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Divergence Measures: Mathematical Foundations and
Applications in Information-Theoretic and Statistical Problems
Igal Sason 1,2
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Technology, Haifa 3200003, Israel; eeigal@technion.ac.il; Tel.: +972-4-8294699

2 Faculty of Mathematics, Technion—Israel Institute of Technology, Haifa 3200003, Israel

Data science, information theory, probability theory, statistical learning, statistical
signal processing, and other related disciplines greatly benefit from non-negative measures
of dissimilarity between pairs of probability measures. These are known as divergence
measures, and exploring their mathematical foundations and diverse applications is of
significant interest (see, e.g., [1–10] and references therein).

The present Special Issue, entitled Divergence Measures: Mathematical Foundations and
Applications in Information-Theoretic and Statistical Problems, is focused on the study of the
mathematical properties and applications of classical and generalized divergence measures
from an information-theoretic perspective. It includes eight original contributions on the
subject, which mainly deal with two key generalizations of the relative entropy: namely,
the Rényi divergence and the important class of f -divergences. The Rényi divergence
was introduced by Rényi as a generalization of relative entropy (relative entropy is a.k.a.
the Kullback–Leibler divergence [11]), and it found numerous applications in information
theory, statistics, and other related fields [12,13]. The notion of an f -divergence, which
was independently introduced by Ali-Silvey [14], Csiszár [15–17], and Morimoto [18],
is a useful generalization of some well-known divergence measures, retaining some of
their major properties, including data-processing inequalities. It should be noted that,
although the Rényi divergence of an arbitrary order is not an f -divergence, it is a one-to-
one transformation of a subclass of f -divergences, so it inherits some of the key properties
of f -divergences. We next describe the eight contributions in this Special Issue, and their
relation to the literature.

Relative entropy is a well-known asymmetric and unbounded divergence measure [11],
whereas the Jensen-Shannon divergence [19,20] (a.k.a. the capacitory discrimination [21]) is
a bounded symmetrization of relative entropy, which does not require the pair of probability
measures to have matching supports. It has the pleasing property that its square root is
a distance metric, and it also belongs to the class of f -divergences. The latter implies, in
particular, that the Jensen–Shannon divergence satisfies data-processing inequalities. The
first paper in this Special Issue [22], authored by Nielsen, studies generalizations of the
Jensen–Shannon divergence and the Jensen–Shannon centroid. The work in [22] further
suggests an iterative algorithm for the numerical computation of the Jensen–Shannon-type
centroids for a set of probability densities belonging to a mixture family in information
geometry. This includes the case of calculating the Jensen–Shannon centroid of a set of
categorical distributions or normalized histograms.

Many of Shannon’s information measures appear naturally in the context of horse
gambling, when the gambler’s utility function is the expected log-wealth. The second
paper [23], coauthored by Bleuler, Lapidoth, and Pfister, shows that, under a more general
family of utility functions, gambling also provides a context for some of Rényi’s information
measures. Motivated by a horse betting problem in the setting where the gambler has
side information, a new conditional Rényi divergence is introduced in [23]. It is compared
with the conditional Rényi divergences by Csiszár and Sibson, and the properties of all
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the three are studied in depth by the authors, with an emphasis on the behavior of these
conditional divergence measures under data processing. In the same way that Csiszár’s
and Sibson’s conditional divergences lead to the respective dependence measures, so does
the new conditional divergence in [23] lead to the Lapidoth–Pfister mutual information.
The authors further demonstrate that their new conditional divergence measure is also
related to the Arimoto–Rényi conditional entropy and to Arimoto’s measure of dependence.
In the second part of [23], the horse betting problem is analyzed where, instead of Kelly’s
expected log-wealth criterion, a more general family of power-mean utility functions is
considered. The key role in the analysis is played by the Rényi divergence, and the setting
where the gambler has access to side information provides an operational meaning to the
Lapidoth–Pfister mutual information. Finally, a universal strategy for independent and
identically distributed races is presented in [23] which, without knowing the winning prob-
abilities or the parameter of the utility function, asymptotically maximizes the gambler’s
utility function.

The relative entropy [11] and the chi-squared divergence [24] are classical divergence
measures which play a key role in information theory, statistical machine learning, signal
processing, statistics, probability theory, and many other branches of mathematics. These
divergence measures are fundamental in problems pertaining to source and channel coding,
large deviations theory, tests of goodness-of-fit and independence in statistics, expectation–
maximization iterative algorithms for estimating a distribution from an incomplete data,
and other sorts of problems. They also belong to the generalized class of f -divergences. The
third paper [25], by Nishiyama and Sason, studies integral relations between the relative
entropy and chi-squared divergence, the implications of these relations, their information-
theoretic applications, and some generalizations pertaining to the rich class of f -divergences.
Applications that are studied in [25] include lossless compression, the method of types and
large deviations, strong data-processing inequalities, bounds on contraction coefficients and
maximal correlation, and the convergence rate to the stationarity of a type of discrete-time
Markov chain.

The interesting interplay between inequalities and information theory has a rich his-
tory, with notable examples that include the relationship between the Brunn–Minkowski
inequality and the entropy power inequality, transportation-cost inequalities and their
tight connections to information theory, logarithmic Sobolev inequalities and the entropy
method, inequalities for matrices obtained from the nonnegativity of relative entropy,
connections between information inequalities and finite groups, combinatorics, and other
fields of mathematics (see, e.g., [26–30]). The fourth paper by Reeves [31] considers ap-
plications of a two-moment inequality for the integral of fractional power of a function
between zero and one. The first contribution of this paper provides an upper bound on
the Rényi entropy of a random vector, expressed in terms of the two different moments.
This also recovers some previous results based on maximum entropy distributions under a
single moment constraint. The second contribution in [31] is a method for upper bound-
ing mutual information in terms of certain integrals with respect to the variance of the
conditional density.

Basic properties of an f -divergence are its non-negativity, convexity in the pair of
probability measures, and the satisfiability of data-processing inequalities as a result of
the convexity of the function f (and by the requirement that f vanishes at 1). These
properties lead to f -divergence inequalities, and to information-theoretic applications
(see, e.g., [4,10,32–37]). Furthermore, tightened (strong) data-processing inequalities for
f -divergences have been of recent interest (see, e.g., [38–42]). The fifth paper [43], authored
by Melbourne, is focused on the study of how stronger convexity properties of the function
f imply improvements of classical f -divergence inequalities. It provides a systematic
study of strongly convex divergences, and it quantifies how the convexity of a divergence
generator f influences the behavior of the f -divergence. It proves that every (so-called)
strongly convex divergence dominates the square of the total variation, which extends
the classical bound provided by the chi-squared divergence. Its analysis also yields im-
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provements of Bayes risk f -divergence inequalities, consequently achieving a sharpening
of Pinsker’s inequality.

Divergences between probability measures are often used in statistics and data science
in order to perform inference under models of various types. The corresponding methods
extend the likelihood paradigm, and suggest inference in settings of minimum distance
or minimum divergence, while allowing some tradeoff between efficiency and robustness.
The sixth paper [44], authored by Broniatowski, considers a subclass of f -divergences,
which contains most of the classical inferential tools, and which is indexed by a single scalar
parameter. This class belongs to the family of f -divergences, and is usually referred to as the
power divergence class, which has been considered by Cressie and Read [7,45]. The work
in [44] states that the most commonly used minimum divergence estimators are maximum-
likelihood estimators for suitably generalized bootstrapped sampling schemes. It also
considers optimality of associated goodness-of-fit tests under such sampling schemes.

The seventh paper by Verdú [46] is a research and tutorial paper on error exponents
and α-mutual information. Similarly to [23] (the second paper in this Special Issue), it
relates to Rényi’s generalization of the relative entropy and mutual information. In light of
the landmark paper by Shannon [47], it is well known that the analysis of the fundamental
limits of noisy communication channels in the regime of vanishing error probability (by
letting the blocklength of the code tend to infinity) leads to the introduction of the channel
capacity as the maximal rate which enables to obtain reliable communication. The channel
capacity is expressed in terms of a basic information measure: the input–output mutual
information maximized over the input distribution. Furthermore, in the regime of fixed
nonzero error probability, the asymptotic fundamental limit is a function of not only the
channel capacity but the channel dispersion, which is expressible in terms of an information
measure: the variance of the information density obtained with the capacity-achieving
distribution [48]. In the regime of exponentially decreasing error probability, at fixed code
rate below capacity, the analysis of the fundamental limits has gone through three distinct
phases: (1) the early days of information theory and the error exponents analysis at MIT;
(2) expressions for the error exponent functions by incorporating the relative entropy; and
(3) the error exponent research with Rényi information measures. Thanks to Csiszár’s
realization of the relevance of Rényi’s information measures to this problem [32], the
third phase has found a way to express the error exponent functions as a function of
generalized information measures, and also to solve the associated optimization problems
in a systematic way. While in the absence of cost constraints, the problem reduces to
finding the maximal α-mutual information, cost constraints make the problem significantly
more challenging. The remained gaps in the interrelationships between three approaches,
in the general case of cost-constrained encoding, motivated the present study in [46].
Furthermore, no systematic approach has been suggested so far for solving the attendant
optimization problems by exploiting the specific structure of the information functions. The
work by Verdú in [46] closes those gaps, while proposing a simple method to maximize the
Augustin–Csiszár mutual information of order α under cost constraints [32,49], by means of
the maximization of the α-mutual information subject to an exponential average constraint.

In statistical inference, the information-theoretic performance limits can often be
expressed in terms of a statistical divergence measure between the underlying statistical
models (see, e.g., [50] and references therein). As the data dimension grows, computing the
statistics involved in decision making and the attendant performance limits (divergence
measures) face complexity and stability challenges. Dimensionality reduction addresses
these challenges at the expense of compromising performance because of the attendant
loss of information. The eighth and last paper in the present Special Issue [51] considers
linear dimensionality reduction, such that the divergence between the models is maximally
preserved. Specifically, this work is focused on Gaussian models where discriminant
analysis under several f -divergence measures are considered. The optimal design of the
linear transformation of the data onto a lower-dimensional subspace is characterized for
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zero-mean Gaussian models, and numerical algorithms are employed to find the design for
general Gaussian models with non-zero means.

It is our hope that the reader will find interest in the eight original contributions of
this Special Issue, and that these works will stimulate further research in the study of the
mathematical foundations and applications of divergence measures.

Acknowledgments: The Guest Editor is grateful to all the authors for their contributions to this
Special Issue, to the anonymous peer-reviewers for their timely reports and constructive feedback.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: The Jensen–Shannon divergence is a renown bounded symmetrization of the
Kullback–Leibler divergence which does not require probability densities to have matching supports.
In this paper, we introduce a vector-skew generalization of the scalar α-Jensen–Bregman divergences
and derive thereof the vector-skew α-Jensen–Shannon divergences. We prove that the vector-skew
α-Jensen–Shannon divergences are f -divergences and study the properties of these novel divergences.
Finally, we report an iterative algorithm to numerically compute the Jensen–Shannon-type centroids
for a set of probability densities belonging to a mixture family: This includes the case of the
Jensen–Shannon centroid of a set of categorical distributions or normalized histograms.

Keywords: Bregman divergence; f -divergence; Jensen–Bregman divergence; Jensen diversity;
Jensen–Shannon divergence; capacitory discrimination; Jensen–Shannon centroid; mixture family;
information geometry; difference of convex (DC) programming

1. Introduction

Let (X ,F , µ) be a measure space [1] where X denotes the sample space, F the σ-algebra of
measurable events, and µ a positive measure; for example, the measure space defined by the Lebesgue
measure µL with Borel σ-algebra B(Rd) for X = Rd or the measure space defined by the counting
measure µc with the power set σ-algebra 2X on a finite alphabet X . Denote by L1(X ,F , µ) the
Lebesgue space of measurable functions, P1 the subspace of positive integrable functions f such that∫
X f (x)dµ(x) = 1 and f (x) > 0 for all x ∈ X , and P1 the subspace of non-negative integrable functions

f such that
∫
X f (x)dµ(x) = 1 and f (x) ≥ 0 for all x ∈ X .

We refer to the book of Deza and Deza [2] and the survey of Basseville [3] for an introduction
to the many types of statistical divergences met in information sciences and their justifications.
The Kullback–Leibler Divergence (KLD) KL : P1 × P1 → [0, ∞] is an oriented statistical distance
(commonly called the relative entropy in information theory [4]) defined between two densities
p and q (i.e., the Radon–Nikodym densities of µ-absolutely continuous probability measures P and
Q) by

KL(p : q) :=
∫

p log
p
q

dµ. (1)

Although KL(p : q) ≥ 0 with equality iff. p = q µ-a. e. (Gibb’s inequality [4]), the KLD may
diverge to infinity depending on the underlying densities. Since the KLD is asymmetric, several
symmetrizations [5] have been proposed in the literature.

7



Entropy 2020, 22, 221

A well-grounded symmetrization of the KLD is the Jensen–Shannon Divergence [6] (JSD), also
called capacitory discrimination in the literature (e.g., see [7]):

JS(p, q) :=
1
2

(
KL
(

p :
p + q

2

)
+ KL

(
q :

p + q
2

))
, (2)

=
1
2

∫ (
p log

2p
p + q

+ q log
2q

p + q

)
dµ = JS(q, p). (3)

The Jensen–Shannon divergence can be interpreted as the total KL divergence to the average
distribution p+q

2 . The Jensen–Shannon divergence was historically implicitly introduced in [8]
(Equation (19)) to calculate distances between random graphs. A nice feature of the Jensen–Shannon
divergence is that this divergence can be applied to densities with arbitrary support (i.e., p, q ∈ P1 with
the convention that 0 log 0 = 0 and log 0

0 = 0); moreover, the JSD is always upper bounded by log 2.
Let Xp = supp(p) and Xq = supp(q) denote the supports of the densities p and q, respectively, where
supp(p) := {x ∈ X : p(x) > 0}. The JSD saturates to log 2 whenever the supports Xp and Xp are
disjoints. We can rewrite the JSD as

JS(p, q) = h
(

p + q
2

)
− h(p) + h(q)

2
, (4)

where h(p) = −
∫

p log pdµ denotes Shannon’s entropy. Thus, the JSD can also be interpreted as the
entropy of the average distribution minus the average of the entropies.

The square root of the JSD is a metric [9] satisfying the triangle inequality, but the square root of
the JD is not a metric (nor any positive power of the Jeffreys divergence, see [10]). In fact, the JSD can
be interpreted as a Hilbert metric distance, meaning that there exists some isometric embedding of
(X ,
√

JS) into a Hilbert space [11,12]. Other principled symmetrizations of the KLD have been proposed
in the literature: For example, Naghshvar et al. [13] proposed the extrinsic Jensen–Shannon divergence
and demonstrated its use for variable-length coding over a discrete memoryless channel (DMC).

Another symmetrization of the KLD sometimes met in the literature [14–16] is the Jeffreys
divergence [17,18] (JD) defined by

J(p, q) := KL(p : q) + KL(q : p) =
∫
(p− q) log

p
q

dµ = J(q, p). (5)

However, we point out that this Jeffreys divergence lacks sound information-theoretical justifications.
For two positive but not necessarily normalized densities p̃ and q̃, we define the extended

Kullback–Leibler divergence as follows:

KL+( p̃ : q̃) := KL( p̃ : q̃) +
∫

q̃dµ−
∫

p̃dµ, (6)

=
∫ (

p̃ log
p̃
q̃
+ q̃− p̃

)
dµ. (7)

The Jensen–Shannon divergence and the Jeffreys divergence can both be extended to positive
(unnormalized) densities without changing their formula expressions:

JS+( p̃, q̃) :=
1
2

(
KL+

(
p̃ :

p̃ + q̃
2

)
+ KL+

(
q̃ :

p̃ + q̃
2

))
, (8)

=
1
2

(
KL
(

p̃ :
p̃ + q̃

2

)
+ KL

(
q̃ :

p̃ + q̃
2

))
= JS( p̃, q̃), (9)

J+( p̃, q̃) := KL+( p̃ : q̃) + KL+( p̃ : q̃) =
∫
( p̃− q̃) log

p̃
q̃

dµ = J( p̃, q̃). (10)

8
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However, the extended JS+ divergence is upper-bounded by ( 1
2 log 2)(

∫
( p̃ + q̃)dµ) = 1

2 (µ(p) +
µ(q)) log 2 instead of log 2 for normalized densities (i.e., when µ(p) + µ(q) = 2).

Let (pq)α(x) := (1− α)p(x) + αq(x) denote the statistical weighted mixture with component
densities p and q for α ∈ [0, 1]. The asymmetric α-skew Jensen–Shannon divergence can be defined for
a scalar parameter α ∈ (0, 1) by considering the weighted mixture (pq)α as follows:

JSα
a (p : q) := (1− α)KL(p : (pq)α) + αKL(q : (pq)α), (11)

= (1− α)
∫

p log
p

(pq)α
dµ + α

∫
q log

q
(pq)α

dµ. (12)

Let us introduce the α-skew K-divergence [6,19] Kα(p : q) by:

Kα (p : q) := KL (p : (1− α)p + αq) = KL (p : (pq)α) . (13)

Then, both the Jensen–Shannon divergence and the Jeffreys divergence can be rewritten [20] using
Kα as follows:

JS (p, q) =
1
2

(
K 1

2
(p : q) + K 1

2
(q : p)

)
, (14)

J (p, q) = K1(p : q) + K1(q : p), (15)

since (pq)1 = q, KL(p : q) = K1(p : q) and (pq) 1
2
= (qp) 1

2
.

We can thus define the symmetric α-skew Jensen–Shannon divergence [20] for α ∈ (0, 1) as follows:

JSα(p, q) :=
1
2

Kα(p : q) +
1
2

Kα(q : p) = JSα(q, p). (16)

The ordinary Jensen–Shannon divergence is recovered for α = 1
2 .

In general, skewing divergences (e.g., using the divergence Kα instead of the KLD) have been
experimentally shown to perform better in applications like in some natural language processing
(NLP) tasks [21].

The α-Jensen–Shannon divergences are Csiszár f -divergences [22–24]. An f -divergence is defined
for a convex function f , strictly convex at 1, and satisfies f (1) = 0 as:

I f (p : q) =
∫

q(x) f
(

p(x)
q(x)

)
dx ≥ f (1) = 0. (17)

We can always symmetrize f -divergences by taking the conjugate convex function f ∗(x) = x f ( 1
x )

(related to the perspective function): I f+ f ∗(p, q) is a symmetric divergence. The f -divergences are
convex statistical distances which are provably the only separable invariant divergences in information
geometry [25], except for binary alphabets X (see [26]).

The Jeffreys divergence is an f -divergence for the generator f (x) = (x − 1) log x, and the
α-Jensen–Shannon divergences are f -divergences for the generator family fα(x) = − log((1 −
α) + αx) − x log((1 − α) + α

x ). The f -divergences are upper-bounded by f (0) + f ∗(0). Thus, the
f -divergences are finite when f (0) + f ∗(0) < ∞.

The main contributions of this paper are summarized as follows:

• First, we generalize the Jensen–Bregman divergence by skewing a weighted separable
Jensen–Bregman divergence with a k-dimensional vector α ∈ [0, 1]k in Section 2. This yields
a generalization of the symmetric skew α-Jensen–Shannon divergences to a vector-skew parameter.
This extension retains the key properties for being upper-bounded and for application to densities
with potentially different supports. The proposed generalization also allows one to grasp a better
understanding of the “mechanism” of the Jensen–Shannon divergence itself. We also show how to

9
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directly obtain the weighted vector-skew Jensen–Shannon divergence from the decomposition of
the KLD as the difference of the cross-entropy minus the entropy (i.e., KLD as the relative entropy).

• Second, we prove that weighted vector-skew Jensen–Shannon divergences are f -divergences
(Theorem 1), and show how to build families of symmetric Jensen–Shannon-type divergences
which can be controlled by a vector of parameters in Section 2.3, generalizing the work of [20] from
scalar skewing to vector skewing. This may prove useful in applications by providing additional
tuning parameters (which can be set, for example, by using cross-validation techniques).

• Third, we consider the calculation of the Jensen–Shannon centroids in Section 3 for densities
belonging to mixture families. Mixture families include the family of categorical distributions and
the family of statistical mixtures sharing the same prescribed components. Mixture families
are well-studied manifolds in information geometry [25]. We show how to compute the
Jensen–Shannon centroid using a concave–convex numerical iterative optimization procedure [27].
The experimental results graphically compare the Jeffreys centroid with the Jensen–Shannon
centroid for grey-valued image histograms.

2. Extending the Jensen–Shannon Divergence

2.1. Vector-Skew Jensen–Bregman Divergences and Jensen Diversities

Recall our notational shortcut: (ab)α := (1− α)a + αb. For a k-dimensional vector α ∈ [0, 1]k,
a weight vector w belonging to the (k− 1)-dimensional open simplex ∆k, and a scalar γ ∈ (0, 1), let us
define the following vector skew α-Jensen–Bregman divergence (α-JBD) following [28]:

JBα,γ,w
F (θ1 : θ2) :=

k

∑
i=1

wiBF ((θ1θ2)αi : (θ1θ2)γ) ≥ 0, (18)

where BF is the Bregman divergence [29] induced by a strictly convex and smooth generator F:

BF(θ1 : θ2) := F(θ1)− F(θ2)− 〈θ1 − θ2,∇F(θ2)〉, (19)

with 〈·, ·〉 denoting the Euclidean inner product 〈x, y〉 = x>y (dot product). Expanding the Bregman
divergence formulas in the expression of the α-JBD and using the fact that

(θ1θ2)αi − (θ1θ2)γ = (γ− αi)(θ1 − θ2), (20)

we get the following expression:

JBα,γ,w
F (θ1 : θ2) =

(
k

∑
i=1

wiF ((θ1θ2)αi )

)
− F ((θ1θ2)γ)−

〈
k

∑
i=1

wi(γ− αi)(θ1 − θ2),∇F((θ1θ2)γ)

〉
. (21)

The inner product term of Equation (21) vanishes when

γ =
k

∑
i=1

wiαi := ᾱ. (22)

Thus, when γ = ᾱ (assuming at least two distinct components in α so that γ ∈ (0, 1)), we get the
simplified formula for the vector-skew α-JBD:

JBα,w
F (θ1 : θ2) =

(
k

∑
i=1

wiF ((θ1θ2)αi )

)
− F ((θ1θ2)ᾱ) . (23)

10
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This vector-skew Jensen–Bregman divergence is always finite and amounts to a Jensen diversity [30]
JF induced by Jensen’s inequality gap:

JBα,w
F (θ1 : θ2) = JF((θ1θ2)α1 , . . . , (θ1θ2)αk ; w1, . . . , wk) :=

k

∑
i=1

wiF ((θ1θ2)αi )− F ((θ1θ2)ᾱ) ≥ 0. (24)

The Jensen diversity is a quantity which arises as a generalization of the cluster variance when
clustering with Bregman divergences instead of the ordinary squared Euclidean distance; see [29,30]
for details. In the context of Bregman clustering, the Jensen diversity has been called the Bregman
information [29] and motivated by rate distortion theory: Bregman information measures the minimum
expected loss when encoding a set of points using a single point when the loss is measured using
a Bregman divergence. In general, a k-point measure is called a diversity measure (for k > 2), while
a distance/divergence is the special case of a 2-point measure.

Conversely, in 1D, we may start from Jensen’s inequality for a strictly convex function F:

k

∑
i=1

wiF(θi) ≥ F

(
k

∑
i=1

wiθi

)
. (25)

Let us notationally write [k] := {1, . . . , k}, and define θm := mini∈[k]{θi}i and θM :=
maxi∈[k]{θi}i > θm (i.e., assuming at least two distinct values). We have the barycenter θ̄ = ∑i wiθi =:
(θmθM)γ which can be interpreted as the linear interpolation of the extremal values for some γ ∈ (0, 1).
Let us write θi = (θmθM)αi for i ∈ [k] and proper values of the αis. Then, it comes that

θ̄ = ∑
i

wiθi, (26)

= ∑
i

wi(θmθM)αi , (27)

= ∑
i

wi((1− αi)θm + αiθM), (28)

=

(
1−∑

i
wiαi

)
θm + ∑

i
αiwiθM, (29)

= (θmθM)∑i wiαi = (θmθM)γ, (30)

so that γ = ∑i wiαi = ᾱ.

2.2. Vector-Skew Jensen–Shannon Divergences

Let f (x) = x log x − x be a strictly smooth convex function on (0, ∞). Then, the Bregman
divergence induced by this univariate generator is

B f (p : q) = p log
p
q
+ q− p = kl+(p : q), (31)

the extended scalar Kullback–Leibler divergence.
We extend the scalar-skew Jensen–Shannon divergence as follows: JSα,w(p : q) := JBα,ᾱ,w

−h (p : q)
for h, the Shannon’s entropy [4] (a strictly concave function [4]).

Definition 1 (Weighted vector-skew (α, w)-Jensen–Shannon divergence). For a vector α ∈ [0, 1]k and
a unit positive weight vector w ∈ ∆k, the (α, w)-Jensen–Shannon divergence between two densities p, q ∈ P̄1 is
defined by:

JSα,w(p : q) :=
k

∑
i=1

wiKL((pq)αi : (pq)ᾱ) = h ((pq)ᾱ)−
k

∑
i=1

wih ((pq)αi ) ,

11
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with ᾱ = ∑k
i=1 wiαi, where h(p) = −

∫
p(x) log p(x)dµ(x) denotes the Shannon entropy [4] (i.e., −h is

strictly convex).

This definition generalizes the ordinary JSD; we recover the ordinary Jensen–Shannon divergence
when k = 2, α1 = 0, α2 = 1, and w1 = w2 = 1

2 with ᾱ = 1
2 : JS(p, q) = JS(0,1),( 1

2 , 1
2 )(p : q).

Let KLα,β(p : q) := KL((pq)α : (pq)β). Then, we have KLα,β(q : p) = KL1−α,1−β(p : q). Using this
(α, β)-KLD, we have the following identity:

JSα,w(p : q) =
k

∑
i=1

wiKLαi ,ᾱ(p : q), (32)

=
k

∑
i=1

wiKL1−αi ,1−ᾱ(q : p) = JS1k−α,w(q : p), (33)

since ∑k
i=1 wi(1− αi) = 1k − α = 1− ᾱ, where 1k = (1, . . . , 1) is a k-dimensional vector of ones.

A very interesting property is that the vector-skew Jensen–Shannon divergences are
f -divergences [22].

Theorem 1. The vector-skew Jensen–Shannon divergences JSα,w(p : q) are f -divergences for the generator
fα,w(u) = ∑k

i=1 wi(αiu + (1− αi)) log (1−αi)+αiu
(1−ᾱ)+ᾱu with ᾱ = ∑k

i=1 wiαi.

Proof. First, let us observe that the positively weighted sum of f -divergences is an f -divergence:
∑k

i=1 wi I fi
(p : q) = I f (p : q) for the generator f (u) = ∑k

i=1 wi fi(u).
Now, let us express the divergence KLα,β(p : q) as an f -divergence:

KLα,β(p : q) = I fα,β
(p : q), (34)

with generator

fα,β(u) = (αu + 1− α) log
(1− α) + αu
(1− β) + βu

. (35)

Thus, it follows that

JSα,w(p : q) =
k

∑
i=1

wiKL((pq)αi : (pq)ᾱ), (36)

=
k

∑
i=1

wi I fαi ,ᾱ(p : q), (37)

= I∑k
i=1 wi fαi ,ᾱ

(p : q). (38)

Therefore, the vector-skew Jensen–Shannon divergence is an f -divergence for the following
generator:

fα,w(u) =
k

∑
i=1

wi(αiu + (1− αi)) log
(1− αi) + αiu
(1− ᾱ) + ᾱu

, (39)

where ᾱ = ∑k
i=1 wiαi.

When α = (0, 1) and w = ( 1
2 , 1

2 ), we recover the f -divergence generator for the JSD:

fJS(u) =
1
2

log
1

1
2 + 1

2 u
+

1
2

u log
u

1
2 + 1

2 u
, (40)

=
1
2

(
log

2
1 + u

+ u log
2u

1 + u

)
. (41)

12
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Observe that f ∗α,w(u) = u fα,w(1/u) = f1−α,w(u), where 1− α := (1− α1, . . . , 1− αk).
We also refer the reader to Theorem 4.1 of [31], which defines skew f -divergences from any

f -divergence.

Remark 1. Since the vector-skew Jensen divergence is an f -divergence, we easily obtain Fano and Pinsker
inequalities following [32], or reverse Pinsker inequalities following [33,34] (i.e., upper bounds for the vector-skew
Jensen divergences using the total variation metric distance), data processing inequalities using [35], etc.

Next, we show that KLα,β (and JSα,w) are separable convex divergences. Since the f -divergences
are separable convex, the KLα,β divergences and the JSα,w divergences are separable convex. For the
sake of completeness, we report a simplex explicit proof below.

Theorem 2 (Separable convexity). The divergence KLα,β(p : q) is strictly separable convex for α 6= β and
x ∈ Xp ∩ Xq.

Proof. Let us calculate the second partial derivative of KLα,β(x : y) with respect to x, and show that it
is strictly positive:

∂2

∂x2 KLα,β(x : y) =
(β− α)2y2

(xy)α(xy)2
β

> 0, (42)

for x, y > 0. Thus, KLα,β is strictly convex on the left argument. Similarly, since KLα,β(y : x) =

KL1−α,1−β(x : y), we deduce that KLα,β is strictly convex on the right argument. Therefore, the
divergence KLα,β is separable convex.

It follows that the divergence JSα,w(p : q) is strictly separable convex, since it is a convex
combination of weighted KLαi ,ᾱ divergences.

Another way to derive the vector-skew JSD is to decompose the KLD as the difference of the
cross-entropy h× minus the entropy h (i.e., KLD is also called the relative entropy):

KL(p : q) = h×(p : q)− h(p), (43)

where h×(p : q) := −
∫

p log qdµ and h(p) := h×(p : p) (self cross-entropy). Since α1h×(p1 :
q) + α2h×(p2 : q) = h×(α1 p1 + α2 p2 : q) (for α2 = 1− α1), it follows that

JSα,w(p : q) :=
k

∑
i=1

wiKL((pq)αi : (pq)γ), (44)

=
k

∑
i=1

wi
(
h×((pq)αi : (pq)γ)− h((pq)αi )

)
, (45)

= h×
(

k

∑
i=1

wi(pq)αi : (pq)γ

)
−

k

∑
i=1

wih ((pq)αi ) . (46)

Here, the “trick” is to choose γ = ᾱ in order to “convert” the cross-entropy into an entropy:
h×(∑k

i=1 wi(pq)αi : (pq)γ) = h((pq)ᾱ) when γ = ᾱ. Then, we end up with

JSα,w(p : q) = h ((pq)ᾱ)−
k

∑
i=1

wih ((pq)αi ) . (47)
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When α = (α1, α2) with α1 = 0 and α2 = 0 and w = (w1, w2) = ( 1
2 , 1

2 ), we have ᾱ = 1
2 , and we

recover the Jensen–Shannon divergence:

JS(p : q) = h
(

p + q
2

)
− h(p) + h(q)

2
. (48)

Notice that Equation (13) is the usual definition of the Jensen–Shannon divergence, while
Equation (48) is the reduced formula of the JSD, which can be interpreted as a Jensen gap for Shannon
entropy, hence its name: The Jensen–Shannon divergence.

Moreover, if we consider the cross-entropy/entropy extended to positive densities p̃ and q̃:

h×+( p̃ : q̃) = −
∫
( p̃ log q̃ + q̃)dµ, h+( p̃) = h×+( p̃ : p̃) = −

∫
( p̃ log p̃ + p̃)dµ, (49)

we get:

JSα,w
+ ( p̃ : q̃) =

k

∑
i=1

wiKL+(( p̃q̃)αi : ( p̃q̃)γ) = h+(( p̃q̃)ᾱ)−
k

∑
i=1

wih+(( p̃q̃)αi ). (50)

Next, we shall prove that our generalization of the skew Jensen–Shannon divergence to
vector-skewing is always bounded. We first start by a lemma bounding the KLD between two
mixtures sharing the same components:

Lemma 1 (KLD between two w-mixtures). For α ∈ [0, 1] and β ∈ (0, 1), we have:

KLα,β(p : q) = KL
(
(pq)α : (pq)β

)
≤ log max

{
1− α

1− β
,

α

β

}
.

Proof. For p(x), q(x) > 0, we have

(1− α)p(x) + αq(x)
(1− β)p(x) + βq(x)

≤ max
{

1− α

1− β
,

α

β

}
. (51)

Indeed, by considering the two cases α ≥ β (or equivalently, 1− α ≤ 1− β) and α ≤ β (or
equivalently, 1− α ≥ 1− β), we check that (1− α)p(x) ≤ max

{
1−α
1−β , α

β

}
(1− β)p(x) and αq(x) ≤

max
{

1−α
1−β , α

β

}
βq(x). Thus, we have (1−α)p(x)+αq(x)

(1−β)p(x)+βq(x) ≤ max
{

1−α
1−β , α

β

}
. Therefore, it follows that:

KL
(
(pq)α : (pq)β

)
≤
∫
(pq)α log max

{
1− α

1− β
,

α

β

}
dµ = log max

{
1− α

1− β
,

α

β

}
. (52)

Notice that we can interpret log max
{

1−α
1−β , α

β

}
= max{log 1−α

1−β , log α
β} as the ∞-Rényi

divergence [36,37] between the following two two-point distributions: (α, 1 − α) and (β, 1 − β).
See Theorem 6 of [36].

A weaker upper bound is KL((pq)α : (pq)β) ≤ log 1
β(1−β)

. Indeed, let us form a partition of the
sample space X into two dominance regions:

• Rp := {x ∈ X : q(x) ≤ p(x)} and
• Rq := {x ∈ X : q(x) > p(x)}.

We have (pq)α(x) = (1− α)p(x) + αq(x) ≤ p(x) for x ∈ Rp and (pq)α(x) ≤ q(x) for x ∈ Rq.
It follows that

KL
(
(pq)α : (pq)β

)
≤
∫

Rp
(pq)α(x) log

p(x)
(1− β)p(x)

dµ(x) +
∫

Rq
(pq)α(x) log

q(x)
βq(x)

dµ(x).
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That is, KL((pq)α : (pq)β) ≤ − log(1− β)− log β = log 1
β(1−β)

. Notice that we allow α ∈ {0, 1}
but not β to take the extreme values (i.e., β ∈ (0, 1)).

In fact, it is known that for both α, β ∈ (0, 1), KL
(
(pq)α : (pq)β

)
amount to compute a Bregman

divergence for the Shannon negentropy generator, since {(pq)γ : γ ∈ (0, 1)} defines a mixture
family [38] of order 1 in information geometry. Hence, it is always finite, as Bregman divergences are
always finite (but not necessarily bounded).

By using the fact that

JSα,w(p : q) =
k

∑
i=1

wiKL ((pq)αi : (pq)ᾱ) , (53)

we conclude that the vector-skew Jensen–Shannon divergence is upper-bounded:

Lemma 2 (Bounded (w, α)-Jensen–Shannon divergence). JSα,w is bounded by log 1
ᾱ(1−ᾱ)

where ᾱ =

∑k
i=1 wiαi ∈ (0, 1).

Proof. We have JSα,w(p : q) = ∑i wiKL ((pq)αi : (pq)ᾱ). Since 0 ≤ KL ((pq)αi : (pq)ᾱ) ≤ log 1
ᾱ(1−ᾱ)

,
it follows that we have

0 ≤ JSα,w(p : q) ≤ log
1

ᾱ(1− ᾱ)
.

Notice that we also have

JSα,w(p : q) ≤∑
i

wi log max
{

1− αi
1− ᾱ

,
αi
ᾱ

}
.

The vector-skew Jensen–Shannon divergence is symmetric if and only if for each index i ∈ [k]
there exists a matching index σ(i) such that ασ(i) = 1− αi and wσ(i) = wi.

For example, we may define the symmetric scalar α-skew Jensen–Shannon divergence as

JSα
s (p, q) =

1
2

KL((pq)α : (pq) 1
2
) +

1
2

KL((pq)1−α : (pq) 1
2
), (54)

=
1
2

∫
(pq)α log

(pq)α

(pq) 1
2

dµ +
1
2

∫
(pq)1−α log

(pq)1−α

(pq) 1
2

dµ, (55)

=
1
2

∫
(qp)1−α log

(qp)1−α

(qp) 1
2

dµ ++
1
2

∫
(qp)α log

(qp)α

(qp) 1
2

dµ, (56)

= h((pq) 1
2
)− h((pq)α) + h((pq)1−α)

2
, (57)

=: JSα
s (q, p), (58)

since it holds that (ab)c = (ba)1−c for any a, b, c ∈ R. Note that JSα
s (p, q) 6= JSα(p, q).

Remark 2. We can always symmetrize a vector-skew Jensen–Shannon divergence by doubling the dimension of
the skewing vector. Let α = (α1, . . . , αk) and w be the vector parameters of an asymmetric vector-skew JSD,
and consider α′ = (1− α1, . . . , 1− αk) and w to be the parameters of JSα′ ,w. Then, JS(α,α′),( w

2 , w
2 ) is a symmetric

skew-vector JSD:

JS(α,α′),( w
2 , w

2 )(p : q) :=
1
2

JSα,w(p : q) +
1
2

JSα′ ,w(p : q), (59)

=
1
2

JSα,w(p : q) +
1
2

JSα,w(q : p) = JS(α,α′),( w
2 , w

2 )(q : p). (60)
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Since the vector-skew Jensen–Shannon divergence is an f -divergence for the generator fα,w (Theorem 1),

we can take generator f s
w,α(u) =

fw,α(u)+ f ∗w,α(u)
2 to define the symmetrized f -divergence, where f ∗w,α(u) =

u fw,α(
1
u ) denotes the convex conjugate function. When fα,w yields a symmetric f -divergence I fα,w , we can apply

the generic upper bound of f -divergences (i.e., I f ≤ f (0) + f ∗(0)) to get the upper bound on the symmetric
vector-skew Jensen–Shannon divergences:

I fα,w(p : q) ≤ fα,w(0) + f ∗α,w(0), (61)

≤
k

∑
i=1

wi

(
(1− αi) log

1− αi
1− ᾱ

+ αi log
αi
ᾱ

)
, (62)

since

f ∗α,w(u) = u fα,w

(
1
u

)
, (63)

=
k

∑
i=1

wi((1− αi)u + αi) log
(1− αi)u + αi
(1− ᾱ)u + ᾱ

. (64)

For example, consider the ordinary Jensen–Shannon divergence with w =
(

1
2 , 1

2

)
and α = (0, 1). Then,

we find JS(p : w) = I f
(0,1),( 1

2 , 1
2 )
(p : q) ≤ 1

2 log 2 + 1
2 log 2 = log 2, the usual upper bound of the JSD.

As a side note, let us notice that our notation (pq)α allows one to compactly write the following
property:

Property 1. We have q = (qq)λ for any λ ∈ [0, 1], and ((p1 p2)λ(q1q2)λ)α = ((p1q1)α(p2q2)α)λ for any
α, λ ∈ [0, 1].

Proof. Clearly, q = (1− λ)q + λq =: ((qq)λ) for any λ ∈ [0, 1]. Now, we have

((p1 p2)λ(q1q2)λ)α = (1− α)(p1 p2)λ + α(q1q2)λ, (65)

= (1− α)((1− λ)p1 + λp2) + α((1− λ)q1 + λq2), (66)

= (1− λ)((1− α)p1 + αq1) + λ((1− α)p2 + αq2), (67)

= (1− λ)(p1q1)α + λ(p2q2)α, (68)

= ((p1q1)α(p2q2)α)λ. (69)

2.3. Building Symmetric Families of Vector-Skewed Jensen–Shannon Divergences

We can build infinitely many vector-skew Jensen–Shannon divergences. For example, consider
α =

(
0, 1, 1

3

)
and w =

(
1
3 , 1

3 , 1
3

)
. Then, ᾱ = 1

3 + 1
9 = 4

9 , and

JSα,w(p : q) = h
(
(pq) 4

9

)
−

h(p) + h(q) + h
(
(pq) 1

3

)

3
6= JSα,w(q : p). (70)

Interestingly, we can also build infinitely many families of symmetric vector-skew Jensen–Shannon
divergences. For example, consider these two examples that illustrate the construction process:

• Consider k = 2. Let (w, 1− w) denote the weight vector, and α = (α1, α2) the skewing vector.
We have ᾱ = wα1 + (1− w)α2 = α2 + w(α1 − α2). The vector-skew JSD is symmetric iff. w =

16
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1− w = 1
2 (with ᾱ = α1+α2

2 ) and α2 = 1− α1. In that case, we have ᾱ = 1
2 , and we obtain the

following family of symmetric Jensen–Shannon divergences:

JS(α,1−α),( 1
2 , 1

2 )(p, q) = h
(
(pq) 1

2

)
− h((pq)α) + h((pq)1−α)

2
, (71)

= h
(
(pq) 1

2

)
− h((pq)α) + h((qp)α)

2
= JS(α,1−α),( 1

2 , 1
2 )(q, p). (72)

• Consider k = 4, weight vector w =
(

1
3 , 1

3 , 1
6 , 1

6

)
, and skewing vector α = (α1, 1− α1, α2, 1− α2)

for α1, α2 ∈ (0, 1). Then, ᾱ = 1
2 , and we get the following family of symmetric vector-skew JSDs:

JS(α1,α2)(p, q) = h
(
(pq) 1

2

)
− 2h((pq)α1) + 2h((pq)1−α1) + h((pq)α2) + h((pq)1−α2)

6
, (73)

= h
(
(pq) 1

2

)
− 2h((pq)α1) + 2h((qp)α1) + h((pq)α2) + h((qp)α2)

6
, (74)

= JS(α1,α2)(q, p). (75)

• We can similarly carry on the construction of such symmetric JSDs by increasing the
dimensionality of the skewing vector.

In fact, we can define

JSα,w
s (p, q) := h

(
(pq) 1

2

)
−

k

∑
i=1

wi
h((pq)αi ) + h((pq)1−αi )

2
=

k

∑
i=1

wiJS
αi
s (p, q), (76)

with

JSα
s (p, q) := h

(
(pq) 1

2

)
− h((pq)α) + h((pq)1−α)

2
. (77)

3. Jensen–Shannon Centroids on Mixture Families

3.1. Mixture Families and Jensen–Shannon Divergences

Consider a mixture family in information geometry [25]. That is, let us give a prescribed set
of D + 1 linearly independent probability densities p0(x), . . . , pD(x) defined on the sample space X .
A mixture familyM of order D consists of all strictly convex combinations of these component densities:

M :=

{
m(x; θ) :=

D

∑
i=1

θi pi(x) +

(
1−

D

∑
i=1

θi

)
p0(x) : θi > 0,

D

∑
i=1

θi < 1

}
. (78)

For example, the family of categorical distributions (sometimes called “multinouilli” distributions)
is a mixture family [25]:

M =

{
mθ(x) =

D

∑
i=1

θiδ(x− xi) +

(
1−

D

∑
i=1

θi

)
δ(x− x0)

}
, (79)

where δ(x) is the Dirac distribution (i.e., δ(x) = 1 for x = 0 and δ(x) = 0 for x 6= 0). Note that the
mixture family of categorical distributions can also be interpreted as an exponential family.

Notice that the linearly independent assumption on probability densities is to ensure to have an
identifiable model: θ ↔ m(x; θ).

The KL divergence between two densities of a mixture family M amounts to a Bregman
divergence for the Shannon negentropy generator F(θ) = −h(mθ) (see [38]):

KL(mθ1 : mθ2) = BF(θ1 : θ2) = B−h(mθ)
(θ1 : θ2). (80)
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On a mixture manifoldM, the mixture density (1− α)mθ1 + αmθ2 of two mixtures mθ1 and mθ2

ofM also belongs toM:
(1− α)mθ1 + αmθ2 = m(θ1θ2)α

∈ M, (81)

where we extend the notation (θ1θ2)α := (1− α)θ1 + αθ2 to vectors θ1 and θ2: (θ1θ2)
i
α = (θi

1θi
2)α.

Thus, the vector-skew JSD amounts to a vector-skew Jensen diversity for the Shannon negentropy
convex function F(θ) = −h(mθ):

JSα,w(mθ1 : mθ2) =
k

∑
i=1

wiKL
(
(mθ1 mθ2)αi : (mθ1 mθ2)ᾱ

)
, (82)

=
k

∑
i=1

wiKL
(

m(θ1θ2)αi
: m(θ1θ2)ᾱ

)
, (83)

=
k

∑
i=1

wiBF ((θ1θ2)αi : (θ1θ2)ᾱ) , (84)

= JBα,ᾱ,w
F (θ1 : θ2), (85)

=
k

∑
i=1

wiF ((θ1θ2)αi )− F ((θ1θ2)ᾱ) , (86)

= h(m(θ1θ2)ᾱ
)−

k

∑
i=1

wih
(

m(θ1θ2)αi

)
. (87)

3.2. Jensen–Shannon Centroids

Given a set of n mixture densities mθ1 , . . . , mθn of M, we seek to calculate the skew-vector
Jensen–Shannon centroid (or barycenter for non-uniform weights) defined as mθ∗ , where θ∗ is the
minimizer of the following objective function (or loss function):

L(θ) :=
n

∑
j=1

ωjJSα,w(mθk : mθ), (88)

where ω ∈ ∆n is the weight vector of densities (uniform weight for the centroid and non-uniform
weight for a barycenter). This definition of the skew-vector Jensen–Shannon centroid is a generalization
of the Fréchet mean (the Fréchet mean may not be unique, as it is the case on the sphere for two
antipodal points for which their Fréchet means with respect to the geodesic metric distance form
a great circle) [39] to non-metric spaces. Since the divergence JSα,w is strictly separable convex, it
follows that the Jensen–Shannon-type centroids are unique when they exist.

Plugging Equation (86) into Equation (88), we get that the calculation of the Jensen–Shannon
centroid amounts to the following minimization problem:

L(θ) =
n

∑
j=1

ωj

(
k

∑
i=1

wiF((θjθ)αi )− F
(
(θjθ)ᾱ

)
)

. (89)

This optimization is a Difference of Convex (DC) programming optimization, for which we
can use the ConCave–Convex procedure [27,40] (CCCP). Indeed, let us define the following two
convex functions:

A(θ) =
n

∑
j=1

k

∑
i=1

ωjwiF((θjθ)αi ), (90)

B(θ) =
n

∑
j=1

ωjF
(
(θjθ)ᾱ

)
. (91)

18



Entropy 2020, 22, 221

Both functions A(θ) and B(θ) are convex since F is convex. Then, the minimization problem of
Equation (89) to solve can be rewritten as:

min
θ

A(θ)− B(θ). (92)

This is a DC programming optimization problem which can be solved iteratively by initializing θ

to an arbitrary value θ(0) (say, the centroid of the θis), and then by updating the parameter at step t
using the CCCP [27] as follows:

θ(t+1) = (∇B)−1(∇A(θ(t))). (93)

Compared to a gradient descent local optimization, there is no required step size (also called
“learning” rate) in CCCP.

We have ∇A(θ) = ∑n
j=1 ∑k

i=1 ωjwiαi∇F((θjθ)αi ) and ∇B(θ) = ∑n
j=1 ωjᾱ∇F

(
(θjθ)ᾱ

)
.

The CCCP converges to a local optimum θ∗ where the support hyperplanes of the function graphs
of A and B at θ∗ are parallel to each other, as depicted in Figure 1. The set of stationary points is
{θ : ∇A(θ) = ∇B(θ)}. In practice, the delicate step is to invert∇B. Next, we show how to implement
this algorithm for the Jensen–Shannon centroid of a set of categorical distributions (i.e., normalized
histograms with all non-empty bins).

minθ A(θ)−B(θ)

∇A(θt+1) = ∇B(θt) A

B

θθ0 θ1 θ2 θ3θ4

Figure 1. The Convex–ConCave Procedure (CCCP) iteratively updates the parameter θ by aligning
the support hyperplanes at θ. In the limit case of convergence to θ∗, the support hyperplanes at θ∗ are
parallel to each other. CCCP finds a local minimum.

3.2.1. Jensen–Shannon Centroids of Categorical Distributions

To illustrate the method, let us consider the mixture family of categorical distributions [25]:

M =

{
mθ(x) =

D

∑
i=1

θiδ(x− xi) +

(
1−

D

∑
i=1

θi

)
δ(x− x0)

}
. (94)

The Shannon negentropy is

F(θ) = −h(mθ) =
D

∑
i=1

θi log θi +

(
1−

D

∑
i=1

θi

)
log

(
1−

D

∑
i=1

θi

)
. (95)

We have the partial derivatives

∇F(θ) =
[

∂

∂θi

]

i
,

∂

∂θi
F(θ) = log

θi

1−∑D
j=1 θj

. (96)
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Inverting the gradient ∇F requires us to solve the equation ∇F(θ) = η so that we get θ =

(∇F)−1(η). We find that

∇F∗(η) = (∇F)−1(η) =
1

1 + ∑D
j=1 exp(ηj)

[exp(ηi)]i, θi = (∇F−1(η))i =
exp(ηi)

1 + ∑D
j=1 exp(ηj)

, ∀i ∈ [D]. (97)

Table 1 summarizes the dual view of the family of categorical distributions, either interpreted as
an exponential family or as a mixture family.

We have JS(p1, p2) = JF(θ1, θ2) for p1 = mθ1 and p2 = mθ2 , where

JF(θ1 : θ2) =
F(θ1) + F(θ2)

2
− F

(
θ1 + θ2

2

)
, (98)

is the Jensen divergence [40]. Thus, to compute the Jensen–Shannon centroid of a set of n densities
p1, . . . , pn of a mixture family (with pi = mθi ), we need to solve the following optimization problem
for a density p = mθ :

min
p ∑

i
JS(pi, p), (99)

min
θ

∑
i

JF(θi, θ), (100)

min
θ

∑
i

F(θi) + F(θ)
2

− F
(

θi + θ

2

)
, (101)

≡ min
θ

1
2

F(θ)− 1
n ∑

i
F
(

θi + θ

2

)
:= E(θ). (102)

The CCCP algorithm for the Jensen–Shannon centroid proceeds by initializing θ(0) = 1
n ∑i θi

(center of mass of the natural parameters), and iteratively updates as follows:

θ(t+1) = (∇F)−1

(
1
n ∑

i
∇F

(
θi + θ(t)

2

))
. (103)

We iterate until the absolute difference |E(θ(t))− E(θ(t+1))| between two successive θ(t) and θ(t+1)

goes below a prescribed threshold value. The convergence of the CCCP algorithm is linear [41] to
a local minimum that is a fixed point of the equation

θ = MH

(
θ1 + θ

2
, . . . ,

θn + θ

2

)
, (104)

where MH(v1, . . . , vn) := H−1(∑n
i=1 H(vi)) is a vector generalization of the formula of the

quasi-arithmetic means [30,40] obtained for the generator H = ∇F. Algorithm 1 summarizes the
method for approximating the Jensen–Shannon centroid of a given set of categorical distributions
(given a prescribed number of iterations). In the pseudo-code, we used the notation (t+1)θ instead of
θ(t+1) in order to highlight the conversion procedures of the natural parameters to/from the mixture
weight parameters by using superscript notations for coordinates.
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Figure 2 displays the results of the calculations of the Jeffreys centroid [18] and the Jensen–Shannon
centroid for two normalized histograms obtained from grey-valued images of Lena and Barbara.
Figure 3 show the Jeffreys centroid and the Jensen–Shannon centroid for the Barbara image and its
negative image. Figure 4 demonstrates that the Jensen–Shannon centroid is well defined even if the
input histograms do not have coinciding supports. Notice that on the parts of the support where only
one distribution is defined, the JS centroid is a scaled copy of that defined distribution.
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Figure 2. The Jeffreys centroid (grey histogram) and the Jensen–Shannon centroid (black histogram)
for two grey normalized histograms of the Lena image (red histogram) and the Barbara image (blue
histogram). Although these Jeffreys and Jensen–Shannon centroids look quite similar, observe that
there is a major difference between them in the range [0, 20] where the blue histogram is zero.
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Figure 3. The Jeffreys centroid (grey histogram) and the Jensen–Shannon centroid (black histogram)
for the grey normalized histogram of the Barbara image (red histogram) and its negative image (blue
histogram which corresponds to the reflection around the vertical axis x = 128 of the red histogram).
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Figure 4. Jensen–Shannon centroid (black histogram) for the clamped grey normalized histogram of
the Lena image (red histograms) and the clamped gray normalized histogram of Barbara image (blue
histograms). Notice that on the part of the sample space where only one distribution is non-zero, the JS
centroid scales that histogram portion.

3.2.2. Special Cases

Let us now consider two special cases:

• For the special case of D = 1, the categorical family is the Bernoulli family, and we have
F(θ) = θ log θ + (1− θ) log(1− θ) (binary negentropy), F′(θ) = log θ

1−θ (and F′′(θ) = 1
θ(1−θ)

> 0)
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and (F′)−1(η) = eη

1+eη . The CCCP update rule to compute the binary Jensen–Shannon centroid
becomes

θ(t+1) = (F′)−1

(
∑

i
wiF′

(
θ(t) + θi

2

))
. (105)

• Since the skew-vector Jensen–Shannon divergence formula holds for positive densities:

JS+α,w
( p̃ : q̃) =

k

∑
i=1

wiKL+(( p̃q̃)αi : (( p̃q̃)ᾱ), (106)

=
k

∑
i=1

wi




KL(( p̃q̃)αi : (( p̃q̃)ᾱ) +
∫
( p̃q̃)ᾱdµ−

k

∑
i=1

wi

∫
( p̃q̃)αi dµ

︸ ︷︷ ︸
=
∫
( p̃q̃)ᾱdµ




, (107)

= JSα,w( p̃ : q̃), (108)

we can relax the computation of the Jensen–Shannon centroid by considering 1D separable
minimization problems. We then normalize the positive JS centroids to get an approximation of
the probability JS centroids. This approach was also considered when dealing with the Jeffreys’
centroid [18]. In 1D, we have F(θ) = θ log θ − θ, F′(θ) = log θ and (F′)−1(η) = eη .

In general, calculating the negentropy for a mixture family with continuous densities sharing the
same support is not tractable because of the log-sum term of the differential entropy. However, the
following remark emphasizes an extension of the mixture family of categorical distributions:

3.2.3. Some Remarks and Properties

Remark 3. Consider a mixture family m(θ) = ∑D
i=1 θi pi(x) +

(
1−∑D

i=1 θi

)
p0(x) (for a parameter θ

belonging to the D-dimensional standard simplex) of probability densities p0(x), . . . , pD(x) defined respectively
on the supports X0,X1, . . . ,XD. Let θ0 := 1−∑D

i=1 θi. Assume that the support Xis of the pis are mutually
non-intersecting (Xi ∩Xj = ∅ for all i 6= j implying that the D + 1 densities are linearly independent) so that
mθ(x) = θi pi(x) for all x ∈ Xi, and let X = ∪iXi. Consider Shannon negative entropy F(θ) = −h(mθ) as
a strictly convex function. Then, we have

F(θ) = −h(mθ) =
∫

X
mθ(x) log mθ(x), (109)

=
D

∑
i=0

θi

∫

Xi

pi(x) log(θi pi(x))dµ(x), (110)

=
D

∑
i=0

θi log θi −
D

∑
i=0

θih(pi). (111)

Note that the term ∑i θih(pi) is affine in θ, and Bregman divergences are defined up to affine terms so
that the Bregman generator F is equivalent to the Bregman generator of the family of categorical distributions.
This example generalizes the ordinary mixture family of categorical distributions where the pis are distinct
Dirac distributions. Note that when the support of the component distributions are not pairwise disjoint,
the (neg)entropy may not be analytic [42] (e.g., mixture of the convex weighting of two prescribed distinct
Gaussian distributions). This contrasts with the fact that the cumulant function of an exponential family
is always real-analytic [43]. Observe that the term ∑i θih(pi) can be interpreted as a conditional entropy:
∑i θih(pi) = h(X|Θ) where Pr(Θ = i) = θi and Pr(X ∈ S|Θ = i) =

∫
S pi(x)dµ(x).
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Notice that we can truncate an exponential family [25] to get a (potentially non-regular [44]) exponential
family for defining the pis on mutually non-intersecting domains Xis. The entropy of a natural exponential
family {e(x : θ) = exp(x>θ − ψ(θ)) : θ ∈ Θ} with cumulant function ψ(θ) and natural parameter space
Θ is −ψ∗(η), where η = ∇ψ(θ), and ψ∗ is the Legendre convex conjugate [45]: h(e(x : θ)) = −ψ∗(∇ψ(θ)).

In general, the entropy and cross-entropy between densities of a mixture family (whether the
distributions have disjoint supports or not) can be calculated in closed-form.

Property 2. The entropy of a density belonging to a mixture family M is h(mθ) = −F(θ), and the
cross-entropy between two mixture densities mθ1 and mθ2 is h×(mθ1 : mθ2) = −F(θ2)− (θ1 − θ2)

>η2 =

F∗(η2)− θ>1 η2.

Proof. Let us write the KLD as the difference between the cross-entropy minus the entropy [4]:

KL(mθ1 : mθ2) = h×(mθ1 : mθ2)− h(mθ1), (112)

= BF(θ1 : θ2), (113)

= F(θ1)− F(θ2)− (θ1 − θ2)
>∇F(θ2). (114)

Following [45], we deduce that h(mθ) = −F(θ) + c and h×(mθ1 : mθ2) = −F(θ2)− (θ1− θ2)
>η2−

c for a constant c. Since F(θ) = −h(mθ) by definition, it follows that c = 0 and that h×(mθ1 : mθ2) =

−F(θ2)− (θ1 − θ2)
>η2 = F∗(η2)− θ>1 η2 where η = ∇F(θ).

Thus, we can numerically compute the Jensen–Shannon centroids (or barycenters) of a set of
densities belonging to a mixture family. This includes the case of categorical distributions and the
case of Gaussian Mixture Models (GMMs) with prescribed Gaussian components [38] (although in
this case, the negentropy needs to be stochastically approximated using Monte Carlo techniques [46]).
When the densities do not belong to a mixture family (say, the Gaussian family, which is an exponential
family [25]), we face the problem that the mixture of two densities does not belong to the family
anymore. One way to tackle this problem is to project the mixture onto the Gaussian family.
This corresponds to an m-projection (mixture projection) which can be interpreted as a Maximum
Entropy projection of the mixture [25,47]).

Notice that we can perform fast k-means clustering without centroid calculations using
a generalization of the k-means++ probabilistic initialization [48,49]. See [50] for details of the
generalized k-means++ probabilistic initialization defined according to an arbitrary divergence.

Finally, let us notice some decompositions of the Jensen–Shannon divergence and the skew Jensen
divergences.

Remark 4. We have the following decomposition for the Jensen–Shannon divergence:

JS(p1, p2) = h
(

p1 + p2

2

)
− h(p1) + h(p2)

2
, (115)

= h×JS(p1 : p2)− hJS(p2) ≥ 0, (116)

where

h×JS(p1 : p2) = h
(

p1 + p2

2

)
− 1

2
h(p1), (117)

and hJS(p2) = h×JS(p2 : p2) = h(p2) − 1
2 h(p2) = 1

2 h(p2). This decomposition bears some similarity
with the KLD decomposition viewed as the cross-entropy minus the entropy (with the cross-entropy always
upper-bounding the entropy).
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Similarly, the α-skew Jensen divergence

Jα
F(θ1 : θ2) := (F(θ1)F(θ2))α − F ((θ1θ2)α) , α ∈ (0, 1) (118)

can be decomposed as the sum of the information Iα
F(θ1) = (1− α)F(θ1) minus the cross-information Cα

F(θ1 :
θ2) := F ((θ1θ2)α)− αF(θ2):

Jα
F(θ1 : θ2) = Iα

F(θ1)− Cα
F(θ1 : θ2) ≥ 0. (119)

Notice that the information Iα
F(θ1) is the self cross-information: Iα

F(θ1) = Cα
F(θ1 : θ1) = (1− α)F(θ1).

Recall that the convex information is the negentropy where the entropy is concave. For the Jensen–Shannon
divergence on the mixture family of categorical distributions, the convex generator F(θ) = −h(mθ) =

∑D
i=1 θi log θi is the Shannon negentropy.

Finally, let us briefly mention the Jensen–Shannon diversity [30] which extends the Jensen–Shannon
divergence to a weighted set of densities as follows:

JS(p1, . . . , pk; w1, . . . , wk) :=
k

∑
i=1

wiKL(pi : p̄), (120)

where p̄ = ∑k
i=1 wi pi. The Jensen–Shannon diversity plays the role of the variance of a cluster with

respect to the KLD. Indeed, let us state the compensation identity [51]: For any q, we have

k

∑
i=1

wiKL(pi : q) =
k

∑
i=1

wiKL(pi : p̄) + KL( p̄ : q). (121)

Thus, the cluster center defined as the minimizer of ∑k
i=1 wiKL(pi : q) is the centroid p̄, and

k

∑
i=1

wiKL(pi : p̄) = JS(p1, . . . , pk; w1, . . . , wk). (122)

4. Conclusions and Discussion

The Jensen–Shannon divergence [6] is a renown symmetrization of the Kullback–Leibler oriented
divergence that enjoys the following three essential properties:

1. It is always bounded,
2. it applies to densities with potentially different supports, and
3. it extends to unnormalized densities while enjoying the same formula expression.

This JSD plays an important role in machine learning and in deep learning for studying
Generative Adversarial Networks (GANs) [52]. Traditionally, the JSD has been skewed with a scalar
parameter [19,53] α ∈ (0, 1). In practice, it has been experimentally demonstrated that skewing
divergences may significantly improve the performance of some tasks (e.g., [21,54]).

In general, we can symmetrize the KLD KL(p : q) by taking an abstract mean (we require
a symmetric mean M(x, y) = M(y, x) with the in-betweenness property: min{x, y} ≤ M(x, y) ≤
max{x, y}) M between the two orientations KL(p : q) and KL(q : p):

KLM(p, q) := M(KL(p : q), KL(q : p)). (123)

We recover the Jeffreys divergence by taking the arithmetic mean twice (i.e., J(p, q) = 2A(KL(p :
q), KL(q : p)) where A(x, y) = x+y

2 ), and the resistor average divergence [55] by taking the harmonic
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mean (i.e., RKL(p, q) = H(KL(p : q), KL(q : p)) = 2KL(p:q)KL(q:p)
KL(p:q)+KL(q:p) where H(x, y) = 2

1
x +

1
y

). When we

take the limit of Hölder power means, we get the following extremal symmetrizations of the KLD:

KLmin(p : q) = min{KL(p : q), KL(q : p)} = KLmin(q : p), (124)

KLmax(p : q) = max{KL(p : q), KL(q : p)} = KLmax(q : p). (125)

In this work, we showed how to vector-skew the JSD while preserving the above three properties.
These new families of weighted vector-skew Jensen–Shannon divergences may allow one to fine-tune
the dissimilarity in applications by replacing the skewing scalar parameter of the JSD by a vector
parameter (informally, adding some “knobs” for tuning a divergence). We then considered computing
the Jensen–Shannon centroids of a set of densities belonging to a mixture family [25] by using the
convex–concave procedure [27].

In general, we can vector-skew any arbitrary divergence D by using two k-dimensional vectors
α ∈ [0, 1]k and β ∈ [0, 1]k (with α 6= β) by building a weighted separable divergence as follows:

Dα,β,w(p : q) :=
k

∑
i=1

wiD
(
(pq)αi : (pq)βi

)
= D1k−α,1k−β,w(q : p), α 6= β. (126)

This bi-vector-skew divergence unifies the Jeffreys divergence with the Jensen–Shannon α-skew
divergence by setting the following parameters:

KL(0,1),(1,0),(1,1)(p : q) = KL(p : q) + KL(q : p) = J(p, q), (127)

KL(0,α),(1,1−α),( 1
2 , 1

2 )(p : q) =
1
2

KL(p : (pq)α) +
1
2

KL(q : (pq)α). (128)

We have shown in this paper that interesting properties may occur when the skewing vector β is
purposely correlated to the skewing vector α: Namely, for the bi-vector-skew Bregman divergences
with β = (ᾱ, . . . , ᾱ) and ᾱ = ∑i wiαi, we obtain an equivalent Jensen diversity for the Jensen–Bregman
divergence, and, as a byproduct, a vector-skew generalization of the Jensen–Shannon divergence.
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Abstract: Motivated by a horse betting problem, a new conditional Rényi divergence is introduced.
It is compared with the conditional Rényi divergences that appear in the definitions of the dependence
measures by Csiszár and Sibson, and the properties of all three are studied with emphasis on their
behavior under data processing. In the same way that Csiszár’s and Sibson’s conditional divergence
lead to the respective dependence measures, so does the new conditional divergence lead to the
Lapidoth–Pfister mutual information. Moreover, the new conditional divergence is also related to the
Arimoto–Rényi conditional entropy and to Arimoto’s measure of dependence. In the second part
of the paper, the horse betting problem is analyzed where, instead of Kelly’s expected log-wealth
criterion, a more general family of power-mean utility functions is considered. The key role in
the analysis is played by the Rényi divergence, and in the setting where the gambler has access to
side information, the new conditional Rényi divergence is key. The setting with side information
also provides another operational meaning to the Lapidoth–Pfister mutual information. Finally,
a universal strategy for independent and identically distributed races is presented that—without
knowing the winning probabilities or the parameter of the utility function—asymptotically maximizes
the gambler’s utility function.

Keywords: conditional Rényi divergence; horse betting; Kelly gambling; Rényi divergence; Rényi
mutual information

1. Introduction

As shown by Kelly [1,2], many of Shannon’s information measures appear naturally in the context
of horse gambling when the gambler’s utility function is expected log-wealth. Here, we show that
under a more general family of utility functions, gambling also provides a context for some of Rényi’s
information measures. Moreover, the setting where the gambler has side information motivates a new
Rényi-like conditional divergence, which we study and compare to other conditional divergences.
The proposed family of utility functions in the context of gambling with side information also provides
another operational meaning to the Rényi-like mutual information that was recently proposed by
Lapidoth and Pfister [3]: it measures the gambler’s gain from the side information as measured by the
increase in the minimax value of the two-player zero-sum game in which the bookmaker picks the
odds and the gambler then places the bets based on these odds and her side information.

Deferring the gambling-based motivation to the second part of the paper, we first describe
the different conditional divergences and study some of their properties with emphasis on their
behavior under data processing. We also show that the new conditional Rényi divergence relates to the
Lapidoth–Pfister mutual information in much the same way that Csiszár’s and Sibson’s conditional
divergences relate to their corresponding mutual informations. Before discussing the conditional
divergences, we first recall other information measures.
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The Kullback–Leibler divergence (or relative entropy) is an important concept in information
theory and statistics [2,4–6]. It is defined between two probability mass functions (PMFs) P and Q over
a finite set X as

D(P‖Q) , ∑
x∈X

P(x) log
P(x)
Q(x)

, (1)

where log(·) denotes the base-2 logarithm. Defining a conditional Kullback–Leibler divergence is
straightforward because, as simple algebra shows, the two natural approaches lead to the same result:

D(PY|X‖QY|X |PX) , ∑
x∈supp(PX)

P(x)D(PY|X=x‖QY|X=x) (2)

= D(PXPY|X‖PXQY|X), (3)

where supp(P) , {x ∈ X : P(x) > 0} denotes the support of P, and in (3) and throughout PXPY|X
denotes the PMF on X ×Y that assigns (x, y) the probability PX(x)PY|X(y|x).

The Rényi divergence of order α [7,8] between two PMFs P and Q is defined for all positive α’s
other than one as

Dα(P‖Q) , 1
α− 1

log ∑
x∈X

P(x)α Q(x)1−α. (4)

A conditional Rényi divergence can be defined in more than one way. In this paper, we consider
the following three definitions, two classic and one new:

Dc
α(PY|X‖QY|X |PX) , ∑

x∈supp(PX)

P(x)Dα(PY|X=x‖QY|X=x), (5)

Ds
α(PY|X‖QY|X |PX) , Dα(PXPY|X‖PXQY|X), (6)

Dl
α(PY|X‖QY|X |PX) ,

α

α− 1
log ∑

x∈supp(PX)

P(x)2
α−1

α Dα(PY|X=x‖QY|X=x), (7)

where (5) is inspired by Csiszár [9]; (6) is inspired by Sibson [10]; and (7) is motivated by the horse
betting problem discussed in Section 9. The first two conditional Rényi divergences were used to
define the Rényi measures of dependence of Csiszár Icα (X; Y) [9] and of Sibson Isα (X; Y) [10]:

Icα (X; Y) , min
QY

Dc
α(PY|X‖QY|PX), (8)

Isα (X; Y) , min
QY

Ds
α(PY|X‖QY|PX), (9)

where the minimization is over all PMFs on the set Y . (Gallager’s E0 function [11] and Isα (X; Y) are
in one-to-one correspondence; see (65) below.) The analogous minimization of Dl

α(·) leads to the
Lapidoth–Pfister mutual information Jα(X; Y) [3]:

Jα(X; Y) , min
QX ,QY

Dα(PXY‖QXQY) (10)

= min
QY

Dl
α(PY|X‖QY|PX), (11)

where (11) is proved in Proposition 5.
The first part of the paper is structured as follows: In Section 2, we discuss some preliminaries.

In Sections 3–5, we study the properties of the three conditional Rényi divergences and their associated
measure of dependence. In Section 6, we express the Arimoto–Rényi conditional entropy Hα(X|Y)
and the Arimoto measure of dependence Iaα (X; Y) [12] in terms of Dl

α(PX|Y‖UX |PY). In Section 7,
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we relate the conditional Rényi divergences to each other and discuss the relations between the Rényi
dependence measures.

The second part of the paper deals with horse gambling under our proposed family of power-mean
utility functions. It is in this context that the Rényi divergence (Theorem 9) and the conditional Rényi
divergence Dl

α(·) (Theorem 10) appear naturally.
More specifically, consider a horse race with a finite nonempty set of horsesX , where a bookmaker

offers odds o(x)-for-1 on each horse x ∈ X , where o : X → (0, ∞) [2] (Section 6.1). A gambler spends
all her wealth placing bets on the horses. The fraction of her wealth that she bets on Horse x ∈ X is
denoted b(x) ≥ 0, which sums up to 1 over x ∈ X , and the PMF b is her “betting strategy.” The winning
horse, which we denote X, is drawn according to the PMF p, where we assume p(x) > 0 for all x ∈ X .
The wealth relative (or end-to-beginning wealth ratio) is the random variable

S , b(X)o(X). (12)

Hence, given an initial wealth γ, the gambler’s wealth after the race is γS. We seek betting
strategies that maximize the utility function

Uβ ,
{

1
β log E[Sβ] if β 6= 0,

E[log S] if β = 0,
(13)

where β ∈ R is a parameter that accounts for the risk sensitivity. This optimization generalizes the
following cases:

(a) In the limit as β tends to −∞, we optimize the worst-case return. The optimal strategy is
risk-free in the sense that S does not depend on the winning horse (see Proposition 8).

(b) If β = 0, then we optimize E[log S], which is known as the doubling rate [2] (Section 6.1).
The optimal strategy is proportional betting, i.e., to choose b = p (see Remark 4).

(c) If β = 1, then we optimize E[S], the expected return. The optimal strategy is to put all the
money on a horse that maximizes p(x)o(x) (see Proposition 9).

(d) In general, if β ≥ 1, then it is optimal to put all the money on one horse (see Proposition 9).
This is risky: if that horse loses, the gambler will go broke.

(e) In the limit as β tends to +∞, we optimize the best-case return. The optimal strategy is to put
all the money on a horse that maximizes o(x) (see Proposition 10).

Note that, for β 6= 0 and η , 1− β, maximizing Uβ is equivalent to maximizing

E
[

S1−η

1− η

]
, (14)

which is known in the finance literature as Constant Relative Risk Aversion (CRRA) [13,14].
We refer to our utility function as “power mean” because it can be written as the logarithm of a

weighted power mean [15,16]:

Uβ = log

[
∑
x

p(x)
(
b(x)o(x)

)β

] 1
β

. (15)

Because the power mean tends to the geometric mean as β tends to zero [15] (Problem 8.1), Uβ is
continuous at β = 0:

lim
β→0

Uβ = log ∏
x

(
b(x)o(x)

)p(x) (16)

= E[log S]. (17)
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Campbell [17,18] used an exponential cost function with a similar structure to (15) to provide an
operational meaning to the Rényi entropy in source coding. Other information-theoretic applications
of exponential moments were studied in [19].

The second part of the paper is structured as follows: In Section 8, we relate the utility function Uβ

to the Rényi divergence (Theorem 9) and derive its optimal gambling strategy. In Section 9, we consider
the situation where the gambler observes side information prior to betting, a situation that leads to the
conditional Rényi divergence Dl

α(·) (Theorem 10) and to a new operational meaning for the measure
of dependence Jα(X; Y) (Theorem 11). In Section 10, we consider the situation where the gambler
invests only part of her money. In Section 11, we present a universal strategy for independent and
identically distributed (IID) races that requires neither knowledge of the winning probabilities nor of
the parameter β of the utility function and yet asymptotically maximizes the utility function for all
PMFs p and all β ∈ R.

2. Preliminaries

Throughout the paper, log(·) denotes the base-2 logarithm, X and Y are finite sets, PXY denotes a
joint PMF over X ×Y , QX denotes a PMF over X , and QY denotes a PMF over Y . An expression of
the form PXPY|X denotes the PMF on X ×Y that assigns (x, y) the probability PX(x)PY|X(y|x). We use
P and Q as generic PMFs over a finite set X . We denote by supp(P) , {x ∈ X : P(x) > 0} the
support of P, and by P(X ) the set of all PMFs over X . When clear from the context, we often omit
sets and subscripts: for example, we write ∑x for ∑x∈X , minQX ,QY for min(QX ,QY)∈P(X )×P(Y), P(x)
for PX(x), and P(y|x) for PY|X(y|x). When P(x) is 0, we define the conditional probability P(y|x) as
1/|Y|. The conditional distribution of Y given X = x is denoted by PY|X=x, thus

PY|X=x(y) = P(y|x). (18)

We denote by 1{condition} the indicator function that is one if the condition is satisfied and zero
otherwise.

In the definition of the Kullback–Leibler divergence in (1), we use the conventions

0 log
0
q
= 0 ∀q ≥ 0, p log

p
0
= ∞ ∀ p > 0. (19)

In the definition of the Rényi divergence in (4), we read P(x)α Q(x)1−α as P(x)α/Q(x)α−1 for
α > 1 and use the conventions

0
0
= 0,

p
0
= ∞ ∀ p > 0. (20)

For α being zero, one, or infinity, we define by continuous extension of (4)

D0(P‖Q) , − log ∑
x∈supp(P)

Q(x), (21)

D1(P‖Q) , D(P‖Q), (22)

D∞(P‖Q) , log max
x

P(x)
Q(x)

. (23)

The Rényi divergence for negative α is defined as

Dα(P‖Q) , 1
α− 1

log ∑
x

Q(x)1−α

P(x)−α
. (24)
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(We use negative α in the proof of Proposition 1 (e) below and in Remark 6. More about negative
orders can be found in [8] (Section V). For other applications of negative orders, see [20] (Proof of
Theorem 1 and Example 1).)

The Rényi divergence satisfies the following basic properties:

Proposition 1. Let P and Q be PMFs. Then, the Rényi divergence Dα(P‖Q) satisfies the following:

(a) For all α ∈ [0, ∞], Dα(P‖Q) ≥ 0. If α ∈ (0, ∞], then Dα(P‖Q) = 0 if and only if P = Q.

(b) For all α ∈ [0, 1), Dα(P‖Q) is finite if and only if |supp(P) ∩ supp(Q)| > 0. For all α ∈ [1, ∞],
Dα(P‖Q) is finite if and only if supp(P) ⊆ supp(Q).

(c) The mapping α 7→ Dα(P‖Q) is continuous on [0, ∞].

(d) The mapping α 7→ Dα(P‖Q) is nondecreasing on [0, ∞].

(e) The mapping α 7→ 1−α
α Dα(P‖Q) is nonincreasing on (0, ∞).

(f) The mapping α 7→ (1− α)Dα(P‖Q) is concave on [0, ∞).

(g) The mapping α 7→ (α− 1)D1/α(P‖Q) is concave on (0, ∞).

(h) (Data-processing inequality.) Let AX′ |X be a conditional PMF, and define the PMFs

P′(x′) , ∑
x

P(x)AX′ |X(x′|x), (25)

Q′(x′) , ∑
x

Q(x)AX′ |X(x′|x). (26)

Then, for all α ∈ [0, ∞],

Dα(P′‖Q′) ≤ Dα(P‖Q). (27)

Proof. See Appendix A.

All three conditional Rényi divergences reduce to the unconditional Rényi divergence when both
PY|X and QY|X are independent of X:

Remark 1. Let PY, QY, and PX be PMFs. Then, for all α ∈ [0, ∞],

Dc
α(PY‖QY|PX) = Ds

α(PY‖QY|PX) = Dl
α(PY‖QY|PX) = Dα(PY‖QY). (28)

Proof. This follows from the definitions of Dc
α(·), Ds

α(·), and Dl
α(·) in (5)–(7).

3. Csiszár’s Conditional Rényi Divergence

For a PMF PX and conditional PMFs PY|X and QY|X , Csiszár’s conditional Rényi divergence Dc
α(·)

is defined for every α ∈ [0, ∞] as

Dc
α(PY|X‖QY|X |PX) , ∑

x∈supp(PX)

P(x)Dα(PY|X=x‖QY|X=x). (29)

For α ∈ (0, 1) ∪ (1, ∞),

Dc
α(PY|X‖QY|X |PX) =

1
α− 1 ∑

x∈supp(PX)

P(x) log ∑
y

P(y|x)α Q(y|x)1−α, (30)
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which follows from the definition of the Rényi divergence in (4). For α being zero, one, or infinity, we
obtain from (21)–(23) and (2)

Dc
0 (PY|X‖QY|X |PX) = − ∑

x∈supp(PX)

P(x) log ∑
y∈supp(PY|X=x)

Q(y|x), (31)

Dc
1 (PY|X‖QY|X |PX) = D(PY|X‖QY|X |PX), (32)

Dc
∞(PY|X‖QY|X |PX) = ∑

x∈supp(PX)

P(x) log max
y

P(y|x)
Q(y|x) . (33)

Augustin [21] and later Csiszár [9] defined the measure of dependence

Icα (X; Y) , min
QY

Dc
α(PY|X‖QY|PX). (34)

Augustin used this measure to study the error exponents for channel coding with input constraints,
while Csiszár used it to study generalized cutoff rates for channel coding with composition constraints.
Nakiboğlu [22] studied more properties of Icα (X; Y). Inter alia, he analyzed the minimax properties of
the Augustin capacity

sup
PX∈A

Icα (PX , PY|X) = sup
PX∈A

min
QY

Dc
α(PY|X‖QY|PX), (35)

where A ⊆ P(X ) is a constraint set. The Augustin capacity is used in [23] to establish the sphere
packing bound for memoryless channels with cost constraints.

The rest of the section presents some properties of Dc
α(·). Being an average of Rényi divergences

(see (29)), Dc
α(·) inherits many properties from the Rényi divergence:

Proposition 2. Let PX be a PMF, and let PY|X and QY|X be conditional PMFs. Then,

(a) For all α ∈ [0, ∞], Dc
α(PY|X‖QY|X |PX) ≥ 0. If α ∈ (0, ∞], then Dc

α(PY|X‖QY|X |PX) = 0 if and only
if
(

PY|X=x = QY|X=x for all x ∈ supp(PX)
)
.

(b) For all α ∈ [0, 1), Dc
α(PY|X‖QY|X |PX) is finite if and only if

(
|supp(PY|X=x) ∩ supp(QY|X=x)| >

0 for all x ∈ supp(PX)
)
. For all α ∈ [1, ∞], Dc

α(PY|X‖QY|X |PX) is finite if and only if(
supp(PY|X=x) ⊆ supp(QY|X=x) for all x ∈ supp(PX)

)
.

(c) The mapping α 7→ Dc
α(PY|X‖QY|X |PX) is continuous on [0, ∞].

(d) The mapping α 7→ Dc
α(PY|X‖QY|X |PX) is nondecreasing on [0, ∞].

(e) The mapping α 7→ 1−α
α Dc

α(PY|X‖QY|X |PX) is nonincreasing on (0, ∞).

(f) The mapping α 7→ (1− α)Dc
α(PY|X‖QY|X |PX) is concave on [0, ∞).

(g) The mapping α 7→ (α− 1)Dc
1/α(PY|X‖QY|X |PX) is concave on (0, ∞).

Proof. These follow from (29) and the properties of the Rényi divergence (Proposition 1). For Parts (f)
and (g), recall that a nonnegative weighted sum of concave functions is concave.

We next consider data-processing inequalities for Dc
α(·). We distinguish between processing Y

and processing X. The data-processing inequality for processing Y follows from the data-processing
inequality for the (unconditional) Rényi divergence:

36



Entropy 2020, 22, 316

Theorem 1. Let PX be a PMF, and let PY|X and QY|X be conditional PMFs. For a conditional PMF AY′ |XY,
define

PY′ |X(y′|x) , ∑
y

PY|X(y|x)AY′ |XY(y′|x, y), (36)

QY′ |X(y′|x) , ∑
y

QY|X(y|x)AY′ |XY(y′|x, y). (37)

Then, for all α ∈ [0, ∞],

Dc
α(PY′ |X‖QY′ |X |PX) ≤ Dc

α(PY|X‖QY|X |PX). (38)

Proof. See Appendix B.

The following data-processing inequality for processing X holds for α ∈ [0, 1] (as shown in
Example 1 below, it does not extend to α ∈ (1, ∞]):

Theorem 2. Let PX be a PMF, and let PY|X and QY|X be conditional PMFs. For a conditional PMF BX′ |X,
define the PMFs

PX′(x′) , ∑
x

PX(x)BX′ |X(x′|x), (39)

BX|X′(x|x′) ,
{

PX(x)BX′ |X(x′|x)/PX′(x′) if PX′(x′) > 0,

1/|X | otherwise,
(40)

PY|X′(y|x′) , ∑
x

BX|X′(x|x′)PY|X(y|x), (41)

QY|X′(y|x′) , ∑
x

BX|X′(x|x′)QY|X(y|x). (42)

Then, for all α ∈ [0, 1],

Dc
α(PY|X′‖QY|X′ |PX′) ≤ Dc

α(PY|X‖QY|X |PX). (43)

Note that PX′ , PY|X′ , and QY|X′ in Theorem 2 can be obtained from the following marginalizations:

PX′(x′)PY|X′(y|x′) = ∑
x

PX(x)BX′ |X(x′|x)PY|X(y|x), (44)

PX′(x′)QY|X′(y|x′) = ∑
x

PX(x)BX′ |X(x′|x)QY|X(y|x). (45)

Proof of Theorem 2. See Appendix C.

As a special case of Theorem 2, we obtain the following relation between the conditional and the
unconditional Rényi divergence:

Corollary 1. For a PMF PX and conditional PMFs PY|X and QY|X , define the marginal PMFs

PY(y) , ∑
x

PX(x)PY|X(y|x), (46)

QY(y) , ∑
x

PX(x)QY|X(y|x). (47)

Then, for all α ∈ [0, 1],

Dα(PY‖QY) ≤ Dc
α(PY|X‖QY|X |PX). (48)
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Proof. See Appendix D.

Consider next α ∈ (1, ∞]. It turns out that Corollary 1, and hence Theorem 2, cannot be extended
to these values of α (not even if QY|X is restricted to be independent of X, i.e., if QY|X = QY):

Example 1. Let X = Y = {0, 1}. For ε ∈ (0, 1), define the PMFs PX , Q(ε)
Y , and P(ε)

Y|X as

PX(0) = 0.5, PX(1) = 0.5, (49)

Q(ε)
Y (0) = 1− ε, Q(ε)

Y (1) = ε, (50)

P(ε)
Y|X(0|0) = 1− ε, P(ε)

Y|X(1|0) = ε, (51)

P(ε)
Y|X(0|1) = ε, P(ε)

Y|X(1|1) = 1− ε. (52)

Then, for every α ∈ (1, ∞], there exists an ε ∈ (0, 1) such that

Dα

(
PY‖Q(ε)

Y
)
> Dc

α

(
P(ε)

Y|X‖Q
(ε)
Y |PX

)
, (53)

where the PMF PY is defined by (46) and, irrespective of ε, satisfies PY(0) = PY(1) = 0.5.

Proof. See Appendix E.

4. Sibson’s Conditional Rényi Divergence

For a PMF PX and conditional PMFs PY|X and QY|X , Sibson’s conditional Rényi divergence Ds
α(·)

is defined for every α ∈ [0, ∞] as

Ds
α(PY|X‖QY|X |PX) , Dα(PXPY|X‖PXQY|X). (54)

For α ∈ (0, 1) ∪ (1, ∞),

Ds
α(PY|X‖QY|X |PX) =

1
α− 1

log ∑
x∈supp(PX)

P(x)∑
y

P(y|x)α Q(y|x)1−α (55)

=
1

α− 1
log ∑

x∈supp(PX)

P(x)2(α−1)Dα(PY|X=x‖QY|X=x), (56)

where (55) and (56) follow from the definition of the Rényi divergence in (4). For α being zero, one, or
infinity, we obtain from (21)–(23) and (3)

Ds
0 (PY|X‖QY|X |PX) = − log ∑

x∈supp(PX)

P(x) ∑
y∈supp(PY|X=x)

Q(y|x), (57)

Ds
1 (PY|X‖QY|X |PX) = D(PY|X‖QY|X |PX), (58)

Ds
∞(PY|X‖QY|X |PX) = log max

x∈supp(PX)
max

y

P(y|x)
Q(y|x) . (59)

Sibson [10] defined the measure of dependence

Isα (X; Y) , min
QY

Ds
α(PY|X‖QY|PX). (60)

This minimum can be computed explicitly [10] (Corollary 2.3): For α ∈ (0, 1) ∪ (1, ∞),

Isα (X; Y) =
α

α− 1
log ∑

y

[
∑
x

P(x)P(y|x)α

] 1
α

, (61)
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and for α being one or infinity,

Is1 (X; Y) = I(X; Y), (62)

Is∞(X; Y) = log ∑
y

max
x

P(y|x), (63)

where I(X; Y) denotes Shannon’s mutual information.
The concavity and convexity properties of Ds

α(·) and Isα (X; Y) were studied by Ho–Verdú [24].
More properties of Isα (X; Y) were collected by Verdú [25]. The maximization of Isα (X; Y) with respect
to PX and the minimax properties of Ds

α(·) were studied by Nakiboğlu [26] and Cai–Verdú [27].
The conditional Rényi divergence Ds

α(·) was used by Fong and Tan [28] to establish strong
converse theorems for multicast networks. Yu and Tan [29] analyzed channel resolvability, among
other measures, in terms of Ds

α(·).
From (61) we see that Gallager’s E0 function [11], which is defined as

E0(ρ, PX , PY|X) , − log ∑
y

[
∑
x

P(x)P(y|x)
1

1+ρ

]1+ρ

, (64)

is in one-to-one correspondence to Sibson’s measure of dependence:

Isα (X; Y) =
α

1− α
E0

(
1− α

α
, PX , PY|X

)
. (65)

Gallager’s E0 function is important in channel coding: it appears in the random coding
exponent [30] and in the sphere packing exponent [31,32] (see also Gallager [11]). The exponential
strong converse theorem proved by Arimoto [33] also uses the E0 function. Polyanskiy and Verdú [34]
extended the exponential strong converse theorem to channels with feedback. Augustin [21] and
Nakiboğlu [35,36] extended the sphere packing bound to channels with feedback.

The rest of the section presents some properties of Ds
α(·). Because Ds

α(·) can be written as an
(unconditional) Rényi divergence (see (54)), it inherits many properties from the Rényi divergence:

Proposition 3. Let PX be a PMF, and let PY|X and QY|X be conditional PMFs. Then,

(a) For all α ∈ [0, ∞], Ds
α(PY|X‖QY|X |PX) ≥ 0. If α ∈ (0, ∞], then Ds

α(PY|X‖QY|X |PX) = 0 if and only
if
(

PY|X=x = QY|X=x for all x ∈ supp(PX)
)
.

(b) For all α ∈ [0, 1), Ds
α(PY|X‖QY|X |PX) is finite if and only if

(
there exists an x ∈ supp(PX) such that

|supp(PY|X=x) ∩ supp(QY|X=x)| > 0
)
. For all α ∈ [1, ∞], Ds

α(PY|X‖QY|X |PX) is finite if and only
if
(
supp(PY|X=x) ⊆ supp(QY|X=x) for all x ∈ supp(PX)

)
.

(c) The mapping α 7→ Ds
α(PY|X‖QY|X |PX) is continuous on [0, ∞].

(d) The mapping α 7→ Ds
α(PY|X‖QY|X |PX) is nondecreasing on [0, ∞].

(e) The mapping α 7→ 1−α
α Ds

α(PY|X‖QY|X |PX) is nonincreasing on (0, ∞).

(f) The mapping α 7→ (1− α)Ds
α(PY|X‖QY|X |PX) is concave on [0, ∞).

(g) The mapping α 7→ (α− 1)Ds
1/α(PY|X‖QY|X |PX) is concave on (0, ∞).

Proof. These follow from (54) and the properties of the Rényi divergence (Proposition 1).

We next consider data-processing inequalities for Ds
α(·). We distinguish between processing Y

and processing X. The data-processing inequality for processing Y follows from the data-processing
inequality for the (unconditional) Rényi divergence:
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Theorem 3. Let PX be a PMF, and let PY|X and QY|X be conditional PMFs. For a conditional PMF AY′ |XY,
define

PY′ |X(y′|x) , ∑
y

PY|X(y|x)AY′ |XY(y′|x, y), (66)

QY′ |X(y′|x) , ∑
y

QY|X(y|x)AY′ |XY(y′|x, y). (67)

Then, for all α ∈ [0, ∞],

Ds
α(PY′ |X‖QY′ |X |PX) ≤ Ds

α(PY|X‖QY|X |PX). (68)

Proof. See Appendix F.

The data-processing inequality for processing X similarly follows from the data-processing
inequality for the (unconditional) Rényi divergence:

Theorem 4. Let PX be a PMF, and let PY|X and QY|X be conditional PMFs. For a conditional PMF BX′ |X,
define the PMFs

PX′(x′) , ∑
x

PX(x)BX′ |X(x′|x), (69)

BX|X′(x|x′) ,
{

PX(x)BX′ |X(x′|x)/PX′(x′) if PX′(x′) > 0,

1/|X | otherwise,
(70)

PY|X′(y|x′) , ∑
x

BX|X′(x|x′)PY|X(y|x), (71)

QY|X′(y|x′) , ∑
x

BX|X′(x|x′)QY|X(y|x). (72)

Then, for all α ∈ [0, ∞],

Ds
α(PY|X′‖QY|X′ |PX′) ≤ Ds

α(PY|X‖QY|X |PX). (73)

Proof. See Appendix G.

As a special case of Theorem 4, we obtain the following relation between the conditional and the
unconditional Rényi divergence:

Corollary 2. Let PX be a PMF, and let PY|X and QY|X be conditional PMFs. Define the marginal PMFs

PY(y) , ∑
x

PX(x)PY|X(y|x), (74)

QY(y) , ∑
x

PX(x)QY|X(y|x). (75)

Then, for all α ∈ [0, ∞],

Dα(PY‖QY) ≤ Ds
α(PY|X‖QY|X |PX). (76)

Proof. This follows from Theorem 4 in the same way that Corollary 1 followed from Theorem 2.
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5. New Conditional Rényi Divergence

Let PX be a PMF, and let PY|X and QY|X be conditional PMFs. For α ∈ (0, 1) ∪ (1, ∞), define

Dl
α(PY|X‖QY|X |PX) ,

α

α− 1
log ∑

x∈supp(PX)

P(x)2
α−1

α Dα(PY|X=x‖QY|X=x) (77)

=
α

α− 1
log ∑

x∈supp(PX)

P(x)

[
∑
y

P(y|x)α Q(y|x)1−α

] 1
α

, (78)

where (78) follows from the definition of the Rényi divergence in (4). (Except for the sign, the
exponential averaging in (77) is very similar to the one of the Arimoto–Rényi conditional entropy;
compare with (147) below.) For α being zero, one, or infinity, we define by continuous extension of (77)

Dl
0 (PY|X‖QY|X |PX) , − log max

x∈supp(PX)
∑

y∈supp(PY|X=x)

Q(y|x), (79)

Dl
1 (PY|X‖QY|X |PX) , D(PY|X‖QY|X |PX), (80)

Dl
∞(PY|X‖QY|X |PX) , log ∑

x∈supp(PX)

P(x)max
y

P(y|x)
Q(y|x) . (81)

This conditional Rényi divergence has an operational meaning in horse betting with side
information (see Theorem 10 below). Before discussing the measure of dependence associated with
Dl

α(·), we establish the following alternative characterization of Dl
α(·):

Proposition 4. Let PX be a PMF, and let PY|X and QY|X be conditional PMFs. Then, for all α ∈ [0, ∞],

Dl
α(PY|X‖QY|X |PX) = min

QX
Dα(PXPY|X‖QXQY|X). (82)

Proof. We first treat the case α ∈ (0, 1) ∪ (1, ∞). Some algebra reveals that, for every PMF QX ,

Dα(PXPY|X‖QXQY|X) = Dα

(
Q∗(α)X ‖QX

)
+

α

α− 1
log ∑

x∈supp(PX)

P(x)

[
∑
y

P(y|x)α Q(y|x)1−α

] 1
α

, (83)

where the PMF Q∗(α)X is defined as

Q∗(α)X (x) ,
P(x)

[
∑y P(y|x)α Q(y|x)1−α

]1/α

∑x′∈supp(PX)
P(x′)

[
∑y P(y|x′)α Q(y|x′)1−α

]1/α
. (84)

The right-hand side (RHS) of (82) is thus equal to the minimum over QX of the RHS of (83). Since
Dα

(
Q∗(α)X ‖QX

)
≥ 0 with equality if QX = Q∗(α)X (Proposition 1 (a)), this minimum is equal to the

second term on the RHS of (83), which, by (78), equals Dl
α(PY|X‖QY|X |PX).

For α = 1 and α = ∞, (82) follows from the same argument using that, for every PMF QX ,

D1(PXPY|X‖QXQY|X) = D(PX‖QX) + D(PY|X‖QY|X |PX), (85)

D∞(PXPY|X‖QXQY|X) = D∞
(
Q∗(∞)

X ‖QX
)
+ log ∑

x∈supp(PX)

P(x)max
y

P(y|x)
Q(y|x) , (86)
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where the PMF Q∗(∞)
X is defined as

Q∗(∞)
X (x) ,

P(x)maxy
[
P(y|x)/Q(y|x)

]

∑x′∈supp(PX)
P(x′)maxy

[
P(y|x′)/Q(y|x′)

] . (87)

For α = 0, (82) holds because

min
QX

D0(PXPY|X‖QXQY|X) = min
QX
− log ∑

x∈supp(PX)

Q(x) ∑
y∈supp(PY|X=x)

Q(y|x) (88)

= − log max
QX

∑
x∈supp(PX)

Q(x) ∑
y∈supp(PY|X=x)

Q(y|x) (89)

= − log max
x∈supp(PX)

∑
y∈supp(PY|X=x)

Q(y|x) (90)

= Dl
0 (PY|X‖QY|X |PX), (91)

where (88) follows from the definition of D0(P‖Q) in (21), and (91) follows from (79).

Tomamichel and Hayashi [37] and Lapidoth and Pfister [3] independently introduced and studied
the dependence measure

Jα(X; Y) , min
QX ,QY

Dα(PXY‖QXQY). (92)

(For some measure-theoretic properties of Jα(X; Y), see Aishwarya–Madiman [38].) The measure
Jα(X; Y) can be related to the error exponents in a hypothesis testing problem where the samples are
either from a known joint distribution or an unknown product distribution (see [37] (Equation (57))
and [39]). It also appears in horse betting with side information (see Theorem 11 below).

Similar to Icα (X; Y) in (34) and Isα (X; Y) in (60), the measure Jα(X; Y) can be expressed as a
minimization involving the new conditional Rényi divergence:

Proposition 5. Let PXY be a joint PMF. Denote its marginal PMFs by PX and PY and its conditional PMFs by
PY|X and PX|Y, so PXY = PXPY|X = PYPX|Y. Then, for all α ∈ [0, ∞],

Jα(X; Y) = min
QY

Dl
α(PY|X‖QY|PX) (93)

= min
QX

Dl
α(PX|Y‖QX |PY). (94)

Proof. Equation (93) holds because

min
QY

Dl
α(PY|X‖QY|PX) = min

QY
min
QX

Dα(PXPY|X‖QXQY) (95)

= Jα(X; Y), (96)

where (95) follows from Proposition 4, and (96) follows from (92). Swapping the roles of X and Y
establishes (94):

min
QX

Dl
α(PX|Y‖QX |PY) = min

QX
min
QY

Dα(PYPX|Y‖QYQX) (97)

= Jα(X; Y), (98)

where (97) follows from Proposition 4, and (98) follows from (92).

The rest of the section presents some properties of Dl
α(·).
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Proposition 6. Let PX be a PMF, and let PY|X and QY|X be conditional PMFs. Then,

(a) For all α ∈ [0, ∞], Dl
α(PY|X‖QY|X |PX) ≥ 0. If α ∈ (0, ∞], then Dl

α(PY|X‖QY|X |PX) = 0 if and only
if
(

PY|X=x = QY|X=x for all x ∈ supp(PX)
)
.

(b) For all α ∈ [0, 1), Dl
α(PY|X‖QY|X |PX) is finite if and only if

(
there exists an x ∈ supp(PX) such that

|supp(PY|X=x) ∩ supp(QY|X=x)| > 0
)
. For all α ∈ [1, ∞], Dl

α(PY|X‖QY|X |PX) is finite if and only
if
(
supp(PY|X=x) ⊆ supp(QY|X=x) for all x ∈ supp(PX)

)
.

(c) The mapping α 7→ Dl
α(PY|X‖QY|X |PX) is continuous on [0, ∞].

(d) The mapping α 7→ Dl
α(PY|X‖QY|X |PX) is nondecreasing on [0, ∞].

(e) The mapping α 7→ 1−α
α Dl

α(PY|X‖QY|X |PX) is nonincreasing on (0, ∞).

(f) The mapping α 7→ (1− α)Dl
α(PY|X‖QY|X |PX) is concave on [0, 1].

(g) The mapping α 7→ (α− 1)Dl
1/α(PY|X‖QY|X |PX) is concave on [1, ∞).

Proof. We prove these properties as follows:

(a) For all α ∈ [0, ∞], Proposition 4 implies

Dl
α(PY|X‖QY|X |PX) = min

QX
Dα(PXPY|X‖QXQY|X). (99)

The nonnegativity of Dl
α(·) now follows from the nonnegativity of the Rényi divergence

(Proposition 1 (a)). If
(

PY|X=x = QY|X=x for all x ∈ supp(PX)
)
, then PXPY|X = PXQY|X . Hence,

using QX = PX on the RHS of (99), Dl
α(PY|X‖QY|X |PX) equals zero. Conversely, if α ∈ (0, ∞]

and Dl
α(·) = 0, then PXPY|X = QXQY|X for some QX by Proposition 1 (a), which implies(

PY|X=x = QY|X=x for all x ∈ supp(PX)
)
.

(b) This follows from the definitions in (77) and (79)–(81) and the conventions in (20).
(c) For α ∈ (0, 1)∪ (1, ∞), Dl

α(·) is continuous because it is, by its definition in (77), a composition of
continuous functions. The continuity at α = 1 follows from a careful application of L’Hôpital’s
rule.

We next consider the continuity at α = 0. Define τ , minx∈supp(PX)
P(x). Then, for all α ∈ (0, 1),

(α− 1)Dl
α(PY|X‖QY|X |PX) = α log ∑

x∈supp(PX)

P(x)2
α−1

α Dα(PY|X=x‖QY|X=x) (100)

≥ α log ∑
x∈supp(PX)

τ2
α−1

α Dα(PY|X=x‖QY|X=x) (101)

≥ α log max
x∈supp(PX)

τ2
α−1

α Dα(PY|X=x‖QY|X=x) (102)

= α log τ + max
x∈supp(PX)

(α− 1)Dα(PY|X=x‖QY|X=x), (103)

where (100) follows from the definition in (77). On the other hand, for all α ∈ (0, 1),

(α− 1)Dl
α(PY|X‖QY|X |PX) = α log ∑

x∈supp(PX)

P(x)2
α−1

α Dα(PY|X=x‖QY|X=x) (104)

≤ α log max
x∈supp(PX)

2
α−1

α Dα(PY|X=x‖QY|X=x) (105)

= max
x∈supp(PX)

(α− 1)Dα(PY|X=x‖QY|X=x). (106)
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Because limα→0 α log τ = 0, it follows from (103) and (106) and the sandwich theorem that

lim
α↓0

Dl
α(PY|X‖QY|X |PX) = lim

α↓0
1

α− 1
max

x∈supp(PX)
(α− 1)Dα(PY|X=x‖QY|X=x) (107)

= − log max
x∈supp(PX)

∑
y∈supp(PY|X=x)

Q(y|x), (108)

where (108) follows from the continuity of the Rényi divergence (Proposition 1 (c)) and the
definition of D0(P‖Q) in (21).

We conclude with the continuity at α = ∞. Observe that

lim
α→∞

Dl
α(PY|X‖QY|X |PX) = lim

α→∞

α

α− 1
log ∑

x∈supp(PX)

P(x)2
α−1

α Dα(PY|X=x‖QY|X=x) (109)

= log ∑
x∈supp(PX)

P(x)2limα→∞ Dα(PY|X=x‖QY|X=x) (110)

= log ∑
x∈supp(PX)

P(x)max
y

P(y|x)
Q(y|x) , (111)

where (109) follows from the definition in (77), and (111) follows from the continuity of the
Rényi divergence (Proposition 1 (c)) and the definition of D∞(P‖Q) in (23).

(d) For all α ∈ [0, ∞], Proposition 4 implies

Dl
α(PY|X‖QY|X |PX) = min

QX
Dα(PXPY|X‖QXQY|X). (112)

Because α 7→ Dα(P‖Q) is nonincreasing on [0, ∞] (Proposition 1 (d)) and because the pointwise
minimum preserves the monotonicity, the mapping α 7→ Dl

α(·) is nonincreasing on [0, ∞].
(e) By Proposition 4,

1− α

α
Dl

α(PY|X‖QY|X |PX) =

{
minQX

1−α
α Dα(PXPY|X‖QXQY|X) if α ∈ (0, 1],

maxQX
1−α

α Dα(PXPY|X‖QXQY|X) if α ∈ (1, ∞).
(113)

By the nonnegativity of the Rényi divergence (Proposition 1 (a)), the RHS of (113) is nonnegative
for α ∈ (0, 1] and nonpositive for α ∈ (1, ∞). Hence, it suffices to show separately that the
mapping α 7→ 1−α

α Dl
α(PY|X‖QY|X |PX) is nonincreasing on (0, 1] and on (1, ∞). This is indeed

the case: the mapping α 7→ 1−α
α Dα(PXPY|X‖QXQY|X) on the RHS of (113) is nonincreasing on

(0, ∞) (Proposition 1 (e)), and the monotonicity is preserved by the pointwise minimum and
maximum, respectively.

(f) For α ∈ [0, 1], Proposition 4 implies that

(1− α)Dl
α(PY|X‖QY|X |PX) = min

QX

[
(1− α)Dα(PXPY|X‖QXQY|X)

]
. (114)

Because α 7→ (1− α)Dα(PXPY|X‖QXQY|X) is concave on [0, 1] (Proposition 1 (f)) and because
the pointwise minimum preserves the concavity, the mapping α 7→ (1− α)Dl

α(PY|X‖QY|X |PX)

is concave on [0, 1].
(g) This follows from Proposition 1 (g) in the same way that Part (f) followed from

Proposition 1 (f).

We next consider data-processing inequalities for Dl
α(·). We distinguish between processing Y

and processing X. The data-processing inequality for processing Y follows from the data-processing
inequality for the (unconditional) Rényi divergence:
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Theorem 5. Let PX be a PMF, and let PY|X and QY|X be conditional PMFs. For a conditional PMF AY′ |XY,
define

PY′ |X(y′|x) , ∑
y

PY|X(y|x)AY′ |XY(y′|x, y), (115)

QY′ |X(y′|x) , ∑
y

QY|X(y|x)AY′ |XY(y′|x, y). (116)

Then, for all α ∈ [0, ∞],

Dl
α(PY′ |X‖QY′ |X |PX) ≤ Dl

α(PY|X‖QY|X |PX). (117)

Proof. We prove (117) for α ∈ (0, 1) ∪ (1, ∞); the claim will then extend to α ∈ [0, ∞] by the continuity
of Dl

α(·) in α (Proposition 6 (c)). For every x ∈ supp(PX), we can apply Proposition 1 (h) with the
substitution of AY′ |Y,X=x for AY′ |Y to obtain

Dα(PY′ |X=x‖QY′ |X=x) ≤ Dα(PY|X=x‖QY|X=x). (118)

For α ∈ (0, 1) ∪ (1, ∞), (117) now follows from (77) and (118).

Processing X is different. Consider first QY|X that does not depend on X. Then, writing QY|X =

QY, we have the following result (which, as shown in Example 2 below, does not extend to general
QY|X):

Theorem 6. Let PX and QY be PMFs, and let PY|X be a conditional PMF. For a conditional PMF BX′ |X , define
the PMFs

PX′(x′) , ∑
x

PX(x)BX′ |X(x′|x), (119)

BX|X′(x|x′) ,
{

PX(x)BX′ |X(x′|x)/PX′(x′) if PX′(x′) > 0,

1/|X | otherwise,
(120)

PY|X′(y|x′) , ∑
x

BX|X′(x|x′)PY|X(y|x). (121)

Then, for all α ∈ [0, ∞],

Dl
α(PY|X′‖QY|PX′) ≤ Dl

α(PY|X‖QY|PX). (122)

Once we provide the operational meaning of Dl
α(·) in horse betting with side information

(Theorem 10 below), Theorem 6 will become very intuitive: it expresses the fact that preprocessing
the side information cannot increase the gambler’s utility; see Remark 8. Note that PX′ and PY|X′ in
Theorem 6 can be obtained from the following marginalization:

PX′(x′)PY|X′(y|x′) = ∑
x

PX(x)BX′ |X(x′|x)PY|X(y|x). (123)

Proof of Theorem 6. We show (122) for α ∈ (0, 1) ∪ (1, ∞); the claim will then extend to α ∈ [0, ∞] by
the continuity of Dl

α(·) in α (Proposition 6 (c)). Consider first α ∈ (1, ∞). Then, (122) holds because

α− 1
α

Dl
α(PY|X′‖QY|PX′)

= log ∑
x′∈supp(PX′ )

PX′(x′)

[
∑
y

PY|X′(y|x′)α QY(y)1−α

] 1
α

(124)
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= log ∑
x′∈supp(PX′ )

PX′(x′)

[
∑
y

[
∑
x

BX|X′(x|x′)PY|X(y|x)QY(y)
1−α

α

]α
] 1

α

(125)

= log ∑
x′∈supp(PX′ )

[
∑
y

[
∑

x∈supp(PX)

PX(x)BX′ |X(x′|x)PY|X(y|x)QY(y)
1−α

α

]α] 1
α

(126)

≤ log ∑
x′∈supp(PX′ )

∑
x∈supp(PX)

[
∑
y

[
PX(x)BX′ |X(x′|x)PY|X(y|x)QY(y)

1−α
α

]α
] 1

α

(127)

= log ∑
x∈supp(PX)

PX(x)

[
∑

x′∈supp(PX′ )
BX′ |X(x′|x)

][
∑
y

PY|X(y|x)α QY(y)1−α

] 1
α

(128)

= log ∑
x∈supp(PX)

PX(x)

[
∑
y

PY|X(y|x)α QY(y)1−α

] 1
α

(129)

=
α− 1

α
Dl

α(PY|X‖QY|PX), (130)

where (124) follows from (78); (125) follows from (121); (126) follows from (120); (127) follows from
the Minkowski inequality [16] (III 2.4 Theorem 9); (129) holds because PX(x) > 0 and PX′(x′) = 0
imply BX′ |X(x′|x) = 0, hence the first expression in square brackets on the left-hand side (LHS) of (129)
equals one; and (130) follows from (78).

The proof for α ∈ (0, 1) is very similar: (124)–(126) and (128)–(130) continue to hold, and (127) is
reversed [16] (III 2.4 Theorem 9). Because now α−1

α < 0, (122) continues to hold for α ∈ (0, 1).

As a special case of Theorem 6, we obtain the following relation between the conditional and the
unconditional Rényi divergence:

Corollary 3. Let PX and QY be PMFs, and let PY|X be a conditional PMF. Define the marginal PMF

PY(y) , ∑
x

PX(x)PY|X(y|x). (131)

Then, for all α ∈ [0, ∞],

Dα(PY‖QY) ≤ Dl
α(PY|X‖QY|PX). (132)

Proof. This follows from Theorem 6 in the same way that Corollary 1 followed from Theorem 2.

Consider next QY|X that does depend on X. It turns out that Corollary 3, and hence Theorem 6,
cannot be extended to this setting:

Example 2. Let X = {0, 1} and Y = {0, 1, 2}. Define the PMFs PX , PY|X , and QY|X as

PX(0) = 0.5, PX(1) = 0.5, (133)

PY|X(0|0) = 0.96, PY|X(1|0) = 0.02, PY|X(2|0) = 0.02, (134)

PY|X(0|1) = 0.12, PY|X(1|1) = 0.02, PY|X(2|1) = 0.86, (135)

QY|X(0|0) = 0.06, QY|X(1|0) = 0.92, QY|X(2|0) = 0.02, (136)

QY|X(0|1) = 0.02, QY|X(1|1) = 0.16, QY|X(2|1) = 0.82. (137)

Then, for α = 0.5 and for α = 2,

Dα(PY‖QY) > Dl
α(PY|X‖QY|X |PX), (138)
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where the PMFs PY and QY are given by

PY(y) , ∑
x

PX(x)PY|X(y|x), (139)

QY(y) , ∑
x

PX(x)QY|X(y|x). (140)

Proof. Numerically, D0.5(PY‖QY) ≈ 1.11 bits, which is larger than Dl
0.5(PY|X‖QY|X |PX) ≈ 0.93 bits.

Similarly, D2(PY‖QY) ≈ 2.95 bits, which is larger than Dl
2 (PY|X‖QY|X |PX) ≈ 2.75 bits.

6. Relation to Arimoto’s Measures

Before discussing Arimoto’s measures, we first recall the definition of the Rényi entropy. The
Rényi entropy of order α [7] is defined for all positive α’s other than one as

Hα(X) , 1
1− α

log ∑
x

P(x)α. (141)

For α being zero, one, or infinity, we define by continuous extension of (141)

H0(X) , log |supp(PX)|, (142)

H1(X) , H(X), (143)

H∞(X) , − log max
x

P(x), (144)

where H(X) denotes Shannon’s entropy. The Rényi entropy can be related to the Rényi divergence as
follows:

Hα(X) = log |X | − Dα(PX‖UX), (145)

where UX denotes the uniform distribution over X .
There are different ways to define a conditional Rényi entropy [40]; we use Arimoto’s proposal.

The Arimoto–Rényi conditional entropy of order α [12,38,40,41] is defined for positive α other than
one as

Hα(X|Y) , α

1− α
log ∑

y∈supp(PY)

P(y)

[
∑
x

P(x|y)α

] 1
α

(146)

=
α

1− α
log ∑

y∈supp(PY)

P(y)2
1−α

α Hα(PX|Y=y), (147)

where (147) follows from the definition of the Rényi entropy in (141). The Arimoto–Rényi conditional
entropy plays a key role in guessing with side information [20,42–44] and in task encoding with side
information [45]; and it can be related to hypothesis testing [41]. For α being zero, one, or infinity, we
define by continuous extension of (146)

H0(X|Y) , log max
y∈supp(PY)

∣∣supp(PX|Y=y)
∣∣, (148)

H1(X|Y) , H(X|Y), (149)

H∞(X|Y) , − log ∑
y∈supp(PY)

P(y)max
x

P(x|y), (150)

where H(X|Y) denotes Shannon’s conditional entropy. The analog of (145) for Hα(X|Y) is:
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Remark 2. For all α ∈ [0, ∞],

Hα(X|Y) = log |X | − Dl
α(PX|Y‖UX |PY) (151)

= log |X | −min
QY

Dα(PYPX|Y‖QYUX). (152)

Proof. Equation (151) follows, using some algebra, from the definition of Dl
α(·) in (78)–(81); and (152)

follows from Proposition 4. (The characterization in (152) previously appeared as [40] (Theorem 4).)

Arimoto [12] also defined the following measure of dependence:

Iaα (X; Y) , Hα(X)− Hα(X|Y) (153)

=
α

α− 1
log ∑

y

[
∑
x

P(x)α

∑x′∈X P(x′)α
P(y|x)α

] 1
α

, (154)

where (154) follows from (141) and (146). Using Remark 2, we can express Iaα (X; Y) in terms of Dl
α(·):

Remark 3. For all α ∈ [0, ∞],

Iaα (X; Y) = Dl
α(PX|Y‖UX |PY)− Dα(PX‖UX). (155)

Proof. This follows from (145), (151), and (153).

7. Relations Between the Conditional Rényi Divergences and the Rényi Dependence Measures

In this section, we first establish the greater-or-equal-than order between the conditional Rényi
divergences, where the order depends on whether α ∈ [0, 1] or α ∈ [1, ∞]. We then show that
this implies the same order between the dependence measures derived from the conditional Rényi
divergences. Finally, we remark that many of the dependence measures coincide when they are
maximized over all PMFs PX .

Proposition 7. For all α ∈ [0, ∞],

Dl
α(PY|X‖QY|X |PX) ≤ Ds

α(PY|X‖QY|X |PX). (156)

Proof. This holds because

Dl
α(PY|X‖QY|X |PX) = min

QX
Dα(PXPY|X‖QXQY|X) (157)

≤ Dα(PXPY|X‖PXQY|X) (158)

= Ds
α(PY|X‖QY|X |PX), (159)

where (157) follows from Proposition 4, and (159) follows from the definition of Ds
α(·) in (54).

Theorem 7. For all α ∈ [0, 1],

Dl
α(PY|X‖QY|X |PX) ≤ Ds

α(PY|X‖QY|X |PX) ≤ Dc
α(PY|X‖QY|X |PX). (160)

For all α ∈ [1, ∞],

Dc
α(PY|X‖QY|X |PX) ≤ Dl

α(PY|X‖QY|X |PX) ≤ Ds
α(PY|X‖QY|X |PX). (161)

Proof. For both α ∈ [0, 1] and α ∈ [1, ∞], the relation Dl
α(·) ≤ Ds

α(·) follows from Proposition 7.
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We next show that Ds
α(·) ≤ Dc

α(·) for α ∈ [0, 1]. We show this for α ∈ (0, 1); the claim will then
extend to α ∈ [0, 1] by the continuity in α of Ds

α(·) and Dc
α(·) (Proposition 3 (c) and Proposition 2 (c)).

For α ∈ (0, 1),

(α− 1)Ds
α(PY|X‖QY|X |PX) = log ∑

x∈supp(PX)

P(x)∑
y

P(y|x)α Q(y|x)1−α (162)

≥ ∑
x∈supp(PX)

P(x) log ∑
y

P(y|x)α Q(y|x)1−α (163)

= (α− 1)Dc
α(PY|X‖QY|X |PX), (164)

where (162) follows from (55); (163) follows from Jensen’s inequality because log(·) is a concave
function; and (164) follows from (30). The proof of the claim for α ∈ (0, 1) is finished by dividing
(162)–(164) by α− 1, which reverses the inequality because α− 1 < 0.

We conclude by showing that Dc
α(·) ≤ Dl

α(·) for α ∈ [1, ∞]. We show this for α ∈ (1, ∞); the
claim will then extend to α ∈ [1, ∞] by the continuity of Dc

α(·) and Dl
α(·) in α (Proposition 2 (c) and

Proposition 6 (c)). For α ∈ (1, ∞),

Dc
α(PY|X‖QY|X |PX) = ∑

x∈supp(PX)

P(x)
1

α− 1
log ∑

y
P(y|x)α Q(y|x)1−α (165)

=
α

α− 1 ∑
x∈supp(PX)

P(x) log

[
∑
y

P(y|x)α Q(y|x)1−α

] 1
α

(166)

≤ α

α− 1
log ∑

x∈supp(PX)

P(x)

[
∑
y

P(y|x)α Q(y|x)1−α

] 1
α

(167)

= Dl
α(PY|X‖QY|X |PX), (168)

where (165) follows from (30); (167) follows from Jensen’s inequality because log(·) is a concave
function; and (168) follows from (78).

Corollary 4. For all α ∈ [0, 1],

Jα(X; Y) ≤ Isα (X; Y) ≤ Icα (X; Y). (169)

For all α ∈ [1, ∞],

Icα (X; Y) ≤ Jα(X; Y) ≤ Isα (X; Y). (170)

Proof. By (34) and (60) and Proposition 5, respectively,

Icα (X; Y) = min
QY

Dc
α(PY|X‖QY|PX), (171)

Isα (X; Y) = min
QY

Ds
α(PY|X‖QY|PX), (172)

Jα(X; Y) = min
QY

Dl
α(PY|X‖QY|PX). (173)

The corollary now follows from (171)–(173) and Theorem 7.

Despite Icα (X; Y), Isα (X; Y), Iaα (X; Y), and Jα(X; Y) being different measures, they often coincide
when maximized over all PMFs PX :
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Theorem 8. For every conditional PMF PY|X and every α ∈ (0, 1) ∪ (1, ∞),

max
PX

Icα (PX , PY|X) = max
PX

Isα (PX , PY|X) (174)

= max
PX

Iaα (PX , PY|X). (175)

In addition, for every conditional PMF PY|X and every α ∈ [ 1
2 , 1) ∪ (1, ∞),

max
PX

Jα(PX , PY|X) = max
PX

Isα (PX , PY|X). (176)

For α ∈ (0, 1
2 ), the situation is different: there exists a conditional PMF PY|X such that, for every

α ∈ (0, 1
2 ),

max
PX

Jα(PX , PY|X) < max
PX

Isα (PX , PY|X). (177)

Proof. Equation (174) follows from [9] (Proposition 1); (175) follows from [12] (Lemma 1); and (176)
follows from [38] (Theorem V.1) for α ∈ (1, ∞).

We next establish (176) for α ∈ [ 1
2 , 1). Observe that, for α ∈ [ 1

2 , 1), (176) is equivalent to

max
PX
−2

α−1
α Jα(PX ,PY|X) = max

PX
−2

α−1
α Isα (PX ,PY|X). (178)

For α ∈ [ 1
2 , 1), (178) holds because

max
PX
−2

α−1
α Jα(PX ,PY|X) = max

PX
min
QY
−2

α−1
α Dl

α(PY|X‖QY |PX) (179)

= −min
PX

max
QY

∑
x

PX(x)

[
∑
y

P(y|x)α QY(y)1−α

] 1
α

(180)

= −max
QY

min
PX

∑
x

PX(x)

[
∑
y

P(y|x)α QY(y)1−α

] 1
α

(181)

= −max
QY

min
x

[
∑
y

P(y|x)α QY(y)1−α

] 1
α

(182)

= −
[

max
QY

min
x ∑

y
P(y|x)α QY(y)1−α

] 1
α

(183)

= −
[

max
QY

min
PX

∑
x

PX(x)∑
y

P(y|x)α QY(y)1−α

] 1
α

(184)

= −
[

min
PX

max
QY

∑
x

PX(x)∑
y

P(y|x)α QY(y)1−α

] 1
α

(185)

= −min
PX

max
QY

[
∑
x

PX(x)∑
y

P(y|x)α QY(y)1−α

] 1
α

(186)

= max
PX

min
QY
−2

α−1
α Ds

α(PY|X‖QY |PX) (187)

= max
PX
−2

α−1
α Isα (PX ,PY|X), (188)

50



Entropy 2020, 22, 316

where (179) follows from Proposition 5; (180) follows from (78); (181) and (185) follow from a minimax
theorem and are justified below; (187) follows from (55); and (188) follows from (60).

To justify (181), we apply the minimax theorem [46] (Corollary 37.3.2) to the function f : P(Y)×
P(X )→ R,

f (QY, PX) = ∑
x

PX(x)

[
∑
y

P(y|x)α QY(y)1−α

] 1
α

. (189)

The sets of all PMFs over X and over Y are convex and compact; the function f is jointly
continuous in the pair (QY, PX) because it is a composition of continuous functions; for every QY ∈
P(Y), the function f is linear and hence convex in PX ; and it only remains to show that the function
f is concave in QY for every PX ∈ P(X ). Indeed, for every λ, λ′ ∈ [0, 1] with λ + λ′ = 1, every
QY, Q′Y ∈ P(Y), and every PX ∈ P(X ),

f (λQY + λ′Q′Y, PX) (190)

= ∑
x

PX(x)

[
∑
y

P(y|x)α
[
λQY(y) + λ′Q′Y(y)

]1−α

] 1
α

(191)

= ∑
x

PX(x)

[
∑
y

[
λ P(y|x) α

1−α QY(y) + λ′P(y|x) α
1−α Q′Y(y)

]1−α

] 1
1−α · 1−α

α

(192)

≥∑
x

PX(x)

{[
∑
y

[
λ P(y|x) α

1−α QY(y)
]1−α

] 1
1−α

+

[
∑
y

[
λ′P(y|x) α

1−α Q′Y(y)
]1−α

] 1
1−α
} 1−α

α

(193)

= ∑
x

PX(x)

{
λ

[
∑
y

P(y|x)α QY(y)1−α

] 1
1−α

+ λ′
[
∑
y

P(y|x)α Q′Y(y)
1−α

] 1
1−α
} 1−α

α

(194)

≥∑
x

PX(x)

{
λ

[
∑
y

P(y|x)α QY(y)1−α

] 1
α

+ λ′
[
∑
y

P(y|x)α Q′Y(y)
1−α

] 1
α
}

(195)

= λ f (QY, PX) + λ′ f (Q′Y, PX), (196)

where (193) follows from the reverse Minkowski inequality [16] (III 2.4 Theorem 9) because α ∈ [ 1
2 , 1);

and (195) holds because the function z 7→ z(1−α)/α is concave for α ∈ [ 1
2 , 1).

The justification of (185) is very similar to that of (181); here, we apply the minimax theorem to
the function g : P(Y)×P(X )→ R,

g(QY, PX) = ∑
x

PX(x)∑
y

P(y|x)α QY(y)1−α. (197)

Compared to the justification of (181), the only essential difference lies in showing that the function
g is concave in QY for every PX ∈ P(X ): here, this follows easily from the concavity of the function
z 7→ z1−α for α ∈ [ 1

2 , 1).
We conclude the proof by establishing (177). Let X = Y = {0, 1}, and let the conditional PMF

PY|X be given by PY|X(y|x) = 1{y = x}. (This corresponds to a binary noiseless channel.) Then,
denoting by UX the uniform distribution over X ,

max
PX

Isα (PX , PY|X) ≥ Isα (UX , PY|X) (198)

= log 2, (199)
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where (199) follows from (61). On the other hand, for every α ∈ (0, 1
2 ) and every PMF PX ,

Jα(PX , PY|X) =
α

1− α
H∞(PX) (200)

≤ α

1− α
log 2 (201)

< log 2, (202)

where (200) follows from [3] (Lemma 11); (201) follows from (144); and (202) holds because α ∈ (0, 1
2 ).

Inequality (177) now follows from (199) and (202).

8. Horse Betting

In this section, we analyze horse betting with a gambler investing all her money. Recall from
the introduction that the winning horse X is distributed according to the PMF p, where we assume
p(x) > 0 for all x ∈ X ; that the odds offered by the bookmaker are denoted by o : X → (0, ∞); that
the fraction of her wealth that the gambler bets on Horse x ∈ X is denoted b(x) ≥ 0; that the wealth
relative is the random variable S , b(X)o(X); and that we seek betting strategies that maximize the
utility function

Uβ ,
{

1
β log E[Sβ] if β 6= 0,

E[log S] if β = 0.
(203)

Because the gambler invests all her money, b is a PMF. As in [47] (Section 10.3), define the constant

c ,
[
∑
x

1
o(x)

]−1

(204)

and the PMF

r(x) , c
o(x)

. (205)

Using these definitions, the utility function Uβ can be decomposed as follows:

Theorem 9. Let β ∈ (−∞, 1), and let b be a PMF. Then,

Uβ = log c + D 1
1−β

(p‖r)− D1−β(g(β)‖b), (206)

where the PMF g(β) is given by

g(β)(x) , p(x)
1

1−β o(x)
β

1−β

∑x′∈X p(x′)
1

1−β o(x′)
β

1−β

. (207)

Thus, choosing b = g(β) uniquely maximizes Uβ among all PMFs b.

The three terms in (206) can be interpreted as follows:

1. The first term, log c, depends only on the odds and is related to the fairness of the odds. The odds
are called subfair if c < 1, fair if c = 1, and superfair if c > 1.

2. The second term, D1/(1−β)(p‖r), is related to the bookmaker’s estimate of the winning
probabilities. It is zero if and only if the odds are inversely proportional to the winning
probabilities.
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3. The third term, −D1−β(g(β)‖b), is related to the gambler’s estimate of the winning probabilities.
It is zero if and only if b is equal to g(β).

Remark 4. For β = 0, (206) reduces to the following decomposition of the doubling rate E[log S]:

E[log S] = log c + D(p‖r)− D(p‖b). (208)

(This decomposition appeared previously in [47] (Section 10.3).) Equation (208) implies that the doubling
rate is maximized by proportional gambling, i.e., that E[log S] is maximized if and only if b is equal to p.

Remark 5. Considering the limits β→ −∞ and β ↑ 1, the PMF g(β) satisfies, for every x ∈ X ,

lim
β→−∞

g(β)(x) =
c

o(x)
, (209)

lim
β↑1

g(β)(x) =
p(x)1{x ∈ S}

∑x′∈X p(x′)1{x′ ∈ S} , (210)

where the set S is defined as S ,
{

x′ ∈ X : p(x′)o(x′) = maxx[p(x)o(x)]
}

. It follows from Proposition 8
below that the RHS of (209) is the unique maximizer of limβ→−∞ Uβ; and it follows from the proof of
Proposition 9 below that the RHS of (210) is a maximizer (not necessarily unique) of U1.

Proof of Remark 5. Recall that we assume p(x) > 0 for every x ∈ X . Then, (209) follows from (207)
and the definition of c in (204). To establish (210), define τ , maxx[p(x)o(x)] and observe that, for
every x ∈ X ,

lim
β↑1

g(β)(x) = lim
β↑1

p(x)
[
p(x)o(x)/τ

] β
1−β

∑x′∈X p(x′)
[
p(x′)o(x′)/τ

] β
1−β

(211)

=
p(x)1{x ∈ S}

∑x′∈X p(x′)1{x′ ∈ S} , (212)

where (211) follows from (207) and some algebra; and (212) is justified as follows: if x ∈ S , then[
p(x)o(x)/τ

]β/(1−β) equals one; and if x /∈ S , then
[
p(x)o(x)/τ

]β/(1−β) tends to zero as β ↑ 1 because

p(x)o(x)/τ < 1 and because limβ↑1
β

1−β = +∞.

Remark 6. Using the definition in (24) for the Rényi divergence of negative orders, it is not difficult to see from
the proof of Theorem 9 below that (206) also holds for β > 1. However, because the Rényi divergence of negative
orders is nonpositive instead of nonnegative, the above interpretation is not valid anymore; in particular, for
β > 1, choosing b = g(β) is in general not optimal.

Proof of Theorem 9. We first show the maximization claim. The only term on the RHS of (206) that
depends on b is −D1−β(g(β)‖b). Because 1− β > 0, this term is maximized if and only if b = g(β)

(Proposition 1 (a)).
We now establish (206) for β ∈ (−∞, 0) ∪ (0, 1); we omit the proof for β = 0, which can be found

in [47] (Section 10.3). For β ∈ (−∞, 0) ∪ (0, 1),

Uβ =
1
β

log ∑
x

p(x)b(x)β o(x)β. (213)
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For every x ∈ X ,

p(x)b(x)β o(x)β =

[
∑

x′∈X
p(x′)

1
1−β o(x′)

β
1−β

]1−β

· g(β)(x)1−β b(x)β, (214)

which follows from (207). Now, (206) holds because

Uβ =
1− β

β
log ∑

x′∈X
p(x′)

1
1−β o(x′)

β
1−β +

1
β

log ∑
x

g(β)(x)1−β b(x)β (215)

=
1− β

β
log ∑

x′∈X
p(x′)

1
1−β o(x′)

β
1−β − D1−β(g(β)‖b) (216)

= log c +
1− β

β
log ∑

x′∈X
p(x′)

1
1−β r(x′)

−β
1−β − D1−β(g(β)‖b) (217)

= log c + D 1
1−β

(p‖r)− D1−β(g(β)‖b), (218)

where (215) follows from (213) and (214); (216) follows from identifying the Rényi divergence (recall
that g(β) and b are PMFs); (217) follows from (205); and (218) follows from identifying the Rényi
divergence (recall that r is a PMF).

The rest of the section presents the cases β→ −∞, β ≥ 1, and β→ +∞.

Proposition 8. Let b be a PMF. Then,

lim
β→−∞

Uβ = log min
x

[
b(x)o(x)

]
(219)

≤ log c. (220)

Inequality (220) holds with equality if and only if b(x) = c/o(x) for all x ∈ X .

Observe that if b(x) = c/o(x) for all x ∈ X , then S = c with probability one, i.e., S does not
depend on the winning horse.

Proof of Proposition 8. Equation (219) holds because

lim
β→−∞

Uβ = lim
β→−∞

log

[
∑
x

p(x)
(
b(x)o(x)

)β

] 1
β

(221)

= log min
x

[
b(x)o(x)

]
, (222)

where (222) holds because, in the limit as β tends to −∞, the power mean tends to the minimum (since
p is a PMF with p(x) > 0 for all x ∈ X [15] (Chapter 8)).

We show (220) by contradiction. Assume that there exists a PMF b that does not satisfy (220), thus

b(x)o(x) > c (223)

for all x ∈ X . Then,

1 = ∑
x

b(x) (224)

> ∑
x

c
o(x)

(225)

= 1, (226)
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where (224) holds because b is a PMF; (225) follows from (223); and (226) follows from the definition of
c in (204). Because 1 > 1 is impossible, such a b cannot exist, which establishes (220).

It is not difficult to see that (220) holds with equality if b(x) = c/o(x) for all x ∈ X . We therefore
focus on establishing that if (220) holds with equality, then b(x) = c/o(x) for all x ∈ X . Observe first
that, if (220) holds with equality, then, for all x ∈ X ,

b(x)o(x) ≥ c. (227)

We now claim that (227) holds with equality for all x ∈ X . Indeed, if this were not the case, then
there would exist an x′ ∈ X for which b(x′)o(x′) > c, thus (224)–(226) would hold, which would lead
to a contradiction. Hence, if (220) holds with equality, then b(x) = c/o(x) for all x ∈ X .

Proposition 9. Let β ≥ 1, and let b be a PMF. Then,

Uβ ≤ log max
x

[
p(x)1/β o(x)

]
. (228)

Equality in (228) can be achieved by choosing b(x) = 1{x = x′} for some x′ ∈ X satisfying

p(x′)1/β o(x′) = max
x

[
p(x)1/β o(x)

]
. (229)

Remark 7. Proposition 9 implies that if β ≥ 1, then it is optimal to bet on a single horse. Unless |X | = 1, this
is not the case when β < 1: When β < 1, an optimal betting strategy requires placing a bet on every horse. This
follows from Theorem 9 and our assumption that p(x) and o(x) are all positive.

Proof of Proposition 9. Inequality (228) holds because

Uβ =
1
β

log ∑
x

p(x)b(x)β o(x)β (230)

≤ 1
β

log ∑
x

p(x)b(x)o(x)β (231)

≤ 1
β

log ∑
x

b(x) ·max
x′∈X

[
p(x′)o(x′)β

]
(232)

=
1
β

log max
x′∈X

[
p(x′)o(x′)β

]
(233)

= log max
x′∈X

[
p(x′)1/β o(x′)

]
, (234)

where (231) holds because b(x) ∈ [0, 1] and β ≥ 1, and (233) holds because b is a PMF. It is not difficult
to see that (228) holds with equality if b(x) = 1{x = x′} for some x′ ∈ X satisfying (229).

Proposition 10. Let b be a PMF. Then,

lim
β→+∞

Uβ = log max
x

[
b(x)o(x)

]
(235)

≤ log max
x

o(x). (236)

Equality in (236) can be achieved by choosing b(x) = 1{x = x′} for some x′ ∈ X satisfying

o(x′) = max
x

o(x). (237)
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Proof. Equation (235) holds because

lim
β→+∞

Uβ = lim
β→+∞

log

[
∑
x

p(x)
(
b(x)o(x)

)β

] 1
β

(238)

= log max
x

[
b(x)o(x)

]
, (239)

where (239) holds because in the limit as β tends to +∞, the power mean tends to the maximum (since
p is a PMF with p(x) > 0 for all x ∈ X [15] (Chapter 8)). Inequality (236) holds because b(x) ≤ 1 for
all x ∈ X . It is not difficult to see that (236) holds with equality if b(x) = 1{x = x′} for some x′ ∈ X
satisfying (237).

9. Horse Betting with Side Information

In this section, we study the horse betting problem where the gambler observes some side
information Y before placing her bets. This setting leads to the conditional Rényi divergence Dl

α(·)
discussed in Section 5 (see Theorem 10). In addition, it provides a new operational meaning to the
dependence measure Jα(X; Y) (see Theorem 11).

We adapt our notation as follows: The joint PMF of X and Y is denoted pXY. (Recall that X
denotes the winning horse.) We drop the assumption that the winning probabilities p(x) are positive,
but we assume that p(y) > 0 for all y ∈ Y . We continue to assume that the gambler invests all her
wealth, so a betting strategy is now a conditional PMF bX|Y, and the wealth relative S is

S , b(X|Y)o(X). (240)

As in Section 8, define the constant

c ,
[
∑
x

1
o(x)

]−1

(241)

and the PMF

rX(x) , c
o(x)

. (242)

The following decomposition of the utility function Uβ parallels that of Theorem 9:

Theorem 10. Let β ∈ (−∞, 1). Then,

Uβ = log c + Dl
1

1−β
(pX|Y‖rX |pY)− D1−β

(
g(β)

X|Yg(β)
Y ‖bX|Yg(β)

Y
)
, (243)

where the conditional PMF g(β)
X|Y and the PMF g(β)

Y are given by

g(β)
X|Y(x|y) , p(x|y)

1
1−β o(x)

β
1−β

∑x′ p(x′|y)
1

1−β o(x′)
β

1−β

, (244)

g(β)
Y (y) ,

p(y)
[
∑x′ p(x′|y)

1
1−β o(x′)

β
1−β

]1−β

∑y′ p(y′)
[
∑x′ p(x′|y′)

1
1−β o(x′)

β
1−β

]1−β
. (245)

Thus, choosing bX|Y = g(β)
X|Y uniquely maximizes Uβ among all conditional PMFs bX|Y.
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Proof. We first show that Uβ is uniquely maximized by g(β)
X|Y. The only term on the RHS of (243) that

depends on bX|Y is −D1−β

(
g(β)

X|Yg(β)
Y ‖bX|Yg(β)

Y
)
. Because 1− β > 0, this term is maximized if and only

if bX|Yg(β)
Y = g(β)

X|Yg(β)
Y (Proposition 1 (a)). By our assumptions that p(y) > 0 for all y ∈ Y and o(x) > 0

for all x ∈ X , we have g(β)
Y (y) > 0 for all y ∈ Y . Consequently, bX|Yg(β)

Y = g(β)
X|Yg(β)

Y if and only if

bX|Y = g(β)
X|Y.

Consider now (243) for β = 0. For β = 0, (243) reduces to

E[log S] = log c + D(pX|Y pY‖rX pY)− D(pX|Y pY‖bX|Y pY), (246)

and some algebra reveals that (246) holds.
We conclude with establishing (243) for β ∈ (−∞, 0) ∪ (0, 1). For β ∈ (−∞, 0) ∪ (0, 1),

Uβ =
1
β

log ∑
x,y

p(x, y)b(x|y)β o(x)β. (247)

For every x ∈ X and every y ∈ Y ,

p(x, y)b(x|y)β o(x)β = ∑
y′∈Y

p(y′)

[
∑

x′∈X
p(x′|y′)

1
1−β o(x′)

β
1−β

]1−β

· g(β)
Y (y)g(β)

X|Y(x|y)1−β b(x|y)β, (248)

which follows from (244) and (245). Now, (243) holds because

Uβ =
1
β

log ∑
y′∈Y

p(y′)

[
∑

x′∈X
p(x′|y′)

1
1−β o(x′)

β
1−β

]1−β

+
1
β

log ∑
x,y

[
g(β)

X|Y(x|y)g(β)
Y (y)

]1−β [b(x|y)g(β)
Y (y)

]β (249)

=
1
β

log ∑
y′∈Y

p(y′)

[
∑

x′∈X
p(x′|y′)

1
1−β o(x′)

β
1−β

]1−β

− D1−β

(
g(β)

X|Yg(β)
Y ‖bX|Yg(β)

Y
)

(250)

= log c +
1
β

log ∑
y′∈Y

p(y′)

[
∑

x′∈X
p(x′|y′)

1
1−β rX(x′)

−β
1−β

]1−β

− D1−β

(
g(β)

X|Yg(β)
Y ‖bX|Yg(β)

Y
)

(251)

= log c + Dl
1

1−β
(pX|Y‖rX |pY)− D1−β

(
g(β)

X|Yg(β)
Y ‖bX|Yg(β)

Y
)
, (252)

where (249) follows from (247) and (248) and the fact that g(β)
Y (y) = g(β)

Y (y)1−β g(β)
Y (y)β; (250) follows

by identifying the Rényi divergence; (251) follows from (242); and (252) follows by identifying the
conditional Rényi divergence using (78).

Remark 8. It follows from Theorem 10 that, if the gambler gambles optimally, then, for β ∈ (−∞, 1),

Uβ = log c + Dl
1

1−β
(pX|Y‖rX |pY). (253)

Operationally, it is clear that preprocessing the side information cannot increase the gambler’s utility, i.e.,
that, for every conditional PMF pY′ |Y,

Dl
1

1−β
(pX|Y′‖rX |pY′) ≤ Dl

1
1−β

(pX|Y‖rX |pY), (254)
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where pX|Y′ and pY′ are derived from the joint PMF pXYY′ given by

pXYY′(x, y, y′) = pY(y) pX|Y(x|y) pY′ |Y(y′|y). (255)

This provides the intuition for Theorem 6, where (254) is shown directly.
The extreme case is when the preprocessing maps the side information to a constant and hence leads to the

case where the side information is absent. In this case, Y′ is deterministic and pX|Y′ equals pX . Theorem 9 and
Theorem 10 then lead to the following relation between the conditional and unconditional Rényi divergence:

D 1
1−β

(pX‖rX) ≤ Dl
1

1−β
(pX|Y‖rX |pY), (256)

where the marginal PMF pX is given by

pX(x) = ∑
y

pXY(x, y). (257)

This motivates Corollary 3, where (256) is derived from (254).

The last result of this section provides a new operational meaning to the Lapidoth–Pfister mutual
information Jα(X; Y): assuming that β ∈ (−∞, 1) and that the gambler knows the winning probabilities,
J1/(1−β)(X; Y) measures how much the side information that is available to the gambler but not the
bookmaker increases the gambler’s smallest guaranteed utility for a fixed level of fairness c. To see
this, consider first the setting without side information. By Theorem 9, the gambler chooses b = g(β)

to maximize her utility, where g(β) is defined in (207). Then, using the nonnegativity of the Rényi
divergence (Proposition 1 (a)), the following lower bound on the gambler’s utility follows from (206):

Uβ ≥ log c. (258)

We call the RHS of (258) the smallest guaranteed utility for a fixed level of fairness c because
(258) holds with equality if the bookmaker chooses the odds inversely proportional to the winning
probabilities. Comparing (258) with (259) below, we see that the difference due to the side information
is J1/(1−β)(X; Y). Note that J1/(1−β)(X; Y) is typically not the difference between the utility with and
without side information; this is because the odds for which (258) and (259) hold with equality are
typically not the same.

Theorem 11. Let β ∈ (−∞, 1). If bX|Y is equal to g(β)
X|Y from Theorem 10, then

Uβ ≥ log c + J 1
1−β

(X; Y). (259)

Moreover, for every c > 0, there exist odds o : X → (0, ∞) such that (259) holds with equality.

Proof. For this choice of bX|Y, (259) holds because

Uβ = log c + Dl
1

1−β
(pX|Y‖rX |pY) (260)

≥ log c + min
r̃X∈P(X )

Dl
1

1−β
(pX|Y‖r̃X |pY) (261)

= log c + J 1
1−β

(X; Y), (262)

where (260) follows from Theorem 10, and (262) follows from Proposition 5.
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Fix now c > 0, let r̃∗X achieve the minimum on the RHS of (261), and choose the odds

o(x) =
c

r̃∗X(x)
. (263)

Then, (261) holds with equality because rX = r̃∗X by (241) and (242).

10. Horse Betting with Part of the Money

In this section, we treat the possibility that the gambler does not invest all her wealth. We restrict
ourselves to the setting without side information and to β ∈ (−∞, 0) ∪ (0, 1). (For the case β = 0,
see [47] (Section 10.5).) We assume that p(x) > 0 and o(x) > 0 for all x ∈ X . Denote by b(0) the fraction
of her wealth that the gambler does not use for betting. (We assume 0 /∈ X .) Then, b : X ∪ {0} → [0, 1]
is a PMF, and the wealth relative S is the random variable

S , b(0) + b(X)o(X). (264)

As in Section 8, define the constant

c ,
[
∑
x

1
o(x)

]−1

. (265)

We treat the cases c < 1 and c ≥ 1 separately, starting with the latter. If c ≥ 1, then it is optimal to
invest all the money:

Proposition 11. Assume c ≥ 1, let β ∈ R, and let b be a PMF on X ∪ {0} with utility Uβ. Then, there exists
a PMF b′ on X ∪ {0} with b′(0) = 0 and utility U′β ≥ Uβ.

Proof. Choose the PMF b′ as follows:

b′(x) =





c
o(x) · b(0) + b(x) if x ∈ X ,

0 if x = 0.
(266)

Then, for every x ∈ X ,

b′(0) + b′(x)o(x) = c · b(0) + b(x)o(x) (267)

≥ b(0) + b(x)o(x), (268)

where (268) holds because c ≥ 1 by assumption. For β > 0, U′β ≥ Uβ holds because (268) implies

E[S′β] ≥ E[Sβ]. For β < 0 and β = 0, U′β ≥ Uβ follows similarly from (268).

On the other hand, if β < 1 and the odds are subfair, i.e., if c < 1, then Claim (c) of the following
theorem shows that investing all the money is not optimal:

Theorem 12. Assume c < 1, let β ∈ (−∞, 0) ∪ (0, 1), and let b∗ be a PMF on X ∪ {0} that maximizes Uβ

among all PMFs b. Defining

S , {x ∈ X : b∗(x) > 0}, (269)

Γ , 1−∑x∈S p(x)
1−∑x∈S

1
o(x)

, (270)

γ(x) , max
{

0, Γ
1

β−1 p(x)
1

1−β o(x)
β

1−β − 1
o(x)

}
∀x ∈ X , (271)
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the following claims hold:

(a) Both the numerator and denominator on the RHS of (270) are positive, so Γ is well-defined and positive.
(b) For every x ∈ X ,

b∗(x) = γ(x)b∗(0). (272)

(c) The quantity b∗(0) satisfies

b∗(0) =
1

1 + ∑x∈X γ(x)
. (273)

In particular, b∗(0) > 0.

Claim (b) implies that for every x ∈ X , b∗(x) > 0 if and only if p(x)o(x) > Γ. Ordering the
elements x1, x2, . . . of X such that p(x1)o(x1) ≥ p(x2)o(x2) ≥ . . ., the set S thus has a special structure:
it is either empty or equal to {x1, x2, . . . , xk} for some integer k. To maximize Uβ, the following
procedure can be used: for every S with the above structure, compute the corresponding b according
to (270)–(273); and from these b’s, take one that maximizes Uβ. This procedure leads to an optimal
solution: an optimal solution b∗ exists because we are optimizing a continuous function over a compact
set, and b∗ corresponds to a set S that will be considered by the procedure.

Proof of Theorem 12. The proof is based on the Karush–Kuhn–Tucker conditions. By separately
considering the cases β ∈ (0, 1) and β < 0, we first show that, for β ∈ (−∞, 0) ∪ (0, 1), a strategy b(·)
is optimal if and only if the following conditions are satisfied for some µ ∈ R:

∑
x∈X

p(x)
(
b(0) + b(x)o(x)

)β−1
{
= µ if b(0) > 0,

≤ µ if b(0) = 0,
(274)

and, for every x ∈ X ,

p(x)o(x)
(
b(0) + b(x)o(x)

)β−1
{
= µ if b(x) > 0,

≤ µ if b(x) = 0.
(275)

Consider first β ∈ (0, 1), and define the function τ : P(X ∪ {0})→ R,

τ(b) , ∑
x∈X

p(x)
(
b(0) + b(x)o(x)

)β. (276)

Since β > 0 and since the logarithm is an increasing function, maximizing Uβ = 1
β log E[Sβ] over

b is equivalent to maximizing τ(b). Observe that τ is concave, thus, by the Karush–Kuhn–Tucker
conditions [11] (Theorem 4.4.1), it is maximized by a PMF b if and only if there exists a λ ∈ R such that
(i) for all x ∈ X ∪ {0} with b(x) > 0,

∂τ

∂b(x)
(b) = λ, (277)

and (ii) for all x ∈ X ∪ {0} with b(x) = 0,

∂τ

∂b(x)
(b) ≤ λ. (278)
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Henceforth, we use the following notation: to designate that (i) and (ii) both hold, we write

∂τ

∂b(x)
(b)

{
= λ if b(x) > 0,

≤ λ if b(x) = 0.
(279)

Dividing both sides of (279) by β > 0 and defining µ , λ
β , we obtain that (279) is equivalent to

1
β
· ∂τ

∂b(x)
(b)

{
= µ if b(x) > 0,

≤ µ if b(x) = 0.
(280)

Now, (280) translates to (274) for x = 0 and to (275) for x ∈ X .
Consider now β < 0, and define τ as in (276). Then, because β < 0, maximizing Uβ = 1

β log E[Sβ]

is equivalent to minimizing τ. The function τ is convex, thus Inequality (278) is reversed. Dividing by
β < 0 again reverses the inequalities, thus (280), (274), and (275) continue to hold for β < 0.

Having established that, for all β ∈ (−∞, 0)∪ (0, 1), a strategy b is optimal if and only if (274) and
(275) hold, we next continue with the proof. Let β ∈ (−∞, 0) ∪ (0, 1), and let b∗ be a PMF on X ∪ {0}
that maximizes Uβ. By the above discussion, (274) and (275) are satisfied by b∗ for some µ ∈ R. The
LHS of (274) is positive, so µ > 0. We now show that for all x ∈ X ,

b∗(x) = max
{

0,
[

p(x)o(x)β

µ

] 1
1−β

− b∗(0)
o(x)

}
. (281)

To this end, fix x ∈ X . If b∗(x) > 0, then (275) implies

b∗(x) =
[

p(x)o(x)β

µ

] 1
1−β

− b∗(0)
o(x)

, (282)

and the RHS of (282) is equal to the RHS of (281) because, being equal to b∗(x), it is positive. If
b∗(x) = 0, then (275) implies

[
p(x)o(x)β

µ

] 1
1−β

− b∗(0)
o(x)

≤ 0, (283)

so the RHS of (281) is zero and (281) hence holds.
Having established (281), we next show that b∗(x̂) = 0 for some x̂ ∈ X . For a contradiction,

assume that b∗(x) > 0 for all x ∈ X . Then,

∑
x∈X

p(x)
(
b∗(0) + b∗(x)o(x)

)β−1
= µ ∑

x∈X

1
o(x)

(284)

> µ, (285)

where (284) follows from (275), and (285) holds because c < 1 by assumption. However, this is
impossible: (285) contradicts (274).

Let now x̂ ∈ X be such that b∗(x̂) = 0. Then, by (281),

[
p(x̂)o(x̂)β

µ

] 1
1−β

− b∗(0)
o(x̂)

≤ 0. (286)

Because p(x̂) and o(x̂) are positive, this implies b∗(0) > 0. Thus, by (274),

∑
x∈X

p(x)
(
b∗(0) + b∗(x)o(x)

)β−1
= µ. (287)
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Splitting the sum on the LHS of (287) depending on whether b∗(x) > 0 or b∗(x) = 0, we obtain

µ = ∑
x∈S

p(x)
(
b∗(0) + b∗(x)o(x)

)β−1
+ ∑

x/∈S
p(x)

(
b∗(0) + b∗(x)o(x)

)β−1 (288)

= ∑
x∈S

µ

o(x)
+ ∑

x/∈S
p(x)b∗(0)β−1 (289)

= µ ∑
x∈S

1
o(x)

+ b∗(0)β−1

[
1− ∑

x∈S
p(x)

]
, (290)

where (289) follows from (275). Rearranging (290), we obtain

µ

[
1− ∑

x∈S

1
o(x)

]
= b∗(0)β−1

[
1− ∑

x∈S
p(x)

]
. (291)

Recall that µ > 0 and b∗(0) > 0. In addition, 1− ∑x∈S p(x) > 0 because b∗(x̂) = 0 and hence
x̂ /∈ S . Thus, 1−∑x∈S

1
o(x) > 0, so both the numerator and denominator in the definition of Γ in (270)

are positive, which establishes Claim (a), namely that Γ is well-defined and positive.
To establish Claim (b), note that (291) and (270) imply that µ is given by

µ = b∗(0)β−1 Γ, (292)

which, when substituted into (281), yields (272).
We conclude by proving Claim (c). Because b∗ is a PMF on X ∪ {0},

1 = b∗(0) + ∑
x∈X

b∗(x) (293)

= b∗(0)

[
1 + ∑

x∈X
γ(x)

]
, (294)

where (294) follows from (272). Rearranging (294) yields (273).

11. Universal Betting for IID Races

In this section, we present a universal gambling strategy for IID races that requires neither
knowledge of the winning probabilities nor of the parameter β of the utility function and yet
asymptotically maximizes the utility function for all PMFs p and all β ∈ R. Consider n consecutive
horse races, where the winning horse in the ith race is denoted Xi for i ∈ {1, . . . , n}. We assume that
X1, . . . , Xn are IID according to the PMF p, where p(x) > 0 for all x ∈ X . In every race, the bookmaker
offers the same odds o : X → (0, ∞), and the gambler spends all her wealth placing bets on the horses.
The gambler plays race-after-race, i.e., before placing bets for a race, she is revealed the winning
horse of the previous race and receives the money from the bookmaker. Her betting strategy is hence
a sequence of conditional PMFs

(
bX1 , bX2|X1 , bX3|X1X2 , . . . , bXn |X1X2···Xn−1

)
. The wealth relative is the

random variable

Sn ,
n

∏
i=1

b(Xi|X1, . . . , Xi−1)o(Xi). (295)

We seek betting strategies that maximize the utility function

Uβ,n ,
{

1
β log E[Sβ

n ] if β 6= 0,

E[log Sn] if β = 0.
(296)
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We first establish that to maximize Uβ,n for a fixed β ∈ R, it suffices to use the same betting
strategy in every race; see Theorem 13. We then show that the individual-sequence-universal strategy
by Cover–Ordentlich [48] allows to asymptotically achieve the same normalized utility without
knowing p or β (see Theorem 14).

For a fixed β ∈ R, let the PMF b∗ be a betting strategy that maximizes the single-race utility Uβ

discussed in Section 8, and denote by U∗β the utility associated with b∗. Using the same betting strategy
b∗ over n races leads to the utility Uβ,n, and it follows from (295) and (296) that

Uβ,n = nU∗β . (297)

As we show next, nU∗β is the maximum utility that can be achieved among all betting strategies:

Theorem 13. Let β ∈ R, and let
(
bX1 , bX2|X1 , bX3|X1X2 , . . . , bXn |X1X2···Xn−1

)
be a sequence of conditional

PMFs. Then,

Uβ,n ≤ nU∗β . (298)

Proof. We show (298) for β > 0; analogous arguments establish (298) for β < 0 and β = 0. We prove
(298) by induction on n. For n = 1, (298) holds because U∗β is the maximum single-race utility. Assume
now n ≥ 2 and that (298) is valid for n− 1. For β > 0, (298) holds because

Uβ,n =
1
β

log E[Sβ
n ] (299)

=
1
β

log ∑
x1,...,xn

P(x1) · · · P(xn)
n

∏
i=1

b(xi|xi−1)β o(xi)
β (300)

=
1
β

log ∑
x1,...,xn−1

P(x1) · · · P(xn−1)

[
n−1

∏
i=1

b(xi|xi−1)β o(xi)
β

]
∑
xn

P(xn)b(xn|xn−1)β o(xn)
β (301)

≤ 1
β

log ∑
x1,...,xn−1

P(x1) · · · P(xn−1)

[
n−1

∏
i=1

b(xi|xi−1)β o(xi)
β

]
max

b∈P(X )
∑
xn

P(xn)b(xn)
β o(xn)

β (302)

=
1
β

log ∑
x1,...,xn−1

P(x1) · · · P(xn−1)

[
n−1

∏
i=1

b(xi|xi−1)β o(xi)
β

]
∑
xn

P(xn)b∗(xn)
β o(xn)

β (303)

= Uβ,n−1 + U∗β (304)

≤ (n− 1)U∗β + U∗β (305)

= nU∗β , (306)

where (303) holds because b∗ maximizes the single-race utility Uβ, and (305) holds because (298) is
valid for n− 1.

In portfolio theory, Cover–Ordentlich [48] (Definition 1) proposed a universal strategy. Adapted
to our setting, it leads to the following sequence of conditional PMFs:

b̂(xi|xi−1) =

∫
b∈P(X ) b(xi)Si−1(b, xi−1)dµ(b)
∫

b∈P(X ) Si−1(b, xi−1)dµ(b)
, (307)

where i ∈ {1, 2, . . .}; µ is the Dirichlet(1/2, . . . , 1/2) distribution on P(X ); S0(b, x0) , 1; and

Si(b, xi) ,
i

∏
j=1

b(xj)o(xj). (308)

63



Entropy 2020, 22, 316

This strategy depends neither on the winning probabilities p nor on the parameter β. Denoting
the utility (296) associated with the strategy b̂(xi|xi−1) by Ûβ,n, we have the following result:

Theorem 14. For every β ∈ R,

nU∗β − log 2− |X | − 1
2

log(n + 1) ≤ Ûβ,n (309)

≤ nU∗β . (310)

Hence,

lim
n→∞

1
n

Ûβ,n = U∗β . (311)

Proof. Inequality (310) follows from Theorem 13; and (311) follows from (309) and (310) and the
sandwich theorem. It thus remains to establish (309): We do so for β > 0; analogous arguments
establish (309) for β < 0 and β = 0. For a fixed sequence xn ∈ X n, let b̃ be a PMF on X that maximizes
Sn(b, xn), and denote the wealth relative in (295) associated with using b̃ in every race by S̃n(xn), thus

S̃n(xn) = max
b∈P(X )

n

∏
i=1

b(xi)o(xi). (312)

Let Ŝn(xn) denote the wealth relative in (295) associated with the strategy b̂(xi|xi−1) and the
sequence xn. Using [48] (Theorem 2) it follows that, for every xn ∈ X n,

Ŝn(xn) ≥ 1
2(n + 1)(|X |−1)/2

S̃n(xn). (313)

This implies that (309) holds for β > 0 because

Ûβ,n =
1
β

log E
[
Ŝn(Xn)β

]
(314)

≥ 1
β

log E
[
S̃n(Xn)β

]
− log 2− |X | − 1

2
log(n + 1) (315)

≥ 1
β

log ∑
x1,...,xn

P(x1) · · · P(xn)
n

∏
i=1

b∗(xi)
β o(xi)

β − log 2− |X | − 1
2

log(n + 1) (316)

= nU∗β − log 2− |X | − 1
2

log(n + 1), (317)

where (315) follows from (313), and (316) follows from (312).

Remark 9. As discussed in Section 8, the optimal single-race betting strategy varies significantly with different
values of β, thus it might be a bit surprising that the Cover–Ordentlich strategy is not only universal with
respect to the winning probabilities, but also with respect to β. This is due to the following two reasons: First,
for fixed winning probabilities and a fixed β, it is optimal to use the same betting strategy in every race (see
Theorem 13). Second, for every xn ∈ X n, the wealth relative of the Cover–Ordentlich strategy is not much worse
than that of using the same strategy b(·) in every race, irrespective of b(·) (see (313)). Hence, irrespective of the
optimal single-race betting strategy, the Cover–Ordentlich strategy is able to asymptotically achieve the same
normalized utility.
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Appendix A. Proof of Proposition 1

These properties mostly follow from van Erven–Harremoës [8]:

(a) See [8] (Theorem 8).
(b) This follows from the definitions in (4) and (21)–(23) and the conventions in (20).
(c) This follows from [8] (Theorem 7) and the fact that limα→1 Dα(P‖Q) = D(P‖Q) by L’Hôpital’s

rule. (Note that α 7→ Dα(P‖Q) does not need to be continuous at α = 1 when the alphabets are
not finite; see the discussion after [8] (Equation (18)).)

(d) See [8] (Theorem 3).
(e) Let α, α′ ∈ (0, ∞) satisfy α ≤ α′. Then,

1− α

α
Dα(P‖Q) = D1−α(Q‖P) (A1)

≥ D1−α′(Q‖P) (A2)

=
1− α′

α′
Dα′(P‖Q), (A3)

where (A1) and (A3) follow from [8] (Lemma 10), and (A2) holds because the Rényi divergence,
extended to negative orders, is nondecreasing ([8] (Theorem 39)).

(f) See [8] (Corollary 2).
(g) For α ∈ (0, ∞),

(α− 1)D1/α(P‖Q) = α

(
1− 1

α

)
D1/α(P‖Q) (A4)

= α inf
R

[
1
α

D(R‖P) +
(

1− 1
α

)
D(R‖Q)

]
(A5)

= inf
R

[
D(R‖P) + (α− 1)D(R‖Q)

]
, (A6)

where (A5) follows from [8] (Theorem 30). Hence, (α− 1)D1/α(P‖Q) is concave in α because
the expression in square brackets on the RHS of (A6) is concave in α for every R and because
the pointwise infimum preserves the concavity.

(h) See [8] (Theorem 9).

Appendix B. Proof of Theorem 1

Beginning with (29),

Dc
α(PY′ |X‖QY′ |X |PX) = ∑

x∈supp(PX)

P(x)Dα(PY′ |X=x‖QY′ |X=x) (A7)

≤ ∑
x∈supp(PX)

P(x)Dα(PY|X=x‖QY|X=x) (A8)

= Dc
α(PY|X‖QY|X |PX), (A9)

where (A8) follows by applying, separately for every x ∈ supp(PX), Proposition 1 (h) with the
conditional PMF AY′ |Y,X=x.
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Appendix C. Proof of Theorem 2

We show (43) for α ∈ (0, 1); the claim then extends to α ∈ [0, 1] by the continuity of Dc
α(·) in α

(Proposition 2 (c)). Let α ∈ (0, 1). Keeping in mind that α− 1 < 0, (43) holds because

(α− 1)Dc
α(PY|X′‖QY|X′ |PX′)

= ∑
x′∈supp(PX′ )

PX′(x′) log ∑
y

PY|X′(y|x′)α QY|X′(y|x′)1−α (A10)

= ∑
x′∈supp(PX′ )

PX′(x′) log ∑
y

[
∑
x

BX|X′(x|x′)PY|X(y|x)
]α[

∑
x

BX|X′(x|x′)QY|X(y|x)
]1−α

(A11)

≥ ∑
x′∈supp(PX′ )

PX′(x′) log ∑
y

∑
x

BX|X′(x|x′)PY|X(y|x)α QY|X(y|x)1−α (A12)

= ∑
x′∈supp(PX′ )

PX′(x′) log ∑
x∈supp(PX)

BX|X′(x|x′)∑
y

PY|X(y|x)α QY|X(y|x)1−α (A13)

≥ ∑
x′∈supp(PX′ )

PX′(x′) ∑
x∈supp(PX)

BX|X′(x|x′) log ∑
y

PY|X(y|x)α QY|X(y|x)1−α (A14)

= ∑
x∈supp(PX)

PX(x)

[
∑

x′∈supp(PX′ )
BX′ |X(x′|x)

]
log ∑

y
PY|X(y|x)α QY|X(y|x)1−α (A15)

= ∑
x∈supp(PX)

PX(x) log ∑
y

PY|X(y|x)α QY|X(y|x)1−α (A16)

= (α− 1)Dc
α(PY|X‖QY|X |PX), (A17)

where (A10) follows from (30); (A11) follows from (41) and (42); (A12) follows from Hölder’s inequality;
(A13) holds because BX|X′(x|x′) = 0 if PX′(x′) > 0 and PX(x) = 0; (A14) follows from Jensen’s
inequality because log(·) is concave; (A15) follows from (40); (A16) holds because PX(x) > 0 and
PX′(x′) = 0 imply BX′ |X(x′|x) = 0, hence the expression in square brackets on the LHS of (A16) equals
one; and (A17) follows from (30).

Appendix D. Proof of Corollary 1

Applying Theorem 2 with X ′ , {1} and the conditional PMF BX′ |X(x′|x) , 1, we obtain

Dc
α(PY|X′‖QY|X′ |PX′) ≤ Dc

α(PY|X‖QY|X |PX). (A18)

To complete the proof of (48), observe that

Dc
α(PY|X′‖QY|X′ |PX′) = Dc

α(PY‖QY|PX′) (A19)

= Dα(PY‖QY), (A20)

where (A19) holds because (41) and (46) imply PY|X′(y|x′) = PY(y) and because (42) and (47) imply
QY|X′(y|x′) = QY(y); and (A20) follows from Remark 1.

Appendix E. Proof of Example 1

If α = ∞, then it can be verified numerically that (53) holds for ε = 0.1. Fix now α ∈ (1, ∞). Then,
for all ε ∈ (0, 1),

Dα

(
PY‖Q(ε)

Y
)
=

1
α− 1

log
[
0.5α (1− ε)1−α + 0.5α ε1−α

]
(A21)

≥ 1
α− 1

log
[
0.5α ε1−α

]
(A22)
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=
α

α− 1
log 0.5 + log

1
ε

. (A23)

The RHS of (53) satisfies, for sufficiently small ε,

Dc
α

(
P(ε)

Y|X‖Q
(ε)
Y |PX

)
= 0.5 · 0 + 0.5 · Dα

(
P(ε)

Y|X=1‖Q
(ε)
Y
)

(A24)

=
0.5

α− 1
log
[
εα (1− ε)1−α + (1− ε)α ε1−α

]
(A25)

=
0.5

α− 1
log
[
ε1−α

(
(1− ε)α + ε2α−1 (1− ε)1−α

)]
(A26)

≤ 0.5
α− 1

log
[
2ε1−α

]
(A27)

=
0.5

α− 1
log 2 + 0.5 log

1
ε

, (A28)

where (A27) holds for sufficiently small ε because limε↓0
(
(1− ε)α + ε2α−1 (1− ε)1−α

)
= 1. Because

limε↓0 log 1
ε = ∞, (53) follows from (A23) and (A28) for sufficiently small ε.

Appendix F. Proof of Theorem 3

Observe that, for all x′ ∈ X and all y′ ∈ Y ′,

PX(x′)PY′ |X(y′|x′) = ∑
x,y

PX(x)PY|X(y|x)1{x′ = x}AY′ |XY(y′|x, y), (A29)

PX(x′)QY′ |X(y′|x′) = ∑
x,y

PX(x)QY|X(y|x)1{x′ = x}AY′ |XY(y′|x, y). (A30)

Hence, (68) follows from (54) and

Dα(PXPY′ |X‖PXQY′ |X) ≤ Dα(PXPY|X‖PXQY|X), (A31)

which follows from the data-processing inequality for the Rényi divergence by substituting
1X′=X AY′ |XY for AX′Y′ |XY in Proposition 1 (h).

Appendix G. Proof of Theorem 4

Observe that, for all x′ ∈ X ′ and all y′ ∈ Y ,

PX′(x′)PY|X′(y′|x′) = ∑
x,y

PX(x)PY|X(y|x)BX′ |X(x′|x)1{y′ = y}, (A32)

PX′(x′)QY|X′(y′|x′) = ∑
x,y

PX(x)QY|X(y|x)BX′ |X(x′|x)1{y′ = y}. (A33)

Hence, (73) follows from (54) and

Dα(PX′PY|X′‖PX′QY|X′) ≤ Dα(PXPY|X‖PXQY|X), (A34)

which follows from the data-processing inequality for the Rényi divergence by substituting BX′ |X1Y′=Y
for AX′Y′ |XY in Proposition 1 (h).
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Abstract: The relative entropy and the chi-squared divergence are fundamental divergence measures
in information theory and statistics. This paper is focused on a study of integral relations between
the two divergences, the implications of these relations, their information-theoretic applications, and
some generalizations pertaining to the rich class of f -divergences. Applications that are studied in this
paper refer to lossless compression, the method of types and large deviations, strong data–processing
inequalities, bounds on contraction coefficients and maximal correlation, and the convergence rate to
stationarity of a type of discrete-time Markov chains.
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1. Introduction

The relative entropy (also known as the Kullback–Leibler divergence [1]) and the chi-squared
divergence [2] are divergence measures which play a key role in information theory, statistics, learning,
signal processing, and other theoretical and applied branches of mathematics. These divergence
measures are fundamental in problems pertaining to source and channel coding, combinatorics and
large deviations theory, goodness-of-fit and independence tests in statistics, expectation–maximization
iterative algorithms for estimating a distribution from an incomplete data, and other sorts of problems
(the reader is referred to the tutorial paper by Csiszár and Shields [3]). They both belong to an
important class of divergence measures, defined by means of convex functions f , and named
f -divergences [4–8]. In addition to the relative entropy and the chi-squared divergence, this class
unifies other useful divergence measures such as the total variation distance in functional analysis,
and it is also closely related to the Rényi divergence which generalizes the relative entropy [9,10].
In general, f -divergences (defined in Section 2) are attractive since they satisfy pleasing features
such as the data–processing inequality, convexity, (semi)continuity, and duality properties, and they
therefore find nice applications in information theory and statistics (see, e.g., [6,8,11,12]).

In this work, we study integral relations between the relative entropy and the chi-squared
divergence, implications of these relations, and some of their information-theoretic applications.
Some generalizations which apply to the class of f -divergences are also explored in detail. In this
context, it should be noted that integral representations of general f -divergences, expressed as a
function of either the DeGroot statistical information [13], the Eγ-divergence (a parametric sub-class of
f -divergences, which generalizes the total variation distance [14] [p. 2314]) and the relative information
spectrum, have been derived in [12] [Section 5], [15] [Section 7.B], and [16] [Section 3], respectively.
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Applications in this paper are related to lossless source compression, large deviations by the
method of types, and strong data–processing inequalities. The relevant background for each of these
applications is provided to make the presentation self contained.

We next outline the paper contributions and the structure of our manuscript.

1.1. Paper Contributions

This work starts by introducing integral relations between the relative entropy and the chi-squared
divergence, and some inequalities which relate these two divergences (see Theorem 1, its corollaries,
and Proposition 1). It continues with a study of the implications and generalizations of these relations,
pertaining to the rich class of f -divergences. One implication leads to a tight lower bound on the relative
entropy between a pair of probability measures, expressed as a function of the means and variances
under these measures (see Theorem 2). A second implication of Theorem 1 leads to an upper bound
on a skew divergence (see Theorem 3 and Corollary 3). Due to the concavity of the Shannon entropy,
let the concavity deficit of the entropy function be defined as the non-negative difference between the
entropy of a convex combination of distributions and the convex combination of the entropies of these
distributions. Then, Corollary 4 provides an upper bound on this deficit, expressed as a function of the
pairwise relative entropies between all pairs of distributions. Theorem 4 provides a generalization
of Theorem 1 to the class of f -divergences. It recursively constructs non-increasing sequences of
f -divergences and as a consequence of Theorem 4 followed by the usage of polylogairthms, Corollary 5
provides a generalization of the useful integral relation in Theorem 1 between the relative entropy and
the chi-squared divergence. Theorem 5 relates probabilities of sets to f -divergences, generalizing a
known and useful result by Csiszár for the relative entropy. With respect to Theorem 1, the integral
relation between the relative entropy and the chi-squared divergence has been independently derived
in [17], which also derived an alternative upper bound on the concavity deficit of the entropy as a
function of total variational distances (differing from the bound in Corollary 4, which depends on
pairwise relative entropies). The interested reader is referred to [17], with a preprint of the extended
version in [18], and to [19] where the connections in Theorem 1 were originally discovered in the
quantum setting.

The second part of this work studies information-theoretic applications of the above results.
These are ordered by starting from the relatively simple applications, and ending at the more
complicated ones. The first one includes a bound on the redundancy of the Shannon code for universal
lossless compression with discrete memoryless sources, used in conjunction with Theorem 3 (see
Section 4.1). An application of Theorem 2 in the context of the method of types and large deviations
analysis is then studied in Section 4.2, providing non-asymptotic bounds which lead to a closed-form
expression as a function of the Lambert W function (see Proposition 2). Strong data–processing
inequalities with bounds on contraction coefficients of skew divergences are provided in Theorem 6,
Corollary 7 and Proposition 3. Consequently, non-asymptotic bounds on the convergence to stationarity
of time-homogeneous, irreducible, and reversible discrete-time Markov chains with finite state spaces
are obtained by relying on our bounds on the contraction coefficients of skew divergences (see
Theorem 7). The exact asymptotic convergence rate is also obtained in Corollary 8. Finally, a property
of maximal correlations is obtained in Proposition 4 as an application of our starting point on the
integral relation between the relative entropy and the chi-squared divergence.

1.2. Paper Organization

This paper is structured as follows. Section 2 presents notation and preliminary material which is
necessary for, or otherwise related to, the exposition of this work. Section 3 refers to the developed
relations between divergences, and Section 4 studies information-theoretic applications. Proofs of the
results in Sections 3 and 4 (except for short proofs) are deferred to Section 5.
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2. Preliminaries and Notation

This section provides definitions of divergence measures which are used in this paper, and it also
provides relevant notation.

Definition 1. [12] [p. 4398] Let P and Q be probability measures, let µ be a dominating measure of P and Q
(i.e., P, Q� µ), and let p := dP

dµ and q := dQ
dµ be the densities of P and Q with respect to µ. The f -divergence

from P to Q is given by

D f (P‖Q) :=
∫

q f
( p

q

)
dµ, (1)

where

f (0) := lim
t→0+

f (t), 0 f
(

0
0

)
:= 0, (2)

0 f
(

a
0

)
:= lim

t→0+
t f
(

a
t

)
= a lim

u→∞

f (u)
u

, a > 0. (3)

It should be noted that the right side of (1) does not depend on the dominating measure µ.

Throughout the paper, we denote by 1{relation} the indicator function; it is equal to 1 if the
relation is true, and it is equal to 0 otherwise. Throughout the paper, unless indicated explicitly,
logarithms have an arbitrary common base (that is larger than 1), and exp(·) indicates the inverse
function of the logarithm with that base.

Definition 2. [1] The relative entropy is the f -divergence with f (t) := t log t for t > 0,

D(P‖Q) := D f (P‖Q) (4)

=
∫

p log
p
q

dµ. (5)

Definition 3. The total variation distance between probability measures P and Q is the f -divergence from P
to Q with f (t) := |t− 1| for all t ≥ 0. It is a symmetric f -divergence, denoted by |P−Q|, which is given by

|P−Q| := D f (P‖Q) (6)

=
∫
|p− q|dµ. (7)

Definition 4. [2] The chi-squared divergence from P to Q is defined to be the f -divergence in (1) with
f (t) := (t− 1)2 or f (t) := t2 − 1 for all t > 0,

χ2(P‖Q) := D f (P‖Q) (8)

=
∫

(p− q)2

q
dµ =

∫ p2

q
dµ− 1. (9)

The Rényi divergence, a generalization of the relative entropy, was introduced by Rényi [10] in
the special case of finite alphabets. Its general definition is given as follows (see, e.g., [9]).

Definition 5. [10] Let P and Q be probability measures on X dominated by µ, and let their densities be
respectively denoted by p = dP

dµ and q = dQ
dµ . The Rényi divergence of order α ∈ [0, ∞] is defined as follows:
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• If α ∈ (0, 1) ∪ (1, ∞), then

Dα(P‖Q) =
1

α− 1
logE

[
pα(Z) q1−α(Z)

]
(10)

=
1

α− 1
log ∑

x∈X
Pα(x) Q1−α(x), (11)

where Z ∼ µ in (10), and (11) holds if X is a discrete set.
• By the continuous extension of Dα(P‖Q),

D0(P‖Q) = max
A:P(A)=1

log
1

Q(A) , (12)

D1(P‖Q) = D(P‖Q), (13)

D∞(P‖Q) = log ess sup
p(Z)
q(Z)

. (14)

The second-order Rényi divergence and the chi-squared divergence are related as follows:

D2(P‖Q) = log
(
1 + χ2(P‖Q)

)
, (15)

and the relative entropy and the chi-squared divergence satisfy (see, e.g., [20] [Theorem 5])

D(P‖Q) ≤ log
(
1 + χ2(P‖Q)

)
. (16)

Inequality (16) readily follows from (13), (15), and since Dα(P‖Q) is monotonically increasing in
α ∈ (0, ∞) (see [9] [Theorem 3]). A tightened version of (16), introducing an improved and locally-tight
upper bound on D(P‖Q) as a function of χ2(P‖Q) and χ2(Q‖P), is introduced in [15] [Theorem 20].
Another sharpened version of (16) is derived in [15] [Theorem 11] under the assumption of a bounded
relative information. Furthermore, under the latter assumption, tight upper and lower bounds on the
ratio D(P‖Q)

χ2(P‖Q)
are obtained in [15] [(169)].

Definition 6. [21] The Györfi–Vajda divergence of order s ∈ [0, 1] is an f -divergence with

f (t) = φs(t) :=
(t− 1)2

s + (1− s)t
, t ≥ 0. (17)

Vincze–Le Cam distance (also known as the triangular discrimination) ([22,23]) is a special case with
s = 1

2 .

In view of (1), (9) and (17), it can be verified that the Györfi–Vajda divergence is related to the
chi-squared divergence as follows:

Dφs(P‖Q) =





1
s2 · χ

2(P ‖ (1− s)P + sQ
)
, s ∈ (0, 1],

χ2(Q‖P), s = 0.
(18)

Hence,

Dφ1(P‖Q) = χ2(P‖Q), (19)

Dφ0(P‖Q) = χ2(Q‖P). (20)
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3. Relations between Divergences

We introduce in this section results on the relations between the relative entropy and the
chi-squared divergence, their implications, and generalizations. Information–theoretic applications are
studied in the next section.

3.1. Relations between the Relative Entropy and the Chi-Squared Divergence

The following result relates the relative entropy and the chi-squared divergence, which are
two fundamental divergence measures in information theory and statistics. This result was recently
obtained in an equivalent form in [17] [(12)] (it is noted that this identity was also independently
derived by the coauthors in two separate un-published works in [24] [(16)] and [25]). It should be noted
that these connections between divergences in the quantum setting were originally discovered in [19]
[Theorem 6]. Beyond serving as an interesting relation between these two fundamental divergence
measures, it is introduced here for the following reasons:

(a) New consequences and applications of it are obtained, including new shorter proofs of some
known results;

(b) An interesting extension provides new relations between f -divergences (see Section 3.3).

Theorem 1. Let P and Q be probability measures defined on a measurable space (X , F ), and let

Rλ := (1− λ)P + λQ, λ ∈ [0, 1] (21)

be the convex combination of P and Q. Then, for all λ ∈ [0, 1],

1
log e D(P‖Rλ) =

∫ λ

0
χ2(P‖Rs)

ds
s

, (22)

1
2 λ2 χ2(R1−λ‖Q) =

∫ λ

0
χ2(R1−s‖Q)

ds
s

. (23)

Proof. See Section 5.1.

A specialization of Theorem 1 by letting λ = 1 gives the following identities.

Corollary 1.

1
log e D(P‖Q) =

∫ 1

0
χ2(P ‖ (1− s)P + sQ)

ds
s

, (24)

1
2 χ2(P‖Q) =

∫ 1

0
χ2(sP + (1− s)Q ‖Q)

ds
s

. (25)

Remark 1. The substitution s := 1
1+t transforms (24) to [26] [Equation (31)], i.e.,

1
log e D(P‖Q) =

∫ ∞

0
χ2
(

P ‖ tP + Q
1 + t

)
dt

1 + t
. (26)

In view of (18) and (21), an equivalent form of (22) and (24) is given as follows:

Corollary 2. For s ∈ [0, 1], let φs : [0, ∞)→ R be given in (17). Then,

1
log e D(P‖Rλ) =

∫ λ

0
sDφs(P‖Q)ds, λ ∈ [0, 1], (27)

1
log e D(P‖Q) =

∫ 1

0
sDφs(P‖Q)ds. (28)
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By Corollary 1, we obtain original and simple proofs of new and old f -divergence inequalities.

Proposition 1. ( f -divergence inequalities).

(a) Pinsker’s inequality:

D(P‖Q) ≥ 1
2 |P−Q|2 log e. (29)

(b)

1
log e D(P‖Q) ≤ 1

3 χ2(P‖Q) + 1
6 χ2(Q‖P). (30)

Furthermore, let {Pn} be a sequence of probability measures that is defined on a measurable space (X , F ),
and which converges to a probability measure P in the sense that

lim
n→∞

ess sup
dPn

dP
(X) = 1, (31)

with X ∼ P. Then, (30) is locally tight in the sense that its both sides converge to 0, and

lim
n→∞

1
3 χ2(Pn‖P) + 1

6 χ2(P‖Pn)
1

log e D(Pn‖P)
= 1. (32)

(c) For all θ ∈ (0, 1),

D(P‖Q) ≥ (1− θ) log
(

1
1− θ

)
Dφθ

(P‖Q). (33)

Moreover, under the assumption in (31), for all θ ∈ [0, 1]

lim
n→∞

D(P‖Pn)

Dφθ
(P‖Pn)

= 1
2 log e. (34)

(d) [15] [Theorem 2]:

1
log e D(P‖Q) ≤ 1

2 χ2(P‖Q) + 1
4 |P−Q|. (35)

Proof. See Section 5.2.

Remark 2. Inequality (30) is locally tight in the sense that (31) yields (32). This property, however, is not
satisfied by (16) since the assumption in (31) implies that

lim
n→∞

log
(
1 + χ2(Pn‖P)

)

D(Pn‖P)
= 2. (36)

Remark 3. Inequality (30) readily yields

D(P‖Q) + D(Q‖P) ≤ 1
2

(
χ2(P‖Q) + χ2(Q‖P)

)
log e, (37)

which is proved by a different approach in [27] [Proposition 4]. It is further shown in [15] [Theorem 2 b)] that

sup
D(P‖Q) + D(Q‖P)
χ2(P‖Q) + χ2(Q‖P) = 1

2 log e, (38)

where the supremum is over P�� Q and P 6= Q.
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3.2. Implications of Theorem 1

We next provide two implications of Theorem 1. The first implication, which relies on the
Hammersley–Chapman–Robbins (HCR) bound for the chi-squared divergence [28,29], gives the
following tight lower bound on the relative entropy D(P‖Q) as a function of the means and variances
under P and Q.

Theorem 2. Let P and Q be probability measures defined on the measurable space (R, B), where R is the real
line and B is the Borel σ–algebra of subsets of R. Let mP, mQ, σ2

P, and σ2
Q denote the expected values and

variances of X ∼ P and Y ∼ Q, i.e.,

E[X] =: mP, E[Y] =: mQ, Var(X) =: σ2
P, Var(Y) =: σ2

Q. (39)

(a) If mP 6= mQ, then

D(P‖Q) ≥ d(r‖s), (40)

where d(r‖s) := r log r
s + (1− r) log 1−r

1−s , for r, s ∈ [0, 1], denotes the binary relative entropy (with the
convention that 0 log 0

0 = 0), and

r :=
1
2
+

b
4av
∈ [0, 1], (41)

s := r− a
2v
∈ [0, 1], (42)

a := mP −mQ, (43)

b := a2 + σ2
Q − σ2

P, (44)

v :=

√
σ2

P +
b2

4a2 . (45)

(b) The lower bound on the right side of (40) is attained for P and Q which are defined on the two-element set
U := {u1, u2}, and

P(u1) = r, Q(u1) = s, (46)

with r and s in (41) and (42), respectively, and for mP 6= mQ

u1 := mP +

√
(1− r)σ2

P
r

, u2 := mP −
√

rσ2
P

1− r
. (47)

(c) If mP = mQ, then

inf
P,Q

D(P‖Q) = 0, (48)

where the infimum on the left side of (48) is taken over all P and Q which satisfy (39).

Proof. See Section 5.3.

Remark 4. Consider the case of the non-equal means in Items (a) and (b) of Theorem 2. If these means are
fixed, then the infimum of D(P‖Q) is zero by choosing arbitrarily large equal variances. Suppose now
that the non-equal means mP and mQ are fixed, as well as one of the variances (either σ2

P or σ2
Q).

Numerical experimentation shows that, in this case, the achievable lower bound in (40) is monotonically
decreasing as a function of the other variance, and it tends to zero as we let the free variance tend to infinity.
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This asymptotic convergence to zero can be justified by assuming, for example, that mP, mQ, and σ2
Q are fixed,

and mP > mQ (the other cases can be justified in a similar way). Then, it can be verified from (41)–(45) that

r =
(mP −mQ)

2

σ2
P

+ O
(

1
σ4

P

)
, s = O

(
1

σ4
P

)
, (49)

which implies that d(r‖s) → 0 as we let σP → ∞. The infimum of the relative entropy D(P‖Q) is therefore
equal to zero since the probability measures P and Q in (46) and (47), which are defined on a two-element set and
attain the lower bound on the relative entropy under the constraints in (39), have a vanishing relative entropy in
this asymptotic case.

Remark 5. The proof of Item (c) in Theorem 2 suggests explicit constructions of sequences of pairs probability
measures {(Pn, Qn)} such that

(a) The means under Pn and Qn are both equal to m (independently of n);
(b) The variance under Pn is equal to σ2

P, and the variance under Qn is equal to σ2
Q (independently of n);

(c) The relative entropy D(Pn‖Qn) vanishes as we let n→ ∞.

This yields in particular (48).

A second consequence of Theorem 1 gives the following result. Its first part holds due to the
concavity of exp

(
−D(P‖·)

)
(see [30] [Problem 4.2]). The second part is new, and its proof relies on

Theorem 1. As an educational note, we provide an alternative proof of the first part by relying on
Theorem 1.

Theorem 3. Let P� Q, and F : [0, 1]→ [0, ∞) be given by

F(λ) := D
(

P ‖ (1− λ)P + λQ
)
, ∀ λ ∈ [0, 1]. (50)

Then, for all λ ∈ [0, 1],

F(λ) ≤ log

(
1

1− λ + λ exp
(
−D(P‖Q)

)
)

, (51)

with an equality if λ = 0 or λ = 1. Moreover, F is monotonically increasing, differentiable, and it satisfies

F′(λ) ≥ 1
λ

[
exp

(
F(λ)

)
− 1
]

log e, ∀ λ ∈ (0, 1], (52)

lim
λ→0+

F′(λ)
λ

= χ2(Q‖P) log e, (53)

so the limit in (53) is twice as large as the value of the lower bound on this limit as it follows from the right side
of (52).

Proof. See Section 5.4.

Remark 6. By the convexity of the relative entropy, it follows that F(λ) ≤ λ D(P‖Q) for all λ ∈ [0, 1]. It can
be verified, however, that the inequality 1− λ + λ exp(−x) ≥ exp(−λx) holds for all x ≥ 0 and λ ∈ [0, 1].
Letting x := D(P‖Q) implies that the upper bound on F(λ) on the right side of (51) is tighter than or equal to
the upper bound λ D(P‖Q) (with an equality if and only if either λ ∈ {0, 1} or P ≡ Q).

Corollary 3. Let {Pj}m
j=1, with m ∈ N, be probability measures defined on a measurable space (X , F ), and let

{αj}m
j=1 be a sequence of non-negative numbers that sum to 1. Then, for all i ∈ {1, . . . , m},
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D

(
Pi ‖

m

∑
j=1

αjPj

)
≤ − log

(
αi + (1− αi) exp

(
− 1

1−αi ∑
j 6=i

αj D(Pi‖Pj)

))
. (54)

Proof. For an arbitrary i ∈ {1, . . . , m}, apply the upper bound on the right side of (51) with λ := 1− αi,
P := Pi and Q := 1

1−αi
∑
j 6=i

αjPj. The right side of (54) is obtained from (51) by invoking the convexity of

the relative entropy, which gives D(Pi‖Q) ≤ 1
1−αi

∑
j 6=i

αjD(Pi‖Pj).

The next result provides an upper bound on the non-negative difference between the entropy of a
convex combination of distributions and the respective convex combination of the individual entropies
(it is also termed as the concavity deficit of the entropy function in [17] [Section 3]).

Corollary 4. Let {Pj}m
j=1, with m ∈ N, be probability measures defined on a measurable space (X , F ), and let

{αj}m
j=1 be a sequence of non-negative numbers that sum to 1. Then,

0 ≤ H

(
m

∑
j=1

αjPj

)
−

m

∑
j=1

αj H(Pj) ≤ −
m

∑
i=1

αi log

(
αi + (1− αi) exp

(
− 1

1−αi ∑
j 6=i

αj D(Pi‖Pj)

))
. (55)

Proof. The lower bound holds due to the concavity of the entropy function. The upper bound readily
follows from Corollary 3, and the identity

H

(
m

∑
j=1

αjPj

)
−

m

∑
j=1

αj H(Pj) =
m

∑
i=1

αiD

(
Pi ‖

m

∑
j=1

αjPj

)
. (56)

Remark 7. The upper bound in (55) refines the known bound (see, e.g., [31] [Lemma 2.2])

H

(
m

∑
j=1

αjPj

)
−

m

∑
j=1

αj H(Pj) ≤
m

∑
j=1

αj log
1
αj

= H(α), (57)

by relying on all the 1
2 m(m − 1) pairwise relative entropies between the individual distributions {Pj}m

j=1.
Another refinement of (57), expressed in terms of total variation distances, has been recently provided in [17]
[Theorem 3.1].

3.3. Monotonic Sequences of f -Divergences and an Extension of Theorem 1

The present subsection generalizes Theorem 1, and it also provides relations between f -divergences
which are defined in a recursive way.

Theorem 4. Let P and Q be probability measures defined on a measurable space (X , F ). Let Rλ, for λ ∈ [0, 1],
be the convex combination of P and Q as in (21). Let f0 : (0, ∞) → R be a convex function with f0(1) = 0,
and let { fk(·)}∞

k=0 be a sequence of functions that are defined on (0, ∞) by the recursive equation

fk+1(x) :=
∫ 1−x

0
fk(1− s)

ds
s

, x > 0, k ∈ {0, 1, . . .}. (58)

Then,

(a)
{

D fk
(P‖Q)

}∞
k=0 is a non-increasing (and non-negative) sequence of f -divergences.
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(b) For all λ ∈ [0, 1] and k ∈ {0, 1, . . .},

D fk+1
(Rλ‖P) =

∫ λ

0
D fk

(Rs‖P)
ds
s

. (59)

Proof. See Section 5.5.

We next use the polylogarithm functions, which satisfy the recursive equation [32] [Equation (7.2)]:

Lik(x) :=





x
1− x

, if k = 0,

∫ x

0

Lik−1(s)
s

ds, if k ≥ 1.
(60)

This gives Li1(x) = − loge(1 − x), Li2(x) = −
∫ x

0
1
s loge(1 − s)ds and so on, which are

real–valued and finite for x < 1.

Corollary 5. Let

fk(x) := Lik(1− x), x > 0, k ∈ {0, 1, . . .}. (61)

Then, (59) holds for all λ ∈ [0, 1] and k ∈ {0, 1, . . .}. Furthermore, setting k = 0 in (59) yields (22) as a
special case.

Proof. See Section 5.6.

3.4. On Probabilities and f -Divergences

The following result relates probabilities of sets to f -divergences.

Theorem 5. Let (X , F , µ) be a probability space, and let C ∈ F be a measurable set with µ(C) > 0. Define the
conditional probability measure

µC(E) :=
µ(C ∩ E)

µ(C) , ∀ E ∈ F . (62)

Let f : (0, ∞)→ R be an arbitrary convex function with f (1) = 0, and assume (by continuous extension
of f at zero) that f (0) := lim

t→0+
f (t) < ∞. Furthermore, let f̃ : (0, ∞) → R be the convex function which is

given by

f̃ (t) := t f
(

1
t

)
, ∀ t > 0. (63)

Then,

D f (µC‖µ) = f̃
(
µ(C)

)
+
(
1− µ(C)

)
f (0). (64)

Proof. See Section 5.7.

Connections of probabilities to the relative entropy, and to the chi-squared divergence, are next
exemplified as special cases of Theorem 5.

Corollary 6. In the setting of Theorem 5,
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D
(
µC‖µ

)
= log

1
µ
(
C
) , (65)

χ2(µC‖µ
)
=

1
µ
(
C
) − 1, (66)

so (16) is satisfied in this case with equality. More generally, for all α ∈ (0, ∞),

Dα

(
µC‖µ

)
= log

1
µ
(
C
) . (67)

Proof. See Section 5.7.

Remark 8. In spite of its simplicity, (65) proved very useful in the seminal work by Marton on
transportation–cost inequalities, proving concentration of measures by information-theoretic tools [33,34]
(see also [35] [Chapter 8] and [36] [Chapter 3]). As a side note, the simple identity (65) was apparently first
explicitly used by Csiszár (see [37] [Equation (4.13)]).

4. Applications

This section provides applications of our results in Section 3. These include universal lossless
compression, method of types and large deviations, and strong data–processing inequalities (SDPIs).

4.1. Application of Corollary 3: Shannon Code for Universal Lossless Compression

Consider m > 1 discrete, memoryless, and stationary sources with probability mass functions
{Pi}m

i=1, and assume that the symbols are emitted by one of these sources with an a priori probability αi
for source no. i, where {αi}m

i=1 are positive and sum to 1.
For lossless data compression by a universal source code, suppose that a single source code is

designed with respect to the average probability mass function P :=
m
∑

j=1
αjPj.

Assume that the designer uses a Shannon code, where the code assignment for a symbol x ∈ X
is of length `(x) =

⌈
log 1

P(x)

⌉
bits (logarithms are on base 2). Due to the mismatch in the source

distribution, the average codeword length `avg satisfies (see [38] [Proposition 3.B])

m

∑
i=1

αi H(Pi) +
m

∑
i=1

αiD(Pi‖P) ≤ `avg ≤
m

∑
i=1

αi H(Pi) +
m

∑
i=1

αiD(Pi‖P) + 1. (68)

The fractional penalty in the average codeword length, denoted by ν, is defined to be equal to the
ratio of the penalty in the average codeword length as a result of the source mismatch, and the average
codeword length in case of a perfect matching. From (68), it follows that

m
∑

i=1
αi D(Pi‖P)

1 +
m
∑

i=1
αi H(Pi)

≤ ν ≤
1 +

m
∑

i=1
αi D(Pi‖P)

m
∑

i=1
αi H(Pi)

. (69)

We next rely on Corollary 3 to obtain an upper bound on ν which is expressed as a function of
the m(m− 1) relative entropies D(Pi‖Pj) for all i 6= j in {1, . . . , m}. This is useful if, e.g., the m relative
entropies on the left and right sides of (69) do not admit closed-form expressions, in contrast to the
m(m− 1) relative entropies D(Pi‖Pj) for i 6= j. We next exemplify this case.

For i ∈ {1, . . . , m}, let Pi be a Poisson distribution with parameter λi > 0. For all i, j ∈ {1, . . . , m},
the relative entropy from Pi to Pj admits the closed-form expression
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D(Pi‖Pj) = λi log
(

λi
λj

)
+ (λj − λi) log e. (70)

From (54) and (70), it follows that

D(Pi‖P) ≤ − log
(

αi + (1− αi) exp
(
− fi(α, λ)

1− αi

))
, (71)

where

fi(α, λ) := ∑
j 6=i

αj D(Pi‖Pj) (72)

= ∑
j 6=i

{
αj

[
λi log

(
λi
λj

)
+ (λj − λi) log e

]}
. (73)

The entropy of a Poisson distribution, with parameter λi, is given by the integral representation [39–41]

H(Pi) = λi log
(

e
λi

)
+
∫ ∞

0

(
λi −

1− e−λi(1−e−u)

1− e−u

)
e−u

u
du log e. (74)

Combining (69), (71) and (74) finally gives an upper bound on ν in the considered setup.

Example 1. Consider five discrete memoryless sources where the probability mass function of source no. i is
given by Pi = Poisson(λi) with λ = [16, 20, 24, 28, 32]. Suppose that the symbols are emitted from one of the
sources with equal probability, so α =

[ 1
5 , 1

5 , 1
5 , 1

5 , 1
5
]
. Let P := 1

5 (P1 + . . . + P5) be the average probability
mass function of the five sources. The term ∑i αi D(Pi‖P), which appears in the numerators of the upper and
lower bounds on ν (see (69)), does not lend itself to a closed-form expression, and it is not even an easy task to
calculate it numerically due to the need to compute an infinite series which involves factorials. We therefore
apply the closed-form upper bound in (71) to get that ∑i αi D(Pi‖P) ≤ 1.46 bits, whereas the upper bound
which follows from the convexity of the relative entropy (i.e., ∑i αi fi(α, λ)) is equal to 1.99 bits (both upper
bounds are smaller than the trivial bound log2 5 ≈ 2.32 bits). From (69), (74), and the stronger upper bound
on ∑i αi D(Pi‖P), the improved upper bound on ν is equal to 57.0% (as compared to a looser upper bound of
69.3%, which follows from (69), (74), and the looser upper bound on ∑i αi D(Pi‖P) that is equal to 1.99 bits).

4.2. Application of Theorem 2 in the Context of the Method of Types and Large Deviations Theory

Let Xn = (X1, . . . , Xn) be a sequence of i.i.d. random variables with X1 ∼ Q, where Q is a
probability measure defined on a finite set X , and Q(x) > 0 for all x ∈ X . Let P be a set of probability
measures on X such that Q /∈ P , and suppose that the closure of P coincides with the closure
of its interior. Then, by Sanov’s theorem (see, e.g., [42] [Theorem 11.4.1] and [43] [Theorem 3.3]),
the probability that the empirical distribution P̂Xn belongs to P vanishes exponentially at the rate

lim
n→∞

1
n

log
1

P[P̂Xn ∈P ]
= inf

P∈P
D(P‖Q). (75)

Furthermore, for finite n, the method of types yields the following upper bound on this rare event:

P[P̂Xn ∈P ] ≤
(

n + |X | − 1
|X | − 1

)
exp

(
−n inf

P∈P
D(P‖Q)

)
(76)

≤ (n + 1)|X |−1 exp
(
−n inf

P∈P
D(P‖Q)

)
, (77)

whose exponential decay rate coincides with the exact asymptotic result in (75).
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Suppose that Q is not fully known, but its mean mQ and variance σ2
Q are available. Let m1 ∈ R

and δ1, ε1, σ1 > 0 be fixed, and let P be the set of all probability measures P, defined on the finite set
X , with mean mP ∈ [m1 − δ1, m1 + δ1] and variance σ2

P ∈ [σ2
1 − ε1, σ2

1 + ε1], where |m1 − mQ| > δ1.
Hence, P coincides with the closure of its interior, and Q /∈P .

The lower bound on the relative entropy in Theorem 2, used in conjunction with the upper
bound in (77), can serve to obtain an upper bound on the probability of the event that the empirical
distribution of Xn belongs to the set P , regardless of the uncertainty in Q. This gives

P[P̂Xn ∈P ] ≤ (n + 1)|X |−1 exp
(
−nd∗

)
, (78)

where

d∗ := inf
mP ,σ2

P

d(r‖s), (79)

and, for fixed (mP, mQ, σ2
P, σ2

Q), the parameters r and s are given in (41) and (42), respectively.
Standard algebraic manipulations that rely on (78) lead to the following result, which is expressed

as a function of the Lambert W function [44]. This function, which finds applications in various
engineering and scientific fields, is a standard built–in function in mathematical software tools such as
Mathematica, Matlab, and Maple. Applications of the Lambert W function in information theory and
coding are briefly surveyed in [45].

Proposition 2. For ε ∈ (0, 1), let n∗ := n∗(ε) denote the minimal value of n ∈ N such that the upper bound
on the right side of (78) does not exceed ε ∈ (0, 1). Then, n∗ admits the following closed-form expression:

n∗ = max

{⌈
−
(
|X | − 1

)
W−1(η) log e
d∗

⌉
− 1, 1

}
, (80)

with

η := − d∗
(
ε exp(−d∗)

)1/(|X |−1)

(
|X | − 1

)
log e

∈
[
− 1

e , 0), (81)

and W−1(·) on the right side of (80) denotes the secondary real–valued branch of the Lambert W function (i.e.,
x := W−1(y) where W−1 :

[
− 1

e , 0)→ (−∞,−1] is the inverse function of y := xex).

Example 2. Let Q be an arbitrary probability measure, defined on a finite set X , with mean mQ = 40 and
variance σ2

Q = 20. Let P be the set of all probability measures P, defined on X , whose mean mP and variance
σ2

P lie in the intervals [43, 47] and [18, 22], respectively. Suppose that it is required that, for all probability
measures Q as above, the probability that the empirical distribution of the i.i.d. sequence Xn ∼ Qn be included
in the set P is at most ε = 10−10. We rely here on the upper bound in (78), and impose the stronger condition
where it should not exceed ε. By this approach, it is obtained numerically from (79) that d∗ = 0.203 nats. We
next examine two cases:

(i) If |X | = 2, then it follows from (80) that n∗ = 138.
(ii) Consider a richer alphabet size of the i.i.d. samples where, e.g., |X | = 100. By relying on the same universal

lower bound d∗, which holds independently of the value of |X | (X can possibly be an infinite set), it follows
from (80) that n∗ = 4170 is the minimal value such that the upper bound in (78) does not exceed 10−10.

We close this discussion by providing numerical experimentation of the lower bound on the
relative entropy in Theorem 2, and comparing this attainable lower bound (see Item (b) of Theorem 2)
with the following closed-form expressions for relative entropies:
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(a) The relative entropy between real-valued Gaussian distributions is given by

D
(
N (mP, σ2

P) ‖N (mQ, σ2
Q)
)
= log

σQ

σP
+

1
2

[
(mP −mQ)

2 + σ2
P

σ2
Q

− 1
]

log e. (82)

(b) Let Eµ denote a random variable which is exponentially distributed with mean µ > 0;
its probability density function is given by

eµ(x) =
1
µ

e−x/µ 1{x ≥ 0}. (83)

Then, for a1, a2 > 0 and d1, d2 ∈ R,

D(Ea1 + d1‖Ea2 + d2) =





log
a2

a1
+

d1 + a1 − d2 − a2

a2
log e, d1 ≥ d2,

∞, d1 < d2.
(84)

In this case, the means under P and Q are mP = d1 + a1 and mQ = d2 + a2, respectively, and the
variances are σ2

P = a2
1 and σ2

Q = a2
2. Hence, for obtaining the required means and variances, set

a1 = σP, a2 = σQ, d1 = mP − σP, d2 = mQ − σQ. (85)

Example 3. We compare numerically the attainable lower bound on the relative entropy, as it is given in (40),
with the two relative entropies in (82) and (84):

(i) If (mP, mQ, σ2
P, σ2

Q) = (45, 40, 20, 20), then the lower bound in (40) is equal to 0.521 nats, and the two
relative entropies in (82) and (84) are equal to 0.625 and 1.118 nats, respectively.

(ii) If (mP, mQ, σ2
P, σ2

Q) = (50, 35, 10, 20), then the lower bound in (40) is equal to 2.332 nats, and the two
relative entropies in (82) and (84) are equal to 5.722 and 3.701 nats, respectively.

4.3. Strong Data–Processing Inequalities and Maximal Correlation

The information contraction is a fundamental concept in information theory. The contraction of
f -divergences through channels is captured by data–processing inequalities, which can be further
tightened by the derivation of SDPIs with channel-dependent or source-channel dependent contraction
coefficients (see, e.g., [26,46–52]).

We next provide necessary definitions which are relevant for the presentation in this subsection.

Definition 7. Let QX be a probability distribution which is defined on a set X , and that is not a point mass,
and let WY|X : X → Y be a stochastic transformation. The contraction coefficient for f -divergences is
defined as

µ f (QX , WY|X) := sup
PX : D f (PX‖QX)∈(0,∞)

D f (PY‖QY)

D f (PX‖QX)
, (86)

where, for all y ∈ Y ,

PY(y) = (PXWY|X) (y) :=
∫

X
dPX(x)WY|X(y|x), (87)

QY(y) = (QXWY|X) (y) :=
∫

X
dQX(x)WY|X(y|x). (88)

The notation in (87) and (88) is consistent with the standard notation used in information theory (see, e.g.,
the first displayed equation after (3.2) in [53]).
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The derivation of good upper bounds on contraction coefficients for f -divergences, which are
strictly smaller than 1, lead to SDPIs. These inequalities find their applications, e.g., in studying
the exponential convergence rate of an irreducible, time-homogeneous and reversible discrete-time
Markov chain to its unique invariant distribution over its state space (see, e.g., [49] [Section 2.4.3]
and [50] [Section 2]). It is in sharp contrast to DPIs which do not yield convergence to stationarity at
any rate. We return to this point later in this subsection, and determine the exact convergence rate to
stationarity under two parametric families of f -divergences.

We next rely on Theorem 1 to obtain upper bounds on the contraction coefficients for the following
f -divergences.

Definition 8. For α ∈ (0, 1], the α-skew K-divergence is given by

Kα(P‖Q) := D
(

P ‖ (1− α)P + αQ
)
, (89)

and, for α ∈ [0, 1], let

Sα(P‖Q) := α D
(

P ‖ (1− α)P + αQ
)
+ (1− α) D

(
Q ‖ (1− α)P + αQ

)
(90)

= α Kα(P‖Q) + (1− α)K1−α(Q‖P), (91)

with the convention that K0(P‖Q) ≡ 0 (by a continuous extension at α = 0 in (89)). These divergence measures
are specialized to the relative entropies:

K1(P‖Q) = D(P‖Q) = S1(P‖Q), S0(P‖Q) = D(Q‖P), (92)

and S 1
2
(P‖Q) is the Jensen–Shannon divergence [54–56] (also known as the capacitory discrimination [57]):

S 1
2
(P‖Q) = 1

2 D
(

P ‖ 1
2 (P + Q)

)
+ 1

2 D
(
Q ‖ 1

2 (P + Q)
)

(93)

= H
( 1

2 (P + Q)
)
− 1

2 H(P)− 1
2 H(Q) := JS(P‖Q). (94)

It can be verified that the divergence measures in (89) and (90) are f -divergences:

Kα(P‖Q) = Dkα
(P‖Q), α ∈ (0, 1], (95)

Sα(P‖Q) = Dsα(P‖Q), α ∈ [0, 1], (96)

with

kα(t) := t log t− t log
(
α + (1− α)t

)
, t > 0, α ∈ (0, 1], (97)

sα(t) := αt log t−
(
αt + 1− α

)
log
(
α + (1− α)t

)
(98)

= αkα(t) + (1− α)t k1−α

(
1
t

)
, t > 0, α ∈ [0, 1], (99)

where kα(·) and sα(·) are strictly convex functions on (0, ∞), and vanish at 1.

Remark 9. The α-skew K-divergence in (89) is considered in [55] and [58] [(13)] (including pointers in the
latter paper to its utility). The divergence in (90) is akin to Lin’s measure in [55] [(4.1)], the asymmetric α-skew
Jensen–Shannon divergence in [58] [(11)–(12)], the symmetric α-skew Jensen–Shannon divergence in [58] [(16)],
and divergence measures in [59] which involve arithmetic and geometric means of two probability distributions.
Properties and applications of quantum skew divergences are studied in [19] and references therein.
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Theorem 6. The f -divergences in (89) and (90) satisfy the following integral identities, which are expressed in
terms of the Györfi–Vajda divergence in (17):

1
log e Kα(P‖Q) =

∫ α

0
sDφs(P‖Q)ds, α ∈ (0, 1], (100)

1
log e Sα(P‖Q) =

∫ 1

0
gα(s) Dφs(P‖Q)ds, α ∈ [0, 1], (101)

with

gα(s) := αs 1
{

s ∈ (0, α]
}
+ (1− α)(1− s) 1

{
s ∈ [α, 1)

}
, (α, s) ∈ [0, 1]× [0, 1]. (102)

Moreover, the contraction coefficients for these f -divergences are related as follows:

µχ2(QX , WY|X) ≤ µkα
(QX , WY|X) ≤ sup

s∈(0,α]
µφs(QX , WY|X), α ∈ (0, 1], (103)

µχ2(QX , WY|X) ≤ µsα(QX , WY|X) ≤ sup
s∈(0,1)

µφs(QX , WY|X), α ∈ [0, 1], (104)

where µχ2(QX , WY|X) denotes the contraction coefficient for the chi-squared divergence.

Proof. See Section 5.8.

Remark 10. The upper bounds on the contraction coefficients for the parametric f -divergences in (89) and (90)
generalize the upper bound on the contraction coefficient for the relative entropy in [51] [Theorem III.6] (recall
that K1(P‖Q) = D(P‖Q) = S1(P‖Q)), so the upper bounds in Theorem 6 are specialized to the latter bound
at α = 1.

Corollary 7. Let

µχ2(WY|X) := sup
Q

µχ2(QX , WY|X), (105)

where the supremum on the right side is over all probability measures QX defined on X . Then,

µχ2(QX , WY|X) ≤ µkα
(QX , WY|X) ≤ µχ2(WY|X), α ∈ (0, 1], (106)

µχ2(QX , WY|X) ≤ µsα(QX , WY|X) ≤ µχ2(WY|X), α ∈ [0, 1]. (107)

Proof. See Section 5.9.

Example 4. Let QX = Bernoulli
( 1

2
)
, and let WY|X correspond to a binary symmetric channel (BSC) with

crossover probability ε. Then, µχ2(QX, WY|X) = µχ2(WY|X) = (1− 2ε)2. The upper and lower bounds on
µkα

(QX , WY|X) and µsα(QX , WY|X) in (106) and (107) match for all α, and they are all equal to (1− 2ε)2.

The upper bound on the contraction coefficients in Corollary 7 is given by µχ2(WY|X), whereas the
lower bound is given by µχ2(QX, WY|X), which depends on the input distribution QX. We next
provide alternative upper bounds on the contraction coefficients for the considered (parametric)
f -divergences, which, similarly to the lower bound, scale like µχ2(QX, WY|X). Although the upper
bound in Corollary 7 may be tighter in some cases than the alternative upper bounds which are next
presented in Proposition 3 (and in fact, the former upper bound may be even achieved with equality
as in Example 4), the bounds in Proposition 3 are used shortly to determine the exponential rate of the
convergence to stationarity of a type of Markov chains.
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Proposition 3. For all α ∈ (0, 1],

µχ2(QX , WY|X) ≤ µkα
(QX , WY|X) ≤

1
α Qmin

· µχ2(QX , WY|X), (108)

µχ2(QX , WY|X) ≤ µsα(QX , WY|X) ≤
(1− α) loge

(
1
α

)
+ 2α− 1

(1− 3α + 3α2) Qmin
· µχ2(QX , WY|X), (109)

where Qmin denotes the minimal positive mass of the input distribution QX .

Proof. See Section 5.10.

Remark 11. In view of (92), at α = 1, (108) and (109) specialize to an upper bound on the contraction
coefficient of the relative entropy (KL divergence) as a function of the contraction coefficient of the chi-squared
divergence. In this special case, both (108) and (109) give

µχ2(QX , WY|X) ≤ µKL(QX , WY|X) ≤
1

Qmin
· µχ2(QX , WY|X), (110)

which then coincides with [48] [Theorem 10].

We next apply Proposition 3 to consider the convergence rate to stationarity of Markov chains
by the introduced f -divergences in Definition 8. The next result follows [49] [Section 2.4.3], and it
provides a generalization of the result there.

Theorem 7. Consider a time-homogeneous, irreducible, and reversible discrete-time Markov chain with a
finite state space X , let W be its probability transition matrix, and QX be its unique stationary distribution
(reversibility means that QX(x)[W]x,y = QX(y)[W]y,x for all x, y ∈ X ). Let PX be an initial probability
distribution over X . Then, for all α ∈ (0, 1] and n ∈ N,

Kα(PXWn‖QX) ≤ µkα
(QX , Wn) Kα(PX‖QX), (111)

Sα(PXWn‖QX) ≤ µsα(QX , Wn) Sα(PX‖QX), (112)

and the contraction coefficients on the right sides of (111) and (112) scale like the n-th power of the contraction
coefficient for the chi-squared divergence as follows:

(
µχ2(QX , W)

)n ≤ µkα
(QX , Wn) ≤ 1

α Qmin
·
(
µχ2(QX , W)

)n, (113)

(
µχ2(QX , W)

)n ≤ µsα(QX , Wn) ≤
(1− α) loge

(
1
α

)
+ 2α− 1

(1− 3α + 3α2) Qmin
·
(
µχ2(QX , W)

)n. (114)

Proof. Inequalities (111) and (112) hold since QXWn = QX, for all n ∈ N, and due to Definition 7
and (95) and (96). Inequalities (113) and (114) hold by Proposition 3, and due to the reversibility of the
Markov chain which implies that (see [49] [Equation (2.92)])

µχ2(QX , Wn) =
(
µχ2(QX , W)

)n, n ∈ N. (115)

In view of (113) and (114), Theorem 7 readily gives the following result on the exponential decay
rate of the upper bounds on the divergences on the left sides of (111) and (112).
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Corollary 8. For all α ∈ (0, 1],

lim
n→∞

(
µkα

(QX , Wn)
)1/n

= µχ2(QX , W) = lim
n→∞

(
µsα(QX , Wn)

)1/n. (116)

Remark 12. Theorem 7 and Corollary 8 generalize the results in [49] [Section 2.4.3], which follow as a special
case at α = 1 (see (92)).

We end this subsection by considering maximal correlations, which are closely related to the
contraction coefficient for the chi-squared divergence.

Definition 9. The maximal correlation between two random variables X and Y is defined as

ρm(X; Y) := sup
f ,g

E[ f (X)g(Y)], (117)

where the supremum is taken over all real-valued functions f and g such that

E[ f (X)] = E[g(Y)] = 0, E[ f 2(X)] ≤ 1, E[g2(Y)] ≤ 1. (118)

It is well-known [60] that, if X ∼ QX and Y ∼ QY = QXWY|X , then the contraction coefficient for
the chi-squared divergence µχ2(QX , WY|X) is equal to the square of the maximal correlation between
the random variables X and Y, i.e.,

ρm(X; Y) =
√

µχ2(QX , WY|X). (119)

A simple application of Corollary 1 and (119) gives the following result.

Proposition 4. In the setting of Definition 7, for s ∈ [0, 1], let Xs ∼ (1− s)PX + sQX and Ys ∼ (1− s)PY +

sQY with PX 6= QX and PX �� QX . Then, the following inequality holds:

sup
s∈[0,1]

ρm(Xs; Ys) ≥ max
{√

D(PY‖QY)

D(PX‖QX)
,

√
D(QY‖PY)

D(QX‖PX)

}
. (120)

Proof. See Section 5.11.

5. Proofs

This section provides proofs of the results in Sections 3 and 4.

5.1. Proof of Theorem 1

Proof of (22): We rely on an integral representation of the logarithm function (on base e):

loge x =
∫ 1

0

x− 1
x + (1− x)v

dv, ∀ x > 0. (121)

Let µ be a dominating measure of P and Q (i.e., P, Q� µ), and let p := dP
dµ , q := dQ

dµ , and

rλ :=
dRλ

dµ
= (1− λ)p + λq, ∀ λ ∈ [0, 1], (122)

where the last equality is due to (21). For all λ ∈ [0, 1],
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1
log e D(P‖Rλ) =

∫
p loge

( p
rλ

)
dµ (123)

=
∫ 1

0

∫ p(p− rλ)

p + v(rλ − p)
dµ dv, (124)

where (124) holds due to (121) with x := p
rλ

, and by swapping the order of integration. The inner
integral on the right side of (124) satisfies, for all v ∈ (0, 1],

∫ p(p− rλ)

p + v(rλ − p)
dµ =

∫
(p− rλ)

(
1 +

v(p− rλ)

p + v(rλ − p)

)
dµ (125)

=
∫
(p− rλ)dµ + v

∫
(p− rλ)

2

p + v(rλ − p)
dµ (126)

= v
∫

(p− rλ)
2

(1− v)p + vrλ
dµ (127)

=
1
v

∫ (
p−

[
(1− v)p + vrλ

])2

(1− v)p + vrλ
dµ (128)

=
1
v

χ2(P ‖ (1− v)P + vRλ

)
, (129)

where (127) holds since
∫

p dµ = 1, and
∫

rλ dµ = 1. From (21), for all (λ, v) ∈ [0, 1]× [0, 1],

(1− v)P + vRλ = (1− λv)P + λv Q = Rλv. (130)

The substitution of (130) into the right side of (129) gives that, for all (λ, v) ∈ [0, 1]× (0, 1],

∫ p(p− rλ)

p + v(rλ − p)
dµ =

1
v

χ2(P‖Rλv). (131)

Finally, substituting (131) into the right side of (124) gives that, for all λ ∈ (0, 1],

1
log e D(P‖Rλ) =

∫ 1

0

1
v

χ2(P‖Rλv)dv (132)

=
∫ λ

0

1
s

χ2(P‖Rs)ds, (133)

where (133) holds by the transformation s := λv. Equality (133) also holds for λ = 0 since we have
D(P‖R0) = D(P‖P) = 0.

Proof of (23): For all s ∈ (0, 1],

χ2(P‖Q) =
∫

(p− q)2

q
dµ

=
1
s2

∫ [(
sp + (1− s)q

)
− q
]2

q
dµ (134)

=
1
s2

∫ (
r1−s − q

)2

q
dµ (135)

=
1
s2 χ2(R1−s ‖Q

)
, (136)
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where (135) holds due to (122). From (136), it follows that for all λ ∈ [0, 1],

∫ λ

0

1
s

χ2(R1−s ‖Q
)

ds =
∫ λ

0
s ds χ2(P‖Q) = 1

2 λ2 χ2(P‖Q). (137)

5.2. Proof of Proposition 1

(a) Simple Proof of Pinsker’s Inequality: By [61] or [62] [(58)],

χ2(P‖Q) ≥





|P−Q|2, if |P−Q| ∈ [0, 1],

|P−Q|
2− |P−Q| , if |P−Q| ∈ (1, 2].

(138)

We need the weaker inequality χ2(P‖Q) ≥ |P−Q|2, proved by the Cauchy–Schwarz inequality:

χ2(P‖Q) =
∫

(p− q)2

q
dµ

∫
q dµ (139)

≥
(∫ |p− q|√

q
· √q dµ

)2

(140)

= |P−Q|2. (141)

By combining (24) and (139)–(141), it follows that

1
log e D(P‖Q) =

∫ 1

0
χ2(P ‖ (1− s)P + sQ)

ds
s

(142)

≥
∫ 1

0

∣∣P−
(
(1− s)P + sQ

)∣∣2 ds
s

(143)

=
∫ 1

0
s |P−Q|2 ds (144)

= 1
2 |P−Q|2. (145)

(b) Proof of (30) and its local tightness:

1
log e D(P‖Q) =

∫ 1

0
χ2(P ‖ (1− s)P + sQ)

ds
s

(146)

=
∫ 1

0

(∫ [
p− ((1− s)p + sq)

]2

(1− s)p + sq
dµ

)
ds
s

(147)

=
∫ 1

0

∫ s(p− q)2

(1− s)p + sq
dµ ds (148)

≤
∫ 1

0

∫
s(p− q)2

(
1− s

p
+

s
q

)
dµ ds (149)

=
∫ 1

0
s2 ds

∫
(p− q)2

q
dµ +

∫ 1

0
s(1− s)ds

∫
(p− q)2

p
dµ (150)

= 1
3 χ2(P‖Q) + 1

6 χ2(Q‖P), (151)

where (146) is (24), and (149) holds due to Jensen’s inequality and the convexity of the hyperbola.

We next show the local tightness of inequality (30) by proving that (31) yields (32). Let {Pn} be a
sequence of probability measures, defined on a measurable space (X , F ), and assume that {Pn}
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converges to a probability measure P in the sense that (31) holds. In view of [16] [Theorem 7] (see
also [15] [Section 4.F] and [63]), it follows that

lim
n→∞

D(Pn‖P) = lim
n→∞

χ2(Pn‖P) = 0, (152)

and

lim
n→∞

D(Pn‖P)
χ2(Pn‖P)

= 1
2 log e, (153)

lim
n→∞

χ2(Pn‖P)
χ2(P‖Pn)

= 1, (154)

which therefore yields (32).
(c) Proof of (33) and (34): The proof of (33) relies on (28) and the following lemma.

Lemma 1. For all s, θ ∈ (0, 1),

Dφs(P‖Q)

Dφθ
(P‖Q)

≥ min
{

1− θ

1− s
,

θ

s

}
. (155)

Proof.

Dφs(P‖Q) =
∫

(p− q)2

(1− s)p + sq
dµ (156)

=
∫

(p− q)2

(1− θ)p + θq
(1− θ)p + θq
(1− s)p + sq

dµ (157)

≥ min
{

1− θ

1− s
,

θ

s

} ∫
(p− q)2

(1− θ)p + θq
dµ (158)

= min
{

1− θ

1− s
,

θ

s

}
Dφθ

(P‖Q). (159)

From (28) and (155), for all θ ∈ (0, 1),

1
log e D(P‖Q) =

∫ θ

0
sDφs(P‖Q)ds +

∫ 1

θ
sDφs(P‖Q)ds (160)

≥
∫ θ

0

s (1− θ)

1− s
· Dφθ

(P‖Q)ds +
∫ 1

θ
θ Dφθ

(P‖Q)ds (161)

=

[
−θ + loge

(
1

1− θ

)]
(1− θ) Dφθ

(P‖Q) + θ(1− θ) Dφθ
(P‖Q) (162)

= (1− θ) loge

(
1

1− θ

)
Dφθ

(P‖Q). (163)

This proves (33). Furthermore, under the assumption in (31), for all θ ∈ [0, 1],

lim
n→∞

D(P‖Pn)

Dφθ
(P‖Pn)

= lim
n→∞

D(P‖Pn)

χ2(P‖Pn)
lim

n→∞

χ2(P‖Pn)

Dφθ
(P‖Pn)

(164)

= 1
2 log e · 2

φ′′θ (1)
(165)

= 1
2 log e, (166)
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where (165) holds due to (153) and the local behavior of f -divergences [63], and (166) holds due
to (17) which implies that φ′′θ (1) = 2 for all θ ∈ [0, 1]. This proves (34).

(d) Proof of (35): From (24), we get

1
log e D(P‖Q) =

∫ 1

0
χ2(P ‖ (1− s)P + sQ)

ds
s

(167)

=
∫ 1

0

[
χ2(P ‖ (1− s)P + sQ)− s2 χ2(P‖Q)

] ds
s
+
∫ 1

0
s ds χ2(P‖Q) (168)

=
∫ 1

0

[
χ2(P ‖ (1− s)P + sQ)− s2 χ2(P‖Q)

] ds
s
+ 1

2 χ2(P‖Q). (169)

Referring to the integrand of the first term on the right side of (169), for all s ∈ (0, 1],

1
s
[
χ2(P ‖ (1− s)P + sQ)− s2 χ2(P‖Q)

]

= s
∫
(p− q)2

[
1

(1− s)p + sq
− 1

q

]
dµ (170)

= s(1− s)
∫

(q− p)3

q
[
(1− s)p + sq

] dµ (171)

= s(1− s)
∫
|q− p| · |q− p|

q
· q− p

p + s(q− p)︸ ︷︷ ︸
≤ 1

s 1{q≥p}

dµ (172)

≤ (1− s)
∫
(q− p) 1{q ≥ p}dµ (173)

= 1
2 (1− s) |P−Q|, (174)

where the last equality holds since the equality
∫
(q− p)dµ = 0 implies that

∫
(q− p) 1{q ≥ p}dµ =

∫
(p− q) 1{p ≥ q}dµ (175)

= 1
2

∫
|p− q|dµ = 1

2 |P−Q|. (176)

From (170)–(174), an upper bound on the right side of (169) results. This gives

1
log e D(P‖Q) ≤ 1

2

∫ 1

0
(1− s)ds |P−Q|+ 1

2 χ2(P‖Q) (177)

= 1
4 |P−Q|+ 1

2 χ2(P‖Q). (178)

It should be noted that [15] [Theorem 2(a)] shows that inequality (35) is tight. To that end,
let ε ∈ (0, 1), and define probability measures Pε and Qε on the set A = {0, 1} with Pε(1) = ε2

and Qε(1) = ε. Then,

lim
ε↓0

1
log e D(Pε‖Qε)

1
4 |Pε −Qε|+ 1

2 χ2(Pε‖Qε)
= 1. (179)
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5.3. Proof of Theorem 2

We first prove Item (a) in Theorem 2. In view of the Hammersley–Chapman–Robbins lower
bound on the χ2 divergence, for all λ ∈ [0, 1]

χ2(P‖(1− λ)P + λQ
)
≥
(
E[X]−E[Zλ]

)2

Var(Zλ)
, (180)

where X ∼ P, Y ∼ Q and Zλ ∼ Rλ := (1− λ)P + λQ is defined by

Zλ :=

{
X, with probability 1− λ,

Y, with probability λ.
(181)

For λ ∈ [0, 1],

E[Zλ] = (1− λ)mP + λmQ, (182)

and it can be verified that

Var(Zλ) = (1− λ)σ2
P + λσ2

Q + λ(1− λ)(mP −mQ)
2. (183)

We now rely on (24)

1
log e D(P‖Q) =

∫ 1

0
χ2(P‖(1− λ)P + λQ)

dλ

λ
(184)

to get a lower bound on the relative entropy. Combining (180), (183) and (184) yields

1
log e D(P‖Q) ≥ (mP −mQ)

2
∫ 1

0

λ

(1− λ)σ2
P + λσ2

Q + λ(1− λ)(mP −mQ)2
dλ. (185)

From (43) and (44), we get

∫ 1

0

λ

(1− λ)σ2
P + λσ2

Q + λ(1− λ)(mP −mQ)2
dλ =

∫ 1

0

λ

(α− aλ)(β + aλ)
dλ, (186)

where

α :=

√
σ2

P +
b2

4a2 +
b

2a
, (187)

β :=

√
σ2

P +
b2

4a2 −
b

2a
. (188)

By using the partial fraction decomposition of the integrand on the right side of (186), we get
(after multiplying both sides of (185) by log e)

D(P‖Q) ≥ (mP −mQ)
2

a2

[
α

α + β
log
(

α

α− a

)
+

β

α + β
log
(

β

β + a

)]
(189)

=
α

α + β
log
(

α

α− a

)
+

β

α + β
log
(

β

β + a

)
(190)

= d
(

α

α + β

∥∥ α− a
α + β

)
, (191)
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where (189) holds by integration since α − aλ and β + aλ are both non-negative for all λ ∈ [0, 1].
To verify the latter claim, it should be noted that (43) and the assumption that mP 6= mQ imply that
a 6= 0. Since α, β > 0, it follows that, for all λ ∈ [0, 1], either α− aλ > 0 or β+ aλ > 0 (if a < 0, then the
former is positive, and, if a > 0, then the latter is positive). By comparing the denominators of both
integrands on the left and right sides of (186), it follows that (α− aλ)(β + aλ) ≥ 0 for all λ ∈ [0, 1].
Since the product of α− aλ and β + aλ is non-negative and at least one of these terms is positive, it
follows that α− aλ and β + aλ are both non-negative for all λ ∈ [0, 1]. Finally, (190) follows from (43).

If mP −mQ → 0 and σP 6= σQ, then it follows from (43) and (44) that a→ 0 and b→ σ2
P − σ2

Q 6= 0.

Hence, from (187) and (188), α ≥
∣∣∣ b

a

∣∣∣→ ∞ and β→ 0, which implies that the lower bound on D(P‖Q)

in (191) tends to zero.
Letting r := α

α+β and s := α−a
α+β , we obtain that the lower bound on D(P‖Q) in (40) holds.

This bound is consistent with the expressions of r and s in (41) and (42) since, from (45), (187) and
(188),

r =
α

α + β
=

v + b
2a

2v
=

1
2
+

b
4av

, (192)

s =
α− a
α + β

= r− a
α + β

= r− a
2v

. (193)

It should be noted that r, s ∈ [0, 1]. First, from (187) and (188), α and β are positive if σP 6= 0,
which yields r = α

α+β ∈ (0, 1). We next show that s ∈ [0, 1]. Recall that α− aλ and β + aλ are both
non-negative for all λ ∈ [0, 1]. Setting λ = 1 yields α ≥ a, which (from (193)) implies that s ≥ 0.
Furthermore, from (193) and the positivity of α + β, it follows that s ≤ 1 if and only if β ≥ −a.
The latter holds since β + aλ ≥ 0 for all λ ∈ [0, 1] (in particular, for λ = 1). If σP = 0, then it follows
from (41)–(45) that v = b

2|a| , b = a2 + σ2
Q, and (recall that a 6= 0)

(i) If a > 0, then v = b
2a implies that r = 1

2 + b
4av = 1, and s = r− a

2v = 1− a2

b =
σ2

Q
σ2

Q+a2 ∈ [0, 1];

(ii) if a < 0, then v = − b
2a implies that r = 0, and s = r− a

2v = a2

b = a2

a2+σ2
Q
∈ [0, 1].

We next prove Item (b) in Theorem 2 (i.e., the achievability of the lower bound in (40)). To that
end, we provide a technical lemma, which can be verified by the reader.

Lemma 2. Let r, s be given in (41)–(45), and let u1,2 be given in (47). Then,

(s− r)(u1 − u2) = mQ −mP, (194)

u1 + u2 = mP + mQ +
σ2

Q − σ2
P

mQ −mP
. (195)

Let X ∼ P and Y ∼ Q be defined on a set U = {u1, u2} (for the moment, the values of u1 and u2

are not yet specified) with P[X = u1] = r, P[X = u2] = 1− r, Q[Y = u1] = s, and Q[Y = u2] = 1− s.
We now calculate u1 and u2 such that E[X] = mP and Var(X) = σ2

P. This is equivalent to

ru1 + (1− r)u2 = mP, (196)

ru2
1 + (1− r)u2

2 = m2
P + σ2

P. (197)

Substituting (196) into the right side of (197) gives

ru2
1 + (1− r)u2

2 =
[
ru1 + (1− r)u2

]2
+ σ2

P, (198)
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which, by rearranging terms, also gives

u1 − u2 = ±
√

σ2
P

r(1− r)
. (199)

Solving simultaneously (196) and (199) gives

u1 = mP ±
√

(1− r)σ2
P

r
, (200)

u2 = mP ∓
√

rσ2
P

1− r
. (201)

We next verify that, by setting u1,2 as in (47), one also gets (as desired) that E[Y] = mQ and
Var(Y) = σ2

Q. From Lemma 2, and, from (196) and (197), we have

E[Y] = su1 + (1− s)u2 (202)

=
(
ru1 + (1− r)u2

)
+ (s− r)(u1 − u2) (203)

= mP + (s− r)(u1 − u2) = mQ, (204)

E[Y2] = su2
1 + (1− s)u2

2 (205)

= ru2
1 + (1− r)u2

2 + (s− r)(u2
1 − u2

2) (206)

= E[X2] + (s− r)(u1 − u2)(u1 + u2) (207)

= m2
P + σ2

P + (mQ −mP)

(
mP + mQ +

σ2
Q − σ2

P

mQ −mP

)
(208)

= m2
Q + σ2

Q. (209)

By combining (204) and (209), we obtain Var(Y) = σ2
Q. Hence, the probability mass functions P

and Q defined on U = {u1, u2} (with u1 and u2 in (47)) such that

P(u1) = 1− P(u2) = r, Q(u1) = 1−Q(u2) = s (210)

satisfy the equality constraints in (39), while also achieving the lower bound on D(P‖Q) that is equal
to d(r‖s). It can be also verified that the second option where

u1 = mP −
√

(1− r)σ2
P

r
, u2 = mP +

√
rσ2

P
1− r

(211)

does not yield the satisfiability of the conditions E[Y] = mQ and Var(Y) = σ2
Q, so there is only a unique

pair of probability measures P and Q, defined on a two-element set that achieves the lower bound
in (40) under the equality constraints in (39).

We finally prove Item (c) in Theorem 2. Let m ∈ R, σ2
P, and σ2

Q be selected arbitrarily such that
σ2

Q ≥ σ2
P. We construct probability measures Pε and Qε, depending on a free parameter ε, with means

mP = mQ := m and variances σ2
P and σ2

Q, respectively (means and variances are independent of ε),
and which are defined on a three-element set U := {u1, u2, u3} as follows:

Pε(u1) = r, Pε(u2) = 1− r, Pε(u3) = 0, (212)

Qε(u1) = s, Qε(u2) = 1− s− ε, Qε(u3) = ε, (213)
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with ε > 0. We aim to set the parameters r, s, u1, u2 and u3 (as a function of m, σP, σQ and ε) such that

lim
ε→0+

D(Pε‖Qε) = 0. (214)

Proving (214) yields (48), while it also follows that the infimum on the left side of (48) can be
restricted to probability measures which are defined on a three-element set.

In view of the constraints on the means and variances in (39), with equal means m, we get the
following set of equations from (212) and (213):





ru1 + (1− r)u2 = m,

su1 + (1− s− ε)u2 + εu3 = m,

ru2
1 + (1− r)u2

2 = m2 + σ2
P,

su2
1 + (1− s− ε)u2

2 + εu2
3 = m2 + σ2

Q.

(215)

The first and second equations in (215) refer to the equal means under P and Q, and the third and
fourth equations in (215) refer to the second moments in (39). Furthermore, in view of (212) and (213),
the relative entropy is given by

D(Pε‖Qε) = r log
r
s
+ (1− r) log

1− r
1− s− ε

. (216)

Subtracting the square of the first equation in (215) from its third equation gives the equivalent
set of equations





ru1 + (1− r)u2 = m,

su1 + (1− s− ε)u2 + εu3 = m,

r(1− r)(u1 − u2)
2 = σ2

P,

su2
1 + (1− s− ε)u2

2 + εu2
3 = m2 + σ2

Q.

(217)

We next select u1 and u2 such that u1 − u2 := 2σP. Then, the third equation in (217) gives
r(1− r) = 1

4 , so r = 1
2 . Furthermore, the first equation in (217) gives

u1 = m + σP, (218)

u2 = m− σP. (219)

Since r, u1, and u2 are independent of ε, so is the probability measure Pε := P. Combining the
second equation in (217) with (218) and (219) gives

u3 = m−
(

1 +
2s− 1

ε

)
σP. (220)

Substituting (218)–(220) into the fourth equation of (217) gives a quadratic equation for s,
whose selected solution (such that s and r = 1

2 be close for small ε > 0) is equal to

s = 1
2


1− ε +

√√√√
(

σ2
Q

σ2
P
− 1 + ε

)
ε


 . (221)

Hence, s = 1
2 + O(

√
ε), which implies that s ∈ (0, 1− ε) for sufficiently small ε > 0 (as it is

required in (213)). In view of (216), it also follows that D(P‖Qε) vanishes as we let ε tend to zero.
We finally outline an alternative proof, which refers to the case of equal means with arbitrarily

selected σ2
P and σ2

Q. Let (σ2
P, σ2

Q) ∈ (0, ∞)2. We next construct a sequence of pairs of probability
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measures {(Pn, Qn)} with zero mean and respective variances (σ2
P, σ2

Q) for which D(Pn‖Qn)→ 0 as
n→ ∞ (without any loss of generality, one can assume that the equal means are equal to zero). We start
by assuming (σ2

P, σ2
Q) ∈ (1, ∞)2. Let

µn :=
√

1 + n
(
σ2

Q − 1
)
, (222)

and define a sequence of quaternary real-valued random variables with probability mass functions

Qn(a) :=

{
1
2 − 1

2n a = ±1,
1

2n a = ±µn.
(223)

It can be verified that, for all n ∈ N, Qn has zero mean and variance σ2
Q. Furthermore, let

Pn(a) :=

{ 1
2 −

ξ
2n a = ±1,

ξ
2n a = ±µn,

(224)

with

ξ :=
σ2

P − 1
σ2

Q − 1
. (225)

If ξ > 1, for n = 1, . . . , dξe, we choose Pn arbitrarily with mean 0 and variance σ2
P. Then,

Var(Pn) = 1− ξ
n + ξ

n µ2
n = σ2

P, (226)

D(Pn‖Qn) = d
(

ξ

n

∥∥∥∥
1
n

)
→ 0. (227)

Next, suppose min{σ2
P, σ2

Q} := σ2 < 1, then construct P′n and Q′n as before with variances 2σ2
P

σ2 > 1

and
2σ2

Q
σ2 > 1, respectively. If Pn and Qn denote the random variables P′n and Q′n scaled by a factor of

σ√
2

, then their variances are σ2
P, σ2

Q, respectively, and D(Pn‖Qn) = D(P′n‖Q′n)→ 0 as we let n→ ∞.
To conclude, it should be noted that the sequences of probability measures in the latter proof

are defined on a four-element set. Recall that, in the earlier proof, specialized to the case of (equal
means with) σ2

P ≤ σ2
Q, the introduced probability measures are defined on a three-element set, and the

reference probability measure P is fixed while referring to an equiprobable binary random variable.

5.4. Proof of Theorem 3

We first prove (52). Differentiating both sides of (22) gives that, for all λ ∈ (0, 1],

F′(λ) =
1
λ

χ2(P‖Rλ

)
log e (228)

≥ 1
λ

[
exp

(
D(P‖Rλ)

)
− 1
]

log e (229)

=
1
λ

[
exp

(
F(λ)

)
− 1
]

log e, (230)

where (228) holds due to (21), (22) and (50); (229) holds by (16) and (230) is due to (21) and (50).
This gives (52).
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We next prove (53), and the conclusion which appears after it. In view of [16] [Theorem 8],
applied to f (t) := − log t for all t > 0, we get (it should be noted that, by the definition of F in (50),
the result in [16] [(195)–(196)] is used here by swapping P and Q)

lim
λ→0+

F(λ)
λ2 = 1

2 χ2(Q‖P) log e. (231)

Since lim
λ→0+

F(λ) = 0, it follows by L’Hôpital’s rule that

lim
λ→0+

F′(λ)
λ

= 2 lim
λ→0+

F(λ)
λ2 = χ2(Q‖P) log e, (232)

which gives (53). A comparison of the limit in (53) with a lower bound which follows from (52) gives

lim
λ→0+

F′(λ)
λ
≥ lim

λ→0+

1
λ2

[
exp

(
F(λ)

)
− 1
]

log e (233)

= lim
λ→0+

F(λ)
λ2 lim

λ→0+

exp
(

F(λ)
)
− 1

F(λ)
· log e (234)

= lim
λ→0+

F(λ)
λ2 lim

u→0

eu − 1
u

(235)

= 1
2 χ2(Q‖P) log e, (236)

where (236) relies on (231). Hence, the limit in (53) is twice as large as its lower bound on the right side
of (236). This proves the conclusion which comes right after (53).

We finally prove the known result in (51), by showing an alternative proof which is based on (52).
The function F is non-negative on [0, 1], and it is strictly positive on (0, 1] if P 6= Q. Let P 6= Q
(otherwise, (51) is trivial). Rearranging terms in (52) and integrating both sides over the interval [λ, 1],
for λ ∈ (0, 1], gives that

∫ 1

λ

F′(t)
exp

(
F(t)

)
− 1

dt ≥
∫ 1

λ

dt
t

log e (237)

= log
1
λ

, ∀ λ ∈ (0, 1]. (238)

The left side of (237) satisfies

∫ 1

λ

F′(t)
exp

(
F(t)

)
− 1

dt =
∫ 1

λ

F′(t) exp
(
−F(t)

)

1− exp
(
−F(t)

) dt (239)

=
∫ 1

λ

d
dt

{
log
(

1− exp
(
−F(t)

))}
dt (240)

= log

(
1− exp

(
−D(P‖Q)

)

1− exp
(
−F(λ)

)
)

, (241)

where (241) holds since F(1) = D(P‖Q) (see (50)). Combining (237)–(241) gives

1− exp
(
−D(P‖Q)

)

1− exp
(
−F(λ)

) ≥ 1
λ

, ∀ λ ∈ (0, 1], (242)

which, due to the non-negativity of F, gives the right side inequality in (51) after rearrangement of
terms in (242).
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5.5. Proof of Theorem 4

Lemma 3. Let f0 : (0, ∞)→ R be a convex function with f0(1) = 0, and let { fk(·)}∞
k=0 be defined as in (58).

Then, { fk(·)}∞
k=0 is a sequence of convex functions on (0, ∞), and

fk(x) ≥ fk+1(x), ∀ x > 0, k ∈ {0, 1, . . .}. (243)

Proof. We prove the convexity of { fk(·)} on (0, ∞) by induction. Suppose that fk(·) is a convex
function with fk(1) = 0 for a fixed integer k ≥ 0. The recursion in (58) yields fk+1(1) = 0 and, by the
change of integration variable s := (1− x)s′,

fk+1(x) =
∫ 1

0
fk(s′x− s′ + 1)

ds′

s′
, x > 0. (244)

Consequently, for t ∈ (0, 1) and x 6= y with x, y > 0, applying (244) gives

fk+1((1− t)x + ty) =
∫ 1

0
fk
(
s′[(1− t)x + ty]− s′ + 1

) ds′

s′
(245)

=
∫ 1

0
fk
(
(1− t)(s′x− s′ + 1) + t(s′y− s′ + 1)

) ds′

s′
(246)

≤ (1− t)
∫ 1

0
fk(s′x− s′ + 1)

ds′

s′
+ t

∫ 1

0
fk(s′y− s′ + 1)

ds′

s′
(247)

= (1− t) fk+1(x) + t fk+1(y), (248)

where (247) holds since fk(·) is convex on (0, ∞) (by assumption). Hence, from (245)–(248), fk+1(·) is also
convex on (0, ∞) with fk+1(1) = 0. By mathematical induction and our assumptions on f0, it follows that
{ fk(·)}∞

k=0 is a sequence of convex functions on (0, ∞) which vanish at 1.
We next prove (243). For all x, y > 0 and k ∈ {0, 1, . . .},

fk+1(y) ≥ fk+1(x) + f ′k+1(x) (y− x) (249)

= fk+1(x) +
fk(x)
x− 1

(y− x), (250)

where (249) holds since fk(·) is convex on (0, ∞), and (250) relies on the recursive equation in (58).
Substituting y = 1 into (249)–(250), and using the equality fk+1(1) = 0, gives (243).

We next prove Theorem 4. From Lemma 3, it follows that D fk
(P‖Q) is an f -divergence for

all integers k ≥ 0, and the non-negative sequence
{

D fk
(P‖Q)}∞

k=0 is monotonically non-increasing.
From (21) and (58), it also follows that, for all λ ∈ [0, 1] and integer k ∈ {0, 1, . . .},

D fk+1
(Rλ‖P) =

∫
p fk+1

( rλ

p

)
dµ (251)

=
∫

p
∫ (p−q)λ/p

0
fk(1− s)

ds
s

dµ (252)

=
∫

p
∫ λ

0
fk

(
1 +

(q− p)s′

p

) ds′

s′
dµ (253)

=
∫ λ

0

∫
p fk

( rs′

p

)
dµ

ds′

s′
(254)

=
∫ λ

0
D fk

(Rs′‖P)
ds′

s′
, (255)
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where the substitution s := (p−q)s′
p is invoked in (253), and then (254) holds since rs′

p = 1 + (q−p) s′
p for

s′ ∈ [0, 1] (this follows from (21)) and by interchanging the order of the integrations.

5.6. Proof of Corollary 5

Combining (60) and (61) yields (58); furthermore, f0 : (0, ∞) → R, given by f0(x) = 1
x − 1 for

all x > 0, is convex on (0, ∞) with f0(1) = 0. Hence, Theorem 4 holds for the selected functions
{ fk(·)}∞

k=0 in (61), which therefore are all convex on (0, ∞) and vanish at 1. This proves that (59) holds
for all λ ∈ [0, 1] and k ∈ {0, 1, . . .}. Since f0(x) = 1

x − 1 and f1(x) = − loge(x) for all x > 0 (see (60)
and (61)), then, for every pair of probability measures P and Q:

D f0(P‖Q) = χ2(Q‖P), D f1(P‖Q) = 1
log e D(Q‖P). (256)

Finally, combining (59), for k = 0, together with (256), gives (22) as a special case.

5.7. Proof of Theorem 5 and Corollary 6

For an arbitrary measurable set E ⊆ X , we have from (62)

µC(E) =
∫

E
1C(x)
µ(C) dµ(x), (257)

where 1C : X → {0, 1} is the indicator function of C ⊆ X , i.e., 1C(x) := 1{x ∈ C} for x ∈ X . Hence,

dµC
dµ

(x) =
1C(x)
µ(C) , ∀ x ∈ X , (258)

and

D(µC‖µ) =
∫

X
f
(dµC

dµ

)
dµ (259)

=
∫

C
f
(

1
µ(C)

)
dµ(x) +

∫

X\C
f (0) dµ(x) (260)

= µ(C) f
(

1
µ(C)

)
+ µ(X \ C) f (0) (261)

= f̃
(
µ(C)

)
+ (1− µ(C)) f (0), (262)

where the last equality holds by the definition of f̃ in (63). This proves Theorem 5. Corollary 6 is next
proved by first proving (67) for the Rényi divergence. For all α ∈ (0, 1) ∪ (1, ∞),

Dα

(
µC‖µ

)
=

1
α− 1

log
∫

X

(
dµC
dµ

)α

dµ (263)

=
1

α− 1
log

∫

C

(
1

µ(C)

)α

dµ (264)

=
1

α− 1
log
((

1
µ(C)

)α

µ(C)
)

(265)

= log
1

µ(C) . (266)

The justification of (67) for α = 1 is due to the continuous extension of the order-α Rényi
divergence at α = 1, which gives the relative entropy (see (13)). Equality (65) is obtained from (67) at
α = 1. Finally, (66) is obtained by combining (15) and (67) with α = 2.
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5.8. Proof of Theorem 6

(100) is an equivalent form of (27). From (91) and (100), for all α ∈ [0, 1],

1
log e Sα(P‖Q) = α 1

log e Kα(P‖Q) + (1− α) 1
log e K1−α(Q‖P) (267)

= α
∫ α

0
sDφs(P‖Q)ds + (1− α)

∫ 1−α

0
sDφs(Q‖P)ds (268)

= α
∫ α

0
sDφs(P‖Q)ds + (1− α)

∫ 1

α
(1− s)Dφ1−s(Q‖P)ds. (269)

Regarding the integrand of the second term in (269), in view of (18), for all s ∈ (0, 1)

Dφ1−s(Q‖P) =
1

(1− s)2 · χ
2(Q ‖ (1− s)P + sQ

)
(270)

=
1
s2 · χ

2(P ‖ (1− s)P + sQ
)

(271)

= Dφs(P‖Q), (272)

where (271) readily follows from (9). Since we also have Dφ1(P‖Q) = χ2(P‖Q) = Dφ0(Q‖P) (see (18)),
it follows that

Dφ1−s(Q‖P) = Dφs(P‖Q), s ∈ [0, 1]. (273)

By using this identity, we get from (269) that, for all α ∈ [0, 1]

1
log e Sα(P‖Q) = α

∫ α

0
sDφs(P‖Q)ds + (1− α)

∫ 1

α
(1− s)Dφs(P‖Q)ds (274)

=
∫ 1

0
gα(s) Dφs(P‖Q)ds, (275)

where the function gα : [0, 1]→ R is defined in (102). This proves the integral identity (101).
The lower bounds in (103) and (104) hold since, if f : (0, ∞)→ R is convex, continuously twice

differentiable and strictly convex at 1, then

µχ2(QX , WY|X) ≤ µ f (QX , WY|X), (276)

(see, e.g., [46] [Proposition II.6.5] and [50] [Theorem 2]). Hence, this holds in particular for the
f -divergences in (95) and (96) (since the required properties are satisfied by the parametric functions
in (97) and (98), respectively). We next prove the upper bound on the contraction coefficients in (103)
and (104) by relying on (100) and (101), respectively. In the setting of Definition 7, if PX 6= QX , then it
follows from (100) that for α ∈ (0, 1],

Kα(PY‖QY)

Kα(PX‖QX)
=

∫ α
0 sDφs(PY‖QY)ds∫ α
0 sDφs(PX‖QX)ds

(277)

≤
∫ α

0 s µφs(QX , WY|X) Dφs(PX‖QX)ds∫ α
0 sDφs(PX‖QX)ds

(278)

≤ sup
s∈(0,α]

µφs(QX , WY|X). (279)

Finally, taking the supremum of the left-hand side of (277) over all probability measures PX such
that 0 < Kα(PX‖QX) < ∞ gives the upper bound on µkα

(QX, WY|X) in (103). The proof of the upper
bound on µsα(QX, WY|X), for all α ∈ [0, 1], follows similarly from (101), since the function gα(·) as
defined in (102) is positive over the interval (0, 1).
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5.9. Proof of Corollary 7

The upper bounds in (106) and (107) rely on those in (103) and (104), respectively, by showing that

sup
s∈(0,1]

µφs(QX , WY|X) ≤ µχ2(WY|X). (280)

Inequality (280) is obtained as follows, similarly to the concept of the proof of [51] [Remark 3.8].
For all s ∈ (0, 1] and PX 6= QX ,

Dφs(PXWY|X ‖QXWY|X)
Dφs(PX‖QX)

=
χ2(PXWY|X ‖ (1− s)PXWY|X + sQXWY|X)

χ2(PX ‖ (1− s)PX + sQX)
(281)

≤ µχ2((1− s)PX + sQX , WY|X) (282)

≤ µχ2(WY|X), (283)

where (281) holds due to (18), and (283) is due to the definition in (105).

5.10. Proof of Proposition 3

The lower bound on the contraction coefficients in (108) and (109) is due to (276). The derivation
of the upper bounds relies on [49] [Theorem 2.2], which states the following. Let f : [0, ∞) → R
be a three–times differentiable, convex function with f (1) = 0, f ′′(1) > 0, and let the function
z : (0, ∞)→ R defined as z(t) := f (t)− f (0)

t , for all t > 0, be concave. Then,

µ f (QX , WY|X) ≤
f ′(1) + f (0)
f ′′(1) Qmin

· µχ2(QX , WY|X). (284)

For α ∈ (0, 1], let zα,1 : (0, ∞)→ R and zα,2 : (0, ∞)→ R be given by

zα,1(t) :=
kα(t)− kα(0)

t
, t > 0, (285)

zα,2(t) :=
sα(t)− sα(0)

t
, t > 0, (286)

with kα and sα in (97) and (98). Straightforward calculus shows that, for α ∈ (0, 1] and t > 0,

1
log e z′′α,1(t) = −

α2 + 2α(1− α)t

t2
[
α + (1− α)t

]2 < 0, (287)

1
log e z′′α,2(t) = −

α2[α + 2(1− α)t
]

t2
[
α + (1− α)t

]2

− 2(1− α)

t3

[
loge

(
1 +

(1− α)t
α

)
− (1− α)t

α + (1− α)t
− (1− α)2t2

2
[
α + (1− α)t

]2

]
. (288)

The first term on the right side of (288) is negative. For showing that the second term is also
negative, we rely on the power series expansion loge(1 + u) = u− 1

2 u2 + 1
3 u3 − . . . for u ∈ (−1, 1].

Setting u := − x
1+x , for x > 0, and using Leibnitz theorem for alternating series yields

loge(1 + x) = − loge

(
1− x

1 + x

)
>

x
1 + x

+
x2

2(1 + x)2 , x > 0. (289)
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Consequently, setting x := (1−α)t
α ∈ [0, ∞) in (289), for t > 0 and α ∈ (0, 1], proves that the second

term on the right side of (288) is negative. Hence, z′′α,1(t), z′′α,2(t) < 0, so both zα,1, zα,2 : (0, ∞)→ R are
concave functions.

In view of the satisfiability of the conditions of [49] [Theorem 2.2] for the f -divergences with f = kα

or f = sα, the upper bounds in (108) and (109) follow from (284), and also since

kα(0) = 0, k′α(1) = α log e, k′′α(1) = α2 log e, (290)

sα(0) = −(1− α) log α, s′α(1) = (2α− 1) log e, s′′α (1) = (1− 3α + 3α2) log e. (291)

5.11. Proof of Proposition 4

In view of (24), we get

D(PY‖QY)

D(PX‖QX)
=

∫ 1
0 χ2(PY ‖ (1− s)PY + sQY)

ds
s∫ 1

0 χ2(PX ‖ (1− s)PX + sQX)
ds
s

(292)

≤
∫ 1

0 µχ2((1− s)PX + sQX , WY|X) χ2(PX ‖ (1− s)PX + sQX)
ds
s∫ 1

0 χ2(PX ‖ (1− s)PX + sQX)
ds
s

(293)

≤ sup
s∈[0,1]

µχ2((1− s)PX + sQX , WY|X). (294)

In view of (119), the distributions of Xs and Ys, and since
(
(1− s)PX + sQX

)
WY|X = (1− s)PY +

sQY holds for all s ∈ [0, 1], it follows that

ρm(Xs; Ys) =
√

µχ2((1− s)PX + sQX , WY|X), s ∈ [0, 1], (295)

which, from (292)–(295), implies that

sup
s∈[0,1]

ρm(Xs; Ys) ≥
√

D(PY‖QY)

D(PX‖QX)
. (296)

Switching PX and QX in (292)–(294) and using the mapping s 7→ 1− s in (294) gives (due to the
symmetry of the maximal correlation)

sup
s∈[0,1]

ρm(Xs; Ys) ≥
√

D(QY‖PY)

D(QX‖PX)
, (297)

and, finally, taking the maximal lower bound among those in (296) and (297) gives (120).
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Abstract: This paper explores some applications of a two-moment inequality for the integral of the rth
power of a function, where 0 < r < 1. The first contribution is an upper bound on the Rényi entropy
of a random vector in terms of the two different moments. When one of the moments is the zeroth
moment, these bounds recover previous results based on maximum entropy distributions under a
single moment constraint. More generally, evaluation of the bound with two carefully chosen nonzero
moments can lead to significant improvements with a modest increase in complexity. The second
contribution is a method for upper bounding mutual information in terms of certain integrals with
respect to the variance of the conditional density. The bounds have a number of useful properties
arising from the connection with variance decompositions.

Keywords: information inequalities; mutual information; Rényi entropy; Carlson–Levin inequality

1. Introduction

The interplay between inequalities and information theory has a rich history, with notable
examples including the relationship between the Brunn–Minkowski inequality and the entropy power
inequality as well as the matrix determinant inequalities obtained from differential entropy [1]. In this
paper, the focus is on a “two-moment” inequality that provides an upper bound on the integral of the
rth power of a function. Specifically, if f is a nonnegative function defined on Rn and p, q, r are real
numbers satisfying 0 < r < 1 and p < 1/r− 1 < q, then

(∫
f (x)r dx

) 1
r
≤ Cn,p,q,r

(∫
‖x‖np f (x)dx

) qr+r−1
(q−p)r

(∫
‖x‖nq f (x)dx

) 1−r−pr
(q−p)r

, (1)

where the best possible constant Cn,p,q,r is given exactly; see Propositions 2 and 3
ahead. The one-dimensional version of this inequality is a special case of the classical
Carlson–Levin inequality [2–4], and the multidimensional version is a special case of a result presented
by Barza et al. [5]. The particular formulation of the inequality used in this paper was derived
independently in [6], where the proof follows from a direct application of Hölder’s inequality and
Jensen’s inequality.

In the context of information theory and statistics, a useful property of the two-moment inequality
is that it provides a bound on a nonlinear functional, namely the r-quasi-norm ‖ · ‖r, in terms of
integrals that are linear in f . Consequently, this inequality is well suited to settings where f is a
mixture of simple functions whose moments can be evaluated. We note that this reliance on moments
to bound a nonlinear functional is closely related to bounds obtained from variational characterizations
such as the Donsker–Varadhan representation of Kullback divergence [7] and its generalizations to
Rényi divergence [8,9].
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The first application considered in this paper concerns the relationship between the entropy of a
probability measure and its moments. This relationship is fundamental to the principle of maximum
entropy, which originated in statistical physics and has since been applied to statistical inference
problems [10]. It also plays a prominent role in information theory and estimation theory where the fact
that the Gaussian distribution maximizes differential entropy under second moment constraints ([11],
[Theorem 8.6.5]) plays a prominent role. Moment–entropy inequalities for Rényi entropy were studied
in a series of works by Lutwak et al. [12–14], as well as related works by Costa et al. [15,16] and
Johonson and Vignat [17], in which it is shown that, under a single moment constraint, Rényi entropy
is maximized by a family of generalized Gaussian distributions. The connection between these
moment–entropy inequalities and the Carlson–Levin inequality was noted recently by Nguyen [18].

In this direction, one of the contributions of this paper is a new family of moment–entropy
inequalities. This family of inequalities follows from applying Inequality (1) in the setting where f
is a probability density function, and thus there is a one-to-one correspondence between the integral
of the rth power and the Rényi entropy of order r. In the special case where one of the moments is
the zeroth moment, this approach recovers the moment–entropy inequalities given in previous work.
More generally, the additional flexibility provided by considering two different moments can lead to
stronger results. For example, in Proposition 6, it is shown that if f is the standard Gaussian density
function defined on Rn, then the difference between the Rényi entropy and the upper bound given
by the two-moment inequality (equivalently, the ratio between the left- and right-hand sides of (1)) is
bounded uniformly with respect to n under the following specification of the moments:

pn =
1− r

r
− 1

r

√
2(1− r)

n + 1
, qn =

1− r
r

+
1
r

√
2(1− r)

n + 1
. (2)

Conversely, if one of the moments is restricted to be equal to zero, as is the case in the usual
moment–entropy inequalities, then the difference between the Rényi entropy and the upper bound
diverges with n.

The second application considered in this paper is the problem of bounding mutual information.
In conjunction with Fano’s inequality and its extensions, bounds on mutual information play
a prominent role in establishing minimax rates of statistical estimation [19] as well as the
information-theoretic limits of detection in high-dimensional settings [20]. In many cases, one of the
technical challenges is to provide conditions under which the dependence between the observations
and an underlying signal or model parameters converges to zero in the limit of high dimension.

This paper introduces a new method for bounding mutual information, which can be described
as follows. Let PX,Y be a probability measure on X × Y such that PY|X=x and PY have densities
f (y | x) and f (y) with respect to the Lebesgue measure on Rn. We begin by showing that the mutual
information between X and Y satisfies the upper bound

I(X; Y) ≤
∫ √

Var( f (y | X))dy, (3)

where Var(p(y | X)) =
∫
( f (y | x)− f (y))2 dPX(x) is the variance of f (y | X); see Proposition 8

ahead. In view of (3), an application of the two-moment Inequality (1) with r = 1/2 leads to an upper
bound with respect to the moments of the variance of the density:

∫
‖y‖ns Var( f (y | X))dy (4)

where this expression is evaluated at s ∈ {p, q} with p < 1 < q. A useful property of this bound is
that the integrated variance is quadratic in PX , and thus Expression (4) can be evaluated by swapping
the integration over y and with the expectation of over two independent copies of X. For example,
when PX,Y is a Gaussian scale mixture, this approach provides closed-form upper bounds in terms of
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the moments of the Gaussian density. An early version of this technique is used to prove Gaussian
approximations for random projections [21] arising in the analysis of a random linear estimation
problem appearing in wireless communications and compressed sensing [22,23].

2. Moment Inequalities

Let Lp(S) be the space of Lebesgue measurable functions from S to R whose pth power is
absolutely integrable, and for p 6= 0, define

‖ f ‖p :=
(∫

S
| f (x)|p dx

)1/p
.

Recall that ‖ · ‖p is a norm for p ≥ 1 but only a quasi-norm for 0 < p < 1 because it does not satisfy
the triangle inequality. The sth moment of f is defined as

Ms( f ) :=
∫

S
‖x‖s | f (x)|dx,

where ‖ · ‖ denotes the standard Euclidean norm on vectors.
The two-moment Inequality (1) can be derived straightforwardly using the following argument.

For r ∈ (0, 1), the mapping f 7→ ‖ f ‖r is concave on the subset of nonnegative functions and admits
the variational representation

‖ f ‖r = inf
{‖ f g‖1

‖g‖r∗
: g ∈ Lr∗

}
, (5)

where r∗ = r/(r − 1) ∈ (−∞, 0) is the Hölder conjugate of r. Consequently, each g ∈ Lr∗ leads to
an upper bound on ‖ f ‖r. For example, if f has bounded support S, choosing g to be the indicator
function of S leads to the basic inequality ‖ f ‖r ≤ (Vol(S))(1−r)/r‖ f ‖1. The upper bound on ‖ f ‖r

given in Inequality (1) can be obtained by restricting the minimum in Expression (5) to the parametric
class of functions of the form g(x) = ν1‖x‖np + ν2 ‖x‖nq with ν1, ν2 > 0 and then optimizing over the
parameters (ν1, ν2). Here, the constraints on p, q are necessary and sufficient to ensure that g ∈ Lr∗(Rn).

In the following sections, we provide a more detailed derivation, starting with the problem of
maximizing ‖ f ‖r under multiple moment constraints and then specializing to the case of two moments.
For a detailed account of the history of the Carlson type inequalities as well as some further extensions,
see [4].

2.1. Multiple Moments

Consider the following optimization problem:

maximize ‖ f ‖r

subject to f (x) ≥ 0 for all x ∈ S

Msi ( f ) ≤ mi for 1 ≤ i ≤ k.

For r ∈ (0, 1), this is a convex optimization problem because ‖ · ‖r
r is concave and the moment

constraints are linear. By standard theory in convex optimization (e.g., [24]), it can be shown that if the
problem is feasible and the maximum is finite, then the maximizer has the form

f ∗(x) =
( k

∑
i=1

ν∗i ‖x‖si

) 1
r−1

, for all x ∈ S.
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The parameters ν∗1 , · · · , ν∗k are nonnegative and the ith moment constraint holds with equality for all i
such that ν∗i is strictly positive—that is, ν∗i > 0 =⇒ µsi ( f ∗) = mi. Consequently, the maximum can
be expressed in terms of a linear combination of the moments:

‖ f ∗‖r
r = ‖( f ∗)r‖1 = ‖ f ∗( f ∗)r−1‖1 =

k

∑
i=1

ν∗i mi.

For the purposes of this paper, it is useful to consider a relative inequality in terms of the moments
of the function itself. Given a number 0 < r < 1 and vectors s ∈ Rk and ν ∈ Rk

+, the function cr(ν, s) is
defined according to

cr(ν, s) =

(∫ ∞

0

( k

∑
i=1

νi xsi

)− r
1−r

dx

) 1−r
r

,

if the integral exists. Otherwise, cr(ν, s) is defined to be positive infinity. It can be verified that cr(ν, s)
is finite provided that there exists i, j such that νi and νj are strictly positive and si < (1− r)/r < sj.

The following result can be viewed as a consequence of the constrained optimization
problem described above. We provide a different and very simple proof that depends only on
Hölder’s inequality.

Proposition 1. Let f be a nonnegative Lebesgue measurable function defined on the positive reals R+. For any
number 0 < r < 1 and vectors s ∈ Rk and ν ∈ Rk

+, we have

‖ f ‖r ≤ cr(ν, s)
k

∑
i=1

νiMsi ( f ).

Proof. Let g(x) = ∑k
i=1 νi xsi . Then, we have

‖ f ‖r
r = ‖g−r( f g)r‖1 ≤ ‖g−r‖ 1

1−r
‖(g f )r‖ 1

r
= ‖g −r

1−r ‖1−r
1 ‖g f ‖r

1 =

(
cr(ν, s)

k

∑
i=1

νiMsi ( f )
)r

,

where the second step is Hölder’s inequality with conjugate exponents 1/(1− r) and 1/r.

2.2. Two Moments

For a, b > 0, the beta function B(a, b) and gamma function Γ(a) are given by

B(a, b) =
∫ 1

0
ta−1(1− t)b−1 dt

Γ(a) =
∫ ∞

0
ta−1e−t dt,

and satisfy the relation B(a, b) = Γ(a)Γ(b)/Γ(a + b), a, b > 0. To lighten the notation, we define the
normalized beta function

B̃(a, b) = B(a, b)(a + b)a+ba−ab−b. (6)

Properties of these functions are provided in Appendix A.
The next result follows from Proposition 1 for the case of two moments.

Proposition 2. Let f be a nonnegative Lebesgue measurable function defined on [0, ∞). For any numbers
p, q, r with 0 < r < 1 and p < 1/r− 1 < q,

‖ f ‖r ≤ [ψr(p, q)]
1−r

r [Mp( f )]λ[Mq( f )]1−λ,
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where λ = (q + 1− 1/r)/(q− p) and

ψr(p, q) =
1

(q− p)
B̃
(

rλ

1− r
,

r(1− λ)

1− r

)
, (7)

where B̃(·, ·) is defined in Equation (6).

Proof. Letting s = (p, q) and ν = (γ1−λ, γ−λ) with λ > 0, we have

[cr(ν, s)]
r

1−r =
∫ ∞

0

(
γ1−λ xp + γ−λ xq

)− r
1−r dx.

Making the change of variable x 7→ (γu)
1

q−p leads to

[cr(ν, s)]
r

1−r =
1

q− p

∫ ∞

0

ub−1

(1 + u)a+b du =
B (a, b)
q− p

,

where a = r
1−r λ and b = r

1−r (1 − λ) and the second step follows from recognizing the integral
representation of the beta function given in Equation (A3). Therefore, by Proposition 1, the inequality

‖ f ‖r ≤
(

B (a, b)
q− p

) 1−r
r (

γ1−λMp( f ) + γ−λMq( f )
)

,

holds for all γ > 0. Evaluating this inequality with

γ =
λMq( f )

(1− λ)Mp( f )
,

leads to the stated result.

The special case r = 1/2 admits the simplified expression

ψ1/2(p, q) =
πλ−λ(1− λ)−(1−λ)

(q− p) sin(πλ)
, (8)

where we have used Euler’s reflection formula for the beta function ([25], [Theorem 1.2.1]).
Next, we consider an extension of Proposition 2 for functions defined on Rn. Given any

measurable subset S of Rn, we define

ω(S) = Vol(Bn ∩ cone(S)), (9)

where Bn = {u ∈ Rn : ‖u‖ ≤ 1} is the n-dimensional Euclidean ball of radius one and

cone(S) = {x ∈ Rn : tx ∈ S for some t > 0}.

The function ω(S) is proportional to the surface measure of the projection of S on the Euclidean sphere
and satisfies

ω(S) ≤ ω(Rn) =
π

n
2

Γ( n
2 + 1)

, (10)

for all S ⊆ Rn. Note that ω(R+) = 1 and ω(R) = 2.
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Proposition 3. Let f be a nonnegative Lebesgue measurable function defined on a subset S of Rn. For any
numbers p, q, r with 0 < r < 1 and p < 1/r− 1 < q,

‖ f ‖r ≤ [ω(S)ψr(p, q)]
1−r

r [Mnp( f )]λ[Mnq( f )]1−λ,

where λ = (q + 1− 1/r)/(q− p) and ψr(p, q) is given by Equation (7).

Proof. Let f be extended to Rn using the rule f (x) = 0 for all x outside of S and let g : R+ → R+ be
defined according to

g(y) =
1
n

∫

Sn−1
f (y1/nu)dσ(u),

where Sn−1 = {u ∈ Rn : ‖u‖ = 1} is the Euclidean sphere of radius one and σ(u) is the surface
measure of the sphere. In the following, we will show that

‖ f ‖r ≤ (ω(S))
1−r

r ‖g‖r (11)

Mns( f ) =Ms(g). (12)

Then, the stated inequality then follows from applying Proposition 2 to the function g.
To prove Inequality (11), we begin with a transformation into polar coordinates:

‖ f ‖r
r =

∫ ∞

0

∫

Sn−1
| f (tu)|r tn−1 dσ(u)dt. (13)

Letting 1cone(S)(x) denote the indicator function of the set cone(S), the integral over the sphere can be
bounded using:

∫

Sn−1
| f (tu)|r dσ(u) =

∫

Sn−1
1cone(S)(u) | f (tu)|r dσ(u)

(a)
≤
(∫

Sn−1
1cone(S)(u)dσ(u)

)1−r (∫

Sn−1
| f (tu)| dσ(u)

)r

(b)
= n (ω(S))1−r gr(tn), (14)

where: (a) follows from Hölder’s inequality with conjugate exponents 1
1−r and 1

r , and (b) follows from
the definition of g and the fact that

ω(S) =
∫ 1

0

∫

Sn−1
1cone(S)(u) tn−1 dσ(u)dt

=
1
n

∫

Sn−1
1cone(S)(u)dσ(u).

Plugging Inequality (14) back into Equation (13) and then making the change of variable t→ y
1
n yields

‖ f ‖r
r ≤ n (ω(S))1−r

∫ ∞

0
gr(tn)tn−1 dt = (ω(S))1−r ‖g‖r

r.

The proof of Equation (12) follows along similar lines. We have

Mns( f )
(a)
=
∫ ∞

0

∫

Sn−1
tns f (tu) tn−1 dσ(u)dt

(b)
=

1
n

∫ ∞

0

∫

Sn−1
ys f (y

1
n u)dσ(u)dy

=Ms(g)
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where (a) follows from a transformation into polar coordinates and (b) follows from the change of
variable t 7→ y

1
n .

Having established Inequality (11) and Equation (12), an application of Proposition 2 completes
the proof.

3. Rényi Entropy Bounds

Let X be a random vector that has a density f (x) with respect to the Lebesgue measure on Rn.
The differential Rényi entropy of order r ∈ (0, 1) ∪ (1, ∞) is defined according to [11]:

hr(X) =
1

1− r
log
(∫

Rn
f r(x)dx

)
.

Throughout this paper, it is assumed that the logarithm is defined with respect to the natural base and
entropy is measured in nats. The Rényi entropy is continuous and nonincreasing in r. If the support
set S = {x ∈ Rn : f (x) > 0} has finite measure, then the limit as r converges to zero is given by
h0(X) = log Vol(S). If the support does not have finite measure, then hr(X) increases to infinity as r
decreases to zero. The case r = 1 is given by the Shannon differential entropy:

h1(X) = −
∫

S
f (x) log f (x)dx.

Given a random variable X that is not identical to zero and numbers p, q, r with 0 < r < 1 and
p < 1/r− 1 < q, we define the function

Lr(X; p, q) =
rλ

1− r
logE [|X|p] + r(1− λ)

1− r
logE [|X|q] ,

where λ = (q + 1− 1/r)/(q− p).
The next result, which follows directly from Proposition 3, provides an upper bound on the

Rényi entropy.

Proposition 4. Let X be a random vector with a density on Rn. For any numbers p, q, r with 0 < r < 1 and
p < 1/r− 1 < q, the Rényi entropy satisfies

hr(X) ≤ log ω(S) + log ψr(p, q) + Lr(‖X‖n; p, q), (15)

where ω(S) is defined in Equation (9) and ψr(p, q) is defined in Equation (7).

Proof. This result follows immediately from Proposition 3 and the definition of Rényi entropy.

The relationship between Proposition 4 and previous results depends on whether the moment p
is equal to zero:

• One-moment inequalities: If p = 0, then there exists a distribution such that Inequality (15)
holds with equality. This is because the zero-moment constraint ensures that the function that
maximizes the Rényi entropy integrates to one. In this case, Proposition 4 is equivalent to previous
results that focused on distributions that maximize Rényi entropy subject to a single moment
constraint [12,13,15]. With some abuse of terminology, we refer to these bounds as one-moment
inequalities. (A more accurate name would be two-moment inequalities under the constraint that
one of the moments is the zeroth moment.)

• Two-moment inequalities: If p 6= 0, then the right-hand side of Inequality (15) corresponds to
the Rényi entropy of a nonnegative function that might not integrate to one. Nevertheless,
the expression provides an upper bound on the Rényi entropy for any density with the same
moments. We refer to the bounds obtained using a general pair (p, q) as two-moment inequalities.
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The contribution of two-moment inequalities is that they lead to tighter bounds. To quantify
the tightness, we define ∆r(X; p, q) to be the gap between the right-hand side and left-hand side of
Inequality (15) corresponding to the pair (p, q)—that is,

∆r(X; p, q) = log ω(S) + log ψr(p, q) + Lr(‖X‖n; p, q)− hr(X).

The gaps corresponding to the optimal two-moment and one-moment inequalities are defined
according to

∆r(X) = inf
p,q

∆r(X; p, q)

∆̃r(X) = inf
q

∆r(X; 0, q).

3.1. Some Consequences of These Bounds

By Lyapunov’s inequality, the mapping s 7→ 1
s logE [|X|s] is nondecreasing on [0, ∞), and thus

Lr(X; p, q) ≤ Lr(X; 0, q) =
1
q

logE [|X|q] , p ≥ 0. (16)

In other words, the case p = 0 provides an upper bound on Lr(X; p, q) for nonnegative p. Alternatively,
we also have the lower bound

Lr(X; p, q) ≥ r
1− r

logE
[
|X| 1−r

r

]
, (17)

which follows from the convexity of logE [|X|s].
A useful property of Lr(X; p, q) is that it is additive with respect to the product of independent

random variables. Specifically, if X and Y are independent, then

Lr(XY; p, q) = Lr(X; p, q) + Lr(Y; p, q). (18)

One consequence is that multiplication by a bounded random variable cannot increase the Rényi
entropy by an amount that exceeds the gap of the two-moment inequality with nonnegative moments.

Proposition 5. Let Y be a random vector on Rn with finite Rényi entropy of order 0 < r < 1, and let X be an
independent random variable that satisfies 0 < X ≤ t. Then,

hr(XY) ≤ hr(tY) + ∆r(Y; p, q),

for all 0 < p < 1/r− 1 < q.

Proof. Let Z = XY and let SZ and SY denote the support sets of Z and Y, respectively. The assumption
that X is nonnegative means that cone(SZ) = cone(SY). We have

hr(Z)
(a)
≤ log ω(SZ) + log ψr(p, q) + Lr(‖Z‖n; p, q)
(b)
= hr(Y) + Lr(|X|n; p; q) + ∆r(Y; p, q)
(c)
≤ hr(Y) + n log t + ∆r(Y; p, q),

where (a) follows from Proposition 4, (b) follows from Equation (18) and the definition of ∆r(Y; p, q),
and (c) follows from Inequality (16) and the assumption |X| ≤ t. Finally, recalling that hr(tY) =

hr(Y) + n log t completes the proof.
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3.2. Example with Log-Normal Distribution

If W ∼ N (µ, σ2), then the random variable X = exp(W) has a log-normal distribution with
parameters (µ, σ2). The Rényi entropy is given by

hr(X) = µ +
1
2

(
1− r

r

)
σ2 +

1
2

log(2πr
1

r−1 σ2),

and the logarithm of the sth moment is given by

logE [|X|s] = µs +
1
2

σ2 s2.

With a bit of work, it can be shown that the gap of the optimal two-moment inequality does not depend
on the parameters (µ, σ2) and is given by

∆r(X) = log
(

B̃
(

r
2(1− r)

,
r

2(1− r)

)√
r

4(1− r)

)
+

1
2
− 1

2
log(2πr

1
r−1 ). (19)

The details of this derivation are given in Appendix B.1. Meanwhile, the gap of the optimal one-moment
inequality is given by

∆̃r(X) = inf
q

[
log
(

B̃
(

r
1− r

− 1
q

,
1
q

)
1
q

)
+

1
2

qσ2
]
− 1

2

(
1− r

r

)
σ2 − 1

2
log(2πr

1
r−1 σ2). (20)

The functions ∆r(X) and ∆̃r(X) are illustrated in Figure 1 as a function of r for various σ2.
The function ∆r(X) is bounded uniformly with respect to r and converges to zero as r increases to one.
The tightness of the two-moment inequality in this regime follows from the fact that the log-normal
distribution maximizes Shannon entropy subject to a constraint on E [log X]. By contrast, the function
∆̃r(X) varies with the parameter σ2. For any fixed r ∈ (0, 1), it can be shown that ∆̃r(X) increases to
infinity if σ2 converges to zero or infinity.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

∆r(X)

∆̃r(X)

σ2 = 10σ2 = 1 σ2 = 0.1

r

Figure 1. Comparison of upper bounds on Rényi entropy in nats for the log-normal distribution as a
function of the order r for various σ2.
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3.3. Example with Multivariate Gaussian Distribution

Next, we consider the case where Y ∼ N (0, In) is an n-dimensional Gaussian vector with mean
zero and identity covariance. The Rényi entropy is given by

hr(Y) =
n
2

log(2πr
1

r−1 ),

and the sth moment of the magnitude ‖Y‖ is given by

E [‖Y‖s] =
2

s
2 Γ( n+s

2 )

Γ( n
2 )

.

The next result shows that as the dimension n increases, the gap of the optimal two-moment
inequality converges to the gap for the log-normal distribution. Moreover, for each r ∈ (0, 1),
the following choice of moments is optimal in the large-n limit:

pn =
1− r

r
− 1

r

√
2(1− r)

n + 1
, qn =

1− r
r

+
1
r

√
2(1− r)

n + 1
. (21)

The proof is given in Appendix B.3.

Proposition 6. If Y ∼ N (0, In), then, for each r ∈ (0, 1),

lim
n→∞

∆r(Y) = lim
n→∞

∆r(Y; pn, qn) = ∆r(X),

where X has a log-normal distribution and (pn, qn) are given by (21).

Figure 2 provides a comparison of ∆r(Y), ∆r(Y; pn, qn), and ∆̃r(Y) as a function of n for r = 0.1.
Here, we see that both ∆r(Y) and ∆r(Y; pn, qn) converge rapidly to the asymptotic limit given by the
gap of the log-normal distribution. By contrast, the gap of the optimal one-moment inequality ∆̃r(Y)
increases without bound.

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

n

∆̃r(Y)
∆r(Y; pn,qn)

∆r(Y)
∆r(X)

Figure 2. Comparison of upper bounds on Rényi entropy in nats for the multivariate Gaussian
distribution N (0, In) as a function of the dimension n with r = 0.1. The solid black line is the gap of
the optimal two-moment inequality for the log-normal distribution.
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3.4. Inequalities for Differential Entropy

Proposition 4 can also be used to recover some known inequalities for differential entropy by
considering the limiting behavior as r converges to one. For example, it is well known that the
differential entropy of an n-dimensional random vector X with finite second moment satisfies

h(X) ≤ 1
2

log
(

2πeE
[

1
n‖X‖2

])
, (22)

with equality if and only if the entries of X are i.i.d. zero-mean Gaussian. A generalization of this result
in terms of an arbitrary positive moment is given by

h(X) ≤ log
Γ
( n

s + 1
)

Γ
( n

2 + 1
) + n

2
log π +

n
s

log
(

esE
[

1
n‖X‖s

])
, (23)

for all s > 0. Note that Inequality (22) corresponds to the case s = 2.
Inequality (23) can be proved as an immediate consequence of Proposition 4 and the fact that hr(X)

is nonincreasing in r. Using properties of the beta function given in Appendix A, it is straightforward
to verify that

lim
r→1

ψr(0, q) = (e q)
1
q Γ
(

1
q
+ 1
)

, for all q > 0.

Combining this result with Proposition 4 and Inequality (16) leads to

h(X) ≤ log ω(S) + log Γ
(

1
q
+ 1
)
+

1
q

log (eqE [‖X‖nq]) .

Using Inequality (10) and making the substitution s = nq leads to Inequality (23).
Another example follows from the fact that the log-normal distribution maximizes the differential

entropy of a positive random variable X subject to constraints on the mean and variance of log(X),
and hence

h(X) ≤ E [log(X)] +
1
2

log (2πeVar(log(X))) , (24)

with equality if and only if X is log-normal. In Appendix B.4, it is shown how this inequality can be
proved using our two-moment inequalities by studying the behavior as both p and q converge to zero
as r increases to one.

4. Bounds on Mutual Information

4.1. Relative Entropy and Chi-Squared Divergence

Let P and Q be distributions defined on a common probability space that have densities p and
q with respect to a dominating measure µ. The relative entropy (or Kullback–Leibler divergence) is
defined according to

D (P ‖Q) =
∫

p log
(

p
q

)
dµ,

and the chi-squared divergence is defined as

χ2(P ‖Q) =
∫

(p− q)2

q
dµ.

Both of these divergences can be seen as special cases of the general class of f -divergence measures and
there exists a rich literature on comparisons between different divergences [8,26–32]. The chi-squared
divergence can also be viewed as the squared L2 distance between p/

√
q and

√
q. The chi-square can
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also be interpreted as the first non-zero term in the power series expansion of the relative entropy ([26],
[Lemma 4]). More generally, the chi-squared divergence provides an upper bound on the relative
entropy via

D (P ‖Q) ≤ log(1 + χ2(P‖Q)). (25)

The proof of this inequality follows straightforwardly from Jensen’s inequality and the concavity of
the logarithm; see [27,31,32] for further refinements.

Given a random pair (X, Y), the mutual information between X and Y is defined according to

I(X; Y) = D (PX,Y ‖ PXPY) .

From Inequality (25), we see that the mutual information can always be upper bounded using

I(X; Y) ≤ log(1 + χ2(PX,Y‖PXPY)). (26)

The next section provides bounds on the mutual information that can improve upon this inequality.

4.2. Mutual Information and Variance of Conditional Density

Let (X, Y) be a random pair such that the conditional distribution of Y given X has a density
fY|X(y|x) with respect to the Lebesgue measure on Rn. Note that the marginal density of Y is given by

fY(y) = E
[

fY|X(y|X)
]
. To simplify notation, we will write f (y|x) and f (y) where the subscripts are

implicit. The support set of Y is denoted by SY.
The measure of the dependence between X and Y that is used in our bounds can be understood in

terms of the variance of the conditional density. For each y, the conditional density f (y|X) evaluated
with a random realization of X is a random variable. The variance of this random variable is given by

Var( f (y|X)) = E
[
( f (y|X)− f (y))2

]
, (27)

where we have used the fact that the marginal density f (y) is the expectation of f (y|X). The sth
moment of the variance of the conditional density is defined according to

Vs(Y|X) =
∫

SY

‖y‖s Var( f (y|X))dy. (28)

The variance moment Vs(Y|X) is nonnegative and equal to zero if and only if X and Y are independent.
The function κ(t) is defined according to

κ(t) = sup
u∈(0,∞)

log(1 + u)
ut , t ∈ (0, 1]. (29)

The proof of the following result is given in Appendix C. The behavior of κ(t) is illustrated in
Figure 3.
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Figure 3. Graphs of κ(t) and tκ(t) as a function of t.

Proposition 7. The function κ(t) defined in Equation (29) can be expressed as

κ(t) =
log(1 + u)

ut , t ∈ (0, 1]

where
u = exp

(
W
(
− 1

t exp
(
− 1

t

))
+ 1

t

)
− 1,

and W(·) denotes Lambert’s W- function, i.e., W(z) is the unique solution to the equation z = w exp(w) on the
interval [−1, ∞). Furthermore, the function g(t) = tκ(t) is strictly increasing on (0, 1] with limt→0 g(t) =
1/e and g(1) = 1, and thus

1
et
≤ κ(t) ≤ 1

t
, t ∈ (0, 1],

where the lower bound 1/(et) is tight for small values of t ∈ (0, 1) and the upper bound 1/t is tight for values
of t close to 1.

We are now ready to give the main results of this section, which are bounds on the mutual
information. We begin with a general upper bound in terms of the variance of the conditional density.

Proposition 8. For any 0 < t ≤ 1, the mutual information satisfies

I(X; Y) ≤ κ(t)
∫

SY

[ f (y)]1−2t [Var( f (y | X))]t dy.

Proof. We use the following series of inequalities:

I(X; Y)
(a)
=
∫

f (y) D
(

PX|Y=y

∥∥∥ PX

)
dy

(b)
≤
∫

f (y) log
(

1 + χ2(PX|Y=y‖PX)
)

dy

(c)
=
∫

f (y) log
(

1 +
Var( f (y | X))

f 2(y)

)
dy

(d)
≤ κ(t)

∫
f (y)

(
Var( f (y | X))

f 2(y)

)t
dy,
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where (a) follows from the definition of mutual information, (b) follows from Inequality (25),
and (c) follows from Bayes’ rule, which allows us to write the chi-square in terms of the variance of the
conditional density:

χ2(PX|Y=y‖PX) = E
[(

f (y|X)

f (y)
− 1
)2
]
=

Var( f (y|X))

f 2(y)
.

Inequality (d) follows from the nonnegativity of the variance and the definition of κ(t).

Evaluating Proposition 8 with t = 1 recovers the well-known inequality I(X; Y) ≤ χ2(PX,Y‖PXPY).
The next two results follow from the cases 0 < t < 1

2 and t = 1
2 , respectively.

Proposition 9. For any 0 < r < 1, the mutual information satisfies

I(X; Y) ≤ κ(t)
(

ehr(Y) V0(Y|X)
)t

,

where t = (1− r)/(2− r).

Proof. Starting with Proposition 8 and applying Hölder’s inequality with conjugate exponents
1/(1− t) and 1/t leads to

I(X; Y) ≤ κ(t)
(∫

f r(y)dy
)1−t (∫

Var( f (y | X))dy
)t

= κ(t) et hr(Y)Vt
0(Y|X),

where we have used the fact that r = (1− 2t)/(1− t).

Proposition 10. For any p < 1 < q, the mutual information satisfies

I(X; Y) ≤ C(λ)

√
ω(SY)Vλ

np(Y|X)V1−λ
nq (Y|X)

(q− p)
,

where λ = (q− 1)/(q− p) and

C(λ) = κ( 1
2 )

√
πλ−λ(1− λ)−(1−λ)

sin(πλ)
,

with κ( 1
2 ) = 0.80477 . . . .

Proof. Evaluating Proposition 8 with t = 1/2 gives

I(X; Y) ≤ κ( 1
2 )
∫

SY

√
Var( f (y | X))dy.

Evaluating Proposition 3 with r = 1
2 leads to

(∫

SY

√
Var( f (y | X))dy

)2
≤ ω(SY)ψ1/2(p, q)Vλ

np(Y|X)V1−λ
nq (Y|X).

Combining these inequalities with the expression for ψ1/2(p, q) given in Equation (8) completes
the proof.

The contribution of Propositions 9 and 10 is that they provide bounds on the mutual information
in terms of quantities that can be easy to characterize. One application of these bounds is to establish
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conditions under which the mutual information corresponding to a sequence of random pairs (Xk, Yk)

converges to zero. In this case, Proposition 9 provides a sufficient condition in terms of the Rényi
entropy of Yn and the function V0(Yn|Xn), while Proposition 10 provides a sufficient condition in
terms of Vs(Yn|Xn) evaluated with two difference values of s. These conditions are summarized in the
following result.

Proposition 11. Let (Xk, Yk) be a sequence of random pairs such that the conditional distribution of Yk given
Xk has a density on Rn. The following are sufficient conditions under which the mutual information of I(Xk; Yk)

converges to zero as k increases to infinity:

1. There exists 0 < r < 1 such that

lim
k→∞

ehr(Yk)V0(Yk|Xk) = 0.

2. There exists p < 1 < q such that

lim
k→∞

Vq−1
np (Yk|Xk)V

1−p
nq (Yk|Xk) = 0.

4.3. Properties of the Bounds

The variance moment Vs(Y|X) has a number of interesting properties. The variance of the
conditional density can be expressed in terms of an expectation with respect to two independent
random variables X1 and X2 with the same distribution as X via the decomposition:

Var( f (y|X)) = E [ f (y|X) f (y|X)− f (y|X1) f (y|X2)] .

Consequently, by swapping the order of the integration and expectation, we obtain

Vs(Y|X) = E [Ks(X, X)− Ks(X1, X2)] , (30)

where
Ks(x1, x2) =

∫
‖y‖s f (y|x1) f (y|x2)dy.

The function Ks(x1, x2) is a positive definite kernel that does not depend on the distribution of X.
For s = 0, this kernel has been studied previously in the machine learning literature [33], where it is
referred to as the expected likelihood kernel.

The variance of the conditional density also satisfies a data processing inequality. Suppose that
U → X → Y forms a Markov chain. Then, the square of the conditional density of Y given U can be
expressed as

f 2
Y|U(y|u) = E

[
fY|X(y|X′1) fY|X(y|X′2) | U = u

]
,

where (U, X′1, X′2) ∼ PU PX1|U PX2|U . Combining this expression with Equation (30) yields

Vs(Y|U) = E
[
Ks(X′1, X′2)− Ks(X1, X2)

]
, (31)

where we recall that (X1, X2) are independent copies of X.
Finally, it is easy to verify that the function Vs(Y) satisfies

Vs(aY|X) = |a|s−nVs(Y|X), for all a 6= 0.

Using this scaling relationship, we see that the sufficient conditions in Proposition 11 are invariant to
scaling of Y.
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4.4. Example with Additive Gaussian Noise

We now provide a specific example of our bounds on the mutual information. Let X ∈ Rn be a
random vector with distribution PX and let Y be the output of a Gaussian noise channel

Y = X + W, (32)

where W ∼ N (0, In) is independent of X. If ‖X‖ has finite second moment, then the mutual
information satisfies

I(X; Y) ≤ n
2

log
(

1 +
1
n
E
[
‖X‖2

])
, (33)

where equality is attained if and only if X has zero-mean isotropic Gaussian distribution.
This inequality follows straightforwardly from the fact that the Gaussian distribution maximizes
differential entropy subject to a second moment constraint [11]. One of the limitations of this bound
is that it can be loose when the second moment is dominated by events that have small probability.
In fact, it is easy to construct examples for which ‖X‖ does not have a finite second moment, and yet
I(X; Y) is arbitrarily close to zero.

Our results provide bounds on I(X; Y) that are less sensitive to the effects of rare events.
Let φn(x) = (2π)−n/2 exp(−‖x‖2/2) denote the density of the standard Gaussian distribution on Rn.
The product of the conditional densities can be factored according to

f (y | x1) f (y | x2) = φ2n

([
y− x1

y− x2

])
= φ2n

([√
2y− (x1 + x2)/

√
2

(x1 − x2)/
√

2

])

= φn

(√
2 y− x1 + x2√

2

)
φn

(
x1 − x2√

2

)
,

where the second step follows because φ2n(·) is invariant to orthogonal transformations.
Integrating with respect to y leads to

Ks(x1, x2) = 2−
n+s

2 E
[∥∥∥∥W +

x1 + x2√
2

∥∥∥∥
s]

φn

(
x1 − x2√

2

)
,

where we recall that W ∼ N (0, In). For the case s = 0, we see that K0(x1, x2) is a Gaussian kernel, thus

V0(Y|X) = (4π)−
n
2

[
1−E

[
e−

1
4 ‖X1−X2‖2]]

. (34)

A useful property of V0(Y|X) is that the conditions under which it converges to zero are weaker
than the conditions needed for other measures of dependence. Observe that the expectation in
Equation (34) is bounded uniformly with respect to (X1, X2). In particular, for every ε > 0 and x ∈ R,
we have

1−E
[
e−

1
4 (X1−X2)

2] ≤ ε2 + 2P [|X− x| ≥ ε] ,

where we have used the inequality 1− e−x ≤ x and the fact that P [|X1 − X2| ≥ 2ε] ≤ 2P [|X− x| ≥ ε].
Consequently, V0(Y|X) converges to zero whenever X converges to a constant value x in probability.

To study some further properties of these bounds, we now focus on the case where X is a Gaussian
scalar mixture generated according to

X = A
√

U, A ∼ N (0, 1), U ≥ 0, (35)
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with A and U independent. In this case, the expectations with respect to the kernel Ks(x1, x2) can be
computed explicitly, leading to

Vs(Y|X) =
Γ( 1+s

2 )

2π
E
[
(1 + 2U)

s
2 − (1 + U1)

s
2 (1 + U2)

s
2

(1 + 1
2 (U1 + U2))

s+1
2

]
, (36)

where (U1, U2) are independent copies of U. It can be shown that this expression depends primarily
on the magnitude of U. This is not surprising given that X converges to a constant if and only if U
converges to zero.

Our results can also be used to bound the mutual information I(U; Y) by noting that U → X → Y
forms a Markov chain, and taking advantage of the characterization provided in Equation (31).
Letting X′1 = A1

√
U and X′2 = A2

√
U with (A1, A2, U) be mutually independent leads to

Vs(Y|U) =
Γ( 1+s

2 )

2π
E
[
(1 + U)

s−1
2 − (1 + U1)

s
2 (1 + U2)

s
2

(1 + 1
2 (U1 + U2))

s+1
2

]
, (37)

In this case, Vs(Y|U) is a measure of the variation in U. To study its behavior, we consider the simple
upper bound

Vs(Y|U) ≤ Γ( 1+s
2 )

2π
P [U1 6= U2]E

[
(1 + U)

s−1
2
]

, (38)

which follows from noting that the term inside the expectation in Equation (37) is zero on the event
U1 = U2. This bound shows that if s ≤ 1 then Vs(Y|U) is bounded uniformly with respect to
distributions on U, and if s > 1, then Vs(Y|U) is bounded in terms of the ( s−1

2 )th moment of U.
In conjunction with Propositions 9 and 10, the function Vs(Y|U) provides bounds on the mutual

information I(U; Y) that can be expressed in terms of simple expectations involving two independent
copies of U. Figure 4 provides an illustration of the upper bound in Proposition 10 for the case where
U is a discrete random variable supported on two points, and X and Y are generated according to
Equations (32) and (35). This example shows that there exist sequences of distributions for which our
upper bounds on the mutual information converge to zero while the chi-squared divergence between
PXY and PXPY is bounded away from zero.
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ǫ

0

0.2

0.4

0.6

0.8
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Proposition 10
chi-square divergence

upper bound (26)

I(X; Y)

Figure 4. Bounds on the mutual information I(U; Y) in nats when U ∼ (1 − ε)δ1 + εδa(ε),
with a(ε) = 1 + 1/

√
ε, and X and Y are generated according to Equations (32) and (35). The bound

from Proposition 10 is evaluated with p = 0 and q = 2.
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5. Conclusions

This paper provides bounds on Rényi entropy and mutual information that are based on a
relatively simple two-moment inequality. Extensions to inequalities with more moments are worth
exploring. Another potential application is to provide a refined characterization of the “all-or-nothing”
behavior seen in a sparse linear regression problem [34,35], where the current methods of analysis
depend on a complicated conditional second moment method.

Funding: This research was supported in part by the National Science Foundation under Grant 1750362 and in
part by the Laboratory for Analytic Sciences (LAS). Any opinions, findings, conclusions, and recommendations
expressed in this material are those of the author and do not necessarily reflect the views of the sponsors.

Conflicts of Interest: The author declares no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Appendix A. The Gamma and Beta Functions

This section reviews some properties of the gamma and beta functions. For x > 0, the gamma
function is defined according to Γ(x) =

∫ ∞
0 tx−1e−t dt. Binet’s formula for the logarithm for the gamma

function ([25], [Theorem 1.6.3]) gives

log Γ(x) =
(

x− 1
2

)
log x− x +

1
2

log(2π) + θ(x), (A1)

where the remainder term θ(x) is convex and nonincreasing with limx→0 θ(x) = ∞ and limx→∞ θ(x) = 0.
Euler’s reflection formula ([25], [Theorem 1.2.1]) gives

Γ(x)Γ(1− x) =
π

sin(πx)
, 0 < x < 1. (A2)

For x, y > 0, the beta function can be expressed as follows

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

=
∫ 1

0
tx−1(1− t)y−1 dt =

∫ ∞

0

ua−1

(1 + u)a+b du, (A3)

where the second integral expression follows from the change of variables t 7→ u/(1 + u). Recall that
B̃(x, y) = B(x, y)(x + y)x+yx−xy−y. Using Equation (A1) leads to

log
(

B̃(x, y)
√

x y
2π(x+y)

)
= θ(x) + θ(y)− θ(x + y). (A4)

It can also be shown that ([36], [Equation (2), pg. 2])

B̃(x, y) ≥ x + y
xy

. (A5)

Appendix B. Details for Rényi Entropy Examples

This appendix studies properties of the two-moment inequalities for Rényi entropy described in
Section 3.
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Appendix B.1. Log-Normal Distribution

Let X be a log-normal random variable with parameters (µ, σ2) and consider the parametrization

p =
1− r

r
− (1− λ)

√
(1− r) u

rλ(1− λ)

q =
1− r

r
+ λ

√
(1− r) u

rλ(1− λ)
.

where λ ∈ (0, 1) and u ∈ (0, ∞). Then, we have

ψr(p, q) = B̃
(

rλ

1− r
,

r(1− λ)

1− r

)√
rλ(1− λ)

(1− r) u

Lr(X; p, q) = µ +
1
2

(
1− r

r

)
σ2 +

1
2

uσ2.

Combining these expressions with Equation (A4) leads to

∆r(X; p, q) = θ
( rλ

1−r

)
+ θ
( r(1−λ)

1− r

)
− θ
( r

1−r

)
+

1
2

uσ2 − 1
2

log
(

uσ2
)
− 1

2
log(r

1
r−1 ). (A6)

We now characterize the minimum with respect to the parameters (λ, u). Note that the mapping
λ 7→ θ( rλ

1−r ) + θ( r(1−λ)
1−r ) is convex and symmetric about the point λ = 1/2. Therefore, the minimum

with respect to λ is attained at λ = 1/2. Meanwhile, mapping u 7→ uσ2 − log(uσ2) is convex and
attains its minimum at u = 1/σ2. Evaluating Equation (A6) with these values, we see that the optimal
two-moment inequality can be expressed as

∆r(X) = 2θ

(
r

2(1− r)

)
− θ

(
r

1− r

)
+

1
2

log
(

e r
1

1−r

)
.

By Equation (A4), this expression is equivalent to Equation (A1). Moreover, the fact that ∆r(X)

decreases to zero as r increases to one follows from the fact that θ(x) decreases to zero and x increases
to infinity.

Next, we express the gap in terms of the pair (p, q). Comparing the difference between ∆r(X; p, q)
and ∆r(X) leads to

∆r(X; p, q) = ∆r(X) +
1
2

ϕ

(
rλ(1− λ)

1− r
(q− p)2σ2

)
+ θ
( rλ

1−r

)
+ θ
( r(1−λ)

1− r

)
− 2θ

( r
2(1−r)

)
,

where ϕ(x) = x− log(x)− 1. In particular, if p = 0, then we obtain the simplified expression

∆r(X; 0, q) = ∆r(X) +
1
2

ϕ

((
q− 1− r

r

)
σ2
)
+ θ
( r

1− r
− 1

q

)
+ θ
(1

q

)
− 2θ

( r
2(1−r)

)
.

This characterization shows that the gap of the optimal one-moment inequality ∆̃r(X) increases to
infinity in the limit as either σ2 → 0 or σ2 → ∞.
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Appendix B.2. Multivariate Gaussian Distribution

Let Y ∼ N (0, In) be an n-dimensional Gaussian vector and consider the parametrization

p =
1− r

r
− 1− λ

r

√
2(1− r) z
λ(1− λ) n

q =
1− r

r
+

λ

r

√
2(1− r) z
λ(1− λ) n

.

where λ ∈ (0, 1) and z ∈ (0, ∞). We can write

log ω(SY) =
n
2

log π − log
(n

2

)
− log Γ

(n
2

)

ψr(p, q) = B̃
(

rλ

1− r
,

r(1− λ)

1− r

)√
rλ(1− λ)

(1− r)

√
nr
2z

.

Furthermore, if

(1− λ)

√
2(1− r)z
λ(1− λ)n

< 1, (A7)

then Lr(‖Y‖n; p, q) is finite and is given by

Lr(‖Y‖n; p, q) = Qr,n(λ, z) +
n
2

log 2 +
r

1− r

[
log Γ

( n
2r

)
− log Γ

(n
2

)]
,

where

Qr,n(λ, z) =
rλ

1− r
log Γ

(
n
2r
− 1− λ

r

√
(1− r)nz
2λ(1− λ)

)
+

r(1− λ)

1− r
log Γ

(
n
2r

+
λ

r

√
(1− r)nz
2λ(1− λ)

)

− r
1− r

log Γ
( n

2r

)
. (A8)

Here, we note that the scaling in Equation (21) corresponds to λ = 1/2 and z = n/(n + 1), and thus
the condition Inequality (A7) is satisfied for all n ≥ 1. Combining the above expressions and then
using Equations (A1) and (A4) leads to

∆r(Y; p, q) = θ
( rλ

1−r

)
+ θ
( r(1−λ)

1− r

)
− θ
( r

1−r

)
+ Qr,n(z, λ)− 1

2
log z− 1

2
log
(

r
1

r−1

)

+
r

1− r
θ
( n

2r

)
− 1

1− r
θ
(n

2

)
. (A9)

Next, we study some properties of Qr,n(λ, z). By Equation (A1), the logarithm of the gamma
function can be expressed as the sum of convex functions:

log Γ(x) = ϕ(x) +
1
2

log
(

1
x

)
+

1
2

log(2π)− 1 + θ(x),
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where ϕ(x) = x log x + 1 − x. Starting with the definition of Q(λ, z) and then using Jensen’s
inequality yields

Qr,n(z, λ) ≥ rλ

1− r
ϕ

(
n
2r
− 1− λ

r

√
(1− r)nz
2λ(1− λ)

)

+
r(1− λ)

1− r
ϕ

(
n
2r

+
λ

r

√
(1− r)nz
2λ(1− λ)

)
− r

1− r
ϕ
( n

2r

)

=
λ

a
ϕ

(
1−

√(
1−λ

λ

)
az

)
+

(1−λ)

a
ϕ

(
1 +

√(
λ

1−λ

)
az
)

,

where a = 2(1− r)/n. Using the inequality ϕ(x) ≥ (3/2)(x− 1)2/(x + 2) leads to

Qr,n(λ, z) ≥ z
2

[(
1−

√(
1−λ

λ

)
bz

)(
1 +

√(
λ

1−λ

)
bz
)]−1

≥ z
2

(
1 +

√(
λ

1−λ

)
b z
)−1

, (A10)

where b = 2(1− r)/(9n).
Observe that the right-hand side of Inequality (A10) converges to z/2 as n increases to infinity.

It turns out this limiting behavior is tight. Using Equation (A1), it is straightforward to show that
Qn(λ, z) converges pointwise to z/2 as n increases to infinity—that is,

lim
n→∞

Qr,n(λ, z) =
1
2

z, (A11)

for any fixed pair (λ, z) ∈ (0, 1)× (0, ∞).

Appendix B.3. Proof of Proposition 6

Let D = (0, 1)× (0, ∞). For fixed r ∈ (0, 1), we use Qn(λ, z) to denote the function Qr,n(λ, z)
defined in Equation (A8) and we use Gn(λ, z) to denote the right-hand side of Equation (A9).
These functions are defined to be equal to positive infinity for any pair (λ, z) ∈ D such that
Inequality (A7) does not hold.

Note that the terms θ(n/(2r)) and θ(n/2) converge to zero in the limit as n increases to infinity.
In conjunction with Equation (A11), this shows that Gn(λ, z) converges pointwise to a limit G(λ, z)
given by

G(λ, z) = θ
( rλ

1−r

)
+ θ
( r(1−λ)

1− r

)
− θ
( r

1−r

)
+

1
2

z− 1
2

log (z)− 1
2

log(r
1

r−1 ).

At this point, the correspondence with the log-normal distribution can be seen from the fact that G(λ, z)
is equal to the right-hand side of Equation (A6) evaluated with uσ2 = z.

To show that the gap corresponding to the log-normal distribution provides an upper bound on
the limit, we use

lim sup
n→∞

∆r(Y) = lim sup
n→∞

inf
(λ,z)∈D

Gn(λ, z)

≤ inf
(λ,z)∈D

lim sup
n→∞

Gn(λ, z)

= inf
(λ,z)∈D

G(λ, z)

= ∆r(X). (A12)
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Here, the last equality follows from the analysis in Appendix B.1, which shows that the minimum of
G(λ, z) is a attained at λ = 1/2 and z = 1.

To prove the lower bound requires a bit more work. Fix any ε ∈ (0, 1) and let Dε = (0, 1− ε]×
(0, ∞). Using the lower bound on Qn(λ, z) given in Inequality (A10), it can be verified that

lim inf
n→∞

inf
(λ,z)∈Dε

[
Qr,n(z, λ)− 1

2
log z

]
≥ 1

2
.

Consequently, we have

lim inf
n→∞

inf
(λ,z)∈Dε

Gn(λ, z) = inf
(λ,z)∈Dε

G(λ, z) ≥ ∆r(X). (A13)

To complete the proof we will show that for any sequence λn that converges to one as n increases to
infinity, we have

lim inf
n→∞

inf
z∈(0,∞)

Gn(λn, z) = ∞. (A14)

To see why this is the case, note that by Equation (A4) and Inequality (A5),

θ
( rλ

1−r
)
+ θ
( r(1−λ)

1−r
)
− θ
( r

1−r
)
≥ 1

2
log
( 1− r

2πrλ(1−λ)

)
.

Therefore, we can write

Gn (λ, z) ≥ Qn(λ, z)− 1
2

log (λ(1− λ)z) + cn, (A15)

where cn is bounded uniformly for all n. Making the substitution u = λ(1− λ)z, we obtain

inf
z>0

Gn (λ, z) ≥ inf
u>0

[
Qn

(
λ,

u
λ(1− λ)

)
− 1

2
log u

]
+ cn.

Next, let bn = 2(1− r)/(9n). The lower bound in Inequality (A10) leads to

inf
u>0

[
Qn

(
λ,

u
λ(1− λ)

)
− 1

2
log u

]
≥ inf

u>0

[
u

2λ

(
1

1− λ +
√

bnu

)
− 1

2
log u

]
. (A16)

The limiting behavior in Equation (A14) can now be seen as a consequence of Inequality (A15) and
the fact that, for any sequence λn converging to one, the right-hand side of Inequality (A16) increases
without bound as n increases. Combining Inequality (A12), Inequality (A13), and Equation (A14)
establishes that the large n limit of ∆r(Y) exists and is equal to ∆r(X). This concludes the proof of
Proposition 6.

Appendix B.4. Proof of Inequality (24)

Given any λ ∈ (0, 1) and u ∈ (0, ∞) let

p(r) =
1− r

r
−
√

1− r
r

(
1− λ

λ

)
u

q(r) =
1− r

r
+

√
1− r

r

(
λ

1− λ

)
u.

We need the following results, which characterize the terms in Proposition 4 in the limit as r increases
to one.
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Lemma A1. The function ψr(p(r), q(r)) satisfies

lim
r→1

ψr(p(r), q(r)) =

√
2π

u
.

Proof. Starting with Equation (A4), we can write

ψr(p, q) =
1

q− p

√
2π(1− r)
rλ(1− λ

exp
(

θ
( rλ

1−r

)
+ θ
( r(1−λ)

1− r

)
− θ
( r

1−r

))
.

As r converges to one, the terms in the exponent converge to zero. Note that q(r) − p(r) =√
rλ(1− λ)/(1− r) completes the proof.

Lemma A2. If X is a random variable such that s 7→ E [|X|s] is finite in a neighborhood of zero, then E [log(X)]

and Var(log(X)) are finite, and

lim
r→1

Lr(X; p(r), q(r)) = E [log |X|] + u
2
Var(log |X|).

Proof. Let Λ(s) = log(E [|X|s]). The assumption that E [|X|s] is finite in a neighborhood of zero means
that E [(log |X|)m] is finite for all positive integers m, and thus Λ(s) is real analytic in a neighborhood
of zero. Hence, there exist constants δ > 0 and C < ∞, depending on the distribution of X, such that

∣∣∣Λ(s)− as + bs2
∣∣∣ ≤ C |s|3, for all |s| ≤ δ,

where a = E [log |X|] and b = 1
2 Var(|X|). Consequently, for all r such that 1− δ < p(r) < (1− r)/r <

q(r) < 1 + δ, it follows that
∣∣∣Lr(X; p(r), q(r))− a−

(
1−r

r + u
)

b
∣∣∣ ≤ C

r
1− r

(
λ|p(r)|3 + (1− λ)|q(r)|3

)
.

Taking the limit as r increases to one completes the proof.

We are now ready to prove Inequality (24). Combining Proposition 4 with Lemma A1 and
Lemma A2 yields

lim sup
r→∞

hr(X) ≤ 1
2

log
(

2π

u

)
+E [log X] +

u
2
Var(log X).

The stated inequality follows from evaluating the right-hand side with u = 1/Var(log X), recalling that
h(X) corresponds to the limit of hr(X) as r increases to one.

Appendix C. Proof of Proposition 7

The function κ : (0, 1]→ R+ can be expressed as

κ(t) = sup
u∈(0,∞)

ρt(u), (A17)

where ρt(u) = log(1 + u)/ut. For t = 1, the bound log(1 + u) ≤ u implies that ρ1(u) ≤ 1. Noting that
limu→0 ρ1(u) = 1, we conclude that κ(1) = 1.

Next, we consider the case t ∈ (0, 1). The function ρt is continuously differentiable on (0, ∞) with

sgn(ρ′t(u)) = sgn (u− t(1 + u) log(1 + u)) . (A18)
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Under the assumption t ∈ (0, 1), we see that ρt(u) is increasing for all u sufficiently close to zero and
decreasing for all u sufficiently large, and thus the supremum is attained at a stationary point of ρt(u)
on (0, ∞). Making the substitution w = log(1 + u)− 1/t leads to

ρ′t(u) = 0 ⇐⇒ wew = −1
t

e−
1
t .

For t ∈ (0, 1), it follows that− 1
t e−

1
t ∈ (−e−1, 0), and thus ρ′t(u) has a unique root that can be expressed

as
u∗t = exp

(
W
(
− 1

t exp
(
− 1

t

))
+ 1

t

)
− 1,

where Lambert’s function W(z) is the solution to the equation z = wew on the interval on [−1, ∞).

Lemma A3. The function g(t) = tκ(t) is strictly increasing on (0, 1] with limt→0 g(t) = 1/e and g(1) = 1.

Proof. The fact that g(1) = 1 follows from κ(1) = 1. By the envelope theorem [37], the derivative of
g(t) can be expressed as

g′(t) =
d
dt

tρt(u)
∣∣∣
u=u∗t

=
log(1 + u∗t )

(u∗t )t − t log(u∗t )
log(1 + u∗t )

(u∗t )t

In view of Equation (A18), it follows that ρ′t(u
∗
t ) = 0 can be expressed equivalently as

u∗t
(1 + u∗t ) log(1 + u∗t )

= t, (A19)

and thus

sgn(g′(t)) = sgn
(

1− u∗t log u∗t
(1 + u∗t ) log(1 + u∗t )

)
. (A20)

Noting that u log u < (1 + u) log(1 + u) for all u ∈ (0, ∞), it follows that g′(t) > 0 is strictly positive,
and thus g(t) is strictly increasing.

To prove the small t limit, we use Equation (A19) to write

log(g(t)) = log
(

u∗t
1 + u∗t

)
− u∗t log u∗t

(1 + u∗t ) log(1 + u∗t )
. (A21)

Now, as t decreases to zero, Equation (A19) shows that u∗t increases to infinity. By Equation (A21), it
then follows that log(g(t)) converges to negative one, which proves the desired limit.
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1. Introduction

The concept of an f -divergence, introduced independently by Ali-Silvey [1], Morimoto [2],
and Csisizár [3], unifies several important information measures between probability distributions,
as integrals of a convex function f , composed with the Radon–Nikodym of the two probability
distributions. (An additional assumption can be made that f is strictly convex at 1, to ensure that
D f (µ||ν) > 0 for µ 6= ν. This obviously holds for any f ′′(1) > 0, and can hold for some f -divergences
without classical derivatives at 0, for instance the total variation is strictly convex at 1. An example
of an f -divergence not strictly convex is provided by the so-called “hockey-stick” divergence, where
f (x) = (x− γ)+, see [4–6].) For a convex function f : (0, ∞)→ R such that f (1) = 0, and measures
P and Q such that P � Q, the f -divergence from P to Q is given by D f (P||Q) :=

∫
f
(

dP
dQ

)
dQ. The

canonical example of an f -divergence, realized by taking f (x) = x log x, is the relative entropy (often
called the KL-divergence), which we denote with the subscript f omitted. f -divergences inherit
many properties enjoyed by this special case; non-negativity, joint convexity of arguments, and a data
processing inequality. Other important examples include the total variation, the χ2-divergence, and
the squared Hellinger distance. The reader is directed to Chapter 6 and 7 of [7] for more background.

We are interested in how stronger convexity properties of f give improvements of classical
f -divergence inequalities. More explicitly, we consider consequences of f being κ-convex, in the
sense that the map x 7→ f (x)− κx2/2 is convex. This is in part inspired by the work of Sason [8],
who demonstrated that divergences that are κ-convex satisfy “stronger than χ2” data-processing
inequalities.

Perhaps the most well known example of an f -divergence inequality is Pinsker’s inequality, which
bounds the square of the total variation above by a constant multiple of the relative entropy. That
is for probability measures P and Q, |P− Q|2TV ≤ c D(P||Q). The optimal constant is achieved for
Bernoulli measures, and under our conventions for total variation, c = 1/2 log e. Many extensions
and sharpenings of Pinsker’s inequality exist (for examples, see [9–11]). Building on the work of
Guntuboyina [9] and Topsøe [11], we achieve a further sharpening of Pinsker’s inequality in Theorem 9.

Aside from the total variation, most divergences of interest have stronger than affine convexity, at
least when f is restricted to a sub-interval of the real line. This observation is especially relevant to
the situation in which one wishes to study D f (P||Q) in the existence of a bounded Radon–Nikodym
derivative dP

dQ ∈ (a, b) ( (0, ∞). One naturally obtains such bounds for skew divergences. That is
divergences of the form (P, Q) 7→ D f ((1− t)P + tQ||(1− s)P + sQ) for t, s ∈ [0, 1], as in this case,

133



Entropy 2020, 22, 1327

(1−t)P+tQ
(1−s)P+sQ ≤ max

{
1−t
1−s , t

s

}
. Important examples of skew-divergences include the skew divergence

[12] based on the relative entropy and the Vincze–Le Cam divergence [13,14], called the triangular
discrimination in [11] and its generalization due to Györfi and Vajda [15] based on the χ2-divergence.
The Jensen–Shannon divergence [16] and its recent generalization [17] give examples of f -divergences
realized as linear combinations of skewed divergences.

Let us outline the paper. In Section 2, we derive elementary results of κ-convex divergences and
give a table of examples of κ-convex divergences. We demonstrate that κ-convex divergences can
be lower bounded by the χ2-divergence, and that the joint convexity of the map (P, Q) 7→ D f (P||Q)

can be sharpened under κ-convexity conditions on f . As a consequence, we obtain bounds between
the mean square total variation distance of a set of distributions from its barycenter, and the average
f -divergence from the set to the barycenter.

In Section 3, we investigate general skewing of f -divergences. In particular, we introduce
the skew-symmetrization of an f -divergence, which recovers the Jensen–Shannon divergence and
the Vincze–Le Cam divergences as special cases. We also show that a scaling of the Vincze–Le
Cam divergence is minimal among skew-symmetrizations of κ-convex divergences on (0, 2). We
then consider linear combinations of skew divergences and show that a generalized Vincze–Le
Cam divergence (based on skewing the χ2-divergence) can be upper bounded by the generalized
Jensen–Shannon divergence introduced recently by Nielsen [17] (based on skewing the relative
entropy), reversing the classical convexity bounds D(P||Q) ≤ log(1 + χ2(P||Q)) ≤ log e χ2(P||Q).
We also derive upper and lower total variation bounds for Nielsen’s generalized Jensen–Shannon
divergence.

In Section 4, we consider a family of densities {pi} weighted by λi, and a density q. We use
the Bayes estimator T(x) = arg maxi λi pi(x) to derive a convex decomposition of the barycenter
p = ∑i λi pi and of q, each into two auxiliary densities. (Recall, a Bayes estimator is one that minimizes
the expected value of a loss function. By the assumptions of our model, that P(θ = i) = λi, and
P(X ∈ A|θ = i) =

∫
A pi(x)dx, we have E`(θ, θ̂) = 1−

∫
λθ̂(x)pθ̂(x)(x)dx for the loss function `(i, j) =

1− δi(j) and any estimator θ̂. It follows that E`(θ, θ̂) ≥ E`(θ, T) by λθ̂(x)pθ̂(x)(x) ≤ λT(x)pT(x)(x).
Thus, T is a Bayes estimator associated to `. ) We use this decomposition to sharpen, for κ-convex
divergences, an elegant theorem of Guntuboyina [9] that generalizes Fano and Pinsker’s inequality to
f -divergences. We then demonstrate explicitly, using an argument of Topsøe, how our sharpening
of Guntuboyina’s inequality gives a new sharpening of Pinsker’s inequality in terms of the convex
decomposition induced by the Bayes estimator.

Notation

Throughout, f denotes a convex function f : (0, ∞)→ R∪ {∞}, such that f (1) = 0. For a convex
function defined on (0, ∞), we define f (0) := limx→0 f (x). We denote by f ∗, the convex function
f ∗ : (0, ∞)→ R∪ {∞} defined by f ∗(x) = x f (x−1). We consider Borel probability measures P and Q
on a Polish space X and define the f -divergence from P to Q, via densities p for P and q for Q with
respect to a common reference measure µ as

D f (p||q) =
∫

X
f
(

p
q

)
qdµ

=
∫

{pq>0}
q f
(

p
q

)
dµ + f (0)Q({p = 0}) + f ∗(0)P({q = 0}).

(1)

We note that this representation is independent of µ, and such a reference measure always exists,
take µ = P + Q for example.

For t, s ∈ [0, 1], define the binary f -divergence

D f (t||s) := s f
(

t
s

)
+ (1− s) f

(
1− t
1− s

)
(2)
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with the conventions, f (0) = limt→0+ f (t), 0 f (0/0) = 0, and 0 f (a/0) = a limt→∞ f (t)/t. For a
random variable X and a set A, we denote the probability that X takes a value in A by P(X ∈ A),
the expectation of the random variable by EX, and the variance by Var(X) := E|X − EX|2. For a
probability measure µ satisfying µ(A) = P(X ∈ A) for all Borel A, we write X ∼ µ, and, when there
exists a probability density function such that P(X ∈ A) =

∫
A f (x)dγ(x) for a reference measure

γ, we write X ∼ f . For a probability measure µ on X , and an L2 function f : X → R, we denote
Varµ( f ) := Var( f (X)) for X ∼ µ.

2. Strongly Convex Divergences

Definition 1. A R∪ {∞}-valued function f on a convex set K ⊆ R is κ-convex when x, y ∈ K and t ∈ [0, 1]
implies

f ((1− t)x + ty) ≤ (1− t) f (x) + t f (y)− κt(1− t)(x− y)2/2. (3)

For example, when f is twice differentiable, (3) is equivalent to f ′′(x) ≥ κ for x ∈ K. Note that
the case κ = 0 is just usual convexity.

Proposition 1. For f : K → R∪ {∞} and κ ∈ [0, ∞), the following are equivalent:

1. f is κ-convex.
2. The function f − κ(t− a)2/2 is convex for any a ∈ R.
3. The right handed derivative, defined as f ′+(t) := limh↓0

f (t+h)− f (t)
h satisfies,

f ′+(t) ≥ f ′+(s) + κ(t− s)

for t ≥ s.

Proof. Observe that it is enough to prove the result when κ = 0, where the proposition is reduced to
the classical result for convex functions.

Definition 2. An f -divergence D f is κ-convex on an interval K for κ ≥ 0 when the function f is κ-convex on
K.

Table 1 lists some κ-convex f -divergences of interest to this article.

Table 1. Examples of Strongly Convex Divergences.

Divergence f κ Domain

relative entropy (KL) t log t 1
M (0, M]

total variation |t−1|
2 0 (0, ∞)

Pearson’s χ2 (t− 1)2 2 (0, ∞)

squared Hellinger 2(1−
√

t) M−
3
2 /2 (0, M]

reverse relative entropy − log t 1/M2 (0, M]

Vincze- Le Cam (t−1)2

t+1
8

(M+1)3 (0, M]

Jensen–Shannon (t + 1) log 2
t+1 + t log t 1

M(M+1) (0, M]

Neyman’s χ2 1
t − 1 2/M3 (0, M]

Sason’s s log(s + t)(s+t)2 − log(s + 1)(s+1)2
2 log(s + M) + 3 [M, ∞), s > e−3/2

α-divergence
4
(

1−t
1+α

2
)

1−α2 , α 6= ±1 M
α−3

2

{
[M, ∞), α > 3
(0, M], α < 3

Observe that we have taken the normalization convention on the total variation (the total variation
for a signed measure µ on a space X can be defined through the Hahn-Jordan decomposition of the
measure into non-negative measures µ+ and µ− such that µ = µ+ − µ−, as ‖µ‖ = µ+(X) + µ−(X)
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(see [18]); in our notation, |µ|TV = ‖µ‖/2) which we denote by |P− Q|TV , such that |P− Q|TV =

supA |P(A)−Q(A)| ≤ 1. In addition , note that the α-divergence interpolates Pearson’s χ2-divergence
when α = 3, one half Neyman’s χ2-divergence when α = −3, the squared Hellinger divergence when
α = 0, and has limiting cases, the relative entropy when α = 1 and the reverse relative entropy when
α = −1. If f is κ-convex on [a, b], then recalling its dual divergence f ∗(x) := x f (x−1) is κa3-convex on
[ 1

b , 1
a ]. Recall that f ∗ satisfies the equality D f ∗(P||Q) = D f (Q||P). For brevity, we use χ2-divergence to

refer to the Pearson χ2-divergence, and we articulate Neyman’s χ2 explicitly when necessary.
The next lemma is a restatement of Jensen’s inequality.

Lemma 1. If f is κ-convex on the range of X,

E f (X) ≥ f (E(X)) +
κ

2
Var(X).

Proof. Apply Jensen’s inequality to f (x)− κx2/2.

For a convex function f such that f (1) = 0 and c ∈ R, the function f̃ (t) = f (t) + c(t− 1) remains
a convex function, and what is more satisfies

D f (P||Q) = D f̃ (P||Q)

since
∫

c(p/q− 1)qdµ = 0.

Definition 3 (χ2-divergence). For f (t) = (t− 1)2, we write

χ2(P||Q) := D f (P||Q).

We pursue a generalization of the following bound on the total variation by the χ2-divergence
[19–21].

Theorem 1 ([19–21]). For measures P and Q,

|P−Q|2TV ≤
χ2(P||Q)

2
. (4)

We mention the work of Harremos and Vadja [20], in which it is shown, through a characterization
of the extreme points of the joint range associated to a pair of f -divergences (valid in general), that
the inequality characterizes the “joint range”, that is, the range of the function (P, Q) 7→ (|P −
Q|TV , χ2(P||Q)). We use the following lemma, which shows that every strongly convex divergence
can be lower bounded, up to its convexity constant κ > 0, by the χ2-divergence,

Lemma 2. For a κ-convex f ,
D f (P||Q) ≥ κ

2
χ2(P||Q).

Proof. Define a f̃ (t) = f (t)− f ′+(1)(t− 1) and note that f̃ defines the same κ-convex divergence as
f . Thus, we may assume without loss of generality that f ′+ is uniquely zero when t = 1. Since f is
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κ-convex φ : t 7→ f (t)− κ(t− 1)2/2 is convex, and, by f ′+(1) = 0, φ′+(1) = 0 as well. Thus, φ takes its
minimum when t = 1 and hence φ ≥ 0 so that f (t) ≥ κ(t− 1)2/2. Computing,

D f (P||Q) =
∫

f
(

dP
dQ

)
dQ

≥ κ

2

∫ ( dP
dQ
− 1
)2

dQ

=
κ

2
χ2(P||Q).

Based on a Taylor series expansion of f about 1, Nielsen and Nock ([22], [Corollary 1]) gave the
estimate

D f (P||Q) ≈ f ′′(1)
2

χ2(P||Q) (5)

for divergences with a non-zero second derivative and P close to Q. Lemma 2 complements this
estimate with a lower bound, when f is κ-concave. In particular, if f ′′(1) = κ, it shows that the
approximation in (5) is an underestimate.

Theorem 2. For measures P and Q, and a κ convex divergence D f ,

|P−Q|2TV ≤
D f (P||Q)

κ
. (6)

Proof. By Lemma 2 and then Theorem 1,

D f (P||Q)

κ
≥ χ2(P||Q)

2
≥ |P−Q|TV . (7)

The proof of Lemma 2 uses a pointwise inequality between convex functions to derive an
inequality between their respective divergences. This simple technique was shown to have useful
implications by Sason and Verdu in [6], where it appears as Theorem 1 and is used to give sharp
comparisons in several f -divergence inequalities.

Theorem 3 (Sason–Verdu [6]). For divergences defined by g and f with c f (t) ≥ g(t) for all t, then

Dg(P||Q) ≤ cD f (P||Q).

Moreover, if f ′(1) = g′(1) = 0, then

sup
P 6=Q

Dg(P||Q)

D f (P||Q)
= sup

t 6=1

g(t)
f (t)

.

Corollary 1. For a smooth κ-convex divergence f , the inequality

D f (P||Q) ≥ κ

2
χ2(P||Q) (8)

is sharp multiplicatively in the sense that

inf
P 6=Q

D f (P||Q)

χ2(P||Q)
=

κ

2
. (9)

137



Entropy 2020, 22, 1327

if f ′′(1) = κ.

In information geometry, a standard f -divergence is defined as an f -divergence satisfying the
normalization f (1) = f ′(1) = 0, f ′′(1) = 1 (see [23]). Thus, Corollary 1 shows that 1

2 χ2 provides a
sharp lower bound on every standard f -divergence that is 1-convex. In particular, the lower bound in
Lemma 2 complimenting the estimate (5) is shown to be sharp.

Proof. Without loss of generality, we assume that f ′(1) = 0. If f ′′(1) = κ + 2ε for some ε > 0, then
taking g(t) = (t− 1)2 and applying Theorem 3 and Lemma 2

sup
P 6=Q

Dg(P||Q)

D f (P||Q)
= sup

t 6=1

g(t)
f (t)
≤ 2

κ
. (10)

Observe that, after two applications of L’Hospital,

lim
ε→0

g(1 + ε)

f (1 + ε)
= lim

ε→0

g′(1 + ε)

f ′(1 + ε)
=

g′′(1)
f ′′(1)

=
2
κ
≤ sup

t 6=1

g(t)
f (t)

.

Thus, (9) follows.

Proposition 2. When D f is an f divergence such that f is κ-convex on [a, b] and that Pθ and Qθ are probability
measures indexed by a set Θ such that a ≤ dPθ

dQθ
(x) ≤ b, holds for all θ and P :=

∫
Θ Pθdµ(θ) and Q :=∫

Θ Qθdµ(θ) for a probability measure µ on Θ, then

D f (P||Q) ≤
∫

Θ
D f (Pθ ||Qθ)dµ(θ)− κ

2

∫

Θ

∫

X

(
dPθ

dQθ
− dP

dQ

)2
dQdµ, (11)

In particular, when Qθ = Q for all θ

D f (P||Q)

≤
∫

Θ
D f (Pθ ||Q)dµ(θ)− κ

2

∫

Θ

∫

X

(
dPθ

dQ
− dP

dQ

)2
dQdµ(θ)

≤
∫

Θ
D f (Pθ ||Q)dµ(θ)− κ

∫

Θ
|Pθ − P|2TVdµ(θ)

(12)

Proof. Let dθ denote a reference measure dominating µ so that dµ = ϕ(θ)dθ then write νθ = ν(θ, x) =
dQθ
dQ (x)ϕ(θ).

D f (P||Q) =
∫

X
f
(

dP
dQ

)
dQ

=
∫

X
f
(∫

Θ

dPθ

dQ
dµ(θ)

)
dQ

=
∫

X
f
(∫

Θ

dPθ

dQθ
ν(θ, x)dθ

)
dQ

(13)

By Jensen’s inequality, as in Lemma 1

f
(∫

Θ

dPθ

dQθ
νθdθ

)
≤
∫

θ
f
(

dPθ

dQθ

)
νθdθ − κ

2

∫

Θ

(
dPθ

dQθ
−
∫

Θ

dPθ

dQθ
νθdθ

)2
νθdθ
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Integrating this inequality gives

D f (P||Q) ≤
∫

X

(∫

θ
f
(

dPθ

dQθ

)
νθdθ − κ

2

∫

Θ

(
dPθ

dQθ
−
∫

Θ

dPθ

dQθ
νθdθ

)2
νθdθ

)
dQ (14)

Note that

∫

X

∫

Θ

(
dPθ

dQθ
dQ−

∫

Θ

dPθ

dQθ0

νθ0 dθ0

)2
νθdθdQ =

∫

Θ

∫

X

(
dPθ

dQθ
− dP

dQ

)2
dQdµ,

and
∫

X

∫

Θ
f
(

dPθ

dQθ

)
ν(θ, x)dθdQ =

∫

Θ

∫

X
f
(

dPθ

dQθ

)
ν(θ, x)dQdθ

=
∫

Θ

∫

X
f
(

dPθ

dQθ

)
dQθdµ(θ)

=
∫

Θ
D(Pθ ||Qθ)dµ(θ)

(15)

Inserting these equalities into (14) gives the result.
To obtain the total variation bound, one needs only to apply Jensen’s inequality,

∫

X

(
dPθ

dQ
− dP

dQ

)2
dQ ≥

(∫

X

∣∣∣∣
dPθ

dQ
− dP

dQ

∣∣∣∣ dQ
)2

= |Pθ − P|2TV .

(16)

Observe that, taking Q = P =
∫

Θ Pθdµ(θ) in Proposition 2, one obtains a lower bound for the
average f -divergence from the set of distribution to their barycenter, by the mean square total variation
of the set of distributions to the barycenter,

κ
∫

Θ
|Pθ − P|2TVdµ(θ) ≤

∫

Θ
D f (Pθ ||P)dµ(θ). (17)

An alternative proof of this can be obtained by applying |Pθ − P|2TV ≤ D f (Pθ ||P)/κ from
Theorem 2 pointwise.

The next result shows that, for f strongly convex, Pinsker type inequalities can never be reversed,

Proposition 3. Given f strongly convex and M > 0, there exists P, Q measures such that

D f (P||Q) ≥ M|P−Q|TV . (18)

Proof. By κ-convexity φ(t) = f (t)− κt2/2 is a convex function. Thus, φ(t) ≥ φ(1) + φ′+(1)(t− 1) =

( f ′+(1)− κ)(t− 1) and hence limt→∞
f (t)

t ≥ limt→∞ κt/2+( f ′+(1)− κ)
(

1− 1
t

)
= ∞. Taking measures

on the two points space P = {1/2, 1/2} and Q = {1/2t, 1− 1/2t} gives D f (P||Q) ≥ 1
2

f (t)
t which

tends to infinity with t→ ∞, while |P−Q|TV ≤ 1.

In fact, building on the work of Basu-Shioya-Park [24] and Vadja [25], Sason and Verdu proved [6]

that, for any f divergence, supP 6=Q
D f (P||Q)

|P−Q|TV
= f (0) + f ∗(0). Thus, an f -divergence can be bounded

above by a constant multiple of a the total variation, if and only if f (0) + f ∗(0) < ∞. From this
perspective, Proposition 3 is simply the obvious fact that strongly convex functions have super linear
(at least quadratic) growth at infinity.
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3. Skew Divergences

If we denote Cvx(0, ∞) to be quotient of the cone of convex functions f on (0, ∞) such that
f (1) = 0 under the equivalence relation f1 ∼ f2 when f1 − f2 = c(x − 1) for c ∈ R, then the map
f 7→ D f gives a linear isomorphism between Cvx(0, ∞) and the space of all f -divergences. The
mapping T : Cvx(0, ∞) → Cvx(0, ∞) defined by T f = f ∗, where we recall f ∗(t) = t f (t−1), gives
an involution of Cvx(0, ∞). Indeed, DT f (P||Q) = D f (Q||P), so that DT (T ( f ))(P||Q) = D f (P||Q).
Mathematically, skew divergences give an interpolation of this involution as

(P, Q) 7→ D f ((1− t)P + tQ||(1− s)P + sQ)

gives D f (P||Q) by taking s = 1 and t = 0 or yields D f ∗(P||Q) by taking s = 0 and t = 1.
Moreover, as mentioned in the Introduction, skewing imposes boundedness of the

Radon–Nikodym derivative dP
dQ , which allows us to constrain the domain of f -divergences and

leverage κ-convexity to obtain f -divergence inequalities in this section.
The following appears as Theorem III.1 in the preprint [26]. It states that skewing an f -divergence

preserves its status as such. This guarantees that the generalized skew divergences of this section are
indeed f -divergences. A proof is given in the Appendix A for the convenience of the reader.

Theorem 4 (Melbourne et al [26]). For t, s ∈ [0, 1] and a divergence D f , then

S f (P||Q) := D f ((1− t)P + tQ||(1− s)P + sQ) (19)

is an f -divergence as well.

Definition 4. For an f -divergence, its skew symmetrization,

∆ f (P||Q) :=
1
2

D f

(
P
∣∣∣∣
∣∣∣∣
P + Q

2

)
+

1
2

D f

(
Q
∣∣∣∣
∣∣∣∣
P + Q

2

)
.

∆ f is determined by the convex function

x 7→ 1 + x
2

(
f
(

2x
1 + x

)
+ f

(
2

1 + x

))
. (20)

Observe that ∆ f (P||Q) = ∆ f (Q||P), and when f (0) < ∞, ∆ f (P||Q) ≤ supx∈[0,2] f (x) < ∞ for all P, Q

since dP
d(P+Q)/2 , dQ

d(P+Q)/2 ≤ 2. When f (x) = x log x, the relative entropy’s skew symmetrization is the

Jensen–Shannon divergence. When f (x) = (x− 1)2 up to a normalization constant the χ2-divergence’s
skew symmetrization is the Vincze–Le Cam divergence which we state below for emphasis. The work
of Topsøe [11] provides more background on this divergence, where it is referred to as the triangular
discrimination.

Definition 5. When f (t) = (t−1)2

t+1 , denote the Vincze–Le Cam divergence by

∆(P||Q) := D f (P||Q).

If one denotes the skew symmetrization of the χ2-divergence by ∆χ2 , one can compute easily from
(20) that ∆χ2(P||Q) = ∆(P||Q)/2. We note that although skewing preserves 0-convexity, by the above
example, it does not preserve κ-convexity in general. The skew symmetrization of the χ2-divergence a
2-convex divergence while f (t) = (t− 1)2/(t + 1) corresponding to the Vincze–Le Cam divergence
satisfies f ′′(t) = 8

(t+1)3 , which cannot be bounded away from zero on (0, ∞).
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Corollary 2. For an f -divergence such that f is a κ-convex on (0, 2),

∆ f (P||Q) ≥ κ

4
∆(P||Q) =

κ

2
∆χ2(P||Q), (21)

with equality when the f (t) = (t − 1)2 corresponding the the χ2-divergence, where ∆ f denotes the skew
symmetrized divergence associated to f and ∆ is the Vincze- Le Cam divergence.

Proof. Applying Proposition 2

0 = D f

(
P + Q

2

∣∣∣∣
∣∣∣∣
Q + P

2

)

≤ 1
2

D f

(
P
∣∣∣∣
∣∣∣∣
Q + P

2

)
+

1
2

D f

(
Q
∣∣∣∣
∣∣∣∣
Q + P

2

)
− κ

8

∫ ( 2P
P + Q

− 2Q
P + Q

)2
d(P + Q)/2

= ∆ f (P||Q)− κ

4
∆(P||Q).

When f (x) = x log x, we have f ′′(x) ≥ log e
2 on [0, 2], which demonstrates that up to a constant

log e
8 the Jensen–Shannon divergence bounds the Vincze–Le Cam divergence (see [11] for improvement

of the inequality in the case of the Jensen–Shannon divergence, called the “capacitory discrimination”
in the reference, by a factor of 2).

We now investigate more general, non-symmetric skewing in what follows.

Proposition 4. For α, β ∈ [0, 1], define

C(α) :=

{
1− α when α ≤ β

α when α > β,
(22)

and
Sα,β(P||Q) := D((1− α)P + αQ||(1− β)P + βQ). (23)

Then,
Sα,β(P||Q) ≤ C(α)D∞(α||β)|P−Q|TV , (24)

where D∞(α||β) := log
(

max
{

α
β , 1−α

1−β

})
is the binary ∞-Rényi divergence [27].

We need the following lemma originally proved by Audenart in the quantum setting [28]. It is
based on a differential relationship between the skew divergence [12] and the [15] (see [29,30]).

Lemma 3 (Theorem III.1 [26]). For P and Q probability measures and t ∈ [0, 1],

S0,t(P||Q) ≤ − log t|P−Q|TV . (25)

Proof of Theorem 4. If α ≤ β, then D∞(α||β) = log 1−α
1−β and C(α) = 1− α. In addition,

(1− β)P + βQ = t ((1− α)P + αQ) + (1− t)Q (26)

with t = 1−β
1−α , thus

Sα,β(P||Q) = S0,t((1− α)P + αQ||Q)

≤ (− log t) |((1− α)P + αQ)−Q|TV

= C(α) D∞(α||β) |P−Q|TV ,

(27)

141



Entropy 2020, 22, 1327

where the inequality follows from Lemma 3. Following the same argument for α > β, so that C(α) = α,
D∞(α||β) = log α

β , and

(1− β)P + βQ = t ((1− α)P + αQ) + (1− t)P (28)

for t = β
α completes the proof. Indeed,

Sα,β(P||Q) = S0,t((1− α)P + αQ||P)
≤ − log t |((1− α)P + αQ)− P|TV

= C(α) D∞(α||β) |P−Q|TV .

(29)

We recover the classical bound [11,16] of the Jensen–Shannon divergence by the total variation.

Corollary 3. For probability measure P and Q,

JSD(P||Q) ≤ log 2 |P−Q|TV (30)

Proof. Since JSD(P||Q) = 1
2 S0, 1

2
(P||Q) + 1

2 S1, 1
2
(P||Q).

Proposition 4 gives a sharpening of Lemma 1 of Nielsen [17], who proved Sα,β(P||Q) ≤ D∞(α||β),
and used the result to establish the boundedness of a generalization of the Jensen–Shannon Divergence.

Definition 6 (Nielsen [17]). For p and q densities with respect to a reference measure µ, wi > 0, such that
∑n

i=1 wi = 1 and αi ∈ [0, 1], define

JSα,w(p : q) =
n

∑
i=1

wi D((1− αi)p + αiq||(1− ᾱ)p + ᾱq) (31)

where ∑n
i=1 wiαi = ᾱ.

Note that, when n = 2, α1 = 1, α2 = 0 and wi = 1
2 , JSα,w(p : q) = JSD(p||q), the usual

Jensen–Shannon divergence. We now demonstrate that Nielsen’s generalized Jensen–Shannon
Divergence can be bounded by the total variation distance just as the ordinary Jensen–Shannon
Divergence.

Theorem 5. For p and q densities with respect to a reference measure µ, wi > 0, such that ∑n
i=1 wi = 1 and

αi ∈ (0, 1),
log e Varw(α) |p− q|2TV ≤ JSα,w(p : q) ≤ A H(w) |p− q|TV (32)

where H(w) := −∑i wi log wi≥ 0 and A = maxi |αi − ᾱi| with ᾱi = ∑j 6=i
wjαj
1−wi

.

Note that, since ᾱi is the w average of the αj terms with αi removed, ᾱi ∈ [0, 1] and thus A ≤ 1.
We need the following Theorem from Melbourne et al. [26] for the upper bound.

Theorem 6 ([26] Theorem 1.1). For fi densities with respect to a common reference measure γ and λi > 0
such that ∑n

i=1 λi = 1,
hγ(∑

i
λi fi)−∑

i
λihγ( fi) ≤ T H(λ), (33)

where hγ( fi) := −
∫

fi(x) log fi(x)dγ(x) and T = supi | fi − f̃i|TV with f̃i = ∑j 6=i
λj

1−λi
f j.
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Proof of Theorem 5. We apply Theorem 6 with fi = (1− αi)p + αiq, λi = wi, and noticing that in
general

hγ(∑
i

λi fi)−∑
i

λhγ( fi) = ∑
i

λiD( fi|| f ), (34)

we have

JSα,w(p : q) =
n

∑
i=1

wiD((1− αi)p + αiq||(1− ᾱ)p + ᾱq)

≤ T H(w).

(35)

It remains to determine T = maxi | fi − f̃i|TV ,

f̃i − fi =
f − fi
1− λi

=
((1− ᾱ)p + ᾱq)− ((1− αi)p + αiq)

1− wi

=
(αi − ᾱ)(p− q)

1− wi

= (αi − ᾱi)(p− q).

(36)

Thus, T = maxi(αi − ᾱi)|p− q|TV = A|p− q|TV , and the proof of the upper bound is complete.

To prove the lower bound, we apply Pinsker’s inequality, 2 log e|P−Q|2TV ≤ D(P||Q),

JSα,w(p : q) =
n

∑
i=1

wiD((1− αi)p + αiq||(1− ᾱ)p + ᾱq)

≥ 1
2

n

∑
i=1

wi2 log e |((1− αi)p + αiq)− ((1− ᾱ)p + ᾱq)|2TV

= log e
n

∑
i=1

wi(αi − ᾱ)2|p− q|2TV

= log e Varw(α) |p− q|2TV .

(37)

Definition 7. Given an f -divergence, densities p and q with respect to common reference measure, α ∈ [0, 1]n

and w ∈ (0, 1)n such that ∑i wi = 1 define its generalized skew divergence

Dα,w
f (p : q) =

n

∑
i=1

wiD f ((1− αi)p + αiq||(1− ᾱ)p + ᾱq). (38)

where ᾱ = ∑i wiαi.

Note that, by Theorem 4, Dα,w
f is an f -divergence. The generalized skew divergence of the

relative entropy is the generalized Jensen–Shannon divergence JSα,w. We denote the generalized skew
divergence of the χ2-divergence from p to q by

χ2
α,w(p : q) := ∑

i
wiχ

2((1− αi)p + αiq||(1− ᾱp + ᾱq) (39)

143



Entropy 2020, 22, 1327

Note that, when n = 2 and α1 = 0, α2 = 1 and wi = 1
2 , we recover the skew symmetrized

divergence in Definition 4
D(0,1),(1/2,1/2)

f (p : q) = ∆ f (p||q) (40)

The following theorem shows that the usual upper bound for the relative entropy by the
χ2-divergence can be reversed up to a factor in the skewed case.

Theorem 7. For p and q with a common dominating measure µ,

χ2
α,w(p : q) ≤ N∞(α, w)JSα,w(p : q).

Writing N∞(α, w) = maxi max
{

1−αi
1−ᾱ , αi

ᾱ

}
. For α ∈ [0, 1]n and w ∈ (0, 1)n such that ∑i wi = 1, we

use the notation N∞(α, w) := maxi eD∞(αi ||ᾱ) where ᾱ := ∑i wiαi.

Proof. By definition,

JSα,w(p : q) =
n

∑
i=1

wiD((1− αi)p + αiq||(1− ᾱ)p + ᾱq).

Taking Pi to be the measure associated to (1− αi)p + αiq and Q given by (1− ᾱ)p + ᾱq, then

dPi
dQ

=
(1− αi)p + αiq
(1− ᾱ)p + ᾱq

≤ max
{

1− αi
1− ᾱ

,
αi
ᾱ

}
= eD∞(αi ||ᾱ) ≤ N∞(α, w). (41)

Since f (x) = x log x, the convex function associated to the usual KL divergence, satisfies f ′′(x) = 1
x , f

is e−D∞(α)-convex on [0, supx,i
dPi
dQ (x)], applying Proposition 2, we obtain

D

(
∑

i
wiPi

∣∣∣∣
∣∣∣∣Q
)
≤∑

i
wiD(Pi||Q)−

∑i wi
∫
X
(

dPi
dQ − dP

dQ

)2
dQ

2N∞(α, w)
. (42)

Since Q = ∑i wiPi, the left hand side of (42) is zero, while

∑
i

wi

∫

X

(
dPi
dQ
− dP

dQ

)2
dQ = ∑

i
wi

∫

X

(
dPi
dP
− 1
)2

dP

= ∑
i

wiχ
2(Pi||P)

= χ2
α,w(p : q).

(43)

Rearranging gives,
χ2

α,w(p : q)
2N∞(α, w)

≤ JSα,w(p : q), (44)

which is our conclusion.

4. Total Variation Bounds and Bayes Risk

In this section, we derive bounds on the Bayes risk associated to a family of probability measures
with a prior distribution λ. Let us state definitions and recall basic relationships. Given probability
densities {pi}n

i=1 on a space X with respect a reference measure µ and λi ≥ 0 such that ∑n
i=1 λi = 1,

define the Bayes risk,

R := Rλ(p):=1−
∫

X
max

i
{λi pi(x)}dµ(x) (45)
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If `(x, y) = 1− δx(y), and we define T(x) := arg maxi λi pi(x) then observe that this definition is
consistent with, the usual definition of the Bayes risk associated to the loss function `. Below, we
consider θ to be a random variable on {1, 2, . . . , n} such that P(θ = i) = λi, and x to be a variable with
conditional distribution P(X ∈ A|θ = i) =

∫
A pi(x)dµ(x). The following result shows that the Bayes

risk gives the probability of the categorization error, under an optimal estimator.

Proposition 5. The Bayes risk satisfies

R = min
θ̂

E`(θ, θ̂(X)) = E`(θ, T(X))

where the minimum is defined over θ̂ : X → {1, 2, . . . , n}.

Proof. Observe that R = 1−
∫
X λT(x)pT(x)(x)dµ(x) = E`(θ, T(X)). Similarly,

E`(θ, θ̂(X)) = 1−
∫

X
λθ̂(x)pθ̂(x)(x)dµ(x)

≥ 1−
∫

X
λT(x)pT(x)(x)dµ(x) = R,

which gives our conclusion.

It is known (see, for example, [9,31]) that the Bayes risk can also be tied directly to the total variation
in the following special case, whose proof we include for completeness.

Proposition 6. When n = 2 and λ1 = λ2 = 1
2 , the Bayes risk associated to the densities p1 and p2 satisfies

2R = 1− |p1 − p2|TV (46)

Proof. Since pT = |p1−p2|+p1+p2
2 , integrating gives

∫
X pT(x)dµ(x) = |p1 − p2|TV + 1 from which the

equality follows.

Information theoretic bounds to control the Bayes and minimax risk have an extensive literature
(see, for example, [9,32–35]). Fano’s inequality is the seminal result in this direction, and we direct
the reader to a survey of such techniques in statistical estimation (see [36]). What follows can be
understood as a sharpening of the work of Guntuboyina [9] under the assumption of a κ-convexity.

The function T(x) = arg maxi{λi pi(x)} induces the following convex decompositions of our
densities. The density q can be realized as a convex combination of q1 = λTq

1−Q where Q = 1−
∫

λTqdµ

and q2 = (1−λT)q
Q ,

q = (1−Q)q1 + Qq2.

If we take p := ∑i λi pi, then p can be decomposed as ρ1 = λT pT
1−R and ρ2 = p−λT pT

R so that

p = (1− R)ρ1 + Rρ2.

Theorem 8. When f is κ-convex, on (a, b) with a = infi,x
pi(x)
q(x) and b = supi,x

pi(x)
q(x)

∑
i

λiD f (pi||q) ≥ D f (R||Q) +
κW

2

where

W := W(λi, pi, q) :=
(1− R)2

1−Q
χ2(ρ1||q1) +

R2

Q
χ2(ρ2||q2) + W0

for W0 ≥ 0.
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W0 can be expressed explicitly as

W0 =
∫
(1− λT)Varλi 6=T

(
pi
q

)
dµ =

∫
∑
i 6=T

λi
|pi −∑j 6=T

λj
1−λT

pj|2
q

dµ,

where for fixed x, we consider the variance Varλi 6=T

(
pi
q

)
to be the variance of a random variable

taking values pi(x)/q(x) with probability λi/(1− λT(x)) for i 6= T(x). Note this term is a non-zero
term only when n > 2.

Proof. For a fixed x, we apply Lemma 1

∑
i

λi f
(

pi
q

)
= λT f

(
pT
q

)
+ (1− λT) ∑

i 6=T

λi
1− λT

f
(

pi
q

)

≥ λT f
(

pT
q

)
+ (1− λT)

[
f
(

p− λT pT
q(1− λT)

)
+

κ

2
Varλi 6=T

(
pi
q

)] (47)

Integrating,

∑
i

λiD f (pi||q) ≥
∫

λT f
(

pT
q

)
q +

∫
(1− λT) f

(−λT pT + ∑i λi pi
q(1− λT)

)
q +

κ

2
W0, (48)

where

W0 =
∫

∑
i 6=T(x)

λi
1− λT(x)

|pi −∑j 6=T
λj

1−λT
pj|2

q
dµ. (49)

Applying the κ-convexity of f ,

∫
λT f

(
pT
q

)
q = (1−Q)

∫
q1 f

(
pT
q

)

≥ (1−Q)

(
f
(∫

λT pT

1−Q

)
+

κ

2
Varq1

(
pT
q

))

= (1−Q) f ((1− R)/(1−Q)) +
Qκ

2
W1,

(50)

with

W1 := Varq1

(
pT
q

)

=

(
1− R
1−Q

)2
Varq1

(
λT pT
λTq

1−Q
1− R

)

=

(
1− R
1−Q

)2
Varq1

(
ρ1

q1

)

=

(
1− R
1−Q

)2
χ2(ρ1||q1)

(51)
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Similarly,

∫
(1− λT) f

(
p− λT pT
q(1− λT)

)
q = Q

∫
q2 f

(
p− λT pT
q(1− λT)

)

≥ Q f
(∫

q2
p− λT pT
q(1− λT)

)
+

Qκ

2
W2

= Q f
(

R
1−Q

)
+

Qκ

2
W2

(52)

where

W2 := Varq2

(
p− λT pT
q(1− λT)

)

=

(
R
Q

)2
Varq2

(
p− λT pT
q(1− λT)

Q
R

)

=

(
R
Q

)2
Varq2

(
p− λT pT
q(1− λT)

− R
Q

)2

=

(
R
Q

)2 ∫
q2

(
ρ2

q2
− 1
)2

=

(
R
Q

)2
χ2(ρ2||q2)

(53)

Writing W = W0 + W1 + W2, we have our result.

Corollary 4. When λi =
1
n , and f is κ-convex on (infi,x pi/q, supi,x pi/q)

1
n ∑

i
D f (pi||q)

≥ D f (R||(n− 1)/n) +
κ

2

(
n2(1− R)2χ2(ρ1||q) +

(
nR

n− 1

)2
χ2(ρ2||q) + W0

) (54)

further when n = 2,

D f (p1||q) + D f (p2||q)
2

≥ D f

(
1− |p1 − p2|TV

2

∣∣∣∣
∣∣∣∣
1
2

)

+
κ

2

(
(1 + |p1 − p2|TV)

2χ2(ρ1||q) + (1− |p1 − p2|TV)
2χ2(ρ2||q)

)
.

(55)

Proof. Note that q1 = q2 = q, since λi =
1
n implies λT = 1

n as well. In addition, Q = 1−
∫

λTqdµ =
n−1

n so that applying Theorem 8 gives

n

∑
i=1

D f (pi||q) ≥ nD f (R||(n− 1)/n) +
κnW(λi, pi, q)

2
. (56)
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The term W can be simplified as well. In the notation of the proof of Theorem 8,

W1 = n2(1− R)2χ2(ρ1, q)

W2 =

(
nR

n− 1

)2
χ2(ρ2||q)

W0 =
∫ 1

n−1 ∑i 6=T(pi − 1
n−1 ∑j 6=T pj)

2

q
dµ.

(57)

For the special case, one needs only to recall R = 1−|p1−p2|TV
2 while inserting 2 for n.

Corollary 5. When pi ≤ q/t∗ for t∗ > 0, and f (x) = x log x

∑
i

λiD(pi||q) ≥ D(R||Q) +
t∗W(λi, pi, q)

2

for D(pi||q) the relative entropy. In particular,

∑
i

λiD(pi||q) ≥ D(p||q) + D(R||P) + t∗W(λi, pi, p)
2

where P = 1−
∫

λT pdµ for p = ∑i λi pi and t∗ = min λi.

Proof. For the relative entropy, f (x) = x log x is 1
M -convex on [0, M] since f ′′(x) = 1/x. When

pi ≤ q/t∗ holds for all i, then we can apply Theorem 8 with M = 1
t∗ . For the second inequality, recall

the compensation identity, ∑i λiD(pi||q) = ∑i λiD(pi||p) + D(p||q), and apply the first inequality to
∑i D(pi||p) for the result.

This gives an upper bound on the Jensen–Shannon divergence, defined as JSD(µ||ν) =
1
2 D(µ||µ/2 + ν/2) + 1

2 D(ν||µ/2 + ν/2). Let us also note that through the compensation identity
∑i λiD(pi||q) = ∑i λiD(pi||p) + D(p||q), ∑i λiD(pi||q) ≥ ∑i λiD(pi||p) where p = ∑i λi pi. In the
case that λi =

1
N

∑
i

λiD(pi||q)

≥∑
i

λiD(pi||p)

≥ Q f
(

1− R
Q

)
+ (1−Q) f

(
R

1−Q

)
+

t∗W
2

(58)

Corollary 6. For two densities p1 and p2, the Jensen–Shannon divergence satisfies the following,

JSD(p1||p2) ≥ D
(

1−|p1 − p2|TV
2

∣∣∣∣
∣∣∣∣1/2

)

+
1
4

(
(1 + |p1 − p2|TV)

2χ2(ρ1||p) + (1− |p1 − p2|TV)
2χ2(ρ2||p)

) (59)

with ρ(i) defined above and p = p1/2 + p2/2.

Proof. Since pi
(p1+p2)/2 ≤ 2 and f (x) = x log x satisfies f ′′(x) ≥ 1

2 on (0, 2). Taking q = p1+p2
2 , in the

n = 2 example of Corollary 4 with κ = 1
2 yields the result.
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Note that 2D((1 + V)/2||1/2) = (1 + V) log(1 + V) + (1−V) log(1−V) ≥ V2 log e, we see that
a further bound,

JSD(p1||p2) ≥
log e

2
V2 +

(1 + V)2χ2(ρ1||p) + (1−V)2χ2(ρ2||p)
4

, (60)

can be obtained for V = |p1 − p2|TV .

On Topsøe’s Sharpening of Pinsker’s Inequality

For Pi, Q probability measures with densities pi and q with respect to a common reference measure,
∑n

i=1 ti = 1, with ti > 0, denote P = ∑i tiPi, with density p = ∑i ti pi, the compensation identity is

n

∑
i=1

tiD(Pi||Q) = D(P||Q) +
n

∑
i=1

tiD(Pi||P). (61)

Theorem 9. For P1 and P2, denote Mk = 2−kP1 + (1− 2−k)P2, and define

M1(k) =
Mk1{P1>P2} + P21{P1≤P2}

Mk{P1 > P2}+ P2{P1 ≤ P2}
M2(k) =

Mk1{P1≤P2} + P21{P1>P2}
Mk{P1 ≤ P2}+ P2{P1 > P2}

,

then the following sharpening of Pinsker’s inequality can be derived,

D(P1||P2) ≥ (2 log e)|P1 − P2|2TV +
∞

∑
k=0

2k
(

χ2(M1(k), Mk+1)

2
+

χ2(M2(k), Mk+1)

2

)
.

Proof. When n = 2 and t1 = t2 = 1
2 , if we denote M = P1+P2

2 , then (61) reads as

1
2

D(P1||Q) +
1
2

D(P2||Q) = D(M||Q) + JSD(P1||P2). (62)

Taking Q = P2, we arrive at

D(P1||P2) = 2D(M||P2) + 2JSD(P1||P2) (63)

Iterating and writing Mk = 2−kP1 + (1− 2−k)P2, we have

D(P1||P2) = 2n

(
D(Mn||P2) + 2

n

∑
k=0

JSD(Mn||P2)

)
(64)

It can be shown (see [11]) that 2nD(Mn||P2) → 0 with n → ∞, giving the following series
representation,

D(P1||P2) = 2
∞

∑
k=0

2kJSD(Mk||P2). (65)

Note that the ρ-decomposition of Mk is exactly ρi =Mk(i), thus, by Corollary 6,

D(P1||P2) = 2
∞

∑
k=0

2kJSD(Mk||P2)

≥
∞

∑
k=0

2k
(
|Mk − P2|2TV log e +

χ2(M1(k), Mk+1)

2
+

χ2(M2(k), Mk+1)

2

)

= (2 log e)|P1 − P2|2TV +
∞

∑
k=0

2k
(

χ2(M1(k), Mk+1)

2
+

χ2(M2(k), Mk+1)

2

)
.

(66)

Thus, we arrive at the desired sharpening of Pinsker’s inequality.
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Observe that the k = 0 term in the above series is equivalent to

20
(

χ2(M1(0), M0+1)

2
+

χ2(M2(0), M0+1)

2

)
=

χ2(ρ1, p)
2

+
χ2(ρ2, p)

2
, (67)

where ρi is the convex decomposition of p = p1+p2
2 in terms of T(x) = arg max{p1(x), p2(x)}.

5. Conclusions

In this article, we begin a systematic study of strongly convex divergences, and how the strength
of convexity of a divergence generator f , quantified by the parameter κ, influences the behavior of
the divergence D f . We prove that every strongly convex divergence dominates the square of the total
variation, extending the classical bound provided by the χ2-divergence. We also study a general notion
of a skew divergence, providing new bounds, in particular for the generalized skew divergence of
Nielsen. Finally, we show how κ-convexity can be leveraged to yield improvements of Bayes risk
f -divergence inequalities, and as a consequence achieve a sharpening of Pinsker’s inequality.
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Appendix A

Theorem A1. The class of f -divergences is stable under skewing. That is, if f is convex, satisfying f (1) = 0,
then

f̂ (x) := (tx + (1− t)) f
(

rx + (1− r)
tx + (1− t)

)
(A1)

is convex with f̂ (1) = 0 as well.

Proof. If µ and ν have respective densities u and v with respect to a reference measure γ, then
rµ + (1− r)ν and tµ + 1− tν have densities ru + (1− r)v and tu + (1− t)v

S f ,r,t(µ||ν) =
∫

f
(

ru + (1− r)v
tu + (1− t)v

)
(tu + (1− t)v)dγ (A2)

=
∫

f
(

r u
v + (1− r)

t u
v + (1− t)

)
(t

u
v
+ (1− t))vdγ (A3)

=
∫

f̂
(u

v

)
vdγ. (A4)

Since f̂ (1) = f (1) = 0, we need only prove f̂ convex. For this, recall that the conic transform g of a
convex function f defined by g(x, y) = y f (x/y) for y > 0 is convex, since

y1 + y2

2
f
(

x1 + x2

2
/

y1 + y2

2

)
=

y1 + y2

2
f
(

y1

y1 + y2

x1

y1
+

y2

y1 + y2

x2

y2

)
(A5)

≤ y1

2
f (x1/y1) +

y2

2
f (x2/y2). (A6)

Our result follows since f̂ is the composition of the affine function A(x) = (rx + (1− r), tx + (1− t))
with the conic transform of f ,

f̂ (x) = g(A(x)). (A7)
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1. Motivation and Context

Divergences between probability measures are widely used in statistics and data
science in order to perform inference under models of various kinds; parametric or semi-
parametric, or even in non-parametric settings. The corresponding methods extend the
likelihood paradigm and insert inference in some minimum “distance” framing, which
provides a convenient description for the properties of the resulting estimators and tests,
under the model or under misspecification. Furthermore, they pave the way to a large
number of competitive methods, which allows to trade-off between efficiency and robust-
ness, among other things. Many families of such divergences have been proposed, some of
them stemming from classical statistics (such as the Chi-square divergence), while others
have their origin in other fields, such as information theory. Some measures of discrepancy
involve regularity of the corresponding probability measures while others seem to be
restricted to measures on finite or countable spaces, at least when using them as inferential
tools, henceforth in situations when the elements of a model have to be confronted with
a dataset. The choice of a specific discrepancy measure in specific context is somehow
arbitrary in many cases, although the resulting conclusion of the inference might differ
accordingly, above all under misspecification.

The goal of this paper is explained shortly. The current literature on risks, seen from
a statistical standpoint, has developed in two main directions, from basic definitions and
principles, following the seminal papers [1,2].

A first stream of papers aims to describe classes of discrepancy indices (divergences) as-
sociated with invariance under classes of transformations and similar properties;
see [3–5] for a review.

The second flow aims at making use of these indices for practical purposes under
various models, from parametric models to semi-parametric ones, mostly. Also the litera-
ture in learning procedures makes extensive use of divergence-based risks, with a strong
accent on the implementation issues. Following the standard approach, their properties
are mainly considered under i.i.d. sampling, providing limit results, confidence areas, etc;
see [6,7] and references therein for review and developments, and the monographs [8,9].
Also comparison among discrepancy indices are considered in terms of performances
either under the model, or with respect to robustness (aiming at minimizing the role of
outliers in the inference by providing estimators with redescending influence function), or
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with respect to misspecification, hence focusing on the loss in estimation or testing with
respect to the distance from the assumed model to the true one.

This literature, however, rarely considers the rationale for specific choices of indices
in relation with the concepts which define statistics, such as the Bayesian paradigm or
the maximum likelihood (ML) one; for a contribution in this direction for inference in
models defined by linear constraints, see [10]. In [11], we could prove that minimum
divergence estimators (in the class of the ones considered in the present paper) coincide
with MLEs under i.i.d. sampling in regular exponential models (but need not, even in
common models such as mixtures). Here it is proved that minimum divergence estimators
are indeed MLEs under weighted sampling, instead of standard i.i.d. one, commonly met
in bootstrap procedures which aim at providing finite sample properties of estimators
through simulation.

This paper considers a specific class of divergences, which contains most of the
classical inferential tools, and which is indexed by a single scalar parameter. This class of
divergences belongs to the Csiszar-Ali-Silvey-Arimoto family of divergences (see [4]), and
is usually referred to as the power divergence class, which has been considered by Cressie
and Read [12]; however this denomination is also shared by other discrepancy measures of
some different nature [13]. We will use the acronym CR for the class of divergences under
consideration in this paper.

Section 2 recalls that the MLE is obtained as a proxy of the minimizer of the Kullback-
Leibler divergence between the generic law of the observed variable and the model, which
is the large deviation limit for the empirical distribution. This limit statement is nothing
but the continuation of the classical ML paradigm, namely to make the dataset more
“probable” under the fitted distribution in the model, or, equivalently, to fit the most “likely”
distribution in the model to the dataset.

Section 3 states that given a divergence pseudo distance φ in CR the Minimum
Divergence Estimator (MDE) is obtained as a proxy of the minimizer of the large deviation
limit for some bootstrap version of the empirical distribution, which establishes that the
MDE is MLE for bootstrapped samples defined in relation with the divergence. This fact
is based on the strong relation which associates to any CR φ-divergence a specific RV
W (see Section 1.1.2); this link is the cornerstone for the interpretation of the minimum
φ-divergence estimators as MLEs for specific bootstrapped sampling schemes where W
has a prominent rôle. Some specific remark explores the link between MDE and MLE in
exponential families. As a by product, we also introduce a bootstrapped estimator of the
divergence pseudo-distance φ between the distribution of the data and the model.

In Section 4, we specify the bootstrapped estimator of the divergence which can be
used in order to perform an optimal test of fit. Due to the type of asymptotics handled in
this paper, optimality is studied in terms of Bahadur efficiency. It is shown that tests of fit
based on such estimators enjoy Bahadur optimality with respect to other bootstrap plans
when the bootstrap is performed under the distribution associated with the divergence
criterion itself.

The discussion held in this paper pertains to parametric estimation in a model PΘ
whose elements Pθ are probability measures defined on the same finite space
Y := {d1, . . . , dK}, and θ ∈ Θ is an index space; we assume identifiability, namely different
values of θ induce different probability laws Pθ’s. Also all the entries of Pθ will be positive
for all θ in Θ.

1.1. Notation
1.1.1. Divergences

We consider regular divergence functions ϕ which are non negative convex functions
with values in R+ which belong to C2 (R) and satisfy ϕ(1) = ϕ′(1) = 0 and ϕ′′(1) = 1;
see [3,4] for properties and extensions. An important class of such functions is defined
through the power divergence functions
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ϕγ(x) :=
xγ − γx + γ− 1

γ(γ− 1)
(1)

defined for all real γ 6= 0, 1 with ϕ0(x) := − log x + x − 1 (the likelihood divergence
function) and ϕ1(x) := x log x− x+ 1 (the Kullback-Leibler divergence function). This class
is usually referred to as the Cressie-Read family of divergence functions (see [12]). It is a
very simple class of functions (with the limits in γ→ 0, 1) which allows to represent nearly
all commonly used statistical criterions. Parametric inference in commonly met situations
including continuous models or some non-regular models can be performed with them;
see [6]. The L1 divergence function ϕ(x) := |x− 1| is not captured by the CR family of
functions. When undefined the function ϕ is declared to assume value +∞.

Associated with a divergence function ϕ, φ is the divergence between a probability
measure and a finite signed measure; see [14].

For P := (p1, . . . , pK) and Q := (q1, . . . , qK) in SK, the simplex of all probability
measures on Y , define, whenever Q and P have non-null entries

φ(Q, P) :=
K

∑
k=1

pk ϕ

(
qk
pk

)
.

Indexing this pseudo-distance by γ and using ϕγ as divergence function yields the

Kullback-Leibler divergence KL(Q, P) := φ1(Q, P) := ∑ qk log
(

qk
pk

)
, the likelihood or

modified Kullback-Leibler divergence

KLm(Q, P) := φ0(Q, P) := −∑ pk log
(

qk
pk

)
,

the Hellinger divergence

φ1/2(Q, P) :=
1
2 ∑ pk

(√
qk
pk
− 1
)2

,

the modified (or Neyman) χ2 divergence

χ2
m(Q, P) := φ−1(Q, P) :=

1
2 ∑ pk

(
qk
pk
− 1
)2( qk

pk

)−1
.

The χ2 divergence

φ2(Q, P) :=
1
2 ∑ pk

(
qk
pk
− 1
)2

is defined between signed measures; see [15] for definitions in more general setting, and [6]
for the advantage to extend the definition to possibly signed measures in the context of
parametric inference for non-regular models. Also the present discussion which is restricted
to finite spaces Y can be extended to general spaces.

The conjugate divergence function of ϕ is defined through

ϕ̃(x) := xϕ

(
1
x

)
(2)

and the corresponding divergence φ̃(P, Q) is

φ̃(P, Q) :=
K

∑
k=1

qk ϕ̃

(
pk
qk

)

which satisfies
φ̃(P, Q) = φ(Q, P)
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whenever defined, and equals +∞ otherwise. When ϕ = ϕγ then ϕ̃ = ϕ1−γ as follows by
substitution. Pairs

(
ϕγ, ϕ1−γ

)
are therefore conjugate pairs. Inside the Cressie-Read family,

the Hellinger divergence function is self-conjugate.
For P = Pθ and Q ∈ SK we denote φ(Q, P) by φ(Q, θ) (resp φ(θ, Q), or φ(θ′, θ), etc.

according to the context).

1.1.2. Weights

This paragraph introduces the special link which connects CR divergences with
specific random variables, which we call weights. Those will be associated to the dataset
and define what is usually referred to as a generalized bootstrap procedure. This is the
setting which allows for an interpretation of the MDE’s as generalized bootstrapped MLEs.

For a given real valued random variable (RV) W denote

M(t) := log E[exp(tW)] (3)

its cumulant generating function which we assume to be finite in a non-void open neigh-
borhood of 0. The Fenchel Legendre transform of M (also called the Chernoff function) is
defined through

ϕW(x) = M∗(x) := sup
t
(tx−M(t)). (4)

The function x → ϕW(x) is non-negative, is C∞ and convex. We also assume that
EW = 1 together with VarW = 1 which implies ϕW(1) =

(
ϕW)′(1) = 0 and

(
ϕW)′′(1) = 1.

Hence ϕW(x) is a divergence function with corresponding divergence φW . Associated with
ϕW is the conjugate divergence φ̃W with divergence function ϕ̃W , which therefore satisfies
φW(Q, P) = φ̃W(P, Q) whenever neither P nor Q have null entries.

It is of interest to note that the classical power divergences ϕγ can be represented
through (4) for γ ≤ 1 or γ ≥ 2. A first proof of this lays in the fact that when W has a
distribution in a Natural Exponential Family (NEF) with power variance function with
exponent α = 2− γ, then the Legendre transform ϕW of its cumulant generating function
M is indeed of the form (1). See [16,17] for NEF’s and power variance functions, and [18]
for relation to the bootstrap. A general result of a different nature, including the former
ones, can be seen in [19], Theorem 20. Correspondence between the various values of γ
and the distribution of the respective weights can be found in [19], Example 39, and it can
be summarized as presented now.

For γ < 0 the RV W is constructed as follows: Let Z be an auxiliary RV with density

fZ and support [0, ∞) of a stable law with parameter triplet
(
− γ

1−γ , 0, (1−γ)−γ//(1−γ)

γ

)

in terms of the “form B notation” on p 12 in [20]; then W has an absolutely continuous
distribution with density

fW(y) :=
exp(−y/(1− γ))

exp(1/γ)
fZ(y)1[0,∞)(y).

For γ = 0 (which amounts to consider the limit as γ→ 0 in (1)) then W has a standard
exponential distribution E(1) on [0, ∞).

For γ ∈ (0, 1) then W has a compound Gamma-Poisson distribution

C(POI(θ), GAM(α, β))

where
θ =

1
γ

, α =
1

1− γ
, β =

γ

1− γ
.

For γ = 1, W has a Poisson distribution with parameter 1, POI(1).
For γ = 2, the RV W has normal distribution with expectation and variance equal to 1.
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For γ > 2, the RV W is constructed as follows: Let Z be an auxiliary RV with density

fZ and support (−∞, ∞) of a stable law with parameter triplet
(

γ
γ−1 , 0, (γ−1)−γ//(γ−1)

γ

)

in terms of the “form B notation” on p 12 in [20]; then W has an absolutely continuous
distribution with density

fW(y) :=
exp(y/(γ− 1))

exp(1/γ)
fZ(−y) ,y ∈ R.

2. Maximum Likelihood under Finitely Supported Distributions and Simple
Sampling
2.1. Standard Derivation

Let X1, . . . Xn be a set of n independent random variables with common probability
measure PθT and consider the Maximum Likelihood estimator of θT . A common way to
define the ML paradigm is as follows: For any θ consider independent random variables
(X1,θ , . . . Xn,θ) with probability measure Pθ , thus sampled in the same way as the Xi’s, but
under some alternative θ.

Denote

Pn :=
1
n

n

∑
i=1

δXi

and

Pn,θ :=
1
n

n

∑
i=1

δXi,θ

the empirical measures pertaining respectively to (X1, . . . Xn) and (X1,θ , . . . Xn,θ).
Define θML as the value of the parameter θ for which the probability that, up to a

permutation of the order of the Xi,θ’s, the probability that (X1,θ , . . . Xn,θ) coincides with
X1, . . . Xn is maximal, conditionally on the observed sample X1, . . . Xn. In formula

θML := arg max
θ

Pθ(Pn,θ = Pn|Pn). (5)

An explicit enumeration of the above expression Pθ(Pn,θ = Pn|Pn) involves
the quantities

nj := card
{

i : Xi = dj
}

for j = 1, . . . , K and yields

Pθ(Pn,θ = Pn,X |Pn,X) =
n!Pθ

(
dj
)nj

K
∏
j=1

nj!
(6)

as follows from the classical multinomial distribution. Optimizing on θ in (6) yields

θML = arg max
θ

K

∑
j=1

nj

n
log Pθ

(
dj
)

= arg max
θ

1
n

n

∑
i=1

log Pθ(Xi).

It follows from direct evaluation that

θML = arg inf
θ

KLm(Pθ , Pn).

Introducing the Kullback-Leibler divergence KL(Pn, Pθ) it thus holds

θML = arg inf
θ

K̃Lm(Pn, Pθ) = arg inf
θ

KL(Pn, Pθ).
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We have recalled that minimizing the Kullback-Leibler divergence KL(Pn, θ) amounts
to minimizing the Likelihood divergence KLm(θ, Pn) and produces the ML estimate of θT .

2.2. Asymptotic Derivation

We assume that
lim

n→∞
Pn = PθT a.s.

This holds for example when the Xi’s are drawn as an i.i.d. sample with common
law PθT which we may assume in the present context. From an asymptotic standpoint,
Kullback-Leibler divergence is related to the way Pn keeps away from Pθ when θ is not
equal to the true value of the parameter θT generating the observations Xi’s and is closely
related with the type of sampling of the Xi’s. In the present case, when i.i.d. sampling of
the Xi,θ’s under Pθ is performed, Sanov Large Deviation theorem leads to

lim
n→∞

1
n

log Pθ(Pn,θ = Pn|Pn) = −KL(θT , θ). (7)

This result can easily be obtained from (6) using Stirling formula to handle the factorial
terms and the law of large numbers which states that for all j’s, nj/n tends to PθT (dj) as
n tends to infinity. We note that the MLE θML is a proxy of the minimizer of the natural
estimator θT of KL(θT , θ) in θ, substituting the unknown measure generating the Xi’s by
its empirical counterpart Pn. Alternatively as will be used in the sequel, θML minimizes
upon θ the Likelihood divergence KLm(θ, θT) between Pθ and PθT substituting the un-
known measure PθT generating the Xi’s by its empirical counterpart Pn. Summarizing we
have obtained:

The ML estimate can be obtained from a LDP statement as given in (7), optimizing in
θ in the estimator of the LDP rate where the plug-in method of the empirical measure of
the data is used instead of the unknown measure PθT . Alternatively it holds

θML := arg min
θ

K̂Lm(θ, θT) (8)

with
K̂Lm(θ, θT) := KLm(θ, Pn).

This principle will be kept throughout this paper: the estimator is defined as max-
imizing the probability that the simulated empirical measure be close to the empirical
measure as observed on the sample, conditionally on it, following the same sampling
scheme. This yields a maximum likelihood estimator, and its properties are then obtained
when randomness is introduced as resulting from the sampling scheme.

3. Bootstrap and Weighted Sampling

The sampling scheme which we consider is commonly used in connection with the
bootstrap and is referred to as the weighted or generalized bootstrap, sometimes called wild
bootstrap, first introduced by Newton and Mason [21].

Let X1, . . . , Xn with common distribution P on Y := {d1, . . . , dK}.
Consider a collection W1, . . . , Wn of independent copies of W, whose distribution satis-

fies the conditions stated in Section 1. The weighted empirical measure PW
n is

defined through

PW
n :=

1
n

n

∑
i=1

WiδXi .

This empirical measure need not be a probability measure, since its mass may not
equal 1. Also it might not be positive, since the weights may take negative values.
Therefore PW

n can be identified with a random point in RK. The measure PW
n converges

almost surely to P when the weights Wi’s satisfy the hypotheses stated in Section 1.
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We also consider the normalized weighted empirical measure

PW
n :=

n

∑
i=1

ZiδXi (9)

where
Zi :=

Wi

∑n
j=1 Wj

(10)

whenever ∑n
j=1 Wj 6= 0, and

PW
n = ∞

when ∑n
j=1 Wj = 0, where PW

n = ∞ means PW
n (dk) = ∞ for all dk in Y .

3.1. A Conditional Sanov Type Result for the Weighted Empirical Measure

We now state a conditional Sanov type result for the family of random measures PW
n .

It follows readily from a companion result pertaining to PW
n and enjoys a simple form when

the weights Wi are associated to power divergences, as defined in Section 1.1.2. We quote
the following results, referring to [19].

Consider a set Ω in RK such that

clΩ = cl[Int(Ω)] (11)

which amounts to a regularity assumption (obviously met when Ω is an open set), and
which allows for the replacement of the usual lim inf and lim sup by standard limits in
usual LDP statements. We denote by PW the probability measure of the random family of
i.i.d. weights Wi.

It then holds

Proposition 1 (Theorem 9 in [19]). The weighted empirical measure PW
n satisfies a conditional

Large Deviation Principle in RK namely, denoting P the a.s. limit of Pn,

lim
n→∞

1
n

log PW
(

PW
n ∈ Ω

∣∣∣Xn
1

)
= −φW(Ω, P)

where φW(Ω, P) := infQ∈Ω φW(Q, P).

As a direct consequence of the former result, it holds, for any Ω ⊂ SK satisfying (11),
where SK designates the simplex of all pm’s on Y .

Theorem 1 (Theorem 12 in [19]). The normalized weighted empirical measure PW
n satisfies a

conditional Large Deviation Principle in SK

lim
n→∞

1
n

log PW
(
PW

n ∈ Ω
∣∣∣Xn

1

)
= − inf

m 6=0
φW(mΩ, P). (12)

A flavour of the simple proofs of Proposition 1 and Theorem 1 is presented in
Appendix A; see [19] for a detailed treatment; see also Theorem 3.2 and Corollary 3.3
in [22] where Theorem 1 is proved in a more abstract setting.

We will be interested in the pm’s in Ω which minimize the RHS in the above display.
The case when φW is a power divergence, namely φW = φγ for some γ enjoys a special
property with respect to the pm’s Q achieving the infimum (upon Q in Ω) in (12). It holds
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Proposition 2 (Lemma 14 in [19]). Assume that φW is a power divergence. Then

Q ∈ arg inf
{

inf
m 6=0

φW(mQ, P), Q ∈ Ω
}

and
Q ∈ arg inf

{
φW(Q, P), Q ∈ Ω

}

are equivalent statements.

Indeed Proposition 2 holds as a consequence of the following results, to be used later
on.

Lemma 1. For Q and P two pm’s such that the involved expressions are finite, it holds

(i) For γ 6= 0 and γ 6= 1 it holds that

inf
m 6=0

φγ(mQ, P) =
1
γ

[
1− (1 + γ(γ− 1)φγ(Q, P))−1/(γ−1)

]
.

(ii) infm 6=0 φ1(mQ, P) = 1− exp(−KL(Q, P)) = 1− exp(−φ1(Q, P)).
(iii) infm 6=0 φ0(mQ, P) = KLm(Q, P) = φ0(Q, P)

In the case where W is a RV with standard exponential distribution, then a link
between the present approach and Bayesian inference can be drawn, since the normalized
weighted empirical measure PW

n is a realization of the a posteriori distribution for the
Dirichlet prior on the non parametric distribution of X. See [23].

The weighted empirical measure PW
n has been used in the weighted bootstrap (or

wild bootstrap) context, although it is not a pm. However, conditionally upon the sample
points, its produces statistical estimators T(PW

n ) whose weak behavior (conditionally upon
the sample) converges to the same limit as does T(Pn) when normalized on the classical
CLT range; see eg Newton and Mason [21]. Large deviation theorem for the weighted
empirical measure PW

n has been obtained by [24]; for other contributions in line with
those, see [22,25]. Normalizing the weights produces families of exchangeable weights
Zi, and the normalized weighted empirical measure PW

n is the cornerstone for the so-
called non-parametric Bayesian bootstrap, initiated by [23], and further developed by [26]
among others. Note however that in this context the RV’s Wi’s are chosen distributed as
standard exponential variables. The link with spacings from a uniform distribution and
the corresponding reproducibility of the Dirichlet distributions are the basic ingredients
which justify the non parametric bootstrap approach; in the present context, the choice of
the distribution of the Wi’s is a natural extension of this paradigm, at least when those Wi’s
are positive RV’s.

3.2. Maximum Likelihood for the Generalized Bootstrap

Let’s turn back to the estimation of θT , assuming PθT the common distribution of the
independent observations X1, . . . , Xn. We will consider maximum likelihood in the same
spirit as developed in Section 2.2, here in the context of the normalized weighted empirical
measure; it amounts to justify minimum divergence estimators as appropriate MLEs under
such bootstrap procedure.

We thus consider the same statistical model PΘ and keep in mind the ML principle as
seen as resulting from a maximization of the conditional probability of getting simulated
observations close to the initially observed data. Similarly as in Section 2 fix an arbitrary θ
and simulate X1,θ , . . . , Xn,θ with distribution Pθ . Define accordingly PW

n,θ and PW
n,θ making

use of i.i.d. RV’s W1, . . . , Wn. Now the event PW
n,θ(k) = nk/n has probability 0 in most cases

(for example when W has a continuous distribution), and therefore we are led to consider
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events of the form PW
n,θ ∈ Vε(Pn) , meaning maxk

∣∣∣PW
n,θ(dk)− Pn(dk)

∣∣∣ ≤ ε for some ε > 0;
notice that Vε(Pn) defined through

Vε(Pn) :=
{

Q ∈ SK : max
k
|Q(dk)− Pn(dk)| ≤ ε

}

has non-void interior.
For such a configuration consider

PW(Pw
n,θ ∈ Vε(Pn)

∣∣X1,θ , . . . , Xn,θ , Pn
)

(13)

where the Xi,θ are randomly drawn i.i.d. under Pθ . Obviously for θ far away from θT the
sample (X1,θ , . . . , Xn,θ) is realized “far away ” from (X1, . . . , Xn), which has been generated
under the truth, namely PθT , and the probability in (13) is small, whatever the weights, for
small ε.

We will now consider (13) for large n, since, in contrast with the first derivation of the
standard MLE in Section 2.1, we cannot perform the same calculation for each n, which
was based on multinomial counts. Note that we obtained a justification for the usual MLE
through the asymptotic Sanov LDP, leading to the KL divergence and finally back to the
MLE through an approximation step of this latest. From Theorem 12 together with the a.s.
convergence of Pn to PθT in SK it follows that for some α < 1 < β

− inf
m 6=0

φW(mVαε(PθT ), θ) (14)

≤ lim
n→∞

1
n

log PW
(
PW

n,θ ∈ Vε(Pn)|X1,θ , . . . , Xn,θ , Pn

)

≤ − inf
m 6=0

φW(mVβε(PθT ), θ)

where φW(Vcε(θT), θ) = infµ∈Vcε(PθT
)) φW(µ, θ).

As ε→ 0 , by continuity it holds that

lim
ε→0

lim
n→∞

1
n

log PW
(
PW

n,θ ∈ Vε(Pn)|X1,θ , . . . , Xn,θ , Pn

)
(15)

= − inf
m 6=0

φW(mPθT , θ).

The ML principle amounts to maximize

PW
(
PW

n,θ ∈ Vε(Pn)|X1,θ , . . . , Xn,θ , Pn

)
(16)

over θ. Whenever Θ is a compact set we may insert this optimization in (14) which yields,
following (15)

lim
ε→0

lim
n→∞

1
n

log sup
θ

PW
(
PW

n,θ ∈ Vε(Pn)|X1,θ , . . . , Xn,θ , Pn

)

= − inf
θ∈Θ

inf
m 6=0

φW(mPθT , θ).

We consider weights W’s such that there exists a power divergence function ϕγ

satisfying (4), which amounts to φW = φγ; by the results quoted in Section 1.1.2 this holds
when γ ∈ (−∞, 1] ∪ [2,+∞).

By Proposition 2 the argument of the infimum upon θ in the RHS of the above
display coincides with the corresponding argument of φW(θT , θ), which obviously gets θT .
This justifies to consider a proxy of this minimization problem as a “ML” estimator based
on normalized weighted data.
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A further interpretation of the MDE in the context of non-parametric Bayesian proce-
dures may also be proposed; this is postponed to a next paper.

Since
φW(θT , θ) = φ̃W(θ, θT)

the ML estimator is obtained as in the conventional case by plug in the LDP rate.
Obviously the “best” plug in consists in the substitution of PθT by Pn, the empirical measure
of the sample, since Pn achieves the best rate of convergence to PθT when confronted to any
bootstrapped version, which adds “noise” to the sampling. We may therefore call

θW
ML := arg inf

θ∈Θ
φ̃W(θ, Pn) := arg inf

θ∈Θ

K

∑
k=1

Pn(dk)ϕ̃W
(

Pθ(dk)

Pn(dk)

)
(17)

= arg inf
θ∈Θ

K

∑
k=1

Pθ(dk)ϕW
(

Pn(dk)

Pθ(dk)

)

the MLE for the bootstrap sampling; here φ̃W (with divergence function ϕ̃) is the conjugate
divergence of φW (with divergence function ϕ). Since φW = φγ for some γ, it holds
φ̃W = φ1−γ.

We can also plug in the normalized weighted empirical measure, which also is a proxy
of PθT for each run of the weights. This produces a bootstrap estimate of θT through

θW
B := arg inf

θ∈Θ
φ̃W(θ,PW

n ) := arg inf
θ∈Θ

K

∑
k=1

PW
n (dk)ϕ̃W

(
Pθ(dk)

PW
n (dk)

)
(18)

= arg inf
θ∈Θ

K

∑
k=1

Pθ(dk)ϕW
(
PW

n (dk)

Pθ(dk)

)

where PW
n is defined in (9), assuming n large enough such that the sum of the Wi’s is not

zero. Whenever P(W = 0) > 0 , these estimators are defined for large n in order that
PW

n (dk) be positive for all k. Since E(W) = 1, this occurs for large samples.
For a given weighted bootstrapped sample with weights W1, . . . , Wn leading to the

weighted normalized empirical measure PW
n , θW

B is the MLE in the sense of (16), hence
defined as a proxy of the maximizer of

PW′
(
PW ′

n,θ ∈ Vε(P
W
n )|X1,θ , . . . , Xn,θ ,PW

n

)

where the vector
(
W ′1, . . . , W ′n

)
is an independent copy of (W, . . . , Wn). This estimator

usually differs from the bootstrapped version of the MLE based on Pn (see (8)) which is
defined for n large enough through

θB
ML := arg inf

θ
KLm(θ,PW

n ).

When Y is not a finite space then an equivalent construction can be developed based
on the variational form of the divergence; see [6].

Remark 1. We may also consider cases when the MLE defined through θW
ML defined in (17) coincide

with the standard MLE θML under i.i.d. sampling, and when its bootstrapped counterparts θW
B

defined in (18) coincides with the bootstrapped standard MLE θb
ML defined through the likelihood

estimating equation where the factor 1/n is substituted by the weight Zi. It is proved in Theorem 5
of [11] that whenever PΘ is an exponential family with natural parametrization θ ∈ Rd and
sufficient statistics T

Pθ

(
dj
)
= exp

[
T(dj)

′θ − C(θ)
]
, 1 ≤ j ≤ K
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where the Hessian matrix of C(θ) is definite positive, then for all divergence pseudo distance φ
satisfying regularity conditions (including therefore the present cases), θW

ML equals θML, the classical
MLE in PΘ defined as the solution of the normal equation

1
n ∑ T(Xi) = ∇C(θML)

irrespectively upon φ. Therefore on regular exponential families, and under i.i.d. sampling, all
minimum divergence estimators coincide with the MLE (which is indeed one of them). The proof
of this result is based on the variational form of the estimated divergence Q → φ(Q, P), which
coincides with the plug in version in (17) when the common support of all distributions in PΘ is
finite. Following verbatim the proof of Theorem 5 in [11] substituting Pn by PW

n it results that
θW

B equals the weighted MLE (standard generalized bootstrapped MLE θb
ML) defined through the

normal equation
n

∑
i=1

ZiT(Xi) = ∇C(θb
ML),

where the Zi’s are defined in (10). This fact holds for any choice of the weights, irrespectively on
the choice of the divergence function ϕ with the only restriction that it satisfies the mild conditions
(RC) in [11]. It results that for those models any generalized bootstrapped MDE coincides with the
corresponding standard bootstrapped MLE.

Example 1. A-When W has a standard Poisson POI(1) distribution then the resulting estimator
is the minimum modified Kullback-Leibler one. which takes the usual weighted form of the standard
generalized bootstrap MLE

θ
POI(1)
B := arg sup

θ

K

∑
k=1

(
∑n

i=1 Wi1k(Xi)

∑n
i=1 Wi

)
log Pθ(k)

which is defined for n large enough. Also in this case θW
ML coincides with the standard MLE.

B-If W has an Inverse Gaussian distribution IG(1,1) then ϕ(x) = ϕ−1(x) = 1
2 (x− 1)2/x

for x > 0 and the ML estimator minimizes the Pearson Chi-square divergence with generator
function ϕ2(x) = 1

2 (x− 1)2 which is defined on R.
C-If W follows a normal distribution with expectation and variance 1, then the resulting

divergence is the Pearson Chi-square divergence ϕ2(x) and the resulting estimator minimizes the
Neyman Chi-square divergence with ϕ(x) = ϕ−1(x).

D-When W has a Compound Poisson Gamma distribution C(POI(2), Γ(2, 1)) distribution
then the corresponding divergence is ϕ1/2(x) = 2

(√
x− 1

)2 which is self conjugate, whence the
ML estimator is the minimum Hellinger distance one.

4. Bahadur Efficiency of Minimum Divergence Tests under Generalized Bootstrap

In [27] Efron and Tibshirani suggest the bootstrap as a valuable approach for testing,
based on bootstrapped samples. We show that bootstrap testing for parametric models
based on appropriate divergence statistics enjoys maximal Bahadur efficiency with respect
to any bootstrap test statistics.

The standard approach to Bahadur efficiency can be adapted for the present general-
ized Bootstrapped tests as follows.

Consider the test of some null hypothesis H0: θT = θ versus a simple Hypothesis H1
θT = θ′.

We consider two competitive statistics for this problem. The first one is based on the
bootstrap estimate of φ̃W(θ, θT) and

Tn,X := Φ̃
(

θ,PW
n,X

)
= T

(
PW

n,X

)
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which allows to reject H0 for large values since limn→∞ Tn,X = 0 whenever H0 holds. In the
above display we have emphasized in PW

n,X the fact that we have used the RV Xi’s. Let

Ln(t) := PW(Tn,X > t|X1, . . . , Xn).

We use PW to emphasize that the hazard is due to the weights. Consider now a set of
RVs Z1, . . . , Zn extracted from a sequence such that

lim
n→∞

Pn,Z = Pθ′

a.s; we have denoted Pn,Z the empirical measure of (Z1, . . . , Zn); accordingly define
PW ′

n,Z, the normalized weighted empirical measure of the Zi ’s making use of weights(
W ′1, . . . , W ′n

)
which are i.i.d. copies of (W1, . . . , Wn), drawn independently from

(W1, . . . , Wn). Define accordingly

Tn,Z := Φ̃
(

θ,PW ′
n,Z

)
= T

(
PW ′

n,Z

)
.

Define
Ln(Tn,Z) := PW(Tn,W > Tn,Z|X1, . . . , Xn)

which is a RV (as a function of Tn,Z). It holds

lim
n→∞

Tn,Z = Φ̃
(
θ, θ′

)
a.s

and therefore the Bahadur slope for the test with statistics Tn is Φ(θ′, θ) as follows from

lim
n→∞

1
n

log Ln(Tn,Z) = − inf
{

Φ(Q, θT) : Φ̃(θ, Q) > Φ̃
(
θ, θ′

)}

= − inf
{

Φ(Q, θT) : Φ(Q, θ) > Φ
(
θ′, θ

)}

= −Φ
(
θ′, θ

)

If θT = θ. Under H0 the rate of decay of the p-value corresponding to a sampling
under H1 is captured through the divergence Φ(θ′, θ).

Consider now a competitive test statistics S
(
PW

n,X

)
and evaluate its Bahadur slope.

Similarly as above it holds, assuming continuity of the functional S on SK

lim
n→∞

1
n

log PW
(

S
(
PW

n,X

)
> S

(
PW

′
n,Z

)∣∣∣∣X1, . . . , Xn

)

= − inf
{

Φ(Q, θT) : S(Q) > S
(
θ′
)}

≥ −Φ
(
θ′, θT

)

as follows from the continuity of Q→ Φ(Q, θT). Hence the Bahadur slope of the test based
on S

(
PW

n,X

)
is larger or equal Φ(θ′, θ).

We have proved that the chances under H0 for the statistics Tn,X to exceed a value
obtained under H1 are (asymptotically) less that the corresponding chances associated
with any other statistics based on the same bootstrapped sample; as such it is most specific
on this scale with respect to any competing ones. Namely the following result holds:

Proposition 3. Under the weighted sampling the test statistics T
(
PW

n,X

)
is the most efficient

among all tests which are empirical versions of continuous functionals on SK.
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Appendix A

A Heuristic Derivation of the Conditional LDP for the Normalized Weighted Empirical Measure

The following sketch of proof gives the core argument which yields to Proposition 1; a
proof adapted to a more abstract setting can be found in [22], following their Theorem 3.2
and Corollary 3.3, but we find it useful to present a proof which reduces to simple argu-
ments. We look at the probability of the event

PW
n ∈ V(R) (A1)

for a given vector R in RK, where V(R) denotes a neighborhood of R, therefore defined
through

(Q ∈ V(R))⇐⇒ (Q(dl) ≈ R(dl); 1 ≤ l ≤ k)

We denote by P the distribution of the RV X so that Pn converges to P a.s.
Evaluating loosely the probability of the event defined in (A1) yields, denoting PXn

1
the conditional distribution given (X1, . . . , Xn)

PXn
1

(
PW

n ∈ V(R)
)
= PXn

1

(
K⋂

l=1

(
1
n

n

∑
i=1

WiδXi (dl) ≈ R(dl)

))

= PXn
1

(
K⋂

l=1

(
1
n

nl

∑
i=1

Wi,l ≈ R(dl)

))

=
K

∏
l=1

PXn
1

(
1
nl

nl

∑
i=1

Wi,l ≈
n
nl

R(dl)

)

=
K

∏
l=1

PXn
1

(
1
nl

nl

∑
i=1

Wi,l ≈
R(dl)

P(dl)

)

where we used repeatedly the fact that the r.v’s W are i.i.d.. In the above display, from the
second line on, the r.v’s are independent copies of W1 for all i and l. In the above displays
nl is the number of Xi’s which equal dl , and the Wi,l are the weights corresponding to these
Xi’s. We used the convergence of nl/n to P(dl) in the last display.

Now for each l in {1, 2, . . . , K} by the Cramer LDP for the empirical mean, it holds

1
nl

log P

(
1
nl

nl

∑
i=1

Wi,l ≈
R(dl)

P(dl)

)
≈ −ϕW

(
R(dl)

P(dl)

)

i.e.,

1
n

log P

(
1
nl

nl

∑
i=1

Wi,l ≈
R(l)
P(l)

)
≈ −R(dl)

P(dl)
ϕW
(

R(dl)

P(dl)

)

as follows from the classical Cramer LDP, and therefore
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1
n

log PXn
1

(
PW

n ∈ V(R)
)

≈ 1
n

log PXn
1

(
K⋂

l=1

(
1
n

nl

∑
i=1

Wi,l ≈ R(dl)

))

→ −
K

∑
l=1

ϕW
(

R(dl)

P(dl)

)
P(dl) = −φW(R, P)

where the limit in the last line applies to the case where we let n→ ∞ .
A precise derivation of Proposition 1 involves two arguments: firstly for a set Ω

⊂ RK a covering procedure by small balls allowing to use the above derivation locally, and
the regularity assumption (11) which allows to obtain proper limits in the standard LDP
statement.

The argument leading from Proposition 1 to Theorem 1 can be summarized now.
For some subset Ω in SK with non-void interior it holds

(
PW

n ∈ Ω
)
=
⋃

m 6=0

((
PW

n ∈ mΩ
)
∩
(

n

∑
i=1

Wi = m

))

and
(

PW
n ∈ mΩ

)
⊂ (∑n

i=1 Wi = m) for all m 6= 0. Therefore

PXn
1

(
PW

n ∈ Ω
)
= PXn

1


 ⋃

m 6=0

(
PW

n ∈ mΩ
)

.

Making use of Proposition 1

lim
n→∞

1
n

log PXn
1

(
PW

n ∈ Ω
)
= −φW


 ⋃

m 6=0

mΩ, P


.

Now

φW


 ⋃

m 6=0

mΩ, P


 = inf

m 6=0
inf

Q∈Ω
φW(mQ, P).

We have sketched the arguments leading to Theorem 1; see [19] for details.
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Abstract: Over the last six decades, the representation of error exponent functions for data transmis-
sion through noisy channels at rates below capacity has seen three distinct approaches: (1) Through
Gallager’s E0 functions (with and without cost constraints); (2) large deviations form, in terms of
conditional relative entropy and mutual information; (3) through the α-mutual information and the
Augustin–Csiszár mutual information of order α derived from the Rényi divergence. While a fairly
complete picture has emerged in the absence of cost constraints, there have remained gaps in the
interrelationships between the three approaches in the general case of cost-constrained encoding.
Furthermore, no systematic approach has been proposed to solve the attendant optimization prob-
lems by exploiting the specific structure of the information functions. This paper closes those gaps
and proposes a simple method to maximize Augustin–Csiszár mutual information of order α under
cost constraints by means of the maximization of the α-mutual information subject to an exponential
average constraint.

Keywords: information measures; relative entropy; Rényi divergence; mutual information;
α-mutual information; Augustin–Csiszár mutual information; data transmission; error exponents;
large deviations

1. Introduction
1.1. Phase 1: The MIT School

The capacity C of a stationary memoryless channel is equal to the maximal symbol-
wise input–output mutual information. Not long after Shannon [1] established this result,
Rice [2] observed that, when operating at any encoding rate R ă C, there exist codes
whose error probability vanishes exponentially with blocklength, with a speed of decay
that decreases as R approaches C. This early observation moved the center of gravity of
information theory research towards the quest for the reliability function, a term coined by
Shannon [3] to refer to the maximal achievable exponential decay as a function of R. The
MIT information theory school, and most notably, Elias [4], Feinstein [5], Shannon [3,6],
Fano [7], Gallager [8,9], and Shannon, Gallager and Berlekamp [10,11], succeeded in up-
per/lower bounding the reliability function by the sphere-packing error exponent function
and the random coding error exponent function, respectively. Fortunately, these functions
coincide for rates between C and a certain value, called the critical rate, thereby determin-
ing the reliability function in that region. The influential 1968 textbook by Gallager [9]
set down the major error exponent results obtained during Phase 1 of research on this
topic, including the expurgation technique to improve upon the random coding error expo-
nent lower bound. Two aspects of those early works (and of Dobrushin’s contemporary
papers [12,13] on the topic) stand out:

(a) The error exponent functions were expressed as the result of the Karush-Kuhn-
Tucker optimization of ad-hoc functions which, unlike mutual information, carried
little insight. In particular, during the first phase, center stage is occupied by the
parametrized function of the input distribution PX and the random transformation
(or “channel”) PY|X ,
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E0pρ, PXq “ ´ log
ÿ

yPB

˜ÿ

xPA
PXpxqP

1
1`ρ

Y|X py|xq
¸1`ρ

, (1)

introduced by Gallager in [8].
(b) Despite the large-deviations nature of the setup, none of the tools from that then-

nascent field (other than the Chernoff bound) found their way to the first phase of the
work on error exponents; in particular, relative entropy, introduced by Kullback and
Leibler [14], failed to put in an appearance.

To this date, the reliability function remains open for low rates even for the bi-
nary symmetric channel, despite a number of refined converse and achievability results
(e.g., [15–21]) obtained since [9]. Our focus in this paper is not on converse/achievability
techniques but on the role played by various information measures in the formulation of
error exponent results.

1.2. Phase 2: Relative Entropy

The second phase of the error exponent research was pioneered by Haroutunian [22]
and Blahut [23], who infused the expressions for the error exponent functions with meaning
by incorporating relative entropy. The sphere-packing error exponent function correspond-
ing to a random transformation PY|X is given as

EsppRq “ sup
PX

min
QY|X : AÑ B

IpPX , QY|Xq ď R

DpQY|X}PY|X|PXq. (2)

Roughly speaking, optimal codes of rate R ă C incur in errors due to atypical chan-
nel behavior, and large deviations establishes that the overwhelmingly most likely such
behavior can be explained as if the channel would be supplanted by the one with mutual
information bounded by R which is closest to the true channel in conditional relative
entropy DpQY|X}PY|X|PXq. Within the confines of finite-alphabet memoryless channels,
this direction opened the possibility of using the combinatorial method of types to obtain
refined results robustifying the choice of the optimal code against incomplete knowledge
of the channel. The 1981 textbook by Csiszár and Körner [24] summarizes the main results
obtained during Phase 2.

1.3. Phase 3: Rényi Information Measures

Entropy and relative entropy were generalized by Rényi [25], who introduced the
notions of Rényi entropy and Rényi divergence of order α. He arrived at Rényi entropy by
relaxing the axioms Shannon proposed in [1], and showed to be satisfied by no measure but
entropy. Shortly after [25], Campbell [26] realized the operational role of Rényi entropy in
variable-length data compression if the usual average encoding length criterion Er`pcpXqqs
is replaced by an exponential average α´1 logErexppα `pcpXqqs. Arimoto [27] put forward
a generalized conditional entropy inspired by Rényi’s measures (now known as Arimoto-
Rényi conditional entropy) and proposed a generalized mutual information by taking
the difference between Rényi entropy and the Arimoto-Rényi conditional entropy. The
role of the Arimoto-Rényi conditional entropy in the analysis of the error probability of
Bayesian M-ary hypothesis testing problems has been recently shown in [28], tightening
and generalizing a number of results dating back to Fano’s inequality [29].
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Phase 3 of the error exponent research was pioneered by Csiszár [30] where he es-
tablished a connection between Gallager’s E0 function and Rényi divergence by means
of a Bayesian measure of the discrepancy among a finite collection of distributions intro-
duced by Sibson [31]. Although [31] failed to realize its connection to mutual information,
Csiszár [30,32] noticed that it could be viewed as a natural generalization of mutual infor-
mation. Arimoto [27] also observed that the unconstrained maximization of his generalized
mutual information measure with respect to the input distribution coincides with a scaled
version of the maximal E0 function. This resulted in an extension of the Arimoto-Blahut
algorithm useful for the computation of error exponent functions [33] (see also [34]) for
finite-alphabet memoryless channels.

Within Haroutunian’s framework [22] applied in the context of the method of types,
Poltyrev [35] proposed an alternative to Gallager’s E0 function, defined by means of a
cumbersome maximization over a reverse random transformation. This measure turned
out to coincide (modulo different parametrizations) with another generalized mutual
information introduced four years earlier by Augustin in his unpublished thesis [36], by
means of a minimization with respect to an output probability measure.

The key contribution in the development of this third phase is Csiszár’s paper [32]
where he makes a compelling case for the adoption of Rényi’s information measures in the
large deviations analysis of lossless data compression, hypothesis testing and data trans-
mission. Recall that more than two decades earlier, Csiszár [30] had already established
the connection of Gallager’s E0 function and the generalized mutual information inspired
by Sibson [31], which, henceforth, we refer to as the α-mutual information. Therefore,
its relevance to the error exponent analysis of error correcting codes had already been
established. Incidentally, more recently, another operational role was found for α-mutual
information in the context of the large deviations analysis of composite hypothesis test-
ing [37]. In addition to α-mutual information, and always working with discrete alphabets,
Csiszár [32] considers the generalized mutual informations due to Arimoto [27], and to
Augustin [36], which we refer to as the Augustin–Csiszár mutual information of order α.
Csiszár shows that all those three generalizations of mutual information coincide upon their
unconstrained maximization with respect to the input distribution. Further relationships
among those Rényi-based generalized mutual informations have been obtained in recent years
in [38–45]. In [32] the maximal α-mutual information or generalized capacity of order α
finds an operational characterization as a generalized cutoff rate–an equivalent way to
express the reliability function. This would have been the final word on the topic if it
weren’t for its limitation to discrete-alphabet channels, and more importantly, encoding
without cost constraints.

1.4. Cost Constraints

If the transmitted codebook is cost-constrained, i.e., every codeword pc1, . . . , cnq is
forced to satisfy

řn
i“1 bpciq ď n θ for some nonnegative cost function bp¨q, then the channel

capacity is equal to the input–output mutual information maximized over input probability
measures restricted to satisfy ErbpXqs ď θ. Gallager [9] incorporated cost constraints in his
treatment of error exponents by generalizing (1) to the function

E0pρ, PX , r, θq “ ´ log
ÿ

yPB

˜ÿ

xPA
PXpxq exppr bpxq ´ r θqP

1
1`ρ

Y|X py|xq
¸1`ρ

, (3)

with which he was able to prove an achievability result invoking Shannon’s random coding
technique [1]. Gallager also suggested in the footnote of page 329 of [9] that the converse
technique of [10] is amenable to extension to prove a sphere-packing converse based on
(3). However, an important limitation is that that technique only applies to constant-
composition codes (all codewords have the same empirical distribution). A more powerful
converse circumventing that limitation (at least for symmetric channels) was given by [46]
also expressing the upper bound on the reliability function by optimizing (3) with respect
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to ρ, r and PX . A notable success of the approach based on the optimization of (3) was the
determination of the reliability function (for all rates below capacity) of the direct detection
photon channel [47].

In contrast, the Phase Two expression (2) for the sphere-packing error exponent for
cost-constrained channels is much more natural and similar to the way the expression
for channel capacity is impacted by cost constraints, namely we simply constrain the
maximization in (2) to satisfy ErbpXqs ď θ. Unfortunately, no general methods to solve the
ensuing optimization have been reported.

Once cost constraints are incorporated, the equivalence among the maximal α-mutual
information, maximal order-α Augustin–Csiszár mutual information, and maximal Ari-
moto mutual information of order α breaks down. Of those three alternatives, it is the
maximal Augustin–Csiszár mutual information under cost constraints that appears in the
error exponent functions. The challenge is that Augustin–Csiszár mutual information is
much harder to evaluate, let alone maximize, than α-mutual information. The Phase 3
effort to encompass cost constraints started by Augustin [36] and was continued recently by
Nakiboglu [43]. Their focus was to find a way to express (3) in terms of Rényi information
measures. Although, as we explain in Item 62, they did not quite succeed, their efforts were
instrumental in developing key properties of the Augustin–Csiszár mutual information.

1.5. Organization

To enhance readability and ease of reference, the rest of this work is organized in
81 items, grouped into Section 13 and an appendix.

Basic notions and notation (including the key concept of α-response) are collected in
Section 2. Unlike much of the literature on the topic, we do not restrict attention to discrete
input/output alphabets, nor do we impose any topological structures on them.

The paper is essentially self-contained. Section 3 covers the required background
material on relative entropy, Rényi divergence of order α, and their conditional versions,
including a key representation of Rényi divergence in terms of relative entropies and a
tilted probability measure, and additive decompositions of Rényi divergence involving the
α-response.

Section 4 studies the basic properties of α-mutual information and order-α Augustin–
Csiszár mutual information. This includes their variational representations in terms of
conventional (non-Rényi) information measures such as conditional relative entropy and
mutual information, which are particularly simple to show in the main range of interest in
applications to error exponents, namely, α P p0, 1q.

The interrelationships between α-mutual information and order-α Augustin–Csiszár
mutual information are covered in Section 5, which introduces the dual notions of α-adjunct
and xαy-adjunct of an input probability measure.

The maximizations with respect to the input distribution of α-mutual information and
order-α Augustin–Csiszár mutual information account for their role in the fundamental
limits in data transmission through noisy channels. Section 6 gives a brief review of the
results in [45] for the maximization of α-mutual information. For Augustin–Csiszár mutual
information, Section 7 covers its unconstrained maximization, which coincides with its α-
mutual information counterpart. Section 8 proposes an approach to find Cc

αpθq, the maximal
Augustin–Csiszár mutual information of order α P p0, 1q subject to ErbpXqs ď θ. Instead of
trying to identify directly the input distribution that maximizes Augustin–Csiszár mutual
information, the method seeks its xαy-adjunct. This is tantamount to maximizing α-mutual
information over a larger set of distributions.

Section 9 shows

ρCc
1

1`ρ
pθq “ min

rě0
max

PX
E0pρ, PX , r, θq, (4)

where the maximization on the right side is unconstrained. In other words, the minimax
of Gallager’s E0 function (3) with cost constraints is shown to be equal to the maximal
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Augustin–Csiszár mutual information, thereby bridging the existing gap between the Phase
1 and Phase 3 representations alluded to earlier in this introduction.

As in [48], Section 10 defines the sphere-packing and random-coding error exponent
functions in the natural canonical form of Phase 2 (e.g., (2)), and gives a very simple proof
of the nexus between the Phase 2 and Phase 3 representations, namely,

EsppRq “ sup
ρě0

"
ρCc

1
1`ρ
pθq ´ ρ R

*
, (5)

with or without cost constraints. In this regard, we note that, although all the ingredients
required were already present at the time the revised version of [24] was published three
decades after the original, [48] does not cover the role of Rényi’s information measures in
channel error exponents.

Examples illustrating the proposed method are given in Sections 11 and 12 for the
additive Gaussian noise channel under a quadratic cost function, and the additive exponen-
tial noise channel under a linear cost function, respectively. Simple parametric expressions
are given for the error exponent functions, and the least favorable channels that account
for the most likely error mechanism (Section 1.2) are identified in both cases.

2. Relative Information and Information Density

We begin with basic terminology and notation required for the subsequent development.

1. If pA, F , Pq is a probability space, X „ P indicates PrX P F s “ PpFq for all F P F .
2. If probability measures P and Q defined on the same measurable space pA, F q satisfy

PpAq “ 0 for all A P F such that QpAq “ 0, we say that P is dominated by Q, denoted
as P ! Q. If P and Q dominate each other, we write P !" Q. If there is an event
such that PpAq “ 0 and QpAq “ 1, we say that P and Q are mutually singular, and
we write P K Q.

3. If P ! Q, then dP
dQ is the Radon-Nikodym derivative of the dominated measure P with

respect to the reference measure Q. Its logarithm is known as the relative information,
namely, the random variable

ıP}Qpaq “ log
dP
dQ
paq P r´8,`8q, a P A. (6)

As with the Radon-Nikodym derivative, any identity involving relative informations
can be changed on a set of measure zero under the reference measure without in-
curring in any contradiction. If P ! Q ! R, then the chain rule of Radon-Nikodym
derivatives yields

ıP}Qpaq ` ıQ}Rpaq “ ıP}Rpaq, a P A. (7)

Throughout the paper, the base of exp and log is the same and chosen by the reader
unless explicitly indicated otherwise. We frequently define a probability measure P
from the specification of ıP}Q and Q " P since

PpAq “
ż

A
exp

´
ıP}Qpaq

¯
dQpaq, A P F . (8)

If X „ P and Y „ Q, it is often convenient to write ıX}Ypxq instead of ıP}Qpxq. Note that

E
”
exp

´
ıX}YpYq

¯ı
“ 1. (9)
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Example 1. If X „ N`µX , σ2
X
˘

(Gaussian with mean µX and variance σ2
X) and Y „

N
`
µY, σ2

Y
˘
, then,

ıX}Ypaq “
1
2

log
σ2

Y
σ2

X
` 1

2

˜
pa´ µYq2

σ2
Y

´ pa´ µXq2
σ2

X

¸
log e. (10)

4. Let pA, F q and pB, G q be measurable spaces, known as the input and output spaces,
respectively. Likewise, A and B are referred to as the input and output alphabets
respectively. The simplified notation PY|X : AÑ B denotes a random transformation
from pA, F q to pB, G q, i.e. for any x P A, PY|X“xp¨q is a probability measure on pB, G q,
and for any B P G , PY|X“¨pBq is an F -measurable function.

5. We abbreviate by PA the set of probability measures on pA, F q, and by PAˆB the
set of probability measures on pA ˆ B, F b G q. If P P PA and PY|X : A Ñ B is a
random transformation, the corresponding joint probability measure is denoted by
P PY|X P PAˆB (or, interchangeably, PY|XP). The notation P Ñ PY|X Ñ Q simply
indicates that the output marginal of the joint probability measure P PY|X is denoted
by Q P PB , namely,

QpBq “
ż

PY|XpB|xqdPXpxq “ E
”

PY|XpB|Xq
ı
, B P G . (11)

6. If PX Ñ PY|X Ñ PY and PY|X“a ! PY, the information density ıX;Y : AˆB Ñ r´8,8q
is defined as

ıX;Ypa; bq “ ıPY|X“a}PY
pbq, pa, bq P Aˆ B. (12)

Following Rényi’s terminology [49], if PXPY|X ! PX ˆ PY, the dependence between
X and Y is said to be regular, and the information density can be defined on px, yq P
Aˆ B. Henceforth, we assume that PY|X is such that the dependence between its
input and output is regular regardless of the input probability measure. For example,
if X “ Y P R, then PY|X“apAq “ 1ta P Au, and their dependence is not regular, since

for any PX with non-discrete components PXY
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Example 1. If X ∼ N
(
µX , σ2

X
)

(Gaussian with mean µX and variance σ2
X) and Y ∼

N
(
µY, σ2

Y
)
, then,

ıX‖Y(a) =
1
2

log
σ2

Y
σ2

X
+

1
2

(
(a− µY)

2

σ2
Y

− (a− µX)
2

σ2
X

)
log e. (10)

4. Let (A, F ) and (B, G ) be measurable spaces, known as the input and output spaces,
respectively. Likewise, A and B are referred to as the input and output alphabets
respectively. The simplified notation PY|X : A → B denotes a random transformation
from (A, F ) to (B, G ), i.e. for any x ∈ A, PY|X=x(·) is a probability measure on
(B, G ), and for any B ∈ G , PY|X=·(B) is an F -measurable function.

5. We abbreviate by PA the set of probability measures on (A, F ), and by PA×B the
set of probability measures on (A× B, F ⊗ G ). If P ∈ PA and PY|X : A → B is a
random transformation, the corresponding joint probability measure is denoted by
P PY|X ∈ PA×B (or, interchangeably, PY|XP). The notation P → PY|X → Q simply
indicates that the output marginal of the joint probability measure P PY|X is denoted
by Q ∈ PB , namely,

Q(B) =
∫

PY|X(B|x)dPX(x) = E
[

PY|X(B|X)
]
, B ∈ G . (11)

6. If PX → PY|X → PY and PY|X=a � PY, the information density ıX;Y : A × B →
[−∞, ∞) is defined as

ıX;Y(a; b) = ıPY|X=a‖PY
(b), (a, b) ∈ A×B. (12)

Following Rényi’s terminology [49], if PXPY|X � PX × PY, the dependence between
X and Y is said to be regular, and the information density can be defined on (x, y) ∈
A × B. Henceforth, we assume that PY|X is such that the dependence between its
input and output is regular regardless of the input probability measure. For example,
if X = Y ∈ R, then PY|X=a(A) = 1{a ∈ A}, and their dependence is not regular, since
for any PX with non-discrete components PXY 6� PX × PY.

7. Let α > 0, and PX → PY|X → PY. The α-response to PX ∈ PA is the output probability
measure PY[α] � PY with relative information given by

ıY[α]‖Y(y) =
1
α

logE[exp(α ıX;Y(X; y)− κα)], X ∼ PX , (13)

where κα is a scalar that guarantees that PY[α] is a probability measure. Invoking (9),
we obtain

κα = α logE
[
E

1
α [exp(α ıX;Y(X; Ȳ))|Ȳ]

]
, (X, Ȳ) ∼ PX × PY. (14)

For brevity, the dependence of κα on PX and PY|X is omitted. Jensen’s inequality
applied to (·)α results in κα ≤ 0 for α ∈ (0, 1) and κα ≥ 0 for α > 1. Although the
α-response has a long record of services to information theory, this terminology and
notation were introduced recently in [45]. Alternative terminology and notation were
proposed in [42], which refers to the α-response as the order α Rényi mean. Note that
κ1 = 0 and the 1-response to PX is PY. If pY[α] and pY|X denote the densities of PY[α]
and PY|X with respect to some common dominating measure, then (13) becomes

pY[α](y) = exp
(
−κα

α

)
E

1
α

[
pα

Y|X(y|X)
]
, X ∼ PX . (15)

For α > 1 (resp. α < 1) we can think of the normalized version of pα
Y|X as a random

transformation with less (resp. more) "noise" than pY|X .

PX ˆ PY.
7. Let α ą 0, and PX Ñ PY|X Ñ PY. The α-response to PX P PA is the output probability

measure PYrαs ! PY with relative information given by

ıYrαs}Ypyq “
1
α

logErexppα ıX;YpX; yq ´ καqs, X „ PX , (13)

where κα is a scalar that guarantees that PYrαs is a probability measure. Invoking (9),
we obtain

κα “ α logE
”
E

1
α rexppα ıX;YpX; Ȳqq|Ȳs

ı
, pX, Ȳq „ PX ˆ PY. (14)

For brevity, the dependence of κα on PX and PY|X is omitted. Jensen’s inequality
applied to p¨qα results in κα ď 0 for α P p0, 1q and κα ě 0 for α ą 1. Although the
α-response has a long record of services to information theory, this terminology and
notation were introduced recently in [45]. Alternative terminology and notation were
proposed in [42], which refers to the α-response as the order α Rényi mean. Note that
κ1 “ 0 and the 1-response to PX is PY. If pYrαs and pY|X denote the densities of PYrαs
and PY|X with respect to some common dominating measure, then (13) becomes

pYrαspyq “ exp
´
´κα

α

¯
E

1
α

”
pα

Y|Xpy|Xq
ı
, X „ PX . (15)

For α ą 1 (resp. α ă 1) we can think of the normalized version of pα
Y|X as a random

transformation with less (resp. more) “noise” than pY|X .
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8. We will have opportunity to apply the following examples.

Example 2. If Y “ X` N, where X „ N`µX , σ2
X
˘

independent of N „ N`µN , σ2
N
˘
, then

the α-response to PX is

Yrαs „ N
´

µX ` µN , α σ2
X ` σ2

N

¯
. (16)

Example 3. Suppose that Y “ X` N, where N is exponential with mean ζ, independent of
X, which is a mixed random variable with density

fXptq “ ζ

α µ
δptq `

ˆ
1´ ζ

α µ

˙
1
µ

e´t{µ 1tt ą 0u, (17)

with α µ ě ζ. Then, Yrαs, the α-response to PX , is exponential with mean α µ.

3. Relative Entropy and Rényi Divergence

Given a pair of probability measures pP, Qq P P2
A, relative entropy and Rényi diver-

gence gauge the distinctness between P and Q.

9. Provided P ! Q, the relative entropy is the expectation of the relative information
with respect to the dominated measure

DpP}Qq “ E
”
ıP}QpXq

ı
, X „ P (18)

“ E
”
exp

´
ıP}QpYq

¯
ıP}QpYq

ı
, Y „ Q (19)

ě 0, (20)

with equality if and only if P “ Q. If P ­! Q, then DpP}Qq “ 8. As in Item 3, if
X „ P and Y „ Q, we may write DpX}Yq instead of DpP}Qq, in the same spirit that
the expectation and entropy of P are written as ErXs and HpXq, respectively.

10. Arising in the sequel, a common optimization in information theory finds, among the
probability measures satisfying an average cost constraint, that which is closest to a
given reference measure Q in the sense of Dp¨}Qq. For that purpose, the following
result proves sufficient. Incidentally, we often refer to unconstrained maximizations
over probability distributions. It should be understood that those optimizations are
still constrained to the sets PA or PB . As customary in information theory, we will
abbreviate maxPXPPA by maxX or maxPX .

Theorem 1. Let PZ P PA and suppose that g : A Ñ r0,8q is a Borel measurable
mapping. Then,

min
X
tDpX }Zq `ErgpXqsu “ ´ logErexpp´gpZqqs, (21)

achieved uniquely by PX̊ !" PZ defined by

ıX˚}Zpaq “ ´gpaq ´ logErexpp´gpZqqs, a P A. (22)

Proof. Note that since g is nonnegative, η “ Erexpp´gpZqqs P p0, 1s. Furthermore,

ErgpX˚qs “
ş

gptq expp´gptqqdPZptq
Erexpp´gpZqqs P

„
0,

1
e η


. (23)
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Therefore, the subset of PA for which the term in t¨u in (21) is finite is nonempty: Fix
any PX from that subset, (which therefore satisfies PX ! PZ ! PX̊) and invoke the
chain rule (7) to write

DpX }Zq `ErgpXqs “ E
”
ıX}X˚pXq ` ıX˚}ZpXq ` gpXq

ı
(24)

“ DpX }X˚q ´ logErexpp´gpZqqs, X „ PX , (25)

which is uniquely minimized by letting PX “ PX̊ . Note that for typographical conve-
nience we have denoted X˚ „ PX̊ .

11. Let p and q denote the Radon-Nikodym derivatives of probability measures P and
Q, respectively, with respect to a common dominating σ-finite measure µ. The Rényi
divergence of order α P p0, 1q Y p1,8q between P and Q is defined as [25,50]

DαpP}Qq “ 1
α´ 1

log
ż

A
pαq1´αdµ (26)

“ 1
α´ 1

logE
”
exp

´
α ıP}RpZq ` p1´ αqıQ}RpZq

¯ı
, Z „ R (27)

“ 1
α´ 1

logE
”
exp

´
α ıP}QpYq

¯ı
, Y „ Q (28)

“ 1
α´ 1

logE
”
exp

´
pα´ 1q ıP}QpXq

¯ı
, X „ P, (29)

where (28) and (29) hold if P
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4. Let (A, F ) and (B, G ) be measurable spaces, known as the input and output spaces,
respectively. Likewise, A and B are referred to as the input and output alphabets
respectively. The simplified notation PY|X : A → B denotes a random transformation
from (A, F ) to (B, G ), i.e. for any x ∈ A, PY|X=x(·) is a probability measure on
(B, G ), and for any B ∈ G , PY|X=·(B) is an F -measurable function.

5. We abbreviate by PA the set of probability measures on (A, F ), and by PA×B the
set of probability measures on (A× B, F ⊗ G ). If P ∈ PA and PY|X : A → B is a
random transformation, the corresponding joint probability measure is denoted by
P PY|X ∈ PA×B (or, interchangeably, PY|XP). The notation P → PY|X → Q simply
indicates that the output marginal of the joint probability measure P PY|X is denoted
by Q ∈ PB , namely,

Q(B) =
∫

PY|X(B|x)dPX(x) = E
[

PY|X(B|X)
]
, B ∈ G . (11)

6. If PX → PY|X → PY and PY|X=a � PY, the information density ıX;Y : A × B →
[−∞, ∞) is defined as

ıX;Y(a; b) = ıPY|X=a‖PY
(b), (a, b) ∈ A×B. (12)

Following Rényi’s terminology [49], if PXPY|X � PX × PY, the dependence between
X and Y is said to be regular, and the information density can be defined on (x, y) ∈
A × B. Henceforth, we assume that PY|X is such that the dependence between its
input and output is regular regardless of the input probability measure. For example,
if X = Y ∈ R, then PY|X=a(A) = 1{a ∈ A}, and their dependence is not regular, since
for any PX with non-discrete components PXY 6� PX × PY.

7. Let α > 0, and PX → PY|X → PY. The α-response to PX ∈ PA is the output probability
measure PY[α] � PY with relative information given by

ıY[α]‖Y(y) =
1
α

logE[exp(α ıX;Y(X; y)− κα)], X ∼ PX , (13)

where κα is a scalar that guarantees that PY[α] is a probability measure. Invoking (9),
we obtain

κα = α logE
[
E

1
α [exp(α ıX;Y(X; Ȳ))|Ȳ]

]
, (X, Ȳ) ∼ PX × PY. (14)

For brevity, the dependence of κα on PX and PY|X is omitted. Jensen’s inequality
applied to (·)α results in κα ≤ 0 for α ∈ (0, 1) and κα ≥ 0 for α > 1. Although the
α-response has a long record of services to information theory, this terminology and
notation were introduced recently in [45]. Alternative terminology and notation were
proposed in [42], which refers to the α-response as the order α Rényi mean. Note that
κ1 = 0 and the 1-response to PX is PY. If pY[α] and pY|X denote the densities of PY[α]
and PY|X with respect to some common dominating measure, then (13) becomes

pY[α](y) = exp
(
−κα

α

)
E

1
α

[
pα

Y|X(y|X)
]
, X ∼ PX . (15)

For α > 1 (resp. α < 1) we can think of the normalized version of pα
Y|X as a random

transformation with less (resp. more) "noise" than pY|X .

Q, and in (27), R is a probability measure that
dominates both P and Q. Note that (28) and (29) state that pt ´ 1qDtpX}Yq and
t D1`tpX}Yq are the cumulant generating functions of the random variables ıX}YpYq
and ıX}YpXq, respectively. The relative entropy is the limit of DαpP}Qq as α Ò 1, so it
is customary to let D1pP}Qq “ DpP}Qq. For any α ą 0, DαpP}Qq ě 0 with equality
if and only if P “ Q. Furthermore, DαpP}Qq is non-decreasing in α, satisfies the
skew-symmetric property

p1´ αqDαpP}Qq “ α D1´αpQ}Pq, α P r0, 1s, (30)

and

inf
αPp0,1q

DαpP}Qq “ 8 ðñ P K Q ùñ inf
αą1

DαpP}Qq “ 8. (31)

12. The expressions in the following pair of examples will come in handy in
Sections 11 and 12.

Example 4. Suppose that σ2
α “ α σ2

1 ` p1´ αqσ2
0 ą 0 and α P p0, 1q Y p1,8q. Then,

Dα

´
N
´

µ0, σ2
0

¯ ››N
´

µ1, σ2
1

¯¯
“ 1

2
log

σ2
1

σ2
0
` 1

2pα´ 1q log
σ2

1
σ2

α
` αpµ1 ´ µ0q2

2 σ2
α

log e, (32)

D
´
N
´

µ0, σ2
0

¯ ››N
´

µ1, σ2
1

¯¯
“ 1

2
log

σ2
1

σ2
0
` 1

2

˜
σ2

0
σ2

1
´ 1

¸
log e` pµ1 ´ µ0q2

2 σ2
1

log e (33)

“ lim
αÑ1

Dα

´
N
´

µ0, σ2
0

¯ ››N
´

µ1, σ2
1

¯¯
. (34)
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Example 5. Suppose Z is exponentially distributed with unit mean, i.e., its probability
density function is e´t1tt ě 0u. For d0 ě d1 and α such that p1 ´ αq µ0 ` α µ1 ą 0
we obtain

Dαpµ0 Z` d0 } µ1 Z` d1q “ d0 ´ d1

µ1
log e` log

µ1

µ0
` 1

1´ α
log

ˆ
α` p1´ αqµ0

µ1

˙
,

Dpµ0 Z` d0 } µ1 Z` d1q “
ˆ

µ0

µ1
´ 1` d0 ´ d1

µ1

˙
log e` log

µ1

µ0
(35)

“ lim
αÑ1

Dαpµ0 Z` d0 } µ1 Z` d1q. (36)

13. Intimately connected with the notion of Rényi divergence is the tilted probability
measure Pα defined, if DαpP1}P0q ă 8, by

ıPα}Qpaq “ α ıP1}Qpaq ` p1´ αq ıP0}Qpaq ` p1´ αqDαpP1 } P0q, (37)

where Q is any probability measure that dominates both P0 and P1. Although (37) is
defined in general, our main emphasis is on the range α P p0, 1q, in which, as long as
P0 M P1, the tilted probability measure is defined and satisfies Pα ! P0 and Pα ! P1,
with corresponding relative informations

ıPα}P0paq “ ıPα}Qpaq ´ ıP0}Qpaq (38)

“ p1´ αqDαpP1 } P0q ` α
´

ıP1}Qpaq ´ ıP0}Qpaq
¯

, (39)

ıPα}P1paq “ ıPα}Qpaq ´ ıP1}Qpaq (40)

“ p1´ αqDαpP1 } P0q ´ p1´ αq
´

ıP1}Qpaq ´ ıP0}Qpaq
¯

, (41)

where we have used the chain rule for Pα ! P0 ! Q and Pα ! P1 ! Q. Taking a linear
combination of (38)–(41) we conclude that, for all a P A,

p1´ αqDαpP1}P0q “ p1´ αq ıPα}P0paq ` α ıPα}P1paq. (42)

Henceforth, we focus particular attention on the case α P p0, 1q since that is the region
of interest in the application of Rényi information measures to the evaluation of error
exponents in channel coding for codes whose rate is below capacity. In addition, often
proofs simplify considerably for α P p0, 1q.

14. Much of the interplay between relative entropy and Rényi divergence hinges on the
following identity, which appears, without proof, in (3) of [51].

Theorem 2. Let α P p0, 1q and assume that P0 M P1 are defined on the same measurable
space. Then, for any P ! P1 and P ! P0,

α DpP }P1q ` p1´ αqDpP }P0q “ DpP }Pαq ` p1´ αqDαpP1 }P0q, (43)

where Pα is the tilted probability measure in (37) and (43) holds regardless of whether the
relative entropies are finite. In particular,

DpP } Pαq ă 8 ðñ maxtDpP } P0q, DpP } P1qu ă 8. (44)

Proof. We distinguish three overlapping cases:
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(1) DpP } Pαq ă 8: Taking expectation of (42) with respect to a Ð X „ P, yields
(43) because

E
”
ıPα}P0pXq

ı
“ DpP}P0q ´DpP}Pαq, (45)

E
”
ıPα}P1pXq

ı
“ DpP}P1q ´DpP}Pαq, (46)

where, thanks to the assumption that DpP } Pαq ă 8, we have invoked
Corollary A1 in the Appendix twice with pP, Q, Rq Ð pP, Pα, P0q and pP, Q, Rq Ð
pP, Pα, P1q, respectively;

(2) maxtDpP } P0q, DpP } P1qu ă 8: The proof is identical since we are entitled to
invoke Corollary A1 to show (45) (resp., (46)) because DpP } P0q ă 8 (resp.,
DpP } P1q ă 8).

(3) DpP } Pαq “ 8 and maxtDpP } P0q, DpP } P1qu “ 8: both sides of (43) are equal
to8.

Finally, to show that (44) follows from (43), simply recall from (31) that
DαpP1 }P0q ă 8.

15. Relative entropy and Rényi divergence are related by the following fundamental
variational representation.

Theorem 3. Fix α P p0, 1q and pP1, P0q P P2
A. Then, the Rényi divergence between P1 and

P0 satisfies

p1´ αqDαpP1}P0q “ min
P
tα DpP}P1q ` p1´ αqDpP}P0qu, (47)

where the minimum is over PA. If P0 M P1, then the right side of (47) is attained by the
tilted measure Pα, and the minimization can be restricted to the subset of probability measures
which are dominated by both P1 and P0.

Proof. If P0 K P1, then both sides of (47) are `8 since there is no probability
measure that is dominated by both P0 and P1. If P0 M P1, then minimizing both sides
of (43) with respect to P yields (47) and the fact that the tilted probability measure
attains the minimum therein.

The variational representation in (47) was observed in [39] in the finite-alphabet
case, and, contemporaneously, in full generality in [50]. Unlike Theorem 3, both of
those references also deal with α ą 1. The function dpαq “ p1´ αqDαpP1}P0q, with
dp1q “ limαÒ1 dpαq, is concave in α because the right side of (47) is a minimum of affine
functions of α.

16. Given random transformations PY|X : A Ñ B, QY|X : A Ñ B, and a probability
measure PX P PA on the input space, the conditional relative entropy is

DpPY|X }QY|X | PXq “ DpPY|XPX }QY|XPXq (48)

“ E
”

D
´

PY|Xp¨|Xq }QY|Xp¨|Xq
¯ı

, X „ PX . (49)

Analogously, the conditional Rényi divergence is defined as

DαpPY|X }QY|X | PXq “ DαpPY|XPX }QY|XPXq. (50)
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A word of caution: the notation in (50) conforms to that in [38,45] but it is not univer-
sally adopted, e.g., [43] uses the left side of (50) to denote the Rényi generalization of
the right side of (49). We can express the conditional Rényi divergence as

DαpPY|X }QY|X|PXq
“ 1

α´ 1
logE

”
exp

´
pα´ 1qDα

´
PY|Xp¨|Xq }QY|Xp¨|Xq

¯¯ı
, X „ PX , (51)

“ 1
α´ 1

logE

»
–
˜

dPY|X
dQY|X

pY|Xq
¸α´1

fi
fl, pX, Yq „ PXPY|X , (52)

where (52) holds if PXPY|X ! PXQY|X . Jensen’s inequality applied to (51) results in

DαpPY|X }QY|X|PXq ď E
”

DαpPY|Xp¨|Xq }QY|Xp¨|Xqq
ı
, α P p0, 1q; (53)

DαpPY|X }QY|X|PXq ě E
”

DαpPY|Xp¨|Xq }QY|Xp¨|Xqq
ı
, α ą 1. (54)

Nevertheless, an immediate and crucial observation we can draw from (51) is that the
unconstrained maximizations of the sides of (53) and of (54) over PX do coincide: for
all α ą 0,

sup
X

DαpPY|X }QY|X|PXq “ sup
X

E
”

DαpPY|Xp¨|Xq }QY|Xp¨|Xqq
ı

(55)

“ sup
aPA

DαpPY|X“a }QY|X“aq. (56)

17. Conditional Rényi divergence satisfies the following additive decomposition, origi-
nally pointed out, without proof, by Sibson [31] in the setting of finite A.

Theorem 4. Given PX P PA, QY P PB , PY|X : AÑ B, and α P p0, 1q Y p1,8q, we have

DαpPY|X }QY|PXq “ DαpPY|X } PYrαs|PXq `DαpPYrαs}QYq. (57)

Furthermore, with κα as in (14),

Dα

´
PY|X } PYrαs

ˇ̌
PX

¯
“ κα

α´ 1
. (58)

Proof. Select an arbitrary probability measure RY P PB that dominates both QY
and PY, and, therefore, PYrαs too. Letting pX, Zq „ PX ˆ RY, we have

DαpPY|X }QY|PXq “ 1
α´ 1

logE
«ˆ

dPXY
dPX ˆ RY

pX, Zq
˙αˆdQY

dRY
pZq

˙1´α
ff

(59)

“ 1
α´ 1

logE
«
E
“
exp

`
α ıX;YpX; Zq˘|Z‰

ˆ
dPY
dRY

pZq
˙αˆdQY

dRY
pZq

˙1´α
ff

(60)

“ κα

α´ 1
` 1

α´ 1
logE

«ˆdPYrαs
dPY

pZq
˙αˆ dPY

dRY
pZq

˙αˆdQY
dRY

pZq
˙1´α

ff
(61)

“ κα

α´ 1
` 1

α´ 1
logE

«ˆdPYrαs
dRY

pZq
˙αˆdQY

dRY
pZq

˙1´α
ff

(62)

“ κα

α´ 1
`DαpPYrαs}QYq, (63)
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where (61) follows from (13), and (62) follows from the chain rule of Radon-Nikodym
derivatives applied to PYrαs ! PY ! RY. Then, (58) follows by specializing QY “ PYrαs,
and the proof of (57) is complete, upon plugging (58) into the right side of (63).

A proof of (57) in the discrete case can be found in Appendix A of [37].

18. For all α ą 0, given two inputs pPX, QXq P P2
A and one random transformation

PY|X : AÑ B, Rényi divergence (and, in particular, relative entropy) satisfies the data
processing inequality,

DαpPX }QXq ě DαpPY }QYq, (64)

where PX Ñ PY|X Ñ PY, and QX Ñ PY|X Ñ QY. The data processing inequality
for Rényi divergence was observed by Csiszár [52] in the more general context of
f -divergences. More recently it was stated in [39,50]. Furthermore, given one input
PX P PA and two transformations PY|X : A Ñ B and QY|X : A Ñ B, conditioning
cannot decrease Rényi divergence,

DαpPY|X }QY|X|PXq ě DαpPY }QYq. (65)

Since DαpPY|X }QY|X|PXq “ DαpPXPY|X } PXQY|Xq, (65) follows by applying (64) to
a deterministic transformation which takes an input pair and outputs the second
component. Inequalities (53) and (65) imply the convexity of DαpP}Qq in pP, Qq for
α P p0, 1s.

4. Dependence Measures

In this paper we are interested in three information measures that quantify the de-
pendence between random variables X and Y, such that PX Ñ PY|X Ñ PY, namely, mutual
information, and two of its generalizations, α- mutual information and Augustin–Csiszár
mutual information of order α.

19. The mutual information is

IpX; Yq “ IpPX , PY|Xq “ DpPY|X } PY | PXq (66)

“ min
QY

DpPY|X }QY | PXq (67)

“ min
QY

DpPXY } PX ˆQYq. (68)

20. Given α P p0, 1q Y p1,8q, the α-mutual information is defined as (see [30–32,40,42,45])

IαpX; Yq “ IαpPX , PY|Xq (69)

“ min
QY

DαpPY|X }QY | PXq (70)

“ min
QY

DαpPXY } PX ˆQYq (71)

“ Dα

´
PY|X } PYrαs | PX

¯
(72)

“ 1
α´ 1

logE
”
exp

´
pα´ 1qDα

´
PY|Xp¨|Xq } PYrαs

¯¯ı
, X „ PX (73)

“ Dα

´
PY|X } PY|PX

¯
´Dα

´
PYrαs } PY

¯
(74)

“ κα

α´ 1
(75)

“ α

α´ 1
logErE 1

α rexppα ıX;YpX; Ȳqq | Ȳss, pX, Ȳq „ PX ˆ PY, (76)

where (72) and (74) follow from (57); (73) is a special case of (51); (75) follows from
Theorem 4; and, (76) is (14). In view of (67) and (69), we let I1pX; Yq “ IpX; Yq. The
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notation we use for α-mutual information conforms to that used in [40,42,45,53]. Other
notations include Kα in [32,38,39] and Ig

α in [43]. I0pX; Yq and I8pX; Yq are defined by
taking the corresponding limits.

21. Theorem 4 and (72) result in the additive decomposition

IαpX; Yq “ DαpPY|X }QY|PXq ´DαpPYrαs }QYq, (77)

for any QY with DαpPYrαs }QYq ă 8, thereby generalizing the well-known decompo-
sition for mutual information,

IpX; Yq “ DpPY|X }QY|PXq ´DpPY }QYq, (78)

which, in contrast to (77), is a simple consequence of the chain rule whenever the
dependence between X and Y is regular, and of Lemma A1 in general.

22.
Example 6. Additive independent Gaussian noise. If Y “ X ` N, where X „ N`0, σ2

X
˘

independent of N „ N`0, σ2
N
˘
, then, for α ą 0,

Yrαs „ N
´

0, α σ2
X ` σ2

N

¯
, (79)

IαpX; X` Nq “ IαpX` N; Xq “ 1
2

log

˜
1` α

σ2
X

σ2
N

¸
. (80)

23. If α P p0, 1q, (47) and (69) result in

p1´ αqIαpPX , PY|Xq
“ min

QX QY|X

!
DpQX } PXq ` α DpQY|X } PY|X |QXq ` p1´ αq IpQX , QY|Xq

)
. (81)

For α ą 1 a proof of (81) is given in [39] for finite alphabets.
24. Unlike IpPX, PY|Xq, we can express IαpPX, PY|Xq directly in terms of its arguments

without involving the corresponding output distribution or the α-response to PX . This
is most evident in the case of discrete alphabets, in which (76) becomes

IαpX; Yq “ α

α´ 1
log

ÿ

yPB

˜ÿ

xPA
PXpxqPα

Y|X“xpyq
¸ 1

α

, (82)

I0pX; Yq “ ´ log max
yPB

ÿ

xPA
PXpxq1tPY|Xpy|xq ą 0u, (83)

I8pX; Yq “ log

˜ÿ

bPY
sup

a : PXpaqą0
PY|Xpb|aq

¸
. (84)

For example, if X is discrete and HαpXq denotes the Rényi entropy of order α, then for
all α ą 0,

HαpXq “ I 1
α
pX; Xq. (85)

If X and Y are equiprobable with PrX ‰ Ys “ δ, then, in bits, IαpX; Yq “ 1´ hαpδq,
where hαpδq denotes the binary Rényi entropy.

25. In the main region of interest, namely, α P p0, 1q, frequently we use a different
parametrization in terms of ρ ą 0, with α “ 1

1`ρ .
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Theorem 5. For any ρ ą 0, we have the upper bound

ρ I 1
1`ρ
pX; Yq ď min

QY|X : AÑB
!

DpQY|X}PY|X | PXq ` ρ IpPX , QY|Xq
)

. (86)

Proof. Fix QY|X : AÑ B, and let PX Ñ QY|X Ñ QY. Then,

I 1
1`ρ
pX; Yq ď D 1

1`ρ
pPXY}PX ˆQYq (87)

“ 1` ρ

ρ
min
RXY

"
1

1` ρ
DpRXY}PXYq ` ρ

1` ρ
DpRXY}PX ˆQYq

*
(88)

ď 1
ρ

DpQY|XPX}PXYq `DpQY|XPX}PX ˆQYq (89)

“ 1
ρ

DpQY|X}PY|X|PXq ` IpPX , QY|Xq, (90)

where (87), (88) and (90) follow from (69), (47) and (66) respectively.

Just like (53), we will show in Section 7 that (86) becomes an equality upon the
unconstrained maximization of both sides.

26. Before introducing the last dependence measure in this section, recall from Definition 7
and (58) that PYrαs ! PY, the α-response (of PY|X) to PX defined by

ıYrαs}Ypyq “
1
α

logErexp
´

α ıX;YpX; yq ` p1´ αqDα

´
PY|X } PYrαs

ˇ̌
PX

¯¯
s, (91)

attains minQY DαpPY|X}QY|PXq, where the expectation is with respect to X „ PX . We
proceed to define PYxαy ! PY, the xαy-response (of PY|X) to PX by means of

ıYxαy}Ypyq “
1
α

logE
”
exppα ıX;YpX; yq ` p1´ αqDα

´
PY|Xp¨|Xq } PYxαy

¯ı
, (92)

with X „ PX . Note that PYx1y “ PYr1s “ PY.
27. In the case of discrete alphabets, (92) becomes the implicit equation

Pα
Yxαypyq “

ÿ

aPA
PXpaq

Pα
Y|Xpy|aqř

bPB Pα
Y|Xpb|aq P1´α

Yxαypbq
, y P B, (93)

which coincides with (9.24) in Fano’s 1961 textbook [7], with s Ð 1´ α, and is also
given by Haroutunian in (19) of [22]. For example, if A “ B is discrete and Y “ X,
then PYxαy “ PX , while Pα

Yrαspyq “ c PXpyq, y P A.

28. The xαy-response satisfies the following identity, which can be regarded as the coun-
terpart of (57) satisfied by the α-response.

Theorem 6. Fix PX P PA, PY|X : AÑ B and QY P PB . Then,

DαpPYxαy }QYq
“ 1

α´ 1
logE

”
exp

´
p1´ αq

´
DαpPY|Xp¨|Xq}PYxαyq ´DαpPY|Xp¨|Xq}QYq

¯¯ı
. (94)

Proof. For brevity we assume QY ! PY. Otherwise, the proof is similar adopting a
reference measure that dominates both QY and PY. The definition of unconditional
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Rényi divergence in Item 11 implies that we can write pα´ 1q times the exponential
of the left side of (94) as

exp
´
pα´ 1qDαpPYxαy}QYq

¯
“ E

«ˆdPYxαy
dPY

pYq
˙αˆdQY

dPY
pYq

˙1´α
ff

(95)

“ E
«

exp
´

α ıX;YpX; Yq ` p1´ αqDα

´
PY|Xp¨|Xq } PYxαy

¯¯ˆdQY
dPY

pYq
˙1´α

ff
(96)

“ E
„
E
„

exp
´

α ıX;YpX; Yq ` p1´ αq
´

ıQY}PY
pYq `Dα

´
PY|Xp¨|Xq } PYxαy

¯¯¯ˇ̌
ˇ̌X



“ E
”
exp

´
p1´ αq

´
Dα

´
PY|Xp¨|Xq } PYxαy

¯
´Dα

´
PY|Xp¨|Xq }QY

¯¯¯ı
, (97)

where pX, Yq „ PX ˆ PY, (96) follows from (92), and (97) follows from the definition
of unconditional Rényi divergence in (27).

Theorem 7. If α P p0, 1s, then

DαpPYxαy }QYq ď E
”

DαpPY|Xp¨|Xq }QYq
ı
´E

”
DαpPY|Xp¨|Xq } PYxαyq

ı
(98)

ď DpPYxαy }QYq. (99)

If α ě 1, inequalities (98) and (99) are reversed.

Proof. Assume α P p0, 1s. Jensen’s inequality applied to the right side of (94) results
in (98). To show (99), again we assume for brevity QY ! PY, and define the positive
functions V : Aˆ B Ñ p0,8q and W : Aˆ B Ñ p0,8q,

Vpx, yq “ exp
´

αıX;Ypx; yq ` p1´ αqıYxαy}Ypyq
¯

, (100)

Wpx, yq “ exp
´

αıX;Ypx; yq ` p1´ αqıQY}PY
pyq

¯
. (101)

Note that, with pX, Yq „ PX ˆ PY, and px, yq P Aˆ B,

ErVpx, Yqs “ exp
´
pα´ 1qDαpPY|X“x}PYxαyq

¯
, (102)

ErWpx, Yqs “ exp
´
pα´ 1qDαpPY|X“x}QYq

¯
, (103)

E
„

VpX, yq
ErVpX, Yq|Xs


“ exp

´
p1´ αqıYxαy}Ypyq

¯
¨

¨E
”
exp

´
α ıX;YpX; yq ` p1´ αqDαpPY|Xp¨|Xq}PYxαyq

¯ı
(104)

“ dPYxαy
dPY

pyq. (105)

where (104) uses (100) and (102) and (105) follows from (92). Then,

DαpPY|X“x }QYq ´DαpPY|X“x } PYxαyq
“ 1

1´ α
log

ErVpx, Yqs
ErWpx, Yqs (106)

ď 1
1´ α

E
„

Vpx, Yq
ErVpx, Yqs log

Vpx, Yq
Wpx, Yq


(107)

“ E
„

Vpx, Yq
ErVpx, Yqs

´
ıYxαy}YpYq ´ ıQY}PY

pYq
¯

, (108)

where the expectations are with respect to Y „ PY, and
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• (107) follows from the log-sum inequality for integrable non-negative random
variables,

ErVs log
ErVs
ErWs ď E

„
V log

V
W


; (109)

• (108)ð (100) and (101).

Taking expectation with respect to X „ PX of (106)–(108) yields (99) because of
Lemma A1 and (105). If α ě 1, then Jensen’s inequality applied to the right side of
(94) results in (98) but with the opposite inequality. Moreover, (107) is reversed and
the remainder of the proof holds verbatim.

In the case of finite input-alphabets, a different proof of (99) is given in Appendix B
of [54].

29. Introduced in the unpublished dissertation [36] and rescued from oblivion in [32], the
Augustin–Csiszár mutual information of order α is defined for α ą 0 as

Icα pX; Yq “ Icα pPX , PY|Xq “ min
QY

E
”

DαpPY|Xp¨|Xq }QYq
ı

(110)

“ E
”

DαpPY|Xp¨|Xq } PYxαyq
ı
, (111)

where (111) follows from (98) if α P p0, 1s, and from the reverse of (99) if α ě 1. We
conform to the notation in [40], where Iaα was used to denote the difference between
entropy and Arimoto-Rényi conditional entropy. In [32,39,43] the Augustin–Csiszár
mutual information of order α is denoted by Iα. In Augustin’s original notation [36],
IρpPXq means Ic1´ρpPX, PY|Xq, ρ P p0, 1q. Independently of [36], Poltyrev [35] intro-
duced a functional (expressed as a maximization over a reverse random transforma-
tion) which turns out to be ρIc1

1`ρ

pX; Yq and which he denoted by E0pρ, PXq, although

in Gallager’s notation that corresponds to ρI 1
1`ρ
pX; Yq, as we will see in (233). Ic0 pX; Yq

and Ic8pX; Yq are defined by taking the corresponding limits.
30. In the discrete case, (110) boils down to

Icα pX; Yq “ min
QY

1
α´ 1

ÿ

xPA
PXpxq log

ÿ

yPB
Pα

Y|Xpy|xqQ1´α
Y pyq, (112)

which can be juxtaposed with the much easier expression in (82) for IαpX; Yq involving
no further optimization. Minimizing the Lagrangian, we can verify that the minimizer
in (112) satisfies (93). With pX, sYq „ PX ˆQY, we have

Ic0 pX; Yq “ min
QY

E
«

log
1

PrPY|XpsY|Xq ą 0 | Xs

ff
, (113)

Ic8pX; Yq “ min
QY

E
«

log

›››››
PY|XpsY|Xq

QYpsYq

›››››8

ff
, (114)

where the expectations are with respect to X.
31. The respective minimizers of (72) and (110), namely, the α-response and the xαy-

response, are quite different. Most notably, in contrast to Item 7, an explicit expression
for PYxαy is unknown. Instead of defining PYxαy through (92), [36] defines it, equiva-
lently, as the fixed point of the operator (dubbed the Augustin operator in [43]) which
maps the set of probability measures on the output space to itself,

dTαpQq
dQ

pyq “ E
«ˆdPY|X

dQ
py|Xq

˙α

exp
´
p1´ αqDαpPY|Xp¨|Xq}Qq

¯ff
, (115)
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where X „ PX. Although we do not rely on them, Lemma 34.2 of (α P p0, 1q) and
Lemma 13 of [43] (α ą 1) claim that the minimizer in (110), referred to in [43] as the
Augustin mean of order α, is unique and is a fixed point of the operator Tα regardless
of PX. Moreover, Lemma 13(c) of [43] establishes that for α P p0, 1q and finite input
alphabets, repeated iterations of the operator Tα with initial argument PYrαs converge
to PYxαy.

32. It is interesting to contrast the next example with the formulas in Examples 2 and 6.

Example 7. Additive independent Gaussian noise. If Y “ X ` N, where X „ N`0, σ2
X
˘

independent of N „ N`0, σ2
N
˘
, then

Yxαy „ N
˜

0,
σ2

N
2

ˆ
2´ 1

α
` ∆` snr

˙¸
, (116)

snr “ σ2
X

σ2
N

, (117)

∆ “
d

4 snr`
ˆ

1
α
´ snr

˙2
. (118)

This result can be obtained by postulating a zero-mean Gaussian distribution with variance
v2

α as PYxαy and verifying that (92) is indeed satisfied if v2
α is chosen as in (116). The first step

is to invoke (32), which yields

Dα

´
PY|X“x } PYxαy

¯
“ λα

2
` α x2

2 s2
α

log e, (119)

λα “ log
v2

α

σ2
N
` 1

α´ 1
log

v2
α

s2
α

, (120)

where we have denoted s2
α “ α v2

α ` p1´ αqσ2
N . Since Y „ N`0, σ2

X ` σ2
N
˘
,

ıX;Ypx; yq “ 1
2

log
σ2

X ` σ2
N

σ2
N

` 1
2

˜
y2

σ2
X ` σ2

N
´ py´ xq2

σ2
N

¸
log e, (121)

ıYxαy}Ypyq “
1
2

log
σ2

X ` σ2
N

v2
α

` 1
2

˜
y2

σ2
X ` σ2

N
´ y2

v2
α

¸
log e. (122)

Assembling (120) and (121), the right side of (92) becomes

1
α

logE
”
exppα ıX;YpX; yq ` p1´ αqDα

´
PY|Xp¨|Xq } PYxαy

¯ı

“ 1
2

log
σ2

X ` σ2
N

σ2
N

` 1
2

y2 log e
σ2

X ` σ2
N
` 1´ α

2α
λα

` 1
α

logE
«

expe

˜
´αpy´ Xq2

2σ2
N

` αp1´ αqX2

2s2
α

¸ff
(123)

“ 1
2

log
σ2

X ` σ2
N

σ2
N

` 1´ α

2α
λα ` y2 log e

2

˜
1

σ2
X ` σ2

N
´ s2

α ´ αp1´ αqσ2
X

σ2
Ns2

α ` α2v2
ασ2

X

¸

` 1
2α

log
σ2

Ns2
α

σ2
Ns2

α ` α2v2
ασ2

X
(124)

“ 1
2

log
σ2

X ` σ2
N

v2
α

` 1
2

˜
y2

σ2
X ` σ2

N
´ y2

v2
α

¸
log e, (125)
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where (124) follows by Gaussian integration, and the marvelous simplification in (125) is
satisfied provided that we choose

s2
α “

α σ2
X v2

α

v2
α ´ σ2

N
. (126)

Comparing (122) and (125), we see that (92) is indeed satisfied with Yxαy „ N`0, v2
α

˘
if v2

α

satisfies the quadratic equation (126), whose solution is in (116)–(118). Invoking (32) and
(116), we obtain

Icα pX; X` Nq “ α snr

1` α ∆` α snr
log e` 1

2
log

ˆ
1` 1

2

ˆ
∆` snr´ 1

α

˙˙

´ 1
2p1´ αq log

2´ 1
α ` ∆` snr

1` α ∆` α snr
. (127)

Beyond its role in evaluating the Augustin–Csiszár mutual information for Gaussian
inputs, the Gaussian distribution in (116) has found some utility in the analysis of
finite blocklength fundamental limits for data transmission [55].

33. This item gives a variational representation for the Augustin–Csiszár mutual informa-
tion in terms of mutual information and conditional relative entropy (i.e., non-Rényi
information measures). As we will see in Section 10, this representation accounts
for the role played by Augustin–Csiszár mutual information in expressing error
exponent functions.

Theorem 8. For α P p0, 1q, the Augustin–Csiszár mutual information satisfies the varia-
tional representation in terms of conditional relative entropy and mutual information,

p1´ αq Icα pPX , PY|Xq “ min
QY|X

!
α DpQY|X}PY|X|PXq ` p1´ αq IpPX , QY|Xq

)
, (128)

where the minimum is over all the random transformations from the input to the
output spaces.

Proof. Invoking (47) with pP1, P0q Ð pPY|X“x, QYqwe obtain

p1´ αqDαpPY|X“x}QYq “ min
RY

!
α DpRY}PY|X“xq ` p1´ αqDpRY}QYq

)
(129)

“ min
RY|X“x

!
α DpRY|X“x}PY|X“xq ` p1´ αqDpRY|X“x}QYq

)
. (130)

Averaging over x „ PX, followed by minimization with respect to QY yields (128)
upon recalling (67).

In the finite-alphabet case with α P p0, 1qY p1,8q, the representation in (128) is implicit
in the appendix of [32], and stated explicitly in [39], where it is shown by means of
a minimax theorem. This is one of the instances in which the proof of the result is
considerably easier for α P p0, 1q; we can take the following route to show (128) for
α ą 1. Neglecting to emphasize its dependence on PX , denote

fαpQY, RY|Xq “
α

1´ α
DpRY|X}PY|X|PXq `DpRY|X}QY|PXq. (131)

Invoking (47) we obtain

DαpPY|X“x}QYq “ max
RY|X“x

"
α

1´ α
DpRY|X“x}PY|X“xq `DpRY|X“x}QYq

*
. (132)
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Averaging (132) with respect to PX followed by minimization over QY, results in

Icα pPX , PY|Xq “ min
QY

max
RY|X

fαpQY, RY|Xq (133)

ě max
RY|X

min
QY

fαpQY, RY|Xq (134)

“ max
RY|X

"
α

1´ α
DpRY|X}PY|X|PXq ` IpPX , RY|Xq

*
, (135)

which shows ě in (128). If a minimax theorem can be invoked to show equality in
(134), then (128) is established for α ą 1. For that purpose, for fixed RY|X , f p¨, RY|Xq is
convex and lower semicontinuous in QY on the set where it is finite. Rewriting

f pQY, RY|Xq
“ 1

1´ α
DpRY|X}PY|X|PXq `DpRY|X}QY|PXq ´DpRY|X}PY|X|PXq, (136)

it can be seen that f pQY, ¨q is upper semicontinuous and concave (if α ą 1). A different,
and considerably more intricate route is taken in Lemma 13(d) of [43], which also
gives (128) for α ą 1 assuming finite input alphabets.

34. Unlike mutual information, neither IαpX; Yq “ IαpY; Xq nor Icα pX; Yq “ Icα pY; Xq hold
in general.

Example 8. Erasure transformation. Let A “ t0, 1u,B “ t0, 1, eu,

PY|Xpb|aq “

$
’&
’%

1´ δ, a “ b;
δ, b “ e;
0, a ‰ b ‰ e,

(137)

with δ P p0, 1q, and PXp0q “ 1
2 . Then, we obtain, for α P p0, 1q Y p1,8q,

IαpX; Yq “ Icα pX; Yq “ α

α´ 1
log

´
δ` p1´ δq 2p1´ 1

α q
¯

, (138)

IαpY; Xq “ 1
α´ 1

log
´

δ` p1´ δq 2α´1
¯

, (139)

Icα pY; Xq “ IpX; Yq “ 1´ δ bits. (140)

35. It was shown in Theorem 5.2 of [38] that α-mutual information satisfies the data
processing lemma, namely, if X and Z are conditionally independent given Y, then

IαpX; Zq ď mintIαpX; Yq, IαpY; Zqu, (141)

IαpZ; Xq ď mintIαpZ; Yq, IαpY; Xqu. (142)

As shown by Csiszár [32] using the data processing inequality for Rényi divergence,
the data processing lemma also holds for Icα .

36. From (53), (54) and the monotonicity of DαpP}Qq in α, we obtain the ordering

IβpX; Yq ď IαpX; Yq ď Icα pX; Yq ď Icν pX; Yq ď IpX; Yq, 0 ă β ď α ď ν ă 1; (143)

IpX; Yq ď Icν pX; Yq ď Icα pX; Yq ď IαpX; Yq ď IβpX; Yq, 1 ă ν ď α ď β. (144)

37. The convexity/concavity properties of the generalized mutual informations are sum-
marized next.
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Theorem 9.

(a) ρ I 1
1`ρ
pX; Yq and ρ Ic1

1`ρ

pX; Yq are concave and monotonically non-decreasing in

ρ ě 0.
(b) Ip¨, PY|Xq and Icα p¨, PY|Xq are concave functions. The same holds for Iαp¨, PY|Xq if

α ą 1.
(c) If α P p0, 1q, then IpPX , ¨q, IαpPX , ¨q and Icα pPX , ¨q are convex functions.

Proof.

(a) According to (81) and (128), respectively, with α “ 1
1`ρ P p0, 1q, ρ I 1

1`ρ
pX; Yq

and ρ Ic1
1`ρ

pX; Yq are the infima of affine functions with nonnegative slopes.

(b) For mutual information the result goes back to [56] in the finite-alphabet case.
In general, it holds since (67) is the infimum of linear functions of PX . The same
reasoning applies to Augustin–Csiszár mutual information in view of (110).
For α-mutual information with α ą 1, notice from (51) that DαpPY|X }QY|PXq
is concave in PX if α ą 1. Therefore,

Iαpλ P1
X ` p1´ λq P0

X , PY|Xq (145)

“ inf
QY

DαpPY|X }QY|λ P1
X ` p1´ λq P0

Xq (146)

ě inf
QY

λ DαpPY|X }QY| P1
Xq ` p1´ λqDαpPY|X }QY| P0

Xq (147)

ě λ IαpP1
X , PY|Xq ` p1´ λq IαpP0

X , PY|Xq. (148)

(c) The convexity of IpPX, ¨q and IαpPX, ¨q follow from the convexity of DαpP}Qq
in pP, Qq for α P p0, 1s as we saw in Item 18. To show convexity of Icα pPX, ¨q
if α P p0, 1q, we apply (169) in Item 45 with PY|X “ λP1

Y|X ` p1´ λqP0
Y|X, and

invoke the convexity of IαpPX , ¨q:

p1´ αq Icα pPX , PY|Xq
“ max

QX

!
p1´ αq IαpQX , λP1

Y|X ` p1´ λqP0
Y|Xq ´DpPX }QXq

)
, (149)

ď max
QX

!
λ
´

1´ αq IαpQX , P1
Y|Xq ´DpPX }QXq

¯

`p1´ λq
´

1´ αq IαpQX , P0
Y|Xq ´DpPX }QXq

¯)
(150)

ď p1´ αq
´

λIcα pPX , P1
Y|Xq ` p1´ λqIcα pPX , P0

Y|Xq
¯

. (151)

Although not used in the sequel, we note, for completeness, that if α P p0, 1q Y
p1,8q, [38] (see corrected version in [41]) shows that exp

´´
1´ 1

α

¯
Iαp¨, PY|Xq

¯
{pα´ 1q

is concave.

5. Interplay between IαpPX , PY|Xq and IcαpPX , PY|Xq
In this section we study the interplay between both notions of mutual informations

of order α, and, in particular, various variational representations of these
information measures.

38. For given α P p0, 1q Y p1,8q and PY|X : AÑ B, define QXrαs !" PX , the α-adjunct of
PX by

ıQXrαs}PX
pxq “ pα´ 1qDα

´
PY|X“x}PYrαs

¯
´ κα, (152)

with κα the constant in (14) and PYrαs, the α-response to PX .

188



Entropy 2021, 23, 199

39. Example 9. Let Y “ X ` N with X „ N`0, σ2
X
˘

independent of N „ N`0, σ2
N
˘
, and

snr “ σ2
X

σ2
N

. The α-adjunct of the input is

QXrαs “ N
ˆ

0, σ2
X

1` α2 snr

1` α snr

˙
. (153)

40. Theorem 10. The xαy-response to QXrαs is PYrαs, the α-response to PX .

Proof. We just need to verify that (92) is satisfied if we substitute Yxαy by Yrαs, and
instead of taking the expectation in the right side with respect to X „ PX we take it
with respect to rX „ QXrαs. Then,

E
”
exppα ıX;YprX; yq ` p1´ αqDα

´
PY|Xp¨|rXq } PYrαs

¯ı

“ E
”
exp

´
ıQXrαs}PX

pXq ` α ıX;YpX; yq ` p1´ αqDα

´
PY|Xp¨|Xq } PYrαs

¯¯ı
(154)

“ E
“
exppα ıX;YpX; yq ´ καq

‰
(155)

“ exp
´

α ıYrαs}Ypyq
¯

, (156)

where (154) is by change of measure, (155) follows by substitution of (152), and (156)
is the same as (13).

41. For given α P p0, 1q Y p1,8q and PY|X : A Ñ B, we define QXxαy !" PX, the xαy-
adjunct of an input probability measure PX through

ıQXxαy}PX
pxq “ p1´ αqDα

´
PY|X“x } PYxαy

¯
` υα, (157)

where PYxαy is the xαy-response to PX and υα is a normalizing constant so that QXxαy
is a probability measure. According to (9), we must have

E
”
exp

´
ıQXxαy}PX

pXq
¯ı
“ 1, X „ PX . (158)

Hence,

υα “ pα´ 1qDα

´
PY|X } PYxαy |QXxαy

¯
. (159)

42. With the aid of the expression in Example 7, we obtain

Example 10. Let Y “ X ` N with X „ N`0, σ2
X
˘

independent of N „ N`0, σ2
N
˘
, and

snr “ σ2
X

σ2
N

. Then, the xαy-adjunct of the input is

QXxαy “ N
ˆ

0, σ2
X

1` αp∆` snrq
1` αp∆´ snrq ` 2 α2 snr

˙
, (160)

which, in contrast to QXrαs, has larger variance than σ2
X if α P p0, 1q.

43. The following result is the dual of Theorem 10.

Theorem 11. The α-response to QXxαy is PYxαy, the xαy-response to PX . Therefore,

υα “ pα´ 1q Iα

´
QXxαy, PY|X

¯
. (161)
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Proof. The proof is similar to that of Theorem 10. We just need to verify that we
obtain the right side of (92) if on the right side of (91) we substitute PX by QXxαy and
PYrαs by PYxαy. Let sX „ QXxαy. Then,

1
α

logE
”
exp

´
α ıX;YpsX; yq ` p1´ αqDα

´
PY|X } PYxαy

ˇ̌
QXxαy

¯¯ı

“ 1
α

logE
”
exp

´
ıQXxαy}PX

pXq ` α ıX;YpX; yq ´ υα

¯ı
(162)

“ 1
α

logE
”
exp

´
α ıX;YpX; yq ` p1´ αqDα

´
PY|Xp¨|Xq } PYxαy

¯¯ı
(163)

“ ıYxαy}Ypyq, (164)

where (162)–(164) follow by change of measure, (157), and (92), respectively.

44. By recourse to a minimax theorem, the following representation is given for α P
p0, 1qY p1,8q in the case of finite alphabets in [39], and dropping the restriction on the
finiteness of the output space in [43]. As we show, a very simple and general proof is
possible for α P p0, 1q.

Theorem 12. Fix α P p0, 1q, PX P PA and PY|X : AÑ B. Then,

p1´ αq IαpX; Yq “ min
QX

!
p1´ αq Icα pQX , PY|Xq `DpQX } PXq

)
, (165)

where the minimum is attained by QXrαs, the α-adjunct of PX defined in (152).

Proof. The variational representations in (81) and (128) result in (165). To show
that the minimum is indeed attained by QXrαs, recall from Theorem 10 that the xαy-
response to QXrαs is PYrαs. Therefore, evaluating the term in tu in (165) for QX Ð QXrαs
yields, with rX „ QXrαs,

p1´ αq Icα pQXrαs, PY|Xq `DpQXrαs } PXq
“ p1´ αqE

”
DαpPY|Xp¨|rXq } PYrαsq

ı
`DpQXrαs } PXq (166)

“ ´κα (167)

“ p1´ αq IαpX; Yq, (168)

where (167) follows from (152) and (168) results from (69)–(75).

45. For finite-input alphabets, Lemma 18(b) of [43] (earlier Theorem 3.4 of [35] gave an
equivalent variational characterization assuming, in addition, finite output alphabets)
established the following dual to Theorem 12.

Theorem 13. Fix α P p0, 1q, PX P PA and PY|X : AÑ B. Then,

p1´ αq Icα pX; Yq “ max
QX

!
p1´ αq IαpQX , PY|Xq ´DpPX }QXq

)
. (169)

The maximum is attained by QXxαy, the xαy-adjunct of PX defined by (157).

Proof. First observe that (165) implies that ě holds in (169). Second, the term in tu
on the right side of (169) evaluated at QX Ð QXxαy becomes

p1´ αq IαpQXxαy, PY|Xq ´DpPX }QXxαyq
“ p1´ αq IαpQXxαy, PY|Xq ` p1´ αqIcα pPX , PY|Xq ` υα (170)

“ p1´ αqIcα pPX , PY|Xq, (171)
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where (170) follows by taking the expectation of minus (157) with respect to PX.
Therefore, ď also holds in (169) and the maximum is attained by QXxαy, as we wanted
to show.

Hinging on Theorem 8, Theorems 12 and 13 are given for α P p0, 1qwhich is the region
of interest in the analysis of error exponents. Whenever, as in the finite-alphabet case,
(128) holds for α ą 1, Theorems 12 and 13 also hold for α ą 1.
Notice that since the definition of QXxαy involves PYxαy, the fact that it attains the
maximum in (169) does not bring us any closer to finding Icα pX; Yq for a specific input
probability measure PX . Fortunately, as we will see in Section 8, (169) proves to be the
gateway to the maximization of Icα pX; Yq in the presence of input-cost constraints.

46. Focusing on the main range of interest, α P p0, 1q, we can express (169) as

Icα pPX , PY|Xq “ max
QX

"
IαpQX , PY|Xq ´

1
1´ α

DpPX }QXq
*

(172)

“ max
ξě0

"
Ipξq ´ ξ

1´ α

*
(173)

“ Ipξαq ´ ξα

1´ α
, (174)

where we have defined the function (dependent on α, PX , and PY|X)

Ipξq “ max
QX :

DpPX}QXq ď ξ

IαpQX , PY|Xq, (175)

and ξα is the solution to

9Ipξαq “ 1
1´ α

. (176)

Recall that the maxima over the input distribution in (172) and (175) are attained by
the xαy-adjunct QXxαy defined in Item 41.

47. At this point it is convenient to summarize the notions of input and output probability
measures that we have defined for a given α, random transformation PY|X , and input
probability measure PX :

• PY: The familiar output probability measure PX Ñ PY|X Ñ PY, defined in Item 5.
• PYrαs: The α-response to PX, defined in Item 7. It is the unique achiever of the

minimization in the definition of α-mutual information in (67).
• PYxαy: The xαy-response to PX defined in Item 26. It is the unique achiever of

the minimization in the definition of Augustin–Csiszár α-mutual information
in (110).

• QXrαs: The α-adjunct of PX, defined in (152). The xαy-response to QXrαs is PYrαs.
Furthermore, QXrαs achieves the minimum in (165).

• QXxαy: The xαy-adjunct of PX , defined in (157). The α-response to QXxαy is PYxαy.
Furthermore, QXxαy achieves the maximum in (169).

6. Maximization of IαpX; Yq
Just like the maximization of mutual information with respect to the input distribu-

tion yields the channel capacity (of course, subject to conditions [57]), the maximization
of IαpX; Yq and of Icα pX; Yq arises in the analysis of error exponents, as we will see in
Section 10. A recent in-depth treatment of the maximization of α-mutual information is
given in [45]. As we see most clearly in (82) for the discrete case, when it comes to its
optimization, one advantage of IαpX; Yq over IpX; Yq is that the input distribution does not
affect the expression through its influence on the output distribution.

48. The maximization of α-mutual information is facilitated by the following result.
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Theorem 14 ([45]). Given α P p0, 1q Y p1,8q; a random transformation PY|X : A Ñ B;
and, a convex set P Ă PA, the following are equivalent.

(a) PX̊ P P attains the maximal α-mutual information on P ,

IαpPX̊ , PY|Xq “ max
PPP IαpP, PY|Xq ă 8. (177)

(b) For any PX P P , and any output distribution QY P PB ,

DαpPY|X } P˚Yrαs|PXq ď DαpPY|X } P˚Yrαs|PX̊q (178)

ď DαpPY|X }QY|PX̊q, (179)

where P˚Yrαs is the α-response to PX̊ .

Moreover, if PYrαs denotes the α-response to PX , then

DαpPYrαs}P˚Yrαsq ď IαpPX̊ , PY|Xq ´ IαpPX , PY|Xq ă 8. (180)

Note that, while Iαp¨, PY|Xq may not be maximized by a unique (or, in fact, by any)
input distribution, the resulting α-response P˚Yrαs is indeed unique. If P is such that
none of its elements attain the maximal Iα, it is known [42,45] that the α-response to
any asymptotically optimal sequence of input distributions converges to P˚Yrαs. This is
the counterpart of a result by Kemperman [58] concerning mutual information.

49. The following example appears in [45].
Example 11. Let Y “ X ` N where N „ N`0, σ2

N
˘

independent of X. Fix α P p0, 1q and
P ą 0. Suppose that the set, P Ă PA, of allowable input probability measures consists of
those that satisfy the constraint

E
«

expe

˜
´ αp1´ αqX2

2
`
α2P` σ2

N
˘
¸ff

ě
d

α2P` σ2
N

α P` σ2
N

. (181)

We can readily check that X˚ „ Np0, Pq satisfies (181) with equality, and as we saw in
Example 2, its α-response is P˚Yrαs “ N p0, α P` σ2q. Theorem 14 establishes that PX̊ does
indeed maximize the α-mutual information among all the distributions in P , yielding (recall
Example 6)

max
PXPP

IαpX; Yq “ 1
2

log
ˆ

1` αP
σ2

˙
. (182)

Curiously, if, instead of P defined by the constraint (181), we consider the more conventional
P “ tX : ErX2s ď Pu, then the left side of (182) is unknown at present. Numerical evidence
shows that it can exceed the right side by employing non-Gaussian inputs.

50. Recalling (56) and (178) implies that if PX̊ attains the finite maximal unconstrained
α-mutual information and its α-response is denoted by P˚Yrαs, then,

max
X

IαpX; Yq “ max
PPP IαpP, PY|Xq “ max

aPA DαpPY|X“a}P˚Yrαsq, (183)

which requires that PX̊pAα̊ q “ 1, with

Aα̊ “
"

x P A : DαpPY|X“x}P˚Yrαsq “ max
aPA DαpPY|X“a}P˚Yrαsq

*
. (184)
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For discrete alphabets, this requires that if x R Aα̊ , then PX̊pxq “ 0, which is tanta-
mount to

ÿ

yPB
Pα

Y|Xpy|xqE
1´α

α

”
Pα

Y|Xpy|X˚q
ı
ě exp

´
α´1

α IαpX˚; Y˚q
¯

, (185)

with equality for all x P A such that PX̊pxq ą 0. For finite-alphabet random transfor-
mations this observation is equivalent to Theorem 5.6.5 in [9].

51. Getting slightly ahead of ourselves, we note that, in view of (128), an important
consequence of Theorem 15 below, is that, as anticipated in Item 25, the unconstrained
maximization of IαpX; Yq for α P p0, 1q can be expressed in terms of the solution
to an optimization problem involving only conventional mutual information and
conditional relative entropy. For ρ ě 0,

ρ sup
X

I 1
1`ρ
pX; Yq “ sup

X
min

QY|X : AÑB
!

DpQY|X}PY|X|PXq ` ρ IpPX , QY|Xq
)

. (186)

7. Unconstrained Maximization of IcαpX; Yq
52. In view of the fact that it is much easier to determine the α-mutual information

than the order-α Augustin–Csiszár information, it would be advantageous to show
that the unconstrained maximum of Icα pX; Yq equals the unconstrained maximum of
IαpX; Yq. In the finite-alphabet setting, in which it is possible to invoke a "minisup”
theorem (e.g., see Section 7.1.7 of [59]), Csiszár [32] showed this result for α ą 0. The
assumption of finite output alphabets was dropped in Theorem 1 of [42], and further
generalized in Theorem 3 of the same reference. As we see next, for α P p0, 1q, it is
possible to give an elementary proof without restrictions on the alphabets.

Theorem 15. Let α P p0, 1q. If the suprema are over PA, the set of all probability measures
defined on the input space, then

sup
X

Icα pX; Yq “ sup
X

IαpX; Yq. (187)

Proof. In view of (143),ě holds in (187). To showď, we assume supX IαpX; Yq ă 8
as, otherwise, there is nothing left to prove. The unconstrained maximization identity
in (183) implies

sup
X

IαpX; Yq “ sup
aPA

DαpPY|X“a}P˚Yrαsq (188)

“ sup
PXPP

E
”

DαpPY|Xp¨|Xq}P˚Yrαsq
ı

(189)

ě inf
QPQ sup

PXPP
E
”

DαpPY|Xp¨|Xq}Qq
ı

(190)

ě sup
PXPP

inf
QPQE

”
DαpPY|Xp¨|Xq}Qq

ı
(191)

“ sup
X

Icα pX; Yq, (192)

where P˚Yrαs is the unique α-response to any input that achieves the maximal α-mutual
information, and if there is no such input, it is the limit of the α-responses to any
asymptotically optimal input sequence (Item 48).
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Furthermore, if tXnu is asymptotically optimal for Iα, i.e., limnÑ8 IαpXn; Ynq “
supX IαpX; Yq, then tXnu is also asymptotically optimal for Icα because for any δ ą 0,
we can find N, such that for all n ą N,

IαpXn; Ynq ` δ ě sup
aPA

DαpPY|X“a}P˚Yrαsq (193)

ě E
”

DαpPY|Xp¨|Xnq}P˚Yrαsq
ı

(194)

ě Icα pXn; Ynq (195)

ě IαpXn; Ynq. (196)

8. Maximization of IcαpX; Yq Subject to Average Cost Constraints

This section is at the heart of the relevance of Rényi information measures to error
exponent functions.

53. Given α P p0, 1q, PY|X : A Ñ B, a cost function b : A Ñ r0,8q and real scalar θ ě 0,
the objective is to maximize the Augustin–Csiszár mutual information allowing only
those probability measures that satisfy ErbpXqs ď θ, namely,

Cc
αpθq “ sup

PX :
ErbpXqs ď θ

Icα pPX , PY|Xq. (197)

Unfortunately, identity (187) no longer holds when the maximizations over the input
probability measure are cost-constrained, and, in general, we can only claim

Cc
αpθq ě sup

PX :
ErbpXqs ď θ

IαpPX , PY|Xq. (198)

A conceptually simple approach to solve for Cc
αpθq is to

(a) postulate an input probability measure PX̊ that achieves the supremum in (197);
(b) solve for its xαy-response PY̊ using (92);
(c) show that pPX̊ , PY̊ q is a saddle point for the game with payoff function

BpPX , QYq “
ż

Dα

´
PY|X“x}QY

¯
dPX , (199)

where QY P PA and PX is chosen from the convex subset of PA of probability
measures which satisfy ErbpXqs ď θ.

Since PY̊ is already known, by definition, to be the xαy-response to PX̊ , verifying the
saddle point is tantamount to showing that BpPX, PY̊ q is maximized by PX̊ among
tPX P PA : ErbpXqs ď θu. Theorem 1 of [43] guarantees the existence of a saddle point
in the case of finite input alphabets. In addition to the fact that it is not always easy
to guess the optimum input PX̊ (see e.g., Section 12), the main stumbling block is
the difficulty in determining the xαy-response to any candidate input distribution,
although sometimes this is indeed feasible as we saw in Example 7.

54. Naturally, Theorem 15 implies

Cc
αpθq ď sup

X
IαpX; Yq. (200)

If the unconstrained maximization of Icα p¨, PY|Xq is achieved by an input distribution
X‹ that satisfies ErbpX‹qs ď θ, then equality holds in (200), which, in turn, is equal to
Icα pP‹X , PY|Xq. In that case, the average cost constraint is said to be inactive. For most
cost functions and random transformations of practical interest, the cost constraint is
active for all θ ą 0. To ascertain whether it is, we simply verify whether there exists
an input achieving the right side of (200), which happens to satisfy the constraint.
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If so, Cc
αpθq has been found. The same holds if we can find a sequence tXnu such

that ErbpXnqs ď θ and IαpXn; Ynq Ñ supX IαpX; Yq. Otherwise, we proceed with
the method described below. Thus, henceforth, we assume that the cost constraint
is active.

55. The approach proposed in this paper to solve for Cc
αpθq for α P p0, 1q hinges on

the variational representation in (172), which allows us to sidestep having to find
any xαy-response. Note that once we set out to maximize Icα pPX, PY|Xq over P “
tPX P PA : ErbpXqs ď θu, the allowable QX in the maximization in (175) range over a
ξ-blow-up of P defined by

ΓξpPq “ tQX P PA : DPX P P , such that DpPX}QXq ď ξu. (201)

As we show in Item 56, we can accomplish such an optimization by solving an
unconstrained maximization of the sum of α-mutual information and a term suitably
derived from the cost function.

56. It will not be necessary to solve for (176), as our goal is to further maximize (172)
over PX subject to an average cost constraint. The Lagrangian corresponding to the
constrained optimization in (197) is

Lαpν, PXq “ Icα pX; Yq ´ νErbpXqs ` ν θ, (202)

where on the left side we have omitted, for brevity, the dependence on θ stemming
from the last term on the right side. The Lagrange multiplier method (e.g., [60])
implies that if X˚ achieves the supremum in (197), then there exists ν˚ ě 0 such that
for all PX on A and ν ě 0,

Lαpν˚, PXq ď Lαpν˚, PX̊q ď Lαpν, PX̊q. (203)

Note from (202) that the right inequality in (203) can only be achieved if

ErbpX˚qs “ θ, (204)

and, consequently,

Cc
αpθq “ Lαpν˚, PX̊q “ min

νě0
max

PX
Lαpν, PXq “ max

PX
min
νě0

Lαpν, PXq. (205)

The pivotal result enabling us to obtain Cc
αpθqwithout the need to deal with Augustin–

Csiszár mutual information is the following.

Theorem 16. Given α P p0, 1q, ν ě 0, PY|X : A Ñ B, and b : A Ñ r0,8q, denote
the function

Aαpνq “ max
X

"
IαpX; Yq ` 1

1´ α
logErexpp´p1´ αqν bpXqqs

*
. (206)

Then,

sup
PXPPA

Lαpν, PXq “ ν θ `Aαpνq, (207)

and

Cc
αpθq “ min

νě0
tν θ `Aαpνqu. (208)

Proof. Plugging (172) into (197) we obtain, with X „ PX , and X̂ „ QX ,
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sup
PXPPA

Lαpν, PXq “ sup
PX

tIcα pX; Yq ´ νErbpXqs ` ν θu (209)

“ sup
PXPPA

"
max

QXPPA

"
IαpQX , PY|Xq ´

1
1´ α

DpPX }QXq
*
´ νErbpXqs ` ν θ

*
(210)

“ ν θ ` max
QXPPA

"
IαpQX , PY|Xq ´

1
1´ α

inf
PX
tDpPX }QXq ` νp1´ αqErbpXqsu

*
(211)

“ ν θ ` max
QXPPA

"
IαpQX , PY|Xq `

1
1´ α

logE
“
exp

`´νp1´ αqbpX̂q˘‰
*

(212)

“ ν θ `Aαpνq, (213)

where (209) and (213) follow from (202) and (206), respectively, and (212) follows by
invoking Theorem 1 with Z „ QX and

gpaq “ p1´ αqν bpaq, (214)

which is nonnegative since α P p0, 1q and ν ą 0. Finally, (208) follows from (205)
and (207).

In conclusion, we have shown that the maximization of Augustin–Csiszár mutual
information of order α subject to ErbpXqs ď θ boils down to the unconstrained
maximization of a Lagrangian consisting of the sum of α-mutual information and
an exponential average of the cost function. Circumventing the need to deal with
xαy-responses and with Augustin–Csiszár mutual information of order α leads to a
particularly simple optimization, as illustrated in Sections 11 and 12.

57. Theorem 16 solves for the maximal Augustin–Csiszár mutual information of order
α under an average cost constraint without having to find out the input probability
measure PX̊ that attains it nor its xαy-response PY̊ (using the notation in Item 53).
Instead, it gives the solution as

Cc
αpθq “ min

νě0

"
ν θ `max

X

"
IαpX; Yq ` 1

1´ α
logErexpp´p1´ αqν bpXqqs

**
. (215)

Although we are not going to invoke a minimax theorem, with the aid of Theorem 9-(b)
we can see that the functional within the inner brackets is concave in PX ; Furthermore,
if V P p0, 1s, then logErVνs is easily seen to be convex in ν with the aid of the Cauchy-
Schwarz inequality. Before we characterize the saddle point pν˚, QX̊q of the game in
(215) we note that pPX̊ , PY̊ q can be readily obtained from pν˚, QX̊q.

Theorem 17. Fix α P p0, 1q. Let ν˚ ą 0 denote the minimizer on the right side of (215), and
QX̊ the input probability measure that attains the maximum in (206) (or (215)) for ν “ ν˚.
Then,

(a) QX̊ is the xαy-adjunct of PX̊ .
(b) PY̊ “ Q˚Yrαs, the α-response to QX̊ .

(c) PX̊ !" QX̊ with

ıP˚X }Q˚X paq “ ´p1´ αqν˚ bpaq ` τα, a P A, (216)

where τα is a normalizing constant ensuring that PX̊ is a probability measure.

Proof.

(a) We had already established in Theorem 13 that the maximum on the right side
of (210) is achieved by the xαy-adjunct of PX. In the special case ν “ ν˚, such
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PX is PX̊ . Therefore, QX̊ , the argument that achieves the maximum in (206) for
ν “ ν˚, is the xαy-adjunct of PX̊ .

(b) According to Theorem 11, the α-response to QX̊ is the xαy-response to PX̊,
which is PY̊ by definition.

(c) For ν “ ν˚, PX̊ achieves the supremum in (209) and the infimum in (211).
Therefore, (216) follows from Theorem 1 with Z „ QX̊ and gp¨q given by (214)
particularized to ν “ ν˚.

The saddle point of (215) admits the following characterization.

Theorem 18. If α P p0, 1q, the saddle point pν˚, QX̊q of (215) satisfies

E
“
bpX̄˚q exp

`´p1´ αqν˚ bpX̄˚q˘‰ “ θ E
“
exp

`´p1´ αqν˚ bpX̄˚q˘‰, X̄˚ „ QX̊ ; (217)

Dα

´
PY|X“a }Q˚Yrαs

¯
“ ν˚ bpaq ` cαpν˚q, a P A, (218)

where Q˚Yrαs is the α-response to QX̊ , and cαpν˚q does not depend on a P A. Furthermore,

Aαpν˚q “ cαpν˚q, (219)

Cc
αpθq “ ν˚ θ ` cαpν˚q. (220)

Proof. First, we show that the scalar ν˚ ě 0 that minimizes

f pνq “ ν θ ` IαpQX̊ , PY|Xq `
1

1´ α
logE

“
exp

`´p1´ αqν bpX̄˚q˘‰ (221)

satisfies (217). If we abbreviate V “ exp
`´p1´ αqbpX̄˚q˘ P p0, 1s, then the dominated

convergence theorem results in

d
dν

"
ν θ ` 1

1´ α
logErVνs

*
“ θ ` 1

1´ α

ErVν log Vs
ErVνs . (222)

Therefore, (217) is equivalent to 9f pν˚q “ 0, which is all we need on account of the
convexity of f p¨q. To show (218), notice that for all a P A,

p1´ αqν˚ bpaq ´ τα “ ıQ˚X}P˚X paq (223)

“ p1´ αqDαpPY|X“a } PY̊ q ` υα, (224)

where (223) is (216) and (224) is (157) with PYxαy Ð PY̊ in view of Theorem 17-(b). In
conclusion, (218) holds with

cαpν˚q “ υα ` τα

α´ 1
. (225)
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Finally, (206) implies

Aαpν˚q “ IαpQX̊ , PY|Xq `
1

1´ α
logE

“
exp

`´p1´ αqν˚ bpX̄˚q˘‰ (226)

“ 1
α´ 1

logE
”
exp

´
pα´ 1qDα

´
PY|Xp¨|X̄˚q } PY̊

¯¯ı

` 1
1´ α

logE
“
exp

`pα´ 1qν˚ bpX̄˚q˘‰ (227)

“ 1
α´ 1

logE
“
exp

`pα´ 1q`ν˚ bpX̄˚q ` cαpν˚q
˘˘‰

` 1
1´ α

logE
“
exp

`pα´ 1qν˚ bpX̄˚q˘‰ (228)

“ cαpν˚q, (229)

where (227) follows from the definition of α-mutual information and Theorem 17-(b),
and (228) follows from (218). Plugging (219) into (208) results in (220).

58. Typically, the application of Theorem 18 involves

(a) guessing the form of the auxiliary input QX̊ (modulo some unknown parameter),
(b) obtaining its α-response Q˚Yrαs, and

(c) verifying that (217) and (218) are satisfied for some specific choice of the
unknown parameter.

With the same approach, we can postulate, for every ν ě 0, an input distribution Rν
X ,

whose α-response Rν
Yrαs satisfies

Dα

´
PY|X“a }Rν

Yrαs
¯
“ ν bpaq ` cαpνq, a P A, (230)

where the only condition we place on cαpνq is that it not depend on a P A. If this is
indeed the case, then the same derivation in (226)–(229) results in

Aαpνq “ cαpνq, (231)

and we determine ν˚ as the solution to θ “ ´ 9cαpν˚q, in lieu of (217).
Sections 11 and 12 illustrate the effortless nature of this approach to solve for Aαpνq.
Incidentally, (230) can be seen as the α-generalization of the condition in Problem 8.2
of [48], elaborated later in [61].

9. Gallager’s E0 Functions and the Maximal Augustin–Csiszár Mutual Information

In keeping with Gallager’s setting [9], we stick to discrete alphabets throughout
this section.

59. In his derivation of an achievability result for discrete memoryless channels, Gal-
lager [8] introduced the function (1), which we repeat for convenience,

E0pρ, PXq “ ´ log
ÿ

yPB

˜ÿ

xPA
PXpxqP

1
1`ρ

Y|X py|xq
¸1`ρ

. (232)

Comparing (82) and (232), we obtain

E0pρ, PXq “ ρ I 1
1`ρ
pX; Yq, (233)

which, as we mentioned in Section 1, is the observation by Csiszár in [30] that triggered
the third phase in the representation of error exponents. Popularized in [9], the
E0 function was employed by Shannon, Gallager and Berlekamp [10] for ρ ě 0
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and by Arimoto [62] for ρ P p´1, 0q in the derivation of converse results in data
transmission, the latter of which considers rates above capacity, a region in which
error probability increases with blocklength, approaching one at an exponential rate.
For the achievability part, [8] showed upper bounds on the error probability involving
E0pρ, PXq for ρ P r0, 1s. Therefore, for rates below capacity, the α-mutual information
only enters the picture for α P p0, 1q. One exception in which Rényi divergence of order
greater than 1 plays a role at rates below capacity was found by Sason [63], where
a refined achievability result is shown for binary linear codes for output symmetric
channels (a case in which equiprobable PX maximizes (233)), as a function of their
Hamming weight distribution.
Although Gallager did not have the benefit of the insight provided by the Rényi
information measures, he did notice certain behaviors of E0 reminiscent of mutual
information. For example, the derivative of (233) with respect to ρ, at ρ Ð 0 is equal to
IpX; Yq. As pointed out by Csiszár in [32], in the absence of cost constraints, Gallager’s
E0 function in (232) satisfies

max
PX

E0pρ, PXq “ ρ max
X

I 1
1`ρ
pX; Yq “ ρ max

X
Ic1

1`ρ
pX; Yq, (234)

in view of (233) and (187).
Recall that Gallager’s modified E0 function in the case of cost constraints is

E0pρ, PX , r, θq “ ´ log
ÿ

yPB

˜ÿ

xPA
PXpxq exppr bpxq ´ r θqP

1
1`ρ

Y|X py|xq
¸1`ρ

, (235)

which, like (232) he introduced in order to show an achievability result. Up until
now, no counterpart to (234) has been found with cost constraints and (235). This is
accomplished in the remainder of this section.

60. In the finite alphabet case the following result is useful to obtain a numerical solution
for the functional in (206). More importantly, it is relevant to the discussion in Item 61.

Theorem 19. In the special case of discrete alphabets, the function in (206) is equal to

Aαpνq “ max
G

α

α´ 1
log

ÿ

yPB

˜ÿ

aPA
Gpaq Pα

Y|Xpy|aq
¸ 1

α

, (236)

where the maximization is over all G : AÑ r0,8q such thatÿ

aPA
Gpaq expp´p1´ αqνbpaqq “ 1. (237)

Proof. Recalling (82) we have

IαpX; Yq ` 1
1´ α

logErexpp´p1´ αqν bpXqqs

“ α

α´ 1
log

ÿ

yPB

˜ÿ

xPA
PXpxqPα

Y|X“xpyq
¸ 1

α

` 1
1´ α

logErexpp´p1´ αqν bpXqqs (238)

“ α

α´ 1
log

ÿ

yPB

¨
˝

E
”

Pα
Y|Xpy|Xq

ı

Erexpp´p1´ αqνbpXqqs

˛
‚

1
α

(239)

“ α

α´ 1
log

ÿ

yPB

˜ÿ

aPA
Gpaq Pα

Y|Xpy|aq
¸ 1

α

, (240)
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where

Gpxq “ PXpxqř
aPA PXpaq expp´p1´ αqν bpaqq . (241)

61. We can now proceed to close the circle between the maximization of Augustin–Csiszár
mutual information subject to average cost constraints (Phase 3 in Section 1) and
Gallager’s approach (Phase 1 in Section 1).

Theorem 20. In the discrete alphabet case, recalling the definitions in (202) and (235) , for
ρ ą 0,

max
PX

E0pρ, PX , r, θq “ ρ max
PX

L 1
1`ρ

ˆ
r` r

ρ
, PX

˙
, r ą 0; (242)

min
rě0

max
PX

E0pρ, PX , r, θq “ ρCc
1

1`ρ
pθq, (243)

where the maximizations are over PA.

Proof. With

α “ 1
1` ρ

and ν “ r
1` ρ

ρ
“ r

1´ α
, (244)

the maximization of (235) with the respect to the input probability measure yields

max
PX

E0pρ, PX , r, θq

“ max
PX

$
&
%p1` ρq r θ ´ log

ÿ

yPB

˜ÿ

xPA
PXpxq exppr bpxqqP

1
1`ρ

Y|X py|xq
¸1`ρ

,
.
- (245)

“ ρ ν θ ` ρ max
PX

α

α´ 1
log

ÿ

yPB

˜ÿ

xPA
PXpxq exppp1´ αq ν bpxqqPα

Y|Xpy|xq
¸ 1

α

(246)

“ ρ ν θ ` ρ max
G

α

α´ 1
log

ÿ

yPB

˜ÿ

xPA
GpxqPα

Y|Xpy|xq
¸ 1

α

(247)

“ ρ ν θ ` ρAαpνq (248)

“ ρ max
PX

Lαpν, PXq, (249)

where

• the maximization on the right side of (247) is over all G : AÑ r0,8q that satisfy
(237), since that constraint is tantamount to enforcing the constraint that PX P PA
on the left side of (247);

• (248)ðù Theorem 19;
• (249)ðù Theorem 16.
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The proof of (242) is complete once (244) is invoked to substitute α and ν from the
right side of (249). If we now minimize the outer sides of (245)–(249) with respect to r
we obtain, using (205) and (244),

min
rě0

max
PX

E0pρ, PX , r, θq “ ρ min
rě0

max
PX

Lα

ˆ
r

1´ α
, PX

˙
(250)

“ ρ min
νě0

max
PX

Lαpν, PXq (251)

“ ρCc
1

1`ρ
pθq. (252)

In p. 329 of [9], Gallager poses the unconstrained maximization (i.e., over PX P PA)
of the Lagrangian

E0pρ, PX , r, θq ` γ
ÿ

aPA
PXpaqbpaq ´ γ θ. (253)

Note the apparent discrepancy between the optimizations in (243) and (253): the latter
is parametrized by r and γ (in addition to ρ and θ), while the maximization on the
right side of (243) does not enforce any average cost constraint. In fact, there is no
disparity since Gallager loc. cit. finds serendipitously that γ “ 0 regardless of r and θ,
and, therefore, just one parameter is enough.

62. The raison d’être for Augustin’s introduction of Icα in [36] was his quest to view Gal-
lager’s approach with average cost constraints under the optic of Rényi information
measures. Contrasting (232) and (235) and inspired by the fact that, in the absence of
cost constraints, (232) satisfies a variational characterization in view of (69) and (233),
Augustin [36] dealt, not with (235), but with

min
QY

DαpP̃Y|X}QY|PXq, where P̃Y|X“x “ PY|X“x exp
`
r1bpxq˘.

Assuming finite alphabets, Augustin was able to connect this quantity with the
maximal Icα pX; Yq under cost constraints in an arcane analysis that invokes a min-
imax theorem. This line of work was continued in Section 5 of [43], which refers
to minQY DαpP̃Y|X}QY|PXq as the Rényi-Gallager information. Unfortunately, since
P̃Y|X is not a random transformation, the conditional pseudo-Rényi divergence
DαpP̃Y|X}QY|PXq need not satisfy the key additive decomposition in Theorem 4 so the
approach of [36,43] fails to establish an identity equating the maximization of Gal-
lager’s function (235) with the maximization of Augustin–Csiszár mutual information,
which is what we have accomplished through a crisp and
elementary analysis.

10. Error Exponent Functions

The central objects of interest in the error exponent analysis of data transmission
are the functions EsppR, PXq and ErpR, PXq of a random transformation PY|X : A Ñ B.
Reflecting the three different phases referred to in Section 1, there is no unanimity in the
definition of those functions. Following [48], we adopt the standard canonical Phase 2
(Section 1.2) definitions of those functions, which are given in Items 63 and 67.

63. If R ě 0 and PX P PA, the sphere-packing error exponent function is (e.g., (10.19)
of [48])

EsppR, PXq “ min
QY|X : AÑ B

IpPX , QY|Xq ď R

DpQY|X } PY|X | PXq. (254)

64. As a function of R ě 0, the basic properties of (254) for fixed pPX , PY|Xq are as follows.
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(a) If R ě IpPX , PY|Xq, then EsppR, PXq “ 0;
(b) If R ă IpPX , PY|Xq, then EsppR, PXq ą 0;
(c) The infimum of the arguments for which the sphere-packing error exponent

function is finite is denoted by R8pPXq;
(d) On the interval R P pR8pPXq, IpPX, PY|Xqq, EsppR, PXq is convex, strictly de-

creasing, continuous, and equal to (254) where the constraint is satisfied with
equality. This implies that for R belonging to that interval, we can find ρR ě 0
so that for all r ě 0,

Esppr, PXq ě EsppR, PXq ´ ρR r` ρR R. (255)

65. In view of Theorem 8 and its definition in (254), it is not surprising that EsppR, PXq is
intimately related to the Augustin–Csiszár mutual information, through the following
key identity.

Theorem 21.

EsppR, PXq “ sup
ρě0

"
ρ Ic1

1`ρ
pX; Yq ´ ρ R

*
, R ě 0; (256)

R8pPXq “ Ic0 pX; Yq. (257)

Proof. First note that ě holds in (256) because from (128) we obtain, for all ρ ě 0,

ρ Ic1
1`ρ
pX; Yq “ min

QY|X

!
DpQY|X}PY|X|PXq ` ρ IpPX , QY|Xq

)
(258)

ď min
QY|X :

IpPX , QY|Xq ď R

!
DpQY|X}PY|X|PXq ` ρ IpPX , QY|Xq

)
(259)

ď EsppR, PXq ` ρ R, (260)

where (260) follows from the definition in (254). To show ď in (256) for those R such
that 0 ă EsppR, PXq ă 8, Property (d) in Item 64 allows us to write

min
QY|X

!
DpQY|X}PY|X|PXq ` ρR IpPX , QY|Xq

)
“ min

rě0

 
Esppr, PXq ` ρR r

(
(261)

ě EsppR, PXq ` ρR R, (262)

where (262) follows from (255).

To determine the region where the sphere-packing error exponent is infinite and show
(257), first note that if R ă Ic0 pX; Yq “ limαÓ0 Icα pX; Yq, then EsppR, PXq “ 8 because
for any ρ ě 0, the function in tu on the right side of (256) satisfies

ρ Ic1
1`ρ
pX; Yq ´ ρ R “ ρ Ic1

1`ρ
pX; Yq ´ ρ Ic0 pX; Yq ` ρ Ic0 pX; Yq ´ ρ R (263)

ě ρ Ic0 pX; Yq ´ ρ R, (264)

where (264) follows from the monotonicity of Icα pX; Yq in α we saw in (143). Con-
versely, if Ic0 pX; Yq ă R ă 8, there exists ε P p0, 1q such that Icε pX; Yq ă R, which
implies that in the minimization

Icε pX; Yq “ min
QY|X

"
ε

1´ ε
DpQY|X}PY|X|PXq ` IpPX , QY|Xq

*
(265)

we may restrict to those QY|X such that IpPX , QY|Xq ď R, and consequently, Icε pX; Yq ě
ε

1´ε EsppR, PXq. Therefore, to avoid a contradiction, we must have EsppR, PXq ă 8.
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The remaining case is Ic0 pX; Yq “ 8. Again, the monotonicity of the Augustin–
Csiszár mutual information implies that Icα pX; Yq “ 8 for all α ą 0. So, (128) pre-
scribes DpQY|X}PY|X|PXq “ 8 for any QY|X is such that IpPX, QY|Xq ă 8. Therefore,
EsppR, PXq “ 8 for all R ě 0, as we wanted to show.

Augustin [36] provided lower bounds on error probability for codes of type PX as a
function of Icα pX; Yq but did not state (256); neither did Csiszár in [32] as he was inter-
ested in a non-conventional parametrization (generalized cutoff rates) of the reliability
function. As pointed out in p. 5605 of [64], the ingredients for the proof of (256) were
already present in the hint of Problem 23 of Section II.5 of [24]. In the discrete case, an
exponential lower bound on error probability for codes with constant composition
PX is given as a function of Ic1

1`ρ

pPX , PY|Xq in [44,64]. As in [64], Nakiboglu [65] gives

(256) as the definition of the sphere-packing function and connects it with (254) in
Lemma 3 therein, within the context of discrete input alphabets.
In the discrete case, (257) is well-known (e.g., [66]), and given by (83). As pointed
out in [40], maxX Ic0 pX; Yq is the zero-error capacity with noiseless feedback found
by Shannon [67], provided there is at least a pair pa1, a2q P A2 such that PY|X“a1

K
PY|X“a2

. Otherwise, the zero-error capacity with feedback is zero.
66. The critical rate, RcpPXq, is defined as the smallest abscissa at which the convex

function Espp¨, PXqmeets its supporting line of slope ´1. According to (256),

Ic1
2
pX; Yq “ RcpPXq ` EsppRcpPXq, PXq. (266)

67. If R ě 0 and PX P PA, the random-coding exponent function is (e.g., (10.15) of [48])

ErpR, PXq “ min
QY|X : AÑB

!
DpQY|X}PY|X|PXq ` rIpPX , QY|Xq ´ Rs`

)
, (267)

with rts` “ maxt0, tu.
68. The random-coding error exponent function is determined by the sphere-packing

error exponent function through the following relation, illustrated in Figure 1.

R8pPXq RcpPXq IpPX ,PY|Xq

Ic1
2
pX; Yq EsppR,PXq

ErpR,PXq

R

Figure 1. Espp¨, PXq and Erp¨, PXq.
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Theorem 22.

ErpR, PXq “ min
rěR

 
Esppr, PXq ` r´ R

(
(268)

“

$
’’&
’’%

0, R ě IpPX , PY|Xq;
EsppR, PXq, R P rRcpPXq, IpPX , PY|Xqs;
Ic1

2
pX; Yq ´ R, R P r0, RcpPXqs.

(269)

“ sup
ρPr0,1s

"
ρ Ic1

1`ρ
pX; Yq ´ ρ R

*
. (270)

Proof. Identities (268) and (269) are well-known (e.g. Lemma 10.4 and Corollary
10.4 in [48]). To show (270), note that (256) expresses Espp¨, PXq as the supremum of
supporting lines parametrized by their slope ´ρ. By definition of critical rate (for
brevity, we do not show explicitly its dependence on PX), if R P rRc, IpPX , PY|Xqs, then
EsppR, PXq can be obtained by restricting the optimization in (256) to ρ P r0, 1s. In that
segment of values of R, EsppR, PXq “ ErpR, PXq according to (269). Moreover, on the
interval R P r0, Rcs, we have

max
ρPr0,1s

"
ρ Ic1

1`ρ
pX; Yq ´ ρ R

*
“ Ic1

2
pX; Yq ´ R (271)

“ EsppRc, PXq ` Rc ´ R (272)

“ ErpR, PXq, (273)

where we have used (266) and (269).

The first explicit connection between ErpR, PXq and the Augustin–Csiszár mutual
information was made by Poltyrev [35] although he used a different form for Icα pX; Yq,
as we discussed in (29).

69. The unconstrained maximizations over the input distribution of the sphere-packing
and random coding error exponent functions are denoted, respectively, by

EsppRq “ sup
PX

EsppR, PXq, (274)

ErpRq “ sup
PX

ErpR, PXq. (275)

Coding theorems [8–10,22,48] have shown that when these functions coincide they
yield the reliability function (optimum speed at which the error probability vanishes
with blocklength) as a function of the rate R ă maxX IpX; Yq. The intuition is that,
for the most favorable input distribution, errors occur when the channel behaves
so atypically that codes of rate R are not reliable. There are many ways in which
the channel may exhibit such behavior and they are all unlikely, but the most likely
among them is the one that achieves (254).
It follows from (187), (256) and (270) that (274) and (275) can be expressed as

EsppRq “ sup
ρě0

"
ρ sup

X
I 1

1`ρ
pX; Yq ´ ρ R

*
, (276)

ErpRq “ sup
ρPr0,1s

"
ρ sup

X
I 1

1`ρ
pX; Yq ´ ρ R

*
. (277)

Therefore, we can sidestep working with the Augustin–Csiszár mutual information
in the absence of cost constraints.

70. Shannon [1] showed that, operating at rates below maximal mutual information, it
is possible to find codes whose error probability vanishes with blocklength; for the
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converse, instead of error probability, Shannon measured reliability by the conditional
entropy of the message given the channel output. That alternative reliability measure,
as well as its generalization to Arimoto-Rényi conditional entropy, is also useful
analyzing the average performance over code ensembles. It turns out (see e.g., [28,68])
that, below capacity, those conditional entropies also vanish exponentially fast in
much the same way as error probability with bounds that are governed by EsppRq
and ErpRq thereby lending additional operational significance to those functions.

71. We now introduce a cost function b : AÑ r0,8q and real scalar θ ě 0, and reexamine
the optimizations in (274) and (275) allowing only those probability measures that
satisfy ErbpXqs ď θ. With a patent, but unavoidable, abuse of notation we define

EsppR, θq “ sup
PX :

ErbpXqs ď θ

EsppR, PXq (278)

“ sup
ρě0

$
’’&
’’%

ρ sup
PX :

ErbpXqs ď θ

Ic1
1`ρ
pX; Yq ´ ρ R

,
//.
//-

(279)

“ sup
ρě0

"
ρCc

1
1`ρ
pθq ´ ρ R

*
(280)

“ sup
ρě0

"
´ρ R` ρ min

νě0

"
ν θ `A 1

1`ρ
pνq

**
(281)

“ sup
ρě0

"
´ρ R`min

νě0
tρ ν θ

`max
X

"
ρ I 1

1`ρ
pX; Yq ` p1` ρq logE

„
exp

ˆ
´ ρ ν

1` ρ
bpXq

˙***
, (282)

where (279), (281) and (282) follow from (256), (208) and (206), respectively.
72. In parallel to (278)–(281),

ErpR, θq “ sup
PX :

ErbpXqs ď θ

ErpR, PXq (283)

“ sup
ρPr0,1s

$
’’&
’’%

ρ sup
PX :

ErbpXqs ď θ

Ic1
1`ρ
pX; Yq ´ ρ R

,
//.
//-

(284)

“ sup
ρPr0,1s

"
ρCc

1
1`ρ
pθq ´ ρ R

*
, (285)

where (284) follows from (270). In particular, if we define the critical rate and the
cutoff rate as

Rc “ sup
PX :

ErbpXqs ď θ

RcpPXq, (286)

R0 “ sup
PX :

ErbpXqs ď θ

Ic1
2
pX; Yq, (287)

respectively, then it follows from (270) that

ErpRq “ R0 ´ R, R P r0, Rcs. (288)
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Summarizing, the evaluation of EsppR, θq and ErpR, θq can be accomplished by the
method proposed in Section 8, at the heart of which is the maximization in (206)
involving α-mutual information instead of Augustin–Csiszár mutual information. In
Sections 11 and 12, we illustrate the evaluation of the error exponent functions with
two important additive-noise examples.

11. Additive Independent Gaussian Noise; Input Power Constraint

We illustrate the procedure in Item 58 by taking Example 6 considerably further.

73. Suppose A “ B “ R, bpxq “ x2, and PY|X“a “ N
`
a, σ2

N
˘
. We start by testing whether

we can find Rν
X P PA such that its α-response satisfies (230). Naturally, it makes sense

to try Rν
X “ N

`
0, σ2˘ for some yet to be determined σ2. As we saw in Example 6, this

choice implies that its α-response is Rν
Yrαs “ N

`
0, α σ2 ` σ2

N
˘
. Specializing Example 4,

we obtain

Dα

´
PY|X“x }Rν

Yrαs
¯
“ Dα

´
N
´

x, σ2
N

¯ ››N
´

0, α σ2 ` σ2
N

¯¯
(289)

“ 1
2

log

˜
1` α σ2

σ2
N

¸
´ 1

2p1´ αq log

˜
1` αp1´ αqσ2

α2σ2 ` σ2
N

¸
` 1

2
αx2

α2σ2 ` σ2
N

log e. (290)

Therefore, (230) is indeed satisfied with

cαpνq “ 1
2

log

˜
1` α σ2

σ2
N

¸
´ 1

2p1´ αq log

˜
1` αp1´ αqσ2

α2σ2 ` σ2
N

¸
, (291)

ν “ 1
2

α

α2σ2 ` σ2
N

log e, (292)

where (292) follows if we choose the variance of the auxiliary input as

σ2 “ log e
2 α ν

´ σ2
N

α2 (293)

“ σ2
N

α2

´ α

λ
´ 1

¯
. (294)

In (294) we have introduced an alternative, more convenient, parametrization for the
Lagrange multiplier

λ “ 2 ν σ2
N

log e
P p0, αq. (295)

In conclusion, with the choice in (293), N
`
0, σ2˘ attains the maximum in (206), and

in view of (231), Aαpνq is given by the right side of (291) substituting σ2 by (293).
Therefore, we have

ν θ `Aαpνq “ λ

2
snr log e` cα

˜
λ log e
2 σ2

N

¸
(296)

“ λ

2
snr log e` 1

2
log

ˆ
1` 1

λ
´ 1

α

˙
´ 1

2p1´ αq logpα´ λp1´ αqq ` log α

1´ α
, (297)

where we denoted snr “ θ
σ2

N
.
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In accordance with Theorem 16 all that remains is to minimize (297) with respect
to ν, or equivalently, with respect to λ. Differentiating (297) with respect to λ, the
minimum is achieved at λ˚ satisfying

snr “ 1
λ˚

α´ λ˚
α´ λ˚ ` α λ˚ , (298)

whose only valid root (obtained by solving a quadratic equation) is

λ˚ “ 1` α snr´ α ∆
2 snr p1´ αq P p0, αq, (299)

with ∆ defined in (118). So, for α P p0, 1q, (208) becomes

Cc
αpsnr σ2

Nq “
1` α snr´ α ∆

4p1´ αq log e` 1
2

log
ˆ

1` 2 snr p1´ αq
1` α snr´ α ∆

´ 1
α

˙

´ 1
2p1´ αq log

ˆ
α snr` α ∆´ 1

2 snr α2

˙
. (300)

Letting α “ 1
1`ρ , we obtain

Cc
1

1`ρ
psnr σ2

Nq “
snr

2 ρ
p1´ βq log e` 1

2
logp1` β snrq ´ 1` ρ

2 ρ
logpp1` ρqβq, (301)

with

β “ 1
2

ˆ
1´ 1

α snr
` ∆

snr

˙
“ 1

2

¨
˝1´ 1` ρ

snr
`
d

4
snr

`
ˆ

1` ρ

snr
´ 1

˙2
˛
‚. (302)

74. Alternatively, it is instructive to apply Theorem 18 to the current Gaussian/quadratic
cost setting. Suppose we let QX̊ “ N

`
0, σ˚2˘, where σ˚2 is to be determined. With the

aid of the formulas

E
”

X2 e´µX2
ı
“ σ2

`
1` 2 µ σ2

˘ 3
2

, (303)

E
”
e´µX2

ı
“ 1a

1` 2 µ σ2
, (304)

where µ ě 0, and X „ N`0, σ2˘, (217) becomes

1
snr

“ σ2
N

σ˚2 ` p1´ αqλ˚, (305)

upon substituting σ2 Ð σ˚2 and

µ Ð ν˚ 1´ α

log e
“ λ˚ 1´ α

2σ2
N

. (306)

Likewise (218) translates into (291) and (292) with pν, σ2q Ð pν˚, σ˚2q, namely,

cαpν˚q “ 1
2

log

˜
1` α σ˚2

σ2
N

¸
´ 1

2p1´ αq log

˜
1` αp1´ αqσ˚2

α2σ˚2 ` σ2
N

¸
, (307)

λ˚ “ ασ2
N

α2σ˚2 ` σ2
N

. (308)
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Eliminating σ˚2 from (305) by means of (308) results in (299) and the same derivation
that led to (300) shows that it is equal to ν˚θ ` cαpν˚q.

75. Applying Theorem 17, we can readily find the input distribution, PX̊, that attains
Cc

αpθq as well as its xαy-response PY̊ (recall the notation in Item 53). According to
Example 2, PY̊ , the α-response to QX̊ is Gaussian with zero mean and variance

σ2
N ` α σ˚2 “ σ2

N

ˆ
1` 1

λ˚ ´
1
α

˙
(309)

“ σ2
N
2

ˆ
2´ 1

α
` ∆` snr

˙
, (310)

where (309) follows from (308) and (310) follows by using the expression for ∆ in
(118). Note from Example 7 that PY̊ is nothing but the xαy-response to N

`
0, snr σ2

N
˘
.

We can easily verify from Theorem 17 that indeed PX̊ “ N
`
0, snr σ2

N
˘

since in this case
(216) becomes

ıP˚X }Q˚X paq “ ´p1´ αqν˚ a2 ` τα, (311)

which can only be satisfied by PX̊ “ N
`
0, snr σ2

N
˘

in view of (305). As an independent
confirmation, we can verify, after some algebra, that the right sides of (127) and (300)
are identical.
In fact, in the current Gaussian setting, we could start by postulating that the distri-
bution that maximizes the Augustin–Csiszár mutual information under the second
moment constraint does not depend on α and is given by PX̊ “ Np0, θq. Its xαy-
response P˚Yxαy was already obtained in Example 7. Then, an alternative method to
find Cc

αpθq, given in Section 6.2 of [43], is to follow the approach outlined in Item
53. To validate the choice of PX̊ we must show that it maximizes BpPX , P˚Yxαyq (in the

notation introduced in (199)) among the subset of PA which satisfies ErX2s ď θ. This
follows from the fact that Dα

´
PY|X“x}P˚Yxαy

¯
is an affine function of x2.

76. Let’s now use the result in Item 73 to evaluate, with a novel parametrization, the error
exponent functions for the Gaussian channel under an average power constraint.

Theorem 23. Let A “ B “ R, bpxq “ x2, and PY|X“a “ N
`
a, σ2

N
˘
. Then, for β P r0, 1s,

EsppR, snr σ2
Nq “

snr

2
p1´ βq log e´ 1

2
logp1` snr βp1´ βqq, (312)

R “ 1
2

log

˜
1` β2

βp1´ βq ` 1
snr

¸
. (313)

The critical rate and cutoff rate are, respectively,

Rc “ 1
2

log

˜
1
2
` snr

4
` 1

2

c
1` snr2

4

¸
, (314)

R0 “ 1
2

˜
1` snr

2
´
c

1` snr2

4

¸
log e` 1

2
log

˜
1
2
` 1

2

c
1` snr2

4

¸
. (315)
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Proof. Expression (315) for the cutoff rate follows by letting ρ “ 1 in (301) and
(302). The supremum in (281) is attained by ρ˚ ě 0 that satisfies (recall the concavity
result in Theorem 9-(a))

R “ d
dρ

ρCc
1

1`ρ
psnr σ2

Nq
ˇ̌
ˇ̌
ρÐρ˚

(316)

“ 1
2

log
ˆ
snr` 1

β

˙
´ 1

2
logp1` ρ˚q, (317)

obtained after a dose of symbolic computation working with (301). In particular,
letting ρ˚ “ 1, we obtain the critical rate in (314). Note that if in (302) we substitute
ρ Ð ρ˚, with ρ˚ given as a function of R, snr and β by (317), we end up with an
equation involving R, snr, and β. We proceed to verify that that equation is, in fact,
(312). By solving a quadratic equation, we can readily check that (302) is the positive
root of

1` ρ “ snrp1´ βq ` 1
β

. (318)

If we particularize (318) to ρ Ð ρ˚, with ρ˚ given by (317), namely,

ρ˚ “ ´1` expp´2Rq
ˆ
snr` 1

β

˙
, (319)

we obtain

expp2Rq “ snr β` 1
snr βp1´ βq ` 1

, (320)

which is (313). Notice that the right side of (320) is monotonic increasing in β ą 0
ranging from 1 (for β “ 0) to 1` snr (for β “ 1). Therefore, β P r0, 1s spans the whole
gamut of values of R of interest.
Assembling (281), (301) and (317), we obtain

EsppR, snr σ2
Nq

“ ´ρ˚R` snr

2
p1´ βq log e` ρ˚

2
logp1` β snrq ´ 1` ρ˚

2
logpp1` ρ˚qβq (321)

“ ´ρ˚R` snr

2
p1´ βq log e` ρ˚

2
logp1` β snrq ´ 1` ρ˚

2
log β

` p1` ρ˚qR´ 1` ρ˚
2

log
ˆ
snr` 1

β

˙
(322)

“ R` snr

2
p1´ βq log e´ 1

2
logp1` β snrq (323)

“ snr

2
p1´ βq log e´ 1

2
logp1` snr βp1´ βqq, (324)

where (324) follows by substituting (313) on the left side.

Note that the parametric expression in (312) and (313) (shown in Figure 2) is, in fact,
a closed-form expression for EsppR, snr σ2

Nq since we can invert (313) to obtain

β “ 1
2
p1´ expp´2 Rqq

˜
1`

d
1` 4

snr p1´ expp´2 Rqq

¸
. (325)
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The random coding error exponent is

ErpR, θq “
#

EsppR, θq, R P pRc, 1
2 logp1` snrqq;

R0 ´ R, R P r0, Rcs,
(326)

with the critical rate Rc and cutoff rate R0 in (314) and (315), respectively. It can be
checked that (326) coincides with the expression given by Gallager [9] (p. 340) where
he optimizes (235) with respect to ρ and r, but not PX, which he just assumes to be
PX “ Np0, θq. The expression for Rc in (314) can be found in (7.4.34) of [9]; R0 in (314)
is implicit in p. 340 of [9], and explicit in e.g., [69].

1 2 1
2 logp1` snrq 3

10

20

snr
2 log e

R

EsppR, snr σ2
Nq snr “ 5 dB

snr “ 10 dB
snr “ 15 dB

Figure 2. EsppR, snr σ2
Nq in (312) and (313); logarithms in base 2.

77. The expression for EsppR, θq in Theorem 23 has more structure than meets the eye.
The analysis in Item 73 has shown that EsppR, PXq is maximized over PX with second

moment not exceeding θ by PX̊ “ Np0, θq regardless of R P
´

0, 1
2 logp1` snrq

¯
. The

fact that we have found a closed-form expression for (254) when evaluated at such
input probability measure and PY|X“a “ N

`
a, σ2

N
˘

is indicative that the minimum
therein is attained by a Gaussian random transformation Q˚Y|X. This is indeed the
case: define the random transformation

Q˚Y|X“a “ N
´

β a, σ2
1

¯
, (327)

σ2
1

σ2
N
“ 1` snr βp1´ βq. (328)

In comparison with the nominal random transformation PY|X“a “ N
`
a, σ2

N
˘
, this

channel attenuates the input and contaminates it with a more powerful noise. Then,

IpPX̊ , Q˚Y|Xq “
1
2

log

˜
1` β2

βp1´ βq ` 1
snr

¸
“ R. (329)

210



Entropy 2021, 23, 199

Furthermore, invoking (33), we get

DpQ˚Y|X}PY|X|PX̊q “ E
”

D
´
N
´

βX˚, σ2
1

¯
}N

´
X˚, σ2

N

¯¯ı
(330)

“ 1
2

˜
pβ´ 1q2snr` σ2

1
σ2

N
´ 1

¸
log e´ 1

2
log

σ2
1

σ2
N

(331)

“ snr

2
p1´ βq log e´ 1

2
logp1` snr βp1´ βqq (332)

“ EsppR, snr σ2
Nq, (333)

where (333) is (312). Therefore, Q˚Y|X does indeed achieve the minimum in (254) if

PY|X“a “ N
`
a, σ2

N
˘

and PX̊ “ Np0, θq. So, the most likely error mechanism is the
result of atypically large noise strength and an attenuated received signal. Both effects
cannot be combined into additional noise variance: there is no σ2 ą 0 such that
QY|X“a “ N

`
a, σ2˘ achieves the minimum in (254).

12. Additive Independent Exponential Noise; Input-Mean Constraint

This section finds the sphere-packing error exponent for the additive independent
exponential noise channel under an input-mean constraint.

78. Suppose that A “ B “ r0,8q, bpxq “ x, and

Y “ X` N, (334)

where N is exponentially distributed, independent of X, and ErNs “ ζ. Therefore
PY|X“a has density

pY|X“aptq “
1
ζ

e´
t´a

ζ 1tt ě au. (335)

It is shown in [70,71] that

max
X : ErXsďθ

IpX; X` Nq “ logp1` snrq, (336)

snr “ θ

ζ
, (337)

achieved by a mixed random variable with density

fX̊ptq “
ζ

ζ ` θ
δptq ` θ

pζ ` θq2 e´t{pζ`θq1tt ą 0u. (338)

To determine Cc
αpsnr ζq, α P p0, 1q, we invoke Theorem 18. A sensible candidate for

the auxiliary input distribution QX̊ is a mixed random variable with density

qX̊ptq “ Γ˚ δptq ` p1´ Γ˚q 1
µ

e´t{µ 1tt ą 0u, (339)

µ “ ζ

α Γ˚ , (340)

where Γ˚ P p0, 1q is yet to be determined. This is an attractive choice because its
α-response, Q˚Yrαs, is particularly simple: exponential with mean α µ “ ζ

Γ˚ , as we can
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verify using Laplace transforms. Then, if Z is exponential with unit mean, with the
aid of Example 5, we can write

Dα

´
PY|X“x }Q˚Yrαs

¯
“ Dαpζ Z` x } α µ Zq (341)

“ x
α µ

log e` log
α µ

ζ
` 1

1´ α
log

ˆ
α` p1´ αq ζ

α µ

˙
(342)

“ Γ˚x
ζ

log e´ log Γ˚ ` 1
1´ α

logpα` p1´ αqΓ˚q. (343)

So, (218) is satisfied with

ν˚ “ Γ˚
ζ

log e, (344)

cαpν˚q “ 1
1´ α

logpα` p1´ αqΓ˚q ´ log Γ˚. (345)

To evaluate (217), it is useful to note that if γ ą ´1, then

E
”

Ze´γZ
ı
“ 1
p1` γq2 , (346)

E
”
e´γZ

ı
“ 1

1` γ
. (347)

Therefore, the left side of (217) specializes to, with X̄˚ „ QX̊ ,

E
“
bpX̄˚q exp

`´p1´ αqν˚ bpX̄˚q˘‰ “ µp1´ Γ˚q
´

1` µp1´ αq ν˚
log e

¯2 (348)

“ ζ α

ˆ
1

Γ˚ ´ 1
˙

, (349)

while the expectation on the right side of (217) is given by

E
“
exp

`´p1´ αqν˚ bpX̄˚q˘‰ “ α` Γ˚ ´ αΓ˚. (350)

Therefore, (217) yields

snr “ 1
Γ˚ ´

1
α` p1´ αqΓ˚ (351)

whose solution is

Γ˚ “ 1
2ρ snr

ˆb
p1` snrq2 ` 4ρ snr´ 1´ snr

˙
, (352)

with ρ “ 1´α
α . So, finally, (220), (344) and (345) give the closed-form expression

Cc
αpθq “ snr Γ˚ log e´ log Γ˚ ` 1

1´ α
logpα` p1´ αqΓ˚q. (353)

As in Item 73, we can postulate an auxiliary distribution that satisfies (230) for every
ν ě 0. This is identical to what we did in (341)–(343) except that now (344) and (345)
hold for generic ν and Γ. Then, (351) is the result of solving θ “ ´ 9cαpν˚q, which is, in
fact, somewhat simpler than obtaining it through (217).

79. We proceed to get a very simple parametric expression for EsppR, θq.
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Theorem 24. Let A “ B “ r0,8q, bpxq “ x, and Y “ X ` N, with N exponentially
distributed, independent of X, and ErNs “ ζ. Then, under the average cost constraint
ErbpXqs ď ζ snr,

EsppR, ζ snrq “
ˆ

1
η
´ 1

˙
log e` log η, (354)

R “ logp1` η snrq, (355)

where η P p0, 1s.

Proof. Rewriting (353), results in

ρCc
1

1`ρ
pθq “ ρ snr Γ˚ log e´ ρ log Γ˚ ` p1` ρq log

1` ρ Γ˚
1` ρ

, (356)

which is monotonically decreasing with ρ. With 9Γ˚ “ B
Bρ Γ˚pρ, snrq, the counterpart of

(317) is now

R “ d
dρ

ρCc
1

1`ρ
pθq

ˇ̌
ˇ̌
ρÐρ˚

(357)

“ pΓ˚ ` ρ˚ 9Γ˚q
ˆ
snr´ 1

Γ˚ `
1` ρ˚

1` ρ˚Γ˚
˙

log e` log
1` ρ˚Γ˚

Γ˚ ` ρ˚ Γ˚ (358)

“ pΓ˚ ` ρ˚ 9Γ˚q
ˆ
snr` 1

Γ˚
Γ˚ ´ 1

1` ρ˚Γ˚
˙

log e` log
1` ρ˚Γ˚

Γ˚ ` ρ˚ Γ˚ (359)

“ log
1` ρ˚Γ˚

Γ˚ ` ρ˚ Γ˚ , (360)

where the drastic simplification in (360) occurs because, with the current parametriza-
tion, (351) becomes

1´ Γ˚ “ p1` ρ˚ Γ˚q Γ˚ snr. (361)

Now we go ahead and express both ρ˚ and Γ˚ as functions of snr and R exclusively.
We may rewrite (357)–(360) as

ρ˚ Γ˚ “ expp´Rq ´ Γ˚
1´ expp´Rq , (362)

which, when plugged in (361), results in

Γ˚ “ 1
snr
p1´ expp´Rqq ă 1, (363)

ρ˚ “ p1` snrq expp´Rq ´ 1

p1´ expp´Rqq2 ą 0, (364)
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where the inequalities in (363) and (364) follow from R ă logp1` snrq. So, in conclusion,

EsppR, θq “ max
ρě0

"
ρCc

1
1`ρ
pθq ´ ρ R

*
(365)

“ ρ˚Cc
1

1`ρ˚
pθq ´ ρ˚ R (366)

“ ρ˚ snr Γ˚ log e´ ρ˚ log Γ˚ ` p1` ρ˚q log
1` ρ˚Γ˚

1` ρ˚ ´ ρ˚ R (367)

“ ρ˚ snr Γ˚ log e´ ρ˚ log Γ˚ ` p1` ρ˚qpR` log Γ˚q ´ ρ˚ R (368)

“ ρ˚ snr Γ˚ log e` log Γ˚ ` R (369)

“
ˆ

snr

exppRq ´ 1
´ 1

˙
log e` log

exppRq ´ 1
snr

(370)

“
ˆ

1
η
´ 1

˙
log e` log η, (371)

where we have introduced

η “ exppRq ´ 1
snr

“ Γ˚
1´ snr Γ˚ . (372)

Evidently, the left identity in (372) is the same as (355).

The critical rate and the cutoff rate are obtained by particularizing (360) and (356) to
ρ˚ “ 1 and ρ “ 1, respectively. This yields

Rc “ log
1` Γ1̊
2 Γ1̊

, (373)

R0 “ snr Γ1̊ log e´ logp4 Γ1̊ q ` 2 logp1` Γ1̊ q, (374)

Γ1̊ “
b
p1` snrq2 ` 4 snr´ 1´ snr

2 snr
. (375)

As in (326), the random coding error exponent is

ErpR, ζ snrq “
#

EsppR, ζ snrq, R P pRc, logp1` snrqq;
R0 ´ R, R P r0, Rcs,

(376)

with the critical rate Rc and cutoff rate R0 in (373) and (375), respectively. This function
is shown along with EsppR, ζ snrq in Figure 3 for snr “ 3.

80. In parallel to Item 77, we find the random transformation that explains the most likely
mechanism to produce errors at every rate R, namely the minimizer of (254) when
PX “ PX̊ , the maximizer of the Augustin–Csiszár mutual information of order α. In
this case, PX̊ is not as trivial to guess as in Section 11, but since we already found
QX̊ in (339) with Γ “ Γ˚, we can invoke Theorem 17 to show that the density of PX̊
achieving the maximal order-α Augustin–Csiszár mutual information is

pX̊ptq “
Γ˚

α` p1´ αqΓ˚ δptq ` 1´ Γ˚
α` p1´ αqΓ˚

α Γ˚
ζ

e´t Γ˚{ζ 1tt ą 0u, (377)

whose mean is, as it should,

α ζ

Γ˚
1´ Γ˚

α` p1´ αqΓ˚ “ ζ snr “ θ. (378)
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Let QY̊ be exponential with mean θ ` κ, and Q˚Y|X“a have density

q˚Y|X“aptq “
1
κ

e´ t´a
κ 1tt ě au, (379)

with

κ “ ζ

η
, (380)

and η as defined in (372). Using Laplace transforms, we can verify that PX̊ Ñ Q˚Y|X Ñ
QY̊ where PX̊ is the probability measure with density in (377). Let Z be unit-mean
exponentially distributed. Writing mutual information as the difference between the
output differential entropy and the noise differential entropy we get

IpPX̊ , Q˚Y|Xq “ hppθ ` κqZq ´ hpκZq (381)

“ log
ˆ

1` θ

κ

˙
(382)

“ R, (383)

in view of (363). Furthermore, using (335) and (379),

DpQ˚Y|X } PY|X|PX̊q “ log
ζ

κ
`
ˆ

κ

ζ
´ 1

˙
log e (384)

“ log η `
ˆ

1
η
´ 1

˙
log e (385)

“ EsppR, ζ snrq, (386)

where we have used (380) and (354). Therefore, we have shown that Q˚Y|X is indeed
the minimizer of (254). In this case, the most likely mechanism for errors to happen is
that the channel adds independent exponential noise with mean ζ{η, instead of the
nominal mean ζ. In this respect, the behavior is reminiscent of that of the exponential
timing channel for which the error exponent is dominated (at least above critical rate)
by an exponential server which is slower than the nominal [72].

Rc logp1` snrq

R0

EsppR, ζ snrq
ErpR, ζ snrq

R

Figure 3. Error exponent functions in (354), (355) and (376).

13. Recap

81. The analysis of the fundamental limits of noisy channels in the regime of vanishing
error probability with blocklength growing without bound expresses channel capacity
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in terms of a basic information measure: the input–output mutual information maxi-
mized over the input distribution. In the regime of fixed nonzero error probability, the
asymptotic fundamental limit is a function of not only capacity but channel disper-
sion [73], which is also expressible in terms of an information measure: the variance
of the information density obtained with the capacity-achieving distribution. In the
regime of exponentially decreasing error probability (at fixed rate below capacity)
the analysis of the fundamental limits has gone through three distinct phases. No
information measures were involved during the first phase and any optimization with
respect to various auxiliary parameters and input distribution had to rely on standard
convex optimization techniques, such as Karush-Kuhn-Tucker conditions, which not
only are cumbersome to solve in this particular setting, but shed little light on the
structure of the solution. The second phase firmly anchored the problem in a large
deviations foundation, with the fundamental limits expressed in terms of conditional
relative entropy as well as mutual information. Unfortunately, the associated maxi-
minimization in (2) did not immediately lend itself to analytical progress. Thanks to
Csiszár’s realization of the relevance of Rényi’s information measures to this problem,
the third phase has found a way to, not only express the error exponent functions as a
function of information measures, but to solve the associated optimization problems
in a systematic way. While, in the absence of cost constraints, the problem reduces
to finding the maximal α-mutual information, cost constraints make the problem
much more challenging because of the difficulty in determining the order-α Augustin–
Csiszár mutual information. Fortunately, thanks to the introduction of an auxiliary
input distribution (the xαy-adjunct of the distribution that maximizes Icα ), we have
shown that α-mutual information also comes to the rescue in the maximization of
the order-α Augustin–Csiszár mutual information in the presence of average cost
constraints. We have also finally ended the isolation of Gallager’s E0 function with
cost constraints from the representations in Phases 2 and 3. The pursuit of such a
link is what motivated Augustin in 1978 to define a generalized mutual information
measure. Overall, the analysis has given yet another instance of the benefits of varia-
tional representations of information measures, leading to solutions based on saddle
points. However, we have steered clear of off-the-shelf minimax theorems and their
associated topological constraints.
We have worked out two channels/cost constraints (additive Gaussian noise with
quadratic cost, and additive exponential noise with a linear cost) that admit closed-
form error-exponent functions, most easily expressed in parametric form. Further-
more, in Items 77 and 80 we have illuminated the structure of those closed-form
expressions by identifying the anomalous channel behavior responsible for most
errors at every given rate. In the exponential noise case, the solution is simply a
noisier exponential channel, while in the Gaussian case it is the result of both a noisier
Gaussian channel and an attenuated input.
These observations prompt the question of whether there might be an alternative
general approach that eschews Rényi’s information measures to arrive at not only the
most likely anomalous channel behavior, but the error exponent functions themselves.
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Appendix A

Recall that the relative information ıP}Q is defined only if P ! Q, while DpP}Qq P
r0,`8s is always defined and equal to `8 if (but not only if) P
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Example 1. If X ∼ N
(
µX , σ2

X
)

(Gaussian with mean µX and variance σ2
X) and Y ∼

N
(
µY, σ2

Y
)
, then,

ıX‖Y(a) =
1
2

log
σ2

Y
σ2

X
+

1
2

(
(a− µY)

2

σ2
Y

− (a− µX)
2

σ2
X

)
log e. (10)

4. Let (A, F ) and (B, G ) be measurable spaces, known as the input and output spaces,
respectively. Likewise, A and B are referred to as the input and output alphabets
respectively. The simplified notation PY|X : A → B denotes a random transformation
from (A, F ) to (B, G ), i.e. for any x ∈ A, PY|X=x(·) is a probability measure on
(B, G ), and for any B ∈ G , PY|X=·(B) is an F -measurable function.

5. We abbreviate by PA the set of probability measures on (A, F ), and by PA×B the
set of probability measures on (A× B, F ⊗ G ). If P ∈ PA and PY|X : A → B is a
random transformation, the corresponding joint probability measure is denoted by
P PY|X ∈ PA×B (or, interchangeably, PY|XP). The notation P → PY|X → Q simply
indicates that the output marginal of the joint probability measure P PY|X is denoted
by Q ∈ PB , namely,

Q(B) =
∫

PY|X(B|x)dPX(x) = E
[

PY|X(B|X)
]
, B ∈ G . (11)

6. If PX → PY|X → PY and PY|X=a � PY, the information density ıX;Y : A × B →
[−∞, ∞) is defined as

ıX;Y(a; b) = ıPY|X=a‖PY
(b), (a, b) ∈ A×B. (12)

Following Rényi’s terminology [49], if PXPY|X � PX × PY, the dependence between
X and Y is said to be regular, and the information density can be defined on (x, y) ∈
A × B. Henceforth, we assume that PY|X is such that the dependence between its
input and output is regular regardless of the input probability measure. For example,
if X = Y ∈ R, then PY|X=a(A) = 1{a ∈ A}, and their dependence is not regular, since
for any PX with non-discrete components PXY 6� PX × PY.

7. Let α > 0, and PX → PY|X → PY. The α-response to PX ∈ PA is the output probability
measure PY[α] � PY with relative information given by

ıY[α]‖Y(y) =
1
α

logE[exp(α ıX;Y(X; y)− κα)], X ∼ PX , (13)

where κα is a scalar that guarantees that PY[α] is a probability measure. Invoking (9),
we obtain

κα = α logE
[
E

1
α [exp(α ıX;Y(X; Ȳ))|Ȳ]

]
, (X, Ȳ) ∼ PX × PY. (14)

For brevity, the dependence of κα on PX and PY|X is omitted. Jensen’s inequality
applied to (·)α results in κα ≤ 0 for α ∈ (0, 1) and κα ≥ 0 for α > 1. Although the
α-response has a long record of services to information theory, this terminology and
notation were introduced recently in [45]. Alternative terminology and notation were
proposed in [42], which refers to the α-response as the order α Rényi mean. Note that
κ1 = 0 and the 1-response to PX is PY. If pY[α] and pY|X denote the densities of PY[α]
and PY|X with respect to some common dominating measure, then (13) becomes

pY[α](y) = exp
(
−κα

α

)
E

1
α

[
pα

Y|X(y|X)
]
, X ∼ PX . (15)

For α > 1 (resp. α < 1) we can think of the normalized version of pα
Y|X as a random

transformation with less (resp. more) "noise" than pY|X .

Q.
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Lemma A1. If Q ! R and X „ P ! R, then

E
”
ıP}RpXq ´ ıQ}RpXq

ı
“ DpP }Qq, (A1)

regardless of whether the right side is finite.

Proof. If P ! Q ! R, we may invoke the chain rule (7) to decompose

ıP}Rpaq ´ ıQ}Rpaq “ ıP}Qpaq. (A2)

Then, the result follows by taking expectations of (A2) when a Ð X „ P.
To show that (A1) also holds when P

Entropy 2021, 1, 0 6 of 52

Example 1. If X ∼ N
(
µX , σ2

X
)

(Gaussian with mean µX and variance σ2
X) and Y ∼

N
(
µY, σ2

Y
)
, then,

ıX‖Y(a) =
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∫

PY|X(B|x)dPX(x) = E
[

PY|X(B|X)
]
, B ∈ G . (11)

6. If PX → PY|X → PY and PY|X=a � PY, the information density ıX;Y : A × B →
[−∞, ∞) is defined as

ıX;Y(a; b) = ıPY|X=a‖PY
(b), (a, b) ∈ A×B. (12)

Following Rényi’s terminology [49], if PXPY|X � PX × PY, the dependence between
X and Y is said to be regular, and the information density can be defined on (x, y) ∈
A × B. Henceforth, we assume that PY|X is such that the dependence between its
input and output is regular regardless of the input probability measure. For example,
if X = Y ∈ R, then PY|X=a(A) = 1{a ∈ A}, and their dependence is not regular, since
for any PX with non-discrete components PXY 6� PX × PY.

7. Let α > 0, and PX → PY|X → PY. The α-response to PX ∈ PA is the output probability
measure PY[α] � PY with relative information given by

ıY[α]‖Y(y) =
1
α

logE[exp(α ıX;Y(X; y)− κα)], X ∼ PX , (13)

where κα is a scalar that guarantees that PY[α] is a probability measure. Invoking (9),
we obtain

κα = α logE
[
E

1
α [exp(α ıX;Y(X; Ȳ))|Ȳ]

]
, (X, Ȳ) ∼ PX × PY. (14)

For brevity, the dependence of κα on PX and PY|X is omitted. Jensen’s inequality
applied to (·)α results in κα ≤ 0 for α ∈ (0, 1) and κα ≥ 0 for α > 1. Although the
α-response has a long record of services to information theory, this terminology and
notation were introduced recently in [45]. Alternative terminology and notation were
proposed in [42], which refers to the α-response as the order α Rényi mean. Note that
κ1 = 0 and the 1-response to PX is PY. If pY[α] and pY|X denote the densities of PY[α]
and PY|X with respect to some common dominating measure, then (13) becomes

pY[α](y) = exp
(
−κα

α

)
E

1
α

[
pα

Y|X(y|X)
]
, X ∼ PX . (15)

For α > 1 (resp. α < 1) we can think of the normalized version of pα
Y|X as a random

transformation with less (resp. more) "noise" than pY|X .

Q, i.e., that the expectation on the left side is
`8, we invoke the Lebesgue decomposition theorem (e.g. p. 384 of [74]), which ensures
that we can find α P r0, 1q, P0 K Q and P1 ! Q, such that

P “ α P1 ` p1´ αqP0. (A3)

Since P1 K P0, we have

DpP1 } Pq “ log
1
α

, (A4)

DpP0 } Pq “ log
1

1´ α
. (A5)

If X1 „ P1, then

E
”
ıP}RpX1q ´ ıQ}RpX1q

ı
“ E

”
ıP1}RpX1q ´ ıQ}RpX1q

ı
´E

”
ıP1}RpX1q ´ ıP}RpX1q

ı
(A6)

“ DpP1 }Qq ´DpP1 } Pq (A7)

“ DpP1 }Qq ´ log
1
α

, (A8)

where

• (A7)ðù (A1) with pP, Q, Rq Ð pP1, Q, Rq and (A1) with pP, Q, Rq Ð pP1, P, Rq, which
we are entitled to invoke since P1 is dominated by both Q and R;

• (A8)ðù (A4).

Analogously, if X0 „ P0, then

E
”
ıP}RpX0q

ı
“ E

”
ıP0}RpX0q

ı
´E

”
ıP0}RpX0q ´ ıP}RpX0q

ı
(A9)

“ DpP0 }Rq ´DpP0 } Pq (A10)

“ DpP0 }Rq ´ log
1

1´ α
. (A11)

Therefore, we are ready to conclude that

E
”
ıP}RpXq ´ ıQ}RpXq

ı

“ αE
”
ıP}RpX1q ´ ıQ}RpX1q

ı
` p1´ αqE

”
ıP}RpX0q ´ ıQ}RpX0q

ı
(A12)

“ α DpP1 }Qq ` p1´ αqDpP0 }Rq ´ p1´ αqE
”
ıQ}RpX0q

ı
´ hpαq (A13)

“ `8, (A14)

where

• (A12)ðù (A3);
• (A13)ðù hp¨q is the binary entropy function, (A8) and (A11);
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• (A14)ðù E
”
ıQ}RpX0q

ı
“ ´8ðù P0

´
x P A : dQ

dR pxq “ 0
¯
“ 1ðù P0 K Q.

Corollary A1. Suppose that Q ! R and X „ P ! R. Then,

E
”
ıQ}RpXq

ı
“ DpP }Rq ´DpP }Qq, (A15)

as long as at least one of the relative entropies on the right side is finite.
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Abstract: In statistical inference, the information-theoretic performance limits can often be expressed
in terms of a statistical divergence between the underlying statistical models (e.g., in binary hypothesis
testing, the error probability is related to the total variation distance between the statistical models).
As the data dimension grows, computing the statistics involved in decision-making and the attendant
performance limits (divergence measures) face complexity and stability challenges. Dimensionality
reduction addresses these challenges at the expense of compromising the performance (the divergence
reduces by the data-processing inequality). This paper considers linear dimensionality reduction
such that the divergence between the models is maximally preserved. Specifically, this paper focuses
on Gaussian models where we investigate discriminant analysis under five f -divergence measures
(Kullback–Leibler, symmetrized Kullback–Leibler, Hellinger, total variation, and χ2). We characterize
the optimal design of the linear transformation of the data onto a lower-dimensional subspace for
zero-mean Gaussian models and employ numerical algorithms to find the design for general Gaussian
models with non-zero means. There are two key observations for zero-mean Gaussian models. First,
projections are not necessarily along the largest modes of the covariance matrix of the data, and, in
some situations, they can even be along the smallest modes. Secondly, under specific regimes, the
optimal design of subspace projection is identical under all the f -divergence measures considered,
rendering a degree of universality to the design, independent of the inference problem of interest.

Keywords: dimensionality reduction; discriminant analysis; f -divergence; statistical inference

1. Introduction
1.1. Motivation

Consider a simple binary hypothesis testing problem in which we observe an n-
dimensional sample X and aim to discern the underlying model according to:

H0 : X ∼ P vs. H1 : X ∼ Q . (1)

The optimal decision rule (in the Neyman-Pearson sense) involves computing the likelihood
ratio dP

dQ (X) and the performance limit (sum of type I and type II errors) is related to the
total variation distance between P and Q. We emphasize that our focus is on the settings in
which the n elements of X are not statistically independent, in which case the likelihood
ratio dP

dQ (X) cannot be decomposed into the product of the coordinate-level likelihood ratios.
One of the key practical obstacles to solve such problems pertains to the computational cost
of finding and performing the statistical tests. This renders a gap between the performance
that is information-theoretically viable (unbounded complexity) versus a performance
possible under bounded computational complexity [1,2].

Dimensionality reduction techniques have become an integral part of statistical anal-
ysis in high dimensions [3–6]. In particular, linear dimensionality reduction methods
have been developed and used for over a century for various reasons, such as their low
computational complexity and simple geometric interpretation, as well as for a multitude
of applications, such as data compression, storage, and visualization, to name only a few.
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These methods linearly map the high-dimensional data to lower dimensions while ensuring
that the desired features of the data are preserved. There exist two broad sets of approaches
to linear dimensionality reduction in one dataset X, which we review next.

1.2. Related Literature

(1) Feature extraction: In one set of approaches, the objective is to select and extract
informative and non-redundant features in the dataset X. These approaches are generally
unsupervised. These widely-used approaches are principal component analysis (PCA),
and its variations [7–9], multidimensional scaling (MDS) [10–13], and sufficient dimension-
ality reduction (SDR) [14]. The objective of PCA is to retain as much variation in the data
in a lower dimension by minimizing the reconstruction error. In contrast, MDS aims to
maximize the scatter of the projection and maximizes an aggregate scatter metric. Finally,
the objective of SDR is to design an orthogonal mapping of the data that makes the data
X and the responses conditionally independent (given the projected data). There exist
extensive variations to the three approaches, and we refer the reader to Reference [6] for
more discussions.

(2) Class separation: In another set of approaches, the objective is to perform classifi-
cation in the lower dimensional space. These approaches are supervised. Depending on the
problem formulation and the underlying assumptions, the resulting decision boundaries
between the models can be linear or non-linear. One approach pertinent to this paper’s
scope is discriminant analysis (DA), that leverages the distinction between given mod-
els and designs a mapping such that its lower-dimensional output exhibits maximum
separation across different models [15–20]. In general, this approach generates two ma-
trices: within-class and between-class scatter matrices. The within-class scatter matrix
shows the scatter of the samples around their respective class means, whereas, in contrast,
the between-class scatter matrix captures the scatter of the samples around the mixture
mean of all the models. Subsequently, a univariate function of these matrices is formed such
that it increases when the between-class scatter becomes larger, or when the within-class
scatter becomes smaller. Examples of such a function of between-class and within-class
matrices is a classification index that includes the ratio of their determinants, difference of
their determinants, and ratio of their traces [17]. These approaches focus on reducing the
dimension to one and maximize separability between the two classes. There exist, however,
studies that consider reducing to dimensions higher than one and separation across more
than two classes. Finally, depending on the structure of the class-conditional densities,
the resulting shape of the decision boundaries give rise to linear and quadratic DA.

The f -divergences between a pair of probability measures quantifies the similar-
ity between them. Shannon [21] introduced the mutual information as a divergence
measure, which was later studied comprehensively by Kullback and Leibler [22] and
Kolmogorov [23], establishing the importance of such measures in information theory,
probability theory, and related disciplines. The family of f -divergences, independently
introduced by Csiszár [24], Ali and Silvey [25], and Morimoto [26], generalize the Kullback–
Leibler divergence which enable characterizing the information-theoretic performance
limits of a wide range of inference, learning, source coding, and channel coding problems.
For instance, References [27–30] consider their application to various statistical decision-
making problems [31–34]. More recent developments on the properties of f -divergence
measures can be found in Reference [31,35–37].

1.3. Contributions

The contribution of this paper has two main distinctions from the existing literature
on DA. First, DA generally focuses on the classification problem for determining the
underlying model of the data. Secondly, motivated by the complexities of finding the
optimal decision rules for classification (e.g., density estimation), the existing criteria
used for separation are selected heuristically. In this paper, we study this problem by
referring to the family of f -divergences as measures of the distinction between a pair of
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probability distributions. Such a choice has three main features: (i) it enables designing
linear mappings for a wider range of inference problems (beyond classification); (ii) it
provides the designs that are optimal for the inference problem at hand; and (iii) it enables
characterizing the information-theoretic performance limits after linear mapping. Our
analyses are focused on Gaussian models. Even though we observe that the design of the
linear mapping has differences under different f -divergence measures, we have two main
observations in the case of zero-mean Gaussian models: (i) the optimal design of the linear
mapping is not necessarily along the most dominant components of the data matrix; and
(ii) in certain regimes, irrespective of the choice of the f -divergence measure, the design
of the linear map that retains the maximal divergence between the two models is robust.
In such cases, this makes the optimal design of the linear map independent of the inference
problem at hand rendering a degree of universality (in the considered space of the Gaussian
probability measures).

The remainder of the paper is organized as follows. Section 2 provides the linear
dimensionality reduction model, and it provides an overview of the f -divergence measures
considered in this paper. Section 3 formulates the problem, and it helps to facilitate the
mathematical analysis in subsequent sections. In Section 4, we provide a motivating
operational interpretation for each f -divergence measure and then characterize an optimal
design of the linear mapping for zero-mean Gaussian models. Section 5 considers numerical
simulations for inference problems associated with the f -divergence measure of interest for
zero-mean Gaussian models. Section 6 generalizes the theory to non-zero mean Gaussian
models and discusses numerical algorithms that help characterize the design of the linear
map, and Section 7 concludes the paper. A list of abbreviations used in this paper is
provided on page 22.

2. Preliminaries

Consider a pair of n-dimensional Gaussian models:

P : N (µP, ΣP) , and Q : N (µQ, ΣQ) , (2)

where µP, µQ and ΣP, ΣQ are two distinct mean vectors and covariance matrices, respec-
tively, and P and Q denote their associated probability measures. The nature selects
one model and generates a random variable X ∈ Rn. We perform linear dimensionality
reduction on X via matrix A ∈ Rr×n, where r < n, rendering

Y 4
= A · X . (3)

After linear mapping, the two possible distributions of Y induced by matrix A are denoted
by PA and QA, where

PA : N (A · µP, A · ΣP ·A>)
QA : N (A · µQ, A · ΣQ ·A>)

. (4)

Motivated by inference problems that we discuss in Section 3, our objective is to design the
linear mapping parameterized by matrix A that ensures that the two possible distributions
of Y, i.e., PA and QA, are maximally distinguishable. That is, to design A as a function of
the statistical models (i.e., µP, µQ, ΣP and ΣQ) such that relevant notions of f -divergences
between PA and QA are maximized. We use a number of f -divergence measures for
capturing the distinction between PA and QA, each with a distinct operational meaning
under specific inference problems. For this purpose, we denote the f -divergence of QA
from PA by D f (A), where

D f (A)
4
= EPA

[
f
(

dQA

dPA

)]
. (5)
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We use the shorthand D f (A) for the canonical notation D f (QA ‖ PA) for emphasizing the
dependence on A and for the simplicity in notations. EPA denotes the expectation with
respect to PA, and f : (0,+∞) → R is a convex function that is strictly convex at 1 and
f (1) = 0. Strict convexity at 1 ensures that the f -divergence between a pair of probability
measures is zero if and only if the probability measures are identical. Given the linear
dimensionality reduction model in (3), the objective is to solve

P : max
A∈Rr×n

D f (A) , (6)

for the following choices of the f -divergence measures.

1. Kullback–Leibler (KL) divergence for f (t) = t log t:

DKL(A)
4
= EQA

[
log

dQA

dPA

]
. (7)

We also denote the KL divergence from PA to QA by DKL(PA ‖ QA).
2. Symmetric KL divergence for f (t) = (t− 1) log t:

DSKL(A)
4
= DKL(QA ‖ PA) + DKL(PA ‖ QA) . (8)

3. Squared Hellinger distance for f (t) = (1−
√

t)2:

H2(A)
4
=
∫

Rr

(√
dQA −

√
dPA

)2
. (9)

4. Total variation distance for f (t) = 1
2 · |t− 1|:

dTV(A)
4
=

1
2

∫

Rr
|dQA − dPA| . (10)

5. χ2-divergence for f (t) = (t− 1)2:

χ2(A)
4
=
∫

Rr

(dQA − dPA)
2

dPA
. (11)

We also denote the χ2-divergence from PA to QA by χ2(PA ‖ QA).

3. Problem Formulation

In this section, without loss of generality, we focus on the setting where one of the
covariance matrices is the identity matrix, and the other one has a covariance matrix
Σ in order to avoid complex representations. One key observation is that the design
of A under different measures has strong similarities. We first note that, by defining
Ā 4

= A · Σ1/2
P , µ

4
= Σ−1/2

P · (µQ − µP), and Σ
4
= Σ−1/2

P · ΣQ · Σ−1/2
P , designing A for

maximally distinguishing

N (A · µP, A · ΣP ·A>) and N (A · µQ, A · ΣQ ·A>) (12)

is equivalent to designing Ā for maximally distinguishing

N (0, Ā · Ā>) and N (Ā · µ, Ā · Σ · Ā>) . (13)

Hence, without loss of generality, we focus on the setting where µP = 0, ΣP = In, and ΣQ =
Σ. Next, we show that determining an optimal design for A can be confined to the class of
semi-orthogonal matrices.

Theorem 1. For every A, there exists a semi-orthogonal matrix Ā such that D f (Ā) = D f (A).
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Proof. See Appendix A.

This observation indicates that we can reduce the unconstrained problem in (6) to the
following constrained problem:

Q : max
A∈Rr×n

D f (A) s.t. A ·A> = Ir . (14)

We show that the design of A in the case of µ = 0, under the considered f -divergence
measures, directly relates to analyzing the eigenspace of matrix Σ. For this purpose, we
denote the non-negative eigenvalues of Σ ordered in the descending order by {λi : i ∈ [n]},
where for an integer m we have defined [m] = {1, . . . , m}. For an arbitrary permutation
function π : [n] → [n], we denote the permutation of {λi : i ∈ [n]} with respect to π by
{λπ(i) : i ∈ [n]}. We also denote the eigenvalues of A · Σ ·A> ordered in the descending
order by {γi : i ∈ [r]}. Throughout the analysis, we frequently use Poincaré separation
theorem [38] for finding the row space of matrix A with respect to the eigenvalues of Σ.

Theorem 2 (Poincaré Separation Theorem). Let Σ be a real symmetric n× n matrix and A
be a semi-orthogonal r × n matrix. The eigenvalues of Σ denoted by {λi : i ∈ [n]} (sorted in
the descending order) and the eigenvalues of A · Σ ·A> denoted by {γi : i ∈ [r]} (sorted in the
descending order) satisfy

λn−(r−i) ≤ γi ≤ λi , ∀i ∈ [r] . (15)

Finally, we define the following functions, which we will refer to frequently throughout
the paper:

h1(A)
4
= A · Σ ·A> , (16)

h2(A)
4
= µ> ·A> ·A · µ , (17)

h3(A)
4
= µ> ·A> · [h1(A)]−1 ·A · µ . (18)

In the next sections, we analyze the design of A under different f -divergence measures.
In particular, in Sections 4 and 5, we focus on zero-mean Gaussian models for P and Q
where we provide an operational interpretation of the measure in the dichotomous mode
in (4). Subsequently, we will discuss the generalization to non-zero mean Gaussian models
in Section 6.

4. Main Results for Zero-Mean Gaussian Models

In this section, we analyze problem Q defined in (14) for each of the f -divergence
measures separately. Specifically, for each case, we briefly provide an inference problem
as a motivating example, in the context of which we relate the optimal performance limit
of that inference problem to the f -divergence of interest. These analyses are provided in
Sections 4.1–4.5. Subsequently, we provide the main results on the optimal design of the
linear mapping matrix A in Section 4.6.

4.1. Kullback–Leibler Divergence
4.1.1. Motivation

The KL divergence, being the expected value of the log-likelihood ratio, captures,
at least partially, the performance of a wide range of inference problems. One specific
problem whose performance is completely captured by DKL(A) is the quickest change-
point detection. Consider an observation process (time-series) {Xt : t ∈ N} in which the
observations Xt ∈ Rn are generated by a distribution with probability measure P specified
in (2). This distribution changes to Q at an unknown (random or deterministic) time κ, i.e.,

Xt ∼ P t < κ , and Xt ∼ Q t ≥ κ . (19)
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Change-point detection algorithms sample the observation process sequentially and aim
to detect the change point with the minimal delay after it occurs subject to a false alarm
constraint. Hence, the two key figures of merit capturing the performance of a sequential
change-point detection algorithm are the average detection delay (ADD) and the rate of
false alarms. Whether the change-point κ is random or deterministic gives rise to two
broad classes of quickest change-point detection problems, namely the Bayesian setting
(κ is random) and minimax setting (κ is deterministic). Irrespective of their discrepancies
in settings and the nature of performance guarantees, the ADD for the (asymptotically)
optimal algorithms are in the form [39]:

ADD ∼ c1

DKL(Q ‖ P)
. (20)

Hence, after the linear mapping induced by matrix A, for the ADD, we have

ADD ∼ c2

DKL(QA ‖ PA)
, (21)

where c1 and c2 are constants specified by the false alarm constraints. Clearly, the design
of A that minimizes the ADD will be maximizing the disparity between the pre- and
post-change distributions PA and QA, respectively.

4.1.2. Connection between DKL and A

By noting that A is a semi-orthogonal matrix and recalling that the eigenvalues of h1(A)
are denoted by {γi : i ∈ [r]}, simple algebraic manipulations simplify DKL(QA ‖ PA) to:

DKL(QA ‖ PA) =
1
2

[
log

1
|h1(A)| − r + Tr[h1(A)] + h2(A)

]
. (22)

By setting, and leveraging, Theorem 2, the problem of finding an optimal design for A that
solves (14) can be found as the solution to:

max
{γi : i∈[r]}

r

∑
i=1

gKL(γi) s.t. λn−(r−i) ≤ γi ≤ λi ∀i ∈ [r] , (23)

where we have defined

gKL(x) 4
=

1
2
(x− log x− 1) . (24)

Likewise, finding the optimal design for A that optimizes DKL(PA ‖ QA) when µ = 0 can
be found by replacing gKL(γi) by gKL

(
1
γi

)
in (23). In either case, the optimal design of A is

constructed by choosing r eigenvectors of Σ as the rows of A. The results and observations
are formalized in Section 4.6.

4.2. Symmetric KL Divergence
4.2.1. Motivation

The KL divergence discussed in Section 4.1 is an asymmetric measure of separation
between two probability measures. It is symmetrized by adding two directed diver-
gence measures in reverse directions. The symmetric KL divergence has applications in
model selection problems in which the model selection criteria is based on a measure
of disparity between the true model and the approximating models. As shown in Ref-
erence [40], using the symmetric KL divergence outperforms the individual directed KL
divergences since it better reflects the risks associated with underfitting and overfitting of
the models, respectively.
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4.2.2. Connection between DSKL and A

For a given A, the symmetric KL divergence of interest specified in (8) is given by

DSKL(A) =
1
2
·
[
Tr
(
[h1(A)]−1 + h1(A)

)
+ h2(A) + h3(A)

]
− r . (25)

By setting µ = 0, and leveraging Theorem 2, the problem of finding an optimal design for
A that solves (14) can be found as the solution to:

max
{γi : i∈[r]}

r

∑
i=1

gSKL(γi) s.t. λn−(r−i) ≤ γi ≤ λi ∀i ∈ [r] , (26)

where we have defined

gSKL(x) 4
=

1
2

(
x +

1
x
− 2
)

. (27)

4.3. Squared Hellinger Distance
4.3.1. Motivation

Squared Hellinger distance facilitates analysis in high dimensions, especially when
other measures fail to take closed-form expressions. We will discuss an important instance
of this in the next subsection in the analysis of dTV. Squared Hellinger distance is symmetric,
and it is confined in the range [0, 2].

4.3.2. Connection between H2 and A

For a given matrix A, we have the following closed-form expression:

H2(A) = 2− 2
|4 · h1(A)| 14
|h1(A) + Ir|

1
2
· exp

(
−µ> ·A> · [h1(A) + Ir]

−1 ·A · µ
4

)
. (28)

By setting µ = 0, and leveraging Theorem 2, the problem of finding an optimal design for
A that solves (14) can be found as the solution to:

max
{γi : i∈[r]}

r

∏
i=1

gH(γi) s.t. λn−(r−i) ≤ γi ≤ λi ∀i ∈ [r] , (29)

where we have defined

gH(x) 4
=

(x + 1)2

x
. (30)

4.4. Total Variation Distance
4.4.1. Motivation

The total variation distance appears as the key performance metric in binary hy-
pothesis testing and in high-dimensional inference, e.g., Le Cam’s method for the binary
quantization and testing of the individual dimensions (which is in essence binary hy-
pothesis testing). In particular, for the simple binary hypothesis testing model in (65),
the minimum total probability of error (sum of type-I and type-II error probabilities) is
related to the total variation dTV(A). Specifically, for a decision rule d : X → {H0,H1}, the
following holds:

inf
d

[PA(d = H1) +QA(d = H0)] = 1− dTV(A) . (31)

The total variation between two Gaussian distributions does not have a closed-form ex-
pression. Hence, unlike the other settings, an optimal solution to (6) in this context cannot
be obtained analytically. Alternatively, in order to gain intuition into the structure of a
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near optimal matrix A, we design A such that it optimizes known bounds on dTV(A).
In particular, we use two sets of bounds on dTV(A). One set is due to bounding it via the
Hellinger distance, and another set is due to a recent study that established upper and
lower bounds that are identical up to a constant factor [41].

4.4.2. Connection between dTV and A

(1) Bounding by Hellinger Distance: The total variation distance can be bounded by the
Hellinger distance according to

1
2
H2(A) ≤ dTV(A) ≤ H(A)

√
1− H2(A)

4
. (32)

It can be readily verified that these bounds are monotonically increasing with H2(A) in
the interval [0, 2]. Hence, they are maximized simultaneously by maximizing the squared
Hellinger distance as discussed in Section 4.3. We refer to this bound as the Hellinger bound.

(2) Matching Bounds up to a Constant: The second set of bounds that we used are
provided in Reference [41]. These bounds relate the total variation between two Gaus-
sian models to the Frobenius norm (FB) of a matrix related to their covariance matrices.
Specifically, these FB-based bounds on the total variation dTV(A) are given by

1
100
≤ dTV(A)

min{1,
√

∑r
i=1 gTV(γi)}

≤ 3
2

, (33)

where we have defined

gTV(x) 4
=

(
1
x
− 1
)2

. (34)

Since the lower and upper bounds on dTV(A) are identical up to a constant, they will be
maximized by the same design of A.

4.5. χ2-Divergence
4.5.1. Motivation

χ2-divergence appears in a wide range of statistical estimation problems for the
purpose of finding a lower bound on the estimation noise variance. For instance, consider
the canonical problem of estimating a latent variable θ from the observed data X, and denote
two candidate estimates by p(X) and q(X). Define P and Q as the probability measures
of p(X) and q(X), respectively. According to the Hammersly-Chapman-Robbins (HCR)
bound on the quadratic loss function, for any estimator θ̂, we have

varθ(θ̂) ≥ sup
p 6=q

[
EQ[q(X)]−EP[p(X)]

]2

χ2(Q ‖ P) , (35)

which, for unbiased estimators p and q, simplifies to the Cramér-Rao lower bound

varθ(θ̂) ≥ sup
p 6=q

(q− p)2

χ2(Q ‖ P) , (36)

depending on P and Q through their χ2-divergence. Besides the applications to estimation
problems, χ2 is easier to compute compared to some of other f -divergence measures (e.g.,
total variation). Specifically, for product distributions χ2 tensorizes to be expressed in terms
of the one-dimensional components that are easier to compute than the KL divergence and
TV variation distance. Hence, a combination of bounding other measures with χ2 and then
analyzing χ2 appears in a wide range of inference problems.
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4.5.2. Connection between χ2 and A

By setting µ = 0, for a given matrix A, from (11), we have the following closed-form
expression:

χ2(A) =
1

|h1(A)|
√
|2(h1(A))−1 − Ir|

− 1 (37)

=
r

∏
i=1

gχ1(γi)− 1 , (38)

where we have defined

gχ1(x) 4
=

1√
x(2− x)

. (39)

As we show in Appendix C, for χ2(A) to exist (i.e., be finite), all the eigenvalues {λi : i ∈ [r]}
should fall in the interval (0, 2). Subsequently, finding the optimal design for A that op-
timizes χ2(PA ‖ QA) when µ = 0 can be done by replacing gχ1 in (38) by gχ2 , which is
given by

gχ2(x) 4
=

√
x2

2x− 1
. (40)

Based on this, and by following a similar line of argument as in the case of the KL divergence,
designing an optimal A reduces to identifying a subset of the eigenvalues of Σ and assigning
their associated eigenvectors as the rows of matrix A. These observations are formalized in
Section 4.6.

4.6. Main Results

In this section, we provide analytical closed-form solutions to design optimal matrices
A for the following f -divergence measures: DKL, DSKL, H2, and χ2. The total variation
measure dTV does not admit a closed-form for Gaussian models. In this case, we provide
a design for A that optimizes the bound we have provided for dTV in Section 4.4. Due
to their structural similarities of the results, we group and treat DKL, DSKL, and dTV in
Theorem 3. Similarly, we group and treat H2 and χ2 in Theorem 4.

Theorem 3 (DKL, DSKL, dTV). For a given function g : R→ R, define the permutations:

π∗ 4
= arg max

π

r

∑
i=1

g(λπ(i)) . (41)

Then, for D f (A) ∈ {DKL(A), DSKL(A), dTV(A)} and functions g f ∈ {gKL, gSKL, gTV}:
1. For maximizing D f , set g = g f and select the eigenvalues of AΣA> as

γi = λπ∗(i) , for i ∈ [r] . (42)

2. Row i ∈ [r] of matrix A is the eigenvector of Σ associated with the eigenvalue γi.

Proof. See Appendix B.

By further leveraging the structures of functions gKL, gSKL, and gTV, we can simplify
approaches for designing the matrix A. Specifically, note that the functions gKL, gSKL, andgTV
are all strictly convex functions taking their global minima at x = 1. Based on this, we have
the following observations.
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Corollary 1 (DKL, DSKL, dTV). For maximizing D f (A) ∈ {DKL(A), DSKL(A), dTV(A)},
when λn ≥ 1, we have γi = λi for all i ∈ [r], and the rows of A are eigenvectors of Σ associated
with its r largest eigenvalues, i.e., {λi : i ∈ [r]}.

Corollary 2 (DKL, DSKL, dTV). For maximizing D f (A) ∈ {DKL(A), DSKL(A), dTV(A)},
when λ1 ≤ 1, we have γi = λn−r+i for all i ∈ [r], and the rows of A are eigenvectors of Σ

associated with its r smallest eigenvalues, i.e., {λi : i ∈ {n− r + 1, . . . , n}}.

Remark 1. In order to maximize D f (A) ∈ {DKL(A), DSKL(A), dTV(A)} when λn ≤ 1 ≤
λ1, finding the best permutation of eigenvalues involves sorting all the n eigenvalues λi’s and
subsequently performing r comparisons as illustrated in Algorithm 1. This amounts to O(n ·
log(n)) time complexity instead of O(n · log(r)) time complexity involved in determining the
design for A in the case of Corollaries 1 and 2, which require finding the r extreme eigenvalues in
determining the design for π∗.

Remark 2. The optimal design of A often does not involve being aligned with the largest eigenvalues
of the covariance matrix Σ, which is in contrast to some of the key approaches to linear dimensionality
reduction that generally perform linear mapping along the eigenvectors associated with the largest
eigenvalues of the covariance matrix. When the eigenvalues of Σ are all smaller than 1, in particular,
A will be designed by choosing eigenvectors associated with the smallest eigenvalues of Σ in order to
preserve largest separability.

Next, we provide the counterpart results for the H2 and χ2-divergence measures. Their
major distinction from the previous three measures is that, for these two, D f (A) can be
decomposed into a product of individual functions of the eigenvalues {γi : i ∈ [r]}. Next,
we provide the counterparts of Theorem 3 and Corollaries 1 and 2 for H2 and χ2.

Theorem 4 (H2, χ2). For a given function g : R→ R, define the permutations:

π∗ 4
= arg max

π

r

∏
i=1

g(λπ(i)) . (43)

Then, for D f (A) ∈ {H2(A), χ2(A), χ2(PA ‖ QA)} and functions g f ∈ {gH, gχ1 , gχ2}:
1. For maximizing D f , set g = g f and select the eigenvalues of AΣA> as

γi = λπ∗(i) , for i ∈ [r] . (44)

2. Row i ∈ [r] of matrix A is the eigenvector of Σ associated with the eigenvalue γi.

Proof. See Appendix C.

Next, note that gH is a strictly convex function taking its global minimum at x = 1.
Furthermore, gχi for i ∈ [2] are strictly convex over (0, 2) and take their global minimum at
x = 1.

Corollary 3 (H2, χ2). For maximizing D f (A) ∈ {H2(A), χ2(A), χ2(PA ‖ QA)}, when λn ≥ 1,
we have γi = λi for all i ∈ [r], and the rows of A are eigenvectors of Σ associated with its r largest
eigenvalues, i.e., {λi : i ∈ [r]}.

Corollary 4 (H2, χ2). For maximizing D f (A) ∈ {H2(A), χ2(A), χ2(PA ‖ QA)}, when λ1 ≤ 1,
we have γi = λn−r+i for all i ∈ [r], and the rows of A are eigenvectors of Σ associated with its r
smallest eigenvalues, i.e., {λi : i ∈ {n− r + 1, . . . , n}}.
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Algorithm 1 Optimal Permutation π∗ When λn ≤ 1 ≤ λ1

1: Initialize i← n, j← 1, pk ← λk ∀k ∈ {i, j}, π∗ ← ∅
2: Sort the eigenvalues of Σ in descending order {λk : k ∈ [n]}
3: while |π∗| 6= r do
4: if g f (pi) > g f (pj) then
5: π∗ ← π∗ ∪ {pi}
6: i← i− 1
7: else
8: π∗ ← π∗ ∪ {pj}
9: j← j + 1

10: end if
11: end while
12: return π∗

Finally, we remark that, unlike the other measures, total variation does not admit
a closed-form, and we used two sets of tractable bounds to analyze this case of total
variations. By comparing the design of A based on different bounds, we have the following
observation.

Remark 3. We note that both sets of bounds lead to the same design of A when either λ1 ≤ 1 or
λn ≥ 1. Otherwise, each will be selecting a different set of the eigenvectors of Σ to construct A
according to the functions

gH(x) =
(x + 1)2

x
versus gTV(x) =

(
1
x
− 1
)2

. (45)

5. Zero-Mean Gaussian Models–Simulations
5.1. KL Divergence

In this section, we show gains of the above analysis for the KL divergence measure
DKL(A) through simulations on a change-point detection problem. We focus on the
minimax setting in which the change-point κ is deterministic. The objective is to detect a
change in the stochastic process Xt with minimal delay after the change in the probability
measure occurs at κ and define τ ∈ N as the time that we can form a confident decision.
A canonical model to quantify the decision delay is the conditional average detection delay
(CADD) due to Pollak [42]

CADD(τ)
4
= sup

κ≥1
Eκ [τ − κ | τ ≥ κ] , (46)

where Eκ is the expectation with respect to the probability distribution when the change
happens at time κ. The objective of this formulation is to optimize the decision delay for the
worst-case realization of the random change-point κ (that is, the change-point realization
that leads to the maximum decision delay), while the constraints on the false alarm rate
are satisfied. In this formulation, this worst-case realization is κ = 1, in which case all
the data points are generated from the post-change distribution. In the minimax setting,
a reasonable measure of false alarms is the mean-time to false alarm, or its reciprocal, which
is the false alarm rate (FAR) defined as

FAR(τ)
4
=

1
E∞[τ]

, (47)

where E∞ is the expectation with respect to the distribution when a change never occurs,
i.e., κ

4
= ∞. A standard approach to balance the trade-off between decision delay and false

alarm rates involves solving [42]
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min
τ

CADD(τ) s.t. FAR(τ) ≤ α , (48)

where α ∈ R+ controls the rate of false alarms. For the quickest change-point detection
formulation in (48), the popular cumulative sum (CuSum) test generates the optimal
solutions, involving computing the following test statistic:

W[t] 4
= max

1≤k≤t+1

t

∑
i=k

log
(

dQA(Xi)

dPA(Xi)

)
. (49)

Computing W[t] follows a convenient recursion given by

W[t] 4
=

(
W[t− 1] + log

(
dQA(Xt)

dPA(Xt)

))+

, (50)

where W[0] = 0. The CuSum statistic declares a change at a stopping time τ given by

τ
4
= inf{t ≥ 1 : W[t] > C} , (51)

where C is chosen such that the constraint on FAR(τ) in (48) is satisfied.
In this setting, we consider two zero-mean Gaussian models with the following pre-

and post-linear dimensionality reduction structures:

P : N (0, In) and Q : N (0, Σ)
PA : N (0, Ir) and QA : N (0, h1(A))

, (52)

where the covariance matrix Σ is generated randomly, and its eigenvalues are sampled from
a uniform distribution. In particular, for the original data dimension n, d0.9ne eigenvalues
are sampled such that {λi ∼ U (0.064, 1)}, and the remaining eigenvalues are sampled
such that {λi ∼ U (1, 4.24)}. We note that this is done since the objective function lies in
the same range for the eigenvalues within the range [0.0649, 1] and [1, 4.24]. In order to
consider the worst case detection delay, we set κ = 1 and generate stochastic observations
according to the model described in (52) that follows the change-point detection model in
(19). For every random realization of covariance matrix Σ, we run the CuSum statistic (50),
where we generate A according to the following two schemes:

(1) Largest eigen modes: In this scheme, the linear map A is designed such that its rows
are eigenvectors associated with the r largest eigenvalues of Σ.

(2) Optimal design: In this scheme, the linear map A is designed such that its rows
are eigenvectors associated with r eigenvalues of Σ that maximize DKL(A) according to
Theorem 3.

In order to evaluate and compare the performance of the two schemes, we compute
the ADD obtained by running a Monte-Carlo simulation over 5000 random realizations
of the stochastic process Xt following the change-point detection model in (19) for every
random realization of Σ and for each reduced dimension 1 ≤ r ≤ 9. The detection delays
obtained are then averaged again over 100 random realizations of covariance matrices
Σ for each reduced dimension r. Figure 1 shows the plot for ADD versus r for multiple
initial data dimension n and for a fixed FAR = 1

5000 . Owing to the dependence on DKL(A)
given in (21), the delay associated with the optimal linear mapping in Theorem 3 achieves
better performance.
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Figure 1. Comparison of the average detection delay (ADD) under the optimal design and largest
eigen modes schemes for multiple reduced data dimensions r as a function of original data dimension
n for a fixed false alarm rate (FAR) which is equal to 1/5000.

5.2. Symmetric KL Divergence

In this section, we show the gains of the analysis by numerically computing DSKL(A).
We follow the pre- and post-linear dimensionality reduction structures given in (52), where
the covariance matrix Σ is randomly generated following the setup used in Section 5.1.
As plotted in Figure 2, by choosing the design scheme for DSKL(A) according to Theorem 3,
the optimal design outperforms other schemes.
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Figure 2. Comparison of the empirical average computed for the optimal design and largest eigen
modes schemes for multiple reduced data dimensions r as a function of original data dimension n.
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5.3. Squared Hellinger Distance

We consider a Bayesian hypothesis testing problem given class a priori parameters
pPA , pQA and Gaussian class conditional densities for the linear dimensionality reduction
model in (52). Without loss of generality, we assume a 0–1 loss function associated with
misclassification for the hypothesis test. In order to quantify the performance of the
Bayes decision rule, it is imperative to compute the associated probability of error, also
known as the Bayes error, which we denote by Pe. Since, in general, computing Pe for
the optimal decision rule for multivariate Gaussian conditional densities is intractable,
numerous techniques have been devised to bound Pe. Owing to its simplicity, one of the
most commonly employed metric is the Bhattacharyya coefficient given by

BC(A)
4
=
∫

Rr

√
dPA · dQA . (53)

The metric in (53) facilitates upper bounding the error probability as

Pe ≤ √pPA pQA · BC(A) , (54)

which is widely referred to as the Bhattacharrya bound. Relevant to this study is that the
squared Hellinger distance is related to the Bhattacharyya coefficient in (53) through

H2(A) = 2− BC(A) . (55)

Hence, maximizing the Hellinger distance H2(A) results in a tighter bound on Pe from
(54). To show the performance numerically, we compute the BC(A) via (55). For the pre-
and post-linear dimensionality reduction structures as given in (52), the covariance matrix
Σ is randomly generated following the setup used in Section 5.1. As plotted in Figure 3,
by employing the design scheme according to Theorem 4, the optimal design results in a
smaller BC(A) and, hence, a tighter upper bound on Pe in comparison to other schemes.
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Figure 3. Comparison of the empirical average of the Bhattacharyya coefficient BC(A) under optimal
design and largest eigen modes schemes for multiple reduced data dimensions r as a function of
original data dimension n.
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5.4. Total Variation Distance

Consider a binary hypothesis test with Gaussian class conditional densities following
the model in (52) and equal class a priori probabilities, i.e., pPA = pQA . We define cij
as the cost associated with deciding in favor of Hi when the true hypothesis is Hj such
that 0 ≤ i, j ≤ 1, and denote the densities associated with measures PA, QA by fPA and
fQA , respectively. Without loss of generality, we assume a 0–1 loss function such that
cij = 1 ∀ i 6= j and cii = 0 ∀ i. The optimal Bayes decision rule that minimizes the error
probability is given by

fPA(x)
fQA(x)

d=H1
≶

d=H0

1 . (56)

Since the total variation distance cannot be computed in closed-form, we numerically
compute the error probability Pe under the two bounds (Hellinger-based and FB-based)
introduced in Section 4.4.2 to quantify the performance of the design of matrix A for the
underlying inference problem. The covariance matrix Σ is randomly generated following
the setup used in Section 5.1. As plotted in Figure 4, by optimizing the Hellinger-based
bound according to Theorem 4 and optimizing the FB-based bound according to Theorem 3,
the two design schemes achieve a smaller Pe. We further observe that the bounds due to
FB-based are loose in comparison to Hellinger-based bounds. Therefore, we choose not to
plot the lower bound on Pe for the FB-based bounds in Figure 4.
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Figure 4. Comparing the logarithm of the empirical average value for Pe under the two bounds on
dTV(A) (Hellinger-based and Frobenius norm (FB)-based) with the largest eigen modes scheme for
multiple projected data dimensions r as a function of initial data dimension n.

5.5. χ2-Divergence

In this section, we show the gains of the proposed analysis through numerical evalua-
tions by numerically computing χ2(A), to find a lower bound on the noise variance varθ(θ̂)
up to a constant. Following the pre- and post-linear dimensionality reduction structures
given in (52), the covariance matrix Σ is randomly generated following the setup used in
Section 5.1. As shown in Figure 5, constructing the optimal design according to Theorem 4
achieves a tighter lower bound in comparison to the other scheme.
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Figure 5. Comparison of the lower bound on noise variance given by 1
χ2(A)

under the optimal and
largest eigen modes schemes for multiple reduced data dimensions r as a function of original data
dimension n.

6. General Gaussian Models

In the previous section, we focused on µ = 0. When µ 6= 0, optimizing each f -
divergence measure under the semi-orthogonality constraint does not render closed-form
expressions. Nevertheless, to provide some intuitions, we provide a numerical approach to
the optimal design of A, which might also enjoy some local optimality guarantees. To start,
note that the feasible set of solutions given byMr

n
4
= {A ∈ Rr×n : A ·A> = Ir} owing to

the orthogonality constraints in Q is often referred to as the Stiefel manifold. Therefore,
solving Q requires designing algorithms that optimize the objective while preserving
manifold constraints during iterations.

We employ the method of Lagrange multipliers to formulate the Lagrangian function.
By denoting the matrix of Lagrangian multipliers by L ∈ Rr×r, the Lagrangian function of
problem (14) is given by

L(A, L) = D f (A) + 〈L, A ·A> − Ir〉 . (57)

From the first order optimality condition, for any local maximizer A∗ of (14), there exists a
Lagrange multiplier L∗ such that

∇AL(A, L)
∣∣∣
A∗ ,L∗

= 0 , (58)

where we denote the partial derivative with respect to A by∇A. In what follows, we iterate
the design mapping A using the gradient ascent algorithm in order to find a solution for A.
As discussed in the next subsection, this solution is guaranteed to be at least locally optimal.

6.1. Optimizing via Gradient Ascent

We use an iterative gradient ascent-based algorithm to find the local maximizer of
D f (A) such that A ∈ Mr

n. The gradient ascent update at any given iteration k ∈ N is
given by

Ak+1 = Ak + α · ∇AL(A, L)
∣∣∣
Ak

. (59)
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Note that, following this update, since the new point Ak+1 in (59) may not satisfy the
semi-orthogonality, i.e., Ak+1 /∈ Mr

n, it is imperative to establish a relation between the
multipliers L and Ak in every iteration k to ensure a constraint-preserving update scheme.
In particular, to enforce the semi-orthogonality constraint on Ak+1, a relationship between
the multipliers and the gradients in every iteration k is derived. Following a similar line of
analysis for gradient descent in Reference [43], the relationship between multipliers and
the gradients is provided in Appendix E. More details on the analysis of the update scheme
can be found in Reference [43], and a detailed discussion on the convergence guarantees of
classical steepest descent update schemes adapted to semi-orthogonality constraints can be
found in Reference [44].

In order to simplify ∇AL(A, L) and state the relationships, we define Λ
4
= L + L>

and subsequently find a relationship between Λ and Ak in every iteration k. This is obtained
by right-multiplying (59) by Ak+1 and solving for Λ that enforces the semi-orthogonality
constraint on Ak+1. To simplify the analysis, we take a finite Taylor series expansion
of Λ around α = 0 and choose α such that the error in forcing the constraint is a good
approximation of the gradient of the objective subjected to A ·A> = Ir. As derived in the
Appendix E, by simple algebraic manipulations, it can be shown that the matrices Λ0, Λ1,
and Λ2, for which the finite Taylor series expansion of Λ ≈ Λ0 + α ·Λ1 + α2 ·Λ2 is a good
approximation of the constraint, are given by

Λ0
4
= −1

2

[
∇AD f (A) · (A)> + A · ∇AD f (A)>

]
, (60)

Λ1
4
= −1

2

[(
∇AD f (A) + Λ0A

)
·
(
∇AD f (A) + Λ0A

)>]
, (61)

Λ2
4
= −1

2

[
Λ1 ·A · ∇AD f (A)> +∇AD f (A) · (A)> ·Λ1 + Λ0 ·Λ1 + Λ1 ·Λ0

]
. (62)

Additionally, we note that, since finding the global maximum is not guaranteed, it is im-
perative to initialize A0 close to the estimated maximum. In this regard, we leverage the
structure of the objective function for each f -divergence measure as given in Appendix D.
In particular, we observe that the objective of each f -divergence measure can be decom-
posed into two objectives: the first not involving µ (making this objective a convex problem
as shown in Section 4), and the second objective a function of µ. Hence, leveraging the
structure of the solution from Section 4, we initialize A0 such that it maximizes the ob-
jective in the case of zero-mean Gaussian models. We further note that, while there are
more sophisticated orthogonality constraint-preserving algorithms [45], we find that our
method adopted from Reference [43] is sufficient for our purpose, as we show next through
numerical simulations.

6.2. Results and Discussion

The design of A when µ 6= 0 is not characterized analytically. Therefore, we resort
to numerical simulations to show the gains of optimizing f -divergence measures when
µ 6= 0. In particular, we consider the linear discriminant analysis (LDA) problem where the
goal is to design a mapping A and perform classification in the lower dimensional space
(of dimension r). Without loss of generality, we assume n = 10 and consider Gaussian
densities with the following pre- and post-linear dimensionality reduction structures:

P : N (0, In) and Q : N (µ, Σ)
PA : N (0, Ir) and QA : N (A · µ, h1(A))

, (63)

where the covariance matrix Σ is generated randomly the eigenvalues of which are sampled
from a uniform distribution {λi ∼ U (0, 1)}10

i=1. For the model in (63), we consider two
kinds of performance metrics that have information-theoretic performance interpretations:
(i) the total probability of error related to the dTV(A), and (ii) the exponential decay of error
probability related to DKL(PA ‖ QA). In what follows, we demonstrate that optimizing
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appropriate f -divergence measures between PA and QA lead to better performance when
compared to the performance of the popular Fisher’s quadratic discriminant analysis (QDA)
classifier [20]. In particular, the Fisher’s approach sets r = 1 and designs A by solving

arg max
A∈R1×n

(µ ·A>)2

A · (In + Σ) ·A> . (64)

In contrast, we design A such that the information-theoretic objective functions associated
with the total probability of error (captured by dTV(A)) and the exponential decay of error
probability (captured by DKL(PA ‖ QA)) are minimized. The structure of the objective
functions is discussed in Total probability of error and Type-II error subjected to type-I
error constraints. Both methods and Fisher’s method, after projecting the data into a lower
dimension, deploy optimal detectors to discern the true model. It is noteworthy that, in
both methods the data in the lower dimensions has a Gaussian model, and the conventional
QDA [20] classifier is the optimal detector. Hence, we emphasize that our approach aims
to have a design for A that maximizes the distance between the probability measures
after reducing the dimensions, i.e., the distance between PA and QA. Since this distance
captures the quality of the decisions, our design of A outperforms that of Fisher’s. For each
comparison, we consider various values for µ and compare the appropriate performance
metrics with that of Fisher’s QDA for each. In all cases, the data is synthetically generated,
i.e., sampled from a Gaussian distribution where we consider 2000 data points associated
with each measure P and Q.

6.2.1. Schemes for Linear Map

(1) Total Probability of Error: In this scheme, the linear map A is designed such that
dTV(A) is optimized via gradient ascent iterations until convergence. As discussed in
Section 4.4.1, since the total probability of error is the key performance metric that arises
while optimizing dTV(A), it is expected that optimizing dTV(A) will result in a smaller
total error in comparison to other schemes that optimize other objective functions (e.g.,
Fisher’s QDA). We note that, since there do not exist closed-form expressions for the total
variation distance, we maximize bounds on dTV(A) instead via the Hellinger bound in (33)
as a proxy to minimize the total probability of error. The corresponding gradient expression
to optimize H2(A) (to perform iterative updates as in (59)) is derived in closed-form and is
given in Appendix D.

(2) Type-II Error Subjected to Type-I Error Constraints: In this scheme, the linear map
A is designed such that DKL(PA ‖ QA) is optimized via gradient ascent iterations until
convergence. In order to establish a relation, consider the following binary hypothesis test:

H0 : X ∼ PA versus H1 : X ∼ QA . (65)

When minimizing the probability of type-II error subjected to type-I error constraints,
the optimal test guarantees that the probability of type-II error decays exponentially as

lim
s→∞

− log(QA(d = H0))

s
= DKL(PA ‖ QA) , (66)

where we have define d : X → {H0,H1} as the decision rule for the hypothesis test, and
s denotes the sample size. As a result, DKL(PA ‖ QA) appears as the error exponent for
hypothesis test in (65). Hence, it is expected that optimizing DKL(PA ‖ QA) will result
in a smaller type-II error for the same type-I error when comparing with a method that
optimizes other objectives (e.g., Fisher’s QDA). The corresponding gradient expression to
optimize the DKL(PA ‖ QA) is derived in closed-form and is given in Appendix D.

For the sake of comparison and reference, we also consider schemes in which A
is designed to optimize the objectives DKL(A), the largest eigen modes (LEM), and the
smallest eigen modes (SEM), which carry no specific operational significance in the context
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of the binary classification problem. In the case of LEM and SEM schemes, the linear map
A is designed such that the rows of A are the eigenvector associated with the largest and
smallest modes of the matrix Σ, respectively. Furthermore, we define 1 as the vector of all
those of appropriate dimension.

6.2.2. Performance Comparison

After learning the linear map A for each scheme described in Section 6.2.1, we perform
classification in the lower dimensional space of dimension r to find the type-I, type-II,
and total probability of error for each scheme. Tables 1–4 tabulate the results for various
choices of the mean parameter µ. We have the following important observations: (i) we
observe that optimizing H2(A) results in a smaller total probability of error in comparison
to the total error obtained by optimizing the Fisher’s objective; it is important to note that
the superior performance is observed despite maximizing bounds on dTV(A) (that is sub-
optimal) and not the distance itself; and (ii) we observe that except for the case of µ = 0.8 ·1,
optimizing DKL(PA ‖ QA) results in a smaller type-II error in comparison to that obtained
by optimizing the Fisher’s objective indicating a gain in optimizing DKL(PA ‖ QA) in
comparison to the Fisher’s objective in (64).

Table 1. µ = 0.2 · 1, r = 1.

Fisher’s QDA DKL(PA ‖ QA) H2(A) DKL(A) SEM LEM

PA(d = H1) 331/2000 331/2000 331/2000 331/2000 337/2000 915/2000
QA(d = H0) 1226/2000 63/2000 63/2000 63/2000 64/2000 811/2000
Total Error 1557/4000 394/4000 394/4000 394/4000 401/4000 1726/4000

Table 2. µ = 0.4 · 1, r = 1.

Fisher’s QDA DKL(PA ‖ QA) H2(A) DKL(A) SEM LEM

PA(d = H1) 344/2000 344/2000 344/2000 345/2000 347/2000 782/2000
QA(d = H0) 594/2000 63/2000 63/2000 63/2000 64/2000 739/2000
Total Error 938/4000 407/4000 407/4000 408/4000 411/4000 1521/4000

Table 3. µ = 0.6 · 1, r = 1.

Fisher’s QDA DKL(PA ‖ QA) H2(A) DKL(A) SEM LEM

PA(d = H1) 326/2000 326/2000 335/2000 318/2000 335/2000 638/2000
QA(d = H0) 137/2000 55/2000 108/2000 57/2000 61/2000 669/2000
Total Error 463/4000 381/4000 443/4000 375/4000 396/4000 1307/4000

Table 4. µ = 0.8 · 1, r = 1.

Fisher’s QDA DKL(PA ‖ QA) H2(A) DKL(A) SEM LEM

PA(d = H1) 264/2000 264/2000 159/2000 255/2000 307/2000 561/2000
QA(d = H0) 25/2000 53/2000 64/2000 55/2000 60/2000 580/2000
Total Error 289/4000 317/4000 214/4000 310/4000 367/4000 1141/4000

It is important to note that the convergence of the gradient ascent algorithm only
guarantees a locally optimal solution. While we have restricted the results that consider
a maximum separation of µ = 0.8 · 1, we have performed additional simulations for
larger separation between models (greater µ > 0.8). We have the following observations:
(i) solution for the linear map A obtained through gradient ascent becomes highly sensitive
to the initialization A0; specifically, it was observed that optimizing the Fisher’s objective
outperforms optimizing H2(A) for various initializations A0, and vice versa, for other
random initializations; and (ii) the gradient ascent solver becomes more prone to getting
stuck at the local maxima for larger separations between the models. We conjecture that
the odd observation in the case of µ = 0.8 · 1 when optimizing DKL(PA ‖ QA) (where
optimizing the Fisher’s objective outperforms optimizing DKL(PA ‖ QA)) supports this
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observation. Furthermore, we note that, since the problem is convex for µ = 0, a deviation
from this assumption moves the problem further from being convex, making the solver
prone to getting stuck at the locally optimal solutions for larger separation between the
Gaussian models.

6.2.3. Subspace Representation

In order to gain more intuition towards the learned representations, we illustrate
the 2-dimensional projections of the original 10-dimensional data obtained after optimiz-
ing the corresponding f -divergence measures. For brevity, we only show the plots for
DKL(PA ‖ QA) and H2(A). Figures 6 and 7 plot the two-dimensional projections of the
synthetic dataset that optimize DKL(PA ‖ QA) and H2(A), respectively. As expected, it is ob-
served that the total probability of error is smaller when optimizing H2(A). Figure 8 shows
the variation in the objective function as a function of gradient ascent iterations. As the
iterations grow, the objective functions eventually converges to a locally optimal solution.

-4 -2 0 2 4
-4

-2

0

2

4

Figure 6. Two-dimensional projected data obtained by optimizing DKL(PA ‖ QA).
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Figure 7. Two-dimensional projected data obtained by optimizing H2(A).
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Figure 8. Convergence of the gradient ascent algorithm as a result of optimizing H2(A).

7. Conclusions

In this paper, we have considered the problem of discriminant analysis such that sepa-
ration between the classes is maximized under f -divergence measures. This approach is
motivated by dimensionality reduction for inference problems, where we have investigated
discriminant analysis under Kullback–Leibler, symmetrized Kullback–Leibler, Hellinger,
χ2, and total variation measures. We have characterized the optimal design for the linear
transformation of the data onto a lower-dimensional subspace for each in the case of zero-
mean Gaussian models and adopted numerical algorithms to find the design of the linear
transformation in the case of general Gaussian models with non-zero means. We have
shown that, in the case of zero-mean Gaussian models, the row space of the mapping matrix
lies in the eigenspace of a matrix associated with the covariance matrix of the Gaussian
models involved. While each f -divergence measure favors specific eigenvector compo-
nents, we have shown that all the designs become identical in certain regimes, making the
design of the linear mapping independent of the inference problem of interest.
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Appendix A. Proof of Theorem 1

Consider two pairs of probability measures (PA,QA) and (PĀ,QĀ) associated with
the mapping A in space X and Ā in space Y , respectively. Let g : X → Y denote any
invertible transformation. Under the invertible map, we have

dQĀ = dQA · |T |−1 , and dPĀ = dPA · |T |−1 , (A1)

where |T | denotes the determinant of the Jacobian matrix associated with g. Leveraging
(A1), the f -divergence measure D f (Ā) simplifies as follows.

D f (Ā)
4
= EPĀ

[
f
(

dQĀ
dPĀ

)]
(A2)

=
∫

Y
f
(

dQĀ
dPĀ

)
dPĀ(y) (A3)

=
∫

X
|T (x)|−1 · f

(
dQA · |T (x)|−1

dPA · |T (x)|−1

)
· |T (x)| dPA(x) (A4)

=
∫

X
f
(

dQA

dPA

)
dPA(x) (A5)

= D f (A) . (A6)

Therefore, f -divergence measures are invariant under invertible transformations (both
linear and non-linear) ensuring the existence of Ā for every A as a special case for lin-
ear transformations.

Appendix B. Proof of Theorem 3

We observe that DKL(A), DSKL(A), and the objective to be optimized through the
matching bound Section 4.4.2, Matching Bounds up to a Constant on dTV(A) can be
decomposed as the summation of strictly convex functions involving gKL(x), gSKL(x),
and gTV(x), respectively. Since the summation of strictly convex functions is strictly convex,
we conclude that each objective D f ∈ {DKL(A), DSKL(A), dTV(A)} is strictly convex.

Next, the goal is to choose {γi}r
i=1 such that D f ∈ {DKL(A), DSKL(A), dTV(A)} is

maximized subjected to spectral constraints given by λn−(r−i) ≤ γi ≤ λi. In order to choose
appropriate γi’s, we first note that the global minimizer for functions g f ∈ {gKL, gSKL, gTV}
appears at x = 1. By noting that each g f is strictly convex, it can be readily verified that
g f (x) is monotonically increasing for x > 1 and monotonically decreasing for x < 1. This
will guide selecting {γi}r

i=1, as explained next.
In the case of λn ≥ 1, i.e., when all the eigenvalues are larger than or equal to

1, the objective of maximizing each D f ∈ {DKL(A), DSKL(A), dTV(A)} boils down to
maximizing a monotonically increasing function (considering the domain). This is trivially
done by choosing γi = λi for i ∈ [r], proving Corollary 1. On the other hand, when λ1 ≤ 1,
i.e., when all the eigenvalues are smaller than or equal to 1, following the same line of
argument, the objective boils down to maximizing each D f ∈ {DKL(A), DSKL(A), dTV(A)},
where each D f is a monotonically decreasing function (considering the domain). This is
trivially done by choosing γi = λn−r+i for i ∈ [r].

When λn ≤ 1 ≤ λ1, the selection process is not trivial. Rather, an iterative algorithm
can be followed, where we start from the eigenvalues farthest away from 1 on both sides
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and, subsequently, choose the one in every iteration that achieves a higher objective. This
procedure can be repeated recursively until r eigenvalues are chosen. This procedure is
also discussed in Algorithm 1 in Section 4.6.

Finally, constructing the optimal matrix A, which maximizes D f for any data matrix Σ,
becomes equivalent to choosing eigenvectors as the rows of A associated with the chosen
permutation of eigenvalues for each of the aforementioned cases.

Appendix C. Proof for Theorem 4

We first find a closed-form expression for χ2(A) and χ2(PA ‖ QA). From the definition,
we have

χ2(A)
4
=

|Ir|
1
2

(2π)
r
2 · |h1(A)|

·
∫

Rr
exp

[
−1

2
·
(

Y> ·K1 ·Y
)]

dY− 1 , (A7)

where we defined K1
4
= 2 · h1(A)−1 − Ir. We note that K1 is a real symmetric matrix

since h1(A) is a real symmetric matrix. We denote the eigen decomposition of K1 as
K1 = U ·Θ ·U>, where the matrix Θ is a diagonal matrix with the eigenvalues {θi}r

i=1 as
its elements. Based on this decomposition, we have

χ2(A) =
1

(2π)
r
2 · |h1(A)|

·
∫

Rr
exp

[
−1

2

(
Y> ·UΘU> ·Y

)]
dY− 1 (A8)

=
1

(2π)
r
2 · |h1(A)|

·
∫

Rr
exp

[
−1

2

(
W> ·Θ ·W

)]
dW − 1 (A9)

=
1

(2π)
r
2 · |h1(A)|

·
r

∏
i=1

∫ ∞

−∞
exp

[
−1

2

(
θi · w2

i

)]
dwi − 1 , (A10)

where we have defined W 4
= U> · Y. We note that, in order for χ2(A) to be finite, it is

required that the eigenvalues {θi}r
i=1 be non-negative. Hence, based on the definition of

K1, all the eigenvalues λi should fall in the interval (0, 2). Hence, we obtain:

χ2(A) =
1

(2π)
r
2 · |h1(A)|

·
r

∏
i=1

∫ ∞

−∞
exp

[
−1

2

(
θi · w2

i

)]
dwi − 1 (A11)

=
1

(2π)
r
2 · |h1(A)|

·
r

∏
i=1

√
2π

θi
− 1 (A12)

=
1

|h1(A)| ·
√

1
|K1|

− 1 . (A13)

Recall that the eigenvalues of h1(A) are given by {γi}r
i=1 in the descending order. Therefore,

(A13) simplifies to:

χ2(A) =
r

∏
i=1

√
1

γi · (2− γi)
− 1 =

r

∏
i=1

gχ1(γi)− 1 . (A14)

Hence, from (A14), maximizing χ2(A) is equivalent to choosing the eigenvalues {γi}r
i=1

such that they maximize gχ1(x). Similarly, the closed-form expression for χ2(PA ‖ QA) can
be derived as follows:

χ2(PA ‖ QA) =
|h1(A)| 12
(2π)

r
2 · |Ir|

·
∫

Rr
exp

[
−1

2
·
(

Y> ·K2 ·Y
)]

dY− 1 , (A15)

where we defined K2
4
= 2 · Ir − h1(A)−1. We note that K2 is a real symmetric matrix

due to h1(A) being a real symmetric matrix. Hence, following a similar line of argument
as in the case of χ2(A), and as a consequence of Theorem 2, we conclude that all the
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eigenvalues λi should fall in the interval (0.5, ∞) to ensure a finite value for χ2(PA ‖ QA).
Following this requirement, since the integrands are bounded, we obtain the following
closed-form expression:

χ2(PA ‖ QA) =
|h1(A)| 12

1
·
√

1
|K2|

− 1 . (A16)

Recall that the eigenvalues of h1(A) are given by {γi}r
i=1; then, (A16) simplifies to

χ2(PA ‖ QA) =
r

∏
i=1

√
γ2

i
(2γi − 1)

− 1 =
r

∏
i=1

gχ2(γi)− 1 . (A17)

Hence, from (A17), maximizing χ2(PA ‖ QA) is equivalent to choosing the eigenvalues
{γi}r

i=1 such that they maximize gχ2(x).
We observe that H2(A), χ2(A), and χ2(PA ‖ QA) can be decomposed as the product of

r non-negative identical convex functions involving gH(x), gχ1(x), and gχ2(x), respectively.
Hence, the goal is to choose {γi}r

i=1 such that D f ∈ {H2(A), χ2(A), χ2(PA ‖ QA)} is
maximized subjected to spectral constraints given by λn−(r−i) ≤ γi ≤ λi. In order to
choose appropriate γi’s, we first note that the global minimizer for each g f ∈ {gH, gχ1 , gχ2}
is attained at x = 1. Leveraging this observation, along with the structure that each g f
is convex, it is easy to infer that each g f (x) is monotonically increasing for x > 1 and
monotonically decreasing x < 1. From the exact same argument in Appendix B, we obtain
Corollaries 3 and 4.

Therefore, similar to Appendix B, constructing the linear map A that maximizes
D f ∈ {H2(A), χ2(A), χ2(PA ‖ QA)} for any data matrix Σ boils down to choosing eigen-
vectors as rows of A associated with the chosen permutation of eigenvalues for each of the
aforementioned cases.

Appendix D. Gradient Expressions for f -Divergence Measures

For clarity in analysis, we define the following functions:

h2(A)
4
= µ> ·A> ·A · µ , (A18)

h3(A)
4
= µ> ·A> · [h1(A)]−1 ·A · µ . (A19)

Based on these definitions, we have the following representations for the divergence
measures and their associated gradients:

DKL(A) =
1
2

[
log

1
|h1(A)| − r + Tr[h1(A)] + h2(A)

]
, (A20)

∇ADKL(A) = [h1(A)]−1 ·
[
Ir − [h1(A)]−1 −A · µ · µ> ·A> · [h1(A)]−1

]
·A · Σ

+ [h1(A)]−1 ·A · µ · µ> .

DKL(PA ‖ QA) =
1
2

[
log |h1(A)| − r + Tr

[
h1(A)−1

]
+ h3(A)

]
, (A21)

∇ADKL(PA ‖ QA) =
(

Ir − [h1(A)]−1
)
·A · Σ + A · µ · µ> .

DSKL(A) =
1
2
·
[
Tr
(
[h1(A)]−1 + h1(A)

)
+ h2(A) + h3(A)

]
− r , (A22)

∇ADSKL(A) =
[
Ir − [h1(A)]−2 − [h1(A)]−1 ·A · µ · µ> ·A> · [h1(A)]−1

]
·A · Σ

+
(

Ir + [h1(A)]−1
)
·A · µ · µ> . (A23)
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H2(A) = 2− 2
|4 · h1(A)| 14
|h1(A) + Ir|

1
2
· exp

(
−µ> ·A> · [h1(A) + Ir]

−1 ·A · µ
4

)
, (A24)

∇AH
2(A)

−[1−H2(A)]
=

1
2
· [h1(A)]−1 ·A · Σ + [h1(A) + Ir]

−1 ·
[
−A · [Σ + In]−

1
2
·A · µ · µ>

+
1
2
·A · µ · µ> ·A> · [h1(A) + Ir]

−1 ·A · [Σ + In]

]
.

Appendix E. Proof for Lagrange Multipliers

Denoting ∇AL by ∆̃ and ∇AD f by ∆, and further post-multiplying (59) by Ak+1,
we have:

Ak+1 · (Ak+1)> = Ak · (Ak+1)> + α · ∆̃ · (Ak+1)> , (A25)

Ir = Ak · (Ak + α · ∆̃)> + α · ∆̃ · (Ak + α · ∆̃)> , (A26)

0 = Ak · ∆̃> + ∆̃ · (Ak)> + α · ∆̃ · ∆̃> . (A27)

Substituting ∆̃ = ∆ + Λ ·A in (A27) and simplifying the expression, we obtain:

2 ·Λ + Ak · ∆> + ∆ · (Ak)> = −α · (∆ · ∆> + ∆ · (Ak)>Λ + Λ ·Ak · ∆> + Λ ·Λ>) . (A28)

By noting that Λ is symmetric, taking the Taylor series expansions of Λ around α = 0 and
equating the terms of α in both sides, we obtain the relationships in (60)–(62).
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