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1. Introduction

Statistical methods have a long history in the analysis of hydrological data for design-
ing, planning, infilling, forecasting, and specifying better models to assess scenarios of
land use and climate change in catchments. The effectiveness of statistical descriptions of
hydrological processes reflects the enormous complexity of hydrological systems, which
makes a purely deterministic description ineffective. Many different statistically oriented
methodologies are used in hydrological studies, with multiple examples in the literature
where the statistical aspect of the work is incomplete, unreasonable, or even unacceptable.

On 19–20 October 2019, the 10th International Workshop on Statistical Hydrology
(STAHY 2019), which was organized by the International Commission on Statistical Hydrol-
ogy, International Association of Hydrological Sciences (ICSH-IAHS), took place in Nanjing,
China. A total of 132 participants from 13 countries including Australia, Belgium, Canada,
China, Germany, Italy, Poland, Spain, Switzerland, the United States, etc., registered to
participate in the conference, and more than 300 graduate students and young scholars
from universities in Nanjing also attended the conference. In addition, 28 early career
scholars from eight countries participated in the first Early Career Course (ECC) of ICSH
held in Nanjing. The ECC was held in advance of the STAHY 2019 workshop for one
day (October 18). Multiple new academic innovations and achievements were inspired
during and after the conference. The authors of the presentations proposed to publish their
research results in the Special Issue of “Statistics in Hydrology”. Thus, the main purpose of
this Special Issue is to share the latest research in the field of statistics in hydrology with
reference to the discussions held during STAHY 2019.

2. Overview of the Contributions

The call for papers was announced in April 2021, and after a rigorous peer-review
process, a total of 11 papers have been published [1–11]. To gain a better insight into the
essence of the Special Issue, a brief overview of these papers is shown below.

Statistical methods provide effective tools for the analysis of changes in hydrometeoro-
logical variables and extreme hydrological/meteorological events, as well as the correlation
between different variables. Ahemaitihali and Dong [1] analyzed the spatiotemporal char-
acteristics and driving forces of flash floods in the Altay Prefecture, China. They examined
the kernel density, standard deviational ellipse, and spatial gravity center of flash floods
and analyzed the temporal and spatial variations. Several statistical methods including

Water 2022, 14, 1571. https://doi.org/10.3390/w14101571 https://www.mdpi.com/journal/water1
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multiple linear regression, principal component analysis and random forest were used to
analyze the driving force of flash floods. This study uses a variety of statistical methods to
provide insights into the spatial–temporal dynamics of flash floods and a reference case for
similar studies. Dong et al. [2] applied multiresolution analysis and continuous wavelet
analysis approaches to evaluate the influences of precipitation and river level fluctuations
on groundwater. Their results showed that the wavelet technique was more effective
than spectral analysis in detecting the correlations among precipitation, river level, and
aquifer level in the temporal domain. Lang et al. [3] explored the characteristics of extreme
precipitation events over the Henan province, China using the latest ERA5 dataset. Their
results showed that precipitable water, wind, and relative humidity were the most common
drivers for extreme precipitation events over the Henan province for the 1981–2021 period.
This study provides insights for further flood estimations and forecasts.

The forecasting and prediction of hydrological elements such as precipitation and
runoff is one of the main topics in the hydrological field. The statistical method is central
to this. He et al. [4] developed statistical forecasting models for summer rainfall and
streamflow over the Yangtze River valley using a relatively small number of samples. The
logistic regression was used to make probability forecasts for the binary classification, and
then three testing procedures, i.e., predictability assessment (PA), model output statistics
(MOS), and the reanalysis-based (RAN) approach, were explored. Their results showed
that the RAN approach was better at generating exceedance probability forecasts than
MOS, as RAN can utilize more samples. The findings provide a useful reference for these
statistical methods in long-term hydrological forecasts. Data-driven machine learning
(ML) methods are also widely used in hydrology. Under the stacking ensemble learning
framework, Gu et al. [5] used four ML models, namely k-nearest neighbors (KNN), extreme
gradient boosting (XGB), support vector regression (SVR), and artificial neural networks
(ANN), for monthly rainfall prediction. Their results showed that the stacking ensemble
learning method can synthesize the advantages of each single ML model to produce a good
simulation accuracy in their study area (Taihu Basin, China).

Uncertainty in hydrological forecasting has always existed. Statistical methods are
an effective means to quantitatively deal with this uncertainty. Romero-Cuellar et al. [6]
developed an extension of the Model Conditional Processor (MCP), which merged clusters
with Gaussian mixture models to offer an alternative solution to manage heteroscedastic
errors. Case studies indicated that this new post-processer had significant potential in
generating more reliable, sharper, and more accurate monthly streamflow predictions than
the MCP and MCP using a truncated normal distribution, especially in dry catchments.

Statistical methods are highly important in engineering hydrological design, such as
sample processing, model fitting, and statistical parameter estimation in frequency analysis.
The Special Issue published five papers on this topic [7–11]. Among them, the first two pa-
pers [7,8] are mainly about model selection and parameter estimation in frequency analysis
under stationary conditions, and the last three papers [9–11] mainly focus on frequency
analysis under nonstationary conditions caused by changing environment. Shao et al. [7]
revised the method for the regional frequency analysis of extreme precipitation using re-
gional L-moments methods. A Monte Carlo (MC) simulation was conducted to determine
the appropriate probability distribution. A case study in Jiangsu province, China shows
that the frequency estimations based on this revised regional frequency analysis are in good
agreement with observations. This study provides a new perspective in regional frequency
analysis. Song et al. [8] used the maximum likelihood estimation (MLE) method to estimate
the parameters and confidence intervals of quantiles of the four-parameter exponential
gamma (FPEG) distribution. The FPEG distribution was then applied to precipitation data
of the Weihe watershed in China. The results showed that FPEG distribution is a good
candidate for modeling annual precipitation data. Considering that the use of the FPEG
distribution has received only limited attention from the hydrological community, this
finding may provide guidance for estimating design values of random variables in other
parts of the world.
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Due to the changing environment, hydrological design such as frequency analysis
faces nonstationary difficulties. Zeng et al. [9] used Bayesian nonstationary time-varying
moment models to investigate the annual maximum flood peak (AMFP) risk and return
period. Two climate covariates were defined to exhibit a significant positive correlation
with AMFP. The results indicated that the climate-informed model demonstrated the best
performance on extreme flood frequency analysis as well as sufficiently explaining the
variability of extreme flood risk. This study provides a good alternative to extreme flood
frequency analysis under the context of climate change. Li et al. [10] found that the 1-day
annual maximum flood volume (AMFV) exhibits a significant correlation with AMFP in
a case study at Longmen Reservoir (China). Moreover, they developed a copula-based
bivariate nonstationary flood frequency analysis to investigate environmental effects on the
dependence of flood peak and volume. The results showed that the design floods estimated
by bivariate nonstationary joint distribution would increase largely compared with the ones
estimated in a univariate nonstationary context. On this subject, Li and Qin [11] introduced
the mechanism-based reconstruction (Me-RS) method into this topic and demonstrated a
case study on the calculation of design annual runoff under nonstationary conditions in the
Jialu River Basin, China. In the Me-RS framework, the nonstationary hydrological series
was transformed into stationary series for forthcoming hydrological design calculation.
The results showed that the Me-RS method not only had theoretical support, but also its
obtained design values were consistent with the actual condition and had much smaller
uncertainty. Thus, the method provides an effective tool for annual runoff frequency
analysis under nonstationary conditions. The findings are very useful because the statistical
characteristics of many rivers around the world exhibit complex nonstationary changes.

3. Conclusions

The above 11 papers contribute to the increasing interest in the studies of hydrome-
teorological changes, hydrological prediction and uncertainty analysis, and engineering
hydrological design under stationary/nonstationary conditions. The Guest Editors hope
that readers will be inspired by this Special Issue and further innovate in the field of sta-
tistical hydrology. In particular, the era of “big data” has arrived, which will bring new
development opportunities to statistical hydrology.

Funding: This research was funded by the National Natural Science Foundation of China, grant
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Spatiotemporal Characteristics Analysis and Driving Forces
Assessment of Flash Floods in Altay

Abudumanan Ahemaitihali 1,2 and Zuoji Dong 1,*

1 School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China;
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2 Altay Regional Committee of the Communist Youth League, Altay 836500, China
* Correspondence: dongzuoji@ucas.ac.cn

Abstract: Flash floods are devastating natural disasters worldwide. Understanding their spatiotem-
poral distributions and driving factors is essential for identifying high risk areas and predicting
hydrological conditions. In this study, several methods were used to analyze the changing patterns
and driving factors of flash floods in the Altay region. Results indicate that the number of flash floods
each year increased in 1980–2015, with two sudden change points (1996 and 2008), and April, June,
and July presented the highest frequency of events. Habahe and Jeminay were known to have high
flash flood incidences; however, currently, Altay City, Fuhai, Fuyun, and Qinghe are most affected. In
terms of driving force analysis, precipitation and altitude performance have a key impact on flash
flood occurrence in this settlement compared to other subregions, with a high percentage increase
in the mean squared error value of 39, 37, 37, 37, and 33 for 10 min precipitation in a 20-year return
period, elevation, 60 min precipitation in a 20-year return period, 6 h precipitation in a 20-year return
period, and 24 h precipitation in a 20-year return period, respectively. The study results provide
insights into spatial–temporal dynamics of flash floods and a scientific basis for policymakers to set
improvement targets in specific areas.

Keywords: flash flood; spatiotemporal change; driving factor; Altay

1. Introduction

Flash floods are disaster events with high peak flows and short response times in
mountainous watersheds of tens to numerous square kilometers, usually triggered by
heavy rainfall [1,2]. Globally, flash floods are among the most devastating natural disasters,
often resulting in loss of life and significant economic damage [3]. In America, for example,
flash floods ranked first among the causes of death, with approximately 100 deaths every
year [4]. Additionally, between 1950 and 2006, 40% of flood related deaths in Europe
were from flash floods [5], while this proportion exceeded 80% in southern Europe [6].
China is a vast country with a complex ecological and geographical environment, which
is also influenced by heavy precipitation, human activities and other factors [7]. China
has suffered the most serious flash floods worldwide [8], and the incidence of these events
shows an upward trend [9]. From a regional point of view, affected by the complex terrain,
the distribution of heavy rainfall presents an obvious spatial difference pattern. Indeed,
according to the latest IPCC report, under a global warming scenario of 1.5 ◦C, flash floods
will be more frequent and more violent in Asia [10]. Meanwhile, the Altay ecosystem is
extremely sensitive to climate change and human activity owing to its vulnerability and
geographical conditions. From this perspective, it is crucial to bridge the knowledge gap
between the spatial and temporal patterns of flash floods and the driving patterns in the
Altay region.

In recent decades, most relative studies have illustrated that flash floods are related
to a combination of spatial and temporal factors [11–14]. Currently, research on flash

Water 2022, 14, 331. https://doi.org/10.3390/w14030331 https://www.mdpi.com/journal/water5
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floods has concentrated on three aspects: (1) the assessment of flash flood risk [15,16],
(2) flash flood mechanisms [17,18], and (3) spatiotemporal distribution and influencing
factors [19,20]. The risk assessment of flash floods is mainly to identify high and low risk
areas at the local or national scale [15,21,22], which are mainly quantified by three methods:
the scenario simulation method [23,24], a historical data based method [25,26], and an
index based system method [27,28]. Additionally, the complexity of flash flood formation
has led many of these studies to be conducted only in typical watersheds [29]. In general,
when researching flash flood disasters, it is necessary to make a comprehensive record of
past events. According to this theory, it is very meaningful to analyze the temporal and
spatial components of flash flood disasters and explore the driving factors behind them.
Concerning spatial–temporal distribution and influencing factors, numerous studies have
used kernel density estimation, spatial autocorrelation, spatial gravity center migration,
and standard deviational ellipse to discover the temporal and spatial specialties of flash
floods [8,30]. Numerous methods have been applied to conduct the driving force analysis
of flash floods (i.e., principal component analysis, geographical detector, multiple linear
regression, and random forest), each with its advantages. On this basis, precipitation,
terrain, normalized difference vegetation index (NDVI), and human activities, among
others, have been selected by many scholars as influencing factors [31]. This type of study
generally selects a country (or province) as the study object.

Despite extensive research into the mechanisms and drivers of flash floods, problems
remain. Firstly, some studies indicate that land use has changed dramatically due to urban
expansion and increased human activity [20], and there is an urgent need for research
that starts with land-use factors for driving force analysis. Second, certain static factors
respond to dynamic factors, while ignoring the spatiotemporal aspects of dynamic factors,
which may lead to inaccurate and objective results. Current studies on the influences of
flash floods on urban expansion and human activities and intensification of rainfall are
needed, although some studies have explained the response mechanisms between human
activities and flash floods. Moreover, some previous studies were performed to detect only
the interaction between two drivers [31,32], but they did not adequately reflect the rate of
contribution of each driver in the different models. Finally, the current flood prediction
research is mostly focused on areas with high flooding [33,34], while ignoring arid areas
such as Altay. However, the past flash flood disasters in Altay also caused great harm to
local people and economic losses. In particular, with the influence of the Altay Mountains
and the Gurbantunggut Desert, the geological features of Altay show uniqueness and
climate diversity; thus, there is an urgent need to explore and analyze the spatial-temporal
distribution and driving factors of flash floods in Altay.

The purpose of this research is to analyze the changing patterns of historical flash
floods and explore the driving factors behind flash floods in the Altay region. The primary
objectives were: (1) discovering the spatial–temporal variability of flash floods based on the
M-K test, kernel density estimation, standard deviational ellipse, and spatial gravity center
model; and (2) analyzing the drivers of flash flooding in four land-use type subdivisions
using four methods. The research results can provide scientific reference and decision
support for the development of reasonable disaster prevention measures and effective flood
risk management.

2. Materials and Methods

2.1. Study Area

The Altay Prefecture is located in the heartland of Eurasia, spanning over 45◦0000′′–49◦1045′′ N
and 85◦3136′′–91◦0423′′ E. The area is in northwest China, bordered by Mongolia, Russia, and
Kazakhstan. The Altay Prefecture is composed of seven counties and covers 1.18 × 105 km2.
Precipitation and temperature in the Altay Prefecture vary considerably. Owing to the blockage of
the Arctic and Atlantic monsoons by the Altay Mountains, high precipitation and low temperatures
occur in the northern mountains. Meanwhile, the southern plain has a dry climate and scarce
precipitation because of the effect of the Gurbantunggut Desert. A flash flood is a violent surface
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water runoff event, which is usually caused by precipitation in a small watershed. According to the
flash floods inventory database provided by National Mountain Flood Disaster Investigation Project
(NMFDIP), the spatial distribution of flash floods in 1980–2015 is plotted in Figure 1. The position of
flash flood points is defined as the central location of the historical flash flood ditch.

Figure 1. The study area: (a) the flash floods inventory map in Altay; (b) landcover types in Altay.

Affected by hydrothermal conditions, climate change, and human activities, the land
cover in 2020 is mainly cropland (1.91%), forest (4.92%), grassland (11.39%), meadow
(10.94%), and desert (61.84%). Altay is one of the key pastoral areas in China, with rich
natural grassland resources accounting for nearly 15% of the Xinjiang Uygur Autonomous
Region, where flash floods are rapidly increasing, posing a serious threat to people’s lives
and property.

2.2. Dataset

Flash floods can be caused by a variety of factors, such as heavy rainfall, dam and
levee breaches, landslides, and urbanization [35], but heavy rainfall is generally considered
to be the most common cause, and in this study, heavy rainfall is the factor of flash
floods. Previous studies have shown that factors such as precipitation, topography, and
human activities are closely related to the occurrence of flash floods [11,36]. Therefore, the
scientific data used in this research are mainly divided into two types: (1) Flash floods
inventory database, which is provided by NMFDIP, which was launched by the Ministry
of Water Resources of China and the Ministry of Finance of China (MWRCMFC) in 2013.
Collected by field surveying, the dataset records the occurrence time, longitude, latitude,
and other attributes of historical flash floods. It is worth mentioning that not every cause
of flash floods is mentioned in this database, however, among the causes mentioned in
this study, the main factor of flash floods in Altay is heavy rainfall. This database had
been strictly inspected, and widely used in a large number of studies [37–39]; and (2) The
cover raster data and the driving force factor, which is consistent with previous studies in
selecting driving factors, mainly including precipitation factors, representing topography
and human activities data. Precipitation data is grid data with four indicators, which
are the 6 h rainstorm (H06_20), 24 h rainstorm (H24_20), 10 min rainstorm (M10_20),
and 60 min rainstorm (M60_20) in the 20-year return period. This dataset belongs to the
flood inventory dataset mentioned above and is also widely used. Data representing
topography are digital elevation model (DEM) raster data and its derivatives (slope raster
data (SLP) and topographic relief raster data (TR)). NDVI, gross domestic product (GDP),
and population density (PD) data were used to represent human activities.
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According to the description of the above data, we determine that the number of
historical flash flood points in Altay is 210, from the flash flood database. Precipitation
raster data of 1 km × 1 km is derived from the inverse distance weighted interpolation of the
precipitation factor grid. We calculate the TR and SLP based on DEM data using the focal
statistical method. The NDVI raster data is the multi-year average value of MODIS NDVI
products (MOD13A1) from 2000 to 2015, calculated from the Google Earth Engine platform.
The corresponding historical PD and GDP raster data are obtained from the Resource and
Environment Science and Data Center of the Chinese Academy of Sciences (RESDC). More
descriptions of the datasets are represented in Table 1 and shown in Figure 2.

Table 1. Data source and description.

Type Factors Spatial Resolution Temporal Resolution Description

Basic data Flash floods Vector data 1980–2015
China, National Mountain
Flood Disaster
Investigation Project [31].

Landcover 1 km × 1 km 2010 RESDC.

Driving force factor
data

Precipitation factors Vector data 2015
China, National mountain
flash flood disaster survey
and evaluation data.

DEM 90 m × 90 m 2010 Geospatial Data Cloud
of China.

NDVI 1 km × 1 km 2000–2015 Google Earth Engine.
Population density 1 km × 1 km 2000, 2005, 2010 and 2015 RESDC.
GDP 1 km × 1 km 1995, 2000, 2005, 2010

and 2015 RESDC.

Figure 2. Data source plotting and visualization.
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3. Methods

3.1. Spatiotemporal Analysis Method
3.1.1. Temporal Analysis

Proposed by Kendall in 1979, The Mann–Kendall (M-K) test is a mature method, which
is widely used in the studies of hydrology, meteorology, and natural disasters [37,38]. Thus,
the M-K test method was used in this study to recognize the mutation point and the trend
in the temporal variation of flash floods from 1980 to 2015. Specifically, annual is used as
the time scale, and the entire Altay region is used as the spatial scale, and the mutation
point and the changing trends were detected. The time node when the occurrence of flash
floods changed significantly can be revealed by mutation point. The M-K test can obtain
two results for UF and UB. The UF expresses the trend of flash floods over time in a normal
time series. The UB is the statistical sequence obtained from the inverse time series. When
UF is greater than 0, the occurrence of flash floods shows an upward trend. Conversely, is a
downward trend. If the value of UF exceeded the critical line (p = 0.05), it indicates that the
rising or falling trend was significant. Draw UF and UB into a curve, and the intersection of
the two lines is the mutation point in the time series [30]. Flash flood detailed information
can be found in a previous study [39].

3.1.2. Spatial Analysis

(1) Estimation of the kernel density, KDE

Here, the kernel density estimation technique is used to create a representation of flash
floods, for the kernel function allows this estimate to be considered as the average of the
effects of the kernel function, which is centered on the flash flood location and evaluated
at each point. Using kernel density estimation, we calculated the spatial intensity of flash
floods as follows:

λh(P) =
1

nh

n

∑
i=1

m
(

P − Pi
h

)
(1)

where λh(P) represents the probable spatial intensity of flash floods, and m(.) is the kernel
function, which is an invariant function but not necessarily a positive function, P1, . . . , Pn
represents the location of n of the observed flash floods, and h is the bandwidth, which
determines the semidiameter of the circle centered at P. The spatial density of flash floods
was calculated for kernel density estimation using ArcGIS 10.6 [40].

(2) Standard deviational ellipse, SDE

The standard deviation ellipse is always used as a general purpose GIS tool for
measuring binary distribution features. The tool is typically used to depict trends in the
spatial distribution of elements by summarizing the direction and dispersion of elements.
When the flash flood data are presented as points, the direction and trends were generally
determined by SDE method. Based on ArcGIS10.6, the SDE is mainly influenced by three
main factors, namely, mean location, the concentration or dispersion of features, and
direction. Additionally, the SDE can be expressed as one to three standard deviations, in
this study, one standard deviation was used [41].

(3) Spatial gravity center model, SGCM

The spatial center of gravity model facilitates the study of the spatiotemporal migration
of elements by analyzing their center of gravity trajectories. Here, the distribution of factors
in two-dimensional space and their evolutionary characteristics are revealed directly and
precisely with this model [42]. On this basis, we calculated the coordinates of the center of
gravity and the average annual precipitation for flash floods [43]. The coordinates of the
center of gravity of flash floods are as follows:

Gf (x) = ∑n
1 fi(x)

n
, Gf (y) =

∑n
1 fi(y)

n
(2)
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where Gf(x) and Gf(y) denote the center of gravity coordinates of annual flash floods,
n denotes the number of annual flash floods, while fi(x) and fi(y) denote the geometric
coordinates of the ith flash flood (i = 1, 2, . . . , n) [44]. In addition, the center of gravity
coordinates of the average annual precipitation was as follows:

G(x) =
∑n

i=1 xi × mi

∑n
i=1 mi

, G(y) =
∑n

i=1 yi × mi

∑n
i=1 mi

(3)

where G(x) and G(y) denote the annual center of gravity coordinates of this element (annual
average precipitation), (xi, yi) denotes the geometric coordinates of the ith weather station
for annual average precipitation, and mi is the attribute value of the ith weather station [42].

3.2. Analysis of Influencing Factors

In this section, we will discuss the influencing factors of flash floods based on land
use cover change data. Since all historical flash floods occurred in grassland, settlement,
farmland, and forest areas, we chose these four types of land cover. Due to the vast area of
the Altay region, 1000 random points in each subregion were selected as the sample points.
Then, we could take these point value data to explore the influence mechanism between
mountain flash floods and driving forces factors under different land use. The correlation
and interaction between influencing factors and kernel density, the weight of influencing
factors, and their contribution to the flash flood will be analyzed and quantified. Finally,
210 flood points and non-flood point data were selected to analyze the driving factors of
disaster points using a random forest.

3.2.1. Correlation Coefficient Calculation

The Pearson correlation coefficient [45] is a classical method to measure the linear
correlation of x and y. This coefficient is the product of the covariance of the two variables
divided by their standard deviation, essentially making it is a standardized measurement
of covariance such that the result is always between −1 and 1. This statistic is denoted as:

rxy =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1 (xi − x)2
√

∑n
i=1 (yi − y)2

(4)

where rxy is the correlation coefficient of the two sets of data x and y. xi and yi represent
the corresponding values indexed in i, respectively. Here, x and y are the mean of each list
data; n is the size of the samples. The rxy values and corresponding correlation levels are
listed in Table 2 [46].

Table 2. Classification of the range level of Pearson correlation coefficient.

rxy Value Relevance

rxy = 0 no association or no correlation
0 <

∣∣rxy
∣∣ <0.25 very weak correlation

0.25 <
∣∣rxy

∣∣ < 0.5 weak correlation
0.5 <

∣∣rxy
∣∣ < 0.75 strong correlation

0.75 <
∣∣rxy

∣∣ < 1 very strong correlation∣∣rxy
∣∣ = 1 perfect correlation

3.2.2. Multiple Linear Regression, MLR

A phenomenon is often related to multiple factors; therefore, multiple linear regression
statistical methods are involved. The goal of multiple linear regression is to establish a
linear relationship model between the explanation (independent variable) and response
(dependent variable). The MLR equation is as follows:

yi = α0 + α1xi1 + α2xi2 + . . . αpxip + ε (i = 1, 2, . . . n) (5)
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where yi represents the dependent variable; xi represents the explanatory variable. α0 is the
constant term; αp is the slope coefficient for each explanatory variable, and ε is the residual
term of the MLR.

3.2.3. Principal Component Analysis, PCA

The essence of PCA [45] is to find the most important aspect of the data through
orthogonal transformation and use the most important aspect to replace the original data.
For a set of data that may have a linear correlation between different dimensions, PCA can
transform this set of data into data that are linearly independent of each dimension through
orthogonal transformation. It is a dimensionality reduction method of unsupervised learn-
ing. It only needs eigenvalue decomposition to compress and denoise data. PCA mainly
has the following three advantages: it only needs to measure the amount of information by
variance, not that affected by factors other than the data set; the orthogonal between the
principal components can eliminate the mutual influence factors between the original data
components; and the calculation model is considered to be simple, and the main operation
is eigenvalue decomposition, which is easy to implement.

3.2.4. “Random Forest”, RF

Random forest, as the name suggests, is to build a forest randomly. There are many
decision trees but there is not a correlation between each decision tree in the random forest.
Random forest is a method that uses multiple classification trees to distinguish and classify
data. While classifying the data, it can also give the importance score of each variable
(gene), and evaluate how each variable is the role played in classification. The following
technique was implemented in the R package “random forest” [47].

It has many advantages: it is not easy to fall into overfitting and has good antinoise
ability; it can handle relatively high dimensional data without feature selection and has
strong adaptability to data sets. It can handle discrete data, process continuous data, and
does not need to be standardized. In the training process, the mutual influence between
features can be detected, and the implementation is relatively simple.

SHAP, whose name comes from SHapley Additive ExPlanation, originated from
cooperative game theory. It is inspired by cooperative game theory to construct an additive
explanatory model, and all features are regarded as contributions. For each prediction
sample, the model produced a prediction value, and the SHAP value was the value assigned
to each feature in the sample. The SHAP value is given by the following equation:

yi = ybase + f (xi1) + f (xi2) + . . . + f
(

xij
)

(6)

where j is the number of features; xij is the jth feature of the ith sample; yi is the predicted
value of the model for the sample; ybase is the baseline for the entire model; f

(
xij
)

is the
SHAP value of xij. If f

(
xij
)
> 0, it means that the feature improves the predicted value

and has a positive effect. On the contrary, it indicates that the feature reduces the predicted
value, which has a negative effect. Compared with the traditional feature importance
calculation method, the SHAP value can reflect the influence of the characteristics in each
sample, while also showing a positive and negative effect.

The technical flowchart of this study is drawn based on the data and methods previ-
ously presented (Figure 3). First, based on the mountain torrent data, the MK test is used
to analyze the time scale, and the KDE, SDE, and SGCM are used to analyze the space
scale, and the results of the time–space analysis are obtained. Second, the kernel density
estimation results and the mountain torrent driving force factor data are combined, and
the Pearson coefficient calculation, PCA, and MLR are used to obtain the interaction and
contribution rate of the influence factors; the RF and SHAP value are used to show how
each variable affects the mechanism of torrents.
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Figure 3. Flowchart of this study.

4. Results

4.1. Temporal Pattern of Flash Floods

As shown in Figure 4, the variation characteristics of flash floods in the time series
from 1980 to 2015 were expressed in period scale, yearly scale, and monthly scale. As
shown in Figure 4b, the intersection of UF and UB occurred in 2008, indicating that 2008
was the mutation point of a flash flood. In addition, the trend of UF indicated an almost
constant increase in flash floods after 1996. Thus, 1996 is also an important time point.
According to the result of the M-K test in Figure 4b, the occurrence of flash floods in the
yearly scale was divided into three time periods, which are 1980–1996, 1997–2008, and
2009–2015, when the number of flash floods was 18, 78, and 112. Figure 4a indicated that
few flash floods occurred during the first period, except in 1995. In the second period, the
number of flash floods increased, especially in 1997, 1998, and 2002. The number of flash
floods in the third period continued to increase, peaking at 56 in 2013. The results of the
M-K test indicated that the year 2008 is the mutation point (the intersection point of UF and
UB), and it indicated that the number of flash floods steadily increased after 2008, which
was consistent with the statistical results. In addition, the value of UF steadily increased
after 1996, indicating that the frequency of flash floods rose after 1996. Figure 4c shows that
the most flash floods occurred in July, accounting for 37.5%. April and June also had many
flash flood records. No flash floods occurred in January, February, October, November,
and December.

4.2. Spatial Pattern of the Flash Floods

The kernel density analysis results are presented in Figure 5. In the 1980–1996 period,
Habahe (13 flash floods) was the area with the most frequent occurrence of flash floods.
Altay City had two flash floods, and other districts had very few flash floods (Figure 5a). In
the period from 1997–2008, the high frequency of flash floods was concentrated in Habahe
(44 flash floods) and Jeminay (12 flash floods), and Burqin had 5 flash floods. In addition,
the frequency of flash floods has increased significantly in the period from 2007 to 2015. The
number of flash floods in Habahe (9 flash floods) and Jeminay (11 flash floods) decreased.
A high frequency of flash floods occurred in Altay City (24 points) and Fuhai (30 points).
Fuyun (14 points) and Qinghe (22 points) showed an increase (Figure 5c). In general, the
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area with a high incidence of flash floods was concentrated early on in Habahe and more
recently in Altay City.

Figure 4. Characteristics of temporal variation of the flash floods: (a) the histogram of the number
of flash floods per year and the average of the periods; (b) flash flood mutation and trend analysis
result by using the M-K test; (c) characteristics of monthly flash floods.

Figure 5. Kernel density estimation of the flash floods for the three time periods: (a) 1980–1996,
(b) 1997–2008, and (c) 2009–2015.

According to the results of the standard deviational ellipse analysis (Figure 6a,b). The
regions with spatial unbalance were mainly distributed in Fuyun and Qinghe from the
period to 1980–1996 and 1997–2008. From 1997–2008 to 2009–2015, the occurrence of flash
floods became relatively uniform. In general, the orientation and trend of standard devia-
tional ellipses show that more flash floods spread to the southeast of the Altay Prefecture.
In addition, according to the evolution track of the gravity center, the displacement of the
flash flood gravity center from 1997–2008 to 2009–2015 indicates that the distribution of
flash floods has changed significantly. The result of the evolution track of the gravity center
is consistent with the result of the standard deviation ellipse.
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Figure 6. Spatial pattern of the standard deviational ellipse at the difficult periods: (a) from 1950–1996
to 1997–2008 and (b) from 1997–2008 to 2009–2015; (c) is the evolution track of the gravity center.

4.3. Analysis of the Driving Force of Mountain Flash Flood Kernel Flood

The correlation coefficient and p-value between each influencing factor with the kernel
density of flash floods in four land cover subregions are listed in Table 3. The interaction
between driving factors is shown in Figure 7. We can take Figure 7a,b as examples to
explain the specific implementation steps and meanings of the image. The four dimensions
in subpicture (a) are the first four principal components of the variable data principal com-
ponent transformation, and the cumulative contribution rate has reached more than 85%.
The number represents the R-squared between the dimensional combination model and the
variable data. We know that the R-squared is used to measure the similarity between the
regression problem in the linear regression problem. The larger the R-squared, the better
the model fitting effect. Therefore, we choose the Dim 3 and 4 whose corresponding largest
R-squared is 0.074. Subpicture (b) shows the contribution rate of each variable factor to the
model. The model is the linear model that we choose to consist of Dim 3 and 4.

Table 3. Correlation coefficient rxy and multiple linear regression p-value in the different subregions
of the land cover.

Factors
Farmland Forest Grassland Settlement

r p r p r p r p

H06_20 0.030 0.563 −0.580 <0.001 0.084 0.007 0.351 0.007
H24_20 −0.238 <0.001 0.445 0.068 0.470 <0.001 0.105 <0.001
M10_20 −0.152 <0.001 −0.426 <0.001 −0.052 <0.001 0.100 <0.001
M60_20 0.047 <0.001 −0.497 <0.001 0.133 0.002 0.371 <0.001

DEM 0.107 <0.001 −0.377 0.196 −0.176 0.255 0.263 0.179
SLP 0.007 0.719 −0.248 0.037 −0.149 0.945 0.144 0.373
TR 0.002 0.981 −0.247 0.111 −0.147 0.883 0.138 0.384

NDVI 0.008 0.543 −0.188 <0.001 0.064 <0.001 −0.086 <0.001
GDP 0.122 <0.001 0.227 <0.001 0.130 <0.001 0.154 <0.001
PD 0.181 <0.001 0.265 <0.001 0.221 <0.001 0.212 <0.001

The first is farmland. The factors that passed the significance test and have a slight
correlation included H24_20 (r = −0.238, p < 0.001), PD (r = 0.181, p < 0.001), and M10_20
(r = −0.152, p < 0.001). The highest adjusted R-squared value of MLR for the first four
principal components (accumulative contribution rate was 0.87) was 0.074, which came
from Dim-3-4. The variable factors with higher contribution were DEM (18.92%), H24_20
(12.85%), and GDP (12.65%).
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Figure 7. Results of interaction and contribution rate of mountain flash flood influencing factors based
on the collaborative analysis of PCA and MLR in different land cover subregions. (a) The adjusted
R-squared value of MLR of corresponding principal components to the kernel density in farmland.
(b) The contribution of driving factors to Dim.3 and Dim.4 in farmland. (c–h) Corresponding to forest,
grassland, and settlement land cover regions, respectively.

The second was the forest subregion. The correlation coefficient r value of some factors
was higher than in the forest, including H06_20 (r = −0.580, p < 0.001), M10_20 (r = −0.426,
p < 0.001), M60_20 (r = −0497, p < 0.001). The interaction of Dim-1-2-3-4 contributed the
highest adjusted R-squared value and the variables that were higher than the mean value
include PD (11.04%), GDP (10.91%), SLP (10.89%), TR (10.84%), and NDVI (10.32%).

Behind that was the grassland subregion, only the correlation coefficient r value
between H24_20 (r = 0.470, p < 0.001) and PD (r = 0.221, p < 0.001) was higher than 0.2 and
passed the significance test. The highest R2 values were observed for Dim-1-2-3-4, and the
main variable were GDP (11.01%), H06_20 (10.94%), PD (10.88%), SLP (10.68%), M60_20
(10.66%), and TR (10.58%). The last region is settlement, the main correlation factors were
M60_20 (r = 0.371, p < 0.001) and PD (r = 0.212, p < 0.001). The highest adjusted R-squared
was determined by the interaction of Dim-1-2-3-4, and GDP (11.01%), M60_20 (10.94%),
H06_20 (10.91%), PD (10.89%), TR (10.69%), and SLP (10.69%) were dominant.

We can know that the linear model in the forest areas had the best fit through the
results, and terrain and human factors played a more important role in the fitting model.
Although there were correlations in each subregion, there were at least four factors that
had not passed the significance test. That indicated that the correlation calculation results
were poor, and the influence mechanism of the flash flood came from driving factors that
cannot be fully demonstrated.

In addition, Table 4 indicates the IncMSE and IncNodePurity of each driving factor
with the random forest method in different land cover subregions. The importance of each
feature and the impact of all samples are shown in Figure 8. Let us take (a) and (b) as
examples to explain the details of Figure 8. It is a model interpretation based on the RF
training (25%) and testing (75%) of the variable data model in subpicture (a). By comparing
with the prediction when a certain feature takes the baseline value, it is explained that
the feature takes a certain value impact. To determine subpicture (a), draw the SHAP
value of each feature for each sample, which can be used to better understand the overall
pattern and allow the discovery of predicted outliers. IncMSE is equivalent to the mean
decrease accuracy, which shows how much the accuracy of our model is reduced if we
remove this variable. IncNodePurity is equivalent to the mean decrease in Gini, which is
a variable importance metric based on the Gini impurity index. The higher the value of
IncMSE or IncNodePurity, the higher the importance of this variable in our model. In the
farmland, the DEM had the highest IMSE (IMSE = 54, INP = 56,410). Other higher IMSE
values included H06_20 (IMSE = 38, INP = 56,785), M60_20 (IMSE = 36, INP = 40,477),
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M10_20 (IMSE = 33, INP = 27,964), and H24_20 (IMSE = 25, INP = 28,333). The highest
mean (|SHAP|) was observed for H06_20 (5.69). Other higher means (|SHAP value|)
included M60_20 (4.49), DEM (3.76), and M10_20 (2.40). The distribution of the test samples
showed a greater change in the SHAP values of H06_20, M60_20, and DEM. Regarding the
forest, the highest IMSE values were ranked as follows: M10_20 (IMSE = 35, INP = 20,795),
H24_20 (IMSE = 28, INP = 13,659), H06_20 (IMSE = 26, INP = 22,856), M60_20 (IMSE = 25,
INP = 25,305), and DEM (IMSE = 19, INP = 11,036). The mean (|SHAP value|) was ranked
as follows: M60_20 (3.06), H06_20 (2.00), M10_20 (1.62), and PD (1.31). The test samples
of M60_20 and H06_20 were highly suppressive, and the test samples of PD and H24_20
were positively correlated. The most important driving factors were M10_20 (IMSE = 37,
INP = 25,405), H06_20 (IMSE = 36, INP = 18,063), H24_20 (IMSE = 3, INP = 25,405), DEM
(IMSE = 25, INP = 11,759), and M60_20 (IMSE = 21, INP = 14,071) were the most important
driving factors. The main magnitudes of the mean (|SHAP value|) were H24_20 (5.13),
M10_20 (2.61), and H06_20 (1.45). The test sample SHAP values of H24_20, M10_20, and
H06_20 had a longer span and impact on the model output. The characteristics of the
settlement were similar to those of the other three subregions in the IMSE and INP. The
higher IMSE values included M10_20 (IMSE = 39, INP = 19,181), H06_20 (IMSE = 37,
INP = 37,870), M60_20 (IMSE = 37, INP = 37,460), DEM (IMSE = 37, INP = 36,644), H24_20
(IMSE = 33, INP = 24,294). The SHAP value was determined by the collaboration of M60_20
(4.89), DEM (4.04), and H24_20 (2.23) was dominant.

Table 4. IncMSE (IMSE) and IncNodePurity (INP) with the random forest method in four land
cover subregions.

Factors
Farmland Forest Grassland Settlement

IMSE INP IMSE INP IMSE INP IMSE INP

H06_20 38 56,785 26 22,856 36 18,063 37 37,870
H24_20 25 28,333 28 13,659 30 25,405 33 24,294
M10_20 33 27,964 35 20,795 37 18,539 39 19,181
M60_20 36 40,477 25 25,305 21 14,071 37 37,460

DEM 54 56,410 19 11,036 25 11,759 37 36,644
SLP 11 4590 12 2824 13 3445 12 4223
TR 9 3300 10 2912 10 2954 10 2192

NDVI 20 11,970 11 2858 16 6932 16 5798
GDP 18 7804 24 6400 27 6382 14 5639
PD 25 12,466 26 8932 30 7547 26 14,110

Finally, the weight features of the driving factors for disaster points were obtained.
We utilized the Extract Values to Points tool of ArcGIS software to extract the driving
force factor data to the disaster point. The random forest method was then used to an-
alyze the importance of each driving force factor feature. The IMSE and INP values
of the flash flood points are listed in Table 5. The SHAP values and distributions of
the feature-test samples are shown in Figure 9. The higher IMSE value included M60_20
(IMSE = 19.23, INP = 13,856.15), DEM (IMSE = 19.03, INP = 4851.71), H06_20 (IMSE = 18.29,
INP = 13,796.45), M10_20 (IMSE = 17.40, INP = 5552.94), and H24_20 (IMSE = 17.08,
INP = 9781.75). The average impact on the model output magnitude exhibited the follow-
ing ranking: M10_20 (4.74), H06_20 (3.74), M60_20 (2.83), and PD (2.04), and their SHAP
values had a large fluctuation effect.
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Figure 8. The mean SHAP value of each feature and the SHAP value of each test sample in different
land cover subregions. (a) The sequence that importance of each feature for flash flood kernel density
in the farmland. (b) The distribution of the SHAP value of each test sample with each feature in the
farmland. (c–h) Corresponding to forest, grassland, and settlement land cover regions, respectively.
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Table 5. IncMSE (IMSE) and IncNodePurity (INP) with the random forest method for flash flood
point data.

Factors IMSE INP

H06_20 18.29 13,796.45
H24_20 17.08 9781.75
M10_20 17.40 5552.94
M60_20 19.23 13,856.15

DEM 19.03 4851.71
SLP 7.30 879.73
TR 8.65 984.11

NDVI 7.02 793.23
GDP 14.24 1991.21
PD 16.21 2565.31

Figure 9. The mean (|SHAP value|) of the driving force factor and the SHAP value distribution of
each feature with flash flood point test data. (a) The sequence that importance of each feature for
flash flood point data. (b) The distribution of the SHAP value of each test sample with each feature in
the flash flood point data.

5. Discussion

5.1. Temporal and Spatial Distribution of the Flash Floods

In this part, we revealed variations in the scale of the period, yearly and monthly
for the flash floods in Altay Prefecture. According to the statistical data and the M-K
test result, flash floods showed an increasing tendency from 1980 to 2015. The general
trend of flash floods was consistent with that of the Sichuan and Fujian provinces of
China [30,48]. The possible reasons include yearly intensified human activity and increased
extreme precipitation events in the Altay Prefecture [49]. In addition, the possible reason
flash floods were rare from 1980–1996 is because these flash floods were not recorded.
According to our results and previous studies, precipitation mostly drives the occurrence
of flash floods [50]. Precipitation in Altay exhibits obvious diurnal and seasonal trends.
Precipitation showed a rapid upward trend from May to July and peaked in July [49]. On a
monthly scale, the distribution of flash floods mostly occurred in April, June, and July, and
increased from May to July, which is consistent with the distribution of precipitation.

In the spatial pattern analysis part, the kernel density estimation, standard deviational
ellipse analysis, and gravity centers analysis were finished and mapped. The results above
showed that flash floods had previously been concentrated in Habahe and Jeminay but
were currently concentrated in Altay City, Fuhai, Fuyun, and Qinghe. The precipitation,
environmental background conditions, and human activities led to the occurrence of flash
floods. According to our results, DEM and PD were important factors in flash floods.
In Altay, most of the regions near the Altay Mountains are predominately mountainous
landscapes [51], which are prone to flash floods. In addition, abundant precipitation zones
are mainly formed in the southern slope of the Altay Mountains, which are the main factors
affecting the occurrence of flash floods. According to the statistical yearbook of Altay, the
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population and economy of all the districts of Altay are increasing [52]. The population of
Altay City and Fuhai grew faster than those in other regions. Thus, according to the change
trajectories of gravity centers, the intensification of human activities may be an important
factor leading to the movement of flash floods.

5.2. Discussion of Driving Factors Results

Our driving force research shows that precipitation factors and DEM are the main
characteristic factors affecting flash flood disasters. The comprehensive results of MLP-PCA
and RF characteristic analysis showed that the flood disaster in the Altay region was not
significantly affected by a single factor, but by a multiple factor synergistic effect. In the
MLP-PCA method (Figure 7), the first three contributions of variables to the corresponding
principal component with four land types were farmland (DEM, H24_20, and GDP), forest
(PD, GDP, and SLR), grassland (GDP, H06_20, and PD), and settlement (GDP, M60_20, and
H06_20). Among them, H24_20, H06_20, and M60_20 can be attributed to precipitation
factors. With the increase in extremely heavy precipitation, the stability of the mountain
will be greatly impacted, which is highly likely to promote flash flooding. The driving
factors were largely the same, but slightly different in different areas of feature types. The
contribution of the GDP, SLP, and TR features is high, especially in forest areas. This can
be understood as a corresponding increase in GDP as people exploit natural resources,
but it undermines the stable structure of some mountain areas, resulting in disasters. In
settlement areas, the contribution rate of PD is also above the average line, indicating that
the occurrence of disasters caused huge economic losses, especially in densely populated
areas. In the SHAP value results (Figure 8), SHAP not only gives the size of the feature’s
influence but also reflects the positive and negative influence of the feature in each test
sample. The larger the mean (|SHAP value|), the more important the feature. Both the
precipitation factor and DEM ranked at forefront in terms of importance. M60_20 in the
farmland and settlement (Figures 2h and 8b), H24_20 in the grassland (Figure 8f), and
M60_20 and H24_20 in the settlement (Figure 8h) showed a positive correlation with the
nuclear density value of flood disasters. The larger the value of the SHAP of the feature,
the faster the occurrence of flood disasters.

However, the results of PCA and MLR methods were unsatisfactory. Firstly, Table 3
shows the adjusted R-squared value of the MLR of principal components to the flash
floods in the four land cover types. The maximum values are 0.074 (Dim.3-4), 0.388
(Dim.1-2-3-4), 0.126 (Dim.1-2-3-4), and 0.124 (Dim.1-2-3-4), respectively. Especially in
farmland, all adjusted R-squared values cannot reach 1. In univariate linear regression,
the greater the R-squared value, the better the fitting effect. In multiple linear regression,
if meaningless variables are added, the adjusted R-squared value will decrease, but the
added eigenvalues are significant, and the adjusted R-squared value will increase. This
means that the synergistic effects of multiple variables on flash floods were not significant.
Secondly, some precipitation factors showed unreasonable SHAP values (Figure 8), such as
H06_20 and M10_20 in the farmland (Figure 8b), and M60_20 and H06_20 (Figure 8d) in
the forest. These values were expected to be positively correlated, but the results showed
a negative correlation, likely due to the difficulty of obtaining geological disasters in the
Altay area.

According to the importance of the ten driving force factors based on the SHAP value,
we can see that the precipitation factors and topographic factors still had a greater impact
on flash flood points. However, the overall precipitation did not receive good results, and
there has even been a situation of suppressing flash floods in the forest area. Perhaps differ-
ent ground features types should have different sensitivity factors to mountain torrents.
Subsequent research can consider adding characteristic representative factors for different
ground feature types, such as hydrological data in farmland areas and snowfall factors in
forest areas. Although we have weighted factors, such as precipitation, topography, and
economy, in the selection of factors, there is still room for improvement.
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5.3. Implications and Limitations

UNISDR recently noted that the impact on flood affected economies is increasing
in all regions of the world [53]. However, the risk of flooding in developed countries is
decreasing due to their increasing incomes and increased capacity for disaster prevention
and mitigation. Thus, we should focus more on certain areas in developing countries. Es-
pecially, the Altay ecosystem is extremely sensitive to climate change and human activities,
due to the fragility and geographical conditions of the Altay ecosystem. Moreover, most
current studies of flooding have focused on the humid plains, neglecting arid areas such
as Altay, which are also affected by flooding. Currently, there is a need for a more reliable
study to identify the spatial and temporal distribution and drivers of flooding in the Altay
region, and this study meets that need.

Although some substantial progress was made in this paper, the following limitations
remain. (1) Due to the limitations of the number of flash flood points and the availability of
data, we did not fully discuss the hydrological processes and simulation methods, etc. For
instance, we have not been able to obtain the amount of precipitation data due to the sparse
meteorological stations, which leads to the discussion section of spatial-temporal analysis
simply stating the effects and analyzing the causes. (2) As mentioned in Section 5.2, the
results of PCA and MLR methods may be unsatisfactory due to the difficult availability
of geological hazards in the Altay region. (3) Although different methods were used in
this study to explore the spatial and temporal variability of flash floods and the driving
factors, none of them are novel methods, and future studies can make more interesting
explorations in terms of methodological approaches.

6. Conclusions

The temporal and spatial analysis and driving force analysis help improve our un-
derstanding of flash floods. In this study, we analyzed the distribution of flash floods in
the Altay Prefecture from 1980 to 2015. Based on the M-K test, we identified the mutation
points in the time series and divided the time series into three time periods. We examined
the kernel density, standard deviational ellipse, and spatial gravity center in three periods
and analyzed the temporal and spatial variations. The temporal variation in the flash
floods showed that the annual quantity of flash floods increased from 1980 to 2015, and
the months with the greatest quantity of flash floods were July, June, and April. Habahe
and Jeminay had a high incidence of flash floods historically, but Altay City, Fuhai, Fuyun,
and Qinghe currently have a high quantity of flash floods. Precipitation and elevation are
the main driving factors for mountain torrents based on different land-use types and two
driving force analysis methods. “Random forest” is more consistent with the mechanism of
mountain torrent disasters than the results obtained by multiple linear regression and prin-
cipal component analysis. SHAP can better reflect the quality and influence the distribution
of the sample data.
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Abstract: Precise evaluation of the correlations among precipitation, groundwater and river water
enhance our understanding on regional hydrological circulation and water resource management.
The innovative and efficient use of wavelet analysis has been able to identify significant interactions
in the spatial and temporal domains and to estimate the recharge travel time. In this paper, a wavelet
analysis was utilized to analyse 43 years of monthly, and 2 years of daily, precipitation, river level
and groundwater level data in the Yoshino River Basin, Japan. There were two main results: (1) There
was a significant influence of precipitation and river on groundwater, with a periodicity of 4–128
days, 1 year and 2–7 years. The periodicity of 1 year was correlated with seasonal variability. The
significant interaction at 4–128 days mainly occurred in the rainy season. The 2–7-year oscillation of
aquifer water levels was determined by precipitation. (2) The recharge-water travel times in the study
area estimated from the arrow patterns in the precipitation–groundwater wavelet coherence (WTC)
were consistent for each observation well. The response times of the aquifer to precipitation were 1
day and 3–6 days in 2013 and 2014, respectively. The different time lags were likely determined by
the timing of maximum daily precipitation.

Keywords: precipitation infiltration; groundwater–river interaction; multiscale time analysis;
wavelet analysis

1. Introduction

As the largest distributed storage of fresh water, groundwater plays an critical role in
sustaining ecosystems and facilitating human adaptation to climate change [1]. Water level
monitoring in aquifers constitutes the principal means of tracking changes in groundwater
storage over time, which provides information regarding the availability of renewable
groundwater resources. Temporal groundwater level changes of piezometric levels typically
occurs at two distinct time scales: long term (interannual and seasonal variability) and
short term (daily or subdaily fluctuations) [2]. The interannual variability of hydrological
processes is commonly discussed with regard to large-scale climatic phenomenon, such as
solar activity, the El Niño Southern Oscillation (ENSO) and the North Atlantic Oscillation
(NAO), while seasonal fluctuations are widely considered to be related to local climatic
indices, such as precipitation, temperature, air pressure and humidity. An analysis of
aquifer responses to the possible influencing factors could improve our understanding of
the regional water circulation and therefore guide water resource management [3].

Climate change has been shown to have direct and indirect influences on subsurface
hydrological processes [1,4]. The impacts of large-scale climatic phenomena on subsurface
hydrological patterns commonly occur at the decadal and annual scale [3]. Solar activity
and climatic anomalies affect the planetary-scale atmospheric circulation in a frequency-
dependent manner, which alters regional precipitation characteristics [5]. Precipitation
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events affect aquifer water levels by changing the recharge patterns [3,6]. Although piezo-
metric levels are commonly influenced by climatic indices, fluctuations in piezometric
levels are also driven by various hydrological processes at different spatial and temporal
scales. Natural external stresses (air pressure changes, tidal or river water level fluctuations,
earth tides, tectonic events) can affect fluctuations in aquifer water level. Dynamic inter-
actions between groundwater and seawater/surface water commonly occur in aquifers
where hydraulic connections exist [2,7,8]. The direct, rapid responses of aquifers to external
hydraulic stresses serve as an effective tracer to depict hydrological processes. However,
the lack of detailed groundwater observations limits our understanding of the interactions
between precipitation, external hydrological processes and aquifers, especially over varying
temporal scales.

Most previous studies employed spectral analysis to identify the aquifer responses
to possible influent factors, such as precipitation variability [9], tidal effects [10,11] and
lake level fluctuations [12]. A spectral analysis can be used to evaluate the coherence
and phase lag between external hydrological processes and groundwater-level responses
in the frequency domains, and to estimate the degree of influence and travel time of
external stresses to aquifers. However, a spectral analysis only determines the frequency
content of aquifer water levels. Temporal variation in the groundwater-level response to
influent factors can be evaluated using a wavelet analysis [13]. The impact of climate and
anthropic effects on aquifers has been studied using a wavelet analysis in many parts of
the world [3,6,14]. The wavelet analysis can not only evaluate the variability of the aquifer
in different spatial and temporal frequencies using the signal amplification function, but
also analyse the interaction between possible factors and groundwater using coherence
and cross-spectrum functions. The aquifer’s teleconnection with climate indices (ENSO
index, NAO index et al.), the interaction with local climate variations (precipitation, air
temperature, barometric pressure et al.), and the responses to external stresses (tidal effect,
pumping et al.) can be assessed based on wavelet techniques. Additionally, the impact of
climate and anthropic pressures on groundwater resources can be evaluated to improve
our understanding of water resource management. However, the systematic analyses on
the interaction between precipitation, rivers and groundwater from short-term to long-term
timescales have not been assessed.

The objectives of this study were: (1) to identify the interannual and interdecadal
variability of shallow groundwater level fluctuations and the related hydrological processes
(precipitation and river level) in the Yoshino River Basin, Japan, at different spatial and
temporal scales; and (2) to interpret the interactions between precipitation, river levels and
groundwater by analysing coherence and phase lag based on a wavelet technique. Evalua-
tion and quantification of the variability of hydrological processes and their responses to
related influencing factors provide guidance on regional water resource management.

2. Study Area and Methodology

2.1. Study Area and Datum

The study area is located in the lower Yoshino catchment in south Japan (Figure 1).
The Yoshino River is 194 km in length and has a watershed of 3750 km2. The study area is
a watershed with an area of about 840 km2 located in Tokushima Plain. The plain consists
of alluvial delta clay and sand, and about 75% of the study area is covered by forests and
meadow. The elevation of the investigated watershed decreases from west to east and
ranges from −10 to 185 m. Pacific climate patterns dominate in the study area. The mean
annual precipitation from 1892 to 2014 at the Tokushima meteorological station was about
1650 mm per year, and the average annual air temperature from 1890 to 2014 was about
15.5 ◦C. A national meteorological station, hydrological station and four observation wells
are located along the Yoshino River. The Ikeda Dam is located about 48 km upstream of the
hydrological station, and the Daiju-Zeki Weir Dam is located about 11 km downstream of
the station. These two large dams were constructed mainly for domestic and agricultural
water usages, and the natural river regimes were consequently altered by dam regulation
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and artificial water intake. However, this manuscript emphasizes the influence of river
level fluctuation on the aquifer in the study area, and the river–aquifer interaction in spatial
and temporal domains can be interpreted properly even if the time series of river water
levels is influenced artificially.

Figure 1. Location of the study area.

The data used in the analysis of precipitation, piezometric levels and river levels
consist of 43 years (from 1972 to 2014) of daily data. Daily precipitation was recorded by an
automatic rain gauge installed at the Tokushima meteorological station. The groundwater
level (with reference to the annual mean sea level in Tokyo Bay) was observed using pres-
sure water level gauges installed in the observation wells. The study aquifer is composed of
silt, sand and gravel. The screens of the observation wells were positioned at depths from 2
to 10 m, and therefore the study considered the groundwater present in the unconfined
aquifer in the study area. The transmissivity of the unconfined aquifer is investigated and
calculated as about 1000 m2/day in the study area. No artificial exploitation was detected
in the study area, and the aquifer water levels were inferred to be disturbed slightly by
human activity. No dams or water diversions were built in the upper reaches. The river
level was measured by a bubble-type water gauge installed in the hydrological station, and
no artificial channels were found in the station.

A time series of precipitation and aquifer water levels in observation wells 1 to 4 and
the river level are presented in Figure 2a–f, respectively. Figure 2 shows that the daily
precipitation, piezometric levels and river levels fluctuated periodically. Figure 2c shows
the aquifer water levels in well 2 suddenly changed in 2004, which was associated with a
shift in the measurement location, and the aquifer water levels after 2004 were adjusted for
consistence. There were several water level measurements missing during 1976 and 1978
for well 4. An interpolation process was used to resolve this problem in the subsequent
analysis. The time series were standardized before subsequent analyses.
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Figure 2. The (a) precipitation, and piezometric levels (based on average sea level in Tokyo Bay) in
observation wells (b) 1, (c) 2, (d) 3 and (e) 4, and (f) river levels from 1 January 1972 to 30 December
2014 in the study area.

2.2. Data Analyses Methods

The multiresolution analysis and continuous wavelet analysis approaches were ap-
plied in this study. First, wavelet decomposition was implemented to extract aquifer
water levels and their possible impact factors across different resolution levels, and the
standard deviations (SD) were calculated to quantify the multiresolution levels. Then, a
cross-correlation between aquifer water levels and potential impact variables across differ-
ent levels was conducted to reveal the dependence of aquifer water level on the possible
influencing factors. Finally, a wavelet analysis was performed to quantify the temporal
features in different periods of precipitation, and aquifer and river levels. A wavelet coher-
ence (WTC) analysis was applied to detect the aquifer responses to precipitation and river
levels in both the time and frequency domains.

A multiresolution analysis can be applied to decompose a time series into a series of
successive approximations and details in increasing order of resolution to study signals
at different resolutions [14]. Wavelet decomposition returns the wavelet coefficients of
the signal at different levels through the implementation of specific wavelets. Wavelet
decomposition is performed based on designed signal filters [3]. The details of the algorithm
can be found in the paper by Mallat [15].

To quantify the relationship between two signals at different resolution levels, a
multiresolution cross-analysis [14] was applied. Cross-correlation evaluates the similarity
of two time series as a function of the lag of one series in relation to the other. The cross-
correlation function (CCF) analysis was applied to identify the influence of possible factors
on aquifer water levels in different frequency domains. The calculation of the CCF is
described by Charlier [14].

A wavelet analysis assesses the variation in a signal in both the temporal and frequency
domains [13]. In the field of hydrology, this technique is applied in two aspects: to
determine the spatial and temporal variation of hydrological factors, including precipitation,
river discharge and aquifer water levels [16–19]; and to quantify the interaction between
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hydrological variations and climatic indices, such as solar activity [11,20], the North Atlantic
Oscillation [6,21], and the ENSO [20,22].

The wavelet techniques utilized in this study included the wavelet power spectrum
(WPS) and WTC. The WPS represents the magnitude of the variance in a time series at a
given frequency and location in time. This technique provides an effective approach to
analyse the variability of hydrological processes. The WPS [23] is defined as the square
absolute value (or square amplitude) of the wavelet transform coefficients.

To eliminate the distortion of a wavelet analysis in time–frequency domains, the con-
cept of the cone of influence (COI) was introduced, in which the e-folding time function
is used to overcome edge effects [23]. The edge effects are negligible for wavelet spectra
located in the COI region. The statistical significance of wavelet power can be assessed rela-
tive to the null hypothesis that the signal is generated by a stationary process with a given
background power spectrum. A significance test was conducted using the Monte Carlo
method [23] and a 5% significance level was adopted. The WPS enables us to characterise
the degree of complexity of a simplex signal. To assess the relationship between two signals
in the time–frequency domains, a cross-wavelet analysis should be introduced [13]. The
WTC can determine a significant coherence even though the common power is low [24].
Concerning hydrological issues, this approach has been used to access the influence of
ENSO on stream flow [22], construct models to forecast river flow [25] and evaluate timing
errors in hydrological predictions [26].

The significance contour for the cross-wavelet analysis can be found using the chi-
squared distribution, with details of the algorithm provided by Torrence and Compo [23].
The 5% significance level was considered in this paper. The details of the involved wavelet
techniques in this study are described in the relevant references [17,23,24]. All subsequent
computations and analyses were conducted within the MATLAB environment.

3. Results

3.1. Variability of Hydrological Time Series

To interpret the characteristics of hydrological variability in the study area, the mean,
maximum, minimum, variance and average annual amplitude of hydrological variables
were calculated (Table 1). In a hydrological year in Japan, the maximum river and aquifer
water level always occurred in May or June, and the minimum always occurred in December
or January; this pattern was associated with the local precipitation. The daily mean,
maximum and minimum precipitation amounts from 1972 to 2014 were 4.4, 429.50 and
0.10 mm, respectively. The mean, maximum and minimum water levels in wells 1 and 2
were much higher than those of the other wells and the river. There were no significant
differences in the average annual amplitude between the aquifer and river levels.

Table 1. Standard deviation of the standardized hydrological signals by multiresolution levels (from
level 1 to level 12).

Level
Aquifer Water Level

Precipitation River
Level

Barometric
Pressure

Humidity Air Tem-
perature

Sunspot
Number

SST
No. 1 No. 2 No. 3 No. 4

1 0.087 0.095 0.139 0.124 0.616 0.258 0.272 0.434 0.094 0.071 0.026
2 0.123 0.144 0.199 0.140 0.510 0.322 0.410 0.481 0.126 0.097 0.030
3 0.155 0.169 0.238 0.141 0.398 0.331 0.373 0.383 0.130 0.172 0.042
4 0.192 0.183 0.284 0.169 0.299 0.333 0.271 0.283 0.107 0.310 0.063
5 0.215 0.180 0.279 0.178 0.212 0.300 0.227 0.228 0.084 0.212 0.070
6 0.221 0.162 0.268 0.188 0.153 0.267 0.148 0.200 0.081 0.157 0.103
7 0.228 0.141 0.280 0.205 0.112 0.213 0.158 0.165 0.092 0.155 0.180
8 0.446 0.221 0.554 0.401 0.150 0.357 0.662 0.460 0.953 0.124 0.261
9 0.227 0.094 0.193 0.166 0.072 0.263 0.067 0.077 0.096 0.104 0.557

10 0.309 0.114 0.158 0.177 0.036 0.260 0.052 0.061 0.092 0.152 0.621
11 0.277 0.119 0.114 0.151 0.029 0.246 0.062 0.078 0.087 0.547 0.284
12 0.267 0.184 0.143 0.219 0.031 0.157 0.072 0.041 0.105 0.497 0.191
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For a better visualization of the annual fluctuation of hydrological variables, the annual
amplitudes of aquifer and river levels were calculated and are shown in Figure 3. It was
observed that the changing water level amplitudes in the aquifer and river were closely
matched. The annual amplitude of the aquifer water level was always higher than the
corresponding amplitude of the river level. The annual precipitation amount was also
used to investigate the relationships among precipitation, aquifer level and river level.
High annual amplitudes of aquifer and river levels were observed in association with high
precipitation amounts, while most of the low amplitudes were associated with the low
precipitation amounts.

Figure 3. Annual precipitation amount, average groundwater level and river level from 1972 to 2014
in the study area.

Wavelet decomposition was used to visualize the spatial distribution of hydrogeo-
logical energy in different resolution levels. Multiresolution at 10 levels was performed
on the data, and the multiresolution analysis results for precipitation, river levels and
aquifer water levels (well 1 is used an example) are shown in Figure 4. The high energy of
precipitation was mainly concentrated in the high-frequency domain (corresponding to
1–8 days), indicating that precipitation events lasting several days explained most of the
variance in the precipitation signal. Both the river and aquifer water levels had high energy
at all levels. From levels 1 to 7, we observed a high energy distribution in the bands of 1972
to 1985 and 1990 to 2005 for river levels. The high energy in aquifer water levels mainly
occurred in the bands of 1972 to 1975 and 1990 to 2005 at levels 1 to 7.

To quantify the energy across different multiresolution levels, the SD was calculated
for each standardized time series (Table 1). As described previously, the SD of aquifer
water levels and river levels had an insignificant peak at level 8, indicating high energy
at all levels. Table 1 shows that the SD of precipitation decreased from 0.616 to 0.036 for
low-to-high multiresolution levels, indicating that the high energy was concentrated in the
high-frequency domain.
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Figure 4. Multiresolution analysis results for (a) precipitation, (b) river level and (c) aquifer water
level (taking well 1 as an example). The different components of the decomposition correspond (from
top to bottom) with short- to long-time-scale processes, with level j corresponding to time scales at
2j−1.

3.2. Correlations of Hydrological Processes

To access the dependence of groundwater level on possible climatic and hydrological
variables in the study area, the correlation coefficients between possible impact factors
and aquifer water levels were calculated and shown in Table 2. The results show that the
groundwater level in the study area shows relatively high negative correlations (absolute
value above 0.24) with the barometric pressure and positive correlations (absolute value
above 0.24) with precipitation, river level, humidity and air temperature. However, the high
correlation with the humidity and air temperature might be explained by the synchronous
seasonal variation feature instead of interaction. Relative low correlations were detected
between aquifer water levels and sunspot number, SST, indicating the solar activity and
ENSO have weak influence on the aquifer in the study area.

Table 2. Correlation coefficients between possible impact factors and aquifer water levels.

Precipitation River Level
Barometric

Pressure
Humidity

Air
Temperature

Sunspot
Number

SST

w1 0.234 0.434 −0.257 0.286 0.349 0.010 −0.059
w2 0.188 0.391 −0.120 0.218 0.129 0.270 0.010
w3 0.339 0.640 −0.367 0.398 0.471 0.119 −0.101
w4 0.221 0.445 −0.268 0.261 0.357 −0.160 −0.155

average 0.246 0.478 −0.253 0.291 0.327 0.059 −0.076
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To identify the influence of possible factors on aquifer water levels in different fre-
quency domains, we applied the CCF across multiresolution levels. The input signals
included aquifer water level, precipitation and river level. Two types of CCF were con-
ducted. The first was a CCF calculation between two signals at the same multiresolution
level i [13], while the second was a CCF calculation between the overall input signal and
an isolated output signal at a given multiresolution level i [14]. The results are shown
in Table 3. Regarding a CCF between precipitation as an input and aquifer water levels
as an output, we observed strong positive correlations across all scales except for level 1.
The highest correlation coefficient (around 0.85) was obtained for level 8, corresponding
to a 128-day resolution period. This indicated that the water levels in the aquifer and
precipitation covaried in both the high- and low-frequency domains. The most significant
influence of local precipitation on aquifer water level oscillation occurred at the seasonal
scale. Regarding a CCF between river levels as an input and water levels in aquifer as
an output, high positive correlations were observed across all scales, and the highest cor-
relation coefficients (around 0.85) occurred for levels 7 or 8. It was concluded that the
river–aquifer interaction in the study area occurs in both high- and low-frequency domains,
and the highest flood event determines the aquifer water level oscillation at the seasonal
scale.

Table 3. Cross-correlation functions (CCF) applied at different scales of the multiresolution analysis
between possible impact factors and aquifer water levels (xi-yi represents CCF between two signals
at the multiresolution level i, and xi-yglobal represents CCF between an isolated output signal at a
given multiresolution level i and an overall input signal).

Resolution
Level

Precipitation River Level Barometric Pressure Humidity Air Temperature Sunspot Number SST

xi-yi
xi-

yglobal
xi-yi

xi-
yglobal

xi-yi
xi-

yglobal
xi-yi

xi-
yglobal

xi-yi
xi-

yglobal
xi-yi

xi-
yglobal

xi-yi
xi-

yglobal

water
level in
well No.

1

1 −0.12 −0.01 0.36 0.03 0.08 0.01 0.02 0.00 −0.01 0.00 0.01 0.00 0.01 0.00
2 0.51 0.06 0.60 0.07 −0.15 −0.02 0.26 0.03 0.02 0.00 0.01 0.00 −0.02 0.00
3 0.62 0.10 0.66 0.10 −0.25 −0.04 0.21 0.03 0.05 0.01 0.05 0.01 0.00 0.00
4 0.57 0.11 0.67 0.13 −0.15 −0.03 0.19 0.04 −0.07 −0.01 0.02 0.00 0.04 0.01
5 0.55 0.12 0.74 0.16 −0.20 −0.04 0.34 0.07 −0.02 0.00 0.01 0.00 0.00 0.00
6 0.60 0.13 0.67 0.15 −0.04 −0.01 0.36 0.08 −0.03 0.00 0.06 0.01 0.02 0.00
7 0.47 0.11 0.82 0.19 −0.17 −0.04 0.21 0.05 0.21 0.05 −0.13 −0.03 −0.17 −0.03
8 0.86 0.38 0.85 0.38 −0.74 −0.33 0.90 0.40 0.86 0.38 0.21 0.10 0.02 0.01
9 0.53 0.14 0.47 0.15 −0.05 −0.09 0.34 0.11 0.09 0.07 0.17 0.05 −0.23 −0.08
10 0.45 0.16 0.40 0.16 0.12 0.09 0.54 0.21 −0.04 −0.07 0.10 0.04 −0.08 −0.01

water
level in
well No.

2

1 −0.28 −0.03 0.64 0.06 0.19 0.02 −0.05 −0.01 0.00 0.00 0.01 0.00 0.00 0.00
2 0.47 0.07 0.77 0.11 −0.07 −0.01 0.26 0.04 0.01 0.00 0.02 0.00 0.00 0.00
3 0.69 0.12 0.82 0.14 −0.26 −0.04 0.27 0.05 0.08 0.01 0.02 0.00 0.00 0.00
4 0.72 0.13 0.79 0.15 −0.15 −0.03 0.28 0.05 −0.05 −0.01 0.04 0.01 0.00 0.01
5 0.71 0.13 0.84 0.15 −0.20 −0.04 0.42 0.07 0.02 0.00 0.03 0.01 0.05 0.01
6 0.66 0.11 0.74 0.12 −0.01 0.00 0.42 0.07 −0.07 −0.01 0.00 0.00 0.06 0.01
7 0.56 0.08 0.86 0.12 −0.13 −0.02 0.36 0.05 0.11 0.02 −0.11 −0.02 −0.17 −0.02
8 0.88 0.19 0.84 0.18 −0.71 −0.16 0.83 0.18 0.78 0.17 0.19 0.04 0.14 0.03
9 0.67 0.06 0.59 0.07 0.07 0.01 0.70 0.08 0.03 −0.03 0.01 0.01 −0.36 −0.05
10 −0.02 0.01 0.11 0.03 −0.01 0.03 0.53 0.09 −0.02 −0.07 0.01 0.02 −0.09 −0.02

water
level in
well No.

3

1 −0.14 −0.02 0.39 0.05 0.08 0.01 0.03 0.00 −0.01 0.00 0.02 0.00 0.00 0.00
2 0.50 0.10 0.65 0.13 −0.13 −0.03 0.23 0.05 0.00 0.00 0.03 0.01 0.00 0.00
3 0.64 0.15 0.75 0.18 −0.29 −0.07 0.19 0.05 0.04 0.01 0.04 0.01 0.00 0.00
4 0.65 0.19 0.75 0.21 −0.14 −0.04 0.22 0.06 −0.05 −0.01 0.02 0.01 0.00 0.01
5 0.67 0.19 0.81 0.23 −0.21 −0.06 0.36 0.10 0.00 0.00 0.05 0.01 0.04 0.01
6 0.65 0.17 0.74 0.20 −0.05 −0.01 0.43 0.12 −0.07 −0.02 0.03 0.01 0.11 0.03
7 0.52 0.15 0.89 0.25 −0.28 −0.08 0.33 0.09 0.18 0.05 −0.12 −0.03 −0.20 −0.05
8 0.88 0.49 0.85 0.47 −0.81 −0.45 0.94 0.52 0.92 0.51 0.27 0.15 0.08 0.04
9 0.75 0.16 0.58 0.14 −0.07 −0.06 0.54 0.13 0.11 0.06 0.08 0.02 −0.32 −0.08
10 0.78 0.16 0.14 0.04 0.05 −0.04 0.41 0.09 −0.03 0.02 −0.05 0.00 −0.33 −0.07

water
level in
well No.

4

1 −0.05 −0.01 0.23 0.03 0.03 0.00 0.04 0.00 0.01 0.00 0.00 0.00 0.00 0.00
2 0.47 0.07 0.47 0.07 −0.19 −0.03 0.22 0.03 0.03 0.00 0.02 0.00 0.00 −0.01
3 0.55 0.08 0.60 0.08 −0.30 −0.04 0.18 0.03 0.02 0.00 0.03 0.00 0.00 0.00
4 0.60 0.10 0.67 0.11 −0.18 −0.03 0.25 0.04 −0.06 −0.01 0.02 0.00 0.00 0.01
5 0.56 0.10 0.72 0.13 −0.19 −0.03 0.31 0.05 −0.05 −0.01 0.02 0.00 −0.02 0.00
6 0.58 0.11 0.69 0.13 −0.02 0.00 0.47 0.09 −0.09 −0.02 0.01 0.00 0.01 0.00
7 0.50 0.10 0.83 0.17 −0.18 −0.03 0.20 0.04 0.28 0.06 −0.14 −0.03 −0.21 −0.04
8 0.84 0.34 0.83 0.33 −0.79 −0.32 0.93 0.37 0.90 0.36 0.25 0.10 0.09 0.04
9 0.55 0.12 0.41 0.10 0.22 −0.07 0.58 0.13 −0.04 0.09 −0.18 −0.02 −0.12 −0.03
10 0.62 0.14 0.24 0.07 −0.06 −0.19 0.42 0.11 0.13 0.17 −0.46 −0.08 −0.15 −0.06

3.3. Wavelet Analysis

Multiresolution analysis provides information about frequency domains where the
aquifer water levels might be related to precipitation or river levels, but provides no
information about the temporal variability involved in the interaction process. Therefore,
a wavelet technique was applied to identify the oscillation of the water level in aquifer
and its possible responses to precipitation and river level variations in both the spatial and
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temporal domains. The interdecadal and interannual variability were investigated using 43
years of monthly data and 2 years of daily data.

(1) Wavelet analysis of interdecadal variability

To eliminate the seasonal components from the hydrological time series, the 12-month
moving average data during 1972 and 2014 were analysed using a wavelet analysis. The
WPS of the monthly precipitation amount, average river level and aquifer water levels are
shown in Figure 5a–f, respectively. The x- and y-axes represent the time-scale space. The
z-axis represents the value of wavelet power, with low–high values shown in blue–red
colours.

Figure 5. Continuous wavelet spectra of monthly (a) precipitation, (b) river level and (c) piezometric
levels in observation wells 1, (d) 2, (e) 3 and (f) 4 from 1972 to 2014 in the study area. The thick black
contour designates the 5% significance level against red noise, whereas the lighter shade represents
the cone of influence (COI), where edge effects might distort the picture.

In the WPS for precipitation (Figure 5a), a high WPS was detected at periodicities of
2–7 and 11 years, indicating strong interdecadal variations in these frequency domains.
High-power spectra were also observed in the 2–7- and 11-year bands for river levels
(Figure 5b), but they were only concentrated in the period of 1972–1987. The WPS for
water levels in the aquifer (Figure 5c–f) showed a similar distribution of wavelet power.
Significant power spectra were observed in the 2–7 years band during 1972–1985 and
1995–2012. Significant power spectra with a periodicity of 11 years were only found for
aquifer water levels in well w1.

The high CCF between precipitation and groundwater level at multiresolution level
9–10 was calculated in comparison with the river level, suggesting that precipitation was
the main cause of interdecadal variability in aquifer water levels. The spatial and temporal
features of coherence between precipitation and aquifer water levels were investigated
using a WTC. Figure 6a–d shows the WTC between the monthly precipitation amount
and water levels in the aquifer. The z-axis represents the value of the coherence, with low–
high values in blue–red colours. The WTC highlighted a significant coherence between
precipitation and aquifer water levels in the 2–5 years band during 1972–1988 and 1995–
2012, and the 7 years band during 1990–2014. A significant coherence between precipitation
and aquifer water levels, with a periodicity of 11 years, was only observed in well w3. The
in-phase relationship dominated in the domains with significant coherence. Figure 6e–h
shows the WTC between river level and aquifer water level in wells 1–4, respectively. A
significant coherence was obtained in the 1–2 years band, and in-phase relationships were
detected in these domains.
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Figure 6. Wavelet coherences (WTCs) between the monthly precipitation and aquifer water level
in (a) wells 1, (b) 2, (c) 3 and (d) 4, and WTCs between the monthly river water and aquifer water
level in (e) wells 1, (f) 2, (g) 3 and (h) 4 from 1972 to 2014 in the study area. The thick black contour
designates the 5% significance level against red noise, whereas the lighter shade represents the COI,
where edge effects might distort the picture. The relative phase relationship is shown by the arrows
(with the in-phase pointing right and the antiphase pointing left).

(2) Wavelet analysis of interannual variability

To determine the interannual variability of aquifer water levels, the daily data during
2013 and 2014 were subjected to a wavelet analysis. The WPS of the daily precipitation
amount, and average river and aquifer water levels, are shown in Figure 7a–f, respectively.
The WPS for the daily precipitation amount (Figure 7a) indicated that a high-power spec-
trum mainly occurred during July and November in a hydrological year. The WPS for river
and water levels in the aquifer (Figure 7b–f) had similar spectral distribution features to
those of precipitation, indicating that a strong fluctuation occurred in these domains.

Figure 7. Continuous wavelet spectra of daily (a) precipitation, (b) river level and (c) piezometric
levels in observation wells 1, (d) 2, (e) 3 and (f) 4 during 2013 and 2014 in the study area. The
thick black contour designates the 5% significance level against red noise, whereas the lighter shade
represents the COI, where edge effects might distort the picture.
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The WTC between the daily precipitation amount and aquifer water levels in the study
area are presented in Figure 8a–d. In the low-frequency domains (less than 32 days), a
discontinuous coherence was observed. There was a high coherence between precipitation
and water levels in the aquifer that was concentrated in both the rainy and dry seasons,
with periodicities of 64 and 128 days, respectively. For the periodicity of around 32 days, a
significant coherence was obtained only in the rainy season (during July to December). Both
in- and anti-phase relationships were observed in the domains with significant coherence.
Figure 8e–h shows the WTC between river level and aquifer water level in wells 1–4,
respectively. A significant coherence was obtained in almost all domains, and in-phase
relationships were detected in these domains.

Figure 8. The WTCs between the daily precipitation and groundwater level in (a) wells 1, (b) 2, (c) 3
and (d) 4, and WTCs between the daily river water and groundwater level in (e) wells 1, (f) 2, (g) 3
and (h) 4 from 2013 to 2014 in the study area. The thick black contour designates the 5% significance
level against red noise, whereas the lighter shade represents the COI, where edge effects might distort
the picture. The relative phase relationship is shown by the arrows (with the in-phase pointing right
and the antiphase pointing left).

4. Discussion

4.1. Influences of Precipitation and River on Groundwater

The influence of precipitation and river level on groundwater was clearly demon-
strated by the high CCF between precipitation/river level and groundwater level at dif-
ferent multiresolution levels. Both CCFs had their most significant peaks for an annual
frequency, suggesting that seasonal variability dominates in the hydrological processes.
The WPS for the 42-year monthly precipitation, river level and aquifer water level data
(seasonal components removed) clearly displayed components with a periodicity of 2–7
years, suggesting that the interdecadal interactions might influence this periodicity. The
WPS for the 2-year daily data showed significant or high-power spectra in the 4–128-days
band during the rainy season, indicating that a strong hydraulic interaction might occur in
the rainy season.

The spatial and temporal features of the interaction between precipitation and ground-
water at the interdecadal time scale was analysed based on the monthly precipitation–
groundwater WTC (Figure 6). Although a significant coherence was detected at a low
frequency (less than 2 years), a low cross-interaction power was observed in these domains.
Consequently, the interannual coherence displayed in Figure 6 is meaningless. The do-
mains with a significant coherence between precipitation and groundwater (Figure 6) had
a high consistency with domains with a significant or high-power spectra. This behaviour
suggests that the interdecadal oscillation of shallow aquifer water levels is determined
by planetary-scale atmospheric moisture circulation [3,6,14], and the precipitation in the
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study area reflects these moisture circulation processes. High CCFs between river level
and groundwater (Table 3) were observed in levels 2–7, suggesting that the interdecadal
variation in precipitation affects the groundwater and river levels in similar domains.

The influences of precipitation and river on groundwater at the interannual time scale
were studied based on the daily precipitation/river level–groundwater WTC (Figure 8). A
significant WTC was detected in the different spatial–temporal domains between precipi-
tation and groundwater. However, the WPS for the daily precipitation and groundwater
data suggested that a strong fluctuation in hydrological processes occurred in the rainy
season, and in-phase relationships dominated in this period. This behaviour indicates
that the effects of precipitation on the groundwater table mainly occur in the rainy season,
and the phase differences can provide a reasonable estimate of the recharge-water travel
time. The WTC between river level and groundwater revealed a significant coherence in
almost all of the spatial–temporal domains. It could be inferred that the direct hydraulic
connection between the river and aquifer occurred across diurnal to annual scales through
both recharge and discharge processes. The recharge and discharge processes might be
recognized by the direction of the arrows in the river level–groundwater WTC.

4.2. Recharge Travel Time

Precipitation recharge to the aquifer occurs with lags that can range from hours to
days, and even months [12]. The recharge-water travel time in the study area was estimated
from the pattern of the arrows in the precipitation–groundwater WTC at the interannual
time scale (Figure 8). The results were consistent for each observation well in the study area.
The results of the correlation between precipitation and groundwater in the different spatial
and temporal domains indicated that the daily precipitation affected the groundwater at
periodicities of 4–16 and 32–64 days during July and September in the study area. In 2013,
the area of significant coherence with periodicities of 4–16 days had an in-phasing of about
1/8 of a cycle, suggesting a 1-day delay in the response of the aquifer to precipitation.
The phase difference in the periodicities of 32–64 days equated to zero, and this pattern
indicated no time lag existed at these time scales. In 2014, the arrow angles with significant
coherence in the periodicities of 4–16 days ranged from −1/3 to −2/3 π, which indicated
that the response time of the aquifer to precipitation was about 3–6 days. An in-phasing of
about 5/6 of a cycle was detected in the periodicities of 32–64 days, indicating a time lag of
about 40 days.

The precipitation led aquifer water levels by up to 6 days in the study area, which
differed from other examples of semiconfined aquifers published in the literature [3,6].
This might be a result of the unconfined condition of the study aquifer. The different time
lags of groundwater level to precipitation, with periodicities of 4–16 days during 2013
and 2014, might be due to the timing of maximum precipitation. The piezometric levels
in the unconfined aquifer responded quickly to the variation in precipitation when the
soil pores were not filled. The maximum precipitation occurred in late August in 2013
and early August in 2014, and this behaviour might cause a longer average travel time of
precipitation to the aquifer in 2014. The time lags with periodicities of 32–64 days might be
associated with other local climatic indices, such as barometric pressure, humidity and air
temperature [3].

5. Conclusions

The influences of precipitation and river level on groundwater level in different spatial
and temporal domains in the Yoshino River Basin, Japan, were assessed using a wavelet
analysis. The interannual and interdecadal variability of the hydrological processes were
identified using the WPS approach, and the interactions between precipitation, river and
groundwater were analysed by multiresolution and WTC analyses. Compared with the
spectral analysis, the wavelet technique provided an effective way to detect the correlations
among precipitation, river level and aquifer level in the temporal domain. The detailed
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information of correlations among precipitation, groundwater level and river level provide
an efficient implement to improve regional water-resource management efficiency.

The significant fluctuations in precipitation, river level and piezometric levels in the
study area were mainly concentrated at periodicities of 4–128 days, 1 year and 2–7 years.
The effects of precipitation and river level on piezometric levels were also observed in these
periods. The correlation in the 1-year band was recognized as the seasonal variability of the
hydrological processes. The significant interaction in the 4–128-days band mainly occurred
in the rainy season, and the 2–7-year oscillation of aquifer water levels was determined by
the variation in precipitation.

The recharge-water travel time in the study area was estimated from the pattern of
arrows in the precipitation–groundwater WTC, and the results were consistent for each
observation well. The precipitation led aquifer water levels by up to 6 days in the study
area, and the response times of the aquifer to precipitation were 1 day and 3–6 days in 2013
and 2014, respectively. The different time lags of groundwater to precipitation might be
caused by the timing of maximum precipitation. The piezometric levels in the unconfined
aquifer responded quickly to the variation in precipitation when the soil pores were not
filled. The maximum precipitation occurred in late August in 2013 and early August in
2014, which might have resulted in a longer precipitation travel time in 2014.
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Abstract: Extraordinary floods are linked with heavy rainstorm systems. Among various systems,
their synoptic features can be quite different. The understanding of extreme rainstorms by their
causative processes may assist in flood frequency analysis and support the evaluation of any changes
in flood occurrence and magnitudes. This paper aims to identify the most dominant meteorological
factors for extreme rainstorms, using the ERA5 hourly reanalysis dataset in Henan, central China
as a case study. Past 72 h extreme precipitation events are investigated, and six potential factors are
considered in this study, including precipitable water (PW), the average temperature (Tavg) of and
the temperature difference (Tdiff) between the value at 850 hPa and 500 hPa, relative humidity (RH),
convective available potential energy (CAPE), and vertical wind velocity (Wind). The drivers of each
event and the dominant factor at a given location are identified using the proposed metrics based on
the cumulative distribution function (CDF). In Henan, central China, Wind and PW are dominant
factors in summer, while CAPE and Wind are highly related factors in winter. For Zhengzhou city
particularly, Wind is the key driver for summer extreme rainstorms, while CAPE plays a key role in
winter extreme precipitation events. It indicates that the strong transport of water vapor in summer
and atmospheric instability in winter should receive more attention from the managers and planners
of water resources. On the contrary, temperature-related factors have the least contribution to the
occurrence of extreme events in the study area. The analysis of dominant factors can provide insights
for further flood estimations and forecasts.

Keywords: extreme rainstorms; driver identification; dominant factor; ERA5

1. Introduction

According to the IPCC Sixth Assessment Report, global warming will lead to the
increase of extreme weather events; for example, the increase of extremely hot days and
heatwaves is very likely to occur on almost all lands, and extreme precipitation magnitude
and frequency are very likely to rise in many areas [1]. Extreme precipitation events have
a very strong destructive effect. For instance, on 17–21 July 2021, an extremely heavy
rainstorm hit Zhengzhou city in Henan, central China. The whole city was flooded, the
traffic system was paralyzed, and power was interrupted for more than weeks. The
estimated economic loss exceeded CNY 120 billion, with hundreds of lives lost in the end.
Extraordinary floods are linked with heavy rainstorm systems, and their synoptic features
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differ from each other. Therefore, the understanding of heavy rainstorm floods by their
causative processes may assist in flood frequency analysis and support the evaluation of
any changes in flood occurrence and magnitudes [2].

The method of using numerical weather prediction (NWP) models to simulate the
physical process of storm formation and estimate design rainfalls can be found in the
National Research Council [3]. This approach links atmospheric processes with rainfall in a
quantitative way. Abbs [4] investigated and estimated the probable maximum precipitation
(PMP) with an NWP model, and the key message from this study and other studies [5,6] is
that the linear assumption between precipitation and available moisture (i.e., precipitable
water) of conventional PMP estimates [7] was not always valid. Recently, some researchers
used forecasts from NWP models or regional climate models (RCMs) to estimate PMP and
pointed out that climate change may affect the estimates of PMPs [8–14]. Other studies
applied NWP models to explore the cause of specific extreme precipitation events, particu-
larly in urban areas, such as Mumbai, India, in 2005 [15]; Nashville, Tennessee, the United
States, in 2010 [16]; Beijing, China, in July 2012 [17]; Guangzhou, China, in July 2017 [18];
Istanbul, Turkey, in 2017 [19]; North-Rhine Westphalia and adjacent Rhineland-Palatinate,
Germany, in 2021 [20]; and Henan, China, in July 2021 [21]. Furthermore, some studies
have systematically assessed the relationship between several atmospheric variables (e.g.,
moisture, wind convergence, and wind vertical velocity) and convective rainfall state [22],
peak rainfall intensity [23], or sustained rainfall deficit [24,25]. These studies provided a
systematic analysis of the relationship between extreme precipitation and meteorological
factors, but most of them only investigated their qualitative relationship for specific events
at a given location and did not take enough account of the spatial patterns.

The analysis of spatial patterns necessitates the proper method and high-resolution
data. Chen and Hossain [10] investigated the concurrent synoptic features for the ex-
treme rainstorms over the continental United States at a coarse spatio-temporal scale using
regional (NARR) and global (ERA-Interim) reanalysis products, which indicated the use-
fulness of atmospheric reanalysis products and provided a practicable way to explore the
spatial variations of the relation between atmosphere variables and extreme rainstorms.
Recently, a new generation of ERA (ERA5) data was released, providing hourly estimates of
a mass of atmospheric, land, and oceanic climate variables with 30 km grid resolution [26].
Based on this dataset, the relations can be evaluated at a high spatio-temporal resolution,
especially over a localized region. Therefore, this paper applies the method of Chen and
Hossain [10] and ERA5 data to analyze the relations between the meteorological factors
and extreme rainfall events quantitively and investigates the main factors influencing
rainstorms in Henan, central China.

While studies on extreme rainfall events have mostly focused on a specific location
with historical observations, this study takes advantage of a high spatial-temporal reso-
lution data–ERA5 to analyse the spatial patterns of the key driver for the extreme rainfall
and explore the pattern variations in different seasons. The results can provide a more
systematic and deeper understanding of the synoptic causes of extreme precipitation, which
helps to identify the relevant mechanisms from a regional perspective and improve the
forecast accuracy of the extreme rainfall.

The paper is organized as follows: Section 2 introduces the study area, ERA5 reanalysis
data, and the diagnosis factors used in this study. Section 3 presents the methods to identify
the driver of an extreme event and derive the domain factor at a demo location. Section 4
shows the analysis results, which are the spatial distributions of the dominant factors on
extreme rainstorms in the entire period or different seasons from 1981 to 2021. Conclusions
are summarized in Section 5.

2. Study Area and Dataset

Henan province is located in the central part of China, as shown in Figure 1. This
region experienced a severe flood caused by extraordinary heavy rainfall in 1975 [27], and it
was hit by another extreme rainstorm recently on 18–22 July 2021. On 20 July 2021, the daily
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rainfall and hourly rainfall of many national meteorological observatories in Zhengzhou
city (represented by red polygon in Figure 1) exceeded the historical largest value since the
meteorological record began [21]. In Henan province, more than 65% of the precipitation
falls in summer, and most of them are short-duration heavy precipitation. This is also
the feature of most watersheds in China. Therefore, this area can be regarded as a classic
example to investigate the atmosphere characteristics of extreme storm events in China.

Figure 1. The study area of Henan province and Zhengzhou city in central China.

This study applies ERA5 data to implement the investigation. ERA5 data are the latest
generation of ECMWF global reanalysis product. From ERA5 data, hourly precipitation
estimates, and six atmospheric variables, including precipitable water (PW), the tempera-
ture at 850 hPa and 500 hPa (T850 and T500), relative humidity (RH), convective available
potential energy (CAPE), and vertical wind velocity (Wind) at 700 hPa are obtained. They
cover the period of 1981–2021 and the region represented by a blue box in Figure 1. Average
temperature (Tavg = T850 + T500

2 ) and temperature difference (Tdiff = T850 − T500) are
computed based on the temperature at two different pressure levels. In the end, CAPE, PW,
Wind, RH, Tavg, and Tdiff are considered as potential meteorological factors in this study,
and these variables are often used in extreme weather events [10,22,28].

3. Methodology

In order to find the dominant meteorological factor at a given location, we first needed
to identify the driver for each extreme event. The largest 50 rainfall events with a duration
of 72 h (i.e., 3 days) from 1981 to 2021 were extracted and used for analysis. Once drivers
of all 50 events were identified, the percentage of extreme events that are linked to each
driver variable was calculated, and the meteorological variable with the greatest percentage
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was defined as the dominant factor at the specific location. The following subsections will
introduce the metrics used to identify the driver of each extreme event and the dominant
factor of a certain region. The details are explained using the extracted extreme events from
ERA5 data at a demo grid near Zhengzhou city (the blue triangle in Figure 1).

3.1. Extraction of Extreme Events

Analyzing the hourly precipitation data in the entire historic period at a demo grid,
the 50 extreme events corresponding to the first 50 largest 72 h accumulated precipitation
were selected. Figure 2 demonstrates the time series of precipitation (black line) and the
selected extreme events. Each red bar represents one extreme event, while the order of
the five largest events is given by a red number. The start time of each event and their
accumulated precipitation amount is listed in Table 1.

Figure 2. Hourly precipitation (black line) and the 50 highest extreme rainstorms at the demo
grid near Zhengzhou city from 1981 to 2021. The red number indicates the order of the first five
largest events.

It should be noted that the rainfall amount in this grid is underestimated by ERA5. For
instance, on 20 July 2021, according to the observation data, the highest hourly rainfall in
Zhengzhou city is over 200 mm, but in the ERA5 data, the value in this grid is only 22.4 mm.
Some studies focusing on the post-processing of the rainfall data [29–32] may help to deal
with this underestimation problem, but this study still implements the analysis on the
raw ERA5 data without treatment. If this method is implemented on the more precise
observations or post-processing data, the results might be different, but the difference will
not be significant. The extreme event is the definition for the relative relationship and
the absolute value will not influence the probability of event occurrence. Furthermore,
although the total rainfall amount is underestimated, the ERA5 product correctly simulates
the timing of the Zhengzhou extreme event beginning on 18 July 2021, which ensures the
correct duration of the extreme events.
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Table 1. List of the largest 50 extreme events with identified drivers at the demo grid.

Event Order Start Time
Accumulated 72 h Precipitation

(mm)

M 1

CAPE PW Wind RH Tavg Tdiff

1 2021-07-18 21:00:00 234.92 0 1 1 1 0 0
2 2000-07-03 00:00:00 223.94 0 1 1 1 0 0
3 2018-08-16 07:00:00 182.18 0 1 1 0 0 0
4 1984-07-16 07:00:00 150.53 1 1 1 1 0 0
5 1999-07-03 15:00:00 149.99 0 1 1 1 0 0
6 2009-07-20 00:00:00 144.32 1 1 1 0 1 0
7 2021-08-19 14:00:00 139.27 0 1 1 1 0 0
8 2010-07-16 04:00:00 130.87 0 1 1 1 0 0
9 2021-08-28 03:00:00 125.42 0 1 1 1 0 0

10 2000-08-03 09:00:00 123.12 0 1 1 1 0 0
11 2004-07-14 07:00:00 122.64 0 1 1 1 0 0
12 2000-06-24 23:00:00 120.97 0 1 1 1 0 0
13 1996-08-02 05:00:00 111.64 0 1 1 1 1 0
14 2000-07-12 18:00:00 110.28 0 1 1 1 0 0
15 1990-06-17 02:00:00 109.47 0 1 1 0 0 0
16 1995-07-22 09:00:00 109.13 1 1 1 1 1 0
17 1993-04-29 06:00:00 109.00 0 0 1 1 0 0
18 1990-08-13 02:00:00 109.00 0 1 1 1 0 0
19 1984-09-21 14:00:00 106.25 0 0 1 1 0 0
20 2010-09-04 01:00:00 105.82 0 1 1 1 0 0
21 1982-08-11 15:00:00 101.03 0 1 1 1 0 0
22 2011-09-11 23:00:00 100.94 0 0 1 1 0 0
23 2013-05-24 04:00:00 94.25 0 0 1 1 0 0
24 1998-08-03 11:00:00 93.30 0 1 1 1 1 0
25 2000-06-01 10:00:00 92.92 0 1 0 1 0 0
26 2011-07-31 09:00:00 92.74 0 0 1 1 0 0
27 1990-07-19 11:00:00 90.09 1 1 1 1 1 0
28 2011-09-04 01:00:00 89.85 0 1 0 1 0 0
29 2003-08-27 20:00:00 89.11 0 1 1 0 0 0
30 1984-08-06 07:00:00 88.28 1 1 1 1 0 0
31 2005-06-24 17:00:00 88.15 0 1 1 0 0 0
32 1983-08-09 11:00:00 85.46 0 1 1 1 0 0
33 1983-09-04 22:00:00 85.25 0 1 1 1 0 0
34 2012-07-04 03:00:00 85.16 0 1 1 0 0 0
35 1985-09-13 11:00:00 84.97 0 0 1 0 0 0
36 1983-10-03 03:00:00 84.93 0 0 1 0 0 0
37 2015-06-22 12:00:00 84.71 0 1 1 0 0 0
38 1993-08-12 10:00:00 84.34 0 1 1 1 0 0
39 2008-07-20 08:00:00 84.26 0 1 0 0 0 0
40 1984-09-06 17:00:00 84.18 0 1 1 1 0 0
41 1989-07-04 10:00:00 82.94 0 1 0 1 0 0
42 2006-07-01 10:00:00 82.75 0 1 1 1 1 0
43 2007-07-18 02:00:00 82.00 1 1 1 0 1 0
44 2007-07-03 22:00:00 81.92 0 1 1 1 0 0
45 1987-05-31 06:00:00 81.82 1 0 1 1 0 1
46 1982-08-28 07:00:00 81.56 0 1 1 1 0 0
47 1998-07-14 07:00:00 80.70 1 1 1 1 1 0
48 1997-09-12 03:00:00 79.52 0 0 1 0 0 0
49 2010-08-22 03:00:00 79.25 0 0 1 0 0 0
50 1981-08-09 02:00:00 78.79 0 1 0 1 0 0

Note: 1 M = 1 means the factor is the driver of the extreme rainstorm, while M = 0 means it is not.
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3.2. Driver Identification of an Extreme Event

The concurrence between an extreme synoptic condition and an extreme precipitation
event can be quantified by a metric based on the cumulative distribution function (CDF) of
the hourly values in the entire period. The proposed metric M for an atmospheric variable i
and a storm event j is defined as follows:

Mi
j(θ1, θ2) =

{
1, i f P

(
Xi

j > Xi
θ1

)
≥ θ2

0, otherwise.
(1)

where Xi
j is the hourly value of atmospheric variable i (i represents CAPE, PW, Wind, RH,

Tavg, and Tdiff, respectively, in this study) during the 72 h of the identified storm event j.
Xi

θ1
is the value of the atmospheric variable i corresponding to the CDF of θ1 (θ1 = 0.95 is

adopted in the study), which can be regarded as the threshold of the extreme condition.
For each specific event, the percentage of the atmospheric variable i reaching the extreme
condition (Xi

0.95) can be calculated. If the percentage exceeds θ2 (θ2 = 15% is adopted
in the study), representing that the extreme condition maintains over a certain duration
(72 h × 15% = 10.8 h), then the atmospheric variable i can be identified as the driver of the
extreme event j, and its value of metric M is 1.

Taking the first largest event as an example, Figure 3 presents the cumulative probabil-
ities of all the values (blue lines) and the cumulative probabilities of the values in the first
largest event (red circles) for each atmospheric variable at the demo grid. It clearly shows
that some values of CAPE, PW, Wind, and RH meet the extreme condition (CDF of 95%,
represented by a horizontal red dashed line), and the exceeding percentages are 10%, 100%,
59%, and 67%, repressively. According to θ2 = 15%, PW, Wind, and RH are regarded as the
drivers of the first largest event, and their M values in Table 1 are 1.

Figure 3. Demonstration of driver identification of the first largest event at the demo grid. The
result of each atmospheric variable is shown in a subfigure with (a) CAPE, (b) PW, (c) Wind, (d) RH,
(e) Tavg, and (f) Tdiff, separately. The blue line presents the cumulative distribution curve (CDF)
of all hourly values in the entire period from 1981 to 2021. The red circles present the cumulative
probabilities of the hourly values during the 72 h after the first largest event began. The CDF of
95% (horizontal red dashed line) is defined as the threshold of the extreme condition.
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3.3. Dominant Factor Analysis at a Given Location

Once the driver for each extreme precipitation event is identified by the metric M,
the dominant factor, F, is defined as the driver with the largest percentage of the extreme
events that are related to the following:

F(θ1, θ2) = i(max(Ri)) (2)

Ri =
∑N

j=1 Mi
j(θ1, θ2)

N
(3)

where N is the total number of extreme events investigated (N = 50 in this study). The
50 largest events at the demo grid are shown in Table 1, including their starting time,
accumulated precipitation, and associated meteorological drivers. In summary, there are 8,
40, 45, 37, 8, and 1 events related to CAPE, PW, Wind, RH, Tavg, and Tdiff, respectively, and
the percentage of the extreme event (R) is 16%, 80%, 90%, 74%, 16%, and 2%, respectively.
Therefore, Wind with the maximum R = 90% is regarded as the dominant factor at the
demo grid.

The above processes demonstrate how the dominant factor at one specific grid is
derived. In the following sections, we will show the spatial variation of dominant factors
when extreme precipitation events are taken from the entire period or different seasons.

4. Results and Discussions

4.1. Spatial Patterns of the Dominant Factor in the Entire Period

As demonstrated in the method section, in order to obtain the dominant factor for
each location, we needed to find drivers for each event and calculate the percentage of
the extreme events that are related to the corresponding driver. Figure 4 presents the
percentage of extreme events that are related to extreme atmospheric variables across
the Henan province. It is clearly shown that PW, Wind, and RH are the most common
drivers for extreme precipitation events in Henan (black polygon), while CAPE and Tavg
are relatively less. There is no obvious link between Tdiff and the occurrence of extreme
precipitation events. PW is the indicator of available moisture in the system, mainly affected
by Tavg and RH. Figure 4 demonstrates that PW and RH have a close spatial pattern and
play a much more significant role in extreme events than Tavg. It illustrates that compared
with the temperature indicator Tavg, the moisture indicators RH and PW are more sensitive
to extreme rainstorm events. The moisture is the determinant of how much rain will fall,
and it is direct to the formation of rainfall. The temperature affects how much moisture
can be contained. The moisture here is potential content and not the actual content. That is
most likely the reason why Tavg has no obvious relation with extreme precipitation events.

Based on the results of Figure 4, the spatial variation of dominant meteorological
factors across the Henan province is shown in Figure 5. It can be seen that most areas,
including Zhengzhou city, are dominated by Wind, while few regions are dominated by
RH or PW. Vertical wind velocity (referred to as Wind) is the velocity between pressure
levels, and the vertical velocity at 700 hPa is most related to precipitation processes [10,23].
Previous studies have shown that the moisture needed for extreme precipitation events
cannot be met by PW [10,33]. Vertical wind velocity, representative of the large-scale
horizontal convergence, draws moisture from the surrounding area to supply the moisture
needed for the extreme event. That is why PW is less dominant than Wind in the formation
of extreme rainfall.
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Figure 4. Percentage of extreme events that are related to each atmospheric variable across the Henan
province in the entire period from 1981 to 2021. (a) CAPE; (b) PW; (c) Wind; (d) RH; (e) Tavg; and
(f) Tdiff. The black polygon presents the border of Henan province, while the red polygon is the
boundary of Zhengzhou city.

Figure 5. Dominant factors of extreme rainstorms across the Henan province. The black polygon
presents the border of Henan province, while the red polygon is the boundary of Zhengzhou city.
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4.2. Spatial Patterns of the Dominant Factor in Different Seasons

Except for the analysis based on extreme events of the whole year, the dominant factors
were reanalyzed for different seasons to explore a deeper understanding of the causes of the
extreme precipitation. The percentage of extreme events in each season is 4.742% (Spring,
March to May), 82.127% (Summer, June to August), 13.128% (Autumn, September to
November), and 0.003% (Winter, December to February), respectively. Over 80% of extreme
events occur during the summer, while less than 20% of extreme precipitation events mainly
happen in the autumn and spring. Due to the effect of the temperate monsoon climate, it is
expected that the extreme precipitation event in this region is generally concentrated within
the summer season. Therefore, the summer results (Figure 6b) are the most similar to the
yearly based analysis (Figure 4). This also indicates that the dominant factors found here
are stable, and it agrees with the finding in Chen and Hossain [10]. In addition, regarding
the percentage of extreme events that are related to wind and RH, the patterns are stable
across seasons. This is because the two drivers show less seasonal variability, and it is
relatively easier to reach extreme values in all seasons.

Figure 6. Percentage of extreme events that are related to each atmospheric variable across the Henan
province for the spring (a), summer (b), autumn (c), and winter (d), respectively. The black polygon
presents the border of Henan province, while the red polygon is the boundary of Zhengzhou city.
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Figure 6 demonstrates that spring, autumn, and summer have similar spatial patterns,
but winter is quite different. The key difference focuses on the patterns of CAPE. As
documented at the ECMWF website, CAPE is a measurement of atmospheric stability
and can be used to assess the potential of convection development. In winter, CAPE is
identified as the driver of extreme precipitation events over the study area (Figure 6d), and
it is also shown in Figure 7 as the dominant factor in the northern part of Henan province,
including Zhengzhou city. However, in summer, CAPE has few effects on extreme events
in Figure 6b. This finding is in agreement with the study of Lepore, Veneziano [34]. Most
of the precipitation in winter comes from snow, and it has a different causative process
from rainstorms in summer. High moisture indicated by PW ensures the initialization of
rainstorms, while an unstable weather system caused by a high CAPE and Wind leads to
snow in winter [10]. Based on the above analyses at a seasonal scale, the seasonal variability
of these physically dominant factors was investigated, and it should be considered in the
trend estimation of extreme precipitation due to the various causative processes.

Figure 7. Dominant factors of extreme rainstorms across the Henan province in different seasons.
(a) spring; (b) summer; (c) autumn; and (d) winter. The black polygon presents the border of Henan
province, while the red polygon is the boundary of Zhengzhou city.

4.3. Considerations of other Factors

In agreement with this study, other studies also found that precipitable water (PW) is
often related to precipitation extreme events [35], and wind velocity is more likely to be the
dominant factor of summer extreme precipitation events in some regions [10,23]. Besides,
other factors, such as topography [36], urbanization-induced urban heat island and aerosol
effects [37,38], and global climate change [39], also influenced the occurrence of extreme
storms. Compared with variables discussed in this study, those factors are more likely to be
static or show little variations in a long time. However, their effects on the spatial pattern
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are non-negligible and could influence the classification of extreme rainfall events (such as
storms, warm/cold front, or tropical cyclones [40]). Therefore, further study is necessary
regarding the comprehensive effects of the short-term and long-term variability on extreme
precipitation events.

To summarize, it is important to understand how extreme precipitation events are
linked to different types of weather circulation patterns, and reanalysis of data can support
these subsequent studies due to the high temporal and spatial resolutions.

5. Conclusions

This study explores the characteristics of extreme precipitation events over the Henan
province, central China using the latest ERA5 dataset. Over a ~41-y period, the largest
50 rainstorm events with the 72 h duration at each grid cell were extracted. The driver
of these events was identified using the criteria based on the cumulative distribution
function. A single atmospheric variable that controls the largest number of the 50 events
was regarded as the dominant factor. The findings from the results are as follows:

• Over the entire study region, extreme precipitation events mostly happen in summer
(from June to August).

• For the entire period, PW, Wind, and RH are the most common drivers for extreme
precipitation events over the Henan province.

• For the different seasons, across the Henan region, Wind and PW are dominant factors
in summer, while Wind and CAPE are highly related factors in winter. For Zhengzhou
city particularly, Wind is the key driver for summer, while CAPE plays a key role
in winter.

• Temperature-related variables have the lowest contribution to the occurrence of ex-
treme events in the study area.

According to the proposed metric in this study, we can classify each event based on
the various atmospheric variables and then identify the dominant factor. The analysis
of dominant factors can provide insights for further flood estimations and forecasts. For
instance, selecting annual maximum precipitation events with extreme Wind and PW values
will likely identify the events that will maximize a storm. Besides, based on this method,
further studies can be carried out by considering more factors, such as topography and
global warming, to explore more findings on the formation of extreme rainfall and floods.
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Abstract: The western Pacific subtropical high (WPSH) is one of the key systems affecting the summer
rainfall over the Yangtze River Valley in China. In this study, the forecasting capacity of the WPSH
for summer rainfall and streamflow is evaluated based on the WPSH index (WPSHI) derived from
the NCEP/NCAR reanalysis dataset. It has been found that WPSHI can identify extreme flood years
with a higher skill than normal wet years. Specifically, exceedance probability forecasting based
on WPSHI has higher skills for higher thresholds of rainfall. For streamflow, adding WPSHI as
a predictor only enhances the skill for higher thresholds of streamflow relative to models based on
antecedent streamflow. Under the same framework, performances of two postprocessing approaches
for dynamical forecasts, i.e., the model output statistics (MOS) approach and the reanalysis-based
(RAN) approach are compared. Hindcasts from Climate Forecast System version 2 from the National
Center for Environmental Prediction (CFSv2) are used to calculate WPSHI, which is used as the
predictor for rainfall and streamflow. The result shows that the RAN approach performs better than
the MOS approach. This study emphasizes the fact that the forecasting skill of exceedance probability
would largely depend on the selected threshold of the predictand, and this fact should be noticed in
future studies in the long-term forecasting field.

Keywords: western Pacific subtropical high; the Yangtze River Valley; model output statistics (MOS);
reanalysis-based (RAN) approach

1. Introduction

Managing water resources and controlling risks of flood damages largely depend
on the knowledge of the future rainfall and streamflow, leading to a relatively important
role of seasonal hydrological forecasting. For the data-driven method, the basic step for
making seasonal forecasts is to explore empirical relationships between predictors and
rainfall (streamflow). A statistical model that can be directly used for operational prediction
must utilize lag relationships, i.e., the relationship between antecedent ocean–atmospheric
signals and rainfall (streamflow) in the following season. This method has been frequently
used in the seasonal forecasting field [1,2].

At present, postprocessing outputs from dynamical forecasting systems is another
frequently used approach for seasonal rainfall forecasting [3–7]. The main reason for post-
processing is that general circulation models (GCMs) often have better skills for forecasting
large scale circulations than local precipitation [5,6]. Thus, forecasted circulation variables
can be treated as bridges between GCM forecasts and local rainfall [5,7,8]. Streamflow
can also be forecasted based on downscaling outputs of GCMs. Specifically, there are two
ways for downscaling of streamflow. The first method is to use a two-step procedure, i.e.,
downscaling GCM outputs to local precipitation and temperature, then using them to force
a hydrological model to output streamflow [9]. Another method is to downscale general
circulation variables to streamflow directly and skip the hydrological model [10–12].
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Considering the postprocessing methodology mentioned above, it is fundamentally
important to investigate synchronous relationships between rainfall (streamflow) and
circulation variables. The advantage of utilization of synchronous relationships is that
their physical mechanism is relatively clearer than lag relationships. In China, it is well
known that the western Pacific subtropical high (WPSH) is one of the most important
circulation systems affecting summer monsoon rainfall. The spatial distribution of summer
rainfall over China largely depends on the location and intensity of the WPSH. When the
WPSH extends southwestward, flood often occurs in the Yangtze River Valley, and the
summer rain band often locates more southern [13,14]. This mechanism can explain the
extreme flood years, such as 1998 in South China. Accordingly, the WPSH is considered
as an important factor affecting summer rainfall, and is treated as a key predictor in
operational forecasting [15]. Wang, Xiang and Lee [8] have shown that WPSH has higher
predictability, and also has a higher potential for seasonal forecasts for summer rainfall.

The Yangtze River Valley is the most important region in China, and the inter-annual
variation of the summer monsoon leads to frequent floods in this region. Although the rela-
tionship between the WPSH and East Asian summer monsoon has been studied [5,8,14,16],
some issues about the seasonal forecasting of summer rainfall and streamflow of this
region are still needed to be further explored, which are the main themes of this study. The
objectives of this study are summarized as follows.

The first goal of this study is to assess the forecasting skills for both summer rainfall
and streamflow over the Yangtze River Valley based on the perfect knowledge about WPSH.
For this task, we consider the effect of the definition of the positive event. Specifically, for
a given threshold T of the predictand Y (rainfall or streamflow), the positive event can be
defined as Y ≥ T. In this setting, the forecasting procedure will be a binary classification
problem. We view the forecasting skill as the function of T, and focus on forecasting skills
corresponding to different T (in other words, different definitions of the positive event). To
the best of the authors’ knowledge, limited efforts have been made for understanding the
relationship between the forecasting skill and the threshold T. If the characteristic of this
relationship is well understood, one can define a positive event that can be forecasted with
a much higher skill.

The second goal of this study is to compare different postprocessing approaches for
dynamical forecasting systems. Two different postprocessing procedures for dynamical
forecasts, i.e., the model output statistics (MOS) approach and the reanalysis-based (RAN)
approach, are tested and compared for predicting summer rainfall and streamflow over
the Yangtze River Valley. A review of the literature suggests that such comparison has
not been tried in previous studies in the long-term forecasting field. The Climate Forecast
System version 2 from the National Center for Environmental Prediction (CFSv2) is used
in this study. The forecasted WPSH index (WPSHI) by CFSv2 is used as the predictor for
forecasting summer rainfall and streamflow over the Yangtze River Valley.

The basic technique used in this study is logistic regression, which is used for gener-
ating exceedance probability forecasts of rainfall and streamflow. Note that probability
forecasting can describe uncertainty of the forecast, which is useful for decision-makers [17].
It should also be noted that summer streamflow is downscaled from WPSHI directly. This
approach allows us to downscale seasonal rainfall and streamflow based under the same
framework. Based on this framework, probability forecast can be applied for downscaling
of streamflow. For streamflow, both antecedent streamflow and WPSHI are used as predic-
tors, for considering both the initial state of the valley and the skill from the climate in the
target season (i.e., summer).

The structure of this manuscript is organized as follows. The dataset used in this
study and the definition of WPSHI are described in Section 2. In Section 3, we provide an
analysis of the predictability of rainfall based on the receiver operator characteristic (ROC)
analysis. Sections 4 and 5 present methods and results of a series forecasting experiments.
At last, discussions and conclusions are stated in Sections 6 and 7, respectively.
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2. Dataset Description

2.1. Rainfall Data and Streamflow

The NOAA’s PRECipitation REConstruction over Land (PREC/L) dataset [18] is used
as the observed rainfall data. Summer (June–July–August) streamflow of two stations
of the main stream of the Yangtze River, i.e., Hankou station in the middle reaches and
Datong station in the lower reaches, is also explored in this study. The record of Hankou
and Datong used in this study covers the period of 1960–2018. The location of the Yangtze
River Valley and two stations, i.e., Hankou and Datong, are shown in Figure 1.

Figure 1. Locations of the Yangtze River Valley (YR Valley) in China and two hydrological stations
explored in this study.

2.2. Reanalysis Dataset and Hindcasts of CFSv2

The NCEP/NCAR reanalysis dataset [19] is used in this study as the reanalysis fields
of meteorological variables. The geopotential height of 500-hPa (Z500) forecasted by the
CFSv2 system [20] is used as the forecasted fields. The hindcast dataset of CFSv2 from 1982
to 2010 is used in this study, and the operational forecasts from 2011 to 2018 are used to
extend the hindcast dataset to cover the period of 1982–2018. The skills of CFSv2 for global
and the East Asian summer monsoon have been evaluated by previous studies [21–23].
It has been found that CFSv2 can simulate many features of the East Asian monsoon
system [23]. However, CFSv2 often underestimates the intensity of the monsoon system,
which is true for both the Southern Asian monsoon and the East Asian monsoon [23].

For the middle time of each month, there are 24 members of forecasts released, which
is initiated at successive five days from the previous month (after 7th) to the current month.
The ensemble of these 24 models is used in this study. The forecasts with the released dates
in February, March, April, and May are selected, and the corresponding leading times are
4 months, 3 months, 2 months, and 1 month, respectively.

2.3. Definition of WPSHI

The starting point of our analysis is to define a western Pacific subtropical high
index (WPSHI) reflecting the characteristic of WPSH. The Z500 fields from CFSv2 and
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NCEP/NCAR reanalysis dataset are used to calculate the time series of WPSHI. The
definition of WPSHI used in this study is proposed by Sui et al. [24], who used the area
mean value of Z500 in JJA within the region (120◦ E–140◦ E, 10◦ N–30◦ N) for constructing
the WPSHI. This region corresponds to the largest variability of Z500 at the western North
Pacific. Figure 2a shows the standardized deviation of the Z500 field of the reanalysis
data. The calculation procedure is as follows. Firstly, the 1-order difference operator is
applied on the time series data for each grid to remove the low frequency change and
only retain the inter-annual component. Then, the standardized deviation is calculated for
each grid. At last, the standardized deviation is normalized based on the zonal mean and
zonal standardized deviation values. Although based on different procedure and different
time range, the region of the largest variability shown in Figure 2 is similar with the result
shown in Sui et al. [24].

Figure 2. (a) The standard deviation (SD) of the Z500 field, and the region for defining WPSHI. The SD has been standardized,
and the details can be seen in the text; (b) the contour lines of the 5880 geopotential metre (gpm) of the 500-hPa geopotential
height field, which indicates the location of the WPSH for years with WPSHI < −0.5; (c) the 5880 gpm lines for WPSHI
between −0.5 and 0.5; (d) the 5880 gpm lines for WPSHI > 0.5. For (b–d), the thin lines are the 5880 lines for each year in the
corresponding grade, and the thick red line is the 5880 gpm line of the corresponding mean Z500 field.

The WPSHI of the reanalysis data (denoted as WPSHI(R)) is standardized based on
the mean and standard deviation of the whole period 1960–2018, based on the following
equation:

XS =
X − X

Sd
(1)

where X is the time series needed to be standardized (here X is mean Z500 within the
region (120◦ E–140◦ E, 10◦ N–30◦ N)), X and Sd are the mean and standardized deviation
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of the X, and XS is the final standardized series. Figure 2b–d show the position of the
WPSH for different ranges of WPSHI, and it can be seen that WPSHI has a good indicative
capacity for the position of the WPSH.

When we standardize the WPSHI of CFSv2 (denoted as WPSHI(CFS)), the discontinu-
ity of the bias of the CFSv2 forecast is considered. One feature of the outputs of CFSv2 that
should be disposed of carefully is the abrupt change in 1999 in the CFSv2 forecast [20,25].
Kumar et al. [25] have shown that this abrupt change comes from the forecast bias for
SST in the equatorial Pacific and leads to changes in other variables. Figure 3a shows the
WPSHI(CFS) that is standardized based on the mean value of 1982–2018. It can be seen
that the forecasting bias is not stationary. Before 1999, there is an apparent larger negative
bias, which is true for all leads. Note that stationary bias does not affect the postprocessing
procedure, while nonstationary bias does. Thus, the final WPSHI(CFS) is calculated by the
following method. First, calculate the average value of the target zone of the Z500 field
from the CFSv2 forecast; then for the period of 1982–1998 and 1999–2018, the forecasting
climatology of each period are subtracted from sub-series of each period, respectively;
at last, the anomaly series is divided by the standard deviation calculated by the whole
period. The result of this method is shown in Figure 3b.

Figure 3. Comparison between WPSHI from reanalysis dataset (WPSHI(R)) and from CFSv2 (WPSHI(CFS)) with different
released months. WPSHI (CFS) is standardized based on two different methods. (a) Standardized based on the mean
and the standard deviation of 1982–2018. (b) For 1982–1998 and 1999–2018, the mean value of each period is subtracted
respectively, then standardized by the standard deviation of the whole period, i.e., 1982–2018.
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3. ROC Analysis

Several metrics can be used to measure the linkage between the predictor and the pre-
dictand, with the most frequently used one likely being the Pearson correlation coefficient.
However, using the correlation coefficient neglects some important characteristics of the
linkage between predictors and the predictand, which will be discussed here. Specifically,
for rainfall of a given location, if a threshold T of rainfall is specified, we can define two
classes, i.e., a positive event with the rainfall larger than T, and a negative event with
the rainfall less that T. Then, we can test the capacity of the predictor to distinguish the
samples from these two classes. What we want to show is that this ability can be seen as
a function of the threshold T, i.e., it would change with T.

A term which is possible to be confused is the rainfall threshold. Sometimes, it is
used in the field of early warning of hydro-geological disasters [26]. In this case, rainfall is
the indicator for the target event. While in this paper, the rainfall threshold T is used to
define the positive event, i.e., the rainfall larger than T, which is the target event identified
by WPSHI.

The Receiver Operator Characteristic (ROC) curve is used here for evaluating the
forecasting ability. An ROC curve uses the hit rate (also known as the sensitivity) as the
y coordinate, versus the false alarm rate as the x coordinate. The area under the ROC
curve (AUC) can evaluate the capacity of WPSHI for discriminating between the positive
and the negative event. One simple explanation of AUC could be the probability to rank
a positive/negative sample pair, which is selected randomly from the sample set [27]. In
this approach, building a model for generating a formal probability forecast is not needed.
It is claimed that AUC should be treated as the potential skill of the predictor [28]. In
this section, we use AUC to evaluate the potential skill of WPSHI for indicating the class
of rainfall.

We have calculated the AUC values of WPSHI(R) for indicating class of the standard-
ized anomaly of rainfall with three thresholds, i.e., −1, 0, and 1, respectively (Figure 4). It
is clearly illustrated that AUC is higher for the threshold 1. This fact enlightens us that we
can find a better threshold of the predictand for which the binary classification has a higher
predictability. Figure 4 also shows that the grid located at the middle and lower reaches
of Yangtze River Valley have higher AUC values, indicating the higher predictability of
this region. Considering this fact, in the following analysis, we define the Yangtze River
Summer Rainfall Index (YRSRI) as the mean value of JJA rainfall over the box region
(27◦–32◦ N, 109◦–120◦ E) shown in Figure 4, which covers most of the middle and lower
reaches of the Yangtze River Valley. The YRSRI is also standardized by Equation (1).

The relationship between YRSRI and WPSHI is also analyzed (Figure 5). From
Figure 5a, it can be seen that WPSHI(R) and YRSRI are well correlated, and both series
show the same abrupt change as the late 1970s. This upward jump of WPSHI means that
the WPSH extends southwestward, leading to the wet anomaly over the Yangtze River
Valley from the late 1970s [29]. Another important fact is that for extreme flood years
such as 1980, 1983, and 1998, the WPSHI(R) has better indicative capacity for the YRSRI.
This is also illustrated by Figure 5b, which shows the scatterplot between WPSHI(R) and
YRSRI. Clearly, YRSRI only responds to WPSHI at the interval with higher WPSHI values
(larger than 0.5). Specifically, for the interval of WPSHI < 0.5 and WPSHI > 0.5, the Pearson
correlation coefficient between WPSHI and the YRSRI is 0.09 and 0.85, respectively. Ad-
ditionally, linear regression lines are fitted for the years of WPSHI < 0.5 and WPSHI > 0.5,
respectively, and the slopes are 0.45 and 1.23. AUC is calculated for different thresholds of
YRSRI (Figure 5c). Still, it is important to note that the highest AUC is reached when the
threshold is near 1. This is consistent with the result shown in Figure 4.
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Figure 4. AUC for each grid of rainfall over the Yangtze River Valley based on WPSHI(R) as the
indicator. Grids with AUC larger than 0.85 are labelled as black points. The box region (27◦–32◦ N,
109◦–120◦ E) shown in the figure is used to calculate the Yangtze River Summer Rainfall Index
(YRSRI).

Figure 5. (a) Time series of the YRSRI and WPSHI (R), and (b) the scatter plot of these two variables.
(c) The AUC values and their 95% confidence intervals corresponding to different thresholds of YRSRI.
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All results of this section indicate that the predictability largely depends on the
threshold of YRSRI, and the response of summer rainfall to the WPSH is asymmetric and
nonlinear. For larger WPSHI, i.e., when the WPSH is westward extending, the rainfall
of Yangtze River Valley is more sensitive to the variation of WPSHI. This feature leads
to different forecasting skills for different thresholds, and this will be investigated in the
following sections.

4. Modelling Methodology

Due to the limitation of the relatively small number of samples, we avoid using
sophisticated models, and a simple model, i.e., logistic regression, is used as the basic tool
for making probability forecasts for the binary classification. Based on logistic regression,
three testing procedures based on cross validation are implemented in this study. Technical
details of the three testing procedures, logistic regression, and the performance metrics are
described as follows.

4.1. Three Testing Procedures

In this study, three testing procedures, i.e., predictability assessment (PA), model
output statistics (MOS), and the reanalysis-based (RAN) approach are explored. These
approaches, except PA, have been discussed in Marzban et al. [30] in the background of
weather prediction. For illustrating differences among the above three testing procedures,
Figure 6 shows the corresponding schematic diagrams. The details are stated as follows.

 
Figure 6. Three test procedures explored in this study for YRSRI. In the figure, LG means logistic regression and LR means
linear regression. For predicting streamflow, the procedures are similar with what have been shown in this figure, and the
only difference is that the antecedent streamflow is used as another predictor for forecasting the exceedance probability
of streamflow.

We first describe the procedures for predicting YRSRI. The procedures of PA and MOS
are quite straightforward. For PA, the procedure builds the relationship between WPSHI(R)
and YRSRI by logistic regression to forecast the exceedance probability of a given threshold.
Note that PA is not the real forecast, as the reanalysis data cannot be retrieved for making
operational forecasts. The result of PA reflects the predictability of the YRSRI based on
the perfect knowledge of the WPSHI in the following summer. Differently from PA, MOS
builds the relationship between WPSHI(CFS) and YRSRI. The advantage of MOS is that it
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is unbiased when making forecasts, which is not true for the perfect prog approach. This
fact makes MOS a popular method in the field of seasonal forecasts [31]. However, the
disadvantage is that the number of samples for training model is lower depending on the
length of hindcasts. In this study, as the hindcasts of CFSv2 are from 1982, only the years of
1982–2018 can be used for building MOS models.

The reanalysis-based (RAN) approach [30] consists of two steps for training the model
and making forecasts. The first step is to build an empirical model (linear regression is
used here) to map WPSHI(CFS) to WPSHI(R), and the second step is to map WPSHI(R) to
the predictand. Note that the error in the first step comes from the model deficiency, while
the error in the second step comes from the chaos of the climatic system. The advantage of
the RAN approach is that more samples can be used to train the model of the second step,
which is independent with the hindcasts of the dynamical model.

The testing procedures for streamflow are similar with that for YRSRI, and the only
difference is that the antecedent streamflow is used as another predictor when forecasting
JJA streamflow for PA, MOS, and the step 2 of the RAN approach.

All the tests of the above procedures are similar with the leave-one-out cross validation
(LOOCV); however, the difference with the LOOCV is that the whole training years and
the whole testing years are not the same in some cases. Specifically, the model is tested for
each year in the test year set, i.e., 1982–2018, no matter which testing procedure is used.
For testing a given year in 1982–2018, the current testing year is excluded from the training
set. For PA, the training set includes the years from 1960–2018; for MOS, the training set
includes the years from 1982–2018; for RAN, the training set for step 1 includes the years
from 1982–2018, while for the step 2, it contains the years from 1960–2018.

4.2. Logistic Regression

Logistic regression, which is a frequently used model for making probabilistic classifi-
cations, is used in this study to make class forecasts for rainfall and streamflow. An example
of an application of the Logistic regression on seasonal rainfall forecast can be seen in
Prasad et al. [32].

For a two class problem of a target variable Y, suppose that Y = 1 means the positive
class and Y = 0 means the negative class, and p = P(Y = 1), i.e., the probability of the
positive class. The logistic model supposes that the logit value, i.e., log

(
p

1−p

)
, is a linear

function of the predictor X:

log
(

p
1 − p

)
= β0 + β1X (2)

The coefficients of models can be estimated by the maximum likelihood estimation
method [33]. When the coefficients have been estimated, the probability p can be calcu-
lated by:

p =
exp

(
β̂0 + β̂1X

)
1 + exp

(
β̂0 + β̂1X

) (3)

4.3. Exceedance Probability Forecast

Exceedance probability forecasts of a given threshold are based on the logistic regres-
sion model. Here, we describe the method to generate exceedance probability forecasts of
all thresholds. In the following text, the predictand Y is the YRSRI or summer streamflow:

1. The series of thresholds are selected based on the observation of the predictand
Y. First, sort the Y values in the samples in 1982–2018 as the descending order{

Y[1], Y[2], Y[3], . . . , Y[n]

}
, where n is the number of all samples. Then, the thresholds

used here are
{

Y[5], Y[7], Y[8], . . . , Y[n−5]

}
. This setting will make at least 5 samples for

the positive or negative class.
2. Choose one threshold T in step 1 and one test year in the sample set (1982–2018). All

samples can be divided into two classes based on the value of the predictand Y, i.e.,
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years with Y ≥ T (the positive class) and years with Y < T (the negative class). Use
the training set to fit a logistic regression, and then use the fitted model to forecast
P(Y ≥ T) for the test year.

3. Repeat step 2 for all threshold T and all test years.

Note that for the threshold Y[i], the exceedance probability of the climatology forecast
is i/n.

For a larger or smaller threshold T, the sample set cut by T is not balanced, i.e., the
ratio of the number of positive class and the negative class (n+/n−) is not 1. In this case,
how large p = P(Y ≥ T) can allow us to forecast the occurrence of the positive class is
a key problem. Note that using the probability output from the model, or simply choose
p = 0.5 as the decision threshold, will be misleading [34]. The proper selection is that when

p
1−p > n+

n− , we make a positive class forecast. Thus, if the forecasted p is larger than the
climatology forecast, the positive class will be forecasted.

It should also be noted that for a given test year, the exceedance probability P(Y ≥ T)
might not be monotonous decreasing as the threshold T increasing, which must be true
in theory. We use the shape constrained P-splines (SCOP-splines) [35] to smooth the
exceedance probability curve as monotonous decreasing. The calculation is implemented
based on the R package scam.

4.4. Skill Metric along the Threshold

Although neglected by other researchers, we want to show that the ability of WPSHI
for discriminating the positive/negative classes of rainfall (streamflow) largely depends on
the threshold. Thus, the skill for the exceedance probability forecasts is not calculated for
each year (as in Piechota et al. [36]) but for each threshold of the YRSRI or streamflow.

For a given threshold T, Brier score (BS) is used to calculate skill scores. The definition
of BS is:

BS =
1
n

n

∑
i=1

( fi − oi)
2 (4)

in which fi is the ith forecast of the probability of the positive class, oi is the observation of
the ith sample (1 means positive and 0 means negative), and n is the number of the samples.
The value of BS is between 0 and 1. BS = 0 means perfect forecast and BS = 1 corresponds
to the lowest skill forecast. Note that fi is calculated based on the model trained by the
sample set excluding the i sample, as the normal leave-one-out cross validation.

Based on BS, the BS skill score (BSS) can be calculated by:

BSS = 1 − BS
BSCLIM

(5)

where BSCLIM is the BS of the climatic forecast.
For different thresholds, BSS can be calculated respectively. Thus, we can get skill

scores for different threshold T.

5. Results

5.1. Results of PA

For evaluating the predictability of the YRSRI based on the WPSHI, skill is tested with
WPSHI(R) as the predictor, and this is the test procedure predictability assessment (PA)
that has been described in Section 4.1. Figure 7 shows the BSS of the logistic regression
models corresponding to various thresholds. One important feature shown in Figure 7
is that, generally, BSS is positive only when the threshold of the YRSRI is larger than 0.
Furthermore, BSS reaches the peak value (BSS = 31.5%) when the threshold of YRSRI is
0.97. This result is consistent with the relationship between AUC and the threshold, which
has been shown in Figure 5c.
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Figure 7. Brier skill score (BSS) of the forecast for different thresholds of the Yangtze River Valley
summer rainfall index (YRSRI) based on WPSHI(R).

Not surprisingly, the above effect of threshold on rainfall will also impact the pre-
dictability of streamflow. As summer streamflow is also affected by the antecedent state
of wetness of the basin, two models are built and tested for streamflow of Hankou and
Datong station. The first model only uses antecedent streamflow (streamflow of May) as
the predictor (denoted as AF hereafter), and the second model utilizes both antecedent
streamflow and WPSHI (R) as predictors (denoted as AF + WPSHI hereafter). If the model
AF + WPSHI has a higher skill than the model AF, it can thus be concluded that WPSHI
provides some skill independent of the memory of the basin.

Figure 8 shows the BSS for summer streamflow of Hankou and Datong. Note that
summer streamflow of Datong has relatively higher predictability than Hankou, which is
reflected in the BSS of the model AF for all thresholds. The most interesting result is that, for
both stations, WPSHI enhances the skill only for higher thresholds of streamflow, and this
feature is clearer for Datong than Hankou. The above results are consistent with the result
for the YRSRI, i.e., WPSHI shows higher skill for larger thresholds of the predictand. The
skill reflected in Figure 8 can also be explained by the coefficients in the logistic regression
models (Figure 9). As all predictors have been standardized, the coefficients can reflect the
influence of each predictor. The pattern in Figure 9 indicates that the WPSHI plays a much
dominant role in classification corresponding to higher thresholds of streamflow.
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Figure 8. Brier skill score (BSS) of the forecast for summer streamflow of Hankou and Datong based
on WPSHI(R). Two types of models are shown in the graph, i.e., the model only using antecedent
streamflow (AF) and the model using both antecedent streamflow and WPSHI(R) as predictors
(AF + WPSHI).

Figure 9. Coefficients of the logistic regression model forecasting summer streamflow of Hankou
and Datong based on WPSHI(R) and antecedent streamflow (AF). The coefficients are the averaged
values of models for all testing years.

62



Water 2021, 13, 2580

5.2. Results of MOS and RAN

This section provides the results of two processing methods, i.e., the testing procedure
MOS and RAN. As shown in Figure 6, the first step is to forecast WPSHI(R) based on
WPSHI(CFS). A linear regression model is used for this task, and a leave-one-out test is
used to evaluate the skill of this linear regression model. For the four releasing months
(i.e., February, March, April, and May), the Nash–Sutcliffe efficiency coefficient is 0.43, 0.46,
0.48, and 0.62, respectively.

Figure 10 shows the skill scores of different leading times based on various thresholds.
Note that in almost all cases, BSS of the RAN approach is larger than the MOS approach,
indicating the advantage of the RAN approach. Similar to the characteristic we have shown
in Figure 7, BSS is also higher for larger thresholds of YRSRI. This result indicates that
WPSHI has higher skills for discriminate extreme events, especially flood summers.

Figure 10. BSS by the MOS approach and the RAN approach for the YRSRI corresponding to four releasing months
of CFSv2.

The skill of streamflow forecasting based on the RAN approach corresponding to
CFSv2 released in May is shown in Figure 11. Not surprisingly, the feature shown in
Figure 8 is still obvious in Figure 11, which indicates the enhancement of the skill for larger
thresholds of streamflow.
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Figure 11. BSS by the RAN approach for summer streamflow of Hankou and Datong, corresponding
to the forecast of CFSv2 released in May.

6. Discussion

Although sophisticated models and various predictors have been used for building
seasonal forecasting models for the Yangtze River Valley, the effort to understand the
roles of some key predictors based on traditional statistical methods is still quite useful,
as this will lead to prediction with better interpretability. In this study, we focus on the
predictive capacity of the West Pacific Subtropical High Index (WPSHI) for summer rainfall
and streamflow over the Yangtze River Valley. WPSHI can be well forecasted by CFSv2,
which makes WPSHI useful as a bridge for generating forecasts of rainfall and streamflow
based on postprocessing of outputs of dynamical prediction systems. Thus, exploring the
synchronous relationship between WPSHI and rainfall (streamflow) is beneficial to making
skillful seasonal predictions.
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We have demonstrated that there is a nonlinear response of summer rainfall over the
Yangtze River Valley to the WPSHI, and rainfall is more sensitive to WPSHI when the value
of WPSHI is higher. Because of this feature, WPSHI only shows higher skills for forecasting
the exceedance probability of rainfall corresponding to larger thresholds. Similarly, for
streamflow, WPSHI only enhances the skill for higher thresholds relative to the persistence
forecast (i.e., the model with antecedent streamflow as the predictor). The above result
means that WPSHI is only a good indicator for identifying extreme flood summers of
the Yangtze River Valley. These findings allow us to select a new strategy for making
long-term hydrological forecasts, i.e., to find a proper definition of the positive event
based on selecting a proper threshold with higher predictability. We found that previous
studies have not adequately explored exceedance probability forecasting, such as Piechota
et al. [36], and this study provides a new perspective to treat probability forecasting.

With the same framework, two post-processing approaches, which have been applied
in the field of weather forecasting, are also explored. We have shown that the RAN approach
has a better performance than MOS. As discussed in the work of Marzban et al. [30], the
main advantage of the RAN approach is that more samples can be used to training the
model of step 2 as shown in Figure 6, as step 2 is independent from the dynamical model,
thus the number of samples is not limited by the hindcasts available. Although many
forecasting models based on downscaling technology have been explored [4,37], little
effort has been applied for comparison between different postprocessing approaches.
For example, for making forecasts for North China summer rainfall, Guo et al. [4] built
a downscaling model based on reanalysis data, and then substituted CFSv2 forecasting
values (bias-removed) to make real forecasts. In fact, this is the perfect prog (PP) approach.
It is possible that the skill could be enhanced when the circulation variables are not just
removed of bias but reforecasted, as what the RAN approach does. More comparisons are
still needed in future studies.

This study provides a framework for generating probability forecasting for rainfall and
streamflow of the Yangtze River Valley, then represents a contribution for the development
of an early warning system (EWS) [38] for the study area. We have shown that the
forecast can be skillful for larger thresholds of rainfall even from February. For converting
probability forecasts to binary forecasts, tools such as the ROC curve are useful for making
the trade-off between the benefit of hit and the cost of a false alarm, which is beyond the
topic of this paper.

7. Conclusions

In this study, we built forecasting models for summer rainfall and streamflow over
the Yangtze River Valley based on the knowledge of the western Pacific subtropical high
(WPSH). Several conclusions can be listed here:

1. The rainfall over the Yangtze River Valley is more sensitive to the variability of WPSHI
when WPSHI is high, while when WPSHI is less than 0.5, the rainfall shows low
sensitivity. Furthermore, the middle and lower reaches of Yangtze River Valley show
higher sensitivity to the variability of WPSHI than other regions. This characteristic
leads to higher forecasting skill of exceedance probability forecasts corresponding to
larger thresholds of rainfall.

2. The analysis of predictability of summer streamflow of the Yangtze River Valley
shows that WPSHI can only enhance the forecasting skill for binary classification
corresponding to larger thresholds of streamflow.

3. A comparison between two postprocessing approaches shows that the RAN approach
shows a higher skill than model output statistics (MOS), as RAN can utilize more
samples than MOS.

4. When building a long-term forecasting model for generating exceedance probability
forecasts, one should notice the effect of the threshold, and find a proper threshold
with a higher skill.
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Abstract: The prediction of monthly rainfall is greatly beneficial for water resources management
and flood control projects. Machine learning (ML) techniques, as an increasingly popular approach,
have been applied in diverse climatic regions, showing their respective superiority. On top of that,
the ensemble learning model that synthesizes the advantages of different ML models deserves more
attention. In this study, an ensemble learning model based on stacking approach was proposed.
Four prevalent ML models, namely k-nearest neighbors (KNN), extreme gradient boosting (XGB),
support vector regression (SVR), and artificial neural networks (ANN) are taken as base models. To
combine the outputs from the base models, the weighting algorithm is used as second-layer learner
to generate predictions. Large-scale climate indices, large-scale atmospheric variables, and local
meteorological variables were used as predictors. R2, RMSE and MAE, were used as evaluation
metrics. The results show that the performance of base models varied among the nine stations in
the Taihu Basin, while the stacking approach generally performed better than the four base models.
The stacking model showed better performance in spring and winter than in summer and autumn.
During wet months, the accuracy of model prediction varied more significantly. On the whole, based
on performance evaluation measures, it is concluded that the proposed stacking ensemble multi-ML
model can provide a flexible and reasonable prediction framework applicable to other regions.

Keywords: rainfall; prediction; machine learning; stacking model; Taihu basin

1. Introduction

Rainfall is an essential component in the hydrological cycle. Rainfall prediction is a
fundamental issue in hydrological application. Reliable rainfall prediction is principal for
water resource management, agriculture and flood control projects [1–3]. In the current
context of climate change [4] and intense human activity, rainfall pattern becomes more
complicated; thus, rainfall prediction remains a significant and demanding problem [5,6].

Generally, for modeling precipitation, numerical models based on the physical mecha-
nisms and the statistical models were commonly employed [7,8]. The numerical models
are based on the physical equations, including the complex process of atmosphere, ocean
and land [9,10]. A large amount of data, such as temperature, pressure and moisture are
acquired to drive the numerical models, which expends a lot of calculation costs. The statis-
tical model is an approach of acquiring the features of historical rainfall time series and
then predicting the evolution based on these features. The autoregressive model (AR) [11],
the autoregressive moving average (ARMA) model [12,13] and the autoregressive mov-
ing integrated average (ARIMA) model [14,15] have been widely used for hydrological
series predicting.
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Machine learning (ML) techniques, as an increasingly popular approach, provide an
attractive alternative to traditional methods for rainfall prediction [16], driven by flexible
predictor datasets [17,18]. It can take advantage of all kinds of information, including, but not
limited to, atmospheric, geographical and oceanic factors to predict the target [19,20]. Multiple
machine learning methods have been employed for predicting rainfall. Yu et al. [21]
compared the effectiveness of support vector regression (SVR) and random forest (RF) in
radar-derived rainfall forecasting in three reservoir catchments in Taiwan and found that
SVR was more accurate in the estimation of rainfall. Cramer et al. [22] compared to the
application of ML techniques in 20 cities around Europe and 22 cities in the United States,
and found that ANN, SVR, and genetic programming (GP) showed better agreement than
Markov chain, radial basis neural networks (RBNN), M5 rules, M5 model trees and K-
nearest neighbors (KNN). Pour et al. [23] predicted seasonal rainfall extremes in Malaysia,
and found that Bayesian artificial neural networks (BANN) performed the best, followed by
SVR and RF. Sachindra et al. [24] compared the effectiveness of relevance vector machine
(RVM) with ANN, SVR, and GP for downscaling reanalysis data to monthly rainfall in
Australia. This research shows that RVM is recommended over GP, ANN or SVR in
developing downscaling models. Diez-Sierra and del Jesus [19] predicted long tern term
daily rainfall, showing that neural networks (NN) presented significantly better results
when predicting the intensity of rainfall, followed by SVM, KNN and RF, with slightly
worse values of R and RMSE than NN in Spain. Zeynoddin et al. [3] demonstrated that
a hybrid model by integrating a linear model and non-linear ELM model was powerful
for monthly rainfall prediction in a tropical region. Zhou et al. [25] compared RF, gradient
boosting regression (GBM), SVR, ANN and dual-stage attention-based recurrent neural
network (DA-RNN) in predicting monthly rainfall in Yangtze River Delta, China, showing
that RF performed better in terms of MAE, and that RF and ANN proved to be favorable in
terms of R2, RMSE.

Previous studies have generally investigated an individual ML method with single
structure, demonstrating their respective superiority. Considering that rainfall is affected
by different factors, as well as that it shows different statistical characteristics, the individ-
ual ML model with a specific structure possesses limited ability to present the complex
relationship between rainfall and diverse predictors in varying climatic regions. In recent
years, ensemble learning methods, which can combine multiple ML models, have shown
their advantages [26]. The stacking ensemble model is a popular one among them [27–29].
‘Stacking’ is a specific type of ensemble learning which can take advantage of different
base model structures to generate theoretically more promising prediction [30]. Zoune-
mat et al. [31] summarized research on the application of ensemble learning approaches in
a hydrological field, and claimed that using ensemble strategies is superior over individual
machine learning models. Li et al. [32] integrated SVR, RF, elastic net regression (ENR) and
extreme gradient boosting (XGB), through the stacking ensemble approach for mid-term
streamflow forecasting. It was found that the application of the stacking strategy improved
the ability of individual models. Wang et al. [33] compared stacking model with individual
models for beach water quality prediction, finding the stacking model is the most robust
one for 3 beaches in 5-year prediction. Nevertheless, the potential of stacking ensemble
model in rainfall prediction has less explored.

The main objective of this study is to develop a stacking ensemble model for monthly
rainfall prediction with multiple predictors and to examine the performance of the model.
Specially, four machine learning models (KNN, XGB, SVR, ANN) were utilized as base
learners due to their high popularity and good performance on previous studies. By means
of assigning weights, the four base learners were combined to the stacking ensemble model.
The performance of the stacking ensemble model is assessed by evaluation metrics R2,
RMSE, MAE. The predicted results are examined on an annual aggregated scale, seasonal
scale, dry/intermediate/wet month months and months of extreme rainfall.

The rest of this paper is organized as follows: Section 2 introduces the study area and
data. Section 3 presents a brief introduction of four machine learning models, the stacking
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ensemble framework, hyper-parameter optimization, evaluation metrics and categorization
of dry/intermediate/wet months. Section 4 presents the results and discussions, including
the comparison of model performances, the examination of the performance at different
time scales, and the discussion of prediction results. Section 5 presents a summary and
conclusions.

2. Study Area and Data

The Taihu basin (ranging from latitude 30◦28′ N to 32◦15′ N and longitude 119◦11′ E
to 121◦53′ E) is located in the Yangtze River Delta, on the southeast coast of China, as
shown in Figure 1. The total area of the watershed is approximately 36,895 km2, comprising
of parts of Jiangsu Province, Zhejiang Province and Anhui Province and Shanghai City.
Around 80% of the Taihu basin is plain, and the remaining 20% is occupied by low hills
in the western part of the Taihu basin [34], with rivers and lakes accounting for 17% of
the total area of the basin [35]. The Taihu basin is located in a subtropical monsoon zone,
with the average annual precipitation is 1218.1 mm [36]. Cyclonic storms and convectional
rainfall frequently occurring in flood season (May to September), are the main triggers for
flood events that, consequently, affect infrastructure and human lives.

Figure 1. Map of the study region and location of rain stations.

For the monthly rainfall prediction, nine stations located in the Taihu Basin and its
surroundings were selected, as shown in Figure 1. Since the long-term rainfall series data
in the Taihu basin for access are limited, three stations (Nanjing, Nantong and Ningguo)
within about 30 km from the Taihu basin were used in this study. The monthly rainfall at
these adjacent stations are also subject to the similar climatic condition [37,38]. The monthly
rainfall datasets for the period 1961–2019 were obtained from the China Meteorological Data
Service Centre, China Meteorological Administration (CMA) (http://data.cma.cn/data/
cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html (accessed on 27 February
2021)). Table 1 provides the geographic details and climatic properties of the nine stations.
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Table 1. The geographic details and climatic characteristics of the nine stations in the study.

No. Station Abbr.
Longitude

(◦E)
Latitude

(◦N)
Altitude

(m)

Monthly Precipitation

Mean
(mm)

Maximum
(mm)

Coefficient of
Variation (Cv)

1 Xujiahui XJH 121.43 31.20 4.6 101.3 725.5 0.809
2 Baoshan BS 121.45 31.40 5.5 94.5 570.9 0.834
3 Dongshan DS 120.43 31.07 17.5 95.8 696.6 0.764
4 Liyang LY 119.48 31.43 7.7 97.3 521.3 0.820
5 Pinghu PH 121.08 30.62 5.4 103.4 569.3 0.788
6 Hangzhou HZ 120.17 30.23 41.7 119.2 611.0 0.712
7 Nanjing NJ 118.90 31.93 35.2 90.5 661.5 0.952
8 Nantong NT 120.98 32.08 4.8 91.6 604.4 0.909
9 Ningguo NG 118.98 30.62 87.3 120.8 783.2 0.730

A total of 14 variables, including large-scale climate indices, large-scale atmospheric
variables, and local meteorological variables, were used as predictors (Table 2).

The large-scale climate indices in the prediction were the Nino 3.4 index (Nino 3.4), the
southern oscillation index (SOI), the Western Pacific subtropic high intensity (WPSH) and
the Southern Hemisphere annular mode Index (SAMI). Nino 3.4 is identified as the average
sea surface temperatures (SST) anomaly in the region of 5◦ N–5◦ S and 170◦ W–120◦ W.
The southern oscillation index (SOI) is typically calculated using the Troup’s method
using the values of pressure differences from Tahiti and Darwin. Nino 3.4 and SOI are
el nino southern oscillation (ENSO) indictors, which is one of the most important global
atmospheric phenomena, influencing rainfall and temperature across the globe. The
Western Pacific subtropic high intensity (WPSH) is measured by the geopotential height at
500 hPa in the region of 110◦ E–180◦ E and 10◦ N to the north [39]. The Southern Hemisphere
annular mode index (SAMI) is defined as the difference in the normalized monthly zonal-
mean sea level pressure between 40◦ S and 65◦ S [40]. Previous studies [39–42] demonstrated
that WPSH and SAMI significantly impact the summer rainfall in the lower Yangtze River
basin. The climate indices with the lag month (up to 6 months lagged) of the highest
correlation coefficient were utilized as predictors, as shown in Figure S1.

The large-scale atmospheric variables used in this study were sea level pressure (SLP)
and meridional wind at 850 mb (V-wind), representing large-scale circulation anoma-
lies [43]. The sea level pressure (SLP) in the Indian Ocean is relevant to rainfall in the
study region [42]. The meridional wind at 850 mb (V-wind) is commonly used as the
large-scale atmospheric predictor for rainfall in varying regions [5,43–45]. Correlation
coefficient between the large-scale atmospheric variables and rainfall was used to select
the spatial grid and the lag month of the large-scale atmospheric variables. As shown
in Figure 2, the spatial grids of SLP were selected by the interactive correlation analysis
provided by the Physical Sciences Division in the Earth System Research Laboratory (ESRL
2008) (https://psl.noaa.gov/data/correlation/ (accessed on 7 December 2021)), and the
correlation coefficient between the selected SLP with 4 months lagged and rainfall was
−0.464. All the selected large-scale atmospheric variables were highly correlated with
rainfall in the study region of over 0.001 statistical significance level.

The local meteorological predictors for each station were monthly maximum tempera-
ture (Tmax), monthly minimum temperature (Tmin), monthly mean temperature (Tmean),
monthly mean pressure (Pmean), monthly mean water pressure (emean), monthly mean
relative humidity (dmean) and monthly sunshine duration (Dsun). These predictors were
selected for representing local scale characteristics.
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Table 2. Summary of candidate predictors for the stacking model.

No. Multiscale Predictors Data Source

1

Large-scale climate
indices

Nino 3.4 index (Nino 3.4)

Hadley Centre Global Sea Ice and Sea Surface
Temperature (Had-ISST). (https://psl.noaa.gov/
gcos_wgsp/Timeseries/Data/nino34.long.data

(accessed on 17 March 2021))

2 Southern Oscillation Index (SOI)
Climatic Research Unit, University of East Anglia.

(https://crudata.uea.ac.uk/cru/data/soi/
(accessed on 8 March 2021))

3 Southern Hemisphere annular mode index (SAMI) (http://ljp.gcess.cn/dct/page/65609
(accessed on 15 June 2021))

4 Western Pacific subtropic high intensity (WPSH)
National Climate Center

(https://cmdp.ncc-cma.net/Monitoring/
(accessed on 3 June 2021))

5
Large-scale

atmospheric variables

sea level pressure (15◦ S to 25◦ S, 55◦ E to 70◦ E)
(SLP) Reanalysis data of NCEP/NOAA [46]

(http://www.esrl.noaa.gov/psd/cgi-bin/data/
timeseries/timeseries1.pl

(accessed on 17 June 2021))
6 meridional wind (20◦ N to 47.5◦ N, 105◦ E to 125◦ E)

(V-wind(1))
7 meridional wind (32.5◦ N, 120◦ E) (V-wind(2))

8

Local meteorological
variables

Monthly mean air temperature (◦C) (Tmean)
China Meteorological Data Service Centre, China

Meteorological Administration (CMA)
(http://data.cma.cn/data/cdcdetail/dataCode/

SURF_CLI_CHN_MUL_DAY_V3.0.html
(accessed on 27 February 2021))

9 Monthly maximum air temperature (◦C) (Tmax)
10 Monthly minimum air temperature (◦C) (Tmin)
11 Monthly mean air pressure (Pmean)
12 Monthly mean vapor pressure (emean)
13 Relative humidity (dmean)
14 Sunshine duration (Dsun)

Figure 2. The correlation coefficient between the sea level pressure (SLP) and rainfall in the study
region: (a) The correlation map for the spatial grids selection; (b) The correlation of the time series
between SLP and rainfall for the lagged months selection.

3. Methodology

The models are trained and evaluated using above predictors. Since regional rainfall
is related to multiscale climatic and meteorological features, the 14 predictors utilized
represent the factors with multiple scales associated with rainfall in the study region. In
addition, rainfall data from 9 rain stations are employed, keeping nearly 90% of each
station for fitting the models (training), and the remaining roughly 10% for evaluating their
prediction skill (testing) [47,48]. A fifty-nine years-long time series for each station are split
in two sets (shown in Figure 3): the training set for the period of 1961–2012, containing
52 years of data and the testing set for the period of 2013–2019, containing the remaining
7-year data. Predictive performance is evaluated over the testing set, which is not learned
in any methods.

73



Water 2022, 14, 492

Figure 3. Methodological scheme of training and testing set division to fit and evaluate the models.

3.1. Machine Learning Methods
3.1.1. K-Nearest Neighbors (KNN)

K-nearest neighbors (KNN) was proposed by Cover T.M. and Hart P.E. [49]. K-nearest
neighbors (KNN) is a non-linear method whose predictions are computed through the
weighted mode (classification) or the weighted mean (regression) of the k nearest points
to the one being predicted. The Euclidean distance metric and Manhattan distance metric
are commonly used metrics for finding the closest k neighbors in the training set. Then,
the predicted target is obtained by averaging these neighbors, or the weighted average
according to the distance. More details on the KNN algorithm can be found in [50].

3.1.2. Extreme Gradient Boosting (XGB)

Extreme gradient boosting (XGB, also known as XGBoost) proposed by Chen and
Guestrin [51], is a new application of gradient boosting machines. As the gradient boosting
machines, XGB is developed through an additive training strategy. The predictions are
made from weak learners that continuously develop over the mistakes from the former
learners. The difference is that the gradient boosting algorithm is a negative gradient that
learns a weak learner to approximate the loss function. XGB first finds the second-order
Taylor approximation of the loss function at that point, and then minimizes the approxima-
tion loss function to train the weak learner. XGB can process sparse data automatically, and
it is generally more than ten times faster than the conventional gradient boosting technique.
For more information, readers are referred to [52].

3.1.3. Support Vector Regression (SVR)

Support vector regression (SVR) is a kind of support vector machine (SVM) [53] for
performing the regression task. The general concept of SVR is that it nonlinearly maps
the feature data into the high-dimensional feature space. The objective of SVR is to find
a hyperplane that maximizes the margins by separating samples belonging to different
groups. The data points that support the margin at a close distance from the hyperplane
are known as support vectors. In SVR, mapping the feature set into the high-dimensional
feature space is achieved by the kernel function. The detailed description on various kernels
can be found in [47]. Previous hydrological studies of SVR application demonstrated that
the radial basis function kernel was found to be effective [5,20,54,55].

3.1.4. Artificial Neural Network (ANN)

Artificial neural network (ANN) is inspired by the neurological structure of the human
brain [56]. A common ANN architecture used in this study is the multiple layer perceptrons
(MLP). The mathematical description of the method can be found in [57]. As a brief
description, MLP is a feedforward network that consists of an input layer, hidden layer(s)
and an output layer. The input layer receives external data and the output one produces
the final result. The hidden layers are neurons nodes between the input and out layer,
providing nonlinearity. More complex problems can be solved by increasing the hidden
neurons or layers used. A neuron is a computational unit that receives input from other
neurons that are interconnected with weight. The ‘activation function’ that each neuron uses
receives the linear combination of inputs to produce the results in non-linear transformation.
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In the present study, the traditional backpropagation algorithm [58] was adopted as the
learning algorithm.

3.2. Stacking Ensemble Learning

The stacking ensemble learning is proposed by Wolpert [26], taking advantage of
mutual complementarity among the base models to enhance generalization ability. The
process occurs by, firstly, obtaining the results predicted by a set of diverse base models,
and then optimally combining the outputs from the base models using a meta-learner to
generate the final prediction. To prevent overfitting, the outputs from the base models are
not directly learned by the meta-model. The leave-one-out cross validation method is used
in this ensemble learning strategy. The validation folds are stacked as the new dataset for
the meta-model to learn, which is the reason this strategy is called “stacking”. How to
integrate the base models is important. Multiple linear regression ML models such as RF,
can be used as a meta-model. In our study, weights were assigned to the base models to
constitute the stacking model prediction. The mathematical expression can be presented as:

yP,i =
M

∑
m=1

ωm fm,i (1)

where ωm (m = 1, 2, . . . , M) is the weight assigned for each base models, f m,i represents
the prediction of the model m for the ith observation.

To obtain the optimal final prediction, the set of stacking weights were estimated by
minimizing the mean square linear regression. Thus, the objective function under two
constraints are as follows:

Ω = argmin
N

∑
i=1

[yO,i −
M

∑
m=1

ωm fm,i]
2 (2)

ωm ≥ 0 m = 1, 2, . . . , M (3)

M
∑

m=1
ωm = 1 m = 1, 2, . . . , M (4)

where Ω = {ω1, ω2, . . . , ωM} is the set of weights assigned to the base models. Two
constraints are: (i) weights should be larger than or equal to zero, and (ii) the sum of
the weights equals to one. This leads to a quadratic minimization problem [59], and the
python package ‘qpsolvers’ was used to solve it. Through calculating the weights of the
base models, the stacking model was integrated to generate the final prediction. The
construction of the proposed stacking model and the overall flowchart of the adopted
methodology in this study is presented in Figure 4.

3.3. Hyper-Parameter Optimization

Hyper-parameter tuning is commonly used to construct an appropriate model for
a specific prediction. The model performance varies with different selection of hyper-
parameter values. Table 3 summarizes the main hyper-parameters of the four machine
learning models applied in this study. Taking SVR and ANN as examples, Figure 5 shows
the process of hyper-parameter tuning of the two models. The hyper-parameters were tuned
and evaluated over the training set by k-fold cross-validation [60]. K-fold cross-validation
leveraging information in a small dataset helps to avoid overfitting and to produce a
model that performs well on new data [61]. Figure 5a,b illustrates how the performance
of SVR varies with the hyper-parameter Cost © and Gamma(γ). For SVR, the cost C and
γ with the radial basis function kernel are significant hyper-parameters. It illustrates a
proper value range of the cost C; γ were nearly 10−2 to 10−1 and 10 to 100, respectively.
For ANN, the size of the hidden layer is an essential hyper-parameter, indicating the
complexity of the learning model. In Figure 5c, ANN with a hidden layer of (8) and (8,8)
were compared. Earlier convergence (nearly 190 epochs) and higher performance (R2 of
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0.53) over the validation set were shown on the ANN with the layer of (8) compared to
one with a hidden layer of (8,8). This indicates that the relatively smaller size of hidden
layer ANN has enough learning capacity, and that too large of a size of hidden layer will
cause overfitting. For the machine learning model, multiple important hyper-parameters
impact the model performance comprehensively; the grid search approach was utilized
to optimize the combination of hyper-parameters within the specified range in this study.
Then, the models with hyper-parameters tuned were applied in the testing set. There was
no notable higher performance in the training set than the testing one, indicating that the
models built are reasonable and capable of generalization.

Figure 4. Flowchart of the stacking-based methodology in the study.

Table 3. Summary of the hyper-parameters of the four machine learning models.

Machine Learning Model Hyper-Parameters

K-nearest neighbors (KNN) Number of neighbors
Weights

Extreme gradient boosting (XGB)
Number of estimators

Learning rate
Max depth

Support vector regression (SVR) Cost C
Parameter of Gaussian Kernel—Gamma(γ)

Artificial neural network (ANN)

Size of hidden layer
Activation function

Learning rate
Batch size
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Figure 5. The R2 score of hyper-parameters tuning at Ningguo station. (a) Cost (C) of SVR;
(b) Gamma (γ) of SVR; (c) size of hidden layer of ANN. The shaded areas include 5-flod cross-
validation results.
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3.4. Performance Evaluation

The performances of the above machine learning models were evaluated by the
commonly used statistic metrics: (1) Coefficient of determination (R2), (2) root mean square
error (RMSE), (3) mean absolute error (MAE). R2 measures the proportion of variance
explained by the model. The best possible score is 1.0; a larger value represents a better fit.
RMSE evaluates the residual between observed and predicted values and is particularly
sensitive to the large errors, since the errors are squared before they are averaged. the MAE
is less sensitive to extreme values than the RMSE [62]. The mathematical formulas are
as follows:

Coefficient of determination (R2)

R2 = 1 −

N
∑

i=1
(yP,i − yO,i)

2

N
∑

i=1
(yO,i − yO,i)

2
(5)

Root mean square error (RMSE)

RMSE =

√√√√ 1
N

N

∑
i=1

(yP,i − yO,i)
2 (6)

Mean absolute error (MAE)

MAE =
1
N

N

∑
i=1

|yP,i − yO,i| (7)

where yP,i and yO,i are the predicted and observed monthly precipitation in test period t
(test slice), respectively, i is the month of the dataset and N (= 84) is the length (number of
samples in the test set) in period t (2013–2019), yO,i is the mean values of the series yO,i.

3.5. Categorization of Dry, Intermediate and Wet Months in Terms of Standardized Precipitation
Index (SPI)

For measuring the model performance on normal, below and above normal monthly
rainfall prediction, the standardized precipitation index (SPI) proposed by McKee et al. [63]
was used to designate the monthly precipitation into the dry/intermediate/wet classifica-
tions. SPI was calculated using the available program from the National Drought Mitigation
Centre (https://drought.unl.edu/droughtmonitoring/SPI/SPIProgram.aspx (accessed on
29 July 2021)). The SPI calculated in this study is based on representing the historical
monthly precipitation record with a gamma distribution. Positive SPI values represent wet
conditions; the higher the SPI, the more unusually wet a month is. Negative SPI values
represent dry conditions; the lower the SPI, the more unusually dry a month is. The detailed
methodology and the computation process of SPI can be found in Angelidis et al. [64].

SPI was obtained based on the observed monthly rainfall series. The calculated SPI
fall into three categories, namely, ‘dry’ (SPI < −1), ‘intermediate’ (−1 ≤ SPI ≤ 1), and ‘wet’
(SPI > 1). The performance of the models above was assessed respectively in terms of the
three categories.

4. Results and Discussion

4.1. Intercomparison of Model Performances

Four base models and the stacking model are constructed at nine stations in the Taihu
basin for prediction of monthly rainfall. Prediction is independent for each station. The
observed and predicted monthly precipitation series of all the models at the nine stations
are shown in Figure S2.
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Figure 6 demonstrates the prediction skills of all the models at the nine rainfall stations.
Among the four base models, the model performances vary in terms of R2, RMSE, and MAE.
The R2 ranges from 0.29 to 0.70. The RMSE and MAE range from 48 mm to 79 mm and
from 35 mm to 51 mm, respectively. It presents analogous ranges of the evaluation metrics
with the previous predictions at the lower reach of the Yangtze River [25], illustrating the
models in this study perform in the reasonable range. Among the base models, ANN at
Xujiahui had the best prediction accuracy with the highest R2 and the smallest RMSE and
MAE, while the accuracy of KNN was the worst in terms of the three metrics at almost all
the stations. There was no base model that performed best at all the stations.

Figure 6. Comparison of model overall performance for the 9 stations using R2; RMSE and MAE.

We then compared the performance of the base models and the stacking model. The
best models selected in terms of R2 and RMSE were same at the nine stations (shown in
Table S1), and the stacking model performed best at two stations. In terms of MAE, the
stacking model performed best at four stations. This implies that, through combining
ML models of diverse structures, the stacking model has the potential to over-perform
all its base models. At the other stations, the stacking model showed analogous accuracy
with the best base models. It should be noted that, though the stacking model was not
selected as the best one at all the nine stations, the variation of each metric was lower,
implying that the stacking model can produce more robust predictions at regional scale.
Additionally, as shown in Table 4, the stacking strategy reduced MAE more effectively than
RMSE, since MAE evaluates the average magnitude, while RMSE is more sensitive to the
large errors, which are squared before they are averaged. This indicates that, except for the
magnification of the large errors generally occurring at extreme rainfall samples [65], the
stacking model appeared to be more favorable in the measurement of average performance
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in the entire rainfall series prediction. The best model for each station selected in terms of
R2, RMSE and MAE is shown in Table S1.

Table 4. Evaluation metrics averaged over the nine stations at different time scales.

Evaluation Metrics KNN XGB SVR ANN Stack

All months
R2 0.407 0.526 0.523 0.532 0.526

RMSE (mm) 68.72 61.57 61.65 60.92 61.51
MAE (mm) 46.34 42.41 43.16 42.47 41.65

Annual
aggregation scale

RMSE (%) 26.12 22.33 22.12 24.63 23.34
MAE (%) 21.39 18.31 18.61 21.02 19.40

Spring RMSE (mm) 43.82 45.74 45.79 47.16 44.22
MAE (mm) 33.86 37.18 36.88 37.89 35.58

Summer
RMSE (mm) 95.50 87.56 87.06 85.19 87.44
MAE (mm) 73.85 66.46 66.21 66.72 66.82

Autumn
RMSE (mm) 77.17 64.35 64.02 62.89 65.27
MAE (mm) 50.55 44.21 44.03 42.61 43.15

Winter
RMSE (mm) 34.45 27.46 29.52 28.06 26.22
MAE (mm) 27.09 21.77 25.54 22.67 21.05

Dry months RMSE (mm) 61.05 47.56 49.45 43.03 46.78
MAE (mm) 49.90 37.47 40.39 32.33 35.87

Intermediate
months

RMSE (mm) 36.98 40.53 42.27 43.94 38.77
MAE (mm) 28.08 32.26 33.06 33.98 30.21

Wet months
RMSE (mm) 121.23 101.22 99.03 96.82 103.43
MAE (mm) 97.86 73.15 72.94 71.33 76.69

Months of extreme
rainfall

RMSE (mm) 197.70 172.36 164.65 157.80 173.26
MAE (mm) 188.36 162.22 153.26 143.32 163.38

4.2. Prediction Skills at Different Time Scales

It is also of importance to predict annual, seasonal and other scales in the water
resources management. Thus, we examined the model performance at annual aggregated
scale, seasonal scale, dry/intermediate/wet months and months of extreme rainfall.

At the annual aggregation scale, Table 4 shows the evaluation metrics (RMSE and MAE)
of the five models at nine rainfall stations over the study region. The RMSE of the stacking
model at the annual aggregation scale was 157.5–399.7 mm (accounting for 15–35% of the
annual precipitation averaged over the 1961–2019 period), and MAE was 157.6–336.7 mm
(accounting for 11–30%). Among the base models, SVR performed satisfactorily at the
annual aggregation scale, with an RMSE of 135.7–333.8 mm (accounting for 10–31%) and
MAE of 110.9–299.6 mm (accounting for 9–25%). Generally, in terms of the performance at
the annual aggregation scale, the stacking model and ML models, such as SVR and XGB,
showed good ability in readily applying to long-term rainfall prediction for regional water
resources management.

Over four seasons, rainfall shows significantly seasonal variability in the study region.
The average monthly rainfall (1961–2019) at the stations was 81.5–137.1 mm in spring (from
March to May), 151.9–194.8 mm in summer (from June to August), 65.0–96.8 mm in autumn
(from September to November), and 39.9–73.0 mm in winter (from December to February).
Thus, evaluation metrics (RMSE and MAE), the percentage of which accounts for average
monthly rainfall over four seasons, were evaluated at the seasonal scale, shown in Figure 7.
In terms of RMSE and MAE, the prediction in winter was the most accurate, followed
by spring and autumn. The evaluation metrics were highest in summer considering its
largest amount of rainfall over four seasons. While, in terms of the percentage of RMSE
and MAE, the prediction in spring was the most accurate, similar in summer and winter,
but worst in autumn. Generally, the stacking model performed better in spring and winter
than in summer and autumn. It is noted that previous studies [40,42,66] have highlighted
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the importance of accurately predicting summer rainfall. Future work is needed to explore
suitable models and the main factors for summer rainfall prediction in this region.

Figure 7. The value and percentage of evaluation metrics (RMSE and MAE) of the stacking model at
the nine stations in four seasons.

The prediction from the above models was further compared in terms of dry/intermediate/
wet months. As mentioned earlier, SPI was used as the index for classifying the categoriza-
tion. The SPI was calculated based on observed monthly rainfall series, and divided all
months into three categories, namely, ‘dry’ (SPI < −1), ‘intermediate’ (−1 ≤ SPI ≤ 1), and
‘wet’ (SPI > 1). The scatter plots of the stacking model are presented in Figure 8. The results
of base models are shown in Figure S3. It revealed that all the models underestimated
rainfall for the wet months, and slightly overestimated rainfall for the dry months.

The predictions for intermediate and dry months were within a minor error range. The
prediction error on wet conditions was high, and rainfall prediction for wet JJA (June-July-
August) months was the most underestimated, indicating that the wet feature is the most
difficult for the machine learning models to capture. The evaluation metrics (RMSE and
MAE) for dry/intermediate/wet months by the stacking model and the base models shown
in Table 4 also offered the same indication. Similar results were also found in other climate
regions [5,24]. Further work is needed to pay attention on wet JJA rainfall prediction, which
is crucial to the regional flood prevention.

Extreme precipitation deserves special attention in the Taihu basin, considering that
intensive precipitation during the ‘Plum Rain Season’ (the rainy season from late June to
early July in the Yangtze Plain) and typhoon season may cause flooding [35]. We compared
the prediction skill of the above models on precipitation above 300 mm, which is considered
as extreme rainfall in the study region. Since the samples of extreme rainfall are a tiny part
in the series (nearly 3%), the extreme rainfall is generally underestimated by the above
models. Such a feature seems difficult for models to capture. The evaluation metrics
on extreme rainfall are shown in Table 4. They indicated that ANN showed the greatest
predictive ability, followed by SVR. The stacking model performed comparable to XGB.
KNN showed poor predictive power on extreme rainfall, since the stacking model with the
weight-distributed strategy is influenced by all the base models. One of the base models
with poor performance may reduce the prediction ability of the stacking one. Other ML
models can be utilized as an alternative in the flexible stacking framework for enhancing
the predictive skill.
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Figure 8. Scatter plot showing the association between observed and predicted rainfall of the stacking
model for the testing period (2013–2019).

4.3. Discussions

Irrespective of the models used in prediction, there are quite differing prediction effects
shown among the nine stations. Higher performance was shown at Xujiahui and Ningguo
station, with R2 of 0.642 and 0.645, respectively, while lower performance was shown at
Nanjing, with R2 only reaching 0.438 by the stacking model, as depicted in Figure 9. The
certain possible reasons that may impact the performance are addressed as follows.

One of the crucial reasons is likely associated with different characteristics in the
rainfall series among these stations. We used CV and probability density of time series
as examples to demonstrate the various features. Figure 9 shows the performance of
the stacking model contrast to the coefficient of variation (CV) at the nine stations. The
higher CV indicated a more disperse rainfall distribution, which may increase the difficulty
of the series prediction. In Table S2, lower CV are shown in all predicted series than
in observational ones, which indicates that the dispersion feature in the time series is
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difficult to capture. Figure 10 shows the probability density distribution of observations
and predictions by the stacking model at the nine stations. Lower probability density in
distribution tails and excessive distribution around 100 mm also show that the predicted
rainfall is prone to concentrate on moderate values, making the dispersion of the series
difficult to reproduce. Further research is needed to examine the main features of time
series that impact the prediction performance.

Figure 9. Evaluation metrics (R2, RMSE and MAE) on the stacking model and the coefficient of
variation (CV) of the rainfall series at the nine stations for the testing period (2013–2019).

Another characteristic that may affect the prediction is the discrepancy between
the rainfall distributions for the training set (1961–2012) and the testing set (2013–2019).
Figure 10 shows that the probability distribution in the range of 0–100 mm significantly
reduces, while the monthly rainfall larger than 200 mm occurs more frequently during the
testing period (2013–2019) at most of stations. In comparison, there are similar probability
distributions in the training and testing period at Xujiahui and Ningguo station, conducive
to high prediction accuracy at these stations. It implies that the characteristics of training
and testing sets have a notably high impact on the prediction accuracy. Further works can
consider the statistical characteristics in the ML prediction model construction to enhance
the predictive ability.

The division of training and testing sets is an inevitable issue in time series prediction.
Generally, for building a statistical predictive model, the training set and the testing set
are required to contain the same distribution [67], which is conducive to achieving good
prediction results. However, due to the complexities in the change of rainfall character-
istics [4] which is caused by natural and anthropogenic factors, the physical factors that
impact rainfall characteristics are needed in the models as prediction factors in the long
term rainfall prediction to reveal this change. In addition, other climatic and meteorological
variables utilized as predictors also show non-stationarity and complexity in dynamic
climate systems [68]. Identifying major drivers of regional rainfall for mapping relationship
construction is also important to enhance the predictive ability.
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Figure 10. Probability density distribution of observations and predictions by the stacking model at
the nine stations.

5. Conclusions

In this study, a stacking ensemble learning model and its base models were compared
for the prediction of monthly rainfall at nine stations in the Taihu basin, China, using
large-scale climate indices, large-scale atmospheric variables, and local meteorological
variables as predictors. Principal conclusions of the study are as follows:

(1) Through combining models of diverse structures, the stacking model showed the
potential to over-perform all the base models. In terms of different evaluation metrics,
the results varied among the models. In terms of R2 and RMSE, the stacking model
performed best at two stations (Pinghu and Ningguo). In terms of MAE, the stacking
model performed best at four stations (Liyang, Pinghu, Hangzhou and Nanjing). At
the other rainfall stations, the stacking approach also showed satisfactory performance,
close to the best one of the individual base models, and especially showed favorable
results in term of MAE. Thus, the proposed stacking model can produce reasonable
predictions for the entire rainfall series.

(2) At the annual aggregation scale, the stacking model and ML models (SVR and XGB)
performed satisfactorily, showing good ability in applying long-term rainfall predic-
tion for regional water resources management. Over four seasons, the stacking model
generally showed better performance in spring and winter than in summer and au-
tumn. In terms of dry/intermediate/wet months, the models showed a greater minor
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error range in dry and intermediate months than wet months, with underestimation
of the wet months and slight overestimation of the dry months.

(3) In terms of extreme rainfall, ANN outperformed the stacking model. The ML models
generally undervalue extreme rainfall. ANN, relatively, generated the closest predic-
tion, showing the potential to capture the extreme wet condition. Further work is
needed to explore ML methods to enhance the ability of predicting extreme rainfall,
especially in regions vulnerable to flooding.

In this study, a stacking ensemble model of combining different machine learning
model structures was proposed in rainfall prediction. In this flexible stacking framework,
the attempts to improve base-learners and meta-learners were promising to enhance the
prediction ability in further research. In addition to the model structures, the difference
between training and testing data distributions also affected the prediction performance.
Further study should focus on the variability in rainfall series, the identification of impor-
tant drivers to enhance the prediction ability and the examination of more ML models,
such as recurrent neural network (RNN) [58], under the ensemble framework. The data-
driven model with the stacking ensemble framework is readily generalized to other climatic
regions, using climatic, meteorological and diverse information.
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Abstract: This research develops an extension of the Model Conditional Processor (MCP), which
merges clusters with Gaussian mixture models to offer an alternative solution to manage heteroscedas-
tic errors. The new method is called the Gaussian mixture clustering post-processor (GMCP). The
results of the proposed post-processor were compared to the traditional MCP and MCP using a
truncated Normal distribution (MCPt) by applying multiple deterministic and probabilistic verifica-
tion indices. This research also assesses the GMCP’s capacity to estimate the predictive uncertainty
of the monthly streamflow under different climate conditions in the “Second Workshop on Model
Parameter Estimation Experiment” (MOPEX) catchments distributed in the SE part of the USA.
The results indicate that all three post-processors showed promising results. However, the GMCP
post-processor has shown significant potential in generating more reliable, sharp, and accurate
monthly streamflow predictions than the MCP and MCPt methods, especially in dry catchments.
Moreover, the MCP and MCPt provided similar performances for monthly streamflow and better
performances in wet catchments than in dry catchments. The GMCP constitutes a promising solution
to handle heteroscedastic errors in monthly streamflow, therefore moving towards a more realistic
monthly hydrological prediction to support effective decision-making in planning and managing
water resources.

Keywords: uncertainty analysis; water resources; cluster analysis; Gaussian mixture model; proba-
bilistic prediction

1. Introduction

Hydrological predictions are beneficial for water management and planning, such as
arranging hydraulic infrastructure (irrigation and draining systems, aqueducts, reservoirs,
among others), managing flood and drought risks, and estimating ecological flows, oper-
ations, and monitoring existing systems—among others [1]. In addition, estimating the
predictive uncertainty of monthly streamflow plays a crucial role in supporting decision-
making for water resources management, such as water supply, hydropower, and water
balance [2]. Moreover, decision-making in the context of water resources is a complex
practice due to the investments, the large scale, and the meaning of projects [3]. Further-
more, such hydrologic predictions are affected by various sources of uncertainty, mainly
in observed data [4], the model’s parameters [5,6], the model’s structure [7,8], the initial
conditions [9], the model’s numerical solution [10], and the intrinsic non-deterministic
performance of the systems [11]. Accordingly, Predictive Uncertainty Quantification (PUQ)
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is a fundamental tool for risk management and for supporting decision-making in an
informed manner when administering water resources [12].

Predictive uncertainty is the probability of observations conditioned by all information
and available knowledge (predictions) occurring until today [13]. Therefore, predictive
uncertainty is conditioned on the model’s structure, parameters, and input data [14]. Hence,
PUQ is crucial for making reliable, sharp, and accurate hydrological predictions. It also
characterises all the possible predictions and their respective occurrence probabilities [15].
This way of characterising uncertainty does not simplify the decision-making process but
provides valuable information about what is not known in the system [16,17]. According
to Prieto et al. [18], making predictions without quantifying uncertainty is not knowing
reality. Hydrological post-processing methods are suitable for estimating the predictive
uncertainty of deterministic hydrological predictions (point predictions).

Formally speaking, a hydrological post-processor is a statistical model employed to
improve deterministic predictions by relating the hydrological model’s outputs with the
corresponding observations [19]. In practice, post-processors are used to characterise the
hydrological model’s uncertainty and to eliminate the systematic bias of predictions [20].
Post-processors are in charge of mitigating errors in the model’s input and output data,
parameters, initial conditions, boundary conditions, and structure. Hydrological post-
processors have two main objectives: (i) estimating the predictive uncertainty of the hy-
drological model’s deterministic outputs. In this context, hydrological post-processing can
be understood as a simple method to convert deterministic predictions into probabilis-
tic ones [21,22]; (ii) correcting the systematic bias of hydrological models to make more
accurate predictions.

In recent years, different methods have been developed to estimate the predictive
uncertainty of hydrological forecasts. To determine the structure of dependence between the
predictions and observations, most methods are based on the meta-Gaussian model, owing
to the statistical goodness and facilities that Gaussian variables present [13,14,23–26]. This
procedure distributes bivariate probability distributions between deterministic predictions
and observations. The errors of hydrological predictions are generally non-Gaussian,
heteroscedastic, and autocorrelated [27–30]. To solve this problem, many post-processors
apply normalisation methods, such as Normal Quantile Transform (NQT) [31], Box-Cox
transformation [32], log-sinh transformation [33], etc.

The first work about predictive uncertainty and hydrological post-processing was
conducted by Krzysztofowicz [13] in the context known as the Bayesian Forecasting Frame-
work (BFS). This method developed a bivariate meta-Gaussian distribution function based
on a Normal quantile transformation of two variables: observations and predictions accord-
ing to Gaussian laws. This procedure is known as the Hydrological Uncertainty Processor
(HUP) [34]. One of the disadvantages of the HUP is that it does not suitably represent the
heteroscedasticity of the error variance. Todini [14] proposed the Model Conditional Proces-
sor (MCP), which employs a meta-Gaussian model to estimate the predictive uncertainty
of one or a combination of many hydrological models. Coccia and Todini [35] extended the
MCP by using Multivariate Truncated Normal distributions to model the joint distribution
for many variables in the Normal space to solve the heteroscedastic error problem. Weerts
et al. [36] applied quantile regression (QR) to deal with the heteroscedasticity of the hydro-
logical variables’ error. QR offers the advantage of analysing the relationship between the
observations and predictions from different quantiles, which could be very important for
understanding extreme data and managing data with heteroscedasticity [37]. Nonetheless,
QR separately estimates one regression for each quantile, generating many parameters.

Similarly, Raftery et al. [38] introduced the Bayesian Model Average (BMA) method
that uses many models. Uncertainty is estimated as the average weight of each model’s
predictive distribution [39]. BMA offers the disadvantage of uncertainty, being conditioned
to the number of employed models and their diversification to represent the state variable’s
uncertainty.
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Other hydrological post-processing methods have been implemented, and most em-
ploy Bayesian principles. For example, Wang et al. [25] presented the Bayesian Joint
Probability (BJP) and Zhao et al. [26] introduced the General Linear Model Post-processor
(GLMPP). There are also hydrological post-processors with different error models that
had been evaluated under different climate conditions [40,41], such as post-processors
that employ non-parametric methods [42], post-processors based on machine-learning
principles [43–48], and post-processors based on the copula concept to establish the relation
of the dependence among state variables [49–51]. This list of hydrological post-processors
is not long, and readers can find more details in the work by Li et al. [52]. Likewise, for
reviews of advances in uncertainty analysis, see Moges et al. [53] and Matott et al. [54].

The Model Conditional Processor (MCP) has been established as a hydrologic post-
processor for quantifying predictive uncertainty in diverse applications. For instance,
precipitation and temperature re-analyses [55], floods in real-time [56], ensemble predic-
tions [57], and satellite rainfall information [58]. Although Coccia and Todini [35] provide
insights to deal with the heteroscedastic error using multivariate truncated Normal distri-
butions, the problem is still an open question, especially in monthly streamflow. This paper
introduces the Gaussian mixture model and cluster method as a promising alternative to
deal with the heteroscedasticity problem, namely that the forecast uncertainty increases
with the magnitude of forecast variables.

Nowadays, the use of clusters has become popular in hydrology. For example, Parviz
and Rasouli [59] made rain forecasts by artificial intelligence and cluster analysis; Yu
et al. [60] implemented the regionalisation of hydroclimate variables with clustering; Basu
et al. [61] worked with clusters to analyse floods; and Zhang et al. [62] used clusters
and climate similarities to calibrate hydrological models, among others. Likewise, some
studies use the Gaussian mixture to represent errors of hydrological variables. For example,
Schaefli et al. [63] used a mixture of Normal distributions for quantifying hydrological
modelling errors, Smith et al. [64] proposed a mixture of the likelihood for improved
Bayesian inference of ephemeral catchments, and Li et al. [65] developed the Error reduction
and representation in stages (ERRIS) in hydrological modelling for ensemble streamflow
forecasting, which used a sequence of simple error models through four stages. Other
authors employ the Gaussian mixture to estimate marginal probability distributions. Thus,
Klein et al. [51] proposed a hydrological post-processor based on the bivariate Pair-copula
concept and recommended the Gaussian mixture to estimate marginal distributions. Feng
et al. [66] introduced a minor modification into the traditional HUP using the Gaussian
mixture to estimate marginal distributions. Also, Yang et al. [67] proposed a Bayesian
ensemble forecast method, comprising of a Gaussian mixture model (GMM), a hydrological
uncertainty processer (HUP), and an autoregressive (AR) model. Finally, Kim et al. [68]
used Gaussian mixture clustering to determine groundwater pollution by anthropic effects.
It is important to notice that many Gaussian mixture applications were used to estimate
marginal distributions.

The importance of estimating uncertainty and support for decision-making in water
resources management and planning is stressed. When managing water resources, the
monthly temporal discretisation scale is essential for planning the rules for operating in
reservoirs, estimating the water balances of catchments, and administrating hydraulic
infrastructure in the long term. To deal with these problems, monthly streamflow was
employed to evaluate hydrological post-processing.

This paper develops an extension of the MCP [14], which merges clustering with the
Gaussian mixture model to offer an alternative solution to manage heteroscedastic errors.
The new method is called the Gaussian mixture clustering post-processor (GMCP). The
results of the proposed post-processor were compared to the MCP [14] and the MCPt [35]
by applying multiple deterministic and probabilistic verification indices. This research
also assesses the GMCP’s capacity to estimate the predictive uncertainty of the monthly
streamflow under different climate conditions in the 12 MOPEX catchments [69] distributed
in the SE part of the USA.
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To achieve the above goals, this paper is structured as follows: the reference hydrolog-
ical post-processing methods and the basis for the new post-processor are described; next,
the origin of the hydrological predictions and the characteristics of the 12 MOPEX Project
catchments are presented to prove the new post-processor’s predictive performance; this
is followed by the Results, Discussion, and Conclusions sections. All the analyses were
carried out using the R Statistical software [70].

2. Materials and Methods

The GMCP post-processor is a statistical model to transform point predictions obtained
by any deterministic model into probabilistic predictions, thus deriving the predictive
uncertainty of the predictand. The GMCP computes the probability distribution of the
observed data conditioned on the generic deterministic model’s output (point predictions),
along with its mode (median or mean) value and uncertainty band, which is asymptotically
consistent in quantifying total uncertainty. In general, all MCP post-processors assessed
are based on the following main assumptions:

1. Uncertainty of weather forecasts has been substantially reduced because past observa-
tions are employed as the hydrological model’s input.

2. Predictions and observations correlating, and this system performance will continue
in the future. Similarly, modelled variables are stationary during the calibration and
application period. Non-stationarity can be accounted for using deterministic model
non-stationarity [71,72]. Such extension is not considered in the present contribution,
but a discussion is provided in Section 4.

3. A single deterministic model with a single parameter set is considered. Section 4 will
discuss the possible extension of the GMCP post-processor to multi-model applications.

4. The calibration dataset is long enough to ensure sufficient information to upgrade the
deterministic and post-processor models. The predictive capacity of the models is
limited by proper calibration, which implies that sufficiently long records of observed
data, guiding to a variety of hydrologic conditions, are available for model training.

As previously mentioned, this research aims to develop an extension of the MCP [14],
which merges clusters with a Gaussian mixture model to offer an alternative solution
to manage heteroscedastic errors. The method is identified with the acronym “GMCP”
post-processor. This research also assesses the GMCP’s capacity to estimate the predictive
uncertainty of the monthly streamflow under different climate conditions in 12 catchments
in the MOPEX Project [69]. The results of the proposed post-processor were compared to
the MCP [14] and the MCPt [35].

2.1. Predictive Uncertainty

In hindcasting, predictive uncertainty describes the probability of any value condi-
tioned to all the information and knowledge acquired by hydrological predictions [13,14,16].
Krzysztofowicz [13] and Todini [14] emphasise two basic theses. Firstly, the objective of
hydrological predictions is to quantify the uncertainty of observations rather than the
uncertainty of hydrological models. Secondly, the main aim to improve hydrological pre-
dictions is to estimate the actual streamflow and to reduce their predictive uncertainty.
To better explain these ideas, and to keep in line with Todini [14], a joint probability dis-
tribution concept of observations qo and predictions qs is presented. Figure 1 shows the
joint sample’s frequency of qo and qs that can be used to quantify the joint probability
density function. For any given hydrological model, predictions qs should be a function
of the model parameters (θ) and the input data (x) (precipitation, evapotranspiration, and
others.) Therefore, joint density probability can be expressed as f

(
qo,

(
qs
∣∣x, θ̂

))
. To predict

qo, the conditional predictive distribution must be derived from qo given qs. This can
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be accomplished by conditioning the joint probability density to the qs predicted value
(Figure 2) and renormalizing. This can be formally expressed as:

f
(
qo
∣∣(qs

∣∣x, θ̂
))

=
f
(
qo,

(
qs
∣∣x, θ̂

))∫
f
(
qo,

(
qs
∣∣x, θ̂

))
dqo

(1)

It is stressed that the conditional predictive uncertainty of Equation (1) represents
the predictive uncertainty given a hydrological model, input data, certain conditions, and
some hydrological parameters. Accordingly, and for this paper, the term “predictive uncer-
tainty” refers to “conditional predictive uncertainty”. As Figure 1 shows, the conditional
distribution f (qo|qs) is not as dispersed as the marginal distribution is for f (qo) because
uncertainty could be reduced by any further information provided by the hydrological
model’s predictions.

Figure 1. Predictive density is defined as the probability density of the observed variable qo that is
conditional on the hydrological model’s predictions, qs, where qs is considered to be known in the
prediction time (adapted from Todini [14]).

 
Figure 2. The flow chart of the proposed Gaussian Mixture Clustering Post-processor (GMCP).

2.2. Marginal Distribution and Normal Quantile Transformation

In general, the problem with Gaussian approaches in hydrology is that variables do
not tend to be distributed as Gaussian. Therefore, some kind of statistical transformation
must be applied to take the hydrological variables to the Gaussian space and to thus adjust

93



Water 2022, 14, 1261

the joint Gaussian probability density distribution (PDF) of both the observations and
predictions. The present research applied Normal Quantile Transform (NQT) [31] to all
the evaluated post-processing methods. Two auxiliary variables, ηo and ηs, derive from
NQT to replace F(qo) and F(qs) so that the probability distribution of the observations and
predictions in the Gaussian space would, respectively, be:

ηo = N−1(F(qo)),
ηs = N−1(F(qs)),

(2)

where N represents the standardGaussian distribution with zero mean and unit variance,
and F() symbolises marginal distributions. The present research used non-parametric
probability distributions to adjust marginal distributions because monthly streamflow is
heterogeneous, and the data represent different hydrological situations that might not be
easy to describe with the parametric distribution. The kernel density estimation method
was applied to adjust the marginal distributions of the random variables [73]. For a random
bivariate sample, X1, X2, . . . , Xn, are obtained from a joint PDF, f , and the kernel density
estimation is defined as:

f̂ (x; H) = n−1
n

∑
i=1

KH(x − Xi), (3)

where x = (x1, x2)
T and Xi = (Xi1, Xi2)

T , i = 1, 2, . . . , n. Here, K(x) is the kernel, which is
the asymmetric probability density function, H is the symmetric and positive bandwidth
matrix, and KH(x) = |H|−0.5K

(
H−0.5x

)
. Selecting K is not fundamental: the standard

Gaussian distribution K(x) = (2π)−1e(−0.5xTx) was used. Conversely, selecting H is very
important for f̂ performance [73]. The most widely used parametrization for the bandwidth
matrix is the diagonal H = diag

(
h2

1, h2
2, . . . , h2

n
)

with no constraints in H, but it ensures that
H is positive and symmetric. For the present research, the kernel estimation was applied
using the last square cross-validation method implemented in the ks library [74] of the R
statistical software [70].

2.3. Hydrological Post-Processing Methods

The streamflow post-processing methods assessed in this research consist of imple-
menting the Model Conditional Processor (MCP) [14] and some of its ramifications from
the MCP using a truncated Normal distribution (MCPt) [35] to finish with the proposed
extension of the MCP [14], which merges clustering with a Gaussian mixture model to offer
an alternative solution to manage heteroscedastic errors. The new method is called the
Gaussian mixture clustering post-processor (GMCP). Only a short overview of the theory
of the methods is given here. For future details, we refer to cited publications.

2.3.1. Model Conditional Processor (MCP)

Todini [14] proposed the Model Conditional Processor (MCP), a meta-Gaussian ap-
proach initially designed to estimate the predictive uncertainty of floods in real-time. The
MCP can be used in several ways: bivariate (observed, simulated), multivariate (several
prediction models), unique forecast horizon [35], and multiple lead-time [56]. The MCP is a
well-accepted hydrological post-processing method by the hydrological community [55–58].
The MCP mainly establishes a joint probability distribution to describe the relationship
between the deterministic hydrological predictions and the corresponding observations.
The joint probability distribution is modelled as a bivariate Gaussian distribution, followed
by adjusting the marginal distributions and transforming the Gaussian space variables.
The MCP, herein employed, includes three steps. The first is the transformation of the
predictions and observations to the Gaussian space by the NQT transformation method [31],
as shown in Section 2.2. The second step is predictive distribution, which was calculated
using Bayes’ Theorem by assuming that both the predictions and observations are avail-
able simultaneously. In line with the notation of the present paper, observations qo were
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transformed to Gaussian space ηo and predictions qs were transformed into ηs. Therefore,
the relation between ηo and ηs was formulated using a bivariate Gaussian distribution:

[
ηo
ηs

]
∼ N(μ, Σ), (4)

where μ =

[
μηo

μηs

]
is the means vector and Σ =

[
σ2

ηo ρηoηs σηo σηs

ρηoηs σηo σηs σ2
ηs

]
is the

covariance matrix. In step three, the predictive uncertainty estimated in Gaussian space
was reconverted into real space by the inverse of NQT. The series of observations was
divided into two parts to identify the MCP parameters. The first half of the series was used
for calibration purposes; that is, to identify marginal distributions and joint distribution
thorough Bayes’ Theorem. The second half of the series was employed to validate the MCP;
the calibrated MCP was conditioned to new predictions to evaluate its performance for
a group of parameters θ and the new predictions were transformed into Gaussian space
ηs_new:

ηo_new|ηsnew , θ ∼ N
[

μηo + ρηoηs

σηo

σηs

(
ηsnew − μηs

)
, σ2

ηo

(
1 − ρ2

ηoηs

)]
, (5)

Interestingly, the MCP is simple to implement with a low computational cost because
the bivariate Gaussian distribution is analytically processed. Likewise, the parameters are
analytically identified, saving the total parametric inference cost. For further details about
the MCP, we recommend that readers look at the work of Todini [14]. Next, an improved
version of the traditional MCP is presented.

2.3.2. MCP Using Truncated Normal Distribution (MCPt)

To address the heteroscedasticity in the error variance, Coccia and Todini [35] ex-
tended the MCP [14] by joining two truncated Normal distributions (TND). The general
recommendation is to use two TNDs to characterise the heteroscedasticity of the error
variance properly. In line with our monthly streamflow research objective, two TNDs were
used; that is, two variances were employed. The split of the Normal multivariate space
into two parts is obtained by identifying an M-dimensional hyperplane:

Hp = ∑M
i=1 ηsi = M·a, (6)

where M is the number of models and ηsi is the prediction in Gaussian space. The threshold
a can be distinguished as the value of ηsi that minimizes the predictive variance of the upper
sample. In other words, the value of a is identified by minimizing the predictive variance
of the upper sample. The predictive uncertainty for the sample above the truncation
hyperplane is represented as:

f
(

ηo

∣∣∣ηsi = η∗
si

, H∗
p >M∗

)
∼ N

(
μηo |ηsi=η∗si ,H∗

p>M∗a, σ2
ηo |ηsi=η∗si ,H∗

p>M∗a

)
(7)

Here, η∗
si

, H∗
p symbolize a new realization of predictions and a new hyperplane, respec-

tively. Moreover, the predictive mean is represented by:

μηo |ηsi=η∗si ,H∗
p>M·a = μηo + ∑

ηoηs

−1

∑
ηsηs

(
η∗

si
− μηs

)
, (8)

and the predictive variance:

σ2
ηo |ηsi=η∗si ,H∗

p>M·a = ∑
ηoηo

− ∑
ηoηs

−1

∑
ηsηs

T

∑
ηoηs

, (9)
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In Equations (7)–(9), μηo and μηs are the sample means, while σ2
ηo |ηsi

is the conditional

variance and T is the transpose of a matrix. In addition, the model parameters, i.e., the mean,
variance, and covariance matrices, are computed from the data of the upper sample. The
predictive uncertainty distribution of the lower sample looks similar but is characterised
by the values of the sample below the truncation hyperplane H∗

p ≤ M·a, for more details
see [35]. The MCP and MCPt can work with a multi-model, but, for this research, we used
only a single model for which we aimed to quantify the total predictive uncertainty. We
did not include multiple models because of the ease of understanding and transparency of
the procedure. This assumption is further discussed in Section 4.

2.3.3. Gaussian Mixture Clustering Post-Processor (GMCP)

The extension of the MCP method known as GMCP post-processor came about after
merging the bivariate Gaussian outline and grouping it into clusters with the Gaussian
mixture models (GMM). This means that the GMCP post-processor begins with MCP [14]
for a single hydrological model in Section 2.3.1, but the GMCP post-processor offers a dif-
ferent way to deal with the heteroscedasticity of the error variance when the error variance
is characterised by clustering with GMMs. The Gaussian mixture is well established in
the literature to find homogeneous groups (clusters) in heterogeneous data. The idea of
employing GMM to perform a cluster analysis is not new. Wolfe [75] was the first to test
GMMs to find clusters. The GMMs offer the advantage of including a probability measure
when assigning cluster data. This assignment is known as a soft cluster, where data have a
probability of belonging to each cluster [76].

The basic idea behind mixture models of probability distributions to perform cluster
analyses consists of assuming that data come from a mixture of underlying probability
distributions. The most well-known approach is the Gaussian mixture model (GMM) [77],
in which each observation is assumed to be distributed into g Normal distributions and
g is the number of clusters (components). For more details, readers refer to the work of
Fraley and Raftery [78]. Generally, when GMMs are employed to perform cluster analyses,
the same model type is employed ( fg

(
x
∣∣θg

)
) for all the components (clusters), which, in

this case, is Gaussian, but with different means and covariance structures.
There are different automatic methods to select the number of mixture components

and their parameters [79]. However, the number of mixture components can also be fixed
by some prior knowledge about the modelled phenomenon. This research assumes that
the joint probability distribution of the observed and simulated data (model error) can be
grouped into three categories of variance, and thus choose a three-components Gaussian
mixture model. We fixed the number of components a priori to three, thereby corresponding
to the high, middle, and low flow period, which is typical of monthly streamflow. Using
more than three components is possible, but we will show that three components are
sufficient for monthly streamflow and water resources applications in our case studies.

The GMCP provides a semi-parametric outline to model unknown probability distri-
butions, which are represented as the weighted Gaussian sum [80]. Specifically, GMMs
possess the flexibility of non-parametric methods with the added advantage of a lower
number of parameters, i.e., the dimension of the parameter’s vector [81]. To express the
mathematical basis of the cluster with GMMs, let us take X as a random vector that stems
from the G in the Gaussian mixture distribution. For all x ∈ X, its probability density can
be expressed as:

f (x|ϑ) =
G

∑
g=1

πg fg
(
x
∣∣θg

)
=

G

∑
g=1

πg Ng
(
x
∣∣μg, Σg

)
, (10)

where weights πg > 0 and ∑G
g=1 πg = 1, which are known as the mixture proportion or

weighted weights; fg
(
x
∣∣θg

)
is the gth component of probability density; θ = θ1, . . . , θG

and π = π1, . . . , πG are the parameters; Ng represents the Normal distribution; μg is the
means vector; and Σg is the covariance matrix for each component (cluster) g. This research
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employed two random variables (observed streamflow (ηo) and simulated streamflow (ηs)
after normalisation). Then, each data pair (ηo, ηs) was modelled as if sampled from one
of the g probability distributions

(
N1(μ1, Σ1), N2(μ2, Σ2), . . . , Ng

(
μg, Σg

))
. For example,

assuming that three clusters were identified, the probability of belonging to a given cluster
lowers as data points (ηo, ηs) move away from the cluster centre.

Now, let us assume that zi = (zi1, . . . , ziG) represents the membership of the compo-
nent of observation i. Thus, zig = 1 if observation i belongs to component g, and zig = 0
otherwise. Let us also assume that the n vectors of data x1, . . . , xn are observations with no
assigned component g. In this scenario, the likelihood function is:

L(ϑ|x) =
n

∏
i=1

∑G
g=1 πg N

(
xi
∣∣θg

)
, (11)

where N represents the Normal probability distribution. The parameters were estimated
with the Expectation-Maximization (EM) algorithm [82]. This algorithm is an iterative
procedure followed to estimate the maximum likelihood function. Having estimated the
parameters, the predictive classification results are supplied by the a posteriori probability
distribution:

ˆzig =
π̂g f

(
xi
∣∣θ̂g

)
∑G

h=1 π̂h f
(
xi
∣∣θ̂h

) , (12)

for i = 1, · · · , n. The complete cluster grouping analysis was implemented with GMMs
using the mclust library [83] of the R statistics software [70]. Figure 2 displays the flow chart
of the procedure for applying the GMCP post-processor.

2.4. Case Studies

The data, herein employed, were the observed and simulated monthly streamflow ob-
tained from the “Second Workshop on Model Parameter Estimation Experiment (MOPEX)” [69].
The MOPEX project is a well-known reference database in the international hydrologi-
cal community that has mainly been used to evaluate hydrological models and theo-
ries [8,10,84]. For example, and particular to this paper, Ye et al. [19] used the 12 catchments
from the MOPEX database to compare the results from post-processing and calibrated the
hydrological models. Thus, MOPEX offers a valuable opportunity to evaluate and compare
the performance of new hydrological post-processing methods under different climate
conditions. From the MOPEX database, 12 catchments were selected, which are distributed
in the SE area of the USA. The Aridity Index (relation between potential evapotranspiration
and precipitation) ranges from 0.43 to 2.22, and the Runoff Ratio (relation between surface
run-off and precipitation) varies between 0.15 and 0.63 (Table 1). Thus, the 12 catchments
selected from the MOPEX project represent different climate conditions (Figure 1). Basic
information about them is supplied in Table 1. We selected the same 12 MOPEX catchments
used by Ye et al. [19] to discuss the results.

Figure 3 depicts the Budyko curve for all 12 catchments from the MOPEX project.
According to the Budyko hypothesis, if the energy available in a catchment suffices to
evaporate humidity, then the catchment is limited by water availability (catchment B12 has
the highest Aridity Index). Conversely, if the available energy does not suffice to evaporate
humidity, the basin is limited by energy availability (catchment B2 is the exact opposite of
B12 as it has the lowest Aridity Index). It is worth stressing that the 12 selected catchments
were distributed all over the Budyko curve, as Figure 3 depicts, which ensures the critical
evaluation of post-processors under different climate conditions.
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Table 1. Hydrological information about the 12 catchments selected from the Mopex project.

ID Station Name Elev.
Area
(km2)

P PET Q
Run-Off

Index
(Q/P)

Aridity
Index

(PET/P)

B1 Amite River Near Denham Springs, LA 0 3315 1560 1068.5 612 0.39 0.67
B2 French Broad River at Asheville, NC 594 2448 1378 588.9 795 0.58 0.43
B3 Tygart Valley River at Philippi, WV 390 2372 1164 661.4 736 0.63 0.57
B4 Spring River Near Waco, MO 254 3015 1075 1119.8 300 0.28 1.04

B5 S Branch Potomac River Nr Springfield,
WV 171 3810 1043 636 339 0.33 0.61

B6 Monocacy R At Jug Bridge Nr
Frederick, MD 71 2116 1042 906.1 421 0.4 0.87

B7 Rappahannock River Nr
Fredericksburg, VA 17 4134 1028 856.7 375 0.36 0.83

B8 Bluestone River Nr Pipestem, WV 465 1020 1017 678 419 0.41 0.67
B9 East Fork White River at Columbus, IN 184 4421 1014 838 377 0.37 0.83

B10 English River at Kalona, IA 193 1484 881 989.9 261 0.3 1.12
B11 San Marcos River at Luling, TX 98 2170 819 1462.5 170 0.21 1.79
B12 Guadalupe River Nr Spring Branch, TX 289 3406 761 1691.1 116 0.15 2.22

Elev: elevation (m), P: mean areal precipitation (mm/year), PET: potential evapotranspiration (mm/year), Q:
observed streamflow (mm/year).

 

Figure 3. The Budyko curve for the 12 catchments selected from MOPEX. The values to reproduce
the figure came directly from the MOPEX database.

2.5. Hydrological Model

The GR4J hydrological model predictions were employed [85], which are a well-known
and widely used model in different parts of the world. GR4J is a lumped conceptual model
with four calibration parameters: maximum capacity of the production store x1(mm);
groundwater exchange coefficient x2(mm); 1-day-ahead maximum capacity of the routing
store x3(mm); and time base of unit hydrograph x4(days). For further information about
the model’s description, readers refer to the work by Perrin et al. [85]. Daily predictions
were aggregated on a monthly basis to evaluate the post-processors’ performance for
planning and managing water resources. We want to emphasise that the GR4J hydrological
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model predictions were not prioritised because they are input data. According to the aim
of this paper, we focused on the performance of the post-processors.

2.6. Verification Indices

Assessment of the performance is vital to offer end-users an indication of the pre-
dictions´ reliability and uncertainty bands. Some verification indices exist that can be
used to assess the performance of hydrological post-processors. This research employed
deterministic and probabilistic verification indices, which evaluate the hydrological predic-
tions´ accuracy, sharpness, and reliability. These indices were also recommended by Laio
and Tamea [86], Renard et al. [6], and Thyer et al. [87]. The deterministic Nash–Sutcliffe
efficiency index (NSE) [88] was applied to the predictive distribution mean. This index
does not assess the complete predictive distribution but is a classic index and a general
reference in hydrology. The NSE measures the squared differences between predictions qs
and observations qo, which are normalised by the variance of the observations:

NSE = 1 − ∑n
i=1(qs − qo)

2

∑n
i=1(qo − qo)

2 , (13)

where qo is the average of the observations. Probabilistic indices were employed to as-
sess the predictive distributions. The predictive quantile–quantile (PQQ) plot [86] was
applied. This diagram shows how probabilistic predictions represent the observations´ un-
certainty [86,87]. If both predictive distribution and observations are consistent in the PQQ
context, the value corresponding to the distribution p-value must be uniformly distributed
throughout the interval [0, 1]. In other words, predictions are considered reliable when the
relative frequency of the observations equals the frequency of predictions. This situation
can be visually identified when the PQQ curve follows the bisector (line 1:1). Otherwise,
predictive distribution deficiencies can be interpreted when the curve moves away from the
bisector. Indeed, according to Laio and Tamea [86], the predictive distribution can display
three patterns. If the PQQ plot follows the bisector, the predictive uncertainty is correctly
estimated, and the observations are a random sample of the predictive distribution. Con-
versely, if the PQQ plot shows an “S”-shape, it means that the predictive distribution is
underestimated (large bands) and an inverted “S”-shape implies an overestimated uncer-
tainty (narrow bands). From the PQQ plot, we can deduce two indices: reliability and
sharpness.

The reliability index quantifies the statistical consistency between the observations
and predictive distribution:

Reliability = 1 − 2
n ∑n

i=1

∣∣FU − Fqs(qo)
∣∣, (14)

where FU is a uniform cumulative distribution function (CDF) and Fqs(qo) is the predictive
CDF. The reliability index ranges from 0 (the worst reliability) to 1 (perfect reliability).

The sharpness index is related to the predictive distribution concentration. In other
words, it refers to the coverage provided by the distribution [6]:

sharpness =
1
n ∑n

i=1
E[qs]

σ[qs]
, (15)

where E[] and σ[] are the operators of the expected value and standard deviation, respec-
tively. The sharpness index range is (0, ∞), and the predictive distributions with higher
sharpness index (narrower) values are more accurate. Predictive distributions can be found
with equal reliability indices but different degrees of sharpness, in which case the higher
sharpness values are preferable because they denote more accurate predictive distributions.

Furthermore, the containing ratio (95%CR) was used. The 95%CR is the percentage
of observations that fall within the 95% uncertainty band. In this research, the 95% band
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was estimated to be within the 2.5 and 97.5 percentiles. This allowed the quantification
of the desired uncertainty to be achieved when the 95%CR came close to 95%. As the
presented verification indices are well-known in the literature, no lengthy description is
provided. However, readers are recommended to the works of Franz and Houge [84], Laio
and Tamea [86], and Renard et al. [6] for further information.

2.7. Comparison Frame

It should be remembered that the main aim of the present paper is to develop an
extension of the MCP [14], which merges clustering with a Gaussian mixture model to offer
an alternative solution to manage heteroscedastic errors. In addition, comparing GMCP’s
performance to similar post-processing methods under different climate conditions is also
needed as a benchmark. In order to perform the post-processing of monthly streamflow
and to quantify predictive uncertainty, the following procedure was used.

First, daily streamflow predictions were obtained from the GR4J hydrological model [85],
and were calibrated and validated by Ye et al. [19] for the 12 MOPEX catchments. Given
this, the hydrological model outputs (previously calibrated and validated) become the
inputs for the evaluated hydrological post-processors.

Second, the daily hydrological predictions were aggregated monthly because the
post-processing methods were applied in the water resources management context.

Third, to evaluate the post-processing methods, the time series of both observations
and predictions were divided into 20 years to calibrate the post-processors’ parameters
(1960–1980) and into 17 years for the validation (1981–1998).

Fourth, NQT [31] was applied to all the evaluated post-processors with non-parametric
marginal distributions to map the observations and simulations to the Normal space.
The three evaluated post-processors were separately implemented into the 12 MOPEX
catchments to find the best performing post-processors. The 12 MOPEX catchments were
selected because they were the same catchments employed in previous studies to compare
hypotheses, which the hydrological community is very familiar with, e.g., [8,19,84,89].

Moreover, evaluating hydrological post-processors under different climate conditions
allows for more general recommendations to be obtained [90].

Finally, evaluating the predictive uncertainty with only one verification index can lead
to mistaken interpretations and wrong decision-making for managing water resources [41].
Consequently, many independent verification indices were used together instead of indi-
vidual ones.

3. Results

The hydrological post-processing methods evaluated according to the framework
described in the previous subsection are presented. The results correspond to the validation
period, as it is the most critical period where the predictive uncertainty of the analysed
methods is identified. Section 3.1 benchmarks the GCMP post-processor with the MCP [14]
and MCPt [35] to quantify the predictive uncertainty of the monthly streamflow, which
is conditional on deterministic model predictions. The case studies consider 12 MOPEX
catchments with a diverse range of hydroclimatology. The Nash–Sutcliffe efficiency index
(NSE), sharpness, and the containing ratio (95%CR) verification index are presented in
Figure 4. Moreover, the PQQ plots, which assess the reliability, sharpness, and bias, are
depicted in Figure 5.

An initial inspection of the results found considerable overlap in the performance
verification indices achieved by the MCP and MCPt post-processors for monthly stream-
flow. The MCP and MCPt also showed poor performance in dry catchments. Conversely,
the GMCP post-processor empirically made the most accurate, reliable, and sharpest
predictions.
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Figure 4. Performance of monthly predictions in terms of NSE, sharpness, and containing ratio
(95%CR) for the three post-processors during the validation period (1980–1998) overall catchments.

Figure 5. Predictive PQQ plot of the three evaluated post-processors and 12 MOPEX catchments
during the validation period (1980–1998).

The streamflow forecast time series and corresponding skill for a single catchment,
the San Marcos catchment (B11), are presented in Figure 6. Then, the relation of the Aridity
index with the performance of post-processors is shown in Figure 7.
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Figure 6. Time series of the median and 95% confidence interval of monthly streamflow predictions
derived from the Gaussian mixture clustering post-processor (GMCP), model conditional proces-
sor (MCP), and MCP using the truncated Normal (MCPt), compared with observations from the
validation period (1980–1998) in the San Marcos catchment (B11).
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Figure 7. Comparison of the deterministic and probabilistic metrics computed for the three post-
processors during the validation period (1980–1998) for 12 MOPEX catchments. MCP (model condi-
tional processor), MCPt (MCP using the truncated Normal) and GMCP (Gaussian mixture clustering
post-processor).

3.1. Comparison of Post-Processors: Individual Verification Indices

Figure 4 offers the average values for the verification indices for the 12 catchments
in boxplot-type diagrams. In terms of the Nash–Sutcliffe efficiency index (NSE), Figure 4
shows considerable overlap in the boxplots corresponding to MCP and MCPt. This finding
suggests little difference in the performance of these post-processors for monthly stream-
flow. Moreover, the NSE indices are generally suitable for all 12 catchments and assessed
post-processors (Figure 4, left panel), and, according to the classification of Martinez and
Gupta [91], NSE > 0.75 is considered a good result. Overall, these results suggest the GMCP
is consistently better in terms of the NSE values because of its higher NSE indices and
shows less dispersion in the boxplot.

Regarding the sharpness index, and in line with Figure 4 (middle panel), GMCP has
the highest sharpness values. The sharpness index refers to the predictive distribution
concentration [92]. High sharpness indices indicate that the predictive distribution is less
dispersed or more concentrated, and therefore high sharpness indices are preferable [6].
The GMCP post-processor improves the sharpness index by 36.64% compared to the MCP
and MCPt post-processors.

In terms of the containing ratio (95%CR), the GMCP post-processor outperforms the
MCP and MCPt methods. The GMCP improves the 95%CR by 10.29% compared to the MCP
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and MCPt, which perform similarly. A proper predictive uncertainty estimation is achieved
when the 95%CR comes close to 95%. According to Figure 4 (right panel), the 95%CR
obtained by GMCP comes closer to 95%, and with lower variance. The average 95%CR is
93.82% for the GMCP post-processor compared with 85.06% for the MCP or MCPt.

These results show how the boxplots for MCP and MCPt methods overlap. These can
indicate that the evaluated reference post-processors that are used with monthly streamflow
perform the same in terms of accuracy, sharpness, and reliability. Conversely, the GMCP
empirically made the most accurate, reliable, and sharpest predictions for the monthly
streamflow of the 12 MOPEX catchments.

Regarding reliability, Figure 5 shows the predictive PQQ plots for the post-processors
evaluated through the 12 MOPEX catchments. The PQQ plot indicates the predictive
distribution’s reliability. According to Figure 5, we stress that the predictive distribution
of GMCP (blue line) in most of the evaluated catchments follows the diagonal line in the
PQQ, which evidences a reliable predictive uncertainty estimation under different climate
conditions. We can also note that the MCP (green curve) and MCPt (red curve) performance
is similar for all the evaluated catchments. Furthermore, the PQQ plot for the MCP and
MCPt deviates substantially from the 1:1 line in the B4–B9 catchments, indicating some
bias. Also, the PQQ plot for the MCP and MCPt in the B11 catchment shows unreliable
results, as the predictions are overconfident. In the following subsection, we provide the
predictive uncertainty bands of the B11 catchment to explain the poor reliability issue.

3.2. Uncertainty Bands in San Marcos Catchment (B11)

The PQQ plots (Figure 5) evidence that the reference post-processors present reliability
problems, while GMCP provides reliable results. The 95% confidence interval of predictive
distribution is presented to illustrate these reliability difficulties better. We cannot present
the 95% confidence interval for all the catchments and post-processors for space reasons.
Given this, we only present the predictive distribution for the San Marcos catchment
(B11), a dry catchment, because it clearly shows the reliability problems of the evaluated
post-processors.

To illustrate these results, Figure 6 shows the time series of the median and 95%
confidence interval of the monthly streamflow forecast at the San Marcos catchment (B11).
The GMCP post-processor, which merges clustering with the Gaussian mixture model
to deal with heteroscedastic errors, achieves the following verification indices: reliability
index = 0.94, sharpness index = 4.44, NSE = 0.94, and the containing ratio (95%CR) = 93.55.
Meanwhile, the MCP and MCPt, which perform similarly, have a worse reliability index
(metric value = 0.82), sharpness index (metric value = 1.84), NSE (metric value = 0.82), and
containing ratio (95%CR) (metric value = 98.16).

In terms of sharpness, the MCP and MCPt methods produce a wider 95% predictive
range than the GMCP post-processor (Figures 4 and 6), which manifests as degradation in
the sharpness index from 4.44 to 1.84. The widest uncertainty bands produced by the MCP
and MCPt confirm the results obtained with the sharpness index (Figure 4, middle panel)
and reliability (Figure 5).

Altogether, in the 12 MOPEX catchments, these results show that the GMCP post-
processor achieves significant improvements in reliability, sharpness, NSE, and the contain-
ing ratio (95%CR). In addition, using the GMCP post-processor for monthly streamflow has
an incremental impact on performance, as measured using deterministic and probabilistic
verification indices. These results show the robust ability of the GMCP post-processor for
better quantifying hydrologic uncertainty and producing enhanced probabilistic streamflow
forecasts.

3.3. Influence of the Aridity Index

Figure 7 shows the comparison between the deterministic and probabilistic verification
indices for the new GMCP and the two reference post-processors during the validation
period (1980–1998) in the 12 MOPEX catchments. Note that the horizontal axis in Figure 7
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sorts the catchments from wettest to driest, whereas the vertical axis denotes the post-
processor name.

In NSE index terms, and given the purpose of unifying the Figure 7 legend, |1 − NSE|
is shown, where the values close to 0 are the most optimum ones (blue colors in Figure 7).
Figure 7 (upper panel) shows the differences in the performance of post-processors in the
catchments. For example, the GMCP shows the best performance (blue colors) in most of
the evaluated catchments (Figure 7, upper panel). Moreover, the performance in NSE terms
for the reference post-processors was generally similar, while the worst performances were
obtained in drier catchments (B4, B10, B11, and B12), except for the B5 catchment, which
is humid.

In terms of the sharpness index, Figure 7 (middle panel) shows that the lowest sharp-
ness values, which were for the driest catchments (B4, B10, B11 and B12), and the highest
values were for the wettest (B2 and B3). In most catchments, the GMCP achieves higher
sharpness values than the reference post-processors (MCP and MCPt) (Figure 7, mid-
dle panel).

For the 95%CR index, the statistics |95 − 95%CR| were calculated, where values close
to 0 are preferable and interpreted as the best performance. Similarly, the other verification
indices—and as shown in Figure 7 (lower panel)—the GMCP best performed in all the
evaluated catchments. Unlike the other verification indices, the 95%CR did not indicate a
worsened performance for post-processors in the driest catchments (B4, B10, B11 and B12).

Overall, the results suggest that streamflow forecasts using the GMCP post-processor
are better (i.e., NSE and sharpness) than that of the MCP and MCPt methods, particularly
in dry catchments. For example, in dry catchments (B4, B10, B11 and B12), the GMCP
processor improves the NSE index by 16.66 % compared to the MCP and MCPt methods.

4. Discussion

Predictive uncertainty quantification (PUQ) is essential for supporting effective decision-
making and planning for water resources management [93]. In recent years, PUQ has
become essential in hydrological predictions [16]. A wide range of methods has been
developed to evaluate the predictive uncertainty of the variables of interest. This paper
develops an extension of the MCP [14], which merges clusters with Gaussian mixture mod-
els to offer an alternative solution to manage heteroscedastic errors. The new method is
called the Gaussian mixture clustering post-processor (GMCP). The results of the proposed
post-processor were compared to the MCP [14] and the MCPt [35] by applying multiple
deterministic and probabilistic verification indices. This research also assesses the GMCP’s
capacity to estimate the predictive uncertainty of the monthly streamflow under different
climate conditions in the 12 MOPEX catchments [70] that are distributed in the SE part of
the USA.

Overall, GMCP has shown significant potential in generating more reliable, sharp,
and accurate monthly streamflow predictions, especially for dry catchments. Compared
to the benchmark methods, GMCP shows more consistency in the validation period than
MCP and MCPt (Figure 4). The improvement in the GMCP compared to the MCP and
MCPt can be attributed to the procedure used by GMCP to model the dependence structure
between observation and forecast (residual error model). GMCP joins the variables via
Gaussian mixture models and clusters. Therefore, the Gaussian mixture distribution
treats model residuals as three clusters with different means and variances. The Gaussian
mixture distribution can capture the peak and the tails of the underlying residual density
for all catchments, indicating reliable, sharp, and accurate forecasts. Consequently, this
dependence structure of the residual error model faces the assumption of homoscedastic
error variance, which provides poor probabilistic predictions. In addition, note that the only
difference between the MCP (or MCPt) and GMCP post-processors is the use of clusters
and Gaussian mixture models in the GMCP. Hence, the performance improvement must be
due to this difference.
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Moreover, the MCP and MCPt methods provide similar performances for monthly
streamflow predictions regarding the NSE index, reliability, sharpness, and containing ratio
(95%CR) (Figures 4–6). The MCPt was designed by Coccia and Todini [35] to improve the
reliability and sharpness of predictions, particularly for high flows, and has worked well
for flood applications. The MCPt used the truncated Normal distribution (TND) to deal
with heteroscedastic errors. In theory, the TDN reduces the standard error of high flows
when there is a significant difference between low and high flows, which is the case in
flood applications. However, these differences are minor for monthly streamflow, so using
the standard Normal distribution or TDN provided similar results.

Figure 5 shows that the PQQ plot for the MCP and MCPt deviates substantially from
the 1:1 line in the B4–B9 catchments, indicating some bias. However, the proposed GMCP
can obtain unbiased results in the same catchments. One possible explanation is that
the MCP uses a linear regression in the Normal transformed space for bias correction,
while the GMCP uses three Gaussian mixture models with different means and variances
corresponding to the high, middle, and low flow period. Therefore, the bias corrector
of GMCP is more robust and flexible than the MCP. As well, Figure 5 depicts that the
PQQ plot for the MCP and MCPt in the San Marcos (B11) catchment shows unreliable
results, as predictions are overconfident, while GMCP provides reliable results. San Marcos
(B11) is a dry catchment with complex residual errors [19]. It is possible that the residual
error model of MCP is not enough to represent the complex errors of the San Marcos (B11)
catchment. The residual error model of MCP has two assumptions that are undoubtedly
inappropriate for the San Marcos (B11) catchment. The MCP assumes homoscedastic errors
and a linear relationship between observed and simulated Normal transformed variables.
Conversely, the residual error model of GMCP is more complex because of using clustering
and Gaussian mixture models.

Our findings in this study confirm the insights of Schaefli et al. [63], namely that
using a finite mixture model constitutes a promising solution to residual model errors
and to estimate the total modelling uncertainty in hydrological model calibration stud-
ies. However, there are two differences between this research and the previous work of
Schaefli et al. [63]. First, we used the “post-processing” strategy, where the hydrological
model parameters were estimated first using an objective function, followed by a separate
estimation of the residual error model parameters. In contrast, Schaefli et al. [63] used the
more classical “joint” strategy to estimate all parameters simultaneously using a single
likelihood function. Second, we merged the Gaussian mixture model with clusters and
used them in the framework of the Model Conditional Processor (MCP) [14]. Likewise,
Li et al. [65], who developed the ERRIS post-processor, used a mixture of two Gaussian
distributions to represent the residual error model. GMCP and ERRIS have some similar-
ities: (1) both are post-processors of deterministic hydrological models for hydrological
uncertainty quantification, (2) both apply a transformation to normalised data, and (3) both
use a Gaussian mixture distribution to model residual errors. However, GMCP and ERRIS
have some differences. For example, ERRIS uses a linear regression in the transformed
space for bias correction, uses an autoregressive model to update hydrological simulation,
and is implemented in stages.

We want to discuss some assumptions mentioned in the Materials and Methods in
Section 2. First, although GMCP has been conceived to be applied to one single model
(point prediction), a multi-model application would be possible. An extension of the
GMCP consists of a matrix of predictions and various deterministic models (one column for
each model), yet here we study the simpler scalar version of the model. Second, there are
possible ways to advance towards the application of GMCP in a non-stationary context. The
simplest option is using a deterministic model for non-stationarity [71,72]. We also suggest
considering a deterministic model with time-varying (perhaps seasonal) parameters, under
the assumption that the uncertainty of the model for non-stationarity is represented by a
stationary distribution. In addition, we recommend the use of data assimilation to update
hydrological predictions [94]. Third, in the GMCP, we used Gaussian mixture distributions
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and fixed the number of mixture components (clusters) to three—corresponding to the high,
middle, and low flow period, which are typical of monthly streamflow. This practical choice
is based on a priori information about the sources and behaviour of the residual error model.
Therefore, identifying the number of clusters is purely heuristic accounting for a priori
knowledge about the total error model. Fourth, in the GMCP, any probabilistic prediction is
primarily based on the conditions monitored during the considered observation period only,
and thus particular care should be used when extrapolation to out-of-sample conditions.

This research confirms the importance of using multiple independent verification
indices to assess hydrological post-processors. For example, if one considers the containing
ratio (95%CR) verification index alone, all post-processors yield comparable performances,
and there is no argument for selecting any of them. Nonetheless, once the sharpness
index and reliability index are considered explicitly, the GMCP post-processor can be
recommended for significantly better sharpness and reliability than the MCP and MCPt.
These results align with Woldemeskel et al. [41], who showed that evaluating the predictive
uncertainty with a single metric can lead to suboptimum conclusions.

Moreover, examining and evaluating hydrological post-processors in catchments with
different climate and hydrological conditions ensures suitable comparisons and helps to
generalise the obtained results [47,95]. Furthermore, the diverse climate conditions of
catchments analysed allow us to deduce functional relationships between climatic indices
and the post-processors’ performance. This research attempted to establish a relation
between the Aridity index and the post-processors’ performance (Figure 7). In most
dry catchments, the MCP and MCPt perform relatively worse, especially in terms of the
sharpness and NSE index. This result is because streamflow data for dry catchments
contain too many days with low flow (defined as flow below 2% of the mean flow [12]).
Thus, dry catchments require more complex residual error modelling methods [64]. Our
findings agree with Ye et al. [19], who found that the GLMPP post-processor [26] could not
improve the predictions or reduce uncertainty in the same dry MOPEX catchments.

In this study, all post-processors provide a clear improvement in hydrological pre-
dictions. Post-processing usually leads to better performance verification indices than
deterministic hydrological predictions alone because post-processing works directly to
correct the errors in the model outputs [19]. Accordingly, Farmer and Vogel [22] stated
that the prudent management of environmental resources requires probabilistic predic-
tions, which offer the potential to quantify predictive uncertainty, and can avoid the false
sense of security associated with point predictions [16]. Generally speaking, predictive
distribution explicitly represents the system’s uncertainty, and it can, therefore, perform
risk management in a more informed manner. In addition, the probabilistic approach
can be put to further use for process-based deterministic hydrological modelling and by
coupling it with a hydrological post-processor to convert deterministic predictions into
probabilistic predictions. Probabilistic predictions offer an opportunity to improve the
operational planning and management of water resources.

A promising improvement is to extend the GMCP post-processor in future work using
a multi-model or a chain of hydrological models. Also, it can be interesting to validate the
GMCP using daily and hourly data and couple the GMCP method with data assimilation
to update the states of hydrological models. Bourgin et al. [94] recommended using data
assimilation and post-processing in forecasting because data assimilation strongly impacts
forecast accuracy, while post-processing strongly impacts forecast reliability. Besides,
evaluating the GMCP post-processor in many catchments is beneficial for establishing its
robustness.

Another area for further investigation is overcoming the data transformation. In
hydrology, data transformation is a popular approach to reduce the heteroscedasticity of
the error model because these approaches are simple to implement and can give satisfactory
results in hydrological modelling [14,41,51,65]. However, Schaefli et al. [63], Brown and
Seo [42], and others indicated that this approach is questionable. A detailed discussion of
the implications of data transformation is beyond the context of this paper. Nevertheless,
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we recommend reading the work of Hunter et al. [96], which established the detrimental
impact of calibrating hydrological parameters in the real space and calibrating the error
model parameters in the transformed space using post-processing methods on the quality
of probabilistic predictions. Moreover, a future possible study could be to extend the GMCP
post-processor using a link function to avoid the Normal quantile transformation, especially
the link function, which has provided promising results in the context of the Generalized
Linear Model. Finally, another improvement can be the selection of the number of GMCP
clusters using unsupervised learning, for example, by using cluster indicators [97].

5. Conclusions and Summary

Considering that predictive uncertainty is crucial for providing reliable, sharp, and
accurate probabilistic streamflow predictions, the Model Conditional Processor (MCP) [14]
is a well-known method for quantifying predictive uncertainty by providing a posterior
distribution conditioned on the deterministic model forecast. This study develops an
extension of the MCP [14], which merges clustering with the Gaussian mixture model
to offer an alternative solution to manage heteroscedastic errors. The new method is
called the Gaussian mixture clustering post-processor (GMCP). The results of the proposed
post-processor were compared to the MCP [14] and the MCPt [35] by applying multiple
deterministic and probabilistic verification indices. This research also assesses the GMCP’s
capacity to estimate the predictive uncertainty of the monthly streamflow under different
climate conditions in the 12 MOPEX catchments [70] distributed in the SE part of the USA.
The summary of the most important empirical findings based on the detailed analysis of
the results are as follows:

1. In general, all three post-processors showed promising results. However, the GMCP
post-processor has shown significant potential in generating more reliable, sharp, and
accurate monthly streamflow predictions than the MCP and MCPt methods, especially
in dry catchments.

2. The MCP and MCPt methods provided similar performances for monthly streamflow
predictions regarding the NSE index, reliability, sharpness, and containing ratio
(95%CR).

3. The MCP and MCPt showed a better performance in wet catchments than in dry
catchments.

Overall, when used for post-processing monthly predictions, the GMCP method
provides an opportunity to improve forecast performance further than is possible using the
MCP and MCPt methods, especially in dry catchments. In addition, it is worth mentioning
that incorporating clusters and Gaussian mixture models into the Model Conditional
Processor framework constitutes a promising solution to handle heteroscedastic errors
in monthly streamflow, therefore moving towards a more realistic monthly hydrological
prediction to support effective decision-making in planning and managing water resources.
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Abstract: Frequency estimates of extreme precipitation are revised using a regional L-moments
method based on the annual maximum series and Chow’s equation at lower return periods for
the Jiangsu area in China. First, the study area is divided into five homogeneous regions, and
the optimum distribution for each region is determined by an integrative assessment. Second,
underestimation of quantiles and the applicability of Chow’s equation are verified. The results show
that quantiles are underestimated based on the annual maximum series, and that Chow’s formula is
applicable for the study area. Next, two methods are used to correct the underestimation of frequency
estimation. A set of rational and reliable frequency estimations is obtained using the regional L-
moments method and the two revised methods, which can indirectly provide a robust basis for
flood control and water resource management. This study extends previous works by verifying
underestimation of the quantiles and the provision of two improved methods for obtaining reliable
quantile estimations of extreme precipitation at lower recurrence intervals, especially in solving
reliable estimates for a 1-year return period from the integral lower limit of the frequency distribution.

Keywords: regional l-moments; revision of frequency estimation of extreme precipitation; chow’s
equation; annual maximum series; annual exceedance series

1. Introduction

Natural flood disasters occur frequently in China. As a consequence, flood control is
an important topic relevant to the preservation of human life, property, and society [1,2].
Scientific and robust flood control standards are critical to engineering and urban flood
control design, for which an important theoretical basis of estimation is hydrological
frequency calculation [3]. Rapid economic development and enhanced environmental
consciousness have led to increased attention on extreme hydrometeorological events and
growing concern for events occurring at lower return periods, fueled by the increasing
seriousness of urban waterlogging disasters [1,4]. However, the sampling method and the
choice of probability distribution can influence frequency estimations at low recurrence
intervals [5]. Therefore, knowledge regarding sampling and the optimum distribution is a
key element of frequency analysis.

The determination of an appropriate distribution is an important step in frequency
analysis. Selection of the optimum distribution has been extensively researched because
the theoretical distribution curve is unknown [6,7]. For example, the person type III (PE3)
distribution has been selected as the appropriate fit in the United States, and the generalized
extreme value (GEV) distribution has been recommended in more than ten countries [8,9].
However, the adoption of a “one-size-fits-all” scenario may lead to poor accuracy in
quantile estimation due to heterogeneity and discordancy associated with different sites
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in the region [10]. Therefore, some researchers have recommended selecting an optimum
distribution for each homogeneous region based on practical grounds, showing that the
accuracy of quantile estimates is significantly improved [8,11,12]. In this study, Monte Carlo
(MC) simulations and a diagram of L-moments ratios are used to determine goodness-of-
fit. However, the criterion from MC simulation can be unreliable when data are serially
linked or cross-correlated among sites [13]. Therefore, a summary assessment is performed
using different statistical criteria to determine the optimum distribution, in order to avoid
obtaining an arbitrary result from any single test.

For sampling, the annual maximum series (AMS) and partial duration series (PDS)
can be used to select extreme values from a long hydrological time series. In the AMS,
the largest event in each year is extracted and recorded in a series that contains critical
information such as extreme precipitation or peak flow amount. These data are easily
obtained and widely used in hydrological statistical analysis [14–17]. However, the AMS
extracts only the largest event, and secondary events occurring in one year may exceed the
annual maximum of other years. In addition, annual maximum events observed in dry
years may be very small, and interpretations based on these events can lead to significant
bias with respect to the outcome of an extreme value analysis [18–20]. Extensive research
has shown that quantiles based on AMS data are underestimated to a certain extent at
low return periods [1,12,21]. For example, Lin et al. showed underestimation of extreme
precipitation based on AMS data from daily precipitation data obtained from 1438 stations
in the southwestern United States [20]. However, less research has been done to assess the
underestimation of quantiles in China, or to verify the results in a specific area [22].

The PDS method extracts all of the extreme events above a truncation or threshold
level for the analysis and therefore does not suffer from the drawbacks inherent to the
AMS data. If a descending sort of PDS is selected, such that the number of values in the
series equals the number of years on record, the series is called the annual exceedance
series (AES). The AES data not only simplifies sample selection and subsequent statistical
analysis, but also gives similar results to that obtained with PDS data and can be regarded
as a special case of the PDS [20]. A complete description and solid theoretical basis of
precipitation and flood processes exists in the PDS. Previous research has shown that the
PDS is more efficient for quantile estimation than the AMS because it is more suitable for
a heavy-tailed distribution, which is common in hydrological applications [23–25]. The
accuracy of estimation based on the PDS is closely related to the selection of an appropriate
threshold level and independence of the sample data [26–28]. Construction of a PDS
model can be hampered by several difficulties and is less commonly used in hydrologic
research than AMS methods. First, events should be independent; hence, criteria explicitly
identifying independent events must be defined. Second, the selection of an appropriate
threshold is important to the result and should ensure that a maximum amount of relevant
information is included in the analysis without violating basic statistical assumptions.
Third, the return period of the PDS in sampling units is not consistent with the return
period of the AMS in years. Conversion and verification of recurrence intervals are difficult
with PDS data [19,29,30].

Although it has a solid theoretical base, difficulties such as data availability make the
construction of a PDS model difficult. At most sites in China, only AMS data are available
for a variety of reasons. Therefore, the development of a simple and feasible method
for calculating reliable quantile estimates on the basis of AMS data is critical. Chow [21]
derived a relation for AMS and AES between two recurrence intervals corresponding to the
same event that has been widely accepted and used in engineering practice [31]. Lin et al.
subsequently verified the applicability of Chow’s equation in the southwestern United
States [20]. Takeuchi noted that the precision of estimations can satisfy the requirement
using the return period in sampling units of Chow’s equation if the size of the PDS is
in accordance with a Poisson distribution [32]. Ghahraman noted that the relationship
between the recurrence intervals of AMS and PDS should be a function of rainfall duration
and the number of samples [33]. Is the frequency conversion related to local hydrological
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characteristics and other factors? Is Chow’s formula applicable to hydrological frequency
analysis in China? These questions require in-depth analysis and research. If Chow’s
formula is appropriate for sites in China, calculation of reliable frequency estimates based
on the AMS data and Chow’s formula can be performed. Because only AMS data exist for
most sites in China, this highlights the purpose and importance of this study.

The objectives of this study are to verify the underestimation of quantiles, provide
two revised methods for reliably estimating the frequency of extreme precipitation, and
to solve the problem of the distribution integral lower limit. To achieve these objectives,
different homogeneous regions are first identified and the optimum distribution for each
homogeneous region in the study area is determined. Second, we compare exceedance
frequencies with the exceedance probabilities in order to verify whether quantiles are
underestimated based on AMS data in the study area. Third, frequency estimates are
computed using real AMS data, real AES data, and generated AES data based on the
Chow’s equation and AMS data, to verify the applicability of Chow’s equation in this study.
Last, a set of reliable frequency estimates is obtained using a regional L-moments method
based on AMS data and Chow’s equation. We revise the estimation of quantiles at each
site at low return periods for the AMS data and also solve the quantiles for a 1-year return
period; the latter is a major merit of this research that extends previous work conducted
to date.

2. Materials and Methods

2.1. Study Area

An important part of Yangtze River Delta, Jiangsu Province (116◦18′–121◦57′ E, 30◦45′–
35◦20′ N) covers an area of about 1.07 × 105 km2 and is located downstream of Yangtze
River and Huaihe River basins. The terrain is dominated by plains, accounting for more
than 70% of the area. Hills are concentrated in the southwest, accounting for 14.3% of
the total area. The terrain slopes from west to east. The river network is intricate and
includes the three major river systems of the Yishusi River drainage: Downstream of the
Huaihe River, the Yangtze River, and Taihu Lake stream. Jiangsu is located in a transitional
subtropical to warm temperate climate zone. The area is characterized by four distinct
seasons, which are cold and dry in winter, and warm and humid with plum rains in the
late spring and early summer, and typhoons in summer and autumn. The annual average
rainfall is 996 mm. Precipitation gradually increases from south to north and is greater on
the coast than inland. Rainstorm zones are mainly located in the south of Yimeng Mountain.
The elevation, stream network, and meteorological stations of the study area are shown in
Figure 1.

2.2. Data

Daily precipitation from meteorological stations was obtained for this study from the
National Meteorological Information Centre of the China Meteorological Administration
(http://cdc.cma.gov.cn/shuju). Data from 63 representative stations in the Jiangsu area
obtained between 1961 and 2011 were used for analysis. The AMS was extracted from the
daily precipitation data using a bubble sort method. The annual maximum series xl, x2,
x3, . . . . . . , xN is a collection of the maximum data for each year, where N is the number
of years in the observed time series. The partial duration series yl, y2, y3, . . . . . . , yM is a
collection of exceedance over a certain truncation level, the Mth largest in the whole time
series of Nyr. In this study, the threshold value was equal to three. That is, the three largest
daily rainfalls were selected from each year and form the PDS. The PDS was sorted and
intercepted the largest N events in descending order, which includes the AES. Therefore,
the AES may be regarded as a special case of the PDS. The frequency estimations for
extreme precipitation based on AMS and AES were assessed and compared.
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Figure 1. Map showing the locations of meteorological stations in Jiangsu province.

2.3. Methodology
2.3.1. Regional L-Moments Method

The L-moments method is aimed at the issue of the robust parameter estimation.
Regional analysis provides a solution to reduce the uncertainties that exist in at-site statisti-
cal analysis. Accordingly, many studies have shown that a regional L-moments method
is a reasonable and reliable method to improve the precision and accuracy of frequency
estimation [12,20].

Regional frequency analysis employs data from several sites in a region to estimate
the frequency distribution of the underlying population at each site. The approach makes
the assumption that the shape of the probability distribution function is shared among
a group of sites. An index-flood procedure was used in the estimation of precipitation
frequency. It assumes that the frequency distribution at each of the N sites in a region is
identical apart from a site-specific scaling factor, the index-flood, and that the region is
homogeneous. That is, the quantile estimates at site i, QT,j,i can be computed by a regional
component that reflects the common precipitation character and a local component that
reflects the site-specific scaling factor. The formula can be written as:

QT,j,i = qT,j × xi,j (1)

where xi,j is commonly the at-site sample mean used for the location estimator, j = 1, 2, . . . ,
N; qT,j, namely the regional growth factor (RGF), is defined as the dimensionless regional
frequency distribution common to the N sites in the region at multiple desired return
periods, Tj. It can be determined by a set of regional parameters that are weighted average
values over N sites for a selected distribution. For example, the regional Linear coefficient
of deviation (L-Cv) can be written as follows:
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L̂Cv
(R) =

N

∑
i

ni L̂Cv
(i)/

N

∑
i

ni, i = 1, 2, . . . , N (2)

where L̂Cv
(R) and L̂Cv

(i) are respectively denoted as the regional L-Cv and the single station
L-Cv at site i.

2.3.2. Identification of Homogeneous Regions

The identification of homogeneous regions is an important task. First, cluster analysis
is used to identify homogeneous regions on the basis of four variables: Longitude, latitude,
elevation, and the mean annual precipitation. This analysis is conducted using Ward’s
method based on Euclidean distance by Statistical Analysis System (SAS) hierarchical
clustering software [34] More details on cluster analysis can be found in reference [13].
Second, a measurement of heterogeneity (H) is used to assess hydrological similarity and
determine regional homogeneity. H is denoted as:

Hi =
(
Vi − μVi

)
/σVi i = 1, 2, 3 (3)

where μVi and σVi are the expectation and standard deviation of Vi, which can be defined
as follows:

V1 =
{

∑N
i=1 ni(t(i) − tR)

2
/∑N

i=1 ni

}1/2
,

V2 = ∑N
i=1 ni

{
(t(i) − tR)

2
+ (t(i)3 − tR

3 )
2
}1/2

/∑N
i=1 ni,

V3 = ∑N
i=1 ni

{
(t(i)3 − tR

3 )
2
+ (t(i)4 − tR

4 )
2
}1/2

/∑N
i=1 ni.

(4)

where t(i), t(i)3 , and t(i)4 are separately the coefficient of sample L-moments. tR, tR
3 , and tR

4
denoted regional average L-moments coefficient weighted the site’s record lengths, which
are defined as:

tR =
N

∑
i=1

nit(i)/
N

∑
i=1

ni, tR
3 = ∑N

i=1 nit
(i)
3 /∑N

i=1 ni, tR
4 = ∑N

i=1 nit
(i)
4 /∑N

i=1 ni (5)

where N is the number of sites, ni is the site’s record lengths. Hosking and Wallis [13]
suggested that a region may be considered “acceptable homogeneous” if H < 1, “possibly
heterogeneous” if 1 ≤ H < 2, “definitely heterogeneous” if H ≥ 2, and “possibly correlated”
if H < 0.

Finally, a measurement of discordancy (Di) is used to identify data that are grossly
discordant with the region as a whole [13]. The critical values for discordancy experiments
are dependent on the number of sites in the region [13]. More detailed information on
these procedures can be found in [12,13].

2.3.3. The Goodness-of-Fit

The MC simulation and the Root Mean Square Error (RMSE) of the sample L-moments
are used to determine the appropriate distribution according to an arbitrary result of any
one test. Due to the relative stability and flexibility of 3 parameters, five kinds of commonly
used 3-parameter distributions are investigated for goodness-of-fit as follows [12,13]:
Generalized logistic (GLO), GEV, generalized normal (GNO), generalized pareto (GPA),
and PE3.

A large number of synthetic datasets are generated by MC simulation and used
to access the deviation from the mean point to the distribution in L-Ck scale. For each
distribution, the goodness-of-fit measure is defined as follows:

ZDIST =
(

τDIST
4 − tR

4 + B4

)
/σ4 (6)
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where tR
4 is the regional average L-kurtosis, weighted proportionally to the site’s record

length; τDIST
4 is the L-kurtosis of the fitted distribution, where DIST can be any of GLO,

GEV, GNO, GPA, and PE3. For the mth simulated region, after the regional average L-
kurtosis t[m]

4 obtained, the bias (B4) and standard deviation (σ 4) of tR
4 can be calculated

as follows:

B4 =

[
Nsim

∑
m=1

(
t[m]
4 − tR

4

)]
/Nsim (7)

σ4 =

{[
Nsim

∑
m=1

(
t[m]
4 − tR

4

)2 − NsimB2
4

]
/(Nsim − 1)

}1/2

(8)

Assuming that Z takes the form of a standard Gaussian distribution, the criterion
|Z| ≤ 1.64 is chosen as the cutoff threshold, and the smallest |Z| value, the best distribution.

The MC simulation emphasizes the effect of the regional average. The RMSE is used
to assess the variability of the sample L-Ck of the real data at N sites to accurately evaluate
the distribution pattern. The RMSE is calculated for each of the plausible distributions
as follows:

RMSE =

{
N

∑
i=1

ni(Si,L−Ck − Di,L−Ck)
2/

N

∑
i=1

ni

}1/2

(9)

where Si,L-Ck is the sample L-Ck at site i and Di,L-Ck is the distribution’s L-Ck at sample
L-Cs of site i. The distribution with the smallest RMSE is selected as the most appropriate
distribution based on this experiment. More details of the MC and RMSE methods can be
found in the literature [12,13,20].

2.3.4. Conversion of AES-AMS

Chow [21] derived a relation between the two recurrence intervals TAMS and TAES
corresponding to the same event, as follows:

TAES =

[
ln
(

TAMS

TAMS − 1

)]−1
or TAMS =

1

1 − e−
1

TAES

(10)

where TAMS and TAES are, respectively, the return period of AMS and AES.
Chow’s equation is a frequency conversion relation that has been widely adopted for

use in engineering research. Table 1 gives the return periods based on AES data. Frequency
estimation can be computed by using non-exceedance probability (PNON). However, the
computer program cannot be computed if PNON equals zero. From Equation (10), it is
clear that it is not computable for a 1-year event under AMS data. If Chow’s equation is
applicable to this study area, we can not only correct the frequency estimation at low return
periods based on AMS data, but can also compute quantiles for a 1-year recurrence interval
based on Chow’s equation.

Table 1. Return periods based on AMS data.

TAES(−year) TAMS(−year) P = 1/TAMS PNON = 1−1/TAMS

N/A 1 1.0 0.0 *
1.44 2 0.50 0.50
4.48 5 0.20 0.80
9.49 10 0.10 0.90
24.50 25 0.04 0.96
49.50 50 0.02 0.98

* Note: It is incomputable for 1-year event based on AMS data.
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3. Results

3.1. Results and Analysis of the Goodness-of-Fit

The study area was divided into five homogeneous regions according to the above-
mentioned procedures in methods section (Figure 2). After identification of homogeneous
regions, the optimum distribution is determined based on the regional L-moments analysis.

 

JsHom

Figure 2. Spatial map of five homogeneous regions.

The results of the goodness-of-fit simulation experiments for the five regions are
shown in Table 2. It can be seen from Table 2 that GLO and GEV are, respectively, the
optimum distributions based on the two indices of |Z| and the RMSE for regions I and III,
IV, and V. For region II, GNO is the best distribution from the |Z| value, and GEV is the
best based on the RMSE. However, the difference between the |Z| and RMSE estimations
is small. Therefore, GNO and GEV can be considered as the best-fitting distributions based
on the two tests. However, abrupt changes in frequency estimations at the borders of
adjacent homogeneous regions should be avoided. The frequency estimation has a good
correlation with the tail thickness of distribution and decreases in the order of GLO, GEV,
GNO, GPA, and PE3. The regions adjacent to region II have an appropriate fit with GLO.
Therefore, GEV is the best distribution based on the two tests and the change in adjacent
regions. Similarly, the optimum distributions of the five regions for the AES data are GNO,
GPA, GPA, GPA, and GPA.
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Table 2. Results of MC and RMSE measures for a 1-day duration.

Test Index Distribution
Homogeneous Region

I II III IV V

Z

GLO −0.17 2.63 −0.28 2.00 2.47
GEV −1.39 0.26 −1.66 0.05 0.37
GNO −2.05 −0.25 −2.05 −0.78 −0.56
GPA −4.46 −5.11 −4.87 −4.71 −4.79
PE3 −3.21 −1.35 −2.83 −2.27 −2.24

Zmin GLO GNO GLO GEV GEV

RMSE

GLO 0.0404 0.0650 0.0401 0.0591 0.0655
GEV 0.0424 0.0445 0.0509 0.0395 0.0447
GNO 0.0834 0.0466 0.0604 0.0452 0.0470
GPA 0.0555 0.0885 0.1239 0.0811 0.0773
PE3 0.1057 0.0546 0.0797 0.0632 0.0628

RMSEmin GLO GEV GLO GEV GEV

3.2. Comparison between Exceedance Frequency and Exceedance Probability

The regional L-moments analysis is applied to obtain the quantiles at each station
on a region-by-region basis. The exceedance frequencies from 2-year to 100-year return
periods are calculated station-by-station and averaged first over the region and then over
the study area. The data exceedance frequencies at each station for study area are found
from Table S1 in Supplementary Material. The average region-by-region exceedance
frequencies are shown in Table 3 over the entire study area. It can be seen from Table 3
that the average exceedance frequencies are higher than the corresponding theoretical
exceedance probabilities for 2-year to 100-year return periods over the study area, which
are 0.507, 0.206, 0.111, 0.045, 0.021, and 0.011 for 2-year, 5-year, 10-year, 25-year, 50-year, and
100-year return periods, respectively. The corresponding real return periods are calculated
to be 1.97 years, 4.85 years, 8.99 years, 22.25 years, 47.49 years, and 91.87 years, which
indicates that extreme precipitation events occur more frequently. These data indicate that
current quantile estimates based on AMS data are underestimated for frequent events in
the study area.

Table 3. Average exceedance frequencies for the study area.

Region

Return Period (R.P.)/Exceedance Probability (E.P.)

2-yr 5-yr 10-yr 25-yr 50-yr 100-yr

0.50 0.20 0.10 0.04 0.02 0.01

I 0.518 0.210 0.124 0.051 0.022 0.012
II 0.505 0.201 0.106 0.045 0.021 0.011
III 0.500 0.201 0.120 0.044 0.020 0.010
IV 0.508 0.217 0.101 0.041 0.022 0.013
V 0.502 0.202 0.106 0.044 0.021 0.009

Average E.P. 0.507 0.206 0.111 0.045 0.021 0.011
Real R.P. 1.97-yr 4.85-yr 8.99-yr 22.25-yr 47.49-yr 91.87-yr

3.3. Verification of the Applicability of Chow’s Equation in the Study

The underestimated frequencies from the AMS data can be revised for low-return
periods if Chow’s equation is applicable to this study area. The procedure for verification
is as follows: First, the quantiles based on real AES and AMS data are independently
estimated for the study area (Table 4). Then the AES–AMS ratios are obtained based on
frequency estimates from 2-year to 100-year return periods. Second, frequency estimations
and their ratios are calculated based on real AMS data, where AES is obtained based on
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AMS data and Chow’s equation. The best-fit distribution of each homogeneous region is
used to calculate the frequency estimates. The verification results are shown in Figure 3.

Table 4. Quantile estimates of extreme precipitation for a 1-day duration with different return periods
in homogeneous region I.

Site Name
Quantile Estimates Based on AES Data

2-yr 5-yr 10-yr 25-yr 50-yr 100-yr

Fengxian 92.2 117.3 139.7 175.1 206.8 243.3
Peixian 98.4 125.2 149.1 186.9 220.7 259.7
Pizhou 106.6 135.6 161.5 202.4 239.0 281.2
Xuzhou 103.2 131.3 156.4 196.0 231.5 272.4

Xinyi 98.2 124.9 148.8 186.4 220.2 259.1
Donghai 98.9 125.9 149.9 187.9 221.9 261.1
Suining 115.4 146.8 174.9 219.2 258.9 304.6

Suyu 116.5 148.2 176.5 221.2 261.3 307.5
Siyang 104.9 133.4 158.9 199.1 235.2 276.7
Sihong 104.5 132.7 154.9 185.5 209.6 234.5

Quantile estimates based on AMS data and Chow’s equation

Fengxian 91.0 116.6 139.1 174.9 207.9 246.9
Peixian 99.4 127.4 152.0 191.1 227.2 269.8
Pizhou 106.0 135.9 162.1 203.8 242.2 287.6
Xuzhou 103.9 133.2 158.8 199.7 237.3 281.9

Xinyi 96.8 124.1 148.0 186.1 221.2 262.7
Donghai 99.0 126.9 151.4 190.3 226.2 268.6
Suining 111.7 143.2 170.8 214.7 255.2 303.1

Suyu 111.9 143.4 171.0 215.0 255.5 303.5
Siyang 105.6 135.3 161.4 202.9 241.1 286.4
Sihong 100.0 128.2 152.9 192.2 228.5 271.4

Mean RE (%) 1.72 1.60 1.41 1.68 2.49 3.64
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Figure 3. Comparison of AES–AMS ratios obtained using Chow’s equation and real data.

Taking Region I as an example, quantile estimates based on AES data, AMS data, and
Chow’s equation are shown in Table 4. The results from region II, III, IV, and V can be
found in Table S2 in Supplementary Material. The frequency estimates obtained from the
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real AES data have good consistency with that obtained from computed AES data. The
mean relative error from 2-year to 100-year return periods is 2.09%, indicating that the
AMS data and Chow’s equation may be used as an alternative method when only AMS
data are available. Figure 3 indicates that the general trend is consistent between Chow’s
equation and the data. The AES–AMS ratio gradually decreases with increasing length of
the return period; ratios are >1 when the recurrence intervals are less than 25 years, near 1
between 25-year and 50-year return periods, and <1 for return periods longer than 50 years.
However, the magnitude of the decrease is largest when the recurrence interval is less than
25 years. It can also be seen from the curve trend that different sampling methods can have
a substantial effect on the low-return-period interval. Taken overall, the best-fit Chow’s
case is consistent with the best-fit real data, indicating that Chow’s equation can be used as
a simple method to obtain reasonable AES-AMS ratios consistent with those obtained from
real AES and AMS data.

3.4. Reliable Frequency Estimation and Spatiotemporal Analysis

By applying Chow’s equation, quantiles derived from AMS data can be revised at low
return periods. A set of rational and reliable frequency estimations can be obtained using a
regional L-moments method based on the AMS data and Chow’s equation. Solving the
quantile for a 1-year return period is most important, which means solving the integral
lower limits of the frequency distribution curve. For example, frequency estimates for
different return periods in region I are shown in Table 4. It can be seen that the estimates
increase incrementally with the length of the recurrence interval as a whole. The maximum
estimation occurs at the Suyu station. We compared the quantile estimates with the
maximum of the 24-h observation series for each station, which can indirectly reflect
estimation accuracy to some extent due to the unknown true value of the frequency
estimate. Considering the 24-h record length (51 years) of the Suyu station, frequency
estimates for the 50-year recurrence interval were selected to assess consistency. The
quantile estimate is 255.5 mm, which is consistent with the maximum observed 24-h value
(253.9 mm). The frequency estimates also agree with observations at other sites and provide
a scientific basis for flood disaster warnings and urban construction, among other uses.

Figure 4 shows the spatial mapping of frequency estimates for a 24-h duration for
1-year, 10-year, 25-year, and 50-year return periods, which have similar patterns. The
estimated values at the northern end of the study area are greater than those at the southern
area, and all of the estimates increase with increased length of the return period. The
highest frequency estimates are observed near the Suqian and Lianyungang stations in
the northern part of Jiangsu, and low values are observed in the southern Taihu lake
basin. These data suggest that Xuzhou and Lianyungang are in a high-risk area of extreme
precipitation that may be subject to flash floods. Therefore, decision makers should pay
heightened attention to the risk of flooding and water resource management in these areas.

3.5. Validation of Frequency Estimations of Extreme Precipitation

Because the true value of the frequency estimation is unknown, the accuracy of the
estimated value cannot be evaluated using the error of the estimated value and the true
value. However, the accuracy of quantiles is indirectly reflected by a comparison of the
estimation and observation at the same frequency. The plotting-position estimator is used
to compute the experience frequency. The experience frequency is defined as follows:

P = (i + A)/(n + B) (11)

where i is the sequence number from ascending series, n is the number of sequence length
for each site, A and B are the parameters, A is equal to −0.35, and B is zero [13].
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Figure 4. Map of quantile estimates for (a) 1-year, (b) 10-year, (c) 25-year, and (d) 50-year return periods.

Three statistical criteria, RE, RMSE, and the correlation coefficient (r) are used to judge
the precision of frequency estimates. The results can be found in Table 5. The average RE,
RMSE, and r of all stations in the study area are 5.56%, 0.107 mm, and 0.969, respectively.
This indicates that the estimation is in good agreement with the observation. Figure 5
shows a scatterplot of measured and observed quantiles at the same frequency for each site
in each homogeneous region. It can be seen from Figure 5 and Table 5 that the simulation is
consistent with the set of observations as a whole, with a value of r greater than 0.96 in each
homogeneous region. From the above, it may be concluded that the frequency estimation
is reasonable and reliable for low return periods. As a whole, frequency estimations based
on the regional L-moments method are in good agreement with observations.

Table 5. Comparisons between estimation and observation.

Homogeneous Regions
RE
(%)

RMSE
(mm)

r

Region I 5.47 0.101 0.975
Region II 5.31 0.093 0.975
Region III 4.77 0.09 0.971
Region IV 5.88 0.118 0.965
Region V 5.96 0.119 0.961

All 5.56 0.107 0.969
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Figure 5. Scatterplot of estimations and observations at the same frequency for each homogeneous region.

4. Discussion

The results of this study are valuable for revising the underestimation of quantiles
and obtaining a set of reliable quantile estimates in the study area. However, some issues
may benefit from a more in-depth analysis in future research.

The determination of homogeneous region is an important step in regional frequency
analysis. The optimum distributions are, respectively, GEV and GPA distribution based on
the AMS data and AES data for most regions of the study area, which is consistent with
many previous studies. Many research studies have shown that GEV is the most commonly
used for AMS analysis, and GPA is frequently proposed for PDS analysis [35–39]. However,
the national guidelines and regulation for calculation design storm and flood in China
recommend the use of PE3 distribution, which is inconsistent with the research in this
paper [40]. The main attribution includes that PE3 is a recommended choice based on the
conventional moment method, which is very different from when sample size is small,
or the skewness of the sample is considerable. Many research studies have proved that
L-moments are less subject to bias in estimation and enable more reliable inferences to
be made from small samples than conventional moment method [22,41–43]. Therefore,
the optimum distribution of this paper is rational and reliable based on the summary
of judgement. At the same time, identification of homogeneous region may cause the
discontinuity around the boundary of adjacent regions. Very few papers dealing with the
discontinuity are found in the literature. So, spatial consistency should be considered and
further research in the next study.

Research has shown that the quantiles based on AMS data are underestimated at
low return periods in this paper, which is in accordance with previous research and
theories [1,18,20,22]. Lin et al. verified the result that exists a significant underestimation
based on 1438 stations data in southwestern United States [1,20]. Frequency estimates are
underestimated but the magnitude of underestimation is not obvious in this study. Some
possible reasons are analyzed and discussed as follows. By analyzing the AMS data of

124



Water 2021, 13, 1832

the site, it is found that a negative correlation exists between the exceedance frequency
and skewness coefficient of the station; that is, the larger the positive skewness coefficient,
the smaller the exceedance frequency. The frequency distribution diagram based on the
AMS data is used to analyze the causes (Figure 6). Taking Region I and Region V for
example, the stations with the largest L-Cs (58013 and 58,349 sites) and with the smallest
L-Cs (58,131 and 58,345 sites) are selected to analyze the underestimated reasons in this
study. It can be seen from Figure 6 that the station with the largest L-Cs have the maximum
rainfall value in the corresponding region, and the AMS sequence with the smallest L-Cs
is approximate to normal distribution, which has uniform and continuous characteristics
and no extra-large value. We may come to the conclusion that the distribution of sparse
and discontinuous extreme precipitation data at large value intervals is the main factor
resulting in low exceedance frequency values. Second, factors including small sample
sizes and data series of inadequate length can also affect the calculation of the exceedance
frequency. Therefore, a larger range and longer sequence of data should be collected and
analyzed in future research.
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Figure 6. Frequency diagram of AMS data at representative site.

A set of rational and reliable frequency estimations can be obtained based on the
abovementioned two methods, especially quantiles for the 1-year return period in this
study. It is the main innovation of this paper that was missing from previous works.
Many researchers have solved the quantile estimates for greater than or equal to a 2-year
recurrence interval in regional frequency analysis [16,44–46]. Only few papers solving
the quantiles of a 1-year return period are found in the literature [47–49]. However,
these studies assume that the non-exceedance probability of a 1-year return period is
equal to 0.1 because it is not computable if the non-exceedance probability equals zero.
The assumption has no theoretical basis, and the quantile results are inaccurate at lower
recurrence intervals due to the underestimation of the AMS analysis. On the basis of
verification of Chow’s equation applicability, the quantiles can be corrected based on AMS
data at low-return periods. It is a very valuable practical element in China because only
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AMS data is available from China Meteorological Administration since the 1960s [50]. As
a whole, frequency estimations based on the regional L-moments method are in good
agreement with observations. The findings validate the reliability of frequency estimations
at low return periods. However, the quantiles are slightly overestimated or underestimated
in cases of large extreme precipitation. Potential reasons for the deviation of quantiles
at large return periods include spatial inconsistencies around the boundary of adjacent
regions, short sampling series, and other factors. Future research should conduct a more
in-depth analysis of these possibilities.

It is a pity that hourly extreme precipitation data were not available for this study.
Ideally, complete quantile estimates from 1-h to 30-day durations would be carried out in
the future in the study region. Thus, a complete set of spatiotemporal frequency estimates
from multi-duration and multi-return periods can be obtained in the region, which can
provide more of a quantitative and scientific basis for decision making. Such data would
provide a reference criterion of different duration for comparison, and also provide a
stronger scientific basis for issuing storm disaster and flash flood warnings.

5. Conclusions

In this paper, a regional frequency analysis of extreme precipitation in the province of
Jiangsu in the Yangtze River Delta was studied using regional L-moments methods. A set
of rational and reliable frequency estimation was obtained based on AMS data and Chow’s
equation. Some of the main findings obtained from the research are as follows:

The study area is categorized into five homogeneous regions using cluster analysis.
Five distributions (GLO, GEV, GNO, GPA, and PE3) are investigated, and MC simulations
and RMSE tests are used to identify the optimum distribution in each homogeneous region.
The best-fit distributions based on AMS data are GLO, GEV, GLO, GEV, and GEV for the
five homogeneous regions, respectively. The best-fit distributions based on AES data are
GNO, GPA, GPA, GPA, and GPA, respectively. By comparing exceedance frequencies
with exceedance probabilities it can be seen that extreme precipitation events occur more
frequently, and that current quantile estimates based on AMS data are underestimated for
frequent events in the study area.

Verification of Chow’s equation in this study area shows that there is generally good
consistency between real AES data, and AES data generated using Chow’s equation and
real AMS data. As a whole, the results indicate that Chow’s equation can be used as a
simple method to obtain reasonable AES-AMS ratios, similar to those obtained from real
AES and AMS data. This finding also means that frequency estimations can be revised at
lower return periods based on real AMS data and Chow’s equation. Two methods can be
used to correct for underestimation of frequency estimates. The first method is to use AES
data in combination with theoretical exceedance probabilities, such as 0.5, 0.2, 0.1, 0.04,
and 0.02 for the corresponding return periods of 2 years, 5 years, 10 years, 25 years, and
50 years. The second way is to use AMS data in combination with the correction of return
periods based on Chow’s conversion equation. The two methods are equivalent in quantile
estimation. However, the second method is strongly recommended due to its simple data
processing requirements and reliable results, especially when only AMS data are available
for the study area.

A set of rational and reliable frequency estimations can be obtained using the regional
L-moments method based on AMS data and Chow’s equation. Solving the quantile for
a 1-year return period is most important, which means the integral lower limits of the
frequency distribution curve. The results show that the estimates increase incrementally
with the recurrence interval, and that the estimates agree with observations as a whole. The
spatial mapping of quantiles shows that similar patterns exist for 1-year, 10-year, 25-year,
and 50-year return periods, and that quantiles in the northern part of the study are greater
than in the southern area. The highest frequency estimates are observed near the Suqian
and Lianyungang stations in the northern part of Jiangsu, and low values are observed in
the southern Taihu lake basin. This suggests that the Xuzhou and Lianyungang areas are
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likely at high risk of flash floods due to extreme precipitation. Decision makers should pay
heightened attention to flood risk and water resource management in these areas.

Based on the three criteria of RE, RMSE, and r, the accuracy of estimations can be
evaluated by comparing estimations and observations at the same frequency. The results
show that frequency estimations are in good agreement with observations, with the average
RE, RMSE, and r of all stations being 5.56%, 0.107 mm, and 0.969, respectively, especially
a r > 0.96 was found in each homogeneous region. Frequency estimations based on the
regional L-moments method are in good agreement with observations. The findings vali-
date the reliability of frequency estimations at low return periods. A set of reliable quantile
estimates are obtained based on two revised ways, which provide a new perspective in
regional frequency analysis.
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Abstract: The choice of a probability distribution function and confidence interval of estimated
design values have long been of interest in flood frequency analysis. Although the four-parameter
exponential gamma (FPEG) distribution has been developed for application in hydrology, its maxi-
mum likelihood estimation (MLE)-based parameter estimation method and asymptotic variance of
its quantiles have not been well documented. In this study, the MLE method was used to estimate
the parameters and confidence intervals of quantiles of the FPEG distribution. This method entails
parameter estimation and asymptotic variances of quantile estimators. The parameter estimation
consisted of a set of four equations which, after algebraic simplification, were solved using a three
dimensional Levenberg-Marquardt algorithm. Based on sample information matrix and Fisher’s
expected information matrix, derivatives of the design quantile with respect to the parameters were
derived. The method of estimation was applied to annual precipitation data from the Weihe water-
shed, China and confidence intervals for quantiles were determined. Results showed that the FPEG
was a good candidate to model annual precipitation data and can provide guidance for estimating
design values.

Keywords: four-parameter exponential gamma distribution; levenberg-marquardt algorithm; maxi-
mum likelihood estimation; variance and covariance matrix; Weihe watershed

1. Introduction

Hydrological frequency analysis is important for planning, designing and managing
water resources projects. The design values (e.g., design flood, design rainfall) computed
by frequency analysis involve uncertainties due to the sampling method, sample length,
empirical frequency formula, cumulative distribution function (CDF) or probability density
function (PDF), parameter estimation method, goodness-of-fit test, and extent of data
extrapolation [1,2]. Among these uncertainty sources, there has been a considerable interest
in the choice of CDF for a given sample, because the true CDF of a hydrological variable is
unknown. Rao and Hamed summarized commonly used distributions: normal and related,
gamma family, extreme value, Wakeby, and logistic as well as their application [3].

Further, quantifying the uncertainty of the estimated design values is important in the
planning, design, and management of water resources projects [1,4]. In practice, standard
error and confidence interval (confidence limits) are employed to measure the uncertainty
of a statistical quantity [4]. Rao and Hamed provided confidence intervals of some common
distributions, with parameters estimated by the method of moments (MOM), the probabil-
ity weighted moments (PWM), and maximum likelihood estimation (MLE) [3]. Shin [5]
and Shin et al. [6] summarized methods for computing confidence intervals. Methods of
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estimating the confidence intervals of design quantities include Monte Carlo simulation [7],
approximate method [8], analytical method [5,9–11], asymptotic variance of the expected
moments algorithm [12], bootstrap method [13–16], and standard error of regional popula-
tion index flood (RPIF) [17]. Studies show that confidence intervals mainly depend on the
method of estimation of the parameters of the probability distribution function.

The four-parameter exponential gamma (FPEG) distribution has been applied in hy-
drology in China and be specialized into 10 kinds of probability distribution functions:
gamma, Pearson type III (P-III), K–M, Weibull, Chi-square, exponential, normal, Pearson
type V (P-V), log-normal, and Gumbel. The properties of FPEG distribution and relations
between this distribution and others, and its potential for application, have been inves-
tigated [18,19]. However, the MLE-based parameter estimation method and algorithms
for computing confidence intervals of the design values for the FPEG distribution have
received little attention.

The objective of this paper, therefore, is to present the MLE method for estimating
the FPEG distribution parameters, and derive confidence intervals of quantiles using
asymptotic variances. The method of parameter estimation involved a set of four equations
which are solved by a three dimensional Levenberg–Marquardt algorithm. Following
Kendall and Stuart [20], the expected values of the second-order partial derivatives of the
log-likelihood function with respect to the parameters, and the explicit formulae for the
variances and covariances are analytically derived. The proposed estimation procedure is
illustrated by using observed annual precipitation data.

The paper is organized as follows. Describing the FPEG distribution and estimation
of its quantiles. A set of four equations of the MLE method for parameters and confidence
intervals of quantiles are derived in Section 2, followed by an application to annual precipi-
tation from the Weihe watershed in China in Section 3. Conclusions, along with a summary
of the main features of the proposed method, are given in Section 4.

2. Theory and Methodology

2.1. Probability Density Function and Cumulative Distribution Function

The FPEG distribution has the probability density function (PDF), f (x), expressed
as [18,19]:

f (x) =

{
βα

bΓ(α) (x − δ)
α
b −1e−β(x−δ)

1
b ; δ ≤ x < ∞

0 ; otherwise
(1)

where α > 0 is the shape parameter; β > 0 is the scale parameter; δ > 0 is the location
parameter; b > 0 is the transformation parameter; Γ(α) is the complete gamma function; x
is the value of the random variable X. Figure 1 shows some typical shapes of the PDF. The
CDF can be expressed as

p = F(X ≤ x) =
∫ x

δ
f (t)dt =

∫ x

δ

βα

bΓ(α)
(t − δ)

α
b −1e−β(t−δ)

1
b dt

When the design frequency p is given, its correspondance to design value xp (quantile)
can be expressed as

p = F
(
X ≤ xp

)
=
∫ xp

δ
f (x)dx =

∫ xp

δ

βα

bΓ(α)
(x − δ)

α
b −1e−β(x−δ)

1
b dx (2)
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Figure 1. Examples of the probability density function of the four-parameter exponential gamma distribution.

Equation (2) can be transformed to a one-parameter gamma using the following

transformation. Let t = β(x − δ)
1
b , then x = δ + 1

βb tb, x − δ = 1
βb tb and dx = b

βb tb−1dt,

when x = δ, t = 0; x = xp, tp = β
(
xp − δ

) 1
b substitution of these quantities into Equation (2)

results in [18,19]:

p =
∫ tp

0

βα

bΓ(α)

(
1
βb tb

) α
b −1

e−t b
βb tb−1dt =

∫ tp

0

βα

bΓ(α)
1

βα−b tα−be−t b
βb tb−1dt =

∫ tp

0

1
Γ(α)

tα−1e−tdt (3)

where tp = β
(
xp − δ

) 1
b , which can be determined by the incomplete gamma function.

2.2. Estimation of Quantiles

The quantile corresponding to the probability of exceedance p, xp, is obtained as

xp = δ +
1
βb tb

p (4)

Also, the estimator xp may be generally written in terms of the mathematical expecta-
tion E(X), the coefficient of variation Cv, and the frequency factor Φp as

xp = E(X)
(
1 + ΦpCv

)
(5)

Given the probability of exceedance p, the frequency factor Φp can be written in the
following form [18,19]:

Φp =
tb

pΓ(α)− Γ(α + b)√
Γ(α)Γ(α + 2b)− Γ2(α + b)

(6)

Note that from Equations (3) and (6), the frequency factor Φp is a function of the
probability of exceedance and parameters α and b. Some numerical values for such a
function are shown in Table 1. For large α (e.g., α > 100) it is seen that the differences
among the Φp values for a given p are subtle.
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Table 1. Frequency factors for the four-parameter exponential gamma distribution.

b = 0.50

α
Exceedance Probability p

0.001 0.01 0.02 0.10 0.30 0.50 0.70 0.90 0.95 0.99 0.995 0.999

0.10 6.1052 4.0173 3.2803 1.3079 −0.0892 −0.4810 −0.5628 −0.5697 −0.5697 −0.5697 −0.5697 −0.5697
0.20 5.0293 3.4670 2.9186 1.4286 0.1880 −0.4003 −0.7010 −0.8087 −0.8147 −0.8160 −0.8160 −0.8160
0.30 4.5665 3.2055 2.7291 1.4308 0.3045 −0.3081 −0.7170 −0.9631 −0.9950 −1.0087 −1.0094 −1.0097
0.40 4.3045 3.0513 2.6134 1.4183 0.3625 −0.2462 −0.7029 −1.0574 −1.1260 −1.1691 −1.1729 −1.1753
0.50 4.1350 2.9494 2.5356 1.4050 0.3957 −0.2047 −0.6844 −1.1151 −1.2196 −1.3028 −1.3132 −1.3215
0.60 4.0161 2.8770 2.4796 1.3934 0.4168 −0.1757 −0.6676 −1.1516 −1.2869 −1.4136 −1.4332 −1.4518
0.70 3.9278 2.8228 2.4375 1.3835 0.4312 −0.1545 −0.6534 −1.1755 −1.3362 −1.5050 −1.5355 −1.5679
0.80 3.8596 2.7807 2.4046 1.3753 0.4416 −0.1385 −0.6417 −1.1920 −1.3732 −1.5807 −1.6225 −1.6713
0.90 3.8051 2.7470 2.3782 1.3684 0.4494 −0.1259 −0.6320 −1.2037 −1.4017 −1.6438 −1.6967 −1.7632
1.00 3.7605 2.7193 2.3565 1.3625 0.4555 −0.1159 −0.6239 −1.2124 −1.4242 −1.6967 −1.7602 −1.8448
2.00 3.5423 2.5845 2.2506 1.3323 0.4817 −0.0701 −0.5840 −1.2436 −1.5195 −1.9561 −2.0881 −2.3133
4.00 3.4078 2.5032 2.1871 1.3141 0.4955 −0.0455 −0.5617 −1.2564 −1.5655 −2.0975 −2.2754 −2.6114
6.00 3.3513 2.4699 2.1614 1.3070 0.5010 −0.0361 −0.5534 −1.2611 −1.5823 −2.1492 −2.3442 −2.7233
8.00 3.3179 2.4506 2.1466 1.3031 0.5041 −0.0308 −0.5488 −1.2638 −1.5917 −2.1773 −2.3815 −2.7840
10.00 3.2951 2.4375 2.1366 1.3005 0.5062 −0.0273 −0.5459 −1.2656 −1.5978 −2.1955 −2.4056 −2.8229
20.00 3.2380 2.4054 2.1123 1.2945 0.5115 −0.0190 −0.5390 −1.2702 −1.6123 −2.2377 −2.4610 −2.9117
40.00 3.1966 2.3827 2.0953 1.2905 0.5152 −0.0133 −0.5344 −1.2734 −1.6221 −2.2653 −2.4971 −2.9686
60.00 3.1779 2.3726 2.0878 1.2887 0.5168 −0.0108 −0.5325 −1.2749 −1.6263 −2.2770 −2.5123 −2.9924
80.00 3.1666 2.3665 2.0833 1.2877 0.5178 −0.0094 −0.5314 −1.2757 −1.6288 −2.2839 −2.5212 −3.0063

100.00 3.1588 2.3623 2.0802 1.2871 0.5185 −0.0084 −0.5306 −1.2763 −1.6305 −2.2885 −2.5272 −3.0156
200.00 3.1392 2.3519 2.0725 1.2854 0.5202 −0.0059 −0.5288 −1.2778 −1.6348 −2.2998 −2.5418 −3.0382
400.00 3.1251 2.3445 2.0670 1.2843 0.5214 −0.0042 −0.5275 −1.2789 −1.6377 −2.3077 −2.5520 −3.0538
600.00 3.1188 2.3412 2.0646 1.2838 0.5220 −0.0034 −0.5269 −1.2794 −1.6390 −2.3112 −2.5564 −3.0606
800.00 3.1151 2.3392 2.0632 1.2835 0.5223 −0.0029 −0.5266 −1.2797 −1.6398 −2.3132 −2.5590 −3.0646
1000.00 3.1125 2.3379 2.0622 1.2833 0.5225 −0.0026 −0.5263 −1.2799 −1.6404 −2.3146 −2.5608 −3.0674

b = 1.00

α
Exceedance Probability p

0.001 0.01 0.02 0.10 0.30 0.50 0.70 0.90 0.95 0.99 0.995 0.999

0.10 10.3207 4.7070 3.2225 0.5254 −0.2611 −0.3144 −0.3162 −0.3162 −0.3162 −0.3162 −0.3162 −0.3162
0.20 8.7251 4.4773 3.2969 0.9054 −0.1766 −0.4008 −0.4437 −0.4472 −0.4472 −0.4472 −0.4472 −0.4472
0.30 7.8853 4.2712 3.2435 1.0677 −0.0793 −0.4142 −0.5245 −0.5471 −0.5477 −0.5477 −0.5477 −0.5477
0.40 7.3406 4.1111 3.1792 1.1540 −0.0043 −0.4031 −0.5731 −0.6287 −0.6318 −0.6324 −0.6325 −0.6325
0.50 6.9491 3.9845 3.1197 1.2060 0.0525 −0.3854 −0.6021 −0.6959 −0.7043 −0.7070 −0.7071 −0.7071
0.60 6.6497 3.8815 3.0671 1.2400 0.0965 −0.3670 −0.6197 −0.7513 −0.7673 −0.7741 −0.7744 −0.7746
0.70 6.4109 3.7957 3.0209 1.2635 0.1316 −0.3497 −0.6305 −0.7970 −0.8221 −0.8352 −0.8361 −0.8366
0.80 6.2145 3.7229 2.9802 1.2804 0.1601 −0.3339 −0.6371 −0.8352 −0.8699 −0.8912 −0.8931 −0.8942
0.90 6.0493 3.6601 2.9442 1.2930 0.1839 −0.3197 −0.6410 −0.8673 −0.9118 −0.9426 −0.9459 −0.9482
1.00 5.9078 3.6052 2.9120 1.3026 0.2040 −0.3069 −0.6433 −0.8946 −0.9487 −0.9899 −0.9950 −0.9990
2.00 5.1148 3.2798 2.7110 1.3362 0.3106 −0.2274 −0.6383 −1.0382 −1.1629 −1.3092 −1.3410 −1.3821
4.00 4.5311 3.0226 2.5421 1.3404 0.3811 −0.1640 −0.6181 −1.1276 −1.3168 −1.5884 −1.6639 −1.7857
6.00 4.2681 2.9020 2.4605 1.3369 0.4105 −0.1347 −0.6054 −1.1627 −1.3827 −1.7207 −1.8220 −1.9975
8.00 4.1105 2.8284 2.4100 1.3332 0.4274 −0.1169 −0.5967 −1.1822 −1.4210 −1.8010 −1.9194 −2.1316
10.00 4.0026 2.7775 2.3748 1.3301 0.4387 −0.1048 −0.5904 −1.1949 −1.4466 −1.8562 −1.9869 −2.2261
20.00 3.7345 2.6487 2.2848 1.3198 0.4656 −0.0743 −0.5733 −1.2242 −1.5083 −1.9941 −2.1571 −2.4690
40.00 3.5449 2.5558 2.2191 1.3106 0.4838 −0.0526 −0.5601 −1.2429 −1.5502 −2.0918 −2.2791 −2.6468
60.00 3.4610 2.5142 2.1894 1.3060 0.4916 −0.0430 −0.5539 −1.2507 −1.5683 −2.1351 −2.3334 −2.7269
80.00 3.4111 2.4893 2.1716 1.3031 0.4962 −0.0372 −0.5502 −1.2552 −1.5789 −2.1608 −2.3658 −2.7749

100.00 3.3770 2.4723 2.1593 1.3011 0.4993 −0.0333 −0.5476 −1.2582 −1.5861 −2.1784 −2.3880 −2.8079
200.00 3.2927 2.4298 2.1288 1.2957 0.5068 −0.0236 −0.5410 −1.2655 −1.6037 −2.2219 −2.4430 −2.8900
400.00 3.2332 2.3996 2.1070 1.2918 0.5121 −0.0167 −0.5362 −1.2704 −1.6159 −2.2526 −2.4819 −2.9483
600.00 3.2069 2.3862 2.0973 1.2900 0.5144 −0.0136 −0.5341 −1.2725 −1.6213 −2.2661 −2.4991 −2.9743
800.00 3.1912 2.3782 2.0915 1.2889 0.5157 −0.0118 −0.5328 −1.2737 −1.6245 −2.2742 −2.5094 −2.9898
1000.00 3.1806 2.3727 2.0875 1.2881 0.5167 −0.0105 −0.5319 −1.2746 −1.6267 −2.2797 −2.5164 −3.0003

134



Water 2021, 13, 2092

Table 1. Cont.

b = 1.50

α
Exceedance Probability p

0.001 0.01 0.02 0.10 0.30 0.50 0.70 0.90 0.95 0.99 0.995 0.999

0.10 12.8886 4.0481 2.3121 0.0921 −0.1944 −0.1992 −0.1993 −0.1993 −0.1993 −0.1993 −0.1993 −0.1993
0.20 11.5995 4.3915 2.8159 0.3898 −0.2229 −0.2788 −0.2830 −0.2831 −0.2831 −0.2831 −0.2831 −0.2831
0.30 10.7500 4.4459 2.9974 0.5824 −0.2028 −0.3260 −0.3465 −0.3481 −0.3481 −0.3481 −0.3481 −0.3481
0.40 10.1286 4.4298 3.0780 0.7137 −0.1704 −0.3519 −0.3965 −0.4032 −0.4033 −0.4033 −0.4033 −0.4033
0.50 9.6438 4.3907 3.1154 0.8089 −0.1367 −0.3652 −0.4360 −0.4516 −0.4521 −0.4522 −0.4522 −0.4522
0.60 9.2498 4.3439 3.1311 0.8810 −0.1049 −0.3713 −0.4673 −0.4949 −0.4963 −0.4966 −0.4966 −0.4966
0.70 8.9202 4.2953 3.1349 0.9377 −0.0758 −0.3729 −0.4923 −0.5338 −0.5368 −0.5376 −0.5376 −0.5376
0.80 8.6385 4.2474 3.1318 0.9833 −0.0495 −0.3719 −0.5125 −0.5689 −0.5741 −0.5758 −0.5759 −0.5759
0.90 8.3938 4.2013 3.1245 1.0208 −0.0256 −0.3693 −0.5290 −0.6007 −0.6085 −0.6117 −0.6119 −0.6120
1.00 8.1783 4.1573 3.1147 1.0521 −0.0040 −0.3656 −0.5426 −0.6295 −0.6405 −0.6456 −0.6460 −0.6461
2.00 6.8717 3.8286 2.9915 1.2080 0.1351 −0.3192 −0.6040 −0.8156 −0.8645 −0.9074 −0.9141 −0.9206
4.00 5.8088 3.4886 2.8158 1.2896 0.2518 −0.2547 −0.6233 −0.9689 −1.0757 −1.2040 −1.2335 −1.2744
6.00 5.3092 3.3073 2.7105 1.3131 0.3060 −0.2171 −0.6220 −1.0377 −1.1801 −1.3709 −1.4207 −1.4975
8.00 5.0061 3.1907 2.6395 1.3224 0.3383 −0.1923 −0.6179 −1.0777 −1.2442 −1.4806 −1.5464 −1.6537
10.00 4.7981 3.1076 2.5876 1.3266 0.3602 −0.1743 −0.6136 −1.1043 −1.2884 −1.5596 −1.6381 −1.7706
20.00 4.2817 2.8908 2.4471 1.3286 0.4131 −0.1268 −0.5971 −1.1664 −1.3981 −1.7689 −1.8857 −2.0978
40.00 3.9208 2.7297 2.3388 1.3226 0.4487 −0.0909 −0.5806 −1.2060 −1.4743 −1.9263 −2.0762 −2.3604
60.00 3.7632 2.6569 2.2887 1.3178 0.4638 −0.0746 −0.5719 −1.2221 −1.5072 −1.9981 −2.1641 −2.4847
80.00 3.6702 2.6131 2.2583 1.3144 0.4725 −0.0647 −0.5664 −1.2313 −1.5266 −2.0413 −2.2175 −2.5610

100.00 3.6071 2.5830 2.2373 1.3118 0.4784 −0.0580 −0.5625 −1.2373 −1.5397 −2.0710 −2.2543 −2.6140
200.00 3.4523 2.5082 2.1845 1.3045 0.4926 −0.0411 −0.5522 −1.2516 −1.5716 −2.1452 −2.3467 −2.7485
400.00 3.3444 2.4550 2.1467 1.2985 0.5023 −0.0291 −0.5445 −1.2611 −1.5936 −2.1980 −2.4131 −2.8462
600.00 3.2971 2.4314 2.1298 1.2957 0.5065 −0.0238 −0.5410 −1.2651 −1.6032 −2.2215 −2.4427 −2.8902
800.00 3.2690 2.4174 2.1197 1.2939 0.5090 −0.0206 −0.5388 −1.2674 −1.6089 −2.2355 −2.4604 −2.9166
1000.00 3.2499 2.4078 2.1128 1.2927 0.5106 −0.0184 −0.5374 −1.2690 −1.6128 −2.2451 −2.4725 −2.9346

b = 2.00

α
Exceedance Probability p

0.001 0.01 0.02 0.10 0.30 0.50 0.70 0.90 0.95 0.99 0.995 0.999

0.10 13.3536 2.8762 1.3613 −0.0467 −0.1307 −0.1311 −0.1311 −0.1311 −0.1311 −0.1311 −0.1311 −0.1311
0.20 12.9833 3.6087 2.0068 0.0986 −0.1764 −0.1875 −0.1879 −0.1879 −0.1879 −0.1879 −0.1879 −0.1879
0.30 12.4989 3.9246 2.3406 0.2345 −0.1935 −0.2295 −0.2326 −0.2327 −0.2327 −0.2327 −0.2327 −0.2327
0.40 12.0542 4.0914 2.5456 0.3473 −0.1950 −0.2612 −0.2708 −0.2714 −0.2714 −0.2714 −0.2714 −0.2714
0.50 11.6592 4.1868 2.6831 0.4409 −0.1884 −0.2851 −0.3039 −0.3062 −0.3062 −0.3062 −0.3062 −0.3062
0.60 11.3083 4.2425 2.7802 0.5195 −0.1777 −0.3030 −0.3330 −0.3379 −0.3381 −0.3381 −0.3381 −0.3381
0.70 10.9946 4.2742 2.8512 0.5864 −0.1650 −0.3164 −0.3585 −0.3674 −0.3677 −0.3677 −0.3677 −0.3677
0.80 10.7121 4.2903 2.9041 0.6440 −0.1512 −0.3266 −0.3811 −0.3949 −0.3955 −0.3956 −0.3956 −0.3956
0.90 10.4561 4.2962 2.9442 0.6942 −0.1371 −0.3342 −0.4010 −0.4206 −0.4217 −0.4220 −0.4220 −0.4220
1.00 10.2227 4.2949 2.9748 0.7383 −0.1231 −0.3398 −0.4188 −0.4447 −0.4466 −0.4472 −0.4472 −0.4472
2.00 8.6475 4.1535 3.0588 0.9962 −0.0055 −0.3473 −0.5233 −0.6238 −0.6409 −0.6522 −0.6535 −0.6544
4.00 7.1806 3.8570 2.9806 1.1743 0.1277 −0.3106 −0.5893 −0.8083 −0.8645 −0.9212 −0.9319 −0.9447
6.00 6.4445 3.6576 2.8918 1.2401 0.1994 −0.2775 −0.6084 −0.9033 −0.9909 −1.0934 −1.1167 −1.1487
8.00 5.9875 3.5177 2.8205 1.2724 0.2448 −0.2520 −0.6148 −0.9620 −1.0735 −1.2150 −1.2501 −1.3022
10.00 5.6704 3.4134 2.7637 1.2907 0.2765 −0.2322 −0.6165 −1.0023 −1.1326 −1.3066 −1.3522 −1.4232
20.00 4.8774 3.1261 2.5947 1.3204 0.3559 −0.1746 −0.6103 −1.0998 −1.2855 −1.5637 −1.6459 −1.7877
40.00 4.3242 2.9025 2.4527 1.3260 0.4104 −0.1275 −0.5957 −1.1635 −1.3957 −1.7697 −1.8885 −2.1063
60.00 4.0846 2.7994 2.3846 1.3240 0.4336 −0.1052 −0.5865 −1.1895 −1.4440 −1.8665 −2.0047 −2.2643
80.00 3.9440 2.7371 2.3427 1.3215 0.4471 −0.0916 −0.5801 −1.2042 −1.4724 −1.9256 −2.0764 −2.3635

100.00 3.8491 2.6942 2.3136 1.3192 0.4560 −0.0822 −0.5754 −1.2139 −1.4916 −1.9666 −2.1263 −2.4332
200.00 3.6181 2.5870 2.2396 1.3115 0.4776 −0.0585 −0.5625 −1.2365 −1.5385 −2.0698 −2.2532 −2.6137
400.00 3.4588 2.5107 2.1861 1.3044 0.4921 −0.0415 −0.5523 −1.2511 −1.5708 −2.1440 −2.3456 −2.7474
600.00 3.3894 2.4769 2.1621 1.3008 0.4983 −0.0339 −0.5476 −1.2572 −1.5848 −2.1772 −2.3871 −2.8083
800.00 3.3484 2.4567 2.1478 1.2985 0.5020 −0.0294 −0.5446 −1.2608 −1.5930 −2.1970 −2.4120 −2.8450
1000.00 3.3205 2.4429 2.1379 1.2969 0.5044 −0.0263 −0.5426 −1.2631 −1.5987 −2.2106 −2.4291 −2.8702

135



Water 2021, 13, 2092

Table 1. Cont.

b = 2.50

α
Exceedance Probability p

0.001 0.01 0.02 0.10 0.30 0.50 0.70 0.90 0.95 0.99 0.995 0.999

0.10 12.0692 1.7751 0.6880 −0.0666 −0.0880 −0.0880 −0.0880 −0.0880 −0.0880 −0.0880 −0.0880 −0.0880
0.20 12.7687 2.5964 1.2456 −0.0196 −0.1254 −0.1273 −0.1273 −0.1273 −0.1273 −0.1273 −0.1273 −0.1273
0.30 12.8544 3.0532 1.6046 0.0500 −0.1496 −0.1586 −0.1590 −0.1591 −0.1591 −0.1591 −0.1591 −0.1591
0.40 12.7678 3.3500 1.8603 0.1209 −0.1643 −0.1851 −0.1868 −0.1869 −0.1869 −0.1869 −0.1869 −0.1869
0.50 12.6164 3.5586 2.0536 0.1881 −0.1725 −0.2076 −0.2120 −0.2123 −0.2123 −0.2123 −0.2123 −0.2123
0.60 12.4387 3.7119 2.2053 0.2503 −0.1761 −0.2269 −0.2350 −0.2358 −0.2358 −0.2358 −0.2358 −0.2358
0.70 12.2515 3.8278 2.3275 0.3075 −0.1764 −0.2434 −0.2563 −0.2580 −0.2580 −0.2580 −0.2580 −0.2580
0.80 12.0630 3.9171 2.4277 0.3599 −0.1744 −0.2575 −0.2760 −0.2790 −0.2790 −0.2790 −0.2790 −0.2790
0.90 11.8772 3.9868 2.5112 0.4081 −0.1708 −0.2696 −0.2942 −0.2989 −0.2991 −0.2991 −0.2991 −0.2991
1.00 11.6965 4.0417 2.5815 0.4524 −0.1660 −0.2801 −0.3111 −0.3180 −0.3183 −0.3184 −0.3184 −0.3184
2.00 10.2326 4.2145 2.9186 0.7530 −0.0967 −0.3301 −0.4289 −0.4725 −0.4779 −0.4807 −0.4809 −0.4810
4.00 8.5558 4.0896 3.0201 1.0138 0.0227 −0.3331 −0.5308 −0.6614 −0.6890 −0.7126 −0.7163 −0.7201
6.00 7.6256 3.9254 2.9892 1.1268 0.1006 −0.3139 −0.5718 −0.7717 −0.8230 −0.8757 −0.8860 −0.8988
8.00 7.0250 3.7892 2.9406 1.1878 0.1541 −0.2938 −0.5915 −0.8444 −0.9163 −0.9979 −1.0159 −1.0403
10.00 6.6000 3.6791 2.8931 1.2250 0.1931 −0.2760 −0.6019 −0.8961 −0.9854 −1.0937 −1.1193 −1.1562
20.00 5.5168 3.3486 2.7229 1.2952 0.2960 −0.2165 −0.6133 −1.0273 −1.1736 −1.3789 −1.4358 −1.5289
40.00 4.7541 3.0720 2.5591 1.3206 0.3698 −0.1617 −0.6056 −1.1166 −1.3157 −1.6225 −1.7159 −1.8812
60.00 4.4248 2.9407 2.4762 1.3243 0.4016 −0.1346 −0.5974 −1.1535 −1.3793 −1.7409 −1.8552 −2.0641
80.00 4.2324 2.8606 2.4242 1.3242 0.4200 −0.1177 −0.5911 −1.1745 −1.4169 −1.8142 −1.9426 −2.1814

100.00 4.1031 2.8052 2.3877 1.3231 0.4323 −0.1058 −0.5862 −1.1882 −1.4424 −1.8654 −2.0040 −2.2651
200.00 3.7900 2.6660 2.2939 1.3169 0.4618 −0.0757 −0.5717 −1.2200 −1.5046 −1.9958 −2.1625 −2.4853
400.00 3.5763 2.5666 2.2252 1.3095 0.4815 −0.0539 −0.5596 −1.2405 −1.5474 −2.0907 −2.2794 −2.6519
600.00 3.4838 2.5225 2.1943 1.3054 0.4899 −0.0441 −0.5538 −1.2489 −1.5660 −2.1333 −2.3323 −2.7285
800.00 3.4293 2.4961 2.1757 1.3028 0.4948 −0.0382 −0.5502 −1.2538 −1.5769 −2.1589 −2.3642 −2.7750
1000.00 3.3925 2.4782 2.1630 1.3009 0.4981 −0.0342 −0.5476 −1.2570 −1.5843 −2.1764 −2.3861 −2.8071

2.3. Maximum Likelihood Estimation of the Parameters

For the maximum likelihood estimation (MLE), the log-likelihood function for a
sample x = {x1, x2, · · · , xn} drawn from the FPEG distribution can be written as

ln(L) = nαlnβ − nlnb − nlnΓ(α) +
α

b

n

∑
i=1

ln(xi − δ)−
n

∑
i=1

ln(xi − δ)− β
n

∑
i=1

(xi − δ)
1
b (7)

where n is the sample size, δ ≤ x < ∞; α > 0; β > 0.
The MLE parameters can be obtained by taking the derivatives of the log likelihood

with respect to parameters, setting them equal to zero, and solving for the parameters.
Differentiating Equation (7) partially with respect to each parameter and equating each
partial derivative to zero yield

− α

b

n

∑
i=1

1
xi − δ

+
n

∑
i=1

1
xi − δ

+
β

b

n

∑
i=1

(xi − δ)
1
b −1 = 0 (8)

nlnβ − nΨ(α) +
1
b

n

∑
i=1

ln(xi − δ) = 0 (9)

where Ψ(α) is the digamma function.

nα

β
−

n

∑
i=1

(xi − δ)
1
b = 0 (10)

− n
b
− α

b2

n

∑
i=1

ln(xi − δ) +
β

b2

n

∑
i=1

[
(xi − δ)

1
b ln(xi − δ)

]
= 0 (11)

Equations (8)–(11) can be solved numerically to obtain parameters α̂, β̂, δ̂, and b̂.
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2.4. Confidence Intervals of Quantiles

For a given p, the design value estimate xp is a random variable. The 1 − q confidence
intervals for the population quantiles xp may be determined by [2,3]

xL
p = xp − u1−q/2S

(
xp
)
, xU

p = xp + u1−q/2S
(

xp
)

(12)

where u1−q/2 is the 1 − q/2 quantile of the standard normal distribution, xp is the quantile
estimator corresponding to the probability of exceedance p which can be determined from
Equation (4) or Equation (5), and S

(
xp
)

is the standard deviation or standard error of xp.
Such standard error S

(
xp
)

determined by the MLE is given in what follows.
For the FPEG distribution, when parameters α, β, δ, and b are estimated by the MLE,

xp is a function of α, β, δ, and b:

xp = xp(α, β, δ, b, p) (13)

The variance in this case is given by [21]

Var
(

xp
)
=

(
∂xp

∂δ

)2

Var(δ) +
(

∂xp

∂α

)2

Var(α) +
(

∂xp

∂β

)2

Var(β) +

(
∂xp

∂b

)2

Var(b)

+ 2
∂xp

∂δ

∂xp

∂α
Cov(δ, α) + 2

∂xp

∂δ

∂xp

∂β
Cov(δ, β) + 2

∂xp

∂δ

∂xp

∂b
Cov(δ, b)

+ 2
∂xp

∂α

∂xp

∂β
Cov(α, β) + 2

∂xp

∂α

∂xp

∂b
Cov(α, b) + 2

∂xp

∂β

∂xp

∂b
Cov(β, b) (14)

The variance and covariance matrix of parameters in Equation (13) is the inverse of
Fisher’s expected information matrix [3].

⎡
⎢⎢⎣

Var(δ) Cov(δ, α) Cov(δ, β) Cov(δ, b)
Cov(α, δ) Var(α) Cov(α, β) Cov(α, b)
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(15)

where E represents the expected value;
⎡
⎢⎢⎢⎢⎢⎣

− ∂2lnL
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is the sample information matrix;⎡
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is Fisher’s expected information matrix, the elements of which can be determined by taking
the expected value of the sample information matrix. Its elements are derived in Equations
(A1)–(A16) and Equations (A17)–(A32) in Appendix A, respectively.

E
(
−∂2lnL

∂δ2

)
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α − 2b + b2

b2 ·nβ2bΓ(α − 2b)
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(16)
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The derivatives of xp with respect to the parameters of the FPEG distribution are
obtained from Equation (4) as

∂xp

∂δ
= 1 (32)
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∂xp

∂α
=

b
βb tb−1

p
∂tp

∂α
(33)

∂xp

∂β
= − b

βb+1 tb
p (34)

∂xp

∂b
= − 1

βb lnβ·tb
p +

1
βb tb

plntp (35)

For ∂xp
∂α in Equation (33), p is a constant and is a function of tp and α in Equation (3).

Thus, we can get ∂p
∂tp

∂tp
∂α + ∂p

∂α = 0, which reduces to

∂tp

∂α
= −∂p

∂α
/

∂p
∂tp

(36)

∂p
∂tp

=
1

Γ(α)
tα−1

p e−tp (37)

∂p
∂α = − Γ′(α)

Γ2(α)

∫ tp
0 tα−1e−tdt + 1
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= −Ψ(α)γ
(
tp, α

)
+ 1

Γ(α)

∫ tp
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(38)

where Ψ(α) = Γ′(α)
Γ2(α)

is the psi function with a different meaning in Equation (9);

γ
(
tp, α

)
= 1

Γ(α)

∫ tp
0 tα−1e−tdt is the incomplete gamma function;

∫ tp
0 tα−1e−tlntdt can be

numerically calculated by the central difference of
∫ tp

0 tα−1e−tdt. Some 1
Γ(α)

∫ tp
0 tα−1e−tlntdt

values obtained numerically are listed in Table 2.

Table 2. 1
Γ(α)

∫ tp
0 tα−1e−tlnt·dt values under different probabilities of exceedance p.

α
Exceedance Probability p

0.001 0.01 0.02 0.10 0.30 0.50 0.70 0.90 0.95 0.99 0.995 0.999

0.10 −10.4252 −10.4319 −10.4346 −10.3799 −9.8448 −8.7151 −6.7615 −3.3525 −2.0228 −0.5655 −0.3174 −0.0796
0.20 −5.2906 −5.2998 −5.3062 −5.3012 −5.0361 −4.4449 −3.4340 −1.6940 −1.0203 −0.2845 −0.1596 −0.0400
0.30 −3.5042 −3.5148 −3.5232 −3.5425 −3.3894 −2.9959 −2.3115 −1.1369 −0.6840 −0.1904 −0.1068 −0.0267
0.40 −2.5632 −2.5747 −2.5845 −2.6200 −2.5347 −2.2519 −1.7404 −0.8555 −0.5144 −0.1431 −0.0802 −0.0201
0.50 −1.9653 −1.9777 −1.9886 −2.0361 −1.9990 −1.7906 −1.3900 −0.6845 −0.4116 −0.1145 −0.0642 −0.0161
0.60 −1.5425 −1.5556 −1.5673 −1.6246 −1.6247 −1.4713 −1.1502 −0.5688 −0.3423 −0.0953 −0.0534 −0.0134
0.70 −1.2220 −1.2356 −1.2481 −1.3136 −1.3439 −1.2340 −0.9737 −0.4847 −0.2921 −0.0814 −0.0457 −0.0114
0.80 −0.9670 −0.9811 −0.9944 −1.0668 −1.1227 −1.0485 −0.8371 −0.4204 −0.2539 −0.0709 −0.0398 −0.0100
0.90 −0.7570 −0.7716 −0.7854 −0.8641 −0.9420 −0.8981 −0.7273 −0.3694 −0.2237 −0.0627 −0.0352 −0.0088
1.00 −0.5793 −0.5943 −0.6087 −0.6930 −0.7903 −0.7726 −0.6365 −0.3277 −0.1992 −0.0560 −0.0315 −0.0079
2.00 0.4205 0.4024 0.3841 0.2622 0.0411 −0.0998 −0.1628 −0.1194 −0.0788 −0.0242 −0.0139 −0.0036
3.00 0.9203 0.9002 0.8795 0.7345 0.4422 0.2155 0.0509 −0.0314 −0.0295 −0.0119 −0.0072 −0.0020
4.00 1.2535 1.2319 1.2093 1.0474 0.7045 0.4186 0.1857 0.0223 −0.0001 −0.0048 −0.0034 −0.0011
5.00 1.5033 1.4805 1.4565 1.2811 0.8988 0.5675 0.2834 0.0603 0.0206 0.0001 −0.0008 −0.0005
6.00 1.7032 1.6794 1.6541 1.4675 1.0528 0.6848 0.3597 0.0894 0.0363 0.0037 0.0011 −0.0001
7.00 1.8698 1.8450 1.8187 1.6224 1.1802 0.7813 0.4220 0.1130 0.0489 0.0066 0.0027 0.0002
8.00 2.0126 1.9870 1.9597 1.7550 1.2888 0.8633 0.4747 0.1327 0.0594 0.0090 0.0039 0.0005
9.00 2.1375 2.1112 2.0830 1.8708 1.3834 0.9344 0.5202 0.1497 0.0683 0.0110 0.0050 0.0008

10.00 2.2486 2.2216 2.1926 1.9736 1.4671 0.9972 0.5602 0.1645 0.0762 0.0127 0.0059 0.0010
20.00 2.9669 2.9353 2.9010 2.6357 2.0024 1.3952 0.8111 0.2554 0.1237 0.0231 0.0112 0.0021
30.00 3.3805 3.3460 3.3084 3.0150 2.3062 1.6189 0.9504 0.3049 0.1493 0.0286 0.0140 0.0027
40.00 3.6722 3.6356 3.5955 3.2817 2.5189 1.7748 1.0469 0.3388 0.1667 0.0323 0.0159 0.0031
50.00 3.8976 3.8594 3.8174 3.4876 2.6826 1.8944 1.1206 0.3645 0.1799 0.0350 0.0173 0.0034
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Table 2. Cont.

α
Exceedance Probability p

0.001 0.01 0.02 0.10 0.30 0.50 0.70 0.90 0.95 0.99 0.995 0.999

60.00 4.0815 4.0418 3.9983 3.6553 2.8157 1.9913 1.1802 0.3852 0.1905 0.0372 0.0184 0.0036
70.00 4.2367 4.1959 4.1509 3.7967 2.9277 2.0729 1.2303 0.4025 0.1993 0.0391 0.0194 0.0038
80.00 4.3710 4.3291 4.2830 3.9190 3.0244 2.1432 1.2734 0.4174 0.2069 0.0406 0.0202 0.0040
90.00 4.4894 4.4466 4.3994 4.0267 3.1096 2.2050 1.3112 0.4305 0.2135 0.0420 0.0209 0.0041

100.00 4.5952 4.5516 4.5035 4.1229 3.1856 2.2601 1.3449 0.4420 0.2194 0.0432 0.0215 0.0042
200.00 5.2903 5.2410 5.1866 4.7540 3.6826 2.6197 1.5640 0.5170 0.2573 0.0510 0.0254 0.0050
300.00 5.6962 5.6436 5.5853 5.1219 3.9715 2.8280 1.6904 0.5599 0.2791 0.0554 0.0277 0.0055
400.00 5.9841 5.9290 5.8680 5.3825 4.1758 2.9752 1.7796 0.5901 0.2943 0.0585 0.0292 0.0058
500.00 6.2072 6.1503 6.0872 5.5845 4.3340 3.0890 1.8485 0.6134 0.3060 0.0609 0.0304 0.0061
600.00 6.3896 6.3311 6.2662 5.7494 4.4631 3.1818 1.9046 0.6324 0.3155 0.0629 0.0314 0.0063
700.00 6.5437 6.4839 6.4176 5.8887 4.5722 3.2601 1.9519 0.6483 0.3236 0.0645 0.0322 0.0064
800.00 6.6772 6.6162 6.5486 6.0094 4.6665 3.3279 1.9929 0.6621 0.3305 0.0659 0.0329 0.0066
900.00 6.7949 6.7329 6.6642 6.1158 4.7497 3.3876 2.0289 0.6743 0.3366 0.0671 0.0335 0.0067
1000.00 6.9002 6.8374 6.7676 6.2110 4.8241 3.4410 2.0611 0.6851 0.3421 0.0682 0.0341 0.0068

Finally, the expression of ∂tp
∂α in Equation (33) can be obtained by substituting Equations (37)

and (38) into Equation (36). Table 3 shows some ∂p
∂α values obtained numerically.

Table 3. Values under different probabilities of exceedance p .

α
Exceedance Probability p

0.001 0.01 0.02 0.10 0.30 0.50 0.70 0.90 0.95 0.99 0.995 0.999

0.10 9.7084 7.9363 7.0694 3.7664 0.6446 0.0416 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000
0.20 5.9082 4.9696 4.5486 3.0424 1.2760 0.3800 0.0489 0.0004 0.0000 0.0000 0.0000 0.0000
0.30 4.6026 3.9077 3.6104 2.5960 1.3989 0.6421 0.1800 0.0085 0.0011 0.0000 0.0000 0.0000
0.40 3.9326 3.3560 3.1165 2.3249 1.4068 0.7822 0.3124 0.0353 0.0080 0.0002 0.0000 0.0000
0.50 3.5200 3.0148 2.8093 2.1448 1.3882 0.8584 0.4166 0.0775 0.0247 0.0015 0.0004 0.0000
0.60 3.2374 2.7812 2.5983 2.0165 1.3647 0.9026 0.4946 0.1263 0.0501 0.0051 0.0018 0.0002
0.70 3.0301 2.6099 2.4434 1.9203 1.3420 0.9298 0.5533 0.1751 0.0809 0.0120 0.0051 0.0007
0.80 2.8704 2.4782 2.3242 1.8452 1.3215 0.9475 0.5983 0.2210 0.1140 0.0222 0.0107 0.0018
0.90 2.7428 2.3733 2.2293 1.7849 1.3034 0.9596 0.6336 0.2626 0.1472 0.0354 0.0186 0.0040
1.00 2.6380 2.2874 2.1515 1.7351 1.2876 0.9680 0.6619 0.3000 0.1793 0.0508 0.0287 0.0073
2.00 2.1140 1.8622 1.7677 1.4875 1.1980 0.9933 0.7908 0.5174 0.4011 0.2223 0.1716 0.0927
3.00 1.9000 1.6917 1.6146 1.3887 1.1589 0.9973 0.8365 0.6130 0.5127 0.3440 0.2902 0.1950
4.00 1.7760 1.5941 1.5271 1.3326 1.1362 0.9985 0.8613 0.6683 0.5797 0.4254 0.3738 0.2775
5.00 1.6926 1.5288 1.4688 1.2953 1.1210 0.9991 0.8775 0.7052 0.6253 0.4834 0.4347 0.3415
6.00 1.6314 1.4812 1.4264 1.2682 1.1099 0.9994 0.8890 0.7321 0.6588 0.5271 0.4813 0.3921
7.00 1.5842 1.4445 1.3937 1.2474 1.1014 0.9996 0.8978 0.7528 0.6847 0.5615 0.5182 0.4330
8.00 1.5462 1.4152 1.3676 1.2308 1.0946 0.9997 0.9048 0.7693 0.7056 0.5894 0.5484 0.4669
9.00 1.5148 1.3909 1.3460 1.2172 1.0890 0.9997 0.9105 0.7830 0.7227 0.6126 0.5735 0.4955

10.00 1.4882 1.3705 1.3279 1.2057 1.0843 0.9998 0.9153 0.7944 0.7372 0.6323 0.5950 0.5201
20.00 1.3450 1.2609 1.2307 1.1444 1.0591 0.9999 0.9408 0.8557 0.8151 0.7397 0.7125 0.6569
30.00 1.2817 1.2128 1.1880 1.1176 1.0482 1.0000 0.9518 0.8824 0.8493 0.7875 0.7650 0.7191
40.00 1.2439 1.1842 1.1627 1.1017 1.0416 1.0000 0.9583 0.8983 0.8696 0.8160 0.7965 0.7564
50.00 1.2181 1.1647 1.1455 1.0909 1.0372 1.0000 0.9628 0.9091 0.8834 0.8354 0.8179 0.7820
60.00 1.1990 1.1503 1.1327 1.0829 1.0339 1.0000 0.9660 0.9171 0.8936 0.8498 0.8338 0.8009
70.00 1.1842 1.1391 1.1229 1.0767 1.0314 1.0000 0.9686 0.9233 0.9015 0.8609 0.8461 0.8156
80.00 1.1722 1.1301 1.1149 1.0718 1.0294 1.0000 0.9706 0.9282 0.9079 0.8699 0.8560 0.8275
90.00 1.1623 1.1226 1.1083 1.0676 1.0277 1.0000 0.9723 0.9323 0.9132 0.8773 0.8643 0.8373

100.00 1.1539 1.1163 1.1027 1.0642 1.0263 1.0000 0.9737 0.9358 0.9177 0.8836 0.8712 0.8456
200.00 1.1080 1.0821 1.0726 1.0453 1.0186 1.0000 0.9814 0.9547 0.9418 0.9177 0.9089 0.8908
300.00 1.0874 1.0670 1.0592 1.0370 1.0151 1.0000 0.9848 0.9630 0.9525 0.9328 0.9256 0.9108
400.00 1.0749 1.0579 1.0512 1.0320 1.0131 1.0000 0.9869 0.9679 0.9589 0.9418 0.9356 0.9228
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Table 3. Cont.

α
Exceedance Probability p

0.001 0.01 0.02 0.10 0.30 0.50 0.70 0.90 0.95 0.99 0.995 0.999

500.00 1.0662 1.0517 1.0457 1.0286 1.0117 1.0000 0.9883 0.9713 0.9632 0.9480 0.9424 0.9309
600.00 1.0597 1.0471 1.0417 1.0261 1.0107 1.0000 0.9893 0.9738 0.9664 0.9525 0.9474 0.9369
700.00 1.0544 1.0435 1.0386 1.0242 1.0099 1.0000 0.9901 0.9758 0.9689 0.9560 0.9513 0.9416
800.00 1.0502 1.0406 1.0360 1.0226 1.0092 1.0000 0.9907 0.9773 0.9709 0.9589 0.9545 0.9454
900.00 1.0465 1.0382 1.0339 1.0213 1.0087 1.0000 0.9912 0.9786 0.9726 0.9612 0.9571 0.9485
1000.00 1.0434 1.0361 1.0321 1.0202 1.0083 1.0000 0.9917 0.9797 0.9740 0.9632 0.9593 0.9511

3. Data and Case Study

Annual precipitation data from eight sites in the Weihe watershed, China, (1959–2007)
were applied to compute the parameters, quantiles, and confidence intervals for the FPEG
distribution. All data were obtained from the National Climate of China Meteorological
Administration (http://data.cma.cn (accessed on 29 July 2021)) and are complete. The sites
and some statistical characteristics of data are summarized in Table 4. It was seen that for
annual precipitation from these eight sites, the values of skewness were lower than 1 and
the values of kurtosis were higher than 3. All the annual precipitation records also had
very low first-order serial correlation coefficients. Using Anderson’s test of independence,
results showed that these gauge data are independent at the 90% confidence level. Hence,
they are considered suitable for precipitation frequency analysis. One of the advantages
of the FPEG distribution is that it accommodates a wide range of skewness and kurtosis
values, which is one reason it was applied to these sites.

Table 4. Characteristics of data used for parameter estimation of case study sites.

Site Name Average
Standard
Deviation

Variation
Coefficient

Skewness
Coefficient

Kurtosis
Coefficient

Autocorrelation
Coefficient

Binxian 539.37959 126.87725 0.23523 0.67198 3.75030 0.01027
Changwu 578.74082 131.48669 0.22719 0.51381 3.19707 −0.20924
Chunhua 576.70408 140.49433 0.24362 0.52984 3.84797 0.03607

Liquan 530.83673 136.19730 0.25657 0.61866 3.45238 −0.02273
Qianxian 528.00612 126.60962 0.23979 0.44268 3.24396 0.04246
Xianyang 516.14898 125.58901 0.24332 0.86722 3.64090 −0.05607
Xingping 560.22041 140.74120 0.25122 0.45382 3.12778 −0.03360
Yongshou 579.65306 125.07565 0.21578 0.28827 3.09300 −0.19330

3.1. Parameters Estimation

Since there is no explicit solution for the parameters in Equations (8)–(11), the three
dimensional Levenberg-Marquardt algorithm was used to obtain a numerical solution for
the MLE estimates of α, β, δ, and b. The procedure is summarized as follows [22].

(1) From Equation (10), one gets β = nα

∑n
i=1 ln(xi−δ)

1
b

. Substituting this quantity into

Equations (8), (9), and (11), respectively, the result is the system of nonlinear Equa-
tions as

F1(δ, α, b) = − α

b

n

∑
i=1

1
xi − δ

+
n

∑
i=1

1
xi − δ

+
1
b

nα

∑n
i=1 ln(xi − δ)

1
b

n

∑
i=1

(xi − δ)
1
b −1 = 0 (39)

F2(δ, α, b) = nln

[
nα

∑n
i=1 ln(xi − δ)

1
b

]
− nΨ(α) +

1
b

n

∑
i=1

(xi − δ) = 0 (40)

F3(δ, α, b) = −n
b
− α

b2

n

∑
i=1

ln(xi − δ) +
1
b2

nα

∑n
i=1 ln(xi − δ)

1
b

n

∑
i=1

[
(xi − δ)

1
b ln(xi − δ)

]
= 0 (41)
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(2) Employ the three dimensional Levenberg-Marquardt algorithm to solve for parame-
ters δ, α and b:

yi+1 = yi −
[
JT(yi)J(yi) + ciI

]−1
JT(yi)F(yi) (42)

where ci ≥ 0 is the scaling factor; yi and yi+1 are the parameter matrix esti-

mates yi =

⎡
⎣ δi

αi
bi

⎤
⎦ and yi+1 =

⎡
⎣ δi+1

αi+1
bi+1

⎤
⎦ at iteration i and i + 1, respectively; I

is the three dimensional identity matrix; (yi) =

⎡
⎣ F1

F2
F3

⎤
⎦

y=yi

=

⎡
⎣ F1(δi, αi, bi)

F2(δi, αi, bi)
F3(δi, αi, bi)

⎤
⎦;

J(yi) =

⎡
⎢⎢⎣

∂F1
∂δi

∂F1
∂αi

∂F1
∂bi

∂F2
∂δi

∂F2
∂αi

∂F2
∂bi

∂F3
∂δi

∂F3
∂αi

∂F3
∂bi

⎤
⎥⎥⎦ is the Jacobian matrix at iteration yi, the elements of the

Jacobian matrix can be numerically calculated by central difference or their first
derivatives derived in Equations (A73)–(A85); JT(yi) is the transpose matrix of J(yi).
Throughout this paper the iterative procedure was repeated until the relative change
in all parameters was less than 0.01%, that is, max

∣∣∣ yi+1−yi
yi+1

∣∣∣ < 0.01%.

(3) After obtaining parameters δ̂, α̂ and b̂, and substituting these quantities in
β̂ = nα̂

∑n
i=1 ln(xi−δ̂)

1
b̂

, one obtains parameter β̂.

The values of the distribution parameters are given in Table 5. For eight sites, the
values of α fell in the range (72, 92), the values of β were higher than 4, and the values of δ
were lower than 0.1, with one of them being even as high as 1.75. The sixth, seventh and
eighth columns show the computed quantities of the left side functions in Equations (8),
(9), and (11). It is seen that these computed quantities were close to zero, indicating a
satisfactory performance of the three dimensional Levenberg-Marquardt algorithm.

Table 5. Parameter values estimated for case study sites.

Site
Name

δ α β b G1 G2 G3

Binxian 0.31712 86.09054 4.57213 2.13793 0.00114 0.00046 0.00057
Changwu 0.01000 88.50553 4.38302 2.11213 −0.00091 −0.00124 0.08451
Chunhua 0.01000 72.51987 4.59741 2.29802 −0.00322 −0.00126 0.00931
Liquan 0.01000 77.27239 4.64334 2.22515 −0.00120 −0.00163 0.09101

Qianxian 0.01000 82.18295 4.64635 2.17684 −0.00335 −0.00219 0.07195
Xianyang 1.75373 84.11609 4.70719 2.16017 0.00156 0.00101 0.00134
Xingping 0.01000 78.07368 4.54844 2.22002 −0.00266 −0.00238 0.08988
Yongshou 0.01000 91.62207 4.34586 2.08314 −0.00403 −0.00260 0.09089

3.2. Goodness-of-Fit Tests and Confidence Interval Calculation

Goodness-of-fit tests are designed to measure the agreement between a theoretical
probability distribution and an empirical distribution for a random sample. Here, we
used the Kolmogorov–Smirnov (K–S) test Dn for the goodness-of-fit test of the FPEG
distribution. The K–S test Dn is also called empirical distribution function test statistic,
because it measures the distance between a continuous distribution function and the
empirical distribution function.

Let x(1) < x(2) < · · · < x(n) be order statistics for a sample size n whose population
is defined by a continuous cumulative distribution function F(x) and F0(xi) be a specified
distribution that contains a set of parameters θ (θ̂ is the value estimated from a sample
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size n). For an annual precipitation series, the null hypothesis H0 that the true distribution
was F0 with parameters θ was tested. The K–S test Dn can be expressed as [2]:

Dn = max
0≤i≤n

δ̂i (43)

δ̂i = max
[

i
n
− F0

(
xi; θ̂

)
, F0

(
xi; θ̂

)− i − 1
n

]
(44)

The sample values of the K–S test statistic Dn are shown in Table 6. The critical value
D∗

n of the FPEG distribution (at the significance level a = 0.05, for sample size n) was
0.1940. It is seen that the statistics of observed annual precipitation were all less than
their corresponding critical value, respectively, so that annual precipitation series were all
accepted by the K–S test.

Table 6. Sample values of K–S test statistic Dn for case study sites.

Site Name Dn Site Name Dn

Binxian 0.05100 Qianxian 0.10557
Changwu 0.06521 Xianyang 0.12884
Chunhua 0.10638 Xingping 0.07415

Liquan 0.09806 Yongshou 0.08772

For the FPEG distribution and the values of standard errors of the quantile estimates
using the above methods, the 95 percent confidence intervals may be set at ∓1.96 standard
errors around the xp values. Table 7 shows the quantiles and confidence interval widths
estimated by the above methods for different probabilities of exceedance. For example,
p = 70% annual precipitation at Binxian site was 465.56 mm. Using Equation (12), a
95% confidence interval for the p = 70% annual precipitation was 430.66 mm to 500.47 mm,
its width was 69.80 mm. From Table 7, It is seen that for p = 30–95% the confidence interval
widths estimated were much less than those for p < 30% and p > 95%.

Table 7. Quantiles and confidence intervals for case study sites.

Site Name p (%) xp S
(
xp
)

xL
p xU

p
Confidence

Interval Width

Binxian

0.10 1045.17 146.32 758.39 1331.95 573.57
1.00 888.98 75.00 741.98 1035.98 293.99
2.00 838.16 57.31 725.84 950.49 224.65
5.00 766.47 39.90 688.26 844.68 156.42
10.00 707.12 31.20 645.97 768.26 122.29
30.00 595.60 22.11 552.27 638.93 86.66
50.00 527.27 18.80 490.42 564.11 73.69
70.00 465.56 17.81 430.66 500.47 69.80
90.00 387.13 19.30 349.30 424.96 75.65
95.00 353.58 21.17 312.10 395.06 82.97
98.00 318.74 25.62 268.52 368.96 100.44
99.00 297.12 30.87 236.62 357.63 121.00
99.50 278.42 37.63 204.67 352.17 147.50
99.90 242.90 57.79 129.63 356.17 226.54
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Table 7. Cont.

Site Name p (%) xp S
(
xp
)

xL
p xU

p
Confidence

Interval Width

Changwu

0.10 1099.36 149.27 806.79 1391.93 585.14
1.00 939.48 77.49 787.60 1091.36 303.76
2.00 887.33 59.34 771.03 1003.63 232.60
5.00 813.64 41.44 732.43 894.85 162.42
10.00 752.51 32.47 688.87 816.15 127.28
30.00 637.34 23.09 592.08 682.60 90.52
50.00 566.52 19.69 527.94 605.11 77.17
70.00 502.40 18.71 465.74 539.06 73.33
90.00 420.60 20.35 380.70 460.49 79.79
95.00 385.49 22.37 341.64 429.34 87.70
98.00 348.95 27.16 295.71 402.18 106.47
99.00 326.23 32.78 261.99 390.48 128.49
99.50 306.54 40.01 228.13 384.95 156.83
99.90 269.06 61.57 148.39 389.73 241.35

Chunhua

0.10 1162.49 211.46 748.04 1576.94 828.90
1.00 974.96 101.77 775.50 1174.41 398.92
2.00 914.94 76.86 764.31 1065.58 301.27
5.00 831.20 52.59 728.12 934.28 206.17
10.00 762.75 40.51 683.35 842.15 158.80
30.00 636.53 28.02 581.61 691.45 109.83
50.00 560.91 23.41 515.04 606.79 91.75
70.00 493.93 21.72 451.36 536.50 85.14
90.00 410.79 22.92 365.86 455.72 89.86
95.00 376.01 24.77 327.46 424.56 97.10
98.00 340.44 29.41 282.79 398.09 115.30
99.00 318.69 35.02 250.06 387.32 137.27
99.50 300.07 42.31 217.14 382.99 165.85
99.90 265.27 64.10 139.64 390.91 251.28

Liquan

0.10 1087.94 172.63 749.60 1426.28 676.68
1.00 912.30 84.92 745.86 1078.74 332.88
2.00 855.69 64.42 729.42 981.96 252.54
5.00 776.33 44.40 689.31 863.34 174.03
10.00 711.09 34.41 643.65 778.54 134.89
30.00 589.85 24.05 542.71 636.99 94.28
50.00 516.51 20.24 476.83 556.19 79.36
70.00 451.00 18.95 413.86 488.15 74.29
90.00 368.87 20.23 329.21 408.53 79.31
95.00 334.18 22.00 291.06 377.30 86.25
98.00 298.47 26.34 246.84 350.10 103.25
99.00 276.50 31.52 214.72 338.28 123.55
99.50 257.60 38.23 182.67 332.53 149.85
99.90 222.05 58.26 107.86 336.24 228.39

Qianxian

0.10 1038.34 155.31 733.94 1342.74 608.80
1.00 879.33 78.10 726.25 1032.41 306.16
2.00 827.80 59.49 711.21 944.40 233.19
5.00 755.31 41.23 674.50 836.13 161.63
10.00 695.48 32.12 632.53 758.43 125.90
30.00 583.58 22.63 539.24 627.93 88.69
50.00 515.39 19.16 477.84 552.93 75.09
70.00 454.10 18.06 418.72 489.49 70.77
90.00 376.65 19.44 338.55 414.76 76.21
95.00 343.71 21.24 302.07 385.35 83.28
98.00 309.62 25.60 259.45 359.78 100.34
99.00 288.54 30.75 228.27 348.81 120.53
99.50 270.35 37.40 197.04 343.66 146.62
99.90 235.95 57.26 123.73 348.17 224.44
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Table 7. Cont.

Site Name p (%) xp S
(
xp
)

xL
p xU

p
Confidence

Interval Width

Xianyang

0.10 1019.75 145.65 734.28 1305.22 570.95
1.00 863.49 73.92 718.61 1008.37 289.76
2.00 812.76 56.39 702.25 923.28 221.03
5.00 741.30 39.17 664.53 818.07 153.53
10.00 682.23 30.56 622.33 742.13 119.80
30.00 571.52 21.59 529.21 613.84 84.63
50.00 503.88 18.32 467.98 539.78 71.80
70.00 442.96 17.30 409.04 476.87 67.83
90.00 365.75 18.69 329.11 402.38 73.27
95.00 332.82 20.46 292.72 372.92 80.19
98.00 298.69 24.70 250.27 347.11 96.84
99.00 277.55 29.72 219.31 335.80 116.49
99.50 259.29 36.18 188.37 330.21 141.84
99.90 224.68 55.48 115.95 333.41 217.46

Xingping

0.10 1134.72 179.57 782.76 1486.67 703.91
1.00 953.89 88.64 780.15 1127.62 347.47
2.00 895.57 67.29 763.68 1027.45 263.76
5.00 813.76 46.41 722.80 904.71 181.91
10.00 746.48 36.00 675.93 817.03 141.10
30.00 621.32 25.19 571.96 670.68 98.73
50.00 545.52 21.22 503.94 587.11 83.17
70.00 477.77 19.88 438.80 516.74 77.94
90.00 392.72 21.25 351.07 434.38 83.31
95.00 356.77 23.13 311.44 402.09 90.65
98.00 319.73 27.71 265.41 374.04 108.63
99.00 296.92 33.18 231.89 361.95 130.06
99.50 277.29 40.26 198.38 356.20 157.81
99.90 240.34 61.40 120.01 360.68 240.67

Yongshou

0.10 1071.01 140.57 795.50 1346.52 551.02
1.00 921.08 74.15 775.74 1066.41 290.67
2.00 872.03 56.93 760.46 983.61 223.16
5.00 802.60 39.89 724.41 880.79 156.37
10.00 744.87 31.35 683.44 806.31 122.87
30.00 635.76 22.38 591.89 679.63 87.75
50.00 568.40 19.14 530.89 605.92 75.03
70.00 507.21 18.25 471.44 542.99 71.55
90.00 428.82 19.95 389.72 467.93 78.21
95.00 395.06 21.98 351.97 438.15 86.18
98.00 359.81 26.78 307.32 412.30 104.98
99.00 337.85 32.38 274.38 401.32 126.94
99.50 318.77 39.59 241.19 396.36 155.17
99.90 282.37 61.06 162.70 402.04 239.35

4. Conclusions

The use of the FPEG distribution has received only limited attention from the hydro-
logic community, but some investigations in China suggest that this distribution performs
well in modeling hydrological data. The MLE is proposed for determining the parameters
and confidence intervals of the FPEG distribution. It involves parameter estimation and
asymptotic variances of quantile estimators. The parameter estimation formulas constitute
a system of nonlinear equations that have tedious forms. However, this should not be an
insurmountable difficultly with the Levenberg–Marquardt algorithm, given the available
numerical tools and computer power. An analytical expression of sample information
matrix and Fisher’s expected information matrix, and derivatives of design value with
respect to the parameters were then derived. The asymptotic variances of the MLE quantile
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estimators for the FPEG distribution were expressed as a function of the probability (return
period), parameters and sample size. Such variances can be employed for estimating the
confidence intervals of the FPEG distribution quantiles. The FPEG distribution is applied
to precipitation data of the Weihe watershed in China. The observed annual precipitation
data were all accepted by the Kolmogorov–Smirnov test. These results showed that the
FPEG distribution is a good candidate for modelling annual precipitation data. We expect
that our results will provide guidance for estimating design values of random variables in
other parts of world. In addition, Bayesian inference is a very good method for inferring
the estimation of parameters from quantile parameters of the FPEG distribution, and will
be studied further.
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Appendix A

Appendix A.1. Sample Information Matrix

The partial derivatives of the log likelihood model in Equation (15) with respect to
parameters α, β, δ, and b can be expressed as
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Appendix A.2. Fisher’s Expected Information Matrix

Multiplying Equations (A1)–(A16) and taking mathematical expectation, the elements
of Fisher’s expected information matrix can be obtained as:
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Because the above equations have some unknown mathematical expectations, these
expectations need to be derived first.
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In particular,
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Substitution of equations of Equations (A33)–(A56) into Equations (A17)–(A32), we
can get the elements of the expected information matrix.
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b

n

∑
i=1

E
(

1
xi − δ
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=

1
b

nβbΓ(α − b)
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(A58)
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∂δ∂β
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b

n
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E
[
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1
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nβb−1Γ(α − b + 1)

Γ(α)

= − (α − b)
b

nβb−1Γ(α − b)
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(A59)

E
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∂δ∂b
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= − α

b2
nβbΓ(α − b)

Γ(α)
+

β

b2
nβb−1Γ(α − b + 1)

Γ(α)

+
β

b3
nbβb−1

Γ(α)

[
∂Γ(α − b + 1)
∂(α − b + 1)

− lnβ·Γ(α − b + 1)
]

= − α
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nβbΓ(α − b)

Γ(α)
+

α − b
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nβbΓ(α − b)
Γ(α)
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1
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Γ(α)

[
∂Γ(α − b + 1)
∂(α − b + 1)
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]
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b
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+
1
b2
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[
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(A60)

E
(
− ∂2L

∂α∂δ

)
=

1
b

nβbΓ(α − b)
Γ(α)

(A61)

E
(
− ∂2L

∂α2

)
= nψ′(α) (A62)

E
(
− ∂2L

∂α∂β

)
= −n

β
(A63)
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E
(
− ∂2L

∂α∂b

)
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n[−lnβ + ψ(α)]
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∂β∂δ

)
= − α − b

b
nβb−1Γ(α − b)
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β2 (A67)
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E
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=
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(A70)
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∂b∂β

)
= − 1
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(A72)

Appendix A.3. Jacobian Matrix

∂F1(δ, α, b)
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−α
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1
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1
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1
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b ∑n

i=1
1

(xi−δ)2 + ∑n
i=1

1
(xi−δ)2
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(xi−δ)

1
b −1

[
∑n

i=1 ln(xi−δ)
1
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= −α

b
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∑
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1
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∑
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1

(xi − δ)2
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b
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1 − 1
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i=1(xi − δ)
1
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1
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1
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∂F1(δ, α, b)
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1
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b

n
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n
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α
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=
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Let G1 = ln nα
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1
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, Equation (A79) be-
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Abstract: The accurate design flood of hydraulic engineering is an important precondition to ensure
the safety of residents, and the high precision estimation of flood frequency is a vital perquisite. The
Xiangjiang River basin, which is the largest river in Hunan Province of China, is highly inclined to
floods. This paper aims to investigate the annual maximum flood peak (AMFP) risk of Xiangjiang
River basin under the climate context employing the Bayesian nonstationary time-varying moment
models. Two climate covariates, i.e., the average June-July-August Artic Oscillation and sea level
pressure in the Northwest Pacific Ocean, are selected and found to exhibit significant positive correla-
tion with AMFP through a rigorous statistical analysis. The proposed models are tested with three
cases, namely, stationary, linear-temporal and climate-based conditions. The results both indicate
that the climate-informed model demonstrates the best performance as well as sufficiently explain
the variability of extreme flood risk. The nonstationary return periods estimated by the expected
number of exceedances method are larger than traditional ones built on the stationary assumption.
In addition, the design flood could vary with the climate drivers which has great implication when
applied in the context of climate change. This study suggests that nonstationary Bayesian modelling
with climatic covariates could provide useful information for flood risk management.

Keywords: extreme flood risk; climatic factors; nonstationary frequency analysis; Bayesian modeling;
nonstationary return period; Xiangjiang River basin

1. Introduction

Extreme flood events with immediate and widespread devastation on natural systems
and society have been extensively studied over recent decades [1]. The flood frequency
analysis is a critical and effective tool to estimate flood risk and is commonly accepted
by hydrologists. In recent decades, with climate change and anthropogenic activities, the
stationary flood frequency analysis method is frequently questionable relative to the hetero-
geneous flood population; meanwhile, the nonstationary extreme flood risk analysis with
various methodological frameworks has been extensively explored over recent decades.
Among these approaches, the extreme flood risk analysis considering environmental fac-
tors could assist decision makers and engineers to better understand the nonstationary
behaviors of extreme flood events and to take flood control measures quickly.

In general, extreme flood events have occurred all around the world, with a wide
variety of regional characteristics. Among the several nonstationary flood frequency ap-
proaches, the time-varying moment method is widely utilized. Through incorporating
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factors into the covariates of model parameters, the time-varying moment method could
quantify and even forecast the variation of extreme flood risks under changing environ-
ments [2–6]. For instance, Lopez and Frances (2013) applied the generalized additive
models for location, scale and shape (GAMLSS) on flood risk impacted by multiple climate
indices such as Arctic Oscillation (AO), North Atlantic Oscillation (NAO), Mediterranean
Oscillation and so on [7]. Ficchi et al. (2021) reported that the Indian Ocean Dipole (IOD)
and Tropical South Atlantic climate mode are equally as important as El Nino-Southern Os-
cillation (ENSO) for driving changes in the frequency of impactful floods across Africa [8].
Zhou (2020) quantified the contributions of changing climate and reservoir storage on the
nonstationarity in flood risks worldwide [9]. Zhang et al. (2015) estimated the annual
maximum stream-flow quantiles linearly conditional on Pacific Decadal Oscillation (PDO)
in South China [10]. Kundzewicz et al. (2019b) reviewed the linkages between climate
variability and water-abundance like high river discharge, flood magnitude and flood
loss across the world [11] and Kundzewicz et al. (2020) analyzed the non-stationarity of
flood frequency over China [12]. Not only the standard climate indices with limited spatial
climate information as climate forcing on extreme flood risk, but also the large-scale ocean-
atmosphere fields play a critically important role in the interpretation of the nonstationary
behavior on flood. Zeng et al. (2017) used sea surface temperature anomaly (SSTa) in
Northern Indian Ocean and Western Pacific Ocean incorporated into the location and scale
parameters of lognormal distribution and general extreme value distribution (GEV) to
forecast the flood risk in North China using a Bayesian framework [13]. Renard and Lall
(2014) employed the large-scale oceanic fields to effectively predict the flood risk in regional
nonstationary flood frequency [14]. In this paper, the large-scale climate patterns including
the standard climate variability indices and oceanic or atmospheric fields are considered to
access the climatic drivers of nonstationary extreme flood frequency and design flood in
Xiangjiang River basin in South-Central China.

Indeed, the time-varying moment method is widely proposed to implement the
nonstationary flood frequency analysis under the changing environment. Nevertheless,
the flood quantiles or return periods varying with covariates yearly is not convincing
and convenient in real-world applications. For the sake of accommodating nonstationary
conditions, several hydrologic design flood methods [15] have been proposed in recent
years, such as the expected waiting time (EWT) [16,17], the expected number of exceedances
(ENE) [18,19], design life level (DLL) [20] and equivalent reliability (ER) [21]. Yan et al.
(2017) compared and applied the above four design flood methods on annual maximum
flood series in several basins [15]. The results indicated that ENE, DLL and ER yielded
very similar design flood values for both increasing and decreasing trends. Yan et al. (2020)
focused on applying the EWT method to estimate the design flood quantiles and proposed
the extrapolation time to guarantee the convergence of the EWT [22]. Given the advantages
and disadvantages of these methods [23,24], we choose the ENE method to calculate design
floods under a changing climate and the estimated stationary design floods serve as a
benchmark for comparison.

The Xiangjiang River is the largestof Hunan Province in South-Central China and
its basin is the dominating inflow basin of Dongting Lake, which is the second largest
freshwater lake in China, located in the Yangtze River basin. Characterized by the sub-
tropical monsoon climate, the Xiangjiang River basin is highly prone to floods during
the summer season from June to August. Mao et al. (2000) reported that the middle
and lower reaches of the Xiangjiang River basin have experienced 29 flooding disasters
during the years from 1949 to 1998, which is about one flood per 1.7 years on average [25].
Extreme pluvial floods happened in the years of 1954, 1976, 1994, 1996 and 1998. In July
2006, the Southern Hunan Province suffered a 500-year rainstorm caused by the Severe
Tropical Storm Bilis and the triggered torrential flood brought casualties and economic loss
exceeding 78 hundred million China Yuan [26]. In the summer of 2017, the main stream
of the Xiangjiang River basin reached a historic recorded water level due to the influence
of a heavy rainfall combined with the flood control measures that were largely relying on
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the embankment on the riverside. Therefore, extreme flood risk analysis under changing
climate is a vital and urgent issue for the Xiangjiang River basin. Although a great amount
of research on the extreme flood occurrence probability and design flood under chang-
ing climate in the Yangtze River basin has been undertaken, very few studies have been
conducted on extreme flood/rainfall frequency analysis triggered by large-scale climate
patterns in the Xiangjiang River Basin.

In the Xiangjiang River basin, as floods are primarily driven by abundant precipitation
in the wet seasons, we focus on identifying the significant climate covariates for extreme
flood peaks and quantitatively estimating the climate contribution to the probability of
extreme flood events and design flood using the nonstationary modeling framework.
Moreover, in at-site extreme flood frequency analysis, there generally exists relatively
large uncertainty. This is especially the case for the probability distribution with more
parameters. Hence, the Bayesian statistical model is developed to access the uncertainty
of flood risks and the updated return periods in stationary and nonstationary contexts.
The results will provide a protocol for the selection of covariates in terms of nonstationary
conditions and also show implications for controlling floods and reinforcing the projects of
engineers and scientists.

The paper is organized as follows. In Section 2, we describe the study area, the
data set and the screening process for selecting climatic factors. Section 3 presents the
methodologies and theoretical analysis of the nonstationary model construction, along
with a brief description of Bayesian modeling framework and nonstationary hydrologic
design method. The results and discussions are demonstrated in Section 4. Finally, the
article concludes in Section 5.

2. Study Area and Data

The Xiangjiang River basin (Figure 1) is bound by 24◦–29◦ N and 110◦30′–114◦ E in
South-Central China with a drainage area of 94,660 km2 and a total length of 856 km. Due
to the southeast monsoon humid climate in summer, the basin is frequently exposed to
extraordinary rainstorm with average annual precipitation ranging from 1200 to 1700 mm
and large floods in the rainy season (April to September) leading to high water levels.
Because of the low-lying terrain in the middle and lower reaches of the Xiangjiang River,
the metropolitan area of Chang-Zhu-Tan, which is the most important economic belt in
Hunan Province, does not have appropriate conditions for building a large dam and can,
therefore, only rely on the construction of riverside dikes for flood control. In recent
years, rainstorm flooding of the Xiangjiang River has continuously reached historic records,
having a strong negative impact on the residents. Therefore, analysis of flood risk and
uncertainty is extremely important for basin-wide flood risk reduction and management.
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Figure 1. The location of Xiangjiang River basin and Xiangtan hydrological station.

2.1. Extreme Flood

The annual maximum flood peak series (AMFP), spanning the period of 1959–2017
and measured by the Xiangtan hydrological station (Figure 1) as well as the outflow
control station of the Xiangjiang River basin, were collected from the Hydrology and Water
Resources Survey Bureau of Hunan Province.

In general, the time-varying characteristic of AMFP is investigated using the Mann–
Kendall test and the results indicate that there is no significant trend. Nevertheless, the
Xiangjiang River Basin has abundant flow as rainfall is the main source. Annual extreme
flood events, taking place during the flood season (June-July-August-September, JJAS),
are generally due to heavy rainstorms corresponding to various induced climatic factors.
Hence, it is interesting and important to conduct an impact assessment of the climate
variables on the flood peak risks in the Xiangjiang River basin.

2.2. Identification of Significant Climate Factors

Identifying appropriate factors is a crucial step to better explain the variation in
extreme flood frequency and to significantly improve the performance of nonstationary
modeling. Slowly varying climate conditions associated with oceanic temperature may
influence the development of the monsoon systems that affect the Xiangjiang River basin
in the JJAS season. Thus, in this section, we explore the potential climate impact factors, in-
volving various large-scale low-frequency climate indices: sea surface temperature anomaly
(SSTa) conditions extracted from the Hadley Center SST dataset on a 1◦ × 1◦grid [27]; and
sea level pressure anomalies (SLPa) extracted from the Hadley Centre’s mean sea level pres-
sure data set on a 5◦ × 5◦grid [28]. Simultaneously, as suggested by Zeng et al. (2017) [13],
we propose a stepwise selection method to screen the potential climate drivers employing
rank correlation and a generalized linear model (GLM) to identify the orthogonal factors
which have the best significant correlation with AMFP and the best flood risk modelling
performance.

It is extensively recognized that the large-scale atmospheric circulation pattern climate
indices, such as ENSO, including Southern Oscillation Index (SOI), Niño 3.4, Niño 12,
Niño 3 and Niño 4, PDO, NAO and AO, can significantly influence hydrological variables
(flood and precipitation) in China [29–31]. Then, the above climate indices, SLPa and
SSTa, are selected as the possible influencing drivers. A three-month moving average
from January to February of the next year of all the candidate factors are computed to
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access the rank correlation with AMFP using the Spearman rank correlation test. The
results in Table 1 illustrate that the Spearman rank correlations between flood peak series
and the ENSO, PDO, NAO are typically low and statistically non-significant. In addition,
it demonstrates that only AO during JJA has significant positive rank correlation with
AMFP. Strong teleconnection between precipitation/flood anomalies in the Yangtze River
Basin and AO has been found in previous studies [29,32,33]. In addition, the findings of
Yang (2011) and Gong and Wang (2003) suggested that a statistically significant positive
correlation was detected between the AO and the precipitation over South China [34,35].
The AO, a primary mode of internal atmospheric dynamics over the extratropical northern
hemisphere with a quasi-barotropic structure from the surface to the lower stratosphere,
exerts great influences on global climate processes [36,37]. Consequently, the average AO
from June to August is used as the first candidate factor.

Table 1. Spearman rank correlation results between climate indices and AMFP (α = 0.05).

Climate Indices Coefficient JFM FMA MAM AMJ MJJ JJA JAS ASO SON OND

Niño3
Rho 0.16 0.10 0.04 −0.05 −0.09 −0.12 −0.12 −0.11 −0.08 −0.06

p-value 0.23 0.45 0.74 0.74 0.51 0.38 0.38 0.42 0.55 0.67

Niño4
Rho 0.09 0.09 0.05 0.02 −0.06 −0.11 −0.15 −0.15 −0.16 −0.15

p-value 0.50 0.49 0.71 0.86 0.66 0.43 0.26 0.26 0.22 0.26

Niño3.4
Rho 0.14 0.11 0.07 0.04 −0.06 −0.11 −0.15 −0.15 −0.13 −0.11

p-value 0.28 0.41 0.59 0.76 0.67 0.39 0.26 0.26 0.31 0.40

Niño12
Rho 0.10 0.04 −0.01 −0.03 −0.06 −0.05 −0.02 0.05 0.05 0.04

p-value 0.47 0.74 0.94 0.82 0.64 0.73 0.86 0.72 0.71 0.77

SOI
Rho −0.16 −0.18 −0.13 −0.02 0.08 0.04 0.03 0.05 0.10 0.17

p-value 0.24 0.17 0.31 0.89 0.56 0.77 0.83 0.74 0.47 0.19

NAO
Rho 0.13 −0.02 −0.22 −0.05 0.04 0.10 −0.08 −0.24 −0.24 −0.17

p-value 0.32 0.91 0.09 0.73 0.78 0.45 0.55 0.06 0.06 0.20

PDO
Rho 0.24 0.19 0.11 0.10 0.04 0.02 −0.07 −0.08 −0.06 −0.03

p-value 0.07 0.16 0.41 0.47 0.74 0.87 0.61 0.55 0.64 0.82

AO
Rho 0.19 0.11 −0.02 0.04 0.19 0.32 0.15 −0.14 −0.23 −0.14

p-value 0.16 0.41 0.87 0.78 0.16 0.01 0.26 0.28 0.08 0.29

Note: JFM, FMA, MAM, AMJ and so on, are the three-month moving average values, respectively. For example,
JJA, means the average value of the climate variable during June, July and August. The value with underline “_”
represents the p value less than 0.05.

With respect to the SLPa and SSTa, we utilize the correlation map [14] to determine the
climatic factors. Figure 2a,b demonstrates the Spearman rank correlation between AMFP
and the SSTa fields during JFM, and SLPa fields during JJA, respectively. We find that
the JFM SSTa blue region (35◦ N–45◦ N, 150◦ W–170◦ W) reveals significant negative rank
correlation with AMFP. In contrast, the two JJA SLPa orange regions (one is the continent
region for 35◦ N–50◦ N, 110◦ E–135◦ E called SLPa1, another is the ocean for 25◦ N–40◦ N,
165◦ E–180◦ E named SLPa2) show significant positive rank correlation with AMFP. A
principal component analysis (PCA) is employed to acquire a set of orthogonal factors on
the above JFM SSTa, JJA SLPa1 and JJA SLPa2, respectively, since the large-scale climate
variables with fields may be mutually correlated.

161



Water 2022, 14, 66

(a) 

(b) 

Figure 2. (a) Rank correlation analysis between AMFP and JFM SSTa (a), JJA SLPa (b). The blue
SSTa region and orange SLPa regions have significant negative and positive correlation with AMFP,
respectively, at 90% confidence interval (i.e., p < 0.1).

Therefore, three sub-sets of the ten leading principal components named by SSTa-
PCs, SLPa1-PCs and SLPa2-PCs, respectively, and the average seasonal (JJA) AO are then
considered as potential factors. These factors are further investigated to search the best
combination by a generalized linear model (GLM) [13] with an extended leave-one-out
cross validation (LOOCV) method implemented by the R package ‘bestglm’ [38] to choose
the candidate climatic factors. For the sake of obtaining the best combination, we propose
four GLMs: (1) the first GLM with the SSTa-PCs and AO; (2) the second GLM with SLPa1-
PCs and AO; (3) the third GLM with SLPa2-PCs and AO; and (4) the last GLM with AO and
the five leading PCs of SLPa1 and SLPa2. The optimal combination, composited by JJA AO
and the first principal component accounting for 73.52% of the total variance of JJA SLPa2
region (denoted by SLPa2-PC1), is selected as it has the minimum R square value (the
method theory can be referred to [38]). The scatter plots between JJA AO, JJA SLPa2-PC1
and AMFP are displayed in Figure 3 and their Spearman correlations are exhibited in
Table 2.
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(a) (b) 

Figure 3. The scatter plots of AMFP versus JJA AO (a) and JJA SLPa2-PC1 (b) respectively.

Table 2. Spearman correlation coefficients between climatic factors and AMFP.

Climate Factors AO SLPa2-PC1

Coefficients 0.32 0.35
p-value 0.01 0.006

Flooding of the Xiangjiang river basin in Central and Southern China is greatly im-
pacted by the East Asian summer monsoon, which is driven by the SLP contrast between
the Asian low and the Pacific high [39]. The positive correlation teleconnection between JJA
SLPa2 and the summer flood in the Xiangjiang river basin suggests that the high pressure
in the Pacific Ocean would lead to more water vapor transporting to the Xiangjiang river
basin [40]. In consequence, the abovementioned average seasonal JJA AO and SLPa2-PC1
are capable of describing the observed variability of extreme flood events in the Xiangjiang
River basin and are selected to reflect the impact of climate change on flood risk.

3. Methodology

3.1. Choice of Distribution

After ascertaining the climate drivers for the flood peaks generation, the next step is to
quantify the flood risk changes with climate change. According to the review of a suitable
probability distribution function on flood frequency analysis by [41,42] and all the pdfs
of the Interagency Advisory Committee on Water Data (1982) [43], the two-parameter log
normal LN2 and log Pearson type III are the only two distributions which do not exhibit
significant bias in observed flood frequencies. Since LN2 in nonstationary condition is more
parsimonious and is one of the most widely used distributions in hydrology, we choose the
LN2 to fit the observed AMFP. The probability density function (PDF) is given by:

f (x|μ, σ) =
1

xσ
√

2π
exp

[
− (ln x − μ)2

2σ2

]
, x > 0; σ > 0 (1)

where μ and σ are the location and scale parameters, respectively. To capture the climate
impact, we develop climate variables incorporated into the estimates of the location and
scale parameters.
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3.2. Nonstationary Models Construction

In the nonstationary condition, the parameters μ (mean, location) and σ (standard
deviation, scale) of LN2 are made time-dependent by incorporating time or climatic factors
as covariates [44]. In this study, in consideration of the significant linear relationship shown
in scatter plots in Figure 3 and the parsimonious nonstationary modelling requirement,
the parameters are selected to be the linear functions of covariates. In addition, given the
AMFP doesn’t exhibit a significant trend, the stationary condition (all parameters in the
LN2 are constant) and the nonstationary model using time as the covariate are taken as
the benchmarks to conduct the comparative analysis. Consequently, the stationary and
nonstationary combinations of parameters are given as follows.

Case 1. Time-invariant model. All the parameters are kept constant, which is repre-
sented by

LNS : μ = μ0, ln(σ) = σ0 (2)

Case 2. Linear temporal model. Only the parameter location is modeling as a function
of time, or both the location and scale linearly vary with time. The two models are given by

LNt-1 : μ = μ0 + μ1t, ln(σ) = σ0 (3)

LNt-2 : μ = μ0 + μ1t, ln(σ) = σ0 + σ1t (4)

Case 3. Climate-informed model. Nonstationarity is incorporated by allowing the
location, or both the location and scale parameters, to vary as a function of climatic factors
(JJA AO and SLPa2-PC1). The models are illustrated as follows,

LNC-1 : μ = μ0 + μ1 ∗ AO + μ2 ∗ PC1, ln(σ) = σ0 (5)

LNC-2 : μ = μ0 + μ1 × AO + μ2 × PC1, ln(σ) = σ0 + σ1 × AO + σ2 × PC1 (6)

where in the Case 1, Case 2 and Case 3, the letters s, t and c represent the stationary,
time-varying and climate-based models respectively. The μi(i = 0, 1, 2) and σi(i = 0, 1, 2)
are the estimated regression parameters. For the sake of obtaining the positive values of σ,
we use the natural logarithm ln σ.

3.3. Bayesian Inference

In this study, we use a Bayesian inference framework to fit observed AMFP to the
LN2 distribution. Bayesian-based Markov Chain Monte Carlo (MCMC) sampling with the
No-U-Turn sampler variant of Hamiltonian Monte Carlo algorithm [45,46] in the RStan [47]
is implemented to estimate the regression parameters associated with the covariates. The
Bayesian-based MCMC approach provides full posterior distribution estimates of the
parameters, which incorporate constructions from noninformative prior distributions and
four chains of 10,000 iteration lengths in a statistically consistent way. The Bayesian theory
rule is shown below,

f (θ|X ) ∝ f (X|θ ) f (θ) (7)

where f (θ|X ) is the posterior distribution of all parameters θ conditional on the flood peaks
X. The f (X|θ ) is the likelihood function and f (θ) is the prior distribution. In the RStan
implement, the R-hat suggested by [48] is used to diagnose the convergence of chains, with
the value for less than 1.05.

3.4. Models Selection Criteria

As suggested by [13], the Akaike Information Criteria (AIC) [49] and Bayesian Infor-
mation Criteria (BIC) [50] are extensively used to access model performance and overfitting
based on point-estimates of the parameters. In light of the full posterior distribution
in Bayesian framework with more powerful and precise information, we adopt the De-
viance Information Criterion (DIC) [51] to evaluate the Bayesian model goodness-of-fit and
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complexity, which won’t discard adequate information by AIC and BIC. The DIC [52] is
defined below:

DIC = D + pD (8)

D = Eθ [D(θ)] = Eθ [−2 log p(x|θ )] (9)

pD = D − D(θ) (10)

where the first term D in Equation (8), interpreted as a Bayesian measure of model fit, is
defined as the posterior expectation of the deviance in Equation (9) while the p(x|θ ) is
the likelihood function of the observations x. The second term pD in Equation (8), used to
measure the model complexity, is defined as the difference between the posterior mean of
the deviance and the deviance evaluated at the posterior mean (θ) of the parameters shown
by Equation (10).

In summary, the better model fits the observations, which require the larger logarithmic
likelihood value p(x|θ ) corresponding to the smaller the value for D and the smaller penalty
represented by pD. Hence, the models with smaller DIC values are preferred. In order to
comprehensively compare the models, the AIC test is also employed.

3.5. Nonstationary Return Period

Under the stationary condition, the return period T = 1/p is corresponding to a
specific exceedance probability p. Nevertheless, the estimated parameters μ and σ are
time-varying vectors in the nonstationary flood frequency models. In recent years, four
nonstationary design methods (namely ENE, EWT, DLL and ER), have been proposed to
address the challenge of nonstationary return period (i.e., hydrologic design) in changing
environments [15,23]. The last three methods have different limitations during application.
The EWT method requires the time extended infinitely leading to failed convergence
sometimes. In addition, both the DLL and ER method need to take into consideration the
design life of the project. Consequently, for the nonstationary frequency analysis of the
hydrological station in this study, we utilize the ENE method to estimate the nonstationary
return period and corresponding design flood.

In the ENE method suggested by [53], assuming that X represents the AMFP, XT is the
design flood in nonstationary condition, and Fi(x) is the cumulative distribution function
for the i year. Then, during the return period T years, the N is defined as the number of
exceedances of the flood variable Xi over the design flood XT , which is given by

N =
T

∑
i=1

I(Xi > XT), I(•) =
{

1, Xi > XT
0, Xi ≤ XT

(11)

where I(•) is an indicator function. Since in the ENE method theory the expected number
of exceedances in the T-year equals to one, then, the expected value of N is calculated by

E(N) =
T

∑
i=1

E[I(Xi > XT)] =
T

∑
i=1

P(Xi > XT) =
T

∑
i=1

(1 − Fi(XT)) = 1 (12)

Hence, the nonstationary T-year return period design flood values can be solved by
Equation (12) and vice versa.

4. Results and Discussion

4.1. Stationary, Time-Covariate and Physical-Based Nonstationary Comparison

As for the aforementioned nonstationary models construction in Section 3.2, the
stationary condition (Case 1) and the time-varying nonstationary model (Case 2) are used
to carry out the comparative analysis with the climate-based nonstationary model (Case 3)
for AMFP in the Xiangjiang River basin. The parameters of each model for three cases in
Section 3.2 are estimated by maximizing the Bayesian posterior likelihood function and
are tabulated in Table 3. The parameters μ1, σ1 and μ2, σ2 before the covariates statistically

165



Water 2022, 14, 66

and quantitatively describe the influence of JJA AO and SLPa2-PC1, respectively, on AMFP.
Furthermore, the posterior PDF of the above parameters should be significantly larger or
lower than zero value (no more than 10% of their mass crossing 0), which indicate that the
covariates have a significant effect. Therefore, in LNc-2 model, as the σ1 = −0.025 is very
close to 0 and the boxplot in Figure 4 shows a non-significant effect, the new model LNc-3
with removing the σ1 is constructed.

Table 3. Models fitting results for AMFP in different assumptions.

Assumption Models μ0 μ1 μ2 σ0 σ1 σ2 DIC AIC

Case 1 LNs * 9.45 −1.17 1145.7 1148.9

Case 2
LNt-1 9.37 0.0026 −1.17 1145.5 1147.5

LNt-2 * 9.36 0.0031 −0.94 −0.0087 1145.1 1145.2

Case 3
LNC-1 9.47 0.26 0.15 −1.29 1135.8 1135.6
LNC-2 9.47 0.26 0.15 −1.31 −0.025 −0.34 1134.6 1135.2

LNC-3 * 9.47 0.25 0.15 −1.31 −0.34 1133.3 1133.1

Note: The values with underline “_” represent the posterior PDF of the parameter, which is not significantly
different from 0. The models with ‘*’ are the best models of each case.

Figure 4. The boxplot of parameters in LNc-2 model.

In addition, goodness-of-fit test is performed for all the models by adopting the P-P
plots (Probability-probability) and Kolmogorov–Smirnov (K–S) test [54] at the 5% level.
The PP plots in Figure 5 demonstrate that the theoretical probabilities of all the optimal
models fit well with the empirical probabilities. The statistic D values of the K–S test
computed suggest that all the models are accepted at 95% confidence level and perform
well in depicting probability distribution behaviors for observations. Meanwhile, such
results indicate that the LN distribution fitting to AMFP is reasonable and appropriate.
Also, the DIC and AIC are applied to compare the model performance for three cases
and are summarized in Table 3. The results suggest that the LNC-3 with climate variables
covariates is the model with best fit.
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Figure 5. The PP-plot of the optimal models for each case.

To obtain the preferred model for each case, the DIC and AIC are compared in Table 3.
The above results showed that the model LNt-2 and the model LNC-3 performed the best
in Case 2 and Case 3 which represent the time-varying and physical-based nonstationary
conditions, respectively. Then the 0.99 quantiles and the corresponding uncertainty compar-
ison of flood extremes based on the hypotheses of stationarity, temporal nonstationarity and
climate-informed risk, denoted by the model of LNS, LNt-2 and LNC-3, respectively, are
provided in Figure 6. The 100-year return period design flood under stationary assumption
keeps invariant and 0.99th quantiles of the time-varying model LNt-2 with non-significant
time-covariate exhibit only a slight increase, which is in accordance with the result that
suggests no temporal trend in AMFP. The LNC-3 model with the evidently smallest DIC
and AIC values, whose 0.99th quantiles display obvious fluctuations, follow the change
pattern of observations. Moreover, the 0.99 quantiles uncertainty results indicate that the
stationary model kept unchanged doesn’t capture the variation of true flood risk, especially
for large extreme flood events. The uncertainty boundary of the time-covariate model is the
largest, which brings relatively complicated and indistinct flood risk range. Nevertheless,
the climate-covariates nonstationary model, which is more robust than both the stationary
model and time-varying model, demonstrates better uncertainty performance particularly
for large extreme flood events with larger uncertainty range (e.g., year 1998 and 2017). The
capability of portraying the variation of the observed flood risk is critically important for
policymakers and engineers to avoid overestimating and underestimating the potential
risk for flood control.
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Figure 6. The 0.99 quantiles (solid lines) and uncertainty with 90% credibility intervals (areas inside
the dashed line) of each model. Black dots are the observed AMFP in each year.

4.2. Variability and Uncertainty of Flood Risk

To distinguish nonstationary patterns in annual extreme flood events of the Xiangjiang
River basin, we investigate the detailed linkage between climate variables and flood vari-
ability analyzed in Section 2.2. On the basis of the above analysis, the LNC-3 nonstationary
model, with the mean as linear function of JJA AO and SLPa2-PC1 and the log variance
as linear function of JJA SLPa2-PC1, is selected as the optimal model among all candidate
models. Furthermore, the centile curve is chosen to confirm whether the optimal model ex-
plains the physical variation in extreme flood events. The percentages of observation points
below the 5th, 25th, 50th, 75th and 95th centile curves are 5.1%, 30.5%, 44.1%, 71.2% and
96.6% in LNC-3 (Figure 7). The decent coverage rate illustrates that the climate-informed
model performs satisfactorily in modeling the variability of the flood observations and
their dependence structure over climate variables.

Figure 7. The centiles curve plots of the optimal model LNC-3.
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Figure 8 displays the median, 0.95 and 0.99 flood quantiles (i.e., 2-year, 20-year and
100-year events) in the physical-based condition with the LNC-3 model against the large-
scale climate variables JJA AO and SLPa2-PC1, respectively. As seen, the extreme flood
risk increases with the climate covariates and the increasing degree with AO is greater
than with SLPa2-PC1, which is suggested by the positive variation in mean with bigger
coefficient of AO but relatively slight negative in variance on SLPa2-PC1 in LNC-3 model.
It is interesting to note that the flood quantiles evolve with the two important climatic
factors with a similar pattern as that between AMFP and two drivers. Consequently, it
indicates that the surface atmospheric pressure difference between the northern middle
latitude and North Pole compared to the sea level pressure in the Northwest Pacific Ocean
have strong teleconnection and influence on extreme flooding of the Xiangjiang River
basin. To sum up, if the AO and sea level pressure in the Northwest Pacific Ocean are
high, in the same season, the more extreme flooding of the Xiangjiang River will occur
during summer. The climate-based optimal nonstationary modeling of results improves
the quality of flood quantiles estimation compared to traditional frequency analysis and
non-significant time-varying models. The significant inter-relations between the flood risk
system and large-scale climate patterns will aid decision makers and scientists to better
understand variability in extreme flood risk.

(a) (b) 

Figure 8. The median, 0.95 and 0.99, quantiles of AMFP plotted against JJA AO (a) and JJA SLPa2-
PC1 (b).

4.3. Return Period and Associated Uncertainty Analysis

The occurrence of extreme flood events is fully estimated by climate-covariates non-
stationary frequency analysis. Then, the corresponding return periods are calculated by the
appropriate nonstationary design method ENE for at-site flood (details refer to Section 3.5)
based on the optimal model LNC-3. Considering the limited sample size of climatic factors
and flood, we investigate the 5-, 10-, 20- and 50-year return periods, which correspond to
flood control standards cover most of the major cities in the Xiangjiang River basin and
most regions in Changsha, the provincial capital city of Hunan Province. Figure 9 shows the
return level differences between conventional stationary model LNS and time-based nonsta-
tionary model LNt-2 compared to climate-based nonstationary model LNC-3, respectively.
Specifically, for LNt-2 and LNS models, the differences are discernable but within 20% dur-
ing the 10-year and 50-year return levels, and are minor in recurrence periods shorter than
10-year or longer than 50-year. However, there is a gradually increasing gap from 5-year to
59-year return periods between traditional and nonstationary climate-informed models.
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(a) (b) 

Figure 9. The return periods comparison between stationary model LNS and time-based model LNt-2
(a) and climate-based model LNC-3 (b).

Furthermore, we also explore the change rate (%) in the return periods of AMFP be-
tween climate-covariates nonstationary and stationary models, which is given by
the following,

v =
nrp − srp

srp
(13)

where nrp and srp are the return periods of the nonstationary and stationary model, respec-
tively. The change rates of 5-, 10-, 20- and 50-year return levels between LNC-3 and LNS
are 25.2%, 32.2%, 29.1% and 22.6%, respectively, which coincide with the variation trends
(i.e., −6.34%, −6.94%, −5.16% and −3.26% respectively) of design flood values in Table 4.
Combing with the plot in Figure 9b, it is demonstrated that the occurrence probability of
the extreme flood event with nonstationary climate model is obviously smaller than the
stationary benchmark. This has great implication for flood control operation and design.

Table 4. The design flood values comparison between stationary and climate-based nonstationary
conditions Unit: m3/s.

Models 5-Year 10-Year 20-Year 50-Year

LNS 16,431 18,806 21,023 23,833
LNC-3 15,356 17,501 19,938 23,056

Variation (%) −6.34 −6.94 −5.16 −3.26

We also compare the statistical characteristics between the models LNS and LNC-3.
Firstly, based on the fitting results of models LNS and LNC-3, the exceedance probabilities
of annual extreme flood events during 1959–2017 are investigated. In the comparison of
two models, the average exceedance probabilities value of 50.03% for model LNC-3 is
slightly larger than the value of 49.16% for model LNS, which reveals that the occurrence
probabilities of most annual extreme flood events during 1959–2017 have a small increasing
trend influenced by climate factors. Secondly, however, on the basis of the expected number
of exceedances (ENE) method, the return periods of model LNC-3 are bigger than the ones
for stationary conditions. Thus, based on the design flood values under 5-, 10-, 20-, and
50-year return periods of model LNC-3 (Table 4), we investigate the exceedance probabilities
of each design flood for the corresponding first 5-, 10-, 20-, and 50-years respectively during
1959–2017 (for instance, for the design flood value of 15,356 m3/s over a 5-year return
period, we calculate the exceedance probabilities of the ‘15,356 m3/s’ flood event in first
5 years) using models LNS and LNC-3. The annual exceedance probabilities differences
between the two models are illustrated in Figure 10. As can be seen, for each design flood,
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all the multi-year average exceedance probabilities of model LNC-3 are smaller than the
stationary model LNS benchmark.

  
(a) (b) 

 
(c) (d) 

Figure 10. The annual exceedance probabilities differences of model LN C-3 compared to the model
LNS corresponding to each design flood. (a) 5-year design flood; (b) 10-year design flood; (c) 20-year
design flood; (d) 50-year design flood.

The above two conclusions are opposite, prompting us to explore the reasons why
the annual maximum flood peak series in the Xiangjiang River Basin exhibit different
results. Thus, as the parameters of model LNC-3 are distinct every year from 1959 to
2017, the location and scale parameters for LNC-3 are averaged, respectively, to investigate
the climate-based model’s statistical characteristic in an average sense. In contrast to the
model LNS location parameter of 9.45 and scale parameter of −1.17, the model LNC-3
average location parameter of 9.453 is slightly larger and the scale parameter of −1.29 is
visibly smaller. Furthermore, the probability density distribution curves and exceedance
probability distribution curves for two models are demonstrated in Figure 11. The figures
clearly introduce that with the extreme flood event values larger than approximately
12,500 m3/s, the average exceedance probabilities of model LNC-3 are less than the ones
in LNS.
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(a) (b) 

Figure 11. The probability density distribution curves and exceedance probability distribution curves
for models LNS (the blue curves) and average LNC-3 (the orange curves). (a) Probability density
distribution curve; (b) Exceedance probability distribution curve.

Consequently, from the mathematical point of view, since medium and small extreme
flood events are prone to occur, while large flood events are relatively infrequent during the
period of 1959–2017, the average exceedance probability for model LNC-3 is slightly larger
than the value of model LNS. Owing to the 5-year design flood with 15,356 m3/s over
12,500 m3/s, the return periods of model LNC-3 are generally bigger than the ones under
stationary conditions. On the physical aspect being attributed to the two climate factors’
effects, the extreme flood events during the period of 1959–2017 display a mild increasing
trend in mean but comparatively descend significantly in variance. In summary, the
relatively large decrease in variance contributes to the reduction of exceedance probabilities
in model LNC-3.

Regarding the uncertainty with 50% confidence intervals of nonstationary climate-
covariate models for AMFP compared to traditional return levels illustrated in Figure 12, it
is remarkably large and fully exceeds the 1:1 line. The phenomenon is highly generated by
the ENE method because of its calculative restriction relying on covariate length. Hence,
the computation will definitely bring about higher levels of uncertainties [22]. However,
the abovementioned results indicate that the occurrence periods of AMFP estimated by a
climate-informed model are longer than return periods under a stationary model, which
will be conservative for decision makers in considering the significant climatic factors in
current conditions. However, since the design floods or return periods rely on the climate
covariates, it should not be overlooked that the flood risk would be abnormal if the climatic
factors are unusual in future uncommon conditions. Consequently, it is worth noticing that
the great uncertainty is a warning for engineers and planners in flood control.
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Figure 12. The uncertainty with 50% credibility intervals between LNC-3 and LNs models.

5. Conclusions

The study contributes to describing the characteristics of extreme flood risks under a
changing climate, using nonstationary flood frequency analysis models in the Xiangjiang
River basin in South-Central China. The paper aims to determine the most significant cor-
related climatic factors with annual maximum flood peak series, to identify the best model
for extreme flood frequency analysis considering different criteria, and to estimate the
uncertainties of extreme flood quantiles and return periods based on a Bayesian modeling
inference framework. The following main conclusions can be drawn from this study.

(1) While the stationary frequency analysis is commonly used for hydraulic structure
design, recent multiple studies highlighted the increase in the nonstationary pattern of
extreme events. In this study, we performed stationary and nonstationary frequency
based on the annual maximum flood peak series covering a period of 1959–2017 in the
Xiangjiang River basin. Prior to implementing the nonstationary frequency analysis,
the selection of physical covariates is an important step. Since most of the extreme
floods conventionally occur during the summer season, from June to August, mainly
caused by precipitation from the East Asian monsoon, we consider the physical
impacts primarily on climatic factors including the eight large-scale low-frequency
standard climate indices and two oceanic-atmospheric climate patterns SSTa and
SLPa. The identification screening process of potential climate covariates is divided
into two steps: the Spearman rank correlation test with AMFP and constructing
GLMs to obtain the best combination of climatic impactors. Overall, two distinct
climate covariates, which are Arctic Oscillation and the most informative factor, PC1,
derived from the SLPa in the Northwest Pacific Ocean during the period of June to
August, are identified as the statistically significant positive correlation with AMFP.
The abovementioned best processes for screening significant climate drivers can serve
as a protocol to apply on other basins.

(2) The stationary model and nonstationary flood frequency models with time or climate
covariates are evaluated for AMFP employing the two-parameter lognormal distribu-
tion, which is an excellent and parsimonious model for representing the distribution
of AMFP, and is consistent with the recommendation of other researchers [15]. The re-
sults show that extreme flood events follow the nonstationary climate pattern, namely,
the optimal model is the nonstationary climate-covariates model with a linearly pos-
itive effect on location parameters of two climatic factors and a linearly negative
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coefficient on scale parameter only for SLPa2-PC1. In addition, the Bayesian modeling
inference is used to explore the uncertainty in extreme flood risks. Comparing the
three optimal models, namely, LNS, LNt-2 and LNC-3 in each case, the time trend in
AMFP is so minor that the LNt-2 model parameter coefficients are very close to zero.
However, the flood quantiles estimated by the LNC-3 model, and that used JJA AO
and SLPa2-PC1, oscillate over time along with the variation trend of true observed
flood. It should be pointed out that the uncertainty boundary of flood quantiles for the
LNC-3 model is relatively high especially for large floods. However, the climate-based
model LNC-3 proved reasonable and improves the understanding and interpretation
of changing properties of AMFP frequency, which is apparently influenced by the
same season AO and SLPa in the Northwest Pacific Ocean. The linkage between the
flood extremes and the climatic factors would be useful to provide reliable and valid
information under a changing environment.

(3) It is interesting to discover that, based on the nonstationary extreme flood analysis,
the return periods associated with extreme flood events, computed by the ENE
method restricted to the associated timespan of the covariates, are obviously enlarged
compared to the stationary approach; the difference is gradually increasing according
to the existing trends. In addition, assigning a return period, although the change rates
between the LNS and LNC-3 model are not registering as high design flood values
under current conditions, the larger discrepancies would be found once the climate
covariates are located in future uncommon conditions. Nevertheless, the high levels
of 50% confidence interval uncertainty boundaries for nonstationary return periods
are indeed crossing the 1:1 line in contrast to traditional return levels, which is the
major disadvantage of the ENE method. Actually, in order to reduce the uncertainties,
the model structures of nonstationary lognormal distribution are set to be simple with
a linear trend in distribution parameters. Nevertheless, the uncertainty boundary
is still evidently large so that, in the future, new approaches should be pursued to
manage or balance the uncertainties of the nonstationary modeling, e.g., by combing
more extreme flood events from surrounding stations to collect regional information.
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11. Kundzewicz, Z.W.; Szwed, M.; Pińskwar, I. Climate Variability and Floods—A global Review. Water 2019, 11, 1399. [CrossRef]
12. Kundzewicz, Z.W.; Huang, J.; Pinskwar, I.; Su, B.; Szwed, M.; Jiang, T. Climate variability and floods in China—A review.

Earth-Sci. Rev. 2020, 211, 103434. [CrossRef]
13. Zeng, H.; Sun, X.; Lall, U.; Feng, P. Nonstationary extreme flood/rainfall frequency analysis informed by large-scale oceanic

fields for Xidayang Reservoir in North China. Int. J. Clim. 2017, 37, 3810–3820. [CrossRef]
14. Renard, B.; Lall, U. Regional frequency analysis conditioned on large-scale atmospheric or oceanic fields. Water Res. Res. 2014, 50,

9536–9554. [CrossRef]
15. Yan, L.; Xiong, L.; Guo, S.; Xu, C.Y.; Xia, J.; Du, T. Comparison of four nonstationary hydrologic design methods for changing

environment. J. Hydrol. 2017, 551, 132–150. [CrossRef]
16. Olsen, R.; Lambert, J.H.; Haimes, Y.Y. Risk of extreme events under nonstationary conditions. Risk Anal. 1998, 18, 497–510.

[CrossRef]
17. Salas, J.D.; Obeysekera, J. Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events. J. Hydrol.

Eng. 2014, 19, 554–568. [CrossRef]
18. Parey, S.; Hoang, T.T.H.; Dacunha Castelle, D. Different ways to compute temperature return levels in the climate change context.

Environmetrics 2010, 21, 698–718. [CrossRef]
19. Parey, S.; Malek, F.; Laurent, C.; Dacunha-Castelle, D. Trends and climate evolution: Statistical approach for very high temperatures

in France. Clim. Change 2007, 81, 331–352. [CrossRef]
20. Rootzén, H.; Katz, R.W. Design life level: Quantifying risk in a changing climate. Water Resour. Res. 2013, 49, 5964–5972. [CrossRef]
21. Liang, Z.; Hu, Y.; Huang, H.; Wang, J.; Li, B. Study on the estimation of design value under non-stationary environment.

South-to-North Water Transf. Water Sci. Technol. 2016, 14, 50–53, (In Chinese with English abstract).
22. Yan, L.; Xiong, L.; Luan, Q.; Jiang, C.; Yu, K.; Xu, C.Y. On the Applicability of the Expected Waiting Time Method in Nonstationary

Flood Design. Water Resour. Manag. 2020, 34, 2585–2601. [CrossRef]
23. Hu, Y.; Liang, Z.; Singh, V.P.; Zhang, X.; Wang, J.; Li, B.; Wang, H. Concept of equivalent reliability for estimating the design flood

under non-stationary conditions. Water Resour. Manag. 2018, 32, 997–1011. [CrossRef]
24. Gu, X.; Zhang, Q.; Singh, V.P.; Xiao, M.; Cheng, J. Nonstationarity-based evaluation of flood risk in the Pearl River basin: Changing

patterns, causes and implications. Hydrol. Sci. J. 2017, 62, 246–258. [CrossRef]
25. Mao, D.; Li, J.; Gong, C.; Peng, J. Study on the Flood-Waterlogging Disaster in Hunan Province; Hunan Normal University Press:

Changsha, China, 2000. (In Chinese)
26. Du, J.; He, F.; Shi, P.J. Integrated flood risk assessment of Xiangjiang River Basin in China. J. Nat. Dis. 2006, 15, 8–44. (In Chinese

with English abstract)
27. Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea

surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res.-Atmos. 2003, 108,
1063–1082. [CrossRef]

28. Allan, R.; Ansell, T. A New Globally Complete Monthly Historical Gridded Mean Sea Level Pressure Dataset (HadSLP2):
1850–2004. J. Clim. 2006, 19, 5816–5842. [CrossRef]

29. Song, Z.; Xia, J.; She, D.; Zhang, L. The development of a Nonstationary Standardized Precipitation Index using climate covariates:
A case study in the middle and lower reaches of Yangtze River Basin, China. J. Hydrol. 2020, 588, 125115. [CrossRef]

175



Water 2022, 14, 66

30. Li, S.; Feng, G.; Wei, H. Summer drought patterns in the middle-lower reaches of the yangtze river basin and their connections
with atmospheric circulation before and after 1980. Adv. Meteorol. 2016, 2016, 8126852. [CrossRef]

31. Qian, C.; Yu, J.Y.; Chen, G. Decadal summer drought frequency in China: The increasing influence of the Atlantic Multi-decadal
Oscillation. Environ. Res. Lett. 2014, 9, 124004. [CrossRef]

32. Gong, D.; Zhu, J.; Wang, S. Significant relationship between spring AO and the summer rainfall along the Yangtze River. Chin.
Sci. Bull. 2002, 47, 948–952. [CrossRef]

33. Wei, F. Relationships between precipitation anomaly over the middle and lower reaches of the Changjiang River in summer and
several forcing factors. Chin. J. Atmos. Sci. 2006, 30, 202–211. (In Chinese with English abstract)

34. Yang, H. The significant relationship between the Arctic Oscillation (AO) in December and the January climate over South China.
Adv. Atmos. Sci. 2011, 28, 398–407. [CrossRef]

35. Gong, D.; Wang, S. Influence of Arctic Oscillation on winter climate over China. J. Geogr. Sci. 2003, 13, 208–216. [CrossRef]
36. Su, C.; Chen, X. Covariates for nonstationary modeling of extreme precipitation in the Pearl River Basin, China. Atmos. Res. 2019,

229, 224–239. [CrossRef]
37. Thompson, D.W.J.; Wallace, J.M. The arctic oscillation signature in the wintertime geopotential height and temperature fields.

Geophys. Res. Lett. 1998, 25, 1297–1300. [CrossRef]
38. McLeod, A.I.; Xu, C.; Yanhao, L. Package ‘Bestglm’. Available online: http://cran.r-project.org/web/packages/bestglm/bestglm.

pdf (accessed on 5 July 2021).
39. Zhao, P.; Zhou, Z. An East Asian subtripical summer monsoon index and its relationship to summer rainfall in China. Acta Meteor.

Sin. 2009, 23, 18–28.
40. Yunyun, L.; Ping, L.; Ying, S. Basic features of the Asian summer monsoon system. In The Asian Summer Monsoon: Characteristics,

Variability, Teleconnections and Projection, Part I; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–22.
41. Vogel, R.M.; Wilson, I. Probability distribution of annual maximum, mean, and minimum streamflows in the United States. J.

Hydrol. Eng. 1996, 1, 69–76. [CrossRef]
42. Serago, J.M.; Vogel, R.M. Parsimonious Nonstationary Flood Frequency Analysis. Adv. Water Res. 2018, 112, 1–16. [CrossRef]
43. Interagency Advisory Committee on Water Data. Guidelines for Determining Flood Flow Frequency: Bulletin 17b (Revised and

Corrected); Interagency Committee on Water Data: Washington, DC, USA, 1982; p. 28.
44. Aziz, R.; Yucel, I. Assessing nonstationarity impacts for historical and projected extreme precipitation in Turkey. Theor. Appl. Clim.

2021, 143, 1213–1226. [CrossRef]
45. Hoffman, M.D.; Gelman, A. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. J. Mach.

Learn. Res. 2014, 15, 1593–1623. [CrossRef]
46. Betancourt, M. A Conceptual Introduction to Hamiltonian Monte Carlo. arXiv 2017, arXiv:1701.02434. Available online:

https://arxiv.org/pdf/1701.02434.pdf (accessed on 16 September 2021).
47. Stan Development Team. RStan: The R Interface to Stan, Version 2.21.2. Available online: http://mc-stan.org/rstan.html

(accessed on 2 July 2021).
48. Vehtari, A.; Gelman, A.; Gabry, J. Practical Bayesian Model Evaluation Using Leave-One-Out Cross-Validation and WAIC. Stat.

Comput. 2017, 27, 1413–1432. [CrossRef]
49. Akaike, H. New look at statistical-model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [CrossRef]
50. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [CrossRef]
51. Spiegelhalter, D.J.; Linde, A.V.D. Bayesian measures of model complexity and fit. J. R. Stat. Soc. B 2002, 64, 583–616. [CrossRef]
52. Li, Y.; Yu, J.; Zeng, T. Deviance Information Criterion for Bayesian Model Selection: Justification and Variation. Econ. Stat. Work.

Pap. 2017, 10, 1–25. [CrossRef]
53. Cooley, D. Return periods and return levels under climate change. In Extremes in a Changing Climate; AghaKouchak, A., Easterling,

D., Hsu, K., Schubert, S., Sorooshian, S., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 97–114.
54. Lilliefors, H.W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 1967, 62,

399–402. [CrossRef]

176



Citation: Li, Q.; Zeng, H.; Liu, P.;

Li, Z.; Yu, W.; Zhou, H. Bivariate

Nonstationary Extreme Flood Risk

Estimation Using Mixture

Distribution and Copula Function for

the Longmen Reservoir, North China.

Water 2022, 14, 604. https://doi.org/

10.3390/w14040604

Academic Editors: Yuanfang Chen,

Dong Wang and Dedi Liu

Received: 1 January 2022

Accepted: 15 February 2022

Published: 16 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Bivariate Nonstationary Extreme Flood Risk Estimation Using
Mixture Distribution and Copula Function for the Longmen
Reservoir, North China

Quan Li 1,2, Hang Zeng 1,2,*, Pei Liu 3, Zhengzui Li 4, Weihou Yu 4 and Hui Zhou 4

1 School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology,
Changsha 410114, China; liquan9751@163.com

2 Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province,
Changsha 410114, China

3 Power China Zhongnan Engineering Corporation Limited, Changsha 410014, China; liupei6838840@126.com
4 Hydrology and Water Resources Survey Center of Hunan Province, Changsha 410008, China;

hnlzz@139.com (Z.L.); yweihou@163.com (W.Y.); 2527092@163.com (H.Z.)
* Correspondence: hzeng1989@csust.edu.cn; Tel.: +86-188-9002-8903

Abstract: Recently, the homogenous flood generating mechanism assumption has become question-
able due to changes in the underlying surface. In addition, flood is a multifaced natural phenomenon
and should be characterized by both peak discharge and flood volume, especially for flood protection
structures. Hence, in this study, data relating to the 55-year reservoir inflow, annual maximum flood
peak (AMFP), and annual maximum flood volume (AMFV) for the Longmen Reservoir in North
China have been utilized. The 1-day AMFV exhibits a significant correlation with AMFP. The extreme
flood peak-volume pairs are then used to detect the heterogeneity and to perform nonstationary
flood risk assessment using mixture distribution as the univariate marginal distribution. Moreover, a
copula-based bivariate nonstationary flood frequency analysis is developed to investigate environ-
mental effects on the dependence of flood peak and volume. The results indicate that the univariate
nonstationary return period is between the joint OR and the AND return periods. The conditional
probabilities of 1-day AMFV, when AMFP exceeds a certain threshold, are likely to be high, and
the design flood values estimated by joint distribution are larger than the ones in the univariate
nonstationary context. This study can provide useful information for engineers and decision-makers
to improve reservoir flood control operations.

Keywords: extreme flood risk; mixture distribution; G–H copula; bivariate nonstationary flood
frequency analysis; nonstationary return period

1. Introduction

Design flood estimation is necessary for the design of adequate flood control structures
such as reservoirs and dams, in order to improve flood preparedness. Flood frequency anal-
ysis is the fundamental method for quantifying the design flood and is usually conducted
within a univariate flood frequency analysis framework [1–5]. However, an extreme flood
events is a multifaced natural phenomenon and is characterized not only by peak discharge
but also by flood volume. Moreover, in practice, flood peak discharge and volume are both
highly correlated with flood management. Therefore, traditional univariate flood frequency
analysis is unable to model the occurrence probability of an extreme flood event [6]. A
bivariate frequency analysis has been demonstrated as being desirable and indispensable
and is proposed to better understand and capture multiple flood characteristics [7–9].
In recent decades, numerous studies have been conducted to implement bivariate flood
frequency analysis. Among them, joint distribution is the most useful tool for capturing
flood peak and volume dependence. Copula-based joint distributions have proven to be
an effective method in the bivariate framework for flood coincidence risk analysis and for
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measuring the dependences between flood variables [10–14]. Hu et al. (2022) conducted
copula-based bivariate flood frequency analysis and proposed a nonstationary bivariate
design flood estimation approach [15]. Brunner et al. (2018) developed a bivariate copula
function model to model dependence between flood peak and volume and demonstrated
that climate changes not only affect flood peaks but also have an effect on flood characteris-
tics [16]. Duan et al. (2016) evaluated the variations of flood frequency in the Huai River
basin by fitting a copula function [17]. Parent et al. (2014) selected copula functions and
analyzed the corresponding parameters under a Bayesian framework [18].

In addition, due to the combined actions of different basin properties (e.g., land use
change, hydraulic construction, etc.) and meteorological conditions (e.g., thunderstorm,
typhoon, etc.), the extreme flood generating mechanisms would be changed and no longer
be homogeneous [19,20]. The heterogeneity of extreme flood series resulting from envi-
ronmental changes would result in changes, both in distribution parameters and in the
type of distributions. As emphasized by Alila and Mtiraoui (2002) [21] and Villarini and
Smith (2010) [22], prior scientific evidence of mixture populations should be provided to
strengthen the physical understanding of the mixed nature of flooding. However, due to
the limitation of long-term underlying surface data used for separating the flood population
and the complexities of flood generation mechanisms, it is not always feasible to identify
the distinct flood populations. Generally, the mixture distribution model does not require
flood population separation and is widely utilized in nonstationary flood frequency analy-
sis with various distribution types [21]. Zeng et al. (2014) and Feng and Li (2013) applied
mixture distribution on extreme flood series, divided by prior change point detection, and
suggested that nonstationary mixture distribution performed much better than stationary
single-type distribution [23,24]. Li et al. (2018) proposed the improved mixture distribu-
tion for fitting the two subset flood samples, which both consider historical extraordinary
floods [25]. Yan et al. (2017) investigated the mixture distribution application from the
perspective of the temporal variation of separating the distributions’ parameters [20]. Yan
et al. (2019) improved the mixture distribution using the flood timescale method to separate
it into two flood generation mechanisms [26].

In recent decades, a number of researchers have focused on simultaneously consider-
ing the non-stationarity of flood series and modeling flood characteristics by multiple flood
variables. Zhang et al. (2019) gave a rigorous comparison of several bivariate nonstationary
flood frequency calculation models using different explanatory variables in time-varying
marginal distributions [14]. Jiang et al. (2015) applied a time-varying copula function
that considered elements of the changing reservoir environment as covariates [27]. Wen
et al. (2019) presented a process of employing a time-varying copula model to model the
nonstationary dependence structures between two highly correlated flood variables [28].
Generally, because the copula function relaxes the restriction of the marginal distributions’
form, most of the above studies adopted time-varying marginal distributions to construct
the nonstationary models for multivariate frequency analysis. However, corresponding
studies using the nonstationary mixture distributions as marginal distributions and estimat-
ing bivariate nonstationary design flood are limited. In this study, the inflow extreme flood
series of the Longmen Reservoir, which is located on the southern branch of the Daqing
River Basin, are selected as the target flood variables. Because the Longmen Reservoir
catchment has undergone extensive measures of returning farmland to forests, along with
the construction of soil and water conservation engineering around 1980, the flood gener-
ating mechanisms would be heterogeneous, and the traditional flood frequency analysis
should not be made available. Because forest cover and hydraulic engineering are the
main drivers of controlling runoff processes, this study develops a bivariate nonstationary
flood frequency analysis on flood peak and volume variables using a mixture distribution
descripting the non-stationarity of reservoir inflow annual maximum flood series. Further-
more, the comparison of univariate and bivariate nonstationary flood frequency analysis
is extended to investigate and explore the mathematical rules of corresponding design
flood for reservoir flood risk management. The findings provide scientific guidance for
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engineers to manage extreme flood events and improve the theoretical system of bivariate
nonstationary flood frequency analysis.

The paper is organized as follows. In Section 2, we describe the study area, the data
set, and the statistical–physical analysis for extreme flood characteristics. Section 3 presents
the methodologies of the univariate and bivariate nonstationary models, along with a brief
description of the bivariate nonstationary return period. The results and discussions are
presented in Section 4. Finally, the article concludes in Section 5.

2. Study Area and Flood Data

The Longmen Reservoir (Figure 1) is located 39◦7′ N and 115◦16′ E in northern China
and has a drainage area of 470 km2 and a total storage capacity of 1.27 × 108 m3. Due to
the temperate semi-arid continental monsoon climate, the rainfall distribution over one
year is extremely uneven, with 80% of rainstorms occurring during the flood season in
the basin. The uneven water allocation contributes to large flood or drought hazards,
which frequently appear in the Longmen Reservoir basin. Thus, the Longmen Reservoir, as
one of the four large-scale reservoirs for the Daqing River basin in northern China, was
constructed to control flooding, and also to provide an irrigation function. For the reservoir,
which was built in February 1958, expanded in 1977, and reinforced in 2002, the design
flood control standard reaches a 100-year return period, and the flood check standard is a
2000-year return period.

Figure 1. Schematic diagram of the Longmen Reservoir catchment and its location in the Daqing
River Basin.

2.1. Extreme Flood

The annual maximum flood peak series (AMFP) and annual maximum different
periods (e.g., 1-day, 3-day, and 6-day) flood volume (AMFV) for the period 1951–2005
are the target variables and were collected from the Hydraulic and Hydropower Design
Institute of Hebei Province in China. In addition, the flood in 1963 was the largest recorded
flood, with a peak discharge of 4250 m3/s, which is almost 15 times the median annual
maximum flood. Moreover, the historically extraordinary flood in 1939, with a peak flow
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of 4180 m3/s, had the same magnitude as the flood in 1963. Hence, in terms of AMFP and
AMFV, there have been two previous extraordinary floods.

In general, in most cases, flood event risks for a reservoir should take into consideration
both the flood peak and the volume, which can comprehensively describe the characteristics
of a flood event. Traditionally, flood frequency analysis has been aimed at a single flood
variable. Thus, in this study, we apply bivariate flood frequency analysis by investigating
the correlational relationship between flood peak and volume. Kendall and Spearman
correlation tests are used to estimate the dependence between flood peak; Q; and annual
maximum 1-day, 3-day, and 6-day flood volume series, and their estimated values are
listed in Table 1. The results indicate that the 1-day AMFV series has the most significant
correlation with AMFP and is selected to display the clearly visible mutually correlated
nature, which supports the necessity for bivariate flood frequency analysis.

Table 1. The Kendall and Spearman correlation test results between AMFP and AMFVs.

Flood Series Kendall Correlation Test Spearman Correlation Test

1-day AMFV 0.84 0.96
3-day AMFV 0.79 0.93
6-day AMFV 0.77 0.92

2.2. Statistical-Physical Heterogeneity Analysis

Whether or not the extreme flood variables series is stationary is a prerequisite and
crucial step for implementing flood frequency analysis. In this study, AMFP and 1-day
AMFV are utilized in combination with the stationary or nonstationary characteristics in
terms of both statistical and physical aspects to establish a bivariate joint distribution model.

Mathematically, as suggested by Zeng et al. (2014) and Xie et al. (2009), the het-
erogeneity investigation of AMFP and 1-day AMFV records using a two-step diagnose
process indicates that the candidate significant change points are presented in the years
1964 and 1979 [23,29]. The two-step diagnose process (for method details, refer to Zeng
et al., 2014) includes: (1) First, the Hurst exponent method [30,31] is adopted to identify
the long-term memory of flood series, as proposed by Xie et al. (2009) [29], to manifest the
diagnosis variation. (2) Second, based on the first diagnosis result, several change point
detection tests, including the Mann–Whitney–Pettitt (MWP) test [32], the Brown–Forsythe
method [33], and the Moving rank test [34] are applied to ascertain the significant change
points. The diagnosis process results, which are shown in Table 2, demonstrate that the
AMFP has no variation, the 1-day AMFV exhibits medium variation, and the two leading
significant change points appear in 1964 and 1979.

Table 2. The statistical heterogeneity results of AMFP and 1-day AMFV.

Methods AMFP 1-Day AMFV

Hurst exponent value 0.67 (no variation) 0.73 (medium variation)
MWP — 1959–1971, 1974, 1977–1983

Brown–Forsythe — 1996, 1964
Moving rank test — 1964, 1979, 1998

Change points — 1964, 1979

Physically, natural hydrologic phenomena that include extreme flood events are inves-
tigated by utilizing statistical tools, but the causes are ultimately related to physical factors.
Climate and underlying surface causes are both involved to acquire the most significant
change point. The annual maximum 30-day precipitation series over the same period,
which has significant correlation with 1-day AMFV (Spearman and Kendall correlations
test p-values are 2.20 × 10−16 and 3.52 × 10−15, respectively), is chosen to represent the
climate effect driver because the annual maximum events generally occur in August dur-
ing the flood period (June–July–August–September (JJAS)). The annual maximum 30-day
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precipitation has no significant change point, which reveals that the influence of climate
is rather small on the Longmen Reservoir, which has a relatively small area. On the other
hand, the underlying surface change is caused by both land-use change and anthropogenic
activities. The land-cover types in the Longmen Reservoir, including forest, cultivated
land, and grassland, in the years 1970, 1980, and 2000, are showed in Figure 2. The area
percentage variation of the three land cover types demonstrates that the forest exhibits
an increase, but grassland and cultivated land both have a small decrease between 1970
and 1980. Relatively speaking, there was almost no change between 1980 and 2000. The
increase of forest area in the years around 1980 reduced flood generation, to a certain extent.
Moreover, in the Daqinghe river basin, as well as in the Longmen Reservoir catchment,
since the 1980s, numerous soil and water conservation projects have emerged, such as
level trenches, check dams, and riverbank protection engineering. Additionally, dozens of
non-engineering measures, such as closing hills for afforestation, greening bare mountains,
and forest planting, have been carried out on a large scale, partially due to the ‘Soil and
Water Conservation Management in Small Basin’ document declared by the Ministry of
Water and Electricity in China in 1980.

(a) (b)

(c) (d)

Figure 2. The land use and land cover of the Longmen Reservoir in the years (a) 1970, (b) 1980, and
(c) 2000; (d)The area percentages of land use types in three years.

The change point of 1-day AMFV, which appeared in 1964 and is the lag change result-
ing from the catastrophic flood event in 1963, is close to the beginning of the flood samples
and is therefore discarded. The above land-use changes and frequent anthropogenic ac-
tivities around 1980 likely destroyed the homogeneity of the flood generating mechanism
and contributed to inducing a shift in annual maximum flood series [35]. Consequently,
the most significant change point is identified to be in the year 1979 for 1-day AMFV, from
both a statistical and a physical viewpoint.
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3. Methodology

3.1. Mixture Distribution as Marginal Distribution

Due to the interaction of underlying surface conditions (or meteorological variations)
and flood generation mechanisms, an extreme flood series is generated by distinct complex
sources, such as cyclonic rainfall, convective rainfall, land cover situations, and channel
characteristics. Once the single flood series are heterogeneous, the conventional stationary
physical basis is destroyed. Consequently, the mixture distribution (MD), which is defined
in the mathematical statistics field as the probability distribution of a random variable
combined with several other random variables, is proposed to address the multiple flood
population frequency calculation issue [36]. Theoretically, in this study, we use the basic
additive form of finite density mixture distribution, which is described by:⎧⎪⎪⎨

⎪⎪⎩
f (x) =

n
∑

i=1
ωi fi(x|θi)

n
∑

i=1
ωi = 1

(1)

where fi(x|θi) is the ith component probability density distribution with corresponding
parameters set, θi, ωi is the relative weight (0 ≤ ωi ≤ 1) denoting the probability of
belonging to the ith flood component, and n is the number of flood components.

In the application, the n value should be confirmed by flood classification based on
the generating mechanism. Nevertheless, it is worth emphasizing that the flood physically-
based genesis with underlying surface interaction is complicated, so that the prior subdi-
vision may not be feasible [37–39]. In addition, Alila and Mtiraoui (2002) stressed that an
increase in the n value needs a large sample size and makes the parameter estimation less
robust, less parsimonious, and less accurate [21]. To keep it to a minimum, in this study, the
two single Pearson III type (P-III) probability density distributions are summed up for the
mixture model. The selection of P-III distribution is widely applied and recommended in
the Regulation for Calculating Design Flood of Water Resources and Hydropower Projects
in China. Then the two-component mixture model is given by:

f (x) = ω f1(x|θ1 ) + (1 − ω) f2(x|θ2 ) (2)

fi(x

∣∣∣∣∣θi) =
β

αi
i

Γ(αi)
(x − a0i)

αi−1e−βi(x−a0i) (3)

where all the parameters, namely ω and θi(αi, βi, a0i), pproximately seven parameters, are
jointly estimated from the overall extreme flood series, including historical extraordinary
floods by the Simulated Annealing Algorithm (SAA); detailed in Zeng et al., 2014 [23],
minimizing the differences between empirical and theoretical cumulative probabilities. It
should be noted that the parameters θi(αi, βi, a0i) can be represented by the commonly-used
statistical parameters mean, EXi, coefficient of deviation, Cvi, and coefficient of skewness,
Csi, which are convenient and visibly manifest flood sample statistical characteristics. The
original parameters of P-III distribution and statistical parameter conversion formulas are
illustrated by: ⎧⎨

⎩
EXi = a0i + αi/βi
Cvi =

√
αi/(βia0i + αi)

Csi = 2/
√

αi

(4)

3.2. Bivariate Copula Functions

Traditional flood frequency analysis usually focuses on individual flood series, and
a bivariate assessment of peak discharge and flood volume is not commonly included.
A joint consideration of peak discharges and flood volume is, however, crucial when
assessing the flood event risks for flood control reservoirs. Moreover, the joint distribution
construction is quite difficult, especially for two non-independent random variables. Thus,
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the copula function as a powerful tool is frequently used by hydrologists for modelling,
while jointly considering peak discharge and flood volume without any restrictions on
marginal distributions.

The theory of the copula function was proposed by Saklar (1959) [40], and the copula
function is found to be multifunctional for constructing joint distribution functions because
it allows a variety of independent marginal distributions [41–43]. Based on Sklar’s theo-
rem [40], in this study there are two dependent variables, Q and W, representing flood peak
and flood volume, respectively, and they can be characterized by the associated dependence
function copula, which can be expressed as:

F(q, w) = Cθ(FQ(q), FW(w)) = Cθ(u, v) (5)

where u = FQ(q) = P(Q ≤ q) and v = FW(w) = P(W ≤ w) are the marginal cumulative
distribution functions of univariate random variables X and Y, respectively; The bivariate
joint probability distribution function, F, is expressed with the univariate marginal dis-
tributions and the dependence copula function, Cθ , where θ is the parameter of copula.
Moreover, if FQ(q) and FW(w) are continuous, then copula, C, is unique [43] and captures
the dependencies among the random variables. For an extended mathematical introduction
and practical approach and details of the copula functions, readers can follow Nelsen
(2006) [42], Durante and Sempi (2015) [44], and Salvadori et al. (2007) [45].

Many copula families are frequently employed by hydrologists for modeling extreme
flood events, including Archimedean, elliptical, Plackett, and extreme value [46]. The
Archimedean family is quite popular due to its massive variety of families, and it is
well-adapted for establishing the bivariate joint dependency constructures of the extreme
flood characteristics. It is noteworthy that considering the tail dependence in selecting
the optimal copula function is of great importance for providing the best fit to flood
samples [47]. Thus, in this work, we introduce and test three Archimedean families, i.e.,
Gumbel–Hougaard (G–H), Clayton, and Frank, for constructing the joint distribution of
annual flood characteristics, flood peak discharge, and flood volume series. The three
copula functions describe different types of features of dependence structures. For instance,
the G–H copula displays a strong capability to model upper-tail dependency, and the
Clayton copula is more suitable for modelling lower-tail dependency. On the contrary, the
Frank copula exhibits higher versatility and has no tail dependency [48]. In this study, we
focus on modeling the extreme flood events and the exceedance probabilities of large flood
events, which are of more interest for reservoir flood management. Thus, the G–H copula
is selected to model the dependence of the Q-V pair, and the copula dependence parameter
θ is estimated using the relationship between Kendall’s tau and θ. The mathematical
expression for the bivariate G–H copulas function is illustrated below:⎧⎨

⎩ Cθ(u, v) = exp
{
−
[
(− ln u)θ + (− ln v)θ

]1/θ
}

, θ ∈ [1, ∞)

τ = 1 − θ−1
(6)

3.3. Goodness of Fit for Models

For the selected copula to be admissible and capable of depicting the dependency
modeling of two extreme flood series, the copula functions are needed to conduct the
goodness-of-fit for evaluating the validity. In this study, the Kolmogorov–Smirnov (K–S)
test [49] is adopted for the goodness-of-fit test. Thus, the definition of the K–S test is
illustrated in the following.

The K–S test statistic D is defined as:

D = max
1≤k≤n

{∣∣∣Ck − mk
n

∣∣∣,
∣∣∣∣Ck − mk − 1

n

∣∣∣∣
}

(7)
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where Ck is the copula value of the joint observed flood peak and the flood volume pairs
samples (q, w), mk is the number of the (q, w) pairs samples, which simultaneously satisfy
the conditions of Q ≤ q and W ≤ w, and n is the sample size. Then, if the statistic D exceeds
the critical value at 5% confidence level, it rejects the null hypothesis and reveals that the
distribution cannot model the extreme flood variables well.

3.4. Bivariate Nonstatioarny Return Period

In the univariate case, extreme flood events for a specific return period are extremely
important for the reservoir’s design, and the return period is usually defined as a mean
inter-arrival time estimation of events exceeding a dangerous flood threshold. Thus, the
univariate return period of two variables, flood peak, Q, and flood volume, W, with
thresholds q and w, respectively, are given by:

TQ(q) =
1

1 − FQ(q)
, TW(w) =

1
1 − FW(w)

(8)

In a bivariate domain, in contrast to the univariate case, an extreme flood event can be
defined as critical if either flood peak or flood volume exceeds a design flood threshold, or if
both flood variables are larger than the prescribed values. Hence, as eight types of possible
bivariate joint flood events are proposed by Salvadori and De Michele (2004) [50], the joint
“OR” and “AND” return periods (represented by OR-RP and AND-RP, respectively) are
two widely used approaches in hydrological applications [51]. They can be expressed
as follows:

TOR =
μ

P(Q > qorW > w)
=

μ

1 − Cθ(FQ(q), FW(w))
(9)

TAND =
μ

P(Q > qandW > w)
=

μ

1 − FQ(q)− FW(w) + Cθ(FQ(q), FW(w))
(10)

where μ is the average inter-arrival time between two consecutive events (equals 1 for
annual extreme events).

As suggested by Feng and Li (2013) [24], the univariate return periods, OR-RP and
AND-RP have the following comparison expression, which is given by:

TOR ≤ min
[
TQ, TW

] ≤ max
[
TQ, TW

] ≤ TAND (11)

In addition to focusing on the probability of both flood peak and flood volume simul-
taneously exceeding a certain threshold, the conditional probabilities of flood events are
also of great importance for reservoir operations obtained from the copula-based bivariate
analysis. The probabilities of flood volume, given flood peak exceeding a certain threshold,
are illustrated by:

P(W ≥ w|Q ≥ q) =
P(Q ≥ q, W ≥ w)

P(Q ≥ q)
=

1 − FQ(q)− FW(w) + Cθ(FQ(q), FW(w))

1 − FQ(q)
(12)

As the two return period approaches for bivariate joint distribution, the design flood
peak and volume value calculations are confused and ambiguous. Because the computation
of design flood hydrographs for reservoirs is carried out under the assumption that the
flood peak and volume events share the same return period, as suggested by Xiao et al.
(2007) [52], assuming that u = v, Equation (13) of the bivariate OR joint return period TOR
and joint copula distribution Cθ(u, v) can determine the u value. Then the inverse functions
of u = FQ(q) and v = FW(w) can be used to obtain the design flood peak and volume,
respectively, corresponding to the joint return period, TOR.
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4. Results and Discussion

4.1. Univarite Mixture Distribution Flood Frequency Analysis

Based on the heterogeneous diagnosis results of AMFP and 1-day AMFV series, the
1-day AMFV is modeled on the nonstationary flood frequency analysis using mixture
distribution, and the parameters of MD estimated by SAA are given in Table 3. For the
comparison of a stationary benchmark, we used the single-type Pearson type III distribution
to fit the AMFP and 1-day AMFV, and the parameters were estimated by the linear moment
method [53]. The P-III distribution and MD fitting curves of 1-day AMFV are displayed in
Figure 3. The curves indicate that the theoretical frequency curve fitted by MD is a little
farther from the upper floods than the P-III distribution. However, the P-III distribution
neglected most of the empirical flood data in the corner section, which results in greater
differences between the theoretical fitting results and the empirical frequencies compared to
MD. However, these small deviations may be overlooked by an inexperienced viewer, the
results of which could be quite considerable because even a tiny difference may bring out
a huge deviation in the design flood values, and hence contribute to different treatments
in flood risk management. Furthermore, the K-S test statistic value, with 0.1668 of MD,
is less than the value of 0.3409 with P-III distribution. We thereby suggest that the MD
applied in a nonstationary extreme flood series have better modeling performance and
improve the fitting capability. Thus, it is necessary to establish the nonstationary model
to provide scientific support for the flood control operation of the Longmen Reservoir
under the land use changes and the increasing construction of numerous soil and water
conservation projects.

Table 3. The estimated parameters of MD and P-III distribution in the Longmen Reservoir.

Flood α EX1 Cv1 Cs1 EX1 Cv1 Cs1

AMFP (m3/s) 265.77 2.88 6.04
1-day AMFV

(P-III) (108 m3) 0.12 2.3 5.2

1-day AMFV (MD)
(108 m3) 0.34 0.18 1.7 5.1 0.09 1.95 4.00

Figure 3. The fitting curves of MD and P-III distribution for 1-day AMFV.

Corresponding to the fitting results of MD and P-III distribution, the design flood
values with different univariate return periods are provided by graphical information (see
Figure 3) as well as by the numerical values summarized in Table 4. The results demonstrate
that, given the same return period, the design flood values estimated by MD are smaller
than those estimated by P-III distribution. Specifically, the reduced magnitude of 1-day
AMFV is approximately 3.1–15.2% between MD and P-III distribution with various return
periods. The results indicate that the design flood differences have a great implication
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for flood control operation, and the nonstationary flood frequency analysis should not
be negligible.

Table 4. The design flood values of MD and P-III distribution.

Flood Distribution
Return Periods (Year)

2000 1000 100 50 20 10

1-day AMFV
(108 m3)

P-III 3.02 2.61 1.34 0.99 0.58 0.32
MD 2.79 2.36 1.14 0.84 0.51 0.31

Difference (%) −7.6 -9.6 −14.9 −15.2 −12.1 −3.1

4.2. Fitting Bivariate Joint Distribution

In the above section, MD is used to obtain the nonstationary marginal distribution for
the nonstationary 1-day AMFV series, and the significant correlated dependence between
AMFP and 1-day AMFV is obviously visible, which supports the necessity for the bivariate
flood frequency analysis. Hence, the stationary bivariate copula function is constructed
based on the estimated marginal distributions of P-III distribution for both AMFP and
1-day AMFV. In contrast, in the nonstationary context, the copula-based joint distribution is
implemented using the P-III distribution for AMFP and MD distribution for 1-day AMFV
as the bivariate marginal distributions. The copula parameters, K-S statistical test, OLS,
and AIC results under stationary and nonstationary conditions are listed in Table 5. In
the nonstationary bivariate context, the applied G–H copula function passes the K-S test,
with the statistic D critical value of 0.1817 at the significant level of 0.05, but the copula
function model fails the test under the stationary condition. Additionally, the G–H copula
under the nonstationary condition is the best-fitted copula function, with smaller D, OLS,
and AIC values. Hence, the G–H is selected as the most reasonable function for modeling
the dependence structure between the AMFP and the nonstationary 1-day AMFV. The
Clayton copula and Frank copula functions have also been employed to model the bivariate
flood variables, and the fitting results, especially for the extraordinary flood events, are not
sufficient. Thus, the Clayton copula and Frank copula parts are not presented in this study.

Table 5. The G–H copula function fitting results under stationary and nonstationary conditions.

Cases Parameter (θ) K-S Test (D) OLS AIC

Stationary 6.26 0.3214 0.1371 −220.55
Nonstationary 6.26 0.1419 0.0604 −312.3

Figure 4a shows the fitting performance between the theoretical frequency estimated
by the optimum G–H copula and the empirical frequency points. Meanwhile, Figure 4b
displays the probability–probability plot (PP-plot) of the optimal G–H copula. The good
agreement exhibited in Figure 4a,b demonstrates that the selected G–H function has a
satisfactory fitting performance.

4.3. Estimating Bivariate Nonstationary Return Period and Design Flood

In light of the above mixture marginal distribution and the selected optimal G–H
copula function, the copula function joint distribution fitting results and the joint OR-
RP and AND-RP for AMFP and 1-day AMFV are illustrated by three-dimensional (3-D)
plots in Figure 5. In order to obtaining the bivariate joint return periods intuitively and
conveniently, Figure 6a,b displays the isolines of the flood peak-volume pairs for different
return periods under the joint OR-RP and AND-RP cases, respectively. Given a flood event
in a specific year, the joint return periods in the OR-RP and AND-RP cases are easy to
confirm, especially for extraordinary flood events. Taking the largest recorded flood in
1963 as an example, the joint return period of either the flood peak exceeding 4250 m3/s
or the flood volume exceeding 1.6 × 108 m3 is approximately 130 years, and the joint
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return period of both the flood peak-volume pair exceeding the corresponding threshold is
approximately 260 years. The univariate return period for the extreme flood event in 1963
is then 150 years, which lies between the OR-RP and the AND-RP.

(a) (b) 

Figure 4. (a) Fitting performance and (b) PP-plot between theoretical and empirical joint distributions.

 
(a) 

 
(b) (c) 

Figure 5. The 3D plots of the AMFP and 1-day AMFV pair for (a) copula function joint distribution,
(b) OR-RP, (c) AND-RP.
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(a) (b) 

Figure 6. The isolines of flood peak-volume pairs under joint (a) OR-RP and (b) AND-RP condi-
tions, respectively.

According to Equations (9) and (10), through the different univariate return period
combinations of AMFP and 1-day AMFV, the bivariate joint OR-RP and AND-RP can be
obtained, and their isolines are showed in Figure 7. Additionally, it is obviously visible
that, when assigning the same univariate return period, the joint OR-RP is always smaller
than the univariate return period; in contrast, the associated AND-RP is greater than the
univariate return period. The results are consistent with the mathematical Formula (11).

 
(a) (b) 

Figure 7. The isolines of (a) OR-RP and (b) AND-RP, respectively, for different univariate return
periods of AMFP and 1-day AMFV pairs.

The design flood values for hydraulic engineering are also of utmost important. Be-
cause there are two joint return periods, the determination of bivariate design flood values is
difficult. As suggested by Li et al. (2013) [22], under the assumption that the flood peak and
the volume share the same return period for joint OR-RP, combing Equations (6) and (9),
the analytical formulas of bivariate design flood peak and volume are given by:

u = v = (1 − 1
TOR

)
2−

1
θ

(13)

Q = F−1
Q (u), W = F−1

W (v) (14)

The design flood values can be calculated for AMFP modeling by P-III distribution
and 1-day AMFV modeling by univariate mixture distribution, and the optimal bivariate
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G–H copula functions with different return periods (T = 20, 50, 100, 1000, 2000 years) are
listed in Table 6. It is worth noting that the bivariate design floods for both flood peak
and flood volume are larger than the ones in the univariate P-III distribution and MD
conditions, respectively. Compared to the univariate condition, the different percentages of
AMFP design flood estimated by bivariate joint distribution increase from 2.29% to 9.3%, in
line with the decrease of the return period as well as the 1-day AMFV.

Table 6. Design flood results under univariate and bivariate nonstationary conditions.

Return Period (yr)

Design Flood of Univariate
Marginal Distribution

Design Flood of Bivariate Joint
Distribution

Difference (%)

Q (m3/s) W1 (108 m3) Q (m3/s) W1 (108 m3) Q (m3/s) W1 (108 m3)

2000 9332 2.79 9546 2.86 2.29 2.51
1000 7996 2.36 8208 2.43 2.65 2.97
100 3855 1.14 4038 1.19 4.75 4.39
50 2752 0.84 2920 0.89 6.10 5.95
20 1473 0.51 1610 0.55 9.30 7.84

An attempt to explore the mathematical rule of design floods between the two cases
was made, and it was found that Equation (13) is always smaller than the joint distribution
cumulative probability, which is given by:

Cθ(u, v) = 1 − 1
TOR = TQ = TW

(15)

which indicates that the smaller cumulative probability directly results in an increase of
design flood values under bivariate copula joint distribution.

As the traditional univariate stationary P-III distribution is beyond the above constraint
and its calculation is independent of the copula joint distribution, it is worth pointing out
that the design flood values of 1-day AMFV under univariate stationary P-III distribution
(see Table 4) are larger than the ones estimated by bivariate nonstationary joint distribution
(see Table 6). On the other hand, the design flood values of AMFP modelled by bivariate
joint distribution are greater than the ones in a stationary context.

4.4. Estimating Joint and Condtional Probabilities

The estimation of joint and conditional probabilities for extreme flood events plays
a vital role in reservoir flood control operation management. Simultaneous considera-
tion of the probability of flood peak and flood volume exceeding a certain threshold can
be invaluable. The joint exceedance probability is the reciprocal value of the joint OR
return period. Thus, for the extraordinary flood event in 1963, the joint OR probability
of both the flood peak exceeding 4250 m3/s and 1-day AMFV exceeding 1.6 × 108 m3 is
approximately 0.77%.

Considering reservoir flood control, the flood frequency analysis not only focuses
on considering the joint probabilities of Q-V pairs exceeding a certain threshold, but also
aims to estimate the conditional probabilities of extreme flood events. The outcomes of
conditional probabilities are shown in Figure 8. The conditional probability curves of
1-day AMFV when AMFP exceeds a certain threshold are exhibited in Figure 8a. We
focus exemplarily on the AMFP exceeding the design flood values with a 100-year (design
standard) return period. The conditional probabilities of 1-day AMFV with 100-year and
2000-year return periods are 88% and 5.02%, respectively. The conditional probability
results of 1-day AMFV with different return periods when the AMFP exceeds the design
flood values with 100-year (design standard) and 2000-year (check standard) return periods,
respectively, are summarized in Table 7. The results indicate that, with the high correlation
between AMFP and 1-day AMFV, the probability of large flood volume values with the
same return period would be high if an extraordinary flood peak occurred.
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(a) (b) 

Figure 8. The conditional probability curves of (a) 1-day AMFV and (b) AMFP.

Table 7. The conditional probabilities of 1-day AMFV when the AMFP exceeds the design flood
values with 100-year and 2000-year return periods.

Return Period (Year) 2000 1000 100 50 20

Design flood Wp (108 m3) 2.79 2.36 1.14 0.84 0.51

Conditional
probability (%)

100-year AMFP 5.02 10.05 88.00 99.63 99.99

2000-year AMFP 88.51 99.60 99.99 99.99 99.99

5. Conclusions

This study aimed to investigate the influence of non-stationarity on flood characteris-
tics, considering the dependence between flood peak and flood volume under a changing
underlying surface, using nonstationary univariate and bivariate flood frequency analysis
models in the Longmen Reservoir in North China. The following main conclusions can be
drawn from this study.

(1) The 1-day AMFV exhibits the highest significant correlation with AMFP, which demon-
strates the desirability and indispensability of bivariate flood frequency analysis. In
addition, the underlying surface changes in the Longmen Reservoir contribute to the
heterogeneity of flood generation identified by the statistical methods and physical
basis analysis. A significant change point is detected in the year 1979 for 1-day AMFV,
but the AMFP is shown to be homogenous.

(2) From univariate nonstationary flood frequency analysis of 1-day AMFV, the fitting
performance of mixture distribution is superior to the traditional stationary P-III
distribution. Due to the increase of forest land area and some hydraulic engineering
construction, the design floods of 1-day AMFV with different return periods estimated
by MD are generally smaller than the ones estimated by P-III distribution.

(3) In the case of bivariate analysis, copula-based joint distribution was developed and
performed using the stationary P-III distribution for AMFP and nonstationary MD
for 1-day AMFV as marginal distributions. There is a relatively large increase for the
design floods estimated by bivariate nonstationary joint distribution compared with
the ones estimated in a univariate nonstationary context, which can be concluded and
proved by rigorous mathematical formula derivation. Furthermore, the results of joint
and conditional probabilities demonstrate that, assuming the flood peak and volume
share the same return period, the conditional probability of 1-day AMFV exceeding
the threshold is likely to be high when the AMFP exceeds the design flood associated
with the return period.
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Abstract: Due to climate change and human activities, the statistical characteristics of annual runoff
series of many rivers around the world exhibit complex nonstationary changes, which seriously
impact the frequency analysis of annual runoff and are thus becoming a hotspot of research. A variety
of nonstationary frequency analysis methods has been proposed by many scholars, but their reliability
and accuracy in practical application are still controversial. The recently proposed Mechanism-based
Reconstruction (Me-RS) method is a method to deal with nonstationary changes in hydrological series,
which solves the frequency analysis problem of the nonstationary hydrological series by transforming
nonstationary series into stationary Me-RS series. Based on the Me-RS method, a calculation method
of design annual runoff under the nonstationary conditions is proposed in this paper and applied to
the Jialu River Basin (JRB) in northern Shaanxi, China. From the aspects of rationality and uncertainty,
the calculated design value of annual runoff is analyzed and evaluated. Then, compared with the
design values calculated by traditional frequency analysis method regardless of whether the sample
series is stationary, the correctness of the Me-RS theory and its application reliability is demonstrated.
The results show that calculation of design annual runoff based on the Me-RS method is not only
scientific in theory, but also the obtained design values are relatively consistent with the characteristics
of the river basin, and the uncertainty is obviously smaller. Therefore, the Me-RS provides an effective
tool for annual runoff frequency analysis under nonstationary conditions.

Keywords: frequency analysis; annual runoff; nonstationary; mechanism-based reconstruction

1. Introduction

River runoff, as the most important form and component of water resources, has
changed significantly in a number of rivers worldwide due to the impact of climate change
and human activities. The statistical characteristics of annual runoff series exhibit complex,
nonstationary changes. This change not only poses a serious threat to regional water
resources security [1–4] but also leads to the inability to analyze, predict, and manage
water resources effectively, which is because the analysis method of the traditional design
annual runoff based on the stationary assumption is no longer applicable. If the traditional
frequency analysis method is forcibly used to calculate the design annual runoff and taken
as the basis of hydraulic engineering design and water resources planning and management,
the rationality and safety of design or planning will be questioned. In China, for example,
the annual runoff of many rivers shows a decreasing trend. If this reduction is ignored,
the calculated design value will be significantly larger. The larger design annual runoff is
bound to lead to misjudgment of water resources shortage, which will further aggravate
the current serious water safety problem.

Many scholars have realized the nonstationary problems and carried out correspond-
ing research work. The most representative is the time-varying moments method [5–7],
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whose basic idea is to assume that the distribution type of hydrological variable is un-
changed, but the statistical parameters of the distribution change over time or other co-
variates. Vogel et al. [8] analyzed the time-varying trend of flood peak discharge series
and design flood in the United States using a time-varying moments model established
by the exponential model combined with the two-parameter lognormal distribution. They
concluded that the flood magnitude in many areas is increasing, and the 100-year flood
may become more common. Zeng et al. [9] constructed the time-varying moments model
of flood series of Xidayang reservoir based on P-III distribution and verified that the time-
varying P-III distribution model fits better to the flood series than the traditional P-III curve.
The generalized additive models for location, scale, and shape (GAMLSS) [10] provide a
way for the time-varying moments method to link the physical causes, that is, to establish
the relationship between statistical parameters and physical factor covariates, including
the climate change and human activity factors [11,12].

Although the time-varying moments method can describe the nonstationary changes
of hydrological series well, it is difficult to apply in practice because there might be
different design values every year for the same design standard [13,14]. For example,
Villarini et al. [15] found that the 100-year design flood in the Little Sugar Creek in the
United States could range from the minimum of 2.1 m3 s−1 km−2 (1957) to the maximum
of 5.1 m3 s−1 km−2 (2007). In order to solve this problem, many scholars have proposed
the methods of expected waiting time (EWT) [16,17] and expected number of exceedance
(ENE) [18,19] to redefine the return period concept. Some studies have also proposed
equivalent reliability (ER) [20], design life level (DLL) [21], and average design life level
(ADLL) [22] methods based on the concept of reliability. These methods effectively solve the
multi-value problem of hydrological design, but some controversy remains. Some studies
believed that the trend exhibited in an observed hydrological series, which is often regarded
as a type of nonstationarity, may actually be periodic frequency swings in a stationary
process [23]; even the word “trend” is not well defined [24]. In practice, the design quantile
obtained for a given reliability over the design lifetime varies with the choice of initial time
and the curve type used for fitting the relationship between the statistical parameters and
the covariates. This means that the reliability of the future design values depends heavily
on the time-varying characteristics of statistical parameters; however, the uncertainty about
the prediction of statistical parameters is greatly increased due to the lack of ergodicity
of the time series. As Serinaldi and Kilsby [25] pointed out, when the model structure
cannot be inferred in a deductive manner, and nonstationary models are fitted by inductive
inference, the model structure introduces an additional source of uncertainty so that the
resulting nonstationary models can provide no practical enhancement of the credibility
and accuracy of the predicted extreme quantiles, whereas possible model misspecification
can easily lead to physically inconsistent results.

Obviously, the core problem of the nonstationary frequency analysis problem is the
non-simplicity of the sample series. If the nonstationary sample series can be converted
into a stationary one, all the aforementioned problems will no longer exist because there are
already mature analytical theories and technical methods for this simple series. To retain the
advantages of traditional frequency analysis method and avoid the weaknesses of current
nonstationary frequency analysis methods, Qin and Li [26] proposed a Mechanism-based
Reconstruction (Me-RS) method to reconstruct nonstationary series into stationary series
according to the physical mechanism. In this paper, we propose a complete nonstationary
frequency analysis method for annual runoff series based on the theory of Me-RS. We
then took the nonstationary annual runoff series in the Jialu River Basin (JRB) in northern
Shaanxi as an example and analyzed the uncertainty of the deduced design annual runoff by
Bootstrap method to verify the practicability and reliability of the nonstationary frequency
analysis method proposed in this paper.
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2. Methodology

2.1. Me-RS Method

The core thought of the Me-RS method is based on the assumption that “the nonsta-
tionary changes of hydrological variable Y is caused by the nonstationary changes of its
influencing factors.” For example, the trend variations in runoff may be due to the trends
in some of its meteorological factors, such as precipitation, temperature, etc., while the
abrupt changes in some specific stages may be caused by the intensification of some human
activities, such as the sudden increase of water consumption due to the construction of
irrigation projects, and the adjustment and utilization of runoff by reservoir projects. From
the perspective of causality, these meteorological factors or human activity factors are the
root of runoff change, and these influence factors always act on runoff in their specific ways.
In the Me-RS method, the action function describes the mechanism of the influence factor
on the research variable is defined as the Mechanism function.

In general, the change in a hydrological variable Y is the result of the influence of
multiple factors X1, X2, . . . , Xi, as shown in Figure 1. Under the condition that the
influence of other factors remains unchanged, the effect of single influence factor Xi on
the hydrological variable Y is described as a Mechanism function fi(Xi). The Mechanism
function, which represents the physical mechanism of hydrological phenomena, will never
change. For instance, in the flow discharge Q = AV, A is the cross-sectional area, and V is the
flow velocity. When V or A or both change with time, Q(t) also changes with the values of
A(t) or V(t) or both, but the Mechanism function fA(·) or fV(·) remains unchanged. In other
words, V and A may change with time in the specific environment, but the mechanism that
the flow discharge equal to the multiplication of these two Mechanism functions will never
change. Therefore, the physical mechanism will remain unchanged no matter how the state
of Xi changes with time.

Figure 1. The relationship between hydrological variable Y and its influencing factors.

According to the above concept of Mechanism function, the relationship model be-
tween Y and the Mechanism function of multiple influence factors can be established.
Due to the complexity of hydrological systems and the analytical capability, statistical
models are usually used to describe the relationship between Y and its explanatory vari-
ables. There are two general forms of statistical models: the superposition model and the
multiplication model.

Y(t) =
N

∑
1

fi(Xi(t)), (1)
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Y(t) =
N

∏
1

fi(Xi(t)), (2)

where N is the number of influencing factors of hydrological variable Y, and fi(Xi(t)) is the
Mechanism function of influencing factor Xi. Assuming that n of N influence factors are
known, the effect of the remaining N-n unrecognized influence factors shows randomness
and is denoted by ξ. Then, the Equations (1) and (2) can be written as:

Y(t) =
n

∑
1

fi(Xi(t)) + ξ, (3)

Y(t) =
n

∏
1

fi(Xi(t))ξ. (4)

Considering the universal interaction among the hydrological elements in the hydro-
logical system, there is no absolute independence among the explanatory variables, and
their interactions make the hydrological system exhibit a highly complex nonlinear state.
Therefore, the multiplication model is more applicable to describe the hydrological system
than the superposition model. Since the nonstationary change of Y(t) is caused by the non-
stationary changes in some influencing factors, if the effects of all the nonstationary factors
are removed from Y(t), as shown in Equation (5), the remainder will show stationarity.

Y(t)
∏m

1 fi(Xi(t))
=

n

∏
m+1

fm+1(xm+1(t))·ξ = δ, (5)

where m is the number of nonstationary influencing factors. The right side of Equation (5)
is the multiplication of the Mechanism functions of the remaining stationary factors and
other unrecognized influence factors, which is denoted as δ, and is usually considered as
a natural random variable with a probability distribution characterized by the mean μ and
variance σ2. If only a subset of the nonstationary factor X1, X2, . . . , Xl (l < m) is considered,
it is still a nonstationary series. However, when the most important nonstationary factors
are removed, the remaining series can achieve the statistical stationary state. According to
the Me-RS idea, the Me-RS function of Y(t) is defined as

RS(t) =
Y(t)

∏m
1 fi(Xi(t))

. (6)

The new stationary series reconstructed by the Me-RS function is called the Me-RS
series, denoted as RSt. Theoretically, when all the influencing factors causing nonstationary
changes in Y are identified (i.e., l = m), and the Mechanism functions are constructed
accurately, the Me-RS series {RSt} (t = 1, 2, . . . ) calculated by the Me-RS function is
stationary and can be used in any case where a stationary series is required. Although
it is impossible to obtain an absolute stationary process due to the limitations of our
understandings and existing methods, it is practical to achieve the statistical stationary
state. As the correct explanatory variable Mechanism functions are continuously added to
the Me-RS function, the Me-RS series will gradually tend to be statistically stationary and
closer to a random noise.

Due to the causal relationship between the research variable Y and its influence
factors, the nonstationarity (linear, nonlinear, or abrupt change) of the research variable Y is
consistent with the corresponding nonstationarity of the influence factors. After removing
the influence of the nonstationary factors according to the Me-RS method, the numerical
characteristic of the Me-RS series is a constant, i.e.,

E[RS(t)] = E
[

Y(t)
∏m

1 fi(Xi(t))

]
= E(δ) = μ, (7)

Var[RS(t)] = Var
[

Y(t)
∏m

1 fi(Xi(t))

]
= Var(δ) = σ2. (8)
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Therefore, the Me-RS method is not limited to a specific type of nonstationarity and is
effective for any kind of nonstationary change.

2.2. Frequency Analysis of Nonstationary Annual Runoff Series

After obtaining the stationary Me-RS series, the traditional method can be used to
conduct the frequency analysis, including the distribution and parameter estimation, and
then obtain the design value RSp of the Me-RS series under a certain standard (frequency or
return period). Based on the assumption that “the nonstationary change of the hydrological
variable Y is caused by the nonstationary change of its influence factor,” as long as the
value of the influence factor Xi at a certain time is determined, the design value of the
nonstationary annual runoff series Y(t) can be obtained according to the definition of the
Me-RS function as follows:

Yp = RSp·
m

∏
i=1

fi

(
Xi,design

)
, (9)

in which the Xi,design is the value of the influence factor at the design stage, which can be
the current value or the predicted value.

2.3. Uncertainty Analysis Using the Bootstrap Method

In order to provide relatively robust design results to engineering design and water
resources management, it is necessary to evaluate the rationality of the Me-RS method
from the perspective of uncertainty of design value. We used the Bootstrap method [27]
to quantitatively analyze the uncertainty of the design value, that is, resample the Me-RS
series RSt N times to obtain N sample series, calculate the design value RSp,j (j = 1, 2, . . . , N)
of each sample series, obtain the design annual runoff Yp,j (j = 1, 2, . . . , N) according to

Equation (9), and then deduce the uncertainty confidence interval
(

Y∗
p,Nα/2, Y∗

p,N(1−α/2)

)
of design value under the significance level α.

2.4. Nonstationary Analysis

Strictly speaking, the Mechanism function should be determined by theoretical deriva-
tion or experimental analysis. However, due to the complexity of hydrological behaviors
and our limited understandings, it is difficult to obtain the absolutely accurate mathe-
matical expressions of the Mechanism function that represents the physical mechanism
of hydrological behaviors. Since the influence law between hydrological elements can be
implied in the statistical law, the statistical relationship between Y and Xi can be used to
estimate the Mechanism function. It is clear that the estimated Mechanism function has
certain uncertainty, so the nonstationary test of RSt is necessary. The tests used in this paper
include the Mann-Kendall (M-K) test [28,29] for the trend analysis of the first moment, the
Pettitt test [30] for the change-point analysis, and the Breusch-Panan (B-P) test [31] for the
trend analysis of the second moment. The significance level α of each test is 0.05.

3. Study Area and Data

3.1. Study Area

In this paper, we took the JRB in the Yulin region of Shaanxi Province in China as the
study area and conducted nonstationary frequency analysis of the annual runoff series by
the Me-RS method. The Jialu River is located along the Yellow River between Hekou and
Longmen Station and the southern edge of the Mu Us Desert. The river originates from
Duanqiao Village, Yulin City, Shaanxi Province, and flows from northwest to southeast
and joins the Yellow River at Muchangwan in Jia County. The JRB has an approximate
river length of 93 km and a drainage area of 1134 km2 and lies between the geographical
coordinates of 37◦58′–38◦29′ N and 109◦56′–110◦32′ E (Figure 2). Shenjiawan Hydrological
station is the control station for this area. The average annual precipitation in this basin is
about 402.3 mm, 75% of which falls during the flood season. Most of the rainfall is in the
form of short, intense rainstorms.
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Figure 2. Geographic location of the JRB and meteorological and hydrological data.

3.2. Data

In the Loess Plateau area where the JRB is located, the serious water and soil loss are
common. To control this phenomenon, dozens of check dams have been built in JRB. As
an engineering measure of water and soil conservation, the check dams can intercept and
deposit the sediment in front of the check dams, and the upstream water is slowly drained
out by the horizontal pipe. However, in fact, the upstream water is often stored in front
of the dam for daily use of residents; that is, the check dam is used as a small reservoir.
The number of check dams is very large, with more than 20,000 in Yulin, Shaanxi Province
and more than 700 in JRB alone. The continuous construction of the check dam projects
results in a continuous downtrend of annual runoff series in JRB, as shown in Figure 3. The
nonstationarity test methods in Section 2.4 were adopted to analyze the nonstationarity of
the annual runoff series in JRB, as shown in Table 1.

Figure 3. The annual runoff series of the JRB from 1959 to 2010.
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Table 1. The nonstationary tests of the annual runoff series in JRB.

Object
M-K Test for Mean B-P Test for Variance Pettitt Test for Change Point

Z Zα χ χ Change-Point p-Value

Annual runoff series −7.49 1.96 23.27 3.84 1982 6.80 × 10−8

Annual precipitation series 0.50 1.96 0.01 3.84 - -

According to Figure 3 and Table 1, the annual runoff series of the JRB exhibits a strong
nonstationary change. The first and second moments both show a significant trend, and
an abrupt change occurred in 1982. Before the Me-RS analysis of annual runoff series, it is
necessary to identify the main influence factors and determine the Mechanism functions.
The influencing factors of runoff mainly include climatic factors and underlying surface
factors. Among the climatic factors, precipitation is a direct factor affecting the runoff. The
annual precipitation series from 1969 to 2010 was collected in this study and is shown in
Figure 4. The same nonstationary analysis is shown in Table 1.

Figure 4. The annual precipitation series of the JRB from 1969 to 2010.

According to the test results in Table 1, there is no significant nonstationary change in
annual precipitation in JRB, so precipitation is not the main influencing factor causing the
nonstationary change in runoff in JRB. Therefore, we turned our attention to the underlying
surface factor. Through the field survey, it is concluded that human activities, such as the
soil and water conservation engineering measures represented by check dams constructed
in JRB in recent years, are the cause of the nonstationarity in annual runoff. The influence
of the check dams on the annual runoff is believed to be controlled by the storage capacity
and the basin area of the check dams. Therefore, the reservoir index (RI) proposed by López
and Francés [11] is used to quantify the impact of check dams.

I =
N

∑
i=1

(
Ai
AT

)(
Ci
CT

)
, (10)

where Ai is the control area of each reservoir, AT is the basin area, Ci is the capacity of each
reservoir, CT is the average annual runoff of the basin, and N is the number of reservoir in
the basin. The RI series (Figure 5) exhibits a monotonic upward trend.
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RI

Figure 5. Time-varying characteristic of the RI series in the JRB.

4. Reconstruction of the Annual Runoff Series

4.1. The Mechanism Function of RI

As pointed out in Section 2.4, there are almost no absolutely accurate Mechanism
function determined by theoretical derivation or experimental analysis at present. Still, we
can estimate the approximation of the Mechanism function one by one through regression
approach. We first established the relationship between Y and X1, f 1(X1(t)), as the Mecha-
nism function of X1 and then removed the influence of the first factor, i.e., Y(t)

f1(X1(t))
; then,

the Mechanism function f 2(X2(t)) of the second factor X2 was established according to the
relationship between the remained series Y(t)

f1(X1(t))
and the second factor X2; this process

was repeated iteratively until the reconstructed series achieved the stationarity. In the case
of this study, RI was taken as the main factor causing the nonstationary change in annual
runoff in JRB, and the Mechanism function of RI was estimated by regression analysis, as
shown in Figure 6 and Equation (11).

f (RI) = e−78.79RI , (11)

RI

Figure 6. The estimated Mechanism function of the RI on the annual runoff.

4.2. The Me-RS Function and the Me-RS Series

After obtaining the Mechanism function f (RI), the Me-RS function of the annual runoff
in JRB was determined according to Equation (6) as follows:
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RSRI(t) =
R(t)

e−78.79RI(t)
. (12)

We input the values of annual runoff and RI into the Me-RS function to obtain the Me-
RS series of annual runoff, as shown in Figure 7. Since the influence of nonstationary factor
RI is removed, the Me-RS series of annual runoff should be stationary; otherwise, other
nonstationary factors should continue to be considered. Therefore, the three nonstationary
test methods introduced in Section 2.4 were used to analyze the stationarity characteristics
of the Me-RS series. The test results are list in Table 2.

Figure 7. Comparison of the Me-RS series and the original annual runoff series in JRB.

Table 2. The nonstationary tests of the Me-RS series of the annual runoff in JRB.

Object
M-K Test for Mean B-P Test for Variance Pettitt Test for Change Point

Z Zα χ χ Change-Point p-Value

Annual runoff series −7.49 1.96 23.27 3.84 1982 6.80 × 10−8

Me-RS series −0.97 1.96 0.12 3.84 - -

Compared with Table 1, after the reconstruction with RI, the original annual runoff se-
ries with significant first and second moment trends and significant change-point achieved
the stationarity in all aspects, which verified that the Me-RS method is effective for any
kind of nonstationary change. In this case, the Me-RS series reconstructed by single-factor
RI has excellent stationarity, so no additional factors are added.

5. Frequency Analysis of the Annual Runoff Series

5.1. Calculation of the Design Value of the Me-RS Series

Once the Me-RS series was tested to be stationary, the design value of the Me-RS series
could be calculated according to the traditional frequency analysis method. We selected
four distributions, the Pearson type III (P-III), Weibull (WEI), Log-normal (LNO), and
Gumbel (GU) distributions, as the alternative distributions of the Me-RS series (Table 3).

The distribution parameters were estimated by the L-moments method [32]. To
evaluate the fitting accuracy of the four alternative distributions, the Kolmogorov-Smirnov
test [33], the Nash-Sutcliffe efficiency [34], and the root mean square error were used to
determine the optimal distribution. Based on our analysis, the optimal distribution of the
Me-RS series of annual runoff in JRB is the WEI distribution (Table 4), and the Q-Q plot in
Figure 8 also shows the good fitting effect of WEI distribution.
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Table 3. Probability density functions of the alternative distributions.

Distribution Probability Density Function

P-III f (x) = 1
σ|μκ|Γ(1/κ2)

(
x−μ
μσκ + 1

κ2

) 1
κ2 −1

exp
[
−
(

z−μ
μσκ + 1

κ2

)]
,−∞ < x< ∞, σ >0, κ �= 0, x−μ

μσκ + 1
κ2 ≥ 0

WEI f (x) = κ
σ

(
x−μ

σ

)κ−1
exp

[
−
(

x−μ
σ

)κ]
, x > 0, μ > 0, σ > 0,−∞ < κ < ∞

LNO f (x) = βμ

(x−μ)σ
√

2π
exp

[
−ln[(x−μ)−κ]2

2σ2

]
, x > μ, σ > 0

GU f (x) = 1
σ exp

{
−
(

x−μ
σ

)
− exp

[
−
(

x−μ
σ

)]}
,−∞ < x < ∞,−∞ < μ< ∞, σ >0

Table 4. Parameter estimation of the optimal distribution for the Me-RS series of the JRB annual runoff.

Object Optimal Distribution Estimated Parameters

Me-RS series RSRI,t WEI μ = 2889.237, σ = 9846.289, κ = 2.598

Figure 8. Q-Q plot of the theoretical and empirical quantiles for the Me-RS series of the JRB an-
nual runoff.

According to the optimal distribution and the estimated parameters, we can determine
the design quantiles for various return periods in the Me-RS series (Figure 9).

5.2. Calculation of the Design Annual Runoff

Once the design value of the stationary Me-RS series was calculated, and we could
then determine the corresponding quantiles for the original nonstationary annual runoff
series according to Equation (9). Therefore, it was necessary to determine the value of the
RI at the design stage. Considering that a large number of check dams has been constructed
in JRB, and the construction has been saturated in recent years, the RI calculated based on
the control area and the storage capacity of the check dams should be basically maintained
at the level of 2010, so the RI data in 2010, as shown in Figure 5, were taken as the value
at the design stage. Then, according to Equation (9), the design annual runoff is shown in
Figure 10.
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Figure 9. The design quantiles of different return periods of the Me-RS series in JRB.

Figure 10. The design values of different return periods of the Me-RS series in JRB with the 95%
bootstrapped confidence intervals.

6. Discussion

6.1. Rationality Analysis of the Design Annual Runoff

The rationality of the design value obtained by the Me-RS method can be analyzed
from two aspects. One is from the theoretical perspective: compared with the traditional
frequency analysis method, the Me-RS method only conducts the de-nonstationarity trans-
formation on the sample series to ensure that the sample series used for frequency analysis
is the simple sample. This method does not change the approaches of estimating the pop-
ulation and calculating the design values. Moreover, the physical meaning of the Me-RS
function RS(t) is the research variable under the influence of unit Mechanism function value.
Since the design value RSp is only a sample of the RSt population, by using the Equation (9),
the RSp is expanded by the Mechanism function value of the design stage, and the obtained
design value of the nonstationary annual runoff series is the result of the action of the
influence factors under the design conditions. The second method is from the perspective
of the design value: as shown in Figures 4 and 5, the precipitation has stayed the same since
1982, but with the continuous construction of the check dams, the water storage volume
and the water surface area has gradually increased, resulting in the increase of the total
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evaporation and the decrease of annual runoff. The average annual runoff measured in
recent 30 years and 20 years are 33.7 million m3 and 30.9 million m3, respectively, which is
basically equivalent to the 50%-frequency design value 26.1 million m3, indicating that the
calculation results are basically consistent with the reality.

6.2. Comparison with the Traditional Frequency Analysis Method

As the current nonstationary frequency analysis theories are far from mature, many
hydraulic engineering methods are still designed using the traditional frequency analysis
method regardless of whether the sample series is stationary, which is called here the direct
traditional frequency analysis method (DTFAM). In order to compare the difference be-
tween the Me-RS method and the DTFAM, we also used the DTFAM to calculate the design
values of the annual runoff of JRB. The optimal distribution and distribution parameters of
the annual runoff series are listed in Table 5. The design values of different return period
are shown by the black line in Figure 10. In practice, it is usually necessary to analyze the
design values of wet, medium, and dry years, so the results at the frequencies of 20%, 50%,
and 80% are list in Table 6. The results of the two methods are greatly different, and the
reasons mainly include two aspects. On the one hand, for the Me-RS method, the current
RI value is used to calculate the annual runoff design value according to Equation (9).
Therefore, the obtained design values reflect the state after the annual runoff series has
been reduced. However, the sample series used by the traditional method covers the whole
downtrend process of the annual runoff series, which cannot reflect the state of the present
stage nor the state of any moment but the average state over the years. On the other hand,
the ranking of each sample point has changed after the conversion of the original series to
the Me-RS series according to Figure 7. For example, in 1967, from the second place in the
original series to the fifth place in the Me-RS series, the change in ranking will also lead to
a change in the design value. According to the measured annual runoff data, the design
annual runoff at the 50% frequency obtained by the DTFAM is 48.5 million m3, which is
44% or 57% larger than the measure average annual runoff values over recent 30 or 20 years,
respectively, and far away from the reality.

Table 5. Parameter estimation of the optimal distribution for the original annual runoff series of JRB.

Object Optimal Distribution Estimated Parameters

Annual runoff series Rt WEI μ = 1449.781, σ = 4649.454, κ = 1.166

Table 6. Nonstationary design values and their uncertainties at different frequencies.

Method
Design Value (Width of 95% Confidence Intervals)/104 m3

Frequency of 20% Frequency of 50% Frequency of 80%

Me-RS method 3357.52
(571.35)

2610.38
(514.76)

1920.62
(450.62)

Traditional method 8442.30
(3124.45)

4845.28
(1866.65)

2734.43
(1133.84)

According to the Bootstrap method described in Section 2.3, we further analyzed and
calculated the uncertainty interval of the design annual runoff deduced by the Me-RS
method and the DTFAM, as shown in the shadow in Figure 10. As the return period in-
creases, the uncertainty of the design value increases. However, the uncertainty change rate
of the Me-RS method is significantly smaller than that of the DTFAM, and the uncertainty
interval width is also far smaller. For the frequency of 50%, the 95% confidence intervals
of design value calculated by the DTFAM vary from 40.3 million m3 to 58.9 million m3,
and even the lower limit is 19% or 30% larger than the measure average annual runoff
values over recent 30 or 20 years, respectively. If the calculation results of DTFAM are
used for water resources planning and management, it will have a great impact on water
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security. It is not consistent with the statistical principle to analyze the nonstationary
hydrological series by using the traditional method based on stationary samples, so the
obtained design values cannot be guaranteed to conform to the reality. Therefore, the direct
use of nonstationary sample series for traditional frequency analysis should be avoided.

6.3. Application Problem of the Me-RS Method

According to the above discussion, the Me-RS method is obviously superior to the
DTFAM no matter the theory, the coincidence between the design value and the measured
data, or the uncertainty of the design value. The main reason is that the Me-RS method
considers the physical cause of nonstationary changes of annual runoff series and obtains
the stationary sample series needed for the frequency analysis according to this so as
to ensure the correct use of the traditional frequency analysis method. However, the
design value is related to the state of the influence factor at the design stage, which brings
two problems. First, if the state of the influencing factors changes in the future, then the
project constructed at the current stage will inevitably encounter unsuitable problems; for
example, the check dams may be continuously silted in the future. Second, changes in
some new influencing factors, such as significant changes in rainfall, or in other factors
may lead to the unsuitable problem of the projects in the future.

For the first problem, the solution is to recalculate the new Me-RS series according
to the changed impact factor. Since the new Me-RS series still reflects the unit action
of the original factors, the design value can be recalculated combined with the existing
Me-RS series and then according to the new design value to analyze the countermeasures
of the hydraulic projects. The second problem can be discussed in two ways. If the new
nonstationary influencing factor is a hydrological element with observed data, we only
need to reconstruct the annual runoff series by the observed data, then recalculate the
design value and analyze the countermeasures of the hydraulic projects. However, if the
new factor has never been observed in the past, such as the influence of some human
activities that has never occurred, the Me-RS method fails because the influence has not
been recorded in history.

Based on the above discussion, it can be concluded that under the nonstationary
conditions, all the exiting hydraulic projects will encounter unsuitable problems, and the
Me-RS method can provide a reasonable basis for solving this problem.

7. Conclusions

Human activities and climate change lead to nonstationary changes in the originally
stationary hydrological series, which brings a theoretical bottleneck to hydrological fre-
quency analysis based on simple samples. As there is no effective solution at present,
engineers are still forced to use the traditional frequency analysis method to conduct fre-
quency analysis on the nonstationary hydrological series. However, the results cannot be
evaluated, so the safety and economy of the design scheme cannot be judged. The Me-RS
proposed in this paper provides an effective tool for annual runoff frequency analysis under
nonstationary conditions. The case study on the calculation of design annual runoff in
JRB shows that compared with the directly frequency analysis of the nonstationary hydro-
logical series, the Me-RS method not only has theoretical support, but also the obtained
design values are consistent with the actual condition and has much smaller uncertainty.
Furthermore, the Me-RS method can consider not only the current design conditions but
also the future design conditions.

The traditional frequency analysis method is mature in theory and has been tested by
engineering practice, while the Me-RS method can achieve good effect because it combines
physical cause (Mechanism function) with statistical theory and establishes the Me-RS
function according to the Mechanism function of the influence factor, obtains a stationary
Me-RS series, and ensures the correct use of the traditional frequency analysis method. It is
not consistent with the statistical principle to analyze the nonstationary hydrological series
by using the traditional method based on stationary samples, so the obtained design values
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cannot be guaranteed to conform to the reality. Therefore, the direct use of nonstationary
sample series for frequency analysis should be avoided.
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