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Materials with electronic bands that possess nontrivial topology have remained a
focal point of condensed matter physics since 2005, when topological insulators were
theoretically discovered by Kane and Mele [1,2]. In parallel to this remarkable discovery,
Haldane and Raghu [3] realized that topological phases are a universal phenomenon of
waves in periodic media. Thus, topological concepts can also be applied, for example, to
electromagnetic waves in photonic crystals [4], magnons in magnetic materials [5], and
sound waves in different periodic structures [6]. This Special Issue of Crystals represents a
collection of 11 papers devoted to different aspects of experimental and theoretical studies
on topological materials.

Five papers from the Special Issue focus on the theory side. Gao and Wang [7]
propose a new design for an ideal photonic Weyl metacrystal (“ideal” means that there
are no additional states at the Weyl-node energy). The Weyl nodes of this metacrystal
are stabilized by the screw rotation symmetry of space group 19. The authors argue that
this design might be advantageous for further experimental studies of photonic Weyl
materials. Cheng and Gao [8] study a non-interacting Λ/V-type dice model composed
of three triangular sublattices. By considering certain nearest-neighbor and next-nearest-
neighbor hopping terms, as well as a quasi-staggered on-site potential, they acquire the
full phase diagrams for different energy band fillings. They find abundant topologically
nontrivial phases with different Chern numbers and a metallic phase in several regimes.
Nikolaev et al. [9] study the influence of uniaxial deformation on the band structure and
topological properties of the multifold semimetal CoSi with large topological charges. The
k·p Hamiltonian, which takes the deformation into account, is constructed from symmetry
considerations near the Γ and R points of the Brillouin zone. The transformation of the
multifold band crossings into nodes of other types with different topological charges, their
shift in energy and in reciprocal space, and the tilt of the dispersion around the nodes
are studied in detail, depending on the direction of uniaxial deformation. Polatkan and
Uykur [10] present a theoretical study of the band structure and optical conductivity for
another multifold semimetal, PdGa. They identify several characteristic features in the
optical conductivity and relate their origin to the band structure. Yaresko and Pronin [11]
calculate the ab-plane optical conductivity of the Weyl semimetal TaP and compare it to the
experimental data. Based on these calculations, they propose an explanation of the strong
low-energy peak observed in the experimental spectra: this peak originates from transitions
between the almost parallel non-degenerate electronic bands split by spin-orbit coupling.

The other papers in this Special Issue report experimental findings. Dally et al. [12]
present small-angle inelastic neutron scattering measurements of Fe3Sn2. Fe3Sn2 has
recently been discovered to host room temperature skyrmionic bubbles and is known
to have competing magnetic exchange interactions, correlated electron behavior, weak
magnetocrystalline anisotropy, and lattice anisotropy. The results of Dally et al. reveal that,
at elevated temperatures, there is an absence of significant magnetocrystalline anisotropy
and that the system behaves as a nearly ideal isotropic exchange interaction ferromagnet.
Hatnean et al. [13] report on the growth of large high-quality Ce-substituted SmB6 crystals
via the floating zone method. The topological properties of SmB6 are currently being
intensively discussed in relation to Kondo physics. Hence, the investigation of substituted
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SmB6 samples is of interest. The structural, magnetic and transport properties of single
crystals with different Ce contents are investigated by Hatnean et al. using X-ray diffraction
techniques, electrical resistivity and magnetization measurements. The authors find that
the substitution of Sm with magnetic Ce does not lead to long-range magnetic ordering.

The remaining experimental reports focus on optics. Shuvaev et al. [14] present
sub-terahertz measurements of the quantum anomalous Hall effect (QAHE). In the static
regime, the QAHE is observed as a step in Hall resistivity. At optical frequencies, it
is transformed into a step in the polarization rotation, with the size of this step being
equal to the fine structure constant, α ≈ 1/137. The authors measure the polarization
rotation in thin films of the topological insulator (Bi,Sb)2Te3 doped with Cr and observe
the expected steps at temperatures below 20 K. However, due to material issues, the size
of the steps only reaches up to 20% of the theoretical value (at 1.85 K). At millikelvin
temperatures, full-size steps are anticipated. Kamenskyi et al. [15] perform magneto-
optical measurements of the topological insulator Bi2Te3 in the terahertz frequency range
in magnetic fields up to 10 T. They report on the observation of a cyclotron resonance mode
and ascribe it to free bulk carriers. The width of the mode demonstrates a non-monotonous
behavior in the magnetic field. The authors propose that the mode width is defined by
two competing factors: impurity scattering and electron–phonon scattering, which exhibit
opposite behaviors in applied magnetic fields. Another topological insulator, Bi2Te2Se, is
investigated by Zhukova et al. [16] by mid- and near-infrared optical measurements. The
optical conductivity of Bi2Te2Se is found to be dominated by bulk carriers and shows a
linear-in-frequency increase at 0.5 to 0.8 eV. This linearity might be interpreted as a signature
of the three-dimensional (bulk) Dirac bands; however, the band structure-based calculations
performed by the authors show that transitions between bands with complex dispersions
contribute instead to the inter-band optical conductivity at these frequencies and, hence, the
observed linearity is accidental. These results warn against oversimplified interpretations of
optical conductivity measurements in different Dirac materials. Finally, Schilling et al. [17]
investigate the broadband optical conductivity of the two-dimensional Dirac material
CaMnBi2. They find that both components of the intraband conductivity follow a universal
power law as a function of frequency at low temperatures. This conductivity scaling differs
from the standard Drude-like behavior and might point toward quantum criticality in
this system.

Overall, this Special Issue represents a few recent developments in the broad and
growing field of topological material studies.

Acknowledgments: I am grateful to Dancy Yu for her editorial assistance in the production of this
Special Issue and to Ece Uykur for proofreading the draft of this paper.
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Abstract: Mid- and near-infrared measurements reveal that the optical conductivity of the
three-dimensional topological insulator, Bi2Te2Se, is dominated by bulk carriers and shows a
linear-in-frequency increase at 0.5 to 0.8 eV. This linearity might be interpreted as a signature of
three-dimensional (bulk) Dirac bands; however, band-structure calculations show that transitions
between bands with complex dispersion contribute instead to the inter-band optical conductivity
at these frequencies and, hence, the observed linearity is accidental. These results warn against the
oversimplified interpretations of optical-conductivity measurements in different Dirac materials.

Keywords: topological insulators; optical conductivity; Dirac materials

1. Introduction

Spin-orbit coupling often leads to the formation of linear bands in solids. Electrons in such
bands (the Dirac electrons) manifest themselves in special ways in different experiments [1–5]. One of
these manifestations is in their optical response: the contribution of a d-dimensional Dirac band
to the inter-band optical conductivity, which is calculated to follow a simple power–law frequency
dependence [6,7]:

σ(ω) ∝ωd−2. (1)

Such optical-conductivity behavior—unusual for conventional materials—has indeed been
confirmed for (quasi)-2D electrons in graphene, graphite, and the line-node semimetal ZrSiS, whereσ(ω)
≈ const(ω) was reported [8–10]. In turn, the 3D Dirac electrons in Dirac and Weyl semimetals, such as
ZrTe5, Cd3As2, and TaAs, provide the inter-band optical conductivity to be proportional to frequency,
σ(ω) ∝ ω [11–13]. The linearity in σ(ω) over a broad frequency range in a 3D electron system is
often considered as a ”smoking gun” for Dirac physics. For example, Timusk et al. [14] suggested the
presence of 3D Dirac fermions in a number of quasicrystals, based entirely on the observation of a
linear σ(ω) in these materials.

Besides, enormous efforts have been made to investigate the symmetry-protected surface states of
topological insulators [2,3]. However, the dominant physics of the bulk often obscures the surface
properties and hence is generally considered as an obstacle for experiments targeting the surface
states. Achieving dissipationless surface spin currents may be of primary importance for potential
applications of topological insulators, nevertheless, investigations into bulk electronic properties are
essential for understanding the complete picture of the topological-state formation [15].

Crystals 2020, 10, 553; doi:10.3390/cryst10070553 www.mdpi.com/journal/crystals
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Our experiments reveal that the bulk optical conductivity of Bi2Te2Se follows a linear frequency
dependence in an appreciably broad spectral range. Based on band-structure calculations, we argue
that this linearity is not due to transitions within (a) particular 3D linear band(s), but instead a result of
contributions from the transitions between the bands with complex dispersion.

2. Materials and Methods

Bi2Te2Se bulk crystals were synthesized by a modified Bridgman method [16]. Highly purified
(99.9999%) elemental starting materials (Bi, Te, and Se) (Chimmed, Moscow, Russia) were loaded in
quartz ampules inside an inert-gas glove box in the stoichiometric ratio 2:2:1. The sealed evacuated
ampules were kept at 850 ◦C for 24 h with periodic stirring to ensure the homogeneity of the melt,
followed by a cooldown to 520 ◦C with a rate of 5 ◦C/h. The crystals were then annealed at 520 ◦C for
six days. The typical crystal sizes obtained in this way were in the centimeter range. The crystals were
cut into appropriate pieces for X-ray, Hall, and optical measurements (and kept in vacuum until the
measurements).

Utilizing an X’Pert Pro Extended MRD X-ray diffractometer (PANalytical, Almelo, the Netherlands)
we have confirmed the high structural quality of the crystals, see Figure 1. The free-carrier concentration
and mobility were measured in a standard Hall geometry. Indium-soldered contacts were applied to
razor-cut Hall bars with typical dimensions of 2 × 0.5 × 0.2 mm3. For all samples, the conduction was
by n-type carriers. The properties of the sample, used in our infrared studies, are listed in Table 1.

Figure 1. Bi2Te2Se X-ray diffraction pattern. Inset: Rocking curve for the (0 0 15) reflection peak.

Table 1. Room-temperature properties of the single-crystalline Bi2Te2Se sample used for the optical
measurements. The mobility value is typical for the samples with such electron densities [17].

Lateral Dimensions Thickness Bulk electron Density Mobility Lattice Constant

5 × 5 mm2 350 μm 1.0 × 1018 cm−3 330 cm2/Vs 29.766 A

Optical reflectivity was measured from the (001) plane on freshly cleaved surfaces.
The room-temperature experiments were performed in the mid- and near-infrared spectral ranges
(600–8000 cm−1, 75 meV–1 eV) with a Bruker Vertex 80v Fourier-transform infrared spectrometer
(Bruker Corporation, Billerica, MA, USA). Freshly evaporated gold mirrors served for reference
measurements. We used unpolarized light, because Bi2Te2Se possesses C3 rotational symmetry along
the [001] direction and hence the (001)-plane response, expressed via a second-rank tensor, such as
optical conductivity, is isotropic.

6
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3. Results and Discussion

In the top panel of Figure 2, we plot the raw reflectivity data recorded at 300 K. The reflectivity is
very flat between 4000 and 8000 cm−1. In order to obtain the optical conductivity from the reflectivity
data, we first tried to fit the measured spectra using a standard Drude–Lorentz procedure [18]. However,
we found that such flat reflectivity is impossible to fit in an acceptable way with a physically meaningful
number of Lorentzians. In an alternative approach, we used Kuzmenko’s variational dielectric function
method [19], which produces optical functions with an accuracy equivalent to Kramers–Kronig. For the
sake of convenience, the variable part of the dielectric response function was described by a large
number of Lorentzians. Justification and details of this approach can be found in [20]. Similar to the
Kramers–Kronig analysis, this method gives less accurate results near the edges of the experimental
window. Thus, the results below approximately 2000 cm−1 and above 7000 cm−1 cannot be considered
as accurate.

Figure 2. Top panel: [001]-plane reflectivity of Bi2Te2Se at 300 K: measurements (black line) and
fit (red line). Bottom panel: bulk optical conductivity (real part) of Bi2Te2Se, as obtained from the
reflectivity fit (black straight line) and the inter-band portion of optical conductivity, computed from
the band structure of Figure 3 at 0 K (dashed line), as detailed in the text. The thin orange line is to
mimic a linear increase in frequency.

The real part of the optical conductivity obtained from this fit is plotted in the bottom panel of
Figure 2. The eye-catching feature of the figure is the linear increase in σ(ω) at 4000 to 7000 cm−1

(~0.5–0.8 eV).
Let us first argue that the observed optical conductivity originates from the bulk of Bi2Te2Se.

In Bi2Te2Se, the surface Dirac point lies inside the bulk band gap [21,22] and metallic surface states have
been experimentally confirmed [21–27]. Nevertheless, Bi2Te2Se samples usually possess a significant
concentration of bulk charges due to the basically unavoidable presence of defects, the so-called
self-doping [26–30]. This is also the case for our sample—its bulk carrier concentration is rather large,
as shown in Table 1. Furthermore, the skin depth, calculated from the complex optical conductivity,
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is above 30 nm at any measurement frequency, while the thickness of the topologically non-trivial surface
layer is believed to be around 1 nm [3]. Hence, the response detected by our optical measurements is
due to the bulk.

Figure 3. Band structure of Bi2Te2Se. Black dashed (red solid) horizontal line indicates the original
(shifted) Fermi energy.

Let us also note that, at elevated temperatures, the optical detection of surface carriers in Bi2Te2Se,
as well as in similar compounds, such as Bi2Te3 and Bi2Se3, remains so far elusive, while bulk carriers
clearly manifest themselves in the optical response of Bi2Te2Se [16,28–30] and related compounds [31–35].
Reijnders et al. have reported on a mixed (surface plus bulk) optical response in Bi2Te2Se for low
frequencies at temperatures below some 40 K [30]. However, at room temperature, as well as at
frequencies above 2000 cm−1, their data are perfectly reconciled with entirely bulk response.

Coming back to the linear σ(ω), it is tempting to interpret it in terms of Equation (1), namely, as a
signature of a 3D Dirac band (because our σ(ω) reflects the bulk response). Such a band, however,
is not expected to appear in the bulk of Bi2Te2Se [36]. We would like to point out that all the available
optical conductivity spectra (ours and those previously reported in [16,28–30]) are rather similar to
each other, although the linearity of σ(ω) is most apparent in our data. The deviations between the
data sets can be assigned, for example, to the abovementioned difference in the exact Fermi-level
position in different samples of Bi2Te2Se. In order to check the origin of the linear frequency increase
in σ(ω), we performed band-structure calculations for Bi2Te2Se and then calculated its inter-band
optical conductivity.

The band-structure and optical-conductivity calculations were performed using the full potential
linear augmented plane-wave method, as implemented in the WIEN2k code [37]. The exchange-correlation
functional is parameterized using the GGA approximation [38]. The self-consistent charge-densities
and optical-conductivity calculations were done with 400 and 2000 k-points in the whole Brillouin zone,
respectively. The results of the calculations are shown in Figures 2 and 3. The obtained band structure is
basically identical to the one reported in [36]. In order to be reconciled with the bulk electron concentration
(the self-doping problem mentioned above), the Fermi level needs to be shifted upwards, as compared to
the undoped situation, as shown in Figure 3. From the figure, it is apparent that there is no truly Dirac
band in the bulk of Bi2Te2Se.

The calculated optical conductivity is shown as a dashed line in Figure 2. Taking into account
the generally poor reproducibility of the experimental infrared optical conductivity by first-principles
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calculations (cf., e.g., in [39,40]), the agreement between theory and experiment can be considered
as fairly good. Further, we should point out that the computed σ(ω) has no intra-band (free-carrier)
contribution. Thus, it is not surprising that the low-frequency experimental σ(ω) is larger than
the theoretical line. Additionally, the effect of temperature broadening is absent in the calculations.
Such broadening would make the smooth step at around 3000 cm−1 even broader [10].Taking into
account the mentioned issues in the computations of σ(ω) is outside of our capacity and beyond the
scope of the paper. The important result of our computations is that the linear σ(ω) is nicely reproduced
at 4000 to 6000 cm−1 (~0.5–0.75 eV). Thus, we can conclude that this linearity comes as a cumulative
effect of transitions between the bands, which do not have a simple linear dispersion. We note that
recent measurements of BaCoS2 and GdPtBi provide other examples of linear σ(ω) not due to a simple
3D Dirac band [41,42].

4. Conclusions

We have experimentally found that the bulk optical conductivity of Bi2Te2Se is linear in frequency
at 4000 to 7000 cm−1 (~0.5–0.8 eV). Our computations demonstrate that this linearity is not due to
transitions within a 3D Dirac band, but emerges as a cumulative effect of transitions between the
bands with complex dispersion. Obviously, similar situations can appear in other systems and, thus,
suggestions for Dirac physics based on optical-conductivity measurements have to be made cautiously.
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Abstract: Topological photonics have developed in recent years since the seminal discoveries of
topological insulators in condensed matter physics for electrons. Among the numerous studies,
photonic Weyl nodes have been studied very recently due to their intriguing surface Fermi arcs,
Chiral zero modes and scattering properties. In this article, we propose a new design of an ideal
photonic Weyl node metacrystal, meaning no excessive states are present at the Weyl nodes’ frequency.
The Weyl node is stabilized by the screw rotation symmetry of space group 19. Group theory
analysis is utilized to reveal how the Weyl nodes are spawned from line nodes in a higher symmetry
metacrystal of space group 61. The minimum four Weyl nodes’ complex for time reversal invariant
systems is found, which is a realistic photonic Weyl node metacrystal design compatible with standard
printed circuit board techniques and is a complement to the few existing ideal photonic Weyl node
designs and could be further utilized in studies of Weyl physics, for instance, Chiral zero modes
and scatterings.

Keywords: Weyl nodes; screw rotation symmetry; line node; space group 19; space group 61

1. Introduction

Weyl nodes (WN) are linear band crossings existing in odd dimensions [1–3]. Three dimensional
WN have been extensively exploited in recent years for their intriguing physics. As a drain/source of
Berry curvatures, WN hold a quantized topological index, Chern number, of ±1. Due to the stability of
the topological index, WN are extremely tolerant to disorders and can be gapped only by the coalesce
and annihilation between WN with opposite Chern numbers. WN are also renowned for their Chiral
Anomaly Magnetoresistance [4–6], Fermi arc surface states [7–15] and nonlinear Hall effects [16–18].
More recently, topological nodes beyond WN [19], for instance, Dirac points [20–26], spin-1, spin-2/3
WN and double WN [27–30] have also gained significant progress in research.

In photonics, WN have been exploited in photonic crystals [31–34], metamaterials [35–37],
magnetized plasma [38,39] and in synthetic spaces [40,41]. Despite substantial studies, there have been
only a few ideal WN designs. Ideal WN are salient because no excessive modes are present at the WN
frequency, which is beneficial for revealing the properties of WN without disturbance coming from
excessive bands [42]. In this article, we proposed a printed circuit board (PCB) technique compatible
ideal WN metacrystal functioning in the millimeter wavelength regime (~36 GHz). Group theory
analysis shows that the WN are stabilized by screw rotation symmetry in space group (SG) 19, and are
spawned from ideal line nodes (LN) in SG 61. Fermi arcs connecting WN with opposite Chern numbers
are also found.

Crystals 2020, 10, 605; doi:10.3390/cryst10070605 www.mdpi.com/journal/crystals
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2. Results

The metacrystals we propose comprise two double-layer PCB boards in one primitive cell.
The primitive cell’s dimension is 3 × 3 × 3 mm3. Each PCB board layer’s thickness is 1 mm, hence,
thickness of the dielectric layer between the PCB boards is 0.5 mm and has a relative permittivity of 2.2,
which is within the common PCB board material Teflon’s parameter range. The PCB board’s relative
permittivity is 2.2 as well. All the metallic layers have the standard 37μm thickness and are assumed
to work as perfect electric conductors within the frequency range of interest. The metacrystal is shown
in Figure 1a. Each PCB layer consists of double-layer metallic wire-like structures and the layers are
electrically connected by metal-coated 0.2 mm radius through holes. The metallic pads connecting the
through holes to the wires have radii of 0.4 mm. Note that in the figures, the primitive cell in the x–y
direction is denoted by the red dashed lines. For clarity, the two layers are not drawn together, though
it should be remembered that in the real structure, the two layers are gapped by a merely 0.5 mm
thickness dielectric board. The designed structure belongs to SG 61 (Pbca). It will be shown later in
the article that this metacrystal could be reduced to SG 19 (P212121) by introducing a deformation,
as shown in Figure 2a, of which the inversion symmetry and glide symmetries are broken, and are
later essential for the creation of the WN.

 
Figure 1. (a) First and second layer structure of the line node metacrystal. (b) Band diagram of the line
node structure. (c) Detailed band diagram of the line node. (d) Brillouin zone and the path for band
diagram. (e) Ex field components of the line nodes eigen modes found at ky = π

2a , kx = 0, kz = 0 and
the frequency ω at 34.5 and 36.9 GHz, respectively.
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Figure 2. (a) First and second layer of the perturbed metacrystal structure. (b) Band diagram of the
perturbed metacrystal. (c) Detailed band diagram of the metacrystal around the Weyl node frequency.
The Weyl nodes are found on the ΓX and ΓY high symmetry lines, and the band crossings at other
momentums are gapped.

2.1. Line Node from SG 61

Without the deformation, the metacrystal structure belongs to SG 61, whose group representatives
are translational symmetry T, three glide symmetries Gx,y,z, three screw rotation symmetries S2,x,y,z,
and inversion symmetry P. The nonsymmorphic group operations are expressed explicitly as:

Gx(x, y, z)→
(
−x, y, z +

1
2

)

Gy(x, y, z)→
(
x +

1
2

,−y, z
)

Gz(x, y, z)→
(
x, y +

1
2

,−z
)

S2x(x, y, z)→
(
x +

1
2

,−y,−z +
1
2

)

S2y(x, y, z)→
(
−x, y +

1
2

,−z
)

S2z(x, y, z)→
(
−x +

1
2

,−y, z +
1
2

)

Nonsymmorphic group operations have been extensively used to protect degeneracies at the
boundaries of the Brillouin zone beyond the capabilities of point group [43,44]. A band diagram of
the metacrystal is given in Figure 1b, whose sweeping path is given in Figure 1c, and presents band
crossings along the high symmetry lines ΓX SΓ and ΓY that is line node (LN) degeneracy. Noticeably,
the band diagram is pseudo-gapped for the LN, meaning no other excessive bands can be found
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around the LN frequency at other sites in the Brillouin zone. Furthermore, on the edge of the Brillouin
zone (RS, RU and RT high symmetry lines), Dirac nodal lines are found, featuring four-fold degeneracy
on the whole edges [45].

2.2. Group Theory Analysis

Since the LN is due to an accidental degeneracy that resides on the high symmetry line/plane,
the two bands consisting of LN degeneracy are expected to belong to different irreducible
group representations. On the high symmetry lines ΓX and ΓY, the little group reduced to
GΓX =

{
E, S2y, Gx, Gz, T

}
and GΓY =

{
E, S2x, Gy, Gz, T }, respectively. Despite the existence of

the half unit cell translations within the nonsymmorphic operations, the coset groups GΓX/T, GΓY/T
of the little groups are found to be isomorphic to simple point group C2v, whose character and
compatability tables are given below in Tables 1 and 2. Note that on the ΓX and ΓY high symmetry
lines, the σv mirror operation are σy and σx while σ′v is σz.

Table 1. Character table of group C2v.

C2v E C2 σv σ′v
A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 1 −1
B2 1 −1 −1 1

Table 2. Compatibility table of group C2v.

C2v C2 Cv C′v
A1 A A′ A′
A2 A A′′ A′′
B1 B A′ A′′
B2 B A′′ A′

Field distributions of the electrical component ex = Exe−ikr on the momentums half way on ΓX
and ΓY are given in Figure 1e. Note that after multiplying the phase factor e−ikr, ex is the periodic
function in the primitive cell. The left two and the right two images belong to the same frequency,
respectively. In the figures, the mirror plane and the rotation axis are illustrated by the solid black lines,
and the half unit cell translations related to the nonsymmorphic group operations are illustrated by the
yellow arrow. In the left two figures in Figure 1e, it can be inspected that the state is an even state
under the glide operation, and an odd state under the screw rotation operation from their (0 1 0) and
(1 0 0) direction’s fields. The group representation is, thus, B1 according to Table 1. Whereas, for the
other state consisting the LN, it is odd under the glide operation and even under the screw rotation
operation, meaning the group representation is A1.

2.3. Weyl Point from SG 19

What the group theory analysis can show is that after introducing certain structure deformation,
whether the band crossing is kept or gapped can be predicted. Introducing the deformation shown
in Figure 2a will essentially reduce the original SG 61 to SG 19, since the only remaining symmetries
are the three screw rotations. Therefore, on the ΓX and ΓY high symmetry lines, the little groups
are isomorphic to point group C2 (Table 2). In the compatibility relation in Table 2, A1 and B1 can
be reduced to different irreducible representations A and B, meaning the band crossings are kept,
while gapped when k is away from the high symmetry lines.

Instead, if the original metacrystal is reduced to SG 29 by keeping Sx,y and Gz, the isomorphic
point group is C′v in the compatibility relation in Table 2. The irreducible representations are A′ for
both the bands, meaning the LN is immediately gapped. This is consistent with the fact that Weyl
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nodes cannot be found on mirror planes since mirror operations can flip the chirality of the Weyl nodes.
The band structure of the SG 29 metacrystal is given in Figure 3, showing a full band gap around
36 GHz.

 

Figure 3. Band structure of the SG 29 metacrystal.

2.4. Surface States of the LN and the WN

It has been well understood that LN and WN hold surface states. LN hold the ‘drumhead’
surface states and are normally flat bands that could enhance interactions and are promising for high
temperature superconductivity. The WN, on the other hand, hold the so-called Fermi arcs that have
been exploited in their intriguing transport properties and unconventional quantum Hall effects [14].

To explore the surface states of the metacrystal, we created super cell configurations that are
periodic in the x and y direction and are confined with perfect electrical conductors (PEC) with 10 unit
cells in the z-direction. The results are illustrated in Figure 4 and the configuration of the projected
surface Brillouin is give in Figure 5. For the unperturbed LN metacrystal, surface states that are
reminiscences of the drumhead surface states are found, while for the WN metacrystal, Fermi arcs are
found around the momentums where LN are found (red dots in Figure 4b).

Figure 4. (a) Surface states (gray) and projected bulk band structure of the line node metacrystal in SG
61. (b) Surface states (gray/red) and projected bulk band structure of the line node metacrystal in SG 61;
the topological Fermi arcs connecting the Weyl nodes are in red.
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Figure 5. (a) Equi-frequency contour of the projected Weyl nodes and the Fermi arcs. Red and Magenta
lines are on the top and bottom surface, respectively. (b,c) Excitation of topological fermi arc surface
states with and without a square-shaped defect. Source is an x direction line current fixing the kx

at 0.2π/a, marked by the yellow pentagram. The metacrystals are bounded by the perfect electric
conductor (PEC) boundary condition. The unit cell is outlined by the solid black line box.

At a fixed frequency (36.5 GHz in Figure 5), Fermi arcs are found to connect WN with opposite
Chern numbers (WN1 and WN2 located on the kx and ky axis, respectively), which are the results of the
integral of Berry curvatures on a closed surface that include a WN [1]. The Fermi arcs are illustrated
by the magenta and red lines that are residing on the top and the bottom surfaces, respectively.
Figure 5b shows the real space field distribution of the topological surface state excited by a line
current source that fixes the kx at 0.2π/a. The unidirectionality of the surface state propagation is
consistent to the calculated equi-frequency contour in Figure 5a. Figure 5c shows the same surface state
excitation simulation with an extra square-shaped defect. Again, the unidirectionality demonstrates
the topological robustness of the fermi arc surfaces.

3. Discussion

Our design has shown how to obtain WN in SG 19 from LN in SG 61. The pure PCB layered
design could also benefit the tunings of the WN. In Figure 6, we show the band diagrams of the WN
metacrystal with various z-direction periods. Note that the PCB layers’ thicknesses are conserved at
1 mm and only the interlayer dielectric boards’ thickness is changed. Intriguingly, locations of the
WN in the Brillouin zone can be effectively tuned by the periodicity. Note that when the thickness
is reduced to below 4.8 mm, the WN coalesce and annihilate. The highly sensitive locations of the
WN to the periodicity could be used to generate giant effective magnetic fields in the WN metacrystal
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by introducing a gradually changing thickness. Since photons do not respond to actual magnetic
fields, effective magnetic fields are crucial for mimicking the physical effects of real magnetic fields,
for example, Landau quantization and chiral zero modes [46,47].

Figure 6. Band diagrams of the Weyl node for various unit cell z-direction periods. (a) The Weyl nodes
coalesce and annihilate at 4.6 mm. (b) Weyl nodes are in the proximity of Γ point in the Brillouin zone
at 4.8 mm. (c,d) Weyl node at 5 and 5.5 mm period.
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Abstract: We investigated magneto-optical response of undoped Bi2Te3 films in the terahertz
frequency range (0.3–5.1 THz, 10–170 cm−1) in magnetic fields up to 10 T. The optical transmission,
measured in the Faraday geometry, is dominated by a broad Lorentzian-shaped mode, whose central
frequency linearly increases with applied field. In zero field, the Lorentzian is centered at zero
frequency, representing hence the free-carrier Drude response. We interpret the mode as a cyclotron
resonance (CR) of free carriers in Bi2Te3. Because the mode’s frequency position follows a linear
magnetic-field dependence and because undoped Bi2Te3 is known to possess appreciable number
of bulk carriers, we associate the mode with a bulk CR. In addition, the cyclotron mass obtained
from our measurements fits well the literature data on the bulk effective mass in Bi2Te3. Interestingly,
the width of the CR mode demonstrates a behavior non-monotonous in field. We propose that the CR
width is defined by two competing factors: impurity scattering, which rate decreases in increasing
field, and electron-phonon scattering, which exhibits the opposite behavior.

Keywords: topological insulators; cyclotron resonance; Dirac materials

1. Introduction

From the theory point of view, a three-dimensional (3D) topological insulator (TI) possesses
insulating bulk and conducting surfaces, the conduction channels at surfaces being spin-polarized [1–4].
Since the spin polarization can potentially be utilized in spintronic devices, topological insulators
have attracted a lot of attention in the past years [5,6]. In practice, the real samples of 3D topological
insulators often conduct not only on their surfaces, but also in the bulk. Considerable efforts have been
made to understand and separate the properties of surface and bulk charge carriers. These properties
can particularly be studied via different spectroscopic techniques, such as angle-resolved photoemission
spectroscopy (ARPES) or optical and magneto-optical spectroscopy. The optical conductivity and
cyclotron resonance (CR) of a number of 3D TI materials have been reported in the literature. Perhaps
the most studied family of such TIs is the bismuth selenide: bismuth telluride series, Bi2(Te1 − xSex)3,
which also includes the undoped members, Bi2Te3 and Bi2Se3 [7–9]. In this study, we concentrate on
Bi2Te3. Namely, we investigate experimentally the CR in this compound. Surprisingly, the published
cyclotron-resonance measurements performed on this well-studied TI produce rather diverging
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results [10–13] with the absorption features being generally of rather complex shapes. One of the
reasons for such diversity might be the sample-dependent variation between the surface and bulk
contributions, which, in turn, greatly depend on the exact position of the Fermi level.

Unlike in the majority of previous reports [11–13], the CR absorption observed in our study can be
well described by a single Lorentzian-shaped mode (which is rather consistent with the earliest study
on this issue from 1999 [10]). We believe the absorption we detect is of bulk origin. Thus, our findings
might be useful for the proper interpretations of the CR modes in doped Bi2Te3, where the balance
between the surface and bulk-states contributions can be shifted towards the former, but the bulk still
cannot be completely ignored.

2. Materials and Methods

We grew thin layers of Bi2Te3 on (111)-oriented BaF2 substrates by molecular beam epitaxy [14].
For the growth, we used binary Bi2Te3 and elemental Te. This is different from the standard practice,
when elemental (Bi and Te) sources are utilized with the typical flux ratio of Te/Bi being about 10 to 20.
Using Bi2Te3 and Te allowed us to reduce this ratio to the values below 1 and, hence, to precisely control
the stoichiometry of the growing layer. Along with the employed “ramp up” growth procedure [15],
these two approaches successfully suppress twin formation in the growing films. X-ray diffraction (XRD)
φ scans about the [0 0 1] axis on the asymmetric (1 0 10) reflection revealed only 120◦-periodic peaks
and confirmed that the films obtained by this method are either single-domain or have a very small
twin volume fraction (3–7% for the films with 1 cm2 area) with the c axis of Bi2Te3 being perpendicular
to the substrate surface. To the best of our knowledge, this thin-film growth method is unique.

In order to prevent possible influence of atmospheric oxygen and water, we have developed
a method to cover the TI films in situ with optically-friendly protecting layers of BaF2 [16]. We have
found that 30–50 nm of BaF2 provide the optimal protection. Our measurements have shown that the
BaF2 cap layers affect neither crystal-structure parameters nor optical properties at the frequencies
of interest.

The sample used in this study was thoroughly characterized by XRD, scanning electron microscopy
(SEM), atomic force microscopy (AFM), and angle-resolved photoemission spectroscopy (ARPES).
The results of these investigations, presented in the Supplementary Materials, confirm high structural
and morphological quality of the film and show that the film possesses the topological surface electronic
states as well as the states in the bulk conduction band.

For optical measurements, we utilized the infrared optical setup available at the High Field
Magnet Laboratory in Nijmegen [17]. This setup consists of a commercial Fourier-transform infrared
(FTIR) spectrometer (Bruker IFS113v) (Bruker Optik GmbH, Ettlingen, Germany) combined with
a continuous-field 33-Tesla Bitter magnet. A detailed description of this setup could be found
elsewhere [18]. The measurements were performed in the Faraday geometry [19] at 2 K. A mercury
lamp was used as a radiation source. The far-infrared radiation was detected using a custom-made
silicon bolometer operating at 1.4 K. The FTIR spectra were recorded in a number of magnetic fields
from 0 to 30 T. The optical data were collected between 10 and 170 cm−1 (300–5100 GHz), using a 200-μm
Mylar beamsplitter and a scanning velocity of 50 kHz. At each field, at least 100 scans were averaged.
As will be seen below, the data obtained in the fields above 10 T cannot be used in our analysis because
of a low signal-to-noise ratio. Thus, in this study we concentrate on the measurements performed
between 0 and 10 T.

3. Results and Discussion

In Figure 1, we show raw transmission data measured though the 115-nm-thick Bi2Te3 film on
a 0.49-mm-thick BaF2 substrate (cf. S2 in the Supplemental Material) in magnetic fields B up to 10 T.
We note that all the measurements reported in this study are performed on a single sample. As seen
from Figure 2, the substrate has no detectable field dependence. Hence, all the field-inducted changes
come from the film. We note that the BaF2 substrate has intense phonon modes at roughly 50 and
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140 cm−1 [20]. Thus, accurate measurements around these frequencies are impossible. The spectra
of Figure 1 are dominated by a single broad mode, which position shifts to higher frequencies in
increasing field. The spectra can be fitted by a single Lorentzian, as exemplified in Figure 3 for 2, 4,
and 6 T. In zero field, the Lorentzian central frequency is zero, i.e., the observed absorption mode is
due to free carriers (Drude conductivity). The field evolution of the mode can be traced in Figure 1:
with increasing field, the mode shifts upwards and eventually goes above 100 cm−1, i.e., in the range,
where the signal-to-noise ratio is worsened by the spectrometer noise and the phonons in the substrate
(this prevents a meaningful spectra analysis in higher fields). Still, the shift of the mode in the applied
magnetic field is apparent and can straightforwardly be interpreted as a magnetic-field-induced
free-carrier localization or, in other words, a cyclotron-resonance absorption.

 

Figure 1. Raw transmission spectra of Bi2Te3 films on BaF2 substrates as obtained in magnetic fields of
up to 10 T. The areas with low signal due to either the substrate phonons or spectrometer electronic
noise are shaded. The signal-to-noise ratio is best at around 80 cm−1 and becomes appreciably lower as
frequency increases (see also Figure 2), preventing thus any meaningful measurements of the cyclotron
resonance (CR) mode at the fields higher than 10 T.

Figure 2. Frequency-dependent transmission of a bare BaF2 substrate at 10 and 15 T normalized to its
zero-field spectrum. The noise at high frequencies is due the experimental setup. The Figure is meant
to demonstrate: (i) the absence of any field-induced changes in the optical spectra of BaF2 and (ii) the
frequency limits of the setup used.
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The Lorentzian-fit results for this CR absorption mode in the fields from 0 to 10 T are shown in
in Figure 4. One can see that the central frequency of the absorption line is linear in field (left panel).
This immediately signals that the electronic band(s) responsible for the observed absorption have
a quadratic dispersion relation. For linear electronic bands, the field dependence of the CR lines is
supposed to have a square root dependence on applied field [21]. Thus, following the Occam’s razor
principle, we conclude that the mode is due to bulk (i.e., not linear, not topological) electronic bands.
This conclusion is in full agreement, e.g., with ARPES [9] and quantum-oscillations [22] measurements,
which show that the Fermi level in undoped Bi2Te3 crosses the bulk conduction band and hence there
exists a large bulk Fermi surface.

 
Figure 3. Examples of Lorentzian fits of the transmission spectra from Figure 1 for a few magnetic-field
strengths as indicated. The raw experimental data are smoothed, using a Savitzki–Golay method [23].
Note that the spectra for 4 and 6 T are shifted upwards for clarity.

Figure 4. CR-line central frequency (left frame) and full width at half maximum (FWHM) (right frame)
versus applied magnetic field. The dashed line is a fit with m* = 0.1me. The red solid line is a guide for
the eye.

We note that weak modes due to the surface conduction channels may exist on top of the
dominating bulk abortion, but within our accuracy they cannot be resolved.

The linear field dependence of the central CR frequency, ω0, can be fitted with the standard
parabolic-band expression, connecting the slope ofω0(B) and the carrier cyclotron mass, m*, ω0 = eB/m*c
(CGS units are used, e is the elementary charge, c is the speed of light). This fit is shown in the left
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panel of Figure 4 as a straight line and provides m* = 0.1me (me is the free-electron mass). This value
is in very good agreement with the available literature data on the bulk effective mass in Bi2Te3 [24]:
m* = 0.109me for the response perpendicular to the c-axis, which we do probe in our transmission
experiment with unpolarized light. This match provides another confirmation for the correctness of
our interpretation. We would like to note here that the complete agreement between the calculated
electronic band structure of Bi2Te3 and the entire body of the available experimental work is still to be
achieved, as emphasized in a recent review [25].

Finally, we turn to the width of the absorption band. As one can see from the right panel of
Figure 4, the full width at half maximum (FWHM) of the band demonstrates a non-monotonous field
dependence: in low fields, it decreases with increasing B and then, starting at approximately 5 T,
the FWHM starts growing with the applied field. The initial decrease of FWHM can be naturally
explained by the decreasing cyclotron-orbit radius with increasing B and the consequent decrease of
impurity scattering. The reason for the CR mode broadening in B > 5 T is not entirely clear. We propose
that this could be due to the increased electron-phonon scattering. In higher fields, the CR mode
approaches the frequencies, where phonon density grows (roughly, above 40 cm−1; cf. the left panel
of Figure 4 and [26], where the phonon density for Bi2Te3 was calculated) and hence the rate of the
electron-phonon scattering starts to increase, leading to the observed total broadening of the CR line
according to the Matthiessen rule.

4. Conclusions

We have investigated the magneto-optical response of undoped Bi2Te3 films at terahertz frequencies
and in magnetic fields of up to 10 T. We observed an intense CR line, which can be fitted with a single
Lorentz oscillator. The central frequency of the CR increases linearly with applied field, signaling
the bulk origin of this resonance. In addition, we found the “in-plane” cyclotron mass, m* = 0.1me,
which matches well the literature data for bulk Bi2Te3. The width of the CR mode demonstrates
a behavior non-monotonous in field. We propose that the CR width is defined by two competing
factors: impurity scattering, which rate decreases in increasing field, and electron-phonon scattering,
which rate demonstrates the opposite behavior. We believe our findings can be exploited in future
measurements of the surface-states CR in Bi2Te3 to disentangle the bulk and surface contributions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/9/722/s1.
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Abstract: SmB6 is a mixed valence topological Kondo insulator. To investigate the effect of
substituting Sm with magnetic Ce ions on the physical properties of samarium hexaboride,
Ce-substituted SmB6 crystals were grown by the floating zone method for the first time as
large, good quality single crystal boules. The crystal growth conditions are reported. Structural,
magnetic and transport properties of single crystals of Sm1−xCexB6 (x = 0.05, 0.10 and 0.20) were
investigated using X-ray diffraction techniques, electrical resistivity and magnetisation measurements.
Phase composition analysis of the powder X-ray diffraction data collected on the as-grown boules
revealed that the main phase was that of the parent compound, SmB6. Substitution of Sm ions
with magnetic Ce ions does not lead to long-range magnetic ordering in the Sm1−xCexB6 crystals.
The substitution with 5% Ce and above suppresses the cross-over from bulk conductivity at high
temperatures to surface-only conductivity at low temperatures.

Keywords: crystal growth; optical floating zone method; SmB6; Sm1−xCexB6; topological insulator;
kondo insulator

1. Introduction

Extensive investigations of the physical properties and excitations in the rare earth (RE) hexaboride
compounds, REB6, have been carried out over the past decades. These strongly correlated electron
systems display an array of interesting magnetic and electrical properties, such as superconductivity
(YB6 [1–3]), intricate antiferromagnetic ordered phases owing to the displacement of rare earth ions
within the rigid framework formed by the boron ions (GdB6 [4–6]), complex antiferromagnetic phases
with Kondo-like characteristics (CeB6 [7–10]), semimetallic behaviour correlated with the transition to
an unusual ferromagnetic state (EuB6 [11–13]), typical metallic behaviour (LaB6 [14–16]) or an exotic
Kondo-like topological insulating state (SmB6 [17–19]). Amongst the rare earth hexaboride compounds,
cerium and samarium hexaborides have puzzled experimentalists and theoreticians alike, for a long
time, in view of their intriguing physical properties. SmB6 and CeB6 are isostructural, crystallising
in the same cubic CsCl-type structure (Pm3m space group) [20–22]. Sm and Ce ions replace the Cs
ion, whilst the B6 cubo-octohedral clusters take the place of the Cl ions at the corners of the cube.
Nevertheless, the similarities between samarium and cerium hexaborides stop at the structural level,
as they display very unusual, but different physical properties.

SmB6 has long been known to be a Kondo insulator [23,24]; in recent times, new theoretical
and experimental studies demonstrated that samarium hexaboride is a topological Kondo insulator
(TKI) exhibiting topological surface properties [18,25–31], although this remains open to further
investigation [32]. SmB6 is one of the most investigated Kondo insulators, mainly due to its exciting
low temperature transport behaviour. As the temperatures decreases, an energy gap arises due
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to the interaction of the strongly correlated f -electrons and the conducting d-electrons, leading to
an exponential increase in the electrical resistance of SmB6 [33–35]. Unexpectedly, upon further
cooling, the resistance of SmB6 does not continue rising, as would be the case for a conventional
insulator, but instead the resistance saturates at a finite value, below 5 K. This plateau in the
resistivity has been attributed to a transition from a bulk conductivity characteristic of the high
temperature region to a surface-dominated conductivity with bulk insulation at low temperature [36].
SmB6 is a mixed valence system that does not order magnetically, despite exhibiting antiferromagnetic
correlations [33,37–40]. The Sm3+:Sm2+ ratio was determined to be independent of the temperature,
and equal to approximately 0.6∼0.7:0.4∼0.3 [37,41]. Nevertheless, recent studies have shown that,
upon the application of an external pressure, the Sm3+ configuration can be stabilised for sufficient
time to allow long-range magnetic ordering of the samarium ions [42,43].

CeB6 is known to have a typical dense Kondo compound behaviour and a complex magnetic phase
diagram [44–47]. Cerium hexaboride exhibits Kondo-like behaviour and has a Kondo temperature of
TK = 19 K. Upon cooling, CeB6 undergoes two magnetic ordering transitions: the first to a state in
which antiferroquadrupolar and field-induced octupolar order coexist, below TQ = 3.2 K, and then to
an antiferromagnetic ordering of the Ce dipoles, below TN = 2.3 K. Moreover, a subsequent study
reported a new transition, of unknown origin, at T2 = 1.6 K [45].

Recent progress, e.g., the discovery of the coexistence of an unusual metallic surface state and an
insulating bulk state in SmB6 [19,48] and the observation of the long-range-ordered multipolar phases
in CeB6 [47], has generated new interest in these materials. One route towards the investigation of the
exotic metallic surface state arising in SmB6 and understanding of its topological nature, is through
chemical substitution in this TKI with other rare earth ions. Recently, studies have been carried out
on Eu, Gd, La, Y and Yb-substituted SmB6 [18,21,49–54]. High levels of substitution of non-magnetic
ions (above 30%), and substitutions with small amounts of magnetic ions, were found to destroy the
saturation seen in the low temperature resistivity of pure SmB6. It would therefore be interesting
to investigate the effect that the substitution with a magnetic rare earth, such as Ce, in samarium
hexaboride has on the robustness of the topological surface state of this TKI. Such an investigation is
of course best carried out on high quality single crystals. In the present work, we investigated single
crystals of Sm1−xCexB6, with a focus on studying the effects that the substitution of the magnetic Ce
ion have on the structural and physical properties of SmB6. The physical properties of Ce-substituted
SmB6 samples have previously been investigated; however, this has only been done on polycrystalline
samples and flux grown crystals [21,49,54]. Crystals of pure cerium and samarium hexaboride have
previously been grown using the floating zone (FZ) technique [55–57]; however, Ce-substituted
SmB6 compounds have only been grown in crystal form using the flux method [54]. SmB6 crystals
grown using Al flux could suffer from contamination by the flux affecting some of the physical
properties of the crystals, thereby making it difficult to study the intrinsic properties of pure samarium
hexaboride [58]. We have successfully grown, for the first time, crystal boules of Sm1−xCexB6 by
the FZ method, which yields large, good quality crystals, free from flux or crucible contamination.
The crystals obtained are especially suitable for the investigation of how the substitution with magnetic
ions affects the surface and bulk behaviour of this interesting TKI.

2. Materials and Methods

Crystal boules of Sm1−xCexB6 (x = 0.05, 0.10 and 0.20) were grown by the floating zone
technique [57] using a CSI FZ-T-12000-X_VI-VP four-mirror xenon arc lamp (3 kW) optical image
furnace (Crystal Systems Incorporated, Yamanashi, Japan). The crystal quality was checked using a
backscattering X-ray Photonic-Science Laue camera system (Photonic-Science, St Leonards-on-Sea,
UK). Single crystal samples were aligned for selected experiments, and rectangular prism-shaped
samples with [001], [1-10] and [110] directions perpendicular to the faces of the prism were cut from
the Sm1−xCexB6 crystal boules.
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Phase composition analysis was carried out using a Panalytical X-Pert Pro MPD diffractometer
(Malvern Panalytical Ltd, Malvern, UK) with Cu Kα1 radiation (λKα1 = 1.5406 Å). The diffraction
patterns were collected at room temperature over an angular range of 10 to 110◦ in 2θ with a step size
in the scattering angle 2θ of 0.013◦ and at various scanning times. The analysis of the X-ray patterns
was performed using the Fullprof software suite [59].

Chemical composition of the crystal boules was investigated by energy dispersive X-ray
spectroscopy (EDX) using a Zeiss SUPRA 55-VP scanning electron microscope (Carl Zeiss GmbH,
Jena, Germany). LaB6 was used as a standard for the EDX measurements. X-ray photoelectron
spectroscopy (XPS) analysis was also carried out in order to determine the elemental composition and
the valence of the Sm ions. The samples were attached to electrically-conductive carbon tape, mounted
on to a sample bar and loaded into a Kratos Axis Ultra DLD (Kratos Analytical Ltd, Manchester,
UK) spectrometer (base vacuum of ∼2 × 10−10 mbar). The measurements were performed using a
monochromated Al Kα X-ray source, at room temperature and at a take-off angle of 90◦ with respect to
the surface parallel. The data were analysed in the CasaXPS package (Casa Software Ltd, Teignmouth,
UK), using Shirley backgrounds and mixed Gaussian-Lorentzian (Voigt) line-shapes and asymmetry
parameters, where appropriate.

Magnetic susceptibility measurements were performed with a Quantum Design Magnetic Property
Measurement System (Quantum Design Incorporated, San Diego, USA) on rectangular-prism-shaped
Sm1−xCexB6 samples with an applied field parallel to the [100] (tetragonal), [110] (rhombic) and [111]
(trigonal) crystallographic directions. The samples were cooled to 1.8 K in zero field and then the
susceptibility as a function of temperature up to 300 K was measured on warming and then cooling with
an applied field of H = 500 Oe.

Alternating current (ac) resistivity measurements were performed using a Quantum Design
Physical Property Measurement System on bar shaped samples of the Sm1−xCexB6 single crystals
using the standard four-probe technique. Silver wire contacts were attached with silver paint, in a
linear configuration, to the surfaces of the samples. The resistivity measurements were made from 2 to
300 K on both cooling and warming in zero applied field with an ac current of 1 mA at a frequency
of 113 Hz.

3. Results and Discussion

3.1. Crystal Growth

Stoichiometric ratios of high purity SmB6 (99.9%, American Elements UK, Manchester, UK) and
CeB6 (99.5%, Cerac Incorporated, Milwaukee, USA) powders were mixed together by ball milling for
over 15 h, to prepare 5%, 10% and 20% Ce-substituted SmB6 polycrystalline samples. The resulting
materials were then isostatically pressed into rods (typically 5–7 mm diameter and 40–50 mm long)
and sintered in an alumina boat, at 1450 ◦C in a flow of argon gas for 12 h. Before the sintering process,
the furnace was evacuated to give a vacuum of ∼10−5 mbar. The resulting polycrystalline feed rods
were used for the crystal growth. A binder (polyvinyl alcohol or polyvinyl butyral) was mixed with
the powders in some cases to facilitate the formation of the rods.

Crystals of Sm1−xCexB6 (x = 0.05, 0.10 and 0.20) were successfully grown by the floating zone
method. The growths were carried out in an argon atmosphere at a pressure of ∼3 bar, using a growth
rate of 18 mm/h. The feed and the seed rods were counter-rotated at ∼15–25 rpm. Initially, a crystal
boule of SmB6 was used as a seed. Once good quality crystals were obtained, Sm1−xCexB6 crystal seeds
were used for subsequent growths. A dark grey coloured deposition on the quartz tube surrounding
the feed and seed rods was observed for all the growths, indicating the evaporation of boron during
the growth process.

The Sm1−xCexB6 boules were typically 4–5 mm in diameter and measured approximately
45–50 mm in length. All the crystals obtained developed facets as they grew and two very strong
facets were present on almost the entire lengths of most of the grown crystals. Figures 1a–c show
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photographs of Sm1−xCexB6 crystals grown in argon atmosphere at a growth speed of 18 mm/h.
The quality of the grown boules was investigated by X-ray Laue diffraction, and Laue photographs
were taken along the length of the boule, on the faceted sides (see Figure 1). The Laue patterns were
identical along the whole length of the crystal boules.

Figure 1. Crystal boules of (a) Sm0.95Ce0.05B6, (b) Sm0.90Ce0.10B6 and (c) Sm0.80Ce0.20B6, prepared
by the floating-zone method in argon atmosphere at a growth rate of 18 mm/h. X-ray Laue back
reflection photographs show the [001] orientation of aligned Sm1−xCexB6 samples used for the physical
properties measurements.

3.2. Structural and Composition Analysis

Structural and phase purity analysis was carried out using powder X-ray diffraction
measurements on small pieces of the Sm1−xCexB6 crystals selected from close to the end of each
crystal boule. Figures 2a–c show the patterns for x = 0.05, 0.10 and 0.20, and profile matching
(goodness of fit, GOF = 1.35, 1.51 and 1.92, respectively) to the cubic Pm3m space group [20] indicates
that in each case the main phase is Sm1−xCexB6, with no significant impurity phases present. One peak
that does not belong to the Pm3m cubic structure can be observed at ∼26.6◦ in the powder X-ray profiles
of each of the Sm1−xCexB6 crystals grown. The impurity was identified to be a hexagonal (P63/mmc)
SmBO3 phase [60]. Lattice parameters calculated from the profile matching were determined to
be 4.1351(2) Å, 4.1384(2) Å and 4.1393(2) Å, respectively, for Sm0.95Ce0.05B6, Sm0.90Ce0.10B6 and
Sm0.80Ce0.20B6 (see Table 1). The values are in agreement with those reported in previous studies on
Sm1−xCexB6 polycrystalline samples [21].
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Figure 2. Powder X-ray diffraction patterns of Sm1−xCexB6 with (a) x = 0.05, (b) x = 0.10 and
(c) x = 0.20) for samples taken from the crystal boules. The experimental profile (red closed circles) and
a full profile matching refinement (black solid line) made using the Pm3m cubic structure are shown,
with the difference given by the blue solid line. The orange coloured symbols * indicate the impurity
peaks belonging to SmBO3 impurity phases. (d) Evolution of the lattice parameter, a, as a function of
the concentration, x, of the Ce-substituent for Sm1−xCexB6. The experimental values obtained in the
present work (red open circles) are also given in Table 1. The previously reported values (red, black and
orange closed circles) of the crystallographic parameters for the Sm1−xCexB6−y series [21] are given
for completeness.

Figure 2d shows the dependence of the lattice constant on the concentration of Ce for the
Sm1−xCexB6 samples. The composition dependence of the cubic parameter, a, does not obey Vegard’s
law [61], for the Sm1−xCexB6 series. The anomalously large positive deviation observed in Figure 2d
can be attributed to the mixed valence of samarium ions [37,38,62]. As the concentration of the
Ce-substituent changes from x = 0 to 1, the Ce3+ ions replace the Sm3+ ions preferentially, whereas
the concentration of Sm2+ ions remains constant [21,38,50]. The effective ionic radius [63,64] of Ce3+

(1.01 Å) is larger than the ionic radius of Sm3+ (0.958 Å); thus, the substitution of samarium with
cerium ions results initially in a lattice expansion (up to x ∼ 0.6). Further substitution of samarium
with cerium is followed by a subtle lattice contraction, which is attributed to the replacement of the
larger Sm2+ ions (1.15 Å) with Ce3+. A similar effect on the lattice constant has been observed in the
case of Gd and La-substituted SmB6 [38,50,65].
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Table 1. Lattice parameters calculated from profile matching the powder X-ray diffraction patterns
of the Sm1−xCexB6 (x = 0.05, 0.10 and 0.20) crystals to the Pm3m cubic structure. The previously
reported structural parameters quoted for other members of the Sm1−xCexB6−y series [21] are included
for completeness.

Sm1−xCexB6−y
Chemical Composition a

Study
x y (Å)

SmB6 0 0 4.1340(2) Present work
Sm0.95Ce0.05B6 0.05 0 4.1351(2) Present work
Sm0.90Ce0.10B6 0.10 0 4.1384(2) Present work
Sm0.89Ce0.11B5.9 0.11 0.1 4.1358 Ref. [21]
Sm0.80Ce0.20B6 0.20 0 4.1393(2) Present work
Sm0.78Ce0.22B5.7 0.22 0.3 4.1378 Ref. [21]
Sm0.66Ce0.34B5.9 0.34 0.1 4.1399 Ref. [21]
Sm0.62Ce0.38B5.7 0.38 0.3 4.1403 Ref. [21]
Sm0.50Ce0.50B6 0.50 0 4.1418 Ref. [21]

Sm0.35Ce0.65B5.7 0.65 0.3 4.1421 Ref. [21]
Sm0.25Ce0.75B5.9 0.75 0.1 4.1424 Ref. [21]
Sm0.18Ce0.82B6 0.82 0 4.1418 Ref. [21]
Sm0.08Ce0.92B6 0.92 0 4.1412 Ref. [21]

CeB6 1.00 0 4.1407(1) Present work

Composition analysis of the crystals of Sm1−xCexB6 was carried out by EDX to determine the
concentrations of Ce in each crystal. The results, given in Table 2, show that the ratios for Sm:Ce are
similar to the expected chemical compositions for the crystals, relative to the starting compositions of
the polycrystalline materials (5%, 10% and 20% Ce-substituted SmB6 samples).

Table 2. Chemical composition and valence of the Sm ions determined by EDX and XPS for the
Sm1−xCexB6 crystal boules grown. The data collected on a pure SmB6 crystal are included for
completeness. The XPS measurements were carried out on a piece of an as-grown SmB6 crystal
boule and on a sample cleaved (in-situ) from the as-grown SmB6 crystal fragment.

Chemical Composition

Sm:B Ratio Sm:B Ratio Sm Valence
Present Work Literature

(EDX) (XPS) (XPS) (Refs. [37,41])

SmB6 1.00(2):5.50(2) 1.00(3):6.4(3) +2.80(2) ∼2.6–2.7SmB6 cleaved - 1:00(3):7.30(3) +2.72(2)

Sm1−xCexB6
x x Sm valence

(EDX) (XPS) (XPS)

Sm0.95Ce0.05B6 0.07(2) 0.09(3) +2.86(2)
Sm0.90Ce0.10B6 0.11(2) 0.14(3) +2.86(2)
Sm0.80Ce0.20B6 0.21(2) 0.23(3) +2.85(2)

Core level XPS spectra were recorded using a pass energy of 20 eV (resolution ∼0.4 eV) on an
area of 300 μm × 700 μm of the Sm1−xCexB6 crystals and used to study the electronic states of Sm
4d, Ce 3d3/2 and Ce 3d5/2 levels, shown in Figure 3. The Sm 4d XPS spectrum (see Figure 3a) is
composed of one singlet, at 123.5 eV, and one multiplet, at 134.1 eV, separated by approximately
10.6 eV. The Sm2+ (4 f 6 ground-state) feature appears near 129 eV (Sm 4d photoelectron line position),
which is in agreement with previously published XPS studies on pure SmB6 [66,67]. The Sm3+ (4 f 5)
multiplet appears at a higher binding energy, well separated from the 2+ peak. The contributions of
the two features to the XPS spectra were used to determine the valence of the Sm ions. The results,
given in Table 2, reveal that Sm1−xCexB6 are mixed valence systems, similar to the parent compound
SmB6 [37,38]. The average Sm valence values of the Sm1−xCexB6 boules are slightly larger than the
values determined previously for pure SmB6 [67–70], due to surface oxidation effects (an increased
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concentration of Sm3+ to the detriment of the Sm2+ ions). Previous XPS results reported an increased
average Sm valence and a B/Sm ratio lower than the nominal stoichiometric value of 6:1 when the
SmB6 crystals were exposed to ambient conditions [67]. To confirm this hypothesis, XPS spectra were
collected on two SmB6 crystal samples, an as-grown and a cleaved crystal fragment. The average
samarium valence is ∼2.8 for the as-grown crystal fragment of SmB6. In the case of SmB6 cleaved
in-situ from the as-grown crystal, the Sm valence is 2.7, corresponding to a Sm3+:Sm2+ ratio of
approximately ∼0.7:∼0.3, which is in agreement with previous results [37,41].

← →← →

Figure 3. (a) Sm 4d XPS spectrum and (b) Ce 3d3/2,5/2 XPS spectra collected for the Sm1−xCexB6

(x = 0.05, 0.10, and 0.20) crystal boules.

The Ce 3d spectrum, shown in Figure 3b, is comprised of two multiplets, at 885.8 eV and
904.8 eV, corresponding to the spin-orbit split 3d5/2 and 3d3/2 core levels. The spin-orbit splitting is
approximately 19 eV, with the complex electronic structure of different Ce oxidation states yielding
useful spectral features which can be used to distinguish Ce3+ and Ce4+. In our data, each component
of the Ce 3d XPS spectrum is dominated by two features. The absence of a third component at 916 eV,
characteristic of the Ce4+ (4 f 0) [71,72], indicates that the Ce ion is in the 3+ state in the Sm1−xCexB6

samples. The analysis of the XPS results, given in Table 2, allowed us to estimate the amount of
Ce-substituent in the Sm1−xCexB6 crystal boules. A comparison of the Ce concentrations determined
from the XPS spectra and those estimated from the EDX compositional analysis is provided in Table 2.

3.3. Magnetisation

Zero-field-cooled warming (ZFCW) and field-cooled cooling (FCC) magnetisation versus
temperature curves were collected on pieces of the Sm1−xCexB6 (x = 0.05, 0.10 and 0.20) single
crystals with an applied field of 500 Oe along three different crystallographic directions ([001],
[110] and [111]). The temperature dependence of the dc magnetic susceptibility, χ (T), is shown
in Figure 4a. The magnetic susceptibility measured along the different crystallographic directions for
all three Sm1−xCexB6 crystals decreased on warming from 1.8 K to room temperature. In addition,
for each Sm1−xCexB6 composition, the magnetic susceptibilities collected with field applied along the
three different high-symmetry directions all overlap to within experimental error across the whole
temperature range.

The temperature dependent magnetic susceptibility of the Sm1−xCexB6 crystals was compared
with data collected on a pure SmB6 crystal grown by the floating zone method [57]. In the temperature
range 300 to 60 K, the magnetic susceptibility of Ce-substituted and pure SmB6 crystals show a similar
behaviour, i.e., a gradual increase of χ (T) with decreasing temperature. Below 60 K, the Sm1−xCexB6

crystals exhibit a more rapid increase in susceptibility, down to 1.8 K. In contrast, the susceptibility
data of pure SmB6 crystals contain a broad maximum centred around 50–60 K, characteristic of a
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Kondo insulator, before a more gradual upturn at lower temperatures. Moreover, in the temperature
range 1.8–60 K, the magnetic susceptibility of Sm1−xCexB6 crystals increases sharply with increasing
Ce content. The change in the magnetic response of both Ce-substituted and pure SmB6 crystals below
60 K coincides with the increase observed in the resistivity (see Figure 5).

χ

χ
χχ

χ 
(1

0−
3  

Figure 4. (a) Temperature dependence of the dc magnetic susceptibility, χ versus T, in the temperature
range 1.8–100 K for the Sm1−xCexB6 (x = 0, 0.05, 0.10 and 0.20) crystals, with a magnetic field applied
along the [001] (black), [110] (red) and [111] (orange) crystallographic directions. The previously
reported susceptibility data for a SmB6 crystal [57] are given for comparison. The inset shows χ versus
T, on a logarithmic scale, in the temperature range 1.8–300 K. (b) Temperature dependence of the
reciprocal of the dc susceptibility, χ−1 versus T, of Sm1−xCexB6 for a field applied along the [001]
direction. The inset shows the normalised magnetic susceptibilities of Sm1−xCexB6 samples, with a
magnetic field applied along the [001] direction. The χ/χ (10 K) versus T data increase rapidly at low
temperatures, but with no signature of long-range magnetic order, for all Ce concentrations.

Figure 5. Temperature dependence of the bulk ac resistivity, ρ versus T, in the temperature range
1.8–300 K for the Sm1−xCexB6 (x = 0, 0.05, 0.10 and 0.20) crystals. The previously reported resistivity
data for a SmB6 crystal [57] are given for comparison.
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Attempts to fit the temperature-dependent reciprocal magnetic susceptibilities, χ−1 (T)
(see Figure 4b), in the temperature range 100–300 K reveal that pure SmB6 and the Sm1−xCexB6

materials all appear to follow a Curie–Weiss law. The effective moment, μeff, per formula unit at 300 K
varies from 2.4(1)μB for x = 0.00 to 2.5(1)μB for x = 0.20. The form of χ (T) for the Sm1−xCexB6

crystals is qualitatively similar than data reported for aluminium flux grown Ce-substituted SmB6

single crystals, although the effective moments in our samples are substantially lower, especially for
lower Ce concentrations [54]. The χ (T) data are consistent with magnetic response expected for a
mixture of 4 f 1 Ce3+ ions

(
2.54μB/Ce3+

)
and divalent and trivalent Sm ions in a variety of magnetic

and nonmagnetic electronic configurations,
(
4 f 6),

(
4 f 5d1), and

(
4 f 5) [68,73,74].

A previous study reported that substituting Sm with another magnetic rare earth ion, such as
Gd3+, in large concentrations (≥40%), leads to antiferromagnetic ordering at low temperature due to
coupling between the Gd sites [18]. This is predicted by the existence of a saturation plateau in the
normalised magnetic susceptibility data of 40% Gd-substituted SmB6. In contrast, the magnetisation
curves for our Sm1−xCexB6 crystals exhibit a rapid increase at low temperatures, but with no evidence
for the onset of long-range magnetic order down to 2 K, as shown in the inset of Figure 4b. For the
Ce3+ concentrations used in our work, the magnetic data suggest that the Ce ions are distributed
randomly in the lattice.

3.4. Resistivity

Alternating current resistivity versus temperature, ρ (T), measurements were made on bar shaped
samples cut from the Sm1−xCexB6 (x = 0.05, 0.10 and 0.20) single crystals. The ac resistivity data
are shown in Figure 5 for temperatures between 1.8 and 300 K. These resistivity data are compared
with data for a pure SmB6 crystal grown by the FZ method and reported in our previous work [57].
At 300 K, the Sm1−xCexB6 samples all have resistivity values similar to SmB6 and ρ (300 K) increases
with x. Below 300 K, SmB6 exhibits a continuous increase in the bulk electrical resistivity. In contrast,
the ρ (T) data for the Ce-substituted samples exhibit a broad maximum centred around 150 K, followed
by an increasingly prominent minimum at ∼50 K. On further cooling below 50 K, the resistivity of
SmB6 increases by four orders of magnitude, whereas the resistivity of the Ce-substituted samples
increases by only a single order of magnitude or less. Nevertheless, the Sm1−xCexB6 samples still have
resistivities larger than pure CeB6, over the entire temperature range studied. The resistivity of CeB6 is
approximately 10−5 Ω-cm from 2 to 300 K [75], whereas for the Sm1−xCexB6 samples it is 10−3 Ω-cm
or higher over the same temperature range, for the x = 0.20 sample.

In contrast to the saturation plateau seen in the resistivity of SmB6 at lowest temperatures,
ρ (T) for the Sm1−xCexB6 samples increases monotonically with decreasing temperature below 10 K.
These results are in agreement with the transport measurements performed on aluminium flux grown
Ce-substituted SmB6 single crystals [54]. There is an evolution from the TKI behaviour of pure SmB6 to
a dense Kondo system with low temperature spin ordering of CeB6 [7,8,75]. The data suggest that it is
bulk conductivity, modified by crystalline electric field and Kondo effects alongside phonon scattering,
that determines the form of the ρ (T) curves for these Sm1−xCexB6 samples over the entire temperature
range studied. A more quantitative description of the transport properties of the Sm1−xCexB6 crystals,
including extensive measurements in a magnetic field, will be presented elsewhere [76].

4. Conclusions

Crystal boules of Sm1−xCexB6 (x = 0.05, 0.10, and 0.20) compounds were grown, for the first time,
by the FZ technique. Investigation of the crystals using X-ray diffraction techniques revealed that the
Ce-substituent is successfully incorporated in the SmB6 structure and that the structural distortions
due to the substitution of Sm with Ce follow a similar trend to the one reported for polycrystalline
samples of Ce-substituted SmB6. EDX and XPS results confirm that the Ce concentration is close to
the nominal stoichiometric values of x = 0.05, 0.10 and 0.20. Analysis of the average Sm valence data
determined by XPS on Sm1−xCexB6 and pure SmB6 samples showed that the results are extremely
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dependent on the quality of the surface studied; i.e., an increase in the Sm valence is observed when the
surface is exposed to ambient conditions. Magnetic property measurements show that our Sm1−xCexB6

crystals exhibit no sign of long-range magnetic ordering, at substitution concentrations below 20%.
Temperature dependent resistivity measurements revealed that a 5% (and above) substitution with Ce
suppresses the crossover from bulk to surface conductivity seen in pure SmB6 as the temperature is
reduced. Detailed low temperature magneto-transport measurements are now being carried out to
investigate the bulk and surface properties of the Sm1−xCexB6 crystals.
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53. Gabáni, S.; Flachbart, K.; Bednarčík, J.; Welter, E.; Filipov, V.; Shitsevalova, N. Investigation of Mixed Valence
State of Sm1−xB6 and Sm1−xLaxB6 by XANES. Acta Phys. Pol. A 2014, 126, 292–306. [CrossRef]

54. Miao, L.; Min, C.H.; Xu, Y.; Huang, Z.; Kotta, E.C.; Basak, R.; Song, M.S.; Kang, B.Y.; Cho, B.K.;
Kißner, K.; et al. Robust surface states and coherence phenomena in magnetically alloyed SmB6.
arXiv 2020, arXiv:1907.07074v2.

55. Otani, S.; Nakagawa, H.; Nishi, Y.; Kieda, N. Floating zone growth and high temperature hardness of
rare-earth hexaboride crystals: LaB6, CeB6, PrB6, NdB6, and SmB6. J. Solid State Chem. 2000, 154, 238–241.
[CrossRef]

56. Balakrishnan, G.; Lees, M.R.; Paul, D.M. Growth of large single crystals of rare earth hexaborides.
J. Cryst. Growth 2003, 256, 206–209. [CrossRef]

57. Ciomaga Hatnean, M.; Lees, M.R.; Paul, D.M.; Balakrishnan, G. Large, high quality single-crystals of the
new Topological Kondo Insulator, SmB6. Sci. Rep. 2013, 3, 3071. [CrossRef]

42



Crystals 2020, 10, 827

58. Thomas, S.M.; Ding, X.; Ronning, F.; Zapf, V.; Thompson, J.D.; Fisk, Z.; Xia, J.; Rosa, P.F.S. Quantum
oscillations in flux-grown SmB6 with embedded aluminum. Phys. Rev. Lett. 2019, 122, 166401. [CrossRef]

59. Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction.
Physica B 1993, 192, 55–69. [CrossRef]

60. Newnham, R.E.; Redman, M.J.; Santoro, R.P. Crystal Structure of yttrium and other rare-earth borates.
J. Am. Ceram. Soc. 1963, 46, 253–256. [CrossRef]

61. Vegard, L. Die konstitution der mischkristalle und die raumfüllung der atome. Z. Phys. 1921, 5, 17–26.
[CrossRef]

62. Tarascon, J.; Isikawa, Y.; Chevalier, B.; Etoumeau, J.; Hagenmuller, P.; Kasaya, M. Valence transition
of samarium in hexaboride solid solutions Sm1−x MxB6 (M = Yb2+, Sr2+, La3+, Y3+, Th4+). J. Phys.
1980, 41, 1135–1140. [CrossRef]

63. Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and
chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [CrossRef]

64. Jia, Y.Q. Crystal radii and effective ionic radii of the rare earth ions. J. Solid State Chem. 1991, 95, 184–187.
[CrossRef]

65. Konovalova, E.S.; Paderno, Y.B.; Lundstrem, T.; Finkel’shtein, L.D.; Efremova, N.N.; Dudnik, E.M. Effect of
vacancies and foreign metal ions on the valent state of samarium in SmB6. Sov. Powder Metall. Met. Ceram.
1982, 21, 820–823. [CrossRef]

66. Chazalviel, J.N.; Campagna, M.; Wertheim, G.K.; Schmidt, P.H. Study of valence mixing in SmB6 by x-ray
photoelectron spectroscopy. Phys. Rev. B 1976, 14, 4586–4592. [CrossRef]

67. Heming, N.; Treske, U.; Knupfer, M.; Büchner, B.; Inosov, D.S.; Shitsevalova, N.Y.; Filipov, V.B.; Krause, S.;
Koitzsch, A. Surface properties of SmB6 from x-ray photoelectron spectroscopy. Phys. Rev. B 2014, 90, 195128.
[CrossRef]

68. Mizumaki, M.; Tsutsui, S.; Iga, F. Temperature dependence of Sm valence in SmB6 studied by X-ray
absorption spectroscopy. J. Phys. Conf. Ser. 2009, 176, 012034. [CrossRef]

69. Emi, N.; Mito, T.; Kawamura, N.; Mizumaki, M.; Ishimatsu, N.; Pristáš, G.; Kagayama, T.; Shimizu, K.;
Osanai, Y.; Iga, F. Temperature and pressure dependences of Sm valence in intermediate valence compound
SmB6. Phys. B Condens. Matter 2018, 536, 197–199. [CrossRef]

70. Savchenkov, P.S.; Alekseev, P.A.; Podlesnyak, A.; Kolesnikov, A.I.; Nemkovski, K.S. Intermediate-valence
state of the Sm and Eu in SmB6 and EuCu2Si2: Neutron spectroscopy data and analysis.
J. Phys. Condens. Matter 2018, 30, 055801. [CrossRef]

71. Paparazzo, E. On the curve-fitting of XPS Ce(3d) spectra of cerium oxides. Mater. Res. Bull. 2011, 46, 323–326.
[CrossRef]

72. Revoy, M.N.; Scott, R.W.J.; Grosvenor, A.P. Ceria nanocubes: Dependence of the electronic structure on
synthetic and experimental conditions. J. Phys. Chem. C 2013, 117, 10095–10105. [CrossRef]

73. Gabáni, S.; Flachbart, K.; Pavlík, V.; Herrmannsdorfer, T.; Konovalova, E.; Paderno, Y.; Briančin, J.; Trpčevská,
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Abstract: We present a theoretical study of the band structure and optical conductivity for the chiral
multifold semimetal PdGa. We identify several characteristic features in the optical conductivity and
provide their origins within the band structure. As experimental optical studies for the mentioned
compound have not been reported, we contrast our results with the related compounds, RhSi and
CoSi. We believe that the presented hallmarks will provide guidance to future experimental works.

Keywords: topology; chirality; multifold semimetal; optics; DFT

1. Introduction

First hints of topological characters of materials were found in crystals, where avoided
band crossings caused a separation of band energies accompanied by a mixture of band
characters. Brought into contact with a different material, that hosts a regular order of bands,
without band mixing, this enforces surface states at the interface, which would host linear,
intersecting bands with opposite spin characters. Later, it was found that this can be extended
to be a bulk property, when the Weyl semimetal was born [1], hosting a three-dimensional
bulk realization of linear, spin non-degenerate bands. Their equivalency to the surface
states of topological insulators is immediatelly obvious, but can further be quantized by
the Chern number χ, for which the Weyl semimetal is the lowest integer realization with
χ = ±1 [2–4]. Weyl semimetals were promising for applications in spintronics [5–7], in opto-
electronics [8–11], or even in chemistry [12–16]. Of essence, here, was either the breaking
of the time-reversal symmetry, or the inversion symmetry in combination with sufficiently
strong spin-orbit coupling (SOC). The first confirmed Weyl-semimetal is TaAs [17–19], which
lacks inversion symmetry.

This can be extended to crystals, which host, besides broken inversion symmetry, also a
lack of mirror symmetries. Among the 230 space groups, the 65 Sohncke groups fall under
this condition and can provide a chiral crystal structure. Note that the 65 Sohnke groups are
not necessarily chiral space groups, but can provide chiral crystal structures. In total, there
are only 22 chiral space groups (11 enantiomorphic pairs). These 22 chiral space groups are
contained within the 65 Sohnke groups. The group of PdGa, P213 is not a chiral space group,
but a Sohnke group [20,21].

It has recently been suggested, that in chiral crystals a new type of fermionic state
can be realized, extending the pool of topological quasiparticles by the so called multifold
fermion [22]. They differ from the Weyl fermion in that they are hosted by conical band
intersection with Chern numbers |χ| > 1. To this end, chiral crystal structures belonging to
the RhSi family, space group P213, number 198, have garnered attention as angle resolved
photoemission spectroscopy (ARPES) measurements provided strong indications that
these materials host surface states, which are maximally extended in k-space [23–28]. The
lack of inversion and mirror symmetries, in combination with SOC, leads to the splitting
of bands around the high symmetry points Γ and R, giving rise to a non-collinear spin
arrangement with Chern numbers χ = ±4 [29] with maximally extended surface states,
ranging from the center to the edge of the Brillouin zone [25,27,30]. In such semimetals, the
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quantized circular photogalvanic effect has been predicted, which, by effect of topological
states, constitutes a photocurrent, quantized in units of material-independent fundamental
constants [31–34].

In this paper, we theoretically investigated the material PdGa, which belongs to the
same family. So far, PdGa has not been as extensively investigated as its silicon-based
counterparts. In contrast to CoSi and RhSi, the Fermi surface of PdGa is considerably larger
and is expected to host a larger number of free carriers, perhaps making the experimental
observation of the low energy dynamics challenging, as in the case of RhSi [35]. Hence, the
theoretical approach would be beneficiary for comparison and provide some guide for the
interpretation of the high energy part of the measured spectra.

Furthermore, the optical conductivity provides a useful tool to identify fingerprints
of Dirac fermions [36–40], which should express themselves as linear signatures σ(ω)1 ∝
ω [41,42]. In the silicides, they are thought to occur as low energy excitations near the
Γ-point, as the Fermi level almost coincides with the multifold chiral intersection. Even
though the Fermi level in PdGa is much higher, we nonetheless find a nearly linear ridge
in the optical spectrum and identify its origin, as discussed in the results.
The combination with external stimuli, such as magnetic fields [43–45] or external pres-
sure [46,47], which provide clean, non-invasive tuning mechanisms, makes the optical
conductivity especially desirable in the search for topological materials.

We provide theoretical estimates for intra- and interband optical conductivities, which
we contrast to and interpret along with the published experimental results of PdGa’s sister
compounds CoSi [48] and RhSi [35], as no experimental data for PdGa are available.

2. Results and Discussion

We performed DFT calculations using Wien2k’s full-potential linearized augmented
plane wave (LAPW) methods with the Perdew–Burke–Ernzerhof (PBE) exchange correlation,
accounting for the semimetallic nature of the chiral multifold compound PdGa [49,50]. The
lattice parameters were adopted from Ref. [29]. Figure 1 shows the chiral atomic structure and
the Fermi surface of PdGa. The Fermi surface is comparatively large, with reference to RhSi
and CoSi, indicating a much stronger intraband response. In Figure 1d the Fermi surfaces
of the separate contributing bands are shown, sorted by energy from left to right. Within
the cube-like structure, a set of eight droplet-shaped Fermi surfaces are hidden, positioned
within the corners of the cube.

The band structures of PdGa were calculated on an 18 × 18 × 18 k-mesh with and with-
out SOC, as shown in Figure 2a–c. The calculations were converged within 14 cycles down to
the charge 10−5 e, with e being the electron charge. Core leakage was well within acceptable
levels: the core charges for Pd and Ga integrated to 29.998 e and 17.999 e, respectively. These
core electrons arise from choosing a generous energy interval of −9.0 Ry for outer electrons.
We chose the parameter RKMax = 7.0 and excluded relativistic linear orbitals (RLOs). Due
to SOC in combination with the lack of inversion symmetry, bands with opposite spin split
throughout the Brillouin zone (BZ) under the action of the Dresselhaus effect. Exempt from
the splitting is the Γ-point, at the BZ center, and points or paths on the BZ boundaries. The
Γ-point hosts a four-fold degenerate spin 3/2 fermion, also known as the Rarita–Schwinger
fermion [51], and the R-point two three-fold degenerate spin 1 fermions, each with the
maximum possible Chern number of |χ| = 4 [29,30]. A detailed view of bandstructures
around the Γ-point is given in Figure 2b,c without and with SOC, respectively.

The calculations summarized in Figures 3 and 4 were performed on a denser 32 × 32 × 32
k-mesh with SOC, using the optic module [52]. Figure 3 shows the density of states (DOS)
of PdGa, as well as the atomic densities of Pd and Ga separately. It can be clearly seen
that the majority of carriers at the Fermi surface, as well as electrons involved in optical
transitions far beyond the visible spectrum, are entirely contributed by Pd. Significant
contributions to the DOS from Ga arise at energies only as low as −15 eV, and beyond.
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Figure 1. (a) The crystal structure of PdGa. The Pd and Ga atoms are arranged chirally along the
c-axis, with a distinct handedness, giving rise to chiral properties in the band structure and optical
interactions. (b) Fermi surface of PdGa. (c) Brillouin zone of PdGa representing the high symmetry
points used in the band structure plots. (d) Contributions of the different bands to the Fermi surface,
sorted from lowest to highest energy going from left to right.
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Figure 2. Band structure of PdGa (a) with spin-orbit coupling (SOC). Bands that cross the Fermi surface are labeled in pairs
A± to D±, with respect to their energy. The Fermi energy is positioned at EF = 0 eV. The label ± refer to spin pairs, which
split away from high symmetry points. This splitting, due to lack of inversion and mirror symmetries, gives rise to a 4-fold
intersection at Γ and 6-fold intersection at R, both with Chern numbers of magnitude |χ| = 4. (b) Magnified view of the
band structure around the Γ-point without SOC. (c) Magnified view around Γ with SOC.
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Figure 3. Density of states of PdGa and the atoms Pd and Ga separately. The Gd contribution is
negligible, and has been magnified by a factor of 10. Most bands around the Fermi energy are thus
contributed by the Pd atoms, underlining the relevance of chirality among carriers and optical transition.
The Fermi level is positioned at EF = 0 eV as indicated by the blue dotted line.
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Figure 4. (a) The calculated real part of the interband optical conductivity σ1(ω) with weight analysis.
The features were sorted according to the labelling in Figure 2a. (b) Intra-, interband, and total optical
conductivity σ1(ω) of PdGa for parameters Γ = 2.5 meV and ωp = 4.43 eV.

The interband contribution to the optical conductivity of PdGa, without scattering, is
shown in Figure 4a. It can be obtained from the imaginary part of the relative permittivity
ε2, which is the standard output of Wien2k, via the convention (CGS units)

σ1 =
ωε2

4π
. (1)

Several distinct features can be seen. Two features of special interest have been marked
1 , at around 150–300 meV, and 2 , which shows a distinct peak at around 600 meV. The
former originates from bands near the Γ-point, see again Figure 2c, corresponding to
transitions from the Fermi surface droplets in Figure 1d to the corners of the cube-shaped
Fermi surface. The latter is of particular interest as it seems to reproduce a known feature
in CoSi around 560 meV [48] very well and is also in the energy range of a broader feature,
likely of similar origin, in RhSi, around 750 meV [35], both measured at T = 10 K. The sharp
peak at 600 meV can be attributed to transitions between the parallel bands dispersing from
Γ to R and similar transitions between M and R. Since for CoSi and RhSi the corresponding
bands between Γ and R are not as parallel, we predict that the optical transition for PdGa
will be distinctly sharper. Note that the interband conductivities were not broadened in
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our calculations. In the case of RhSi, the mentioned feature merges with a rising edge
the in optical conductivity around 1 eV [35], which may indicate what could be identified
with the lower edge of feature 3 in our calculations, which arises from a combination of
transitions A → C, D and B → D.

As mentioned earlier, another interesting aspect of the the calculated σ1(ω), is the
nearly linear ridge extending over a rather large energy range, from roughly 0.9 eV to
1.5 eV. Linear features in the optical conductivity are readily identified as signatures of
Dirac fermions [36–40]. We can assign it to the transition B → C. In an experimental
setting, this feature may mistakenly be interpreted as transitions between bands extending
from the lower lying multifold point, intersecting Γ at around −1.0 eV, to bands above,
which we can safely exclude. Note further that the contributing bands contain accidental
near-degeneracies, akin to gapped Dirac points, between Γ − X and Γ − R. Away from the
high-symmetry lines, these features may develop into real conical intersections, implying
that the discussed transition may very well contain character of Dirac fermions. This
warrants closer inspection in future works and may motivate experimental investigations.

In Figure 4b the intra- and interband contributions are plotted alongside the total opti-
cal conductivity, σ1(ω). For the intraband contribution we make the reasonable assumption
for the dc conductivity, σ0 = 1 · 106 Ω−1cm−1 supported by on-site dc measurements, and
use the theoretically obtained value for the plasma frequency, ωp = 4.43 eV (note that
this is the unscreened plasma frequency). Both values are significantly larger than the
experimentally obtained parameters for CoSi and RhSi [35,48], which is consistent with
the much larger Fermi surface of PdGa. These values, under assumption of a single Drude
contribution for the intraband transitions, yield a scattering rate of Γ = 2.5 meV, which is
expressed by a very sharp Drude peak, seen in Figure 4b. All discussed interband features
remain clearly visible after inclusion of the intraband contribution. Whether such a sharp
Drude peak is experimentally reproducible remains to be seen. Accounting for interband
broadening, the feature 2 might be brought to closer coincidence with the CoSi peak, as
well as the much broader RhSi feature. Note that the low energy feature 1 is inherent
only to PdGa. This is, again, due to fact that bands, originating from the Γ-point in PdGa,
disperse in parallel towards R, while in CoSi and RhSi these bands take the form of a
double flat band overlaid with a Dirac cone, contributing an energetically much broader
joint DOS, smearing out the transition.

3. Conclusions

In summary, we performed DFT calculations on one of the chiral multifold semimetals,
PdGa, and estimated the optical conductivity in a broad frequency range, providing a de-
tailed picture the band structure and a guide for interpretation of future optical experiments
on this currently popular compound. A plethora of tuning mechanisms, such as applica-
tion of pressure, magnetic fields, gating or doping may be applied to effectively alter the
band structure, which our work should provide a helpful reference to. Optical transitions
were assigned to the specific bands based on the band structure of the compound. Several
common features were found in the related compounds, CoSi and RhSi, based on the exper-
imental reports: A sharp, prominent mid-infrared absorption, which originates from the
parallel bands between the Γ and R-points and the successive linear-in-frequency increase.
In addition, PdGa seems to possess a low lying optical transition at around 150–300 meV
that is predicted to be absent in the sister compounds. Indeed, it has not been reported for
either CoSi or for RhSi in previous experimental studies [35,48].

Furthermore, a linear-in-frequency section of the optical conductivity, often taken
as a hint towards the presence of Dirac or Weyl fermions, around 0.9 eV to 1.5 eV has
been identified, excluding the origin as transitions between the multifold chiral points
intersecting Γ at around 0.5 eV and 1.0 eV. Nearly degenerate bands between Γ − X
and Γ − M may hint at accidental Dirac-like degeneracies near the high-symmetry lines,
warranting further investigation.
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Abstract: Recently, it was shown that materials with certain crystal structures can exhibit mul-
tifold band crossings with large topological charges. CoSi is one such material that belongs to
non-centrosymmetric space group P213 (#198) and posseses multifold band crossing points with a
topological charge of 4. The change of crystal symmetry, e.g., by means of external stress, can lift
the degeneracy and change its topological properties. In the present work, the influence of uniaxial
deformation on the band structure and topological properties of CoSi is investigated on the base of
ab initio calculations. The k · p Hamiltonian taking into account deformation is constructed on the
base of symmetry consideration near the Γ and R points both with and without spin-orbit coupling.
The transformation of multifold band crossings into nodes of other types with different topological
charges, their shift both in energy and in reciprocal space and the tilt of dispersion around nodes are
studied in detail depending on the direction of uniaxial deformation.

Keywords: topological semimetal; cobalt monosilicide; mechanical deformation

1. Introduction

Cobalt monosilicide crystallizes in the cubic noncentrosymmetric space group #198
(P213). The unit cell and the Brillouin zone of CoSi are shown in Figure 1a,b. The band
structure, magnetic, optical, transport and, in particular, thermoelectric properties of
CoSi have been extensively studied [1–15]. Initially, the interpretation of experimental
results was based on a simple semimetallic band structure model with small energy
overlap of parabolic valence and conduction bands [1,2]. With the development of first-
principle density functional theory (DFT) methods, a more realistic CoSi band structure
has emerged [3–8]. Band structures calculated with and without the account of spin-orbit
coupling (SOC) are plotted in Figure 1c,d, respectively. Earlier calculations [3,4] without the
account of SOC revealed the presence of multiple band crossings at the Γ and R points of the
Brillouin zone, but they did not consider the topology of the band structure. The symmetry
analysis allowed to predict the existence of chiral fermions and multifold band crossings
with high topological charges in crystals belonging to several space groups (including space
group #198) in the presence of time-reversal symmetry [16,17]. In CoSi, multifold linear
band crossing and spin texture was initially investigated around the Γ point, based on first-
principle fully-relativistic calculations [5]. Later, detailed studies of band structure topology
were made for CoSi [6,8] and for isostructural RhSi [7]. Effective k · p Hamiltonians around
the time-reversal invariant momentum (TRIM) points were written down in Ref. [17] for R
point and in Ref. [8] for Γ point. It was shown [6,8] that the topological charges at the Γ
and R points are equal to ±4 and there are four surface Fermi arcs, connecting projections
of these points on the surface Brillouin zone. Because spin-orbit coupling in CoSi is not
strong, the Chern numbers were also calculated without SOC [6,18]. It was shown that
multifold nodes have large topological charges of ±2 even without SOC (see Figure 1d
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for illustration). The existence of multifold fermions and surface Fermi arcs in CoSi was
recently confirmed by angle resolved photoemission spectroscopy (ARPES) [18–20].

(a) (b)

(c)

(d)

Figure 1. The unit cell (a), the Brillouin zone (b) and the band structure of CoSi, calculated with
(c) and without (d) the account of spin-orbit coupling. Insets in (c,d) show band structure around
multi-fold band crossings at the Γ and R points (numbers are topological charges).

The theoretical study of the band structure beyond DFT, taking into account dynamic
on-site correlations of d-electrons, revealed that, in contrast to FeSi, the electronic states
in CoSi are only moderately influenced by electronic correlations [21]. Band broadening
in CoSi is small in the range of ±0.3 eV near the Fermi level and decreases with the
temperature. Thus, DFT description of CoSi band structure should give quite accurate
results, that is confirmed by ARPES experiments [18–20] and by the better agreement
of calculated lattice constants and elastic modules with experimental results for CoSi,
compared to other monosilicides of the elements of the 4th period [22].

New information on the band structure of CoSi prompted to study the manifestation
of its non-trivial topology and provided a base for correct interpretation of experimental
results on conventional transport properties of the compound. For example, the account
of real band structure and energy dependent relaxation time allowed to adequately ex-
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plain the concentration dependencies of thermoelectric and galvanomagnetic properties
of Co1−xFexSi and Co1−xNixSi alloys [10–12]. Recently, the effects of nonstoichiometry
of CoSi-based materials on thermoelectric [9] and magnetic [14] properties were studied.
In particular, in samples with the excess of Co, magnetically ordered states with helical
and skyrmionic spin structures were observed near room temperature [14]. Quantum os-
cillations of thermopower with a beating pattern were observed in high-quality CoSi
crystals [13]. They were successfully interpreted by the coexistence of two close Fermi
surfaces in agreement with DFT results for the band structure. The influence of chiral
fermions and charge density waves on magnetic field dependent electrical transport was
studied in [23]. The experimental and theoretical investigation of optical conductivity of
CoSi revealed various exotic multifold quasiparticles [15]. Moreover, low-frequency part
of optical conductivity spectrum confirmed the existence of previously experimentally
unobserved four-fold spin-3/2 node at the Γ point [15].

As the features of the band structure topology are due to particular crystal symmetry
of CoSi, it is interesting to investigate the evolution of these properties when the symmetry
changes. Such changes can appear due to mechanical stress, for example, in thin film
devices or experimental setups, and can be important for device operation or interpretation
of experimental data. In addition to the change of symmetry, mechanical deformation,
in principle, can lead to the opening of a gap in the energy spectrum and the disappearance
of the topological nodes. The possibility of using CMOS-compatible CoSi thin films for
thermoelectric and sensor applications were considered recently in Ref. [24]. The stability
of CoSi under hydrostatic pressure was theoretically investigated in Ref. [25], where it
was predicted that the transition to CsCl structure (Pm3̄m) take place at hight pressure of
270 GPa. In the present work, we theoreticaly investigate another possibility—the change
of band structure under uniaxial strain. In contrast to isotropic strain, uniaxial deformation
changes the crystal symmetry even at low pressure. We considered deformation in [100],
[110] and [111] directions. Based on symmetry analysis, the k · p Hamiltonian, taking into
account deformation, was constructed for both the Γ and R points. Combining ab initio
calculations, analytical model and symmetry considerations, the band splitting at the Γ
and R points, the types of nodes arising from multifold band crossings and their energy
and k-space positions were carefully studied both with and without SOC.

2. Method of Calculation

DFT calculations were performed in an integrated suite of Open-Source computer codes
for electronic-structure calculations—Quantum ESPRESSO (QE) [26], using fully relativistic
optimized normconserving Vanderbilt pseudopotentials (ONCV) [27]. The plane wave cut-off
energy was 80 eV. The calculations were performed on 8 × 8 × 8 Monkhorst–Pack(MP) grid
with the optimized lattice parameter a0 = 4.438 Å. Four atomic positions of each of atomic
species in the unit cell of undeformed CoSi are (xA, xA, xA), (−xA + 1/2,−xA, xA + 1/2),
(−xA, xA + 1/2,−xA + 1/2), and (xA + 1/2,−xA + 1/2,−xA). Their optimization gives
xCo = 0.144, xSi = 0.843.

Under uniaxial deformation, we set the unit cell parameters based on corresponding
strain tensor and performed the relaxation of atomic positions, that allowed to determine
the space group of deformed crystal.

For detailed study of the band structure, we performed Wannier interpolation using
Wannier90 [28]. The position of nodes, topological charges and Fermi arcs were calculated
using WannierTools [29] software package.

In order to analyze low-energy excitations around the nodes at Γ and R points, we con-
structed k ·p Hamiltonian Ĥ in the presence of deformation from symmetry considerations.
This allowed to independently verify the position of nodes and topological charges. As the
effects of strain was assumed to be small, we considered only zeroth order in k terms
in Hamiltonian proportional to strain tensor [30,31]: Dijεij, where εij are strain tensor
components and Dij are deformation potential parameters. The independent terms can
be identified, applying symmetry operations of the considered space group (P213, #198),
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as it was made for the construction of Hamiltonian without stain [8,16,17]. We took into
account that εij is transformed under symmetry operations as a product of wave vector
components kikj, and used irreducible representations of space (double space) groups
from Bilbao Crystallographic Server [32] for the case without (with) spin-orbit coupling.
Since the spin-orbit coupling is also small in CoSi, we did not consider terms in Ĥ that
depend on both strain and spin-orbit interaction. As will be seen from what follows,
this approximation is sufficient.

The form of obtained Hamiltonians and their parameters are given in Appendix A.
In the equations we used eV as units of energy. The wave vector components ki, i = 1, 2, 3
(in crystal coordinates) are measured in fractions of the reciprocal lattice vectors. The wave
vector components ki, i = x, y, z (in Cartesian coordinates) are measured in the units of
2π/a0 = 1.416 Å−1. If not stated otherwise, the latter units were used in band structure plots.

The deformation potential parameters were obtained using shifts of energy levels from
ab initio calculations of undeformed and deformed crystal. The deformation potential param-
eters at the diagonal elements of strain tensor εii in k · p Hamiltonian determine the absolute
shift of energy levels upon deformation. For CoSi, as metallic material, the absolute shift of
energy level εn due to deformation can be calculated as Δεn = (ε

(d)
n − ε

(d)
F )− (ε

(u)
n − ε

(u)
F ),

where ε
(d(u))
n are energy levels in deformed (undeformed) crystal, and ε

(u(d))
F are correspond-

ing Fermi levels (see Appendix B for details).

3. Results without SOC

The band structure of CoSi without SOC features a triply-degenerate energy level
at the Γ point close to the Fermi level. It is plotted in the inset of the Figure 1d and in
the Figure 2 with dotted lines. The wave functions are transformed according to the
three-dimensional single-valued representation Γ4 of the little group of the Γ point of P213
(#198). The low-energy excitations around this point can be considered as effective spin-1
quasiparticles [33]. The topological charges of lower and upper linear branches are −2 and
2 respectively, while nearly flat band has zero charge.

Figure 2. The splitting of energy levels around the Γ point under uniaxial strain along [100] direction.
Dotted lines represent the spectrum of undeformed crystal, solid (dashed) lines represent the spec-
trum in the case of compressive (tensile) strain. The absolute value of strain is |e| = 0.01. The wave
vectors are measured in 2π/a0 units.

Let us consider the simplest deformation of a crystal along the crystallographic direc-
tion [100]. When stretched along this direction, the spatial symmetry of group P213 (#198)
is lowered to P212121 (#19), and essential remaining symmetry elements are: {C2x| 1

2 0 1
2},

{C2y| 1
2

1
2 0}, {C2z|0 1

2
1
2}. At the Γ point, this group has only one-dimensional irreducible

representations and, using character theory, we can expect that the three-dimensional repre-
sentation Γ4 of the space group P213 (#198) splits into three one-dimensional representations
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of P212121 (#19) as: Γ4 → Γ2 + Γ3 + Γ4. As Γ2(3,4) are real single-valued representations,
they are not combined due to time-reversal symmetry (TRS) [32].

Thus, without taking into account the spin-orbit interaction, the triply-degenerate
level at the Γ point is split into three with different energies. The low-energy band structure
around the Γ point in CoSi under 1% uniaxial deformation in [100] direction is shown in
the Figure 2 with solid lines for compressive strain and with dashed lines for tensile strain.

As the time-reversal symmetry is preserved in the considered cases, the whole energy
spectrum around the TRIM point is symmetric with respect to the change of the sign of
the wave vector k → −k. In addition, our k · p Hamiltonian is linear both in k and in
components of deformation tensor ε̂. Hence, the low-energy band structure for stretched
crystal can be obtained from the band structure of compressed crystal by changing the sign
of energy ε(k,−ε̂) = −ε(k, ε̂), that can be seen by comparing solid and dashed curves in
the Figure 2. It should be noted that this conclusion applies to all considered cased with
the exception of eight-band Hamiltonian around the R point including SOC, as the latter
contains terms independent of both wave vector and deformation tensor.

In compressed crystal there are nodes shifted in kz and ky directions upwards and
downwards in energy relative to unstrained case, as shown in Figure 2. The topological
charges of both nodes are equal to ±1. In stretched crystal, the sign of the energy changes,
and the nodes swap. In both cases, we have two doubly degenerate (spinless) nodes at
the same energy at the positions ±knz with the total topological charge of ±2 and similar
nodes at positions ±kny. In the case, when only ε11 = e is not zero, the node positions
for small deformation can be obtained from eigenvalues of k · p Hamiltonian, and are
equal to knz =

√
(D1 − D2)(D3 − D2)e/v and kny =

√
(D3 − D1)(D3 − D2)e/v. In these

expressions v is the Fermi velocity at the Γ point in unstrained crystal and Di are the
deformation potential parameters, defined in Appendix A after Equations (A1) and (A2).

It can be seen also, that the dispersion around doubly degenerate nodal points is
tilted. As was shown in the Ref. [34], the general form of the Hamiltonian for Weyl point
is the following: H(k) = ∑i,j ki Aijσj, where Aij is a 3 × 4 matrix of coefficients and σj are
the 2 × 2 unit matrix and the three Pauli matrices for j = 0 and j = 1, 2, 3 respectively.
The spectrum can be written as ε±(k) = T(k) ± U(k), where T(k) = ∑3

i=1 ki Ai0 and

U(k) =

√
∑3

j=1

(
∑3

i=1 ki Aij

)2
. The nodal point is of the type II if there is a direction,

in which T(k) > U(k). In the present case, it can be shown that in linear approximation
T(k) = U(k) in k010 or k001 directions independently of the magnitude of strain e. Thus,
under strain the nodal points are at the border of transition from type I to type II nodal
points. However, it should be emphasized that, in contrast to ordinary type-II Weyl
fermions, fermion states discussed here are spin degenerate.

The shift of nodes in reciprocal space implies the modification of the shape of surface
Fermi arcs, that should emanate from the projections of the nodal points on the (100) surface
Brillouin zone. In CoSi, it appeared that due to large extension of the Fermi arcs between
the projections of the Γ and R point, their general shape changes quite moderately (at the
scale of the full Brillouin zone) compared to undeformed case, presented in Refs. [6,8].
Therefore here we illustrate their variation around the Γ point only for several selected
cases. The Figure 3 shows the Fermi arcs in the (100) surface Brillouin zone for the case
of compressive deformation in the [100] direction for e = −0.01. For better visualisation,
Fermi level was shifted to the energy of nodal points. The position of nodes, obtained by
k · p calculations, are plotted in the figure by black asterisks. It can be seen, that two nodes
are shifted along kz direction, and their positions correlate with the sources of two surface
Fermi arcs.

When deforming in [110] direction, off-diagonal elements of the strain tensor begin to
play a role. The spatial symmetry of deformed cobalt monosilicide is described by the space
group P21 (#4) with the only symmetry element {C2z|00 1

2} (except lattice translations).
Therefore, without taking into account the spin-orbit interaction, the three-dimensional
representation Γ4 of the group P213(#198) splits into three one-dimensional representations
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of P21(#4) as: Γ4 → Γ1 + 2Γ2. In this way, the degeneracy at the Γ point is completely
lifted, as in the case of the deformation along the main unit cell directions. In the most
simple case, compatible with considered symmetry, where the only non-zero components
of stain tensor are ε12 = ε21 = e/2, two effective spin-1/2 nodes symmetrically diverge
from Γ point along [110] ([11̄0]) crystallographic direction and shift to lower energies in
the case of compressive (tensile) strain e < 0 (e > 0). Similar nodes appear at higher
energies but they are shifted along [11̄0] ([110]) directions for e < 0 (e > 0). In more general
case, when ε11 = ε22 = ε12 = e/2, that corresponds to the absence of deformation in
directions normal to [110], the nodes split along the line, that is rotated by a small angle
(about φ = 5◦ at e = 0.01) from [110] ([11̄0]) axis. Let’s denote these directions by kφ

110 (kφ

11̄0).
The low-energy band structure for these directions and topological charges are given in
the Figure 4. The situation is somewhat similar to [100] case (see, Figure 2), but the shift of
nodes in both energy and k-space are larger. In this case we obtain again effective spin-1/2
nodes with the tilt intermediate between tilts of the type-I and type-II nodes. The total
topological charge of each pair of the nodes is ±2.

Figure 3. The details of surface Fermi arcs around the Γ point under uniaxial strain along [100]
direction (e = −0.01) without the account of spin-orbit coupling (SOC). Asterisks depict the positions
of nodal points.

Figure 4. The splitting of energy levels around the Γ point under uniaxial stain along [110] direc-
tion. Dotted lines represent the spectrum of undeformed crystal, solid (dashed) lines represent the
spectrum in the case of compressive (tensile) strain. The absolute value of strain is |e| = 0.01.

The deformation along the [111] crystallographic direction needs special consideration
for CoSi. When deformed in [111] direction, the symmetry of cobalt monosilicide is reduced
to R3(#146) space group with the single 3-fold rotation axis. Character theory suggests that
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without SOC, the three-dimensional representation Γ4 of P213(#198) space group splits
into three one-dimensional representations of R3(#146) as: Γ4 → Γ1 + (Γ2 + Γ3). Since the
representations Γ2 and Γ3 are mutually conjugate, they should be combined due to time
reversal symmetry. The triply degenerate level is split into two (nondegenerate and doubly
degenerate) levels, in contrast to other types of deformation in which the degeneracy is
completely lifted at the Γ point. In this case, strain tensor was taken in the form εij = e/3 for
all i, j. In deformed crystal, one unusual node is located at the Γ point and two other nodes
are displaced along the [111] direction at the positions ±kn,111 with kn,111 = D4e/v(1 + e)
(see the Figure 5). In this case we obtained one node with topological charge ±2 at the Γ
point and two nodes with charges ±1 at ±kn,111 points. The spectrum for compressive and
tensile strains are again can be obtained by the energy sign change. Thus the number of
nodes between the two upper bands depends on the sign of deformation e. Another way to
see this result is to plot Fermi arcs in the (001) surface Brillouin zone for compressive and
tensile strain (see Figure 6). Consider a compressed crystal. Below the Fermi level, there are
two nodes shifted in [111] direction. Their projections on (001) plane are sources of two
Fermi arcs (left panel). The starting points of the arcs are shifted towards the projections of
the nodes (black asterisks) but do not coincide with them exactly, since the Fermi level is
located above these nodes. In the case of expansion, the node with topological charge of 2
is below the Fermi level, and both Fermi arcs start from the Γ point (right panel).

Figure 5. The splitting of energy levels around the Γ point under uniaxial stain along [111] direc-
tion. Dotted lines represent the spectrum of undeformed crystal, solid (dashed) lines represent the
spectrum in the case of compressive (tensile) strain. The absolute value of strain is |e| = 0.01.

Figure 6. The details of surface Fermi arcs around the Γ point under uniaxial compression (left panel)
and extension (right panel) along [111] direction (|e| = 0.01) without the account of SOC. Aster-
isks depict the position of nodal points.

The fermions around the node with topological charge of 2 at the Γ point are similar
to that of quadratic double-Weyl fermions in SrSi2, described in Ref. [35], but they arise for
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another reason. In SrSi2 without SOC, on the four-fold rotation axes of the crystal, there are
two-fold band crossings with linear dispersion. The bands are spin degenerate. The account
of spin-orbit coupling adds terms independent of wave vector to the Hamiltonian that
leads to a partial lifting of the degeneracy and to a change of linear dispersion to quadratic
in certain directions. In CoSi, the k-independent terms in Ĥ appear due to strain even
without SOC. Counting energy relative to the charge-2 node in the Figure 5, the dispersion
in [111] direction remains linear: Δε = ±k111v(1 + e). While, in perpendicular direction,

it becomes quadratic, Δε = D4e/2 − sign(e)
√
(D4e/2)2 + (k⊥,111v)2 or flat. Thus, in CoSi

under [111] deformation, there is a strain induced transition from spin-1 quasiparticles to
quadratic effective-spin-1/2 fermions.

Let us now consider low-energy band structure around the R point without spin-orbit
coupling. In this case in unstrained CoSi, the energy level at the R point is four-fold
degenerate not considering spin (see Figure 1d). Low energy excitations around the R
point are double spin-1/2 fermions [33] with the Chern number −2 [6]. The wave functions
are transformed according to the direct sum of single-valued mutually conjugated complex
two-dimensional representations R1 and R3, combined due to TRS. The switching to
P212121 (#19) space group under [100] uniaxial deformation does not lead to the energy
level splitting, because the representation R1 + R3 is transformed into the direct sum of the
pseudoreal representations R1 + R1 of P212121. Thus the node at the R point remains intact.

Under uniaxial [110] stress, the space group P213 is reduced to P21 group and the
R point goes into the E point, which is also located at the vertex of the deformed Bril-
louin zone. The representation R1 + R3 is transformed into 2(E1 + E2). The E1 and E2
representations of P21 are one-dimensional and mutually conjugated, therefore they are
combined due to TRS. Thus, four-fold degenerate energy level splits into two doubly
degenerated levels (see Figure 7). The nodes are split along kz direction and are situated at

knz = ±
√

D2
2 + D2

3e/2v, where deformation potential constants are given in Appendix A
after Equation (A3). The topological charges of these two nodes are ∓1. Two crossing
points at the R point (E point of P212121 space group) in the Figure 7 are not nodes as the
states are degenerate on the (001) surface of the deformed Brillouin zone.

Figure 7. The splitting of energy levels around the R point under uniaxial stain along [110] direction
(E point, P21 space group). Dotted lines represent the spectrum of undeformed crystal, solid lines
represent the spectrum in the case of compressive strain. The value of strain is e = −0.01.

In the case of [111] deformation, the four-fold degenerate level at the R point splits
into three levels (two nondegenerate, and one doubly degenerate) at the corner (T point) of
deformed Brillouin zone (see Figure 8). Representations transform according to the expres-
sion R1 + R3 → 2T1 + (T2 + T3). All representations at the T point are one-dimensional,
but T2 and T3 are mutually conjugated and should be combined due to TRS. Similarly to
the case of Γ point, doubly degenerate node at the T point has topological charge of ∓2
and has quadratic dispersion in the direction perpendicular to [111]. There are also nodes
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with tilted dispersion, shifted in the [111] direction by kn,111 = ±(2D2
2 − D2

3)e/2
√

3D2v.
Their topological charge is ∓1.

Figure 8. The splitting of energy levels around the R point under uniaxial stain along [111] direction
(T point of R3 space group). Dotted lines represent the spectrum of undeformed crystal, solid (dashed)
lines represent the spectrum in the case of compressive (tensile) strain. The absolute value of strain is
|e| = 0.01.

4. Results with SOC

Taking into account the spin-orbital coupling in the crystal without deformation,
the 6-fold degenerate level at the Γ point splits into a doublet and 4-fold degenerate
levels. Their wave functions are transformed according to the Γ5 irreducible representation
and mutually conjugated Γ6 and Γ7 irreducible representations, combined due to time-
reversal symmetry [8]. The low-energy excitations around the 4-fold degenerate node
at the Γ point are spin-3/2 fermions [6,33] with topological charge of 4. Its dispersion is
shown in the Figure 1c, and is also plotted with dotted lines in the Figure 9. The doublet
does not move from the Γ point due to deformation, so we consider in more details the
evolution of fourfold node at the Γ point under the influence of deformation along the
main crystallographic directions.

Figure 9. The splitting of energy levels around the Γ point under uniaxial stain along [100] direction.
Dotted lines represent the spectrum of undeformed crystal, solid lines represent the spectrum in the
case of compressive strain with e = −0.01.

Under the deformation along [100] the fourfold degenerate level splits into two
twofold degenerate levels, both corresponding to Γ5 representation of the P212121 (#19)
group, as this two-dimensional representation is time-reversal invariant. The low-energy
Hamiltonian for these levels is given by Equations (A4) and (A5) of Appendix A. When the
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only non-zero component of deformation is ε11 = e, the gap between two levels at the Γ
point is equal to 2|D3|e. In general case, it is equal to 2|D3|e(1+ νP), where νP is the Poisson
ratio. The low-energy spectrum is shown in the Figure 9. The doublets at the Γ point form
Weyl nodes with unit topological charge. Four nodes are shifted from the Γ point along the
diagonals of the ky − kz plane and each of them has a unit topological charge. In addition,
two Weyl nodes shifted from the Γ point in the ±ky directions appear between two lower
branches of the spectrum, and two similar Weyl nodes shifted in the ±kz directions (not
shown in Figure 9) appear between two upper branches of the spectrum. The tensile and
compressive strain spectra differ from each other by a change in the sign of the energy.

Without deformation, there are four surface Fermi arcs, emanating from the projection
of the nodal point at Γ, as the topological charge is 4. The shift of the node positions
for [100] deformation (e = −0.01) is accompanied by a change in the surface Fermi arcs,
shown in the Figure 10, for the case when the Fermi level coincides with the nodes located
along the diagonals of the ky − kz plane. The projections of the nodes are marked with
asterisks. Their positions, calculated by the k · p method, quite well coincide with the
sources of four Fermi arcs.

Figure 10. The details of surface Fermi arcs around the Γ point under uniaxial strain along [100]
direction (e = −0.01) with the account of SOC. Asterisks depict the positions of nodal points.

Considering the deformation along [110] axis, we found similar splitting of four-fold
degenerate level at the Γ point into 2 doublets: Γ6 + Γ7 → 2(Γ3 + Γ4), where irreducible
representations Γ3(4) of the space group P21(#4) are one-dimensional and combined to-

gether due to TRS. The energy gap at the Γ point is equal to e
√

D2
2 + D2

3. When the only
non-zero components of stain tensor are ε12 = ε21 = e/2, the four-fold degenerate node
splits into 4 nodes, moving along crystallographic directions [100], [100], [010], [010] by
the distance D2e/2

√
b2 − a2. Due to distortion, small deviation from corresponding Carte-

sian axis appears by an angle of φ = arctan(e/2), which is equal, for example, to 0.3◦ at
e = 0.01. In the case of the absence of deformations in the directions, normal to [110],
when ε11 = ε22 = ε12 = e/2, the shift of energy levels due to volume change leads to
additional deviation of nodes from Cartesian axes, which is about φ = 6◦ at e = 0.01.
Similar to the case of [100] deformations, there are also two Weyl nodes below and two
Weyl nodes above the node in unstrained crystal, but here they are shifted close to the diag-
onals of kx − ky plane. To within a change of the directions of node shifts, the low-energy
spectrum around the Γ point for this case is qualitatively very similar to the case of [100]
deformations (see the Figure 9).

When the stress is applied along [111] axis, we obtain similar 4-fold level slitting into
two doublets at the Γ point with Γ6 + Γ7 → (Γ4 + Γ4) + (Γ5 + Γ6), where all irreducible
representations Γ4(5,6) of the space group R3 (#146) are one-dimensional. Γ4 is real and it is
doubled due to TRS, while Γ5(6) are complex conjugated and they are combined together
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due to TRS. These two band crossings at the Γ point are shown in the Figure 11. The lower
one is a Weyl node. The node at higher energy has linear dispersion in the [111] direction
and nonlinear dispersion in the perpendicular plane (this branch is not shown in the figure).
It looks like the triple-Weyl node [36–38] with topological charge ± 3, but it is located at the
TRIM point. In addition, near the Γ point, there are two groups of nodes connected by time-
reversal symmetry. Each of these groups consist of 4 nodes. One of them kn1 is shifted from
the Γ point along the [111] axis by a distance k = D2e(a+

√
a2 + 2b2)/

√
3b2, which is about

0.007 at |e| = 0.01 (see Figure 11). In the case of compressive (tensile) strain the energy
of the node shifts downwards (upwards) relative to the node at the Γ point in unstrained
crystal. More detailed calculations showed that there are another 3 nodes in each group:
one of them kn2 is shifted from kn1 into [112] direction and positions of two other nodes
kn3(4) can be obtained using 2π/3 rotation around [111] axis. The distance between nodes
is rather small, about 0.0003 at e = −0.01. The calculation of topological charge showed
that three equivalent nodes kn2(3,4) have topological charge of 1 each, and the node kn1 has
a charge of −1. Thus total topological charge of each group is 2, giving 4 for both groups
together. The dispersion around the nodes is rather complex and is given in the Figure 12.
It can be seen that the electronic velocities are very different in different directions, and the
nodes are tilted. In addition to these groups of nodes, there are also two tilted Weyl nodes
in the directions [111] and [1̄1̄1̄]. The lowest band crossing in Figure 11 is one of these node.

Figure 11. The splitting of energy levels around the Γ point under uniaxial stain along [111] direction.
Dotted lines represent the spectrum of undeformed crystal, solid lines represent the spectrum in the
case of compressive strain for e = −0.01.

Figure 12. The dispersion around the nodes shifted from the Γ point under uniaxial compressive
strain along [111] direction. The dispersions along [111] (solid lines), [110] (dot-dashed lines) and
[112] (towards the node kn2, dashed lines) directions are plotted for e = −0.01.
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Let us now consider the effect of deformation on the low-energy spectrum around the
R point in the presence of spin-orbit coupling. In unstrained crystal, the 8-fold degenerate
level at the R point splits into 6-fold degenerate level R7 + R7 (double spin-1 quasiparticles)
and doublet R5 + R6 due to SOC. The doublet is not split by the strain, so we will consider
only 6-fold degenerate level (see the Figure 1c). In the case of [100] deformation, it is split
into 3 doublets with the wave functions, transforming according to the representations
R2 + R2, R3 + R3 and R4 + R4 of the P212121 (#19) group. The change of the dispersion
around the R point is shown in the Figure 13. Two nodes at lower energy are shifted
along positive and negative kx (kz) directions under compressive (tensile) strain. There is a
crossing of four energy branches at each of these nodal points. They are a tilted double
spin-1/2 nodes [33] with Chern numbers of ∓2. In the case of eight-band Hamiltonian, the
equality ε(k,−ε̂) = −ε(k, ε̂) does not hold exactly. But in the case of [100] deformation
the spectrum for six considered bands approximately follows this rule. This implies that
there are the two additional double spin-1/2 nodes in kz (kx) directions for compressive
(tensile) strain (see Figure 13).

Figure 13. The splitting of energy levels around the R point under uniaxial stain along [100]
direction. Dotted lines represent the spectrum of undeformed crystal, solid (dashed) lines represent
the spectrum in the case of compressive (tensile) strain of |e| = 0.01.

The deformation in [110] direction again leads to the splitting of 6-fold degenerate
level into 3 doublets at the vertex of deformed Brillouin zone (E point). Wave functions
of two doublets are transformed according to the E3 + E3 representation and one dou-
blet according to the E4 + E4 representation, where both E3(4) are real one-dimensional.
These doublets do not form Weyl nodes, as the energy branches, starting from them are
degenerate at the edges of the Brillouin zone parallel to (001) plane. Four simple Weyl
nodes are formed near the E point. They shifted mainly into kz direction to the points with
coordinates ±kn, where kn = (±0.001,∓0.001, 0.014) at e = −0.01 (see Figure 14). In the
case of tensile strain the shift appeared to be almost the same. As the degeneracy of the
bands is completely lifted under this deformation, the topological charge of each of the 4
nodes is ∓1.

The case of [111] deformation is similar to the two previously considered cases in
the sense that one obtains 3 doublets instead of 6-fold degenerate level at the vertex of
the Brillouin zone (2R7 → (T4 + T4) + 2(T5 + T6), where T4 is real one-dimensional
representations, T5 and T6, are complex conjugated one dimensional representations of the
little group of the T point of the R3(#146) space group). Each of these doublets corresponds
to a Weyl node. The two band crossings at the T point are the conventional Weyl nodes
with Chern number of ∓1. The third band crossing looks like the triple-Weyl node with
the topological charge of ∓3. It is similar to triple-Weyl node at the Γ point. In addition,
near the T point, there are two groups of nodes connected by time-reversal symmetry,
as in the case of the Γ point. Two of them are simple Weyl nodes shifted into [111] and
[1̄1̄1̄] directions, but they have topological charge 1. Around each of them, there are three
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conventional Weyl nodes with topological charges −1. The total charge of these eight nodes
is −4. For example, in the case of compressive strain with e = −0.01, one of the nodes at
the [111] direction have coordinates kn1 = (0.00197, 0.00197, 0.00197) relative to the T point.
One of its satellites have coordinates kn2 = (0.00169, 0.00196, 0.00227), and the coordinates
of another two satellites kn3(4) can be obtained by cyclic permutations. The dispersion
around the T point towards nodes kn1 and kn2 is plotted in the Figure 15. It is almost linear.
At the same time, the dispersion along the line connecting the central node with one of its
satellites (Figure 16) looks like a result of the crossing of two nonlinear bands.

Figure 14. The splitting of energy levels around the R point (E point, P21 space group) under uniaxial
stain along [110] direction. Dotted lines represent the spectrum of undeformed crystal, solid lines
represent the spectrum in the case of compressive strain of e = −0.01.

Figure 15. The splitting of energy levels around the R point under uniaxial stain along [111] direction
(T point, R3 space group). Dotted lines represent the spectrum of undeformed crystal, solid lines
represent the spectrum in the case of compressive strain of e = −0.01.

Figure 16. The electronic dispersion along the direction from central node kn1 towards to one of its
satellites under uniaxial stain along [111] direction at e = −0.01.
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5. Conclusions

In the present work the influence of deformation on the band structure and topo-
logical properties of CoSi was studied using both ab initio calculations, and symmetry
considerations. The symmetry prescribed k · p Hamiltonians at the Γ and R TRIM points
taking into account deformation were written down for the cases with and without SOC.
It was shown that in almost all considered cases, the degeneracy is partially lifted at the
TRIM points. The only exception is the fourfold degenerate level at the R point (without
SOC) under [100] strain. A lowering in symmetry leads to the appearance of a significant
number of different band crossings with topological charges from ±1 to ±3 around the
TRIM points. The nodes often have a tilted dispersion.

The unusual results were obtained upon deformation of CoSi along the [111] direction.
Without spin-orbit coupling, the doubly degenerate nodes with quadratic dispersion in
the plane orthogonal to the [111] direction appear at the Γ and T points of the deformed
Brillouin zone. These band crossings have Chern numbers of ±2 and resemble the well-
known double-Weyl nodes, but they are spin degenerate. Calculation with account of
SOC revealed doubly degenerate nodes with the topological charges of ±3 at the TRIM
points. These band crossings are located on the threefold rotation axis and are analogous
to triple-Weyl nodes.

The band structure with SOC around the R point under [100] strain exhibits another
example of the change of node type. The double spin-1 node with topological charge of
4 splits into pairs of double spin-1/2 nodes with topological charges of 2 per node. Thus,
using mechanical deformation, the transition between different types of topological nodes
can be realized in the same material.

A lowering of the crystal symmetry under strain also leads to a modification of the
surface Fermi arcs shape. A change in the sign of the deformation and the Fermi level
position switches the ends of the Fermi arcs from one group of nodes to another. However,
the number of Fermi arcs always remains equal to two without taking into account SOC
and four with SOC.

As a byproduct of low-energy Hamiltonian fitting, the absolute deformation potential
parameters were obtained for considered energy states, and the work function of CoSi was
calculated (4.55 eV), which correlates with available experimental data.
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Appendix A. k · p Hamiltonians and Their Parameters

In this section, the form of k · p Hamiltonians and their parameters will be given.
We used eV units for energy, and the dimensionless wave vector components ki, i = 1, 2, 3
are measured in fractions of the reciprocal lattice vectors.

Without spin-orbital coupling linear in wave vector part of Hamiltonian at the Γ point
is given by the following equation:

HΓ1 =

⎛
⎝ 0 ivk3 −ivk2

−ivk3 0 ivk1
ivk2 −ivk1 0

⎞
⎠, (A1)

where v = 1.73 eV. The node at the Γ point lies 3.6 meV above the Fermi level.
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The perturbation Hamiltonian in the linear approximation in the deformation tensor
εik and in the zero approximation in the wave vector has the following form:

HΓ2 =

⎛
⎝ S1(ε̂) D4ε12 D4ε13

D4ε12 S2(ε̂) D4ε23
D4ε13 D4ε23 S3(ε̂)

⎞
⎠, (A2)

where S1(ε̂) = D1ε11 + D2ε22 + D3ε33, S2(ε̂) = D3ε11 + D1ε22 + D2ε33, S3(ε̂) = D2ε11 +
D3ε22 + D1ε33, D1 = −0.319 eV, D2 = −0.400 eV, D3 = 0.470 eV and D4 = 2.479 eV.

At the R point the Hamiltonian, linear in k-vector, was given in Ref. [16]. It can be
represented as HR1 = v1̂ ⊗ (σ · k) with v = 1.28 eV. The node at the R point lies 0.211 eV
below the Fermi level. The perturbation due to elastic strain reads:

HR2 =

⎛
⎜⎝

D1Trε̂ − D2ε12 −D2(ε23 − iε13) iD3ε12 D3(ν
∗
6 ε23 + iν6ε13)

−D2(ε23 + iε13) D1Trε̂ + D2ε12 D3(ν
∗
6 ε23 − iν6ε13) −iD3ε12

−iD∗
3 ε12 D∗

3 (ν6ε23 + iν∗6 ε13) D1Trε̂ + D2ε12 D2(ε23 − iε13)
D∗

3 (ν6ε23 − iν∗6 ε13) iD∗
3 ε12 D2(ε23 + iε13) D1Trε̂ − D2ε12

⎞
⎟⎠, (A3)

where Trε̂ is a trace of strain tensor, ν6 = eiπ/6, D1 = 0.264 eV, D2 = −1.29 eV and
D3 = 3.27 eV.

Taking into account spin-orbit coupling, linear Hamiltonian at the Γ point was written
down in Ref. [8] and has the following form:

H(SOC)
Γ1 =

⎛
⎜⎜⎜⎝

ak3 a(k1 − ik2) b(ν3k1 − ν6k2) bk3

a(k1 + ik2) −ak3 bk3 −b(ν3k1 + ν6k2)

b∗(ν∗3 k1 − ν∗6 k2) b∗k3 −ak3 −a(k1 + ik2)

b∗k3 −b∗(ν∗3 k1 + ν∗6 k2) −a(k1 − ik2) ak3

⎞
⎟⎟⎟⎠, (A4)

where ν3 = eiπ/3, a = 0.56 eV and b = 1.19 eV [8]. The 4-fold degenerate node position is
21 meV above the Fermi level, and the Weyl cone at the Γ point is shifted down due to SOC
by 54 meV relative to this node.

The perturbation due to deformation reads:

H(SOC)
Γ2 =

⎛
⎜⎜⎜⎝

D1Trε̂ + D2ε12 D2(ε23 − iε13) 0 D3Σ(ε̂)
D2(ε23 + iε13) D1Trε̂ − D2ε12 −D3Σ(ε̂) 0

0 −D∗
3 Σ∗(ε̂) D1Trε̂ + D2ε12 D2(ε23 + iε13)

D∗
3 Σ∗(ε̂) 0 D2(ε23 − iε13) D1Trε̂ − D2ε12

⎞
⎟⎟⎟⎠, (A5)

where Σ(ε̂) = ε11 − ν3ε22 + ν2
3 ε33, D1 = −0.085 eV, D2 = 1.40 eV. Parameter D3 is complex.

Eigenvalues at k = 0 does not depend on its phase, but it affects the spectrum for nonzero
k values. The fitting gives D3 ≈ 0.233e−iπ/6eV.

At the R point the Hamiltonian for 6-fold degenerate node including SOC was given
in Ref. [17]. After uniaxial deformation this node splits into three doubly-degenerate nodes.
Under deformation in [100] direction, the shift of energy levels at the R point is linear in
deformation. If the deformation is applied in [111] direction, only for small e < 0.004,
the shift of energy levels can be considered as linear, and the deformation along [110] axis
leads to nonlinear shift of the two pairs of energy levels (see Figure A1). It was shown in
Ref. [16] in the framework of a simple model that a linear Hamiltonian that includes SOC
in the zeroth order with respect to the wave vector and takes into account all eight bands
leads to the correct nonlinear band dispersion near the R point (see, e.g., Figure 3b–c in
Ref. [8]). So, we consider both nodes together and obtain 8 × 8 Hamiltonian at the R point.
The zero-order Hamiltonian has only nonzero matrix elements (H(SOC)

R0 )ii = −Δ, i = 7, 8,
which describe energy shift of doublet downwards in energy due to SOC. Including SOC,
the position of the 6-fold degenerate node is 0.202 eV below εF, while the band splitting
Δ = 32 meV. The zero- and linear-order in k parts together reads:

67



Crystals 2021, 11, 143

H(SOC)
R01 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a1k3 −a∗1k2 0 a2k3 −a2k2 a3k1 a4k1
a∗1k3 0 a1k1 a2k3 0 a2k1 ν3a3k2 ν∗3 a4k2
−a1k2 a∗1k1 0 −a2k2 a2k1 0 −ν∗3 a3k3 −ν3a4k3

0 a∗2k3 −a∗2k2 0 −a∗1k3 a1k2 a∗4k1 −a∗3k1
a∗2k3 0 a∗2k1 −a1k3 0 −a∗1k1 ν3a∗4k2 −ν∗3 a∗3k2
−a∗2k2 a∗2k1 0 a∗1k2 −a1k1 0 −ν∗3 a∗4k3 ν3a∗3k3
a∗3k1 ν∗3 a∗3k2 −ν3a∗3k3 a4k1 ν∗3 a4k2 −ν3a4k3 −Δ 0
a∗4k1 ν3a∗4k2 −ν∗3 a∗4k3 −a3k1 −ν3a3ky ν∗3 a3k3 0 −Δ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A6)

where parameters ai are complex. Their values were obtained by fitting to electron spectrum
around R point. They are not unique, but they were checked to give correct values of
topological charges. These values are a1 = (0.342 − 0.686i) eV, a2 = (1.043 + 0.060i) eV,
a3 = (−0.459 − 0.657i) eV and a4 = (0.181 − 0.100i) eV.

Figure A1. The splitting of energy levels at the R point with uniaxial stress of magnitude e in [110]
(left panel) and in [111] (right panel) directions.

The perturbation due to deformation is:

H(SOC)
R2 =

⎛
⎜⎜⎜⎜⎜⎝

S1(ε̂) D5ε12 −D∗
5 ε13 0 D6ε12 D6ε13 D7ε23 D8ε23

D∗
5 ε12 S2(ε̂) D5ε23 −D6ε12 0 D6ε23 D7ε13ν3 D8ε13ν∗3

−D5ε13 D∗
5 ε23 S3(ε̂) −D6ε13 −D6ε23 0 −D7ε12ν∗3 −D8ε12ν3

0 −D∗
6 ε12 −D∗

6 ε13 S1(ε̂) D∗
5 ε12 −D5ε13 −D∗

8 ε23 D∗
7 ε23

D∗
6 ε12 0 −D∗

6 ε23 D5ε12 S2(ε̂) D∗
5 ε23 −D∗

8 ε13ν3 D∗
7 ε13ν∗3

D∗
6 ε13 D∗

6 ε23 0 −D∗
5 ε13 D5ε23 S3(ε̂) D∗

8 ε12ν∗3 −D∗
7 ε12ν3

D∗
7 ε23 D∗

7 ε13ν∗3 −D∗
7 ε12ν3 −D8ε23 −D8ε13ν∗3 D8ε12ν3 D4Trε̂ 0

D∗
8 ε23 D∗

8 ε13ν3 −D∗
8 ε12ν∗3 D7ε23 D7ε13ν3 −D7ε12ν∗3 0 D4Trε̂

⎞
⎟⎟⎟⎟⎟⎠

, (A7)

where D1 = 0.318 eV, D2 = 0.211 eV, D3 = 0.261 eV, D4 = 0.270 eV are real and determine
the shift of each pair of energy levels under [100] deformation. The splitting of levels
under the compressive or tensile strain e in [110] direction also can be obtained analytically.
Two doublets linearly shift with deformation e

εR =

(
2D1 + D2 + D3 ±

√
(D2 − D3)2 + 4(|D5|2 + |D6|2)

)
e/4, (A8)

from which
√
|D5|2 + |D6|2 = 3.5 eV can be obtained. But another four levels shift nonlinearly

εR =

(
(D2 + D3 + 2D4)e − 2Δ ±

√
((D2 + D3 − 2D4)e + 2Δ)2 + 4e2(|D7|2 + |D8|2)

)
/4. (A9)

√
|D7|2 + |D8|2 = 3.36 eV. Other parameters were obtained from fitting to band structures of de-

formed crystal. They are non-unique, one of possible parameter sets is D5 = (−1.107− 2.916i) eV,
D6 = (0.713+ 1.420i) eV, D7 = (1.147+ 1.048i) eV, D8 = (−1.667+ 2.469i) eV.

Appendix B. Absolute Deformation Potentials and Work Function of CoSi

In order to obtain absolute shift of energy level εn after deformation, it is necessary
to have common reference energy in deformed and undeformed crystals or to determine
the shift of the reference due to deformation. For example, energy can be measured
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from macroscopic average of effective self-consistent potential Ve. Then absolute shift of
energy level εn due to deformation is equal to Δεn = (ε

(d)
n − V(d)

e )− (ε
(u)
n − V(u)

e ) + ΔVe,
where ΔVe is the reference energy offset due to strain and superscript d(u) corresponds to
bulk calculation for deformed (undeformed) crystal.

The vacuum level can be used as a common reference energy, but it is not accessible
in bulk DFT calculation. Hence we apply approach similar to that used for work function
calculations. The superlattice configuration was considered with alternating layers of ma-
terial and vacuum gaps. Average effective potential inside material layer Ve was calculated
relative to its value inside vacuum gap (vacuum energy level). Then, the change of average
effective potential ΔVe due to deformation can be calculated as a deference between the
values obtained from separate calculations for strained and unstrained layers.

Alternative approach was used in Ref. [39], where another superlattice method was
proposed in order to obtain reference energy offset. The superlattice was formed from
layers, extended or compressed along the direction of superlattice axis, and the layers were
undeformed in the plane. In all-electron calculations, performed in Ref. [39], localized core
levels, used as an energy reference, can be associated with each of the layers. The difference
in their energy positions in the limit of thick layers allowed to obtain the reference energy
offset due to deformation. Similar approach was used in Ref. [40], where pseudopotential
calculations were used and, instead of core levels, macroscopic average effective potential
in deformed V(DL)

e and undeformed V(UL)
e layers was used to determine the change of

the energy reference due to deformation ΔVe = V(DL)
e − V(UL)

e . We also used the latter
approach and made similar calculations for superlattice of strained/unstrained layers of
CoSi for [100], [110] and [111] directions. We checked the convergence of ΔVe with respect
to the layer thickness. The accuracy of 1–2 meV was reached for the layer thickness of 10a0.

Inside thick metallic layers, thicker then screening length, the difference (Ve − εF) is
determined only by its bulk properties, and the superlattice made of strained/unstrained
layers should have common Fermi level εF. Hence, the same ΔVe can be obtained from bulk
calculations for deformed and undeformed crystal ΔVe = (V(d)

e − ε
(d)
F )− (V(u)

e − ε
(u)
F ).

Then, the absolute shift of energy level εn due to deformation can be calculated as
Δεn = (ε

(d)
n − ε

(d)
F )− (ε

(u)
n − ε

(u)
F ).

All three considered approaches should give the same results for metallic material.
Although CoSi is considered as semimetallic, the comparison gave the same results for ΔVe
to within 1–2 meV. In addition, we obtained work function for CoSi, equal to 4.55 eV which
compares favourably with experimental values of 4.47–4.54 eV [41].
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25. Hernandez, J.; Vočadlo, L.; Wood, I. High pressure stability of the monosilicides of cobalt and the platinum group elements.
J. Alloys Compd. 2015, 626, 375–380. [CrossRef]

26. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al.
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens.
Matter 2009, 21, 395502. [CrossRef]

27. Hamann, D.R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 2013, 88, 085117. [CrossRef]
28. Mostofi, A.A.; Yates, J.R.; Pizzi, G.; Lee, Y.S.; Souza, I.; Vanderbilt, D.; Marzari, N. An updated version of wannier90: A tool for

obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2014, 185, 2309. [CrossRef]
29. Wu, Q.; Zhang, S.; Song, H.F.; Troyer, M.; Soluyanov, A.A. WannierTools: An open-source software package for novel topological

materials. Comput. Phys. Commun. 2018, 224, 405. [CrossRef]
30. Bir, G.L.; Pikus, G.E. Symmetry and Strain-Induced Effects in Semiconductors; Wiley: New York, NY, USA, 1974.
31. Voon, L.C.L.Y. Electronic and Optical Properties of Semiconductors: A Study Based on the Empirical Tight Binding Model; Universal-

Publishers: Parkland, FL, USA, 1997.
32. Elcoro, L.; Bradlyn, B.; Wang, Z.; Vergniory, M.G.; Cano, J.; Felser, C.; Bernevig, B.A.; Orobengoa, D.; Flor, G.; Aroyo, M.I.

Double crystallographic groups and their representations on the Bilbao Crystallographic Server. J. Appl. Crystallogr. 2017,
50, 1457–1477. [CrossRef]

33. Flicker, F.; de Juan, F.; Bradlyn, B.; Morimoto, T.; Vergniory, M.G.; Grushin, A.G. Chiral optical response of multifold fermions.
Phys. Rev. B 2018, 98, 155145. [CrossRef]

34. Soluyanov, A.A.; Gresch, D.; Wang, Z.; Wu, Q.; Troyer, M.; Dai, X.; Bernevig, B.A. Type-II Weyl semimetals. Nature 2015,
527, 495–498. [CrossRef] [PubMed]

35. Huang, S.M.; Xu, S.Y.; Belopolski, I.; Lee, C.C.; Chang, G.; Chang, T.R.; Wang, B.; Alidoust, N.; Bian, G.; Neupane, M.; et al. New
type of Weyl semimetal with quadratic double Weyl fermions. Proc. Natl. Acad. Sci. USA 2016, 113, 1180. [CrossRef] [PubMed]

36. Fang, C.; Gilbert, M.J.; Dai, X.; Bernevig, B.A. Multi-Weyl Topological Semimetals Stabilized by Point Group Symmetry.
Phys. Rev. Lett. 2012, 108, 266802. [CrossRef]

37. Tsirkin, S.S.; Souza, I.; Vanderbilt, D. Composite Weyl nodes stabilized by screw symmetry with and without time-reversal
invariance. Phys. Rev. B 2017, 96, 045102. [CrossRef]

70



Crystals 2021, 11, 143

38. Chang, G.; Wieder, B.J.; Schindler, F.; Sanchez, D.S.; Belopolski, I.; Huang, S.M.; Singh, B.; Wu, D.; Chang, T.R.; Neupert, T.; et al.
Topological quantum properties of chiral crystals. Nat. Mater. 2018, 17, 978–985. [CrossRef] [PubMed]

39. Franceschetti, A.; Wei, S.H.; Zunger, A. Absolute deformation potentials of Al, Si, and NaCl. Phys. Rev. B 1994, 50, 17797–17801.
[CrossRef]
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Abstract: Quantum anomalous Hall effect (QAHE) represents a quantized version of the classical
anomalous Hall effect. In the latter case the magnetization takes over the role of magnetic field
and induces nonzero off-diagonal elements in the conductivity matrix. In magnetic topological
insulators with the band inversion the QAHE can be reached due to quantized conduction channel
at the sample edge if the Fermi energy is tuned into the surface magnetic gap. In the static regime
the QAHE is seen as a zero-field step in the Hall resistivity. At optical frequencies this step is
transformed into a quantized value of the polarization rotation approaching the fine structure
constant α = e2/2ε0hc ≈ 1/137. However, due to material issues the steps reach the predicted values
at millikelvin temperatures only. In this work we investigate the Faraday polarization rotation in
thin films of Cr-doped topological insulator and in the sub-terahertz frequency range. Well defined
polarization rotation steps can be observed in transmittance in Faraday geometry. At temperatures
down to T = 1.85 K the value of the rotation reached about 20% of the fine structure constant and
disappeared completely for T > 20 K.

Keywords: quantum anomalous Hall effect; Faraday rotation; topological insulators; terahertz
spectroscopy

1. Introduction

Topological insulators [1,2] are materials with insulating bulk but revealing conduct-
ing surface states. These states possess different helicity thus making them symmetry
protected against non-magnetic scattering processes. In two-dimensional (2D) systems
and in external magnetic fields the quantized off-diagonal conductivity is observed pro-
portional to an integer times the conductivity quantum e2/h. However, the application of
external magnetic fields can be avoided in magnetically-doped topological insulators [3],
see Refs. [4,5] for reviews. In that case the coupling between magnetic moments of the
dopants must be strong enough to obtain a magnetically ordered state with finite static
magnetization [6]. In addition, the Fermi level must be shifted into the surface magnetic gap
thus leading to a single quantized conducting channel at the edge. QAHE in magnetically-
doped topological insulators can be seen as a last station starting from the classical Hall
resistivity via time reversal breaking and quantization effects [7].

The predicted QAHE has been first observed [8] in Cr-doped (Bi,Sb)2Te3 and at mil-
likelvin temperatures. In these, as well as in several similar experiments [9,10], the temper-
ature range at that well-quantized conduction states are observed is substantially lower
than the transition temperature to a magnetically ordered state of typically 20 K. This dis-
crepancy is normally attributed to the sample issues like presence of additional dissipative
channels [4,5]. More recently, QAHE in several magnetic topological insulators [11–13]
could be achieved at temperatures close to 1 K.
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In conducting materials a step in the Hall resistivity should normally lead to a step in
optical properties. We note here an existing discrepancy in interpretation of the quantum
Hall effect in statics and dynamics of the 2D systems [14]. In the former case the quanti-
zation is explained by counting the quantum conducting channels at the edge [2,15]. In
the optical case, the edges are normally excluded due to contact-free technique. Therefore,
to explain the quantization of the optical data, one have to return to the quantization of
the bulk conduction [16,17]. In the dynamic regime, one of the typical observation in two-
dimensional systems is the polarization rotation of linearly-polarized light in transmission
geometry, see Figure 1.

GaAs (substrate)

(Bi,Sb)2Te3
�B

θη

z

y

x

Figure 1. Scheme of the optical experiment. Linearly polarized incident light is transformed into
the elliptical polarization after the sample, and is characterized by Faraday rotation angle θ and
ellipticity η. The analyzer in front of the detector projects the ellipse either into the same direction as
the incident beam leading to parallel transmittance txx or to perpendicular direction leading to the
crossed transmittance txy. An external magnetic field is applied parallel to the propagation direction
(Faraday geometry).

Full expressions for the polarization rotation include the influence of the substrate
and are given elsewhere [18–20]. However, two important approximations substantially
simplify the interpretation of the data. First, the influence of the substrate can be removed
if the field-dependent experiment is done in the maximum of the Fabry-Pérot resonances
of the substrate (see Figure 6 ). At such frequencies the expressions for the Faraday rotation
reduce to the substrate-free result [18,21]. Second, in most cases the thin film approximation
can be used assuming that the influence of the conducting film is small: (σxxZ0, σxyZ0) � 1.
Here σxx is the 2D diagonal conductivity, σxy is the 2D Hall conductivity and Z0 ≈ 377 Ω is
the impedance of free space.

In the following we assume that the incident radiation is linearly polarized with
the ac electric field along the x-axis and is propagating along the z-axis. In the thin film
approximation the transmittance amplitudes in the parallel txx and perpendicular txy
channels are given by [18]

txx ≈ 1 − σxxZ0/2 ≈ 1 and txy ≈ σxyZ0/2 , (1)

respectively. In present experiments, txx and txy are measured putting the analyzer parallel
and perpendicular to the polarization of the incident beam. The phase shift (or optical thick-
ness) of both signals are obtained using the Mach-Zehnder interferometer arrangement,
see Methods Section.

Further on, especially for the samples of the present work, the scattering time of the
charge carriers is rather small, thus the frequency dependent terms ωτ in conductivities
σxx and σxy can be neglected. This can be derived from the fact that we do not observe any
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signs of the cyclotron resonance in the present range of frequencies and magnetic fields.
This indicates that the resonance terms in the Drude conductivity with typical width ωτ
are negligible. In the same approximation the (Faraday) rotation angle θ can be written
as [18–20]:

θ ≈ tan(2θ)/2 ≈ 
(txy/txx) ≈ txy ≈ σxyZ0/2 . (2)

In the quantum regime we expect only a single conduction channel with σxy = e2/h
leading to

θ ≈ σxyZ0/2 = α , (3)

where α = e2Z0/2h = e2/2ε0hc ≈ 7.3 × 10−3 rad is the fine structure constant.

2. Results and Discussion

Figure 2 shows typical magnetic field dependence of the transmittance in crossed
polarizers geometry that is most sensitive to weak polarization rotations. In these experi-
ments the amplitude of the signal corresponds to the transmittance amplitude |txy| and the
optical thickness is related to the phase shift of the transmittance. The absolute values of
the optical thickness are mainly determined by the thickness and refractive index of the
substrate ϕ ≈ nsds (see Section 4). The magnetic field-induced changes can be attributed
to the film properties that are basically determined by σxy in this geometry in agreement
with Equation (1). The data reveal a clear step at zero magnetic fields with a hysteresis of
about 0.09 T. Compared to the dc data shown in Figure 5 below, the transmittance is not
affected by the contact resistivity and, therefore, provides more direct information on the
sample conductivity.

After a calibration to absolute values, the complex polarization rotation angle θ + iη
can be calculated either using the simplified Equations (1) and (2) or via the exact
procedure [18–20].

Figure 2. Magnetic field scans of the transmittance in (Cr0.12Bi0.26Sb0.62)2Te3 film and in crossed
polarizers geometry txy = |txy|eiϕ. The external field is applied parallel to the propagation direction
(Faraday geometry, see Figure 1). The parameters of the experiment are given in the plot. Bottom
panel: amplitude of the crossed signal. Top panel: relative optical thickness (phase shift) of the sample.

Complex polarization rotation angles at the lowest temperature of our experiments
(T = 1.85 K) and at various frequencies are shown in Figure 3. We observe that in the fre-
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quency range of the present experiment the rotation angle is approximately a real number,
as the ellipticity corresponds roughly to the noise level of the spectrometer. Similarly to
the raw transmittance data in Figure 2, the Faraday rotation angle shows a clear step-like
function across zero magnetic field. The inset in Figure 3 shows the absolute values of the
rotation angle step at zero magnetic field and as a function of frequency.

Figure 3. Complex polarization rotation angle θ + iη in (Cr0.12Bi0.26Sb0.62)2Te3 at T = 1.85 K and at
different frequencies. The frequencies were selected at the maxima of the Fabry-Pérot interferences to
suppress the effect of the substrate in the spectra. Bottom panel: Faraday rotation angle θ, top panel:
ellipticity η. The inset shows the absolute values of the rotation angle due to quantum anomalous
Hall effect (QAHE) in the units of the fine structure constant at zero magnetic field and as a function
of frequency. Straight dashed line is to guide the eye.

We conclude that in the frequency range of the present experiment the Faraday angle
is roughly frequency independent at the value θ ≈ 0.2α and the variation of the data
corresponds to the uncertainties of the experiment. In order to get more arguments on
the absolute values of the step across the zero field, we investigated the temperature
dependence of the Faraday rotation. These results are shown in Figure 4. As also seen
in the frequency-dependent rotation angles, Figure 3, the ellipticity in our data is close
to zero within the experimental uncertainties. The Faraday rotation, as shown in the
bottom panel and in the inset to Figure 4, decreases with increasing temperature. In
our experiments the step disappears around 20 K that agrees reasonably well with Curie
temperature estimated [9] as TC ≈ 30 K. The Faraday step at our lowest temperatures is
Δθ(0) ≈ 1.3 mrad ≈ 0.18α. This value is substantially smaller than 1.0α expected within
simple arguments. However, it is still possible that scattering processes suppressing Δθ
will freeze out at millikelvin temperatures. We conclude that at temperatures down to
1.85 K additional dissipative channels like residual carriers from bulk bands or scattering
by impurities [4,5,22] are still present, which impedes the dissipationless character of the
chiral states and suppresses the universally quantized values of the Hall resistance and of
the Faraday rotation.
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Figure 4. Complex polarization rotation angle θ + iη in (Cr0.12Bi0.26Sb0.62)2Te3 at ν = 203 GHz and
at different temperatures. Bottom panel: Faraday rotation angle θ, top panel: ellipticity η. The inset
shows the absolute values of the step of the rotation angle in the units of the fine structure constant
at zero magnetic field and as a function of temperature.

As the transmission experiments are done in the Faraday geometry and the sample is
magnetic, the magneto-optical Faraday effect [23] cannot be a priori neglected. In fact, in
the small angle approximation, the rotation angles due to the off-diagonal conductivity σxy
and due to the static magnetization M0 are simply added. To estimate the value of the last
effect, we use Equation (8) of the Methods Section. The value of the static magnetization
in our samples μ0M0 ≈ 0.9 × 10−2 T has been measured in Ref. [9]. It agrees well with
an estimate assuming fully ordered moments of Cr3+ ions. Putting the numbers into
Equation (8) we finally get:

θm ∼ 10−8 rad � α . (4)

We see that in most cases dealing with QAHE the classical Faraday effect can be ne-
glected.

Finally, we compare the static and dynamic results in our sample. In agreement with
Equations (1) and (2) direct correspondence between both properties may be expected.
As discussed in the Methods Section, the resistivity of indium contacts was too high thus
distorting the magnetic field dependencies of the diagonal and Hall resistivity. Reasonable
step-like Hall resistivity data could be obtained for T ≥ 5 K only, see Figure 5. Although
the Hall data were distorted, we still could estimate the steps across zero field (inset to
Figure 5) and compare them with the dynamic data in Figures 3 and 4. We see that both
steps disappear at temperatures close to 20 K. The absolute values of the Hall resistivity in
Figure 5 correspond to ΔRxy ∼ 0.5h/e2 in our lowest temperature of 1.85 K that deviates
from the values of Faraday rotation ∼0.2α observed in the transmittance data. We recall,
however, that the resistivity was strongly affected by highly resistive contacts, although
the rotation is measured by a contact-free technique.
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Figure 5. Magnetoresistance data in (Cr0.12Bi0.26Sb0.62)2Te3 film at various temperatures. Top:
diagonal resistivity; bottom: Hall resistivity. The inset shows the absolute values of the step in the
Hall resistance at zero magnetic field and as a function of temperature.

3. Conclusions

In this work we investigated the polarization rotation of the sub-terahertz light in
thin films of Cr-doped topological insulator (Cr0.12Bi0.26Sb0.62)2Te3. The optical data are
compared to the step in the quantum Hall conductivity measured by static technique. Well
defined polarization rotation steps can be observed in transmittance at different frequencies
and temperatures. At the lowest temperature of T = 1.85 K the value of the rotation angle
reached about 20% of the fine structure constant and disappeared completely for T > 20 K.
We estimate that pure magnetic contribution to the Faraday rotation can be neglected in
the present case.

4. Materials and Methods

Single-crystalline (Cr0.12Bi0.26Sb0.62)2Te3 films on insulating (111) GaAs substrates
were grown by molecular beam epitaxy [9,10,24]. Both the Cr doping level (12%) and the
(Bi/Sb) ratio (0.3/0.7) were optimized so that the Fermi level positions of the as-grown
samples were close to the charge neutrality point. The growth was monitored by reflection
high-energy electron diffraction and the films with a thickness of 6 quintuple layers (∼6 nm)
were obtained. After the film growth, a 2 nm Al was evaporated to passivate the films.
During the growth procedure the back side of the sample was fully covered with indium
film that was nontransparent for the terahertz radiation. Therefore, prior to the optical
experiments this film was removed by polishing. To measure the static resistivity, indium
contacts were made at the corners of the hexagon-like sample at soldering temperature of
560 K. Unfortunately, this procedure did not provide good contacts, thus reasonable static
Hall resistivity could be measured at T ≥ 5 K only (see Figure 5).

Terahertz transmittance experiments at frequencies 0.1 THz < ν < 1.0 THz were car-
ried out in a quasioptical arrangement [18,25] which allows measurements of the amplitude
and phase shift of the electromagnetic radiation in a geometry with controlled polarization.
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The spectrometer utilizes linearly polarized monochromatic radiation which is provided
by backward-wave oscillators, and a He-cooled bolometer as a detector. The amplitude
|t| and the phase shift ϕ of the radiation transmitted through the sample are measured
by using the Mach-Zehnder interferometer setup. Static magnetic field up to 7 Tesla is
applied to the sample using a split-coil superconducting magnet with mylar windows. The
polarization state of the transmitted beam is determined by measuring the amplitude and
phase shift of the radiation both with parallel and crossed polarizer and analyzer. This
procedure provides the complex values of txx and txy, respectively (see Figure 1).

Figure 6 shows the transmittance spectra of the (Cr0.12Bi0.26Sb0.62)2Te3 thin film in
the frequency range of the present experiment. Due to Fabry-Pérot resonances within
the substrate a clear periodic modulation is seen in the spectra. The frequency positions
of the maxima correspond to a resonance relation 2nsdsν = m, where m is an integer,
ds = 0.478 mm is the sample thickness and ns = 3.02 is the refractive index of the substrate.
As mentioned in the Introduction section, doing magnetic field-dependent experiments
at the maxima of the resonances lead to the Faraday rotation angle that is close to that
of the free-standing film, thus strongly simplifying the interpretation of the data. We
stress, however, that exact expressions given in detail elsewhere [18,21] have been used to
calculate the angle of the polarization rotation. The transmittance maxima in the frequency
range 120–500 GHz are close to unity supporting the approximation of a weakly conducting
sample. In the frequency range close to 1 THz the absolute values of the transmittance are
by about 20 % less than unity. We attribute this effect to a slight non-parallel surfaces of
the substrate that appeared after polishing of the backside of the sample. This effect is
expected to produce an amplitude correction proportional to the ratio δ · ns/(λ/D). Here
δ · ns is the deviation angle δ enhanced by the substrate refractive index ns, and λ/D is the
diffraction angle as a ratio of the radiation wavelength and the sample aperture. At high
frequencies the wavelength becomes smaller, thus enhancing the effect.

Finally , we estimate the value of the magnetooptical Faraday effect on the polarization
rotation in terahertz experiments. In calculations below, we neglect the influence of the
substrate as the measurements are done in the maxima of the Fabry-Pérot interferences. In
addition, we assume isotropic electromagnetic susceptibilities and the normal incidence.
Then, in a thin sample approximation, i.e. for εd/λ � 1; μ±d/λ � 1, the boundary
conditions can be written in an extended manner that includes the sample as part of the
surface [26,27]. The transmittance of eigenmodes for a magnetic thin film can then be
written as

t± ≈ 1 − iπd
λ

(ε + μ±) . (5)

Here d is the sample thickness, ε is the permittivity, μ± is the permeability for two
circular polarizations, and λ is the radiation wavelength. We recall that in the present
geometry circularly polarized waves are the eigenmodes of the system and that Equation (5)
is closely similar to Equation (1) and to the purely magnetic case in Ref. [28].

We apply now the definitions given in Equation (2) to obtain the magnetic part of the
polarization rotation via 2txx = t+ + t− and 2itxy = t+ − t−:

θm ≈ iπd
λ

(χ+ − χ−) . (6)

Here χ± = (μ± − 1) are magnetic susceptibilities. Similar expression for the polariza-
tion rotation including magnetoelectric susceptibilities has been obtained in Ref. [27]. For a
ferromagnetic material χ± can be written as [28,29]:

χ± =
γM0

ω0 ∓ ω + igω
, (7)

where ω0 = γ|H − M0| is the ferromagnetic resonance frequency in the Faraday geometry,
M0 is the static magnetization, γ is the gyromagnetic ratio, g is the Gilbert damping
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parameter and H is the external magnetic field (here we avoid using usual notation α for
the Gilbert damping).

The ferromagnetic resonance frequency can be estimated as ω0 = γ|H − M0| ∼ γH ∼
3− 10 GHz for fields below μ0H ∼ 0.3 T. Therefore, the useful approximation in the present
case is ω0, gω � ω leading to a simple expression for the magnetic Faraday angle:

θm = γM0
d
2c

. (8)

Finally, it should be noted that Equation (6) differs substantially from the expression
θ′m = πd

λ (n+ − n−) used in the classical books by a factor of
√

ε ∼ 10 for Bi2Te3 [30]. The
latter case is derived for a thick sample and it neglects the influence of the surfaces that are
dominating in the thin-film geometry.
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Figure 6. Transmittance spectrum of the sample used in this work in zero magnetic field and at
temperature T = 1.85 K. This spectrum was measured in the parallel polarizers geometry, txx, and
shows a series of Fabry-Pérot resonances due to reflections on the substrate surfaces.
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Abstract: Anisotropy and competing exchange interactions have emerged as two central ingredients
needed for centrosymmetric materials to exhibit topological spin textures. Fe3Sn2 is thought to have
these ingredients as well, as it has recently been discovered to host room temperature skyrmionic
bubbles with an accompanying topological Hall effect. We present small-angle inelastic neutron
scattering measurements that unambiguously show that Fe3Sn2 is an isotropic ferromagnet below
TC ≈ 660 K to at least 480 K—the lower temperature threshold of our experimental configuration.
Fe3Sn2 is known to have competing magnetic exchange interactions, correlated electron behavior,
weak magnetocrystalline anisotropy, and lattice (spatial) anisotropy; all of these features are thought
to play a role in stabilizing skyrmions in centrosymmetric systems. Our results reveal that at the
elevated temperatures measured, there is an absence of significant magnetocrystalline anisotropy
and that the system behaves as a nearly ideal isotropic exchange interaction ferromagnet, with a
spin stiffness D(T = 480 K) = 168 meV Å2, which extrapolates to a ground state spin stiffness
D(T = 0 K) = 231 meV Å2.

Keywords: inelastic neutron scattering; topological materials; anomalous Hall effect; isotropic
ferromagnet; kagome; frustrated magnetism; skyrmion; magnetization

1. Introduction

The two-dimensional kagome lattice lends itself to hosting a variety of phenomena
depending on the chemical species occupying the network of corner-sharing triangles. For
example, the tight-binding model for itinerant electrons leads to an electronic spectrum
with a flat band and two Dirac crossings at the symmetry protected K and K′ corner points
of the hexagonal Brillouin zone. Chemical tuning can drive the Fermi level to meet the
Dirac points (a Dirac semimetal) to realize chiral massless charge carriers such as that in
graphene [1,2]. The prediction of the flat band—on the extreme opposite from a Dirac
band—is the result of destructive interference of Bloch waves from the lattice geometry.
Consequently, this nontrivial flat band can exhibit interesting physics such as flat-band
ferromagnetism and a finite Chern number. Experimentally, FeSn was shown to host
both flat bands and Dirac fermions [3] due to the isolated Fe kagome layers rendering it a
nearly perfect realization of 2D kagome physics. Fe3Sn2 is similar in structure, but features
isolated breathing kagome bilayers, as shown in Figure 1a–c. Interestingly, the bilayers
and breathing structure were still theorized to have a band structure with similar features.
Instead of one Dirac crossing at each K and K′ point, there are two which are symmetric
about each point [4], and the fermions are both spin-polarized due to the breaking of
time-reversal symmetry and massive due to the opening of a gap from spin-orbit coupling.
The combination of these effects gives rise to a non-zero Berry curvature which is consistent
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with the quadratic relationship of the anomalous Hall resistivity with the longitudinal
resistivity [5], implying the intrinsic Karplus and Luttinger mechanism [6] is responsible
for the large anomalous Hall effect. It was also recently shown that nearly flat bands
near the Fermi surface exist, which may contribute to the observed high-temperature
ferromagnetism [7].

Figure 1. Crystal structure and characterization of Fe3Sn2. The crystallographic space group is R3̄m
with reported lattice parameters a = b = 5.344 Å and c = 19.845 Å [8]. (a) View along the a-axis.
The solid black line represents the unit cell and Fe atoms are shown as the smaller green circles and
Sn atoms are shown as the larger blue circles. A single Fe site is offset from any high symmetry
position (x/a = 0.4949, y/b = 0.5051, and z/c = 0.1134) leading to two different Fe-Fe bond lengths
in the ab-plane (the so-called “breathing” kagome). Two Fe-Fe bond lengths are shown, where the
shorter bond is in orange, and the longer bond is in green. (b) A Sn-only layer viewed along the
c-axis, where the Sn atoms are arranged on a honeycomb lattice. (c) An Fe-Sn layer viewed along
the c-axis, showing the breathing kagome lattice made up of Fe atoms. The axes labels for (c) are
the same as in (b), and the parallelogram outlined by a solid black line for both panels represents
the unit cell. (d) Magnetization measurements taken at 770 K (solid lines) and 600 K (dashed lines).
The samples show no signs of coercivity as the sweep down in field (blue lines) coincides with the
sweep up (orange lines) in field. (e) Zero-field cooled (ZFC) magnetic susceptibility measurement
taken in a 0.1 T applied magnetic field. The derivative (right axis) clearly shows the ferromagnetic
transition at TC ≈ 665 K. (f) Neutron powder diffraction data taken above the magnetic transition at
680 K. The data demonstrate the structure is consistent with that reported. The upper set of red tic
marks denote Fe3Sn2 Bragg peak positions and the lower set denote Al Bragg peak positions coming
from the sample canister. A few small impurity peaks were observed but not identified, and these
are marked by the * symbol.

Metallic kagome ferromagnets clearly exhibit elegant physics; however, they are
elusive with only two reported: Co3Sn2S2, a semimetal [9], and the aforementioned Fe3Sn2.
As alluded to thus far, the electronic structure has signatures of non-trivial topology, but
recently, Fe3Sn2 has garnered growing attention for the discovery of topologically non-
trivial spin textures. The observation of room temperature skyrmion bubbles [10] quickly
led to reports of nanostructured skyrmionic devices [11–14] and studies of the associated
properties such as the topological Hall effect [15–17] and skyrmion thermopower [18].
The space group of Fe3Sn2 is the centrosymmetric R3̄m, meaning the mechanism for
skyrmion bubble formation is not due to the conventional breaking of crystalline inversion
symmetry with Dzyaloshinshkii-Moriya interactions found in conventional B20 skyrmion
systems. Instead, topological magnetic structures in centrosymmetric systems are due to
the presence of anisotropy and/or frustration. The underlying source of each which is
needed to stabilize skyrmions has become widely studied in recent years. One common
model is the triangular lattice with frustrated Heisenberg antiferromagnetic exchange
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interactions. [19] Although the magnetic frustration alone was shown to lead to a skyrmion
phase, either lattice and/or spin anisotropy [20], particularly easy-axis anisotropy [21,22],
was shown to be helpful in stabilizing the skyrmions.

From a frustrated magnetism perspective, Fe3Sn2 has been of interest for quite some
time. Original neutron powder diffraction measurements indicated collinear ferromagnetic
order below the onset of magnetism at TC ≈ 660 K with moments oriented along the c-
axis [23]. A spin-reorientation transition to the ab-plane starting below 250 K was identified
and later measurements implied a slightly non-collinear structure was more likely starting
below 300 K [24] and that the spin-reorientation transition was actually first-order in nature
and occurs at ≈150 K [25,26]. The non-collinearity is thought to be due to frustrated
magnetic exchange, and would also explain the large anomalous Hall effect [5,27] and
possibly some of the temperature regimes where the topological Hall effect is observed if
the scaler spin chirality is finite. Bulk magnetic measurements have also shown Fe3Sn2
to be an extremely soft ferromagnet at all temperatures with no coercivity, implying any
easy-axis magnetic anisotropy must be very weak.

Here, we present our small-angle inelastic neutron scattering study of the magnetic
excitations in Fe3Sn2 between 480 K and 660 K and unambiguously show that no significant
spin wave gap is observed within experimental uncertainties between these temperatures.
Below 480 K, the spin stiffness parameter, D(T), becomes too large and the spin wave
full-width-at-half-maximum in energy, Γ(q), has narrowed to the point that the excitations
move outside our measurement window. However, our results show that down to at
least 480 K, Fe3Sn2 behaves as an ideal isotropic ferromagnet, and any onset of significant
magnetic anisotropy that may contribute to the topological spin textures must develop
below this point.

2. Materials and Methods

Polycrystalline samples of Fe3Sn2 were synthesized by solid state reaction. Stoichio-
metric amounts of Fe powder (Alfa Aesar 99+%) and Sn powder (Alfa Aesar 99.995%) were
mixed and pelletized. The pellet was sealed in a fused silica ampoule under vacuum. The
sealed ampoule was heated to 800 ◦C at the rate of 1 ◦C/hour and was kept at 800 ◦C for
1 week. After 1 week, the ampule at 800 ◦C was quenched into ice water. The pellet was
reground, re-pelletized, and sealed into the fused silica ampoule under vacuum and was
annealed at 800 ◦C for 1 week.

Magnetic measurements were performed on a piece of pressed pellet of Fe3Sn2 powder
employing a Quantum Design MPMS3 magnetometer with an oven heater stick between
300 K and 756 K.

Neutron powder diffraction (NPD) measurements were taken using the triple-axis
spectrometer, BT-7, at the NIST Center for Neutron Research [28]. A 17 g sample of
polycrystalline Fe3Sn2 was sealed in a cylindrical aluminum canister, which was mounted
inside a closed cycle refrigerator. Data were collected in two-axis mode using a position
sensitive detector and wavelength of 2.359 Å. Söller collimators of 50′ − 40′R were used
before and after the sample, respectively (where R indicates radial), and pyrolytic graphite
(PG) filters were employed both in the reactor beam and after the sample to suppress
higher order wavelength contributions. Data were refined using the Rietveld method and
the program, FullProf [29].

Inelastic neutron scattering data were also taken using BT-7 and the same 17 g sample
as in NPD. Two different small-angle inelastic neutron scattering configurations were
used in order to obtain data over a wider temperature range. For higher temperatures
(630 K to 660 K), PG(002) monochromator crystals with vertical focusing and PG(002)
analzyer crystals were used, and constant-Q scans were taken with a fixed incident energy
of 13.7 meV. Söller collimators of 10′ − 10′ − 10′ − 25′ were used before and after the
monochromator and before and after the analyzer, and the reactor beam PG filter was once
again employed. The vertical resolution was measured using a graphite crystal and found
to be 0.16 Å−1. For lower temperatures (480 K to 610 K), PG(004) monochromator crystals
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with vertical focusing and PG(004) analzyer crystals were used, and constant-Q scans were
taken with a fixed incident energy of 35 meV. A velocity selector in the reactor beam was
employed to suppress higher and lower order wavelengths. The same collimations as
the Ei = 13.7 meV experiment were used and the vertical resolution at this higher energy
was found to be 0.24 Å−1. The same scans taken at high temperatures were also taken
at much lower temperatures (300 K for the Ei = 13.7 meV experiment and 250 K for the
Ei = 35 meV experiment), and these data were used for background subtraction.

In the small-angle inelastic neutron scattering configuration, spin waves are probed in
the long-wavelength (i.e., small-q) limit, and the dispersion for a ferromagnet is

h̄ω(q) = Δ + D(T)q2, (1)

where Δ is any anisotropy gap and D(T) is the spin wave stiffness which in mean field
theory is proportional to the magnetization. The kinematic constraints for the scattering
severely restrict the range of energy transfers accessible, so that the spin waves can only be
observed if there is little to no anisotropy gap. The point in reciprocal space where the spin
waves are being probed can be viewed by the schematic in Figure 2a. Here, a parabolic
dispersion about Q = 0 and energy transfer, E = 0, is shown. About this point, the
dispersion of an isotropic ferromagnet powder sample is identical to that of a single crystal.
Similar experiments on amorphous alloys [30] and powder samples of manganites [31]
have been widely used to establish their isotropic nature.

Figure 2. (a) A three-dimensional schematic of an isotropic parabolic spin wave dispersion near
Q = 0 and energy transfer, E = 0. The dispersion is shown as the orange surface, and dashed blue
lines show the direction of constant-Q scans cutting through the dispersion surface along E. (b) A
two-dimensional schematic demonstrating how the experiment captures the intensity from the spin
wave excitations. The orange solid line represents the dispersion, h̄ω(q) = Δ + D(T)q2, and the
surrounding blue surface represents the full-width-at-half-maximum of the spread in energy of the
dispersion, Γ(q), due to thermally induced magnon-magnon interactions. Dashed blue lines are
examples of constant-Q scans made in the experiment. Overlayed on these lines are the instrumental
resolution ellipses, R(Q, E), along Q = 0.07 Å−1 and 0.11 Å−1. The left panel uses the refined values
for the dispersion from the actual data at T = 580 K in the Ei = 35 meV experiment. The right panel
uses the same parameters, but increased the gap to be 0.5 meV in order to demonstrate the sensitivity
of the technique to the size of the gap. Here, the scans performed during the experiment wouldn’t
be able to reach the signal of the spin waves. (c) The actual data at T = 580 K in the Ei = 35 meV
experiment. The solid orange lines are the refined fits to the data, shown as blue circles. The three
constant-Q scans are vertically offset from one another for clarity.
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One advantage of studying the spin waves in the long-wavelength limit (i.e., about
Q = 0) is that the instrumental resolution is focused on both the energy gain and energy loss
side, unlike with a Bragg point where there is a focused and de-focused side. More details
on the resolution function in the small-angle limit can be found in Ref. [32] The intensity
detected in a neutron scattering experiment represents a convolution of the instrumental
resolution, R(Q, E), and the scattering function, S(q, h̄ω), making it necessary to include
the convolution when analyzing the data. Using the Cooper-Nathans approximation for
the resolution, we used the program ResLib [33] to fit each set of data (where a set of data
consists of all the constant-Q scans at a single temperature) to the scattering function,

S(q, h̄ω) ∝ F(q, h̄ω)
h̄ω

1 − e−h̄ω/kBT , (2)

where F(q, h̄ω) is the spectral weight function, kB is the Boltzmann constant, and T is the
temperature. At finite temperatures, magnon-magnon interactions lead to damping effects
in energy for the spin waves. For Heisenberg ferromagnets below TC, and in the energy
regime h̄ω � kBT, the excitation width in energy has been calculated [34] as

Γ(q) ∝ q4T2
{

1
6

ln2
(

kBT
h̄ω

)
+

5
9

ln
(

kBT
h̄ω

)
− 0.05

}
. (3)

The shape of the broadening in energy is approximated using a Lorentzian function as
the spectral weight function, F(q, h̄ω), centered about h̄ω(q), with Γ(q) as the full-width-
at-half maximum.

3. Results

3.1. Characterization

Figure 1d shows the magnetization both above (770 K) and below (600 K) the ferromag-
netic transition temperature. No coercivity was observed for either temperature, meaning
Fe3Sn2 is a soft ferromagnet. Figure 1e shows the magnetic susceptibility as a function of
temperature at an applied magnetic field of 0.1 T. The derivative of the susceptibility with
respect to temperature shows the ferromagnetic transition to be ≈665 K, which is consistent
with previous reports that show the Curie temperature to vary anywhere between 640 K
and 660 K [5,16,24].

The observed NPD profile and Rietveld refined fit are shown in Figure 1f. The data
were taken at 680 K and confirm the structure to be Fe3Sn2 with refined lattice parameters
of a = b = 5.3787 ± 0.0004 Å and c = 19.863 ± 0.002 Å. The refined atomic positions for
Fe are x/a = 0.4940 ± 0.0004, y/b = 0.5060 ± 0.0004, and z/c = 0.1132 ± 0002. The Sn
positions are z/c = 0.1039 ± 0.0007 and z/c = 0.3318 ± 0.0007 for the Sn1 and Sn2 sites,
respectively. The isotropic thermal parameters (B) were refined to 0.8± 0.1 Å2, 4.1 ± 0.5 Å2,
and 2.6± 0.4 Å2 for the Fe, Sn1, and Sn2 sites, respectively. There were three small impurity
peaks in the pattern that were unable to be identified. They are marked with an * in
Figure 1f.

3.2. Inelastic Neutron Scattering

We first demonstrate the sensitivity of the small-angle inelastic scattering configuration
to the size of the gap in order to discern between isotropic and anisotropic ferromagnets. A
schematic of a dispersion following Equation (1) near Q = 0 is shown in Figure 2a. The
neutron scattering plane is defined by two arbitrary orthogonal vectors, qx and qy, and
constant-Q cuts are shown as blue dashed lines to show how the experimental scans can
cut through the dispersion along energy, E.

Each temperature set of constant-Q scans was fit globally to obtain the spin wave
parameters, and the parameters for T = 580 K were used to create Figure 2b. The spin
stiffness parameter was found to be D(T = 580 K) = 135 ± 3 meV Å2 and the gap,
Δ = 0.09 ± 0.02 meV, where the uncertainties throughout represent one standard deviation
due to statistical counting. These parameters were used to create the solid orange line
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representing h̄ω(q). We note that even for an ideal isotropic spin system a small dipolar
gap is expected due to ferromagnetic magnetization. The full-width-at-half-maximum of
the spin waves in energy, Γ(q), is shown as the shaded blue region following Equation (3),
and the instrumental resolution, R(q, E), is shown as black ellipses. The maxima and
minima of the ellipses along energy represent the allowed scan region which satisfies the
required conservation of momentum and energy represented by the scattering triangle
(i.e., scanning farther in energy is not possible). Two representative constant-Q scans are
shown as dashed blue lines at 0.07 Å−1 and 0.11 Å−1, and with the small gap of 0.09 meV,
the center of the instrumental resolution ellipses for both scans is able to pass over the
peak of the dispersion on the energy gain and loss sides. This is not possible if the gap is
increased to 0.5 meV, as shown in the right panel of Figure 2b (all other parameters from
the T = 580 K fit were fixed). The actual data from T = 580 K are shown in Figure 2c as
blue circles and the fits are shown as solid orange lines.

The spin stiffness parameter, D(T), was extracted from the fits for each tempera-
ture and is shown in Figure 3. The dashed line is a power law fit to the data: D(T) =

D0

(
TC−T

TC

)ν−β
, where D0 = 271 ± 9 meV Å2, TC = 662.4 ± 0.8 K, and ν − β = 0.34 ± 0.02.

The solid line is a fit to the Dyson formalism of two spin-wave interactions in a Heisenberg

ferromagnet, where D(T) = D0

[
1 − A

(
kBT

4πD0

)5/2
ζ
( 5

2
)]

, ζ
( 5

2
)

is the Riemann integral and

A is a constant proportional to the interaction range [35]. The T5/2 temperature dependence
is not valid near the critical regime, and only the lowest four temperatures were used in
the fit, resulting in D0 = 231 ± 7 meV Å2.

The gap was not found to have any meaningful temperature dependence, ranging
between 0.06 meV and 0.09 meV, and was the same within plus or minus one standard
deviation. It should also be noted that the instrumental resolution in energy for the scans
taken is on the order of these values (see Figure 2b), meaning the exact fitted value for the
gap is not well-defined. For example, in the Ei = 13.7 meV experiment, the resolution in
energy at Q = 0.07 Å−1 and E = 0 meV is 0.29 meV, and at E = 0.6 meV the resolution is
0.07 meV.

Figure 3. The temperature dependence of the spin wave stiffness parameter, D(T). Data from both
the Ei = 13.7 meV and Ei = 35 meV experiments were included in the power law fit, D(T) =

D0

(
TC−T

TC

)ν−β
, shown as the dashed line. Only the lowest four temperatures were used in the Dyson

fit, D(T) = D0

[
1 − A

(
kBT

4πD0

)5/2
ζ
(

5
2

)]
, shown as the solid line.

4. Discussion

The temperature renormalization of the spin stiffness for Heisenberg ferromagnets is
expected to follow a power law on approach to TC with the critical exponents ν − β = 0.34 [36],
which is the exponent found in this study, further showing that magnetically, Fe3Sn2 is a
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typical exchange ferromagnet at elevated temperatures. In fact, the ν − β exponent from
the power law fit is strikingly similar to those for elemental Fe [37] (ν − β = 0.37) and
Ni [38] (ν − β = 0.39), in addition to the amorphous iron magnets already mentioned in
Ref. [30], using the same technique. We remark that the TC of 631 K for Ni is comparable
to Fe3Sn2, but the spin stiffness of D = 550 meV Å2 in the ground state of this itinerant
magnet is much larger [39]. However, the extrapolation of D(T) to T = 0 K for Fe3Sn2
using the power law fit is likely over estimated due to its validity only near TC. The value
of D(T = 0 K) = 231 ± 7 meV Å2 using the Dyson formalism is a better estimate of the
ground state spin stiffness, although the limited temperature range accessible in this study
still results in a large extrapolation window.

All ferromagnets have a gap due to the magnetic dipole-dipole interaction between
different atoms [40]. This gap is typically small and often out of the range of resolu-
tion for inelastic neutron scattering experiments. The dipole-dipole interaction or resolu-
tion/instrumental alignment effects are both probable reasons for the observation of a small
gap in this study (on the order of 0.06 meV to 0.09 meV), which is quite small compared to
the exchange energy rendering Fe3Sn2 an isotropic ferromagnet to an excellent approxima-
tion. However, the magnetic anisotropy energy due to magnetocrystalline anisotropy was
recently calculated to be close to our gap value, at 0.037 meV per Fe atom for the ground
state when the easy-axis and spins are oriented within the kagome plane [41]. The ground
state for which this value was calculated, though, is in a different temperature regime and
spin configuration than that of the present experiment, so it is unclear whether the gap
observed is solely due to magnetic anisotropy energy coming from dipolar interactions
and/or magnetocrystalline effects.

We now discuss the meaning surrounding the term “anisotropy” in our discussion.
Previous studies have cited the uniaxial anisotropy in Fe3Sn2 as one of the necessary in-
gredients for the formation of the topologically protected skyrmionic bubbles [10], and
many of the centrosymmetric skyrmion systems discovered thus far are well-known to
be a result of competition between frustrated magnetic exchange and spin anisotropy [21,22].
Unsurprisingly, measurements of the anisotropy energy density, Ku, have therefore been
published [11,14,15] and show that the onset of a magnetic anisotropy precedes the tem-
peratures at which the skyrmion bubbles are found. However, anisotropy can range from
preferred orientation of a spin—which all ordered crystalline magnets have—to an appre-
ciable energy required to pull spins away from a preferred direction. As a soft ferromagnet,
Fe3Sn2 falls into the former category and can be considered an isotropic ferromagnet
in accordance with our results. This is in contrast to the large anisotropies required for
permanent magnet devices for magnetostatic energy storage [42]. In fact, one of the appeal-
ing properties of skyrmion-based devices may be that the weak anisotropy requirements
open up the field for potential skyrmion candidate materials, especially when considering
inducing small anisotropies into materials via doping is quite common.

An example of a system that internally tunes its anisotropy is Nd2Fe14B, a hard
uniaxial ferromagnet used in permanent magnet applications but also exhibits a spin-
reorientation transition such as that in Fe3Sn2. It was found that the rotating spins act
to tune the overall anisotropy in the system [43], although in contrast with Fe3Sn2, the
anisotropy is due to the lanthanide crystal field effect. It is also instructive to recall that spin
anisotropy is not required for skyrmion formation in inversion symmetric systems [19,20],
although these theories have not been specifically applied yet to Fe3Sn2. Another metallic
breathing kagome lattice to host a skyrmion spin texture is Gd3Ru4Al12 [44]. In contrast to
Fe3Sn2, the ordered magnetic state is antiferromagnetic and a weak anisotropy is of the
easy-plane type. Future work on either of these kagome materials to directly probe the
anisotropy gap in proximity to the skyrmion phases would be of interest to explore the role
of the anisotropy versus magnetic exchange frustration. Inelastic neutron scattering can
be used to achieve this below the temperatures accessible in the work presented here but
would require a comparable mass of co-aligned single crystals and sub-meV instrumental
resolution in a wide-angle scattering experiment.

89



Crystals 2021, 11, 307

Author Contributions: Material synthesis, N.J.G. and N.B.; Magnetization measurements, D.P.;
neutron experiment design, J.W.L. and R.L.D.; neutron experiment analysis, J.W.L. and R.L.D.;
writing—original draft preparation, R.L.D.; writing—review and editing, J.W.L., R.L.D., D.P., and
N.J.G. All authors have read and agreed to the published version of the manuscript.

Funding: Synthesis and characterization work (N.J.G.) were supported by the U.S. Department
of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division.
Work in the Materials Science Division at Argonne National Laboratory was supported by the U.S.
Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering
Division.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is available upon request to the corresponding author.

Conflicts of Interest: The identification of any commercial product or trade name does not imply
endorsement or recommendation by the National Institute of Standards and Technology. The authors
declare no conflict of interest. The funders had no role in the design of the study; in the collection,
analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish
the results.

References

1. Guo, H.M.; Franz, M. Topological insulator on the kagome lattice. Phys. Rev. B 2009, 80, 113102. [CrossRef]
2. Mazin, I.; Jeschke, H.O.; Lechermann, F.; Lee, H.; Fink, M.; Thomale, R.; Valentí, R. Theoretical prediction of a strongly correlated

Dirac metal. Nat. Commun. 2014, 5, 1–7. [CrossRef] [PubMed]
3. Kang, M.; Ye, L.; Fang, S.; You, J.S.; Levitan, A.; Han, M.; Facio, J.I.; Jozwiak, C.; Bostwick, A.; Rotenberg, E.; et al. Dirac fermions

and flat bands in the ideal kagome metal FeSn. Nat. Mater. 2020, 19, 163–169. [CrossRef]
4. Ye, L.; Kang, M.; Liu, J.; Von Cube, F.; Wicker, C.R.; Suzuki, T.; Jozwiak, C.; Bostwick, A.; Rotenberg, E.; Bell, D.C.; et al. Massive

Dirac fermions in a ferromagnetic kagome metal. Nature 2018, 555, 638–642. [CrossRef] [PubMed]
5. Wang, Q.; Sun, S.; Zhang, X.; Pang, F.; Lei, H. Anomalous Hall effect in a ferromagnetic Fe3Sn2 single crystal with a geometrically

frustrated Fe bilayer kagome lattice. Phys. Rev. B 2016, 94, 075135. [CrossRef]
6. Karplus, R.; Luttinger, J.M. Hall Effect in Ferromagnetics. Phys. Rev. 1954, 95, 1154–1160. [CrossRef]
7. Lin, Z.; Choi, J.H.; Zhang, Q.; Qin, W.; Yi, S.; Wang, P.; Li, L.; Wang, Y.; Zhang, H.; Sun, Z.; et al. Flatbands and Emergent

Ferromagnetic Ordering in Fe3Sn2 Kagome Lattices. Phys. Rev. Lett. 2018, 121, 096401. [CrossRef] [PubMed]
8. Malaman, B.; Roques, B.; Courtois, A.; Protas, J. Structure cristalline du stannure de fer Fe3Sn2. Acta Crystallogr. Sect. B 1976,

32, 1348–1351. [CrossRef]
9. Vaqueiro, P.; Sobany, G.G. A powder neutron diffraction study of the metallic ferromagnet Co3Sn2S2. Solid State Sci. 2009,

11, 513–518. doi:10.1016/j.solidstatesciences.2008.06.017. [CrossRef]
10. Hou, Z.; Ren, W.; Ding, B.; Xu, G.; Wang, Y.; Yang, B.; Zhang, Q.; Zhang, Y.; Liu, E.; Xu, F.; et al. Observation of Various and

Spontaneous Magnetic Skyrmionic Bubbles at Room Temperature in a Frustrated Kagome Magnet with Uniaxial Magnetic
Anisotropy. Adv. Mater. 2017, 29, 1–8. [CrossRef]

11. Tang, J.; Kong, L.; Wu, Y.; Wang, W.; Chen, Y.; Wang, Y.; Li, J.; Soh, Y.; Xiong, Y.; Tian, M.; et al. Target Bubbles in Fe3Sn2
Nanodisks at Zero Magnetic Field. ACS Nano 2020, 14, 10986–10992. [CrossRef]

12. Hou, Z.; Zhang, Q.; Xu, G.; Zhang, S.; Gong, C.; Ding, B.; Li, H.; Xu, F.; Yao, Y.; Liu, E.; et al. Manipulating the Topology of
Nanoscale Skyrmion Bubbles by Spatially Geometric Confinement. ACS Nano 2019, 13, 922–929. [CrossRef]

13. Hou, Z.; Zhang, Q.; Zhang, X.; Xu, G.; Xia, J.; Ding, B.; Li, H.; Zhang, S.; Batra, N.M.; Costa, P.M.F.J.; et al. Current-Induced
Helicity Reversal of a Single Skyrmionic Bubble Chain in a Nanostructured Frustrated Magnet. Adv. Mater. 2020, 32, 1904815.
doi:10.1002/adma.201904815. [CrossRef]

14. Hou, Z.; Zhang, Q.; Xu, G.; Gong, C.; Ding, B.; Wang, Y.; Li, H.; Liu, E.; Xu, F.; Zhang, H.; et al. Creation of Single Chain of
Nanoscale Skyrmion Bubbles with Record-High Temperature Stability in a Geometrically Confined Nanostripe. Nano Lett. 2018,
18, 1274–1279. [CrossRef]

15. Li, H.; Ding, B.; Chen, J.; Li, Z.; Hou, Z.; Liu, E.; Zhang, H.; Xi, X.; Wu, G.; Wang, W. Large topological Hall effect in a geometrically
frustrated kagome magnet Fe3Sn2. Appl. Phys. Lett. 2019, 114, 192408. [CrossRef]

16. O’Neill, C.D.; Wills, A.S.; Huxley, A.D. Possible topological contribution to the anomalous Hall effect of the noncollinear
ferromagnet Fe3Sn2. Phys. Rev. B 2019, 100, 174420. [CrossRef]

17. Wang, Q.; Yin, Q.; Lei, H. Giant topological Hall effect of ferromagnetic kagome metal Fe3Sn2. Chin. Phys. B 2020, 29, 017101.
[CrossRef]

18. Du, Q.; Han, M.G.; Liu, Y.; Ren, W.; Zhu, Y.; Petrovic, C. Room-Temperature Skyrmion Thermopower in Fe3Sn2. Adv. Quantum
Technol. 2020, 3, 2000058. doi:10.1002/qute.202000058. [CrossRef]

90



Crystals 2021, 11, 307

19. Okubo, T.; Chung, S.; Kawamura, H. Multiple-q States and the Skyrmion Lattice of the Triangular-Lattice Heisenberg Antiferro-
magnet under Magnetic Fields. Phys. Rev. Lett. 2012, 108, 017206. [CrossRef] [PubMed]

20. Hayami, S.; Lin, S.Z.; Batista, C.D. Bubble and skyrmion crystals in frustrated magnets with easy-axis anisotropy. Phys. Rev. B
2016, 93, 184413. [CrossRef]

21. Leonov, A.; Mostovoy, M. Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet. Nat. Commun.
2015, 6, 1–8. [CrossRef] [PubMed]

22. Lin, S.Z.; Hayami, S. Ginzburg-Landau theory for skyrmions in inversion-symmetric magnets with competing interactions. Phys.
Rev. B 2016, 93, 064430. [CrossRef]

23. Malaman, B.; Fruchart, D.; Caer, G.L. Magnetic properties of Fe3Sn2. II. Neutron diffraction study (and Mossbauer effect). J. Phys.
Met. Phys. 1978, 8, 2389–2399. [CrossRef]

24. Fenner, L.A.; Dee, A.A.; Wills, A.S. Non-collinearity and spin frustration in the itinerant kagome ferromagnet Fe3Sn2. J. Phys.
Condens. Matter 2009, 21, 452202. [CrossRef]

25. Kumar, N.; Soh, Y.; Wang, Y.; Xiong, Y. Magnetotransport as a diagnostic of spin reorientation: Kagome ferromagnet as a case
study. Phys. Rev. B 2019, 100, 214420. [CrossRef]

26. Heritage, K.; Bryant, B.; Fenner, L.A.; Wills, A.S.; Aeppli, G.; Soh, Y.A. Images of a First-Order Spin-Reorientation Phase Transition
in a Metallic Kagome Ferromagnet. Adv. Funct. Mater. 2020, 30, 1909163. doi:10.1002/adfm.201909163. [CrossRef]

27. Kida, T.; Fenner, L.A.; Dee, A.A.; Terasaki, I.; Hagiwara, M.; Wills, A.S. The giant anomalous Hall effect in the ferromagnet
Fe3Sn2—A frustrated kagome metal. J. Phys. Condens. Matter 2011, 23, 112205. [CrossRef]

28. Lynn, J.; Chen, Y.; Chang, S.; Zhao, Y.; Chi, S.; Ratcliff, W. Double-focusing thermal triple-axis spectrometer at the NCNR. J. Res.
NIST 2012, 117, 61. [CrossRef]

29. Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B 1993,
192, 55–69. doi:10.1016/0921-4526(93)90108-I. [CrossRef]

30. Lynn, J.W.; Fernandez-Baca, J.A. Neutron Scattering Studies of the Spin Dynamics of Amorphous Alloys. In The Magnetism of
Amorphous Metals And Alloys; Ching, W.Y., Fernandez-Baca, J.A., Eds.; World Scientific Publishing Company: Singapore, 1995;
Chapter 5, pp. 221–260.

31. Lynn, J.W.; Erwin, R.W.; Borchers, J.A.; Huang, Q.; Santoro, A.; Peng, J.L.; Li, Z.Y. Unconventional Ferromagnetic Transition in
La1−xCaxMnO3. Phys. Rev. Lett. 1996, 76, 4046–4049. [CrossRef]

32. Mitchell, P.W.; Cowley, R.A.; Higgins, S.A. The resolution function of triple-axis neutron spectrometers in the limit of small
scattering angles. Acta Crystallogr. Sect. A 1984, 40, 152–160. [CrossRef]

33. Zheludev, A. ResLib v3.4c. 2009. Available online: https://neutron.ethz.ch/Methods/reslib.html (accessed on 15 January 2021).
34. Harris, A.B. Energy Width of Spin Waves in the Heisenberg Ferromagnet. Phys. Rev. 1968, 175, 674–679; Erratum in 1969,

184, 606–606. [CrossRef]
35. Mattis, D.C. The Theory of Magnetism I: Statics and Dynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany,

2012; Volume 17.
36. Collins, M.F. Magnetic Critical Scattering; Oxford University Press: Oxford, UK, 1989.
37. Collins, M.F.; Minkiewicz, V.J.; Nathans, R.; Passell, L.; Shirane, G. Critical and Spin-Wave Scattering of Neutrons from Iron. Phys.

Rev. 1969, 179, 417–430. [CrossRef]
38. Minkiewicz, V.J.; Collins, M.F.; Nathans, R.; Shirane, G. Critical and Spin-Wave Fluctuations in Nickel by Neutron Scattering.

Phys. Rev. 1969, 182, 624–631. [CrossRef]
39. Lynn, J.; Mook, H. Temperature dependence of the dynamic susceptibility of nickel. Phys. Rev. B 1981, 23, 198. [CrossRef]
40. Holstein, T.; Primakoff, H. Field Dependence of the Intrinsic Domain Magnetization of a Ferromagnet. Phys. Rev. 1940,

58, 1098–1113. [CrossRef]
41. Lin, Z.Z.; Chen, X. Tunable Massive Dirac Fermions in Ferromagnetic Fe3Sn2 Kagome Lattice. Phys. Status Solidi-(Rrl) Rapid Res.

Lett. 2020, 14, 1900705. doi:10.1002/pssr.201900705. [CrossRef]
42. Skomski, R.; Coey, J. Magnetic anisotropy—How much is enough for a permanent magnet? Scr. Mater. 2016, 112, 3–8.

doi:10.1016/j.scriptamat.2015.09.021. [CrossRef]
43. Xiao, Y.; Morvan, F.J.; He, A.N.; Wang, M.K.; Luo, H.B.; Jiao, R.B.; Xia, W.X.; Zhao, G.P.; Liu, J.P. Spin-reorientation transition

induced magnetic skyrmion in Nd2Fe14B magnet. Appl. Phys. Lett. 2020, 117, 132402. [CrossRef]
44. Hirschberger, M.; Nakajima, T.; Gao, S.; Peng, L.; Kikkawa, A.; Kurumaji, T.; Kriener, M.; Yamasaki, Y.; Sagayama, H.; Nakao, H.;

et al. Skyrmion phase and competing magnetic orders on a breathing kagomé lattice. Nat. Commun. 2019, 10, 1–9. [CrossRef]
[PubMed]

91





crystals

Article

Fractional Power-Law Intraband Optical Conductivity in the
Low-Dimensional Dirac Material CaMnBi2

M. B. Schilling 1, C. X. Wang 2, Y. G. Shi 2, R. K. Kremer 3, M. Dressel 1 and A. V. Pronin 1,*

Citation: Schilling, M.B.; Wang, C.X.;

Shi, Y.G.; Kremer, R.K.; Dressel, M.;

Pronin, A.V. Fractional Power-Law

Intraband Optical Conductivity in the

Low-Dimensional Dirac Material

CaMnBi2. Crystals 2021, 11, 428.

https://doi.org/10.3390/

cryst11040428

Academic Editor: Andreas Hermann

Received: 30 March 2021

Accepted: 13 April 2021

Published: 16 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Physikalisches Institut, Universität Stuttgart, 70569 Stuttgart, Germany; micha.physiker@gmx.de (M.B.S.);
martin.dressel@pi1.physik.uni-stuttgart.de (M.D.)

2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of
Sciences, Beijing 100190, China; cxwang@iphy.ac.cn (C.X.W.); ygshi@iphy.ac.cn (Y.G.S.)

3 Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart, Germany; rekre@fkf.mpg.de
* Correspondence: artem.pronin@pi1.physik.uni-stuttgart.de

Abstract: We studied the broadband optical conductivity of CaMnBi2, a material with two-dimensional
Dirac electronic bands, and found that both components of the intraband conductivity follow a uni-
versal power law as a function of frequency at low temperatures. This conductivity scaling differs
from the Drude(-like) behavior, generally expected for free carriers, but matches the predictions for
the intraband response of an electronic system in a quantum critical region. Since no other indications
of quantum criticality are reported for CaMnBi2 so far, the cause of the observed unusual scaling
remains an open question.

Keywords: Dirac materials; optical-conductivity scaling; topological semimetals

1. Introduction

CaMnBi2 and its sister compound SrMnBi2 are some of the first materials in which
bulk electronic bands with Dirac-like dispersion were experimentally confirmed [1,2]. Both
materials are arranged in layers with square nets of Bi atoms (space group P4/nmm). The
materials are believed to possess two-dimensional Dirac bands that are anisotropic and
slightly gapped due to spin-orbit coupling [1–5]. The materials have antiferromagnetic
in-plane ordering of Mn ions with Néel temperatures between 270 and 290 K [1,3,6,7]. In
CaMnBi2, another transition at Ts ≈ 50 K was detected by various experimental techniques
including transport [2,3,8,9], magnetoresistance [2], susceptibility [3], thermopower [8], and
optical [10,11] measurements. The signatures of Ts are often tiny and not always resolved
in DC transport [6]. No indications of a phase transition were detected in specific-heat [3]
and neutron measurements [7]. The anomaly at Ts was first tentatively attributed to either
weak ferromagnetic order [2] or spin canting [3]. Based on optical and magnetic torque
measurements in combination with band-structure calculations, Yang et al. [11] recently
concluded on a spin-canting-induced band reconstruction at Ts, therefore clarifying the
nature of this transition. In this paper, we report on the optical conductivity measurements
in CaMnBi2. Below Ts, we found an unusual scaling of its intraband conductivity. This
scaling was previously attributed to manifestations of quantum criticality. Hence, it might
be an indication of quantum criticality in CaMnBi2, although other explanations cannot be
excluded.

2. Materials and Methods

Sample growth and characterization: single crystals of CaMnBi2 were grown using
a self-flux method similar to that described previously [6]. Elementary Ca (99.99%), Mn
(99.9%), and Bi (99.99%) were mixed in the molar ratio Ca:Mn:Bi = 1:1:8 and put into an
alumina tube before sealing it in a quartz tube. The mixture was heated up to 800 ◦C
during 10 h, kept at this temperature for 5 h, then slowly cooled down to 450 ◦C at a
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rate of 3 ◦C/h. The excess Bi flux was decanted at this temperature in a centrifuge. As
CaMnBi2 is somewhat air-sensitive, its handling was carried out in an inert gas atmosphere.
The obtained samples were carefully characterized by X-ray, transport, magnetic, and
specific-heat measurements as described in the Appendix A.

Optical measurements: the near-normal-incidence optical reflectivity R(ν) was mea-
sured from a large (roughly 2 by 3 mm) (001) surface of a CaMnBi2 crystal at a num-
ber of temperatures between 10 to 300 K over a broad frequency range from ν = 50 to
22,000 cm−1 (≈6 meV–2.75 eV) using two Fourier-transform spectrometers (Bruker IFS
113v and Bruker Vertex 80v equipped with a Hyperion IR microscope (all three devices are
from Bruker Corporation, Billerica, MA, USA)). At low frequencies, an in situ gold evapora-
tion technique was utilized for reference measurements. For frequencies above 1000 cm−1,
gold and protected silver mirrors served as references. The complex optical conductivity,
σ(ν) = σ1(ν) + iσ2(ν), was obtained using Kramers–Kronig transformations. The high-
frequency range was extended by involving the X-ray atomic scattering functions for
high-frequency extrapolations [12]. The results of the four-point DC resistivity measure-
ments were used for the low-frequency extrapolations. To avoid possible surface oxidation,
all measurements were performed on freshly cleaved surfaces.

3. Results

The results of our optical experiments are shown in Figures 1 and 2. All measurements
were obtained on (001) planes of CaMnBi2 (in-plane response). Let us note here that,
although the in-plane Dirac bands of CaMnBi2 are known to be highly anisotropic [4,5], this
band anisotropy is not expected to be seen in the linear optical response because of the four-
fold in-plane symmetry. Indeed, our polarization-dependent reflectivity measurements do
not reveal any optical anisotropy. Hence, we discuss the measurements performed with
unpolarized light throughout the paper.

Figure 1. Frequency-dependent in-plane reflectivity R(ν) (panels (a,b)) and the real part of the
optical conductivity σ1(ν) (panel (c)) of CaMnBi2 for select temperatures between 10 and 300 K. The
development of a dip in R(ν) and a bump in σ1(ν) at around 1500 cm−1 (≈200 meV) is clearly seen at
T < 50 K and marked with the arrow in panel (c). Note the change in frequency scale at 8000 cm−1.
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Figure 2. Scaling of the intraband complex optical conductivity in CaMnBi2. The real (panel (a)) and imaginary (panel (b))
parts of the optical conductivity follow the Drude behavior for T > Ts ~ 50 K and scale as 1/ω0.5 at low temperatures. The
conductivity angle ϕ (panel (c)) is almost constant at these temperatures, while it increases quasi-linearly in the Drude case.

The obtained broadband optical spectra as functions of frequency are shown in
Figure 1. The interband part of the optical conductivity has been analyzed in Reference [11];
our experimental findings are in full agreement with these results. The goal of our paper is
to analyze the intraband low-energy response.

At low frequencies and for T > 50 K, the reflectivity R(ν) [ν = ω/(2π)] and both parts
of the complex conductivity are dominated by intraband electronic transitions and are
typically metallic: R(ν) approaches unity as ν diminishes, while σ1(ν) and σ2(ν) reveal
typical Drude behavior, as can be seen best from Figure 2a,b. The conductivity angle,
ϕ = arctan(σ2/σ1), is frequency dependent and follows the Drude model; see panel (c).

The low-energy interband transitions within the Dirac bands, which are known to
provide a power-law contribution to low-frequency σ1(ν) [13–17], are not seen in our
measurements. The low-frequency response of CaMnBi2 is completely dominated by free
carriers. This situation is, in fact, rather typical for different Dirac systems, in which the
Fermi level is situated far from the band crossings and/or the free-carrier contributions
from non-Dirac bands are significant [18–23].

At the spin-canting temperature Ts ≈ 50 K, dramatic changes occur in the optical
spectra. Apart from the formation of a low-frequency mode at approximately 200 meV
(Figure 2a,b) and a corresponding dip in reflectivity (Figure 1a) that were reported previ-
ously [10,11], the intraband absorption also drastically changes its shape. The single Drude
term is unable to describe the low-energy spectra. (Let us note that the two-Drude approach
used in Reference [11] is able to provide only a very rough description of the experimental
σ1(ω); see Figure 1b of Reference [11].) Instead, one can see that both components of the
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optical conductivity follow a power law. This power-law behavior is most apparent at low
temperatures: below 30 K. As evidenced from our fit, σ1(ω) and σ2(ω) both depend on
frequency as 1/ω0.5; this power law is shown as black solid lines in Figure 2a,b. This be-
havior of conductivity strongly differs from the conventional Drude response. In particular,
changes in the reactive part (σ2(ω)) are significant: instead of showing a broad maximum
(which corresponds to the scattering rate in the Drude case), σ2(ω) is now monotonic in
frequency. Furthermore, the pre-factors in the frequency dependencies of σ1(ω) and σ2(ω)
are identical, i.e., σ1 and σ2 are equal at a given frequency. This provides that ϕ = π/4.

4. Discussion

The strong non-Drude intraband response of CaMnBi2 is rather surprising. Free
electrons are generally expected to follow a Drude(-like) conductivity ansatz [24]. One
can notice that the conductivity scaling observed here was widely discussed in the past in
relation to quantum phase transitions (QPTs). The presence of a QPT leads to universal
power-law scaling behaviors of the response functions [25]. In particular, the frequency-
dependent complex conductivity should follow such a behavior. For the frequency region
where kBT < h̄ω, the conductivity can be a universal function of frequency [25]. In our
case, this inequality is fulfilled. Van der Marel et al. [26] argued that scale invariance,
causality, and time reversal symmetry require that, for a quantum critical system, the
complex conductivity in this frequency region follows:

σ(ω) = |σ(ω)|eiϕ(ω) = Cωγ−2eiπ(1−γ/2), (1)

where γ is a critical exponent and C is a constant. This ansatz implies that both σ1(ω) and
σ2(ω) depend on frequency as ωγ−2 and the phase ϕ is frequency independent and set
by the same exponent γ. If we apply Equation (1) to the recorded spectra of σ1 and σ2, we
find the critical exponent γ to be 3/2. According to the scaling analysis, this value of the
critical exponent should provide a frequency-independent value for the conductivity angle,
ϕ = π/4. As noticed above, this result indeed follows from our data.

Interestingly, the same optical conductivity scaling (with γ = 3/2) was theoretically
elaborated by Ioffe and Millis [27] in relation to a possible QPT in the superconducting
cuprates. Van der Marel [28] suggested a generalized form of this relation (with the
critical exponent not fixed at 3/2) that merges with a proposition of Anderson [29] for a
one-dimensional Luttinger liquid in the collision-less limit.

It should be noted that the Dirac bands in CaMnBi2 are two-dimensional (due to the
planar net of Bi atoms) and that they possess a very high anisotropy within this plane [4,5].
In fact, the electronic band structure can be viewed as a gapped dispersive nodal line in two
dimensions, with the Fermi velocity in one direction being much smaller than the Fermi
velocity in another one. It is known that the presence of a nodal line effectively reduces
the dimensionality of electronic transport [16,17,30]. This reduction can possibly occur in
CaMnBi2, leading to a quasi-one-dimensional situation and, eventually, to the realization
of a quantum critical state.

Certainly, the nature of the observed scaling has to be clarified in further theoretical
and experimental studies; the observed scaling is not necessarily related to quantum
criticality. The goal of this paper is to report this unusual conductivity behavior and to
suggest a possible explanation. Still, one can note that the possible quantum criticality in
CaMnBi2 (if it is confirmed) should likely be related to the magnetism in this system and,
particularly, to the spin-canting transition at Ts. This conclusion follows from the fact that
the observed conductivity scaling appears only below this temperature.

5. Conclusions

In summary, we performed broadband optical conductivity measurements of CaMnBi2
—a highly anisotropic material with two-dimensional nets of Bi atoms and anisotropic Dirac
bands. We detected the formation of a finite-frequency absorption mode at T < Ts = 50 K,
which is in agreement with previous studies. Most importantly, the optical response of
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itinerant electrons at these temperatures is not of the Drude type. Instead, it follows a
fractional power-law behavior, σ1(ω)~σ2(ω)~ω−0.5, that is similar to the behavior proposed
for quantum critical systems with the critical exponent γ = 3/2. These findings might
indicate that CaMnBi2 is in the vicinity of a quantum phase transition. More input from
the theory side and further experiments are necessary to confirm this proposition.
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Appendix A

Electronic transport and magnetic susceptibility: temperature-dependent DC re-
sistivity, ρ(T), was measured in a custom-made setup at temperatures down to 2 K. To
highlight the discussed feature in resistivity near Ts, we plot ρ(T) on an enlarged scale
in Figure A1a. To further confirm the Ts feature, we performed temperature-dependent
measurements of magnetic susceptibility, χ(T), at 2 T down to 10 K with a commercial
setup (MPMS, Quantum Design Inc., San Diego, CA, USA) based on a superconducting
quantum interference device. The results of these measurements are shown in Figure A1b.
To clearly observe the anomaly at Ts, we performed a polynomial fit of the χ(T) curve at
T > Ts and subtracted the fit from the experimental data. The value of Δχ(T) obtained in
this way is shown in Figure A1c. For T << Ts, Δχ(T) remains almost constant.

Heat-capacity measurements: heat capacity was measured as a function of tempera-
ture, employing the relaxation method (PPMS, Quantum Design Inc., San Diego, CA, USA).
The sample was attached with Apiezon N vacuum grease to the sapphire platform, and
the heat capacity of this platform (including the vacuum grease) was measured in advance
and then subtracted from the total heat capacity. Figure A1d displays our results of the
specific-heat measurements. The data reveal a small λ-type anomaly at 290 K, which is
associated with the antiferromagnetic ordering of Mn atoms. The Néel temperature is in
good agreement with that reported by Guo et al. [6] from neutron powder diffraction data
and is slightly higher than the findings in other reports [3,7]. The low-temperature Cp/T
data can be well fitted with a power law, Cp/T = γ + βT2 + δT4 + εT6, with the Sommerfeld
term γ = 6.78 mJ/(molK2). The higher powers of this polynomial represent the lattice
and magnon contributions. They are very small and amount to β = 0.00126(1) J/(molK4),
δ = 2.04(3) × 10−5 J/(molK6), and ε = −9.3(2) × 10−8 J/(molK8). Most importantly, Cp/T
is featureless at Ts and in agreement with a previous report [3].
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Figure A1. Characterization measurements of CaMnBi2. DC resistivity ρ(T) (a), magnetic susceptibility χ(T) (b), and the
deviation of χ(T) from its high-temperature behavior (c). The data in panels (a–c) are shown at the temperatures near Ts

to highlight the presence of a transition. Molar specific heat (d). The main frame shows a Sommerfeld plot (blue circles)
with a fit (red line) to a polynomial in T2 (see text). The insets provide an overview on a linear temperature scale and a
magnification around the 290 K anomaly. The unit cell volume is shown as a function of temperature in panel (e). The red
solid line represents a fit of the experimental data to Equation (A1) with the parameters given in the text. The inset displays
a section of the diffraction pattern (λ = 0.709319 Å) versus Bragg angle 2Θ and temperature. The Bragg reflections shown
are indexed as 200 at 18.15◦, 114 at 19.58◦, 105 at 20.60◦, 211 at 20.65◦, 203 at 21.30◦, and 212 at 21.63◦.

X-ray measurements: in order to check the structural aspect, we performed temperature-
dependent X-ray powder diffraction measurements at 295, 100, 50, 20, and 5 K. The X-ray
patterns were collected on a CaMnBi2 sample contained in a 0.3-mm diameter quartz glass
capillary under He exchange gas using Mo Kα1 radiation. Temperatures between 295 and
5 K were adjusted in a home-built cryostat. As revealed in Figure A1e, there are no visible
splittings or broadenings of the Bragg reflections, which would be indicative of a structural
phase transition. The tetragonal lattice parameters were obtained from Rietveld profile
refinements of the diffraction patterns assuming the space group P4/nmm (No. 129) and
the atom and lattice parameters reported by Brechtel et al. [31] as starting parameters. They
perfectly follow a simple Debye law:

V(T) = V0 + IvT
T

Θ3
D

∫ ΘD/T

0

x3

ex − 1
dx, (A1)
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with V0 = 223.58(3) Å, ΘD = 279(4) K, and Iv = 0.0130(7) Å (here, V0 is the unit-cell volume at
0 K, ΘD is the Debye temperature, and the pre-factor Iv is a linear function of the Grüneisen
parameter in the Debye approximation [32]). As seen from Figure A1e, no anomalies in the
thermal expansion, which could indicate a structural phase transition, were detected. This
is consistent with the absence of broadenings or splittings of the Bragg reflections. Thus,
any detectable structural transition at Ts is excluded.
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Abstract: We studied a non-interacting Λ/V-type dice model composed of three triangular sublattices.
By considering the isotropic nearest-neighbor hoppings and the next-nearest-neighbor hoppings
with the phase, as well as the quasi-staggered on-site potential, we acquired the full phase diagrams
under the different fillings of the energy bands. There are abundant topological non-trivial phases
with different Chern numbers C = ±1, as well as higher ones ±2,±3 and a metal phase in several
regimes. In addition, we also checked the bulk–edge correspondence of the system by analyzing the
edge-state energy spectrum.

Keywords: band structures; high Chern numbers; bulk-edge correspondence

1. Introduction

By means of an environment with a low temperature and strong magnetic field, Klitz-
ing et al. discovered the quantum Hall effect in 1980 [1]. This discovery kicked off a wave
of research on the quantum Hall effect, and a series of research on the topological features
of condensed matter was inspired in the following decades [2–4]. These types of condensed
matter are well classified according to their symmetry [5]. With these efforts, people have
found some new topological quantum matter [6–8] with a quantum anomalous Hall effect
(QAHE) [9], which releases the harsh condition of realizing a strong magnetic field.

A Chern insulator is a kind of insulator with QAHE that breaks the time-reversal
symmetry. Its topological features can be directly reflected by the topological invariant,
i.e., the Chern number (C). Thouless–Kohmoto–Nightingale–den Nijs (TKNN) first used
the Chern number to describe the topological properties of a two-dimensional system [10].
In a gapped system, when the Fermi energy lies in a bulk band gap, the Chern number is
always an integer and is equal to the quantized Hall conductance in units of e2/h [11–13].
Chern numbers can be used to distinguish whether or not a system has topological prop-
erties. In other words, C �= 0 (C = 0) corresponds to the topological nontrivial (trivial)
phase. Afterwards, by developing TKNN’s theory, Berry provided an alternative way to
calculate the topological invariant with the Berry gauge field in the Brillouin zone [14].
Interestingly, the Chern numbers are linked to gapless edge states, forming the so-called
bulk-edge correspondence [15]. The magnitude of the Chern number indicates the number
of edge states.

In 1988, Haldane first theoretically pioneered the idea of breaking the time-reversal
symmetry by applying a zero net magnetic flux through each unit cell in a hexagonal
lattice and engineered a topological nontrivial model with C = ±1, which is known as
the Haldane model [16]. This model opens a gate for people to study QAHE and has
more or less influenced other two-dimensional systems that appeared later, such as the
Checkerboard lattice [17], Kagomé lattice [18–21] and Lieb lattice [22–25]. Moreover, by
considering the long-range tunneling [26–28] or more a complex magnetic flux [29–31], one
can obtain the topological phase with a higher Chern number.

Recently, people have realized the Haldane model by trapping ultracold atoms in
an optical lattice formed by three standing-wave laser beams [32–34] or in a periodically
modulated optical honeycomb lattice [35]. In addition to these experiments, there have
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been several works about the dice model [30,31] with a nonzero phase in the process of
nearest-neighbor (NN) hoppings in the dice lattice [36–43]. In this paper, we will focus on
a non-interacting dice model with a nonzero phase in the next-nearest-neighbor (NNN)
term, but not in the NN term. We will consider a Λ/V-type on-site potential, which will
give us a more fruitful phase diagram and exciting topological phenomena.

By analyzing the dispersions of the bands, in this paper, we uncover that the system
possesses two different phases—a metal phase and bulk insulating phase, which are both in
the 1/3 filling and 2/3 filling cases. In the bulk insulating phase, the topological properties
are further investigated. After calculating the Chern number, we find that there is a
topological trivial phase with C = 0 and topological nontrivial phases with C = ±1,
C = ±2, and C = ±3, which are separated by the band-crossing lines. Then, we obtain the
full phase diagram and find that the metal phase and topological phases are symmetrically
distributed within the phases. The relative positions of these phases in the phase diagram
will be inverted when we change the filling from 2/3 to 1/3, or vice verse. Finally, we also
solve the edge-state spectrum and check the rule of bulk-edge correspondence.

This paper is organized as follows. In Section 2, we present the Hamiltonian of the dice
model in both real and momentum space. In Section 3, we first analyze the band structures
of the system. Next, we calculate the Chern numbers and numerically obtain the full phase
diagram. Further, we check the bulk-edge correspondence through the edge-state spectrum.
We summarize our work in the final section.

2. Model and Hamiltonian

Here, a non-interacting Λ/V-type dice model is studied, and it is shown in Figure 1.
There are three interpenetrating triangular sublattices, denoted by R (red dots), B (blue
dots), and G (green dots). The lattice constant a is set as a = 1. The Hamiltonian of our
model has three parts:

Ĥ = Ĥ1 + Ĥ2 + Ĥ3. (1)

The first part Ĥ1 shows the isotropic hoppings with the same hopping amplitudes
between nearest-neighbor sites, which pertain to various sublattices, and this part is
presented as

Ĥ1 = ∑
〈Ri ,Bj〉

t
(

ĉ†
Ri

ĉBj + H.c.
)

+ ∑
〈Ri ,G�〉

t
(

ĉ†
Ri

ĉG�
+ H.c.

)

+ ∑
〈Bj ,G�〉

t
(

ĉ†
Bj

ĉG�
+ H.c.

)
,

(2)

in which t denotes the hopping amplitude, and it is regarded as the unit of energy, ĉRi , ĉBj .
ĉG�

are the fermionic annihilation operators, and Ri, Bj, and G� denote the coordinates of
relevant sublattice sites R, B, and G, respectively. 〈· · · 〉 is the nearest-neighbor relation.

In the same R and B sublattices, we will consider the next-nearest-neighbor hoppings
accompanied by a phase. Then, Ĥ2 can be expressed as

Ĥ2 = ∑
〈Ri ,Rj〉

(
t2eiφ ĉ†

Ri
ĉRj

+ H.c.
)

+ ∑
〈Bi ,Bj〉

(
t2eiφ ĉ†

Bi
ĉBj

+ h.c.
)

,
(3)

in which t2e±iφ is the hopping amplitude, where φ is the phase, and ± represents the
direction of the hoppings (+ is the clockwise direction and − is the counterclockwise
direction). References [30–34,44,45] tell us that the hopping terms in our toy models can
be realized through laser-assisted tunneling. Moreover, the phase accompanied by the
tunneling can be modulated with the momentum recoil. We think that this method is
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helpful in selectively engineering such a phase in specific hopping terms in experiments.
At the very least, these are the most natural imperfections that may arise in the experimental
implementation of such a model.

Figure 1. (a) Geometry of the dice lattice. R, B, and G are sublattice sites, and are marked with red,
blue, and green dots respectively. The lattice constant a is taken as a = 1. The vectors an (n = 1, 2, 3)
link the nearest-neighbor sites that pertain to different sublattices. The vectors bn (n = 1, 2, 3) link the
nearest-neighbor R sites or B sites. The circle arrows represent the next-nearest-neighbor tunnelings
accompanied by a phase eiφ. (b) The first Brillouin zone of the model. Γ, K, and M are high-symmetry
points in the high-symmetry path, and are connected by three red dashed lines.

The final part describes the on-site potentials with a special configuration

Ĥ3 = Δ ∑
Ri

ĉ†
Ri

ĉRi
+ Δ ∑

Bi

ĉ†
Bi

ĉBi
− 2Δ ∑

Gi

ĉ†
Gi

ĉGi
, (4)

in which Δ denotes the potential at the R and B sublattice sites, and −2Δ is the potential
at the G sublattice sites. The configuration of the potential can be viewed as Λ/V-type
(Δ < 0/Δ > 0) of three levels in a super atom, which is composed of three sites and forms
a three-band model in the lattice case. This potential configuration differs from that in other
dice models [30,31] and can also be realized by tuning single-beam lattice depths [34,35].

We consider a system that has discrete translational symmetry; thus, the single-particle
Hamiltonian can be written in momentum space [46–48] as

Ĥ(k) = I(k) + d(k) ·�λ, (5)

where I(k) is a scalar, d(k) is a real vector with eight components, and�λ denotes a vector
consisting of Gell–Mann matrices [49]. As a matter of fact, the Chern number will not
be affected by the scalar I(k), and is only determined by d(k). In order to obtain the
Ĥ(k), we need to perform a discrete Fourier transformation on the three-component basis
(ĉk,R, ĉk,B, ĉk,G)

T :

ĉk,R =
1√
N

∑
Rj

e−ik·Rj ĉRj ,

ĉk,B =
1√
N

∑
Bj

e−ik·Bj ĉBj ,

ĉk,G =
1√
N

∑
Gj

e−ik·Gj ĉGj .

(6)
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After the derivation, we acquire the components of the vector d(k), which are pre-
sented as

d1 = d6 = d4 = ∑
n

t cos(k · an),

d2 = d7 = −d5 = ∑
n

t sin(k · an),

d3 = −2t2 sin φ ∑
n

sin(k · bn),

d8 =
√

3Δ +
2t2√

3
cos φ ∑

n
cos(k · bn),

(7)

in which the six-unit vectors an and bn (n = 1, 2, 3), which are shown in Figure 1a, are
listed as

a1 =

(
0
−1

)
, a2 =

1
2

(√
3

1

)
, a3 =

1
2

(−√
3

1

)
,

b1 =

(√
3

0

)
, b2 =

1
2

(−√
3

3

)
, b3 = −1

2

(√
3

3

)
.

(8)

3. Results and Discussion

3.1. Band Structures

To begin, we study the band structures of the model described by Equation (1). The
first Brillouin zone of this model is shown in Figure 1b, with Γ, K, and M being the high-
symmetry points [50]. Without loss of generality, in the following numerical calculation,
we set t = t2 = 1. With the known components of d(k) in Equation (7), we can diagonalize
Ĥ(k) and obtain its eigenvalues at each momentum k. According to this strategy, we finally
acquire the energy dispersions along the high-symmetry path Γ-K-M-Γ with different Δ
and phase φ.

As a matter of fact, the energy at each band has a maximal value or a minimal value
at a high-symmetry point. According to this obvious feature, we numerically analyze
the energy gap between two adjacent energy bands, and finally uncover that the system
consists of a bulk insulating phase and a metal phase. Figure 2 shows the metal–insulator
phase diagram at 1/3 filling, and Figure 3 shows that for 2/3 filling. The green dots, which
are marked as a, b, c, and d, are the four chosen typical parameter points. The terms 1/3
filling and 2/3 filling mean that the Fermi energies are selected to ensure that these three
bands are filled just enough by 1/3 and 2/3, respectively. There is no doubt that the system
is in the metal phase (surrounded by the blue solid line and marked by M) when the gap
is closed. The bulk insulating phase (marked by I) requires that the gap is be open. For
instance, when the parameter is tuned to the a point, the gap is closed at 1/3 filling and is
open at 2/3 filling. The consequence at the b point is the opposite of that at the a point. The
system remains gapless at the c point and remains gapped at the d point. It is worth noting
that the metal phase and bulk insulating phase are symmetrically distributed.

φ

Δ

φ

Δ

M

I

M

M

M

M

I

M

Figure 2. The metal-insulator phase diagrams in the cases of 1/3 filling (a) and 2/3 filling (b). M
refers to the metal phase and I refers to the bulk insulating phase. In each case, there are four chosen
typical points, a, b, c, and d, which are marked by green dots and are discussed in the main text.
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Intuitively, the dispersion curves at these four chosen parameter points, (Δa, φa),
(Δb, φb), (Δc, φc), and (Δd, φd), are plotted in Figure 3a–d, respectively. In these figures,
we choose two Fermi energies to ensure the 1/3 filling (black solid line) and the 2/3 filling
(black dashed line), respectively. In Figure 3a, because the top of the lowest band is higher
than the bottom of the middle band, the Fermi energy crosses the middle band and forms a
fully occupied lowest band and a partially occupied middle band. Accordingly, the system
presents a metallic property in the 1/3 filling case. If the Fermi energy is located at the
2/3 filling line, the middle band is fully occupied and the highest band is empty. Then, in
this case, the system will be in the bulk insulating phase. For the same reasons, one can
easily comprehend that the system is a band insulator at 1/3 filling and a metal at 2/3
filling in the case shown in Figure 3b. Moreover, in Figure 3c,d, the system is stable in the
metal phase and bulk insulating phase, respectively, no matter what the filling is. All of the
results agree with our metal–insulator phase diagrams in Figure 2.

Γ Γ Γ Γ

Γ Γ Γ Γ

Figure 3. Dispersions of the Λ/V-type dice model along the high-symmetry path Γ-K-M-Γ. (a) Δa =

−2, φa = −2.5, (b) Δb = 2, φb = 0.5, (c) Δc = −0.5, φc = 0.1, (d) Δd = −2, φd = 1.5. The red, blue,
and green solid lines show the dispersions. The lower Fermi energy (black dashed line) and higher
Fermi energy (black solid line) show the cases of 1/3 and 2/3 filling, respectively.

3.2. Chern Numbers and the Edge-State Spectrum

The nontrivial topological features of the Haldane model [16] and other dice mod-
els [30,31,43] motivate us to make it clear what topological phases exist in the bulk insulat-
ing region. According to the energy band theory [10,11,14], the n-th occupied band’s Chern
number is defined as a contour integral along the boundary of the first Brillouin zone,

Cn =
1

2π

∮
An(k) · dk, (9)

in which n ∈ {1, 2, 3} denotes the band index and An = −i〈ψn(k)|∇k|ψn(k)〉, with
|ψn(k)〉 being the associated eigenvector of Ĥ(k). The ascending order of n indicates the
band from the bottom to the top. The topological properties of this model can be reflected
by two quantities, i.e., C 1

3
and C 2

3
, which satisfy C 1

3
= C1 and C 2

3
= C1 + C2. We calculate

the Chern number and obtain the full phase diagrams of the system, which are shown
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in Figure 4a,b for 1/3 and 2/3 filling of the system, respectively. There are several phase
boundary lines in the bulk insulating phase, which are captured by the closing of the energy
band. In Fact, the energy-crossing-lines also appear in the metal phase, but do not change
the intrinsic properties of the metal phase. In each diagram, the black solid lines separate
the topological nontrivial phase from the topological trivial phase, and the red solid lines
distinguish the topological nontrivial phase with various C 1

3
and C 2

3
.

φ

Δ

φ
Δ

MM
C 1

3

= 0

C 1

3

= −2C 1

3

= 2

C 1

3

= 1C 1

3

= −1

C 2

3

= −1

M

M

M

C 2

3

= 1

C 2

3

= 2 C 2

3

= −2

C 2

3

= 0

M

Figure 4. Two full phase diagrams with (a) 1/3 filling and (b) 2/3 filling, respectively. The blue
solid lines and axes surround the metallic region (M), and the bulk insulating region consists of
several topological regions. The black solid lines separate the topological nontrivial phase from the
topological trivial phase, and the red solid lines distinguish the topological nontrivial phase with
various C 1

3
and C 2

3
.

As can be seen from the phase diagrams, abundant quantum phases exist in our model.
In Figure 4a, intuitively, we know that, except for the metal phase, there are topological
nontrivial phases with C 1

3
= C1 = ±1 and C 1

3
= C1 = ±2, as well as the topological trivial

phase with C 1
3
= C1 = 0. A similar circumstance also appears in Figure 4. Furthermore,

when the parameters are tuned continuously, the system will undergo abundant phases.
We take Δ = −0.7 as an example. As φ increases, at 2/3 filling, the system will undergo a
closed circle with six different phases:

C 2
3
= −1 ⇒ C 2

3
= +2

⇑ ⇓
M M
⇑ ⇓

C 2
3
= +1 ⇐ C 2

3
= −2,

where M stands for the metal phase. The distribution of the phase diagram in Figure 4b
(2/3 filling) can be loosely regarded as the inversion of that with the 1/3 filling. Similarly,
the system can also undergo rich phases when we tune the Fermi energy.

In the following, we check the rule of the bulk–edge correspondence. We keep the
x direction of the system periodic and make the system possess a zigzag edge along the
y direction. Therefore, kx is a good quantum number. Finally, we solved the edge-state
spectrum [4,15], which is plotted in Figure 5. We find that the system also obeys the rule of
bulk–edge correspondence [15] for the reason that the magnitudes of C 1

3
and C 2

3
can be

reflected from the intersections of the edge-state spectra. When we choose the parameter
(Δ, φ)=(−2, 1.5), the edge-state spectrum intersects at kx = ±π/

√
3 (see Figure 5a), which

means that there is only a pair of edge modes, corresponding to C 1
3
= 1. The edge-state

106



Crystals 2021, 11, 467

spectrum is gapped at 2/3 filling, which means that there are no edge modes, corresponding
to C 2

3
= 0. Meanwhile, at this parameter point, the Chern number of the lowest band is

C1 = −1 and that of the middle band is C2 = C 2
3
− C1 = 0 − (−1) = 1. In addition, it is

known from the symmetry of the phase diagram that the Chern numbers become C1 = 1
and C2 = −1 at (Δ, φ) = (−2,−1.5), and will also obtain the same edge-state spectrum as
that in Figure 5a. When we select the parameter at (Δ, φ) = (1,−1.3), there are two different
intersections at 1/3 filling (see Figure 5b), which means that there are two pairs of edge
modes, corresponding to C 1

3
= 2. The spectrum intersects at kx = ±π/

√
3, which means

that there is a pair of edge modes, corresponding to C 2
3
= −1. By the definitions of C 1

3
and

C 2
3
, we get C1 = 2 and C2 = −3 in this case. Similarly, when we take (Δ, φ) = (1,−1.3), we

will know that C1 = −2 and C2 = 3 and we will obtain the same correspondence as that
shown in Figure 5b.

Figure 5. Two edge-state spectra of a cylindrical geometry with a zigzag edge. (a) Δ = −2, φ = 1.5.
There is a pair of edge modes in the case of 1/3 filling, corresponding to C 1

3
= −1, while there are no

edge modes in the case of 2/3 filling, which corresponds to C 2
3
= 0; (b) Δ = 1, φ = −1.3. There are

two pairs of edge modes in the case of 1/3 filling, which corresponds to C 1
3
= 2, and there is only a

pair of edge modes in the case of 2/3 filling, which corresponds to C 2
3
= −1.

4. Conclusions

To conclude, we have studied the band structures and topological properties of a
Λ/V-type dice model. First, we investigated the energy spectrum characteristics under 1/3
filling and 2/3 filling. In the Δ-φ parameter space, the system can be divided into two parts:
the metal phase and the bulk insulating phase. Furthermore, we calculated the Chern
numbers according to the energy band theory in the bulk insulating phase and obtained
a fruitful phase diagram. Interestingly, there are many topological nontrivial phases that
are separated by some energy-level-crossing lines with different Chern numbers, such as
C = ±1, C = ±2, and C = ±3. Finally, by solving the edge-state spectrum, we found that
the system obeys the rule of bulk-edge correspondence.

In spite of the existence of dice lattice structures in several electronic materials, such as
SrTiO3/SrIrO3/SrTiO3 [51], Ba2CoRe2O12 [52], and Gd2CCl2 [53–55], the high free mod-
ulation of the parameters in cold-atom experiments will be convenient for us to study
the topological phases by manipulating the neutral atoms, which never occurred in the
aforementioned research. For this reason, we hope that our system can be realized in
cold-atom experiments and that phases with higher Chern numbers will be observed.
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model on a dice optical lattice. Phys. Rev. A 2015, 92, 033617. [CrossRef]
32. Shao, L.B.; Zhu, S.-L.; Sheng, L.; Xing, D.Y.; Wang, Z.D. Realizing and Detecting the Quantum Hall Effect without Landau Levels

by Using Ultracold Atoms. Phys. Rev. Lett. 2008, 101, 246810. [CrossRef]
33. Alba, E.; Fernandez-Gonzalvo, X.; Mur-Petit, J.; Pachos, J.K.; Garcia-Ripoll, J.J. Seeing Topological Order in Time-of-Flight

Measurements. Phys. Rev. Lett. 2011, 107, 235301. [CrossRef]
34. Tarruell, L.; Greif, D.; Uehlinger, T.; Jotzu, G.; Essinger, T. Creating, moving and merging Dirac points with a Fermi gas in a

tunable honeycomb lattice. Nature 2012, 483, 302–305. [CrossRef]
35. Jotzu, G.; Messer, M.; Desbuquois, R.; Lebrat, M.; Uehlinger, T.; Greif, D.; Esslinger, T. Experimental realization of the topological

Haldane model with ultracold fermions. Nature 2014, 515, 237–240. [CrossRef]
36. Sutherland, B. Localization of electronic wave functions due to local topology. Phys. Rev. B 1986, 34, 5208. [CrossRef]
37. Vidal, J.; Mosseri, R.; Doucot, B. Aharonov-Bohm Cages in Two-Dimensional Structures. Phys. Rev. Lett. 1998, 81, 5888. [CrossRef]
38. Bercioux, D.; Urban, D.F.; Grabert, H.; Häusler, W. Massless Dirac-Weyl fermions in a T3 optical lattice. Phys. Rev. A 2009, 80,

063603. [CrossRef]
39. Möller, G.; Cooper, N.R. Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice. Phys. Rev. Lett. 2012, 108, 045306.

[CrossRef]
40. Rizzi, M.; Cataudella, V.; Fazio, R. Phase diagram of the Bose-Hubbard model with T3 symmetry. Phys. Rev. B 2006, 73, 144511.

[CrossRef]
41. Burkov, A.A.; Demler, E. Vortex-Peierls States in Optical Lattices. Phys. Rev. Lett. 2006, 96, 180406. [CrossRef]
42. Bercioux, D.; Goldman, N.; Urban, D.F. Topology-induced phase transitions in quantum spin Hall lattices. Phys. Rev. A 2011, 83,

023609. [CrossRef]
43. Cheng, S.; Yin, H.; Lu, Z.; He, C.; Wang, P.; Xianlong, G. Predicting large-Chern-number phases in a shaken optical dice lattice.

Phys. Rev. A 2020, 101, 043620. [CrossRef]
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Abstract: The ab-plane optical conductivity of the Weyl semimetal TaP is calculated from the band
structure and compared to the experimental data. The overall agreement between theory and
experiment is found to be best when the Fermi level is slightly (20 to 60 meV) shifted upwards in
the calculations. This confirms a small unintentional doping of TaP, reported earlier, and allows
a natural explanation of the strong low-energy (50 meV) peak seen in the experimental ab-plane
optical conductivity: this peak originates from transitions between the almost parallel non-degenerate
electronic bands split by spin-orbit coupling. The temperature evolution of the peak can be reasonably
well reproduce by calculations using an analog of the Mott formula.

Keywords: Weyl semimetals; band-structure calculations; optical response

1. Introduction

Weyl fermions [1] are known to be observed as elementary excitations in condensed-
matter systems—the Weyl semimetals (WSMs) [2–8]. In WSMs, the valence and conduction
bands touch each other at selected points of the Brillouin zone (BZ), the Weyl nodes.

TaP belongs to the currently most studied family of WSMs, which also includes
NbP, TaAs, and NbAs. These materials are nonmagnetic non-centrosymmetric WSMs
with 24 Weyl nodes of two different types, usually dubbed as W1 (8 nodes) and W2
(16 nodes) [5,9–13]. The available band-structure calculations predict that in TaP the
W1 nodes are situated some 40 to 55 meV below the Fermi level EF, while the W2 nodes
are at 12 to 20 meV above it [11–13], see Figure 1.

The low-energy band structure of TaP and other WSMs determines their peculiar
physical properties [14]. One way to experimentally probe the band structure at low
energies is optical spectroscopy in the infrared (particularly, in the far-infrared) region [15].
The frequency-dependent conductivity, σ(ω) = σ1(ω) + iσ2(ω), of three-dimensional
linear bands has been well studied theoretically using model Hamiltonians [16–23]. It has
been shown that the interband portion of σ1(ω) for a single isotropic Weyl band has to
follow a linear frequency dependence [16–18]:

σ1(ω) =
e2

12h
ω

vF
, (1)

where vF is the band Fermi velocity (this formula is obtained assuming the electron-hole
symmetry). Such linear behavior of σ1(ω) at low energies has indeed been observed
in a number of established three-dimensional Weyl and Dirac semimetals, as well as in
candidate materials [24–30].

In many real materials of this type, however, the linear interband conductivity at low
energies is (partly) masked by other features, such as intraband (Drude) conductivity or
resonance-like interband contributions [30–35]. Particularly strong low-energy peak was
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observed in TaP [30,35]. In Ref. [30], this peak was assigned to electron-hole pair excitations
near the saddle points of the crossing bands, which form the Weyl nodes (Figure 1). To
our knowledge, this assignment doesn’t have a direct support from optical-conductivity
calculations based on band structure. Also, the total number of states near the saddle points
is relatively low. Hence, only relatively small kinks in the optical conductivity, rather than
strong peaks, are expected in this situation [20,34]. On the other hand, our earlier study
of the sister compound NbP [34] has demonstrated that the low-energy peaks, similar to
the one in TaP, appear in NbP and are due to multiple transitions between almost parallel
bands split by spin-orbit coupling (SOC). Based on our band structure calculations, we
argue in this paper that the same explanation of its low-energy peak holds also for TaP.

Figure 1. (a) Crystallographic structure of TaP and (b) a schematic diagram of its Weyl bands. Possible
transitions between the saddle points of the merging Weyl bands and between the SOC-split bands
are indicated as arrows.

2. Results and Discussion

In Figure 2, we plot our experimental optical spectra presented earlier in Ref. [35].
The measurements have been done on the isotropic ab plane of TaP (cf. Figure 1). The
prominent low-energy peak is clearly seen in the real part of the optical conductivity at 50
meV (it corresponds to a deep in the optical reflectivity).

To gain insight into the origin of this peak, we carried out band structure calculations
within the local density approximation (LDA) based on the experimental crystal structure
of TaP [36]. The calculations were performed using the linear muffin-tin orbital (LMTO)
method [37] with the Perdew-Wang exchange-correlation potential [38]. We used the
relativistic PY LMTO computer code [39] with SOC added to the LMTO Hamiltonian in the
variational step. BZ integrations were done using the improved tetrahedron method [40].
Additional empty spheres (E) were inserted at the 8b Wyckoff positions in order to minimize
the effect of atomic sphere overlap. The Ta, P, and E states up to the maximal orbital
quantum number lmax = 3, 2, and, 1, respectively, were included into the LMTO basis set
which is essential for calculation of the dipole matrix elements for the interband transitions
involving the Ta d- and the P p-derived bands. When calculating the real part of the optical
conductivity, we used the tetrahedron method on a dense 128 × 128 × 128 k-mesh in order
to resolve interband transitions between the SOC-split bands close to Weyl points [31,34].
No broadening has been applied to the computed spectra.

In Figure 3 we show the results of our band-structure calculations as well as the BZ of
TaP. Four non-spin-degenerate bands, numbered 19 to 22, can be resolved in the vicinity of
EF (at every given k point, the bands are numbered with increasing energy staring from
the lowest calculated band). Note that the bands in each of the two pairs, (19, 20) and (21,
22), are split by SOC because of the lack of inversion symmetry. Our results reproduce well
the published band structures of TaP calculated using the full-potential codes [11,13].
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Figure 2. (a) Experimental in-plane reflectivity and (b) the corresponding real part of the optical
conductivity of TaP at selected temperatures [35]. The arrows mark the feature discussed in this
paper. The increased σ1xx at low energies is due to intraband (Drude-like) absorption.
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Figure 3. (a) Brillouin zone of TaP. (b) Fermi surface cross sections calculated for ΔEF = 50 meV.
Black circles show approximate positions of projections of Weyl points onto ky = 0 plane. (c) Band
structure of TaP. Four bands closest to EF (marked 19 to 22) are shown in different colors. Black
and red horizontal dashed lines show the as-calculated position of EF and the Fermi level shifted
upwards by ΔEF = 50 meV, respectively.

Before we discuss the calculated optical conductivity spectra, we would like to note
that in WSMs the match between the measured and the calculated optical conductivity
at low frequencies is typically only qualitative: the calculations catch the major features
observed in the experimental spectra, but are unable to reproduce the exact frequency
positions of the features and their spectral shapes [13,15,30,31,34].

Another important point to be mentioned here is the unintentional (self-)doping,
which is inherent to many real materials, where impurities, crystallographic defects, and
vacancies may slightly change the position of EF. Such unintentional doping, varying from
sample to sample, has been shown to be relevant to TaP [41]. On the other hand, band
structure calculations themselves have finite accuracy (cf. the spread in the calculated
energy positions of the Weyl nodes, mentioned above). These considerations justify small
variation of the position of EF to get a better match between theory and experiment.
Hereafter, we vary the Fermi-level position within ΔEF = ±100 meV.

Figure 4 presents the results of our interband-conductivity calculations starting from
the self-consistent band structure shown in Figure 3. The black solid line in Figure 4 shows
σ1xx(h̄ω) obtained with as-calculated EF. The overall run of the experimental interband
conductivity is well reproduced by this curve: σ1xx(h̄ω) increases with frequency and
reaches a maximum at 1 eV (cf. Figure 2 and note that the intraband (Drude) contribution
has not been taken into account in the band-structure computations). Nevertheless, no
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peak is visible in these computations at around 50 meV. A slight variation of EF provides
such a peak, but only if the Fermi level is shifted upwards (red and blue curves). Shifting
EF downwards does not change the σ1xx spectra in the desirable way (magenta and cyan
curves). The hight of the 50-meV peak reaches the experimental value of 2.5× 103 Ω−1cm−1

at ΔEF = 50 meV.
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Figure 4. Low-energy optical conductivity of TaP calculated from its band structure. Lines of different
colors correspond to different positions of the Fermi level, as indicated. The conductivity calculated
for smaller positive ΔEF is plotted in the inset. The contributions of 21 → 22 transitions are shown
by dashed lines.

In the inset in Figure 4, we present an expanded view of the low-frequency optical
conductivity calculated for small positive ΔEF. It is obvious, that already a very small EF
shift of 20 meV is sufficient to produce the 50-meV peak. Note, that for all three curves
yet another experimental feature—a broad shoulder at 0.3–0.5 eV—is also evident in the
calculated spectra. Thus, we can conclude that a tiny shift of the Fermi level allows one to
obtain a very reasonable overall description of the experimental σ1xx(h̄ω), including the
strong peak at 50 meV.

To understand what interband optical transitions are responsible for this peak, one
can take a look at Figure 3, where the original and shifted by 50 meV Fermi level positions
are shown by black and red dashed lines, respectively. In the vicinity of Weyl points, i.e.,
near the S point and along the N–M line, band 21 is above the as-calculated EF. The low-
frequency interband conductivity is dominated by the transitions between the initial band
20 and the final band 21. The shift of EF to higher energy leads to partial occupation of band
21. This suppresses the 20 → 21 transitions at low energy and, at the same time, allows
transitions from band 21 to band 22, which remains mostly empty. As these SOC-split
bands are almost parallel, the energies of such transitions are expected to be roughly the
same for different momenta. Thus, a sharp peak may occur in σ1xx(h̄ω).

To confirm this observation, we performed band-resolved optical-conductivity cal-
culations for the transitions between bands 21 and 22. The results of these calculations
for three ΔEF are plotted by dashed lines in the inset of Figure 4. It is apparent, that the
21 → 22 transitions provide the major contribution to the 50-meV peak, confirming our
proposition. A 21 → 22 contribution coming from the k volume near the middle of the
Γ–X line appears also for the as-calculated EF, but it is too weak to be responsible for the
50-meV peak.
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In order to model the experimentally observed temperature evolution of the 50-
meV peak, we introduced a temperature dependence of the calculated interband optical
conductivity by multiplying the interband transition probabilities with the factor f (εik)[1−
f (ε f k)], where f (ε) is the Fermi-Dirac distribution function and εik and ε f k are the energies
of initial and final states, respectively. Figure 5a shows that even this simple approach
allows one to reproduce the experimentally observed reduction of the 50-meV peak with
increasing temperature. A better agreement between theory and experiment is obtained, if
the optical conductivity is calculated using an analog of the Mott formula [42], which is
widely used to study the thermoelectric properties of metals. In this approximation,

σ(ω) =
∫

σ(E, ω)

(
−∂ f (E)

∂E

)
dE, (2)

where ∂ f (E)
∂E is the energy derivative of the Fermi-Dirac function and σ(E, ω) is calculated

with E being the energy which discriminates between the initial and final bands, so that
E = EF at T = 0. The results of these computations are shown in Figure 5b. We note that
we compute the temperature dependence of the interband contribution only. In order to
reproduce the upturn of the measured conductivity at low photon energies, one needs to
consider the temperature dependence of the intraband Drude term, which is beyond the
scope of this work.
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Figure 5. Temperature dependence of the optical conductivity calculated (a) by multiplying the
interband transition probabilities with the Fermi-Dirac function and (b) using the Mott formula.

Finally, we would like to emphasize the importance of the transitions between the
SOC-split bands. Such transitions can be considered forbidden in some models [20], while
in the real WSMs they play an important role, as we have shown earlier for NbP [34].
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These transitions are allowed, because the electronic bands can be characterized by their
well-defined spin polarization, 〈s〉 � ±1/2, only for k-vectors faraway from the Weyl
nodes; closer to the nodes, SOC is strong and spin polarization is much less perfect. Thus,
transitions between any pair of bands are allowed there.

3. Conclusions

Summarizing, we have calculated the low-energy optical conductivity of the Weyl
semimetal TaP (in the ab plane) and compared it to the experimental results. The best match
between theory and experiment is found for a slightly shifted Fermi level (+20 to 60 meV).
This shift confirms a small unintentional doping of TaP, discussed earlier [35,41], and offers
a natural explanation of the strong low-energy (50 meV) peak reported in the experimental
data [30,35]: the peak is due to transitions between the almost parallel non-degenerate
electronic bands split by spin-orbit coupling.
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