastic) gradient flow [39]. For a given SDE

dz = μ(z, t)dt + σ(z, t)dBt,

the corresponding Fokker–Planck equation is

∂

∂t
qt(z) = − ∂

∂z
[μ(z, t)qt(z)] +

∂2

∂z2

[
σ2(z, t)

2
qt(z)

]
.

We are interested in converting the SGLD dynamics to a deterministic gradient flow.

Proposition A1. The SGLD dynamics, given by the SDE

dz = ∇ log p(z)dt +
√

2dBt,

have an equivalent deterministic flow, written as the ODE

dz = (∇ log p(z)− ∇ log qt(z))dt.

Proof. Let us write the Fokker–Planck equation for the respective flows. For the Langevin
SDE, it is

∂

∂t
qt(z) = − ∂

∂z

[
∇ log p(z)qt(z)

]
+

∂2

∂z2

[
qt(z)

]
.

On the other hand, the Fokker–Planck equation for the deterministic gradient flow is
given by

∂

∂t
qt(z) = − ∂

∂z

[
∇ log p(z)qt(z)

]
+

∂

∂z

[
∇ log qt(z)qt(z)

]
.

The result immediately follows since ∂
∂z [∇ log qt(z)qt(z)] = ∂2

∂z2 [qt(z)].

Given that both flows are equivalent, we restrict our attention to the deterministic
flow. Its discretization leads to iterations of the form

zt = zt−1 + η(∇ log p(zt−1)− ∇ log qt−1(zt−1)). (A1)

In order to tackle the last term, we make the following particle approximation. Using
a variational formulation, we have
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−∇ log q(z) = ∇
(
− δ

δq
Eq[log q]

)
.

Then, we smooth the true density q convolving it with a kernel K, typically the rbf
kernel, K(z, z′) = exp{−γ‖z − z′‖2}, where γ is the bandwidth hyperparameter, leading to

∇
(
− δ

δq
Eq[log q]

)
≈ ∇

(
− δ

δq
Eq[log(q ∗ K)]

)
= ∇ log(q ∗ K)− ∇

(
q

(q ∗ K)
∗ K
)

.

If we consider a mixture of Dirac deltas, q(z) = 1
M ∑M

m=1 δ(z − zm), then the approxi-
mation is given by

−∇ log q(z) ≈ −∑k ∇zm K(zm, zn)

∑n K(zm, zn)
− ∑

l

∇zm K(zm, zl)

∑n K(zn, zl)
,

which can be inserted into Equation (A1). Finally, note that it is possible to back-propagate
through this equation; i.e., the gradients of K can be explicitly computed.

Appendix B. Experiment Details

Appendix B.1. State-Space Models

Appendix B.1.1. Initial Experiments

For the HMM, both the observation and transition probabilities are categorical distri-
butions, taking values in the domain {0, 1, 2, 3, 4}.

The equations of the DLM are

zt+1 ∼ N (0.5zt + 1.0, σtr)

xt ∼ N (3.0zt + 0.5, σem).

with z0 = 0.0.

Appendix B.1.2. Prediction Task in a DLM

The DLM model comprises a linear trend component plus a seasonal block with a
period of 12. The trend is specified as

xt = zlevel,t + εt εt ∼ N (0, σobs)

zlevel,t = zlevel,t−1 + zslope,t−1 + ε′
t ε′

t ∼ N (0, σlevel)

zslope,t = zslope,t−1 + ε′′
t ε′′

t ∼ N (0, σslope).

With respect to the seasonal component, we specify it through

xt = Fzt + vt vt ∼ N (0, σobs)

zt = Gzt−1 + wt wt ∼ N (0, σseas)

where F is a 12-dimensional vector (1, 0, . . . , 0, 0) and G is the 12 × 12 matrix

G =

⎡⎢⎢⎢⎢⎢⎣
0 0 . . . 0 1
1 0 0 0
0 1 0 0

. . .
0 0 1 0

⎤⎥⎥⎥⎥⎥⎦.

457



Entropy 2021, 23, 123

Further details are in [60].

Appendix B.2. Vae

Appendix B.2.1. Model Details

The prior distribution p(z) for the latent variables z ∈ R10 is a standard factorized
Gaussian. The decoder distribution pθ(x|z) and the encoder distribution (initial variational
approximation) q0,φ(z|x) are parameterized by two feed-forward neural networks, as
detailed in Figure A1.

Appendix B.2.2. Hyperparameter Settings

The optimizer Adam is used in all experiments, with la earning rate of λ = 0.001.
We also set η = 0.001. We train for 15 epochs (fMNIST) and 20 epochs (MNIST) to achieve
a performance similar to the VAE in [24]. For the VIS-5-10 setting, we train only for 10
epochs to allow a fair computational comparison in terms of similar computing times.

Appendix B.3. cVAE

Appendix B.3.1. Model Details

The prior distribution p(z) for the latent variables z ∈ R10 is a standard factorized
Gaussian. The decoder distribution pθ(x|y, z) and the encoder distribution (initial varia-
tional approximation) q0,φ(z|x, y) are parameterized by two feed-forward neural networks
whose details can be found in Figure A2. Equation (8) is approximated with one MC
sample from the variational approximation in all experimental settings, as it allowed fast
inference times while offering better results.

class VAE(nn.Module):
def __init__(self):

super(VAE, self).__init__()

self.z_d = 10
self.h_d = 200
self.x_d = 28*28

self.fc1_mu = nn.Linear(self.x_d, self.h_d)
self.fc1_cov = nn.Linear(self.x_d, self.h_d)
self.fc12_mu = nn.Linear(self.h_d, self.h_d)
self.fc12_cov = nn.Linear(self.h_d, self.h_d)
self.fc2_mu = nn.Linear(self.h_d, self.z_d)
self.fc2_cov = nn.Linear(self.h_d, self.z_d)

self.fc3 = nn.Linear(self.z_d, self.h_d)
self.fc32 = nn.Linear(self.h_d, self.h_d)
self.fc4 = nn.Linear(self.h_d, self.x_d)

def encode(self, x):
h1_mu = F.relu(self.fc1_mu(x))
h1_cov = F.relu(self.fc1_cov(x))
h1_mu = F.relu(self.fc12_mu(h1_mu))
h1_cov = F.relu(self.fc12_cov(h1_cov))
# we work in the logvar-domain
return self.fc2_mu(h1_mu),
torch.log(F.softplus(self.fc2_cov(h1_cov)))

def decode(self, z):
h3 = F.relu(self.fc3(z))
h3 = F.relu(self.fc32(h3))
return torch.sigmoid(self.fc4(h3))

Figure A1. Model architecture for the VAE.
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class cVAE(nn.Module):
def __init__(self):

super(cVAE, self).__init__()

self.z_d = 10
self.h_d = 200
self.x_d = 28*28
num_classes = 10

self.fc1_mu = nn.Linear(self.x_d + num_classes, self.h_d)
self.fc1_cov = nn.Linear(self.x_d + num_classes, self.h_d)
self.fc12_mu = nn.Linear(self.h_d, self.h_d)
self.fc12_cov = nn.Linear(self.h_d, self.h_d)
self.fc2_mu = nn.Linear(self.h_d, self.z_d)
self.fc2_cov = nn.Linear(self.h_d, self.z_d)

self.fc3 = nn.Linear(self.z_d + num_classes, self.h_d)
self.fc32 = nn.Linear(self.h_d, self.h_d)
self.fc4 = nn.Linear(self.h_d, self.x_d)

def encode(self, x, y):
h1_mu = F.relu(self.fc1_mu(torch.cat([x, y], dim=-1)))
h1_cov = F.relu(self.fc1_cov(torch.cat([x, y], dim=-1)))
h1_mu = F.relu(self.fc12_mu(h1_mu))
h1_cov = F.relu(self.fc12_cov(h1_cov))
# we work in the logvar-domain
return self.fc2_mu(h1_mu),
torch.log(F.softplus(self.fc2_cov(h1_cov)))

def decode(self, z, y):
h3 = F.relu(self.fc3(torch.cat([z, y], dim=-1)))
h3 = F.relu(self.fc32(h3))
return torch.sigmoid(self.fc4(h3))

Figure A2. Model architecture for the cVAE.

Appendix B.3.2. Hyperparameter Settings

The optimizer Adam was used in all experiments, with a learning rate of λ = 0.01.
We set the initial η = 5 × 10−5.
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Abstract: Variational algorithms have gained prominence over the past two decades as a scalable
computational environment for Bayesian inference. In this article, we explore tools from the dynamical
systems literature to study the convergence of coordinate ascent algorithms for mean field variational
inference. Focusing on the Ising model defined on two nodes, we fully characterize the dynamics of
the sequential coordinate ascent algorithm and its parallel version. We observe that in the regime
where the objective function is convex, both the algorithms are stable and exhibit convergence to
the unique fixed point. Our analyses reveal interesting discordances between these two versions of
the algorithm in the region when the objective function is non-convex. In fact, the parallel version
exhibits a periodic oscillatory behavior which is absent in the sequential version. Drawing intuition
from the Markov chain Monte Carlo literature, we empirically show that a parameter expansion of
the Ising model, popularly called the Edward–Sokal coupling, leads to an enlargement of the regime
of convergence to the global optima.

Keywords: bifurcation; dynamical systems; Edward–Sokal coupling; mean-field; Kullback–Leibler
divergence; variational inference

1. Introduction

Variational Bayes (VB) is now a standard tool to approximate computationally intractable
posterior densities. Traditionally this computational intractability has been circumvented using
sampling techniques such as Markov chain Monte Carlo (MCMC). MCMC techniques are prone
to be computationally expensive for high dimensional and complex hierarchical Bayesian models,
which are prolific in modern applications. VB methods, on the other hand, typically provide answers
orders of magnitude faster, as they are based on optimization. Introduction to VB can be found in
chapter 10 of [1] and chapter 33 of [2]. Excellent recent surveys can be found in [3,4].

The objective of VB is to find the best approximation to the posterior distribution from a more
tractable class of distributions on the latent variables that is well-suited to the problem at hand.
The best approximation is found by minimizing a divergence between the posterior distribution of
interest and a class of distributions that are computationally tractable. The most popular choices
for the discrepancy and the approximating class are the Kullback–Leibler (KL) divergence and the
class of product distributions, respectively. This combination is popularly known as mean field
variational inference, originating from mean field theory in physics [5]. Mean-field inference has
percolated through a wide variety of disciplines, including statistical mechanics, electrical engineering,
information theory, neuroscience, cognitive sciences [6] and more recently deep neural networks [7].
While computing the KL divergence is intractable for a large class of distributions, reframing the
minimization problem for maximizing the evidence lower bound (ELBO) leads to efficient algorithms.
In particular, for conditionally conjugate-exponential family models, the optimal distribution for mean
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field variational inference can be computed by iteration of closed form updates. These updates form
a coordinate ascent algorithm known as coordinate ascent variational inference (CAVI) [1].

Research into the theoretical properties of variational Bayes has exploded in the last few years.
Recent theoretical work focuses on statistical risk bounds for variational estimate obtained from
VB [8–11], asymptotic normality of VB posteriors [12] and extension to model misspecification [8,13].
While much of the recent theoretical work focuses on statistical optimality guarantees, there has been
less work studying the convergence of the CAVI algorithms employed in practice. Convergence of
CAVI to the global optima is only known in special cases that depend heavily on model structure for
normal mixture models [14,15]; stochastic block models [16–19]; topic models [20]; and under special
restrictions of the parameter regime, Ising models [21,22]. The convergence properties of the CAVI
algorithm still largely constitute an open problem.

The goal of this work is to suggest a general systematic framework for studying convergence
properties of CAVI algorithms. By viewing CAVI as a discrete time dynamical system, we can leverage
dynamical systems theory to analyze the convergence behavior of the algorithm and bifurcation
theory to study the types of changes that solutions can undergo as the various parameters are varied.
For sake of concreteness, we focus on the 2D Ising model. While dynamical systems theory possesses
the tools [23–25] necessary to analyze higher dimensional systems, they were mainly developed for
non-sequential systems. The general theory for n-dimensional discrete dynamical systems is dependent
on having the evolution function in the form xn+1 = F(xn). Deriving this F is typically not possible for
densely connected higher dimensional sequential systems. The 2D Ising model has the special property
that both the sequential and parallel updates in the two variables case can be written as two separate
one variable dynamical systems, allowing for a simplified analysis. Our contributions to the literature
are as follows: We provide a complete classification of the dynamical properties of the the traditional
sequential update CAVI algorithm, and a parallelized version of the algorithm using dynamical systems
and bifurcation theory on the Ising models. Our findings show that the sequential CAVI algorithm
and the parallelized version have different convergence properties. Additionally, we numerically
investigated the convergence of the CAVI algorithm on the Edward–Sokal coupling, a generalization
of the Ising model. Our findings suggest that couplings/parameter expansion may provide a powerful
way of controlling the convergence behavior of the CAVI algorithm, beyond the immediate example
considered here.

2. Mean-Field Variational Inference and the Coordinate Ascent Algorithm

In this section, we briefly introduce mean-field variational inference for a target distribution in
the form of a Boltzmann distribution with potential function Ψ,

p(x) =
exp{Ψ(x)}

Z , x ∈ X ,

where Z denotes the intractable normalizing constant. The above representation encapsulates
both posterior distributions that arise in Bayesian inference, where Ψ is the log-posterior up to
constants, and probabilistic graphical models such as the Ising and Potts models. For instance,
Ψ(x) = β ∑u∼v Juvxuxv + β ∑u huxu for the Ising model; see the next section for more details.
Many of the complications in inference arise from the intractability of the normalizing constant Z ,
which is commonly referred to as the free energy in probabilistic graphical models, and the marginal
likelihood or evidence in Bayesian statistics. Variational inference aims to mitigate this problem by
using optimization to find the best approximation q∗ to the target density p from a class F of variational
distributions over the parameter vector x,

q∗ = arg min
q∈F

D(q || p) (1)
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where D(q || p) denotes the Kullback–Leibler (KL) divergence between q and p. The complexity of
this optimization problem is largely determined by the choice of variational family F . The objective
function of the above optimization problem is intractable because it also involves the evidence Z .
We can work around this issue by rewriting the KL divergence as

D(q || p) = Eq[log q]−Eq[Ψ] + log Z (2)

where Eq denotes the expectation with respect to q(x). Rearranging terms,

log Z = D(q || p) +Eq[Ψ]−Eq[log q] (3)

≥ Eq[Ψ]−Eq[log q] := ELBO(q). (4)

The acronym ELBO stands for evidence lower bound and the nomenclature is now apparent from
the above inequality. Notice from Equation (2) that maximizing the ELBO is equivalent to minimizing
the KL divergence. By maximizing the ELBO we can solve the original variational problem while
by-passing the computational intractability of the evidence.

As mentioned above, the choice of variational family controls both the complexity and accuracy of
approximation. Using a more flexible family achieves a tighter lower bound but at the cost of having to
solve a more complex optimization problem. A popular choice of family that balances both flexibility
and computability is the mean-field family. Mean-field variational inference refers to the situation
when q is restricted to the product family of densities over the parameters,

FMF :=
{

q(x) = q1(x1)⊗ · · · ⊗ qn(xn) for probability measures qj, j = 1, . . . , n
}

, (5)

The coordinate ascent variational inference (CAVI) algorithm (refer to Algorithm 1) is a learning
algorithm that optimizes the ELBO over the mean-field family FMF. At each time step t ≥ 1, the CAVI
algorithm iteratively updates the current mean field marginal distribution q(t)j (xj) by maximizing the

ELBO over that marginal while keeping the other marginals {q(t)� (x�)}� �=j fixed at their current values.
Formally, we update the current distribution q(t)(x) to q(t+1)(x) by the updates,

q(t+1)
1 (x1) = arg max

q1
ELBO(q1 ⊗ q(t)2 ⊗ · · · ⊗ q(t)n )

q(t+1)
2 (x2) = arg max

q2
ELBO(q(t+1)

1 ⊗ q2 ⊗ q(t)3 ⊗ · · · ⊗ q(t)n )

...

q(t+1)
n (xn) = arg max

qn
ELBO(q(t+1)

1 ⊗ · · · ⊗ q(t+1)
n−1 ⊗ qn).

Algorithm 1 Coordinate ascent variational inference (CAVI).
Input: Model p(x) = exp(Ψ(x)− log Z)
Output: A variational density q(x) = ∏n

j=1 qj(xj)

Initialize: variational densities qj(xj)

while ELBO(q) not converged do
for j ∈ {1, . . . , n} do

qj(xj) ∝ exp
{
E−j [Ψ(x)]

}
end
Compute ELBO(q) = Eq[Ψ(x)]−Eq[log q(x)]

end
return q(x)
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The objective function ELBO(q1 ⊗ · · · ⊗ qn) is concave in each of the arguments individually
(although it is rarely jointly concave), so these individual maximization problems have unique solutions.
The optimal update for the jth mean field variational component of the model has the closed form,

q∗
j (xj) ∝ exp

{
E−j [Ψ(x)]

}
where the expectations E−j are taken with respect to the distribution ∏i �=j qi(xi).

Furthermore, the update step of the algorithm is monotonous, as each step of the CAVI increases the
objective function

ELBO(q(t+1)
1 ⊗ q(t+1)

2 ⊗ · · · ⊗ q(t+1)
n ) ≥ ELBO(q(t+1)

1 ⊗ q(t+1)
2 ⊗ · · · ⊗ q(t+1)

n−1 ⊗ q(t)n ) ≥ · · · ≥
ELBO(q(t)1 ⊗ q(t)2 ⊗ · · · ⊗ q(t)n ).

For parametric models, the sequential updates of the variational marginal distributions in the
CAVI algorithm is done by a sequential update of the variational parameters of these distributions.
The CAVI algorithm updates for parametric models induce a discrete time dynamical system of the
parameters. Clearly, convergence of the CAVI algorithm can be framed in terms of this induced discrete
time dynamical system. As discussed before, the ELBO is generally a non-convex function, and hence
the CAVI algorithm is only guaranteed to converge to a local optimum of the system. It is also not
clear how many local optima (or fixed points) the system has, nor whether the algorithm always
settles on a single fixed point, diverges away from the fixed point or cycles between multiple fixed
points. These questions translate to questions about the existence and stability of fixed points of the
induced dynamical system. We are also interested in how the behavior of the CAVI algorithm could
possibly change as we vary the parameters of the model. This translates to questions about the possible
bifurcations of the induced dynamical system. In Section 3, we formally introduce the Ising model and
its mean-field variational inference.

3. CAVI in Ising Model

We first briefly review the definition of an Ising model. The Ising model was first introduced
as a model for magnetization in statistical physics, but has found many applications in other fields;
see [26] and references therein. The Ising model is a probability distribution on the hypercube {±1}n

given by

p(x) ∝ exp

[
β ∑

u∼v
Juvxuxv + β ∑

u
huxu

]
, (6)

where the interaction matrix J is a symmetric real n × n matrix with zeros on the diagonal, h is a real
n-vector that represents the external magnetic field, and β is the inverse temperature parameter.
The model is said to be ferromagnetic if Juv ≥ 0 for all u, v and anti-ferromagnetic if Juv < 0 for all u, v.
The normalizing constant or the partition function of the Ising model is

Z = ∑
x∈{±1}n

exp

[
β ∑

u∼v
Juvxuxv + β ∑

u
huxu

]
.

Refer to Chapter 31 of [2] for an excellent review of Ising models.

Mean Field Variational Inference in Ising Model

Here we provide a derivation of the CAVI update function for the Ising model, focusing on the
two nodes (n = 2) case for simplicity and analytic tractability.
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Notice log p(x) := βH(x) = β ∑u∼v Juvxuxv + β ∑u huxu. In this case, we have the Ising model on
two spins with x = (x1, x2) and influence matrix J with off diagonal term J12 and external magnetic
field h = (h1, h2) = (0, 0). From the general framework in Section 2, the CAVI updates are given by,

q∗
j (xj) ∝ exp

{
E−j [β(J12x1x2 + h1x1 + h2x2)]

}
.

Equivalently, the same updates are obtained by setting the gradient of the ELBO as a function
of (x1, x2) equal to the (0, 0)′ vector. Illustrations of the ELBO and the gradient functions for various
values of β are in Figures 1 and 2 respectively.

Figure 1. A contour plot of the ELBO as a function of x1 and x2 for β = 0.7 (left) and β = 1.2
(right) together with the optimal update functions for x1 (orange) and x2 (blue) given in Equation (8).
For β = 0.7 the ELBO is a convex function and has exactly one optima, the global maximum, at (0.5, 0.5).
For β = 1.2 the ELBO is now a nonconvex function and has three optima at (0.5, 0.5), (0.17071, 0.17071)
and (0.82928, 0.82928).

Figure 2. A contour plot of the ELBO as a function of x1 and x2 for β = −0.7 (left) and β = −1.2
(right) together with the optimal update functions for x1 (orange) and x2 (blue) given in Equation (8).
For β = −0.7 the ELBO is a convex function and has exactly one optima, the global maximum,
at (0.5, 0.5). For β = −1.2 the ELBO is now a nonconvex function and has three optima at (0.5, 0.5),
(0.17071, 0.82928) and (0.82928, 0.17071).

Since q∗
1 and q∗

2 are two point distributions, it is sufficient to keep track of the mass assigned
to 1. Simplifying,

q∗
1(x1) ∝ exp {E2 [log p(x1, x2)]}

= exp {βH(x1, x2 = 1)q2(x2 = 1) + βH(x1, x2 = −1)q2(x2 = −1)}
= exp {(βJ12x1 + βh1x1 + βh2)ξ + (−βJ12x1 + βh1x1 − βh2)(1 − ξ)}
= exp {(2ξ − 1)(βJ12x1 + βh2) + βh1x1} ,
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where ξ = q2(x2 = 1). Therefore

q∗
1(x1 = 1) =

exp {(2ξ − 1)(βJ12 + βh2) + βh1}
exp {(2ξ − 1)(βJ12 + βh2) + βh1}+ exp {(2ξ − 1)(−βJ12 + βh2)− βh1}

=
1

1 + exp {−2βJ12(2ξ − 1)− 2βh1}
.

Similarly denoting ζ = q1(x1 = 1),

q∗
2(x2 = 1) =

exp {(2ζ − 1)(βJ12 + βh1) + βh2}
exp {(2ζ − 1)(βJ12 + βh1) + βh2}+ exp {(2ζ − 1)(−βJ12 + βh1)− βh2}

=
1

1 + exp {−2βJ12(2ζ − 1)− 2βh2}
.

Let ζk (resp. ξk) denote the kth iterate of q1(x1 = 1) (resp. q2(x2 = 1)) from the CAVI algorithm.
To succinctly represent these updates, define the logistic sigmoid function

σ(u, β) =
1

1 + e−βu , u ∈ [0, 1], β ∈ R. (7)

With this notation, we have, for any k ∈ Z+,

ζk+1 = σ(J12(2ξk − 1) + h1, 2β)

ξk+1 = σ(J12(2ζk+1 − 1) + h2, 2β).
(8)

Without loss of generality we henceforth set J12 = 1. Under this choice the model is in the
ferromagnetic regime for β > 0 and the anti-ferromagnetic regime for β < 0.

4. Why the Ising Model: A Summary of Our Contributions

There are exactly two cases of the Ising model that have a full analytic solution for the free
energy. They are (i) the one dimensional line graph solved by Ernst Ising in his thesis [27] and (ii)
the two dimensional case on the anisotropic square lattice when the magnetic field h = 0 by [28].
Comparison with the mean field solution for the same models highlights the poor approximation
quality of the mean field solution in low dimensions. To the best knowledge of the authors, there are
no results in the literature detailing the properties of the mean field solution to the anti-ferromagnetic
Ising model. Readers not familiar with the physics may wonder why this is the case. To explain
this, there are two cases in the anti-ferromagnetic regime: one of the two regions is equivalent to the
ferromagnetic case and in the other the mean field approximation is not a good approximation of
the system. The first case occurs in a bipartite graph where a transformation of variables makes the
antiferromagnetic regime equivalent to the ferromagnetic one [29]. The other case can be seen on the
triangle graph. By fixing the spin of one vertex as 1 and the other as −1, the third vertex becomes
geometrically frustrated and neither choice of spin lowers the energy level of the system and the
two configurations are equivalent [30]. In this case the mean field approximation gives a completely
incorrect answer and does not merit further investigation from a qualitative point of view. The physics
literature is primarily concerned with using the mean field solutions to the Ising model to estimate
important physical constants of the systems. These constants are only meaningful when the mean field
solution provides a good approximation to the behavior of the system in large dimensions. It is known,
however, that under certain conditions the mean field approximation does indeed converge to the true
free energy of the system as the dimension increases [21,31].

Our work is focused on providing a rigorous methodology to analyze dynamics of the CAVI
algorithm that can be applied to any model structure. All of the interesting behaviors exhibited by
the CAVI algorithm fit into the classical mathematical framework of discrete dynamical systems
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and bifurcation theory. Specifically, we use the Ising model as a simple and yet rich example to
illustrate the potential of dynamical systems theory to analyze CAVI updates for mean field variational
inference. The bifurcation of the ferromagnetic Ising model at the boundary of the Dobrushin
regime is known [2,26]; however, a rigorous proof in terms of dynamical systems theory is missing
in the literature.

There are several features that make the CAVI algorithm on the Ising model a nontrivial example
worth investigating. The optimization problem arising from mean field variational inference on
the Ising model is, in general, non-convex [21]. However, it is straightforward to obtain sufficient
conditions to guarantee the existence of a global optima. One such condition is that the inverse
temperature β is inside the Dobrushin regime, |β| < 1 [21]. Inside the Dobrushin regime, the CAVI
update equations form a contraction mapping guaranteeing a unique global optima [21]. Outside of
this regime the behavior of the CAVI algorithm is nontrivial. The CAVI solution to the Ising model
with zero external magnetic field exhibits multiple local optima outside of the Dobrushin regime [2].

Our contributions to the literature are as follows. We utilize tools from dynamical systems theory
to rigorously classify the full behavior of Ising model for the full parameter regime in dimension
n = 2 for both the sequential and parallel versions of CAVI algorithm. We show that the dynamical
behavior of the sequential CAVI is not equivalent to the behavior of the parallel CAVI. Lastly we derive
a variational approximation to the Edward-Sokal parameter expansion of the Potts and Random Cluster
models and numerically study its convergence behavior under the CAVI algorithm. Our numerical
results reveal that the parameter expansion leads to an enlargement of the regime of convergence to
the global optima. In particular the Dobrushin regime is strictly contained in the expanded regime.
This is compatible with the analogous results in Markov chain literature. See the introduction of [32]
for a well written summary of Markov chain mixing in the Ising model.

Statistical Significance of Our Results

Although mean-field variational inference has been routinely used in applications [3] for
computational efficiency, it may not yield statistically optimal estimators. A statistically optimal
estimator should correctly recover the statistical properties of the true distribution. Ideally, we would
like the estimate to recover the true mean and true covariance of the distribution. It is well known that
mean-field variational inference produces estimators that underestimate the posterior covariance [14].
More recently, it was shown that the mean-field estimators for certain topic models and stochastic
block models may not even be correlated with the true distribution [17,20]. For these reasons, it is
important to see if the mean field estimators can at least recover the true mean for various β ∈ R.

Mean field inference approximates the joint probability mass function in (6) for n = 2 by product
of two distributions on {−1, 1} in the sense of Kullback–Leibler divergence. As discussed in Section 3,
minimizing this divergence is equivalent to maximizing an objective function, called the Evidence
Lower Bound (ELBO). Our objective is to better understand the relation between the CAVI estimate
and the global maximum of ELBO in (6) when n = 2 and h = 0. Ideally, we want the global maximum
of the ELBO to be a statistically reliable estimate. To understand this, let us denote 2 × Bernoulli(p)− 1
by 〈1, −1; p〉. As the marginal distributions of (6) are both equal to 〈1, −1; 0.5〉, we want the ELBO
to be maximized at this value. From an algorithmic perspective, we would like to ensure that the
CAVI iterates converge to this global maximum. The synergy of these two phenomena leads to
a successful variational inference method. We show in this article that both these conditions can be
violated in a certain regime of the parameter space in the context of Ising model on two nodes. Inside
the Dobrushin regime (−1 ≤ β ≤ 1), the global optima of the ELBO obtained from a mean field
inference occurs at (〈1, −1; 0.5〉, 〈1, −1; 0.5〉) which is qualitatively the optimal solution. In this regime,
the CAVI system converges to this global optimum irrespective of where the system is initialized.
Thus, in the Dobrushin regime, the mean field inference yields the statistically optimal estimate.
Additionally, the CAVI algorithm is stable and convergent at this value. Unfortunately, this property
deteriorates outside of the Dobrushin regime. Outside of the regime, the global maxima occur at
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two symmetric points which are different from (〈1, −1; 0.5〉, 〈1, −1; 0.5〉). These two symmetric
points are equivalent under label switching. For example, when β = 1.2 one of the optima is
(〈1, −1; 0.17071〉, 〈1, −1; 0.17071〉) and the other is (〈1, −1; 0.82928〉, 〈1, −1; 0.82928〉). Notice this
second optima is equivalent to the sign swapped version (〈−1, 1; 0.17071〉, 〈−1, 1; 0.17071〉).

The original optima (〈1, −1; 0.5〉, 〈1, −1; 0.5〉) is actually a local minimum of the ELBO outside the
Dobrushin regime. We illustrate in our theory that the CAVI system returns one of two global maxima
of the objective function depending on the initialization of the algorithm. Although it is widely known
that the statistical quality of the mean field inference is poor outside the regime, we show in addition
that the algorithm itself exhibits erratic behavior and may not converge to the global maximizer of
the ELBO for all initializations. Interestingly, outside the Dobrushin regime, the statistically optimal
solution (〈1, −1; 0.5〉, 〈1, −1; 0.5〉) is a repelling fixed point of the CAVI system. This means that as the
system is iterated, the current value of the system is pulled away from (〈1, −1; 0.5〉, 〈1, −1; 0.5〉) to the
global maximum.

A common technique to further improve computational time is the use of block updates in the
CAVI algorithm, meaning groups of parameters are updated simultaneously. We refer to this as the
parallelized CAVI algorithm. This has been shown to work well in certain models [17], but has not
been investigated in a general setting. However, it turns out that block updating in the Ising model
can lead to new problematic behaviors. Outside the Dobrushin regime, block updates can exhibit
non-convergence in the form of cycling. As the system updates, it eventually switches back and forth
between two points that yield the same value in the objective function.

Parameter expansions (coupling) is another method of improving the convergence properties of
algorithms. In the Markov chain theory for Ising models, it is well-known that mixing and convergence
time are typically improved by using the Edward–Sokal coupling, a parameter expansion of the
ferromagnetic Ising model [33]. Our preliminary investigation reveals that the convergence properties
of the CAVI algorithm also exhibit a similar phenomenon.

5. Main Results

In this section, we analyze the behavior of the dynamical systems that one can form using the CAVI
update equations and show that the behaviors of the systems differ. Our results are heavily dependent
on well-known techniques in dynamical systems. For readers unfamiliar with some of technical
terminology below, we have included a primer on the basics of dynamical systems in Appendix A.

Recall the system of sequential updates, which are the updates used in CAVI:

ζk+1 = σ(2ξk − 1, 2β), ξk+1 = σ(2ζk+1 − 1, 2β), (9)

and the parallel updates:

ζk+1 = σ(2ξk − 1, 2β), ξk+1 = σ(2ζk − 1, 2β). (10)

We will show that these two systems are not topologically conjugate. We first state and prove
some results on the dynamics of the sigmoid function (7). These results will be used as building
blocks to study the dynamics of (9) and (10). Phase change behavior of dynamical systems using the
sigmoid and RELU activation functions are known in the literature in the context of generalization
performance of deep neural networks [34,35]. In this section we present a complete proof of the
bifurcation analysis of non-linear dynamical systems involving sigmoid activation function despite its
connections with [34,35]. Our results in Section 5.1 provide a more complete picture of the behavior of
the dynamics in all regimes and can be readily exploited to analyze the dynamics of (9) and (10).
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5.1. Sigmoid Function Dynamics

In this section we provide a full classification for the dynamics of the following sigmoid function
and its second iterate,

σ(2x − 1, 2β), (11)

σ(2σ(2x − 1, 2β)− 1, 2β). (12)

To the best of our knowledge, we could not find a formal proof of the full classification
of the dynamics of the sigmoid function (or its second iterate) for all β ∈ R in the literature.
Additionally, it provides an introductory example to demonstrate the concepts and techniques of
dynamical systems. We begin by using numerical techniques to determine the number of fixed points
in the system and its possible periodic behavior. We then proceed by providing a formal proof of the
full dynamical properties of (11) in Theorem 1 and the full dynamical properties of (12) in Theorem 2.

Using numerical techniques, we solve for the number of fixed points of the system. The number of
fixed points the function (11) depends on the magnitude of the parameter. For β > 0, there is no periodic
behavior, so there are no additional fixed points in (12) that are not fixed points in (11). For −1 ≤ β ≤ 1,
there is a single fixed point at x∗ = 1/2 and for β > 1, there are 3 fixed points c0(β), 1/2, c1(β) in the
interval [0, 1]. These fixed points satisfy 0 ≤ c0(β) < 1/2 < c1(β) ≤ 1, c0(β) → 0 and c1(β) → 1 as
β → ∞. For β < 0, we see periodic behavior in the system; there are fixed points of (12) that are not
fixed points of (11). For β < −1, the function (11) has one fixed point at x∗ = 1/2 and a periodic cycle
C = {c0(β), c1(β)}. Both c0(β), c1(β) are fixed points of (12) and these points are the same fixed points
from the β > 0 regime as (12) is an even function with respect to β.

Table 1 denotes the values of the derivatives at the fixed point 1/2 for β = ±1.

Table 1. Partial derivatives of (11) and (12) at fixed point x∗ = 1/2 for parameter value β = ±1.
The derivatives of the the function (11) are denoted using σ and the derivatives for (12) are
denoted using σ2.

σx σxx σxxx σβ σβx σ2
x σ2

xx σ2
xxx σ2

β σ2
βx

β = 1 1 0 −8 0 1/2 1 0 −16 0 1

β = −1 −1 0 8 0 1/2 1 0 −16 0 −1

We now have enough information to provide a complete classification of the dynamics of the
sigmoid function.

Theorem 1 (Dynamics of sigmoid function). Consider the discrete dynamical system generated by (11)

x �→ σ(2x − 1, 2β) =
1

1 + e−2β(2x−1)
.

The full dynamics of the system (11) are as follows

1. For −1 ≤ β ≤ 1, the system has a single hyperbolic fixed point x∗ = 1/2 which is a global attractor and
there are no p-periodic points for p ≥ 2.

2. For β > 1, the system has one repelling hyperbolic fixed point x∗ = 1/2 and two hyperbolic stable fixed
points c0, c1, with 0 < c0 < 1/2 < c1 < 1, and stable sets Ws(c0) = [0, 1/2), Ws(c1) = (1/2, 1].
There are no p-periodic points for p ≥ 2.

3. For β < −1, the system has one unstable hyperbolic fixed point x∗ = 1/2, and a stable 2-cycle C = {c0, c1}
with stable set Ws(C) = [0, 1/2) ∪ (1/2, 1], with 0 < c0 < 1/2 < c1 < 1. There are no p-periodic
points for p > 2.
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4. For |β| = 1, the system has one non-hyperbolic fixed point at x∗ = 1/2 which is asymptotically stable
and attracting.

The system undergoes a PD bifurcation at β = −1 and a pitchfork bifurcation at β = 1.

Proof. We will break the proof up into three parts. The first part of the proof is a linear stability
analysis of the system, the second part is a stability analysis of the periodic points in the system
and the third part is an analysis of the bifurcations of the system. We begin with a linear stability
analysis of the system at each fixed point. For β ≤ 1 the system has one fixed point x∗ = 1/2
and for β > 1 the system has three fixed points c0, 1/2, c1. The derivative of σ(2x − 1, 2β) is
σx(2x − 1, 2β) = −4βσ(2x − 1, 2β)(1 − σ(2x − 1, 2β)).

Fixed point x∗ = 1/2 : The Jacobian of the system at the fixed point x∗ = 1/2 is
σx(2x∗ − 1, 2β) = β. For β �= 1, the fixed point x∗ = 1/2 is hyperbolic and for β = ±1 the fixed
point is non-hyperbolic. We classify the stability of the hyperbolic fixed point x∗ = 1/2 using
Theorem A2. For |β| < 1 the fixed point x∗ = 1/2 is globally attracting as |σx(2x∗ − 1, 2β)| < 1 and for
|β| > 1 the fixed point x∗ = 1/2 is globally repelling as |σx(2x∗ − 1, 2β∗)| > 1. For β = ±1 we invoke
Theorem A3 to check for stability of the fixed point. At β = −1 we have σx(2x∗ − 1, 2β) = −1 and we
need to check the Schwarzian derivative. The fixed point x∗ = 1/2 is asymptotically stable for β = −1
by Theorem A3, as Sσ(2σ(2x − 1, 2β)− 1, 2β) |x=x∗= −8. For β = 1 we have σx(2x∗ − 1, 2β) = 1 and
we need to check the second and third derivatives at the fixed point. The fixed point x∗ = 1/2 is
asymptotically stable when β = 1 by Theorem A3 as σxx(2x∗ − 1, 2β) = 0 and σxxx(2x∗ − 1, 2β) = −8.

Fixed points c0, c1 : These fixed points have the same behavior so we have grouped them together
in the analysis. When β > 1 there are two additional fixed points c0, c1 of the system, both are attracting
fixed points by Theorem A2 as |σx(2ci − 1, 2β)| < 1 for each i = 0, 1 and all β > 1. The stable sets are
Ws(c0) = [0, 1/2) and Ws(c1) = (1/2, 1].

Periodic points: For β < −1 we see the two cycle C = {c0, c1}. Notice σ(2c0 − 1, 2β) = c1

and σ(2c1 − 1, 2β) = c0. This two cycle is stable since c0 and c1 are both stable fixed points of (12).
The stable set is Ws(C) = [0, 1/2) ∪ (1/2, 1], 0 < c0 < 1/2 < c1 < 1.

At (x∗, β∗) = (1/2, 1) the system under goes a pitchfork bifurcation as it satisfies the conditions
in Theorem A5:

σ(2x∗ − 1, 2β∗) = 1/2 σx(2x∗ − 1, 2β∗) = 1 σxx(2x∗ − 1, 2β∗) = 0,

σβ(2x∗ − 1, 2β∗) = 0 σxβ(2x∗ − 1, 2β∗) �= 0 σxxx(2x∗ − 1, 2β∗) �= 0.

Similarly at (x∗, β∗) = (1/2, −1) the system under goes a period doubling bifurcation as it
satisfies the conditions in Theorem A4

σ(2x∗ − 1, 2β∗) = 1/2 σx(2x∗ − 1, 2β∗) = −1 σxx(2x∗ − 1, 2β∗) = 0,

σβ(2x∗ − 1, 2β∗) = 0 σxβ(2x∗ − 1, 2β∗) �= 0 σxxx(2x∗ − 1, 2β∗) �= 0.

We can fully classify the dynamics of (12) using the above theorem. We omit the proof as it is
similar to the proof of Theorem 1.

Theorem 2. The full dynamics of the system (12) are as follows

1. For −1 ≤ β ≤ 1, the system has a single hyperbolic fixed point x∗ = 1/2 which is a global attractor and
there are no p-periodic points for p ≥ 2.

2. For |β| > 1, the system has one repelling hyperbolic fixed point x∗ = 1/2 and two hyperbolic stable fixed
points c0, c1, with 0 < c0 < 1/2 < c1 < 1, and stable sets Ws(c0) = [0, 1/2), Ws(c1) = (1/2, 1].

3. For |β| = 1, the system has one non-hyperbolic fixed point at x∗ = 1/2 which is asymptotically stable
and attracting.
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The system undergoes a pitchfork bifurcation at β = ±1. There are no p-periodic points for p ≥ 2.

5.2. Sequential Dynamics

To fully understand the dynamics of the equations defining the updates to q∗
1 and q∗

2 it suffices
to track the evolution of the points q∗

1(1) = ζ and q∗
2(1) = ξ. The CAVI algorithm updates terms

sequentially, using the new values of the variables to calculate the others. We initialize the CAVI
algorithm at points ζ0, ξ0. The CAVI algorithm is a dynamical system formed by sequential iterations
of σ(2x − 1, 2β) starting from ζ0, ξ0. We can decouple the CAVI updates for ξk and ζk by looking at the
second iterations. This decoupling is visualized in the diagram (14) below. The system formed the
sequential updates is equivalent to the following decoupled system

ζ1 = σ(2ξ0 − 1, 2β),

ζk+1 = σ(2σ(2ζk − 1, 2β)− 1, 2β), k ≥ 1, (13)

ξk+1 = σ(2σ(2ξk − 1, 2β)− 1, 2β), k ≥ 0.

We propose to investigate the dynamics of the sequential system (9) by studying the dynamics
of individual subsequences ζk+1 and ξk+1 of the decoupled system (13). The dynamical properties of
the individual subsequences follow from a combination of Theorem 1, Theorem 2 and other methods
from Appendix A.

ζ0 ζ1 ζ2 ζ3 · · ·

ξ0 ξ1 ξ2 ξ3 · · ·
σ

σ2 σ2

σ

σ2

σ

σ2

σ

σ2

σ (14)

Illustrations of the evolution of the dynamics of the sequential updates for various initializations
and values of β are in Figures 3–6.

Theorem 3 (CAVI dynamics). The Dynamics of the CAVI System (9) Are Given by

1. For β < −1, the system has the system has one locally asymptotically unstable fixed point
(1/2, 1/2) and two locally asymptotically stable fixed points (c0, c1) and (c1, c0), with stable sets
Ws((c0, c1)) = [0, 1]× [0, 1/2) and Ws((c1, c0)) = [0, 1]× (1/2, 1] respectively.

2. For |β| ≤ 1, the system has a global asymptotically stable fixed point (1/2, 1/2).
3. For β > 1 the system has the system has one locally asymptotically unstable fixed point (1/2, 1/2)

and two locally asymptotically stable fixed points (c0, c0) and (c1, c1), with domains of attraction
Ws((c0, c0)) = [0, 1]× [0, 1/2) and Ws((c1, c1)) = [0, 1]× (1/2, 1] respectively.

where 0 ≤ c0 < 1/2 < c1 ≤ 1 are the fixed points of (11) in [0, 1]. The system undergoes a super-critical
pitchfork bifurcation at β = −1 and again at β = 1. Furthermore the system has no p-periodic points for p ≥ 2.

Proof. We will proceed to construct the dynamics of the system (9) by tracing the behavior of the
dynamics in the equivalent system (13). The dynamics of each of these subsequences is governed
by the Functions (11) and (12) and dependent on the initialization ξ0. The behavior for each of the
subsequence ξk+1, for k ≥ 0 is governed by Theorem 2. Similarly the behavior of the subsequence
ζk+1, for k ≥ 1 is governed by Theorem 2 with the additional point ζ1 = σ(2ξ0 − 1, 2β) dependent
on Theorem 1. For |β| < 1, (11) has a globally stable fixed point at x∗ = 1/2 and thus for all ξ0,
ζ1 = σ(2ξ0 − 1, 2β) ∈ Ws(1/2). It now follows from Theorem 2 that the only fixed point in the
sequential system is (1/2, 1/2) which must be globally stable. For β = ±1, the fixed point x0 = 1/2
is asymptotically stable by Theorem A3. The system undergoes a super-critical pitchfork bifurcation
at β = −1 and again at β = 1 as a consequnece from its relation to (12). For β > 1, (11) bifurcates.
We have the unstable fixed point x∗ = 1/2, and the two locally stable fixed points, c0 with stable set
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Ws(c0) = [0, 1/2), and c1 with stable set Ws(c1) = (1/2, 1]. For ξ0 ∈ Ws(c0) we have ζ1 ∈ Ws(c0)

and ξ1 ∈ Ws(c0). It now follows from Theorem 2 that the system will converge to (c0, c0) and
that Ws((c0, c0)) = [0, 1] × [0, 1/2). A similar argument shows the system converges to (c1, c1) for
ξ0 ∈ Ws(c1) and Ws((c1, c1)) = [0, 1] × (1/2, 1]. Lastly, (1/2, 1/2) is a repelling fixed point of the
systems since x∗ = 1/2 is a repelling fixed point for both (11) and (12). For β < −1, (11) bifurcates.
We have the unstable fixed point x∗ = 1/2, and the stable two cycle, C = {c0, c1} with stable set
Ws(C) = [0, 1/2) ∪ (1/2, 1]. For any ξ0 < 1/2 we have, ζ1 > 1/2 and ξ1 < 1/2. It now follows from
Theorem 2 that the system will converge to (c1, c0) and that Ws((c1, c0)) = [0, 1]× [0, 1/2). A similar
argument shows the system converges to (c0, c1) for ξ0 > 1/2 and Ws((c0, c1)) = [0, 1] × [0, 1/2).
Lastly, (1/2, 1/2) is a repelling fixed point of the systems since x∗ = 1/2 is a repelling fixed point for
both (11) and (12). The dynamics of (13) lack any p-period point and cycles for p > 2 as a consequence
of its construction from (12).

Figure 3. A plot of the first 20 iterations of the CAVI algorithm at various initializations for β = −1.2.
In each of the plots the ζ updates are black and the ξ updates are red. The upper left plot is an
initialization of ζ0 = 0.3 and ξ0 = 0.3; we see that ζk converges to the local fixed point c1(1.2) = 0.82928
and ξk converges to the local fixed point c0(1.2) = 0.17071. The upper right is an initialization of
ζ0 = 0.3 and ξ0 = 0.7; we see that ζk converges to the local fixed point c0(1.2) = 0.17071 and ξk
converges to the local fixed point c1(1.2) = 0.82928. The lower left is is an initialization of ζ0 = 0.7
and ξ0 = 0.3; we see that ζk converges to the local fixed point c1(1.2) = 0.82928 and ξk converges to
the local fixed point c0(1.2) = 0.17071. The upper left plot is an initialization of ζ0 = 0.7 and ξ0 = 0.7;
we see that ζk converges to the local fixed point c0(1.2) = 0.17071 and ξk converges to the local fixed
point c1(1.2) = 0.82928.

474



Entropy 2020, 22, 1263

Figure 4. A plot of the first 20 iterations of the CAVI algorithm at various initializations for β = −0.7.
In each of the plots the ζ updates are black and the ξ updates are red. The upper left plot is an
initialization of ζ0 = 0.3 and ξ0 = 0.3; we see that both of these converge to the global fixed point 1/2.
The upper right is an initialization of ζ0 = 0.3 and ξ0 = 0.7; we see that this initialization converges to
the global fixed point 1/2. The lower left is is an initialization of ζ0 = 0.7 and ξ0 = 0.3; we see that this
initialization converges to the global fixed point 1/2. The upper left plot is an initialization of ζ0 = 0.7
and ξ0 = 0.7; we see that both of these converge to the global fixed point 1/2.

Figure 5. A plot of the first 20 iterations of the CAVI algorithm at various initializations for β = 0.7.
In each of the plots the ζ updates are black and the ξ updates are red. The upper left plot is
an initialization of ζ0 = 0.3 and ξ0 = 0.3; we see that both of these converge to the global fixed point
1/2. The upper right is an initialization of ζ0 = 0.3 and ξ0 = 0.7; we see that this initialization converges
to the global fixed point 1/2. The lower left is is an initialization of ζ0 = 0.7 and ξ0 = 0.3; we see that
this initialization converges to the global fixed point 1/2. The upper left plot is an initialization of
ζ0 = 0.7 and ξ0 = 0.7; we see that both of these converge to the global fixed point 1/2.
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Figure 6. A plot of the first 20 iterations of the CAVI algorithm at various initializations for β = 1.2.
In each of the plots the ζ updates are black and the ξ updates are red. The upper left plot is an
initialization of ζ0 = 0.3 and ξ0 = 0.3; we see that both of these converge to the local fixed point
c0(1.2) = 0.17071. The upper right is an initialization of ζ0 = 0.3 and ξ0 = 0.7; we see that this
initialization converges to the local fixed point c1(1.2) = 0.82928. The lower left is is an initialization of
ζ0 = 0.7 and ξ0 = 0.3; we see that this initialization converges to the local fixed point c0(1.2) = 0.17071.
The upper left plot is an initialization of ζ0 = 0.7 and ξ0 = 0.7; we see that both of these converge to
the local fixed point c1(1.2) = 0.82928.

5.3. Parallel Updates

The system of parallel updates is defined by the one-step map F : R2 → R2

(
ζ

ξ

)
�→ F(ζ, ξ) =

(
σ(2ξ − 1, 2β)

σ(2ζ − 1, 2β).

)
(15)

The dynamics of the parallel system are similar to the system studied in [36]. As we shall show
below, the parallel system exhibits periodic behavior that the sequential system does not and it follows
as a corollary that the systems are not locally topologically conjugate.

The parallelized CAVI algorithm is a dynamical system formed by iterations of F defined in (15).
We shall decouple the parallelized CAVI updates for sequences ξk and ζk by looking at iterations of (12)
acting on the sequences individually. This decoupling is visualized in diagram form

ζ0 ζ1 ζ2 ζ3 · · ·

ξ0 ξ1 ξ2 ξ3 · · ·

(16)

where each cross is an application of F. The system formed the parallel updates is equivalent to the
following decoupled systems of even subsequences and odd subsequences. The even subsequences are

ζ2k = σ(2σ(2ζ2(k−1) − 1, 2β)− 1, 2β), k ≥ 1 (17)

ξ2k = σ(2σ(2ξ2(k−1) − 1, 2β)− 1, 2β), k ≥ 1. (18)
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The odd subsequences are

ζ2k+1 =

{
σ(2ξ0, 2β) k = 0

σ(2σ(2ζ2k−1, 2β), 2β) k ≥ 1
(19)

ξ2k+1 =

{
σ(2ζ0, 2β) k = 0

σ(2σ(2ξ2k−1, 2β), 2β) k ≥ 1.
(20)

Following a similar approach to the one used to study the sequential dynamics, we investigate
the dynamics of the parallel system (15) by studying the dynamics of four individual
subsequences (17)–(20) of the decoupled system given by diagram (16). The dynamical properties of
the individual subsequences follow from a combination of Theorem 1, Theorem 2 and other methods
from Appendix A. Illustrations of the evolution of the dynamics of the parallel updates for various
initializations and values of β are in Figures 7–12.

Figure 7. A plot of the first 20 iterations of the parallel update CAVI algorithm at various initializations
for β = −1.2. In each of the plots the ζ updates are black and the ξ updates are red. The upper left
is an initialization of ζ0 = 0.3 and ξ0 = 0.7; we see that this initialization converges to the two cycle
C0 = {(c0, c0), (c1, c1)}. The upper right plot is an initialization of ζ0 = 0.3 and ξ0 = 0.7; we see that
both of these converge to c0(1.2) ≈ 0.17071. The lower left plot is an initialization of ζ0 = 0.7 and
ξ0 = 0.7; we see that both of these converge to c1(1.2) ≈ 0.82928. The lower right is is an initialization of
ζ0 = 0.7 and ξ0 = 0.3; we see that this initialization converges to the two cycle C0 = {(c0, c0), (c1, c1)}.
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Figure 8. A plot of the first 20 iterations of the parallel update CAVI algorithm at various initializations
for β = −0.7. In each of the plots the ζ updates are black and the ξ updates are red. The upper left plot
is an initialization of ζ0 = 0.3 and ξ0 = 0.3; we see that both of these converge to the global fixed point
1/2. The upper right is an initialization of ζ0 = 0.3 and ξ0 = 0.7; we see that this initialization converges
to the global fixed point 1/2. The lower left is is an initialization of ζ0 = 0.7 and ξ0 = 0.3; we see that
this initialization converges to the global fixed point 1/2. The upper left plot is an initialization of
ζ0 = 0.7 and ξ0 = 0.7; we see that both of these converge to the global fixed point 1/2.

Figure 9. A plot of the first 20 iterations of the parallel update CAVI algorithm at various initializations
for β = 0.7. In each of the plots the ζ updates are black and the ξ updates are red. The upper left plot is
an initialization of ζ0 = 0.3 and ξ0 = 0.3; we see that both of these converge to the global fixed point
1/2. The upper right is an initialization of ζ0 = 0.3 and ξ0 = 0.7; we see that this initialization converges
to the global fixed point 1/2. The lower left is is an initialization of ζ0 = 0.7 and ξ0 = 0.3; we see that
this initialization converges to the global fixed point 1/2. The upper left plot is an initialization of
ζ0 = 0.7 and ξ0 = 0.7; we see that both of these converge to the global fixed point 1/2.
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Figure 10. A plot of the first 20 iterations of the parallel update CAVI algorithm at various initializations
for β = 1.2. In each of the plots the ζ updates are black and the ξ updates are red. The upper left plot
is an initialization of ζ0 = 0.3 and ξ0 = 0.3; we see that both of these converge to c0(1.2) ≈ 0.17071.
The upper right is an initialization of ζ0 = 0.3 and ξ0 = 0.7; we see that this initialization converges
to the two cycle C1 = {(c1, c0), (c0, c1)}. The lower left is is an initialization of ζ0 = 0.7 and ξ0 = 0.3;
we see that this initialization converges to the two cycle C1 = {(c1, c0), (c0, c1)}. The lower right plot is
an initialization of ζ0 = 0.7 and ξ0 = 0.7; we see that both of these converge to c1(1.2) ≈ 0.82928.

Figure 11. A plot of the first 20 iterations of the parallel update CAVI algorithm at various initializations
for β = −1.2. In each of the plots the ζ updates are black and the ξ updates are red. The upper
left plot is an initialization of ζ0 = 0.3 and ξ0 = 0.5; we see that this converges to the two-cycle
C2 = {(c0, 1/2), (1/2, c1)}. The upper right is an initialization of ζ0 = 0.5 and ξ0 = 0.3; we see that this
initialization converges to the two cycle C3 = {(c1, 1/2), (1/2, c0)}. The lower left is is an initialization
of ζ0 = 0.7 and ξ0 = 0.5; we see that this initialization converges to the two cycle C3. The lower right
plot is an initialization of ζ0 = 0.5 and ξ0 = 0.7; we see that this converges to the two-cycle C2.
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Figure 12. A plot of the first 20 iterations of the parallel update CAVI algorithm at various initializations
for β = 1.2. In each of the plots the ζ updates are black and the ξ updates are red. The upper
left plot is an initialization of ζ0 = 0.3 and ξ0 = 0.5; we see that this converges to the two-cycle
C4 = {(c0, 1/2), (1/2, c0)}. The upper right is an initialization of ζ0 = 0.5 and ξ0 = 0.3; we see that this
initialization converges to the two cycle C4. The lower left is is an initialization of ζ0 = 0.7 and ξ0 = 0.5;
we see that this initialization converges to the two cycle C5 = {(c1, 1/2), (1/2, c1)}. The lower right
plot is an initialization of ζ0 = 0.5 and ξ0 = 0.7; we see that this converges to the two-cycle C5.

We now present the main result for the parallel dynamics.

Theorem 4 (Parallel Dynamics). The Dynamics of the Parallel System (10) Are As Follows

1. For β < −1, the system has two locally asymptotically stable fixed points (c1, c0) and (c0, c1), and one
locally asymptotically unstable fixed point (1/2, 1/2), where c0 and c1 are the fixed points of (11).
Furthermore the system exhibits periodic behavior in the form of 2-cycles. The asymptotically stable 2-cycle,
C1 = {(c0, c0), (c1, c1)} and asymptotically unstable 2-cycles,

C2 = {(1/2, c1), (c0, 1/2)} and C3 = {(1/2, c0), (c1, 1/2)}.

The stable sets are

Ws(c0, c1) = [0, 1/2)× (1/2, 1]

Ws(c1, c0) = (1/2, 1]× [0, 1/2)

Ws(C1) = ([0, 1/2)× [0, 1/2)) ∪ ((1/2, 1]× (1/2, 1])

Ws(C2) = ([0, 1/2)× {1/2}) ∪ ({1/2} × (1/2, 1])

Ws(C3) = ([0, 1/2)× {1/2}) ∪ ({1/2} × (1/2, 1]) .

2. For −1 ≤ β ≤ 1, the system has a global attracting fixed point (1/2, 1/2).
3. For β > 1, the system has two locally asymptotically stable fixed points (c0, c0) and (c1, c1), and one

locally asymptotically unstable fixed point (1/2, 1/2), where c0 and c1 are the fixed points of (11).
Furthermore the system exhibits periodic behavior in the form of 2-cycles. The asymptotically stable
2-cycle, C3 = {(c0, c0), (c1, c1)} and asymptotically unstable 2-cycles, C4 = {(1/2, c0), (c1, 1/2)} and
C5 = {(1/2, c1), (c1, 1/2)}. The stable sets are
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Ws(c0, c1) = [0, 1/2)× (1/2, 1]

Ws(c1, c0) = (1/2, 1]× [0, 1/2)

Ws(C3) = ([0, 1/2)× [0, 1/2)) ∪ ((1/2, 1]× (1/2, 1])

Ws(C4) = ([0, 1/2)× {1/2}) ∪ ({1/2} × [0, 1/2))

Ws(C5) = ({1/2} × (1/2, 1]) ∪ ((1/2, 1]× {1/2}) .

The system has no p-periodic points for p > 2. The system under goes a PD bifurcation at β = −1 and a
pitchfork bifurcation at β = 1.

Proof. The dynamics of the system defined by F in (15) are equivalent to the dynamics of the system
generated by the subsequences (17)–(20). The dynamics of each of these subsequences are governed by
the functions (11) and (12). By Theorem 1, we have the behavior for each of the subsequences (17)–(20).
For |β| < 1, (11) has a globally stable fixed point at x∗ = 1/2 and thus the only fixed point in the
parallel system is (1/2, 1/2) which must be globally stable. For β = ±1, the fixed point x0 = 1/2 is
asymptotically stable by Theorem A3.

For β > 1, (11) bifurcates. We have the unstable fixed point x∗ = 1/2, and the two locally stable
fixed points, c0 with stable set Ws(c0) = [0, 1/2), and c1 with stable set Ws(c1) = (1/2, 1]. Returning to
the system generated by F, if we consider the initialization (ζ0, ξ0) = (c0, c0) then by the sequence
construction of ζn, given in (17) and (19), we see that ζn = c0 for n ≥ 1, as c0 is a fixed point of (11) for
β > 1. Similarly, using the sequence construction of ξn, given in (18) and (20), we see that ξn = c0 for
n ≥ 1, as c0 is a fixed point of (11) for β > 1. Therefore, (c0, c0) is a fixed point. An analogous argument
shows that (c1, c1) is also a fixed point. The parallel system has the stable fixed points (c0, c0) with stable
set Ws(c0, c0) = Ws(c0)× Ws(c0) and (c1, c1) with stable set Ws(c1, c1) = Ws(c1)× Ws(c1). After the
bifurcation at β = 1 the parallel system also contains 2-cycles. Using the sequence construction we
see that C3 = {(c1, c0), (c0, c1)} is an asymptotically stable 2-cycle in the parallel system, with stable
subspace Ws(C3) = (1/2, 1]× [0, 1/2) ∪ [0, 1/2)× (1/2, 1]. Additionally, we have two asymptotically
unstable 2-cycles C4 = {(c0, 1/2), (1/2, c0)} and C5 = {(c1, 1/2), (1/2, c1)}. Perturbing the 1/2
coordinate in the unstable cycle pushes it into the basin of attraction for one of the fixed points or the
asymptotically stable 2-cycle. The stable sets are Ws(C4) = ([0, 1/2)× {1/2}) ∪ ({1/2, 1} × [0, 1/2)),
Ws(C5) = ({1/2} × (1/2, 1]) ∪ ((1/2, 1]× {1/2}). The dynamics of F lack any p-period point and
cycles for p > 2 as a consequence of its construction from (12).

For β < −1, (11) bifurcates. We have the unstable fixed point x∗ = 1/2, and the stable
two cycle, C = {c0, c1} with stable set Ws(C) = [0, 1/2) ∪ (1/2, 1]. Returning to the system
generated by F, if we consider the initialization (ζ0, ξ0) = (c0, c1) then by the sequence construction
of ζn, given in (17) and (19), we see that ζn = c0 for n ≥ 1, as C is a 2-cycle of (11) for
β < −1. Similarly, using the sequence construction of ξn, given in (18) and (20) we see that
ξn = c1 for n ≥ 1, as C is a 2-cycle of (11) for β < −1. Therefore, (c0, c1) is a fixed point.
An analogous argument shows that (c1, c0) is also a fixed point. The parallel system has the
stable fixed points (c0, c1) with stable set Ws(c0, c1) = Ws(c0) × Ws(c1) and (c1, c0) with stable set
Ws(c1, c0) = Ws(c1)× Ws(c0), where Ws(c0) = [0, 1/2) and Ws(c1) = (1/2, 1]. After the bifurcation
at β = −1 the parallel system also contains 2-cycles. Using the sequence construction we see
that C1 = {(c0, c0), (c1, c1)} is an asymptotically stable 2-cycle in the parallel system, with stable
subspace Ws(C1) = Ws(c0) × Ws(c0) ∪ Ws(c1) × Ws(c1). Additional we have two asymptotically
unstable 2-cycles C2 = {(c0, 1/2), (1/2, c1)} and C3 = {(c1, 1/2), (1/2, c0)}. Perturbing the 1/2
coordinate in the unstable cycle pushes it into the basin of attraction for one of the fixed points or the
asymptotically stable 2-cycle. The stable sets are Ws(C3) = ([0, 1/2)× [0, 1/2)) ∪ ((1/2, 1]× (1/2, 1]),
Ws(C4) = ([0, 1/2)× {1/2}) ∪ ({1/2} × [0, 1/2)), Ws(C5) = ({1/2} × (1/2, 1]) ∪ ((1/2, 1]× {1/2}).

481



Entropy 2020, 22, 1263

The dynamics of F lack any p-period point and cycles for p > 2 as a consequence of its
construction from (12).

This completes the characterization of the dynamics of F for β ∈ R.

5.4. A Comparison of the Dynamics

We end the section by providing a comparison of the dynamical properties of the sequential system
in Theorem 3 and the parallel system in Theorem 4. The main difference between the sequential system
and the parallel system is the presence of two-cycles that can be found in the parallel system when
|β| > 1. This behavior stems from the difference between the sequential and parallel implementations
of the CAVI. Looking closely at the update diagrams for the two systems reveals the key difference
that produces these two-cycles. The decoupled sequential system is

ζ0 ζ1 ζ2 ζ3 · · ·

ξ0 ξ1 ξ2 ξ3 · · ·
σ

σ2 σ2

σ

σ2

σ

σ2

σ

σ2

σ

and the decoupled parallel system is

ζ0 ζ1 ζ2 ζ3 · · ·

ξ0 ξ1 ξ2 ξ3 · · ·

The major difference between these diagrams is how the individual update sequences begin.
Notice ζ0 plays no role in updating the sequential system as both the ζk update sequence and the ξk
update sequence are dependent only on the choice of ξ0. Even after rewriting the sequential updates
in terms of individual sequences the system is not truly decoupled as both sequences depend on
a common starting point. This precisely prescribes the behavior that we see in the system relative to
the sigmoid function dynamics in Theorem 1 and Theorem 2. Compare this to the parallel system.
Here ζ0 is involved in updating both the odd ξ2k+1 subsequence and the even ζ2k subsequence.
Furthermore, ξ0 remains involved by controlling the updates for the even ξ2k subsequence and the odd
ζ2k+1 subsequence. This additional flexibility allows the parallel system to develop periodic behavior
outside of the Dobrushin regime (1 ≤ β ≤ 1).

As an example, we will consider initializing the sequential algorithm to the parallel algorithm
for β = 1.2. We begin with the sequential algorithm. For β = 1.2, consider initializing the sequential
system at (ζ0, ξ0) = (0.7, 0.3). The sequential system updates are fully determined by ξ0, so for ξ0 = 0.3
it follows from Theorem 1 that an application of the function (11) will cause ζ1 ∈ Ws(c0). At this point,
the system can be evolved by applying (12) to the independent sequences for ζ and ξ as given in (13).
The dynamics of the system are now controlled by the function (12). From this initialization the system
will converge to the fixed point (c0, c0) = (0.17071, 0.17071) as shown in Figure 6.

Contrast this with the behavior of the parallel system in which the updates are determined
by both ξ0 and ζ0. For β = 1.2, consider initializing the parallel system at (ζ0, ξ0) = (0.7, 0.3).
It follows from Theorem 1 that an application of the function (11) will cause ζ1 ∈ Ws(c0)

and ξ1 ∈ Ws(c1). Successive updates will cause the sequences ζk and ξk to flip back and
forth between the domains Ws(c0) and Ws(c1), until the system settles into the two cycle
C1 = {(c0, c1), (c1, c0)} = {(0.17071, 0.82928), (0.82928, 0.17071)} as seen in Figure 10.

This simple example highlights the danger of naively parallelizing the CAVI algorithm.
The convergence properties of a parallel version of the CAVI algorithm will heavily depend on
the models CAVI update equations. In the case of the Ising model we have demonstrated that for
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certain parameter regimes the parallel implementation of the algorithm can fail to converge due to the
dependence of the algorithm on both ζ0 and ξ0.

6. Edward–Sokal Coupling

One method of improving convergence in Markov chains is through the use of probabilistic
couplings. The Edward–Sokal (ES) coupling is a coupling of two statistical physics models, the random
cluster model and the Potts model (a generalization of the Ising model) [37]. Running a Markov
chain on the ES coupling leads to improved mixing properties compared to the equivalent Potts
model and random cluster models [33]. Motivated by these findings in the Markov chain literature,
we ask a similar question: Can the convergence properties of mean-field VI be improved by using
the ES coupling in place of the Ising model? In this section we investigate this idea numerically.
We first introduce the Edward–Sokal coupling following [37]. We introduce a variational family for
the Edward–Sokal coupling and derive the variational updates for this model. Our findings suggests
the variational updates converge to a unique solution in a larger range than the equivalent Dobrushin
regime for the corresponding Ising measure.

6.1. Random Cluster Model

Let G = (V, E) be a finite graph. Let e = 〈x, y〉 ∈ E denote an edge in G with endpoints x, y ∈ V.
Σ = {1, 2, . . . , q}V , Ω = {0, 1}E and F denotes the powerset of Ω. The random cluster model is
a 2 parameter probability measure with an edge weight parameter p ∈ [0, 1] and a cluster weight
parameter q ∈ {2, 3, . . .} on (Ω, F ) given by

φp,q(ω) ∝

{
∏
e∈E

pω(e)(1 − p)(1−ω(e))

}
qκ(ω),

where κ(ω) denoted the number of connected components in the subgraph corresponding to ω.
The partition function for the random cluster model is

ZRC = ∑
ω∈Ω

{
∏
e∈E

pω(e)(1 − p)(1−ω(e))

}
qκ(ω).

For q = 2 the the random cluster model reduces to the Ising model on G.
The Edward–Sokal Coupling is a probability measure μ on Σ × Ω given by

μ(σ, ω) ∝ ∏
e∈E

[
(1 − p)δω(e),0 + pδω(e),1δe(σ)

]
, (21)

where δa,b = 1(a = b), and δe(σ) = 1(σx = σy), for e = (x, y) ∈ E.
It is well known that in the special case, p = 1 − e−β and q = 2 the Σ-marginal of the ES coupling

is the Ising model, the Ω-marginal is the random cluster model [37]. We are interested in better
understanding how the convergence of the CAVI algorithm on the ES coupling compares to the
convergence of the CAVI algorithm on the Ising model.

6.2. VI Objective Function

To calculate the VI updates for each variable we may need to make use of the alternative
characterization of the ES coupling

μ(σ, ω) ∝ ψ(σ)φp,1(ω)1F(σ, ω)
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where ψ is uniform measure on Σ and φp,1(ω) is a product measure on Ω

φp,1(ω) = ∏
e∈E

pω(e)(1 − p)(1−ω(e)) (22)

and
F = {(σ, ω) : δω(e) = 1 =⇒ δe(σ) = 1} (23)

The variational family that we will be optimizing over is

q(σ, ω) = q1(σ1)q2(σ2)q0(ω)1F(σ, ω). (24)

We have added the indicator on the set F to eliminate the configurations (σ, ω) that are not well
defined in the variational objective. We will use the convention that 0 log(0) = 0.

6.3. VI Updates

The ELBO that corresponds to the variational family (24) is

ELBO(x1, x2, y, p) = x1x2y log(x1x2y)− x1x2y log(1 − p)

+ (1 − x1)x2y log((1 − x1)x2y)− (1 − x1)x2y log(1 − p)

+ x1(1 − x2)y log(x1(1 − x2)y)− x1(1 − x2)y log(1 − p)

+ (1 − x1)(1 − x2)y log((1 − x1)(1 − x2)y)− (1 − x1)(1 − x2)y log(1 − p)

+ x1x2(1 − y) log(x1x2(1 − y))− x1x2(1 − y) log(p)

+ (1 − x1)(1 − x2)(1 − y) log((1 − x1)(1 − x2)(1 − y))− (1 − x1)(1 − x2)(1 − y) log(p).

Taking the derivative with respect to x1 and simplifying gives us

ELBO1(x1, x2, y, p) = y log
(

x1
1 − x1

)
+ (1 − y) log

(
1

1 − x1

)
+ x2(1 − y) log(x1(1 − x1)) + x2(1 − y) log

(
x2(1 − x2)(1 − y)2

p2

)
+ log

(
p

(1 − x2)(1 − y)

)
+ (2x2 − 1)(1 − y).

Taking the derivative with respect to x2 and simplifying gives us

ELBO2(x1, x2, y, p) = y log
(

x2
1 − x2

)
+ (1 − y) log

(
1

1 − x2

)
+ x1(1 − y) log(x2(1 − x2)) + x1(1 − y) log

(
x1(1 − x1)(1 − y)2

p2

)
+ log

(
p

(1 − x1)(1 − y)

)
+ (2x1 − 1)(1 − y).

Taking the derivative with respect to y and simplifying gives us

ELBOy(x1, x2, y, p) = x1x2 log
(

y
1 − y

)
+ x1x2 log

(
p

1 − p

)
+ (1 − x1)(1 − x2) log

(
y

1 − y

)
+ (1 − x1)(1 − x2) log

(
p

1 − p

)
+ (1 − x1)x2 log

(
(1 − x1)x2y

1 − p

)
+ x1(1 − x2) log

(
x1(1 − x2)y

1 − p

)
+ (1 − x1)x2 + x1(1 − x2).

Absence of closed form updates for any of the variables limits our ability to study the convergence
of the system with classical dynamical systems techniques. Instead we look at the long evolution
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behavior of the system by plotting 100 iterations of the CAVI updates which are generated from the
following system

x1(t + 1) = argminz∈(0,1)|ELBO1(z, x2(t), y(t), p)|,
x2(t + 1) = argminz∈(0,1)|ELBO2(x1(t + 1), z, y(t), p)|,
y(t + 1) = argminz∈(0,1)|ELBOy(x1(t + 1), x2(t + 1), z, p)|.

We generate the argmin of the free variable z from a line search with a step size of Δ = 10−6.
Running these simulations we find that the iterations of x1(t), x2(t), y(t) converge to a global solution
within about T = 20 time steps from any initialization x1(0), x2(0), y(0) ∈ (0, 1) and any β > 0.
It is evident that using the ES coupling, we get global convergence of the algorithm outside of
the Dobrushin regime of the corresponding paramagnetic Ising model. The figures depicting the
simulation results of convergence of the variational inference algorithm in the Edward–Sokal coupling
can be found below in Figures 13–16.

Figure 13. A plot of the 20 iterations of the ES updates for p = 1 − e−5 from a uniformly random
initialization. Each of the lines represents a different parameter. The solid line is x1, the dashed line is
x2 and the dotted line is y. We see convergence to a unique fixed point for each of the variables.

Figure 14. A plot of the ELBO of the ES coupling for p = 1 − e−5. The red line denotes the global
minimum ELBO value.
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Figure 15. A plot of the 20 iterations of the ES updates for p = 1 − e−0.1 from a uniformly random
initialization. Each of the lines represents a different parameter. The solid line is x1, the dashed line is
x2 and the dotted line is y. We see convergence to a unique fixed point.

Figure 16. A plot of the ELBO of the ES coupling for p = 1 − e−0.1. The red line denotes the global
minimum ELBO value.

7. Conclusions

This paper demonstrates the use of classical dynamical systems and bifurcation theory to study the
convergence properties of the CAVI algorithm of the Ising model on two nodes. In our simple model
we are able to provide the complete dynamical behavior for the Ising model on two nodes. Interestingly,
we find that the sequential CAVI algorithm and parallelized CAVI algorithm are not topologically
conjugate owing to the presence of periodic behavior in the parallelized CAVI. This behavior originates
from the added flexibility of the initialization in the parallelized CAVI when compared to the sequential
CAVI. The erratic behavior we see in the Ising model for |β| > 1 is due to a combination of the existence
of multiple fixed points of the systems update function and the instability of these fixed points. In this
parameter regime, the fixed point that produces the optimal solution (0.5, 0.5) is a repelling fixed
point. Unless we initialize the algorithm exactly at (0.5, 0.5), the CAVI system cannot converge to this
point. The other two suboptimal fixed points are both asymptotically stable. This suggests that the
main problem that the CAVI algorithm experiences is centered around the existence of multiple fixed
points. Recent work on stochastic block models (SBM) and topic models (TM) models shows that
mean field VI leads to suboptimal estimators [17–20]. It is not clear if this property comes from the
mean field variational inferences construction using product distributions or if this is a consequence
of structure among latent variables. A minor difference of the stochastic block model (SBM) or topic
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model (TM) with the Ising model is that the former contain parameters (e.g., the cluster labels) that are
identifiable only up to permutations. That being said, in the SBM or TM, if the cluster means are not
well-separated, then it is not possible to identify the labels even up to permutations. This is somewhat
related to having multiple fixed points of the objective function and we conjecture similar behavior to
what we have found in the Ising model will be exhibited in the SBM or TM outside the Dobrushin
regime. Interestingly, a close look at the BCAVI updates in [17,18] reveals a similar sigmoid update
function 1/(1 + e−x). Applying the tools and techniques from dynamical systems theory to study the
CAVI algorithm in the SBM, TM and other models will provide a better understanding of the issues
that come with using mean field variational inference and is important to developing better variational
inference techniques.

Most of the research into the theoretical properties of variational inference has focused on the
mean field family due to its computational simplicity. This computational simplicity comes at the
cost of limited expressive power. Can we make due with this limited expressive power in practical
applications? More specifically, is there an equivalent parameter regime to the Dobrushin regime
(1 ≤ β ≤ 1) for other similar models like the SBM and TM inside which the CAVI produces statistically
optimal estimators? The answer to this question provides researchers with stable parameter regimes for
the model. The non-existenceof such a region would indicate the need for more expressive variational
methods for the model beyond mean field methods. Recent work [19,20] suggests that this adding
some structure to algorithms may fix the problems that arise from mean field VI. How much structure
is needed to recover statistically optimal estimators? Could adding in a simple structure of pair-wise
dependence to the mean field VI in the Ising model, similarly to [19], be enough to recover the optimal
estimator outside of the Dobrushin regime? Is the amount of additional structure that is needed
somehow related to the latent structure of the models? Tools from dynamical systems theory can be
used to study these questions.

Using dynamical systems to study the convergence properties of the CAVI algorithm is not
without its challenges. While dynamical systems theory can provide the answers to many of the
above questions, applying these tools to higher dimensional sequential systems is a challenging
problem. As mentioned previously, the general theory for n-dimensional discrete dynamical systems
is dependent on writing the evolution function in the form xn+1 = F(xn). Deriving this F is typically
not possible for densely connected higher dimensional sequential systems like the n-dimensional
Ising model CAVI. This is not the only challenging aspect to the problem. These systems typically
possess multiple fixed points which can only be found numerically. Multiple fixed points will lead to
more complicated partitions of the space into domains of attraction. Furthermore, higher dimensional
systems can possess bifurcations of multiple codimensions, which as significantly more difficult to
study. Bifurcations of codimension 3 are so exotic that they are not well studied [23,24]. Software to
handle such calculations has only recently been developed [24]. In practical terms this means that the
convergence properties can only be studied numerically for models with a small number of parameters.
Furthermore, most of the numerical techniques work under the assumption of differentiability of
the evolution operator and will fail to be applicable to many systems of practical interest in statistics
such as the Edward–Sokal CAVI. Applying tools from dynamical systems to the study of variational
inference algorithms will require developing new theory for high dimensional and well connected
sequential dynamical systems.
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Appendix A. An Overview of One Dimensional Dynamical Systems

The main focus of discrete dynamical systems is the asymptotic behavior of iterated systems (8).
Bifurcation theory studies how the dynamical behavior of a system changes as the parameter J12

changes. We study the behavior of convergence of the CAVI algorithm by studying the autonomous
discrete time dynamical system formed by the update Equation (8). This allows us to utilize tools
from dynamical systems theory to study the behavior of the algorithm with respect to its parameters.
In this section we provide a brief overview of the necessary dynamical systems and bifurcation theory
in dimension 1 used in Section 5.

Appendix A.1. Notation

Our focus will be on parametric dynamical systems defined by a functions f : Rn ×Rp → Rn.
We will call elements x ∈ Rn elements in the state space (phase space) and elements α ∈ Rp as
parameters. We denote real numbers x ∈ R and real vectors in x = (x1, . . . , xn) ∈ Rn with bold.
We denote the inverse of an invertible function f by f −1. The k-fold composition of a function
f with itself at a point (x, α) will be denoted by f k(x, α). The k-fold composition of the inverse
function f −1 will be denoted f −k. The identity function will be denoted id. We use the convention
f 0 = id. We denote the tensors of derivatives of f by fx(x, α) = (∂ fi/∂xj), fxx(x, α) = (∂2 fi/∂xj∂xk),
fxx(x, α) = (∂2 fi/∂xj∂xk), fxxx(x, α) = (∂3 fi/∂xj∂xk∂x�), fα(x, α) = (∂ fi/∂αj).

Appendix A.2. Dynamical Systems

Dynamical systems is a classical approach to studying the convergence properties of non-linear
iterative systems. These systems can be continuous in time, for example a differential equation,
or discrete in time, for example iterations of a function from an initial point. A dynamical system is
called autonomous if the function governing the system is independent of time and non-autonomous
otherwise. The coordinate ascent variational inference for the Ising model is a discrete-time autonomous
dynamical system. Before giving a complete proof of the dynamical properties of the CAVI algorithm
for the Ising model in dimension 2, we first give a basic introduction to the theory of discrete time
dynamical systems and bifurcations following [23–25,38].

Formally, a dynamical system is triple {T, X, φt} where T is a time set, X is the state space
and φt : X → X is a family of evolution operators parameterized by t ∈ T satisfying φ0 = id and
φs+t = φt ◦ φs for all x ∈ X. For a discrete time system the evolution operator is fully specified by the
one-step map φ1 = f , since the composition rule then defines φk = f k for k ∈ Z. We restrict the further
discussion to discrete time dynamical systems defined by the one-step map

x �→ f (x, α), x ∈ Rn, α ∈ Rp, (A1)

where f is a diffeomorphism, a smooth function with smooth inverse, of the state space Rn and α are
the parameters of the system.

The basic geometric objects of a dynamical system are orbits in the state space and the
phase portrait, defined as follows. The phase portrait is the partition of the state space induced
by the orbits. The orbit starting at a point x is an ordered subset of the state space Rn denoted
orb(x) = { f k(x) : k ∈ Z}. There are two special types of orbits, fixed points and cycles, defined below.

A fixed point x∗ of the system are points that remain fixed under the evolution of the system,
ones that satisfies x∗ = f (x∗). We can classify fixed points of the system by studying the local behavior
of the system near the fixed point. To do this we consider small perturbations of the system near the
fixed point. A fixed point x∗ is said to be locally stable if points that are near the fixed point do not
move too far away from the fixed point as the system evolves. Formally, if for any ε > 0 there exists
δ > 0 such that for all x with |x − x∗| < δ we have | f k(x)− x∗| < ε for all k > 0. A fixed point is called
semi-stable from the right if for any ε > 0 there exists δ > 0 such that for all x with 0 < x − x∗ < δ we
have | f k(x)− x∗| < ε for all k > 0 (semi-stable from the left is defined analogously). It is said to be
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locally unstable otherwise. A fixed point x∗ is locally attracting if all points in a small neighborhood
converge to the fixed point as we let the system evolve. Formally, if there exists an η > 0 such that
|x − x∗| < η implies f n(x) → x∗ as n → ∞. A fixed point x∗ is locally asymptotically stable if it is both
locally stable and attracting. A fixed point x∗ is locally semi-asymptotically stable from the right if it is
both locally semi-stable from the right and limn f n(x) = x∗ for 0 < x − x∗ < η for some η. It is globally
asymptotically stable if the point is attracting for all x in the state space.

A cycle is a periodic orbit of distinct points C = {x0, x1, . . . , xK−1}, where x0 = f (xK−1) for some
K > 0. The minimal K generating the cycle is called the period of the cycle. A subset S ⊂ Rn is called
invariant if f k(S) ⊂ S, k ∈ Z. An invariant set S is called asymptotically stable if there exists a
neighborhood U of S such that for any point in U is eventually inside the set S. The stable set of S ⊂ Rn

is Ws(S) =
{

x ∈ Rn : limk→∞ f k(x) ∈ S
}

. If f is invertible, we define the unstable set of S ⊂ Rn is

Wu(S) =
{

x ∈ Rn : limk→∞ f −k(x) ∈ S
}

. The unstable set of S for the forward system f k, k > 0 is the

stable set of S for the backward system f −k, k > 0. It is possible to study the behavior of points that
diverge by studying points that converge under the inverse map. We can also classify the stability of
K-cycles. We classify the stability of the cycle as a fixed point in the map f K.

Consider a discrete time dynamical system defined by a diffeomorphism f : R×R → R. Let x∗
be a fixed point of f (x, α) and consider a nearby point x, |x − x∗| = ε. Taking a Taylor expansion of
the system about the fixed point gives us

f (x, α)− x∗ = fx(x∗, α)(x − x∗) + fxx(x∗, α)(x − x∗)2 + O(|x − x∗|3).

If the Jacobian does not have modulus one and ε is small enough, then the contribution by
the terms of O(|x − x∗|2) will be negligible, in which case the behavior of the system is governed
by the the behavior of the linearization of the system fx(x∗, α). We now introduce the idea of a
hyperbolic fixed point. Assume that the Jacobian A := fx(x∗, α) of the system (A1) at a fixed point
x∗ is non-singular. The fixed point x∗ is called hyperbolic if | fx(x∗, α)| �= 1 and non-hyperbolic if
| fx(x∗, α)| = 1. The notion of hyperbolic fixed and non-hyperbolic fixed points generalizes to higher
dimensions where it involves the eigenvalues of the Jacobian; see [23,25,38] for more details.

Near a hyperbolic fixed point a non-linear dynamical system behaves its first order Taylor
approximation (also known as the linearization of the system). To make this argument rigorous
we need to discuss what it means for two dynamical systems to be equivalent. Two systems are
topologically equivalent if we can map orbits of one system to orbits of another system in a continuous
way that preserves the order of time. The dynamical system (A1) is called topologically equivalent to
the system

y �→ g(y, β), y ∈ Rn, β ∈ Rp, (A2)

if there exists a homeomorphism of the parameter space hp : Rp → Rp, β = hp(α) and a parameter
dependent state space homeomorphism, continuous in the first argument, h : Rn ×Rp → Rn such that,
y = h(x, α), mapping orbits of the system (A1) at parameter value α onto orbits of the system (A2) at
parameter β = hp(α) preserving the direction of time. If h is a diffeomorphism then the systems are
called smoothly equivalent.

Let (A1) and (A2) be two topologically equivalent invertible dynamical systems. Consider the
orbit of the system under the mapping f (x, α), orb(x; f , α) and the orbit of the system g(y, β),
orb(y; g, β). Topological equivalence means that the homeomorphism (h(x, α), hp(α)) maps orb(x; f , α)

to orb(y; g, β) preserving the order of time. This gives us the following commutative diagram
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· · · f −1(x, α) x f (x, α) · · ·

· · · g−1(y, β) y g(y, β) · · · .

h

f

h

f

h

f

h

f

g g g g

The orbits being topologically equivalent means that orbit x under the mapping h should produce
the same orbit as mapping x to y = h(x, α) computing the orbit of y under g(·, β) and mapping back to
f (x, α) by h−1, f (x, α) = h−1 ◦ g ◦ h(x, α). We shall primarily be interested in the behavior of the system
in a small neighborhood of an equilibrium point. A system (A1) is called locally topologically equivalent
near an equilibrium x∗ to a system (A2) near an equilibrium y∗ if there exists a homeomorphism
h : Rn → Rn defined in a small neighborhood U of x∗ with y∗ = h(x∗) that maps orbits of (A1) in U
onto orbits of (A2) in V = h(U), preserving the direction of time.

We now have enough terminology to introduce the following theorem, which shows that the
dynamics of a smooth system in the neighborhood of a hyperbolic fixed point are equivalent to the
dynamics of the linearization of the system,

Theorem A1 (Grobman–Hartman). Consider a smooth map

x �→ Ax + F(x), x ∈ Rn, (A3)

where A is an n × n matrix and F(x) = O(‖x‖2). If x∗ = 0 is a hyperbolic fixed point of (A3), then (A3) is
topologically equivalent near this point to its linearization

x �→ Ax, x ∈ Rn.

Note Theorem A1 is true for a general n-dimensional system. Theorem A1 provides sufficient
conditions to determine the stability of a hyperbolic fixed point of a general discrete time system,

Theorem A2. Consider a discrete time dynamical systems (A1) where f is a smooth map. Suppose for a fixed
point x∗ that the eigenvalues of Jacobian fx(x∗, α) all satisfy |λ| < 1 then the fixed point is stable. Alternatively,
suppose for a fixed point x∗ that the eigenvalues of Jacobian fx(x∗, α) all satisfy |λ| > 1 then the fixed point
is unstable.

The linearization of the system near a non-hyperbolic fixed point is not sufficient to determine
stability of the fixed point and we need to investigate higher order terms. The following theorem
provides sufficient condition to check the stability of a smooth one dimensional system at
a non-hyperbolic fixed point,

Theorem A3. Let f : R×R → R. Suppose that f (·, α) ∈ C3(R;R) and x∗ is a non-hyperbolic fixed point of
f , x∗ = f (x∗, α). We have the following cases:

Case 1: If fx(x∗, α) = 1, then

1. If fxx(x∗, α) �= 0 then x∗ is semi-asymptotically stable from the left if fxx(x∗, α) > 0 and
semi-asymptotically stable from the right if fxx(x∗, α) < 0;

2. if fxx(x∗, α) = 0 and fxxx(x∗, α) < 0 then x∗ is asymptotically stable;
3. if fxx(x∗, α) = 0 and fxxx(x∗, α) > 0 then x∗ is unstable.

Case 2: If fx(x∗, α) = −1, then

1. If S f (x∗, α) < 0, then x∗ is asymptotically stable;
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2. If S f (x∗; , α) > 0, then x∗ is unstable.

where S f (x) is the Schwarzian derivative of f

S f (x, α) =
fxxx(x, α)

fx(x, α)
− 3

2

[
fxx(x, α)

fx(x, α)

]2

.

The Schwarzian derivative controls the higher order behavior in oscillatory systems.

Appendix A.3. Codimension 1 Bifurcations

Until now we have kept the parameter of the system fixed. The study of the change in behavior
of a dynamical system as the parameters are varied is called bifurcation theory. A bifurcation occurs
when the dynamics of the system at a parameter value α1 differ from the dynamics of the system at
a different parameter value α2. Changing the parameter in a system may cause a stable fixed point to
become unstable, the fixed point may split into multiple fixed points, or a new orbit may form. Each of
these is an example of a bifurcation, although these are not the only things that can happen. The point
at which a bifurcation occurs is called a bifurcation point. More formally, the parameter α∗ is called
a bifurcation point if arbitrarily close to it there is α such that x �→ f (x, α), x ∈ Rn is not topologically
equivalent to x �→ f (x, α∗), x ∈ Rn in some domain U ⊂ Rn.

A necessary, but not sufficient condition for bifurcation of a fixed point to occur is for the fixed
point to be nonhyperbolic. Theorem A1 together with the implicit function theorem show that in
a sufficiently small neighborhood of a hyperbolic fixed point (x∗, α∗), for each α there is another unique
fixed point with the same stability properties as (x∗, α). So hyperbolic fixed points do not undergo
local bifurcations. In the context of discrete systems, a local bifurcation can occur only at a fixed point
(x∗, α∗) when the Jacobian of the system at (x∗, α∗) has an eigenvalue with modulus one.

Perhaps surprisingly, there are only three types of generic bifurcations that can happen in a discrete
system with one parameter. They are the limit point (LP), period doubling (PD) and Neimark–Sacker
(NS) bifurcations. The reason for this is fairly simple. It turns out that there is a generic system,
called the topological normal form, which undergoes this bifurcation at the origin in the (x, α)-plane.
For any other system that undergoes the same bifurcation and satisfies certain non-degeneracy
conditions there is a local change of coordinates that transforms the system into the topological
normal form.

In general the types of bifurcations that can occur are connected to the number of parameters
in the system. The minimal number of parameters that must be changed in order for a particular
bifurcation to occur in f (x, α) is called the codimension of the bifurcation. A bifurcation is called
local if it can be detected in any small neighborhood of the fixed point, otherwise its called global.
Global bifurcations are much harder to analyze and since we do not attempt to investigate them in this
paper we will not expand upon them further. More detailed results on bifurcations in codimension 1
and 2 can be found in [23,24].

We will now formally define the sufficient conditions for a system to undergo a period doubling or
a pitchfork bifurcation. The period doubling bifurcation occurs when a system with a non-hyperbolic
fixed point with multiplier λ1 = −1 satisfies certain non-degeneracy conditions. There are two types
of PD bifurcations. In the super-critical case, a stable 2-cycle is generated when a fixed point becomes
unstable. In the sub-critical case, a stable fixed point turns unstable when it coalesces with an unstable
2-cycle (This is true for a general k-cycle. In the super-critical case, a stable 2k-cycle is generated when
a k-cycle becomes unstable. In the sub-critical case, a stable k-cycle turns unstable when it coalesces
with an unstable 2k-cycle ). The conditions for a PD bifurcation to occur are given as follows

Theorem A4 (Period Doubling Bifurcation). Suppose That A One-Dimensional System

x �→ f (x, α), x, α ∈ R,
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with smooth f , has at α = 0 the fixed point x∗ = 0, and let λ = fx(0, 0) = −1. Assume the following
non-degeneracy conditions are satisfied

1. 1/2( fxx(0, 0))2 + 1/3 fxxx(0, 0) �= 0
2. fxα(0, 0) �= 0

Then there are smooth invertible coordinate and parameter changes transforming the system into

η �→ −(1 + β)± η3 + O(η4). (A4)

An classical example of a period doubling bifurcation can be seen in the logistic map
f (x, μ) = μx(1 − x), for x ∈ [0, 1]. The bifurcation occurs at the point (x∗, μ∗) = (2/3, 3). The logistic
map has two fixed points. One fixed point is at x = 0 and the other is at x = (μ − 1)/μ. We will ignore
the fixed point at x = 0 since it is repelling for μ > 1. We look at the behavior of the system in a small
neighborhood of μ∗ = 3. For μ = 2.9, the fixed point x∗ = (μ − 1)/μ is a hyperbolic attracting fixed
point since | fx(x∗, 2.9)| = |2 − μ| < 1. For μ = 3 the fixed point x∗ = (μ − 1)/μ is a non-hyperbolic
fixed point since fx(x∗, 2.9) = 2 − μ = −1. Checking the Schwarzian derivative shows that the fixed
point is asymptotically stable. For μ = 3.1, x∗ = (μ − 1)/μ becomes a repelling fixed point. The points
in (0, x∗) ∪ (x∗, 1) converge to the attracting 2-cycle C = {0.558014, 0.7645665}. A super-critical period
doubling bifurcation has occurred in the system formed by the logistic map. As the parameter μ

increases we see a stable fixed point degenerate and a stable 2-cycle is formed.

Figure A1. The above plots are cobweb diagrams for the logistic map f (x, μ) = μx(1 − x), for x ∈ [0, 1],
with parameters μ = 2.9, μ = 3 and μ = 3.1, respectively. For μ = 2.9 the system has one stable
fixed point x∗ = (μ − 1)/μ. For μ = 3, the system has one non-hyperbolic fixed point x∗ = (μ − 1)/μ

which is asymptotically stable attracting; the plot was not iterated long enough to see convergence.
For μ = 3.1, the system has a hyperbolic repelling fixed point x∗ = (μ − 1)/μ and an asymptotically
stable attracting two cycle C = {0.558014, 0.7645665}.

The second iterate of a map that undergoes a PD bifurcation undergoes a bifurcation know
as the pitchfork bifurcation. A system that undergoes a super-critical pitchfork bifurcation when
a stable fixed point becomes unstable and two stable fixed points appear in the system. A system that
undergoes a sub-critical pitchfork bifurcation when two stable fixed points coalesce with an unstable
fixed point, the unstable fixed point becomes stable as the parameter crosses the bifurcation point.
Below we present extra details pertaining to the period doubling bifurcation and its relation to the
pitchfork bifurcation.

Consider the one-dimensional system

x �→ −(1 + α)x + x3 = f (x, α).
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The map f (x, α) is invertible in a small neighborhood of (0, 0). The system has a fixed point at
x∗ = 0 for all α, with eigenvalue −(1 + α). For small α < 0 the fixed point is hyperbolic stable and for
α > 0 is it hyperbolic unstable. For α = 0 the fixed point is non-hyperbolic, but is asymptotically stable.

Consider the second iterate of f (x, α)

f 2(x, α) = −(1 + α) f (x, α) + ( f (x, α))3

= (1 + α)2x −
[
(1 + α)(2 + 2α + α2)

]
x3 + O(x5).

The second iterate has a trivial fixed point at x∗ = 0 and for α > 0 it has two non-trivial stable
fixed points x1 = (

√
α + O(α)), x1 = −(

√
α + O(α)) that form a two cycle

x2 = f (x1, α), x1 = f (x2, α).

The conditions for a generic pitchfork bifurcation can be found in [25]

Theorem A5 (Pitchfork Bifurcation). For A System

x �→ f (x, α), x, α ∈ R

having non-hyperbolic fixed point at x∗ = 0, α∗ = 0 with fx(0, 0) = 1 undergoes a pitchfork bifurcation at
(x∗, α∗) = (0, 0) if

fα(0, 0) = 0, fxx(0, 0) = 0, fxxx(0, 0) �= 0, fxα(0, 0) �= 0.

A pitchfork bifurcation is super-critical if − fxxx(x∗, α∗)/ fαx(x∗, α∗) > 0 and sub-critical if
− fxxx(x∗, α∗)/ fαx(x∗, α∗) < 0

An example of a pitchfork bifurcation can be seen in the second iteration of the logistic
map f 2(x, μ) = μ2x(1 − x)(1 − μx(1 − x)), for x ∈ [0, 1]. The bifurcation occurs at the point
(x∗, μ∗) = (2/3, 3). For μ ≤ 3, the second iteration of the logistic map has the same fixed points
as the first iteration. One fixed point is at x = 0 and the other is at x = (μ − 1)/μ. We will ignore
the fixed point at x = 0 since it is repelling for μ > 1. We look at the behavior of the system in a
small neighborhood of μ∗ = 3. For μ = 2.9, the fixed point x∗ = (μ − 1)/μ is a hyperbolic attracting
fixed point since | f 2

x (x∗, 2.9)| < 1. For μ = 3 the fixed point x∗ = (μ − 1)/μ is non-hyperbolic
since f 2

x (x∗, 2.9) = 2 − μ = 1. Checking the higher order derivative shows that the fixed point is
asymptotically stable. For μ = 3.1, x∗ = (μ − 1)/μ becomes a repelling fixed point. Using numerical
methods we find two additional fixed points, x1 = 0.558014 and x2 = 0.7645665, both of which are
attracting. A super-critical pitchfork bifurcation has occurred in the system formed by the logistic map.
As the parameter μ increases we see a stable fixed point degenerates to an unstable fixed point and
two stable fixed points.
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Figure A2. The above plots are cobweb diagrams for the second iterate of the logistic map
f (x, μ) = μx(1 − x), for x ∈ [0, 1], with parameters μ = 2.9 and μ = 3.1, respectively. For μ = 2.9 the
system has one stable fixed point x∗ = (μ − 1)/μ. For μ = 3.1, the system has a hyperbolic repelling
fixed point x∗ = (μ − 1)/μ and two asymptotically stable attracting fixed points x1 = 0.0558014 and
x2 = 0.7645665.
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