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Abstract: This paper proposes a two-layer hierarchical longitudinal control approach that optimizes
travel time and trajectories along multiple intersections on an arterial under mixed traffic of con-
nected automated vehicles (CAV) and human-driven vehicles (HV). The upper layer optimizes the
travel time in an optimization loop, and the lower layer formulates a longitudinal controller to
optimize the movement of CAVs in each block of an urban arterial by applying optimal control. Four
scenarios are considered for optimal control based on the physical constraints of vehicles and the
relationship between estimated arrival times and traffic signal timing. In each scenario, the estimated
minimized travel time is systematically obtained from the upper layer. As the results indicate, the
proposed method significantly improves the mobility of the signalized corridor with mixed traffic by
minimizing stops and smoothing trajectories, and the travel time reduction is up to 29.33% compared
to the baseline when no control is applied.

Keywords: consecutive signalized arterials; urban street; hierarchical longitudinal control; optimal
control; connected and automated vehicles

1. Introduction

Sustainable transportation in an urban area has become an important topic attracting
researchers’ attention [1]. In the research of sustainable transportation, there have been
studies from policy aspects such as promoting public transport, demand and supply con-
trolling, integrated land use, and transport planning [2]. Other studies include developing
design methods to solve technical problems operating transport means and facilities in a
more efficient way [3]. The research on pedestrians and cycling is a major part of studying
sustainable transportation [4]. As for motorized trips, on one hand, controlling demand is
a concern [5]. On the other hand, the movements of vehicles on urban street networks and
their effects on sustainable transportation is also an important component. More efficient
movement of vehicles on urban street networks means a safer, faster, and more environ-
mentally friendly urban network. Therefore, improving mobility is crucial in building up
sustainable transportation.

However, drivers often experience stop-and-go shockwaves traveling through signal-
ized intersections when most of the surrounding vehicles are driven by humans. Traffic
oscillation and queue backpropagation may result in a capacity drop, leading to an increase
in travel time and a decrease in mobility [6]. On an urban street, even when the signals are
well-coordinated, the travel time increases for drivers traveling through consecutive sig-
nalized intersections [7]. Systematic methods for controlling vehicles on an urban arterial
are essential.

The applications of CAVs in a traffic system have been studied in the last few years.
CAVs can react to, communicate with, or make cooperative decisions considering the

Sustainability 2021, 13, 8852. https://doi.org/10.3390/su13168852 https://www.mdpi.com/journal/sustainability
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environment such as surrounding vehicles and traffic facilities with the help of vehicle-to-
vehicle (V2V) or vehicle-to-infrastructure (V2I) communication technologies. Adaptive
Cruise Control (ACC) and Cooperative Adaptive Cruise Control (CACC) take advantage
of the V2V communications so that vehicles can drive at a harmonized speed with short
headways, addressing some issues that may occur for HVs in mobility, fuel efficiency, and
safety issues [8]. When only considering the longitudinal direction, the design of a CACC
system is usually based on a vehicle dynamics control strategy. To achieve ACC, vehicle
dynamics are modeled by an optimal control framework to maintain speed while reducing
emissions. When it comes to CACC, constant longitudinal spacing or headway should also
be maintained [9]. Among all the objectives, the mobility, fuel efficiency, and stability of
the traffic are the major concerns [8].

The longitudinal control strategies have been developed to improve mobility to
mitigate the stop-and-go waves and other adverse traffic effects on freeways [10–12]. The
stability problem of the longitudinal control of a CACC system in a CAV environment has
also been well studied in previous studies [13–18]. Although longitudinal control strategies
in the freeway environment have been well studied, the existence of traffic signals in an
urban area makes the longitudinal control strategies of CAV significantly different from
those in the freeway environment. The traffic signals cut traffic streams into interrupted
flows and vehicle platoons which will be cut off and reformulated.

Many previous studies concerned the strategies for vehicles approaching an isolated
intersection. For instance, Rakha and Kamalanathsharma developed eco-driving strategies
for vehicles at an isolated intersection by integrating microscopic fuel consumption models
in objective functions to minimize environmental adverse effects [19]. They also proposed
a dynamic programming-based method to control the speed of a vehicle by splitting
the process of approaching a signalized intersection into three states, showing that the
method can save fuel and travel time significantly for an individual vehicle [20]. Chen et al.
developed an eco-driving model that achieves the minimization of a linear combination of
emissions and travel time [21]. Yang et al. developed an eco-CACC system to improve the
fuel efficiency of CAVs at an isolated intersection considering the existing queues. Optimal
control is used to design trajectories for leading CAVs of platoons to lead vehicles smoothly
approaching an isolated intersection. The performances under different market penetration
rates are demonstrated, showing a throughput benefit ranging from 0.88% to 10.80% [22].
A shooting heuristic (SH) is proposed for optimal control solutions for vehicle trajectories
at intersections [23,24]. Individual Variable Speed Limits with location optimization are
designed to smooth the trajectories of CAVs to improve mobility at an intersection [25].

In some studies, the platoon of CAVs is usually cooperatively considered. For exam-
ple, a mixed-integer linear programming (MILP) based model is used to optimize vehicle
trajectories as well as the traffic signal at isolated signalized intersections. The trajectories
are generated by optimal control, car-following models, and lane choice models [26]. A Pre-
dictive Cruise Control method is used to control vehicles when traveling through multiple
consecutive intersections to save fuel and CO2 emissions [27]. A nonlinear-programming-
based method to control a CAV platoon is designed to pass multiple intersections to
maximize throughput and comfort [28].

In addition to only considering one intersection model, more pieces of the literature
studied control strategies for consecutive traffic signals since the traffic signals are usually
configured consecutively along the roadway in urban areas. Mandava et al. applied a
dynamic speed-advise method to drive a CAV smoothly along consecutive intersections
when no surrounding vehicles are concerned [29]. The method reduced fuel consumption
and CO2 emissions significantly and reduced travel time slightly (1.06%) for a single vehicle.
Barth et al. developed an optimal control for a single vehicle to drive along consecutive
signalized intersections, with a reduction in fuel consumption and CO2 emissions. Other
than the reduction in environmental adverse effects, queue minimization is considered
in the development of the optimal trajectory of one single vehicle along consecutive
intersections, which leads to an additional delay for the following vehicles [30]. A mixed-
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integer programming sequential convex optimization is used to design an optimized speed
plan of a vehicle when traveling along signalized intersections, saving travel time up to
6.00% [31]. Tang et al. incorporated a speed strategy into a car-following model for multiple
vehicles to pass through multiple intersections [32].

Since the traffic stream will be in a state of having both CAVs and HVs for a long
time, the control strategies for mixed traffic conditions become an important research
direction. Specifically, HVs are concerned in some of the previous studies when developing
the longitudinal control strategies of CAVs. The interaction of HVs and CAVs is modeled
to optimize mobility [33] and emissions [34]. Wei et al. tested HVs as moving obstacles
to validate their integer programming and dynamic programming models [35]. Recently,
some studies also focus on the evaluation of the performance of mixed traffic. For example,
the performance of lane choice for the mixed traffic with CAVs is analyzed [36]. Speed
estimation is conducted in a mixed traffic condition [37]. When HVs are considered, the
sequence of the mixed traffic needs to be assumed; for example, Zhao et al. used scenarios
in the experiment to show the possible combination of HVs and CAVs [34].

The operation strategy of connected and automated vehicles at intersections can either
be modeled in a centralized way, as the studies using dynamic programming or cooperative
control mentioned before, or a decentralized way. For example, Du et al. developed a multi-
layer coordination strategy for CAVs at intersections without the help of signals [38]. Yao
and Li proposed a decentralized control method for CAVs at an intersection to optimize
their own travel time, fuel consumption, and safety risks and showed that it is more
computationally efficient than a centralized control [39]. Mahbub et al. developed a
coordination method for CAVs at a corridor considering multiple traffic scenarios using a
two-level optimization [40].

Although the problem of the longitudinal control of connected automated vehicles
has been widely studied, the control for CAVs in mixed traffic is hard when considering
consecutive signalized arterials, which can lead to a problem of variable control horizon.
In addition, the synchronization of the calculation of CAV travel time and trajectory is a
difficulty in the proposed problem. To fill in the gap, this paper provides a new approach
of hierarchical longitudinal control that can address mixed traffic, tackle the variable
horizon of CAVs, and give insight into the scenarios of CAV control on a signalized
corridor. A centralized method is unable to model HVs, which are uncontrolled. To
tackle this issue, this paper introduces an efficient decentralized method [41]. While the
studies about single lanes focus on longitudinal control, CAV-related control on multilane
scenarios is also a research direction concerning lane changing and lane assignment. For
example, a cooperative sorting strategy is developed for the platooning of CAVs along
multiple lanes [42]. Formation controls are used for the lane assignment for CAVs [43,44].
Therefore, focusing on the longitudinal control in this paper, a dedicated lane is considered
to maximize the benefits of controlling CAVs and in showing how the methods influence
traffic dynamics. In addition, due to the low MPR for a long period of time, HVs should also
be allowed in the “dedicated” lane. In this setting, lane changing, and overtaking are not
considered. Therefore, this paper models a single lane of mixed traffic. The contributions
of the paper are highlighted below:

• Propose a systematic method to analyze CAVs at signals based on split scenarios
according to preceding vehicle and signal conditions.

• Develop a hierarchical longitudinal control for CAVs considering variable horizon
optimal control in urban streets.

3
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2. Problem Statement

The problem aims to control the microscopic longitudinal behaviors of CAVs by
minimizing the travel time given a fixed signal timing on an urban signalized arterial
corridor. As shown in Figure 1, the mixed traffic travels through consecutive intersections
on the urban street from upstream intersection 1 to intersection i at downstream. The traffic
is a mixture of HVs and CAVs. Communication devices are installed on CAVs to ensure
real-time information exchange via V2V and V2I.

Figure 1. Schematic representation of the problem longitudinal control of connected and automated vehicles along a
signalized arterial.

The assumptions of the paper are listed as follows. The V2V communication is
assumed to be active once a vehicle entering the block. Information related to the timing
plan such as offset θi, the duration of green Gi, green elapse time Gn,i, and geometrical
variable block length li can be received by CAVs with no delay. The overtaking behavior of
a vehicle is not in the scope of concerns. The car following behaviors of HVs are assumed
as known, and HVs slow down and stop in front of a signal when they cannot pass within
the current green interval.

In Figure 1, the vehicles move forward in their longitudinal direction. The travel time
of a vehicle within a block is defined as the duration between the time instant when it
passes the intersection i − 1 and the time instant it passes intersection i.

The vehicle dynamics within a block for a CAV are expressed by a state-space repre-
sentation, indexed by the number of vehicles and intersections. On an urban street, the
vehicles are not allowed to move backward. A CAV can obtain information of vehicle status
such as position, acceleration, and speed from the preceding vehicle, no matter whether
the preceding vehicle is a CAV or an HV.

The research question is how to reduce the travel time for all vehicles when they
are traveling from the first intersection to the final intersection and provide a suitable
trajectory for each vehicle. The difficulties of this problem are that traffic signals exist along
consecutive intersections, cutting off the traffic. Multiple states exist for a vehicle, in which
varying control horizons can appear; HVs are uncontrolled, and HVs and CAVs are mixed
with arbitrary sequences, so an integrated centralized optimization is not applicable. In
addition, the control horizon for each vehicle is different.

3. Methodology

The longitudinal control for CAVs follows a hierarchical structure: at the upper level,
the travel time is calculated; at the lower level, the optimal control is applied to generate
the trajectories.

4
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3.1. Lower-Level Control: Mathematical Formulation of Optimal Control

When an individual vehicle is traveling within one block between two intersections,
its state including position and speed is known. The problem is decomposed into different
scenarios and is then scaled towards multiple vehicles along consecutive intersections. The
constraints from the longitudinal position and feasible arrival moments of a vehicle with
the presence of signals are mathematically described. Each scenario is explained with their
transportation meaning and provided a solution of minimum travel time and trajectory.

As a solution for individual vehicles, the trajectory generates in an optimal control
fashion. The state xn,i of a vehicle n in intersection i is defined as a combination of its
longitudinal position sn,i within this block i and longitude speed vn,i:

xn,i = (sn,i, vn,i)
T (1)

The system writes with a linear time-invariant system (LTI):

xn,i(t) = Axn,i(t) + Bun,i(t), (2)

A =

[
0 1
0 0

]
B =

[
0
1

]
, (3)

where the control variable un,i is the acceleration of the vehicle. The cost function to
ensure optimal performances is defined as follows considering the comfort and terminal
performances:

Jn,i = min
∫ Tn,i

t=0
L(xn,i(t), un,i(t))dt + Φ(Tn,i, xn,i(Tn,i)), (4)

where the ending time or the control horizon Tn,i is a variable which is determined system-
atically. It is then discussed in Section 3.2, based on different scenarios. The running cost is
set as an instantaneous cost showing the penalties concerning comfort. It is expressed as
the quadratic term of acceleration:

L =
1
2

un,i
2. (5)

The terminal cost gives penalties so that the final states can approach desired values
(terminal speed and terminal distance):

Φ = w1

(
xn,i

(1)(Tn,i)− l∗n,i

)2
+ w2

(
xn,i

(2)(Tn,i)− v∗n,i

)2
. (6)

Again, Tk,i will be determined systematically. Weighing factors w1 and w2 show the
penalty for the state deviation from the terminal speed and the terminal distance at the end
of the horizon. The desired speed is set to the terminal speed at each intersection for each
vehicle: v∗n,i = v0. The block length between two intersections is used as terminal distance
l∗n,i = li. The problem then writes:

Jn,i =
T

∑
K=1

(
un,i t+k−1

2
)
+ w1

(
xn,i

(2)
T

2 − 2xn,i
(2)

Tvn,i
∗ + vn,i

∗2
)
+ w2

(
xn,i

(1)
T

2 − 2xn,i
(1)

Tl∗ + ln,i
∗2
)

, (7)

s.t.
(xn,i, un,i) ∈ Ω ∩ U, (8)

where Ω represents the constraints from vehicle dynamics, including the limitation from
maximal speed, maximal acceleration, distance, etc. U represents the physical constraints
from the preceding vehicle during the period when it follows preceding vehicle fn,i.

5
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Ω =
{

xn,i t+1 = Adxn,i t + Bdun,i t, un,i t ∈ (un,i,lb, un,i,ub), xn,i
(1) ∈ (0, li), xn,i

(2) ∈ (vn,i,lb, vn,i,ub)
}

, (9)

U = {sn,i ≤ sn−1,i + ds + dv, t ∈ (0, fn,i)}, (10)

where ds is a safe distance that can ensure safety, and dv is the vehicle length; fn,i is the
duration of following, determined differently in different scenarios in upper-level control.

3.2. Upper-Level Control: Determination of Travel Time

Having set the variable horizon optimal control, the horizon Tn,i is to be determined
systematically. Some prerequisites are provided.

3.2.1. Following Behavior along Consecutive Signalized Intersections

With the availability of V2I techniques, CAV receives signal information including
current state and future time phases such as Gi and θi. The arrival moments should be in a
feasible region (the collection of green) and the physical constraints should always hold
for safety concerns. To avoid stopping, for CAVs, the set of feasible arrival moments Mn,i
should be in the collection of green time G:

Mn,i ∈ [θi + C ∗ (k − 1), θi + Gi + C ∗ (k − 1)], (11)

where C is the cycle length. If no preceding vehicle exists, k is the counter of the cycles
after the current cycle in which the vehicle can pass. k∗ is the optimal k that minimizes the
travel time. If a vehicle is not able to pass within this cycle, it is natural that it passes at the
next cycle, only if the preceding vehicle has passed. Generally, k could be 0 or 1 showing
whether a vehicle is able to pass at this cycle or the next:

k∗ = agrminTn,i. (12)

Accumulative position pn,i(t) of a vehicle n at time t can be denoted as the addition of
two parts: the accumulative position along previous blocks from 1 to i − 1, and the current
position pn,i(t) in this block i for vehicle n is:

pn,i(t) = ∑i−1
1 sn,i + sn,i

(
t − ∑i−1

1 Tn,i

)
. (13)

At time t, the vehicle has two state conditions which is either passed block i or not.
When the subject vehicle has a preceding vehicle in the same block, an inequality describes
the situation:

∑i−1 li < pn,i(t) < pn−1,i(t) < ∑i li. (14)

Similarly, when the preceding vehicle is not in the same block, an inequality writes:

∑i−1 li < pn,i(t) < ∑i li < pn−1,i(t). (15)

If the subject vehicle has a preceding vehicle in the same block, its duration is con-
strained by the preceding vehicle. The moments that enter or leaves a block can be
calculated from the values of accumulated travel time:

Mn,i = ∑i−1
1 Tn,i, Mn,i+1 = ∑i

1 Tn,i. (16)

When a vehicle has a preceding vehicle, fn,i stands for the time duration that the subject
CAV following its preceding vehicle within this block. This duration is the subtraction
of the moment the preceding vehicle leaves this block and the moment when the subject
vehicle enters the block:

fn,i = Mn−1,i+1 − Mn,i. (17)

6
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To scale the problem to consecutive intersections, Gn,i shows the duration of green
before the vehicle passes the intersection at the moment Mn,i. This variable links the time
of trajectories between two intersections.

3.2.2. Scenario Development

The continuation of position and speed are addressed by introducing variables such
as the cycle length C, green time Gi, green elapse time Gn,i, and offset θi. Each vehicle
is planned only once in a block, the moment a vehicle passes the previous intersection
becomes the starting moment the vehicle enters the next intersection; the information is
indicated with the help of green elapse time. The final status of a vehicle becomes the initial
status in the next.

For CAVs, the arrival moments at the stop line of each intersection are estimated
ahead. For HVs, the arrival moments are estimated using travel time estimation methods.
According to the categories of the estimated arrival moments and whether there is a
preceding vehicle, four scenarios can be defined, and they are noted as scenario 0, scenario
1, scenario 2, and scenario 3, respectively:

0 < sn,i(t) < li < sn−1,i(t); Mn,i ∈ [θi + C ∗ (k − 1), θi + Gi + C ∗ (k − 1)], k ≤ 1, (18)

0 ≤ sn,i(t)< sn−1,i(t) ≤ li; Mn,i ∈ [θi + C ∗ (k − 1), θi + Gi + C ∗ (k − 1)], k >1, (19)

0 ≤ sn,i(t)< sn−1,i(t) ≤ li; Mn,i ∈ [θi + C ∗ (k − 1), θi + Gi + C ∗ (k − 1)], k >1, (20)

0 < sn,i(t) < li < sn−1,i(t); Mn,i ∈ [θi + C ∗ (k − 1), θi + Gi + C ∗ (k − 1)], k ≤ 1. (21)

When the subject CAV is the leading vehicle in the same block, the way to minimize
travel time is to accelerate and maintain its desired speed to travel through the block to
pass the intersection (setting the speed limit as the desired speed v0). The minimal travel
time is obtained when the subject CAV accelerates to the desired speed and maintains the
speed until it passes the signal ahead:

T∗
n,i = {Tn,i|(u = u0|v ≤ v0), (u = 0|v = v0)}. (22)

The value of Gn,i+1 in the next intersection i + 1 is calculated using travel time Tn,i
and the value of Gn,i, θi from the last intersection:

Gn,i+1 = Gn,i + Tn,i − θi. (23)

For the subject CAV with no preceding vehicle in the same block, when it is not
expected to pass the intersection within this cycle, it is planned to pass during the green
in the next cycle, (Mn,i ∈ [θi + C ∗ (k − 1), θi + Gi + C ∗ (k − 1)], k > 1), via a smooth path
without stopping. The corresponding T∗

n,i for both scenario 1 is calculated by:

T∗
n,i = θi + C ∗ k∗ − Gn,i + Gn,i+1. (24)

Gn,i+1 varies the arrival moments, which is set as small as possible so that the startup
time can be saved compared to human driving behavior.

For scenario 2, the calculation of T∗
n,i and Gn,i+1 is the same as that of scenario 1. The

difference is the subject vehicle has constraints from its preceding vehicle for the preceding
vehicle is in the same block. U is active as the physical constraints of the optimal control.

Scenario 3 shows when the subject CAV follows a preceding vehicle in this inter-
section, and it passes within the same green window as the preceding vehicle: Mn,i ∈
[θi + C ∗ (k − 1), θi + Gi + C ∗ (k − 1)], k ≤ 1. The corresponding T∗

n,i is then calculated
from:

T∗
n,i = max(Tn−1,i − fn,i + t0,i,

li
v0

). (25)

Gn,i+1 = Gn,i + Tn,i − θi − C ∗ k∗. (26)

7
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Note that the minimal travel time cannot be smaller than the value when the vehicle is
traveling with the desired speed (in that case, the travel time from scenario 3 is no smaller
than that from scenario 0). U is active as the physical constraints from the preceding vehicle.

Although an HV cannot respond to a CAV, a CAV can detect the position of its
preceding HV. An estimation of the HV’s travel time is conducted. The desired headway
t0,i when a CAV following an HV is set to be larger than that an HV follows an HV to
ensure safety. The travel time when a CAV follows an HV is calculated as:

T∗
n,i = max(Tn−1,i − fn,i + t0,i(HV),

li
v0

). (27)

An HV is expected to slow down and stop if it cannot pass an intersection within the
green duration. They will be modeled remaining at a standstill at the stop bars during the
red phases. The subject CAV does not need to follow closely to an HV. Instead, it passes
with a smooth trajectory without stopping. The calculations of T∗

n,i and Gn,i+1 are the
same as the case when it follows a CAV. In the schematic diagrams of Figure 2, the blue
line shows the estimated trajectory of an HV, and a black line shows the preceding vehicle
trajectory. A magenta line represents the trajectory of a CAV.

 
 

(a) (b) 

  
(c) (d) 

Figure 2. Schematic diagram of (a) scenario 0; (b) scenario 1; (c) scenario 2; (d) scenario 3.
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3.3. Synthesized Algorithm

In lower-level control, the optimal control has been set up for each vehicle to calculate
their optimal trajectories. In upper-level control, the scenarios are developed. In each
scenario, the way to find the minimum travel time has been introduced. The problem in
this paper is to minimize the total travel time for all vehicles therefore the hierarchical
control is addressed systematically in a synthesized way.

According to the analysis of scenarios, scenario 0 is designed as the vehicle that can
drive with its speed limit. Scenario 3 follows preceding vehicle successfully without being
hampered by a red light. Both scenarios are with no time loss. Scenario 1 and 2 experienced
time losses at red. It is obvious that, at the same intersection i, the travel time for each
scenario has the following relations:

T∗
n,i(scnario 0) < T∗

n,i(scnario 3) ≤ T∗
n,i(scnario 1) ≤ T∗

n,i(scnario 2). (28)

Apparently, the travel time reaches minimal when an ideal condition can occur in
which all scenarios are scenario 0. Nevertheless, a vehicle may not be able to drive with
scenario 0 along all the blocks. In this case, replacing one of the scenarios into another
scenario with the least cost for vehicle n achieves the minimal costs that are feasible.
Therefore, a greedy heuristic is to try to plan scenario 0 or scenario 3 first, and then to plan
scenario 1 or 2.

Define zn,i � [un,i(0)
T , . . . , un,i(t − 1)T ]

T
as the decision variable of vehicle n from the

time instant 0 to t in each intersection i. Once a selection of scenarios is made, the minimal
travel time Tn,i

∗ is calculated. The decision variables of the preceding vehicle zn−1,i and
the constraints inputs into the next calculation. By assuming there are N vehicles and I
intersections, the calculation process is listed as follows:

Start: start with intersection i = 1, n = 1

• Step 1: If 0 ≤ sn,i(t) < sn−1,i(t) ≤ li , go to Step 2a; otherwise, go to Step 3a.
• Step 2a: Mn,i ∈ [θi + C ∗ (k − 1), θi + Gi + C ∗ (k − 1)], k = 1, obtain the numerical

solution as scenario 0; otherwise, go to Step 2b.
• Step 2b: Mn,i ∈ [θi + C ∗ (k − 1), θi + Gi + C ∗ (k − 1)], k > 1, obtain the numerical

solution for optimal control problem as scenario 1.
• Step 3a: Mn,i ∈ [θi + C ∗ (k − 1), θi + Gi + C ∗ (k − 1)], k = 1, obtain the numerical

solution for optimal control problem as scenario 3; otherwise, go to Step 3b.
• Step 3b: Mn,i ∈ [θi + C ∗ (k − 1), θi + Gi + C ∗ (k − 1)], k > 1, obtain the numerical

solution for optimal control problem as scenario 2 (following a CAV) or scenario 3
(following an HV).

• Step 4: Find the solution zn,i
∗ for vehicle n at intersection i and broadcast all the

outputs from current plan to all other CAVs. The known decision variables are zn−1,i
then.

End: End by i = I, n = N.
As described in the algorithm, the controller determines each CAV individually and

broadcasts its information and solutions. Information is broadcasted to the follower if it
is a CAV. This proceeds until all the vehicles have solutions for trajectory profiles. The
process is demonstrated in Figure 3.

9
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Figure 3. The flow chart of synthesized algorithm.

4. Numerical Simulations

The proposed method was implemented in MATLAB, and the numerical simulations
are demonstrated below. To test conditions under light traffic does not have much value
since no traffic backpropagation will happen, so only the cases with moderate demands
were considered. Two cases were presented to validate the method. Case 1 compared the
method with the situation when all vehicles were HVs. HVs were assumed to slow down
and stop when approaching a signalized intersection if they expected to fail to pass and
remain standstill at the stop bars during the red phases. HVs were assumed to follow
preceding vehicles using the intelligent driver model (IDM) model [45]. Case 2 compared
the proposed method with a benchmark when all CAVs drive smoothly to avoid stopping
at intersections without the consideration of minimal travel time.

Both cases comprised two examples. In one example, the initial average headway
input was set as 5 s. In the other example, the initial input headway was 3 s. The desired
headway for a CAV and the IDM model was set as 3 s; the desired headway for a CAV
following an HV was set at 4 s for safety concerns. Multiple runs with random seeds were
applied in each case to calculate the average travel time savings under each penetration
rate. The parameters used in the experiment are listed in Table 1.

10
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Table 1. Values of parameters in the experiments.

Parameters Notation Value

Block length (m) li 1000
Number of blocks N 3

Number of vehicles I 60
Cycle length (s) C 100

Green duration (s) Gi 60
Offset (s) θi 30

Weight for terminal distance w1 10
Weight for terminal speed w2 10
Number of vehicle inputs N 60

Safe distance (meter) ds 5
Vehicle length (meter) dv 5

Desire headway (s) t0,i 3
Desire headway a CAV following an HV (s) t0,i(HV) 4

Maximum speed (m/s) vn,i,ub 20
Minimal speed (m/s) vn,i,lb 5

Maximum acceleration (m/s2) un,i,ub 2
Minimal deacceleration (m/s2) un,i,lb −2

4.1. Performance under Different Penetration of CAVs

Case 1 compares the results when no CAVs and when some CAVs using the proposed
are applied. The simulated results are presented in Figures 4 and 5.

 
Figure 4. A comparison of trajectories between HVs (blue lines) and CAVs (magenta) under varying penetration rates of
CAV when the initial headway for CAVs was 5 s (x-axis —time (s), y-axis—distance (m)).
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Figure 5. A comparison of trajectories between HVs (blue lines) and CAVs (magenta) under varying penetration rates of
CAV, when the initial headway for CAVs was 3 s (x-axis—time (s), y-axis—distance (m)).

When the initial headway for CAVs was 5 s, the CAVs trajectories could lead the whole
platoon to decompose and reconstruct reasonably. This led to a reduction in travel time in
the first step. The results also showed that the proposed method can reduce the number of
stops; as a result, the queues and backpropagation shockwaves were mitigated to reduce
the startup time, which saved travel time in the second step. The method compressed
the headways for CAVs when the initial headway was larger than the desired headway,
which made the traffic stream compact, leading to a reduction of travel time in the third
step. Compared to the situations when all vehicles are HVs (0%), the effects of mitigation
of adverse phenomena became more significant with the increase of penetration rates.
When the penetration rate was 100%, the stops were mostly eliminated, and no queue and
backpropagation shockwave showed.

When traffic demand was higher, according to Figure 5, although the initial headways
were so small that they cannot be compressed, travel time was saved from the first two
steps: The whole platoon still decomposed and reconstructed in a certain manner to
ensure vehicles could pass with the shortest time, and the queues and backpropagation
shockwaves were also mitigated. The overall results after multiple runs are presented in
Figure 6.

When the penetration rate of CAVs was as low as 20%, the methods could lead to a
negative effect (−1.57% and −4.12 %). The reason was that a large desire headway (4 s)
for a CAV following an HV was set to ensure safety, which was larger than the case when
a CAV followed a CAV (3 s) or when an HV followed an HV (3 s). However, with the
increasing penetration rates of CAVs, the travel time savings become effective. The travel
time savings were significant when the penetration rate was larger than 60% for both cases.
When a full penetration rate was assumed, the proposed method can provide travel time
savings of 29.33 % and 26.85 % in two examples.
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Figure 6. Travel time saving using the proposed method under different penetration rates of CAVs.

4.2. Compare with a Benchmark

A benchmark was configured with the following settings: (1) the trajectories of HVs
were generated in the same way as in case 1; (2) the trajectories of CAVs were generated
based on a benchmark. For case 2, only the optimal control was used to smooth the
trajectories of the leading CAV at an intersection, and the others followed their leaders.
Similarly, in these cases, different initial headways were demonstrated.

As seen in Figures 7 and 8, although smooth trajectories could reduce travel time by
reducing time-consuming stop and startup driving behaviors at an intersection, they led
to an increase in travel time if multiple intersections were involved and the local minimal
travel time was not considered. This case showed the importance of the proposed method
to calculate the minimal travel time locally under all possible scenarios.

 

Figure 7. The trajectories between HVs (blue lines) and CAVs (magenta) under varying penetration rates of CAV when the
initial headway was 5 s (x-axis—time (s), y-axis—distance (m)) controlling CAVs using benchmark.
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Figure 8. The trajectories between HVs (blue lines) and CAVs (magenta) under varying penetration rates of CAV when the
initial headway was 3 s (x-axis—time (s), y-axis—distance (m)) controlling CAVs using benchmark.

The outputs from case 1 and case 2 showed a significant difference in Figure 9.

 

Figure 9. Travel time savings in case 1 compared to benchmark under different penetration rates of
CAVs.

Comparing case 1 (using the proposed method to control CAVs) with case 2 (using a
benchmark), 35.87% (shorter headway) and 39.00% (larger headway) travel time savings
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were shown, even when the penetration rate was as low as 20%. The percentage increased
to 56.26% and 60.36% when a full penetration rate was assumed.

5. Conclusions

Traffic oscillation and queue backpropagation caused by traffic signals can interrupt
traffic streams periodically and increase the travel time for drivers. To ensure sustainable
transport on a signalized urban street by improving mobility, a connected automated
vehicle hierarchical longitudinal control for mixed traffic on consecutive signalized arterials
was proposed to control multiple vehicles along multiple intersections, considering their
varying control horizons. The main aim is to focus on vehicle mobility on signalized
arterials to improve sustainable urban transportation.

In the lower-level layer, mathematical formulations were developed for the relations
between vehicles and signals during the time vehicles were traveling along consecutive
signalized intersections. In the upper-level layer, the conditions of vehicles are decomposed
into four scenarios. In each scenario, a minimal travel time is calculated. A synthesized
algorithm is used to connect lower-level and upper-level layers.

Two cases were developed to validate the proposed control strategy. Case 1 concerned
a non-CAV setting and Case 2 assumed all CAVs with smooth trajectory without consider-
ing the travel time. The proposed method significantly reduced the number of stops. When
it came to travel time savings, when the initial headway was larger, the travel time saving
ranged from −1.57% to 29.33 %. When the initial headway was smaller, the travel time
saving was also significant (ranging from −4.12 % to 26.85 %). Compared to case 2 using a
benchmark, the proposed method can save travel time from 35.87% to 56.26% and 39.00%
to 60.36%.

The limitation of this paper was that the status of the CAVs and HVs were assumed
as deterministic, and only a single lane was considered in the problem. In the future,
how these scenarios are stably switched in the real world will be considered. In addition,
the method is to be generalized to multilane scenarios by considering lane changing and
overtaking behaviors.
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Abstract: Pedestrian facilities have been regarded in urban street design as “leftover spaces” for years,
but, currently, there is a growing interest in walking and improving the quality of street environments.
Designing pedestrian facilities presents the challenge of simultaneously accommodating (1) pedestri-
ans who want to move safely and comfortably from point A to B (movement function); as well as
(2) users who wish to rest, communicate, shop, eat, and enjoy life in a pleasant environment (place
function). The aims of this study are to provide an overview of how the task of designing pedestrian
facilities is addressed in international guidance material for urban street design, to compare this with
scientific evidence on determinants of pedestrian activities, and to finally develop recommendations
for advancing provisions for pedestrians. The results show that urban street design guidance is well
advanced in measuring space requirements for known volumes of moving pedestrians, but less in
planning pleasant street environments that encourage pedestrian movement and place activities. A
stronger linkage to scientific evidence could improve guidance materials and better support urban
street designers in their ambition to provide safe, comfortable and attractive street spaces that invite
people to walk and to stay.

Keywords: walking; pedestrians; urban street design; pedestrian facilities; link and place functions;
sidewalk; walkability

1. Introduction

For many years, spaces for pedestrians were treated as “leftover spaces” in urban
street design. In regard to technical geometrical street design, motorised vehicle size
was the main determinant for minimum lane widths. The provision of dedicated lanes
for public transport depended on space availability and its level of prioritisation in local
transport policy; defined target values for traffic quality for motorised vehicles, e.g., in
terms of level of service for the forecasted traffic volumes, determined the number of
lanes in street sections and at junctions. Additionally, the recent rise in the popularity of
cycling has resulted in the increase in both the quality and quantity of cycling facilities.
Yet the accommodation for pedestrian needs or place functions has fallen by the wayside,
particularly in areas with limited street space availability. Furthermore, seen from an
engineering perspective, with a width of about 0.75 m to 1.00 m, a “standard” pedestrian
does not typically occupy much space, thus causing pedestrians to be perceived and treated
as a more flexible user group compared to motorised vehicles and bicycles.
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Two additional problems hamper the efforts of transport planners in providing for
pedestrians: (1) Apart from the quality of the street environment, spatial structures and
land use are also strong incentives for walking; thus, despite poor conditions, pedestrians
will still walk if spatial structures and land use are supportive. (2) Planners rarely have
reliable information about existing or expected pedestrian volumes. Even in the current era
of digitalisation, pedestrians are still counted by hand in most cases, which is burdensome,
time-consuming and rarely done.

Various combinations of the above-described issues have been the focus of many dis-
cussions concerning urban street design tasks, which has led to street layouts with overly
narrow sidewalks. Those narrow sidewalks rarely accommodate pedestrians’ movement
functions and often do not encourage place activities such as resting, waiting, communicat-
ing, shopping, eating, and enjoying life in a pleasant environment.

At the same time, research interest in walking and in walkability has sharply in-
creased, and new insights have surfaced about why people walk and about the various
benefits of walking [1,2]. For example, the Health Economic Assessment Tool (HEAT-Tool,
https://www.heatwalkingcycling.org/ (accessed on 14 August 2021), provided by the
WHO/Europe, allows cities to compute in advance the monetised health effects of antici-
pated behavioural change as well as increased walking and cycling levels. It is consensus
that walking is a key ingredient of liveable cities, and contributes to a healthier population
as well as to more environmentally friendly travel behaviours.

Cities and stakeholders are increasingly aware of these positive effects. Thus, there
is increasing interest around the world in walking and in improving the quality of street
environments to be more walkable. Cities such as New York are redesigning parts of their
street networks and urban spaces with a primary focus on an increased quality of space for
pedestrian and dense urban areas. The City of Malmö places pedestrians at the highest
level of their street-user hierarchy [3]. In London, the healthy street approach takes highest
priority in the Mayor’s Transport Strategy [4], and also at the national level, more and more
pedestrian strategies are being put in place (see e.g., [5]). The current COVID-19 pandemic
and related physical distancing requirements bring new challenges and opportunities for
efforts to provide for pedestrians [6].

Seeing the scientific evidence on the positive effects of pedestrian activities and the
increasing interest in encouraging walking and lively streets, it becomes clear that spaces
for pedestrians must not be treated as “leftover spaces”. They should be the focus of
attention.

This study focuses on the design of streets and pedestrian facilities as one impor-
tant determinant of pedestrian activities, as well as one main field in policy-making for
promoting walking. This study compiles standards for pedestrian facilities, including
both movement and place functions, from international guidelines on urban street design
from five European cities and six nationwide guides from European countries and the
USA (NACTO). It compares these with empirical evidence from the scientific literature on
infrastructure-based determinants of pedestrian activity in urban streets.

Two goals are pursued with this approach: Our comparison of standards can be used
separately by researchers who analyse covariates of pedestrian activities. Our overview
of scientific evidence provides a concise summary of infrastructure-based determinants
of pedestrian activities. Our comparison of scientific evidence and standards highlights
how the transfer from research to practice works, and simultaneously allows us to derive
recommendations for advancing the guidelines based on insights gained in research. These
insights should help address the above-described tensions and challenges, and give urban
street designers optimal guidance for reliably providing for pedestrian movement and place
activities, while at the same time leaving flexibility for finding tailor-made solutions that fit
to the local context and that overall contribute to the final goal of advancing provision for
pedestrians.

The remainder of this paper is organised as follows: Section 2 presents scientific
evidence on determinants of pedestrian activities related to street characteristics and the
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built environment. It is followed by the summary of guidance material on pedestrian
facilities in Section 3. Section 4 compares scientific evidence and guidance material in order
to show how the transfer between research and practice works. Recommendations on
providing for pedestrians in future guidelines on urban street design are developed in
Section 5. The final Section 6 summarises main findings and gives an outlook to further
research.

2. Determinants of Walking and Place Activities

Research on determinants of walking and place activities is as interdisciplinary as
the research topic itself [1,7]. Public health researchers focus on minutes of walking as
one part of overall physical activity, and particularly include person-related variables such
as socio-psychological variables, body mass index, or physical activity at work and for
leisure purposes into their analyses [8]. Transport planners try to understand, above all,
the influence of network and street characteristics on pedestrian volumes [9–11]. Urban
planning literature also considers the characteristics of street networks, but takes a much
broader view, including variables describing land use and other neighbourhood and city
characteristics [12–14]. Three main groups of determinants of pedestrian movement and
place activities related to street characteristics and the built environment could be identified
in the analysis of the scientific literature:

1. Urban design and land use are of utmost importance for achieving high levels of
pedestrian activities in the streets.

2. Streetscape design also matters.
3. The successful provision for pedestrian movement and place activities requires far

more than pedestrian-focused urban and transport design.

In what follows, the main findings from the literature are summarised for each of
these three groups of determinants.

2.1. Urban Design and Land Use

The “5 Ds” (Density, Diversity, Design, Distance to public transport, Destination
accessibility) are consistently significant and influential for pedestrian activities in the
researched literature [8,11,15–19]. Ewing et al. [9,20] demonstrate that Density is partic-
ularly important, measured in their example as floor area ratio and population density
within a quarter mile of the investigated commercial streets. Diversity is often captured
by entropy measures describing the number and variety of different land use types in a
given area [15,19,21]. Ewing et al. found it to be statistically significant in one study [20],
but not another study [9]. Shorter Distances, particularly to rail-based public transport,
consistently and significantly increase pedestrian volumes [9,22]. Design-variables describe
the characteristics, and more specifically the connectivity, of the street network, measured,
e.g., as intersection density or as proportion of four-way intersections [15,23]. Mixed
findings exist for these Design variables, which are significant in some studies, and not in
others [9]. Destination accessibility describes the level to which relevant activities can be
reached [15,24]. Destinations are operationalised, e.g., by the number of nearby stores and
amenities weighted by their distance; these are hardly significant in Ewing et al. [9,20] and
show an overlap with Diversity.

Some authors work with Cs instead of the Ds described above in order to investigate
the influence of the built environment on pedestrian volumes: Connectivity, Convenience,
Comfort, Conviviality, Conspicuousness, Coexistence, Commitment [25–28]. These Cs
are a mixture of variables on the neighbourhood and street level; they show a substantial
overlap with the Ds, and findings on their impacts on pedestrian activities are consistent
with the findings summarised above.

2.2. Streetscape

The Ds also apply to the streetscape itself. This holds particularly for Design, but also
for the other Ds. Ewing et al. [9] show the significant influence of floor area ratios along
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the streets themselves (computed as the total building floor area for parcels abutting the
street, divided by the total area of tax lots) and of the proportion of retail frontage along
the block face on pedestrian volumes. In their pioneering work on the Design variable
on the street level, Ewing and Handy [11] measured more than 100 features of selected
streetscapes. Based on expert rankings as the dependent variable, the following five urban
design qualities were identified as the most important:

• Imageability—quality of a place that makes it distinct, recognisable and memorable,
measured, e.g., by the proportion of historic buildings, buildings with non-rectangular
silhouettes and with identifiers, such as major landscape features;

• Enclosure—degree to which the streets are visually defined by buildings, walls, trees
and other vertical elements, measured, e.g., by the proportion of street walls, of sky
visible across and ahead, and by long sight lines;

• Human scale—size, texture, and articulation of physical elements that match the size
and proportions of humans and correspond to the speed at which humans walk,
measured, e.g., by long sight lines, street furniture, proportion of first floor with
windows, building height, small planters;

• Transparency—degree to which people can see or perceive what lies beyond the edge
of a street, measured, e.g., by the proportion of buildings with windows at street level
and of active uses of adjacent buildings;

• Complexity—visual richness of a place, measured, e.g., by the number of buildings,
dominant building colours, accent colours, pieces of public art, people in the street,
and by the presence of outdoor dining.

These criteria have been validated against counted pedestrian volumes in subsequent
studies [11,20]. Controlling for the D variables as introduced above, on the street level, only
transparency was found to significantly influence pedestrian volumes. This is consistent
with findings from other studies [29,30]. The only exemption is imageability, which was
identified in one study as a variable that significantly increases pedestrian volumes [29].
Ewing et al. [9] refined the above concepts and analysed the influence of around 20 variables
measuring the physical features of streetscapes on pedestrian volumes separately, resulting
in three significant variables: proportion of windows, street furniture, and active uses.
Overall, the three streetscape design features added significantly to the explanatory power
of the statistical models on pedestrian volumes, compared to models with only the D
variables on the neighbourhood and street levels. Street furniture was defined as a variety
of signs, benches, parking meters, trash cans, newspaper boxes, bollards, and street lights,
and includes anything at the human scale that increases the complexity of the street. Public
seating was found to be of special importance. The proportion of active uses was defined
as shops, restaurants, public parks, and other uses that generate significant pedestrian
traffic. Inactive uses include blank walls, driveways, parking lots, vacant lots, abandoned
buildings, and offices with no apparent activity.

Kang [31] and Kim et al. [22] focus on the street layout itself. They find significant
positive impacts of sidewalk widths, crosswalks and trees, and negative impacts of slopes,
on pedestrian volumes. The number of traffic lanes is positively associated with pedestrian
volume, but highly correlated with the distance to public transport. Lai and Kontokosta [19]
computed a composite variable called “streetscape” as the combination of sidewalk cover-
age, pavement quality, and street amenity. This variable significantly increases pedestrian
volumes on weekends but not on workdays.

While a large number of studies analyse pedestrian volume, only few research groups
and studies focus on place activities [13,14,32–34]. These are operationalised either by
the number of people in a place [33,34], or by the liveliness index, as the product of
people undertaking place activities times the duration of these activities (15 s to <1 min,
1 min to <5 min, 5 min to <10 min, 10 min to <15 min, ≥15 min) [13,14,32,35]. Mehta
and Bosson [14] distinguish various activity types and the following physical human
postures for their studies: standing, sitting, lying, sleeping. The determinants of place
activities show substantial similarities with those of pedestrian volumes, and add further
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valuable insights to how to achieve lively streets, including both pedestrian movement
and place activities. The existence of community places, such as stores, that are places
to meet neighbours, friends, strangers, etc., are most important for the liveliness index,
followed by the provision of seating, both commercial and public. Personalisation is
also statistically significant and describes how the interface of businesses with the street
(building façade, entrances, shop windows) is embellished with personal touches, such as
displays, decorations, signs, banners, planters, flowerboxes, and other wares. The variables
permeability and variety of businesses are only significant in one study each [14,32].
Sidewalk widths are only significant in a study by Metha [32], and seem to be more of a
mediating variable that is less relevant on its own but allows for facilities, such as seating,
on the sidewalk that foster place activities. No significant influences on the liveliness index
have been identified for shade provided, the existence of street furniture besides seating,
the articulation of façades, and the degree of independence of the adjacent stores.

In addition to these empirical analyses of the influence of streetscape, urban design,
and land use on pedestrian activities, various schemes for assessing walkability exist, e.g.,
the Pedestrian Environment Review System (PERS) [36], the Microscale Audit of Pedestrian
Streetscapes (MAPS) [37] or the Healthy Street Checks applied by Transport for London [38].
These studies mainly rely on expert knowledge. They formulate recommendations for
how to check the friendliness and suitability of street network elements for walking and
place activities, and for how to improve walkability. The street characteristics included in
these walkability assessments correspond well with the significant variables identified in
the literature as described above, but go beyond this empirical evidence based on expert
knowledge. Various street characteristics are investigated in walkability assessments, and
these can be grouped along (1) destinations and land use, (2) street scape, and (3) aesthetics
and social aspects [37].

Gehl [12] distinguished twelve quality criteria for high-quality street spaces for pedes-
trians. The criteria are grouped into the following categories:

• Protection—objective and subjective (perceived) safety against traffic and traffic
crashes, as well as security against crime, are prerequisites and motivating factors for
walking and for place activities. In addition, “protection against unpleasant sensory
experiences” is to be considered;

• Comfort—after taking safety and security issues into account, the provision of comfort-
able public spaces must be ensured in order to invite people into different movement
and place activities. For pedestrians, sidewalks should offer sufficient space void of
obstacles (e.g., a dedicated footway clear zone) and good surface quality. Providing
space for different place activities invites place users to spend time in public spaces;

• Delight—to ensure the well-being of pedestrians and place users, the human scale
(in regard to adequate street width and building height) must be taken into account.
The delight of design with respect to details and materials, as well as green structures,
promote walking and the enjoyment of public spaces by place users.

Gehl [12] does not provide any quantitative validation for these twelve criteria, such
as a comparison with empirically measured volumes of pedestrian movement or place
activities. However, he lists various examples for the successful application of these criteria
in projects for redesigning streets and public spaces all over the world [39].

2.3. Governance and Stakeholder Engagement

Studies in urban design, and particularly the projects published by the groups around
Mehta et al. [13,14,32,35,40] and Gehl et al. [12,39], clearly show that successful provision
for pedestrians needs more than tailor-made and pedestrian-focused designs. Designing
and managing liveable streets is an interdisciplinary task that can only be achieved if far
more stakeholders collaborate than only urban and transport designers.

Cities have a prominent role in initiating and coordinating such collaboration and
in developing policies that support the various community-based stakeholders to engage
in improving and actively using the streets in their neighbourhood. Incentive schemes
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might be set up that create or strengthen small independent businesses, especially those
that are perceived as community places. Longer and more flexible opening hours for local
businesses might be considered and encouraged, contributing to active street usage over
the whole day, week, and year. Cities might transfer some level of control to businesses
and users so that these local stakeholders are enabled and feel invited to claim street space,
e.g., by providing movable street furniture or by allowing businesses to use parts of the
street for their activities and facilities. Incentives might also be given for the organisation
of events such as street closures, festivals, open classroom projects, or other activities that
strengthen the community. Temporary changes in the use of parts of the streets, e.g., by
allowing parklets in summer, by closing lanes or taking out parking lots, e.g., on selected
weekends, might also encourage pedestrian activities and give a different perspective on
the potential of streets and possible perspectives.

Local building codes might support permeable and articulated façades at the street
level. Nooks, alcoves, small setbacks, steps and ledges serve multiple purposes, e.g., people
might seek shelter, get out of pedestrian flow, or stop and rearrange their belongings.

Streets are ecosystems; their users and usages constantly evolve. Streetscapes that
are perfect for today might not be suitable in the near future. In addition, successful,
liveable streets are well maintained streets; therefore, street management should be treated
as equally important as the design. Regular evaluations of users and usages are needed
in order to modify the street accordingly if change happens. Regular street management
includes the operation of removing trash, sweeping and keeping the sidewalk clean,
repairing and replacing furniture, maintaining trees and plants, etc. Local stakeholders
might engage in some of these activities, and they might be supported by small and flexible
funding schemes provided, e.g., on the city level.

3. Recommendations of Facilities for Walking and Place Activities in Guidance
Material on Urban Street Design

3.1. Methodology for Collating and Synthesising Guidance Material

Data on guidance material for facilities for walking and place activities were gath-
ered based on the MORE project (Multimodal Optimisation of Roadspace in Europe,
https://www.roadspace.eu/ (accessed on 14 August 2021), which brings together urban
street designers from all over Europe. This project provides the unique opportunity to
assemble guidance material on urban street design in local languages, to combine it into
a standardized, approach as well as to gather background information about how this
material is generated and used in daily planning practice. Guidelines and additional mate-
rial in English—but also in various local languages—could therefore be synthesised for
various European countries and, in particular detail, for the MORE city and corresponding
country partners of Budapest, Constanta, Lisbon, London, and Malmö. Questionnaires
with the following blocks of questions have been sent out to partners as the basis for col-
lating relevant material: genesis and responsibilities for developing guidance, systems of
road function classification, objectives and performance indicators for urban street design,
specific recommendations for each street user group (pedestrians, cyclists, public transport,
private motorised traffic, kerbside activities, etc.), and safety issues.

Partners from the MORE project filled in the questionnaires and provided relevant
material. Intense discussions and feedback loops for translating materials and for com-
piling consistent information for all cities and countries followed and led to standardised
comparisons for all street user groups. Further materials from other countries beyond
the MORE partners have been included in order to get a broad picture of international
practice in urban street design. Gerike et al. [6] have provided further information on this
methodological approach.

The focus of this paper is on pedestrians and place activities. For these user groups,
we analysed and summarised the following aspects in Table 1:

• Space requirements for moving pedestrians (movement function)—What width is
assumed for “standard” pedestrians and for pedestrians with increased space require-
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ments such as wheelchair users? Space requirements for two or more pedestrians are
also provided in some references and included in Table 1. The reason for this is that
sidewalks are never used in only one direction. Pedestrians are free to move in any
direction on either side of the street and they extensively make use of this capability.
This must be considered when designing pedestrian facilities;

• Space requirements for sidewalk equipment—What width is assumed in the guidelines
for the various items that might be placed on sidewalks such as street furniture or
greenery?

• Standard widths of sidewalks—How are the space requirements for movement and
the place function translated into sidewalk widths? Which widths are recommended
for sidewalks under differing conditions?

• Components/zones of sidewalks—Some references distinguish different zones of
sidewalks;

• Recommendations on place functions—This part of the table summarises recommen-
dations for supporting place functions of sidewalks;

• Crossing facilities—Besides the sidewalks, crossing facilities are very important for
pedestrians as a vulnerable and highly detour-sensitive user group; recommendations
on this topic are therefore also included in the table.

3.2. Summary of Recommendations Provided from Guidance Material

Table 1 combines the information taken from the researched guidance material on
urban street design to provide an easily accessible comparative overview of the standards
in the different countries and cities.

The combined research material shows that standards for space requirements of
pedestrians are provided in most references and are comparable to one another. The width
of a standard pedestrian varies between 0.55 m and 1.00 m. The main reason for this range
seems to be the different definitions, as some references include (and others exclude) buffer
space in the provided dimensions for standard pedestrians. Values for two pedestrians
are given with few exceptions, and vary between 1.50 m and 2.00 m. Only the German
guidelines on urban street design are clear and exacting, specifying that sidewalks should
generally be scaled based on space requirements for two pedestrians. This specification is
based on the fact that pedestrians walk in either direction on a sidewalk and that sidewalks
should be generally designed in a way that allows two pedestrians walking in opposite
directions to meet and pass each other.

Measurable differences were identified among buffer zones; these ranged from 0.00 m
to 1.00 m. The criteria used for choosing buffer zone widths for each design task are
consistent across locations. Buffers to the carriageway depend on speed and volume of
motorised traffic. Buffers to the edge of the street depend on the type and size of adjacent
buildings. However, the values themselves differ greatly.

The fairly similar space requirements for pedestrians summarised above translate
within the researched guidance material into very different recommended sidewalk widths
ranging from 1.00 m upwards. This wide range shows the difficulty of integrating adequate
sidewalk widths into urban street layouts. A sidewalk of 1.00 m means that one standard
pedestrian with an assumed width of 0.75 m can walk on this sidewalk with about 0.12 m
buffer on both sides. One pedestrian needs to leave the sidewalk if two pedestrians
walking in opposite directions meet each other. A wheelchair user with a width of 0.90 m
can use this sidewalk with a 0.05 m buffer to each side. On the one hand, this is not very
comfortable, and, on the other hand, it is also a safety issue when pedestrians use the
carriageway when meeting each other. The authors of the guidance material are definitely
aware of pedestrian space requirements and of the problems that might result from very
narrow sidewalks. Nevertheless, they include these low values for sidewalk widths into
their recommendations. The main reason for this is space scarcity. Particularly in historic
city centres, it is rarely possible to accommodate all user requirements into the limited
available street space. Low minimum values, e.g., for sidewalk widths, could help with
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finding compromises for such challenging design tasks, and in the minds of the authors of
the guidance material, these low values can be applied for pedestrians more easily than,
e.g., for buses, which simply cannot pass a cross-section when lanes are too narrow.

Some references provide specific guidance for bottlenecks; these might help in such
cases. For example, Transport for London [50] allows for a minimum width of the footway
clear zone of 1.00 m, and for a maximum length of 6 m. Two pedestrians cannot meet each
other here, but they might wait at a passing point until the bottleneck is cleared and can be
passed. The Municipal Chamber of Lisbon [47] recommends coexistence streets (shared
spaces) in situations of limited space availability; further references recommend taking out
selected functions completely (such as parking), and thus allowing for regular widths for
the remaining elements in the street [45].

The criteria for choosing sidewalk widths beyond minimum values are (1) the street
type (Budapest/Hungary, Lisbon, London, Madrid, Malmö, Germany, Spain, The Nether-
lands), (2) speeds and volumes of motorised traffic (Austria, Germany, NACTO), (3) pedes-
trian volumes (Budapest/Hungary, Constanta, London, Switzerland), (4) the existence
of parking or cycling facilities (Austria), (5) or proximity to specific destinations such as
schools or retirement homes (Germany, Malmö).

The criteria for distinguishing street types for criterion (1) are based on road func-
tion classification, using mainly one-dimensional systems such as urban and district
roads/local collector roads/local access roads in Madrid, or residential streets/major
streets/commercial streets in Budapest. London’s [70] approach to movement and place
functions is a two-dimensional system for road function classification that disentangles
user requirements in terms of pedestrian movement (walking) and place activities (staying).
It is thus more detailed and better suitable for designing sidewalks that fit specific user
needs in each of the two dimensions. Some references describe street types based on
specific street characteristics, such as the location of the street section (e.g., inner versus
outer city, proximity to specific destinations such as schools or retirement homes), char-
acteristics and usage of adjacent buildings or traffic (e.g., volumes of motorised vehicles);
these characteristics show an overlap with the more specific criteria (2) to (5).

The second criterion of speeds and volumes of motorised traffic focusses on safety
and buffer zones. The third criterion (pedestrian volumes) seems to be very suitable for
optimally matching sidewalk design and user needs. The disadvantage of this criterion is
that it is based on the status quo and not on anticipated or desired pedestrian volumes. In
addition, it is difficult to apply because of insufficient knowledge on pedestrian volumes.
Discussions with city partners in the MORE project revealed that pedestrian volumes are
hardly considered for sidewalk design, even when these are listed as criteria in the local or
national guidance material, mainly because of a lack of data availability. Criterion (4) again
focusses on safety and buffer zones, while criterion (5) is a suitable input for deciding on
sidewalk width and is frequently applied.

More sophisticated references provide not only recommendations for the overall
sidewalk width, but also give additional recommendations for different zones of the
sidewalk [45,47,50,54,67]. This approach allows for a clear separation of movement and
place functions. The footway clear zone (also called pedestrian through zone) is the part
of the sidewalk that should be kept clear from any obstacles and that is dedicated to the
movement function; it should allow pedestrians to move safely and comfortably. The
recommended minimum width for footway clear zones is 1.20 m in Lisbon (on existing 4th
or 5th level streets); 1.50 m in Budapest, Constanta (street category III), London (acceptable
minimum) and the U.S.; 1.80 m in Germany, Madrid, Lisbon (for new streets), Spain and
The Netherlands, and 2.00 m in Austria, London and Switzerland 2.00 m as the preferred
minimum.
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The frontage zones, furniture zones, and kerb zones are spaces that are dedicated to
place functions or that serve as buffer zones, as described above. Recommendations for
place functions are very technical in the researched guidance material, and include mainly
space requirements for street furniture such as benches, parklets, terraces, gastronomy
tables/seating, waiting areas at public transport stops, or parking facilities for bicycles.
Malmö is the most advanced in providing space requirements for greenery. Transport
for London [50,59] lists possible place activities for different widths of the furniture zone.
Some references work with pictograms to visualise possible sidewalk usages for specific
sidewalk widths; for example, they provide a pictogram showing a group of pedestrians
who chat and give the necessary sidewalk width for this scenario [6]. Provision for place
functions is additionally included in the increased sidewalk width for specific street types,
as described above.

Overall, the focus of the researched guidance material is clearly on the movement
function for pedestrians; rarely is any information given about how to design pleasant
spaces for place users that fit to the human dimension and that encourage users to stay, sit,
chat, etc.

4. Comparison of Empirical Evidence and Guidance Material in Urban Street Design

Empirical evidence in the researched literature consistently shows the dominance
of the D variables for pedestrian volumes, including pedestrian movement and place
activities. Density, Diversity of land uses and Distance to public transport are significant
determinants of walking and, with less comprehensive empirical evidence, also for place
activities in all the studies identified in the literature research. Streetscape also matters, but
with less importance compared to the D variables at the neigbourhood level. Floor area
ratios, the proportion of retail frontage or other active uses of the adjacent buildings, as
well as faҫade design, are the most important variables at the street level. Transparency at
the ground floor level is of particular relevance; people like to see what happens inside the
buildings next to the street. These street characteristics, as well as the D variables on the
neighbourhood level, are shaped by urban planning rather than by transport engineering.

Sidewalk width, street furniture and amenities are the relevant variables related to
actual street design. Sidewalk width shows ambiguous causality: wider sidewalks are
implemented in locations with observed or anticipated high pedestrian volumes, and
they allow the placing of (more) street furniture and amenities, thus inviting pedestrian
activities. Empirical evidence clearly shows that street furniture and particularly seating
increase pedestrian volumes, and the relationship between sidewalk width (other things
being equal) and pedestrian volumes is thus clear.

The comparison of this empirical evidence in the scientific literature with the compiled
guidance material shows that they are not well linked. Guidance material for pedestrian
facilities focusses on space requirements for specific furniture and usages of sidewalks.
Recommendations on which sidewalk design to choose in a specific location are based on
criteria that focus on safety and buffer zones (e.g., existence of parking), pedestrian volume
(a criterion that is hardly measured and only represents the current situation), or street
types, without good support from scientific evidence. The street type approach as such,
in combination with the proximity to relevant destinations, seems to be the most suitable
criterion for deciding on sidewalk width and design. However, it should make use of the
determinants for pedestrian movement and place activities, as these have been identified
in the literature. These are the D variables, particularly Density, Diversity and Distance
to public transport. In terms of classification, the characteristics of adjacent buildings,
particularly at street level, should be considered as one criterion for defining the street type.
Based on street type classification, recommendations should be given for sidewalk widths,
design and equipment. These should cover both the movement function for pedestrians
(walking) and place activities.
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5. Recommendations for Advancing Guidance on Urban Street Design

Based on the findings so far, this section develops recommendations for pedestrian
facilities in future guidelines on urban street design.

Movement Function:

• In a supply-oriented approach, an adequate standard width for sidewalks should be
provided in the guidance material as a basic standard value, independent of expected
pedestrian volumes. These should include a footway clear zone that allows two
pedestrians to meet/pass each other and buffer zones to adjacent usages;

• For the footway clear zone that should be kept free of any obstacles, a minimum value
of 1.80 m seems to be suitable. This is the width that allows two standard pedestrians
to pass each other (0.80 m + 0.20 m + 0.80 m). This value would be 1.90 m if the goal
were to allow one standard pedestrian and one wheelchair user to pass each other
(0.80 m + 0.20 m + 0.90 m). The chosen standard width for a pedestrian of 0.80 m is in
the upper range of values identified in the guidance material, but seems to be suitable
given the ageing population in many countries all over the world, which is related to
a growing number of pedestrians with increased space needs;

• Buffer zones to buildings and the carriageway should be scaled depending on the
height of the buildings and the usage of the carriageway. For residential streets with
low traffic volumes and speed, small buffer values are sufficient. For busy streets with
higher speeds and volumes of motorised vehicles, bigger buffer zones between the
pedestrians and the moving motorised traffic are necessary (≥0.30 m). Guidelines
should also provide recommendations for the adequate separation of pedestrians
from cyclists, scooters, and other micromobility vehicles. Guidelines might not only
provide guidance on the dimensions of buffer spaces, but also on their design, with
possible reference to the design-for-all principles, water treatment, and the provision
for place functions;

• For street sections with higher observed or expected pedestrian volumes, greater
widths for the footway clear zones should be recommended, following again a supply-
oriented approach. These street sections can be identified based on the street type
approach, as described above. Alternatively, pedestrian volumes can be counted.
Automated counting facilities for pedestrians are increasingly available, and allow for
counting at more locations and for longer time periods. Future expected or envisaged
changes in pedestrian volumes need to be considered in this case;

• Guidelines should also provide recommendations for types and locations of crossing
facilities. These are paramount for achieving high levels of subjectively perceived and
objective safety.

Place Function:

• The street type approach also seems to be a suitable basis for providing recommen-
dations for place functions. It allows for implicitly considering differences in place
functions resulting from different types and usages of the buildings next to the street
and in the neighbourhood (the D variables), as well as resulting from the vicinity to
public transport stops or further specific destinations;

• Recommendations should be given for the amount of space to be provided for place
functions (quantity), and also for how to design and equip this space (quality). The
qualitative descriptions of requirements for benches, characteristics of attractive spaces,
etc., in [57,58] might be a suitable starting point for this;

• Guidance on seating should be provided, as this variable was found to increase
pedestrian activities significantly in all the researched scientific references. Seating
should be preferably located near activity-supporting businesses or facilities, and it
should also allow groups of people to sit together and to engage in any kind of social
activity;
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• Shade and shelter, street furniture, and greenery are further significant determinants
of pedestrian activities and should also be included in future guidelines on urban
street design in terms of location, quality, and quantity;

• Road function classification is also of great importance for pedestrians. A strategic
concept for pedestrian networks, including a hierarchy of main and secondary pedes-
trian facilities, is the basis for deciding on extra space beyond standard values and
on the equipment of sidewalks (e.g., benches or public toilets). The concept of main
pedestrian arteries in Madrid is a good example of such strategic development of
pedestrian networks and facilities [51].

Bottlenecks:

Bottlenecks are a major problem in planning for pedestrians. Guidance should be
provided about how to deal with bottlenecks. Examples of such guidance are given above
in Section 3. For example, selected functions such as parking might be taken out completely
in narrow parts of a street in order to gain space for pedestrians. Shared space concepts
might be a solution, as proposed for Lisbon. Low speeds and volumes of motorised traffic
are necessary for successfully implementing such concepts. Gehl [12] concludes from his
practical work and research that these shared space concepts only work if, firstly, priority
is legally given to pedestrians. Narrow sidewalks for limited and clearly defined distances,
as suggested in London and in the Netherlands, are another opportunity for dealing with
bottlenecks. Narrow values such as 1.00 m should be limited in their application, as
otherwise, there is the risk that these become the standard values commonly used. These
standard values for sidewalk width should instead be values that allow pedestrians to at
least move safely and comfortably in both directions and to meet each other.

Streets as ecosystems:

Streets are vital parts of urban ecosystems. They are places where man-made in-
frastructure interferes with natural systems. Street design is a significant determinant
for various aspects of environmental quality at the street level itself, as well as beyond.
It influences the micro-climate, as well as the exposure of street users and residents in
the adjacent properties to noise and air pollution, and it is one core component of water
management at the city level. Designing for streets as ecosystems is an interdisciplinary
task that requires collaboration between urban, transport and environmental planning,
including, e.g., public works and water departments. These aspects regarding how to
provide for ecosystem services and how to maximise synergies between all the different
street functions are hardly covered at all in the researched guidance material on urban
street design. They should be included in future guidelines with the final goal of designing
streets and cities that are resilient, efficient in moving people and goods, sustainable, and
enjoyable.

The NACTO guides can be seen as a best practice example for including environmental
aspects into guidance on urban street design. The Urban Street Design Guide [54] stresses
the importance of planning for streets as ecosystems, and gives brief guidance on important
design elements, such as stormwater management, bioswales or flow-through planters.
The Urban Street Stormwater Guide [71] details these aspects with a particular focus on
the important aspect of stormwater management.

6. Conclusions, Summary and Outlook for Further Research

Planning for pedestrians is an interdisciplinary task that requires contributions from
(1) transport planning, (2) urban planning, and (3) environmental planning, as well as
(4) commitment from the city, local businesses and communities, and from other local
stakeholders. Our review of scientific literature has shown that all four of these aspects are
important, and that no clear priorities can be identified. Some level of trade-off seems to
be possible between the four criteria. For example, one weak element, e.g., in transport
planning/street design, might be compensated by strong urban design and stakeholder
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engagement. However, none of these four aspects can fail entirely when the goal of lively
streets must be achieved.

The review of guidance material on urban street design shows that urban street
designers are well advanced in measuring space requirements for pedestrians and for
pedestrian facilities, but less in planning pleasant urban environments that fit the human
dimension and invite pedestrian movement and place activities.

It will be neither possible nor meaningful to integrate all relevant aspects of suc-
cessfully providing for pedestrian activities as identified in the scientific literature into
guidelines on urban street design. However, a better linkage with scientific evidence
can greatly improve the guidance material. The recommendations given in guidelines
on urban street design could be far more focused on the significant aspects as identified
in scientific literature, with two types of possible positive effects: In a supply-oriented
approach, sidewalk width and design match with pedestrian needs and activities at each
specific location. In a demand-oriented approach, wider and more attractive sidewalks
including space for pedestrian movement and place activities can be provided at the most
suitable locations based on scientific evidence, thus inviting people to come and stay in the
streets and to support lively cities and streets, with various positive side effects.

The suggestions of more targeted recommendations for pedestrian facilities, and
particularly for place functions, in future guidelines on urban street design hopefully
contribute beneficially to the discussion on how to promote walking and lively streets. This
could contribute to various positive side effects in overall travel behaviour, the economy
and the environment. Planning for walking and place activities will only be successful if
this is done in the context of all street functions and user needs. The challenge is to find
the right balance between movement and place functions for all the different user groups
anew for each design task.

The current COVID-19 pandemic brings new challenges, but also opportunities. Walk-
ing is one essential aspect of resilient transport systems, and has substantially increased in
importance in the last few months. Insights into behavioural changes due to COVID-19
restrictions, and also into the effects of policy measures implemented in various cities all
over the world for supporting social distancing and for generally promoting walking and
place activities (see e.g., [6]), should feed into future guidelines.

Sufficient evidence exists in the literature that can reliably be translated into recom-
mendations for planners and urban street designers. Further research on the determinants
of walking and pedestrian place activities would help to additionally validate the findings
from the studies published so far, and to elaborate on issues that have not been addressed
in detail in the existing studies.
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Abstract: The provision of convenient, safe and seamless facilities for cyclists is one core success
factor in promoting cycling as a mode of transport. Cycling infrastructures and planning philosophies
differ greatly between countries, but there is no systematic overview or comparison of similarities
and dissimilarities. The aim of this study is to provide an in-depth international overview of guidance
material for cycling facilities in European countries and to develop recommendations for advancing
provisions for cyclists. International guidance materials for cycling facilities along street sections are
collated, systemised and compared. For researchers, the findings provide background information to
better understand cycling behaviour and safety. For planners, the findings support their efforts to
support cycling and to improve guidance materials. The results show that, in general, countries that
are just beginning to promote cycling tend to offer a greater variety of cycling infrastructures in their
guidance materials than more mature cycling countries. Countries differ in whether they prefer
to put cyclists on the street level or on the sidewalk and whether they mix cyclists with other user
groups in the same space. There was even greater variability among countries in the criteria for
selecting types of cycling facilities than in the design characteristics (width, buffer zones, etc.).

Keywords: cycling; urban street design; cycling facilities; bike lanes

1. Introduction

Cycling is trending in research and in practice. The dynamically growing litera-
ture on cycling demonstrates how integral the establishment of safe and convenient cy-
cling facilities is for increasing cycling levels [1], besides socio-demographic/-economic/-
psychological variables, land-use and external factors such as climate and topography [2,3].
Cycling infrastructures need to be seamless and perceived as safe as well as provide ap-
propriate levels of objective safety, e.g., in terms of crashes or conflicts. Literature also
consistently shows that cycling is associated with various positive effects on the efficiency
and environmental performance of transport systems as well as on the health and well-
being of individuals [3].

Cyclist volumes are increasing in many cities and countries all over the world [4–6].
Many stakeholders agree that cycling, along with other active modes such as walking,
should be regarded as a vital feature of transport systems to create attractive, comfortable,
safe and healthy communities. They are working hard to promote cycling as a mode
of transport and to improve cycling conditions; ambitious goals are being established
in strategic urban and transport planning—for example the Sustainable Urban Mobility
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Plans (SUMPs)—which target cycling either as a sole means of transport or in combination
with walking and public transport. Examples for the latter are the cities of London and
Vienna which aim for modal split proportions of 80 to 20 percent (walking/cycling/public
transport vs. car) [7,8]. Lobby groups, such as national cycling associations or the European
Cyclists’ Federation (ECF) have increased their activities and influence substantially in
the last decades and are today stronger in terms of membership and political influence
for cycling than ever before. In summary, there is a pressure on planners to pay particular
attention to cycling, both from the demand side (as a result of increasing cycling volumes)
and from the policy side (resulting from the positive image of cycling).

These developing and multifaceted incentives toward an increase in the use and
awareness of cycling have led to a variety in cycling facilities between countries and cities,
and also to a dynamic collection of guidance material for cycling provision [9]. The aim of
this study is to provide an in-depth international overview of this guidance material for
cycling facilities and to develop on this basis recommendations for advancing provisions
for cyclists. To our best knowledge, such a systematic overview is missing so far, only
few and often non-scientific collations could be identified [10–13]. These are not very
detailed and fragmented, and thus do not allow for systematic comparisons of standards
for cycling facilities.

International guidance materials are therefore collated in this study, systemised and
compared to each other and also with findings on infrastructure-based determinants of
cycling safety from the scientific literature. The findings provide background information
for researchers to better understand cycling behaviour and safety; they should support
policy makers and planners in their efforts to support cycling and to advance and apply
guidance material in a way that actually improves cycling conditions in terms of comfort,
perceived and actual safety.

This paper focusses on the design of cycle facilities on sections in urban areas. It
first describes the methodology used for researching the various materials including the
development of a scheme for classifying cycling facilities in Section 2. Results are presented
in Section 3 for the widths of cycling facilities and in Section 4 for the criteria used for
selecting specific types of cycling facilities in the different countries. The summarised
information in Section 5 and the comparison with the literature on determinants of cycling
behaviour and safety in Section 6 lead to recommendations in providing for cycling in
future guidelines on urban street design in Section 7. The paper ends with a summary
in Section 8.

2. Methodology and Classification of Cycling Infrastructure

The basis of this study is a comprehensive research of guidance material on urban
street design in European countries with a focus on the partner countries and cities in
the MORE project (Multi-Modal Optimisation of Road-Space in Europe, https://www.
roadspace.eu/ accessed on 13 July 2021). A questionnaire was sent to the MORE partner
cities Budapest, Lisbon, London and Malmö and further technical partners (ECF, Interna-
tional Federation of Pedestrians (IFP), International Road Union (IRU), POLIS, PTV Group,
International Association of Public Transport (UITP)) asking for material and informa-
tion with relevance for urban street design in their city or from their specific perspective
(technical partners). Partners were highly engaged in providing insights and references
including their partial translation if necessary. Various feedback loops with discussions
in teleconferences and personal meetings followed, gave background information and
helped to better understand the material provided in local languages. As a result, the
scope of this paper focuses on the MORE partner cities and countries. Material on other
countries, for which there were no local partners in place, was added if information could
be identified via desk research only. The guides published by the National Association of
City Transportation Officials (NACTO) have been included as it is widely used [14–16].

In summary, recommendations for cycling infrastructure from Budapest, Lisbon,
London, Malmö, Germany and the Netherlands are included in this study. Recommenda-
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tions are valid on national level for Budapest (Hungary), Germany and the Netherlands.
Information given in Lisbon, London and Malmö is valid on the municipal level.

Researched guidance material on cycling is, in most cases, more recently updated than
for other street user groups (e.g., for motorised traffic or pedestrians) and it is more often
in the active process of being updated (e.g., in Budapest, Germany, London, Malmö). This
shows the high dynamics in cycling provision that is currently ongoing in all the researched
countries across Europe. In addition, heterogeneity in types and range of application of
cycling infrastructures are much greater compared to other user groups. One possible
reason for this might be the relatively recent developments and changes in this area as
described above. Another reason might be that cycling is (besides the other micro modes
such as scooters) the only transport mode that can share the same space with other street
users in the carriageway or on the sidewalks or that can be accommodated in dedicated
cycling facilities, again either in the carriageway or on the sidewalks.

Terminology and also types of cycling facilities differ greatly between the researched
references. To compare standards and their range of application, a consistent classification
of cycling infrastructures is developed for this study as shown in Table 1.

Table 1. Types of cycling provision as identified in the guidance material.

Type Horizontal
Location

Vertical
Location

Dedicated to
Cyclists

Segregation
from

Motorised
Traffic

Segregation
from

Pedestrians

Exemplary
Figure

Mixed traffic On carriageway Carriageway
No

(shared with
general traffic)

None Physical

Advisory cycle
lane

Also called:
Advisory bike

lane

On carriageway Carriageway
No

(shared with
general traffic)

Striped line or
coloured surface Physical

 

Shared bus and
cycle lane

On carriageway Carriageway
No

(shared with
buses)

Solid line Physical

([16], ch. 4, p. 43)

Mandatory cycle
lane

Also called:
Conventional

bike lane
Full bike lane

On carriageway Carriageway Yes
Solid/striped line
(optionally with

horizontal
segregation)

Physical
 

Cycle track
Also called:

Protected bike
lane

Off carriageway
(adjacent to the

carriageway)
Half sidewalk
or sidewalk Yes Physical Marking or

physical
 

Cycle path
Also called:

Shared use path

Off carriageway
(adjacent to the

carriageway)
Sidewalk

No
(shared with
pedestrians)

Physical None
 

Cycle way
Also called:
Bike path
Bike trail

Stand-alone path

Off carriageway
(alignment

independent
from the

carriageway)

-
Yes/No

(optionally
shared with
pedestrians)

- Optional

Advisory cycle lanes are defined in the above Table 1 as one type of cycling infras-
tructure but, technically, they are a sub-type of mixed traffic because the advisory cycle
lane is not exclusively dedicated to cyclists. It might also be used by general traffic. In
contrast, mandatory cycle lanes are on-carriageway facilities and exclusively dedicated to
cyclists. They can be separated by a striped or solid line or even have light segregation to
motorised traffic.

The greatest variety in design is found for cycle lanes and cycle tracks. The standard
design option for cycle lanes is a dedicated lane for cyclists on carriageway level. Cycle
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tracks are usually on sidewalk level. Additionally, separated cycle lanes as well as stepped
cycle tracks are recommended in the researched guidance material [17,18,20]. Those cycling
facilities provide higher comfort and safety for cyclists compared to mandatory cycle lanes.
Transport for London [20] recommends cycle lanes with either light or full segregation from
motorised traffic. Light separation is designed with discontinuous pre-formed separators
such as planters or flexible posts along the cycle lane and has buffer markings in some
cases. Fully separated cycle lanes have a raised curb, separating strips, islands, grass verges
or lines of planting which all create a continuous physical barrier between motorised
traffic and cyclists. Stepped cycle tracks are located on an intermediate level between the
carriageway and the sidewalk.

Cycle paths are always on sidewalk level as they are shared with pedestrians. Cycle
ways are away from motorised traffic, e.g., in parks and may be dedicated to cyclists or
shared with pedestrians.

3. Width of Cycling Infrastructure

The different types of cycling facilities are classified along their horizontal and vertical
location relative to the carriageway and to the sidewalk: The horizontal location describes
whether the cycling facility is on or off the carriageway, whereas the vertical location
describes whether or not there is a difference in height between the carriageway/sidewalk
and the cycling facility. In addition, information is given about whether or not the cycling
facility can be used by other street users and whether or not (and how) it is separated from
motorised traffic and pedestrians.

The degree of separation from pedestrians on off-carriageway cycling facilities on
sidewalk level can differ. There might be a marking or a physical barrier (e.g., change
in pavement or greenspace) separating cyclists and pedestrians or both might use the
same space.

Mixed traffic does not require any provision for cyclists, but can be complemented by
sharrows. Sharrows (also called pictograms) are defined in this context as non-contiguous
lane markings and aim to make clear that cyclists are allowed and welcome in the carriage-
way. They also give direction about where to cycle in the carriageway, support cyclists in
maintaining safe distances from parked cars and discourage overtaking by cars in narrow
sections. Sharrows are mainly used where space is too narrow to provide a dedicated
cycling facility [17,18] and should only be used if all conditions for mixing cyclists and
motorised traffic on the carriageway are guaranteed (see Section 4).

Bicycle streets are a cycle-friendly design option for mixed traffic and are frequently
used in the Netherlands [19]. These are residential streets with low link function for
motorised traffic but with high link function for bicycle traffic. Bicycle traffic should be
dominant in bicycle streets and should have higher volumes than car traffic. Bicycle streets
might be also planned if current volumes of bicycles are lower than volumes of motorised
traffic but an increase is expected or should be supported by providing a high-quality
facility for cyclists. Service roads are small lower speed streets parallel to main streets
with high speed or volumes of motorised traffic. Cyclists and local motorised traffic share
the space in the service road. Cycling is often prohibited in the main street in these cases.
Service roads often come in combination with sharrows or the dedication as a bicycle street.

Shared bus and cycle lanes where buses and cyclists are allowed to use the same lane
and service roads are other design options in the category of mixed traffic. Recommen-
dations on the width of specific types of cycling infrastructure are based on assumptions
or measurements for the space needed by individual cyclists, the number of cyclists that
is supposed to use the infrastructure, the allowed movements (passing, meeting) and the
adjacent infrastructures. The basis for determining the space for cycling facilities is in most
cases the definition of the space requirements of a standard cyclist in combination with
buffer zones. All these aspects were therefore included in the analysis of the guidance
material. Table 2 presents the space requirement of a standard cyclist and the recommended
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widths of buffer zones in the researched guidance material. Table 3 gives an overview of
the recommended widths of cycle facilities.

The space requirement of a standard cyclist is either 0.75 m (Lisbon, Malmö, the
Netherlands) or 1.00 m (Budapest, London, Germany). The 1.00 m-value appears to already
include a certain buffer zone, while the 0.75 m does not. For example, in Germany and
Budapest Table 3 shows that there is no buffer zone needed between two cyclists in contrast
to most other countries.

In addition to the various possible types and locations of cycling infrastructures as
introduced in Section 2, there is also a wide variety of possible adjacent users and usages.
Providing sufficient space between cyclists and these adjacent usages is of highest relevance
for both the objective and perceived safety of cyclists. These buffer zones between two
cyclists, or cyclists and other users describe the required space for safe overtaking or
passing events. The recommended widths of the different buffer zones in the researched
guidance material are presented in Table 2.

Buffer zones between two cyclists range from 0.00 m to 0.50 m and are, together with
the cyclist’ space requirements, highest in London with 2.50 m for two cyclists and a buffer
zone in between.

Buffer zones for the general traffic are given as approximate values which are to be
applied in all cases or are dependent on speed. These buffer zones vary between 0.00 m
for on-carriageway cycling facilities in Germany and 2.50 m for streets with speed limits
above 50 km/h in Lisbon. Having no buffer zones particularly between cycling facilities
on the carriageway and motorised traffic might lead to low distances between cyclists and
the car overtaking the cyclist with negative impacts on objective and perceived safety.

Buffer zones to static obstacles describe the space required to manoeuvre along high
kerbstones or other objects and are recommended in most researched guidance material;
their size differs with the type and height of these obstacles. The minimum as well as the
maximum value is given in Lisbon with 0.20 m to obstacles of low height and up to 1.20 m
to built elements. Medium buffer zones to static elements seem to be 0.25 m to 0.50 m.

Buffer zones to parking/loading facilities are recommended in order to avoid dooring
crashes with cars opening their doors while being passed by a bicycle. These vary between
0.25 m and 1.00 m with medium values of around 0.75 m which are applied most frequently.

Space requirements for the different street users taken together with the buffer zones
result in the recommendations for the width of cycling facilities. In general, dedicated
cycling facilities need to fit to the space requirements of minimum one cyclist and buffer
zones to adjacent traffic or objects and must ensure sufficient space to allow passing events
(one-way) or meeting events (two-way).
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Carriageway widths for bicycles in mixed traffic should be kept either low so as to
cause cars to remain behind a bicycle when faced with oncoming traffic or kept wide so
that cars can safely overtake cyclists even in the face of oncoming traffic. Intermediate
carriageway widths that might lead to situations of doubt for car drivers on whether or
not to overtake a bicycle should be avoided. This principle of either narrow or wide lanes
(technically called profiles) for mixed traffic is recommended in references from London, the
Netherlands and Germany. Transport for London [20] recommends avoiding carriageway
width of 6.40 m to 8.00 m (doubled lane width) and FGSV in Germany [21–23] does not
recommend values of around 6.00 m to 7.00 m. The differences in width result from
different space requirements of standard cyclists, motorised vehicles and buffer zones. For
example, and as mentioned above, in London the buffer zone between cyclists and general
traffic is 0.50 m whilst there is no buffer zone in Germany (both countries consider 1.00 m as
space requirement for one cyclist). CROW [19] recommends a narrow profile of 4.80 m and
a wide profile of 5.80 m, which both are narrower than the recommendations in Germany
and London; Budapest only recommends the wide profile. Lisbon recommends different
carriageway widths for cycling in mixed traffic depending on the height of the adjacent
buildings. Narrow profiles only work with low volumes of motorised traffic; higher
volumes cause irritation and might eventually result in risky overtaking manoeuvres.

A similar approach is used for shared bus and cycle lanes in London and Germany as
described in Table 3. London recommends the profile dependent on the number of buses
or buses plus taxis per hour. In Germany, the width of bus/cycle lanes depends on the
volume of cyclists. Budapest and Lisbon recommend general width of shared bus and
cycle lanes.

The variety of recommended widths for dedicated cycling facilities is quite low in the
researched guidance material. Widths range from 1.25 m to 2.25 m for one-way cycling
facilities and are ≥2.00 m (London) or ≥2.50 m for two-way-facilities (Budapest, Lisbon,
Malmö, The Netherlands, Germany).

Advisory cycle lanes are usually narrower than mandatory cycle lanes or cycle
tracks/paths, because they are used if space is too narrow to provide a dedicated cy-
cling facility, and in addition, cyclists are allowed to leave the advisory lane and to cycle in
the carriageway, e.g., when overtaking other cyclists. Recommendations are given for the
remaining carriageway width between two advisory cycle lanes because enough space has
to be provided for motorised traffic to pass vehicles in meeting events.

Shared paths for cyclists and pedestrians are wider than dedicated cycling facilities
because they have to accommodate the two user groups with substantial differences in
their velocity.

4. Operational Criteria for Selecting Suitable Types of Cycling Infrastructure

Similarities were identified in recommended types and widths of cycling infrastructure
in Sections 2 and 3. However, the criteria for their application differ greatly; specific criteria
and thresholds are provided to select the type of cycling infrastructure for each application
with substantial differences particularly in the used thresholds. In what follows, the
approaches of each city/country are presented individually. At the end of this Section,
Table 4 gives and overview of the selection criteria for all the researched guidance material.

Malmö only verbally explains the operational criteria for selecting suitable types
of cycling infrastructure and gives the general recommendation for main streets to pro-
vide separated cycling infrastructure (cycle tracks/paths; usually two-way). Outside the
main street network, cyclists cycle in mixed traffic. This distinction of main/lower level
streets mainly refers to volumes of motorised traffic (max. 3000 vehicles/24 h), the speed
of motorised traffic is not considered because speed limits in Malmö are generally low
(max. 40 km/h).
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Table 4. Speed and volume criteria for selecting cycle facilities in selected countries and cities.

Cycling
Infrastructure

Budapest Lisbon London Malmö The Netherlands Germany

Criteria Speed

Volume of
motorised

traffic
(veh/24 h)

Volume of
motorised

traffic
(veh/24 h)

Volume of
motorised

traffic
(veh/24 h)

Volume of
motorised

traffic
(veh/24 h)

Volume of
motorised

traffic
(veh/24 h)

Volume of
cyclists

(cyc/24 h)

Volume of
motorised

traffic
(veh/24 h)

20 <5000 -

30 <12,000 * <3000
<5000 <2500 <8000

40
<5000 <3000

<6000

50 <3000 <4000

60 <2000

Mixed
Traffic

70
-

- - - - -

<1000

Advisory
Cycle Lane

30 5000–12,000

- - - - -

<18,000

40 2000–4000 <16,000

50
-

<11,000

60 <5000

70 <3000

2000–5000 >2000
30 -

>4000 in any case
>18,000

40 5000–19,000
-

- -

>16,000

50 5000–15,000 3000–8000 >11,000

60 2000–8000 >5000

Mandatory
Cycle Lane

70 -
-

- -
- -

>3000

Segregated
Lane/Stepped

track

40 >19,000 -

- - - -50 >15,000 3000–
10,000

60 8000–15,000 -
70 <12,000

2000–5000 >2000
30

>4000 in any case
>18,000

40
- -

- - >16,000

50

-

3000–8000 >11,000

60 >15,000 >10,000 >5000

Cycle
Track/Path

70 in any case >10,000

Where
mixed
traffic

cannot be
applied

in any case Always required with
speed limits ≥50 km/h

>3000

* may be supplemented by bike lane or advisory bike lane.

Volume and speed of motorised traffic are used as operational criteria for selecting
a suitable provision for cyclists in all cities/countries using operational criteria. For
example, Hungary and Germany use these two criteria and give recommendations for
mixed traffic, advisory cycle lanes, mandatory cycle lanes and cycle lanes/tracks depending
on volumes and speed of motorised traffic as shown below in Figure 1; Figure 2 show the
approach for selecting cycle facilities in Hungary and Germany. The green box in Figure 1
describes situations with low speeds (≤30 km/h) and low volumes (≤10,000 vehicles/day)
of motorised traffic where cyclists are guided in mixed traffic. The white area (described
as joint traffic zone) is a sub-type of mixed traffic and is recommended up to speeds
of 50 km/h.

The blue section describes provisions for cyclists on the carriageway with speed limits
between 40 km/h and 60 km/h. Mandatory cycle lanes are recommended with volumes
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<15,000 vehicles/day and speed limits of 50 km/h. With higher volumes, a vertical or
horizontal segregation is recommended (protected or raised cycle lane).

Figure 1. Selection plan for cycle facilities in Budapest ([17], p. 14).

Figure 2. Selection plan for bicycle facilities in Germany ([23], p. 1.9).

Separation (orange section) is clearly required with speed limits of 70 km/h. The
standard solution for separation is bike paths—protected or raised cycle lanes are possible
with low or medium volumes and high speeds.

The German guidelines use a similar approach (see Figure 2). Mixed traffic (denoted
as Area I) is possible with a speed limit of 30 km/h and with maximum 8000 vehicles/24 h
or with a speed limit of 50 km/h and with maximum 4000 vehicles/24 h without any
additional measures.

Area II denotes the combinations of traffic volumes and speed that are suitable for ad-
visory lanes or solutions where cyclists are allowed to cycle either on the carriageway or the
sidewalk. These still shared cycling facilities are recommended up to 18,000 vehicles/24 h
combined with speed limits of 30 km/h or 8000 vehicles/24 h combined with speed limits
of 50 km/h. The allowed volumes of motorised traffic at specific speed limits are almost
twice as high as the allowed volumes in Hungary.

A clear recommendation to physically separate cyclists from motorised traffic does
not exist in Germany as both, cycle lanes and cycle tracks/paths, are recommended in Area
III and Area IV.
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The Lisbon guidelines also consider volumes and speed limits of motorised traffic but
add the street category as third criterion as shown in Figure 3. Lisbon gives the strictest rec-
ommendation on guiding cyclists in mixed traffic with maximum speed limits of 30 km/h
and volumes up to 3000 vehicles/24 h on local streets. Alternatively, contra-flow cycle
lanes in one-way streets may be implemented. Mandatory cycle lanes are recommended
on local streets with 50 km/h speed limit. If the volumes exceed 5000 vehicles/24 h, cycle
tracks are required.

Figure 3. Selection plan for bicycle facilities in Lisbon ([18], p. 12.5).

On distributional streets, elevated lanes (optionally on intermediate level between
carriageway and sidewalk) are recommended with speed limits of 50 km/h and volumes
up to 10,000 vehicles/24 h. Higher volumes require the implementation of cycle tracks.

At higher level streets (with speed limits≥50 km/h), cycle tracks are generally recommended.
CROW [19] recommends cycling facilities according to the volume and speed of

motorised traffic, the road category and the cycle network category which represents the
volumes of cyclists (see Figure 4). Recommendations for mixed traffic in the Netherlands
are with maximum 30 km/h and 5000 vehicles/24 h almost as strict as in Lisbon. With
high volumes of cyclists (>2000 cyclists/24 h) and low volumes of motorised traffic, a cycle
street is preferred over standard mixed traffic solutions to emphasise the dominance of
cyclists. Cycle paths as separated facilities are recommended for speed limits of 50 km/h
onwards (independent of volumes of motorised traffic) or with lower speed limits and
high volumes of motorised traffic or high volumes of cyclists.

Figure 4. Selection plan for bicycle facilities in built-up areas in the Netherlands ([19], p. 102).

Transport for London (TfL) developed recently a new approach to decide whether or
not cyclists can be mixed with motorised traffic [24]. TfL defines target green levels and
minimal requirements for six criteria and a scheme to decide which level has to be met for
each of these criteria in different combinations, these are summarised in 4 scenarios.

Target green levels are defined as:
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1. Volume of motorised traffic: 5000 veh/24 h
2. 85th percentile speed of motorised traffic: 25 mph (40 km/h)
3. Width of traffic lanes: ≤3.20 m with 85th percentile speeds ≤ 40 km/h and the

proportion of Heavy Goods Vehicles (HGV) ≤ 5%; ≥4.50 m otherwise
4. Minimisation of collision risk at junctions: infrastructure measures at all priority

junctions’ volume of motorised traffic ≥ 2000 veh/24 h
5. Minimisation of the impact of kerbside activities and
6. Proportion of HGV (≤5% with volume of motorised traffic ≤ 5000 veh/24 h; ≤10%

with volume of motorised traffic ≤ 2000 veh/24 h)

The scheme in Figure 5 illustrates scenarios that are suitable for guiding cyclists
in mixed traffic. Scenario 1 is the preferred one when all target green levels are met.
Higher volumes of motorised traffic or higher speed can both be compensated by defined
combinations of criteria for which the target green levels have to be met as the minimum. In
Scenario 2, too high volumes of motorised traffic are compensated by sufficiently low speed
and proportions of HGV combined with at least two out of three of the remaining criteria
meeting target green levels. Scenario 3 describes how too high speed can be compensated.
When volumes and speed of motorised traffic meet target green levels, two out of four of
the other criteria have to meet the target green level. Safety at junction has to be ensured
in in all cases (turning risk): Measures for mitigating turning risks are required if safety
issues exist.

Figure 5. Scenarios for guiding cyclists in mixed traffic in London ([16], p. 6).

Table 4 summarises the identified operational criteria and target values for deciding
on suitable types of cycling facilities in the form of a table the crosses the two criteria that
are consistently applied in all references, this is volumes and speed of motorised traffic.
Volume of cyclists is also included in the table as this is a speed limit concerned criterion
(even though is just applies in the Netherlands). Further criteria are only used in some of
the references and are not included in the table; these are explained in the descriptions and
figures above. NACTO [15] does only give one operational criterion on the suitability of
mixed traffic solutions, this is maximum 3000 vehicles/24 h and 30 km/h and is therefore
not included in the table.

5. Summary of Practices in Providing for Cyclists

The researched material shows a high variety in cycling facilities and criteria for their
operation. Infrastructure for cyclists ranges from integrated solutions with cyclists in mixed
traffic or on cycle streets to fully separated cycling facilities off the carriageway, e.g., on
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cycle paths. Overall, more than 10 variations of infrastructure for cyclists were identified
within the seven countries/cities.

As mixed traffic and cycle tracks/paths are defined in all cities and mandatory cycle
lanes are recommended in all guidance material besides Malmö, these three provisions can
be summarised as standard cycling infrastructure types within the researched countries
and cities. Within these types the application of mixed traffic is typically used for streets
with low volumes and speed of motorised traffic, cycle lanes and tracks/paths are more
likely on streets with higher volumes and speed of motorised traffic.

Recommendations for accommodating cyclists in mixed traffic together with mo-
torised vehicles in the carriageway are the most stringent in the Netherlands and Lisbon
who only allow mixed traffic with speed limits below 30 km/h [18,19]. In Budapest and
Germany, mixed traffic (including advisory cycle lanes) is possible up to speed limits of
50 km/h [17] or 70 km/h [23].

Bicycle streets are a special type of mixed traffic and recommended in the Netherlands
for streets with high cycling volumes to emphasise the dominance of cyclists [19]. Car-
riageways with cyclists riding in mixed traffic should either be narrow so as to force cars to
remain behind a bicycle when faced with oncoming traffic, or kept wide so that cars can
safely overtake cyclists even in the face of oncoming traffic.

Dedicated cycling facilities are recommended for high volumes of motorised traffic
and high speed limits. Cycle tracks/paths and cycle lanes bring vertical and/or horizontal
separation. Budapest and Lisbon recommend mandatory cycle lanes with intermediate vol-
umes/speed of motorised traffic and cycle tracks/paths with higher volumes/speed of mo-
torised traffic [17,18]. The Netherlands and Malmö generally recommend off-carriageway
cycle tracks/paths for main streets [19,21]. The German recommendations equally recom-
mend cycle lanes and cycle tracks/paths for streets with high volumes of motorised traffic
and speed limits [23].

The recommended widths for dedicated cycling facilities range from 1.25 m to 2.25 m
for one-way cycling facilities and are ≥2 m for two-way-facilities. It tends to be higher
in countries with a well-established cycling culture such as the Netherlands and Sweden
compared to starter countries such as Lisbon/Portugal.

6. Comparison of Guidance on Cycling Facilities with Literature on Determinants of
Cyclist Safety and Comfort

The assessment of this diversity in recommendations for types of cycling infrastruc-
tures and criteria for their selection against the relevant criteria of (objective and perceived)
safety and comfort proves to be difficult for at least two reasons: (1) The cause-effect chain
from the characteristics of cycling facilities in individual street sections to travel behaviour
and cycling choices is complex. Decisions about travel behaviour are shaped by various
influences and the characteristics of single street sections is only one of them (see, e.g., [24]
for the relevance of seamless cycling networks and safe intersections for successfully pro-
viding for cyclists). (2) The literature on the influence of the type of cycling infrastructure
at street sections on safety is fragmented and hardly allows to draw general conclusions.

Mueller et al. [1] demonstrate the relationship between the length of cycling facilities
in a city and the modal share of cycling without any consideration of the type of cycling
facilities. Le et al. [25] report similar findings and Buehler and Pucher [26] find comparably
high influences of cycle lanes and cycle paths on bicycle commuting in American cities. The
TEMS tool (http://tems.epomm.eu/ accessed on 13 July 2021) shows that cycling shares
are highest in Dutch and Swedish cities—two countries that favour separating cyclists
from motorised traffic. At the same time, the TEMS tool shows substantial differences in
modal shares of cycling within countries even when these have guidelines that are valid at
national level such as Germany or Hungary.

Literature on infrastructural determinants of cycling safety consistently shows that
higher speed (allowed or driven) leads to higher severity of crashes and in some studies
also to higher crash numbers [27–30] and presence of parking increases crash risk [30–32].
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Crash numbers are higher for streets with cycling facilities [33]. The main reason for
this is higher car and cycle traffic volumes and speed in such streets. Differences in crash
risks per car volumes are less consistent in the researched references. Lusk et al. ([34] see
also [35]) find higher risks for on-carriageway cycling facilities compared to cycle tracks.
Teschke et al. [31] find higher risks for sections without any cycling facility compared to
sections with cycle lanes. Harris et al. [29] find lower risks for sections with cycle tracks
compared to advisory lanes and mixed traffic. Canadian studies find higher risks for cycle
tracks compared to cycle lanes [36,37].

The literature review on perceived safety supplements the findings of the risk analysis.
User surveys show that perceived safety is very low when cyclists are guided in mixed
traffic [38–41]. The safety perception is even lower with high speed limits [38,41], the
presence of parking [38–40], high volumes of motorists or a high proportion of heavy
vehicles or presence of buses [38,41].

On streets with cycling infrastructure, users generally prefer facilities off-carriageway
over on carriageway facilities [38,39,41]. However, well-designed and protected cycle
lanes (with coloured surface, buffer elements and sufficient width) can achieve a similarly
high level of perceived safety as cycle tracks [38]. In a mental mapping study in Ireland,
separation of cyclists was found to have the greatest impact on perceived safety (compared
to motorists’ volumes, width of infrastructure, number of junctions and parking) [42].

Some general conclusions can be drawn besides the fragmented character of the
literature. Slow speed increases safety and also the willingness of people to cycle in the
streets. Study design, specific location and infrastructure design matter when comparing
the safety of on- and off-carriageway facilities. Cycling facilities are safer and perceived
safer than no cycling facilities and there is the tendency of better safety for separated
cycling facilities compared to unprotected on-carriageway facilities such as cycle lanes.
The number of cars and also cyclists consistently matters [43]. Higher car volumes increase
crash risk for cyclists, the safety-in-numbers effect leads to relatively lower risks for cyclists
with increasing cycling volumes.

7. Recommendations on Providing for Cyclists in Future Guidelines on Urban
Street Design

Based on the insights gained from summarising the various guidance materials on
cycling provision, the following recommendations were developed:

Keep it simple: “Starter countries” in terms of cycling tend to offer many more types
of cycling facilities in their guidance materials than countries with a longer history in
cycling provision. A variety of solutions might be necessary in starter countries because
the optimal solutions might not have enough political support (e.g., would require taking
too much space from cars). This is a critical point because (potential) cyclists are not
familiar with participating in traffic as cyclists nor are car drivers and other street users
used to cycling infrastructure or expect cyclists in the streets. With this in mind, the first
recommendation is to keep cycling provision simple, wherever possible. The three basic
options for accommodating cyclists in the streets are a solid basis and, in most cases,
sufficient; these are (1) mixed traffic, (2) on-carriageway mandatory cycle lanes and (3)
off-carriageway cycle tracks/paths. Too many types of cycling infrastructure might cause
confusion for users. Even though there are many different types of cycling infrastructure
available, this disadvantage might outweigh the advantage of having the opportunity to
provide tailor-made solutions for each design task.

Mixed traffic or dedicated cycling facilities: The decision between accommodating
cyclists in mixed traffic with motorised vehicles on the one hand and dedicated cycling
facilities on the other is of special importance. Speed of motorised cars of maximum
30 km/h and low volumes of motorised vehicles appear to be the two key deciding factors.
Dedicated cycling facilities should be provided if either of these two is exceeded. Bicycle
volumes should also be considered if these reach relevant levels. Lane widths (profiles)
for cycling in mixed traffic should be either narrow or wide in order to clearly indicate
whether or not the overtaking of bicycles is safely possible for cars. Narrow lane widths
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seem to be more suitable as these support low speed for all street users. Bicycles should be
prioritised over motorised traffic, particularly if their current or expected number exceeds
car volumes, e.g., by providing bicycle streets.

Dedicated cycling facilities on or off the carriageway: Once the decision for a dedicated
cycling facility has been made, these might be placed on the carriageway as cycle lanes or
off the carriageway as cycle tracks/paths. Both of these options have pros and cons which
can be evaluated on a case-by-case basis or addressed in a general manner as is carried out
in Malmö and the Netherlands for off-carriageway cycle tracks/paths. Both options are
good choices for objectively safe and convenient cycling networks if these are sufficiently
wide and well designed. Cyclists feel safer on off-carriageway or at least protected facilities
and although the scientific literature does not indicate a clear risk reduction for cycle tracks,
elevated or protected design solutions are recommended when traffic volumes or speed
limits are high. Solutions for street sections always need to fit with the solutions at the
adjacent junctions as these are very important for cyclists’ safety and comfort.

Mixing pedestrians and cyclists: This is a popular solution for limited space and high
volumes (and speed) of motorised traffic but might lead to conflicts between pedestrian
movement and place activities and cyclists. Dedicated and separated facilities for cyclists
and pedestrians should therefore be implemented whenever possible, even if that requires
taking space from motorised traffic.

Width of cycle lanes and tracks/paths: With high cycle volumes, it is desirable to
offer a width of minimum 2.00 m in one direction to allow passing events without leaving
the cycle lane/track. Narrower facilities should only be provided where a low number of
cyclists is expected (e.g., due to alternative attractive routes in the network). Wide facilities
might demand physical separation to discourage other road users from driving or parking
within the cycle infrastructure. Buffer zones to adjacent usages particularly for parking are
paramount for safe cycling.

Future needs: In general, cycling infrastructure should cover current and future needs.
Due to an increasing number of cargo bicycles (higher space requirements) and electric
bicycles (higher speeds) and the fast developments in Personal Light Electric Vehicles
(PLEV), cycling infrastructure should provide enough space for non-standard and standard
users. One such example would be the provision of lane widths which make is easy for
faster cyclists to pass slower cyclists even though the slower bike has extended dimensions.
Cycle Highways are another example as a new trend in cycling practice in planning [44].

8. Summary and Conclusions

This study provides a comprehensive international overview of guidance material for
cycling facilities. It shows similarities and differences in the practice of cycling provision.
Some general trends could be identified. “Cycling countries” such as the Netherlands
and Malmö/Sweden use fewer types of cycling facilities, are strict in mixing cyclists
and motorised traffic only in streets with low speed and volumes of motorised traffic
and recommend greater widths for dedicated cycling facilities. At the same time, also
substantial differences emerged. For example, Germany treats mandatory cycle lanes in the
carriageway equally in terms of operational criteria as separated cycle tracks/paths. Malmö
uses mainly two-way cycle tracks/paths on their main roads, these cycling facilities should
be avoided following the recommendations in German guidelines for cycling facilities.
More empirical evidence on the effects of the different types of cycling facilities would help
to advance guidance material towards safe and comfortable solutions in each specific case
study. These investigations should include both street sections and junctions as the latter
are even more decisive for cyclists’ safety compared to street sections.
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Abstract: Walking is a sustainable commute mode, and walkability is considered an essential sign
of sustainable mobility. To date, many walkability assessment tools have been developed to assess
the walkability conditions across the world. However, there is a paucity of comprehensive methods
to assess current walkability tools based on walking needs and ensure all walking requirements
are included. Thus, researchers and experts are unable to select the most comprehensive tool
systematically. The present study attempts to develop a system to evaluate the quality of the existing
tools. The instrument focuses on factors related to walking needs frequently observed in all types of
walkability assessment tools. Hence, a pilot measurement quality appraisal instrument (MQAI) is
developed and tested by a research team with planning and public health backgrounds. The final
MQAI is tested by suitable reliability, criterion, and content validity tests. Most appraisal scales
display moderate to high reliability for both audits and questionnaires. The MQAI appears as ready
for use in several applications, including meta-analyses and systematic reviews. Additionally, the
MQAI can be used by practitioners and planners to identify the most comprehensive and efficient
assessment tools based on their needs.

Keywords: sustainable commute mode; walkability assessment tool; measurement quality appraisal;
walking environment; walking needs

1. Introduction

Walking is the simplest class of physical movement that benefits individual health.
In addition, walking is regarded as a sustainable transport mode that benefits an individ-
ual, society, and environment [1–3]. Several studies focused on identifying pedestrian
needs [4,5]. These studies identified a range of factors that affect pedestrian behavior and
decisions. These factors can be summarized into four main groups that include accessibil-
ity [6–10], safety [11–16], comfort [4,5,17–19], and pleasurability [4,5,20]. A few studies also
focused on a single dimension of walking needs. For example, Tiwari [21] explored the
safety concerns of an individual while accessing metro stations, and Zakaria and Ujang [22]
determined pedestrian comfort based on walking experience.

Several studies used these walking needs to develop assessment tools, including
pedestrian level of service (PLOS) methods and walkability assessment tools [23–30].
Factors used in the aforementioned studies include accessibility, traffic factors, safety (from
crime and traffic), geometry/environmental/footpath factors, pedestrian movement factors,
aesthetics, comfort, attractiveness, functionality, destinations, environmental appearance,
activity potential, shade, convenience, walking facilities, usability, and exploration.
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The existing physical activity tools and walkability assessment tools aim to assess
the walking environment and improve recreational spaces for health advancement in
societies [31]. Walkability assessment tools use audits [13,32–34] and questionnaires [35,36]
to collect the required data. In order to perform an audit, the streets are split into segments,
and each part is examined by one or more evaluators. In audits, a set of qualitative
judgments or quantitative measurements is designated for each assessment item. Like the
audits, the questionnaires are effective instruments to assess pedestrian environments.
The questionnaires are utilized to evaluate the perceptions of neighborhood residents
towards walking and cycling facilities in their area.

According to Litman [37], walkability is considered an essential indicator of sustain-
able mobility. Typically, researchers and practitioners from various domains, including
urban planning, transport planning, urban design, and public health have an interest in
the topic of walkability. In addition, they are the main users of the walkability assessment
tools. There are many walkability assessment tools, and it is a challenging task to select
the best one. Furthermore, there is no guideline or a systematic manner to help these
users to select the most appropriate walkability assessment tool. They need to ensure that
the tool that they select to work with is comprehensive and sufficiently detailed. This is
because the future investments in infrastructures may depend on this assessment. Thus, if
an inappropriate tool is used, undesirable consequences will be brought about. Each type
of walkability assessment tool uses certain indicators to assess the walking environment
and urban design-related factors. The walking needs are extremely diverse, and thus it is
important to ensure that the assessment tools consider a wide range of urban design-related
factors to the maximum possible extent for assessment purposes. Consequently, there is
a need to develop an instrument to appraise the strength of assessment tools to evaluate
walking needs. Currently, there is a paucity of research dedicated to the measurement
quality examination of walkability assessment tools [11]. The present study aims to develop
a measurement quality appraisal instrument (MQAI) to evaluate walkability assessment
tools based on walking needs. This paper presents the development process of the MQAI.
To exhibit this process, the MQAI was applied to some walkability assessment tools and in-
dicated the reliability, validity, and applicability of these tools. The successful development
of MQAI ensures planners and researchers can efficiently employ this tool for choosing the
most appropriate walkability assessment tool among the candidate tools.

2. Walking Needs

Various walking needs and their contributory urban design variables affect people’s
decision to walk. Accessibility is among the most cited walking needs that must be met to
motivate people to walk. Accessibility simply refers to the ability (easiness) of obtaining
desired services and activities [4,6–10]. Several urban design factors affect the accessibility
needs of walking, including, but not limited to, availability/completeness of sidewalk
network, number of destinations, proximity to transit points, presence/number of barriers,
and public spaces.

Safety is another important walking need that is frequently found in the literature.
Safety of walking refers to whether an individual feels safe from the danger of falling due to
wet conditions, the hazard of conflicts with vehicles, and the threat of crime [2,4,11–14,38].
Urban design factors that may affect safety from crime include lighting, landscape and trees,
and vacant buildings. Design factors that may contribute to safety from traffic include
signage, signals, and pedestrian crossings. Safety from falling also can be affected by
surface, materials, and lighting.

A considerable amount of literature has been published on comfort as an impor-
tant need for walking. Comfort refers to a person’s level of satisfaction, ease, and plea-
sure [4,5,17]. The design factors that may affect the comfort needs of walking include
landscape and trees, the presence of traffic calming features, canopies, and drinking foun-
tains. Pleasurability is also an important need for walking. Pleasurability simply refers to
whether an individual experiences an enjoyable and interesting area for walking [4,5,20].
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The presence of a varied streetscape, architectural elements, and outdoor dining areas can
affect the pleasurability level of pedestrians. Table 1 illustrates the walking needs and the
urban design factors that affect these needs.

Table 1. Walking requirements and their design considerations.

Walking Needs Design Factors That Affect the Walking Needs Reference

Accessibility

Presence/completeness of sidewalk network [4,12,22]

Presence/number of barriers [4,39]

Distance to destinations [4,39,40]

Number of destinations [4]

Pavement width [24]

Pattern of street network [39]

Variety and proximity of activities [4,39]

Connectivity between uses [39]

Mix land use [12,39]

Alternative routes [22]

Proximity to transit points [22]

Directness of walkways/routes [22]

Accessibility of transit stations [22]

Public space [12]

Safety

Landscape and trees (buffering and safety from crime) [26,41–44]

Signage [32,35,45,46]

Bollards [44,47–49]

Lighting [12,14,32,50–52]

Signals [32,34,53,54]

Surface and material [35,46,55]

Windows facing the street [12]

Abandoned buildings [12]

Rundown buildings [12]

Vacant buildings [12]

Graffiti [12]

Undesirable land uses [12]

Driveways [56]

Pedestrian crossings [57–59]

Landscape and trees [24,60]

Sidewalk width [49,52,61,62]

Surface/Material [46,52]
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Table 1. Cont.

Walking Needs Design Factors That Affect the Walking Needs Reference

Lighting [63]

Cleanliness [6]

Shading [6]

Presence of traffic calming features

[4,12]
i. Roundabouts/Traffic circle

ii. Medians

iii. curb bulb-outs

Comfort Length of blocks [12,39]

Buffer [12,39]

Arcades [4]

Canopies [4]

Number of lanes [12]

Street width [12]

Pavement treatment [12]

Drinking fountains [64]

Bench and sitting areas [35,65]

Slope [52,66]

Pleasurability

Landscape and trees [12,67]

Presence of a varied streetscape [4]

Mixed uses [4]

Architectural elements [4]

Historic or unique architecture [4]

Color [4]

Presence of public space [4]

Outdoor dining areas [4]

The existing walkability assessment tools have various factor classifications. In walk-
ability assessment tools, the major groups of assessment items are street facilities, side-
walk characteristics, land use, and road attributes. Street facilities include signage, sig-
nals, drinking fountains, surveillance, and items related to the disabled [33,34,68]. Side-
walk characteristics include items such as sidewalk completeness, the width of the sidewalk,
presence/number of barriers (obstacles), and surface/material of the sidewalk [69–71].
Land use is another frequently used grouping that contains a mixture of land use, undesir-
able land uses, and destinations [72,73]. The walkability assessment tools also use items
related to road attributes, including traffic calming features, street width, cleanliness, light-
ing, and directness of walkways/routes [71,74]. Table 2 presents walking needs-related
factors based on the major factor classifications in the existing walkability assessment
tools. The walking needs information obtained from the literature and summarized in
Tables 1 and 2 were used to develop a comprehensive instrument to assess current tools
based on walking needs. This instrument can assess the quality of the existing walkability
assessment tools and determine their capability for assessing pedestrian environments.
Such an instrument also can act as a decision-making system for selecting the most appro-
priate assessment tool for evaluating the walking environments.
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3. Methods

As previously mentioned, this paper shows the development process of the MQAI.
This process included two main parts: (1) pilot version development and (2) final version
development. Each part involved a series of assessments and techniques. The development
process of MQAI is indicated in Figure 1.

Figure 1. MQAI development process.

3.1. Identifying Walking Needs and Developing the Pilot MQAI

A literature review has been conducted to identify the walking needs and their widest
range of contributory urban design factors. The walking needs information extracted
from this literature (refer to Tables 1 and 2) were used to develop a pilot MQAI (refer
to Appendix A) to assess the current tools based on walking needs. Table 3 lists the key
characteristics of the MQAI. This tool is based on a pointing system in which each point
corresponds to a specific condition. In this system, the worst and best conditions receive the
lowest and greatest points, respectively. This method facilitates a systematic comparison
among the walkability assessment tools and allows for determining the tools’ capability for
evaluating the walkability. To assess each item, the evaluator must select ‘no assessment’
(determines that the tool does not assess the indicator); ‘simple assessment’ (determines
that the tool simply assesses the availability of an indicator and does not assess the quality
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of indicator); ‘partial assessment’ (determines that the tool assesses the availability in
addition to the quality but does not provide a complete assessment for the quality); and
‘complete assessment’ (determines that the tool presents a complete assessment (avail-
ability and quality) for the indicator). The ’no assessment’, ’simple assessment’, ’partial
assessment’, and ’complete assessment’ conditions receive points of zero, one, two, and
three, respectively. These four levels of responses allow for simultaneously assessing both
availabilities of design factors and their assessment quality in the tools. The score of each
measurement scale is computed by the sum of the marks assigned to the different items.
Appendix A shows the scoring pattern and related explanations.

Table 3. Characteristics of MQAI.

Type of Appraisal Scale Question No.

Sidewalk Sidewalk network and path condition 1–2

Land uses and destinations A mixture of land uses, undesirable land
uses, and destinations 3–5

Street facilities

Signage, signals, drinking fountains,
landscape and trees, bollards, buffers,
benches and sitting areas, surveillance,
items related to disability, streetscape
characters, driveways, and transit points

6–17

Road attributes
Traffic calming features, road attributes,
network design, and qualitative
characteristics

18–21

To investigate the content validity of the proposed MQAI, some meetings were held
with a panel of experts which included two experts in urban transport planning and public
health. The outcomes of these meetings were minimal changes to the content of some
scales and/or the explanation attached. The pilot version of MQAI was made through the
results of this step.

A criterion validity test was conducted in this step. Two pedestrian environment
assessment tools, including one audit and one questionnaire, were assessed utilizing the
pilot version of MQAI by the research team (authors). Each member of the research team
was benchmarked relative to the team leader (first author). The average level of agreement
was 41.5%.

Once the assessment of criterion validity of the MQAI pilot version was completed,
the outcomes of this evaluation were discussed in a series of meetings in which both
the research team and experts were involved. These meetings engaged the experts in
discussion and the developing of a refined list of suitable MQAI appraisal items. During
the meetings, the research team and experts confirmed the purpose and scope of the MQAI.
They also ensured that the widest range of appraisal items was included in the proposed
instrument. Thus, a few changes were implemented, such as adding more explanations
to the description of the responses to clarify the differences between answer categories in
a better way (refer to Table 4). Additional improvements included adding an instruction
to respond to the appraisal items. Step-by-step instructions were provided to aid users
in selecting a suitable answer concerning ‘No, simple, partial, and complete’ (refer to
Appendix A). Additionally, a graphical scale was provided to help the users recognize the
right response (refer to Figure 2).
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Table 4. An example of an added explanation to a given question in MQAI.

Answer Description Point

No assessment The tool does not assess the condition of the path 0

Simple assessment The tool simply assesses the path condition * in the study
area 1

Partial assessment
The tool assesses the path condition, and one of the
following path condition issues: (1) material ** used; and
(2) slope ***

2

Complete assessment The tool assesses the path condition and all the following
path condition issues: (1) material used; and (2) slope 3

* Poor (several weeds, breaks, and holes), moderate (a few weeds, breaks, and holes), good (very few weeds,
breaks, and holes), under repair. ** Flat segmented concrete slabs, paving stones, Portuguese mosaic, rustic natural
stones, slippery material (smooth ceramic tiles), rough material (hydraulic tiles, interlocked blocks, flattened
concrete), regular, firm, antiskid, and ant vibration material (high strength paving). *** Flat or gentle, moderate
slope, steep slope.

Figure 2. Scoring graphical scale.

3.2. Final Version Development

The research team and panel of experts assessed the significance of each tool item.
They rated the importance of the items by utilizing a five-point scale varying between
’not important’ and ’very important’. The median score for each item was calculated to
determine the weight of the items. In order to gain the consensus of the research team, the
team computed the agreement level for the importance of every factor. Then, the weight
for each item was adjusted based on the number of items in each category.

The formula that was utilized is [weight − expected weight]. The expected weight
is the score that is assigned if the items equally contributed to a category. For instance, if
it is required to weigh two items, the expected weight is 2.50 for each; and if it is needed
to measure four items, then the expected weight is 1.25. The inter-quartile range (IQR)
is calculated for these modified weights to assess the degree of consensus among the
evaluators on the scored importance of items. Items with an IQR < 1 correspond to a high
level of consensus among the evaluators.

The final version of MQAI was tested for criterion validity and reliability. The reference
degree of correlation and agreement for individuals with a background and familiarity
with urban planning and urban design was investigated to assess the criterion validity of
the MQAI. For each rater, the agreement level was calculated with respect to the leader
of the research team. A total of eight students who registered for a Master of Science
(advanced urban planning course) participated in this step. Two tools were selected by the
team leader and were classified based on the MQAI% interpretation section (Appendix A)
as poor (20 ≤ MQAI% < 40) and regular (40 ≤ MQAI% < 60). A tool was given to each
student, and they were asked to complete the assignment in four days.

In order to test the reliability, two raters were asked to evaluate six walkability assess-
ment tools (three audits and three questionnaires). The users of walking assessment tools
are mainly from the domains of urban planning, transportation planning, and public health.
Thus, two raters were selected, namely an urban and transport planner and a public health
expert. The main goals of this step were: (1) to verify the inter-rater degree of agreement for
each of the four levels of answers employed in the MQAI; and (2) to assess the inter-rater
degree of agreement for each of the six tools. The inter-rater reliability was tested by using
Kappa, which is a statistical measure of inter-rater reliability.
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4. Results

Based on the IQR definition, an IQR of less than one indicates a high level of agreement,
and an IQR of more than one indicates a low level of agreement. Thus, sixteen factors
exhibited high levels while five factors exhibited moderate levels of consensus (Table 5).
All items, including ’sidewalk’, ’land use and destinations’, and ’road attributes’, exhibited
high levels of agreement while those items with moderate levels belonged to the ’street
facilities’ category.

Table 5. Relative weightings and level of consensus on the items.

Median Final Weight = [Weight − Expected Weight *]
Relative Weight

(Normalized Weight)
IQR

Sidewalk
Sidewalk network 5 2.50 0.50 0
Path condition 5 2.50 0.50 0.5
Land use and destinations
Mixture of land use 3 1.33 0.19 0.5
Undesirable land uses 4 2.33 0.33 0.5
Destinations 5 3.33 0.48 0
Street Facilities
Signage 3 2.58 0.07 1
Signals 4 3.58 0.09 1
Drinking fountains 3 2.58 0.07 0.5
Bollards 4 3.58 0.09 0
Landscape and trees 4 3.58 0.09 1
Buffers 4 3.58 0.09 0.5
Benches and sitting areas 4 3.58 0.09 0.5
Surveillance 4 3.58 0.09 0.5
Items related to disabled 4 3.58 0.09 0.5
Streetscape characters 4 3.58 0.09 1
Driveways 3 2.58 0.07 0.5
Transit points 3 2.58 0.07 1
Road Attributes
Calming features 4 2.75 0.23 0.5
Road attributes 4 2.75 0.23 0
Qualitative characteristics 4 2.75 0.23 0
Network design 5 3.75 0.31 0.5

High level of agreement (IQR < 1); moderate level of agreement (IQR = 1); * low level of agreement (IQR > 1). * Expected weight: sidewalk
factors = 2.5; land use and destination factors = 1.67; street facilities factors = 0.42; road attribute factors = 1.25.

The final version of MQAI was tested for criterion validity and reliability. As shown
in Table 6, the total baseline of agreement level between the evaluators and the team head
was 82%. The lowest agreement belonged to the sidewalk scale (75%). Agreement values
for the other three scales were 79% for land use and destinations, 83% for street facilities,
and 88% for road attributes. The Spearman correlations were 0.78 for the regular tool and
0.92 for the poor tool. The average MQAI% for the tools was 38% for the poor tool and
43% for the regular tool. The difference in MQAI% between the ’poor’ and ’regular’ tools
were statistically non-significant at the 5% level. Additionally, there was no statistically
significant difference in MQAI% between the tools assessed by the research team leader
and the tools assessed by the individuals (p-value = 0.3 for the poor tool; p-value = 0.1 for
the regular tool).
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Table 6. Baseline degree of agreement with respect to the team leader (criterion validity testing).

Testing of MQAI Final Version
Questions

Poor Tool Regular Tool Overall

Sidewalk 1–2 75% 75% 75%
Land use and destinations 3–5 83% 75% 79%
Street facilities 6–17 92% 73% 83%
Road attributes 18–21 94% 81% 88%
Overall 1–21 89% 75% 82%
Spearman correlation 1–21 0.92 * 0.78 * 0.85

* Correlation is significant at the 0.01 level (2-tailed).

Table 7 reveals the inter-rater agreement level for every of the four levels of response
employed in the MQAI. Table 8 presents the reliability data by appraisal type and includes
the number of questions evaluated within each component. With respect to the questions
assessed in audits and questionnaires, averages of 69.84% and 73%, respectively, corre-
sponded to a high agreement (≥75%) between the raters. The aggregated results of the
inter-rater agreement level for each of the tool types are shown in Table 9. The weighted
Kappa values for the four scales varied based on the tool type, and the K values for the
audits were in the moderate to good range. Concerning the questionnaires, the K values
ranged from fair/moderate to very good. The overall inter-rater reliability for the audits
and questionnaires were 70% and 73%, respectively.

Table 7. Inter-rater degree of agreement for each of the tool types and levels of answers.

Based on the Assessments of Three Audits
No Assessment Simple Assessment Partial Assessment Complete Assessment

No assessment 80% 13.3% 6.7% 0.0%%
Simple assessment 19.2% 65.4% 15.4% 0.0%%
Partial assessment 0.0% 21.4% 71.4% 7.1%
Complete assessment 0.0% 0.0% 37.5% 62.5%

Based on the Assessments of Three Questionnaires
No Assessment Simple Assessment Partial Assessment Complete Assessment

No assessment 100% 0.0% 0.0% 0.0%
Simple assessment 21.7% 69.6% 8.7% 0.0%
Partial assessment 0.0% 70% 30% 0.0%
Complete assessment 0.0% 0.0% 60% 40%

Table 8. Inter-rater degree of the agreement for each of the six tools.

Audit 1 Audit 2 Audit 3

High a Low b High Low High Low

Sidewalk 1–2 2 0 1 1 1 1
Land use and destinations 3–5 2 1 1 2 1 2
Street facilities 6–17 11 1 7 5 8 4
Road attributes 18–21 4 0 3 1 3 1

Questionnaire 1 Questionnaire 2
Questionnaire

3
High Low High Low High Low

Sidewalk 1–2 2 0 2 0 2 0
Land use and destinations 3–5 3 0 1 2 1 2
Street facilities 6–17 9 3 7 5 10 2
Road attributes 18–21 3 1 3 1 3 1

a Number of items with percent agreement ≥ 0.75. b Number of items with percent agreement < 0.75.
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Table 9. Aggregated results for the inter-rater degree of agreement for the assessed tools.

Audits Questionnaires

Weighted
Kappa

95% CI
Weighted

Kappa
95% CI

Sidewalk 1–2 0.57 0.02 to 1.00 1.00 1.00 to 1.00

Land use and destinations 3–5 0.45 0.13 to 0.77 0.59 0.21 to 0.96

Street facilities 6–17 0.59 0.37 to 0.80 0.62 0.47 to 0.76
Road attributes 18–21 0.79 0.50 to 1.00 0.79 0.60 to 0.97

Strength of agreement = K < 0.20: Poor; 0.21 < K ≤ 0.40: Fair; 0.41 < K ≤ 0.60: Moderate; 0.61 < K ≤ 0.80: Good;
0.81 < K ≤ 1.00: Very good.

5. Discussion

The baseline agreement level for the overall instrument was 82% for persons with a
background in urban planning and urban design with respect to the team leader. The land
use and destinations, street facilities, and road attributes scored the agreement levels in the
range of 79–88%. The sidewalk scale had the lowest value, that is, a 75% agreement level.
The main reason for this is that this scale includes only two items; therefore, missing an
item will have a larger influence on the agreement level.

The improvement of the final version of MQAI compared to the pilot version was
demonstrated through testing the final version with two raters with planning and public
health backgrounds. This improvement might be related to adding instructions and the
items’ details. A simple check on the reliability results shows that the Kappa value is
different for the same scale in audits and questionnaires. For example, the sidewalk
attained a lower K value in audits than questionnaires. A possible explanation for this is
the inherent difference of assessment in audits and questionnaires besides the dearth of
knowledge in a specific field of proficiency. During testing of the MQAI instrument, the
team noted that raters had difficulty choosing the ’partial’ response. However, the raters did
not experience any difficulty in assigning other response categories. The interpretation skill
of raters was further significantly improved through in-depth training and supervision.

The results also showed that ’poor’ tools are easier to assess than regular tools. The to-
tal scoring for a ’poor’ tool by raters was very similar to that of the team leader. Based on
the classification of the tools proposed in this study, the ’poor’ tool represents a tool that
considers a few numbers of urban design factors. Hence, the raters were required to easily
score items as ’no’ or ’simple’.

Both researchers in practice and academia can employ the MQAI to select the most
suitable walkability assessment tool. The walkability assessment tools help decision-makers
to identify shortcomings in the living environments. Decision-makers then conclude about
the improvement strategies for a living environment with undesirable walking conditions.
These strategies may include financial and cultural aspects, which may impact the everyday
life of the residents. It is vital that a sufficient amount of investments be allocated to an area
with inadequate walking conditions. A better walking infrastructure encourages people to
walk and, in turn, increases the overall walking level of residents in a neighborhood. Thus,
choosing a suitable walkability assessment tool that assesses the walking environment
accurately is of great interest. Moreover, this can impact the plans for improving the
walking conditions in a neighborhood indirectly. The employment of MQAI enables
practitioners to (1) classify the walkability assessment tools, (2) select the most suitable
one, and finally (3) identify walkability shortcomings within neighborhoods using the
selected tool.

Researchers in academia also can benefit from the MQAI. Researchers in the domains
of urban planning, transport planning, and public health need a comprehensive tool for
assessing the walkability condition in a certain area and link this condition with the overall
walking level in that area. Typically, this relationship is assessed using traditional statistical
methods. However, the abundance of walkability assessment tools, in both the forms of
audits and questionnaires, makes it challenging for these researchers to pick the most
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appropriate one, which can truly reflect the walking condition within a certain area. Thus,
the MQAI can help them choose the most comprehensive tool that can capture the details
of the walking environment and find the associations of this environment and overall
walking and physical activity levels.

6. Conclusions

In recent decades, walkability assessment tools have been developed to assess the
suitability of a walking environment for pedestrians. These tools used numerous environ-
mental factors in order to assess the built environments. To date, several reviews were
published on walkability assessment tools, and they highlighted challenges faced by extant
studies [11,69–71]. However, there is a paucity of a system for assessing the walkability
assessment tools based on walking needs. The present study developed and tested an
instrument to appraise walkability assessment tools based on walking needs. The main
goal of the proposed instrument is to assess whether the walkability assessment tools
consider the walking needs and urban design-related factors. This tool can serve as a
decision-making system for researchers and practitioners to select the most appropriate
assessment tool for evaluating the walking environment.

The present instrument can be used for meta-analyses and systematic reviews. This in-
strument is easy to use for planners and public health experts. The MQAI can aid prac-
titioners and researchers in selecting the tool to assess the pedestrian environments in
both the neighborhood and street scale based on their priorities. The instrument considers
the majority of the walking needs to assess the existing tools. However, the planners can
select the required items based on their priorities and adjust the proposed MQAI based
on their selected items. Additionally, the instrument can serve as a base to develop future
walkability assessment tools. The MQAI can be utilized to decide whether the design
of a new walkability assessment tool adheres to the walking needs of diverse pedestrian
groups. The MQAI did not perform the reliability and validity tests on virtual assess-
ment tools. However, to keep abreast with new technological advancements, this tool
also can be employed to assess the virtual assessment tools, which were recently released.
Additionally, the methodology employed in this study can be followed to develop similar
tools for assessing the virtual walkability/bikeability tools. The MQAI can also inspire
future decision-making tools to select the best assessment tools that involve physical
environment indicators.
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Appendix A. Measurement Quality Appraisal Instrument (MQAI)

Instrument Description

• Please answer all questions pertaining to the depth of evaluation of each scale.
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• To respond to the questions, one may choose one of four levels, i.e., ‘No assessment’,
‘Simple assessment’, ‘Partial assessment’, and ‘Complete assessment’.

• Your judgment for choosing a response from ‘No/Simple/Partial/Complete’ should
follow a three-step process. Initially, you are required to determine if the answer is
‘No’ (the indicator of interest is not assessed) or ‘Simple’/‘Partial’/‘Complete’ (i.e., the
indicator(s) of interest is/are assessed). Second, you need to choose ‘Simple’ if the tool
only assesses the availability of an indicator without considering the quality. Third,
if the answer is ‘Partial’/‘Complete’ (the tool considers the availability in addition
to the quality), you need to decide if it is a ‘Partial’ (the tool does not consider all
quality-related factors) or ‘Complete’ (the tool considers all quality-related factors).
If you need to assess the tool many times to judge, there is a high probability that the
response is ‘Partial’.

• A different approach to determine if it is a ‘Partial’ or ‘Complete’ is by checking
the scale below. As presented, the endpoints of the scale are marked with ’Com-
plete’ and ’No’. Hence, the ’Partial’ response is the whole space within the ‘Simple’
and ’Complete’.

Figure A1. Graphical scale for determining the right response.

Mathematical Calculation

Mathematically, the NSAT score is defined as follows:

MQAI% = 100 × ∑21
i=1 Pi Wi

12
Here, MQAI% = strength of the tool of interest to assess the environmental factors, Pi = point
given by the rater to the indicator of interest, Wi = relative weight of each indicator, 12 = total
achievable points by each tool (12 = ∑21

i=1 3 × Wi).

MQAI% Interpretation

Table A1. Interpretation of the assessment result.

MQAI% Strength of Appraisal Description

80 ≤ MQAI% ≤ 100 Very good The tool considers a large number
of urban design factors

60 ≤ MQAI% < 80 Good The tool considers an appropriate
number of urban design factors

40 ≤ MQAI% < 60 Regular The tool considers an acceptable
number of urban design factors

20 ≤ MQAI% < 40 Poor The tool considers very few urban
design factors

0 ≤ MQAI% < 20 Awful The tool considers an insignificant
number of urban design factors
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Assessment Items

Sidewalk

1. How does the tool assess the sidewalk network?

Answer Description Point

No assessment The tool does not assess the availability of the sidewalk
network along the street

0

Simple assessment The tool only assesses the availability of the sidewalk
network along the street

1

Partial assessment The tool assesses the availability of the sidewalk along the
street and one of the following issues of the sidewalk
network: (1) completeness; (2) width of the sidewalk
network along the street; and (3) presence/number of
barriers along the sidewalk

2

Complete assessment The tool assesses the availability of the sidewalk along the
street and two to three of the following issues of the
sidewalk network: (1) completeness; (2) width of the
sidewalk network along the street; and (3)
presence/number of barriers (obstacles) along the sidewalk

3

2. How does the tool assess path conditions?

Answer Description Point

No assessment The tool does not assess the condition of the path 0

Simple assessment The tool simply assesses the path condition * in the study
area

1

Partial assessment The tool assesses the path condition, and one of the
following path condition issues: (1) material ** used; and
(2) slope ***

2

Complete assessment The tool assesses the path condition and all of the following
path condition issues: (1) material used; and (2) slope

3

* Poor (several bumps, cracks, holes, and weeds), moderate (a few bumps, cracks, holes, and
weeds), good (very few bumps, cracks, holes, and weeds), under repair. ** Flat segmented
concrete slabs, paving stones, rustic natural stones, and Portuguese mosaic, slippery material
(smooth ceramic tiles), rough material (hydraulic tiles, interlocked blocks, flattened concrete),
regular, firm, antiskid, and ant vibration material (high strength paving). *** Flat or gentle,
moderate slope, steep slope.

Land Use and Destinations

3. How does the tool assess the mixture of land use?

Answer Description Point

No assessment The tool does not assess the mixture of land uses and
activities

0

Simple assessment The tool simply assesses the availability of various land
uses and activities in the study area

1

Partial assessment The tool assesses the availability of land uses and
activities in the study area and determines the number
of each activity such as residential, retail/commercial,
office, public, and/or industrial

2

Complete assessment The tool assesses the availability of land uses and
activities in the study area and determines the number
of each activity and overall desirable land use planning

3
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4. How does the tool assess the undesirable land uses (e.g., dilapidated buildings,
abandoned buildings, and rights of way of utilities and rail)?

Answer Description Point

No assessment The tool does not assess the undesirable land uses 0

Simple assessment The tool simply assesses the availability of various
undesirable land uses in the study area

1

Partial assessment The tool assesses the availability of undesirable land uses in
the study area and determines the number of each
undesirable land use

2

Complete assessment The tool assesses the availability of undesirable land uses in
the study area and determines the number of each
undesirable land use and the overall undesirable land use
planning

3

5. How does the tool assess the destinations (e.g., local facilities, parks, public trans-
port, services, shops, vehicle parking facilities, and bike parking facilities)?

Answer Description Point

No assessment The tool does not assess the destinations 0

Simple assessment The tool simply assesses the availability of various
destinations in the study area

1

Partial assessment The tool assesses the availability of destinations in
the study area and determines the number of
destinations OR distance to destinations

2

Complete assessment The tool assesses the availability of destinations in
the study area and determines the number of
destinations AND distance to destinations

3

Street Facilities

6. How does the tool assess the signage?

Answer Description Point

No assessment The tool does not assess the signage 0

Simple assessment The tool simply assesses the availability of signage along the
path

1

Partial assessment The tool assesses the availability of signage along the path
and one to three of the following issues in the signs:
(1) simplicity of graphics and phrase; (2) contrast to the
background; (3) placement of signs in the furnishing zone;
(4) height of the signs; and (5) presentation of information in
alternative formats

2

Complete assessment The tool assesses the availability of signage along the path
and four to five of the following issues in the signs:
(1) simplicity of graphics and phrase; (2) contrast to the
background; (3) placement of signs in the furnishing zone;
(4) height of the signs; and (5) presentation of information in
alternative formats

3
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7. How does the tool assess the signals?

Answer Description Point

No assessment The tool does not assess the signals 0

Simple assessment The tool simply assesses the availability of signals along the
path

1

Partial assessment The tool assesses the availability of signals along the path and
one of the following issues in the signals: (1) counter timer for
the signal poles; (2) audible signal for the signal poles; and
(3) accessibility of the signal buttons to the wheelchair users

2

Complete assessment The tool assesses the availability of signals along the path and
two to three of the following issues in the signals: (1) counter
timer for the signal poles; (2) audible signal for the signal poles;
and (3) accessibility of the signal buttons to the wheelchair users

3

8. How does the tool assess the drinking fountains?

Answer Description Point

No assessment The tool does not assess the drinking fountains 0

Simple assessment The tool simply assesses the availability of drinking fountains 1

Partial assessment The tool assesses the availability of drinking fountains and one
of the following issues in the drinking fountains: (1) distance
between the drinking fountains; (2) height of drinking
fountains; and (3) placement of water fountains in the
furnishing zone

2

Complete assessment The tool assesses the availability of drinking fountains and two
to three of the following issues in the drinking fountains:
(1) distance between the drinking fountains; (2) height of
drinking fountains; and (3) placement of water fountains in the
furnishing zone

3

9. How does the tool assess the bollards?

Answer Description Point

No assessment The tool does not assess the bollards 0

Simple assessment The tool simply assesses the availability of bollards in the study
area

1

Partial assessment The tool assesses the availability of bollards and one of the
following issues in the bollards: (1) space between bollards;
(2) placement of bollards in the curb extension; and (3) height of
bollards

2

Complete assessment The tool assesses the availability of bollards and two to three of
the following issues in the bollards: (1) space between the
bollards; (2) placement of bollards in the curb extension; and
(3) height of bollards

3
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10. How does the tool assess landscape and trees?

Answer Description Point

No assessment The tool does not assess landscape and trees 0

Simple assessment The tool simply assesses the availability of landscape and trees
in the study area

1

Partial assessment The tool assesses the availability of landscape and trees and one
of the following issues in the landscape and trees: (1) vertical
clearance of tree branches; (2) placement of trees in the
furnishing zone; and (3) distance between trees

2

Complete assessment The tool assesses the availability of landscape and trees and two
to three of the following issues in the landscape and trees:
(1) vertical clearance of tree branches; (2) placement of trees in
the furnishing zone; and (3) distance between trees

3

11. How does the tool assess buffers?

Answer Description Point

No assessment The tool does not assess the buffers 0

Simple assessment The tool simply assesses the availability of buffers and barriers
along the street such as on-street parking

1

Partial assessment The tool assesses the availability of buffers and barriers along
the street such as on-street parking and type of buffer(s) OR
width of a buffer

2

Complete assessment The tool assesses the availability of buffers and barriers along
the street such as on-street parking and type of buffer(s) AND
width of a buffer

3

12. How does the tool assess benches and sitting areas?

Answer Description Point

No assessment The tool does not assess the bench and sitting areas 0

Simple assessment The tool simply assesses the availability of bench and sitting
areas

1

Partial assessment The tool assesses the availability of bench and sitting areas, and
one to two of the following issues in the landscape and trees:
(1) placement of benches in the furnishing zone; (2) distance
from the curb; (3) space for parking a wheelchair or stroller; and
(4) distance between the benches

2

Complete assessment The tool assesses the availability of benches and sitting areas,
and three to four of the following issues in the landscape and
trees: (1) placement of benches in the furnishing zone;
(2) distance from curb; (3) space for parking a wheelchair or
stroller; and (4) distance between the benches

3

13. How does the tool assess surveillance?

Answer Description Point

No assessment The tool does not assess the surveillance 0

Simple assessment The tool simply assesses the availability of surveillance in the
study area

1

Partial assessment The tool assesses the surveillance and active * OR passive **
surveillance

2

Complete assessment The tool assesses the surveillance and active AND passive
surveillance

3

* CCTV and security patrols. ** Active frontages, façade solid-void ratio, windows, verandas, and gardens.
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14. How does the tool assess the items related to the disabled?

Answer Description Point

No assessment The tool does not assess the items related to the disabled * 0

Simple assessment The tool assesses one of the following issues in the items related
to disabled individuals: (1) accessible drinking fountain;
(2) accessible toilet; (3) tactile pavement; (4) curb cut;
(5) accessible signage and signals; and (6) elevator next to the
sky-bridge

1

Partial assessment The tool assesses two to four of the following issues in the items
related to disabled individuals: (1) accessible drinking fountain;
(2) accessible toilet; (3) tactile pavement; (4) curb cut;
(5) accessible signage and signals; (6) elevator next to sky-bridge

2

Complete assessment The tool assesses five to six of the following issues in the items
related to disabled individuals: (1) accessible drinking fountain;
(2) accessible toilet; (3) tactile pavement; (4) curb cut;
(5) accessible signage and signals; and (6) elevator next to the
sky-bridge

3

* Accessible drinking fountain, accessible toilet, tactile pavement, curb cut, accessible signage and
signals, and elevator next to sky-bridge.

15. How does the tool assess streetscape characters?

Answer Description Point

No assessment The tool does not assess the streetscape characters * 0

Simple assessment

The tool assesses the availability of one of the following
streetscape characters: (1) architectural elements; (2) historic or
unique architecture; (3) presence of public space;
(4) outdoor-dining areas; (5) abandoned buildings; (6) rundown
buildings; and (7) vacant buildings

1

Partial assessment The tool assesses the availability of two to five of the following
streetscape characters: (1) architectural elements; (2) historic or
unique architecture; (3) presence of public space;
(4) outdoor-dining areas; (5) abandoned buildings; (6) rundown
buildings; and (7) vacant buildings

2

Complete assessment The tool assesses the availability of six to seven of the following
streetscape characters: (1) architectural elements; (2) historic or
unique architecture; (3) presence of public space;
(4) outdoor-dining areas; (5) abandoned buildings; (6) rundown
buildings; and (7) vacant buildings

3

* Architectural elements, historic or unique architecture, presence of public space, outdoor dining
areas, abandoned buildings, rundown buildings, vacant buildings.

16. How does the tool assess driveways?

Answer Description Point

No assessment The tool does not assess driveways 0

Simple assessment The tool only assesses the availability of the driveways 1

Partial assessment The tool assesses the availability of the driveways and
driveway width * OR availability of warning facilities **

2

Complete assessment The tool assesses the availability of the driveways and
driveway width AND availability of warning facilities

3

* More than a garage, equal to a garage, and less than a garage. ** Special paving, signs, auditory
warning, and mirrors.
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17. How does the tool assess the transit points?

Answer Description Point

No assessment The tool does not assess the transit points 0

Simple assessment
The tool simply assesses the availability of transit points along
the path

1

Partial assessment The tool assesses the proximity to transit points * OR
accessibility of transit stations ** in the study area

2

Complete assessment The tool assesses the proximity to transit points AND
accessibility of transit stations in the study area

3

* The proximity of transit stations to popular landmarks such as squares, towers, and malls. **
Connectivity and continuity of walkways to transit stations.

Road Attributes

18. How does the tool assess traffic calming features?

Answer Description Point

No assessment The tool does not assess traffic calming features * 0

Simple assessment The tool assesses the availability of one of the following traffic
calming features: (1) roundabouts; (2) medians; (3) curb
bulb-outs; (4) traffic signals; and (5) speed humps

1

Partial assessment The tool assesses the availability of two to three of the following
traffic calming features: (1) roundabouts; (2) medians; (3) curb
bulb-outs; (4) traffic signals; and (5) speed humps

2

Complete assessment The tool assesses the availability of four to five of the following
traffic calming features: (1) roundabouts; (2) medians; (3) curb
bulb-outs; (4) traffic signals; and (5) speed humps

3

* Roundabouts, medians, curb bulb-outs, traffic signals, and speed humps.

19. How does the tool assess road attributes?

Answer Description Point

No assessment The tool does not assess road attributes * 0

Simple assessment - 1

Partial assessment The tool assesses the number of lanes OR street width 2

Complete assessment The tool assesses the number of lanes AND street width 3

* Number of lanes and street width.

20. How does the tool assess qualitative characteristics?

Answer Description Point

No assessment The tool does not assess traffic qualitative characteristics * 0

Simple assessment The tool assesses one of the following issues with respect to the
qualitative characteristics: (1) cleanliness; (2) lighting;
(3) shading; and (4) color

1

Partial assessment The tool assesses two of the following issues with respect to the
qualitative characteristics: (1) cleanliness; (2) lighting;
(3) shading; and (4) color

2

Complete assessment The tool assesses three to four of the following issues with
respect to the qualitative characteristics: (1) cleanliness;
(2) lighting; (3) shading; and (4) color

3

* Cleanliness/graffiti, lighting, shading, and color.

77



Sustainability 2021, 13, 11342

21. How does the tool assess the network design?

Answer Description Point

No assessment The tool does not assess the network design 0

Simple assessment The tool simply assesses one of the flowing network design
factors: (1) pattern of street network *; (2) directness of
walkways/routes **; (3) length of blocks; (4) alternative routes
***; and (5) the presence and frequency of pedestrian crossings
along the network

1

Partial assessment The tool simply assesses two of the flowing network design
issues: (1) pattern of street network; (2) directness of
walkways/routes; (3) length of blocks; (4) alternative routes;
and (5) the presence and frequency of pedestrian crossings
along the network

2

Complete assessment The tool simply assesses three to four of the flowing network
design issues: (1) pattern of street network; (2) directness of
walkways/routes; (3) length of blocks; (4) alternative routes;
and (5) the presence and frequency of pedestrian crossings
along the network

3

* Grid or cul-de-sac. ** The number of directional changes. *** Number and type of alternative
routes available between the origin and destination.
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Abstract: Superblocks are a common urban development strategy used in cities of the United
Arab Emirates and the larger Gulf region. In planning new neighborhoods, these cities utilize
superblocks structured using various street network designs. Despite their key role in shaping its
main transportation network, the connectivity of these designs has not been frequently studied.
This paper addresses this research gap, analyzing ten different superblock designs, and focusing on
their internal and external connectivity properties. Internal connectivity is studied by measuring
connections between plots in the superblocks. External connectivity is measured from plots to the
superblocks’ corners, the points from which to access surrounding areas. Connectivity is measured
in terms of distance, directness, and route diversity. The results show that strong similarities exist
across the studied designs, particularly in terms of travel distances. Differences are found in terms of
efficiency and, most notably, route diversity. Findings are discussed in relation to walkability, the
costs associated to each design given network length variations, and the importance of creating rich
and diverse street systems that support open-ended exploration. While based on a sample of ideal
cases and in need of validation with built cases, this paper outlines a method by which to evaluate
and compare superblock network design alternatives.

Keywords: sustainable urban form; urban networks analysis; street connectivity; Arab Gulf urbanization

1. Introduction

The role that city form plays in building more sustainable cities has been intensely
investigated in the past decades [1–4]. In this work, numerous urban form descriptors
linked to sustainability were recurrently discussed, including compactness, density, and
land use mix and diversity [5]. From a transportation research point of view, these de-
scriptors are often organized under the conceptual framework known as the 3Ds, denoting
density, diversity and, importantly given the focus of this paper, design [6]. Since its
publication, this framework was instrumental in the development of numerous studies on
sustainable transportation, outlining how in compact, dense, and diverse cities, origins
and destinations locate closer together, making walking and cycling viable, and making
the operation of transit systems more efficient. Thus, in sustainable transportation research,
city form is seen as a means by which to effect modal shifts, reducing the use of automo-
biles and, consequently, reducing fossil fuels consumption, air pollution, and greenhouse
gas emissions [7–11].

In terms of design, researchers have often focused on street network connectivity, ana-
lyzing the networks themselves, and associated elements such as block sizes and lengths,
intersection types, and overall road pattern descriptions such as curvilinear and grid-
iron [12–14]. However, despite the large number of articles that studied street connectivity
as a key component linking urban form to more sustainable transportation modes, not
much work has concentrated on superblocks and superblocks-built cities. In fact, with some
recent exceptions, few studies addressed the connectivity of these urban street systems,
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even when constituting a key component in the urbanization strategy of many countries
worldwide, and particularly the Middle East [15–19].

Superblocks can be initially and summarily described as large tracts of land bounded
by arterial roads, whose land use planning is strongly connected to the Perry’s neigh-
borhood planning unit concept [20–22], and to planning the principles outlined by key
figures of the modern movement in architecture [23]. In the United Arab Emirates—and in
Abu Dhabi in particular—superblocks are key to its urban development, as is the case in
countries of the Gulf Council Cooperation (GCC), which includes Bahrain, Kuwait, Qatar,
Oman, and Saudi Arabia. However, despite their widespread use, much remains to be
understood regarding their connectivity properties.

This article addresses this research gap, focusing on understanding how different
superblock network designs connect residents to one another, as well as to surrounding
areas. More precisely, several metrics are applied to measure the connections between
plots inside the superblocks, addressing their internal connectivity properties, as well
as connections between plots and the superblocks corners—points from which to access
surrounding areas—so addressing their external connectivity. In this latter case, this paper
foregrounds the need to better understand how superblocks integrate with one another,
acting as modules in a city building strategy and not as isolated communities.

Connectivity is examined using three metrics. These are distance, route directness,
and a measure of route diversity. Using these metrics, three different but related questions
about the internal and external connectivity of different superblocks network designs are
addressed. First, how metrically close to one another are plots in the different designs
studied, and how far are these plots from the superblocks’ corners? Second, and noting that
not only distance, but also the availability of direct routes between origins and destinations
affects pedestrian access [24–26], the question is: how direct are the routes connecting
residents of superblocks to one another, and to the superblock corners? Lastly, the third
question asks: how many alternative routes, i.e., how much route diversity, is available to
residents traversing the superblocks in search of internal destinations and corners? This
last metric addresses the extent to which different networks provide alternative routes to
pedestrians, allowing paths to mix and overlap, increasing the potential for social encounter
and economic opportunity [27].

When planners and designers are confronted with the decision of which network
design to adopt, there is not much research that can support their decision-making process.
Addressing, how long, how direct, and how diverse pedestrian routes are in different
designs, as studied in this paper, provides information that could assist in the evaluation of
design alternatives. With street forming being the long-term framework over which cities
grow, and with streets taking a key role in supporting more sustainable transportation
modes, these are seen as timely questions to address.

2. Literature Review

2.1. Abu Dhabi and the Endurance of Superblock Planning

When studying superblocks and superblocks planned cities, Abu Dhabi represents
an outstanding case of their application. Since the beginning of its urbanization drive in
the mid-1960s, this city has consistently applied superblocks as the main strategy for its
development. Historically coinciding with the peak of the implementation of the modern
movement city planning propositions, Abu Dhabi, as many other cities in the region
(notably C. Doxiadis’ planned cities like Islamabad, Pakistan, 1959; Baghdad, Iraq, 1955;
and Riyadh, Saudi Arabia, 1968), adopted the notion of neighborhood unit and efficient
motorized transportation as the guiding principles for its development [20,22,28,29]. As a
result, Abu Dhabi presents a grid of arterial roads whose spacing varies in different areas
of the city, but which tend to enclose rectangular superblocks whose sides span several
hundred meters. Today, superblocks in Abu Dhabi accommodate different building types,
densities, and land use mixes, showcasing the ability of superblocks to adapt and respond
to different development goals and to changing urban growth dynamics. These range from
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higher densities and land use mixes in the central, older districts, to the characteristically
low-density residential neighborhoods developed in the past two decades in the city’s
periphery. Particularly in these latter areas, large aggregations of identical superblocks
accommodate the city’s need for growth and expansion, shaping the city’s suburbs. Figure 1
shows, in the first row, the use of superblocks in Abu Dhabi, noting the variety of network
types and built form that characterizes the city center (Figure 1A). It shows, as well, the
repetition of patterns and lower densities found in the new neighborhoods in the periphery
(Figure 1B,C). Examples of their application in the region, and in the planning of extensive
areas are shown in the second row (Figure 1D,E).

 

Figure 1. (A) shows Abu Dhabi’s downtown area, where land use mix and densities are higher, and
superblocks’ designs mix. (B,C) show how repetitive designs structure suburban areas. Images of
Baghdad, Iraq (D) and Riyadh, KSA (E), illustrate the widespread use of superblocks in the region.

A closer study of Abu Dhabi’s planning history reveals that it was not until 1968 that
the straight roads and superblocks that characterize the city today started to be built [28,30].
However, once adopted, superblocks proved to be the dominant urban planning strategy,
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and endured over time. In fact, the original approach to planning the city using superblocks
was regularly reaffirmed in the revisions that followed, the latest being the Master Directive
Plan by consulting firm Atkins in the 1990s. Although modifications such as wider rights
of way, and larger plots were introduced, the superblock was retained as the basic module
by which to grow the city and develop its neighborhoods [31]. As a result of this long-term
application of superblocks, Abu Dhabi proves to be a valuable source of superblock designs
for this study.

2.2. Measures of Street Connectivity

The interest in better understanding street connectivity and its ability to support
more sustainable mobility modes, especially walking, resulted in numerous metrics being
proposed for its quantification. A relatively recent review highlights that various con-
nectivity metrics are applied in practice and research, and concludes that no standard
approach to its measurement exists [32]. Still, among the numerous metrics proposed, a
major distinction can be made between what can be termed per-area connectivity metrics,
and a network-based analysis of street connectivity.

In terms of the former, these have generally taken the form of densities, such as block,
street, and intersections density, all of which are highly correlated to one another [12].
Besides being utilized in numerous studies on sustainable transportation and neighborhood
design, these metrics have also been favored in regulatory instruments and practice given
that they can be calculated, and legislated, with relative ease [26,32,33]. However, while
useful given these advantages, aggregate metrics can also obscure connectivity variations
within study areas, as demonstrated by Peponis and colleagues [34]. Further, per area
metrics were also found to be susceptible to manipulation, or able to be “gamed”, meeting
established standards even when connectivity is low [33]. Lastly, per-area metrics are
unable to handle origins and destinations. Thus, connectivity properties affecting the
decision to walk, such as distance and directness, are not accurately measured using per
area metrics [9,35–37].

In terms of network-based analyses, the most extensively developed sets of metrics
used in urban studies include space syntax [38,39], metric and directional reach [34],
and multiple centrality assessment [40,41]. The metrics these authors proposed have
been instrumental in quantifying topological adjacency and centrality variations in street
systems, providing a foundation by which to better understand key properties of cities,
such as the distribution of pedestrian traffic, land use location patterns, and the emergence
and consolidation of urban centers [42–45]. However, by placing the focus on configuration
and centrality, these approaches have not directly addressed travel distances between sets
of origins and destinations, such as plots, specific intersections, or land uses of interest.
Therefore, while being a valuable reference, providing the most advanced methods to
analyze urban street networks, these metrics do not directly and efficiently address the
questions of this study.

Positioned between aggregate measures and the work on networks described in the
previous paragraph, planning and transportation scholars have often studied urban street
networks in terms accessibility. By measuring the separation between origins, usually
residential plots, and various types of destinations, often commercial land uses, parks, bus
stops, and educational facilities, among others, researchers evaluated whether and how
the design of neighborhoods’ street networks affect transportation mode choice, especially
walking trips [46–49]. Among the metrics used in these studies, simple metric distance to
destinations, and the modifications of it, such as pedestrian route directness (PRD) [50] have
often been used. These types of metrics are especially relevant for this study, given their
focus on connections between specific origins and destinations pairs, and their application
in studies linking walkability and street network design. Further details about this type of
metrics, and how they were used in this study, are discussed in the following section.
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3. Materials and Methods

The analyses presented in this paper were conducted using standard representations of
streets networks used in urban and transportation planning. That is, the superblocks’ street
networks are represented and studied as sets of nodes and links, with nodes representing
origins and/or destinations for trips, and links representing the street centerlines over
which travel occurs. The ten street networks studied are presented in Figure 2, along with
a description of their general characteristics.

 

Figure 2. The sample of ten network designs used in this paper. All superblocks have the same size and number of plots.
All designs were developed from existing and frequently used cases found in the city of Abu Dhabi, UAE.

These networks were derived from real cases found in Abu Dhabi—often in its
suburbs—and were slightly adjusted to make fair comparisons possible among them.
Specifically, all designs were formatted to have the exact same size (860 m × 590 m), with
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dimensions that correspond to the average size of superblocks found in new neighborhood
developments in this city. Further, non-orthogonal superblocks were squared, so to have
parallel sides and boundary roads that meet at 90-degree angles. In sum, by controlling and
removing shape distortions, and by keeping their sizes constant, network distances could
be fairly measured and evaluated across the sample. In terms of origins and destinations,
100 plots were randomly distributed along the superblock streets. Keeping the origins and
destinations constant permitted, as well, fair comparisons among the different networks
studied, and simplifying of the interpretation of the results.

Lastly, the corners of the superblocks were also placed as nodes in the network, noting
that, in most cases, these are key points from which it is possible to access the adjacent
superblocks/neighborhoods. The analysis of how long, direct, and diverse the routes are to
the corners complemented the analysis of the internal connectivity of the different designs
in the sample. Figure 2 shows how plots were distributed over the ten street networks’
designs studied while their general network and block subdivision characteristics are
presented in Table 1.

Table 1. Descriptive statistics of the superblock designs studied. Highest and lowest values in bold.

Network
Design ID

Total Road
Length
(mts.)

Average Block
Face Length

(mts.)

Intersections

Total Blocks
Average Block

Area (ha.)3-Way
(T-Junctions)

4-Way
(Crossroads) Total

SB1 10,593 105.9 30 15 45 31 1.63
SB2 11,378 76.9 76 4 80 43 1.18
SB3 10,473 73.8 53 4 57 12 4.22
SB4 9766 113.6 42 3 45 25 2.02
SB5 7693 150.8 22 4 26 16 3.16
SB6 8962 121.1 30 7 37 23 2.21
SB7 6390 206.1 10 6 16 12 4.22
SB8 7490 182.6 20 0 20 11 4.61
SB9 5769 262.2 12 0 12 7 7.24
SB10 7480 162.6 24 2 26 15 3.38

The data presented in Table 1 provide important additional information regarding the
designs studied. One of the main differences found between the different designs relates to
the street length needed to structure each of them. Further variations across the different
designs are found in terms of block lengths, the number and type of intersections, as well
as the number of internal blocks that the street networks define. As expected, the bigger
the road length, the smaller the blocks and the higher the number of intersections.

Table 1 shows that SB2 and SB9 tend to concentrate, respectively, most of the maxima
and minima across the sample of studied designs. Interestingly, these two designs share
some common traits, such as the large central block with T-intersections at its four corners.
These two network designs show the extremes to which superblocks in Abu Dhabi are
fractioned or aggregated. Values range from 43 blocks of 1.18 hectares on average in SB2,
to 7 blocks of 7.24 hectares in SB9. Average block faces, on the other hand, vary from
73 to 262 m long, while intersections range from 80 to only 12, and a doubling of the
road length in SB2 (11.7 km) when compared to SB9 (5.7 km). These extreme road length
differences foreground that the costs involved in building and maintaining roads can vary
quite substantially between different designs.

3.1. Addressing Internal and External Connectivity

With the superblock street networks built, the analyses focused on the ability of
the different designs to perform two different but related tasks. These were, first, the
ability to connect residents to one another, facilitating intra-neighborhood connectivity and
pedestrian movement. In this sense, these analyses addressed the notion of superblocks
as well-defined communities where destinations are accessible within a 5 min walk, as
outlined in the original neighborhood planning unit (NPU) concept [20]. The second task
addressed the ability of the different designs to provide residents of the studied superblocks
with access to adjacent areas. In this case, each plot was defined as an origin for trips, and
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the four corners of the superblock were set as the destinations. Corners are, in most cases,
the locations where pedestrian infrastructure such as traffic lights and zebra crossings
are found, thus supporting safe crossings into adjacent superblocks. In sum, the analyses
conducted addressed both the internal or inter-plot connectivity, as well as the external or
inter-block connectivity.

In terms of the analyses, intra-neighborhood connections were studied by measuring
connectivity and routes between each individual plot and its 99 neighbors, a process that
was repeated for each plot in each superblock, totaling 9900 trips once the all-plots-to-
all-plots analyses were completed for a given design. External connectivity, the ability of
residents to reach points from which they can cross into surrounding areas, was studied by
setting all 100 plots in the superblocks as origins for trips and measuring the characteristics
of the routes connecting the plots to the four corners, i.e., the destinations. As the analyses
were completed, each plot completed a total of four trips, one to each corner, so a total of
400 trips to the corners were analyzed in each superblock design.

3.2. Measuring Distance, Directess, and Diversity

The internal and external connectivity of the ten network designs was quantified using
three different metrics. The first focused on a key, though often overlooked, metric in street
network analyses: distance. Specifically, the analysis of travel distances was conducted
using ESRI’s ArcMap Network Analyst, recording the shortest trip lengths between origins
and destinations. Using this software’s origin-destination (OD) cost matrix, calculations
were performed using a proprietary multiple-origin, multiple-destination algorithm based
on Dijkstra’s [51] shortest path algorithm. These analyses answer the question of how far
apart from each other are, on average, the plots in each of the studied designs. Further,
graphic details about the calculation of this metric are presented in Figures 3 and 4, while
Equation (1) below shows a formal definition of this metric.

Distance [i] =
1
n

n

∑
j �=i

d(i, j) (1)

where Distance [i] is the shortest network distance d from origin plot i to all destinations j,
with j being plots or corners depending on whether the analyses are of internal or external
connectivity, and n is the total number of destinations reached.

The second metric focused on the efficiency by which each of the studied networks
connects the origins and destinations sets. The metric used in this case was pedestrian
route directness, or PRD, and was also calculated using ArcMaps’s Network Analyst. In
this case, the shortest network routes obtained in the previous analyses were divided by the
length of straight lines that connect origins and destinations. Used frequently in sustainable
planning regulatory instruments, such as Abu Dhabi’s own Estidama Sustainability Rating
System [52], this ratio is easy to calculate and interpret indicating, as a percentage, how
much longer than the shortest possible route is the actual travel distance. A formal
definition is introduced in Equation (2), while a graphic representation of this metric is
introduced in Figures 3 and 4.

Route Directness [i] =
1
n

n

∑
j �=i

di,j/dEucl
i,j (2)

where Route Direcness [i] is the directness value of origin plot i; dij is the shortest network
distance from origin plot i to all destinations j, with j being plots or corners depending
on whether the analyses are of internal or external connectivity; dEucl

i,j is the Euclidean
or crow-fly distance from origin plot i to all destinations j, and n is the total number of
destinations reached.

Once calculated, the PRD results obtained for each plot and in each design were
evaluated using a PRD test [12,17,50,53,54]. This test permits the quantification of the
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efficiency of the studied designs by identifying the number (or percentage) of plots that
have values above or below a given threshold number. Previous studies have set this
threshold at 1.6, while a value of 1.5 has been outlined in the connectivity guidelines of
Abu Dhabi’s Estidama [55]. Considering this, the two thresholds were studied and the
total number of plots that meet these thresholds were reported and interpreted.

Lastly, an additional metric was computed to evaluate route diversity in the different
superblock designs. This property of the networks was addressed using the urban network
analysis (UNA) toolbox’s redundancy index [56,57]. This index considers that while a
single shortest route connects an origin and a destination, additional longer routes could
also be considered as viable alternatives to gain a better understanding of the potential
offered by urban street layouts. In setting up the analysis of redundancy, a detour ratio
needed to be established. This value is used to determine the extra length that is permitted
to be travelled between an origin and a destination. A detour ratio of 20%, as used in this
study, considered that routes that are up to 20% longer than the shortest one are valid
options, and their lengths were thus measured.

A mathematical formulation of the redundancy index, based on the results of the
empirical testing of the metric is presented in Equation (3).

Redundancy Index [O, D] =
1

dmin(O,D)
∑
path

d(path; O, D) (3)

where Redundancy Index [O, D] denotes the redundacy index between an origin O and a
destination D; dmin(O,D) is the shortest path connecting O and D; and d(path; O, D) is the
length of paths connecting O and D. In this paper, this sum is restricted to paths that obey
this condition: d(path; O, D) in

(
dmin(O,D), 1.2 dmin(O,D)

)
. This index thus, expresses the

diversity of paths as a ratio between all available paths within a 20% detour distance, and
the shortest path. A value of 2, for example, would indicate a doubling of the shortest
route experience, while a value of 1 would indicate that no alternative routes are available.
Figures 3 and 4, show a graphic representation of this metric for the internal and external
connectivity cases.

The results of the redundancy calculations are, in this paper, interpreted and dis-
cussed in terms of the diversity of routes provided by each design. This interpretation
is preferred, given that the notion of redundancy in traffic analysis and infrastructure
system management, is linked not only to route availability, but also spare capacity [58,59].
Considering that spare and carrying capacities are not a concern of this study, and that the
metric authors foreground route choice as a valued quality of urban environments in terms
of the everyday experiences they provide [60], the use of diversity is thus preferred.

Further, a valuable theoretical basis for the need to address route diversity in urban
networks can be found in Jane Jacobs’s discussion of the need for small blocks in cities [27].
The insightful discussion presented in this chapter highlights the ills of “self-isolating
streets” and the “long sterile promenades” that are characteristic of superblock projects.
Smaller blocks and denser road networks, in contrast, are discussed as key elements
that bring life and vibrancy to the city streets. As blocks get smaller, route alternatives
increase, along with the opportunity for city dwellers to mix their paths. In addition, the
potential number of users of any given street would also increase, providing businesses a
larger pool of potential customers. Measuring route diversity, thus, could provide insights
regarding the potential for social interaction, as well as economic opportunity, that each
street network provides.

88



Sustainability 2021, 13, 13862

Figure 3. Internal connectivity analyses: a graphic explanation of the three metrics studied in the article. Note that in
connecting each of the 100 plots in the sample to every other plot, a total of 9900 trips were evaluated.

 
Figure 4. External connectivity analyses: a graphic explanation of the three metrics studied in the article. Note that in
connecting each of the 100 plots in the sample to each of the superblock’s four corners, a total of 400 trips were evaluated.
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4. Results

4.1. Addressing Trip Length and Metric Properties of the Routes

Measuring travel distance from each plot to all its neighboring plots in the superblock
provided answers to two key questions. First, how far from one another do plots tend to
be in the different designs studied? Second, and perhaps more importantly, are there signif-
icant variations in travel distances between plots in the different network designs studied?

The results presented in Table 2 indicate that even though network designs are substan-
tially different, plots tend to be, on average, within 576.47 m from one another (SD = 102.71).
Within the sample, superblock design 7 (SB7), the perfect orthogonal grid, provides for
the closest average proximity between neighbors with inter-plot trips distances averaging
502 m.

Table 2. Descriptive statistics of the all-plots-to-all-plots metric distance analyses (internal connectivity) in columns 1 to 5.
Results of the analyses of metric distance from plots to the four corners of the superblock (external connectivity) are
presented in successive columns, 6 to 10. Highest and lowest values are in bold.

Network
Design ID

Avg.
Distance
between

Plots
(mts)

Std.
Deviation
Distance
between

Plots
(mts.)

Min.
Distance
between

Plots
(mts.)

Max.
Distance
between

Plots
(mts.)

Avg.
Distance to

Corners.
(mts)

Std.
Deviation

Distance to
Corners
(mts.)

Min.
Distance to

Corners
(mts.)

Max.
Distance to

Corners
(mts.)

SB1 562.27 73.3 447 771 713.51 23.36 685.77 717.15
SB2 592.46 68.5 466 751 724.84 6.72 720.9 754.97
SB3 715.92 145.6 533 1140 948.84 147.52 721.94 1318.06
SB4 600.03 54.1 516 728 695.50 26.3 635.1 766
SB5 551.54 83.4 399 728 719.26 8.07 711.3 742.79
SB6 538.00 81.9 376 734 723.69 >1 722.69 724.65
SB7 502.11 92.3 373 708 724.66 >1 724.65 724.65
SB8 528.88 60.6 442 767 781.46 32.12 707.96 870.63
SB9 619.12 89.5 488 790 724.67 >1 724.64 724.67
SB10 554.44 73.8 418 742 719.82 12.7 699.32 756.31

On the other hand, in superblock design 3 (SB3), a largely introverted network design
with many cul-de-sacs, inter-plot trips average 716 m. Following SB3, the next highest inter-
plot distances are found in network designs SB9 and SB4, while the remaining superblocks’
average distances are below 600 m. Maximum trip lengths tend to stay relatively constant,
and in the 700 m range, except for SB3 at 1140 m. These maximum distances describe
the distances from the worst located plot in each of the studied superblocks. At the other
end, minimum trip lengths show more variability, although SB3 still features the longest
inter-plot distances with 533 m, about 40% longer that the minimum trip lengths provided
by SB7 and SB6. In other words, the best located plot in SB3 is located 533 m away from all
other plots, while the best located plots in SB7 and SB6 are, respectively, 373 and 376 m
away from all other plots.

The second step addressed external connectivity, by checking how metrically far away
are the superblock corners from each plot in the sample of superblocks. In this case, the
results are quite striking. The values of trips to the corners of seven out of 10 superblocks
designs indicate that their networks provide access to the corners within a narrow band
of values ranging from 713 to 724 m. The exception cases are designs SB3, SB4, and SB8.
In the case of design SB4, this has the lowest values in the sample, a likely product of
the diagonals that characterize the outward oriented design of this superblock. These
diagonals effectively connect the plots to the corners, reducing the overall travel distances
and resulting in this being the only design with values below 700 m. At the other end,
the highest values are found in SB3, already noted as the most introverted design in the
sample, and in SB8 which also features an introverted street design pattern. Lastly, it is
worth noting that the standard deviation of the length of trips to the corners shows several
cases with values under 1 m.
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4.2. Addressing Route Efficiency and Directness Properties of the Routes

Route efficiency was addressed by following the PRD test method, as earlier described.
The tests were conducted using the two established thresholds, thus also evaluating the
sensibility of the test. Once again, internal and external connectivity were tested, and the
results are presented in Table 3. In the case of internal connectivity, the tested thresholds
indicate that there exist variations in the efficiency of the routes connecting plots to one
another depending on the network design. Extreme cases are SB3 and SB7, showcasing,
respectively, the lowest and highest numbers of plots passing the test, regardless of the
threshold used. More precisely, all plots pass the test—irrespective of the threshold used—
in the case of SB7, while only a single plot passes the test in SB3 when the more demanding
threshold is used. When the threshold is relaxed, only eight plots pass the test in SB3. The
remaining cases vary, with SB9 performing quite low in both tests, followed by SB4. The
remaining cases oscillate between 40 and 60 plots passing when the threshold of 1.5 is
used, and above 70 in all cases when the 1.6 threshold is used. These results indicate that
in contrast to the relatively homogeneous performances observed when studying metric
distances, different superblock designs provide quite extreme differences in terms of the
route efficiencies enjoyed by their occupants. They also show that the choice of threshold
could affect the interpretation of results.

Table 3. Descriptive statistics of the all-plots-to-all-plots pedestrian route directness (PRD) and results of the PRD test
(internal connectivity efficiency) in columns 1 to 4. Results of the analyses of directness between plots and the four corners
of the superblock (external connectivity efficiency) are presented in successive columns. Highest and lowest values in bold.

Network
Design ID

All Plots to All Plots Directness
(Internal Connectivity)

All Plots to Four Corners Distance Directness
(External Connectivity)

Avg.
PRD Value

Passing Plots
Threshold 1.5

Passing Plots
Threshold 1.6

Avg.
PRD Value

Passing Plots
Threshold 1.5

Passing Plots
Threshold 1.6

SB1 1.51 53 79 (+26) 1.26 100 100
SB2 1.49 54 84 (+30) 1.27 100 100
SB3 2.01 1 8 (+7) 1.97 20 26
SB4 1.62 19 41 (+22) 1.26 100 100
SB5 1.48 58 79 (+21) 1.27 100 100
SB6 1.52 44 73 (+29) 1.29 100 100
SB7 1.35 100 100 1.28 100 100
SB8 1.47 61 72 (+11) 1.60 51 70
SB9 1.65 22 38 (+16) 1.28 100 100
SB10 1.51 47 70 (+23) 1.28 100 100

When studying the connectivity of plots to the corners, thus addressing the possibility
of crossing over to surrounding areas, most superblock designs perform quite well, with
all plots meeting the limits of the two thresholds tested. The exceptions are SB3 and SB8,
characteristically introverted designs where the connection of the internal network to the
peripheral roads (and thus the corners) occurs at only a few locations. It is only in these
two cases that the average value of PRD exceeds 1.3, and the only two cases where the
number of plots passing the PRD test is less than the totality. It is worth noting that PRD
values approximating 1.3 are characteristic of regular grids, that is, orthogonal grids where
roads tend to intersect at 90-degree angles.

4.3. Addressing Route Diversity

The last series of analyses involved the measurement of route diversity. As in the
previous two sets of analyses, internal and external connections were evaluated. The
results, presented in Table 4, indicate that there are wide variations in terms of what
different designs can offer, if the study of connectivity between origin–destination pairs is
relaxed to include routes that are up to—in this paper’s case—20% longer than the shortest
possible ones. The results indicate that plots in SB2 can access neighboring plots with an
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exposure of up to 3.25 times the length of the shortest path. At the lower end, SB9 provides
a much more limited experience and range of opportunities for route alternatives, with only
1.58 times the length of the shortest path accessible, if up to 20% longer routes are allowed
when connecting origins and destinations. Across the ten design samples, five designs
show diversity index values below two, indicating that in all these cases, the potential for
alternative route building exists, although it does not reach a doubling of what is provided
by the shortest route. Four cases show that the shortest route length is at least doubled,
while a high tripling of values is only found in one case, the previously discussed SB2.

Table 4. Descriptive statistics of the all-plots-to-all-plots route diversity analyses in columns 1 to 5. Results of the analyses
of route diversity from plots to the four corners are presented in successive columns. Highest and lowest values are in bold.

Network
Design ID

All Plots to All Plots Route Diversity
(Internal Connectivity)

All Plots to Four Corners Route Diversity
(External Connectivity)

Avg.
Diversity

Index

Std.
Deviation

Min.
Diversity

Index

Max.
Diversity

Index

Avg.
Diversity

Index

Std.
Deviation

Min.
Diversity

Index

Max.
Diversity

Index

SB1 2.14 0.44 1.52 3.39 2.74 0.41 1.75 3.83
SB2 3.25 0.62 1.93 4.62 3.94 0.78 2.49 5.69
SB3 2.29 0.25 1.82 2.8 2.48 0.6 1.03 3.56
SB4 2.30 0.35 1.73 3.5 2.55 0.64 1.52 4.22
SB5 1.87 0.35 1.42 2.8 2.72 0.48 1.99 3.61
SB6 2.18 0.42 1.61 3.3 3.32 0.54 1.71 4.31
SB7 1.76 0.29 1.3 2.68 2.62 0.24 2.13 3.33
SB8 1.72 0.22 1.4 2.26 1.91 0.48 1.04 2.83
SB9 1.58 0.19 1.23 2.02 1.66 0.48 1 2.73
SB10 1.88 0.29 1.36 2.9 2.57 0.55 1.37 3.61

When looking at access to the superblock corners, there are similar variations, although
route diversity numbers tend to be larger across the sample and only two cases, SB8 and
SB9, show values below 2. When considering the diversity of routes to the corners, the
results indicate that most designs offer alternative routes adding up to two-and-a-half
times, or more, the length of the shortest possible one.

4.4. Network Properties and Block Subdivision Characteristics in Relation to Connectivity

With the results of the three sets of analyses completed it is now possible to outline
observations that link these connectivity analyses to the general characteristics of the
network designs. A summary of the analyses performed is presented to Table 5. In the
first columns, the network design characteristics show that the length of the road systems
varies quite substantially across the sample. Expectedly, and as earlier noted, this network
length increase is associated with a higher number of intersections, and a higher number
of blocks, and consequently smaller blocks with shorter faces. Following these columns,
the results of the internal and external connectivity analyses are reintroduced. Table 5
gives a comprehensive overview of the characteristics and performance of each of the
designs studied.

It is worth reviewing Table 5 and noting the large differences in the length, and
consequently in the building costs, that characterize these different networks. The lengths
of streets in the studied networks vary from slightly more than 11 km in SB 1, 2, and 3 to
about almost exactly half of that length in SB9’s 5.7 km. The remaining designs fill the
middle ground in terms of total roads’ lengths. Table 5 serves as a comprehensive reference
capturing the network characteristics and connectivity properties of all the studied designs.
However, the relationship between differences in road length, intersections, and block
sizes, and the results of the distance, directness, and diversity analyses, can be more clearly
understood by studying their correlation. These are presented in Table 6.
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Table 5. Summary of superblock general characteristics and results of the three analyses performed.

Network
Design ID

Superblock Network Design General Characteristics
All Plots to All Plots

(Internal Connectivity)
All Plots to Four Corners

Total
Road

Length
(mts.)

Avg.
Block Face

Length
(mts.)

Total Inter-
Sections

Total
Blocks

Avg.
Block
Area
(Ha.)

Avg.
Inter-Plot
Distance

(mts.)

Avg.
Inter-plot

PRD 1

Avg.
Diversity

Index

Avg.
Distance

to Corners
(mts.)

Avg.
PRD to
Corners

Avg.
Diversity

Index

SB1 10,593 106.1 45 31 1.63 562.27 1.51 (53/79) 2.14 713.51 1.26 2.74
SB2 11,378 77.3 80 43 1.18 592.46 1.49 (54/84) 3.25 724.84 1.27 3.94
SB3 10,473 74.3 57 12 4.22 715.92 2.01 (1/8) 2.29 948.84 1.97 2.48
SB4 9766 114.2 45 25 2.02 599.78 1.62 (9/41) 2.30 695.50 1.26 2.55
SB5 7693 151.7 26 16 3.16 551.54 1.48 (58/79) 1.87 719.26 1.27 2.72
SB6 8962 121.6 37 23 2.21 538.00 1.52 (44/73) 2.18 723.69 1.29 3.32
SB7 6390 206.7 16 12 4.22 502.11 1.35 (100) 1.76 724.66 1.28 2.62
SB8 7490 183.4 20 11 4.61 528.88 1.47 (61/72) 1.72 781.46 1.60 1.91
SB9 5769 262.3 12 7 7.24 619.12 1.65 (22/38) 1.58 724.67 1.28 1.66

SB10 7480 163 26 15 3.38 554.44 1.51 (47/70) 1.88 719.82 1.28 2.57

1 Values in parentheses show number of passing plots with PRD thresholds of 1.5 and 1.6, respectively.

Table 6. Analysis of correlations between measures’ network characteristics and connectivity metrics based on Pearson’s
correlation coefficient. Significant correlations are highlighted in bold.

Avg.
Inter-Plot Distance

Avg.
Inter-Plot PRD

Avg.
Inter-Plot

Diversity Index

Avg.
Distance to

Corners

Avg.
PRD to Corners

Avg.
Diversity Index

to Corners

Road length
R-Squared 0.17 0.11 0.72 0.059 0.046 0.436
Prob > F 0.228 0.33 0.0017 0.496 0.5515 0.0376

Intersections
R-Squared 0.22 0.11 0.92 0.061 0.035 0.552
Prob > F 0.168 0.346 0.0001 0.4915 0.6018 0.0138

Block Size
R-Squared 0.141 0.121 −0.63 −0.009 0.081 −0.483
Prob > F 0.2845 0.3233 0.006 0.3674 0.4225 0.0256

The analyses indicate that road lengths, intersections, and block sizes are only sig-
nificantly associated to internal and/or external route diversity values. More precisely,
correlations are strong and positive in the case of road lengths and, particularly, intersec-
tions. As expected, correlations between internal and external route diversity and block size
are negative, foregrounding how route diversity increases as blocks get smaller. Distances
between plots, and plots and corners are in all cases weak and not significant. Lastly,
average values of PRD are also found to be weakly associated to road length, intersections,
and block sizes.

5. Discussion

Ten superblock designs were tested to better understand their internal and external
connectivity characteristics. In the case of internal connectivity analyses, the focus was
placed on their ability to support connections between residents of the superblocks. These
analyses thus examined how different designs support the formation of well-connected and
walkable communities which could, in turn, support the formation of vibrant neighborhood
life. Further analyses concentrated on accessing the corners of the superblocks, addressing
the ease with which residents of superblocks could, by foot, cross over to and access
adjacent areas. In doing this, external connectivity analyses addressed the need to consider
superblocks as modules of a city building strategy and not as isolated units.

Results of the analyses indicate, first, that trips within the ten superblocks network
designs studied tend to remain within walkable distances. Regardless of the design
adopted, the average distance from a plot to its neighbors was found to be, in most cases,
within a 500 to 600 m range. When trips to the corners, so the possibility of reaching
surrounding areas, are considered, the results show that corners are located at walkable,
and quite constant, average distances from the plots. In this case, at approximately 720 m.
Several observations can be derived from these results.

The first is that superblocks—in this paper sized to approximate average sizes found
in Abu Dhabi—provide for walkable distances, especially when considering the standard 5
and 10-min walking ranges used in transportation studies [61] and present in the original
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NPU concept [20]. These distances correspond to quarter and half mile radii, or 400 and
800 m, respectively. However, the most notable finding is that this relatively constant
distribution of trips’ distances, for internally and externally oriented trips, is obtained
with widely different road network designs. Designs that have, as well, widely different
road lengths. These results highlight that the extension of the road networks does not
significantly affect the length of trips that connect superblocks’ residents to one another.
Further, network designs have no significant effect on the length of trips linking residents
to the corners, the points from which they can access surrounding areas.

The study of directness complemented the results of the metric distance analyses,
highlighting the role that the network design has on trip efficiency. The results indicate,
first, that internal connectivity efficiency can vary quite substantially depending on the
network design used. In this case, two PRD test thresholds were evaluated, and the results
indicate that the different networks provide differently in terms of the directness with
which other plots could be accessed. First, it was found that the perfect grid (SB7) is the
most efficient street system of all those studied, with all plots passing the test regardless of
the threshold used. Second, SBs 1, 2, 5, 6, and 8, were found to have about 50% of their plots
passing the test when the more demanding threshold was used. These values logically
increased as the threshold was slightly relaxed. Lastly, superblocks SB3, 4, and 9, were
the worst performing ones, with values below 50 regardless of the threshold used. When
analyzing the efficiency of trips to the corners, most designs performed remarkably well
(all plots passed the tests) except for SB3 and SB8.

The analysis of directness also allows for several important observations. First, the
results indicate that routes between plots and the corners tend to be quite efficient. Except
for cases where internal roads have limited connections to the boundary arterials—SB3 and
SB8—plots can reach corners with direct routes. It is also clear that the efficiency of routes to
the corners is not affected by the two thresholds tested. Lastly, and importantly, designs that
have widely different road lengths, tend to provide highly efficient routes to the corners.
Internal connectivity efficiency, on the other hand, presents a more complex scenario. In
the first place, there exist substantial variations in the efficiency of the routes between plots,
touching on extremes: note SB3 and SB7. Secondly, results were found to be sensitive
to threshold variations. Still, designs with different road lengths provide substantially
different internal trips efficiencies. For example, SB9, one of the worst performing cases in
terms of internal connectivity efficiency, performs better than SB3 and SB4, designs with
almost double the street length. In another key example, all the plots of the regular grid
of SB7, one of the shortest networks, reach all other plots with PRD values below the two
thresholds studied.

Finally, the study of the route diversity, based on the measurement of redundancy,
shows that the richness of routes and potential for path overlap and open-ended exploration
offered by the different designs can be markedly different. From the dearth of alternatives
offered by SB9, to the richness of paths offered by the dense grid of SB2. Trips connecting
plots to one another, as well as trips to the corners, tend to be more diverse as the availability
of streets, as described by the length of the street network, increases.

While based on a sample of ideal conditions, and in need of validation with real
cases, these results provide insightful information for neighborhood planning and design,
as well as decision making. More specifically, the results indicate that when confronted
with the decision to adopt one design over another, distances between plots and between
plots and corners, tend to remain within walkable ranges in all the designs studied. If
trip distances were the only walkability criteria applied for selecting a particular design,
decisions could gravitate towards the costs associated to road building, knowing that
access would not be compromised. The same criteria could be adopted in the case of the
efficiency of routes to the corners. Knowing that most designs provide efficient access to the
corners, the decision making could also be tied to the costs associated with road building.
Still, the results indicate that internal connectivity efficiency can vary quite substantially
and that test thresholds, road lengths, and importantly the design of the network play key
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roles in the efficiency of internal trips. In this case, more research is needed to provide
reliable conclusions.

Lastly, the diversity of routes offered, as measured by the redundancy index, is the
only factor directly and significantly associated with the road lengths of the studied designs.
This is the case both in terms of internal connections, and in terms of connections between
plots and the superblock corners. While this is, in retrospect, an expected result, the fact
that it was quantified and associated to specific network designs makes the study of route
diversity in superblocks particularly rewarding. It provides a simple and interpretable
quantitative means to evaluate the potential for route-building of each network.

As research on superblocks continues, questions regarding the maximization of de-
sirable characteristics for superblock networks, such as increased route diversity, prox-
imity, and efficiency, while minimizing the costs of road building, are expected to be
addressed. However, the results of this paper contribute, at this point, to enlarge recent
research on superblocks’ street networks by including metrics that were not previously
discussed, applied, or investigated. Indeed, while syntactic properties of superblocks were
recently studied [16,19], and so were route directness, walking sheds, and betweenness
centrality [17,18], the evaluation of route distance and diversity add new information
to the ongoing research on superblocks. Further, current discussions about the use of
superblocks in Chinese cities [62], as well as the study of the adaptation of Cerda’s plan
in Barcelona to accommodate sustainable mobility modes by aggregating several blocks
into superblocks [63,64], highlight the ongoing need to better understand superblocks as a
well-established urban planning strategy. The study of Middle Eastern cities’ superblocks
and their connectivity contributes to this global discussion.

In closing, it should finally be noted that the methods and results presented in this
paper could already inform planning practice. More specifically, decisions regarding which
design to adopt could be more sharply addressed by considering their connectivity and
walkability, as well as the costs associated with their construction. Further, the metrics
and methods used in this study could be easily replicated as they were performed using
standard planning software, such as geographic information systems (GIS) and computer
aided design (CAD) systems.

6. Conclusions

Cities in the United Arab Emirates, as well as numerous other cities in the Gulf Coop-
eration Council (GCC), adopted superblocks as the backbone of their urban development
strategy. Built and planned following modernist principles and in a context of increased
motorization, they provided a solution to the fast-paced urbanization needs that these
cities faced. In Abu Dhabi, superblocks have historically supported the city’s growth and
expansion and, notably, they continue to do so today. This is particularly the case in the city
suburbs, which are often built through the aggregation of numerous identical superblocks.
However, the current and pressing need to reduce energy consumption and greenhouse
gas emissions, along with renewed notions about the role that urban form plays in building
more sustainable cities, calls for a re-examination of this enduring approach to urban
planning and development.

This paper contributed to this task by looking at the connectivity of superblocks’ street
networks and their ability to accommodate walking trips. Findings indicate that distances
are walkable, and routes often direct—particularly to corners—in all the studied designs.
In contrast, the availability of alternative paths differed across the sample, and was found
to be linked to the total road length of the different street systems. If cost minimization
prevails in the decision-making process, network designs with the least amount of streets
could be favored when planning new neighborhoods. Walking distances and directness
would not be greatly affected if this alternative is preferred. A more involved cost–benefit
approach, on the other hand, would be appropriate if path diversity is considered. In this
latter case, the benefits could be associated to the concepts quite sharply outlined, long
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ago, by Jane Jacobs, such as the fluidity of use and the mixing of paths that dense street
networks with small blocks support.

Clearly, it is not through street network design alone that vibrant streets and walkable
communities and cities are shaped. Key urban form variables, such as density and land
use diversity and mix, would also need to be carefully evaluated when planning cities
where walking, and eventually cycling, are viable transportation options. Cultural and
climatic factors should, as well, be carefully considered. However, despite the noted
challenges, it is worth noting that Abu Dhabi’s community planning guidelines, as well as
its sustainability rating framework Estidama, currently call for a transition towards more
livable communities where walking, cycling, and public transportation use are supported
by well-connected street networks [52,65,66]. The results of this paper are thus expected to
contribute to both research and practice on walkability and sustainable mobility, in Abu
Dhabi in particular, and in superblock-planned cities in general.
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Abstract: This present study developed two predictive and associative Bayesian network models to
forecast the tolerable travel time of university students to campus. This study considered the built
environment experiences of university students during their early life-course as the main predictors
of this study. The Bayesian network models were hybridized with the Pearson chi-square test to
select the most relevant variables to predict the tolerable travel time. Two predictive models were
developed. The first model was applied only to the variables of the built environment, while the
second model was applied to all variables that were identified using the Pearson chi-square tests.
The results showed that most students were inclined to choose the tolerable travel time of 0–20 min.
Among the built environment predictors, the availability of residential buildings in the neighborhood
in the age periods of 14–18 was the most important. Taking all the variables into account, distance
from students’ homes to campuses was the most important. The findings of this research imply
that the built environment experiences of people during their early life-course may affect their
future travel behaviors and tolerance. Besides, the outcome of this study can help planners create
more sustainable commute behaviors among people in the future by building more compact and
mixed-use neighborhoods.

Keywords: tolerable travel time; university students; built environment; early life-course; Bayesian
network; machine learning

1. Introduction

Travel time (TT) is viewed as a necessary university-related activity and functions as
a link between home and university campus. For each student, travel to campus differs
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in distance and complexity. This complexity may be increased if certain activities which
link the travel and family are incorporated (e.g., the school operated or residential location
decisions when spouses in households pursue careers) according to Wheatley [1]. This
travel time spent can be regarded as both “productive” and a “waste of time”.

Several studies identified the associations between duration of travel and individuals’
well-being, including stress, comfort and satisfaction, and health [2–5]. In addition, several
studies assessed the relationship between the TT and all daily activities and work dura-
tion [6,7]. Many factors, including sociodemographic, household characteristics, and travel
mode, may influence TT [8]. In addition, many academic studies analyzed the reciprocity
between built environment (BE) attributes and the TT [9–14].

As regards to the university students, there are some studies which considered TT as
a function of students’ commute mode choice [15–19]. However, no available study has
ever assessed the influence of BE factors on the students’ TT, and also, no study has ever
considered the tolerable travel time (TTT) of university students considering the effects of
BE variables. While a sizeable number of literature considered the effects of BE attributes
on TT of the general population, studies on university students that exhibited different
travel behaviors from the general population are still lacking [20–22].

The concept of TTT was developed by Milakis et al. [23]. This concept was established
based on various theories related to commuting time, which include satisfaction [24,25],
consideration sets [26], the travel time budget [27,28], and ideal travel time [29]. Milakis,
Cervero, Van Wee, and Maat [23] employed semi-structured interviews to explore the
primary characteristics of acceptable travel time (ATT). The study supported the validity
of the concept of ATT through their findings and showed that the ATT may be varied for
people with different sociodemographic attributes and travel modes. According to this
concept, people presumably consider an ATT in their trips and decision-making processes
regarding destinations. This concept views ATT as a behavioral threshold that is defined
by the process of utilitarianism (i.e., intrinsic and derived utility). Intrinsic utility refers
to the travel-related advantages (or disadvantages), while the advantages concerning
activity at a journey destination are referred to as the derived utility. The concept splits
the timeline of a one-way trip into three main periods in terms of total utility changes:
(1) growth, (2) tolerance, and (3) decay. In the growth phase, both intrinsic and derived
utility witnessed total utility increase. In the tolerance phase, the total utility yet increases,
but slower than before until it touches the ATT (maximum level). Compared to the growth
period, intrinsic utility is reduced and derived utility rises, but at a slower rate. Eventually,
in the decay period, the total utility decreases because of the rapid decrease in intrinsic
utility coupled with slow growth in derived utility.

The TTT, in fact, is the duration between the ideal travel time and ATT. In simple
terms, TTT refers to the maximum amount of one-way TT that an individual tolerates [30].
If the actual TTs of a commuter reach or exceed the tolerance thresholds, the commuter is
keen to decrease his/her travel time by making some changes, including, but not limited to,
residential, job locations, or travel modes. The literature acknowledged the negative effects
of exceeding the TTT thresholds. These impacts may be increasing stress levels, demanding
excessive energy, and consuming time which may limit the time available for other daily
activities [31–37].

There has been growing acknowledgement that travel behaviors are habitual [38–40]
and these behaviors may become debilitated when disturbed by a contextual adjust-
ment [39]. These contexts may comprise the environment where behavior occurs, such as
social, physical, spatial, and time cues. Moreover, major life events (e.g., change in em-
ployment) may change the travel behaviors of individuals over time [41]. To date, several
studies have examined the impacts of changes in life events and residential locations on
the travel behavior of individuals [42–47]. However, many of these studies focused on
predicting the travel mode choice, and many other aspects of travel outcomes, such as TTT,
were overlooked. Furthermore, other phenomena that occurred to individuals in the past
have received less attention. For example, no study has considered the associations between
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adults’ travel behavior outcomes and their living environments and BE experiences during
childhood and adolescence. Several studies pointed out that previous living environments
of people may influence their future behaviors that are related to commuting, such as their
adaption and tolerance of crowding or their concern over the environment [48–50]. More
importantly, lifetime habits, such as physically active lifestyle, can be developed during the
early childhood years [51]. Thus, there may be a relationship between the BE experiences
and the early life-course of people and their future travel behaviors, such as their TTT.

The aim of this study is to identify associations between the childhood BE experiences
of university students and their current TTT to campus. This investigation extends the
literature in two main ways. To begin with, it adds to the growing body of knowledge about
tolerable travel time in developing countries. Second, this study evaluates the significance
of different built environments (during childhood and now) and sociodemographic factors
in determining students’ tolerable travel time to campus. It also shows that childhood
built environment experiences have associations with the students’ tolerable travel time to
campus, corroborating the sparse data in the literature.

2. Knowledge Gaps and Research Questions

While some non-academic reports on average commute time of employees to work are
available in Malaysia [52], no academic study has considered the average or tolerable travel
time of students living off-campus to the universities’ campus. Therefore, this present study
endeavors to identify what factors of travel time resolutely affect the TTT of university
students to their campuses.

Among university students, off-campus students typically experience various mobility
challenges, including travel between home and campus, as well as trips linked to non-study
activities [19]. For example, off-campus students may require more commute time for
campus-related trips than their on-campus peers. Alternatively, these students can use this
prolonged commute time to study and develop networks and social bonds. Moreover, these
students usually face challenges in finding suitable travel alternatives (on the condition
that their car/motorcycle is unavailable) for attending sessions programmed for the early
hours of morning, late hours of night, or days other than working days. So far, only a few
investigations have exclusively appraised the commute patterns of off-campus university
students and examined difficulties connected to the transportation they encountered [19,53].

The literature review also provided evidence that people who experience life events
are more inclined to travel behavior alterations. Past research on life events and travel
behavior alternations have mostly focused on a particular or restricted variety of life expe-
riences. Conversely, and to the best of the authors’ knowledge, no study has examined the
influence of built environment experiences at the early life-course of the general population
and specific populations (such as university students) on their future travel behaviors,
particularly TTT. Therefore, the investigation conducted in the following sections attempted
to discuss three principal research questions:

1. What is the most probable TTT of off-campus university students to the campus?
2. To what extent is off-campus university students’ TTT to the campus associated with

BE experiences during their childhood and adolescence?
3. How are sociodemographic, household, residential, and travel mode characteristics

associated with off-campus university students’ TTT to the campus?

The collection of retrospective data from two universities in Malaysia is used in this
study to address these questions using a two-step analysis structure. The details of data
collection and analysis are discussed in the subsequent sections.

3. Research Design

This study adopted a retrospective research design. According to Behrens and Mis-
tro [54], this design involves one-time surveys of people and asks participants to remember
experiences or events that previously happened to them. The respondents for this present
study are off-campus university students that were surveyed and asked to recall their
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living environments during the age periods of 1–6, 7–13, and 14–18. The retrospective
surveys are suitable for observations over long time spans. The literature suggests that the
respondents can remember main life-process experiences and can also describe any of their
essential characteristics, which enables the assessment of general alternations over more
prolonged periods.

This present study evaluated the influence of BE experiences during childhood and
adolescence. Using this design, this study thus examined the impact of BE experiences
during childhood and adolescence on university students’ TTT to campus. van de Coev-
ering et al. [55] pointed out that the principal disadvantage of the retrospective design is
that the examination of opinions and specification of everyday travel behavior are mis-
leading. The authors thus adopted a comparably short time span and urged university
students to show preferences for their tolerable travel time on a nominal measure. The
survey particularly inquired about current inclinations and regarded these trends as steady
throughout university time. The critical role of control variables on the study of BE and
travel behavior is undeniable and these variables cannot be eliminated from the modelling
procedure [55,56]. Therefore, this study has considered the effects of these variables in the
second series of models to obtain a more rigorous research design. The possible effects of
different influential factors on university students’ TTT to campus are presented in Figure 1.

Figure 1. Schematic diagram of possible factors influencing university students’ tolerable travel time
to campus and the classifications of tolerable travel time used in this study.

3.1. Variables of Built Environment during the Early Life-Course of People

The impact of the built environment on university students’ TTT to campus was
investigated through the "5Ds" model. Initially, Cervero and Kockelman [57] developed the
"3Ds" model which included density, diversity, and design to express the urban structure.
Subsequently, Ewing et al. [58] combined two more dimensions, including destination
accessibility and distance to transit, with the previous model and developed the "5Ds"
model. The magnitude of land use for residence, work, and other goals is regarded as
density. Diversity relates to the level of heterogeneity of land use. The properties of the
street network and the walking environment quality are viewed as the design. Distance to
transit refers to the accessibility to public transportation facilities. Finally, the measurement
of ease of access to trip attractions is referred to as destination accessibility.
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3.2. Survey and Data Collection

This present study used an online questionnaire survey in March and May 2020 to
collect data regarding the TTT of off-campus university students in Malaysia. In comparison
with paper-based questionnaires, the online option is more comfortable to complete by the
respondents, without any geographical restrictions. This advantage of the online survey
makes it a suitable instrument for studies which try to collect data in multiple locations
during times in which movements are restricted (e.g., lockdown and quarantine). The
respondents of this study were mainly from two public universities in two renowned
tertiary education cities. The universities are A and B (for the sake of the blind review
process, the case studies are removed from this manuscript). An email was sent to the
students’ email account in each university, which explained the aims of the study. Besides,
the research team included the internet address of the questionnaire in the email. A
reminder email was also sent to the students every two weeks to increase the response rate
and balance the sample size.

The questionnaire comprised three main sections. The initial section examined the
respondents’ sociodemographic and household characteristics. The second part involved
some questions regarding current residential location and the usual travel mode to the
campus. The third part asked students to recall their living environment during two
periods of age, namely 7–13 and 14–18. This part also assessed the attitudes of respondents
towards their living environment during the mentioned age periods in the form of Likert
scale measurement. Once the questionnaire was designed, the research team sent a full
version of the questionnaire to a panel of experts, which included urban planners and
transport planners. The panel was urged to give their feedback regarding the suitability and
communicability of the questionnaire. Likewise, the panel was deemed fit to modify, add,
or remove any item from the questionnaire. Minor changes were made to the questionnaire
as a result of the experts’ consultation. For instance, the time and distance scales for TTT
and tolerable travel distance have become finer to avoid difficulties from the extremely
large discretization of travel distance and TT.

Following the panel review, the research team conducted a pilot survey and collected
33 completed questionnaires. The research team also asked the respondents to express
any difficulties or incommunicability they found in filling the questionnaire. This pilot
survey resulted in some changes in the questionnaire. The main change was made to
the age scale. Before the pilot study, the attitudes of the students towards their living
environment were supposed to be assessed using three age periods, which are 1–6, 7–13,
and 14–18. However, the respondents’ feedback indicated that it was difficult for them to
recall their living environment during the age period of 1–6. Besides, the primary analysis
result also showed that responses related to this age range were inconsistent. Thus, the
age period of 1–6 was removed from the age scale for all survey items, except the question
which asked the respondents to indicate the type of settlement (city, village, and suburb)
in which they have lived. Age scale of this question has not been changed because it was
easy for the respondents to recall general rather than specific characteristics of the living
environment. Consequently, the final version of the questionnaire included 49 questions.
The questionnaire items that were utilized in this present research are presented in Table 1.

3.3. Analysis Approaches and Techniques

Multiple traditional statistical methods, including the multinomial logit, binary logit,
and mixed logit models were frequently employed in studies related to transport for
analyzing predictors of the university students’ travel behaviors, particularly their mode
choice [59–62]. The data related to travel behaviors are generally bulky and complicated,
which makes the use of regression models challenging for studying predictors of the travel
behaviors and patterns. These models typically assume that the associations between
the variables are linear and consider the data without outliers [63–65]. However, these
assumptions are hardly adequate for travel behavior data. Another daunting task, which
can occur in regression models, is using the cross-product terms for distinguishing the
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predictors because of interaction that happens in complicated configurations [66]. Moreover,
according to Karlaftis and Golias [67] and Yan, Richards, and Su [66], regression models
are often unable to efficiently handle differing categorical variables.

Table 1. Variables employed in this study.

Variable Description Value

Sociodemographic and household characteristics

AGE Respondent’s age (1) 19–24; (2) 25–30; (3) 31–36; (4) 37–42; (5) 43–48; (6) more
than 48

GEN Respondent’s gender (1) male; (2) female

EDU Highest education level of respondent (1) primary; (2) secondary; (3) diploma; (4) bachelor’s
degree; (5) master’s degree; (6) doctorate degree

HHCO Count of household members 1–9
CHCO Number of children in household 0–4

INC Household income

(1) less than MYR 1000; (2) between MYR 1000 and MYR
2000; (3) between MYR 2000 and MYR 3000; (4) between

MYR 3000 and MYR 6000; (5) between MYR 6000 and MYR
13,000: (6) more than MYR 13,000

RACE Respondent’s race (1) Malay; (2) Chinese; (3) Indian; (4) foreigner
PRVE Vehicle ownership (1) yes; (2) no
VECO Count of household vehicles 0–7

Residential and travel mode characteristics

NETYCH Description of the neighborhood in terms
of type and characteristic

(1) residential only; (2) residential with some commercial
buildings; (3) residential with some industrial facilities; (4) a
commercial area with some residential; (5) an industrial area
with some residential; (6) mixed residential and commercial

REHOMELOC Top first reason for choosing current
home location

(1) Cost/price of home; (2) home size and characteristics;
(3) neighborhood characteristics; (4) home or lot size; (5)

school district/system; (6) convenient for work; (7)
convenient for school; (8) convenient for retail (shopping,

entertainment, restaurants); (9) close to friends and family;
(10) close to public transportation; (11) close to scenic
locations (beach, lake, golf courses); (12) less traffic to

school; (13) no other choices apply

UTMS Usual travel mode to campus
(1) Private car; (2) private motorcycle; (3) public

transportation; (4) walking/cycling; (5) metered taxi; (6)
ride-sourcing

DISSC Distance from home to campus (1) 0–10 km; (2) 11–20 km; (3) 21–30 km; (4) 31–40 km;
(5) 41–50 km; (6) 51–60 km; (7) more than 60 km

ADISSC Acceptable distance from home to
campus

(1) 0–10 km; (2) 11–20 km; (3) 21–30 km; (4) 31–40 km;
(5) 41–50 km; (6) 51–60 km; (7) more than 60 km

Living environment during childhood and adolescence

KSETTLE Settlement type during the age periods of
1–6, 7–13, and 14–18 (1) city; (2) village; (3) suburb

PCIVILRS Perception towards the size of settlement
during the age periods of 7–13 and 14–18 (1) very small; (2) small; (3) medium; (4) large; (5) very large

TPHOUSE Type of house during the age periods of
7–13 and 14–18

(1) bungalow; (2) detached/semi-detached; (3) shop houses;
(4) flat (non-gated); (5) apartment (gated); (6) condominium

(high rises)

Living environment during childhood and adolescence—density

1DENSITY
The neighborhood I lived in had many
shop lots in the age ranges of 7–13 and

14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

2DENSITY The neighborhood I lived in had many
offices in the age ranges of 7–13 and 14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree
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Table 1. Cont.

Variable Description Value

3DENSITY
The neighborhood I lived in had many

residential buildings in the age ranges of
7–13 and 14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

4DENSITY
The neighborhood I lived in had many

entertainment facilities in the age ranges
of 7–13 and 14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

5DENSITY
The neighborhood I lived in had many
industrial facilities in the age ranges of

7–13 and 14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

6DENSITY
The neighborhood I lived in had some
schools in the age ranges of 7–13 and

14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

Living environment during childhood and adolescence—diversity

1DIVERSITY My house was close to the shops in the
age ranges of 7–13 and 14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

2DIVERSITY My house was close to public offices in
the age ranges of 7–13 and 14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

3DIVERSITY
My house was close to entertainment
facilities in the age ranges of 7–13 and

14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

4DIVERSITY
My house was close to other residential
buildings in the age ranges of 7–13 and

14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

5DIVERSITY
The school I attended was within

walking distance of my house in the age
ranges of 7–13 and 14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

Living environment during childhood and adolescence—design

1DESIGN
The neighborhood I lived in had large

block sizes in the age ranges of 7–13 and
14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

2DESIGN
The neighborhood I lived in had many
intersections in the age ranges of 7–13

and 14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

3DESIGN
The neighborhood I lived in had a full

sidewalk coverage along the street in the
age ranges of 7–13 and 14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

4DESIGN

The neighborhood I lived in had many
buildings that were set back from the

sidewalks with an appropriate distance
(there was a good distance between

buildings and the sidewalks) in the age
ranges of 7–13 and 14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

5DESIGN
The neighborhood I lived in had wide

sidewalks in the age ranges of 7–13 and
14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

6DESIGN
The neighborhood I lived in had several
pedestrian crossings in the age ranges of

7–13 and 14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

7DESIGN
The neighborhood I lived in had many

trees and landscapes in the age ranges of
7–13 and 14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

8DESIGN

The neighborhood I lived in had many
pedestrian-related facilities (e.g., water

fountains and benches) in the age ranges
of 7–13 and 14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree
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Table 1. Cont.

Variable Description Value

Living environment during childhood and adolescence—destination accessibility

1ACCESSIBILITY
In the neighborhood I lived in, it was

easy for me to access local stores in the
age ranges of 7–13 and 14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

2ACCESSIBILITY
In the neighborhood I lived in, it was

easy for me to access business districts in
the age ranges of 7–13 and 14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

3ACCESSIBILITY

In the neighborhood I lived in, it was
easy for me to access the

primary/secondary school in the age
ranges of 7–13 and 14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

4ACCESSIBILITY
In the neighborhood I lived in, it was easy
for me to access the recreation facilities in

the age ranges of 7–13 and 14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

Living environment during childhood and adolescence—distance to transit

1DISTANCETOTRAN
In the neighborhood I lived in, my house

was close to the bus stops in the age
ranges of 7–13 and 14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

2DISTANCETOTRAN
In the neighborhood I lived in, my house

was close to the taxi stops in the age
ranges of 7–13 and 14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

3DISTANCETOTRAN My school was close to the taxi/bus stops
in the age ranges of 7–13 and 14–18

(1) strongly disagree; (2) disagree; (3) neutral; (4) agree;
(5) strongly agree

Target variable

TTTTOSC Tolerable travel time to campus (1) 0–10 min; (2) 11–20 min; (3) 21–30 min; (4) 31–40 min;
(5) 41–50 min; (6) 51–60 min; (7) more than 60 min

To remedy the above shortcomings of regression models, this study employed non-
parametric and machine learning (ML) techniques. These techniques refer to a procedure
that makes use of preprocessing, input selection, and extraction and classification processes.
The body of literature suggested that ML techniques such as Bayesian network (BN) are free
of assumptions of variable distributions; thus, possessing prior probabilistic knowledge
on university students’ travel behavior and their TTT is not needed. The ML techniques
are also effective in dealing with outliers and many categorical variables. Finally, these
techniques efficiently extract knowledge from massive data [68–73]. Pearson chi-square
test and BN have been successfully applied in a limited number of studies related to
transport [74]. However, to the best of the authors’ knowledge, no study has employed
both Pearson chi-square test and BN in the study of the university students’ travel behaviors
and their TTT.

This present study used a two-step approach to analyze the data collected. The first
step was to examine the association between the input variables and the target variable
through Pearson chi-square tests. The variables with a value greater than 0.75 were selected
as the most associated variables with the target variable and were selected to be used as the
inputs of prediction models. Next, two BN models were developed to predict the university
students’ TTT to campus. While the first model was applied to those BE variables (during
childhood and adolescence) that were selected in the input selection step, the second model
was applied to all selected variables. Figure 2 shows the study process and framework.
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Figure 2. The framework of this study.

3.4. Bayesian Network Model

BN is a probabilistic network model that employs the probability theory and the
graph system concurrently. The theory behind the BN analysis is the Bayesian probability.
The analysis employs joint distributions and preceding distributions of each variable
to measure a subsequent distribution for each variable of concern. Two principal parts
of BN are probabilistic and graphical structures. A graph K = (H, L) is defined by a
collection of nodes H = {H1, . . . , Hp} and a collection of edges L ⊆ H × H. In a BN, the
nodes H denote the variables, and the edges L signify the directed arrows, showing the
conditional dependencies amongst these variables. Equation (1) manifests the probabilistic
relationships between the nodes defined by a function of joint probability density F(H).

F(H1, . . . , Hk) =
k

∏
i=1

F(Vi|Parent(Hi)). (1)

The conditional probability tables reflect the aforementioned joint likelihood density
function, developing the probabilistic BN composition. The BN graphical arrangement
necessity possesses an acyclic character. In particular, a BN follows a directed acyclic graph
formation. To be precise, there must not be any edge redirecting, including Hi → . . . → Hi
for any Hi and H. The edges reveal the mathematical dependencies among the nodes;
however, the edge direction may not inevitably indicate a causality association. Between a
pair of nodes linked together by an edge, the preceding and following nodes are named
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parent and child, subsequently. To build the Bayesian networks, this study utilized the
Markov blanket, which finds all the variables in the network that are essential to forecast
the target variable. A simple structure of BN based on directed acyclic graph formation is
shown in Figure 3.

Figure 3. Simple BN network.

Generally, travel behavior datasets contain various parameters, and each parameter
may have diverse classes. Besides, when new knowledge is accessible or needed, these
datasets may remain constantly updated. Moreover, it is very common that travel behavior
datasets are incomplete or possess missing values. Several studies acknowledged that
the BN technique can deal with variables with various classes and undersampling data
efficiently. Additionally, this technique can handle data that are deficient, fallacious, or
dubious [75–77]. According to Tareeq and Inamura [78], the BN technique was considered
proper to learn changeable behaviors (including the TTT under review) because it can
effectively improve its network following the data specified or inserted into it.

The BN works excellently with a limited number of candidate variables [79]; thus, the
Pearson chi-square tests were employed to reduce data dimensionality and select only the
most relevant inputs. Pearson chi-square test is a non-parametric statistical test which is
applied to sets of categorical data to assess how probable it was that any observed variation
between the sets occurred by chance. This test is suitable for feature selection when the
target variables of some inputs are categorical. Equation (2) shows the mathematical
formulation of the Pearson chi-square test.

χ2 = ∑
(Ar − Ae)

2

Ae
(2)

where the Ar and Ae are the real and expected frequencies of categories.

4. Results

This present study created a dataset that included 758 university students’ travel
data from two public universities in Malaysia. The dataset contains only the off-campus
participants. As previously mentioned, this study aims to predict the tolerable travel time of
the university students to the campus considering their past built environment experiences.
On the TTT frequencies, 68.35% of students were tolerant, 3.69% were moderately tolerant,
18.99% were highly tolerant, and 8.97% were extensively tolerant. The age range of the
majority of students was 19–24 (73.88%). This overrepresentation was believed to have
stemmed from the fact that younger students were more capable of and interested in
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participating in an online survey. Moreover, the older students might be involved in some
family matters or might have had less free time, and thus, had much less time for filling in
the online questionnaire. The study trends can be extrapolated to other university students
because of the size and variety of this study. The sociodemographic characteristics and
respondents’ profiles are presented in Appendix A.

4.1. Input Selection

The associations of 74 input variables with the target variable (TTT to campus) were
tested through the Pearson chi-square tests. This present study selected those variables
with the value of 0.75 and above as the most associated and important inputs for predicting
the students’ TTT to campus. Thus, 38 input variables were selected (Table 2). Furthermore,
these variables will be used to develop two predictive BN models. Among the total
variables, distance from home to campus (DISSC) was the most important variable, while
for variables of BE during the childhood and adolescence of students, the ease of access
to the primary/secondary school in the age range of 7–13 (3ACCESSIBILITY713) was the
most important variable and was followed by the ease of access to local stores in the same
age period (1ACCESSIBILITY713).

Table 2. Input variables selected by the Pearson chi-square tests.

Rank Variable Value Rank Variable Value

1 DISSC 1.00 20 2DISTANCETOTRAN713 0.91
2 3ACCESSIBILITY713 1.00 21 HHCO 0.90
3 1ACCESSIBILITY713 0.99 22 1DIVERSITY713 0.89
4 4DIVERSITY713 0.99 23 PRVE 0.87
5 RACE 0.98 24 5DESIGN1418 0.87
6 7DESIGN713 0.98 25 4DIVERSITY1418 0.86
7 UTMWS 0.98 26 7DESIGN1418 0.85
8 3ACCESSIBILITY1418 0.98 27 4DENSITY713 0.85
9 3DENSITY1418 0.98 28 2DIVERSITY1418 0.85
10 3DENSITY713 0.98 29 KSETTLE16 0.85
11 1DIVERSITY1418 0.97 30 5DESIGN713 0.84
12 AGE 0.96 31 4ACCESSIBILITY713 0.81
13 6DESIGN713 0.94 32 UTMTOSC1418 0.81
14 GEN 0.94 33 UTMTOSC713 0.80
15 2DISTANCETOTRAN1418 0.93 34 1ACCESSIBILITY1418 0.80
16 4ACCESSIBILITY1418 0.93 35 REHOMLOC 0.79
17 6DENSITY713 0.93 36 KSETTLE1418 0.79
18 TPHOUSE713 0.92 37 2DIVERSITY713 0.78
19 6DENSITY1418 0.91 38 EDU 0.77

4.2. BN#1 Model Focusing on BE Attributes

The first BN model was developed using 27 BE variables that were chosen in the
previous step. This model selected the 10 most important variables to predict the TTT of
university students to campus. The training accuracy of this model was 97.47%. The BN#1
structure is presented in Figure 4. This diagram includes 11 variables, 10 predictors, and
1 target variable. The importance of each predictor is shown in Figure 5. As evidently
shown, the availability of residential buildings in the neighborhood that respondents lived
in, within the age period of 14–18, was the most critical predictor. This predictor was
followed by the proximity of the house to shops in the age range of 14–18. The least
essential predictor was the type of settlement in the age period of 14–18. As analytically
revealed, settlement type in the age range of 1–6 was more critical than 14–18. From the age
group perspective, settlement type was the only factor that was assessed by this study for
the age range of 1–6. This predictor was selected as an essential predictor by the BN. For
the age range of 7–13, four predictors were the most important, which are: (1) availability
of residential buildings in the neighborhood, (2) availability of schools in the neighborhood,
(3) availability of entertainment facilities in the neighborhood, and (4) proximity of the
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house to shops. For the age range of 14–18, four predictors were the most important, which
are: (1) availability of residential buildings in the neighborhood, (2) availability of schools
in the neighborhood, (3) proximity of the house to shops, and (4) settlement type.

Figure 4. BN diagram to predict the TTT of university students to campus considering only the
effects of BE variables.

Figure 5. Importance of 14 variables to predict the TTT of students to campus considering only the
BE features.

The BN#1 identified 76 conditional probabilities for each category of TTT, except TTT
of 21–30 min. No TTT of 21–30 min was predicted by BN#1. To simplify the interpretation
of the probabilities, only high probable TTTs (probability ≥ 0.75) were reported for each
category. The most frequent and influential value of each predictor that predicted each TTT
is presented in Table 3.
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Table 3. Conditional probabilities of high probable TTTs to campus derived from BN#1.

Variable/Value
Frequency (%)

0–10 11–20 31–40 41–50 51–60 More than 60

TPHOUSE713

1 10.3 40.7 0 16.7 40.0 40
2 75.9 33.3 50 50.0 60.0 60
3 0 0 0 0 0
4 3.4 14.8 0 33.3 0 0
5 10.3 11.1 50 0 0 0

3DENSITY713

1 10.3 7.4 0 0 40.0 20.0
2 10.3 7.4 0 16.7 40.0 20.0
3 37.9 14.8 0 33.3 0 0
4 31.0 37.0 100 50.0 20.0 0
5 10.3 33.3 0 0 0 60.0

3DENSITY1418

1 10.3 7.4 0 0 20 20
2 6.9 11.1 0 0 60 0
3 27.6 11.1 0 33.3 0 0
4 41.4 44.4 100 66.7 0 20
5 13.8 25.9 0 0 20.0 60

4DENSITY713

1 13.8 18.5 0 16.7 0 0
2 44.8 25.9 0 83.3 40.0 60.0
3 31.0 25.9 50 0 20.0 40.0
4 10.3 29.6 50 0 40.0 0
5 0 0 0 0 0 0

6DENSITY713

1 0 0 0 16.7 0
2 6.9 3.7 50 16.7 20.0 20.0
3 20.7 22.2 50 0 0 0
4 62.1 40.7 0 66.7 40.0 40.0
5 10.3 33.3 0 0 40.0 40.0

6DENSITY1418

1 0 0 50 16.7 0 0
2 6.9 3.7 0 16.7 20.0 20.0
3 17.2 18.5 50 0 0 0
4 62.1 51.9 0 50 40.0 40.0
5 13.8 25.9 0 16.7 40.0 40.0

1DIVERSITY713

1 0 3.7 0 0 0 40.0
2 13.8 14.8 0 33.3 0 0
3 17.2 14.8 50 33.3 20.0 0
4 55.2 48.1 50 33.3 40.0 40.0
5 13.8 18.5 0 0 40.0 20.0

1DIVERSITY1418

1 0 1 0 0 0 40.0
2 17.2 11.1 0 16.7 0 0
3 13.8 11.1 0 16.7 20.0 0
4 55.2 63.0 100 50.0 60.0 40.0
5 13.8 14.8 0 16.7 20.0 20.0
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Figure 6 summarizes the TTTs according to important variables identified by BN#1.
This study also calculated the p-value to identify those BE variables that may cause a
significant difference in TTTs. Based on the calculations, the significant difference in TTTs
was found only in 1DIVERSITY1418 (p-value = 0.011). This means that attitudes of students
regarding the availability of shops near their houses during the ages of 14–18 resulted in a
significant difference in TTT to campus. Figure 6 shows that students who had shops near
their house tended to choose shorter TTTs.

 
a. TTTTOSC vs. settlement type in the age period of 1–6. b. TTTTOSC vs. settlement type in the age period of 14–18.

c. TTTTOSC vs. house type in the age period of 7–13. d. TTTTOSC vs. 3DENSITY7–13. 

e. TTTTOSC vs. 3DENSITY14–18. f. TTTTOSC vs. 4DENSITY7–13. 

 

g. TTTTOSC vs. 6DENSITY7–13. h. TTTTOSC vs. 6DENSITY14–18. 

Figure 6. Histograms of TTT to school by important predictors of BN#1.
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4.3. BN#2 Model Considering the Control Variables and BE Variables

The second BN model was developed using 38 variables. These variables included per-
sonal characteristics of the respondents, their household characteristics, variables related to
the residential location, and travel mode choice. Eventually, the BN#2 selected 10 predictors
as the most important and built the diagram based on these predictors (Figures 7 and 8).
The training accuracy of this model was 81.01%. Apparently, among the BE variables,
settlement type during the age periods of 1–6 and 14–18, as well as residential/house type
during the age period of 7–13 were selected as the most important. Among the controlled
variables, age, education level, race, usual travel mode to campus, and distance to campus
were chosen as the most important.

Figure 7. BN#2 diagram to predict the TTT of university students to campus considering the effects
of control variables and the BE variables.

The BN#2 identified 53 conditional probabilities for each category of TTT, except TTT
of 21–30 min. No TTT of 21–30 min was predicted by BN#2. To simplify the interpretation
of the probabilities, only high probable TTTs (probability ≥ 0.75) were reported for each
category. The most frequent and influential value of each predictor for predicting each TTT
is presented in Table 4.

A summary of TTTs by important control variables is presented in Figure 9. This
study assessed whether any significant difference among TTTs exists regarding race, gen-
der, education level, usual travel mode to campus, and distance to campus. Calculations
obtained showed that differences in age and distance to campus significantly resulted
in different TTTs (p-value = 0.008 and 0.000, respectively). The results indicated that the
majority of younger students prefer to choose shorter TTTs. On the other hand, older
students were inclined to select longer TTTs, such as 41–50 min. While the majority of stu-
dents who lived closer to their school chose shorter TTTs, the students who lived far from
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the school (more than 51 km) selected longer TTTs (more than 60 min). Figure 10 shows
principal reasons for selecting the current houses by university students which provide a
deeper insight into the factors that influenced university students’ residential choices.

Figure 8. Importance of variables to predict the TTT of students to campus considering the effects of
control variables and BE variables.

Table 4. Conditional probabilities of high probable TTTs to campus derived from BN#2.

Variable/Value
Frequency (%)

0–10 11–20 31–40 41–50 51–60 More than 60

AGE

1 78.3 53.3 100 100 50.0 100
2 8.7 20.0 0 0 50.0 0
3 13.0 26.7 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0

EDU

1 0 0 0 0 0 0
2 8.7 6.7 33.3 0 0 0
3 8.7 0 33.3 0 0 0
4 69.6 66.7 33.3 100.0 100.0 100.0
5 0 0 0 0 0 0
6 13 26.7 0 0 0 0

RACE

1 52.2 53.3 66.7 0 0 75.0
2 30.4 26.7 33.3 33.3 0 25.0
3 4.3 0 0 33.3 100.0 0
4 13.0 20.0 0 33.3 0 0
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Table 4. Cont.

Variable/Value
Frequency (%)

0–10 11–20 31–40 41–50 51–60 More than 60

UTMS

1 52.2 53.3 66.7 100.0 100.0 50.0
2 26.1 0 0 0 0 0
3 13.0 20.0 33.3 0 0 50.0
4 8.7 26.7 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0

DISSC

1 87.0 33.3 0 0 0 0
2 13.0 46.7 33.3 66.7 50.0 50.0
3 0 0 0 0 0 0
4 0 0 66.7 33.3 50.0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 20.0 0 0 0 50.0

KSETTLE16

1 39.1 66.7 100.0 0 50.0 25.0
2 39.1 13.3 0 66.7 0 25.0
3 21.7 20.0 0 33.3 50.0 50.0

KSETTLE1418

1 56.5 60.0 100.0 0 100.0 25.0
2 34.8 13.3 0 33.3 0 50.0
3 8.7 26.7 0 66.7 0 25.0

TPHOUSE713

1 8.7 40.0 0 0 0 25.0
2 78.3 26.7 66.7 33.3 100.0 75.0
3 0 0 0 0 0 0
4 4.3 13.3 0 66.7 0 0
5 8.7 20.0 33.3 0 0 0
6 0 0 0 0 0 0
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Figure 9. Histograms of TTT to campus by important control predictors of BN#2.

Figure 10. Top reasons to choose the residential location by the university students.
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5. Discussion

Cumulatively, 68.33% of university students possessed TTT below 20 min to campus.
This finding is in line with those of previous studies that revealed that ideal travel times
below 20 min to different destinations were desirable for most of their respondents [80–82].
On the other hand, TTT found in this study differ from those described in He, Zhao, and
He [30], Milakis and Van Wee [83], and Ye et al. [84], which showed that their participants’
ideal commute time was mostly above 20 min. The possible reason for this contradiction
could be the differences between the travel behavior and pattern of university students and
other people [20,21].

The BE variables selected by the BN#1 model as the most important indicated that
all variables related to the size, type, and composition of BEs may influence the TTT of
university students to campus. These variables included those related to the settlement type,
neighborhood density and diversity, and residential type. Till date, literature has confirmed
the importance of current neighborhood attributes related to density and diversity in
establishing the current travel behavior of commuters [85–88]. However, the results of this
study are an immense and creative contribution to the body of literature that confirms that
the past living environment experience of students in a diverse BE can affect their future
travel behavior, particularly their TTT.

The first and second BN models showed that three BE attributes, including settlement
type during the age period of 1–6, settlement type during the age period of 14–18, and
apartment/house type during the age period of 7–13, are among the most influential
factors of university students’ TTT to campus. By retaining these large-scale BE variables
in the BN#2, it can be indicatively explained that size and type attributes of BE may have
more impact on the TTT of university students compared to the composition attributes.
Moreover, the Pearson correlation tests did not find significant relationships between house
type during the age period of 14–18 and the settlement type through the age period of 7–13
and TTT. However, this does not mean that the settlement and house type within these age
periods do not influence the TTT of university students. Again, these variables may have
less impact compared to peers of other age periods. These findings are unique in the sense
that they provide insights into the importance of the role of built environment experiences
during childhood and adolescence for analyzing university students’ travel behavior. In
addition, to the authors of this study’s best knowledge, this is the first time that the impact
of these kinds of experiences on university students’ TTT to campus has been examined.

The BN#2 model did not adopt the BE variables related to diversity and density (which
were selected as important variables by BN#1 model), to predict the TTT of university
students to campus in the presence of control variables. This implies that a combination of
sociodemographic attributes, trip characteristics, and non-composition BE attributes are
more efficient variable sets for TTT forecasting of university students to campus. A possible
explanation for this may emerge from the ability of people to recall larger characteristics of
their living environment during their childhood and adolescence. Indeed, it is quite easy
for people to remember the type of house and settlement in which they once lived.

The importance of BE variables for predicting the TTTs varied by age period. For
example, for settlement type, the age periods of 1–6 and 14–18 were important while the
age period of 7–13 was not. However, it is necessary to remark that this conclusion does
not suggest that settlement type in the age period of 7–13 was not important at all but
that it was less significant than other age periods for predicting the TTT of university
students to campus. For those variables that were important in both the age periods of
7–13 and 14–18 (1DIVERSITY, 6DENSITY, and 3DENSITY), it could be argued that these
variables would play a significant role in developing the future students’ travel behavior
and constantly affected the development of their travel habits and preferences. Arguably,
availability of shops near the respondents’ past houses and availability of residential
buildings, entertainment facilities, and schools in the respondents’ past neighborhoods
may influence other future travel behaviors of people.
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With regards to the controlled variables, race, age, and education level of students
were selected as the critical sociodemographic variables to predict the TTT of university
students to campus. Additionally, this present study identified the usual travel mode and
distance of the school from home as important predictors of TTT of university students.
However, no previous studies have assessed the impacts of such variables on TTT of
university students. He, Zhao, and He [30] found the significant impacts of age, education
level, and travel mode on tolerance threshold of commuting time of the general population
to be important variables. Besides, the contribution of sociodemographic factors and travel
mode to the TTT of the general population was confirmed in Páez and Whalen [89] and
Redmond and Mokhtarian [90].

It was evidently shown that younger students tend to select shorter TTTs to campus.
One important reason for this issue is that most survey participants (73.88%) belonged
to the age cluster of 19–24 years. This is also in line with the fact that most UM and
UTM students are in this age spectrum. Generally, younger students possess a weaker
socioeconomic status compared to their older peers. They cannot buy a car and mostly
use other active travel modes [91,92]. However, in this study, a majority of the students
(73.62%) used private vehicles (car and motorcycle) to travel to campus. This result may be
rooted in the high rate of vehicle ownership in Malaysia [93]. At the same time, 7.65% of the
students adopted walking and cycling to campus, and their TTTs were 0–10 and 11–20 min.
This finding was different from that of Milakis, Cervero, Van Wee, and Maat [23], Milakis
and Van Wee [83], and Le et al. [94], that declared that people who walk or cycle had longer
ATT than car users. On the other hand, the findings of this study regarding the lower TTTs
of car users were in line with the same findings in the literature [23,83,94].

The analytical findings showed that most students who lived closer to the university
experienced a shorter TTT. As explained earlier, most respondents were in the age range
of 19–24. In Malaysia, many young students study at universities that are far from their
hometowns. Besides, the majority of young students in public universities come from
families with low socioeconomic status. Thus, these young students cannot afford to buy a
house due to its high price, and they consider travel costs and choose to rent homes close
to their campuses.

Certain implications for transport researchers and policy makers may be made from
this present study. Findings presented in this study showed that the majority of university
students had tendencies to experience shorter TTT to campus. Shorter TTTs may lead
students to live in residential areas that are close to their campuses. This proximity of
housing to the university may be a good opportunity for decision makers to implement
sustainable transport solutions and provide sufficient facilities which could encourage
students to use the active transport to campuses, such as sidewalks, bike paths, and bus
stops. On the other hand, longer TTTs may lead students to live in housing in suburbs.
Consequently, the students have to possess cars or motorcycles for travelling between the
campus and residential areas if sufficient public transports are not available. Thus, the uni-
versity decision makers should consider provision of a sufficient number of cheap housing
units near the university campuses to decrease the need for using the private vehicles.

The findings of this present study also indicate that there is substantial homogeneity
in the intrinsic preference for different TTTs and past BE experiences may create reference
points for future travel behaviors and TTT of individuals. The findings also confirmed the
undeniable intervention of BE in people’s travel behaviors. Although using these factors
for predicting future travel behaviors is still in its early stages, thus, urban and transport
planners should include retrospective questions in their surveys to produce more accurate
forecasts. Besides, researchers and policymakers should use longitudinal BE data and track
the changes of BE over time and examine possible effects of these changes on individuals’
future travel behaviors.
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Limitations

In this present study, reference should be made to several limitations. First, university
students may not represent the travel behavior of the general population in Malaysia. Thus,
future studies can apply the same approach to different population groups to identify the
impacts of the BE experiences during childhood or adolescence on their current travel
behaviors. Second, this paper did not capture the TTTs of university students for leisure
and shopping trips. Third, the study oversampled participants that have accessed the
internet during the lockdown of COVID-19. The fourth constraining point of this study is
that our study utilized self-report data. Trip observations may complement the self-report
data in future investigations. This study obtained acceptable precision for BN models.
However, larger datasets can be employed by further investigations to achieve greater
accuracy. Fifthly, the participants of this survey were university students in Malaysia.
However, in this country, the rate of vehicle ownership is very high. In addition, the
overall condition of infrastructure supporting active transportation is poor. Therefore, the
results of this study should be applied with caution to developed countries. Sixthly, this
study considered a wide range of BE and sociodemographic factors; however, variables
related to perceptions and habits were not included in this study. Thus, future studies can
design surveys that include more variables to predict the TTT. Finally, the authors did not
assess the BE experiences during the ages of 1-6 because it was challenging for students to
remember the BE experiences. Thus, future studies can also include parents in their survey
and ask them about the BE conditions when their child was 1–6 years old.

6. Conclusions

This present study used the Pearson chi-square technique and Bayesian network
analysis to: (1) determine the most probable TTT of the off-campus university students
to the campus; (2) investigate the association between off-campus university students’
TTT to the campus and BE experiences during their childhood and teenage years; and
(3) investigate the association between sociodemographic, household, residential, and
travel mode characteristics of the off-campus university students’ TTT to the campus.

A retrospective approach was adopted, which considered BE variables in the childhood
and adolescent age periods to accompany sociodemographic, household characteristics,
and current travel mode choice and residential location. The Pearson chi-square analysis
identified 34 variables out of 74 candidate inputs. These variables were involved as
predictors of the target (i.e., university students’ TTT to campus) in BN analysis. Two BN
models, including BN#1 and BN#2, were developed. The BN#1 applied only on BE variables.
By developing this model, the availability of residential buildings in the neighborhoods
that respondents lived in, during the age period of 14–18, was shown to be the most critical
predictor of TTT of university students to campus. BN#2 was applied on all 34 variables.
By running this second model, distance to campus was chosen as the most important. BE
variables, including settlement type during the age period of 1–6 and 14–18 and house type
in the age period of 7–13, were also identified as the most significant factors.

It is a challenging task to obtain information regarding the past living environment
of university students and predict their future travel behavior based on these experiences.
However, the results of this study can be instructive for urban and transport planners in
the sense that built environment attributes can play an essential role during the whole
life-course and the development of travel behaviors and patterns of individuals. To achieve
more sustainable commute behavior in the future, planners and designers should consider
more compact and mixed-use neighborhoods. In Malaysia, the rate of vehicle ownership is
high. While several other factors, such as weather, low price of cars, and cheap parking are
associated with this high vehicle ownership rate, advocating more sustainable behaviors
may help the youths to minimize the usage of cars. Compact and dense living environments
during the early life-course of people may be a desirable setting to shape their future habits.
The authors of this study believe that the tendency of people to have shorter TTT could
emerge from their experiences of previous living environments, especially during childhood
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and adolescence. Additionally, experiencing shorter trip distances before adulthood might
mean habituation to the higher usage of alternative modes such as public transport, walking,
and cycling. During adulthood, the habits of using these modes may result in less flexibility
and prevent people from dwelling in suburbs, as well as prevention from sprawling.
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Appendix A

Table A1. Sociodemographic and household characteristics of respondents by their TTT.

Tolerability of Travel Time

Tolerate Moderate Tolerate Highly Tolerate Extensively Tolerate

N % N % N % N %

Age
19–24 392 75.7 28 100 85 59.0 55 80.9
25–30 35 6.8 14 9.7
31–36 72 13.9
37–42 19 3.7 13 19.1
43–48 25 17.4

More than 48 20 13.9
Gender

Male 295 56.9 28 100 56 38.9 41 60.3
Female 223 43.1 88 61.1 27 39.7

Education level
Primary

Secondary 44 8.5 14 50
Diploma 22 4.2

Bachelor’s degree 348 67.2 14 50 99 68.8 55 80.9
Master’s degree 13 2.5 25 17.4 13 19.1
Doctorate degree 91 17.6 20 13.9

Income
Less than MYR 1000 97 18.7 5 17.9 35 24.3 14 20.6

Between MYR 1000 and MYR 2000 58 11.2 4 14.3 20 13.9 6 8.8
Between MYR 2000 and MYR 3000 74 14.3 6 21.4 18 12.5 9 13.2
Between MYR 3000 and MYR 6000 89 17.2 4 14.3 18 12.5 11 16.2

Between MYR 6000 and MYR 13,000 145 28.0 5 17.9 41 28.5 22 32.4
More than MYR 13,000 55 10.6 4 14.3 12 8.3 6 8.8

Race
Malay 269 51.9 28 100 48 33.3 54 79.4
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Table A1. Cont.

Tolerability of Travel Time

Tolerate Moderate Tolerate Highly Tolerate Extensively Tolerate

N % N % N % N %

Chinese 173 33.4 31 21.5 14 20.6
Indian 14 2.7 45 31.3

Foreigner 62 12.0 20 13.9
Vehicle ownership

Yes 54 79.4 14 50.0 80 55.6
No 14 20.6 14 50.0 64 44.4 68 100

Vehicle count
0 9 1.7 1 3.6 2 1.4 3 4.4
1 129 24.9 6 21.4 31 21.5 14 20.6
2 145 28.0 10 35.7 44 30.6 21 30.9

>3 235 47.1 11 39.3 67 46.6 30 44.1
Number of children

0 351 67.8 17 60.7 90 62.5 47 69.1
1 71 13.7 7 25.0 28 19.4 10 14.7
2 59 11.4 3 10.7 13 9.0 6 8.8

>3 37 7.2 1 3.6 13 9.0 5 7.4
Number of people in household

1 4 0.8 1 3.6 1 0.7 2 2.9
2 42 8.1 2 7.1 12 8.3 4 5.9
3 72 13.9 4 14.3 27 18.8 10 14.7

>4 400 77.2 21 75.1 104 72.3 52 76.4
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Abstract: The current literature on public perceptions of autonomous vehicles focuses on potential
users and the target market. However, autonomous vehicles need to operate in a mixed traffic
condition, and it is essential to consider the perceptions of road users, especially vulnerable road
users. This paper builds explicitly on the limitations of previous studies that did not include a wide
range of road users, especially vulnerable road users who often receive less priority. Therefore, this
paper considers the perceptions of vulnerable road users towards sharing roads with autonomous
vehicles. The data were collected from 795 people. Extreme gradient boosting (XGBoost) and random
forests are used to select the most influential independent variables. Then, a decision tree-based
model is used to explore the effects of the selected most effective variables on the respondents who
approve the use of public streets as a proving ground for autonomous vehicles. The results show
that the effect of autonomous vehicles on traffic injuries and fatalities, being safe to share the road
with autonomous vehicles, the Elaine Herzberg accident and its outcome, and maximum speed when
operating in autonomous are the most influential variables. The results can be used by authorities,
companies, policymakers, planners, and other stakeholders.

Keywords: autonomous vehicles; vulnerable road users; public perception; machine learning; most
effective variables

1. Introduction

Most of the studies related to public perceptions of autonomous vehicles focus on
potential users. For example, Silberg et al. [1] conducted a survey in California, New
Jersey, and found the elderly and young people (from 18 to 25 years old) as the most
potential users. They also found that providing incentives, such as designated lanes, was
an important factor for adopting autonomous vehicles. Some of these studies explored the
real presence of autonomous vehicles as a mobility option. Begg [2] explored the opinions
of transportation experts in the U.K. about the real presence of autonomous vehicles on
public roads. The experts suggested 2025 for level 4 and 2040 for level 5 (level 0: no
driving automation; level 1: driver assistance; level 2: partial driving automation; level
3: conditional driving automation; level 4: high driving automation; level 5: full driving
automation). This study also proposed safety as an important factor. Safety-related factors,
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such as physical threats, privacy, and trust, are among the important factors in this type of
study [3].

Some studies considered the effects of technology on perceptions of autonomous
vehicles. Young adults and men are two groups that are more interested in autonomous
vehicles than other demographic groups [4,5] since they are more interested in using new
technologies [6]. Kyriakidis et al. [7] conducted a survey in different countries and found a
positive association between driving and new technologies, such as cruise control usage
and willingness to buy autonomous vehicles. They also found that respondents would
be willing to pay more to have fully automated vehicles. However, Seapine Software [8]
found equipment failures, liability issues, and hacking issues as important concerns for the
potential users.

Few studies focused on the potentially shared mobility that can be provided by
autonomous vehicles. Autonomous vehicles can be easily adopted for shared mobility, but
people still prefer to have a private autonomous vehicle [9]. However, Haboucha et al. [10]
found that men in Israel prefer shared autonomous vehicles. This is in line with other
studies that found that public perceptions of autonomous vehicles and related effective
factors can vary among different countries [11]. For example, autonomous vehicles were
perceived as scary among 42% of respondents in a study in Japan, while this rate was 66%
among U.S. respondents [12]. Therefore, Americans seem to have more safety concerns
than other nationalities, such as the Japanese.

Desirability and willingness to buy is another approach in the current few studies that
are related to public perceptions of autonomous vehicles. Casley et al. [13] found safety,
legal issues, and cost important for autonomous vehicles’ desirability. Jiang et al. [14] also
found household size, age, and trip purposes as effective factors for willingness to buy
autonomous vehicles and Shabanpour et al. [15] added price, incentives, and policies to
these factors.

Autonomous vehicles make eating, working, sleeping, and doing possible during daily
travel time [16]. They can increase safety by reducing distractions and human errors [17,18].
Moreover, current and future autonomous vehicles propose more safety benefits, such
as intelligent speed assistance and advanced emergency braking. Public perception in
addition to the technology and road infrastructure are important factors to find the effects
of autonomous vehicles on travel behavior. However, most of the current studies related to
autonomous vehicles mainly focus on motor vehicles and connectivity between vehicles
and infrastructure [19], and only a few studies focus on the effects of these technologies on
public perception.

Schoettle and Sivak [12] found that most respondents are not familiar with autonomous
vehicles, but they believe in less distractions and fewer accidents for autonomous vehicles.
Some studies focus on safety as one of the most significant factors for public perceptions of
autonomous vehicles that can change travel behavior and mode, e.g., [20–24]. However,
based on a literature review by Gkartzonikas et al. [25], only Hulse et al. [5] focused on
the perceptions of pedestrians and Penmetsa et al. [26] focused on the perceptions of
pedestrians and bicyclists. This is another important gap since autonomous vehicles need
to operate in a mixed traffic condition that includes a wide range of road users. It is critical
to consider the perceptions of vulnerable road users who often feel that they have less
priority. If vulnerable road users, such as pedestrians and cyclists, do not feel comfortable
sharing the roads with autonomous vehicles, using this new technology can negatively
affect active travel options. This paper explores the perceptions of bicyclists and pedestrians
to fill the gap of previous studies that did not include a wide range of road users, especially
vulnerable road users.

Furthermore, most of the studies that examined perceptions and attitudes use descrip-
tive analysis and prediction models, which can relate the perceptions of sharing the road
with autonomous vehicles not been developed to date. This paper explores road users’
perceptions, including vulnerable road users, towards autonomous vehicles and develops
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prediction models using machine learning techniques to explore feelings about sharing the
road with autonomous vehicles as a bicyclist or as a pedestrian.

Using machine learning and non-parametric techniques provides some advantages for
this study. For example, these techniques do not need special assumptions or predefined
functions that traditional parametric techniques need. In addition, non-parametric tech-
niques can handle multicollinearity issues better than traditional parametric techniques.
Because of high potential correlations between variables in this study, non-parametric
techniques can be better options. Finally, these non-parametric models can be presented
graphically, making them easy to interpret.

2. Materials and Methods

Bike Pittsburgh (BikePGH), a registered non-profit company, works to make the city
safe and accessible for bicyclists. BikePGH launched two surveys in 2017 and 2019 to
explore the feeling of pedestrians and bicyclists about sharing the road with autonomous
vehicles, and this paper used the collected data from the latest one. In total, the data
were collected from 795 people using the BikePGH related blog, website, and email list.
The feeling about sharing the road with autonomous vehicles was the dependent variable
in this paper. The independent variables included paying attention to the autonomous
vehicles, familiarity with the technology behind autonomous vehicles, the experience of
sharing the road with autonomous vehicles while riding a bicycle or walking, feeling safe
while sharing the road with autonomous vehicles and human-driven cars, the effects of
autonomous vehicles on traffic injuries and fatalities, the maximum speed when operating
in autonomous mode, having full-time employees (pilot and co-pilot) at all times, oper-
ating in manual mode while in an active school zone, sharing some non-personal data,
reporting all safety-related incidents, and previous accidents effects. In addition, some
socio-demographic factors, such as postal address, being an active member of BikePGH,
car ownership, having a smartphone and age, were also considered. Table 1 shows the
description of dependent and independent variables in this paper.

In the first step, the most effective variables among the independent variables to predict
the feelings about the use of public streets as a proving ground for autonomous vehicles
was identified. In the next step, the identified effective variables were used as selected
independent variables to explore the effects of these selected variables on the dependent
variable. Extreme gradient boosting (XGBoost) and random forest were used to select the
most effective independent variables. This is in line with recent related studies that deal
with a high number of independent variables [27–31]. The random forest aggregates many
binary decision trees. These trees are the result of a random choice of explanatory variables
and bootstrap samples at each node. XGBoost [32] also generates multiple trees to improve
accuracy. XGBoost and random forest are better options in comparison with other feature
selection techniques. In other techniques, the importance ranking can be affected negatively
by other associated inputs [33].

Cross-validation (10-fold cross-validation) is a resampling method that is applied to
estimate the accuracy for this limited number of data. Cross-validation generally results
in a less biased model than other methods, such as train and test split. After applying
random forest and XGBoost, the SHAP (SHapley Additive exPlanations) values [34] were
used to select the most effective variables. The SHAP is a value that can explain the
contribution of each observation to the dependent variable. Therefore, it is possible to have
local interpretability while the traditional importance values are related to each predictor
and are based on the entire population. In addition, SHAP values can be estimated for each
class (for nominal data) in the dependent variable.
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Table 1. Description of the dependent and independent variables.

Variables Description Codes

DV What do you think about using public streets as a proving ground
for autonomous vehicles (AVs)? Approve (1), others (0) *

IV1 To what extent have you been paying attention to the subject of
AVs in the news? 1–5

IV2 How familiar are you with the technology behind AVs? 1–4

IV3 Have you shared the road with an AV while riding your bicycle? Yes (1), no (0), not sure (2)

IV4 Have you been near an AV while walking or using a mobility
device (wheelchair, etc.)? Yes (1), no (0), not sure (2)

IV5 On a typical day, how safe do you feel sharing the road with
autonomous vehicles? 1–5

IV6 On a typical day, how safe do you feel sharing the road with
human-driven cars? 1–5

IV7 What effect do you think that AVs will have on traffic injuries and
fatalities? 1–5

IV8 Should AV speeds be capped at 25 mph when operating in
autonomous mode? Yes (1), no (0), not sure (2)

IV9 Should AVs have two full-time employees (pilot and co-pilot) at all
times? Yes (1), no (0), not sure (2)

IV10 Do you think that AVs should operate in manual mode while in an
active school zone? Yes (1), no (0), not sure (2)

IV11 Should AV companies be required to share some non-personal data
with the proper authorities? Yes (1), no (0), not sure (2)

IV12
Should AV companies be required to disclose information and data

as to the limitations, capabilities, and real-world performance of
their cars with the proper authorities?

Yes (1), no (0), not sure (2)

IV13
Should AV companies be required to report all safety-related

incidents with the proper authorities, even if a police report is not
required?

Yes (1), no (0), not sure (2)

IV14

In March of 2018, an AV struck and killed Elaine Herzberg, a
pedestrian, in Tempe, AZ, U.S.A. As a pedestrian and/or bicyclist,

how did this event and its outcome change your opinion about
sharing the road with AVs?

1–5

IV15 Zip Code zip code

IV16 Are you currently an active member of BikePGH? Yes (1), no (0), not sure (2)

IV17 Do you (or someone in your household) own an automobile? Yes (1), no (0), not sure (2)

IV18 Do you own a smartphone? Yes (1), no (0)

IV19 What is your age? 1–7 **
Note: DV: dependent variable. IV: independent variable. * Somewhat approve, neutral, somewhat disapprove,
disapprove. ** Under 18 (1), 18–24 (2), 25–34 (3), 35–44 (4), 45–54 (5), 55–64 (6), 65+ (7).

All independent variables were included in the random forest and XGBoost models,
and then the not important variables were excluded one by one based on the SHAP values.
The accuracy rate and the number of input variables were used to find the threshold for
SHAP values. This threshold was used with the selected XGBoost or random forest in
addition to finding the most effective variables.
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A C5.0 model was used in this study to explore the effects of the selected most effective
variables on the dependent variable. C5.0 is an improved version of C4.5 that is an extension
of the ID3 algorithm [35–38]. In this C5.0 model, 2 and 75 are used as the minimum number
for records per child branch and the pruning severity. To collapse weak subtrees, local and
global pruning are used. The winnow attributes technique excludes irrelevant predictors
and, before modelling, evaluates the relevancy of the predictors.

3. Results

Table 2 shows that more than 47% of respondents approve the use of public streets as
a proving ground for autonomous vehicles. As was mentioned, the SHAP values can be
estimated for each class in the dependent variable. Therefore, these values were used to
find the most effective variables for respondents who approve the use of public streets as a
proving ground for autonomous vehicles. Table 3 shows that both total and breakdown
accuracy values are higher for the XGBoost model in comparison with the random forest
model. In addition, in the XGBoost, 80% accuracy is achievable after including only four
effective variables based on SHAP values and including more variables cannot significantly
enhance the accuracy. In the random forest model, the accuracy after including four
effective variables based on SHAP values is 76%. Therefore, the XGBoost model was chosen
to find the effective variables.

Table 2. Frequency of different classes in the dependent variable.

What Do You Think about Using Public
Streets as a Proving Ground for AVs?

Frequency Percent

Disapprove 66 8.3
Somewhat disapprove 85 10.7

Neutral 92 11.6
Somewhat approve 168 21.1

Approve 381 47.9
Missing 3 0.4

Total 795 100.0

Table 3. Accuracy and confusion matrix for random forest and XGBoost models.

Random Forest (Accuracy: 79%)
n = 4 (Accuracy: 76%)

What Do You Think about Using Public Streets as a Proving Ground for AVs?

0 1

0 78% 22%

1 20% 80%

XGBoost (Accuracy: 80%)
n = 4 (Accuracy: 80%)

0 78% 22%

1 18% 82%
Note: n = the number of including variables based on removing the not effective variables one by one considering
the SHAP values. 1: approve. 0: somewhat approve, neutral, somewhat disapprove, and disapprove.

Table 4 shows the selected effective variables based on SHAP values resulting from
the XGBoost model for respondents that approve the use of public streets as a proving
ground for autonomous vehicles. Table 4 shows that the effect of autonomous vehicles on
traffic injuries and fatalities, being safe to share the road with autonomous vehicles, Elaine
Herzberg accident and its outcome, and autonomous vehicles speed when operating in
autonomous mode are the most effective factors for respondents that approve the use of
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public streets as a proving ground for autonomous vehicles. This table also indicates the
most effective classes or attributes for these variables.

Table 4. The selected effective variables based on the SHAP values.

Effective Variables Classes in the Independent Variables SHAP (Mean)

IV7 Significantly better (5) 0.612238
IV5 Being very safe (5) 0.375330
IV14 No change (3) 0.321566
IV8 No (0) 0.294447

Note: IV7: What effect do you think that AVs will have on traffic injuries and fatalities? IV5: On a typical day,
how safe do you feel sharing the road with autonomous vehicles? IV14: In March of 2018, an AV struck and killed
Elaine Herzberg, a pedestrian, in Tempe, AZ, USA. As a pedestrian and/or bicyclist, how did this event and its
outcome change your opinion about sharing the road with AVs? IV8: Should AV speeds be capped at 25 mph
when operating in autonomous mode?

In the next step, a C5.0 model was used in this study to explore the effects of the
selected most effective variables on the dependent variable. Figure 1 shows the proposed
C5.0 decision tree. The frequency and percentage of each classification in the dependent
variable are presented for each node. The overall accuracy is more than 79%, and the break-
down prediction accuracies are around 78% and 81% for 0 (somewhat approve, neutral,
somewhat disapprove or disapprove) and 1 (approve) classes. There are five terminal
nodes (the bottom nodes of the decision tree), and this model has four splitters, i.e., the
effect of autonomous vehicles on traffic injuries and fatalities, being safe to share the road
with autonomous vehicles, Elaine Herzberg accident and its outcome, and autonomous
vehicles speed when operating in autonomous mode.

Figure 1. The proposed C5.0 model.
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The model prediction is 1 for respondents who think that autonomous vehicles make
traffic injuries and fatalities situations significantly better (refer to node 8 in Figure 1). The
model prediction is 0 for respondents who do not think that autonomous vehicles make
traffic injuries and fatalities situations significantly better and the Elaine Herzberg accident
changed their opinions about sharing the road with autonomous vehicles (refer to node
2 in Figure 1). For respondents for whom the Herzberg accident did not change their
opinions, speed when operating in autonomous mode and being safe to share the road
with autonomous vehicles are important factors. For respondents for whom the Herzberg
accident did not change their opinions, the model prediction is 1(refer to node 7 in Figure 1)
if they do not believe in a maximum 25 mph speed when operating in autonomous mode;
if they believe in a maximum 25 mph speed when operating in autonomous mode, the
model prediction is 0 (refer node 5 in Figure 1) for respondents who do not think that it is
very safe to share the road with autonomous vehicles; and 1 (refer node 6 in Figure 1) for
respondents who think that it is very safe to share the road with autonomous vehicles.

4. Discussion and Conclusions

This study explores the perceived feelings of sharing roads with autonomous vehicles.
The paper expands on the scope of previous studies by exploring the perceptions of
bicyclists and pedestrians. Moreover, this paper builds explicitly on the limitation of
previous studies that did not include a wide range of road users, especially vulnerable
road users who often receive less priority. The findings suggest the XGBoost model finds
the most influential variables. In addition, the analysis suggests the effect of autonomous
vehicles on traffic injuries and fatalities, being safe to share the road with autonomous
vehicles, the Elaine Herzberg accident and its outcome, and a maximum speed when
operating in autonomous as effective variables to predict approval for the use of public
streets as a proving ground for autonomous vehicles.

There are some other variables included in the model that are not related to safety (e.g.,
paying attention to the subject of autonomous vehicles in the news, familiarity with the
technology behind autonomous vehicles, the experience of sharing roods with autonomous
vehicles and human-driven cars, data sharing, related policies and some variables related
to socio-demographic data), but the most effective variables are related to safety. However,
some of these variables, such as familiarity and awareness, are significant in other studies.
For example, Schoettle and Sivak [12], Silberg et al. [1] and Sanbonmatsu et al. [39] found a
positive association between level of awareness and the intention to adopt autonomous
vehicles. Nordhoff et al. [40] also found a similar association for driverless shuttles.

This is not a surprising result since safety is more important for vulnerable road users
in comparison with drivers who are better protected. This point is further confirmed by
the effects of the Elaine Herzberg accident, which is among the most effective variables.
The findings are in line with previous studies that consider safety as an important factor
(e.g., [21–25]). However, most of these studies focus on safety as a significant factor for
changing travel behavior and mode. In addition, among these studies, only two considered
the perceptions of pedestrians and bicyclists [5,27].

The policy relevance of this paper is underlined by the fact that at the individual
level, we found safety as a very important factor, and the authorities need to be sure that
autonomous vehicles are safe enough to be shared on the streets. Therefore, autonomous
vehicle companies need to consider special procedures and cautions during their testing,
and authorities need to provide related policies. Public perception, in this case, can be used
both directly and indirectly. In addition, planners and other stakeholders need to provide
more information to decrease public confusion about autonomous vehicles.

Non-parametric models, such as the proposed C5.0, have some advantages that make
them preferable to the traditional parametric models. Chang and Wang [41] highlighted that
non-parametric models (such as the proposed C5.0 model) do not need specific assumptions
or a functional form and can handle multicollinearity problems, which are a common issue
for independent variables in these data because of potentially high correlations between
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these variables. The results are also more useful since these models focus on a reduced set
of the most significant factors [41].

Despite these advantages mentioned above, these models have some disadvantages.
For example, they do not have formal statistical inference procedures [41]. These models
also do not have confidence intervals for the splitters and predictions [41]. Generally, it is
not recommended to generalize the results based on the non-parametric techniques since
these models are not very stable. Furthermore, the accuracy and structure may change
significantly if different partitioning and stratified random sampling are used. Therefore,
these models are usually used to find important variables and further techniques are needed
to find final models. Since sampling and partitioning are not used in the proposed C5.0
model development, this disadvantage is not a significant concern for this study.

In addition to the mentioned advantages, machine learning has different applications
in various engineering fields (e.g., [42–45]). Increasing interest in machine learning is
because of various data, better computational tools and processing that make computation
cheaper and more powerful. This means that applying machine learning can help us to
develop more accurate models to analyze bigger and more complex data faster than the
traditional techniques.

Some extensions of this study are essential. For example, consistent data collection
for different regions needs to be considered since other areas are very different in terms of
regulations and people experience with autonomous vehicles. Frequent additional data
collection can be used to evaluate the effects of autonomous vehicles on public perception
in addition to the evolution of public perceptions of autonomous vehicles. Additional
questions, especially related to socio-demographic data, can be used to have more detailed
insights. For example, gender-related data are not included in the BikePGH survey, or there
is a very low response rate among the age groups that may have different ideas (just around
4% for 18–24 and around 12% for elderly). Finally, the target population in our study
is bicyclists and pedestrians that represent these specific mode users. Adding a general
population can be useful to have a baseline and a useful comparison. Future studies can
also develop questionnaires following a scientific approach to avoid the gap and potential
biases in the questions of the BikePGH survey that an interest group develops.
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Abstract: More than 8000 pedestrians were killed due to road crashes in Australia over the last
30 years. Pedestrians are assumed to be the most vulnerable users of roads. This susceptibility of
pedestrians to road crashes conflicts with sustainable transportation objectives. It is critical to know
the causes of pedestrian injuries in order to enhance the safety of these vulnerable road users. To
achieve this, traditional statistical models are used frequently. However, they have been criticized for
their inflexibility in handling outliers and missing or noisy data, and their strict pre-assumptions.
This study applied an advanced machine learning algorithm, a Bayesian neural network, which has
the characters of both Bayesian theory and neural networks. Several structures of this model were
built, and the best structure was selected, which included three hidden neuron layers—sixteen hidden
nodes in the first layer and eight hidden nodes in the second and third layers. The performance
of this model was compared with the performances of some other machine learning techniques,
including standard Bayesian networks, a standard neural network, and a random forest model.
The Bayesian neural network model outperformed the other models. In addition, a study on the
importance of the features showed that the individuals’ characteristics, time, and circumstantial
factors were essential. They greatly increased model performance if the model used them. This
research lays the groundwork for using machine learning approaches to alleviate pedestrian deaths
caused by road accidents.

Keywords: pedestrian fatality; road accident; Bayesian neural network; Bayesian theorem; sustainable
road network development; machine learning

1. Introduction

Pedestrians are the most susceptible road users. Pedestrians also are an important
component of the sustainable development of road networks. However, their vulnerability
to road crashes conflicts with sustainable transportation objectives. Pedestrian deaths
and injuries in road crashes have major socio-economic consequences. This is particularly
important in view of developed countries’ ongoing efforts to enhance road safety. Since
practically anyone can be a pedestrian, pedestrians make up the biggest single road user
category. People walk for a variety of reasons, including recreation; traveling to work,
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study, or small retailers; and linking up with other means of transportation. In the National
Road Safety Strategy, pedestrians are designated as a susceptible road user category. When
compared to other road users, they have very limited defence in collisions [1]. Over 50,000
people have died on Australian roads in the last 30 years. Pedestrians accounted for 15.6%
of all road accident deaths, even though pedestrians cover fewer miles than other road
users. [2]. However, the pedestrian death toll has decreased by almost 57% over the past
30 years. Pedestrians account for a significant portion of fatalities in Australian collisions
involving large vehicles and buses. Pedestrians, for example, account for around 30% of
those killed in bus collisions [3]. Pedestrians, motorcyclists, and bicyclists make up around
a quarter of all deaths in truck crashes [3].

Despite the decrease in pedestrian deaths due to road crashes in Australia, scholars
have continued to look for opportunities to acquire a deeper understanding of the factors
that impact crash probability in the hopes of effectively estimating the probability of
pedestrian-involved crashes and guiding policy initiatives and prevention methods to
decrease the incidence of pedestrian-involving crashes [4–7].

There have been several significant data flaws in the literature on pedestrian-related
crashes. These problems could lead to erroneous pedestrian crash forecasts and inaccurate
conclusions about the factors that cause crashes if analytical models are poorly specified.
Imprecision in crash locations and time, challenges in data linkages (for instance, with
traffic data) because of database discrepancies, intensity misclassification, errors and incom-
pleteness of affected users’ demographics, and wrong identification of accident contributory
determinants are just a few of these issues [8]. Furthermore, it is challenging to identify and
assess factors influencing pedestrian crash deaths because of the heterogeneity intrinsic in
pedestrian crash data, which results from unobservable characteristics that are not recorded
by police and cannot be collected from crash reports. As a result of this heterogeneity,
parameter estimation may be skewed, leading to possibly inaccurate findings [9–11].

To study the crash data, traditional broadly utilised discrete choice modelling ap-
proaches, including mixed logit models, multinomial logit models, ordered logit/probit
models, and partial proportional odds logit models have been utilised. Most of the so-
lutions mentioned above, however, rely heavily on pre-existing assumptions. Machine
learning (ML) techniques have more flexibility than traditional statistical models in that
they can analyse noisy data, outliers, and missing data, without or with minimal previ-
ous assumptions about inputs [12–18]. In addition, ML methods are notable instances of
data-driven techniques that strive to improve the efficiency and precision of accident data
processing and forecasting. Early research employed multiple ML methods, including
support vector machines, decision trees, artificial neural network, and ensemble learning,
to forecast the severity and frequency of pedestrian-involved crashes, and their findings
show that these techniques are very flexible and can outperform conventional methods.
Hence, this study selected the ML-based approach in a Bayesian neural network (BNN) to
analyse data associated with pedestrian deaths due to road crashes (PDRC).

Due to advancements in computer methods, Bayesian computing approaches are be-
coming more prominent. Bayesian models offer the privilege of dealing with extremely com-
plicated models, particularly those with difficult-to-calculate probability functions. On the
other hand, standard NN models have been criticized for their inability to fit training data
accurately, and they may generate forecasted results with undesirable variances [19–22].
Overfitting is among the main causes of this issue. Even if the standard NN model has
stronger linear and nonlinear estimation capabilities than traditional statistical approaches,
this technique, being vulnerable to the overfitting issue, has poor generalization, which
restricts its utility for crash severity and frequency forecasts [19]. In various domains,
several earlier studies have shown that applying the Bayesian algorithm in NN models can
significantly lessen overfitting while maintaining the NN’s excellent nonlinear approxi-
mation ability (e.g., [23–25]). However, the combination mentioned above has rarely been
used in the domain of crash prediction (e.g., [19]), especially for predicting PDRC.
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The main aim of this study was to see how effective the BNN model is for the prediction
of PDRC. Furthermore, our study contributes to the area of pedestrian road crash fatality
modelling in the following ways: (1) building a combination of architectures to assess
the model’s performance; (2) evaluating a variety of characteristics that might help with
pedestrian fatality classification and forecasting; (3) evaluating BNN in comparison to other
machine learning models.

Utilizing data obtained on road transport crash fatalities in Australia, different BNN
structures were evaluated to achieve the study’s goal. The authors estimated 16 BNN
structures and compared their performances utilizing several performance criteria. The
authors compared the performance of the best model with other ML models. In addition,
the influences of predictors were evaluated using a different approach in which various
types of factors were combined to determine the best variable set for predicting PDRC.

The rest of this paper is layed out as follows. A literature review on the methods
used for analysing pedestrian crash data is presented in Section 2. Moreover, the necessity
of using advanced ML techniques for analysing pedestrian crash data is highlighted in
this section. Section 3 presents brief explanations of the methods, performance criteria,
and dataset. The feature selection, model development process, selection of the best BNN
structure, comparison of the selected BNN model with other ML models, significance of
the influential factors, and study limitations are presented in Section 4. The last section
presents a summary of the paper and some recommendations for future studies.

2. Literature Review

Traditional statistical methods have been employed in the majority of pedestrian-
involved crash forecast studies. These models included the ordered probit model [26–30],
binary logit model [31], and multinomial logit model (MNL) [29,32–36]. MNL was widely
used to study pedestrian crashes; nevertheless, it was criticised since it relies on the
assumption that independent variables have the same impacts across instances, which
could be contradicted if there are unobserved data heterogeneities. This is a concern because
of the incompleteness of the data on road crashes, which means that the impacts may change
in different circumstances. Therefore, the mixed logit model was utilised to circumvent
the restriction imposed by the independence of irrelevant alternatives (IIA) property by
randomly distributing the parameters among individual observations [32,36–39]. Along
with the mixed logit model that overcomes the drawbacks of MNL, other models, including
partial proportional odds (PPO), also were applied to examine the pedestrian-involved
crashes [40–44]. The PPO allows some of the parameter estimates to have different effects on
a dependent variable, which is suitable for modelling the pedestrian crash injury severities.

Traditional statistical methods for predicting pedestrian-related crashes are widely
used; however, they may become out-of-date if efficacy and accuracy are taken into account.
Furthermore, the majority of traditional approaches are regression-based, which include
drawbacks such as assuming linear or nonlinear correlations between exploratory factors
and the target variable. When such requirements are not satisfied, the models may inadver-
tently lead to incorrect conclusions [45]. Abreast with the fast evolution of ML techniques
and the growing amount of data available, it is becoming increasingly popular to use ML
to solve transportation-related issues. In comparison to traditional statistical methods,
ML techniques, as non-parametric approaches, have fewer restrictions on pre-existing
assumptions regarding the correlations between road accident fatality outcomes and major
contributors [46].

Neural networks (NN), random forest, support vector machines (SVMs), decision
trees (DTs), and gradient boosting (GB) are among the most frequently used ML techniques
for crash data analysis. A list of some studies that have employed the ML techniques for
analysing pedestrian crash data is provided in Table 1. It should be noted identifying
contributing elements in road crashes is basically a multiclass or binary class problem.
Among all ML techniques utilized for the pedestrian crash data, DT-based models, includ-
ing classification and regression trees (CART), XGBoost, and random forest (RF), were the
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most frequently used techniques. Instead, powerful models such as NN were rarely used
for analysis of pedestrian-related crash data (e.g., [47]). The standard NN models have been
criticized for their vulnerability to overfitting and poor generalization [19]. Consequently,
some solutions have been proposed, including combining the Bayesian inference method
with the NN algorithm [24,48–50]. This combination allows the neural network to choose
hidden neurons and input variables with greater freedom. The BNN model has been
successfully applied in many fields of research. However, to date, a very limited number
of studies in traffic safety have adopted this model (e.g., [19,51]). These studies mostly
attempted to predict motor vehicle collisions and estimate the energy equivalent speed.
Given the benefits of NN models over traditional statistical models, along with the gains
made by consolidating Bayesian inference into NN, it is worth looking into whether the
BNN model can be utilized to model PDRC effectively and whether it outperforms other
ML techniques.

Table 1. Some studies on the prediction of crashes related to pedestrians using ML techniques.

Study Study Aim ML Technique Employed

Pour et al. [52]

To determine the impact of
temporal, geographical, and

personal variables on the
severity of vehicle-pedestrian

collisions.

DT, KDE

Ding et al. [53]
To provide a different

perspective on the effects of
pedestrian collisions.

MAPRT

Mokhtarimousavi [54]
To predict the severity of

injuries in pedestrian
collisions.

SVM, MNL

Das et al. [55]

To create a framework for
classifying crash kinds from
unstructured textual input

using ML algorithms.

RF, SVM, XGBoost

Rahimi et al. [56]
To identify death patterns in

heavy truck-related
pedestrian/bike collisions.

RF, DT

Guo et al. [57]

To simulate the issue of
categorizing three levels of
severity in older pedestrian

traffic crashes.

XGBoost

Saha and Dumbaugh [58]

To assess the characteristics of
the relationships between

built environment variables
and pedestrian crash

frequency at the census block
group level.

GB, DT, GAM

Zhu [47]

To look into the elements that
contribute to the intensity of
vehicle-pedestrian collisions

at crossings.

CART, GB, RF, ANN, SVM

Support vector machines = SVM; artificial neural network = ANN; random forest = RF; decision tree = DT;
classification and regression trees = CART; kernel density estimation = KDE; multiple additive Poisson regression
trees = MAPRT; multinomial logit model = MNL; extreme gradient boosting = XGBoost; generalized additive
model = GAM; gradient boosting = GB.

3. Methodology

This study primarily aimed at predicting and classifying PDRC using a dataset from
Australia. This study employed the BNN algorithm to achieve the objective mentioned
above. The flowchart of the investigation is shown in Figure 1. The following sections
provide more in-depth descriptions of the stages.
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Figure 1. A flowchart of this study.

3.1. A Basic Understanding of the Bayesian Neural Network and Bayesian Inference

This study utilized a Bayesian method to forecast and classify PDRC. Employing
Bayes’ theory, Bayesian models attempt to derive and determine characteristics regarding a
likelihood distribution from collected data (Equation (1)).

P(α|K) = P(K|α)
P(K)

(1)

where α is a collection of uncalibrated model parameters, which must be calibrated with
dataset K. Posterior distribution on α is indicated by P(α), and it reflects our understanding
of how data are produced prior to observing them. The posterior distribution, abbreviated
as P(α|K), represents the uncertainty levels of attribute values that accurately describe
observed data. The probability function P(K|α) denotes how likely distinct values of α are
to produce the observed dataset K. P(K) uses a proper probability density to normalize the
posterior distribution.

The use of Bayesian inference in NN has gotten a great deal of interest. This study
focuses on expanding the BNN’s usage for forecasting and classifying PDRC. A BNN
is a NN that has been trained to fit measured values utilizing Bayesian inference, with
the assumption that the network’s parameters are arbitrary based on a prior probability
distribution [49]. In the training stage, various sorts of NN use different approaches to learn
from the data and adjust network weights [59]. The weights of a standard NN are regarded
deterministic, and then when the model is trained, a single data point approximation is
achieved. Contrastingly, instead of assuming a singular point estimation following training,
the BNN’s weights are expressed as likelihood distributions across feasible data points. The
variance of the weights’ network distribution reveals the BNN’s performance uncertainty.
The distinction between a BNN and a deterministic NN is shown in Figure 2.
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Figure 2. Typical structures of NN and BNN.

3.2. Bayesian Neural Network

The authors employed a BNN in this research to perform a binary classification
between the two tasks—0 = non-pedestrian death and 1 = pedestrian death—while con-
sidering data uncertainty. The authors utilize variational inference (VI) to train the BNN,
an optimization algorithm for approximating likelihood densities. VI is different from
other traditional approaches, such as Markov chain and Monte Carlo, as it determines the
parameters of these distributions rather than the weights directly.

The BNN used in this study can be regarded as a probabilistic model P(b|a, γ) . Here,
b is a collection of our categories—b = 0 or 1; a is a collection of attributes; γ is the weight
parameter; P(b|a, γ) is a categorical probability. The likelihood function (LF) that is a
function of the parameter Y could be generated using the training dataset K. The following
is the LF:

P(K|γ) = ∏ P(b|a, γ) (2)

The maximum likelihood estimate (MLE) of γ can be obtained via maximisation of the
LF, with the objective function being negative log-likelihood. Based on the Bayes theory, the
posterior distribution is proportionate to the outcome of the prior distribution, P(γ) and
the probability P(K|γ) . MLE, on the other hand, uses point calculations for parameters;
therefore, the uncertainty in the weights is not represented. As a result, a BNN averages
forecasts from a number of NN that are weighted according to the posterior distribution of
the γ. The following is the mathematical equation for the posterior predictive distribution:

P(b|a, K) =
∫

P(b|a, γ)P(γ|K)dγ (3)

A BNN can employ a variational distribution S(γ|ϑ) of established functional form to
estimate the correct posterior distribution because determining the posterior distribution,
P(γ|K) , is complicated. To accomplish this, the Kullback–Leibler (KL) divergence between
the correct posterior P(γ|K) and S(γ|ϑ) concerning ϑ is reduced [60]. The following is the
relevant objective function:

KL(S(γ|ϑ)||P(γ|K)) = E[logS(γ|ϑ]− E[logP(γ)]− E[logP(K|γ)] + logP(K) (4)

Since the KL cannot be determined, this study employs the evidence lower bound
(ELBO) that does not comprise the component logP(K) and is the inverse of the KL diver-
gence function. Since log p(K) is a constant, it may be ignored, making maximization of
the ELBO function equal to minimization of the KL divergence. The adaptive moment
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estimation (Adam) optimizer is employed to calibrate the variational parameters γ, which
can be modified adaptively. The ELBO function’s mathematical form is given below.

ELBO(S) = E[logP(γ)] + E[logP(K|γ)− E[ logS(K|γ)] (5)

3.3. Evaluation of Various Models’ Performances

This work used the k-fold cross-validation method to arbitrarily divide a whole
dataset into five distinct subdivisions with nearly equivalent numbers of data points to
avoid biases and overfitting throughout model training. The performances of BNN models
in classifying and forecasting pedestrian fatalities due to traffic crashes were assessed using
the set of criteria:

• Average training accuracy (ATA): Prediction accuracy in this study’s binary class case
is defined as the total number of correct forecasts over two classes divided by the total
number of forecasts.

• Average F1-score: In the binary-class forecasting study, the average F1-score was em-
ployed to approximate criteria for each classification, and the average was calculated
by estimating the number of correctly predicted occurrences.

• The area under the ROC curve (AUC): the area under the receiver operating character-
istic curve (AUC) was utilised to estimate a scoring classifier at multiple cutoffs in this
investigation. The AUC measures a model’s ability to distinguish between positive
and negative classifications.

• Matthew’s correlation coefficient (MCC): The MCC was employed to assess the quality
of binary classifications in this investigation. The MCC is a balanced measure that can
be utilized even if the categories are of significantly distinct sizes, since it considers
true and inaccurate positives and negatives. This criterion is a correlation coefficient
that produces a number between −1 and +1 for actual and forecasted binary classes.

This study also used some other common criteria to assess the performance of various
BNN architectures. However, the final evaluations and comparisons were based on the
four metrics mentioned above. These additional criteria included false discovery rate,
false negative rate, false positive rate, negative predictive value, precision, sensitivity,
and specificity.

3.4. Dataset

The Australian Road Deaths Database (ARDD) provided the data for this research [2].
This database contains information on deaths in road transport crashes in Australia, as
provided by the police to state/local road safety bodies monthly. The ARDD collects
demographic and crashes information for individuals who died in car accidents in Australia.
A road death, often known as a fatality, occurs when an individual dies because of injuries
sustained in a car accident within 30 days of the accident. In this dataset, a pedestrian
crash is defined as any collision in which a pedestrian is killed, regardless of the number
of cars involved. The ARDD includes 24 columns/variables, and 13 of these variables are
suitable for predicting pedestrian crashes. It is worth noting that the data utilized in this
study were the most up to date, having been collected between 1989 and 2021. This dataset
has a sample size of 52,843, and it was used in its entirety to forecast pedestrian fatalities.
Table 2 provides a summary of the variables used in this research. This dataset includes
basic information about the PDRC. These variables allowed us to achieve the objective of
this study, which was applying the combination of Bayesian theory and neural network to
pedestrian crash data. Future studies can extend this study by employing datasets with a
higher number of variables.
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Table 2. Summary of the variables employed in this present research.

Variable and Sub-variable Description Value Mean/Mode
Individual characteristics (IC)

Age Age of the individual who was
killed (years) 1–101 39.662

Gender Person’s sex Female, male Male
Time and occasions (TO)

Month Month of crash 1–12 12

Day of week
Specifies whether the crash

happened on a weekday or on a
weekend.

Weekend; weekday Weekday

Time of day
Specifies whether the crash

happened during the day or at
night.

Day, Night Day

Christmas Period
Specifies whether the crash

happened in the 12 days
starting on 23 December.

Yes, no No

Easter Period
Specifies whether the crash

happened within the five days
leading up to Good Friday.

Yes, no No

Road characteristics (RC)

Speed limit The designated speed limit at
the location of the crash. 10–130 km 82.10

National Road Type

Access Road, Arterial Road,
Collector Road, Local Road,
National or State Highway,
Pedestrian Thoroughfare,

Sub-arterial Road

National or State Highway

Crash attributes (CA)

Crash Type

If a pedestrian was died in a
collision, it is marked as a
pedestrian crash; else, the

vehicles engaged is recorded.

Multiple, single Single

Bus involvement Shows that a bus was involved
in the accident. Yes, no No

Heavy Rigid Truck Involvement Shows that a heavy rigid truck
was involved in the collision. Yes, no No

Road User (target variable) Road user type of killed person. Non-pedestrian, pedestrian Non-pedestrian

It is worth mentioning that input variables were normalized and transformed as follows:

• The order of nominal variables was rearranged, with the smallest category appearing
first and the largest category appearing last.

• In continuous variables, missing values were substituted with the mean.
• The mode was used to substitute missing values in nominal variables.
• The median was utilized to substitute missing values in ordinal variables.
• The target variable (road user) was initially nominal, and its values included driver,

motorcycle pillion passenger, motorcycle rider, passenger, pedal cyclist, pedestrian.
The road user was transformed into a binary variable. This new variable included two
classes: non-pedestrian death and pedestrian death.

4. Results and Discussions

4.1. Determination of Significant Variables

This study applied the advanced XGBoost technique to refine irrelevant inputs for a
Bayesian-inferred pedestrian death model. It has been proven that the XGBoost method is
superior to other non-linear classification methods; however, few studies have applied this
technique for feature selection in pedestrian crash prediction and classification (e.g., [57,61]).
XGBoost adopts the F-score to determine the significance score (weight) of each variable. A
greater F-score is assigned to a variable that embodies more information for classification.
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The F-score is calculation using the number of occasions an input is employed for dividing,
weighted through the squared enhancement of the model as a consequence of every
division, and averaged over all probabilities [62]. This criterion is capable of treating both
categorical and continuous inputs fairly to evaluate and rank the inputs. The authors
applied the XGBoost technique on 12 variables. Figure 3 illustrates the input rank outcomes
organised by their influence. This algorithm selected the ten most important inputs,
including speed limit, crash type, age, time of day, bus involvement, gender, day of the
week, month, Christmas period, and national road type.

Figure 3. Importance of variables analysed by XGBoost technique.

4.2. Development and Performance Assessment of the BNN Model

Creating a proper neural network structure is reliant on problems and data. Initially,
the authors used a rectified linear unit (ReLU) as the activation function between the
consecutive hidden layers to induce non-linearity in the neuron’s output. To calculate
the error gradient, a batch size of 64 samples from the training dataset was employed. In
order to detect the error gradient of the model optimization during the learning stage,
various learning rates (LRs) for the Adam optimizer operation were evaluated (10-3, 10-2,
10-1). Then, ELBO loss was observed on validation and training sets. In the prediction
of PDRC, Figure 4 shows in what way LRs affected model convergence utilising a BNN
model with a single hidden layer (hidden units = 16). Figure 4a illustrates a desirable
match, as the validation and training losses rapidly climb to the established position, with
little divergence between the two ultimate loss rates. Figure 4b,c shows noisy fluctuations
around the training and validation loss, with every iteration moving ahead at an excessively
large step size thanks to the high LR. The authors tuned the BNN model utilizing the Adam
optimizer’s LR of 0.001 to determine the best number of hidden layers and neurons.
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Figure 4. Convergence of the BNN model with varying LR. (a): LR = 0.001, (b): LR = 0.01, (c): LR = 0.1.

Various structures of BNN were trained 200 times. Table 3 presents the Bayesian-
inferred PDRC model’s forecasting performance. The authors evaluated the forecasting
performances of several model structures with eleven performance criteria.
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Table 3. Performances of several BNN designs.

NS HL ATA Sensitivity Specificity Precision NPV FPR FDR FNR F1 Score AUC MCC

NS1 1 0.802 0.940 0.421 0.817 0.721 0.578 0.182 0.059 0.874 0.808 0.442
NS2 1 0.834 0.844 0.171 0.986 0.015 0.828 0.013 0.155 0.909 0.748 0.005
NS3 1 0.879 0.890 0.747 0.974 0.345 0.252 0.021 0.110 0.932 0.776 0.454
NS4 1 0.887 0.900 0.752 0.974 0.413 0.247 0.025 0.100 0.939 0.780 0.503
NS5 2 0.607 0.967 0.271 0.553 0.900 0.728 0.446 0.032 0.704 0.811 0.329
NS6 2 0.570 0.972 0.256 0.504 0.922 0.743 0.4951 0.027 0.664 0.811 0.312
NS7 2 0.670 0.9605 0.303 0.636 0.858 0.696 0.363 0.039 0.765 0.804 0.361
NS8 2 0.767 0.947 0.379 0.766 0.771 0.620 0.233 0.052 0.847 0.796 0.419
NS9 2 0.784 0.945 0.399 0.791 0.750 0.600 0.208 0.055 0.861 0.822 0.432
NS10 3 0.867 0.879 0.687 0.976 0.274 0.313 0.023 0.120 0.925 0.824 0.377
NS11 3 0.894 0.906 0.774 0.975 0.453 0.225 0.0245 0.093 0.939 0.844 0.540
NS12 3 0.792 0.928 0.399 0.816 0.661 0.600 0.183 0.071 0.868 0.788 0.396
NS13 3 0.781 0.944 0.394 0.786 0.750 0.605 0.213 0.055 0.858 0.734 0.426
NS14 3 0.717 0.936 0.334 0.711 0.750 0.665 0.289 0.063 0.808 0.719 0.353
NS15 3 0.707 0.949 0.334 0.687 0.811 0.665 0.312 0.050 0.797 0.717 0.376
NS16 3 0.668 0.946 0.304 0.640 0.811 0.696 0.359 0.053 0.764 0.719 0.336

NS = network structure; NS1 = 16; NS2 = 32; NS3 = 64; NS4 = 128; NS5 = (16, 8); NS6 = (16, 16); NS7 = (32, 8);
NS8 = (32, 16); NS9 = (32, 32); NS10 = (8, 8, 8); NS11 = (16, 8, 8); NS12 = (16, 16, 8); NS13 = (32, 8, 8); NS14 = (32, 16,
8); NS15 = (32, 32, 16); NS16 = (64, 32, 16). HL = hidden layers; AAT = average training accuracy; NPV = negative
predictive value; FPR = false positive rate; FDR = false discovery rate; FNR = false negative rate; AUC = area
under curve; MCC = Matthews’s correlation coefficient.

Concerning ATA, the BNN with three hidden neuron layers (NS11) had the best
results (ATA = 0.894). The second best ATA belonged to a BNN architecture including a
hidden layer of 128 elements (namely, NS4). NS5 and NS6 were the two poorest network
architectures. Regarding AUC, F1 score, and MCC, NS11 also outperformed other BNN
structures, which indicated the model’s success in classifying PDRC.

The BNN design with three hidden layers (NS11) performed reasonably well, with
sixteen hidden neurons in the first layer and eight hidden neurons each in the second and
third layers. As a result, this research focuses on this BNN model in the subsequent sections
to see how the model’s classification uncertainties affect the forecasts of PDRC.

4.3. Quantification of Ambiguity in the Forecast and Classifying Probability

A Sankey plot was built to depict the relationship between actual and forecasted labels
to understand the classification errors of the BNN model (Figure 5). The actual classes
are represented by the left nodes on the Sankey plot, whereas the forecasted classes are
displayed by the right-hand points. The thicknesses of the color connections and streams
are proportional to the amounts of data. As seen in Figure 5, non-pedestrian deaths (class 0)
were mainly predicted to be non-pedestrian deaths, with only a few being misclassified
as pedestrian deaths (class 1). However, more than half of pedestrian deaths (54.6%) were
incorrectly predicted as non-pedestrian deaths. The proposed BNN’s classification of the
“non-pedestrian death” class is superior to that of the “pedestrian death” class with forecast
rates of 97.5% and 45.37% accuracy, according to the comparison of forecast performance
across each category.
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Figure 5. Correct and wrong forecasts classified by the BNN model.

The Bayesian technique has two notable features: (1) it yields predictive class prob-
abilities rather than deterministic class label forecasts, and (2) it produces the standard
deviation of the posterior prediction to indicate the level of uncertainty. The findings are
shown as a raincloud graphic, which mixes a data distribution depiction and box plots
overlaid on jittered raw data. For two death categories, Figure 6 depicts the range of the
predictive probabilities and the forecast uncertainty. As can be seen in thick regions, the
probability values for both classes are predominantly concentrated in the great probability
zones that are in the range of 0.8–1.0. Both classes’ prediction uncertainties are highly
aggregated in the range of 0.0 and 0.1, indicating a low level of ambiguity. Overall, the
BNN had a great level of confidence in classifying both death classes.

Figure 6. All class labels’ posterior predictive mean probabilities and uncertainties.

4.4. Variable Significance

When performing field research, knowing the impacts of variables on a model’s pre-
dictive ability can lower the cost of gathering data on PDRC. Assessing the significance of
all specified traits and their conceivable combinations, on the other hand, is time-intensive
and computationally costly. In this investigation, ten XGBoost-selected variables were cate-
gorised according to the kinds to which they related. This study built eleven combinations
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in which different types of factors were combined to identify the best variable combina-
tion. Simultaneously, the model’s performance was analysed in order to determine the
smallest number of variables that must be collected while maintaining reliable prediction
performance. Table 4 presents the outcomes of the models’ executions. The outcomes
of this analysis showed that ARR8 (TO + RC) was the weakest combination. In contrast,
ARR7 (IC + TO + RC + CA) was the best combination, followed by ARR6 (IC + RC + CA).
These findings imply that the combination of factors related to the time, occasions, and
road characteristics is not able to predict the PDRC accurately alone. The predictions based
on these two types of data should be improved using other factors, such as individual
characteristics and crash attributes. The findings of this study are in line with those of
Onieva-García et al. [63], Toran Pour et al. [64], Park and Ko [65], Li and Fan [44], and
Kim et al. [66], who confirmed the significant roles of age and gender in pedestrian-related
crashes and deaths. Several studies also confirmed the effects of bus involvement on the
risks of injury and death of pedestrians (e.g., [67–69]), which indicates the significant role
of crash attributes in the prediction of PDRC. Overall, when personal characteristics and
crash features are factored in, this model appears to be successful and accurate.

Table 4. The performance of the BNN model with various variable arrangements.

Arrangement
Combination of

Variables
ATA F1 Score AUC MMC

ARR1 IC + TO 0.845 0.915 0.591 0.1375
ARR2 IC + RC 0.855 0.918 0.698 0.324
ARR3 IC + CA 0.858 0.920 0.761 0.317
ARR4 IC + TO + RC 0.860 0.921 0.754 0.3527
ARR5 IC + TO + CA 0.863 0.923 0.762 0.361
ARR6 IC + RC + CA 0.890 0.937 0.788 0.526
ARR7 IC + TO + RC + CA 0.894 0.939 0.844 0.540
ARR8 TO + RC 0.844 0.915 0.500 0
ARR9 TO + CA 0.846 0.916 0.695 0.113
ARR10 TO + RC + CA 0.866 0.924 0.774 0.387
ARR11 RC + CA 0.847 0.916 0.762 0.127

ARR = arrangement; AAT = average training accuracy; AUC = area under curve; MCC = Matthews’s cor-
relation coefficient; IC = individuals’ characteristics; TO = time and occasions; RC = road characteristics;
CA = crash attributes.

4.5. Comparison of BNN Modes with Other ML Models

The authors of this study compared the BNN model with various ML models, in-
cluding a random forest (RF), a standard Bayesian network (BN), and a standard neural
network (NN). This comparison helps with determining which machine learning algorithm
has the highest prediction accuracy. It will help to reduce future work spent on selecting
acceptable methods for PDRC data analysis. The advantages of using BNN for PDRC
prediction are further confirmed by this comparison. The outcomes of this comparison
are presented in Table 5. This comparison shows that the BNN model outperformed the
other models, especially the standard NN model. Additionally, the standard BN model
showed a poor prediction performance compared with the other models. The RF model
showed a desirable performance that can be rooted in its capabilities for ensembling weak
learners [70]. This study’s Bayesian-inferred pedestrian fatality model performs well in
prediction and classification based on the presented results.

Table 5. Comparisons of the BNN model with other ML models used to predict the PDRC.

Model ATA F1 Score AUC MMC

BNN 0.89 0.94 0.84 0.54
RF 0.87 0.92 0.79 0.60
BN 0.85 0.91 0.80 0.36
NN 0.84 0.91 0.53 0.07
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4.6. Limitations and Future Enhancements

The Australian Road Deaths Database (ARDD) was employed to create and test
Bayesian inference with NN for forecasting and classifying road-related pedestrian deaths.
However, there are a few drawbacks to be aware of, and potential enhancements for
the future. Even though the Bayesian-inferred pedestrian fatality model outperformed
traditional ML models, BNN, like many other ML techniques, is a data-driven modelling
approach, and the ARDD contains little variety and skewed distributions. This suggests
that in certain severe circumstances, the model would be unstable. Future investigations
are required to improve this model by consolidating a more varying set of environmental
factors, built environment factors, and road characteristics (e.g., weather conditions, use
patterns, and road widths), as past studies have confirmed their usefulness (e.g., [71–73]).

While this study was effective at using a BNN model to predict PDRC, it is important
to remember that the performances of ML models vary depending on the data. If the data
are within the range of the current study’s data, the results of this study can be replicated.
Future research could use this technique, possibly with some tweaks, to analyse other
datasets and present their findings. It enables a valid assessment of the BNN’s ability to
forecast PDRC.

Several prior studies also have found that walking behaviors can have a role in
pedestrian fatalities as a result of road crashes. When it comes to pedestrian-involved
collisions, the pedestrian crossing pattern is one of the most essential features of walking
behaviour [74]. Pedestrians who were tragically wounded or admitted to hospital were
typically crossing unlawfully and/or at fault, according to prior research (e.g., [33,75]).
However, ARDD does not capture pedestrian activities at the moment of a collision, such
as crossing and use of a mobile phone. The ARDD must include a wide variety of character-
istics of both sides, vehicles and pedestrians, to gain a deep understanding of the reasons
behind pedestrian-involved crashes.

5. Conclusions

The Australian Road Deaths Database was employed to train the BNN model to
generate sound pedestrian death forecasts based on individuals’ characteristics, time,
occasions, road characteristics, and crash attributes in this study. For every road crash
fatality class, this study created BNN models, including various structures, to assess their
performances and to examine their corresponding predictive ambiguities. Below is a
summary of this study’s findings:

• The BNN model, which consists of three hidden neuron layers with sixteen hidden
nodes in the first layer, provided the best training accuracy of 0.894. Its posterior
predictive probabilities are in the great probability range, and the predictive ambiguity
is tightly concentrated in the 0–0.1 range.

• BNN model outperformed RF, BN, and NN models.
• Personal characteristics and time and occasion factor groups are clearly essential,

greatly boosting the performance of the model if they are used as inputs.
• Individually, the most important parameters in PDRC prediction were the speed limit,

collision type, and age.

The following are some practical implications of the major results that may be of
interest to both academics and practitioners in the domain.

For pedestrian safety on special occasions, such as Christmas and Easter, specific
effective pedestrian safety strategies should be implemented. These policies may assist
pedestrians in using roads safely and developing sustainable commute habits.

The speed limit has emerged as the most important factor for predicting pedestrian
fatalities due to road crashes. It is obvious that increasing vehicle speed raises the collision
risk exponentially [76]. According to Australian and worldwide case reports, lowering
the posted maximum speed on rural roads by 10 km/h reduces the chance of an accident
by 20–25%. Furthermore, after the removal of unrestricted speeds in some highways, the
Australian road mortality database reveals that there was a 3.4 per year decline in fatalities
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on highways with speed restrictions of 110 km/h and above. In Australia, for every person
killed on the road, another 23 persons are injured as a result of an accident, highlighting
the social benefit of any speed restriction lowering [77].

Another key factor in predicting pedestrian fatalities due to traffic collisions was age.
Several prior studies have found that senior pedestrians are more prone to pedestrian cross-
ing collisions. Elder pedestrian crashes are more likely to occur in congested metropolitan
locations, and older pedestrians are more likely to be at fault because of their incapacity
to manage complicated traffic scenarios, such as crossing roads [78]. These problems can
be avoided if government agencies and licensing departments enhance crossing safety by
reducing intersection ambiguity, increasing visibility, increasing conspicuity, and eliminat-
ing right-hand turns that require gap acceptance decisions. In addition, they can install
or retrofit systems that defend pedestrians in locations where there is a significant risk of
pedestrian fatality, such as high-pedestrian-activity places.

Our BNN model is capable of predicting future PDRC accurately, and it has a low level
of predictive uncertainty. Although further research is needed in this area, the methods
utilised in this study could be employed as a starting point for finding pedestrian risk
determinants and developing appropriate legislation.
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Abstract: In the United States, several studies have looked at the association between automobile
ownership and sociodemographic factors and built environment qualities, but few have looked at
household travel characteristics. Their interactions and nonlinear linkages are frequently overlooked
in existing studies. Utilizing the 2017 US National Household Travel Survey, the authors employed an
extreme gradient boosting tree model to evaluate the nonlinear and interaction impacts of household
travel characteristics and built environment factors on vehicle ownership in three states of the United
States (California, Missouri, and Kansas) that are different in population size. To develop these
models, three main XGBT parameters, including the number of trees, maximal depth, and minimum
rows, were optimized using a grid search technique. In California, the predictability of vehicle
ownership was driven by household travel characteristics (cumulative importance: 0.62). Predictions
for vehicle ownership in Missouri and Kansas were dominantly influenced by sociodemographic
factors (cumulative importance: 0.53 and 0.55, respectively). In all states, the authors found that the
number of drivers in a household plays a vital role in the vehicle ownership decisions of households.
Regarding the built environment attributes, deficiencies in cycling infrastructure were the most
prominent attribute in predicting household vehicle ownership in California. This variable, however,
has threshold connections with vehicle ownership, but the magnitude of these relationships is small.
The outcomes imply that improving the condition of cycling infrastructure will help reduce the
number of vehicles. In addition, incentives that encourage the households’ drivers not to buy new
vehicles are helpful. The outcomes of this study might aid policymakers in developing policies that
encourage sustainable vehicle ownership in the United States.

Keywords: sustainable vehicle ownership; nonlinear relationships; built environment; XGBT

1. Introduction

In the United States, each household has an average of 1.88 vehicles [1]. In 2017, the
rate of households with no vehicle was roughly 9%, implying that over 90% of families had
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access to at least one light vehicle [1]. The growing use of automobiles has resulted in a slew
of severe consequences, including traffic jams, pollution, and poor health outcomes [2,3]. In
the United States, figuring out how to slow the rise of vehicle ownership has now become
a pressing concern.

Planners from all over the globe have offered measures to improve the built environ-
ment (e.g., [4–8]). Past research has shown that certain aspects of the built environment are
connected to vehicle ownership, supporting the proposal. Some of these aspects include the
condition of the cycling and walking environment [9], population density [10–13], urban
area size [14,15], and type of living area [14,16]. Vehicle ownership is typically viewed as a
result of a household’s demographic and socioeconomic profile [17]. Several investigations
utilized monthly or average income to predict vehicle ownership. Home ownership, size of
the household, number of children, adults, and employees in the household have all been
identified as crucial determinants of vehicle ownership [17–23].

While sociodemographic and built-environment attributes have been widely utilized
to predict vehicle ownership globally, studies have rarely employed household travel
characteristics indicators, such as household drivers’ count, household members’ count on
the trip, and household vehicle used on the trip. These variables are important because
they can be assumed as indicators of independent trips. Independent trips mean each
household member may have a different life responsibility and, in turn, different travel
needs. Thus, they might be encouraged to buy more vehicles.

According to past studies, the majority of built environment variables exhibit nonlinear
relationships with vehicle ownership [24–30]. Some recent studies reveal that a considerable
number of built environment variables have threshold relationships with vehicle ownership,
and the nonlinear trends are inconsistent (e.g., [28]). Nonlinear relationships may help
policymakers comprehend the influence of a variety of built-environment characteristics
on vehicle ownership, and it will be interesting to see if this discovery holds true in various
urban and rural settings. This aids policymakers and planners in fine-tuning their plans.
Despite the fact that the nonlinear relationships between the built environment variable
and vehicle ownership have been assessed by several studies, only a very limited number
of studies has evaluated the relationships between household travel characteristics and
vehicle ownership. As a result of this information, policymakers may be able to give
households incentives to drive less.

Several advanced machine learning techniques and mathematical formulations have
been used to solve different engineering and planning problems [31–40]. To keep abreast
with the advancement of machine learning techniques and their vast applications across
the world, the authors utilize extreme gradient boosting trees (XGBT) to examine the main
determinants of vehicle ownership and highlight their nonlinear interactions, employing
data from the 2017 US National Household Travel Survey (NHTS). The following are the
questions that this research aims to answer: (1) How important are built environment
attributes, household travel characteristics, and sociodemographic characteristics in in-
fluencing household vehicle ownership decisions in the United States? (2) Does vehicle
ownership have a nonlinear relationship with household travel characteristics and built
environment factors? (3) To what extent do key household travel characteristics mediate
the links between key built-environment variables and vehicle ownership?

This research adds to the literature in three main ways. Initially, it adds to the research
of vehicle ownership in several US states with diverse populations. Furthermore, this
research evaluates the significance of several factors in determining car ownership, as
well as the relevance of policy and incentive implementation in various US states. It also
demonstrates that the majority of household travel characteristics and built environment
variables have inconsistently nonlinear connections, bolstering the scant body of evidence
and providing recommendations for planning approaches in US states. Lastly, this research
shows how important household travel characteristics, as well as their interactions with
major built-environment variables, play a significant role in limiting vehicle expansion in
each state.
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To the best of the authors’ knowledge, to date, no study has employed XGBT to reveal
the complex relationships between built environment attributes, household travel charac-
teristics, and sociodemographic characteristics in predicting household vehicle ownership.
This research assists policymakers in providing families with motivation to reduce their
vehicle ownership. In addition, this study can show the capabilities of the XGBT algorithm
to reveal the complex relationships between various variables in transportation science.

The following sections make up the remainder of this paper. A literature overview of
research that used NHTS data for various purposes is included in Section 2. The modeling
method, data, and variables are introduced in Section 3. The results of the models used in
this investigation are described in Section 4. The findings, implications, and limitations of
the study are discussed in Section 5. The final section outlines the most important findings.

2. Background: Employment of NHTS Dataset

The National Household Travel Survey (NHTS) is the official source on the travel
behaviour of the American public, which is carried out by the Federal Highway Admin-
istration (FHWA). These data are the singular national dataset that allows the study of
personal and household travel patterns. It encompasses non-commercial travel on a daily
basis in all commute modes and the features of the travellers, their households, and their
vehicles. Several researchers employed these data for different purposes, including in-
vestigation of trends in taxi use and ride hailing [41–43], determining the occurrence of
rural and urban cycling [44,45], ownership and usage assessment of unconventional fuel
vehicles [46], preferences of public transportation users [47], and so on. A summary of
some studies that used 2017 NHTS data is shown in Table 1.

Table 1. Some recent studies that employed 2017 NHTS data.

Study Study Aim Variables Used Analysis Technique(s)

Conway, Salon, and King [41] To report on taxi usage patterns and
the rise of ride-hailing services. Sociodemographic, personal trips Descriptive analysis, logistic

regression

Godfrey et al. [48]
To address some of the most
pressing concerns affecting public
transit.

Sociodemographic Descriptive analysis

Li, Liu, and Jia [46]

To look at the current state of
conventional car ownership and
usage, as well as renewable fuels
vehicle ownership and
consumption.

Sociodemographic Descriptive analysis

Tribby and Tharp [44]

To determine the prevalence of
cycling patterns by city, as well as
the features that best distinguish
cyclists from non-cyclists.

Sociodemographic Logistic regression

Das [43]
To determine the impact of ride
hailing service uptake on
sustainable mobility options.

Sociodemographic, built
environment attributes Logistic regression

Jiao, Bischak, and Hyden [42] To determine the effect of shared
mobility on trip production.

Sociodemographic, built
environment attributes Negative binomial (NB) model

Porter, Kontou, McDonald, and
Evenson [45]

To describe the overall impediments
to riding as self-reported. Sociodemographic Descriptive analysis

Sadeghvaziri and Tawfik [49] To learn more about how the elderly
travel. Sociodemographic Descriptive analysis

Jin and Yu [47]

To gain a better understanding of
the fundamental reasons why
people avoid taking public
transportation by looking at the
viewpoints of various users.

Sociodemographic, descriptive
analysis

Sabouri, Tian, Ewing, Park, and
Greene [5]

Using regional household travel
data and constructed environmental
characteristics from 32 regions
across the United States, vehicle
ownership models were assessed.

Sociodemographic, built
environment attributes Logistic regression
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The information presented in Table 1 reveals some shortcomings in the employment
of NHTS data. First, a few studies predicted vehicle ownership using these data (e.g., [5]).
Second, a very limited number of variables was used to perform the analysis by different
studies. For example, no indicator of household travel characteristics (e.g., household
drivers’ count, household members’ count on the trip, and household vehicle used on the
trip) was used by these studies. In addition, a very limited number of built environment
attributes were employed (e.g., the condition of walking and cycling infrastructure). Third,
a narrow range of statistical analyses were employed by different studies. Most studies
used traditional statistical analysis techniques or simple descriptive analysis. Traditional
statistical methods such as regression models have strict assumptions regarding the quality
of the data. In addition, these methods do not reveal the nonlinear relationships between
the target variable and inputs effectively. Lastly, most studies did not differentiate between
the US states or cities in terms of population size or other characteristics, which may cause
some serious differences in the prediction results.

3. Methodology

3.1. Extreme Gradient Boosting (XGBT)

The XGBT model was used to determine the primary correlates of vehicle ownership
and their complex relationships. XGBT was originally developed for data science [50], but it
has also been used increasingly in urban planning and transportation science (e.g., [51–53]).
The XGBT algorithm is a more regularized variant of the gradient boosting tree (GBT). In
comparison to the GBT, the XGBT is better at generalization and takes less time to train [54].
Additionally, GBT and XGBT are better than traditional statistical methods (e.g., linear
regression) in a number of ways. Firstly, they outperform conventional techniques in terms
of data fitting. Secondly, they are capable of dealing with a variety of different sorts of
data, such as categorical and continuous. Thirdly, they are insensitive to outliers and can
deal with incomplete data in a flexible manner. Fourth, they help solve the problem of
multicollinearity [28,55]. Furthermore, GBT and XGBT may fit any irregular connection
between variables, and modelers are not required to estimate their correlations in advance.
According to previous research, vehicle ownership has a nonlinear connection with the
factors that are associated with it, and the complex patterns vary according to the factor [28].
While traditional statistical approaches may describe nonlinear interactions via variable
transformation, the transformation is ineffective due to the irregular nonlinearity.

Owing to its advantages of high reliability and considerable flexibility, XGBT, an
advanced supervised method presented by Chen and Guestrin [50] under the Gradient
Boosting architecture, has been well acknowledged in Kaggle machine learning contests.
XGBT’s loss function provides an extra regularization term to the objective function that
attempts to smooth the ultimate learning weights and prevent over-fitting [50]. To optimize
the loss function, it furthermore employs 1st or 2nd order gradient statistics. Additionally,
XGBT enables row and column sample selection to address this problem, in addition to
providing regular terms to avoid over-fitting. Because parallel and distributed computation
allow for rapid learning, faster model exploration is conceivable. The XGBT architecture
will be simply described in the subsequent paragraphs.

The aggregate of the prediction scores, fm(ai) of all trees can be represented as the
predicted output b̂i of the XGBT model:

b̂i =
M

∑
m=1

fm(ai), fm ∈ γ (1)

where γ represents the regression trees’ space, M shows the regression trees’ number, and
the attributes associated with sample i are denoted by ai. Every leaf node j in a particular
dataset has a forecast score fm(ai), commonly referred to as leaf weight. sj is the leaf weight
and regression values of entire samples at this leaf node j, where j ∈ {1, 2, . . . Q}. In the
tree, the leaves’ number is shown by Q.
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In machine learning issues, objective functions become the most fundamental expres-
sion, and the boosting process repeats until the objective function minimization is limited
in order to estimate the number of functions used in the model, which establishes the
regularized objective function as follows:

θ =
h

∑
i=1

z
(

bi, b̂i

)
+ αQ +

1
2

β
Q

∑
j=1

s2
j (2)

where, h is the number of data samples provided, and ∑h
i=1 z(bi, b̂i) is the training loss

function that describes how well the model fits the training sets. For punishing the model’s
complexity, αQ + 1

2 β ∑Q
j=1 s2

j is a regularization term. The complexity cost of adding an
extra leaf is α, the regularization hyper-parameter is β, and the L2 norm of leaf node j
weights is s2

j in the regularization term.
Every recently introduced tree learns from its previous trees and adjusts the residuals

in the estimated values in the incremental learning procedure. As a result, all of the trees’
iteration outcomes have already been included in b̂(m−1)

i . Consequently, b̂(m)
i can denote

b̂(m−1)
i + fm(ai) for the mth repetition, and the objective function “C” is represented as:

θ =
h

∑
i=1

z(bi, b̂(m−1)
i + fm(ai) ) + αQ +

1
2

β
Q

∑
j=1

s2
j (3)

The 2nd order Taylor expansion is employed to optimize the objective effectively in
the general situation for the first term loss training function.

θm 

h

∑
i=1

[
z(bi, b̂(m−1)

i + di fm(ai)) +
1
2

ei f 2
m(ai)

]
+ αQ +

1
2

β
Q

∑
j=1

s2
j (4)

where di = σb̂(m−1)z(ai, b̂(m−1)
i ) and ei = σ2

b̂(m−1) z(ai, b̂(m−1)
i ) are the loss function’s first and

second-order gradient statistics. In step m, the constant terms can be subtracted to obtain
the approximate objective:

θm 

h

∑
i=1

[
di fm(ai) +

1
2

ei f 2
m(ai)

]
+ αQ +

1
2

β
Q

∑
j=1

s2
j (5)

A tree is characterized as a vector of scores in branches and a leaf index mapping func-

tion that transfers an instance to a leaf j, and this procedure is written as ∑h
i=1 fm(a) =

Q
∑

j=1
sj

and Equation (5) can be rephrased as:

θ(m) =
Q

∑
j=1

⎡
⎣
⎛
⎝∑

i∈Ij

gi

⎞
⎠sj +

1
2

⎛
⎝∑

i∈Ij

ei + α

⎞
⎠s2

j

⎤
⎦+ βQ (6)

With a fixed tree structure, quadratic function programming is used to select the
perfect branch weight scores on every leaf node s∗j as well as the extreme value of θ∗(m):

s∗j = − ∑i∈Ij
di

∑i∈Ij
ei + β

(7)

θ∗(m) = −1
2

Q

∑
j=1

(
∑i∈Ij

di

)2

∑i∈Ij
ei + β

+ αQ (8)
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Equation (8) is a framework scoring function that determines the suitability of a
specified vector of leaf scores. A lower value is preferable since it fits the data more
effectively. In practical uses, a greedy method has been used to discover an ideal tree
structure to prevent an endless number of alternative tree architectures. To develop an
XGBT model, it is important to fine-tune three main XGBT parameters, including the
number of trees, maximal depth, and minimum rows. Once we have trained the XGBT
model, it is possible to evaluate the significance of every predictor in forecasting the
response. In addition, XGBT can assess the partial dependence and association between
predictors and target variables after controlling for other variables in the model. Chen and
Guestrin [50] provide more thorough descriptions of the XGBT algorithm.

3.2. Data

The data come from the 2017 National Household Travel Survey (NHTS), which is
conducted by the US Department of Transportation [56]. The 2017 NHTS is the 8th in a
series of nationally representative cross-sectional surveys on the daily commute conducted
at random times. Data were gathered from stratified random samples of households in the
United States. The 2017 NHTS consists of two main processes: (1) a mail-based household
recruiting survey that gathered data on the household, transport, and travel behavior; and
(2) a predominantly web-based person-level retrieval survey that asked about travel on a
study-assigned day.

There were 458 variables in this dataset. As previously mentioned, the main goal
of this present study is to reveal the nonlinear relationship between the count of house-
hold vehicles (vehicle ownership) and sociodemographic, household travel characteristics,
and built environment attributes. Consequently, based on literature, only variables that
were related to household vehicle ownership were employed. These variables and their
descriptions are shown in Table 2. It is worth stating that there are a limited number
of built-environment variables in the NHTS. For example, only two variables, namely
“reasons for not walking more = infrastructure” and “reasons for not biking more = infras-
tructure,” assessed the condition of walking and cycling environments. Thus, the authors
considered these variables as two indicators of the condition of the walking and cycling
environments. Finally, 14 variables were used as inputs in this study’s analysis, and one
variable, household vehicle counts, was used as the target variable.

In this study, the authors evaluated different states with different populations. To
this end, three categories of the population were considered: (1) high-population states,
(2) medium-population states, and (3) low-population states. Regarding the population of
US states, the authors used the United States Census Bureau [57] as the principal source.
As previously stated, a list of US states that was provided by the United States Census
Bureau was used. The states in this list were sorted by population. Then, this list was
simply divided into the three categories. In each category, the state that had the highest
population was selected. For the first category, California (CA) was selected. Missouri
(MO) was selected for the second category. For the low-population states, Kansas (KS) was
selected. The authors then selected 5000 samples in each state. This sampling approach
prevents any bias resulting from over- or under-sampling. A flowchart of this study is
presented in Figure 1.
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Table 2. Variables’ description.

Variable Description Value

Independent variable
HHVEHCNT Household vehicles’ count [0–12]
Sociodemographic (SD)

HHFAMINC Household income ($)

(1) <10,000; (2) 10,000–14,999;
(3) 15,000–24,999;
(4) 25,000–34,999;
(5) 35,000–49,999;
(6) 50,000–74,999;
(7) 75,000–99,999;

(8) 100,000–124,999;
(9) 125,000–149,999;

(10) 150,000–199,999;
(11) >200,000

HHSIZE Household members’ count [1–13]
HOMEOWN Home ownership (1) own; (2) rent

NUMADLT Count of adults in the
household over the age of 18 [1–10]

WRKCOUNT Household workers’ count [1–7]

YOUNGCHILD Count of children aged 0 to
4 in the household [1–5]

Household travel characteristics (HTC)
DRVRCNT Household drivers’ count [0–9]

TRPHHACC Household members’ count
on the trip [0–10]

TRPHHVEH Household vehicle used
on trip (1) yes; (2) no

Built environment attributes (BEA)

BIKEINFRA Deficiencies in cycling
infrastructure *

(1) no adjacent paths or trails;
(2) no sidewalks or sidewalks
are in poor condition; (3) no
adjacent parks; (4) 1 and 2;

(5) 1 and 3; (6) 2 and 3;
(7) 1, 2, and 3

HBPPOPDN

Category of population
density (persons per sqmi)
in the household’s home

census block group

50 = 0–99; 300 = 100–499;
750 = 500–999;

1500 = 1000–1999;
3000 = 2000–3999;
7000 = 4000–9999;

17,000 = 10,000–24,999;
30,000 = 25,000–999,999

URBANSIZE
Size of the urban area in
which the residence is

located

(1) 50,000–199,999;
(2) 200,000–499,999;
(3) 500,000–999,999;

(4) 1 million or more without
heavy rail; (5) 1 million or more

with heavy rail; (6) not in
urbanized area

URBRUR Household in urban/rural
area (1) urban; (2) rural

WALKIFRA Deficiencies in walking
infrastructure *

(1) no adjacent paths or trails;
(2) no sidewalks or sidewalks

are in poor condition;
(3) no adjacent parks;

(4) 1 and 2; (5) 1 and 3; (6) 2 and
3; (7) 1, 2, and 3

* These variables were originally employed in the NHTS to evaluate reasons for not walking or cycling, and their
acronyms are WALK_DEF and BIKE_DFR, respectively.
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Figure 1. Flowchart of this study.

4. Results

4.1. Nonlinear Models Development and Performance Assessment

One XGBT model was constructed for each of the three US states based on population
differences in this study. These three models were developed using a set of parameters, and
each of these parameters has its own value. This study employed the grid search technique
to discover the optimized value of these parameters. Table 3 shows the optimum values of
the XGBT models’ parameters.

Table 3. Values of key parameters of XGBT models in three US states.

Parameter CA MO KS

Number of trees 1 70 80
Maximal depth 10 80 60
Minimum rows 4.9 × 10−324 4.9 × 10−324 4.9 × 10−324

To develop the XGBT models, the data were divided into training and testing sets
with a ratio of 80:20. In addition, to avoid overfitting and reduce the generalization error,
this study employed a 10-fold cross validation approach. The performance of these three
models was evaluated using two famous performance criteria, including linear correlation
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(R) and mean absolute error (MAE). Equations (9) and (10) illustrate the mathematical
forms of these criteria.

R =
∑h

i=1

(
ki − ki

)
(si − si)√

∑n
i=1

(
ki − ki

)2
(si − si)

2
(9)

MAE =
∑n

i=1|ki − si|
h

(10)

where ki and si signify nth actual and predicted values, respectively; ki and si indicate the
average values of actual and predicted values, respectively; h shows the number of samples
in the dataset. Table 4 shows the outcomes of the models’ evaluations. As can be seen, the
highest training performance belonged to Kansas.

Table 4. XGBT models’ performance.

Criterion CA MO KS

R
Train 0.814 0.934 0.995
Test 0.817 0.935 0.965

MAE
Train 0.664 0.303 0.246
Test 0.662 0.308 0.244

4.2. Variables’ Importance

Table 5 shows the cumulative importance (CI) of all variables in forecasting vehicle
ownership. In California, household travel characteristics were the most influential factors
in predicting vehicle ownership (CI: 0.62). In Missouri and Kansas, sociodemographic fac-
tors were the most important predictors of household vehicle ownership (CI: 0.53 and 0.55,
respectively).

Table 5. Cumulative importance of variables for predicting vehicle ownership in three states of the US.

State

Cumulative Importance

Sociodemographic (SD)
Built Environment
Attributes (BEA)

Household Travel
Characteristics (HTC)

CA 0.08 0.30 0.62
MO 0.53 0.12 0.35
KS 0.55 0.20 0.25

Figure 2 shows the variables’ importance in three different states of the US with
different population sizes for vehicle ownership prediction. The number of drivers in a
household (B) was the most important variable in California and Missouri. The importance
of the number of drivers in a household was slightly lower in Kansas than that of home
ownership (F).

In California, the second most important variable for the prediction of vehicle owner-
ship was deficiencies in cycling infrastructure, followed by deficiencies in walking infras-
tructure. Several variables, including the count of adults in a household over the age of 18,
household vehicle used on the trip, household members’ count on the trip, count of person
trips on travel day, household living area (urban or rural), and count of children aged 0 to 4
in the household, had no contribution to vehicle ownership prediction in California.
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Figure 2. Importance of variables by different US states: (A = BIKEINFRA; B = DRVRCNT;
C = HBPPOPDN; D = HHFAMINC; E = HHSIZE; F = HOMEOWN; G = NUMADLT;
H = TRPHHACC; I = TRPHHVEH; J = URBANSIZE; K = URBRUR; L = WALK_DEF;
M = WRKCOUNT; N = YOUNGCHILD).

Household income, which was followed by the number of adults in the household
over the age of 18, was the second most influential variable in Missouri for predicting
vehicle ownership. The number of children aged 0 to 4 in the household and the household
vehicle used on the trip had no effect on the car ownership prediction in Missouri.

As mentioned above, in Kansas, home ownership was the most important variable,
and the second most important variable for vehicle ownership forecasting was household
drivers’ count, followed by household members’ count. In Kansas, the zero-contributed
variables included population density, the number of children aged 0 to 4 in the household,
the number of person’s trips on the travel day, and the household vehicle used on the trip.

4.3. Nonlinear Associations with Car Ownership

The nonlinear associations between the predicted number of household vehicles and
each state’s two most important variables are provided in this section. Figure 3 shows
associations between predicted household vehicle counts and various variables in three
different US states.

In California, there is a cubic relationship between the number of drivers in the
household (DRVRCNT) and the household vehicle count. When the number of household
drivers is within the range of two, it has a negligible effect on vehicle ownership. Beyond
the threshold, it has a positive relationship with vehicle ownership. However, when the
DRVRCNT exceeds six, the impact of the DRVRCNT is saturated. The cubic relationships
for Missouri and Kansas are different. In Missouri, when the DRVRCNT is in the range of
one to four drivers, it has a strong positive relationship with vehicle ownership. However,
when the DRVRCNT is beyond four drivers, vehicle ownership starts to decrease. In
Kansas, the cubic relationship between vehicle ownership and DRVRCNT is predominantly
concave between 1 and 3 drivers. It seems that when the DRVRCNT exceeds four, the
impact of the DRVRCNT is saturated in Kansas. Overall, the best range of DRVRCNT for
cutting down on car ownership in California is between zero and two drivers. This range
for Missouri and Kansas is between four and five. These findings corroborate prior research
indicating that the number of drivers in a household has a considerable impact on vehicle
ownership (e.g., [58–61]). No study, however, has examined the nonlinear relationship
between the number of drivers in a household and vehicle ownership. As a result, the
findings from this research are unique.
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Figure 3. Relationships between predicted household vehicle counts and various variables in three
different US states.

In the cubic relationship between vehicle ownership and deficits in cycling infrastruc-
ture (BIKEINFRA), it seems that when the BIKEINFRA is within the range of three, its
impact on vehicle ownership is greater than when it is within the range of four to seven.
This means that when Californian households are disappointed to find adjacent paths, trails,
sidewalks, or parks, they lose their inclination to bike and switch to buying new vehicles.
Several studies confirmed that providing adequate infrastructure for biking may encourage
people to substitute this mode for private vehicles, but to the authors’ best knowledge, very
few studies have assessed the influence of this factor on vehicle ownership. In addition,
no study has specifically examined the nonlinear relationship between these factors and
vehicle ownership.

In Missouri, the cubic connection between household income (HHFAMINC) and vehi-
cle ownership indicates that when household income is between 10,000 and 14,999 USD,
it has a minor influence on vehicle ownership. It has a positive correlation with ve-
hicle ownership after the threshold is exceeded. When the HHFAMINC crosses nine
(125,000–149,999 USD), the HHFAMINC’s effect becomes saturated. Several previous stud-
ies reported the positive and linear relationship between household income and vehicle
ownership (e.g., [19]), but very few studies have assessed the nonlinear relationship be-
tween household income and vehicle ownership (e.g., [62]).

In Kansas, there is a strong link between home ownership (HOMEOWN) and the
number of vehicles in a household, so possessing a home increases the likelihood of owning
more vehicles. Since home ownership can be assumed as an indicator of family wealth, the
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positive relationship between home ownership and vehicle ownership is not surprising
and has been reported in several previous studies (e.g., [19,62]).

4.4. Impacts of Interactions on Vehicle Ownership

A strong positive relationship between the number of drivers in the household and
vehicle ownership in all states was observed. This association implies that if the number of
drivers in the household was lowered, vehicle ownership would decline substantially. This
section looks at how household travel characteristics (HTCs) in each state moderate the
effects of the most relevant BEA factors on vehicle ownership. BIKEINFRA was the most
significant BEA variable in California, whereas HBPPOPDN and URBRUR were the most
significant BEA variables in Missouri and Kansas, respectively. In all states, DRVRCNT
was the most influential HTC variable. Figure 4 shows the change in predicted household
vehicle counts when biking infrastructure conditions change from one to seven, a household
living area changes from urban to rural, and population density increases from a category
of 50 to a category of 30,000.

Figure 4. Relationships between essential BEA variables in each state and vehicle ownership varia-
tions moderated by key HTC variables. (a): Increase of vehicle ownership when condition of walking
infrastructure changes from 1 to 7; (b): decrease in vehicle ownership as population density increases
from 50 to 50,000 people; (c): increase in vehicle ownership as people’s living environments shift
from urban to rural.

DRVRCT has a complex moderating influence on the relationship between the built
environment and household vehicle count. For example, when biking infrastructure
conditions change from one to seven, predicted household vehicle counts for all the number
of drivers in a household increase, but the predicted household vehicle count growth varies
by the number of drivers in a household (Figure 4a). When the number of drivers in a
household is one, the smallest increment (0.28) in the number of household vehicles occurs.
A medium increase (1.13) in the number of household vehicles occurs when the number of
household drivers is two. Finally, when there are three people who drive in a household,
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the number of vehicles in the household increases the most (1.56). This suggests that the
number of drivers in a household strengthens the positive influence of the deficiencies in
biking infrastructure on vehicle ownership in California. The interaction effect of household
living area (urban or rural) and DRVRCT on predicted household vehicle counts has a
similar pattern in Kansas (Figure 4c). As living areas change from urban (1) to rural (2),
vehicle ownership increases and the growth varies by the number of drivers in a household.
When the household has four drivers, the largest increase in vehicle ownership occurs,
suggesting that the number of drivers in a household amplifies the population density’s
positive effect on vehicle ownership.

As shown in Figure 4b, in Missouri, DRVRCT also moderates the impact of popula-
tion density on predicted household vehicle counts. When the population density rises
from 50 to 30,000, the predicted number of household vehicles decreases as well. When a
household has two drivers, the number of household vehicles decreases the most (−2.14),
whereas when a household has three drivers, the number of household vehicles decreases
the least (−0.89). These findings show that having more drivers in a household can lessen
the negative effects of high population density on vehicle ownership.

5. Discussions

It was expected that the number of drivers in the households plays a dominant role
in predicting the count of the households’ vehicles. However, very few studies have
investigated the direct effects of the count of households’ drivers on vehicle ownership.
Some studies [61,63] found positive associations between the total number of household
vehicles, vehicle usage, and energy consumption, which can be interpreted as indirect
indicators of vehicle ownership trends. A possible reason that the number of drivers
in the household became the most important household travel characteristics variable
in predicting vehicle ownership in the three US states could be the direct and positive
relationship between this variable and the number of adults in the households. Having
more adults in a household means that people have different responsibilities and can travel
independently. Thus, each adult household member may require their own vehicle, which
cannot be shared with others due to time constraints. The importance of the number of
drivers in the household in all three states shows that this variable is a determinant of
households’ vehicle ownership regardless of the state’s population size.

Many previous studies have confirmed that providing adequate cycling and walking
facilities encourages people to use these modes more frequently (e.g., [64–66]). At least for
recreational or short trips, this may also encourage people to replace vehicles with walking
and cycling [67,68]. These may be the causes of emerging deficiencies in cycling facilities as
an important predictor of vehicle ownership in California. Having poor cycling facilities
may increase the tendency of adult household members to buy more vehicles. According to
The League of American Bicyclists [69], among all the US states, California, Missouri, and
Kansas are ranked 4, 35, and 37, respectively, in terms of their suitability for cycling. Thus,
the emergence of biking infrastructure conditions in California as an important factor is
sensible. California has better conditions in terms of infrastructure and funding, education
and encouragement, legislation and enforcement, policies and programs, and evaluation
and planning than the other two states [69]. In addition, other factors such as biking culture,
topography, and integration of walking and cycling facilities with public transport services
can make a difference among the US states in terms of adoption of walking and biking
instead of using private vehicles.

5.1. Findings’ Implications

The practical examinations in the earlier sections accomplished the investigation
objectives by revealing the characteristics of households that belonged to different US
states and different populations. The results have significant implications for households’
vehicle ownership. This paper’s analysis clearly showed that the number of drivers in
the household and deficiencies in cycling infrastructure heavily impacted the household
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vehicle numbers. Moreover, the results revealed that these variables are determinants of
household vehicle ownership regardless of the state’s population. Thus, to discourage
households from possessing multiple vehicles, any policy that reduces the impact of these
variables is desired.

The members of the household have varying life commitments and travel requirements.
As a result, considering all family members’ needs and encouraging them to share their
vehicles with other family members rather than purchasing more vehicles is a daunting
task. However, some solutions, including using a minivan, flexible working time, using
micro-mobility for first and last connections, and sending children to schools near the
house, can be used to reduce the number of drivers in the household.

Improvements to the cycling infrastructure in all states (especially Kansas) should be
at the center of attention. Some measures include the construction of paths, trails, or parks
near housing units; the construction of sidewalks along all local and arterial streets; and
the consistent assessment of sidewalks to ensure that they can serve all people, regardless
of physical ability [64].

In most states, regardless of their population, the BEAs could not have the highest
cumulative contribution to household vehicle ownership. Most BEAs had a minor impact
on reducing vehicle ownership growth in the short term, but a BEA that made alternate
modes of transportation competitive with a vehicle may have created a positive circle
between the BEA and vehicle ownership in the long term. However, since transportation
infrastructure and construction persist for years, a motorized-oriented urban layout is diffi-
cult to reverse once it has been established. Moreover, the motorized-oriented metropolitan
structure will foster people’s intention to purchase vehicles, which will be harmful to
sustainable mobility.

5.2. Limitations

The study has significant limitations. First, the NHTS dataset is one of the largest
household travel survey datasets in the world. However, its built environment indica-
tors are limited. Some of these overlooked factors are location and transit accessibility
(e.g., distance to the central business district and distance to the nearest metro/bus stop).
Thus, future studies can employ other datasets containing more built-environment at-
tributes and apply the XGBT method to perform their analysis. Additionally, it is suggested
that the NHTS consider the factors mentioned above since these factors allow researchers
to conduct a more comprehensive study regarding the issue of vehicle ownership in the US.
Second, the NHTS includes items regarding reasons for not walking and biking. However,
there are no items regarding the deficiencies in public transportation, particularly public
buses. Future studies may complement the NHTS dataset with field observations on public
transport infrastructure conditions. Finally, the authors believe that a sample of 5000 per
state were enough to analyze the nonlinear relationship between vehicle ownership and
other variables. However, future studies can use a larger sample to perform their analysis.

6. Conclusions

By means of data from the US National Household Travel Survey, this research utilized
an extreme gradient boosting tree (XGBT) model to investigate the importance of sociode-
mographic factors, the HTCs, and the BEAs to vehicle ownership and their nonlinear
associations with vehicle ownership. It is one of the few studies that look at how key HTCs
moderate the effects of important BEAs on vehicle ownership in three different states in the
United States with different populations. However, this study could not find a substantial
difference in the results based on the states’ populations. The main findings of this study
for each state are as follows:
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• In California, the predictability of vehicle ownership was driven by household travel
characteristics (CI: 0.62). In this state, the number of drivers in a household and the
deficiencies in cycling infrastructure were the two most important factors in predicting
vehicle ownership.

• In Missouri, sociodemographic factors were dominant factors in predicting vehicle
ownership (CI: 0.53). The number of drivers in a household and household income
were the two most important predictors of vehicle ownership in Missouri.

• In Kansas, sociodemographic factors were the most influential factors in predicting ve-
hicle ownership (CI: 0.55). Home ownership and the number of drivers in a household
were the most influential factors in vehicle ownership in Kansas.

The outcomes demonstrate that the number of drivers in a household plays a dominant
role in households’ choice of vehicle ownership in the three US states. Crowded families
with many drivers are more likely to possess more vehicles. In addition, deficiencies in
the cycling infrastructure are another vital determinant of vehicle ownership in California.
These two variables in California are the most significant predictors, accounting for 0.74 of
the predictive capabilities. Identifying effective strategies to discourage households’ drivers
from buying new vehicles and improving the cycling infrastructure is key to sustainable
transport in these states.

Policymakers could utilize land use and transport strategies to transform the built
environment. The BEAs have a modest impact on vehicle ownership, and several BEAs
may be used as proxies for the number of drivers in a household. Because practically all
BEAs have a minor impact on their own, policymakers will need a combination of tactics if
they intend to restrict vehicle ownership using land use and transport policy.

Some of the findings of this study are unique. For example, the nonlinear relationship
between vehicle ownership and the number of drivers in a household has not been assessed
by the previous studies. Thus, policymakers can use the findings of this study (thresholds,
relationships, and interaction effects) to propose strategies to cope with the growth of
vehicle ownership in the US.

Several factors are only connected with vehicle ownership when they fall within a
specified range. It can result in a subjective interpretation of the associations between
variables if the nonlinear associations are overlooked. This can lead planners and re-
searchers to misjudge the significance of these variables and inaccurately signify their
associations with vehicle ownership. More significantly, these ranges provide policymakers
with recommendations about how to efficiently reduce the increase in vehicle ownership.

The findings of this research also showed that the XGBT can be successfully applied
to reveal the complex relationships between the input variables and the target variables.
Future studies can use this method to solve other issues in transportation science. To get
more accurate results, they can combine the XGBT with other machine learning techniques,
such as those that were proposed in Kumar et al. [70], Golilarz et al. [71], Golilarz et al. [72],
Najafi Moghaddam Gilani et al. [73], Gilani et al. [74], and Tao et al. [75].
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Abstract: Several previous studies examined the variables of public-transit-related walking and
privately owned vehicles (POVs) to go to work. However, most studies neglect the possible non-
linear relationships between these variables and other potential variables. Using the 2017 U.S.
National Household Travel Survey, we employ the Bayesian Network algorithm to evaluate the
non-linear and interaction impacts of health condition attributes, work trip attributes, work attributes,
and individual and household attributes on walking and privately owned vehicles to reach public
transit stations to go to work in California. The authors found that the trip time to public transit
stations is the most important factor in individuals’ walking decision to reach public transit stations.
Additionally, it was found that this factor was mediated by population density. For the POV model,
the population density was identified as the most important factor and was mediated by travel time
to work. These findings suggest that encouraging individuals to walk to public transit stations to go
to work in California may be accomplished by adopting planning practices that support dense urban
growth and, as a result, reduce trip times to transit stations.

Keywords: sustainable travel to public transit stations; complex relationship; Bayesian network
algorithm; work trip

1. Introduction

A transition away from privately owned vehicles (POVs) toward active transport can
have major health advantages [1]. Despite the vast benefits of active transport modes,
particularly walking, many individuals still prefer POVs. For example, just 36% of all
journeys in the United States were below one mile, and only 27% of such journeys were
conducted by walking or biking [2]. According to statistics from the American Community
Survey, the percentage of people who walk to work in the United States has declined from
5.6 per cent in 1980 to 2.8 per cent in 2012 [3].

The “park and ride” concept, which promotes the use of POVs to reach public transit
(PT) stations and combines the use of private cars and PT stations to reduce the negative
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consequences of private vehicle use, has been the subject of several studies in the past [4–7].
Typically, this system is found at rail transportation terminals and transportation hubs,
which allow for both rail and public bus access. However, this system may not be available
at local bus stops. POVs are feasible options to reach PT stations where the stations are
not within walking distance or in low-density areas [8,9]. Although there is hope that
this approach will reduce the negative consequences of private vehicle use (e.g., traffic
congestion, pollution, and physical inactivity), it is more desirable for planners to minimize
the role of POVs in people’s daily travels, particularly those related to work.

PT stations may supplement and extend the variety of active modes significantly [10,11].
Because of this, as well as the fact that POVs are associated with a slew of other well-known
issues, there may be room for a modal shift away from POVs toward walking and PT
that might reduce the usage of POVs, while also contributing to increased physical activ-
ity [12–15]. Because health conditions, work trip qualities, work attributes, and sociodemo-
graphic factors may all impact travel patterns [16–21], it is important to know how walking
connects to PT travel to work to reap the most advantages.

California has always had a problem with traffic congestion. The cause for this ongo-
ing issue is that the region’s population and POV usage have exceeded the transportation
facilities. If California’s transportation system cannot keep pace with the state’s fast urban
growth, and if Californians’ priority for POVs continues, the traffic problem will undoubt-
edly worsen soon. To deal with long-term urban traffic issues, dwellers in crowded regions
are encouraged to replace POVs with active transportation options and PT, especially for
work-related journeys. When people combine walking with PT, which is a hot topic among
planners, the advantages of this replacement may be maximized. Walking is the most
cost-effective mode of transportation and the most basic form of physical activity [22–25].
Walking also needs a low-cost infrastructure. As a result, it makes sense if planners encour-
age individuals to walk to PT stations over other active forms of transportation.

Many studies have been conducted on the topic of first-mile connection, which ad-
dresses how people reach PT stations. Several studies assessed the impact of sociodemo-
graphic characteristics on walking to reach PT stations. Factors, such as age [17,18,26–28],
gender [29,30], vehicle ownership [31,32], income [33–35], and education [32,36,37], were
significantly correlated with the walking to reach PT stations. Although there are a lot of
built environment (BE) factors that impact travel behavior, only a very small number of
these factors were included in the first-mile connection studies. These factors included den-
sity and distance to PT stations [38–42]. Earlier studies have shown that population density
is one of the most significant BE variables, and its impact on travel behavior is stronger
than other BE attributes [32,36,43,44]. People in low-density areas are more likely to use
POVs than those in medium- and high-density areas [45,46]. Similarly, for individuals who
live in low-density regions where the station is too far away to walk to and bus service is
not accessible, driving to PT stations may be the sole choice for reaching PT stations [8].

While sociodemographic variables have been well covered in earlier studies, health-
related factors and their impact on mode choice have rarely been considered in most
PT-related walking investigations [1,47,48]. BMI, self-assessed health, self-reported smoker,
and yearly frequency of hospital and primary care visits are characteristics addressed in
these studies. To the best of the authors’ knowledge, no study considered the impact of
medical conditions in PT-related walking research. Furthermore, most of these studies
neglected job-related issues, as well as those associated with work trips. Flexibility in
work arrival time, full-time/part-time worker, the possibility of working from home, the
distance between home and work location, trip time to work, time spent transferring on
the commute to work if PT is taken, and travel time to PT station are some of the aspects
that are overlooked [49–51]. The existence of such data in the U.S. National Household
Travel Survey can give an excellent chance to look at the influence of a medical condition
and work-related trips on travel mode selection.

There are non-linear and complex interactions between variables in transportation
systems (e.g., the relationship between the built environment and car ownership) that
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are difficult to study using typical statistical approaches and linear programing meth-
ods [52–58]. Non-linear relationships may be inconsistent, and factors may have threshold
correlations with a variable of interest. Because non-linear relationships can help planners
to understand the effective influence range of important factors on the target variable, it is
interesting to see if this result can be applied to other fields [59]. This supports planners
in fine-tuning their strategies [60]. Most PT-related walking studies employed traditional
statistical methods (Table 1). However, these methods are unable to reveal complex relation-
ships. In addition, these models have strict linearity assumptions, which limits the ability
of these models to be effectively generalized [61–66]. Finally, these models are vulnerable
to missing and incomplete data. Machine learning (ML) approaches can be used to solve
the problems outlined before [67–70]. The Bayesian Network (BN) model is one of these
powerful tools, and it has lately been used successfully in various transport-related re-
search [67,71–75]. A BN model can effectively deal with heterogeneous and under-sampling
data, as well as missing, erroneous, or ambiguous data. Because it can effectively alter its
network depending on the data provided or entered into it, BN is indeed thought to be
excellent for learning changeable behaviors (e.g., mode choice) [76–81].

Table 1. Some recent studies on PT-related walking.

Study Location Sample Size (Unit) Analysis Method

Patterson, Webb, Millett and Laverty [19] USA 2448 (passengers) LRM
Ratanawaraha et al. [82] Thailand 1020 (travelers) LRM

Rodriguez-Gonzalez and Aguero-Valverde [83] Costa Rica N/A PDF and CDF
Sun, Zacharias, Ma and Oreskovic [38] China 495 (adults) LRM

Townsend and Zacharias [84] Thailand 1489 (travelers) LRM
Vandebona and Tsukaguchi [85] Japan 3560 (persons) DE

Voss et al. [86] Canada 42 (students) LRM
Wang and Cao [87] USA 7077 (travelers) LRM

Wasfi, Ross and El-Geneidy [27] Canada 6913 (trips) LRM
Xi et al. [88] Canada 21,470 (trips) DE

Yu and Lin [39] USA 18,180 (trips) LRM
Zacharias and Zhao [89] China 2409 (passengers) LRM

Zhao et al. [90] China 1544 (travelers) LRM
Zuo et al. [91] USA 1330 (trips) DE

LRM = logistic regression model; PDF = probability density function; CDF = cumulative distribution function;
DE = Descriptive analysis.

The authors of this research utilize the BN model to explore the major indicators of
travel mode to reach PT stations and highlight their non-linear interactions using the 2017
U.S. National Household Travel Survey (2017 NHTS). The following are the questions
that this research aims to answer: (1) How important are the health condition, work trip,
work, and individual and household attributes to individuals who use walking or POV to
reach PT stations to go to work in California? (2) Do the most important variables have
associations with walking or POV to reach PT stations to go to work?

This paper contributes to the literature in three major ways. To begin with, it adds
to the research of mode choice for reaching PT stations to go to work in California and
other regions where traffic congestion is a problem. Furthermore, this study evaluates the
relative relevance of several elements in walking to work and gives insight into the policy
implementation priorities in California and other places with similar conditions. It also
demonstrates that important factors have irregularly complex relationships, corroborating
the scant data in the literature and providing recommendations for California planning
approaches. Finally, this study demonstrates the significant role of trip time to work and its
combined effect with population density in POV usage to reach PT stations to go to work,
as well as the significant role of population density and its interaction impacts with trip
time to PT stations in walking reach PT stations to go to work, thereby bolstering the case
for dense urban development.
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The following is a breakdown of how the research is structured. The data, variables,
and modeling technique are introduced in Section 2. Section 3 discusses the models’ results
and performance, variable importance, relationships with travel mode to reach PT stations
in California, and interaction impacts on mode choice to reach PT stations. The final section
highlights the most important findings and explains policy implications.

2. Materials and Methods

In this study, two associative and predictive BN models were developed to reveal
the complex relationships between various variables and PT-related walking and PT-
related POVs in California. As previously mentioned, the 2017 U.S. National Household
Travel Survey (2017 NHTS) was employed to conduct this study. These models discover
interaction effects of independent factors on the usage of walking and POVs to reach PT
stations to go to work and assess the relevance of variables in predicting the choice of
walking and POV to reach PT stations to go to work. Figure 1 shows the flowchart of this
study.

Figure 1. This study’s flowchart.

2.1. Data

This study used data from the 2017 U.S. National Household Travel Survey (2017
NHTS). The NHTS has now become the country’s rich source of information on commuting
by U.S. citizens throughout all fifty states. This commute behavior database contains
journeys taken in a variety of ways and for a variety of reasons. The data for the NHTS
are gathered from a randomly selected sample of U.S. households. The NHTS supplies
data about individual and household travel behavior patterns. These patterns are related
to sociodemographic and geographic factors that impact travel choices and are used to
estimate demand. More information can be found at https://nhts.ornl.gov (accessed on
1 January 2020).

This study looked into how Californians utilize walking and privately owned vehicles
(POVs) to reach public transportation to go to work. Thus, the study team mined the whole
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dataset for relevant data. Public transport in this study refers to public or commuter buses,
subways, elevated and light rail, and Amtrak. The following criteria were used to choose
the samples: (1) residence in California, (2) the use of public transportation to commute to
work, and (3) the use of walking and POVs to reach public transportation to go to work.
A total of 796 samples were used to create the final dataset. A total of 19 input variables
and 2 target variables were included in the dataset (walk to reach public transit stations
and POVs to reach public transit stations). Table 2 lists all of the variables utilized in this
investigation.

Table 2. Variables employed in this study.

Variable Acronym Category/Data Range

Health condition attributes (HCA)

Medical condition results in using bus or subway
less frequently CONDPUB yes (1) and no (2)

Medical condition results in giving up driving CONDRIVE yes (1) and no (2)

Opinion of health HEALTH excellent (1), very good (2), good (3), fair (4), poor
(5)

Medical condition, length of time MEDCOND6 6 months or less (1), more than 6 months (2), and
all life (3)

Built environment characteristics (BEC)

Category of population density (persons per
square mile) in the census block group of the

household’s home location
HBPPOPDN

0–99 (50), 100–499 (300), 500–999 (750), 1000–1999
(1500), 2000–3999 (3000), 4000–9999 (7000),

10,000–24,999 (17,000), and 25,000–999,999 (30,000)

Individual and household attributes (IHA)

Educational attainment EDUC

Less than a high school graduate (1), high school
graduate or GED (2), some college or associated

degree (3), bachelor’s degree (4), graduate degree
or professional degree (5)

Household income HHFAMINC

less than USD 10,000 (1), 10,000–14,999 (2),
15,000–24,999 (3), 25,000–34,999 (4), 35,000–49,999

(5), 50,000–74,999 (6), 75,000–99,999 (7),
100,000–124,999 (8), 125,000–149,999 (9),

150,000–199,999 (10) and 200,000 or more (11)

Age AGE 16–75

Gender SEX male (1) and female (2)

Owned vehicle longer than a year VEHOWNED yes (1) and no (2)

Number of workers in household WRKCOUNT 1–4

Work attributes (WA)

Flexibility in work arrival time FLEXTIME yes (1) and no (2)

Count of days working from home in the last
month WKFMHMXX 0–16

Full-time or part-time worker WKFTPT full time (1) and part time (2)

Option of working from home WKRMHM yes (1) and no (2)
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Table 2. Cont.

Variable Acronym Category/Data Range

Work trip attributes (WTA)

Road network distance, in miles, between
respondent’s home location and work location DISTTOWK17 0–399.07

Minutes spent commuting to work PUBTIME 0–50

Trip time to work in minutes TIMETOWK 0–170

Trip time to transit station in minutes TRACCTM 0–70

Target variable

Walk as mode used to reach public transit station TRACC_WLK yes (1) and no (2)

POV as mode used to reach public transit station TRACC_POV yes (1) and no (2)

In the NHTS dataset, several active modes, including bikes and e-scooters, and passive
modes, such as ride-sourcing, are not considered to reach PT stations. This can be regarded
as a drawback of the NHTS dataset and a limitation of this study. Furthermore, although the
literature suggests that the most critical BE factors for examining the first mile connection to
PT stations are population density and distance to the PT station, the NHTS only considers
population density. As a result, the only BE input in this investigation was population
density, whose direct and significant impacts on travel behavior and mode choice for PT
have been widely proven.

2.2. Bayesian Network (BN) Model

Bayesian Networks (BNs), commonly referred to as belief networks, are probabilistic
network models that combine probability and graph theory. The following are the main
two methods for acquiring BN structures. The first method is based on expert judgment
and uses subjective causal links to construct a BN structure. The second method, known
as structural learning, uses certain learning models to detect and guide the edges on a
given dataset. By using the latter method, this investigation creates the BN architecture.
There are numerous data-driven techniques, including Nave Bayesian Networks (NBN),
Augmented Naive Bayesian Networks (ABN), and Tree Augmented Networks (TAN). TAN
learning generates qualitative BN-depicting variables’ interacting dependencies, which
aids in generating insights into the crucial elements that influence travel mode choice.
Friedman et al. [92] have noted that TAN beats naive Bayes, while retaining the calculation
efficiency and stability that naive Bayes is known for. Other data-driven configuration
algorithms are less effective and reliable than TAN [93]. In this research, the analysis was
performed using SPSS Modeller, which is worth noting.

A BN that is a labelled directed acyclic graph (DAG) represents a joint probability
distribution over a collection of random inputs Q. Let Q = {B1, . . . Bi, D}, where i refers
to the number of inputs, the inputs A1, . . . Ai are the variables, and D signifies the class
variable (mode to public transit station).

Assume a network structure in which the target variable serves as the root, namely
∏ D = ∅, and every variable possesses the target variable as its sole parent, namely
∏ Bj = {D} for 1 ≤ j ≤ i. Equation (1) characterizes a BN as a single joint probability
distribution across Q.

P(B1, . . . Bi, D).
i

∏
j=1

P(Bj > | D) (1)

When ∏ Bj has just one parent for any and all Bj apart from one variable-lacking
parent, the DAG over {B1, . . . Ai} is a tree. When there is only one j so that π(j) = 0, and
therefore there is no series j1, . . . js so that π(jh) = jh+1 given j ≤ h ≤ s and π(js) = i1,
there is indeed a function π that can describe a tree across B1, . . . Bi. Such a function
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describes a tree network where ∏ Bj =
{

D, . . . Bπ(j)

}
if π(i) > 0, and ∏ Bj = {D} if

π(j) = 0.
It is an optimization challenge to learn a TAN structure. Chow and Liu [94], who em-

ployed conditional mutual information between characteristics, offered a broad technique
for solving this problem. The following is a definition of the function:

IM
(

Bj, Bh
∣∣D)

= ∑
bjj ,bhj ,dj

P
(

bjj, bhj, dj

)
log

P(bjj, bhj

∣∣∣dj)

P(bjj

∣∣∣dj)P(bhj

∣∣∣dj)
(2)

where IM denotes the conditional mutual information, bjj is the jth state of variable Bj, bhj
is the jth state of variable Bh, dj is the jth state of “mode choice to transit station”. The
optimization challenge of learning a TAN structure is to develop a tree characterizing
function across B1, . . . Bi that maximises the log-likelihood.

3. Results

3.1. Models’ Results and Performance

Two Bayesian Network (BN) models were developed in this study to predict the choice
of walking and POVs to reach PT stations among Californians. To develop these models,
the structure type of the BN models was the TAN algorithm and the parameter learning
method was Bayes adjustment. It is worth mentioning that the data were split into train
and test partitions with a ratio of 80:20 before the models’ development. The training
partition was used to build the models, whereas the test partition was utilized to evaluate
the created model using unseen data. The BN models were used to (1) determine the
importance of variables in predicting the choice of walking and POVs to reach PT stations,
(2) determine relationships with travel mode to reach PT stations in California, and (3)
identify the interaction effects of independent variables on the use of walking and POVs to
reach PT stations. The structures of the BN models developed in this study are shown in
Figure 2.

Figure 2. BNs’ structure: associations between the travel modes to reach public transport and their
most important variables and mediators as identified by the BN model. (a) BN model for walking to
reach public transit station; (b) BN model for POV to reach public transit station.

The performance of the two BN models is shown in Table 3. Both models achieved
a high accuracy in both the training and testing phases. In addition, the accuracies of the
training and testing phases are almost similar, which implies the stability of both models.
The models’ performance also was assessed using receiver operating characteristic (ROC)
diagrams (Figure 3). The ROC curve depicts the sensitivity–specificity trade-off. Models
with curves nearer to the top-left corner perform much better. A random model is expected
to yield diagonal points (sensitivity = specificity) as a reference point. The nearer the curve
is to the ROC space’s 45 degree diagonal, the less accurate the test becomes. As can be seen,
both models indicated a great performance for both classes (yes and no).
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Table 3. Models’ performance.

Model
Train Test

Correct (%) Wrong (%) Correct (%) Wrong (%)

TRACC_WALK 94.94 5.06 94.48 5.52
TRACC_POV 96.52 3.48 96.93 3.07

Figure 3. Receiver operating characteristic graphs for the BN models developed in this study.

3.2. Variable Importance

Table 4 shows the significance of all independent variables in forecasting travel mode
to reach public transit stations. In addition, the cumulative impact of four types of factors
is shown in Table 5. For walking, the results showed that work trip attributes (WTA)
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dominated the prediction of mode choice to reach PT stations in California. For POV,
individual and household attributes (IHA) largely influenced the forecast of mode choice
to use PT. Especially, the predictive power of all the WTAs was 0.58. The combined
contribution of IHA variables was 0.33 for POVs.

Table 4. Importance of the various types of variables.

Factor Type Variable Walk POV

Health condition attributes (HCA)

HCA CONDPUB 0.03 0.04
HCA CONDRIVE 0.02 0.04
HCA HEALTH 0.02 0.05
HCA MEDCOND6 0.02 0.04

Built environment characteristics (BEC)

BEC HBPPOPDN 0.03 0.12

Individual and household attributes (IHA)

IHA EDUC 0.05 0.05
IHA HHFAMINC 0.07 0.05
IHA AGE 0.05 0.08
IHA SEX 0.02 0.05
IHA VEHOWNED 0.02 0.03
IHA WRKCOUNT 0.06 0.07

Work attributes (WA)

WA FLEXTIME 0.02 0.07
WA WKFMHMXX 0.00 0.00
WA WKFTPT 0.00 0.06

Work trip attributes (WTA)

WTA DISTTOWK17 0.03 0.03
WTA PUBTIME 0.04 0.03
WTA TIMETOWK 0.05 0.09
WTA TRACCTM 0.42 0.07
WTA WKRMHM 0.04 0.03

Table 5. Cumulative importance of factors.

Factor Type
Cumulative Importance

Walk POV

Health condition attributes
(HCA) 0.10 0.17

Built environment
characteristics (BEC) 0.03 0.12

Work trip attributes (WTA) 0.58 0.25
Work attributes (WA) 0.02 0.13

Individual and household
attributes (IHA) 0.27 0.33

Sum 1.00 1.00

In terms of the WTAs’ impact on choosing the walking mode to reach PT stations, the
trip time to the transit station (TRACCTM) was the most important variable in predicting
walking choice to the PT station. Previous research has found a negative association
between distance to transit stations and nonmotorized travel behavior [95–97]. As a result,
it was expected that the time spent traveling to the transit station would emerge as the most
relevant factor in predicting the likelihood of walking to the transit station. Individuals
who walk to reach PT stations to go to work may place a different value on their time.
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People’s gender, income, family responsibilities, and other factors can all contribute to this
difference [98]. As a result of these distinctions, different levels of sensitivity to walking
time to PT stations may emerge.

In California, the population density (HBPPOPDN) has a 0.12 predictive power for
POV usage to reach PT stations. The transport mode to the transit station is heavily influ-
enced by population density [99]. In high-density areas, active transportation modalities
are commonly used to reach transit stops. On the other hand, cars are the most prevalent
form of transportation to transit stations in low-density areas.

3.3. Relationships with Travel Mode to Reach Public Transit Stations in California

In this section, the non-linear associations of the most important variable of walking
and POVs to reach PT stations and the prediction of occurrence of these travel modes are
discussed. It is vital to determine these complex relationships since it helps to identify the
relevant impact ranges of these factors. According to the results of the BN models, the
most important factor for predicting walking adoption to reach PT stations was the trip
time to the transit station (TRACCTM), while the population density of participants’ house
location (HBPPOPDN) was chosen as the most important predictor of POV adoption to
reach PT stations.

Figure 4 displays the relationships mentioned above. When the average time to reach
PT stations is around 10 min, Californians are more inclined to walk to the transit stations.
If the typical commute duration to PT stations is around 40 min, Californians are less likely
to walk to PT stations. This study’s results are consistent with Sun and Yin [100] findings,
which revealed that shorter travel times and shorter distances to PT stations might increase
the likelihood of walking to them.

Figure 4. Non-linear relationship between the most important variable in each model and prediction
of the travel mode choice to reach public transit stations. (a) Prediction of the walking choice to get to
public transit; (b) prediction of the POV choice to get to public transit.

If the participants’ dwelling is in a densely populated area (e.g., 7000–30,000 persons
per square mile), it is unlikely that they will utilize a POV. In contrast, if the dwelling
units are in a low-density region (e.g., 750 persons per square mile), POV is more likely
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to be used. These findings corroborate those of Nigro, Bertolini and Moccia [99], which
found that population density influences the mode of transportation used to access PT
stations. Combining the results of the time to the transit station (for the walking model) and
population density (for the POV model), when the time to the transit station is less than
10 min or the population density in the household’s home location is 7000–30,000 persons
per square mile, walking to reach PT stations could be increased by densifying land use
around PT stations.

3.4. Interaction Impacts on Mode Choice to Reach Public Transit Stationsr

The strong negative connections between travel time to transit stations and walking to
each PT stations suggest that, if the trip duration to transit stations can be reduced, walking
will become more popular. The BN model revealed that another variable, population
density (HBPPOPDN), mediates the effect of trip time to reach public transit stations
(TRACCTM) on walking to PT stations (Figure 5a). Figure 5a illustrates the combined
influence of these two variables on forecasting walking to reach PT stations in California.
Walking is more probable when the trip time to the PT stations is less than 10 min. These
lower trip times to transit stations occur in high density areas (e.g., 7000–30,000 persons
per square mile). This means that the TRACCTM’s negative relationship with the walking
level to the transit station is amplified by HBPPOPDN. The influence of trip time to
transit stations on walking to PT stations is mediated more by a population density of
17,000 persons per square mile than by other HBPPOPDN values.

Figure 5. Associations between key variables and travel mode choice to reach public transit stations
mediated by various variables. (a) The combined influence of population density and trip time to
reach public transit stations on forecasting walking to reach PT stations; (b) The combined influence
of population density and trip time to work on forecasting usage of POV to reach PT stations.

The substantial negative correlations between participants’ housing population density
and their usage of POVs to reach PT stations show that if people reside in high-density
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areas with integrated public transportation, they will be discouraged from using POVs.
Another variable, trip time to work (TIMETOWK), was found to mediate the impact of
population density (HBPPOPDN) on using POVs to reach PT stations in the BN model
(Figure 5b). The joint impact of these two variables on predicting POV usage to reach PT
stations in California is shown in Figure 4b. In high-density locations, using POVs to reach
PT stations is less likely (e.g., 7000–30,000 persons per square mile). When the commute
time to work is between 42 and 57 min, lower trips using POVs occur. This suggests that
TIMETOWK strengthens the HBPPOPDN’s negative association with POV usage to reach
the transport stations. It is worth noticing that a 57 min commute to work has a greater
mediation effect than other TIMETOWK values on the effect of population density on not
utilizing POVs to reach PT stations.

4. Discussions

The time it takes to walk to PT stops or stations is the most essential factor in people’s
choice to walk. Furthermore, it was shown that population density acted as a mediator for
this effect. The POV model revealed population density as the most relevant component,
which was mediated by the commute time to work. The findings are crucial because they
show that planners should concentrate on population density, public transportation, and
job locations when contemplating the replacement of POVs with walking to commute to
PT stations for work. However, it is critical that the BN’s outcomes are unaffected by the
following variables: the health condition attributes, the individual and household attributes,
the work trip attributes (excluding the trip time to work and trip time to PT stations), and
the work attributes. Previous studies have deemed these factors relevant [17,29,31–33,36,47].
However, this research suggests that they may not be necessary to take into consideration.
In terms of health condition attributes, a very limited number of studies show that this
factor is essential in travel mode choice [1,47,48]. Additionally, this study did not find a
substantial effect of these factors on mode choice for PT stations. This may be due to the
fact that health conditions may have a greater impact on leisure walking in California than
on work-related walking.

As mentioned above, population density emerged as the most important factor of
POV usage to reach PT stations and a mediator of the effects of travel time to PT stations
on walking to PT stations. This finding reflects the importance of this factor in studying of
travel mode choice to PT stations. Several previous studies also stressed the relevance of
this factor on travel mode choice [38,39]. Furthermore, according to Nigro, Bertolini and
Moccia [99], population density has a significant impact on the mode of transportation to
the nearest PT facility.

The density of the population is seen as a crucial component in the success of a PT
operation [101]. Population density, particularly for pedestrians, is commonly cited as a
factor that encourages more people to use PT. However, research has shown inconsistent
outcomes. Higher densities tend to have a more compact land use and closer destinations,
which makes walking more possible and beneficial. However, although some research
suggests that short-distance walking to reach PT stations is dependent on density, wealth
and other societal variables are progressively taking precedence after populational density
reaches a certain level [102,103].

5. Conclusions and Recommendations

This study employed a Bayesian Network model to examine the relative importance
of health condition, work trip, work, and individual and household attributes in trip mode
choice to transit stations to go to work and their complex relationships with travel mode
choice to transit stations to go to work in California, using data from 2017 NHTS. It is
among the first to investigate how population density in California mediates the effects of
time to transit stations on walking to transit stations to go to work and how time to go to
work mediates the influences of population density on POV usage to reach PT stations to
go to work. The findings provide positive consequences regarding densifying population
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and land uses around transit stations for walking level growth to reach public transport
stations in developed countries’ cities, especially car-oriented ones.

The outcomes indicate that work trip attributes play a dominant role in walking to
reach PT stations in California. People that have a short trip time to transit stations to go to
work are more likely to walk to PT stations. This variable is the most important predictor in
the walking model, contributing to more than 0.40 of the predictive power. With a decrease
in the trip time to transit stations in California, the walking level for first-mile connections to
reach the workplace is expected to grow faster. The determination of efficacious approaches
to accelerate growth is key to sustainable transportation in California.

The factors that affect PT-related walking are similar to those that impact urban walk-
ing in general, especially in terms of built environment features [104,105]. The appealing
aspects of PT, as well as the PT services offered and the transportation options available to
individuals, influence how far someone is willing to walk to reach public transportation.

Land use and transportation strategies can be utilized by planners to change the
built environment. The setting wherein PT-related walking takes place is defined by non-
modifiable characteristics (e.g., alternative travel alternatives, culture, purpose, physical
ability, and the weather). However, urban or transportation planning experts can employ
changeable influences (such as density, land use, infrastructure quality, and trip length) to
impact the distances people would walk to PT stations to reach the workplace.

Planners should consider promoting high-density development because this has a
strong effect on PT-related walking lengths. This development makes the origins and
endpoints much closer and increases the transit stations density. These may reduce the
distance that individuals must walk to transit stations. Density has also been connected to
enhanced walkability, which can attract more walkers by raising the proportion of people
who walk to reach transit stations or broadening the catchment area around a transit station.

Typically, people prefer to walk to transit stations through more walkable routes [106].
The higher level of walkability and, in turn, shorter PT-related walking can be achieved
through a higher level of street connectivity and lower-level detours [17,18,87,89]. In
addition, the tolerable walking travel time of pedestrians to transit stations can be increased
if the walkability at the micro-level is improved [107]. Street elements, such as lighting,
seating areas, trees, and width of sidewalk, may increase the distances people are willing
to walk [22,108,109].

Along with these built-environment solutions, various car-restrictive policies could
assist to reduce the use of POVs for general use and reaching transit stations. These
regulations can be implemented particularly well in high-density areas, as low-density
areas may lack enough PT and walking infrastructures. As a result, the only way to reach
transit stations is by using a POV.

This study has a few limitations that deserve comment. First, this study utilized the
2017 NHTS dataset, which does not consider biking, micro-mobility, and ride-sourcing
exclusively as modes to reach PT stations. Thus, future studies can apply the BN algorithm
considering these modes and using different datasets. Second, the NHTS includes a few
variables of the built environment. Hence, it is recommended that future studies develop
BN models using more comprehensive datasets. Finally, this study was conducted in a
car-oriented setting. Thus, people who use walking to reach public transit stations were
underrepresented. Therefore, the outcomes of this study should be transferred cautiously
to other cities, especially European ones.
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