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Editorial

Fractional Calculus—Theory and Applications

Jorge E. Macías-Díaz 1,2

1 Department of Mathematics and Didactics of Mathematics, School of Digital Technologies, Tallinn University,
10120 Tallinn, Estonia; jorgmd@tlu.ee or jemacias@correo.uaa.mx; Tel.: +52-449-9108400

2 Departamento de Mateḿaticas y Física, Universidad Autónoma de Aguascalientes, Avenida Universidad 940,
Ciudad Universitaria, Aguascalientes 20130, Mexico

In recent years, fractional calculus has witnessed tremendous progress in various
areas of sciences and mathematics. On one hand, new definitions of fractional derivatives
and integrals have appeared in recent years, extending the classical definitions in some
sense or another. Moreover, the rigorous analysis of the functional properties of these
new definitions has been an active area of research in mathematical analysis. Systems
considering differential equations with fractional-order operators have been investigated
rigorously from the analytical and numerical points of view, and potential applications
have been proposed in the sciences and in technology. The purpose of this Special Issue
is to serve as a specialized forum for the dissemination of recent progress in the theory of
fractional calculus and its potential applications. We invite authors to submit high-quality
reports on the analysis of fractional-order differential/integral equations, the analysis of
new definitions of fractional derivatives, numerical methods for fractional-order equations,
and applications to physical systems governed by fractional differential equations, among
other interesting topics of research.

The present Special Issue includes 10 articles, which cover the following topics.

• Fractional-order differential/integral equations.
• Existence and regularity of solutions.
• Numerical methods for fractional equations.
• Analysis of convergence and stability.
• Applications to science and technology.

In one of the articles published in this Special Issue [1], the authors considered a
fractional-order system of malaria pestilence. The stability of the model at equilibrium
points was investigated by applying the Jacobian matrix technique. The contribution of
the basic reproduction number, R0, in the infection dynamics and stability analysis was
elucidated. The results indicated that the given system is locally asymptotically stable at
the disease-free steady-state solution when R0 < 1. A similar result was obtained for the
endemic equilibrium when R0 > 1. The underlying system showed global stability at both
steady states. The fractional-order system was then converted into a stochastic model. For
a more realistic study of the disease dynamics, the non-parametric perturbation version
of the stochastic epidemic model was developed and studied numerically. The general
stochastic fractional Euler method, the Runge–Kutta method, and a proposed numerical
method were applied to solve the model. The standard techniques failed to preserve the
positivity property of the continuous system. Meanwhile, the proposed stochastic fractional
nonstandard finite-difference method preserved the positivity. For the boundedness of the
nonstandard finite-difference scheme, a result was established. All the analytical results
were verified by numerical simulations.

The article [2] is devoted to studying GPU-based modeling for a parallel fractional-
order derivative model of the spiral-plate heat exchanger. As pointed out by the authors, a
spiral-plate heat exchanger with two fluids is a compact plant that only requires a small
space and is excellent in high heat-transfer efficiency. However, the spiral-plate heat
exchanger is a nonlinear plant with uncertainties, considering the difference between the

Axioms 2022, 11, 43. https://doi.org/10.3390/axioms11020043 https://www.mdpi.com/journal/axioms

1



Axioms 2022, 11, 43

heat fluid, the heated fluid, and other complex factors. The fractional-order derivation
model is more accurate than the traditional integer-order model. In this paper, a parallel
fractional order derivation model was proposed by considering the merit of the graphics
processing unit (GPU). Then, the parallel fractional-order derivation model for the spiral-
plate heat exchanger was constructed. Simulations show the relationships between the
output temperature of heated fluid and the orders of fractional-order derivatives with two
directional fluids impacted by complex factors, namely, the volume flow rate in hot fluid
and the volume flow rate in cold fluid, respectively.

In turn, a forecasting of the economic growth of the Group of Seven (G7) via a
fractional-order gradient descent approach was investigated in [3]. More concretely, this
work established a model of economic growth for all G7 countries from 1973 to 2016, in
which the gross domestic product (GDP) is related to land area, arable land, population,
school attendance, gross capital formation, exports of goods and services, general govern-
ment, final consumer spending and broad money. The fractional-order gradient descent
and integer-order gradient descent were used to estimate the model parameters to fit
the GDP and forecast GDP from 2017 to 2019. The results showed that the convergence
rate of the fractional-order gradient descent is faster and has a better fitting accuracy and
prediction effect.

In [4], the authors studied the approximate and analytic solutions of the time-fractional
intermediate diffusion wave equation associated with the Fokker–Planck operator. More
precisely, the time-fractional wave equation associated with the space-fractional Fokker–
Planck operator and with the time-fractional-damped term were studied in this work.
The concept of the Green function was implemented to drive the analytic solution of the
three-term time-fractional equation. The explicit expressions for the green function of the
three-term time-fractional wave equation with constant coefficients was also studied for
two physical and biological models. The explicit analytic solutions for the two studied
models were expressed in terms of the Weber, hypergeometric, exponential, and Mittag–
Leffler functions. The relation to the diffusion equation was given therein. The asymptotic
behaviors of the Mittag–Leffler function, the hypergeometric function, and the exponential
functions were compared numerically. The Grünwald–Letnikov scheme was then used
to derive the approximate difference schemes of the Caputo time-fractional operator and
the Feller–Riesz space-fractional operator. The explicit difference scheme was numerically
studied, and the simulations of the approximate solutions were plotted for different values
of the fractional orders.

On the other hand, the authors of [5] reported on some new fractional estimates of
inequalities for LR-p-convex interval-valued functions by means of pseudo order relation.
Interval analysis provides tools to deal with data uncertainty. In general, interval analysis
is typically used to deal with the models whose data are composed of inaccuracies that may
occur from certain kinds of measurements. In this context, both the inclusion relation (⊆)
and the pseudo-order relation (≤p) are two different concepts. By using the latter relation,
the authors introduce the new class of nonconvex functions known as LR-p-convex interval-
valued functions (LR-p-convex-IVFs). With the help of this relation, they establish a strong
relationship between LR-p-convex-IVFs and Hermite–Hadamard-type inequalities (HH-
type inequalities) via the Katugampola fractional integral operator. The results include a
wide class of new and known inequalities for LR-p-convex-IVFs and their variant forms as
special cases. Useful examples that demonstrate the applicability of the theory proposed in
this study were given in that study.

Sequential Riemann–Liouville and Hadamard–Caputo fractional differential systems
with nonlocal coupled fractional integral boundary conditions were studied in [6]. In that
work, the authors investigated the existence of solutions for a fractional differential system
that contains mixed Riemann–Liouville and Hadamard–Caputo fractional derivatives, com-
plemented with nonlocal coupled fractional integral boundary conditions. They derived
necessary conditions for the existence and uniqueness of solutions of those system by using
standard fixed-point theorems, such as Banach contraction mapping principle and the
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Leray–Schauder alternative. Numerical examples illustrating the theoretical results were
also presented.

In [7], a numerical method for solving a fractional diffusion-wave and nonlinear Fred-
holm and Volterra integral equations with zero absolute error was presented. The method
was based on Euler wavelet approximation and matrix inversion of M × M collocation
points. The proposed equations were presented based on the Caputo fractional derivative,
and the authors reduced the resulting system to a system of algebraic equations by im-
plementing the Gaussian quadrature discretization. The reduced system was generated
via the truncated Euler wavelet expansion. Several examples with known exact solutions
were solved with zero absolute error. This method was also applied to the Fredholm and
Volterra nonlinear integral equations and achieved the desired absolute error for all tested
examples. The new numerical scheme is appealing in terms of its efficiency and accuracy
in the field of numerical approximation.

On the other hand, some non-instantaneous impulsive boundary-value problems
containing Caputo fractional derivatives of a function with respect to another function as
well as Riemann–Stieltjes fractional integral boundary conditions were considered in [8]. In
that work, the authors studied existence and uniqueness results for a new class of boundary-
value problems consisting of non-instantaneous impulses and Caputo fractional derivative
of a function with respect to another function, supplemented with Riemann–Stieltjes
fractional integral boundary conditions. The existence of a unique solution was obtained
via Banach’s contraction mapping principle, while an existence result is established by
using Leray–Schauder nonlinear alternative. Examples illustrating the main results were
also constructed.

In article [9], the authors considered a retarded linear fractional differential system
with distributed delays and Caputo-type derivatives of incommensurate orders. For this
system, several a priori estimates for the solutions, applying the two traditional approaches
(Gronwall’s inequality and integral representations of the solutions) were obtained. As an
application of the obtained estimates, different sufficient conditions that guarantee finite-
time stability of the solutions were established. A comparison of the obtained different
conditions was made with respect to the estimates and norms used.

Finally, a fractional coupled hybrid Sturm–Liouville differential equation with a multi-
point boundary coupled hybrid condition was presented in [10]. It is worth recalling here
that the Sturm–Liouville differential equation is an important tool for physics, applied
mathematics, and other fields of engineering and science and has wide applications in
quantum mechanics, classical mechanics, and wave phenomena. In this paper, the authors
investigated the coupled hybrid version of the Sturm–Liouville differential equation. They
studied the existence of solutions for the coupled hybrid Sturm–Liouville differential equa-
tion with multi-point boundary-coupled hybrid condition. Furthermore, they investigated
the existence of solutions for the coupled hybrid Sturm–Liouville differential equation with
an integral boundary coupled hybrid condition. To close that work, the authors gave an
application and some examples to illustrate their results.

Funding: The editor wishes to acknowledge the financial support from the National Council for
Science and Technology of Mexico (CONACYT) through grant A1-S-45928.

Conflicts of Interest: The editor declares no potential conflict of interest.
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Abstract: The Sturm–Liouville differential equation is an important tool for physics, applied mathe-
matics, and other fields of engineering and science and has wide applications in quantum mechanics,
classical mechanics, and wave phenomena. In this paper, we investigate the coupled hybrid version
of the Sturm–Liouville differential equation. Indeed, we study the existence of solutions for the
coupled hybrid Sturm–Liouville differential equation with multi-point boundary coupled hybrid
condition. Furthermore, we study the existence of solutions for the coupled hybrid Sturm–Liouville
differential equation with an integral boundary coupled hybrid condition. We give an application
and some examples to illustrate our results.

Keywords: Caputo fractional derivative; fractional differential equations; hybrid differential equa-
tions; coupled hybrid Sturm–Liouville differential equation; multi-point boundary coupled hybrid
condition; integral boundary coupled hybrid condition; dhage type fixed point theorem

MSC: 34A08; 47H10

1. Introduction and Preliminaries

Various papers have been published on fractional differential equations (FDEs) (see,
e.g., in [1–6]). Over the years, hybrid fractional differential equations have attracted much
attention. There have been many works on the hybrid differential equations, and we
refer the readers to the papers in [7–17] and the references therein. During the history of
mathematics, an important framework of problems called Sturm–Liouville differential
equations has been in the spotlight of the mathematicians of applied mathematics and
engineering; scientists of physics, quantum mechanics, and classical mechanics; and certain
phenomena; for some examples see in [18,19] and the list of references of these papers. In
such a manner, it is important that mathematicians design complicated and more general
abstract mathematical models of procedures in the format of applicable fractional Sturm–
Liouville differential equations, see in [20–22].

In 2011, Zhao et al. [15] investigated the following fractional hybrid differential equa-
tion involving Riemann–Liouville differential operators of order 0 < α < 1,⎧⎪⎪⎨⎪⎪⎩

Dα
c

(
u(t)

g(t, u(t))

)
= f (t, u(t)), t ∈ I = [0, 1]

u(0) = 0

(1)

where g ∈ C(I ×R,R \ {0}) and f ∈ C(I ×R,R).

Axioms 2021, 10, 65. https://doi.org/10.3390/axioms10020065 https://www.mdpi.com/journal/axioms

5



Axioms 2021, 10, 65

In 2019, El-Sayed et al. [23] investigated the following fractional Sturm–Liouville
differential equation:

Dα
c (p(t)u′(t)) + q(t)u(t) = h(t) f (u(t)), t ∈ I

with multi-point boundary hybrid condition⎧⎨⎩
u′(0) = 0,

∑m
i=1 ξiu(ai) = ν ∑n

j=1 ηju(bj),
. (2)

where α ∈ (0, 1], Dα
c denotes the Caputo fractional derivative and p ∈ C(I,R), q(t), and

h(t) are absolutely continuous functions on I = [0, T], T < ∞ with p(t) �= 0 for all t ∈ I,
f : R → R is defined and differentiable on the interval I, 0 ≤ a1 < a2 < . . . < am < c,
d ≤ b1 < b2 < . . . < bn < T, c < d and ξi, ηj and ν ∈ R.

Motivated by the above results, we study the following fractional coupled hybrid
Sturm–Liouville differential equation:

Dα
c

[
p(t)Dβ

c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
− k(t, u(t))

]
+ q(t)u(t) = h(t) f (u(t)),

with multi-point boundary coupled hybrid condition⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Dβ

c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
t=0

= k(0, u(0)),

∑m
i=1 ξi(

u(ai)− ζ1(ai, u(ai))

ζ2(ai, u(ai))

)
= ν

n

∑
j=1

ηj
(u(bj)− ζ1(bj, u(bj))

ζ2(bj, u(bj))

)
,

Motivated by the above results, we study the following fractional coupled hybrid
Sturm–Liouville differential equation:

Dα
c

[
p(t)Dβ

c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
− k(t, u(t))

]
+ q(t)u(t) = h(t) f (u(t)),

with multi-point boundary coupled hybrid condition⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Dβ

c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
t=0

= k(0, u(0)),

∑m
i=1 ξi(

u(ai)− ζ1(ai, u(ai))

ζ2(ai, u(ai))

)
= ν

n

∑
j=1

ηj
(u(bj)− ζ1(bj, u(bj))

ζ2(bj, u(bj))

)
,

where α, β ∈ (0, 1], Dα
c and Dβ

c denote the Caputo fractional derivative, p ∈ C(I,R) and
q(t) and h(t) are absolutely continuous functions on I = [0, 1], with p(t) �= 0 for all
t ∈ I, ζ2(., .) ∈ C(I × R,R \ {0}), ζ1(., .) ∈ C(I × R,R), f (u(t)) : R → R is defined on
the interval I, 0 ≤ a1 < a2 < . . . < am < c, d ≤ b1 < b2 < . . . < bn < 1, c < d and
ξi, ηj and ν ∈ R. Moreover, we study the existence of solutions for the coupled hybrid
Sturm–Liouville differential equation with integral boundary coupled hybrid condition.
We give an application and some examples to illustrate our results.

Define a supremum norm ‖.‖ in E = C(I,R) by ‖u‖ = supt∈I |u(t)|, and a multiplica-
tion in E by (xy)(t) = x(t)y(t) for all x, y ∈ E. Evidently, E is a Banach algebra with respect

6
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to above supremum norm and the multiplication in it; also notice that ‖u‖L1 =
∫ 1

0 |u(s)|ds
is the norm in L1[0, 1].

It is well known that the Riemann–Liouville fractional integral of order α of a function
f is defined by Iα f (t) = 1

Γ(α)

∫ t
0 (t − s)α−1 f (s)ds(α > 0) and the Caputo derivative of order

α for a function f is defined by

Dα
c f (t) =

1
Γ(n − α)

∫ t

0

f (n)(s)
(t − s)α−n+1 ds

where n = [α] + 1 (for more details on Riemann–Liouville fractional integral and Caputo
derivative see in [2,4,5]).

Definition 1. Let α, β ∈ R+. We have

(i) Iα : L1 → L1 and limα→1 Iα f (t) = I1 f (t) =
∫ t

0 f (s)ds.
(ii) Iα Iβ f (t) = Iα+β f (t).
(iii) If f (t) is absolutely continuous on I, then limα→1 Dα

c f (t) = D f (t) and

DIα f (t) =
tα−1

Γ(α)
f (0) + IαD f (t), α > 0.

(iv) Iαtγ = Γ(γ+1)tα+γ

Γ(α+γ+1) , γ > −1.

The following hybrid fixed point result for three operators, due to Dhage [24], plays a
key role in our first main theorem.

Lemma 1. Let S be a closed convex, bounded, and nonempty subset of a Banach algebra E and let
A, C : E → E and B : S → E be three operators such that

(a) A and C is Lipschitzian with a Lipschitz constant δ and ρ, respectively;
(b) B are compact and continuous;
(c) u = AuBv + Cu ⇒ u ∈ S for all v ∈ S;
(d) δM + ρ < 1 where M = ‖B(S)‖ = supz∈S ‖B(z)‖.

Then, the operator equation u = AuBu + Cu has a solution in S.

2. Main Results

In this section, we take into account the existence and uniqueness of solution for the
following fractional coupled hybrid Sturm–Liouville differential equation:

Dα
c

[
p(t)Dβ

c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
− k(t, u(t))

]
+ q(t)u(t) = h(t) f (u(t)), (3)

with multi-point boundary coupled hybrid condition⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Dβ

c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
t=0

= k(0, u(0)),

∑m
i=1 ξi(

u(ai)− ζ1(ai, u(ai))

ζ2(ai, u(ai))

)
= ν

n

∑
j=1

ηj
(u(bj)− ζ1(bj, u(bj))

ζ2(bj, u(bj))

)
,

(4)

where α, β ∈ (0, 1], Dα
c and Dβ

c denote the Caputo fractional derivative, p ∈ C(I,R) and
q(t) and h(t) are absolutely continuous functions on I = [0, 1], with p(t) �= 0 for all
t ∈ I, ζ2(., .) ∈ C(I ×R,R \ {0}), ζ1(., .) ∈ C(I ×R,R), f (u(t)) : R → R is defined on I,
0 ≤ a1 < a2 < . . . < am < c, d ≤ b1 < b2 < . . . < bn < 1, c < d and ξi, ηj and ν ∈ R, under
the following hypotheses.
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(D1) The function f (u(t)) : R → R is defined on the interval I, ∂ f
∂u is bounded on I

with | ∂ f
∂u | ≤ K and f (u(t)) is differentiable in (0, 1), right-differentiable at 0 and

left-differentiable at 1.
(D2) The function p ∈ C(I,R) with p(t) �= 0 for all t ∈ I, inft∈I |p(t)| = p. Furthermore,

q(t) and h(t) are absolutely continuous functions on I.
(D3) The function g : I ×R → R�{0} is continuous in its two variables, and there exists a

function μ(t) ≥ 0 (∀t ∈ I) such that

|ζ2(t, x)− ζ2(t, y)| ≤ μ(t)|x − y|

for all (t, x, y) ∈ I ×R×R.
(D4) Two functions f , k : I ×R → R are continuous in their two variables, and there are

two functions μ̃(t), μ∗(t) ≥ 0 (∀t ∈ I) such that

|ζ1(t, x)− ζ1(t, y)| ≤ μ̃(t)|x − y|

and
|k(t, x)− k(t, y)| ≤ μ∗(t)|x − y|

for all (t, x, y) ∈ I ×R×R, respectively.
(D5) There exists a number r > 0 such that

r ≥ g0Θ + ζ∗1
1 − ‖μ‖Θ − ‖μ̃‖ and ‖μ‖Θ + ‖μ̃‖ < 1,

where

Θ =
1

pΓ(α + β + 1)
[E(

m

∑
i=1

|ξi|+ |ν|
n

∑
j=1

|ηj|) + 1][(‖q‖+K‖h‖+ Γ(α + β + 1)‖μ∗‖
Γ(β + 1)

)r

+M‖h‖+ Γ(α + β + 1)k0

Γ(β + 1)
],

ζ∗1 = supt∈I ζ1(t, 0), ζ∗2 = supt∈I ζ2(t, 0), M = f (0), k0 = supt∈I k(t, 0) and

E =
1

∑m
i=1 ξi − ν ∑n

j=1 ηj
where ∑m

i=1 ξi − ν ∑n
j=1 ηj �= 0.

Definition 2. We say Dβ
c has the quotient-property with respect to u1, u2 ∈ L1(I,R)) with

u2 �= 0, if Dβ
c (

u1(t)
u2(t)

) =
u2(t)Dβ

c (u1(t))− u1(t)Dβ
c (u2(t))

(u2(t))2 .

We will use the following condition:

(B∗) Dβ
c has the quotient-property with respect to ζ1(t, u(t)) and ζ2(t, u(t)), and

Dβ
c (ζ1(t, u(t)), Dβ

c (ζ2(t, u(t)) ∈ C(I,R) (∀u ∈ C(I,R)).

Lemma 2. Assume that the hypotheses (D1)–(D2) are satisfied. Then, the problem (3) and (4) is
equivalent to the integral equation

u(t) = ζ2(t, u(t))
[

E
( m

∑
i=1

ξi Au(ai)− ν
n

∑
j=1

ηj Au(bj) + ν
n

∑
j=1

ηjBu(bj)

−
m

∑
i=1

ξiBu(ai)) + ν
n

∑
j=1

ηjCu(bj)−
m

∑
i=1

ξiCu(ai)
)− Au(t) + Bu(t) + Cu(t)

]
+ ζ1(t, u(t)).

(5)

8
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where Au(t) = Iβ

(
1

p(t) Iα(q(t)u(t))
)

, Bu(t) = Iβ

(
1

p(t) Iα(h(t) f (u(t)))
)

, C(t) =

Iβ

(
1

p(t) k(t, u(t))
)

and E =
1

∑m
i=1 ξi − ν ∑n

j=1 ηj
. Moreover,

• Dβ
c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
∈ C(I,R);

• if (B∗) holds, then Dβ
c (u(t)) ∈ C(I,R);

•
d
dt

[
Dβ

c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
− k(t, u(t))

]
∈ L1[0, 1].

Proof. Equation (3) can be written as

I1−α

(
d
dt

[
p(t)Dβ

c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
− k(t, u(t))

])
= −q(t)u(t) + h(t) f (u(t)).

Operating by Iα on both sides, we get

I1
(

d
dt

[
p(t)Dβ

c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
− k(t, u(t))

])
= −Iα(q(t)u(t)) + Iα(h(t) f (u(t))).

Consequently,

p(t)Dβ
c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
− k(t, u(t))− p(0)Dβ

c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
t=0

+ k(0, u(0))

= −Iα(q(t)u(t)) + Iα(h(t) f (u(t))).

As Dβ
c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
t=0

= k(0, u(0)), we have

p(t)Dβ
c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
− k(t, u(t)) = −Iα(q(t)u(t)) + Iα(h(t) f (u(t))).

and so

Dβ
c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
= − 1

p(t)
Iα(q(t)u(t)) +

1
p(t)

Iα(h(t) f (u(t))) +
1

p(t)
k(t, u(t)). (6)

The above equation can be written as

I1−β d
dt

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
= − 1

p(t)
Iα(q(t)u(t)) +

1
p(t)

Iα(h(t) f (u(t))) +
1

p(t)
k(t, u(t)).

Operating by Iβ on both sides, we obtain

I1 d
dt

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
= −Iβ

(
1

p(t)
Iα(q(t)u(t))

)
+ Iβ

(
1

p(t)
Iα(h(t) f (u(t)))

)
+ Iβ

(
1

p(t)
k(t, u(t))

)
.

9
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Therefore, we can obtain

u(t)− ζ1(t, u(t))
ζ2(t, u(t))

− � = −Iβ

(
1

p(t)
Iα(q(t)u(t))

)
+ Iβ

(
1

p(t)
Iα(h(t) f (u(t)))

)
+ Iβ

(
1

p(t)
k(t, u(t))

)
= −Au(t) + Bu(t) + Cu(t).

(7)

where � =
u(0)− f (0, u(0))

g(0, u(0))
. Now, we get

m

∑
i=1

ξi(
u(ai)− ζ1(t, u(ai))

ζ2(t, u(ai))

)− m

∑
i=1

ξi� = −
m

∑
i=1

ξi Au(ai) +
m

∑
i=1

ξiBu(ai) +
m

∑
i=1

ξiCu(ai). (8)

and

ν
n

∑
j=1

ηj
(u(bj)− ζ1(bj, u(bj))

ζ2(bj, u(bj))

)− ν
n

∑
j=1

ηj� = −ν
n

∑
j=1

ηj Au(bj) + ν
n

∑
j=1

ηjBu(bj)

+ ν
n

∑
j=1

ηjCu(bj).
(9)

On subtracting (8) from (9) and applying

m

∑
i=1

ξi(
u(ai)− ζ1(ai, u(ai))

ζ2(ai, u(ai))

)
= ν

n

∑
j=1

ηj
(u(bj)− ζ1(bj, u(bj))

ζ2(bj, u(bj))

)
,

we deduce that

� = E
( m

∑
i=1

ξi Au(ai)− ν
n

∑
j=1

ηj Au(bj) + ν
n

∑
j=1

ηjBu(bj)−
m

∑
i=1

ξiBu(ai)

+ ν
n

∑
j=1

ηjCu(bj)−
m

∑
i=1

ξiCu(ai)
)

where E =
1

∑m
i=1 ξi − ν ∑n

j=1 ηj
. Therefore, by substituting the value of � in (7), we get

u(t) = ζ2(t, u(t))
[

E
( m

∑
i=1

ξi Au(ai)− ν
n

∑
j=1

ηj Au(bj) + ν
n

∑
j=1

ηjBu(bj)

−
m

∑
i=1

ξiBu(ai)) + ν
n

∑
j=1

ηjCu(bj)−
m

∑
i=1

ξiCu(ai)
)− Au(t) + Bu(t) + Cu(t)

]
+ ζ1(t, u(t)).

Conversely, to complete the equivalence between integral Equation (5) and the
problem (3) and (4), we have from (6)

Dβ
c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
= − 1

p(t)
Iα(q(t)u(t)) +

1
p(t)

Iα(h(t) f (u(t)))

+
1

p(t)
k(t, u(t)) ∈ C([0, 1]).

(10)

and so

d
dt

[
p(t)Dβ

c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
− k(t, u(t))

]
= − d

dt
Iα(q(t)u(t)) +

d
dt

Iα(h(t) f (u(t)))

10
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Operating by I1−α on both sides, we obtain

I1−α d
dt

[
p(t)Dβ

c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
− k(t, u(t))

]
= −I1−α d

dt
Iα(q(t)u(t))

+ I1−α d
dt

Iα(h(t) f (u(t)))

Now, by using the definition of Caputo derivative and (iii), we get

Dα

[
p(t)Dβ

c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
− k(t, u(t))

]
= −I1−α Iα d

dt
(q(t)u(t)) + I1−α Iα d

dt
(h(t) f (u(t)))

− I1−α tα−1

Γ(α)
q(0)u(0) + I1−α tα−1

Γ(α)
h(0) f (u(0)),

and then by applying (ii) and (iv), we have

Dα

[
p(t)Dβ

c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
− k(t, u(t))

]
= −I1 d

dt
(q(t)u(t)) + I1 d

dt
(h(t) f (u(t)))

− q(0)u(0) + h(0) f (u(0))

= −q(t)u(t) + h(t) f (u(t)).

and so we get (3). Clearly, from (6), we can get

Dβ
c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
t=0

= k(0, u(0)).

Moreover, by using a simple computation and (5), we can obtain

m

∑
i=1

ξi(
u(ai)− ζ1(ai, u(ai))

ζ2(ai, u(ai))

)
= ν

n

∑
j=1

ηj
(u(bj)− ζ1(bj, u(bj))

ζ2(bj, u(bj))

)
.

Now, assume that (B∗) holds. From (10), we know that

H(t) := Dβ
c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
∈ C(I,R).

Then,

H(t) = Dβ
c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
=

ζ2(t, u(t))Dβ
c (u(t)− ζ1(t, u(t)))− (u(t)− ζ1(t, u(t)))Dβ

c (ζ2(t, u(t)))
(ζ2(t, u(t)))2 ,

and so

H(t) = Dβ
c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
=

ζ2(t, u(t))Dβ
c (u(t)− ζ1(t, u(t)))− (u(t)− ζ1(t, u(t)))Dβ

c (ζ2(t, u(t)))
(ζ2(t, u(t)))2

=
ζ2(t, u(t))Dβ

c (u(t))− ζ2(t, u(t))Dβ
c (ζ1(t, u(t)))− (u(t)− ζ1(t, u(t)))Dβ

c (ζ2(t, u(t)))
(ζ2(t, u(t)))2

=
Dβ

c (u(t))
ζ2(t, u(t))

− ζ2(t, u(t))Dβ
c (ζ1(t, u(t))) + (u(t)− ζ1(t, u(t)))Dβ

c (ζ2(t, u(t)))
(ζ2(t, u(t)))2 .

11
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Therefore, we have

Dβ
c (u(t))

= ζ2(t, u(t))
(
H(t) +

ζ2(t, u(t))Dβ
c (ζ1(t, u(t))) + (u(t)− ζ1(t, u(t)))Dβ

c (ζ2(t, u(t)))
(ζ2(t, u(t)))2

)
∈ C(I,R).

Let us prove that
d
dt

[
Dβ

c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
− k(t, u(t))

]
∈ L1[0, 1]. From (6) and

(iii) of Definition 1 we have

d
dt

[
Dβ

c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
− k(t, u(t))

]
=

d
dt

(
1

p(t)
Iα(−q(t)u(t) + h(t) f (u(t)))

)
= − p′(t)

p2(t)
Iα(−q(t)u(t) + h(t) f (u(t)))

+
1

p(t)
Iα d

dt
(−q(t)u(t) + h(t) f (u(t)))

+
1

p(t)
tα−1

Γ(α)
(q(0)u(0) + h(0) f (u(0))).

Now, we can write∣∣∣∣ d
dt

[
Dβ

c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
− k(t, u(t))

]∣∣∣∣
≤ |p′(t)|

|p2(t)|
∫ t

0

(t − s)α−1

Γ(α)
(|q(s)||u(s)|+ |h(s)|| f (u(s))|)ds

+
1

|p(t)|
∫ t

0

(t − s)α−1

Γ(α)

(
|q′(s)||u(s)|+ |q(s)||u′(s)|

+ |h′(s)| f (u(s))|+ |h(s)||∂ f (u(s))
∂u

||u′(s)|
)

ds

+
1

|p(t)|
tα−1

Γ(α)
(|q(0)||u(0)|+ |h(0)|| f (u(0))|).

Therefore,∫ 1

0

∣∣∣∣ d
dt

[
Dβ

c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
− k(t, u(t))

]∣∣∣∣dt

≤
∫ 1

0

|p′(t)|
|p2(t)|

∫ t

0

(t − s)α−1

Γ(α)
(|q(s)||u(s)|

+ |h(s)|| f (u(s))|)dsdt +
∫ 1

0

1
|p(t)|

∫ t

0

(t − s)α−1

Γ(α)

(
|q′(s)||u(s)|+ |q(s)||u′(s)|

+ |h′(s)| f (u(s))|+ |h(s)||∂ f (u(s))
∂u

||u′(s)|
)

dsdt

+ (|q(0)||u(0)|+ |h(0)|| f (u(0))|)
∫ 1

0

1
|p(t)|

tα−1

Γ(α)
dt.

12
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Notice that∫ 1

0

|p′(t)|
|p2(t)|

∫ t

0

(t − s)α−1

Γ(α)
(|q(s)||u(s)|+ |h(s)|| f (u(s))|)dsdt

=
∫ 1

0
(|q(s)||u(s)|+ |h(s)|| f (u(s))|)ds

∫ 1

s

|p′(t)|
|p2(t)|

(t − s)α−1

Γ(α)
dt

≤ (‖q(s)‖‖u(s)‖+ ‖h(s)‖‖ f (u(s))‖) ‖p′‖
p2Γ(α + 1)

,

∫ 1

0

1
|p(t)|

∫ t

0

(t − s)α−1

Γ(α)

(
|q′(s)||u(s)|+ |q(s)||u′(s)|+ |h′(s)| f (u(s))|

+ |h(s)||∂ f (u(s))
∂u

||u′(s)|
)

dsdt

≤
(
‖q′‖L1‖u‖+ ‖q‖‖u′‖+ ‖h′‖L1‖ f ‖+K‖h‖‖u′‖

)
1

pΓ(α + 1)
,

and ∫ 1

0

1
|p(t)|

tα−1

Γ(α)
(|q(0)||u(0)|+ |h(0)|| f (u(0))|)dt

≤ 1
pΓ(α + 1)

(|q(0)||u(0)|+ |h(0)|| f (u(0))|).

Then, we can obtain∫ 1

0

∣∣∣∣ d
dt

[
Dβ

c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
− k(t, u(t))

]∣∣∣∣dt

≤ (‖q(s)‖‖u(s)‖+ ‖h(s)‖‖ f (u(s))‖) ‖p′‖
p2Γ(α + 1)

+

(
‖q′‖L1‖u‖+ ‖q‖‖u′‖+ ‖h′‖L1‖ f ‖+K‖h‖‖u′‖

)
1

pΓ(α + 1)

+
1

pΓ(α + 1)
(|q(0)||u(0)|+ |h(0)|| f (u(0))|).

That is,
d
dt

[
Dβ

c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
− k(t, u(t))

]
∈ L1[0, 1]. This completes the proof.

Lemma 3. Assume that the hypotheses (D1)–(D5) are satisfied. Let |u(t)| ≤ r for all t ∈ I,

Au(t) = Iβ

(
1

p(t) Iα(q(t)u(t))
)

,

Bu(t) = Iβ

(
1

p(t) Iα(h(t) f (u(t)))
)

and C(t) = Iβ

(
1

p(t) k(t, u(t))
)

. Then,

(i) |Au(t)| ≤ L1, |Bu(t)| ≤ L2 and |Cu(t)| ≤ L3 for all t ∈ I where

L1 = ‖q‖
pΓ(α+β+1) r, L2 = K‖h‖

pΓ(α+β+1) r + M‖h‖
pΓ(α+β+1) and L3 = ‖μ∗‖

pΓ(β+1) r + k0
pΓ(β+1) .

(ii) for t1, t2 ∈ I with t1 < t2,

|Au(t1)− Au(t2)| ≤ ‖q‖r
pΓ(α + 1)Γ(β + 1)

[
|tβ

2 − tβ
1 − (t2 − t1)

β|+ (t2 − t1)
β

]
,

|Bu(t1)− Bu(t2)| ≤ ‖h‖(Kr +M)

pΓ(α + 1)Γ(β + 1)

[
|tβ

2 − tβ
1 − (t2 − t1)

β|+ (t2 − t1)
β

]
.

13
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and

|Cu(t1)− Cu(t2)| ≤ (‖μ∗‖r + k0)

pΓ(β + 1)

[
|tβ

2 − tβ
1 − (t2 − t1)

β|+ (t2 − t1)
β

]
.

Proof. (i) Assume that |u(t)| ≤ r for all t ∈ I. Then, we can write

|Au(t)| = |Iβ

(
1

p(s)
Iα(q(s)u(s))

)
|

= | 1
Γ(α)Γ(β)

∫ t

0

(t − s)β−1

p(s)

( ∫ s

0
(s − τ)α−1q(τ)u(τ)dτ

)
ds|

≤ 1
Γ(α)Γ(β)

∫ t

0

(t − s)β−1

|p(s)|
( ∫ s

0
(s − τ)α−1|q(τ)||u(τ)|dτ

)
ds

≤ r‖q‖
pΓ(α)Γ(β)

∫ t

0
(t − s)β−1

( ∫ s

0
(s − τ)α−1dτ

)
ds

=
r‖q‖

pΓ(α + 1)Γ(β)

∫ t

0
sα(t − s)β−1ds

≤ r‖q‖
pΓ(α + 1)Γ(β)

∫ 1

0
sα(1 − s)β−1ds

On the other hand, B(α + 1, β) =
∫ 1

0 sα(1 − s)β−1ds = Γ(α+1)Γ(β)
Γ(α+β+1) (where B is the beta

function). Thus,

|Au(t)| ≤ ‖q‖
pΓ(α + β + 1)

r

for all t ∈ I.
Let |u(t)| ≤ r for all t ∈ I and M = f (0). At first, notice that

| f (u(t))| = | f (u)− f (0) + f (0)| ≤ K|u|+M
≤ Kr +M.

Therefore, we have

|Bu(t)| = |Iβ

(
1

p(s)
Iα(h(s) f (u(s)))

)
|

= | 1
Γ(α)Γ(β)

∫ t

0

(t − s)β−1

p(s)

( ∫ s

0
(s − τ)α−1h(τ) f (u(τ))dτ

)
ds|

≤ 1
Γ(α)Γ(β)

∫ t

0

(t − s)β−1

|p(s)|
( ∫ s

0
(s − τ)α−1|h(τ)|| f (u(τ))|dτ

)
ds

≤ (Kr +M)‖h‖
pΓ(α)Γ(β)

∫ t

0
(t − s)β−1

( ∫ s

0
(s − τ)α−1dτ

)
ds

=
K‖h‖

pΓ(α + β + 1)
r +

M‖h‖
pΓ(α + β + 1)

.

Similarly, we can prove that

|C(t)| ≤ ‖μ∗‖
pΓ(β + 1)

r +
k0

pΓ(β + 1)
.

14
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(ii) Let t1, t2 ∈ I with t1 < t2. Thus,

|Au(t1)− Au(t2)| = 1
Γ(β)

|
∫ t1

0

(t1 − s)β−1

p(s)
Iα(q(s)u(s))ds −

∫ t2

0

(t2 − s)β−1

p(s)
Iα(q(s)u(s))ds|

=
1

Γ(β)
|
∫ t1

0

(t1 − s)β−1 − (t2 − s)β−1

p(s)
Iα(q(s)u(s))ds

−
∫ t2

t1

(t2 − s)β−1

p(s)
Iα(q(s)u(s))ds|

≤ 1
Γ(β)

[
∫ t1

0

|(t1 − s)β−1 − (t2 − s)β−1|
p(s)

|Iα(q(s)u(s))|ds

+
∫ t2

t1

(t2 − s)β−1

p(s)
|Iα(q(s)u(s))|ds]

Now, as |Iα(q(s)u(s))| ≤ ‖q‖rIα(1) = ‖q‖rsα

Γ(α+1) ≤
‖q‖r

Γ(α+1) , then

|Au(t1)− Au(t2)| ≤ ‖q‖r
pΓ(α + 1)Γ(β)

[ ∫ t1

0
|(t1 − s)β−1 − (t2 − s)β−1|ds +

∫ t2

t1

(t2 − s)β−1ds
]

=
‖q‖r

pΓ(α + 1)Γ(β + 1)

[
|tβ

2 − tβ
1 − (t2 − t1)

β|+ (t2 − t1)
β

]
.

Similarly, we have

|Bu(t1)− Bu(t2)| ≤ ‖h‖(Kr +M)

pΓ(α + 1)Γ(β + 1)

[
|tβ

2 − tβ
1 − (t2 − t1)

β|+ (t2 − t1)
β

]
and

|Cu(t1)− Cu(t2)| ≤ (‖μ∗‖r + k0)

pΓ(β + 1)

[
|tβ

2 − tβ
1 − (t2 − t1)

β|+ (t2 − t1)
β

]
.

Now, we are ready to state and prove our main theorem.

Theorem 1. Let the hypotheses (D1)–(D5) be satisfied. Then, the coupled hybrid Sturm–Liouville
differential Equation (3) with multi-point boundary hybrid condition (4) has a unique solution
u ∈ C[I,R]. Furthermore, if (B∗) holds, then Dβ

c (u(t)) ∈ C(I,R).

Proof. Let E = C(I,R). From (D5), we know that there exists a number r > 0 such that

r ≥ ζ∗2 Θ + ζ∗1
1 − ‖μ‖Θ − ‖μ̃‖ and ‖μ‖Θ + ‖μ̃‖ < 1,

where

Θ =
1

pΓ(α + β + 1)
[E(

m

∑
i=1

|ξi|+ |ν|
n

∑
j=1

|ηj|) + 1][(‖q‖+K‖h‖+ Γ(α + β + 1)‖μ∗‖
Γ(β + 1)

)r

+M‖h‖+ Γ(α + β + 1)k0

Γ(β + 1)
],

ζ∗1 = supt∈I ζ1(t, 0), ζ∗2 = supt∈I ζ2(t, 0), k0 = supt∈I k(t, 0) and M = f (0). Define a
subset Sr of E defined by

Sr = {u ∈ E : ‖u‖ ≤ r}.

15



Axioms 2021, 10, 65

Clearly, Sr is a closed, convex, and bounded subset of E. From Lemma 2, we know
that the problems in (3) and (4) are equivalent to the equation

u(t) = ζ2(t, u(t))
[

E
( m

∑
i=1

ξi Au(ai)− ν
n

∑
j=1

ηj Au(bj) + ν
n

∑
j=1

ηjBu(bj)

−
m

∑
i=1

ξiBu(ai)) + ν
n

∑
j=1

ηjCu(bj)−
m

∑
i=1

ξiCu(ai)
)− Au(t) + Bu(t) + Cu(t)

]
+ ζ1(t, u(t)), t ∈ I.

(11)

Define three operators A, C : E → E and B : Sr → E by

Au(t) = ζ2(t, u(t)), t ∈ I,

Bu(t) = E
( m

∑
i=1

ξi Au(ai)− ν
n

∑
j=1

ηj Au(bj) + ν
n

∑
j=1

ηjBu(bj)

−
m

∑
i=1

ξiBu(ai)) + ν
n

∑
j=1

ηjCu(bj)−
m

∑
i=1

ξiCu(ai)
)− Au(t) + Bu(t) + Cu(t), t ∈ I,

and

Cu(t) = ζ1(t, u(t)), t ∈ I.

Now, the integral Equation (11) can be written as

u(t) = Au(t)Bu(t) + Cu(t), t ∈ I.

In the following steps, we will show that the operators A, B, and C satisfy all the
conditions of Lemma 1.

Step 1: In this step, we show that A and C are Lipschitzian on E. Let u, v ∈ E, then by
(D3), we have

|Au(t)−Av(t)| = |ζ2(t, u)− ζ2(t, v)| ≤ μ(t)|u(t)− v(t)|

for all t ∈ I. Taking the supremum over t, we get

‖Au −Av‖ ≤ ‖μ‖‖u − v‖.

Similarly, by applying (D3), we can obtain

‖Cu − Cv‖ ≤ ‖μ̃‖‖u − v‖.

That is, A and C are Lipschitzian with Lipschitz constants ‖μ‖ and ‖μ̃‖, respectively.
Step 2: We show that B is compact and continuous operator on Sr into E. At first, we

show that B is continuous on Sr. Let {un} be a sequence in Sr converging to a point u ∈ Sr.
Then, by the Lebesgue dominated convergence theorem,

16
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lim
n→∞

Bun(t) = lim
n→∞

[E(
m

∑
i=1

ξi Aun(ai)− ν
n

∑
j=1

ηj Aun(bj) + ν
n

∑
j=1

ηjBun(bj)−
m

∑
i=1

ξiBun(ai)

+ ν
n

∑
j=1

ηjCun(bj)−
m

∑
i=1

ξiCun(ai))− Aun(t) + Bun(t) + Cun(t)]

= E(
m

∑
i=1

ξi A( lim
n→∞

un(ai))− ν
n

∑
j=1

ηj A( lim
n→∞

un(bj)) + ν
n

∑
j=1

ηjB( lim
n→∞

un(bj))

−
m

∑
i=1

ξiB( lim
n→∞

un(ai)) + ν
n

∑
j=1

ηjC( lim
n→∞

un(bj))−
m

∑
i=1

ξiC( lim
n→∞

un(ai)))

− A( lim
n→∞

un(t)) + B( lim
n→∞

un(t)) + C( lim
n→∞

un(t))

= E(
m

∑
i=1

ξi Au(ai)− ν
n

∑
j=1

ηj Au(bj) + ν
n

∑
j=1

ηjBu(bj)

−
m

∑
i=1

ξiBu(ai) + ν
n

∑
j=1

ηjCu(bj)−
m

∑
i=1

ξiCu(ai))− Au(t) + Bu(t) + Cu(t)

= Bu(t)

for all t ∈ I. That is, B is a continuous operator on Sr.
Next, we will show that the set B(Sr) is a uniformly bounded in Sr. For any u ∈ Sr,

by using Lemma 3 (i), we have

|Bu(t)| ≤ |E|(
m

∑
i=1

|ξi||Au(ai)|+ |ν|
n

∑
j=1

|ηj||Au(bj)|

+ |ν|
n

∑
j=1

|ηj||Bu(bj)|+
m

∑
i=1

|ξi||Bu(ai)|+ |ν|
n

∑
j=1

|ηj||Cu(bj)|+
m

∑
i=1

|ξi||Cu(ai)|)

+ |Au(t)|+ |Bu(t)|+ |Cu(t)|

≤ |E|
m

∑
i=1

|ξi|L1 + |E||ν|
n

∑
j=1

|ηj|L1 + |E||ν|
n

∑
j=1

|ηj|L2 + |E|
m

∑
i=1

|ξi|L2

+ |E||ν|
n

∑
j=1

|ηj|L3 + |E|
m

∑
i=1

|ξi|L3 + L1 + L2 + L3

= [|E|(
m

∑
i=1

|ξi|+ |ν|
n

∑
j=1

|ηj|) + 1]L1 + [|E|(
m

∑
i=1

|ξi|+ |ν|
n

∑
j=1

|ηj|) + 1]L2

+ [|E|(
m

∑
i=1

|ξi|+ |ν|
n

∑
j=1

|ηj|) + 1]L3

= [|E|(
m

∑
i=1

|ξi|+ |ν|
n

∑
j=1

|ηj|) + 1][L1 + L2 + L3]

Now, as

L1 + L2 + L3

=
‖q‖

pΓ(α + β + 1)
r +

K‖h‖
pΓ(α + β + 1)

r +
‖μ∗‖

pΓ(β + 1)
r +

M‖h‖
pΓ(α + β + 1)

+
k0

pΓ(β + 1)

=
1

pΓ(α + β + 1)
[(‖q‖+K‖h‖+ Γ(α + β + 1)‖μ∗‖

Γ(β + 1)
)r +M‖h‖+ Γ(α + β + 1)k0

Γ(β + 1)
],
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then we get

|Bu(t)| ≤ 1
pΓ(α + β + 1)

[E(
m

∑
i=1

|ξi|+ |ν|
n

∑
j=1

|ηj|) + 1][(‖q‖+K‖h‖

+
Γ(α + β + 1)‖μ∗‖

Γ(β + 1)
)r +M‖h‖+ Γ(α + β + 1)k0

Γ(β + 1)
] = Θ

Taking supremum over t,
‖Bu‖ ≤ Θ

for all u ∈ Sr. This shows that B is uniformly bounded on Sr.
Now, we show that B(Sr) is an equi-continuous set in E. Let t1, t2 ∈ I with t<t2. Then,

for any u ∈ Sr, by applying Lemma 3 (ii), we have

|Bu(t1)−Bu(t2)| = | − Au(t1) + Au(t2) + Bu(t1)− Bu(t2) + Cu(t1)− Cu(t2)|
≤ |Au(t1)− Au(t2)|+ |Bu(t1)− Bu(t2)|+ |Cu(t1)− Cu(t2)|

≤ ‖q‖r
pΓ(α + 1)Γ(β + 1)

[
|tβ

2 − tβ
1 − (t2 − t1)

β|+ (t2 − t1)
β

]
+

‖h‖(Kr +M)

pΓ(α + 1)Γ(β + 1)

[
|tβ

2 − tβ
1 − (t2 − t1)

β|+ (t2 − t1)
β

]
+

(‖μ∗‖r + k0)

pΓ(β + 1)

[
|tβ

2 − tβ
1 − (t2 − t1)

β|+ (t2 − t1)
β

]
Then, for ε > 0, there exist δ > 0 such that

|t1 − t2| < δ =⇒ |B(t1)−B(t2)| < ε,

for all t1, t2 ∈ I and for all u ∈ Sr. This shows that B(Sr) is an equi-continuous set in E.
Therefore, we proved that the set B(Sr) is uniformly bounded and equi-continuous set
in E. Then, B(Sr) is compact by Arzela–Ascoli Theorem. As a consequence, B(Sr) is a
completely continuous operator on Sr.

Step 3: Let u ∈ E and v ∈ Sr be two given elements such that u = AuBv + Cu. Then,
we get

|u(t)| ≤ |Au(t)||Bv(t)|+ |Cu(t)|
≤ Θ|ζ2(t, u(t))|+ |ζ1(t, u(t))|
= Θ|ζ2(t, u(t))− ζ2(t, 0) + ζ2(t, 0)|+ |ζ1(t, u(t))− ζ1(t, 0) + ζ1(t, 0)|
≤ Θ(‖μ‖|u(t)|+ ζ∗2) + ‖μ̃‖|u(t)|+ ζ∗1 ,

and so

|u(t)| ≤ ζ∗2 Θ + ζ∗1
1 − ‖μ‖Θ − ‖μ̃‖ ≤ r.

Taking the supremum over t, we get

‖u‖ ≤ r.

Step 4: Finally, we prove that δM+ ρ < 1. As M = ‖B(Sr)‖ = supu∈Sr
{supt∈I |Bu(t)|}

≤ Θ, we have
‖μ‖M + ‖μ̃‖ ≤ ‖μ‖Θ + ‖μ̃‖ < 1,

where δ = ‖μ‖ and ρ = ‖μ̃‖. Therefore, all conditions of Lemma 1 hold and the operator
equation u = AuBu + Cu has a solution in Sr. Thus, the problem (3) and (4) has a solution
u ∈ C(I,R).
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Example 1. Let us consider the following fractional couple hybrid Sturm–Liouville differential equation:

D
4
5
c

(
1000

√
et + t2D

9
10
c
(u(t)− ζ1(t, u(t))

ζ2(t, u(t))
)− k(t, u(t))

)
+ e−t cos2(t)u(t)

= e−
t

1+t tan−1(u(t) + 1), t ∈ I

(12)

with boundary values⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
D

9
10
c
(u(t)− ζ2(t, u(t))

ζ2(t, u(t))
)

t=0 =
1

240
u(0), t ∈ I = [0, 1]

∑2
i=1

1
4i (

u( 1
πi )− ζ1(

1
πi , u( 1

πi ))

ζ2(
1

πi , u( 1
πi ))

)
=

1
3

3

∑
j=1

1
2j

(u( 1
ej )− ζ1(

1
ej , u( 1

ej ))

ζ2(
1
ej , u( 1

ej ))

)
,

(13)

where

ζ1(t, u(t)) =
e−t

300
(
u(t) + e−πt)+ 1

300 + ln(t2 + t + 1)

ζ2(t, u(t)) =
cos2(πt)

(500 + ln(1 + eπt+1))

|u(t)|
1 + |u(t)| + e− sin2(πt)

and

k(t, u(t)) =
e−t

100
u(t) + e−t2

.

In this case, we take α = 4
5 , β = 9

10 , r = 0.1, ξ1 = 1
4 , ξ2 = 1

8 , η1 = 1
2 , η2 = 1

4 , η3 = 1
8 ,

ν = 1
3 , p(t) = 1000

√
et + t2, q(t) = e−t cos2(t), h(t) = e−

t
1+t , f (u(t)) = tan−1(u(t) + 1).

Therefore, | ∂ f (u)
∂u | ≤ 1 = K, M = π

4 , p = 1000, ‖q‖ = 1, ‖h‖ = 1. Further,

|ζ1(t, u(t))− ζ1(t, v(t))| ≤ e−t

300
|u(t)− v(t)|,

|ζ2(t, u(t))− ζ2(t, v(t))| = cos2(πt)
(500 + ln(1 + eπt+1))

∣∣|u(t)| − |v(t)|∣∣
(1 + |u(t)|)(1 + |v(t)|)

≤ cos2(πt)
(500 + ln(1 + eπt+1))

|u(t)− v(t)|

and

|k(t, u(t))− k(t, v(t))| ≤ e−t

100
|u(t)− v(t)|.

Then, ζ∗1 = supt∈I ζ1(t, 0) = 1
150 , ζ∗2 = supt∈I ζ2(t, 0) = 1, k0 = supt∈I k(t, 0) = 1,

‖μ‖ = 1
500+ln(1+e) , ‖μ∗‖ = 1

100 and ‖μ̃‖ = 1
300 . Furthermore, ∑2

i=1
1
4i − 1

3 ∑3
j=1

1
2j =

3
8 − 7

24 =
1

12 �= 0, and so E = 12. Then,

Θ =
1

pΓ(α + β + 1)
[|E|(

m

∑
i=1

|ξi|+ |ν|
n

∑
j=1

|ηj|) + 1][(‖q‖+K‖h‖+ Γ(α + β + 1)‖μ∗‖
Γ(β + 1)

)r

+M‖h‖+ Γ(α + β + 1)k0

Γ(β + 1)
]

≈ 1
1000Γ(2.7)

[12(
2

∑
i=1

1
4i

+
1
3

3

∑
j=1

1
2j ) + 1][1.807699588 +

π

4
] ≈ 0.0151084953
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and so

r = 0.1 ≥ 0.0218486492 ≈ ζ∗2 Θ + ζ∗1
1 − ‖μ‖Θ − ‖μ̃‖

and

‖μ‖Θ + ‖μ̃‖ ≈ 0.0033634712 < 1,

As all the conditions of Theorem 1 be satisfied, the problems (12) and (13) have a solution.

Example 2. Let us consider the following fractional couple hybrid Sturm–Liouville differential equation:

D
1
2
c

(
5

4
1+t2 D

1
3
c
(u(t)− ζ1(t, u(t))

ζ2(t, u(t))
)− k(t, u(t))

)
+ 2| sin x|u(t) = cot−1(

1
2

u(t)), t ∈ I (14)

with boundary values⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
D

1
3
c
(u(t)− ζ2(t, u(t))

ζ2(t, u(t))
)

t=0 =
1

240
u(0), t ∈ I = [0, 1]

∑2
i=1

i
2
(

u(10i)− ζ1(10i, u(10i))

ζ2(10i, u(10i))

)
= −2

2

∑
j=1

(−1)j

j + 2
(u(13j)− ζ1(13j, u(13j))

ζ2(13j, u(13j))

)
,

(15)

where
ζ1(t, u(t)) = 7t−1(1 + 6

−9
1+2t u(t))− 76t

77

ζ2(t, u(t)) =
8

30 + ln(1 + t)
e−t2−t3

u(t) +
1
20

cos(
π

1 + t2 )

and

k(t, u(t)) =
u(t)

(2 + t)(5 + 3t)(6 + 7t)(4 + 9t)
+ sinh(ln(2)t5).

Now, we put α = 1
2 , β = 1

3 , r = 0.9, ξ1 = 1, ξ2 = 1
2 , η1 = − 1

3 , η2 = 1
4 , ν = −2,

p(t) = 5
4

1+t2 , q(t) = 2| sin x|, h(t) = 1, f (u(t)) = cot−1( 1
2 u(t)). Hence, | ∂ f (u)

∂u | ≤ 1
2 = K,

M = π
2 , p = 625, ‖q‖ = 2, ‖h‖ = 1, ζ∗1 = 1

77 , ζ∗2 = 1
20 , k0 = 3

4 , ‖μ‖ = 30
8 , ‖μ∗‖ = 1

240 ,

‖μ̃‖ = 1
216 , ∑2

i=1
i
2
− ν

2

∑
j=1

(−1)j

j + 2
=

4
3
�= 0 and E = 3

4 . Therefore, Θ ≈ 0.0235484505. Then,

we have

r = 0.9 ≥ 0.0564209808 ≈ ζ∗2 Θ + ζ∗1
1 − ‖μ‖Θ − ‖μ̃‖

and

‖μ‖Θ + ‖μ̃‖ ≈ 0.0047386502 < 1,

That is, all the conditions of Theorem 1 hold and the problem (14) and (15) has a solution.

If in Theorem 1, we take ζ1(t, w) = k(t, w) = ζ2(t, w)− 1 = 0 for all t ∈ I and w ∈ R,
we have the following Corollary.

Corollary 1. Let the hypotheses (D1)–(D2) be satisfied. Assume that

1
pΓ(α + β + 1)

[|E|(
m

∑
i=1

|ξi|+ |ν|
n

∑
j=1

|ηj|) + 1](‖q‖+K‖h‖) < 1,
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where E =
1

∑m
i=1 ξi − ν ∑n

j=1 ηj
and ∑m

i=1 ξi − ν ∑n
j=1 ηj �= 0. Then, the fractional Sturm–

Liouville differential problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Dα
c
[
p(t)Dβ

c
(
u(t)

)]
+ q(t)u(t) = h(t) f (u(t)), t ∈ I

Dβ
c
(
u(t))

)
t=0 = 0,

∑m
i=1 ξiu(ai) = ν ∑n

j=1 ηju(bj),

(16)

has a solution u ∈ C(I,R) if and only if u solves the integral equation

u(t) = E(
m

∑
i=1

ξi Au(ai)− ν
n

∑
j=1

ηj Au(bj) + ν
n

∑
j=1

ηjBu(bj)

−
m

∑
i=1

ξiBu(ai))− Au(t) + Bu(t).

Therefore, Dβ
c (u(t)) ∈ C(I,R).

3. Continuous Dependence

The following result will be useful in this section (in fact it is a special case of Theorem 1
with ζ2(t, x) = 1 for all t ∈ I and x ∈ R).

Corollary 2. Let the hypotheses (D1), (D2), and (D4) be satisfied. Assume that there exists a
number r > 0 such that

r >
Θ + ζ∗1
1 − ‖μ̃‖ and ‖μ̃‖ < 1,

where

Θ =
1

pΓ(α + β + 1)
[E(

m

∑
i=1

|ξi|+ |ν|
n

∑
j=1

|ηj|) + 1][(‖q‖+K‖h‖+ Γ(α + β + 1)‖μ∗‖
Γ(β + 1)

)r

+M‖h‖+ Γ(α + β + 1)k0

Γ(β + 1)
],

ζ∗1 = supt∈I ζ1(t, 0), k0 = supt∈I |k(t, 0)|, M = f (0) and E =
1

∑m
i=1 ξi − ν ∑n

j=1 ηj
where

∑m
i=1 ξi − ν ∑n

j=1 ηj �= 0. Then, the fractional couple hybrid Sturm–Liouville differential equation

Dα
c

[
p(t)Dβ

c
(
u(t)− ζ1(t, u(t))

)− k(t, u(t))
]
+ q(t)u(t) = h(t) f (u(t)), t ∈ I (17)

with multi-point boundary couple hybrid condition⎧⎪⎪⎨⎪⎪⎩
Dβ

c

(
u(t)− ζ1(t, u(t))

)
t=0

= k(0, u(0)),

∑m
i=1 ξi(u(ai)− ζ1(ai, u(ai))

)
= ν ∑n

j=1 ηj
(
u(bj)− ζ1(bj, u(bj))

)
,

(18)
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has a solution u ∈ C(I,R) if and only if u solves the integral equation

u(t) = E
( m

∑
i=1

ξi Au(ai)− ν
n

∑
j=1

ηj Au(bj) + ν
n

∑
j=1

ηjBu(bj)

−
m

∑
i=1

ξiBu(ai)) + ν
n

∑
j=1

ηjCu(bj)−
m

∑
i=1

ξiCu(ai)
)

− Au(t) + Bu(t) + Cu(t) + ζ1(t, u(t)).

(19)

Furthermore, Dβ
c (u(t)) ∈ C(I,R).

In this section, we will investigate continuous dependence (on the coefficients ξi and
ηj of the multi-point boundary couple hybrid condition) of the solution of the fractional
couple hybrid Sturm–Liouville differential Equation (17) with multi-point boundary couple
hybrid condition (18). The main Theorem of this section generalizes Theorem 3.2 in [23]
and Theorem 5 in [8].

First, we give the following Definition.

Definition 3. The solution of the fractional couple hybrid Sturm–Liouville differential
Equation (17) is continuously dependent on the data ξi and ηj if for every ε > 0, there exist
δ1(ε) and δ2(ε), such that for any two solutions u(t) and ũ(t) of (17) with the initial data (18) and⎧⎪⎪⎨⎪⎪⎩

Dβ
c

(
ũ(t)− ζ1(t, ũ(t))

)
t=0

= k(0, ũ(0)),

∑m
i=1 ξ̃i(ũ(ai)− ζ1(ai, ũ(ai)) = ν ∑n

j=1 η̃j
(
ũ(bj)− ζ1(bj, ũ(bj))

)
,

(20)

respectively, one has ∑m
i=1 |ξi − ξ̃i| < δ1 and ∑n

j=1 |ηj − η̃j| < δ2, then ‖u − ũ‖ < ε for all t ∈ I.

Theorem 2. Assume that the assertions of Corollary (21) are satisfied. Then, the solution of
the fractional couple hybrid Sturm–Liouville differential problem (17) and (18) is continuously
dependent on the coefficients ξi and ηj of the multi-point boundary couple hybrid condition.

Proof. Assume that u is a solution of the fractional couple hybrid Sturm–Liouville differ-
ential problem (17) and (18) and that

ũ(t) = Ẽ
m

∑
i=1

ξ̃i Aũ(ai)− νẼ
n

∑
j=1

η̃j Aũ(bj) + νẼ
n

∑
j=1

η̃jBũ(bj)− Ẽ
m

∑
i=1

ξ̃iBũ(ai))

+ νẼ
n

∑
j=1

η̃jCũ(bj)− Ẽ
m

∑
i=1

ξ̃iCũ(ai)− Aũ(t) + Bũ(t) + Cũ(t) + ζ1(t, ũ(t))

is a solution of the fractional couple hybrid Sturm-Liouville differential Equation (17) with
the multi-point boundary couple hybrid condition (18). Therefore,

|ũ(t)− u(t)| ≤ |Ẽ
m

∑
i=1

ξ̃i Aũ(ai)− E
m

∑
i=1

ξi Au(ai)|+ |νẼ
n

∑
j=1

η̃j Aũ(bj)− νE
n

∑
j=1

ηj Au(bj)|

+ |νẼ
n

∑
j=1

η̃jBũ(bj)− νE
n

∑
j=1

ηjBu(bj)|+ |Ẽ
m

∑
i=1

ξ̃iBũ(ai)− E
m

∑
i=1

ξiBu(ai)|

+ |νẼ
n

∑
j=1

η̃jCũ(bj)− νE
n

∑
j=1

ηjCu(bj)|+ |Ẽ
m

∑
i=1

ξ̃iCũ(ai)− E
m

∑
i=1

ξiCu(ai)|

+ |Aũ(t)− Au(t)|+ |Bũ(t)− Bu(t)|+ |Cũ(t)− Cu(t)|+ |ζ1(t, ũ(t))− ζ1(t, u(t))|.

(21)
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On the other hand,

|E
m

∑
i=1

ξi Au(ai)− Ẽ
m

∑
i=1

ξ̃i Aũ(ai)| = |E
m

∑
i=1

ξi Au(ai)− E
m

∑
i=1

ξi Aũ(ai)

+ E
m

∑
i=1

ξi Aũ(ai)− E
m

∑
i=1

ξ̃i Aũ(ai) + E
m

∑
i=1

ξ̃i Aũ(ai)− Ẽ
m

∑
i=1

ξ̃i Aũ(ai)|

≤ |E|
m

∑
i=1

|ξi||A(u(ai)− ũ(ai))|+ |E|
m

∑
i=1

|ξi − ξ̃i||Aũ(ai)|+ |E − Ẽ|
m

∑
i=1

|ξ̃i||Aũ(ai)|

≤ |E
m

∑
i=1

ξi Au(ai)− Ẽ
m

∑
i=1

ξ̃i Aũ(ai)|

≤ ‖q‖|E|∑m
i=1 |ξi|

pΓ(α + β + 1)
‖u − ũ‖+ ‖q‖|E|‖ũ‖

pΓ(α + β + 1)

m

∑
i=1

|ξi − ξ̃i|

+
‖q‖‖ũ‖∑m

i=1 |ξ̃i||E||Ẽ|
pΓ(α + β + 1)

(
m

∑
i=1

|ξi − ξ̃i|+ |ν|
n

∑
j=1

|ηj − η̃j|).

AS ∑m
i=1 |ξi − ξ̃i| < δ1 and ∑n

j=1 |ηj − η̃j| < δ2, then

|E
m

∑
i=1

ξi Au(ai)− Ẽ
m

∑
i=1

ξ̃i Aũ(ai)| ≤ ‖q‖|E|∑m
i=1 |ξi|

pΓ(α + β + 1)
‖u − ũ‖+ ‖q‖|E|‖ũ‖

pΓ(α + β + 1)
δ1

+
‖q‖‖ũ‖∑m

i=1 |ξ̃i||E||Ẽ|
pΓ(α + β + 1)

(δ1 + |ν|δ2).

Similarly,

|νE
n

∑
j=1

ηj Au(bj)− νẼ
n

∑
j=1

η̃j Aũ(bj)| ≤ |ν||E|
n

∑
j=1

|ηj||A(u(bj)− ũ(bj))|

+ |ν||E|
n

∑
j=1

|ηj − η̃j||Aũ(bj)|+ |ν||E − Ẽ|
n

∑
j=1

|η̃j||Aũ(bj)|

≤ ‖q‖|E||ν|∑m
i=1 |ηi|

pΓ(α + β + 1)
‖u − ũ‖+ ‖q‖|E||ν|‖ũ‖

pΓ(α + β + 1)
δ2

+
‖q‖‖ũ‖|ν|∑m

i=1 |η̃i||E||Ẽ|
pΓ(α + β + 1)

(δ1 + |ν|δ2),

and so

|E
m

∑
i=1

ξi Au(ai)− Ẽ
m

∑
i=1

ξ̃i Aũ(ai)|+ |νE
n

∑
j=1

ηj Au(bj)− νẼ
n

∑
j=1

η̃j Aũ(bj)|

≤ ‖q‖|E|(∑m
i=1 |ξi|+ |ν|∑m

i=1 |ηi|)
pΓ(α + β + 1)

‖u − ũ‖+ Ω1(δ1 + |ν|δ2)

(22)

where

Ω1 =
‖q‖|E|‖ũ‖

pΓ(α + β + 1)
+

‖q‖‖ũ‖∑m
i=1 |ξ̃i||E||Ẽ|

pΓ(α + β + 1)
+

‖q‖‖ũ‖|ν|∑m
i=1 |η̃i||E||Ẽ|

pΓ(α + β + 1)
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Furthermore,

|νE
n

∑
j=1

ηjBu(bj)− νẼ
n

∑
j=1

η̃jBũ(bj)| ≤ |ν||E|
n

∑
j=1

|ηj||B(u(bj)− ũ(bj))|

+ |ν||E|
n

∑
j=1

|ηj − η̃j|Bũ(bj)|+ |ν||E − Ẽ|
n

∑
j=1

|η̃j||Bũ(bj)|

≤ K‖h‖|ν||E|∑n
j=1 |ηj|

pΓ(α + β + 1)
‖u − ũ‖+ (K‖ũ‖+M)‖h‖|ν||E|

pΓ(α + β + 1)
δ2

+
(K‖ũ‖+M)‖h‖|ν|∑n

j=1 |η̃j||E||Ẽ|
pΓ(α + β + 1)

(δ1 + |ν|δ2).

Similarly,

|E
m

∑
i=1

ξiBu(ai)− Ẽ
m

∑
i=1

ξ̃iBũ(ai)| ≤ |E|
m

∑
i=1

|ξi||B(u(ai)− ũ(ai))|+ |E|
m

∑
i=1

|ξi − ξ̃i||Bũ(ai)|

+ |E − Ẽ|
m

∑
i=1

ξ̃iBũ(ai) ≤
K‖h‖|E|∑n

j=1 |ξ j|
pΓ(α + β + 1)

‖u − ũ‖+ (K‖ũ‖+M)‖h‖|E|
pΓ(α + β + 1)

δ1

+
(K‖ũ‖+M)‖h‖∑n

j=1 |ξ̃ j||E||Ẽ|
pΓ(α + β + 1)

(δ1 + |ν|δ2).

and then

|νE
n

∑
j=1

ηjBu(bj)− νẼ
n

∑
j=1

η̃jBũ(bj)|+ |E
m

∑
i=1

ξiBu(ai)− Ẽ
m

∑
i=1

ξ̃iBũ(ai)|

≤ K‖h‖|E|(∑m
i=1 |ξi|+ |ν|∑n

j=1 |ηj|)
pΓ(α + β + 1)

‖u − ũ‖+ Ω2(δ1 + |ν|δ2)

(23)

where

Ω2 =
(K‖ũ‖+M)‖h‖|E|

pΓ(α + β + 1)
+

(K‖ũ‖+M)‖h‖|ν|∑n
j=1 |η̃j||E||Ẽ|

pΓ(α + β + 1)

+
(K‖ũ‖+M)‖h‖∑n

j=1 |ξ̃ j||E||Ẽ|
pΓ(α + β + 1)

Further,

|νẼ
n

∑
j=1

η̃jCũ(bj)− νE
n

∑
j=1

ηjCu(bj)|

≤ |ν||E|
n

∑
j=1

|ηj||C(u(bj)− ũ(bj))|+ |ν||E|
n

∑
j=1

|ηj − η̃j||Cũ(bj)|+ |ν||E − Ẽ|
n

∑
j=1

|η̃j||Cũ(bj)|

≤ ‖μ∗‖|ν||E|∑n
j=1 |ηj|

pΓ(β + 1)
‖u − ũ‖+ (‖μ∗‖‖ũ‖+ k0)|ν||E|

pΓ(β + 1)
δ2

+
(‖μ∗‖‖ũ‖+ k0)|ν|∑n

j=1 |η̃j||E||Ẽ|
pΓ(β + 1)

(δ1 + |ν|δ2).

24



Axioms 2021, 10, 65

Similarly,

|Ẽ
m

∑
i=1

ξ̃iCũ(ai)− E
m

∑
i=1

ξiCu(ai)| ≤
‖μ∗‖|E|∑n

j=1 |ξ j|
pΓ(β + 1)

‖u − ũ‖+ (‖μ∗‖‖ũ‖+ k0)|E|
pΓ(β + 1)

δ1

+
(‖μ∗‖‖ũ‖+ k0)∑n

j=1 |ξ̃ j||E||Ẽ|
pΓ(β + 1)

(δ1 + |ν|δ2).

and so

|νẼ
n

∑
j=1

η̃jCũ(bj)− νE
n

∑
j=1

ηjCu(bj)|+ |Ẽ
m

∑
i=1

ξ̃iCũ(ai)− E
m

∑
i=1

ξiCu(ai)|

≤ ‖μ∗‖|E|(∑n
j=1 |ξ j|+ |ν|∑n

j=1 |ηj|)
pΓ(β + 1)

‖u − ũ‖+ Ω3(δ1 + |ν|δ2)

(24)

where

Ω3 =
(‖μ∗‖‖ũ‖+ k0)|E|

pΓ(β + 1)
+

(‖μ∗‖‖ũ‖+ k0)∑n
j=1 |ξ̃ j||E||Ẽ|

pΓ(β + 1)

+
(‖μ∗‖‖ũ‖+ k0)∑n

j=1 |ξ̃ j||E||Ẽ|
pΓ(β + 1)

At last we have

|Aũ(t)− Au(t)| ≤ ‖q‖
pΓ(α + β + 1)

‖u − ũ‖,

|Bũ(t)− Bu(t)| ≤ K‖h‖
pΓ(α + β + 1)

‖u − ũ‖,

|Cũ(t)− Cu(t)| ≤ ‖μ∗‖
pΓ(β + 1)

‖u − ũ‖,

|ζ1(t, ũ(t))− ζ1(t, u(t))| ≤ ‖μ̃‖‖u − ũ‖.

(25)

Thus, from (21)–(25), we have

‖u − ũ‖ ≤ (Ω∗ + ‖μ̃‖)‖u − ũ‖+ (Ω1 + Ω2 + Ω3)(δ1 + |ν|δ2)

where Ω∗ = 1
pΓ(α+β+1) [E(∑

m
i=1 |ξi|+ |ν|∑n

j=1 |ηj|)+ 1](‖q‖+K‖h‖+ Γ(α+β+1)‖μ∗‖
Γ(β+1) ). That is,

(1 − Ω∗ − ‖μ̃‖)‖u − ũ‖ ≤ (Ω1 + Ω2 + Ω3)(δ1 + |ν|δ2). (26)

From our hypotheses, we know that

r >
Θ + ζ∗1
1 − ‖μ̃‖ , ‖μ̃‖ < 1 and

Θ =
1

pΓ(α + β + 1)
[E(

m

∑
i=1

|ξi|+ |ν|
n

∑
j=1

|ηj|) + 1][(‖q‖+K‖h‖+ Γ(α + β + 1)‖μ∗‖
Γ(β + 1)

)r

+M‖h‖+ Γ(α + β + 1)k0

Γ(β + 1)
] = Ω∗r + Ω∗

0

where

Ω∗
0 =

1
pΓ(α + β + 1)

[E(
m

∑
i=1

|ξi|+ |ν|
n

∑
j=1

|ηj|) + 1][M‖h‖+ Γ(α + β + 1)k0

Γ(β + 1)
].
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Therefore,

r >
Θ + ζ∗1
1 − ‖μ̃‖ =

Ω∗r + Ω∗
0 + ζ∗1

1 − ‖μ̃‖ ,

and so

(1 − ‖μ̃‖)r > Ω∗r + Ω∗
0 + ζ∗1 .

Then, Ω∗r < (1 − ‖μ̃‖)r. Since r > 0, thus 0 < 1 − Ω∗ − ‖μ̃‖. Thus, from (26),
we obtain

‖u − ũ‖ ≤ ε = (1 − Θ − ‖μ̃‖)−1(Ω1 + Ω2 + Ω3)(δ1 + |ν|δ2).

That is, we proved that for every ε > 0, there exist δ1(ε) and δ2(ε) such that ∑m
i=1 |ξi −

ξ̃i| < δ1 and ∑n
j=1 |ηj − η̃j| < δ2, then ‖u − ũ‖ < ε.

4. Fractional Couple Hybrid Sturm–Liouville Differential Equation with Integral
Boundary Hybrid Condition

In this section, we deduce some fractional couple hybrid Sturm–Liouville differential
equation via integral boundary conditions.

Theorem 3. Let the hypotheses (D1)–(D4) be satisfied. Let a number r > 0 exist such that

r ≥ ζ∗2 Θ + ζ∗1
1 − ‖μ‖Θ − ‖μ̃‖ and ‖μ‖Θ + ‖μ̃‖ < 1, (27)

where

Θ =
1

pΓ(α + β + 1)
[
�(c)− �(a) + |ν|(υ(e)− υ(d))
|�(c)− �(a)− ν(υ(e)− υ(d))| + 1][(‖q‖+K‖h‖

+
Γ(α + β + 1)‖μ∗‖

Γ(β + 1)
)r +M‖h‖+ Γ(α + β + 1)k0

Γ(β + 1)
],

�(c)− �(a) �= ν(υ(e)− υ(d)), �(θ) and υ(θ) are increasing functions and the integrals are
meant in the Riemann–Stieltjes sense for 0 ≤ a < c ≤ d < e ≤ 1. Then, there exists a solution
u ∈ C(I,R) of the fractional couple hybrid Sturm–Liouville differential problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
c

[
p(t)Dβ

c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
− k(t, u(t))

]
+ q(t)u(t) = h(t) f (u(t)),

Dβ
c

(
u(t)− ζ1(t, u(t))

ζ2(t, u(t))

)
t=0

= k(0, u(0)),

∫ c

a
(

u(θ)− ζ1(θ, u(θ))
ζ2(θ, u(θ))

)
d�(θ) = ν

∫ e

d

(u(θ)− ζ1(θ, u(θ))
ζ2(θ, u(θ))

)
dυ(θ),

(28)
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and u solves (28) if and only if u solves the integral equation

u(t) = ζ2(t, u(t))
[

1
�(c)− �(a)− ν(υ(e)− υ(d))

(
∫ c

a
Au(θ)d�(θ)

− ν
∫ e

d
Au(θ)dυ(θ) + ν

∫ e

d
Bu(θ)dυ(θ)−

∫ c

a
Bu(θ)d�(θ)

+ ν
∫ e

d
Cu(θ)dυ(θ)−

∫ c

a
Cu(θ)d�(θ))

− Au(t) + Bu(t) + Cu(t)
]
+ ζ1(t, u(t)).

(29)

Furthermore, if (B∗) holds, then Dβ
c (u(t)) ∈ C(I,R).

Proof. Let u be a solution of the problem (3) and (4). Assume that ξi = �(ti)− �(ti−1),
ai ∈ (ti−1, ti), 0 ≤ a = t0 < t1 < t2 < . . . < tm = c, ηj = υ(τj)− υ(τj−1), bj ∈ (τj−1, τj)
and d = τ0 < τ1 < . . . < τn = e ≤ 1. Thus, the multi-point boundary hybrid condition (4)
will be

m

∑
i=1

(�(ti)− �(ti−1))(
u(ai)− ζ1(ai, u(ai))

ζ2(ai, u(ai))

)
= ν

n

∑
j=1

(υ(τj)− υ(τj−1))
(u(bj)− ζ1(bj, u(bj))

ζ2(bj, u(bj))

)
,

As the solution u of (3) and (4) is continuous, we have

lim
m→∞

m

∑
i=1

(�(ti)− �(ti−1))(
u(ai)− ζ1(ai, u(ai))

ζ2(ai, u(ai))

)
= ν lim

n→∞

n

∑
j=1

(υ(τj)− υ(τj−1))
(u(bj)− ζ1(bj, u(bj))

ζ2(bj, u(bj))

)
,

or equivalently∫ c

a
(

u(θ)− ζ1(θ, u(θ))
ζ2(θ, u(θ))

)
d�(θ) = ν

∫ e

d

(u(θ)− ζ1(θ, u(θ))
ζ2(θ, u(θ))

)
dυ(θ).

Now, from the continuity of the solution u in (5), we can obtain

u(t) = ζ2(t, u(t))
[

1
∑∞

i=1 ξi − ν ∑∞
j=1 ηj

( lim
m→∞

m

∑
i=1

(�(ti)− �(ti−1))Au(ai)

− ν lim
n→∞

n

∑
j=1

(υ(τj)− υ(τj−1))Au(bj) + ν lim
n→∞

n

∑
j=1

(υ(τj)− υ(τj−1))Bu(bj)

− lim
m→∞

m

∑
i=1

(�(ti)− �(ti−1))Bu(ai)) + ν lim
n→∞

n

∑
j=1

(υ(τj)− υ(τj−1))Cu(bj)

− lim
m→∞

m

∑
i=1

(�(ti)− �(ti−1))Cu(ai))− Au(t) + Bu(t) + Cu(t)
]
+ ζ1(t, u(t))

= ζ2(t, u(t))
[

1
�(c)− �(a)− ν(υ(e)− υ(d))

(
∫ c

a
Au(θ)d�(θ)− ν

∫ e

d
Au(θ)dυ(θ)

+ ν
∫ e

d
Bu(θ)dυ(θ)−

∫ c

a
Bu(θ)d�(θ) + ν

∫ e

d
Cu(θ)dυ(θ)−

∫ c

a
Cu(θ)d�(θ))

− Au(t) + Bu(t) + Cu(t)
]
+ ζ1(t, u(t)).
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and clearly u ∈ C(I,R) solves the problem (28) if and only if solves (29). Similarly, by
taking ξi = �(ti)− �(ti−1) and ηj = υ(τj)− υ(τj−1) and m, n → ∞ in (D5), we get (27).

Example 3. Consider the fractional couple hybrid Sturm–Liouville differential problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
4
5
c

(
ln(e100 + t)D

2
3
c
(u(t)− sin t

60 ( 1
70 u(t) + 3)

t
200 |u(t)|+ 2+ln(1+t)

1+ln(1+t)

)− u(t)
)
+

1
400(1 + t2)

u(t)

= cos3(t) tanh(u(t))

D
2
3
c

(
u(t)− sin t

60 ( 1
70 u(t) + 3)

t
200 |u(t)|+ 2+ln(1+t)

1+ln(1+t)

)
t=0

= u(0),

∫ 1
3

0

(
u(θ)− sin θ

60 ( 1
70 u(θ) + 3)

t
200 |u(θ)|+ 2+ln(1+θ)

1+ln(1+θ)

)
d(3θ + 1)

= 1
300

∫ 1
1
2

(
u(θ)− sin θ

60 ( 1
40 u(θ) + 3)

t
200 |u(θ)|+ 2+ln(1+θ)

1+ln(1+θ)

)
d(θ2),

(30)

In this case, we take α = 4
5 , β = 2

3 , r = 1, ν = 1
300 , �(θ) = 3θ + 1, υ(θ) = θ2,

p(t) = ln(e100 + t), q(t) = 1
400(1+t2)

, h(t) = cos3(t), f (u(t)) = tanh(u(t)), ζ1(t, u(t)) =

sin t
60 ( 1

70 u(t) + 3), ζ2(t, u(t)) = t
200 |u(t)|+ 2+ln(1+t)

1+ln(1+t) and k(t, u(t)) = u(t). Therefore K = 1,

M = 0, p = 100, ‖q‖ = 1
400 , ‖h‖ = 1, �(0) = 1, �( 1

3 ) = 2, υ( 1
2 ) =

1
4 , υ(1) = 1. Also

|ζ2(t, u(t))− ζ2(t, v(t))| ≤ t
200

|u(t)− v(t)|,

|ζ1(t, u(t))− ζ1(t, v(t))| ≤ sin t
4200

|u(t)− v(t)|

and |ζ2(t, u(t))− ζ2(t, v(t))| ≤ |u(t)− v(t)|. Then, ‖μ‖ = 1
200 , ‖μ̃‖ = 1

4200 , ‖μ∗‖ = 1 ζ∗2 = 2,
ζ∗1 = 1

20 and k0 = 0. Thus,

�(
1
3
)− �(0) = 1 �= 1

400
= ν(υ(1)− υ(

1
2
)) and Θ ≈ 0.0468369692,

r = 1 ≥ 0.1437418248 ≈ ζ∗2 Θ + ζ∗1
1 − ‖μ‖Θ − ‖μ̃‖

and

‖μ‖Θ + ‖μ̃‖ ≈ 0.0004722801 < 1,

Then, all the conditions of Theorem 3 are satisfied and the problem (30) has a solution.

Corollary 3. Let the hypotheses (D1)–(D2) be satisfied. Let

1
pΓ(α + β + 1)

[
�(c)− �(a) + |ν|(υ(e)− υ(d))
|�(c)− �(a)− ν(υ(e)− υ(d))| + 1](‖q‖+K‖h‖) < 1,
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where �(c)− �(a) �= ν(υ(e)− υ(d)), �(θ) and υ(θ) are increasing functions, and the integrals
are meant in the Riemann–Stieltjes sense for 0 ≤ a < c ≤ d < e ≤ 1. Then, there exists a solution
u ∈ C(I,R) of the fractional couple hybrid Sturm–Liouville differential problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
c

[
p(t)Dβ

c
(
u(t)

)]
+ q(t)u(t) = h(t) f (u(t)),

Dβ
c (u(t))t=0 = 0,

∫ c

a
u(θ)d�(θ) = ν

∫ e

d
u(θ)dυ(θ),

(31)

and u solves (31) if and only if u solves the integral equation

u(t) =
1

�(c)− �(a)− ν(υ(e)− υ(d))
(
∫ c

a
Au(θ)d�(θ)− ν

∫ e

d
Au(θ)dυ(θ)

+ ν
∫ e

d
Bu(θ)dυ(θ)−

∫ c

a
Bu(θ)d�(θ))− Au(t) + Bu(t).

Furthermore, Dβ
c (u(t)) ∈ C(I,R).

5. Conclusions

Scientists utilize various Sturm–Lioville equations for modeling various phenomena
and processes. This variety factor in investigating complicates the fractional Sturm-Lioville
equations and boosts scientists’ ability for exact modelings of more phenomena. This
methods will lead scientists to make advanced software which help them to allow more
cost-free testing and less material consumption. In this paper, we investigate a coupled
hybrid version of the Sturm–Liouville differential equation. Indeed, we study the existence
of solutions for the coupled hybrid Sturm–Liouville differential equation with multi-point
boundary coupled hybrid condition. Furthermore, we study the existence of solutions for
the coupled hybrid Sturm–Liouville differential equation with integral boundary coupled
hybrid condition. We give an application and some examples to illustrate our results.
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Abstract: In this article, we consider a retarded linear fractional differential system with distributed
delays and Caputo type derivatives of incommensurate orders. For this system, several a priori
estimates for the solutions, applying the two traditional approaches—by the use of the Gronwall’s
inequality and by the use of integral representations of the solutions are obtained. As application
of the obtained estimates, different sufficient conditions which guaranty finite-time stability of the
solutions are established. A comparison of the obtained different conditions in respect to the used
estimates and norms is made.
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1. Introduction.

As a highly applicable mathematical tool to study models of real-world phenom-
ena, fractional calculus theory attracts a lot of attention. For a deep understanding of
the fractional calculus theory and fractional differential equations, we recommend the
monographs [1,2]. The distributed order fractional differential equations are treated in [3],
and for an application-oriented exposition see [4]. The impulsive functional differential
equations and some applications are considered in [5]. Some new ideas for efficient schemes
for numerical solving of fractional differential problems can be found, for example, in [6,7].

Fractional differential equations with delay generally speaking are more complicated
in comparison with the integer order differential equations with delay. This is conditioned
such that a distinguishing feature of the fractional differential equations with delay is that
the evolution of the processes described by such equations depends on the past history
inspired from two independent sources. The first of them is the impact condition of the
delays and the other one the impact condition from the availability of Volterra type integral
in the definitions of the fractional derivatives, i.e., the memory of the fractional derivative.

It is well known that the classical stability concepts (Lyapunov type stabilities) are
devoted to study the asymptotical properties of the solutions of differential systems over
an infinite time interval. It is well known that the theme of the stability of the solutions of
fractional differential equations and/or systems (ordinary or with delay) is an “evergreen”
theme for research. Furthermore, the wide appearance of the aftereffect to regard it as a
universal property of the surrounding world, is a serious reason to consider mathematical
models with delay and fractional derivatives. This explains why a lot of papers are devoted
to different aspects of this problem. A very good overview of the stability of the fractional
differential systems is given in the comprehensive survey [8]. From the recent works we
refer also to [9–18].

However, in many practical cases is more important to study the solution behaviors
in some specified (finite) time interval, where larger values of the state variables are not

Axioms 2021, 10, 75. https://doi.org/10.3390/axioms10020075 https://www.mdpi.com/journal/axioms
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admissible. Moreover, many authors made the observation that a system could be stable,
but it can own unacceptable transient outputs. Such a situation from an engineering point
of view leads to these types of analysis being useless. This is a reason to study not only
Lyapunov type stabilities but also to study the boundedness of the solutions defined over
a finite time interval, i.e., the finite-time stability (FTS). As far as we know the first work
concerning the FTS is written by Kamenkov [19] in the year 1953. A historical overview of
this theme can be obtained from the survey of Dorato [20]. Concerning the more recent
works devoted to the different approaches to study the finite-time stability, we refer to the
works [21–30].

The aim of our work, motivated by remarkable works [24–27], is twofold. First, we
obtain a priori estimates using the two most popular approaches and then compare the
precisions of the obtained via them estimates. Second, as an application, we apply these es-
timates to investigate the finite-time stability of fractional differential systems with Caputo
type derivatives in the case of incommensurate fractional orders and distributed delays.

The paper is organized as follows. In Section 2, we recall the definitions of Rie-
mann–Liouville and Caputo fractional derivatives. In the same section is the statement
of the problem, as well as some necessary definitions and preliminary results used later.
Section 3 is devoted to obtaining a priori estimates of the solutions of nonautonomous
fractional differential systems with Caputo type derivatives of incommensurate orders
with distributed delays via Gronwall inequality. In Section 4 for the solutions of the same
systems we obtain a priori estimates using the approach based on their integral repre-
sentations obtained in [31]. In Section 5 as application of the proved estimates we obtain
sufficient conditions for finite-time stability of the considered systems. Some examples and
comments are given in Section 5 and in Section 6 we present conclusions about the two
main approaches analyzed in the previous sections.

2. Preliminaries and Problem Statement

For the reader convenience, below we recall the definitions of Riemann-Liouville and
Caputo fractional derivatives. For details and properties we refer to [1–3].

Let α ∈ (0, 1) be an arbitrary number and denote by Lloc
1 (R,R) the linear space of

all locally Lebesgue integrable functions f : R → R. Then for a ∈ R, f ∈ Lloc
1 (R,R)

and each t > a the definitions of the left-sided fractional integral operator, the left side
Riemann–Liouville and Caputo fractional derivatives of order α with lower limit (terminal)
a are given below (see [1]):

(D−α
a+ f )(t) =

1
Γ(α)

t∫
a

(t − s)α−1 f (s)ds,

RLDα
a+ f (t) =

d
dt

(D−(1−α)
a+ f (t));

CDα
a+ f (t) =RL Dα

a+[ f (s)− f (a)](t);

Everywhere below the following notations will be used: R+ = (0, ∞), R̄+ = [0, ∞),
JT = [0, T], T ∈ R+, 〈n〉 = {1, 2, . . . , n}, 〈n〉0 = 〈n〉 ∪ {0}, n ∈ N, I, Θ ∈ Rn×n denote the
identity and zero matrix respectively, Ik, k ∈ 〈n〉 denotes the k-th column of the identity
matrix and 0 ∈ Rn is the zero element.

For β = (β1, . . . , βn), βk ∈ [−1, 1], k ∈ 〈n〉, Y(t) = (y1(t), . . . , yn(t))T : R+ → Rn

we use the notations Iβ(Y(t)) = diag((y1(t))β1 , . . . , (yn(t))βn), for W(t) = {wkj(t)}n
k,j=1 :

R̄+ → Rn×n, W(t) ∈ Lloc
1 (R̄+,Rn×n) and is locally bounded, we note for every fixed

t ∈ R̄+ with WT(t) = {wjk(t)}n
k,j=1 the transposed matrix, with σMax(t) the largest singular

value of W(t) and with |W(t)| = σMax the spectral norm [32]. In addition, ‖W(t)‖ =
sup

ξ∈[0,t]
|W(ξ)|, t ∈ R̄+ and for simplicity we will use the notation Dα

0+ =C Dα
0+ for the left

side Caputo fractional derivative with lower terminal zero.
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Below we will study the inhomogeneous linear delayed system of incommensurate
type and distributed delay in the following general form

Dα
0+X(t) =

0∫
−h

[dθU(t, θ)]X(t + θ) + F(t), t ∈ R+ (1)

or described in rows

Dαk
0+xk(t) =

n

∑
j=1

0∫
−h

xj(t + θ)dθukj(t, θ)) + fk(t), t ∈ R+, k ∈ 〈n〉

where X(t) = (x1(t), . . . , xn(t))T , Dα
0+ = diag(Dα1

0+, . . . , Dαn
0+), h ∈ R+ is an arbitrary fixed

number, α = (α1, . . . , αn), αk ∈ (0, 1), U : R̄+×R → Rn×n, U(t, θ) = {ukj(t, θ)}n
k,j=1, F(t) =

( f1(t), . . . , fn(t))T : R̄+ → Rn, αM = max
k∈〈n〉

αk and αm = min
k∈〈n〉

αk.

Definition 1. With C̃ we denote the Banach space of all bounded vector functions Φ(t) ∈
Lloc

1 ([−h, 0],Rn), with finite many jumps and norm ‖Φ‖ = sup
t∈[−h,0]

|Φ(t)| = max
k∈〈n〉

( sup
t∈[−h,0]

|φk(t)|)

< ∞ and the subspace of all continuous functions by C = C([−h, 0],Rn), i.e., C ⊂ C̃. Below we
assume for convenience, that every Φ ∈ C̃ is prolonged as Φ(t) = 0 for t ∈ (−∞,−h) and by SΦ

we will denote the set of the jump points of Φ.

For the system, (1) introduces the following initial conditions:

X(t) = Φ(t) (xk(t) = φk(t), k ∈ 〈n〉), t ∈ (−∞, 0], Φ ∈ C̃. (2)

We say that for the kernel U : R̄+ × R → Rn×n the conditions (S) hold for some
h ∈ R+ if the following conditions are fulfilled:

(S1) The functions (t, θ) → U(t, θ) = {ukj(t, θ)}n
k,j=1 are measurable in (t, θ) ∈ R̄+×R

and normalized so that for t ∈ R̄+, U(t, θ) = 0 when θ ∈ R̄+ and U(t, θ) = U(t,−h)
for all θ ∈ (−∞,−h]. For all t ∈ R̄+ the matrix valued function Ū(t, 0) =
Varθ∈[−h,0]U(t, θ) = {Varθ∈[−h,0]uk,j(t, θ)}n

k,j=1, Ū(t, 0) ∈ Lloc
1 (R+,Rn×n) is locally bounded

and max
k,j∈〈n〉

Varθ∈[−h,0]uk,j(t, θ) < ∞.

(S2) The Lebesgue decomposition of the kernel U(t, θ) for t ∈ R̄+ and θ ∈ [−h, 0] has
the form:

U(t, θ) = UJ(t, θ) + UAC(t, θ) + US(t, θ)

where UJ(t, θ) =
m
∑

i=0
Ai(t)H(θ + σi(t)), m ∈ N, Ai(t) = {ai

kj(t)}n
k,j=1 ∈ Lloc

1 (R+,Rn×n) are

locally bounded on R+, H(t) is the Heaviside function, the delays σi(t) ∈ C(R̄+, R̄+) are

bounded with σi = sup
t∈R̄+

σi(t), max
i∈〈m〉

σi = h, i ∈ 〈m〉, σ0(t) ≡ 0, UAC = {
θ∫

−h
bj

k(t, s)ds}n
k,j=1 ∈

Lloc
1 (R̄+ ×R,Rn×n) are locally bounded on R̄+ and US(t, θ) ∈ C(R̄+ ×R,Rn×n).

(S3) For every t∗ ∈ R+ the following relation hold: lim
t→t∗

0∫
−h

|U(t, θ)− U(t∗, θ)|dθ = 0.

(S4) The set SU = {t ∈ R̄+ | t − σi(t) ∈ SΦ, i ∈ 〈m〉} do not have limit points.

Remark 1. At first glance, it seems that condition (S4) imposes certain restrictions on the initial
function (more preciously on its jump set SΦ, which is a finite set). But the leading role in this
interaction belongs to the delays, i.e., the validity of (S4) depends only from the properties of the
delays. For example, in the cases of constant delays or when the delays are strictly increasing, then
(S4) is ultimately fulfilled.
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Let us consider the following auxiliary system in matrix form

X(t) = Φ(0) + I−1(Γ(α))[
t∫

0

Iα−1(t − η)

0∫
−h

[dθU(η, θ)]X(η + θ)dη +

t∫
0

Iα−1(t − η)F(η)dη] (3)

where I−1(Γ(α)) = diag(Γ−1(α1), . . . , Γ−1(αn)), or for k ∈ 〈n〉 in row form

xk(t) = φk(0) +
1

Γ(αk)
[

t∫
0

(t − η)αk−1(
n

∑
j=1

0∫
−h

xj(η + θ)dθukj(η, θ))dη +

t∫
0

(t − η)αk−1 fk(η)dη]

with the initial condition (2).
In our exposition below we will use the abbreviation IP for Initial Problem.

Definition 2. The vector function X(t) = (x1(t), . . . , xn(t))T is a solution of the IP (1), (2) or
IP (3), (2) in R̄+, if X ∈ C(R̄+,Rn) satisfies the system (1) respectively (3) for all t ∈ R+ and the
initial condition (2) for each t ∈ [−h, 0].

In virtue of Lemma 3.3 in [33] every solution X(t) of IP (1), (2) is a solution of IP
(3), (2) and vice versa. Moreover, the IP (3), (2) possess a unique solution X ∈ C(R̄+,Rn)
according Corollary 1 in [34] and hence IP (1), (2) too.

For the corresponding homogeneous system of the system (1) (i.e., F(t) ≡ 0 for
t ∈ R+):

Dα
0+X(t) =

0∫
−h

[dθU(t, θ)]X(t + θ), t ∈ R+ (4)

and for arbitrary fixed s ∈ [−h, ∞) introduce the matrix system

Dα
0+W(t, s) =

0∫
−h

[dθU(t, θ)]W(t + θ, s), t ∈ R+ ∩ [s, ∞). (5)

as well as the special kind initial matrix valued functions Φ1, Φ2 : R2 → Rn×n

Φ1(t, s) =

{
I, t = s,
Θ, t < s

, s ∈ R̄+,

Φ2(t, s) =

{
I, −h ≤ s ≤ t ≤ 0,
Θ, t < s or s < −h

, s ∈ [−h, 0]

(6)

and consider the matrix integral equations

C(t, s) = Φ1(t, s) + I−1(Γ(α))
t∫

s

Iα−1(t − η)

0∫
−σ

[dU(η, θ)]C(η + θ, s)dη, s ∈ R̄+, t ∈ (s, ∞) (7)

T−h(t, s) = Φ2(0, s) + I−1(Γ(α))
t∫

0

Iα−1(t − η)

0∫
−σ

[dU(η, θ)]T−h(η + θ, s)dη, s ∈ [−h, 0], t ∈ R+ (8)

For arbitrary fixed s ∈ R̄+, the solution C(t, s) of (7) for t ∈ (s, ∞) with initial condition
C(t, s) = Φ1(t, s), t ∈ (−∞, s] is called fundamental matrix of the system (4).

By T−h(t, s) for arbitrary fixed s ∈ (−∞, 0] we denote the solution of (8) for t ∈ R+

with initial condition T−h(t, s) = Φ2(t, s), t ∈ (−∞, 0] and we note that C(t, 0) = T0(t, 0).
The existence and uniqueness of the fundamental matrix C(t, s) of the system (4) and

the matrix T−h(t, s) as well as their properties are proved in [31]. Please note that these
matrices are absolutely continuous concerning t and continuous in s on every compact
subinterval in R̄+ if s �= t and for s = t possess first kind jumps [31].
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Everywhere below we will use the notations:

‖Ū(t, 0)‖ = sup
ξ∈[0,t]

|Ū(ξ, 0)| = sup
ξ∈[0,t]

|Varθ∈[−h,0]U(ξ, θ)|,

C̄(t, s) = Varη∈[0,s]C(t, η) = {Varη∈[0,s]ckj(t, η)}n
k,j=1,

‖C̄(t, s)‖ = sup
ξ∈[0,t]

|C̄(ξ, s)| = sup
ξ∈[0,t]

|Varη∈[0,s]C(ξ, η)|,

T̄−h(t, s) = Varη∈[−h,s]T−h(t, η) = {Varη∈[−h,s]ϑkj(t, η)}n
k,j=1,

‖T̄−h(t, s)‖ = sup
ξ∈[0,t]

|T̄−h(ξ, s)| = sup
ξ∈[0,t]

|Varη∈[−h,s]T̄−h(ξ, η)|.

We recall some needed properties of the gamma function Γ(z), z ∈ R+.
It is well known that Γ(z) has a local minimum at zmin ≈ 1.46163, where it attains

the value Γ(zmin) ≈ 0.885603. Since Γ(z) for z ∈ (0, zmin) is strictly decreasing, then for
arbitrary αk ∈ (0, 1) we have that

max
k∈〈n〉

1
Γ(αk)

< max
k∈〈n〉

1
Γ(1 + αk)

≤ 1
Γ(zmin)

≤ 1.1279

For the function Iα−1(t − η) = (diag((t − η)α1−1, . . . , (t − η)αn−1) we will use below
the notations α∗ = αm when t − η ≤ 1 and α∗ = αM when t − η ≥ 1. Then we have that for
t ∈ R̄+, η ∈ [0, t), the following relations hold

|Iα−1(t − η)| = (t − η)α∗−1; |I−1(Γ(α))| = 1
Γ(αM)

= Γ−1(αM) = C0 (9)

where Γ−1(αM) and (t − η)α∗−1 are the largest singular values for the diagonal matrices
I−1(Γ(α)) and Iα−1(t − η) respectively.

Theorem 1. [35] Let the following conditions hold:
1. The functions a(t), u(t) ∈ L1

loc([0, T), R̄+) for some T ∈ R+ and α > 0.
2. The function g(t) ∈ C([0, T), [0, M]) for some M ∈ R+ and is nondecreasing.
3. For every t ∈ [0, T) the following inequality holds:

u(t) ≤ a(t) + g(t)
t∫

0

(t − η)α−1u(η)dη.

Then the following inequality holds for t ∈ [0, T):

u(t) ≤ a(t) +
t∫

0

[
∞

∑
q=1

(g(η)(Γ(α))q

Γ(αq)
(t − η)αq−1]a(η)dη.

Corollary 1. [35] Let the conditions of Theorem 1 hold and let the function a(t) be nondecreasing
on [0, T).

Then for t ∈ [0, T) the inequality u(t) ≤ a(t)Eα[g(t)Γ(α)tα] holds, where Eα denotes the
one parameter Mittag-Leffler function.

Definition 3. [27] The fractional system given by (1) satisfying the initial state (2) is finite-time
stable with respect to {0, JT , δ, ε, h} with t ∈ JT and δ ≤ ε if and only if the inequality ‖Φ‖ < δ
implies that ‖X(t)‖ < ε for each t ∈ JT, where X(t) is the unique solution of IP (1), (2).
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3. A Priory Estimates of the Solutions of IP (1), (2)—Gronwall’s Inequality Approach

In this section, we obtain some a priori estimates of the solutions of IP (1), (2) and
IP (4), (2) in different cases, depending from the properties of the initial function Φ and
the function F. The different a priori estimates of the solutions in this section are obtained
using approaches based on Gronwall’s inequality.

Theorem 2. Let T ∈ R+ be an arbitrary fixed number and the following conditions are fulfilled:
1. Conditions (S) hold.
2. The function F(t) ∈ Lloc

1 (R+,Rn) is locally bounded.
Then for every initial function Φ ∈ C̃ the corresponding unique solution X(t) of IP (1), (2)

for every t ∈ JT satisfies the estimation

max(‖X(t)‖, ‖Φ‖) ≤ (‖Φ‖+ α−1∗ C0‖F(t)‖tα∗)Eα(‖Ū(t, 0)‖C0Γ(α∗)tα∗). (10)

Proof. Let Φ ∈ C̃ be an arbitrary initial function and X(t) be the corresponding unique
solution of the IP (1), (2). Then if max(‖X(T)‖, ‖Φ‖) = ‖Φ‖ the estimation (10) obvi-
ously holds.

Let assume that max(‖X(T)‖, ‖Φ‖) > ‖Φ‖. From (3) for every t ∈ JT it follows that

X(t) = Φ(0) + I−1(Γ(α))[
t∫

0

Iα−1(t − η)F(η)dη +

t∫
0

Iα−1(t − η)

0∫
−h

[dθU(η, θ)]X(η + θ)dη]. (11)

Using (9) it is simple to check that

|I−1(Γ(α))[
t∫

0

Iα−1(t − η)F(η)dη| ≤ 1
Γ(αM)

t∫
0

(t − η)α∗−1|F(η)|dη

≤ C0‖F(t)‖
t∫

0

(t − η)α∗−1dη = C0α−1∗ ‖F(t)‖tα∗ .

(12)

Since for each η ∈ R̄+ with η + θ ≤ 0 for some θ ∈ [−h, 0] we have that |X(η +
θ)| ≤ ‖Φ‖ and for each η ∈ R̄+ with η + θ ∈ [0, η] for some θ ∈ [−h, 0] the estimation
|X(η + θ)| ≤ ‖X(η)‖ holds, then for t ∈ JT we obtain

|
0∫

−h

[dθU(η, θ)]X(η + θ)| ≤ ‖Ū(t, 0)‖max(‖X(η)‖, ‖Φ‖). (13)

Then from (9), (11)–(13) for t ∈ JT we obtain

max(‖X(t)‖, ‖Φ‖) ≤ ‖Φ‖+ C0

t∫
0

(t − η)α∗−1‖F(t)‖dη

+
1

Γ(αM)

t∫
0

(t − η)α∗−1|
0∫

−h

[dθU(η, θ)]X(η + θ)|dη

≤ ‖Φ‖+ C0α−1∗ tα∗‖F(t)‖

+ C0‖Ū(t, 0)‖
t∫

0

(t − η)α∗−1 max(‖X(η)‖)|, ‖Φ‖)dη

(14)
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and denoting u(t) = max(‖X(t)‖, ‖Φ‖), from (14) it follows that

u(t) ≤ (‖Φ‖+ C0α−1∗ tα∗‖F(t)‖) + C0‖Ū(t, 0)‖ sup
ξ∈[0,t]

ξ∫
0

(ξ − η)α∗−1u(η)dη (15)

Since u(t) is positive and non-decreasing then for each t ∈ JT we have

sup
ξ∈[0,t]

ξ∫
0

(ξ − η)α∗−1u(η)dη = sup
ξ∈[0,t]

ξ∫
0

sα∗−1u(ξ − s)ds

≤
t∫

0

sα∗−1u(t − s)ds =
t∫

0

(t − η)α∗−1u(η)ds

(16)

and hence from (15) and (16) it follows for each t ∈ JT the estimation

u(t) ≤ (‖Φ‖+ C0α−1∗ tα∗‖F(t)‖) + C0‖Ū(t, 0)‖
t∫

0

(t − η)α∗−1u(η)ds (17)

Then applying Corollary 1 to (17) we obtain (10).

Corollary 2. Let T ∈ R+ be an arbitrary fixed number and the following conditions are fulfilled:
1. The conditions (S) hold.
2. ‖F(T)‖ = 0.
Then for every initial function Φ ∈ C̃ with ‖Φ‖ > 0 the corresponding unique solution X(t)

of IP (1), (2) for every t ∈ JT satisfies the estimation

max(‖X(t)‖, ‖Φ‖) ≤ ‖Φ‖Eα(‖Ū(t, 0)‖C0Γ(α∗)tα∗). (18)

Proof. The estimation (18) follows immediately from (10) using that ‖F(t)‖ = 0 for each
t ∈ [0, T].

Corollary 3. Let T ∈ R+ be an arbitrary fixed number and the following conditions are fulfilled:
1. The conditions (S) hold.
2. The function F(t) ∈ Lloc

1 (R+,Rn) is locally bounded and ‖Φ‖ = 0.
Then the corresponding unique solution X(t) of IP (1), (2) satisfies the estimation

‖X(t)‖ ≤ α−1∗ C0tα∗‖F(t)‖Eα(‖Ū(t, 0)‖C0Γ(α∗)tα∗). (19)

Proof. The estimation (19) follows immediately from (10) using that ‖Φ‖ = 0.

The next theorem is devoted to obtaining another form of the estimation (10) based
on the assumption that ‖Φ‖ > 0. The approach used is the same as in Theorem 2 but the
assumption that ‖Φ‖ > 0 allows one technical stunt to be realized.

Theorem 3. Let T ∈ R+ be an arbitrary fixed number and the following conditions are fulfilled:
1. The condition of Theorem 2 hold and ||F(T)|| > 0.
2. The initial function Φ ∈ C̃ satisfies the condition ‖Φ‖ > 0.
Then the corresponding unique solution X(t) of IP (1), (2) for every t ∈ JT satisfies the estimation

max(‖X(t)‖, ‖Φ‖) ≤ ‖Φ‖Eα((CΦ + ‖Ū(t, 0)‖)C0Γ(α∗)tα∗), (20)

where CΦ = ‖Φ‖−1‖F(T)‖.
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Proof. Let X(t) be the corresponding unique solution of the IP (1), (2). Condition 2 implies
that ‖Φ‖ > 0 and then since sup

s∈[−h,t]
|X(s)| is not decreasing and X(t) = Φ(t) for t ∈ [−h, 0],

then we have that sup
t∈[−h,0]

|X(t)| = ‖Φ‖. Let assume that ‖Φ‖ > |X(0)| and let t̄ ∈ [0, T] be

arbitrary with ‖Φ‖ ≥ |X(t̄)|. Then for CΦ = ‖Φ‖−1||F(T)|| we have

CΦ max(|X(t̄)|, ‖Φ‖) = CΦ‖Φ‖ = ‖Φ‖‖F(T)‖
‖Φ‖ = ‖F(T)‖ ≥ ‖F(t̄)‖ ≥ |F(t̄)|.

For arbitrary t̄ ∈ [0, T] with ‖Φ‖ ≤ |X(t̄)| we obtain that the inequality

CΦ max(|X(t̄)|, ‖Φ‖) = CΦ|X(t̄)| ≥ ‖Φ‖‖F(T)‖
‖Φ‖ = ‖F(T)‖ ≥ ‖F(t̄)‖ ≥ |F(t̄)|

holds and hence for each t ∈ JT the inequality ‖F(t)‖ ≤ CΦ max(|X(t)|, ‖Φ‖) holds.
Then for each t ∈ JT from (11) as in the proof of Theorem 2 we obtain that (14) holds.
From (14) and taking into account the inequality ‖F(t)‖ ≤ CΦ max(|X(t)|, ‖Φ‖) it

follows that

max(|X(t)|, ‖Φ‖) ≤ ‖Φ‖+ C0CΦ

t∫
0

(t − η)α∗−1 max(|X(η)|, ‖Φ‖)dη

+ C0‖Ū(t, 0)‖
t∫

0

(t − η)α∗−1 max(|X(η)|, ‖Φ‖)dη

≤ ‖Φ‖+ C0(CΦ + ‖Ū(t, 0)‖)
t∫

0

(t − η)α∗−1 max(|X(η)|, ‖Φ‖)dη

(21)

and hence from (21) as in the proof of Theorem 2 we obtain

u(t) ≤ ‖Φ‖C0(CΦ + ‖Ū(t, 0)‖)
t∫

0

(t − η)α∗−1u(η)dη. (22)

Then applying Corollary 1 to (22) we obtain (20).

Remark 2. At first glance, it looks like the estimate (20) is better at least as it has a more appropriate
form for the applications in compare with (10). However, the most important question is which
estimate is more accurate since in general the approach used in both proofs is the same. It is simple
to establish that if ‖Φ‖ = 0 then the estimate (19) can be used and in the case when ‖Φ‖ > 0 the
estimate (10) can be rewritten in the form

max(‖X(t)‖, ‖Φ‖) ≤ ‖Φ‖(1 + α−1∗ C0CΦtα∗)Eα(‖Ū(t, 0)‖C0Γ(α∗)tα∗). (23)

These simple considerations limit the impact to linear (no more than power-law) growth
in the right side of the estimation (23) and allow avoiding the high nonlinear impact of CΦ =
‖Φ‖−1‖F(T)‖ as argument in the Mittag-Leffler function Eα(·) in (20).

4. A Priory Estimates of the Solutions Obtained via Their Integral Representations

The next different a priori estimations are obtained using the other most popular
approach, which is essentially based on the different kinds integral representations of
the solutions of the considered systems obtained in [31,33] and applying the superposi-
tion principle.
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Theorem 4. Let T ∈ R+ be an arbitrary fixed number and following conditions are fulfilled:
1. The conditions of Theorem 2 hold.
2. The initial function Φ(t) ≡ 0 for t ∈ [−h, 0] (i.e., ‖Φ‖ = 0).
Then the corresponding unique solution XF(t) of the IP (1), (2) for every t ∈ JT satisfies

the estimation
‖XF(t)‖ ≤ α−1∗ tα∗C0‖F(t)‖(1+ ‖ C̄(t, t) ‖). (24)

Proof. Let Φ ∈ C̃ and Φ(t) ≡ 0 for t ∈ [−h, 0]. Then according Theorem 4.3 in [33] the
unique solution XF(t) of the IP (1), (2) for every t ∈ R+ has the following representation:

XF(t) =
t∫

0

C(t, s)RLD1−α
a+ F(s)ds, (25)

where C(t, s) is the fundamental matrix of the system (5). Then from (25) after simple
calculations and integrating by parts we obtain for t ∈ R+

XF(t) =
t∫

0

C(t, s)RLD1−α
0+ F(s)ds = I−1(Γ(α))

t∫
0

C(t, s)(
d
ds

s∫
0

Iα−1(s − η)F(η)dη)ds

= I−1(Γ(α))
t∫

0

C(t, s)ds(

s∫
0

Iα−1(s − η)F(η)dη)

= I−1(Γ(α))
t∫

0

Iα−1(t − η)F(η)dη)− I−1(Γ(α))
t∫

0

(

s∫
0

Iα−1(s − η)F(η)dη)ds(C(t, s))

(26)

Then for the first addend in the right side of (26) using (12) we obtain that

|I−1(Γ(α))
t∫

0

Iα−1(t − η)F(η)dη)| ≤ C0

t∫
0

|Iα−1(t − η)|‖F(η)‖dη = C0

t∫
0

(t − η)α∗−1‖F(η)‖dη

and hence in virtue of (16) we obtain∥∥∥∥I−1(Γ(α))
t∫

0

Iα−1(t − η)F(η)dη)

∥∥∥∥ ≤ C0

t∫
0

(t − η)α∗−1‖F(η)‖dη ≤ α−1∗ C0tα∗‖F(t)‖. (27)

For the second addend in the right side of (26) we obtain the estimation

sup
s∈[0,t]

|I−1(Γ(α))
t∫

0

(

s∫
0

Iα−1(s − η)F(η)dη)ds(C(t, s))|

≤ C0‖C̄(t, t)‖ sup
s∈[0,t]

|
s∫

0

Iα−1(s − η)F(η)dη| ≤ C0‖C̄(t, t)‖ sup
s∈[0,t]

s∫
0

∣∣Iα−1(s − η)
∣∣∥∥F(η)

∥∥dη

= C0‖F(t)‖∥∥C̄(t, t)
∥∥ sup

s∈[0,t]

s∫
0

(t − η)α∗−1dη = α−1∗ C0tα∗‖F(t)‖∥∥C̄(t, t)
∥∥.

(28)

Then the statement of the theorem follows from (27) and (28).

Theorem 5. Let T ∈ R+ be an arbitrary fixed number and the following conditions are fulfilled:
1. The conditions (S) hold.
2. ‖F(T)‖ = 0.
3. The initial function Φ ∈ BV([−h, 0],Rn) ∩ C̃ and its Lebesgue decomposition does not

include a singular term.

39



Axioms 2021, 10, 75

Then the corresponding unique solution XΦ(t) of the IP (1), (2) for every t ∈ JT satisfies
the estimation

‖XΦ(t)‖ ≤ |Varη∈[−h,0]Φ(η)| sup
s∈[−h,0]

‖T−h(t, s)‖+ |Φ(−h)|‖T−h(t − h)‖. (29)

Proof. According Theorem 9 in [31] the unique solution XΦ(t) of the IP (1), (2) for every
t ∈ R+ has the following representation:

XΦ(t) =
0∫

−h

T−h(t, s)dΦ(s) + T−h(t,−h)Φ(−h). (30)

From (30) we obtain

‖XΦ(t)‖ ≤
0∫

−h

‖T−h(t, s)‖d‖Varη∈[−h,s]Φ(η)‖+ |Φ(−h)|‖T−h(t,−h)‖

≤ |Varη∈[−h,0]Φ(η)| sup
s∈[−h,0]

‖T−h(t, s)‖+ |Φ(−h)|‖T−h(t − h)‖
(31)

and from (31) it follows (29), which complete the proof.

Corollary 4. Let T ∈ R+ be an arbitrary fixed number and the following conditions are fulfilled:
1. The conditions (S) hold.
2. The initial functions Φ(t) ≡ Φ0 �= 0, Φ0 ∈ Rn for t ∈ [−h, 0].
Then the corresponding unique solution XΦ(t) of the IP (1), (2) for every t ∈ JT satisfies

the estimation
‖XΦ(t)‖ ≤ |Φ(−h)|‖T−h(t,−h)‖ = |Φ0|‖T−h(t,−h)‖ (32)

Proof. According Theorem 9 in [31] the unique solution X(t) of the IP (1), (2) for every
t ∈ R+ has the representation (30) and hence we obtain that XΦ(t) = T−h(t,−h)Φ(−h)
which completes the proof.

Corollary 5. Let T ∈ R+ be an arbitrary fixed number and the following conditions are fulfilled:
1. The conditions (S) hold.
2. The function F(t) ∈ Lloc

1 (R+,Rn) and is locally bounded.
3. The initial function Φ ∈ BV([−h, 0],Rn) ∩ C̃ and its Lebesgue decomposition does not

include a singular term.
Then the corresponding unique solution XF

Φ(t) of the IP (1), (2) for every t ∈ JT satisfies
the estimation

‖XF
Φ(t)‖ ≤ |Varη∈[−h,0]Φ(η)| sup

s∈[−h,0]
‖T−h(t, s)‖+ |Φ(−h)|‖T−h(t − h)‖

+ α−1∗ tα∗C0‖F(t)‖(1 + ∥∥C̄(t, t)
∥∥) (33)

Proof. Using the superposition principle, i.e., XF
Φ(t) = XΦ(t) + XF(t) we obtain that the

estimation (33) follows immediately from Theorems 4 and 5.

Remark 3. It is clear that if ‖Φ‖‖F(T)‖ > 0, then (33) can be rewritten in the form

‖XF
Φ(t)‖ ≤ max(‖Φ‖, |Varη∈[−h,0]Φ(η)|)[ sup

s∈[−h,0]
‖T−h(t, s)‖+ ‖T−h(t − h)‖

+ α−1∗ tα∗C0CΦ(1 +
∥∥C̄(t, t)

∥∥)] (34)

40



Axioms 2021, 10, 75

The next theorem establishes explicit bounds for the matrix functions involved in (33)
and (34), which allows obtaining a new form of these estimations more convenient for
practical computer calculations.

Theorem 6. Let T ∈ R+ be an arbitrary fixed number and the following conditions are fulfilled:
1. The conditions (S) hold.
2. The function F(t) ∈ Lloc

1 (R+,Rn) and is locally bounded and ‖Φ‖‖F(T)‖ > 0.
3. The initial function Φ ∈ BV([−h, 0],Rn) ∩ C̃ and its Lebesgue decomposition does not

include a singular term.
Then the corresponding unique solution XF

Φ(t) of the IP (1), (2) for every t ∈ JT satisfies
the estimation

‖XF
Φ(t)‖ ≤ (|Varη∈[−h,0]Φ(η)|+ |Φ(−h)|)Eα(‖Ū(t, 0)‖C0Γ(α∗)tα∗)

+ α−1∗ tα∗C0‖F(t)‖(1 + 2Eα(‖Ū(t, 0)‖C0Γ(α∗)tα∗))
(35)

Proof. From (7) it follows that ‖Φ1(t, s)‖ = 1, t ∈ (−∞, s] and ‖Φ2(t, s)‖ = 1, s ∈
[−h, 0], t ∈ [s, 0] .

Let s ∈ R̄+ be an arbitrary fixed number and C(t, s) is the solution for t ∈ (s, ∞) of the
(7) with initial condition C(t, s) = Φ1(t, s), t ∈ (−∞, s]. Then from (7), (8) it follows that

C(t, s) = I + I−1(Γ(α))
t∫

s

Iα−1(t − η)

0∫
−h

[dθU(η, θ)]C(η + θ, s)dη (36)

and respectively for s ∈ [−h, 0], t ∈ R+ we have that

T−h(t, s) = I + I−1(Γ(α))
t∫

s

Iα−1(t − η)

0∫
−h

[dθU(η, θ)]T−h(η + θ, s)dη (37)

where T−h(t, s) = Φ2(t, s), t ∈ (−∞, 0].
For arbitrary fixed s ∈ R̄+, since ‖C(t, s)‖ is nonnegative and nondecreasing in t from

the first system (36) and (16) we obtain that

‖C(t, s)‖ = sup
ξ∈[0,t]

|C(ξ, s) ≤ 1 + C0 sup
ξ∈[0,t]

ξ∫
s

|Iα−1(ξ − η)|
∣∣∣∣ 0∫
−h

[dθU(η, θ)]C(η + θ, s)
∣∣∣∣dη

≤ 1 + C0‖Ū(t, 0)‖ sup
ξ∈[0,t]

ξ∫
0

(ξ − η)α∗−1 sup
η+θ∈[−h,ξ]

|C(η + θ, s)|dη

≤ 1 + C0‖Ū(t, 0)‖ sup
ξ∈[0,t]

ξ∫
0

(ξ − η)α∗−1‖C(η, s)‖dη

≤ 1 + C0‖Ū(t, 0)‖
t∫

0

(t − η)α∗−1‖C(η, s)‖dη

(38)

and then in virtue of Corollary 1 we have that

‖C(t, s)‖ ≤ Eα(‖Ū(t, 0)‖C0Γ(α∗)tα∗) ≤ Eα(‖Ū(T, 0)‖C0Γ(α∗)Tα∗), s ∈ R̄+ (39)
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Analogical way when T−h(t, s) is a solution of the (8) with initial condition T−h(t, s) =
Φ2(t, s), t ∈ (−∞, 0] and since ‖T−h(t, s)‖ is nonnegative and nondecreasing in t from (16)
and (37) we obtain

‖T−h(t, s)‖ ≤ 1 + C0 sup
ξ∈[0,t]

ξ∫
s

|Iα−1(ξ − η)|
∣∣∣∣ 0∫
−h

[dθU(η, θ)]T−h(η + θ, s)
∣∣∣∣dη

≤ 1 + C0‖Ū(t, 0)‖ sup
ξ∈[0,t]

t∫
0

(ξ − η)α∗−1 sup
θ∈[−h,0]

|T−h(η + θ, s)|dη

≤ 1 + C0‖Ū(t, 0)‖ sup
ξ∈[0,t]

ξ∫
0

(ξ − η)α∗−1‖T−h(η, s)‖dη

≤ 1 + C0‖Ū(t, 0)‖
t∫

0

(t − η)α∗−1‖T−h(η, s)‖dη

and hence in virtue of Corollary 1 we have

|T−h(t, s)‖ ≤ Eα(‖Ū(t, 0)‖C0Γ(α∗)tα∗) ≤ Eα(‖Ū(T, 0)‖C0Γ(α∗)Tα∗), s ∈ [−h, 0]. (40)

Since for fixed t the matrix function ‖C̄(t, s)‖ is nondecreasing for s ∈ [0, T] , then taking
into account (39) and (40) we have that

‖C̄(T, T)‖ = ‖C(T, T)− C(T, 0)‖ ≤ ‖C(T, T)‖+ ‖C(T, 0)‖ ≤ 2Eα(‖Ū(T, 0)‖C0Γ(α∗)Tα∗). (41)

Then from (40) and (41) we obtain that for every t ∈ JT the estimation (35) holds.

Remark 4. Please note that if ‖Φ‖‖F(T)‖ > 0, then (35) can be rewritten in the form

‖XF
Φ(t)‖ ≤ max(‖Φ‖, |Varη∈[−h,0]Φ(η)|)

[2Eα(‖Ū(t, 0)‖C0Γ(α∗)tα∗) + α−1∗ tα∗C0CΦ(1 + 2Eα(‖Ū(t, 0)‖C0Γ(α∗)tα∗)]
(42)

5. Finite-Time Stability Results

In this section, we study the finite-time stability (FTS) properties of the system (1),
with the initial condition (2) as an application of the different a priori estimations obtained
in Sections 4 and 5. In addition, we will study these properties for different types initial
functions. A special attention obtains the case when ‖Φ‖ = 0 too.

First, we start with the homogeneous case, i.e., the IP (4), (2).

Theorem 7. Let T ∈ R+ be an arbitrary fixed number and the following conditions are fulfilled:
1. The conditions (S) hold and F(t) ≡ 0 for t ∈ JT.
2. There exist numbers ε ≥ δ > 0 such that the following inequality holds

δEα(‖Ū(T, 0)‖C0Γ(α∗)Tα∗) ≤ ε (43)

Then for every initial function Φ ∈ C̃ with ‖Φ‖ < δ the corresponding unique solution X(t)
of the IP (1), (2) (in this case this is IP (4), (2)) is finite-time stable with respect to {0, JT , δ, ε, h}.

Proof. Let Φ ∈ C̃ with ‖Φ‖ < δ be an arbitrary initial function. Then if
max(‖X(T)‖, ‖Φ‖) = ‖Φ‖ then the statement of the theorem holds. The nontrivial case
obviously is when max(‖X(T)‖, ‖Φ‖) > ‖Φ‖. In this case from condition 1 it follows that
Corollary 2 holds and from (18) for t ∈ JT we obtain that

‖X(t)‖ ≤ ‖Φ‖Eα(‖Ū(t, 0)‖C0Γ(α∗)tα∗) (44)
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and hence from (43) and (44) it follows that

‖X(t)‖ < ‖Φ‖Eα(‖Ū(t, 0)‖C0Γ(α∗)tα∗) ≤ δEα(‖Ū(T, 0)‖C0Γ(α∗)Tα∗) ≤ ε

which completes the proof.

The next theorem considers a special nonhomogeneous case of the system (1) when
‖Φ‖ = 0.

Theorem 8. Let the following conditions be fulfilled:
1. The conditions of Theorem 2 hold and ‖Φ‖ = 0.
2. There exist numbers ε ≥ δ > 0 such that if ‖F(T)‖ < δ then the following inequality holds

δα−1∗ C0Tα∗Eα(‖Ū(t, 0)‖C0Γ(α∗)Tα∗) ≤ ε (45)

Then the corresponding unique solution X(t) of the IP (1), (2) is finite-time stable with respect
to {0, JT , δ, ε, h}.

Proof. Let us consider the case when max(‖X(T)‖, ‖Φ‖) > ‖Φ‖. Since Corollary 3 holds,
from (19) and (45) for t ∈ JT it follows that

‖X(t)‖ ≤ α−1∗ C0tα∗‖F(t)‖Eα(‖Ū(t, 0)‖C0Γ(α∗)tα∗)

≤ δα−1∗ C0Tα∗Eα(‖Ū(t, 0)‖C0Γ(α∗)Tα∗) ≤ ε
(46)

Thus, from (46) it follows that the corresponding unique solution X(t) of the IP (1),
(2) is finite-time stable with respect to {0, JT , δ, ε, h} for every locally bounded F(t) ∈
Lloc

1 (R+,Rn).

Theorem 9. Let the following conditions be fulfilled:
1. The conditions of Theorem 2 hold and ‖Φ‖ > 0.
2. There exist numbers ε ≥ δ > 0 such that if ‖Φ‖ < δ then the following inequality holds

δ(1 + α−1∗ C0CΦTα∗)Eα(‖Ū(T, 0)‖C0Γ(α∗)Tα∗) ≤ ε (47)

Then for every initial function Φ ∈ C̃ with ‖Φ‖ ∈ (0, δ) the corresponding unique solution
X(t) of the IP (1), (2) is finite-time stable with respect to {0, JT , δ, ε, h}.

Proof. Let Φ ∈ C̃ with ‖Φ‖ ∈ (0, δ) be an arbitrary initial function and assume that
max(‖X(T)‖, ‖Φ‖) > ‖Φ‖. Then since Theorem 2 holds, from (23) and (47) for t ∈ JT it
follows that

‖X(t)‖ ≤ ‖Φ‖(1 + α−1∗ C0CΦtα∗)Eα(‖Ū(t, 0)‖C0Γ(α∗)tα∗)

≤ δ(1 + α−1∗ C0CΦtα∗)Eα(‖Ū(T, 0)‖C0Γ(α∗)Tα∗) ≤ ε
(48)

Thus, from (48) it follows that for every initial function Φ ∈ C̃ with ‖Φ‖ ∈ (0, δ) the
corresponding unique solution X(t) of the IP (1), (2) is finite-time stable with respect to
{0, JT , δ, ε, h}.

Below we present FTS results based on estimations obtained via different kind integral
representations of the solutions and superposition principle.

Theorem 10. Let the following conditions be fulfilled:
1. The conditions of Theorem 4 hold.
2. There exist numbers ε ≥ δ > 0 such that if ‖F(T)‖ < δ then the following inequality holds

δα−1∗ C0Tα∗(1 + ‖C̄(T, T)‖) ≤ ε (49)
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Then for the initial function Φ ∈ C̃ with ‖Φ‖ = 0 and locally bounded function F(t) ∈
Lloc

1 (R+,Rn) with ‖F(T)‖ < δ the corresponding unique solution X(t) of the IP (1), (2) is
finite-time stable with respect to {0, JT , δ, ε, h}.

Proof. Theorem 4 implies that for each t ∈ JT the inequality (24) holds and then from (24)
and (49) for every t ∈ JT it follows that

‖X(t)‖ ≤ α−1∗ C0tα∗‖F(t)‖(1 + ‖C̄(t, t)‖) < δα−1∗ C0tα∗(1 + ‖C̄(t, t)‖) ≤ δα−1∗ C0Tα∗(1 + ‖C̄(T, T)‖) ≤ ε

which completes the proof.

Theorem 11. Let the following conditions be fulfilled:
1. The conditions of Theorem 5 hold.
2. There exist numbers ε ≥ δ > 0 such that if max(|Φ(−h)|, |Varη∈[−h,0]Φ(η)|) < δ then

the following inequality holds

δ( sup
s∈[−h,0]

‖T−h(T, s)‖+ ‖T−h(T,−h)‖) ≤ ε (50)

Then the corresponding unique solution X(t) of the IP (1), (2) is finite-time stable with respect
to {0, JT , δ, ε, h}.

Proof. Theorem 5 implies that for each t ∈ JT the inequality (29) holds and then from (29)
and (50) same way as above for every t ∈ JT we obtain that

‖X(t)‖ ≤ |Varη∈[−h,0]Φ(η)| sup
s∈[−h,0]

‖T−h(t, s)‖+ ‖Φ(−h)‖‖T−h(t,−h)‖

≤ δ( sup
s∈[−h,0]

‖T−h(T, s)‖+ ‖T−h(T,−h)‖) ≤ ε

and hence the corresponding unique solution X(t) of the IP (1), (2) is finite-time stable with
respect to {0, JT , δ, ε, h}.

Corollary 6. Let the following conditions be fulfilled:
1. The conditions of Corollary 4, hold.
2. There exist numbers ε ≥ δ > 0 such that if |Φ(−h)| < δ then the following inequality holds

δ‖T−h(T,−h)‖ ≤ ε (51)

Then the corresponding unique solution X(t) of the IP (1), (2) is finite-time stable with respect
to {0, JT , δ, ε, h}.

Proof. Since ‖Φ‖ = |Φ0| = |Φ(−h)| < δ then using (32) and (51)we obtain

‖X(t)‖ ≤ |Φ(−h)|‖T−h(t,−h)‖ = |Φ0|‖T−h(t,−h)‖ ≤ δ‖T−h(t,−h)‖ ≤ ε

and then the result follows from Theorem 11.

Remark 5. The FTS results obtained in Theorem 11 and Corollary 6 are new even in the cases
considered in [25] when the initial function Φ ∈ C1([−h, 0],Rn). Our results are more accurate
not only in the case when the initial function Φ ∈ BV([−h, 0],Rn) has finite set of jump points
SΦ �= ∅ , (i.e., Φ is not continuous), but also when Φ is continuous.

We illustrate this fact with two simple examples:
Let Φ(−h) = (0.75, 0)T , Φ(t) = (1, 0)T , t ∈ (−h, 0]. Then |Φ(−h)| = 0.75, ‖Φ‖ =

1, |Varη∈[−h,0]Φ(η)| = 0.25 and max(|Varη∈[−h,0]Φ(η)|, |Φ(−h)|) = |Φ(−h)| = 0.75 <
‖Φ‖ = 1.

44



Axioms 2021, 10, 75

Let h = 1 and Φ(t) = (0.4t+ 1, 0)T , t ∈ (−1, 0], Φ(−1) = (0.6, 0)T , |Varη∈[−1,0]Φ(η)| =
0.6, ‖Φ‖ = 1 and hence max(|Varη∈[−1,0]Φ(η)|, |Φ(−1)|) = 0.6 < ‖Φ‖ = 1.

These examples show, that we can establish FTS in some cases, where the conditions presented
in [25] are not directly applicable.

Remark 6. The FTS result for the general case ‖Φ‖‖F(T)‖ > 0 needs some preliminary comments.
It is clear that the estimations (32) and (33) will be essentially used, but to obtain a practical

applicable estimation we need to solve (clarify) two problems:
(a) First, we need to clarify which impact is leading for the process, the impact hereditary of

the process expressed by ‖Φ‖, the impact of the outer perturbations expressed by ‖F(T)‖, or the
complex of both factors expressed by the ratio CΦ = ‖Φ‖−1‖F(T)‖.

(b) As second, an explicit estimation is needed in the general case for the fundamental matrix
C(t, s) as well as the matrix T−h(t, s) too.

Concerning point (a), it is clear that a reasonable response can be given only on the basis of real
empirical data from the process which is described by the mathematical model. From a mathematical
point of view, as was mentioned above by the construction of the proofs, we must limit the impact of
‖Φ‖ and ‖F(T)‖ to linear or no more than power-law growth as in the right side of the estimation
(23) and avoid the high nonlinear impact of CΦ = ‖Φ‖−1‖F(T)‖ if it is involved as an argument
in the Mittag-Leffler function Eα(·) in (20).

About (b) it is possible to obtain the needed estimations in the general case, for example we
can use the estimations obtained in the previous sections.

Theorem 12. Let T ∈ R+ be an arbitrary fixed number and the following conditions are fulfilled:
1. The conditions (S) hold.
2. The function F(t) ∈ Lloc

1 (R+,Rn) and is locally bounded.
3. The initial function Φ ∈ BV([−h, 0],Rn) ∩ C̃ and its Lebesgue decomposition does not

include a singular term.
4. ‖Φ‖‖F(T)‖ > 0 and there exist numbers ε ≥ δ > 0 such that if max(|Φ(−h)|,

|Varη∈[−h,0]Φ(η)|) < δ then the following inequality holds

δ[ sup
s∈[−h,0]

‖T−h(T, s)‖+ ‖T−h(T,−h)‖+ α−1∗ Tα∗C0CΦ(1 + ‖C̄(T, T)‖)] ≤ ε (52)

Then the corresponding unique solution X(t) of the IP (1), (2) for every t ∈ JT is finite-time
stable with respect to {0, JT , δ, ε, h}.

Proof. Condition 4 of the theorem implies that the estimate (34) holds. Then from (34) and
(52) for every t ∈ JT it follows

‖X(t)‖ ≤ |Varη∈[−h,0]Φ(η)| sup
s∈[−h,0]

‖T−h(t, s)‖+ |Φ(−h)|‖T−h(t,−h)‖

+ α−1∗ tα∗C0‖F(t)‖(1 + ∥∥C̄(t, t)
∥∥)

≤ δ[ sup
s∈[−h,0]

‖T−h(t, s)‖+ ‖T−h(t,−h)‖+ α−1∗ tα∗C0CΦ(1 +
∥∥C̄(t, t)

∥∥)]
≤ δ[ sup

s∈[−h,0]
‖T−h(T, s)‖+ ‖T−h(T,−h)‖+ α−1∗ tα∗C0CΦ(1 +

∥∥C̄(T, T)
∥∥)] ≤ ε

which completes the proof.

Corollary 7. Let T ∈ R+ be an arbitrary fixed number and the following conditions are fulfilled:
1. The conditions (S) hold.
2. The function F(t) ∈ Lloc

1 (R+,Rn) and is locally bounded.
3. The initial function Φ ∈ BV([−h, 0],Rn) ∩ C̃ and its Lebesgue decomposition does not

include a singular term.
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4. ‖Φ‖‖F(T)‖ > 0 and there exist numbers ε ≥ δ > 0 such that if max(|Φ(−h)|,
|Varη∈[−h,0]Φ(η)|) < δ then the following inequality holds

δ[2Eα(‖Ū(T, 0)‖C0Γ(α∗)Tα∗) + α−1∗ Tα∗C0CΦ(1 + 2Eα(‖Ū(T, 0)‖C0Γ(α∗)Tα∗)] ≤ ε (53)

Then the corresponding unique solution X(t) of the IP (1), (2) for every t ∈ JT is finite-time
stable with respect to {0, JT , δ, ε, h}.

Proof. The statement follows from Theorem 12 and Theorem 6.

6. Examples and Comments

Remark 7. From a practical point of view, it is important to establish a sharp upper bound of the
constant α−1∗ C0 appearing in all estimates except (29) and answer the question does the constant
α−1∗ C0 attain its upper bound.

Let us consider the case when α∗ = αM. Then we have that α−1∗ C0 = α−1
M C0 = Γ−1(1 +

αM) ≤ Γ−1(zmin). Thus if αM = zmin − 1 then α−1∗ C0 attains its upper bound, namely α−1∗ C0 =
Γ−1(zmin) ≈ 1.1279. Please note that in the partial case when all orders of the differentiation
coincide (i.e., α1 = · · · = αn = α) then all estimates can be essentially simplified. For example in
this case we have that α−1∗ C0 = Γ−1(1 + α) ≤ Γ−1(zmin) and C0Γα∗ = 1.

Remark 8. First, it must be noted that in the commented works are used different norms. In the
works [24,25] the so-called 1-norm is used (i.e., for W = {wij}i,j∈〈n〉 ∈ Rn×n the matrix norm

|W| = max
j∈〈n〉

n
∑

i=1
|wij|) while in [26,27] is used the spectral norm as well as in our work. A direct

comparison shows that the condition (43) in our work based on the estimate (18) is more accurate in
compare with the condition (9) in Theorem 4.1 [24] proved via the integral representation approach
and condition (16) in Theorem 3.2 in [27] proved by Gronwall’s approach, even in the partial cases
considered in these works.

Please note that for the partial case when Φ is a constant both conditions (43) and (9) in [24]
coincide. In this case the same results can be established by using (50) obtained via the integral
representation (30). In the homogeneous case (γ = 0) of the considered in [26] partial cases of the
system (4) (variable matrices and one variable delay), our condition (43) coincides with condition
(5) of Theorem 1 in [26] proved by Gronwall’s approach.

Below on the base of the considered in the work [24] example we will establish that
generally speaking the results obtained via the integral representation approach can be
more accurate in comparison with these obtained via the Gronwall’s approach but the
results depend essentially from the norm choice and from the constructions of their proofs.

Example 1. [24] Consider {
Dα

0+X(t) = AX(t − σ), t > 0
X(t) = Φ(t), t ∈ [−σ, 0]

(54)

where A =

(
0.2 0
0 0.8

)
, α = 0.2, σ = 0.2, T = 0.8, Φ(t) = (0.1, 0.2)T.

The system (54) is a partial case of (4) in the case when: n = 2, α1 = α2 = α =
0.2, UAC(t, θ) = US(t, θ) ≡ Θ, UJ(t, θ) = A1H(θ + σ), A1 = A, A0 = Θ, σ = h =
0.2, ‖Ū(T, 0)‖ = ‖A‖1 = ‖A‖2 = 0.8 ‖Φ‖2 = |Φ(−0.2)| = 0.2236.

Using system Wolfram Mathematica, we obtain |Φ(−0.2)|E0.2(0.8 ∗ 0.80.2) = 0.2236 ∗
1.25913 = 0.9292 and hence (54) is finite-time stable with respect to {0, JT , δ, ε, σ} for ε ≥ 0.9292.

The compared results are given in Table 1 below:
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Table 1. Compared Results.

Theorem/Work ‖Φ‖ σ = h δ ‖X(t)‖ FTS

Th. 4.1 in [24] 0.3 0.2 0.31 1.2882 Yes

Th. 4.2 in [24] 0.3 0.2 0.31 2.0586 Yes

Theorem 7 0.2236 0.2 0.2237 0.9292 Yes

Corollary 6 0.2236 0.2 0.2237 0.9292 Yes

Th. 1 (γ = 0) [26] 0.2236 0.2 0.2237 0.9292 Yes

Remark 9. Please note that the results essentially depend from the used norm and we can show
that the spectral norm bring some advantages.

For example for the initial function Φ(t) =
(

0.222
0.2

)
, ‖Φ‖1 = 0.422, ‖Φ‖2 = 0.299 and for

ε = 1.2882 concerning the spectral norm (54) is FTS, which cannot be established using the 1-norm.

The same remark is also true concerning the matrix A =

(
0.2 0
0 0.8

)
. Since A is a diagonal

matrix then ‖A‖1 = ‖A‖2 = 0.8 but if for example we have Ā =

(
0.2 0.3
0 0.8

)
then ‖A‖1 = 1.1 ,

but ‖A‖2 = 0.85742 and then if we use some of the proved estimations, without direct calculation
which for example we present, then the differences between the estimations will increase.

One direct calculation via the integral representation established in [24] for sharp upper bounds
for the 1-norm and the spectral norm of the state vector for T = 0.8 give us ‖X(0.8‖1 = 0.95702
and ‖X(0.8‖2 = 0.84059. Namely the solution of (54) according Theorem 3.2 in [24] has the
following representation X(t) = EBtα

σ Φ(−σ), where Φ is a constant vector and EBtα

σ = I +
∞
∑

k=1
Ak (t−(k−1)σ)kα

Γ(αk+1) H(kσ − t), t ∈ R̄+, EBtα
θ = Θ for t < −σ and EBtα

σ = I for −σ ≤ t ≤ 0 is the

introduced in the same work delayed matrix with Mittag-Leffler functions. For the values in the
example above we have that

X(t) = EAt0.2

0.2 Φ(−0.2) =

(
E0.2t0.2

0.2 0
0 E0.8t0.2

0.2

)(
0.1
0.2

)
where the matrix entries are standard scalar Mittag-Leffler functions.

Calculating by system Wolfram Mathematica we obtain

X(0.8) =
(

1.25913 0
0 4.15554

)(
0.1
0.2

)
=

(
0.125913
0.8311

)
and hence ‖X(0.8)‖1 = 0.95702 and ‖X(0.8)‖2 = 0.84059.

Finally, we note that the integral representation of the solution of (54) proved in Theorem 3.2
in [24] for the case when Φ ∈ C1([−τ, 0],Rn is partial case from the integral representation (4.7)
in [31] proved for Φ ∈ BV([−τ, 0],Rn) . For the system (54) the both presentations coincide when
Φ ∈ AC([−τ, 0],Rn) .

Analogically as in the homogeneous case consider one partial case of the IP (1), (2)
as follows:

Example 2. Consider{
Dα

0+X(t) = A0(t)X(t) + A1(t)X(t − σ(t)) + f (t, X(t)), t > 0
X(t) = Φ(t), t ∈ [−σ, 0]

(55)

The system (55) is considered in [25] in the case when f ∈ C(R̄+ ×Rn,Rn), A0(t) ≡ Θ, A1(t) ≡
B ∈ Rn×n, σ(t) ≡ σ for t ∈ R̄+. In the same work an example is given to clear the applicability of
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the theoretical results by using the following data: α1 = α2 = α = 0.6, σ = 0.2, T = 0.6, Φ(t) =

(t, 2t)T , ω(t) = ψ(t) = 2t2, A0 = Θ, A1 =

(
0.3 0
0 0.5

)
and ‖ f (t, Y)‖1 ≤ ω(t) for all

t ∈ [0, T] and Y ∈ Rn.
Let define ‖F(t)‖1 = sup

Y∈∼n
‖ f (t, Y)‖1 ≤ 2t2. We will use the estimation (47) and then apply

Theorem 9. In our notations we have: ‖Ū(T, 0)‖ = 0.5, ‖F(T)‖2 ≤ ‖F(T)‖1 = sup
Y∈Rn

‖ f (t, Y)‖1 ≤

‖ω(T)‖ = 2T2 = 0.72, ‖Φ‖2 = 0.4473, CΦ = ‖F(T)‖1
‖Φ‖2

= 1.61, C0 = 1
Γ(0.6) = 1.11917, T0.6 =

0.60.6 = 0.736022 and E0.6(0.5 ∗ 0.60.6) = 1.57201. Then if δ = ‖Φ‖2 = 0.4473 we obtain
that ‖X(T)‖2 = ‖X(0.6)‖2 = 1.64291. Using the same δ = 0.61 as in [25] we obtain that
‖X(T)‖2 = ‖X(0.6)‖2 = 1.89127. Then applying Theorem 9 we obtain that (55) is finite-time
stable with respect to {0, JT , δ, ε, σ} when ε ≥ 1.89127.

Please note that our result is better than the best result given in Table 1 in [25] and hence
our estimation (47) is more accurate than the estimations (12) and (13) used for the best results in
Table 1.

Example 3. Consider{
Dα

0+X(t) = A0(t)X(t) + A1(t)X(t − σ(t)) + Dw(t) + f (t, X(t), X(t − σ(t), w(t))), t > 0
X(t) = Φ(t), t ∈ [−σ, 0]

(56)

The IP (56) is considered in [26] for A0 =

(
0 1
−2 0

)
, A1 =

(
0 0
3 4

)
, D =

(
1
0

)
, w(t) ∈

C(R̄+,Rn) with ‖w(t)‖2 = 0.1, α = 0.5, T = 5, δ = 0.1 and σ(t) = 0.1 sin2 t . For simplicity
we will assume that f (t, X(t), X(t − σ(t), w(t))) ≡ 0, t ∈ R̄+. Then via (47) we obtain that
‖X(5)‖2 = 1.95384E + 106 and then (55) is finite-time stable with respect to {0, JT , δ, ε, σ} when
ε ≥ 1.95384E + 106, which result coincides with the result calculated by us for this case via
condition (5) in [27].

7. Conclusions

As was mentioned above, in this work we set out some considerations illustrating our
point of view concerning the different sources of the impacts of the finite-time stability. It is
easy to see that they appear not only as an influence on the finite-time stability connecting
with the impact of the aftereffect (the delay effect) described in the mathematical model
through the initial function and the fractional derivatives, but it seems to be reasonable to
include into account the impact of external influences too. From a physical point of view, we
can interpret as an influence of external forces the existence in the model different kind of
functions F(t, X(t), Xt(θ)), etc. . . , mathematically understood as nonlinear perturbations.
Namely, if we apply the formal definition to the nonhomogeneous system (1), when
F(t) �≡ 0 for t ∈ JT and ‖Φ‖ = 0 we obtain a case when the inequality ‖Φ‖ < δ is fulfilled
for all δ ∈ R+ but this fact is not useful to establish the possible existing finite-time stability.

Our attempt to clarify which impact is leading for the process, the impact hereditary of
the process expressed by ‖Φ‖, the impact of the outer perturbations expressed by ‖F(T)‖,
or the complex of both factors expressed by the ratio CΦ = ‖Φ‖−1‖F(T)‖ imposes a more
detailed study not only of the homogeneous case when‖F(T)‖ = 0, but also the important
case when ‖Φ‖ = 0 . This reason focuses our attention on the case of the nonhomogeneous
system with ‖Φ‖ = 0 and it was very strange for us that we could not find some extra
consideration of this case. Please note that conditions of the type “there exists M ∈ R+ ,
such that ‖Φ‖−1‖F(T)‖ ≤ M ” are often used without to clime that ‖Φ‖ �= 0.

The result from this study is in general a pure mathematical answer, that is the mean
by the construction of the proofs, we must limit the impact of ‖Φ‖ and ‖F(T)‖ to linear
or no more than power-law growth as in the right side of the estimation (23) and avoid
the high nonlinear impact of CΦ = ‖Φ‖−1‖F(T)‖ if it is involved as an argument in the
Mittag-Leffler function as in estimation (20).
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Our comparison between the two most used approaches leads to the following con-
clusions: The most accurate estimation can be obtained by direct numerical calculation
from the integral representation of the solutions, but before them, it is needed to simplify
symbolically these presentations, which essentially increase the accuracy of the results (see
Example 54).

Since the estimation via Mittag-Leffler functions of the fundamental matrices involved
in the integral representation are not accurate enough, then generally speaking we cannot
unequivocally point to one of the compared methods as better. It seems from the examples
that this maybe, in general, be not possible, because it depends essentially also from the
possibility to have explicit presentation of the fundamental matrices.
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Abstract: In the present article we study existence and uniqueness results for a new class of boundary
value problems consisting by non-instantaneous impulses and Caputo fractional derivative of a
function with respect to another function, supplemented with Riemann–Stieltjes fractional integral
boundary conditions. The existence of a unique solution is obtained via Banach’s contraction mapping
principle, while an existence result is established by using Leray–Schauder nonlinear alternative.
Examples illustrating the main results are also constructed.

Keywords: impulsive differential equations; fractional impulsive differential equations; instanta-
neous impulses; non-instantaneous impulses

1. Introduction and Preliminaries

Fractional calculus is a generalization of classical differentiation and integration to an
arbitrary real order. Fractional differential equations has gained much attention in literature
because of its applications for description of hereditary properties in many fields, such as
physics, mechanics, engineering, game theory, stability and optimal control. With the help
of fractional calculus, the natural phenomena and mathematical models can be described
more accurately. Many researchers have shown their interests in fractional differential
equations, and the theory and applications of the fractional differential equations have been
greatly developed. For the basic theory of fractional calculus and fractional differential
equations we refer to the monographs [1–8] and references therein.

The theory of impulsive differential equations arise naturally in biology, physics,
engineering, and medical fields where at certain moments they change their state rapidly.
There are two type of impulses. One is called instantaneous impulses in which the duration
of these changes is relatively short, and the other is called non-instantaneous impulses in
which an impulsive action, starting abruptly at some points and continue to be active on a
finite time interval. Some examples of such processes can be found in physics, biology, pop-
ulation dynamics, ecology, pharmacokinetics, and others. For results with instantaneous
impulses see, e.g., the monographs [9–14], the papers [15–19], and the references cited
therein. Non-instantaneous impulsive differential equation was introduced by Hernández
and O’Regan in [20] pointed out that the instantaneous impulses cannot characterize some
processes such as evolution processes in pharmacotherapy. Some practical problems in-
volving non-instantaneous impulses within the area of psychology have been reviewed
in [21]. For some recent works, on non-instantaneous impulsive fractional differential
equations we refer the reader to [22–25] and references therein.

Axioms 2021, 10, 130. https://doi.org/10.3390/axioms10030130 https://www.mdpi.com/journal/axioms
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The scope of this investigation is to establish existence results of the new class of
boundary value problems consisting by non-instantaneous impulses and Caputo fractional
derivative of a function with respect to another function, supplemented with Riemann–
Stieltjes fractional integral boundary conditions of the form⎧⎪⎪⎪⎨⎪⎪⎪⎩

si D
αi
gi x(t) = f (t, x(t)), t ∈ [si, ti+1), i = 0, 1, 2, . . . , m,

x(t) = ϕi(t) + ψi(t)x(t−i ), t ∈ [ti, si), i = 1, 2, 3, . . . , m,

β1x(0) + β2x(T) =
m

∑
k=0

μk

∫ tk+1

sk

(
sk Iγk

gk x
)
(u) dHk(u).

(1)

Here si D
αi
gi is the Caputo fractional derivative of order αi ∈ (0, 1), with respect to a func-

tion gi starting at the point si, over the interval [si, ti+1), si I
γi
gi is the Riemann–Liouville

fractional integral with respect to the function gi on [si, ti+1) of order γi > 0, μi ∈ R,
the bounded variation function Hi of the Riemann–Stieltjes on [si, ti+1) and a function
f :

⋃
[si, ti+1) → R, for i = 0, 1, 2, . . . , m. (For details on Riemann–Stieltjes integral we refer

to [26]). In impulsive interval [ti, si), ϕi, ψi, i = 1, 2, 3, . . . , m, are given functions. The points

0 = s0 < t1 < s1 < t2 < s2 < · · · < tm < sm < tm+1 = T,

are fixed in [0, T] and β1, β2 are known constants. Note that in problem (1), we have
x(s+i ) = x(s−i ) and if ψi(t) �= 1, ϕi(t) �= 0 at ti for all i = 1, 2, 3, . . . , m, then x(t+i ) �= x(t−i ).

For γ > 0, the Riemann–Liouville fractional integral of an integrable function h :
[a, b] → R with respect to another function g ∈ C1([a, b],R) such that g′(t) > 0, for all
t ∈ [a, b] is defined by [2,27,28]

a Iγ
g h(t) =

1
Γ(γ)

∫ t

a

g′(s)h(s)
[g(t)− g(s)]1−γ

ds, (2)

where Γ is the gamma function. The Riemann–Liouville type of fractional derivative of a
function h, with respect to another function g on [a, b] is defined as

�
a Dα

gh(t) = Dn
g a In−α

g h(t) =
1

Γ(n − α)
Dn

g

∫ t

a

g′(s)h(s)
[g(t)− g(s)]1+α−n ds, (3)

while the Caputo type is defined by

aDα
gh(t) = a In−α

g Dn
g h(t) =

1
Γ(n − α)

∫ t

a

g′(s)Dn
g h(s)

[g(t)− g(s)]1+α−n ds, (4)

where Dn
g = Dg · · · Dg︸ ︷︷ ︸

n−times

, n − 1 < α < n, n is a positive integer and Dg is defined by

Dg =
1

g′(t)
d
dt

. (5)

There are relations of fractional integral and derivatives of the Riemann–Liouville and
Caputo types which will be used in our investigation, see [2], as

a Iγ
g
(
�
a Dγ

g h
)
(t) = h(t)−

n

∑
j=1

(g(t)− g(a))γ−j

Γ(γ − j + 1)
Dn−j

g

(
a In−γ

g h
)
(a), (6)

and

a Iγ
g
(

aDγ
g h
)
(t) = h(t)−

n−1

∑
j=0

(g(t)− g(a))j

j!
Dj

gh(a). (7)
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In addition, for γ, δ > 0, the relation

a Iγ
g (g(t)− g(a))δ =

Γ(δ + 1)
Γ(γ + δ + 1)

(g(t)− g(a))γ+δ, (8)

is applied in the main results ([2]). For some recent results we refer the interesting reader
to the papers [29–31].

Note that (2) is reduced to the Riemann–Liouville and Hadamard fractional integrals
when g(t) = t and g(t) = log t, respectively, where log(·) = loge(·). The Hadamard and
Hadamard–Caputo types fractional derivatives can be obtained by substituting g(t) = log t
in (3) and (4), respectively. Also the Riemann–Liouville and Caputo fractional derivatives
are presented by replacing g(t) = t in (3) and (4), respectively. Therefore, the problem (1)
generates many types and also mixed types of impulsive fractional differential equations
with boundary conditions. There are some papers that have studied either Hadamard
or Caputo fractional derivatives containing in noninstantaneous impulsive equations,
see [32–34].

The significance of this studying is to mixed different calculus within the system of
non-instantaneous impulsive differential equations. For example if putting m = 1, t1 = 1,
s1 = 2, t2 = 3, α0 = α1 = 1/2, g0(t) = t and g1(t) = loge t in the first two equations of (1),
then we obtain ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
d
dt

) 1
2
x = f (t, x(t)), t ∈ [0, 1),

x(t) = ϕ(t) + ψ(t)x(1−), t ∈ [1, 2),(
t

d
dt

) 1
2
x = f (t, x(t)), t ∈ [2, 3),

which is a special case of mixed Riemann–Liouville and Hadamard fractional impulsive
system. In addition, if Hk(t) = gk(t), for all t ∈ [si, ti+1), k = 0, 1, 2, . . . , m, then the
nonlocal condition in (1), is reduced to

β1x(0) + β2x(T) =
m

∑
k=0

μk

(
sk Iγk+1

gk x
)
(tk+1).

If ϕi(t) = 0, ψi(t) = 1 and si → ti, i = 1, 2, 3, . . . , m, then (1) is reduced to a non impulsive
fractional boundary value problem.

In fact, to the best of the authors knowledge, this is the first paper investigating
Riemann–Stieltjes integration acting on fractional integral boundary conditions. Existence
and uniqueness results are established for the the non-instantaneous impulsive Riemann–
Stieltjes fractional integral boundary value problem (1) by using classical fixed point
theorems. We make use of Banach’s contraction mapping principle to obtain the uniqueness
result, while the Leray–Schauder nonlinear alternative is applied to obtain the existence
result. The main results are presented in Section 3. In Section 2 we prove an auxiliary result
concerning a linear variant of the problem (1) which is of great importance in the proof of
main results. Illustrative examples are also presented.

2. An Auxiliary Result

Let us set some constants which will be used in our proofs.

Λk =
1

Γ(γk + 1)

∫ tk+1

sk

(gk(u)− gk(sk))
γk dHk(u), k = 1, 2, 3, . . . , m, (9)

Λ∗(i) =
i

∑
j=1

(
i−1

∏
j

ψj+1(sj+1)

)
ϕj(sj), i = 1, 2, 3, . . . , m, (10)

Ω = β1 + β2

(
m

∏
j=1

ψj(sj)

)
−

m

∑
k=0

μk

(
k

∏
j=1

ψj(sj)

)
Λk. (11)
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Lemma 1. Let Ω �= 0 and h ∈ C([0, T],R). Then the integral equation equivalent to problem (1)
can be written as

x(t) =
1
Ω

(
i

∏
j=1

ψj(sj)

){
m

∑
k=0

μkΛ∗(k)Λk − β2Λ∗(m)

+
m

∑
k=0

μk

k

∑
j=1

[(
k

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]
Λk

+
m

∑
k=0

μk

∫ tk+1

sk
sk Iαk+γk

gk fx(u) dHk(u)

− β2

m+1

∑
j=1

[(
m

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]}

+Λ∗(i) +
i

∑
j=1

[(
i

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]
+ si I

αi
gi fx(t), (12)

for t ∈ [si, ti+1), i = 0, 1, 2, . . . , m, and

x(t) = ϕi(t) + ψi(t)

[
1
Ω

(
i−1

∏
j=1

ψj(sj)

){
m

∑
k=0

μkΛ∗(i)Λk

+
m

∑
k=0

μk

k

∑
j=1

[(
k

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]
Λk

+
m

∑
k=0

μk

∫ tk+1

sk
sk Iαk+γk

gk fx(u) dHk(u)− β2Λ∗(m)

− β2

m+1

∑
j=1

[(
m

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]}

+Λ∗(i − 1) +
i

∑
j=1

(
i−1

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]
, (13)

for t ∈ [ti, si), i = 1, 2, 3, . . . , m, where fx(t) = f (t, x(t)).

Proof. For t ∈ (s0, t1], taking the fractional integral with respect to a function g0(t) of order
α0 > 0, from s0 to t in the first equation of (1) and setting x(0) = A, we have

x(t) = A + s0 Iα0
g0 fx(t). (14)

In particular, we get for t = t−1 , that x(t−1 ) = A + s0 Iα0
g0 fx(t−1 ).

In the second interval [t1, s1), we have from the second equation of (1) as

x(t) = ϕ1(t) + ψ1(t)x(t−1 )
= ϕ1(t) + Aψ1(t) + ψ1(t)s0 Iα0

g0 fx(t−1 ), (15)

and also x(s1) = ϕ1(s1) + Aψ1(s1) + ψ1(s1)s0 Iα0
g0 fx(t−1 ).

In the third interval [s1, t2), again taking the Riemann–Liouville fractional integral
with respect to a function g1(t) of order α1, we obtain

x(t) = x(s1) + s1 Iα1
g1 fx(t)

= ϕ1(s1) + Aψ1(s1) + ψ1(s1)s0 Iα0
g0 fx(t−1 ) + s1 Iα1

g1 fx(t),

which has particular case as x(t−2 ) = ϕ1(s1) + Aψ1(s1) + ψ1(s1)s0 Iα0
g0 fx(t−1 ) + s1 Iα1

g1 fx(t−2 ).
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In the fourth interval [t2, s2), it follows that

x(t) = ϕ2(t) + ψ2(t)
[
ϕ1(s1) + Aψ1(s1) + ψ1(s1)s0 Iα0

g0 fx(t−1 ) + s1 Iα1
g1 fx(t−2 )

]
.

By the previous procedure we can find that

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A

(
i

∏
j=1

ψj(sj)

)
+

i

∑
j=1

(
i−1

∏
j

ψj+1(sj+1)

)
ϕj(sj)

+
i

∑
j=1

[(
i

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]
+ si I

αi
gi fx(t),

t ∈ [si, ti+1), i = 0, 1, 2, . . . , m,

ϕi(t) + ψi(t)

[
A

i−1

∏
j=1

ψj(sj) +
i−1

∑
j=1

(
i−2

∏
j

ψj+1(sj+1)

)
ϕj(sj)

+
i

∑
j=1

(
i−1

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]
, t ∈ [ti, si), i = 1, 2, 3, . . . , m.

(16)

By using the mathematical induction, we will claim that the formula (16) holds. Putting
i = 0 and i = 1 in the first and second parts of (16), respectively, we have results in (14)
and (15). Assume that the first part of (16) is true for i = k, that is, for t ∈ [sk, tk+1),

x(t) = A

(
k

∏
j=1

ψj(sj)

)
+

k

∑
j=1

(
k−1

∏
j

ψj+1(sj+1)

)
ϕj(sj)

+
k

∑
j=1

[(
k

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]
+ sk Iαk

gk fx(t).

Then for t ∈ [tk+1, sk+1), we have

x(t) = ϕk+1(t) + ψk+1(t)x(t−k+1)

= ϕk+1(t) + ψk+1(t)

{
A

(
k

∏
j=1

ψj(sj)

)
+

k

∑
j=1

(
k−1

∏
j

ψj+1(sj+1)

)
ϕj(sj),

+
k

∑
j=1

[(
k

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]
+ sk Iαk

gk fx(tk+1)

}

= ϕk+1(t) + ψk+1(t)

{
A

(
k

∏
j=1

ψj(sj)

)
+

k

∑
j=1

(
k−1

∏
j

ψj+1(sj+1)

)
ϕj(sj),

+
k+1

∑
j=1

[(
k

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]}
,

which implies that the second part of (16) holds. Similarly suppose that the second part
of (16) is satisfied for i = k. Then for t ∈ [sk, tk+1), we obtain

x(t) = x(sk) + sk Iαk
gk fx(t)

= ϕk(sk) + ψk(sk)

[
A

k−1

∏
j=1

ψj(sj) +
k−1

∑
j=1

(
k−2

∏
j

ψj+1(sj+1)

)
ϕj(sj)

+
k

∑
j=1

(
k−1

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]
+ sk Iαk

gk fx(t)
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= A

(
k

∏
j=1

ψj(sj)

)
+

k

∑
j=1

(
k−1

∏
j

ψj+1(sj+1)

)
ϕj(sj)

+
k

∑
j=1

[(
k

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]
+ sk Iαk

gk fx(t).

Thus the first part of (16) is fulfilled. Therefore, the relation (16) holds for all t ∈ [0, T].
Now, we put t = T in (16), we have

x(T) = A

(
m

∏
j=1

ψj(sj)

)
+

m

∑
j=1

(
m−1

∏
j

ψj+1(sj+1)

)
ϕj(sj)

+
m

∑
j=1

[(
m

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]
+ sm Iαm

gm fx(T)

= A

(
m

∏
j=1

ψj(sj)

)
+ Λ∗(m) +

m+1

∑
j=1

[(
m

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]
. (17)

By taking the Riemann–Liouville fractional integral of order γk > 0 to (16), with respect to
a function gk(t) on [sk, tk+1) for k = 0, 1, 2, . . . , m, we obtain

sk Iγk
gk x(t) = A

(
gk(t)− gk(sk)

)γk

Γ(γk + 1)

(
k

∏
j=1

ψj(sj)

)

+

[
k

∑
j=1

(
k−1

∏
j

ψj+1(sj+1)

)
ϕj(sj)

]
×

(
gk(t)− gk(sk)

)γk

Γ(γk + 1)

+
k

∑
j=1

[(
k

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

](
gk(t)− gk(sk)

)γk

Γ(γk + 1)
+ sk Iαk+γk

gk fx(t),

which yields

m

∑
k=0

μk

∫ tk+1

sk

(
sk Iγk

gk x
)
(u) dHk(u)

= A
m

∑
k=0

μk

(
k

∏
j=1

ψj(sj)

)
Λk +

m

∑
k=0

μkΛ∗(k)Λk

+
m

∑
k=0

μk

k

∑
j=1

[(
k

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]
Λk

+
m

∑
k=0

μk

∫ tk+1

sk
sk Iαk+γk

gk fx(u) dHk(u). (18)

The condition in (1) with (17) and (18) implies

A =
1
Ω

{
m

∑
k=0

μkΛ∗(k)Λk +
m

∑
k=0

μk

k

∑
j=1

[(
k

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]
Λk

+
m

∑
k=0

μk

∫ tk+1

sk
sk Iαk+γk

gk fx(u) dHk(u)− β2Λ∗(m)

− β2

m+1

∑
j=1

[(
m

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]}
. (19)
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By substituting the constant A, (19), into (16), the obtained integral Equations (12) and (13)
are presented.

Conversely, by taking the operator si D
αi
gi over [si, ti+1) to (12), we get si D

αi
gi x(t) =

f (t, x(t)). Putting t = ti and replacing i by i − 1 in (12), then (13) implies x(t) = ϕi(t) +
ψi(t)x(t−i ), t ∈ [ti, si). By direct computation as substituting t = 0, t = T and applying
the Riemann–Stieltjes fractional integral of order γk with respect to gk to the unknown
function x(t) in (12) over [sk, tk+1), then the condition in (1) is satisfied. Therefore the proof
is completed.

3. Existence and Uniqueness Results

Before going to prove our main results, we have to define the space of functions
and the operator which are involved to problem (1). Let J = [0, T] be an interval and
let PC(J,R) and PC1(J,R) be the spaces of piecewise continuous function defined by
PC(J,R) = {x : J → R| x(t) is continuous everywhere except for some ti at which x(t+i )
and x(t−i ) exist for i = 1, 2, 3, . . . , m} and PC1(J,R) = {x ∈ PC(J,R)| x′(t) is continuous
everywhere except for some ti at which x′(t+i ) and x′(t−i ) exist for i = 1, 2, 3, . . . , m}. Let
E = PC(J,R)∩ PC1(J,R). Then E is the Banach space with norm ‖x‖ = sup{|x(t)|, t ∈ J}.
Now, we define the operator on E by

Qx(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Ω

(
i

∏
j=1

ψj(sj)

){
m

∑
k=0

μkΛ∗(k)Λk − β2Λ∗(m)

+
m

∑
k=0

μk

k

∑
j=1

[(
k

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]
Λk

+
m

∑
k=0

μk

∫ tk+1

sk
sk Iαk+γk

gk fx(u) dHk(u)

−β2

m+1

∑
j=1

[(
m

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]}

+Λ∗(i) +
i

∑
j=1

[(
i

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]
+ si I

αi
gi fx(t),

t ∈ [si, ti+1), i = 0, 1, 2, . . . , m,

ϕi(t) + ψi(t)

[
1
Ω

(
i−1

∏
j=1

ψj(sj)

){
m

∑
k=0

μkΛ∗(i)Λk

+
m

∑
k=0

μk

k

∑
j=1

[(
k

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]
Λk

+
m

∑
k=0

μk

∫ tk+1

sk
sk Iαk+γk

gk fx(u) dHk(u)− β2Λ∗(m)

−β2

m+1

∑
j=1

[(
m

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]}

+Λ∗(i − 1) +
i

∑
j=1

(
i−1

∏
j

ψj(sj)

)
sj−1 I

αj−1
gj−1 fx(t−j )

]
,

t ∈ [ti, si), i = 1, 2, 3, . . . , m.

Next, by applying the Banach’s contraction mapping principle, and Leray–Schauder’s
nonlinear alternative, we derive the existence and uniqueness of solutions to problem (1).
Some constants are set as follows:

Φ1 =
1
|Ω|

(
m

∏
j=1

|ψj(sj)|
)

, Φ2 =
m

∑
k=0

|μk||Λ∗(k)||Λk|,
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Φ3 =
m

∑
k=0

|μk|
k

∑
j=1

[(
k

∏
j
|ψj(sj)|

)((
gj−1(tj)− gj−1(sj−1)

)αj−1

Γ(αj−1 + 1)

)]
|Λk|,

Φ4 =
m

∑
k=0

|μk|
Γ(αk + γk + 1)

∫ tk+1

sk

(gk(u)− gk(sk))
αk+γk dHk(u),

Φ5 =
m+1

∑
j=1

[(
m

∏
j
|ψj(sj)|

)((
gj−1(tj)− gj−1(sj−1)

)αj−1

Γ(αj−1 + 1)

)]
,

Φ6 = Φ1(Φ3 + Φ4) + Φ5(|β2|Φ1 + 1). (20)

Theorem 1. Suppose that the nonlinear function f : J ×R → R satisfies the condition:

(H1)There exists a constant L > 0 such that for all t ∈ J and x, y ∈ R,

| f (t, x)− f (t, y)| ≤ L|x − y|.

If LΦ6 < 1, where Φ6 is defined by (20), then the non-instantaneous impulsive Riemann–Stieltjes
fractional integral boundary value problem (1) has a unique solution on J.

Proof. Let Br be the subset of E defined by Br = {x ∈ E : ‖x‖ ≤ r}, where a fixed constant
r satisfies

r ≥ Φ1Φ2 + |Λ∗(m)|(|β2|Φ1 + 1) + MΦ6

1 − LΦ6
. (21)

Now we will prove that QBr ⊂ Br. Setting M = sup{| f (t, 0)|, t ∈ J|}, we have, from tri-
angle inequality and (H1), that | f (t, x)| ≤ | f (t, x)− f (t, 0)|+ | f (t, 0)| ≤ Lr + M. Then
we obtain

|Qx(t)| ≤ 1
|Ω|

(
i

∏
j=1

|ψj(sj)|
){

m

∑
k=0

|μk||Λ∗(k)||Λk|+ |β2||Λ∗(m)|

+
m

∑
k=0

|μk|
k

∑
j=1

[(
k

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 | fx|(t−j )

]
|Λk|

+
m

∑
k=0

|μk|
∫ tk+1

sk
sk Iαk+γk

gk | fx|(u) dHk(u)

+ |β2|
m+1

∑
j=1

[(
m

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 | fx|(t−j )

]}

+ |Λ∗(i)|+
i

∑
j=1

[(
i

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 | fx|(t−j )

]
+ si I

αi
gi | fx|(t)

for t ∈ [si, ti+1), i = 0, 1, 2, . . . , m, and

|Qx(t)| ≤ |ϕi(t)|+ |ψi(t)|
[

1
|Ω|

(
i−1

∏
j=1

|ψj(sj)|
){

m

∑
k=0

|μk||Λ∗(i)||Λk|

+
m

∑
k=0

|μk|
k

∑
j=1

[(
k

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 | fx|(t−j )

]
Λk

+
m

∑
k=0

|μk|
∫ tk+1

sk
sk Iαk+γk

gk | fx|(u) dHk(u) + |β2||Λ∗(m)|

+ |β2|
m+1

∑
j=1

[(
m

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 | fx|(t−j )

]}
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+ |Λ∗(i − 1)|+
i

∑
j=1

(
i−1

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 | fx|(t−j )

]
,

for t ∈ [ti, si), i = 1, 2, 3, . . . , m. Then we have

sup
t∈J

|Qx(t)| ≤ 1
|Ω|

(
m

∏
j=1

|ψj(sj)|
){

m

∑
k=0

|μk||Λ∗(k)||Λk|+ |β2||Λ∗(m)|

+ (Lr + M)
m

∑
k=0

|μk|
k

∑
j=1

[(
k

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 (1)(t

−
j )

]
|Λk|

+ (Lr + M)
m

∑
k=0

|μk|
∫ tk+1

sk
sk Iαk+γk

gk (1)(u) dHk(u)

+ (Lr + M)|β2|
m+1

∑
j=1

[(
m

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 (1)(t

−
j )

]}

+ |Λ∗(m)|+ (Lr + M)
m

∑
j=1

[(
m

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 (1)(t

−
j )

]
+ (Lr + M)sm Iαm

gm (1)(T)

= Φ1Φ2 + |Λ∗(m)|(|β2|Φ1 + 1) + rL{Φ1(Φ3 + Φ4) + Φ5(|β2|Φ1 + 1)}
+ M{Φ1(Φ3 + Φ4) + Φ5(|β2|Φ1 + 1)}

= Φ1Φ2 + |Λ∗(m)|(|β2|Φ1 + 1) + rLΦ6 + MΦ6,

since

sj−1 I
αj−1
gj−1 (1)(t

−
j ) =

(
gj−1(tj)− gj−1(sj−1)

)αj−1

Γ(αj−1 + 1)
,

∫ tk+1

sk
sk Iαk+γk

gk (1)(u) dHk(u) =
∫ tk+1

sk

(gk(u)− gk(sk))
αk+γk

Γ(αk + γk + 1)
dHk(u).

Thus ‖Qx‖ ≤ r, where r satisfies (21). Therefore, we conclude that QBr ⊂ Br.
Next we will prove that the operator Q is a contraction. For any x, y ∈ Br we have

|Qx(t)−Qy(t)|

≤ 1
|Ω|

(
i

∏
j=1

|ψj(sj)|
){

m

∑
k=0

|μk|
k

∑
j=1

[(
k

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 | fx − fy|(t−j )

]
|Λk|

+
m

∑
k=0

|μk|
∫ tk+1

sk
sk Iαk+γk

gk | fx − fy|(u) dHk(u)

+ |β2|
m+1

∑
j=1

[(
m

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 | fx − fy|(t−j )

]}

+
i

∑
j=1

[(
i

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 | fx − fy|(t−j )

]
+ si I

αi
gi | fx − fy|(t)

for t ∈ [si, ti+1), i = 0, 1, 2, . . . , m, and

|Qx(t)−Qy(t)|

≤ |ϕi(t)|+ |ψi(t)|
[

1
|Ω|

(
i−1

∏
j=1

|ψj(sj)|
){

m

∑
k=0

|μk|
k

∑
j=1

[(
k

∏
j
|ψj(sj)|

)
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×sj−1 I
αj−1
gj−1 | fx − fy|(t−j )

]
Λk +

m

∑
k=0

|μk|
∫ tk+1

sk
sk Iαk+γk

gk | fx − fy|(u) dHk(u)

+ |β2|
m+1

∑
j=1

[(
m

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 | fx − fy|(t−j )

]}

+
i

∑
j=1

(
i−1

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 | fx − fy|(t−j )

]

for t ∈ [ti, si), i = 1, 2, 3, . . . , m. Consequently

|Qx(t)−Qy(t)|

≤ 1
|Ω|

(
m

∏
j=1

|ψj(sj)|
){

L‖x − y‖
m

∑
k=0

|μk|
k

∑
j=1

[(
k

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 (1)(t

−
j )

]
|Λk|

+ L‖x − y‖
m

∑
k=0

|μk|
∫ tk+1

sk
sk Iαk+γk

gk (1)(u) dHk(u)

+ L‖x − y‖|β2|
m+1

∑
j=1

[(
m

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 (1)(t

−
j )

]}

+ L‖x − y‖
m+1

∑
j=1

[(
m

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 (1)(t

−
j )

]
= LΦ6‖x − y‖,

which yields ‖Qx −Qy‖ ≤ LΦ6‖x − y‖. As LΦ6 < 1, Q is a contraction. Therefore, we
deduce by Banach’s contraction mapping principle, that Q has a fixed point which is the
solution of the boundary value problem (1). The proof is completed.

Remark 1. If β1 �= 0, β2 = 0, then the problem (1) is reduced to the initial and integral values
problem. The constants Ω∗, Φ∗

6 and Φ∗
1 , given by

Ω∗ = β1 −
m

∑
k=0

μk

(
k

∏
j=1

ψj(sj)

)
Λk, Φ∗

6 = Φ∗
1(Φ3 + Φ4) + Φ5, Φ∗

1 =
1

|Ω∗|

(
m

∏
j=1

|ψj(sj)|
)

,

with conditions (H1) and LΦ∗
6 < 1 are used to obtain the existence of a unique solution of such a

problem on J.

The following theorem of Leray–Schauder’s nonlinear alternative will be applied to
the next result.

Theorem 2 ([35]). Given E is a Banach space, and B is a closed, convex subset of E. In addition
let G be an open subset of B such that 0 ∈ G. Suppose that Q : G → B is a continuous, compact
(that is, Q(G) is a relatively compact subset of B) map. Then either

(i) Q has a fixed point in G,
(ii) there is a x ∈ ∂G (the boundary of G in B) and λ ∈ (0, 1) with x = λQ(x).

Theorem 3. Suppose that f : J ×R is a continuous function. In addition we assume that:

(H2)There exist a continuous nondecreasing function Ψ : [0, ∞) → (0, ∞) and continuous
function w : J → R+, such that

| f (t, x)| ≤ w(t)Ψ(|x|),

for each (t, x) ∈ J ×R;
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(H3)There exists a constant N > 0 such that

N
Φ1Φ2 + |Λ∗(m)|(|β2|Φ1 + 1) + ‖w‖Ψ(N)Φ6

> 1.

Then the non-instantaneous impulsive Riemann–Stieltjes fractional integral boundary value prob-
lem (1) has at least one solution on J.

Proof. Let ρ be a radius of a ball Bρ = {x ∈ E : ‖x‖ ≤ ρ}. It is obvious that Bρ is a closed,
convex subset of E. Now, we will show that the operator Q is fulfilled all conditions of
Theorem 2. Firstly the continuity of operator Q is proved by defining a sequence {xn}
which is converse to x. Then

|Qxn(t)−Qx(t)|

≤ 1
|Ω|

(
i

∏
j=1

|ψj(sj)|
){

m

∑
k=0

|μk|
k

∑
j=1

[(
k

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 | fxn − fy|(t−j )

]
|Λk|

+
m

∑
k=0

|μk|
∫ tk+1

sk
sk Iαk+γk

gk | fxn − fx|(u) dHk(u)

+ |β2|
m+1

∑
j=1

[(
m

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 | fxn − fx|(t−j )

]}

+
i

∑
j=1

[(
i

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 | fx − fy|(t−j )

]
+ si I

αi
gi | fxn − fx|(t)

→ 0, as n → ∞,

for t ∈ [si, ti+1), i = 0, 1, 2, . . . , m, and

|Qxn(t)−Qx(t)|

≤ |ϕi(t)|+ |ψi(t)|
[

1
|Ω|

(
i−1

∏
j=1

|ψj(sj)|
){

m

∑
k=0

|μk|
k

∑
j=1

[(
k

∏
j
|ψj(sj)|

)

×sj−1 I
αj−1
gj−1 | fxn − fx|(t−j )

]
Λk +

m

∑
k=0

|μk|
∫ tk+1

sk
sk Iαk+γk

gk | fxn − fx|(u) dHk(u)

+ |β2|
m+1

∑
j=1

[(
m

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 | fxn − fx|(t−j )

]}

+
i

∑
j=1

(
i−1

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 | fxn − fx|(t−j )

]
→ 0, as n → ∞,

for t ∈ [ti, si), i = 1, 2, 3, . . . , m. Then Q is continuous.
Next the compactness of the operator Q will be proved. Assume that x ∈ Bρ, then

we have

|Qx(t)| ≤ 1
|Ω|

(
m

∏
j=1

|ψj(sj)|
){

m

∑
k=0

|μk||Λ∗(k)||Λk|+ |β2||Λ∗(m)|

+ ‖w‖Ψ(ρ)
m

∑
k=0

|μk|
k

∑
j=1

[(
k

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 (1)(t

−
j )

]
|Λk|

+ ‖w‖Ψ(ρ)
m

∑
k=0

|μk|
∫ tk+1

sk
sk Iαk+γk

gk (1)(u) dHk(u)
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+ ‖w‖Ψ(ρ)|β2|
m+1

∑
j=1

[(
m

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 (1)(t

−
j )

]}

+ |Λ∗(m)|+ ‖w‖Ψ(ρ)
m

∑
j=1

[(
m

∏
j
|ψj(sj)|

)
sj−1 I

αj−1
gj−1 (1)(t

−
j )

]
+ ‖w‖Ψ(ρ)sm Iαm

gm (1)(T)

= Φ1Φ2 + |Λ∗(m)|(|β2|Φ1 + 1) + ‖w‖Ψ(ρ)Φ6

:= Φ7, (22)

which yields ‖Qx‖ ≤ Φ7 and then QBρ is a uniformly bounded set. To prove equicontinuity
of QBρ, we let the points θ1, θ2 ∈ [0, T] such that θ1 < θ2. Then for any x ∈ Bρ, it follows that

|Qx(θ2)−Qx(θ1)|
=

∣∣si I
αi
gi fx(θ2)− si I

αi
gi fx(θ1)

∣∣
≤ ‖w‖Ψ(ρ)

∣∣si I
αi
gi (1)(θ2)− si I

αi
gi (1)(θ1)

∣∣
=

‖w‖Ψ(ρ)

Γ(αi + 1)
{

2(g(θ2)− g(θ1))
αi +

∣∣g((θ2)− g(si))
αi − (g(θ1)− g(si))

αi
∣∣} → 0,

as θ1 → θ2 for t ∈ [si, ti+1), i = 0, 1, 2, . . . , m, and

|Qx(θ2)−Qx(θ1)| = |ϕi(θ2)− ϕi(θ1)|+ |ψi(θ2)− ψi(θ1)| × const.

→ 0, as θ1 → θ2,

for t ∈ [ti, si), i = 1, 2, 3, . . . , m. The above two inequalities are convergent to zero in-
dependently of x. Then QBρ is equicontinuous set. Therefore, we deduce that QBρ is
relatively compact which implies by the Arzelá–Ascoli theorem, that the operator Q is
completely continuous.

In the last step, we will illustrate that the condition (ii) of Theorem 2 dose not hold.
Let x be a solution of problem (1). Now, we consider the operator equation x = λQx
for any fixed constant λ ∈ (0, 1). Consequently, from above computation getting (22),
we obtain ‖x‖

Φ1Φ2 + |Λ∗(m)|(|β2|Φ1 + 1) + ‖w‖Ψ(‖x‖)Φ6
≤ 1.

The hypothesis (H3) implies that there exists a positive constants N such that ‖x‖ �= N.
Define the open subset of Bρ by G = {x ∈ Bρ : ‖x‖ < N}. It is easy to see that Q : G → E
is continuous and completely continuous. Thus, there is no x ∈ ∂G such that x = λQx
for some λ ∈ (0, 1). Hence the condition (ii) of Theorem 2 is not true. Therefore, by the
conclusion from Theorem 2 (i), the operator Q has a fixed point x ∈ G which is a solution
of the problem (1) on J. This is the end of the proof.

A special case can be obtain by setting p(t) ≡ 1 and Ψ(x) = κ1x + κ2, κ1 ≥ 0, κ2 > 0
in Theorem 3.

Corollary 1. If
| f (t, x)| ≤ κ1x + κ2,

and if κ1Φ6 < 1, then the non-instantaneous impulsive Riemann–Stieltjes fractional integral
boundary value problem (1) has at least one solution on J.

Remark 2. In the same way of Remark 1, if β1 �= 0, β2 = 0, and conditions (H2)-(H3) are
fulfilled with

N
Φ∗

1Φ2 + |Λ∗(m)|+ ‖w‖Ψ(N)Φ∗
6
> 1,

then the initial and integral values problem has at least one solution on J.

62



Axioms 2021, 10, 130

Example 1. Consider the non-instantaneous impulsive Riemann–Stieltjes fractional integral
boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2iD
4i+5
4i+6

et
(et+4+i−t)

x(t) = f (t, x(t)), t ∈ [2i, 2i + 1), i = 0, 1, 2, 3,

x(t) =
1
2

loge(i + t) +
(

1
i + tan−1(t)

)
x(t−i ), t ∈ [2i − 1, 2i), i = 1, 2, 3,

3
11

x(0) +
4
13

x(7) =
5
17

∫ 1

0

(
0 I

1
4

( eu
(eu+4−u)

x
)
(u) d(u2 + u)

+
6
19

∫ 3

2

(
2 I

1
2

eu
(eu+5−u)

x
)
(u) d(u2 + 2u)

+
7
23

∫ 5

4

(
4 I

3
4

eu
(eu+6−u)

x
)
(u) d(u2 + 3u)

+
8
29

∫ 7

6

(
6 I

3
2

eu
(eu+7−u)

x
)
(u) d(u2 + 4u).

(23)

Here αi = (4i + 5)/(4i + 6), gi(t) = et/(et + 4 + i − t), for t ∈ [2i, 2i + 1), i = 0, 1, 2, 3,
ϕi(t) = (1/2) loge(i + t), ψi(t) = 1/(i + tan−1 t), t ∈ [2i − 1, 2i), i = 1, 2, 3, β1 = 3/11,
β2 = 4/13. Since [2i, 2i + 1) ∪ [2j − 1, 2j) ∪ {7} = [0, 7], for i = 0, 1, 2, 3, j = 1, 2, 3, we
put T = 7. Setting μ0 = 5/17, μ1 = 6/19, μ2 = 7/23, μ3 = 8/29, Hi(t) = t2 + it,
i = 1, 2, 3, 4, γ0 = 1/4, γ1 = 1/2, γ2 = 3/4, γ3 = 3/2. Remark that g′i(t) > 0 for all
t ∈ [0, 7], i = 0, 1, 2, 3. Then from all information, we can compute that |Ω| ≈ 0.5181070744,
Φ1 ≈ 0.06251397190, Φ2 ≈ 0.8574153788, Φ3 ≈ 0.1639270834, Φ4 ≈ 0.1706687388, Φ5 ≈
0.1889629435, Φ6 ≈ 0.2135145724 and Λ∗(3) ≈ 1.376938726.

(i) Consider a nonlinear function f : [0, 7]×R → R by

f (t, x) =
4
3

e−t
(

2x2 + 3|x|
1 + |x|

)
+

1
2

t + 1. (24)

It is easy to check that the function f (t, x) satisfies the Lipchitz condition with
L = 4, as | f (t, x) − f (t, y)| ≤ 4|x − y|, for all t ∈ [0, 7] and x, y ∈ R. Since LΦ6 ≈
0.8540582896 < 1, by applying the result in Theorem 1, we have that the problem (23),
with f given by (24), has a unique solution on [0, 7].

(ii) Let now a nonlinear function f defined by

f (t, x) =
1

t + 2

(
x16

1 + x14 +
2
3

sin2 x +
1
3

e−x2
)

. (25)

Note that
| f (t, x)| ≤ 1

t + 2

(
x2 + 1

)
,

which satisfies (H2) with p(t) = 1/(t+ 2) and Ψ(x) = x2 + 1. Accordingly, ‖p‖ = 1/2
and there exists a constant N ∈ (1.984010360, 7.383031794) satisfying the condi-
tion (H3) of Theorem 3. Therefore, by applying Theorem 3, we deduce that the
problem (23), with f given by (25), has at least one solution on [0, 7].

(iii) If the term x16 is replaced by |x|15 in (25) then

f (t, x) =
1

t + 2

( |x|15

1 + x14 +
2
3

sin2 x +
1
3

e−x2
)

. (26)

Hence we get | f (t, x)| ≤ (1/2)|x|+ (1/2). Putting κ1 = 1/2 and κ2 = 1/2, it follows
that κ1Φ6 ≈ 0.1067572862 < 1, which implies, by Corollary 1, that the problem (23)
with (26) has at least one solution on [0, 7].
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4. Conclusions

We have presented the sufficient criteria for the existence and uniqueness of solutions
for a non-instantaneous impulsive Riemann–Stieltjes fractional integral boundary value
problem. The given boundary value problem is converted into an equivalent fixed point
operator equation, which is solved by applying the standard fixed point theorems. We
make use of Banach’s contraction mapping principle to obtain the uniqueness result, while
the Leray–Schauder nonlinear alternative is applied to obtain the existence result. We have
demonstrated the application of the obtained results by constructing examples.

Our problem generates many types and also mixed types of impulsive fractional
boundary value problems. For example, our results are reduced to Riemann–Liouville and
Hadamard impulsive fractional boundary value problems when g(t) = t and g(t) = log t,
respectively. Our results are new in the given configuration and contributes to the theory
of fractional boundary value problems.
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Abstract: In this work, a new numerical method for the fractional diffusion-wave equation and
nonlinear Fredholm and Volterra integro-differential equations is proposed. The method is based on
Euler wavelet approximation and matrix inversion of an M ×M collocation points. The proposed
equations are presented based on Caputo fractional derivative where we reduce the resulting system
to a system of algebraic equations by implementing the Gaussian quadrature discretization. The
reduced system is generated via the truncated Euler wavelet expansion. Several examples with
known exact solutions have been solved with zero absolute error. This method is also applied to
the Fredholm and Volterra nonlinear integral equations and achieves the desired absolute error of
0.× 10−31 for all tested examples. The new numerical scheme is exceptional in terms of its novelty,
efficiency and accuracy in the field of numerical approximation.

Keywords: time-fractional diffusion-wave equations; Euler wavelets; integral equations; numerical
approximation

MSC: 26A33, 35R11, 45B05

1. Introduction

Fractional calculus is very useful and widely used in many applications in science,
numerical computations and engineering, where the mathematical modeling of several real
world problems is presented in terms of fractional differential equations, see, e.g., [1–8].
For example, the authors in [8] approximated the Caputo fractional derivative by quadratic
segmentary interpolation. That raised a new approach of approximating fractional deriva-
tives and provides some insights for a new applications where the numerical resolution of
ordinary fractional differential equations is achieved.

The definition of such fractional order involves an integration represented as a non-
local operator. This important feature allows to capture the previous history (memory)
when calculating, for example, the time-fractional diffusion wave derivative value of a
given function within certain period of time. This could not be achieved based on the
classical (integer) derivative order.

The fractional diffusion-wave equation and some types of integral equations, as
a mathematical models, are widely used in many physical phenomena, where the exact
solution usually is difficult to obtain. Note that the authors of [9] introduced a mathematical
model that intermediates between the wave, heat, and transport equations, both time and
spatial variations of the corresponding dynamical law are expressed in fractional form
(Caputo derivative for the time-variable and Riesz pseudo-differential operator for the

Axioms 2021, 10, 165. https://doi.org/10.3390/axioms10030165 https://www.mdpi.com/journal/axioms
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spatial one), so that pure wavelike propagation is connected with pure diffusion and
transport processes in unified form.

Several authors have reported the higher precision numerical solution with absolute
error of 10−16−10−20 for nonlinear Volterra integral equation as in [10] and for fractional
diffusion wave equation in [11]. They used the popular collocation method based on some
wavelet systems to solve the nontrivial mathematical problems.

Since the number of collocation points is limited by 16 for 1−dimensional or 4 × 4 for
2−dimensional problems, we have noticed kind of a numerical phenomenon for each case
and specifically for the absolute error. In this paper, we propose a novel numerical method
to solve the fractional diffusion-wave equations and nonlinear Fredholm and Volterra
integro-differential problems with zero absolute error. We also discuss the proposed
method in [10] and proposed a new one to solve the nonlinear Volterra integral equation
with absolute error of 0 × 10−31. As it has been shown, in every case, there is a numerical
phenomenon of error cancellation.

2. Fractional Diffusion-Wave Equation

We consider the following fractional diffusion-wave equation involved by the Caputo
fractional derivative of order α > 0:

Dα
c u + μut − uxx = Q(x, t), 0 ≤ x, t ≤ 1, (1)

where u = u(x, t), μ is a damping parameter, and the Caputo fractional derivative for this
work is defined as

Dα
c u = 1

Γ(2− α) ∫
t

0

uττ(x, τ)
(t − τ)2−α

dτ, 1 < α ≤ 2. (2)

The initial and boundary conditions for Equation (1) is given as follows

u(x, 0) = f0(x), ut(x, 0) = f1(x), u(0, t) = g0(t), u(1, t) = g1(t), (3)

where α, f0, f1, g0, g1, Q are known functions.
We simulate the problem defined in Equations (1)–(3) based on these given functions.

We propose a new numerical method based on Euler wavelets with different sets of
collocation points. Surprisingly, the numerical scheme used in this paper achieved zero
absolute error. The absolute error of the numerical algorithm is defined on the grid
only, which is why we were able to estimate zero absolute error. All examples in the
manuscript are not trivial, which is why we believe that this method can be interesting to
the international community.

3. The New Numerical Scheme

Wavelets are basis set, very well localized functions, and known as a useful tool
for solving various types of differential and integral equations. In particular, orthogonal
wavelets are used extensively to approximate different types of fractional differential
equations in the literature. To solve the proposed problem in Equations (1)–(3), we use
wavelets based on Euler polynomials. We define the Euler polynomials E1(x), E2(x) and
the needed functions for our novel numerical algorithm as follows:

68



Axioms 2021, 10, 165

E1(x) = −1
2
+ x, E2(x) = −x + x2, (4)

I1
1 = ∫ x

0
E1(t)dt = −x

2
+ x2

2
, (5)

I1
2 = ∫ x

0
E2(t)dt = −x2

2
+ x3

3
, (6)

I2
1 = ∫ x

0
I1
1(t)dt = −x2

4
+ x3

6
, (7)

I2
2 = ∫ x

0
I1
2(t)dt = −x3

6
+ x4

12
, (8)

Iα
1 = ∫ x

0

E1(ξ)(x − ξ)2−α
dξ = x2−α(−3+ α + 2x)

2(−2+ α)(−3+ α) (9)

Iα
2 = ∫ x

0

E2(ξ)(x − ξ)2−α
dξ = − x3−α(−4+ α + 2x)

−6+ 11(α − 1) − 6(α − 1)2 + (α − 1)3 . (10)

Define Ψ to be the set of all functions given in Equations (4)–(10). For any function
f ∈ Ψ, we define the function ψ(x) as follows

ψ(x) = f (x), on [0, 1],
= 0, otherwise.

Now, assume that

ψ1 = E1, ψ2 = E2, ψ1,1 = I1
1 , ψ2,1 = I1

2 , ψ1,2 = I2
1 , ψ2,2 = I2

2 , ψ1,α = Iα
1 , ψ2,α = Iα

2 ,

we define the following set of functions (wavelets) depending on j, k ∈ Z as

ψ1(j, k, x) = ψ1(2jx − k),
ψ2(j, k, x) = ψ2(2jx − k, ),
ψ(j, k, x) = (ψ1(j, k, x) +ψ2(j, k, x)),

ψ1,1(j, k, x) = ψ1,1(2jx − k),
ψ1,2(j, k, x) = ψ1,2(2jx − k),
ψ2,1(j, k, x) = ψ2,1(2jx − k),
ψ2,2(j, k, x) = ψ2,2(2jx − k),

ψ1(j, k, x) = (ψ1,1(j, k, x) +ψ2,1(j, k, x))/j,
ψ2(j, k, x) = (ψ2,1(j, k, x) +ψ2,2(j, k, x))/j2,

ψ1,α(j, k, x) = ψ1,α(2jx − k),
ψ2,α(j, k, x) = ψ2,α(2jx − k),

ψα(j, k, x) = (ψ1,α(j, k, x) +ψ2,α(j, k, x))/jα−2.

Recall that, see, e.g., [12], a function f ∈ L2(R) can be expanded using the following series,

f (x) = 2∑
�=1

∞∑
j,k∈Z

d�(j, k)ψ�(j, k, x), (11)

where,
d�(j, k) = ⟨ f , ψ�(j, k, x)⟩ = ∫

R
f (x)ψ�(j, k, x)w(x)dx,
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for which ⟨⋅, ⋅⟩ denotes the usual inner product over the space L2(R) and w is a proper
weight function. One may truncate Equation (11) by fn,M as

fn,M = 2∑
�=1

n∑
j=0

M−1∑
k=0

d�(j, k)ψ�(j, k, x). (12)

In order to solve the proposed problem, we construct a vector Ψ f of length M =
2n+1, n ∈ N, such that

Ψ f = (ψ f , σρ(1, 0, x), . . . , σρ(2j, k, x), . . . , σρ(2n, 2n−1, x)), j = 0, 1, 2, . . . , n; k = 0, 1, 2, . . . , 2j−1, (13)

where, ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ψ f = 1, σρ = ψ i f f = E1, E2, ρ = 1,
ψ f = x, σρ = ψ1 i f f = I1

1 , I1
2 , ρ = j,

ψ f = x2/2, σρ = ψ2 i f f = I2
1 , I2

2 , ρ = j2,
ψ f = Iα

1 (x), σρ = ψα i f f = Iα
1 , Iα

2 , ρ = jα−2.

For example, for n = 2, α = 3/2, we have the following:

• When ψ f = 1, ρ = 1, we have

Ψ f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 0, 0, 0, 0, 0, 0, 0) x ≥ 1 or x < 0
(1, x2 − 1

2 , 0, (2x − 1)2 − 1
2 , 0, 0, 0, (4x − 3)2 − 1

2) 3
4 ≤ x < 1

(1, x2 − 1
2 , 0, (2x − 1)2 − 1

2 , 0, 0, (4x − 2)2 − 1
2 , 0) 1

2 ≤ x < 3
4(1, x2 − 1

2 , 4x2 − 1
2 , 0, 0, (4x − 1)2 − 1

2 , 0, 0) 1
4 ≤ x < 1

2(1, x2 − 1
2 , 4x2 − 1

2 , 0, 16x2 − 1
2 , 0, 0, 0) True

• When ψ f = x, ρ = j, we have

Ψ f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x, 0, 0, 0, 0, 0, 0, 0) x ≥ 1 or x < 0
(x, 1

6 x(2x2 − 3), 0, 1
12(16x3 − 24x2 + 6x + 1), 0, 0, 0, 1

12(4x − 3)3 + 1
8(3− 4x)) 3

4 ≤ x < 1
(x, 1

6 x(2x2 − 3), 0, 1
12(16x3 − 24x2 + 6x + 1), 0, 0, 1

12(64x3 − 96x2 + 42x − 5), 0) 1
2 ≤ x < 3

4(x, 1
6 x(2x2 − 3), 1

6 x(8x2 − 3), 0, 0, 16x3

3 − 4x2 + x
2 + 1

24 , 0, 0) 1
4 ≤ x < 1

2(x, 1
6 x(2x2 − 3), 1

6 x(8x2 − 3), 0, 1
6 x(32x2 − 3), 0, 0, 0) True

• When ψ f = x2/2, ρ = j2, we have

Ψ f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( x2

2 , 0, 0, 0, 0, 0, 0, 0) x ≥ 1 or x < 0

( x2

2 , 1
12 x2(x2 − 3), 0, 1

24(1− 2x)2(2x2 − 2x − 1), 0, 0, 0, 1
96(3− 4x)2(8x2 − 12x + 3)) 3

4 ≤ x < 1

( x2

2 , 1
12 x2(x2 − 3), 0, 1

24(1− 2x)2(2x2 − 2x − 1), 0, 0, 1
48(1− 2x)2(16x2 − 16x + 1), 0) 1

2 ≤ x < 3
4

( x2

2 , 1
12 x2(x2 − 3), 1

12 x2(4x2 − 3), 0, 0, 1
96(1− 4x)2(8x2 − 4x − 1), 0, 0) 1

4 ≤ x < 1
2

( x2

2 , 1
12 x2(x2 − 3), 1

12 x2(4x2 − 3), 0, 4x4

3 − x2

4 , 0, 0, 0) True

• When ψ f = Iα
1 , ρ = jα−2, we have

Ψ f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2√x, 0, 0, 0, 0, 0, 0, 0) x ≥ 1 or x < 0

(2√x, x2 − 1
2 , 0, 8x2−8x+1√

2
, 0, 0, 0, 32x2 − 48x + 17) 3

4 ≤ x < 1

(2√x, x2 − 1
2 , 0, 8x2−8x+1√

2
, 0, 0, 32x2 − 32x + 7, 0) 1

2 ≤ x < 3
4

(2√x, x2 − 1
2 , 8x2−1√

2
, 0, 0, 32x2 − 16x + 1, 0, 0) 1

4 ≤ x < 1
2

(2√x, x2 − 1
2 , 8x2−1√

2
, 0, 32x2 − 1, 0, 0, 0) True
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Now, define the solution of the proposed system given in Equations (1)–(3) in the form
of a matrix system by the following equation,

uxxtt ≈ ΨT
E(x) ⋅U ⋅ΨE(t), (14)

where U is a matrix of order M ×M that should be determined using some collocation
points, ΨT

E is the transpose of the vector ΨE and E denotes the set of both functions E1 and
E1 that are defined earlier.

Integrating Equation (14) step by step two times with respect to t yields:

uxxt(x, t) ≈ ΨT
E(x) ⋅U ⋅ΨI1(t) + F

′′

1 (x),
uxx(x, t) ≈ ΨT

E(x) ⋅U ⋅ΨI2(t) + tF
′′

1 (x) + F
′′

2 (x),
Now, integrating Equation (14) step by step two times for x, reveals the following:

ux(x, t) ≈ ΨT
I1(x) ⋅U ⋅ΨI2(t) + t(F′1(x) − F

′

1(0)) + F
′

2(x) − F
′

2(0) + F3(t),
u(x, t) ≈ ΨT

I2(x) ⋅U ⋅ΨI2(t) + t(F1(x) − F1(0) − xF
′

1(0)) + F2(x) − F2(0) − xF
′

2(0) + xF3(t) + F4(t),
where

I1 = {I1
1 , I1

2}, I2 = {I2
1 , I2

2},
and F1(x), F2(x), F3(t), F4(t) are arbitrary functions that can be determined using the initial
and boundary conditions given in Equation (3).

Hence, we have

u(x, t) ≈ ΨT
I2(x) ⋅U ⋅ΨI2(t) + t( f1(x) − (xF

′

3(0) + F
′

4(0))) + f0(x) − xF3(0) − F4(0) + xF3(t) + g0(t),
ut(x, t) ≈ ΨT

I2(x) ⋅U ⋅ΨI1(t) + f1(x) − xF
′

3(0) − F4
′(0) + xF

′

3(t) + g
′

0(t),
uxx(x, t) ≈ ΨT

E(x) ⋅U ⋅ΨI2(t) + t f
′′

1 (x) + f
′′

0 (x),
utt(x, t) ≈ ΨT

I2(x) ⋅U ⋅ΨE(t) + xF
′′

3 (t) + g
′′

0 (t),
Dα

c u(x, t) ≈ 1
Γ(2− α)(−xΨT

I2(x) ⋅U ⋅ΨIα(t) +ΨT
I2(x) ⋅U ⋅ΨIα(t) + F5(t) + xF6(t)),

where
Iα = {Iα

1 , Iα
2 }.

Here, we define the functions Fi as follows

F4(t) = g0(t),
F3(t) = g1(t) − g0(t) −ΨT

I2(t) ⋅U ⋅ΨI2(t) + tc1 + c2,

F5(t) = ∫ t

0

g
′′

0 (τ)(t − τ)2−α
dτ,

F6(t) = ∫ t

0

g
′′

1 (τ) − g
′′

0 (τ)(t − τ)2−α
dτ,

c0 = g1(0) − 2g0(0) + f0(1),
c1 = − f1(1) + c0/2+ g0(0),
c2 = − f0(1) + c0/2+ g0(0).

Now, we have all functions needed for the numerical simulation. Let us define
M = 21+n, n = 1, 2, .. as a collocation points and

Δx = 1/M, s0 = 0, si = si−1 +Δx, i = 1, 2, .., M; xi = ti = 1
2
(si−1 + si), i = 1, 2, ..., M.
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Then, we substitute the above equations into the propose system and calculate
Equation (1) for each pair of the collocation points as follows

Dα
c u(xi, tj) + μut(xi, tj) − uxx(xi, tj) = Q(xi, tj), i, j = 1, 2, ..., M. (15)

Therefore,

1
Γ(2− α)(−xiΨ

T
I2(xi) ⋅U ⋅ΨIα(tj) +ΨT

I2(xi) ⋅U ⋅ΨIα(tj) + F5(tj) + xiF6(tj)) + (16)

μ(ΨT
I2(xi) ⋅U ⋅ΨI1(tj) + f1(xi) − xiF

′

3(0) − F4
′(0) + xiF

′

3(tj) + g
′

0(ti)) − (17)

(ΨT
E(x) ⋅U ⋅ΨI2(t) + t f

′′

1 (x) + f
′′

0 (x)) = Q(xi, tj) (18)

Note that Equations (16)–(18) generates an M ×M system of algebraic equations in
order to produce our matrix U.

4. Numerical Performance

In this section, we present some examples of the problem proposed in Equations
(1)–(3). The numerical solution demonstrated here achieved a zero absolute error and
that was independent from the number of collocation points, damping parameter μ and
fractional value α. We noticed that there is a numerical phenomenon behind the error
cancellation in this method.

The generated system of algebraic equations given in Equation (15) is not so simple
and it is also a matrix; however, for all examples that we consider, the numerical solution is
not different from the exact solution in all collocation points and that makes this technique
a special and powerful tool capable of achieving such an excellent order of accuracy.

Example 1. Consider the equation

Dα
c u(x, t) + μut(x, t) − uxx(x, t) = Q(x, t), (19)

where,

Q(x, t) = 1
Γ(2− α) ∫

t

0

uττ(x, τ)
(t − τ)2−α

dτ, 1 < α ≤ 2,

with the following initial and boundary condition given as

u(x, 0) = x, ut(x, 0) = 0, u(0, t) = (2− α)t2, u(1, t) = 1+ (2− α)t2. (20)

The exact solution for this formulation is

ue(x, t) = x + (2− α)t2.

Applying our algorithm, Figure 1 presents the exact solution (left) and exact solution with
numerical solution (middle and right) computed at M = 8, μ = 1, α = 3/2. The maximum absolute
error for the numerical solution is calculated by Mathematica as zero and so it is less than the
minimal machine number 2.22507× 10−308, which means

max∣u(xi, tj) − ue(xi, tj)∣ < 2.22507× 10−308, i, j = 1, 2, ..., M.

Figure 2 shows the visual representation of the values of elements in the matrix generated
during solving the related system of algebraic equations for this example.
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x

u

Figure 1. The exact solution (left) and numerical solution (points) with exact solution (middle and right) computed for
Example 1 when M = 8, μ = 1, α = 3/2.

Figure 2. The visual representation of the matrix coefficient computed for Example 1 when M = 8,
μ = 1, α = 3/2.

Example 2. Consider the equation

Dα
c u(x, t) + μut(x, t) − uxx(x, t) = 0. (21)

with the following initial and boundary condition given as

u(x, 0) = x2

2
, ut(x, 0) = 1

μ
, u(0, t) = t

μ
, u(1, t) = 1

2
+ t

μ
. (22)

The exact solution for this formulation is

ue(x, t) = x2

2
+ t

μ
.

In Figure 3, we show the exact solution (left) and exact solution with numerical solution
(middle and right) computed at M = 16, μ = 1, α = 19/10. Again, the maximum absolute error
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for the numerical solution is recognized by Mathematica as zero. Thus, it is less than the minimal
machine number 2.22507× 10−308.

Figure 3. The numerical solution (points) with exact solution computed for Example 2 when M = 16, μ = 1, α = 19/10.

Figure 4 shows the visual representation of the values of elements in the matrix
generated during solving the related system of algebraic equations.

Figure 4. The visual representation of the matrix coefficient computed for Example 2 when M = 16,
μ = 1, α = 19/10.

Example 3. The numerical phenomenon of the error cancellation also occurs for the wave equation.
In this case, we have α = 2, and so Equation (1) turns to the common form of the wave equation
given by

utt(x, t) + μut(x, t) − uxx(x, t) = Q(x, t), (23)

where,
Q(x, t) = μ.
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The initial and boundary conditions are given as

u(x, 0) = x, ut(x, 0) = 1, u(0, t) = t, u(1, t) = 1+ t. (24)

The exact solution of this problem is ue(x, t) = x + t. In Figure 5, we present the exact solution
(left) and exact solution with numerical solution (middle and right) computed at M = 8, μ = 1, α = 2.
The maximum absolute error for the numerical solution is zero for this case as well.

x

u

Figure 5. The exact solution (left) and numerical solution (points) with exact solution (middle and right) computed for
Example 3 with M = 8, μ = 1, α = 2.

Example 4. The numerical phenomenon of the error cancellation also occurs for the wave equation.
In this case, we choose α = 3/2, and so Equation (1) turns to the common form of the wave equation
given by Dα

c u(x, t) + μut(x, t) − uxx(x, t) = Q(x, t), (25)

where,
Q(x, t) = μx.

The initial and boundary conditions are given as

u(x, 0) = 0, ut(x, 0) = x, u(0, t) = 0, u(1, t) = t. (26)

The exact solution of this problem is ue(x, t) = xt. In Figure 6, we present the exact solution
(left) and exact solution with numerical solution (middle and right) computed at M = 8, μ = 1, α = 2.
The maximal absolute error for the numerical solution is zero. This result does not depend on the
number of collocation points, nor the fractional parameters α and μ.
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x

u

Figure 6. The exact solution (left) and numerical solution (points) with exact solution (middle and right) computed for
Example 4 with M = 8, μ = 1, α = 3/2.

Example 5. Let us consider another example by involving the fractional parameter α in the function
Q as follows

Dα
c u(x, t) + μut(x, t) − uxx(x, t) = 2x(1− x)t2−α

(2− α)Γ(2− α) + 2tx(1− x) + 2t2. (27)

The initial and boundary conditions are given as

u(x, 0) = 0, ut(x, 0) = 0, u(0, t) = 0, u(1, t) = 0. (28)

This example has been considered and discussed for μ = 1 by many authors, see, e.g., [11,13,14].
The exact solution for this case has the following form ue = t2x(1− x). Using our technique, we
are able to solve it with a proper setting of precision of the numerical technique. For instance, in
Figure 7, we provide the exact solution and numerical solution (points) computed with machine
precision of 1.11022× 10−16 ( shown in Figure 8, left). Increasing precision up to 10−30, we get the
numerical solution with zero absolute error (as it shown in Figure 8, right).

x

u

Figure 7. The exact solution (left) and numerical solution (points) with exact solution (middle and right) computed for
Example 7 for M = 8, μ = 1, α = 3/2.

76



Axioms 2021, 10, 165

Figure 8. The absolute error computed for Example 5 given that M = 8, μ = 1, α = 3/2 with machine precision (left sub-figure)
and with double precision (right sub-figure).

5. Numerical Technique for Nonlinear Fredholm and Volterra Integral Equation

Let us now consider the following form of Volterra integral equation of the second kind

u(x) = g(x) +∫ x

0
K(x, t, u(t))dt, 0 ≤ x ≤ 1, (29)

where g and K (the kernel) are known functions. It is well known that Equation (29) has a
unique solution under following conditions [15]:

(1) g(x) is continues and bounded on 0 ≤ x ≤ 1;
(2) The kernel K(x, t, u) is bounded and uniformly continuous in both x and t, for all

finite u where 0 ≤ t ≤ x ≤ 1;
(3) The kernel K(x, t, u) satisfies the uniform Lipschitz condition

∣K(x, t, u1) −K(x, t, u2)∣ ≤ L∣u1 − u2∣, (30)

for all finite u1,2 and 0 ≤ t ≤ x ≤ 1.

To solve Equation (29), we use Euler wavelets in the form of vector ΨE that we defined
earlier. Then, we proposed that the numerical solution has the following setting:

u(x) = A ⋅ΨE(x), (31)

where the vector A = (a1, a2, ..., aM) can be computed using the collocation technique
such that

M = 21+n, n = 1, 2, ...,

and ΨE(x) is defined considering ρ(j) = 2.
To do this, we first transform the integral in Equation (29) by substituting

t = x
2
(s + 1),−1 ≤ s ≤ 1.

77



Axioms 2021, 10, 165

Then, this integral turns to the fixed limit integral, and so it can be approximated by a
finite sum using the Gauss quadrature rule as follows:

∫ x

0
K(x, t, u(t))dt = x

2 ∫
1

−1
K(x, x(s + 1)/2, u(x(s + 1)/2))ds (32)

= x
2

2M∑
i=1

wiK(x, x(si + 1)/2, u(x(si + 1)/2)) +Δ, (33)

where wi are weights, si are points of the Gauss quadrature rule defined on (−1, 1), and
Δ is the error of approximation. Substituted Equations (31) and (32) in Equation (29) and
using the assumed collocation points, we get a system of algebraic equations:

A ⋅ΨE(xj) = g(xj) + xj

2

2M∑
i=1

wiK(xj, xj(si + 1)/2, A ⋅ΨE(xj(si + 1)/2)), (34)

for j = 1, 2, ..., M and Δ = 0.
The system of nonlinear algebraic equations given in Equation (34) can be solved by

using several method. In this work, we use Newton’s iterative technique.

6. Numerical Examples

The parameters of the Gauss quadrature rule are not exact; however, it can be calcu-
lated with high precision of 10−60, it is possible to solve the system in Equation (34) with
absolute error of 0.× 10−31. We can consider this solution as a numerical solution with zero
absolute error without future estimation. For the examples in this section, the numerical
solution has absolute error as of 0.× 10−31. Furthermore, we consider some intermediate
results computed with machine precision as of 1.11022× 10−16.

Example 6. This example has been discussed by many authors, see for example [16–18]:

u(x) = x2

2
(1+ cos x2) +∫ x

0
tx2 sin(u(t))dt (35)

The exact solution of this equation is given by u = x2. Using an iterative multistep kernel
method [16] it is possible to get the numerical solution of Equation (35) with absolute error of
7.8974× 10−10, and using the method proposed in [17], the best result has absolute error of 10−6.
Using our method, we get numerical solution with maximum absolute error of 2.77556 × 10−17

computed with the machine precision (Figure 9, left and middle) and of 0 × 10−31 computed with
double precision and with precision of 10−60 for the Gauss quadrature rule parameters wi, si (Figure
9, right). Note that, we have used ρ(j) = 2 for this case.

Figure 9. The numerical solution (points) with exact solution (left) and the absolute error computed for Example 6 with
machine precision (middle), and with double precision (right).
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Example 7. Now, we consider the following nonlinear Fredholm integral Equation [19,20]:

u(x) = −x2 − x
3
(2√2− 1) + 2+∫ 1

0
xt
√

u(t)dt (36)

The exact solution for this problem is u(x) = 2− x2. This problem can be solved by the Haar
wavelets method as in [19,20] with absolute error of 3.1× 10−5, 4.2× 10−6, respectively, where they
used 128 collocation points to get into these bounds. With our method, with only 16 collocation
points, we have achieved a numerical solution with absolute error of 6.64685 × 10−20 computed
using the machine precision, and as of 0 × 10−31 computed using a double precision as shown in
Figure 10.

Figure 10. The numerical solution (points) with exact solution (left) and the absolute error computed for Example 7 with
machine precision (middle), and with double precision (right).

Example 8. We consider now the following nonlinear Volterra integral equation based on two
parameters such that

u(x) = x2 − x5+β+γ

5+γ
+∫ x

0
xβtγu2(t)dt. (37)

The exact solution of this equation is u = x2. Numerical experiments with different β, γ
shown that for any integer β, γ = 0, 1, 2, ..., 27 the numerical solution has zero absolute error for all
collocation points and for n = 3. For integer γ = 0, 1, 2, ..., 27 and for some 1 ≤ β ≤ 27 including
π and e the numerical solution has zero absolute error. For non integer β, γ > 1 there is absolute
error that varies from zero up to 10−15. However, we cannot check every β, γ due to numerical
limitations. The graphs of the exact, numerical and error results are depicted in Figure 11.
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Figure 11. The numerical solution (points) with exact solution (left) and the absolute error computed for Example 8 (right).

Example 9. Finally, we consider the generalized form of Equation (35) based on two parameters as

u(x) = x2 − 1F2( 3+γ
4 ; 3

2 , 7+γ
4 ;− x4

4 )
3+γ

x3+β+γ +∫ x

0
xβtγ sin(u(t))dt, (38)

where 1F2(a; b; z) is the generalized hyper-geometric function. The exact solution of this formulation
is u = x2. Note that, Equation (35) is a special case of Equation (38) when β = 2, γ = 1. The
numerical experiments for any integer β, γ = 0, 1, 2, ..., 80 demonstrate a numerical solution with
zero absolute error up to β = 30, γ = 30, and then maximum absolute error increases from 9× 10−50

for β = 31, γ = 31 to 1.01 × 10−28 for β = 80, γ = 80. For any integer γ = 0, 1, 2, ..., 30 and real
0 ≤ β ≤ 30, the numerical solution has zero absolute error for all tested points including π and e.
We present the exact, numerical and error results in Figure 12.

Figure 12. The numerical solution (points) with exact solution (left) and the absolute error computed for Example 9 (right).
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7. Conclusions

In this work, a novel numerical method based on a proper wavelet systems generated
via Euler functions is proposed. The collocation algorithm based on Euler wavelets has
been applied to the time-fractional diffusion wave and nonlinear Fredholm and Volterra
integral equations. We used some truncated representations based on Euler wavelets
to convert the proposed equations to a system of algebraic equations based on specific
discretization. The reduced system was converted to a matrix form and simulated using
Mathematica software.

We numerically solved a series of examples related to the proposed equations, where
the numerical results achieved an exceptional absolute error among other numerical
schemes in the literature. We provided some graphical illustrations to show the efficiency
of the method.
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Abstract: In this paper, we initiate the study of existence of solutions for a fractional differential
system which contains mixed Riemann–Liouville and Hadamard–Caputo fractional derivatives,
complemented with nonlocal coupled fractional integral boundary conditions. We derive necessary
conditions for the existence and uniqueness of solutions of the considered system, by using standard
fixed point theorems, such as Banach contraction mapping principle and Leray–Schauder alternative.
Numerical examples illustrating the obtained results are also presented.

Keywords: coupled systems; Riemann–Liouville fractional derivative; Hadamard–Caputo fractional
derivative; nonlocal boundary conditions; existence; fixed point

1. Introduction

Fractional differential equations have played a very important role in almost all branches
of applied sciences because they are considered a valuable tool to model many real world
problems. For details and applications, we refer the reader to monographs [1–11]. The study
of coupled systems of fractional differential equations is important as such systems appear
in various problems in applied sciences, see [12–16].

On the other hand, multi-term fractional differential equations also gained consid-
erable importance in view of their occurrence in the mathematical models of certain real
world problems, such as behavior of real materials [17], continuum and statistical mechan-
ics [18], an inextensible pendulum with fractional damping terms [19], etc.

Fractional differential equations have several kinds of fractional derivatives, such
as Riemann–Liouville fractional derivative, Caputo fractional derivative, Hadamard frac-
tional derivative, and so on. In the literature, there are many papers studying existence
and uniqueness results for boundary value problems and coupled systems of fractional
differential equations and used mixed types of fractional derivatives, see [20–29]. In [23],
the following boundary value problem is considered:⎧⎨⎩

RLDq[CDrx(t)− g(t, x(t))] = f (t, x(t)), 0 < t < T,

x(η) = φ(x), Ipx(T) = h(x),
(1)
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where RLDq, CDr are Riemann–Liouville and Caputo fractional derivatives of orders q, r ∈
(0, 1), respectively, Ip is the Riemann–Liouville fractional integral of order p > 0, f , g : J ×R
→ R are given continuous functions and φ, h : C(J,R) → R are two given functionals.

In [24], the authors initiated the study of a coupled system of sequential mixed Caputo
and Hadamard fractional differential equations supplemented with coupled separated
boundary conditions. To be more precisely, in [24], existence and uniqueness results are
established for the following couple system:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

CDp1 H Dq1 x(t) = f (t, x(t), y(t)), t ∈ [a, b],

H Dq2 CDp2 y(t) = g(t, x(t), y(t)), t ∈ [a, b],

α1x(a) + α2
CDp2 y(a) = 0, β1x(b) + β2

CDp2 y(b) = 0,

α3y(a) + α4
H Dq1 x(a) = 0, β3y(b) + β4

H Dq1 x(b) = 0,

(2)

where CDpi and H Dqi are notations of the Caputo and Hadamard fractional derivatives of
orders pi and qi, respectively, 0 < pi, qi ≤ 1, i = 1, 2, f , g : [a, b]×R×R → R are nonlinear
continuous functions, a > 0, αi ∈ R \ {0}, βi ∈ R, i = 1, . . . , 4.

In [25], the existence and uniqueness of solutions for neutral fractional order coupled
systems containing mixed Caputo and Riemann–Liouville sequential fractional derivatives
were studied, complemented with nonlocal multi-point and Riemann–Stieltjes integral
multi-strip conditions of the form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDq(RLDpx(t) + f (t, x(t)) = g(t, x(t), y(t)), t ∈ (0, 1),
cDq1(RLDp1 y(t) + f1(t, y(t)) = g1(t, x(t), y(t)), t ∈ (0, 1),

x(0) = 0, bx(1) = a
∫ 1

0
y(s)dH(s) +

n

∑
i=1

αi

∫ ηi

ξi

y(s)ds,

y(0) = 0, b1y(1) = a1

∫ 1

0
x(s)dH(s) +

m

∑
j=1

β j

∫ ζ j

θj

x(s)ds,

(3)

where RLDp,RL Dp1 , and cDq,c Dq1 denote the Riemann–Liouville and Caputo fractional
derivatives of order p, p1 and q, q1, respectively, 0 < p, p1, q, q1 ≤ 1, with 1 < p + q ≤
2, 1 < p1 + q1 ≤ 2, f , f1 and g, g1 are given continuous functions, 0 < ξi < ηi < 1, 0 <
θj < ζ j < 1, αi, β j ∈ R, i = 1, 2, . . . , n, j = 1, 2, . . . , m, a, a1, b, b1 ∈ R, and H(·) is a function
of bounded variation.

To the best of the authors’ knowledge, there are some papers dealing with sequential
mixed type fractional derivatives, but we not find in the literature papers dealing with
coupled systems with sequential Riemann–Liouville and Hadamard–Caputo fractional
differential equations. Motivated by this fact, and to fill this gap, in the present paper, we
investigate the existence and uniqueness of solutions for the following coupled system
of sequential Riemann–Liouville and Hadamard–Caputo fractional differential equations
supplemented with nonlocal coupled fractional integral boundary conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RLDp1
(

HCDq1 x
)
(t) = f (t, x(t), y(t)), t ∈ [0, T],

RLDp2
(

HCDq2 y
)
(t) = g(t, x(t), y(t)), t ∈ [0, T],

HCDq1 x(0) = 0, x(T) =
m

∑
i=1

αi
RL Iβi y(ξi),

HCDq2 y(0) = 0, y(T) =
k

∑
j=1

λj
RL Iδj x(ηj),

(4)
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where RLDpr and HCDqr are the Riemann–Liouville and Hadamard–Caputo fractional
derivatives of orders pr and qr, respectively, 0 < pr, qr < 1, r = 1, 2, the nonlinear
continuous functions f , g : [0, T] × R2 → R, RL Iφ is the Riemann–Liouville fractional
integral of orders φ > 0, φ ∈ {βi, δj} and given constants αi, λj ∈ R, ξi, ηj ∈ (0, T),
i = 1, . . . , m, j = 1, . . . , k.

Let us compare the coupled system (4) with the coupled system (2) studied in [24].

(i) In (2), we studied a coupled system consisting by mixed Caputo and Hadamard frac-
tional derivatives, while, in (4), we consider mixed Riemann–Liouville and Hadamard–
Caputo fractional derivatives.

(ii) In (2), the coupled system was subjected to coupled separated boundary conditions,
while, in (4), the coupled system is subjected to nonlocal coupled fractional integral
boundary conditions.

(iii) In both problems (4) and (2), the same method is used to establish the existence and
uniqueness results, and based on standard fixed point theorems, but their presentation
in the framework of mixed coupled Caputo and Hadamard and Riemann–Liouville
and Hadamard–Caputo fractional derivatives is new.

We also notice that the conditions HCDq1 x(0) = 0 and HCDq2 y(0) = 0 are necessary
for the well-posedness of the problem.

By using standard tools from fixed point theory in the present study, we establish
existence and uniqueness results for the coupled system (4). The Banach contraction
mapping principle is used to obtain the existence and uniqueness result, while an existence
result is derived via the Leray–Schauder alternative.

The rest of the paper is organized as follows. In Section 2, some basic definitions and
lemmas from fractional calculus are recalled. In addition, an auxiliary lemma, concerning
a linear variant of (4), which plays a key role in obtaining the main results, is proved.
The main results are presented in Section 3, which also include examples illustrating
the basic results. We emphasize that our results are new and significantly enhance the
existing literature on the topic, and, as far as we know, they are the first results concern-
ing a coupled system with sequential mixed Riemann–Liouville and Hadamard–Caputo
fractional derivatives.

2. Preliminaries

In this section, we introduce some notations and definitions of fractional calculus [2,30]
and present preliminary results needed in our proofs later.

Definition 1. The Riemann–Liouville fractional derivative of order p > 0 of a continuous function
f : (0, ∞) → R is defined by

RLDp f (t) =
1

Γ(n − p)

(
d
dt

)n ∫ t

0
(t − s)n−p−1 f (s)ds, n − 1 < p < n,

where n = [p] + 1, [p] denotes the integer part of a real number p and Γ is the Gamma function
defined by Γ(p) =

∫ ∞
0 e−ssp−1ds.

Definition 2. The Riemann–Liouville fractional integral of order p of a function f : (0, ∞) → R,
is defined as

RL Ip f (t) =
1

Γ(q)

∫ t

0
(t − s)p−1 f (s)ds, p > 0,

provided the right side is pointwise defined on R+.
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Definition 3. For an at least n-times differentiable function g : (0, ∞) → R, the Hadamard–
Caputo derivative of fractional order q > 0 is defined as

HCDqg(t) =
1

Γ(n − q)

∫ t

0

(
log

t
s

)n−q−1
δng(s)

ds
s

, n − 1 < q < n, n = [q] + 1,

where δ = t d
dt and log(·) = loge(·).

Definition 4. The Hadamard fractional integral of order q > 0 is defined as

H Iqg(t) =
1

Γ(α)

∫ t

0

(
log

t
s

)q−1
g(s)

ds
s

,

provided the integral exists.

Lemma 1 (see [2]). Let p > 0. Then, for y ∈ C(0, T) ∩ L(0, T), it holds that

RL Ip
(

RLDpy
)
(t) = y(t) + c1tp−1 + c2tp−2 + · · ·+ cntp−n,

where ci ∈ R, i = 1, 2, . . . , n and n − 1 < p < n.

Lemma 2 ([30]). Let u ∈ ACn
δ [0, T] or Cn

δ [0, T] and q ∈ C, where Xn
δ [0, T] = {g : [0, T] → C :

δn−1g(t) ∈ X[0, T]}. Then, we have

H Iq(HCDq)u(t) = u(t) + c0 + c1 log t + c2(log t)2 + · · ·+ cn−1(log t)n−1,

where ci ∈ R, i = 0, 1, 2, . . . , n − 1 (n = [q] + 1).

Lemma 3 ([2], p. 113). Let q > 0 and β > 0 be given constants. Then, the following formula

H Iqtβ = β−qtβ,

holds.

Next, the integral equations are obtained by transformation of a linear variant of
problem (4). For convenience in computation, we set some constants

Ω1 =
m

∑
i=1

αiξ
βi
i

Γ(βi + 1)
, Ω2 =

k

∑
j=1

λjη
δj
j

Γ(δj + 1)

and Λ = Ω1Ω2 − 1 �= 0.

Lemma 4. Let f ∗, g∗ ∈ C([a, b],R) be two given functions. Then, the linear system equivalent to
problem (4) of sequential Riemann–Liouville and Hadamard–Caputo fractional differential equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RLDp1
(

HCDq1 x
)
(t) = f ∗(t), t ∈ [0, T],

RLDp2
(

HCDq2 y
)
(t) = g∗(t), t ∈ [0, T],

HCDq1 x(0) = 0, x(T) =
m

∑
i=1

αi
RL Iβi y(ξi),

HCDq2 y(0) = 0, y(T) =
k

∑
j=1

λj
RL Iδj x(ηj),

(5)

can be written into integral equations as
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x(t) = − 1
Λ

m

∑
i=1

αi
RL Iβi

(
H Iq2

(
RL Ip2 g∗

))
(ξi) +

1
Λ

H Iq1
(

RL Ip1 f ∗
)
(T)

+
Ω1

Λ
H Iq2

(
RL Ip2 g∗

)
(T)− Ω1

Λ

k

∑
j=1

λj
RL Iδj

(
H Iq1

(
RL Ip1 f ∗

))
(ηj)

+ H Iq1
(

RL Ip1 f ∗
)
(t), (6)

and

y(t) = −Ω2

Λ

m

∑
i=1

αi
RL Iβi

(
H Iq2

(
RL Ip2 g∗

))
(ξi) +

Ω2

Λ
H Iq1

(
RL Ip1 f ∗

)
(T)

+
1
Λ

H Iq2
(

RL Ip2 g∗
)
(T)− 1

Λ

k

∑
j=1

λj
RL Iδj

(
H Iq1

(
RL Ip1 f ∗

))
(ηj)

+ H Iq2
(

RL Ip2 g∗
)
(t). (7)

Proof. For t ∈ [0, T] and by taking the Riemann–Liouville fractional integral of order p1 to
the first equation of (5), we obtain

HCDq1 x(t) = c1tp1−1 + RL Ip1 f ∗(t), c1 ∈ R. (8)

Similarly, for the second equation of (5), we have

HCDq2 y(t) = d1tp2−1 + RL Ip2 g∗(t), d1 ∈ R. (9)

Since 0 < pr < 1, r = 1, 2, the conditions HCDq1 x(0) = 0 and HCDq2 y(0) = 0 imply c1 = 0
and d1 = 0, respectively. Applying the Hadamard fractional integral of orders q1 and q2 to
(8) and (9), respectively, and substituting the values of c1, d1, we get

x(t) = c0 +
H Iq1

(
RL Ip1 f ∗

)
(t), (10)

and
y(t) = d0 +

H Iq2
(

RL Ip2 g∗
)
(t). (11)

Now, we consider the terms

m

∑
i=1

αi
RL Iβi y(ξi) = d0

m

∑
i=1

αiξ
βi
i

Γ(βi + 1)
+

m

∑
i=1

αi
RL Iβi

(
H Iq2

(
RL Ip2 g∗

))
(ξi) (12)

and
k

∑
j=1

λj
RL Iδj x(ηj) = c0

k

∑
j=1

λjη
δj
j

Γ(δj + 1)
+

k

∑
j=1

λj
RL Iδj

(
H Iq1

(
RL Ip1 f ∗

))
(ηj). (13)

Consequently, by (10)–(13) and boundary fractional integral conditions in (5), it follows that

c0 = − 1
Λ

m

∑
i=1

αi
RL Iβi

(
H Iq2

(
RL Ip2 g∗

))
(ξi) +

1
Λ

H Iq1
(

RL Ip1 f ∗
)
(T)

+
Ω1

Λ
H Iq2

(
RL Ip2 g∗

)
(T)− Ω1

Λ

k

∑
j=1

λj
RL Iδj

(
H Iq1

(
RL Ip1 f ∗

))
(ηj),

and
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d0 = −Ω2

Λ

m

∑
i=1

αi
RL Iβi

(
H Iq2

(
RL Ip2 g∗

))
(ξi) +

Ω2

Λ
H Iq1

(
RL Ip1 f ∗

)
(T)

+
1
Λ

H Iq2
(

RL Ip2 g∗
)
(T)− 1

Λ

k

∑
j=1

λj
RL Iδj

(
H Iq1

(
RL Ip1 f ∗

))
(ηj),

Substituting the values of c0 and d0 in (10) and (11), we obtain integral equations in (6)
and (7), respectively, as desired.

The converse follows by direct computation. This completes the proof.

Next, we establish formulas for multiple fractional integrals of Riemann–Liouville
and Hadamard types.

Lemma 5. Let a, b, c > 0 be constants. Then, we have

(i)

H Ib
(

RL Ia(1)
)
(t) =

a−bta

Γ(a + 1)
.

(ii)

RL Ic
(

H Ib
(

RL Ia(1)
))

(t) =
a−b

Γ(a + c + 1)
ta+c.

Proof. Since RL Ia(1) =
ta

Γ(a + 1)
, we have

H Ib
(

RL Ia(1)
)
(t) =

1
Γ(a + 1)

H Ibta =
a−bta

Γ(a + 1)
, (14)

by using Lemma 3, and (i) is proved. To prove (ii), taking the Riemann–Liouville fractional
integral of order c > 0 in (14), we have

RL Ic
(

H Ib
(

RL Ia(1)
))

(t) =
a−b

Γ(a + 1)
RL Icta =

a−b

Γ(a + c + 1)
ta+c,

from RL Icta =
Γ(a + 1)

Γ(a + c + 1)
ta+c. The proof is completed.

Corollary 1. Let constants pr, qr, r = 1, 2, βi, ξi, δj, ηj be defined in problem (4). Then, from
Lemma 5, we have

H Iq1
(

RL Ip11
)
(T) =

p−q1
1 Tp1

Γ(p1 + 1)
,

H Iq2
(

RL Ip21
)
(T) =

p−q2
2 Tp2

Γ(p2 + 1)
,

RL Iβi
(

H Iq2
(

RL Ip21
))

(ξi) =
p−q2

2
Γ(p2 + βi + 1)

ξ
p2+βi
i ,

RL Iδj
(

H Iq1
(

RL Ip1 1
))

(ηj) =
p−q1

1
Γ(p1 + δj + 1)

η
p1+δj
j ,

which will be used in the next section.

3. Main Results

Let C = C([0, T],R) be the Banach space of all continuous functions from [0, T] to
R. Let X = {x(t) : x(t) ∈ C2([0, T],R)} be the space endowed with the norm ‖x‖ =

88



Axioms 2021, 10, 174

sup{|x(t)|, t ∈ [0, T]}. Obviously, (X, ‖ · ‖) is a Banach space. Next, we set Y = {y(t) :
y(t) ∈ C2([0, T],R)} with the norm ‖y‖ = sup{|y(t)|, t ∈ [0, T]}. The product space
(X × Y, ‖(x, y)‖) is Banach space with the norm ‖(x, y)‖ = ‖x‖+ ‖y‖.

In the following, for brevity, we use the subscript notation

hx,y(t) = h(t, x(t), y(t)), h ∈ { f , g}, (15)

in fractional integral as

RL Iphx,y(φ) =
1

Γ(p)

∫ φ

a
(φ − s)p−1h(s, x(s), y(s)) ds, (16)

where φ ∈ {t, T, ξi, ηj}. In addition, we use it in multiple fractional integrations.

In view of Lemma 4, we define the operator P : X × Y → X × Y by

P(x, y)(t) =
(P1(x, y)(t)
P2(x, y)(t)

)
,

where

P1(x, y)(t) = − 1
Λ

m

∑
i=1

αi
RL Iβi

(
H Iq2

(
RL Ip2 gx,y

))
(ξi) +

1
Λ

H Iq1
(

RL Ip1 fx,y

)
(T)

+
Ω1

Λ
H Iq2

(
RL Ip2 gx,y

)
(T)− Ω1

Λ

k

∑
j=1

λj
RL Iδj

(
H Iq1

(
RL Ip1 fx,y

))
(ηj)

+ H Iq1
(

RL Ip1 fx,y

)
(t)

and

P2(x, y)(t) = −Ω2

Λ

m

∑
i=1

αi
RL Iβi

(
H Iq2

(
RL Ip2 gx,y

))
(ξi) +

Ω2

Λ
H Iq1

(
RL Ip1 fx,y

)
(T)

+
1
Λ

H Iq2
(

RL Ip2 gx,y

)
(T)− 1

Λ

k

∑
j=1

λj
RL Iδj

(
H Iq1

(
RL Ip1 fx,y

))
(ηj)

+ H Iq2
(

RL Ip2 gx,y

)
(t).

For computational convenience, we set

M1 =

(
1 + |Λ|
|Λ|

)(
p−q1

1 Tp1

Γ(p1 + 1)

)
+

|Ω1|
|Λ|

⎛⎝p−q1
1

k

∑
j=1

|λj|ηp1+δj
j

Γ(p1 + δj + 1)

⎞⎠,

M2 =
|Ω1|
|Λ|

(
p−q2

2 Tp2

Γ(p2 + 1)

)
+

1
|Λ|

(
p−q2

2

m

∑
i=1

|αi |ξ p2+βi
i

Γ(p2 + βi + 1)

)
,

M3 =
|Ω2|
|Λ|

(
p−q1

1 Tp1

Γ(p1 + 1)

)
+

1
|Λ|

⎛⎝p−q1
1

k

∑
j=1

|λj|ηp1+δj
j

Γ(p1 + δj + 1)

⎞⎠,

M4 =

(
1 + |Λ|
|Λ|

)(
p−q2

2 Tp2

Γ(p2 + 1)

)
+

|Ω2|
|Λ|

(
p−q2

2

m

∑
i=1

|αi |ξ p2+βi
i

Γ(p2 + βi + 1)

)
.

In the first result, Banach’s contraction mapping principle is used to prove existence
and uniqueness of solutions of system (4).

Theorem 1. Suppose that f , g : [0, T] × R2 → R are continuous functions. In addition, we
assume that f , g satisfies the Lipchitz condition:

(H1) there exist constants mi, ni, i = 1, 2

| f (t, u1, v1)− f (t, u2, v2)| ≤ m1|u1 − u2|+ m2|v1 − v2|

89



Axioms 2021, 10, 174

and
|g(t, u1, v1)− g(t, u2, v2)| ≤ n1|u1 − u2|+ n2|v1 − v2|,

for all t ∈ [0, T] and ui, vi ∈ R, i = 1, 2. Then, the system (4) has a unique solution on [0, T], if

(M1 + M3)(m1 + m2) + (M2 + M4)(n1 + n2) < 1. (17)

Proof. Let us define supt∈[0,T] f (t, 0, 0) = N1 < ∞ and supt∈[0,T] g(t, 0, 0) = N2 < ∞.
Choose a constant r > 0 satisfying

r >
(M1 + M3)N1 + (M2 + M4)N2

1 − [(M1 + M3)(m1 + m2) + (M2 + M4)(n1 + n2)]
.

At first, we shall show that the set PBr ⊂ Br, where a ball Br = {(x, y) ∈ X ×Y : ‖(x, y)‖ ≤
r}. For (x, y) ∈ Br, and using

| fx,y| ≤ | fx,y − f0,0|+ | f0,0| ≤ m1‖x‖+ m2‖y‖+ N1,

and
|gx,y| ≤ |gx,y − g0,0|+ |g0,0| ≤ n1‖x‖+ n2‖y‖+ N2,

we get relations

|P1(x, y)(t)|

≤ 1
|Λ|

m

∑
i=1

|αi | RL Iβi
(

H Iq2
(

RL Ip2 |gx,y|
))

(ξi) +
1
|Λ|

H Iq1
(

RL Ip1 | fx,y|
)
(T)

+
|Ω1|
|Λ|

H Iq2
(

RL Ip2 |gx,y|
)
(T) +

|Ω1|
|Λ|

k

∑
j=1

|λj| RL Iδj
(

H Iq1
(

RL Ip1 | fx,y|
))

(ηj)

+ H Iq1
(

RL Ip1 | fx,y|
)
(T)

≤ 1
|Λ|

m

∑
i=1

|αi | RL Iβi
(

H Iq2
(

RL Ip2 1
))

(ξi)(n1‖x‖+ n2‖y‖+ N2)

+
1
|Λ|

H Iq1
(

RL Ip1 1
)
(T)(m1‖x‖+ m2‖y‖+ N1)

+
|Ω1|
|Λ|

H Iq2
(

RL Ip2 1
)
(T)(n1‖x‖+ n2‖y‖+ N2)

+
|Ω1|
|Λ|

k

∑
j=1

|λj| RL Iδj
(

H Iq1
(

RL Ip1 1
))

(ηj)(m1‖x‖+ m2‖y‖+ N1)

+ H Iq1
(

RL Ip1 1
)
(T)(m1‖x‖+ m2‖y‖+ N1)

=
1
|Λ|

(
p−q2

2

m

∑
i=1

|αi |ξ p2+βi
i

Γ(p2 + βi + 1)

)
(n1‖x‖+ n2‖y‖+ N2)

+
1
|Λ|

(
p−q1

1 Tp1

Γ(p1 + 1)

)
(m1‖x‖+ m2‖y‖+ N1)

+
|Ω1|
|Λ|

(
p−q2

2 Tp2

Γ(p2 + 1)

)
(n1‖x‖+ n2‖y‖+ N2)

+
|Ω1|
|Λ|

⎛⎝p−q1
1

k

∑
j=1

|λj|ηp1+δj
j

Γ(p1 + δj + 1)

⎞⎠(m1‖x‖+ m2‖y‖+ N1)

+

(
p−q1

1 Tp1

Γ(p1 + 1)

)
(m1‖x‖+ m2‖y‖+ N1)

= M1(m1‖x‖+ m2‖y‖+ N1) + M2(n1‖x‖+ n2‖y‖+ N2)

= (M1m1 + M2n1)‖x‖+ (M1m2 + M2n2)‖y‖+ M1 N1 + M2 N2

≤ [M1(m1 + m2) + M2(n1 + n2)]r + M1 N1 + M2 N2.
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Therefore, we deduce that

‖P1(x, y)‖ ≤ [M1(m1 + m2) + M2(n1 + n2)]r + M1N1 + M2N2.

In a similar way of computation, we get

|P2(x, y)(t)| ≤ |Ω2|
|Λ|

m

∑
i=1

|αi| RL Iβi
(

H Iq2
(

RL Ip2 1
))

(ξi)(n1‖x‖+ n2‖y‖+ N2)

+
|Ω2|
|Λ|

H Iq1
(

RL Ip1 1
)
(T)(m1‖x‖+ m2‖y‖+ N1)

+
1
|Λ|

H Iq2
(

RL Ip21
)
(T)(n1‖x‖+ n2‖y‖+ N2)

+
1
|Λ|

k

∑
j=1

|λj| RL Iδj
(

H Iq1
(

RL Ip1 1
))

(ηj)(m1‖x‖+ m2‖y‖+ N1)

+ H Iq2
(

RL Ip21
)
(T)(n1‖x‖+ n2‖y‖+ N2)

=
|Ω2|
|Λ|

(
p−q2

2

m

∑
i=1

|αi|ξ p2+βi
i

Γ(p2 + βi + 1)

)
(n1‖x‖+ n2‖y‖+ N2)

+
|Ω2|
|Λ|

(
p−q1

1 Tp1

Γ(p1 + 1)

)
(m1‖x‖+ m2‖y‖+ N1)

+
1
|Λ|

(
p−q2

2 Tp2

Γ(p2 + 1)

)
(n1‖x‖+ n2‖y‖+ N2)

+
1
|Λ|

⎛⎝p−q1
1

k

∑
j=1

|λj|ηp1+δj
j

Γ(p1 + δj + 1)

⎞⎠(m1‖x‖+ m2‖y‖+ N1)

+

(
p−q2

2 Tp2

Γ(p2 + 1)

)
(n1‖x‖+ n2‖y‖+ N2)

= M3(m1‖x‖+ m2‖y‖+ N1) + M4(n1‖x‖+ n2‖y‖+ N2),

which yields

‖P2(x, y)‖ ≤ [M3(m1 + m2) + M4(n1 + n2)]r + M3N1 + M4N2.

Then, we conclude that

‖P(x, y)‖ ≤ [M1(m1 + m2) + M2(n1 + n2)]r + M1N1 + M2N2

+[M3(m1 + m2) + M4(n1 + n2)]r + M3N1 + M4N2 ≤ r,

which leads to PBr ⊂ Br.
In the next step, we will show that the P is a contraction operator. For any (x1, y1),

(x2, y2) ∈ X × Y, we have
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|P1(x1, y1)(t)−P1(x2, y2)(t)|
≤ 1

|Λ|
m

∑
i=1

|αi| RL Iβi
(

H Iq2
(

RL Ip2 |gx1,y1 − gx2,y2 |
))

(ξi)

+
1
|Λ|

H Iq1
(

RL Ip1 | fx1,y1 − fx2,y2 |
)
(T) +

|Ω1|
|Λ|

H Iq2
(

RL Ip2 |gx1,y1 − gx2,y2 |
)
(T)

+
|Ω1|
|Λ|

k

∑
j=1

|λj| RL Iδj
(

H Iq1
(

RL Ip1 | fx1,y1 − fx2,y2 |
))

(ηj)

+ H Iq1
(

RL Ip1 | fx1,y1 − fx2,y2 |
)
(T)

≤ 1
|Λ|

m

∑
i=1

|αi| RL Iβi
(

H Iq2
(

RL Ip21
))

(ξi)(n1‖x1 − x2‖+ n2‖y1 − y2‖)

+
1
|Λ|

H Iq1
(

RL Ip11
)
(T)(m1‖x1 − x2‖+ m2‖y1 − y2‖)

+
|Ω1|
|Λ|

H Iq2
(

RL Ip21
)
(T)(n1‖x1 − x2‖+ n2‖y1 − y2‖)

+
|Ω1|
|Λ|

k

∑
j=1

|λj| RL Iδj
(

H Iq1
(

RL Ip11
))

(ηj)(m1‖x1 − x2‖+ m2‖y1 − y2‖)

+ H Iq1
(

RL Ip1 1
)
(T)(m1‖x1 − x2‖+ m2‖y1 − y2‖)

= M1(m1‖x1 − x2‖+ m2‖y1 − y2‖) + M2(n1‖x1 − x2‖+ n2‖y1 − y2‖)
= (M1m1 + M2n1)‖x1 − x2‖+ (M1m2 + M2n2)‖y1 − y2‖.

Then, we get the result that

‖P1(x1, y1)−P1(x2, y2)‖ ≤ M1(m1 + m2) + M2(n1 + n2)(‖x1 − x2‖+ ‖y1 − y2‖). (18)

In addition, we have

|P2(x1, y1)(t)−P2(x2, y2)(t)|
≤ |Ω2|

|Λ|
m

∑
i=1

|αi| RL Iβi
(

H Iq2
(

RL Ip21
))

(n1‖x1 − x2‖+ n2‖y1 − y2‖)

+
|Ω2|
|Λ|

H Iq1
(

RL Ip11
)
(T)(m1‖x1 − x2‖+ m2‖y1 − y2‖)

+
1
|Λ|

H Iq2
(

RL Ip21
)
(T)(n1‖x1 − x2‖+ n2‖y1 − y2‖)

+
1
|Λ|

k

∑
j=1

|λj| RL Iδj
(

H Iq1
(

RL Ip11
))

(ηj)(m1‖x1 − x2‖+ m2‖y1 − y2‖)

+ H Iq2
(

RL Ip2 1
)
(T)(n1‖x1 − x2‖+ n2‖y1 − y2‖)

= M3(m1‖x1 − x2‖+ m2‖y1 − y2‖) + M4(n1‖x1 − x2‖+ n2‖y1 − y2‖)
= (M3m1 + M4n1)‖x1 − x2‖+ (M3m2 + M4n2)‖y1 − y2‖,

which yields

‖P2(x1, y1)−P2(x2, y2)‖ ≤ M3(m1 + m2) + M4(n1 + n2)(‖x1 − x2‖+ ‖y1 − y2‖). (19)

The above results in (18) and (19) imply

‖P(x1, y1)−P(x2, y2)‖ ≤ [(M1 + M3)(m1 + m2) + (M2 + M4)(n1 + n2)]

×(‖x1 − x2‖+ ‖y1 − y2‖).
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Since (M1 + M3)(m1 +m2)+ (M2 + M4)(n1 + n2) < 1, then the operator P is a contraction.
From the benefits of Banach’s fixed point theorem, the operator P has a unique fixed point,
which is the unique solution of (4) on [0, T]. The proof is completed.

The Leray–Schauder alternative is applied to our second existence result.

Lemma 6. (Leray–Schauder alternative) [31]. Let Q : U → U be a completely continuous
operator. Let

μ(Q) = {x ∈ U : x = θQ(x) f or some 0 < θ < 1}.

Then, either the set μ(Q) is unbounded, or Q has at least one fixed point.

Theorem 2. Suppose that there exist constants ar, br ≥ 0 for r = 1, 2 and a0, b0 > 0. In addition,
for any u, v ∈ R, we assume that

| f (t, u, v)| ≤ a0 + a1|u|+ a2|v|,
|g(t, u, v)| ≤ b0 + b1|u|+ b2|v|.

If (M1 + M3)a1 + (M2 + M4)b1 < 1 and (M1 + M3)a2 + (M2 + M4)b2 < 1, then (4) has at
least one solution on [0, T].

Proof. The first task of the proof is to show that the operator P : X × Y → X × Y is
completely continuous. The continuity of the functions f , g on [0, T]×R×R can be used
to claim that the operator P is continuous. Now, we let Φ be the bounded subset of X × Y.
Then, there exist positive constants G1 and G2 such that

| f (t, x, y)| ≤ G1, |g(t, x, y)| ≤ G2, ∀(x, y) ∈ Φ.

For any (x, y) ∈ Φ, we have

|P1(x, y)(t)| ≤ 1
|Λ|

m

∑
i=1

|αi| RL Iβi
(

H Iq2
(

RL Ip2 |gx,y|
))

(ξi) +
1
|Λ|

H Iq1
(

RL Ip1 | fx,y|
)
(T)

+
|Ω1|
|Λ|

H Iq2
(

RL Ip2 |gx,y|
)
(T) +

|Ω1|
|Λ|

k

∑
j=1

|λj| RL Iδj
(

H Iq1
(

RL Ip1 | fx,y|
))

(ηj)

+ H Iq1
(

RL Ip1 | fx,y|
)
(T)

≤ 1
|Λ|

(
p−q2

2

m

∑
i=1

|αi|ξ p2+βi
i

Γ(p2 + βi + 1)

)
G2 +

1
|Λ|

(
p−q1

1 Tp1

Γ(p1 + 1)

)
G1

+
|Ω1|
|Λ|

(
p−q2

2 Tp2

Γ(p2 + 1)

)
G2 +

|Ω1|
|Λ|

⎛⎝p−q1
1

k

∑
j=1

|λj|ηp1+δj
j

Γ(p1 + δj + 1)

⎞⎠G1

+

(
p−q1

1 Tp1

Γ(p1 + 1)

)
G1,

which leads to

‖P1(x, y)‖ ≤ G1M1 + G2M2.

Furthermore, we get
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‖P2(x, y)‖ ≤ |Ω2|
|Λ|

m

∑
i=1

|αi| RL Iβi
(

H Iq2
(

RL Ip21
))

G2 +
|Ω2|
|Λ|

H Iq1
(

RL Ip11
)
(T)G1

+
1
|Λ|

H Iq2
(

RL Ip21
)
(T)G2 +

1
|Λ|

k

∑
j=1

|λj| RL Iδj
(

H Iq1
(

RL Ip11
))

(ηj)G1

+ H Iq2
(

RL Ip21
)
(T)G2

= G1M3 + G2M4.

Therefore, from above two results, we deduce that the set PΦ is uniformly bounded. The
next is to prove that the set PΦ is equicontinuous. Choosing two points τ1, τ2 ∈ [0, T] such
that τ1 < τ2, we have, for any (x, y) ∈ Φ, that

|P1(x, y)(τ2)−P1(x, y)(τ1)| =
∣∣∣H Iq1

(
RL Ip1 fx,y

)
(τ2)− H Iq1

(
RL Ip1 fx,y

)
(τ1)

∣∣∣
≤ G1

∣∣∣H Iq1
(

RL Ip1 1
)
(τ2)− H Iq1

(
RL Ip11

)
(τ1)

∣∣∣
= G1

p−q1
1

Γ(p1 + 1)

∣∣∣τp1
2 − τ

p1
1

∣∣∣,
which implies

|P1(x, y)(τ2)−P1(x, y)(τ1)| → 0, as τ1 → τ2.

In addition, we obtain

|P2(x, y)(τ2)−P2(x, y)(τ1)| =
∣∣∣H Iq2

(
RL Ip2 gx,y

)
(τ2)− H Iq2

(
RL Ip2 gx,y

)
(τ1)

∣∣∣
≤ G2

∣∣∣H Iq2
(

RL Ip21
)
(τ2)− H Iq2

(
RL Ip21

)
(τ1)

∣∣∣
= G2

p−q2
2

Γ(p2 + 1)

∣∣∣τp2
2 − τ

p2
1

∣∣∣.
Then,

|P2(x, y)(τ2)−P2(x, y)(τ1)| → 0, as τ1 → τ2.

Thus, the set PΦ is equicontinuous. By taking into account the Arzelá-Ascoli theorem, the
set PΦ is relatively compact. Then, operator P is completely continuous.

Finally, we will claim that the set μ = {(x, y) ∈ X × Y : (x, y) = θP(x, y), 0 ≤ θ ≤ 1}
is bounded. For any (x, y) ∈ μ, then (x, y) = θP(x, y). Hence, for t ∈ [a, b], we have

x(t) = θP1(x, y)(t) and y(t) = θP2(x, y)(t).

Therefore, we obtain

‖x‖ ≤ (a0 + a1‖x‖+ a2‖y‖)M1 + (b0 + b1‖x‖+ b2‖y‖)M2,

‖y‖ ≤ (a0 + a1‖x‖+ a2‖y‖)M3 + (b0 + b1‖x‖+ b2‖y‖)M4,

which lead to

‖x‖+ ‖y‖ ≤ (M1 + M3)a0 + (M2 + M4)b0 + [(M1 + M3)a1 + (M2 + M4)b1]‖x‖
+[(M1 + M3)a2 + (M2 + M4)b2]‖y‖.

Thus, the following inequality holds:

‖(x, y)‖ ≤ (M1 + M3)a0 + (M2 + M4)b0

M∗ , (20)
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where M∗ = min{1 − (M1 + M3)a1 − (M2 + M4)b1, 1 − (M1 + M3)a2 − (M2 + M4)b2}.
Hence, the set μ is a bounded set. Then, by using Lemma 6, the operator P has at least one
fixed point. Therefore, we conclude that problem (4) has at least one solution on [0, T]. The
proof is complete.

If ar, br = 0, r = 1, 2, in Theorem 2, we have following corollary.

Corollary 2. Assume that | f (t, x, y)| ≤ a0 and |g(t, x, y)| ≤ b0, where a0, b0 > 0, ∀(t, x, y) ∈
[0, T]×R2. Then, problem (4) has at least one solution on [0, T].

Next, we present examples to illustrate our results.

Example 1. Consider the following sequential Riemann–Liouville and Hadamard–Caputo frac-
tional differential system with coupled fractional integral boundary conditions of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RLD
1
5

(
HCD

4
5 x
)
(t) = f (t, x(t), y(t)), t ∈ [0, 7/4],

RLD
2
5

(
HCD

3
5 y
)
(t) = g(t, x(t), y(t)), t ∈ [0, 7/4],

HCD
4
5 x(0) = 0, x

(
7
4

)
=

1
3

RL I
3
4 y
(

1
2

)
+

2
7

RL I
5
4 y
(

5
4

)
,

HCD
3
5 y(0) = 0, y

(
7
4

)
=

3
11

RL I
1
2 x
(

1
4

)
+

4
17

RL I
7
8 x
(

3
4

)
+

5
19

RL I
11
8 x
(

3
2

)
.

(21)

Here, p1 = 1/5, p2 = 2/5, q1 = 4/5, q2 = 3/5, T = 7/4, m = 2, α1 = 1/3, α2 = 2/7,
β1 = 3/4, β2 = 5/4, ξ1 = 1/2, ξ2 = 5/4, k = 3, λ1 = 3/11, λ2 = 4/17, λ3 = 5/19,
δ1 = 1/2, δ2 = 7/8, δ3 = 11/8, η1 = 1/4, η2 = 3/4, η3 = 3/2. Form all constants, we
find that Ω1 ≈ 0.5489581728, Ω2 ≈ 0.7217268652, |Λ| ≈ 0.6038021388, M1 ≈ 13.82028787,
M2 ≈ 3.420721316, M3 ≈ 9.093047627, M4 ≈ 7.354860071.

Let the two nonlinear Lipschitzian functions f , g : [0, 7/4]×R2 −→ R be defined by

f (t, x, y) =
1

12(t + 12)

(
x2 + 2|x|
1 + |x|

)
+

e−t sin y
15(3t + 5)

+
1
2

, (22)

g(t, x, y) =
cos πt

6(2t + 9)
tan−1 x +

1
36(4t + 7)

(
3y2 + 4|y|

1 + |y|
)
+

3
4

. (23)

From (22)–(23), we see that

| f (t, x1, y1)− f (t, x2, y2)| ≤ 1
72

|x1 − x2|+ 1
75

|y1 − y2|

and
|g(t, x1, y1)− g(t, x2, y2)| ≤ 1

54
|x1 − x2|+ 1

63
|y1 − y2|,

for all xr, yr ∈ R, r = 1, 2, we obtain (M1 + M3)(1/72 + 1/75) + (M2 + M4)(1/54 +
1/63) ≈ 0.9943406888 < 1. From the benefits of Theorem 1, the problem of a sequential
Riemann–Liouville and Hadamard–Caputo fractional differential system with coupled
fractional integral boundary conditions (21) with f and g given by (22)–(23), respectively,
has a unique solution on [0, 7/4].
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Example 2. Consider the sequential Riemann–Liouville and Hadamard–Caputo fractional differ-
ential system with coupled fractional integral boundary conditions of the Example 1, where the
nonlinear functions f , g : [0, 7/4]×R2 −→ R are defined by

f (t, x, y) =
2e−t

13
+

1
2(5t + 23)

(
x16

1 + |x|15

)
+

cos πt
3(2t + 15)

y sin2 x, (24)

g(t, x, y) =
4t
3
+

xe−y2

2(4t + 11)
+

|y|19 cos4 x
3(3t + 8)(1 + y18)

. (25)

It is easy to obtain that | f (t, x, y)| ≤ (2/13) + (1/46)|x|+ (1/45)|y| and |g(t, x, y)| ≤ (7/3) +
(1/22)|x|+ (1/24)|y|. By setting a0 = 2/13, a1 = 1/46, a2 = 1/45, b0 = 7/3, b1 = 1/22
and b2 = 1/24, we can find that (M1 + M3)a1 + (M2 + M4)b1 ≈ 0.9879151432 < 1 and
(M1 + M3)a2 + (M2 + M4)b2 ≈ 0.9581677912 < 1. The conclusion of Theorem 2 can be implied
that system (21) with f and g given by (24)–(25), respectively, has at least one solution on [0, 7/4].

Example 3. Consider the sequential Riemann–Liouville and Hadamard–Caputo fractional differ-
ential system with coupled fractional integral boundary conditions of the Example 1, where the
nonlinear functions f , g : [0, 7/4]×R2 −→ R are given by

f (t, x, y) =
1
2
(1 + cos2 t) +

|x|e−t

(1 + |x|) +
2
π

tan−1 y, (26)

g(t, x, y) =
1
4
(3 + sin2 πt) + e−x4

+
3y22

1 + y22 . (27)

We can check that | f (t, x, y)| ≤ 3, |g(t, x, y)| ≤ 5 for all x, y ∈ R. Using the Corollary 2, the
problem (21) with f and g given by (26) and (27), respectively, has at least one solution on [0, 7/4].

4. Conclusions

In this paper, we studied a new system of sequential fractional differential equa-
tions which consists of mixed fractional derivatives of Riemann–Liouville and Hadamard–
Caputo types, supplemented with nonlocal coupled fractional integral boundary conditions.
To the best of our knowledge, this is the first system of this type that appeared in the liter-
ature. After proving a basic lemma, helping us to transform the considered system into
a fixed point problem, we use the standard tools from functional analysis to establish
existence and uniqueness results. We use a Banach contraction mapping principle to derive
the uniqueness result and Leray–Schauder alternative to obtain an existence result. The
obtained results are well illustrated by numerical examples. The obtained results enrich
the existing literature on sequential systems of fractional differential equations. Other cases
of fractional systems with other types of mixed fractional derivatives or other types of
boundary conditions can be studied using the methodology of this paper.
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Abstract: It is a familiar fact that interval analysis provides tools to deal with data uncertainty. In
general, interval analysis is typically used to deal with the models whose data are composed of inac-
curacies that may occur from certain kinds of measurements. In interval analysis, both the inclusion
relation (⊆) and pseudo order relation

(≤p
)

are two different concepts. In this article, by using
pseudo order relation, we introduce the new class of nonconvex functions known as LR-p-convex
interval-valued functions (LR-p-convex-IVFs). With the help of this relation, we establish a strong
relationship between LR-p-convex-IVFs and Hermite-Hadamard type inequalities (HH-type inequali-
ties) via Katugampola fractional integral operator. Moreover, we have shown that our results include
a wide class of new and known inequalities for LR-p-convex-IVFs and their variant forms as special
cases. Useful examples that demonstrate the applicability of the theory proposed in this study are
given. The concepts and techniques of this paper may be a starting point for further research in
this area.

Keywords: LR-p-convex interval-valued function; Katugampola fractional integral operator; Hermite-
Hadamard type inequality; Hermite-Hadamard-Fejér inequality

1. Introduction

Hermite [1] and Hadamard [2] derived the familiar inequality known as Hermite-
Hadamard inequality (HH inequality). This inequality establishes a strong relationship
with a convex function such that:

Let f : I → R be a convex function defined on an interval I ⊆ R and u, ν ∈ I such
that ν > u. Then

f
(

u + ν

2

)
≤ 1

ν − u

∫ ν

u
f (x)dx ≤ f (u) + f (ν)

2
(1)

If f is a concave function, then both inequalities are reversed. We note that HH-inequality
may be regarded as a refinement of the concept of convexity and it follows easily from
Jensen’s inequality. In the last few decades, HH-inequality has attracted many authors to de-
vote themselves to this field. Therefore, many authors have proposed different varieties of
convexities to introduce HH-type inequalities such as harmonic convexity [3], quasi convex-
ity [4], Schur convexity [5,6], strong convexity [7,8], h-convexity [9], p-convexity [10], fuzzy
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convexity [11,12], fuzzy pre-invexity [13] and generalized convexity [14], P-convexity [15],
etc. Fejér [16] considered the major generalization of HH-inequality which is known as
HH-Fejér inequality. It can be expressed as follows:

Let f : [u, ν] → R be a convex function on an interval [u, ν] with u ≤ ν , and let
W : [u, ν] ⊂ R → R with W ≥ 0 be an integrable and symmetric function with respect to
u+ν

2 . Then, we have the following inequality:

f
(

u + ν

2

) ∫ ν

u
W(x)dx ≤

∫ ν

u
f (x)W(x)dx ≤ f (u) + f (ν)

2

∫ ν

u
W(x)dx (2)

If f is concave, then the double inequality (2) is reversed. If W(x) = 1, then we
obtain (1) from (2). With the assistance of inequality (2), several classical inequalities
can be obtained through special convex functions. In addition, these inequalities have
a very significant role for convex functions in both pure and applied mathematics. We
urge the readers for a further analysis of the literature on the applications and proper-
ties of generalized convex functions and HH-integral inequalities, see [17–19] and the
references therein.

On the other hand, it is a well-known fact that the interval-valued analysis was
introduced as an attempt to overcome interval uncertainty, which occurs in the computer
or mathematical models of some deterministic real-word phenomena. A classic example of
an interval closure is Archimedes’ technique, which is associated with the computation of
the circumference of a circle. In 1966, Moore [20] gave the concept of interval analysis in
his book and discussed its applications in computational Mathematics.

After that, several authors have developed a strong relationship between inequal-
ities and IVFs by means of inclusion relation via different integral operators, as one
can see by Costa [21], Costa and Roman-Flores [22], Roman-Flores et al. [23,24], and
Chalco-Cano et al. [25,26], but also to more general set-valued maps by Nikodem et al. [27],
and Matkowski and Nikodem [28]. In particular, Zhang et al. [29] derived the new version
of Jensen’s inequalities for set-valued and fuzzy set-valued functions by means of a pseudo
order relation and proved that these Jensen’s inequalities generalized a form of Costa
Jensen’s inequalities [21].

In the last two decades, in the development of pure and applied mathematics, frac-
tional calculus has played a key role. Yet, it attains magnificent deliberation in the ongoing
research work, which is due to its application in various directions such as image process-
ing, signal processing, physics, biology, control theory, computer networking, and fluid
dynamics [30–33].

As a further extension, several authors have introduced the refinements of classi-
cal inequalities through fractional integrals and discussed their applications, such as
Budak et al. [34], who established a strong relationship between fractional interval HH-
inequality and convex-IVF.

Through Katugampola fractional integral [35], Toplu et al. [36] established the follow-
ing HH-inequality for p-convex functions:

Let f beareal-valuedLebesgueintegrable functionand p, α > 0. If f ∈ SX([u, ν], R+, p), then

f

([
up + νp

2

] 1
p
)

≤ pαΓ(α + 1)
2(νp − up)α

[
I p,α

u+ f (ν) + I p,α
ν− f (u)

]
≤ f (u) + f (ν)

2
. (3)

Due to the vast applications of convexity and fractional HH-inequality in mathematical
analysis and optimization, many authors have discussed the applications, refinements,
generalizations, and extensions, see [37–56] and the references therein.

Inspired by the ongoing research work, we generalize the class of p-convex function
known as LR-p-convex-IVF, and establish the relationship between HH-type inequalities
and LR-p-convex-IVF via Katugampola fractional integral.
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2. Preliminaries

Let R be the set of real numbers and RI be the collection of all closed and bounded
intervals of R that is RI =

{[
ξ, ξ

]
: ξ, ξ ∈ R and ξ ≤ ξ

}
. If ξ ≥ 0, then

[
ξ, ξ

]
is called

positive interval. The set of all positive intervals is denoted by R+
I and defined as

R+
I =

{[
ξ, ξ

]
:
[
ξ, ξ

]
∈ RI and ξ ≥ 0

}
.

Let � ∈ R and �ξ be defined as

�ξ =

⎧⎪⎪⎨⎪⎪⎩
[
�ξ, �ξ

]
, � > 0,

{0}, � = 0,[
�ξ, �ξ

]
, � < 0.

(4)

Then, the addition ξ1 + ξ2 and Minkowski difference ξ1 − ξ2 for ξ1, ξ2 ∈ RI are
defined by

ξ1 + ξ2 =
[

ξ 1, ξ1

]
+
[

ξ 2, ξ2

]
=
[

ξ 1 + ξ 2 , ξ1 + ξ2

]
(5)

and
ξ1 − ξ2 =

[
ξ 1, ξ1

]
−
[

ξ 2, ξ2

]
=
[

ξ 1 − ξ2 , ξ1 − ξ 2

]
(6)

respectively.
The inclusion relation “⊇” means that

ξ2 ⊇ ξ1 ⇔
[

ξ 2, ξ2

]
⊇
[

ξ 1, ξ1

]
⇔

[
ξ 1 ≥ ξ 2 , ξ2 ≥ ξ1

]
(7)

Remark 1. ([29]). (i) The relation “≤p” defined on RI by[
ξ, ξ

]
≤p

[
ζ, ζ

]
if and only if ξ ≤ ζ, ξ ≤ ζ, (8)

for all
[
ξ, ξ

]
,
[
ζ, ζ

]
∈ RI is a pseudo order relation. In the interval analysis case, both the pseudo

order relation (≤p) and partial order relation (≤) behave alike, thus the relation
[
ξ, ξ

]
≤p

[
ζ, ζ

]
is coincident to

[
ξ, ξ

]
≤
[
ζ, ζ

]
on RI , for more details see, [21,29].

(ii) It can be easily seen that “≤p” looks similar to “left and right” on the real line R, so we
call “≤p” is “left and right” (or “LR” order, in short).

The concept of Riemann integral for IVF first introduced by Moore [20] is defined
as follows:

Theorem 1. ([20]). Let f : [u, ν] ⊂ R → RI is an IVF such that f (x) =
[

f (x), f (x)
]
. Then, f

is Riemann integrable over [u, ν] if and only if, f and f both are Riemann integrable over [u, ν]
such that

(IR)
∫ ν

u
f (x)dx =

[
(R)

∫ ν

u
f (x)dx, (R)

∫ ν

u
f (x)dx

]
(9)

Now, we discuss the concept of Katugampola fractional integral operator for IVF.
Let q ≥ 1, c ∈ R and xq

c (u, ν) be the set of all complex-valued Lebesgue integrable
IVFs f on [u, ν] for which the norm ‖ f ‖ X q

c is defined by

‖ f ‖ X q
c =

(∫ ν

u
|�c f (x)|q d�

�

) 1
q
< ∞
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For 1 ≤ q < ∞ and
‖ f ‖ X∞

c = ess sup
u≤�≤ν

�c| f (�)|

Katugampola [35] presented a new fractional integral to generalize the Riemann
Liouville and Hadamard fractional integrals under certain conditions.

Let p, α > 0 and f ∈ �L[u,ν] be the collection of all complex-valued Lebesgue inte-
grable IVFs on [u, ν]. Then, the interval left and right Katugampola fractional integrals of
f ∈ �L[u,ν] with order are defined by

I p,α
u+ f (x) =

p1−α

Γ(α)

∫ x

u
(xp − ζ p)α−1ζ p−1 f (ζ)d(ζ) (x > u), (10)

and

I p,α
ν− f (x) =

p1−α

Γ(α)

∫ ν

x
(ζ p − xp)α−1ζ p−1 f (ζ)d(ζ) (x < ν) (11)

respectively, where Γ(x) =
∞∫
0

ζx−1u−ζ d(ζ) is the Euler gamma function.

The concept of p-convex functions were established by Zhang and Wang [10], and a
number of properties of the functions were introduced.

Definition 1. ([54]). Let p ∈ R with p �= 0. Then, the interval I is said to be p-convex if

[�xp + (1 − �)yp]
1
p ∈ I, (12)

for all x, y ∈ I, � ∈ [0, 1], where p = 2n + 1 and n ∈ N or p is an odd number.

Definition 2. ([10]). Let p ∈ R with p �= 0 and I = [u, ν] ⊆ R. Then, the function
f : [u, ν] → R+ is said to be p-convex function if

f
(
[�xp + (1 − �)yp]

1
p

)
≤ � f (x) + (1 − �) f (y), (13)

for all x, y ∈ [u, ν], � ∈ [0, 1]. If the inequality (13) is reversed, then f is called p-concave
function. The set of all p-convex (LR-p-concave, LR-p-affine) functions is denoted by

SX
(
[u, ν], R+, p

) (
SV

(
[u, ν], R+, p

)
,
)
.

Firstly, we introduce the new class of LR-p-convex-IVF.

3. LR-p-Convex Interval-Valued Functions

Now, we introduce LR-p-convex interval-valued functions.

Definition 3. The IVF f : [u, ν] → R+
I is said to be LR-p-convex-IVF if for all x, y ∈ [u, ν] and

� ∈ [0, 1] we have

f
(
[�xp + (1 − �)yp]

1
p

)
≤p � f (x) + (1 − �) f (y). (14)

If inequality (14) is reversed, then f is said to be LR-p-concave on [u, ν]. The set of all
LR-p-convex (LR-p-concave) IVFs is denoted by

LRSX
(
[u, ν], R+

I , p
) (

LRSV
(
[u, ν], R+

I , p
)
,
)
.

Remark 2. If p = 1, then LR-p-convex-IVF reduces to LR-convex-IVF, see [24].
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If p = −1, then we obtain the class of harmonically convex functions, which is also a
new one.

The next Theorem 2 establishes the relationship between Definition 3 and end point
functions of IVFs.

Theorem 2. Let f : [u, ν] → R+
I be an IVF defined by f (x) =

[
f (x), f (x)

]
, for all x ∈ [u, ν].

Then, f ∈ LRSX
(
[u, ν], R+

I , p
)

if and only if, f , f ∈ SX([u, ν], R+, p).

Proof. Assume that f , f ∈ SX([u, ν], R+, p). Then, for all x, y ∈ [u, ν], � ∈ [0, 1],
we have

f
(
[�xp + (1 − �)yp]

1
p

)
≤ � f (x) + (1 − �) f (y)

and

f
(
[�xp + (1 − �)yp]

1
p

)
≤ � f (x) + (1 − �) f (y)

From Definition 3 and order relation ≤p, we have[
f
(
[�xp + (1 − �)yp]

1
p

)
, f

(
[�xp + (1 − �)yp]

1
p

)]
≤p

[
� f (x) + (1 − �) f (y), � f (x) + (1 − �) f (y)

]
= �

[
f (x), f (x)

]
+ (1 − �)

[
f (y), f (y)

]
That is

f
(
[�xp + (1 − �)yp]

1
p

)
≤p � f (x) + (1 − �) f (y),∀ x, y ∈ [u, ν], � ∈ [0, 1].

Hence, f ∈ LRSX
(
[u, ν], R+

I , p
)
.

Conversely, let f ∈ LRSX
(
[u, ν], R+

I , p
)
. Then, for all x, y ∈ [u, ν] and � ∈ [0, 1], we

have

f
(
[�xp + (1 − �)yp]

1
p

)
≤p � f (x) + (1 − �) f (y).

That is[
f
(
[�xp + (1 − �)yp]

1
p

)
, f

(
[�xp + (1 − �)yp]

1
p

)]
≤p �

[
f (x), f (x)

]
+ (1 − �)

[
f (y), f (y)

]
=
[
� f (x) + (1 − �) f (y), � f (x) + (1 − �) f (y)

]
It follows that

f
(
[�xp + (1 − �)yp]

1
p

)
≤ � f (x) + (1 − �) f (y),

and

f
(
[�xp + (1 − �)yp]

1
p

)
≤ � f (x) + (1 − �) f (y),

Hence, the result follows. �

Remark 3. If f (x) = f (x), then p-convex-IVF reduces to the classical p-convex function, see [10].

If f (x) = f (x) with γ = 1 and p = 1, then p-convex-IVF reduces to the classical
convex function.
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Example 1. Let p be an odd number, α = 1
2 , x ∈ [2, 3] and f (x) =

[
−x

p
2 , 2 − x

p
2

]
. Then, we

clearly see that both end point functions f (x) = −x
p
2 and f (x) = 2 − x

p
2 are p-convex functions.

Hence, f ∈ LRSX
(
[u, ν], R+

I , p
)
.

Fractional Hermite-Hadamard Type Inequalities

In this section, we will prove some new Hermite-Hadamard type inequalities for
LR-p-convex-IVFs by means of the pseudo order relation via Katugampola fractional
integral operator.

Theorem 3. Let p, α > 0, u, ν ∈ I such that ν > u, f ∈ �L([u,ν]). If f ∈ LRSX
(
[u, ν], R+

I , p
)
,

then

f

([
up + νp

2

] 1
p
)

≤p
pαΓ(α + 1)

2(νp − up)α

[
I p,α

u+ f (ν) + I p,α
ν− f (u)

]
≤p

f (u) + f (ν)
2

. (15)

If f ∈ LRSV
(
[u, ν], R+

I , p
)(
[u, ν], R+

I , p
)
, then

f

([
up + νp

2

] 1
p
)

≥p
pαΓ(α + 1)

2(νp − up)α

[
I p,α

u+ f (ν) + I p,α
ν− f (u)

]
≥p

f (u) + f (ν)
2

. (16)

Proof. Let f ∈ LRSX
(
[u, ν], R+

I , p
)
. Then, by hypothesis, we have

2 f

([
up + νp

2

] 1
p
)

≤p f
(
[�up + (1 − �)νp]

1
p

)
+ f

(
[(1 − �)up + �νp]

1
p

)
(17)

Multiplying both sides (17) by �α−1 and integrating the obtained result with respect to
� over (0, 1), we have

2
1∫

0
�α−1 f

([
up+νp

2

] 1
p
)

d�

≤p
1∫

0
�α−1

[
f
(
[�up + (1 − �)νp]

1
p

)
+ f

(
[(1 − �)up + �νp]

1
p

)]
d�

(18)

From (18), we get

2
1∫

0
�α−1 f

([
up+νp

2

] 1
p
)

d� = 2

[
1∫

0
�α−1 f

([
up+νp

2

] 1
p
)

d�,
1∫

0
�α−1 f

([
up+νp

2

] 1
p
)

d�

]

= 2
[

1
α f
([

up+νp

2

] 1
p
)

, 1
α f
([

up+νp

2

] 1
p
)]

= 2 1
α f

([
up+νp

2

] 1
p
)

.

(19)

and ∫ 1
0 �α−1

[
f
(
[�up + (1 − �)νp]

1
p

)
+ f

(
[(1 − �)up + �νp]

1
p

)]
d�

=
∫ 1

0 �α−1
[

f
(
[�up + (1 − �)νp]

1
p

)
, f

(
[�up + (1 − �)νp]

1
p

)]
d�

+
1∫

0
�α−1

[
_
f
(
[(1 − �)up + �νp]

1
p

)
,

_
f
(
[(1 − �)up + �νp]

1
p

)]
d�
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Let � ∈ [0, 1], xp = �up + (1 − �)νp and yp = (1 − �)up + �νp. Then, we have

= p
(νp−up)α

[∫ ν
u (νp − yp)α−1 f (y)

y1−p dy,
∫ ν

u (νp − yp)α−1 f (y)
y1−p dy

]
+ p

(νp−up)α

[∫ ν
u (xp − up)α−1 f (x)

x1−p dx,
∫ ν

u (xp − up)α−1 f (x)
x1−p dx

]
,

= p
(νp−up)α

[∫ ν
u (νp − up)α−1 f (y)

y1−p dy,
∫ ν

u (xp − up)α−1 f (x)
x1−p dx

]
,

≤p
pαΓ(α)

(νp−up)α

[
I p,α

u+ f (ν) + I p,α
ν− f (u)

]
.

(20)

Since f ∈ LRSX
(
[u, ν], R+

I , p
)
, we obtain

f
(
[�up + (1 − �)νp]

1
p

)
≤p � f (u) + (1 − �) f (ν) (21)

and

f
(
[�νp + (1 − �)up]

1
p

)
≤p � f (ν) + (1 − �) f (u) (22)

Adding (21) and (22), we get

f
(
[�up + (1 − �)νp]

1
p

)
+ f

(
[�νp + (1 − �)up]

1
p

)
≤p f (u) + f (ν) (23)

Multiplying both sides (23) by �α−1 and integrating both sides of the obtained result
with respect to � over (0, 1), we get

pαΓ(α)
(νp − up)α

[
I p,α

u+ f (ν) + I p,α
ν− f (u)

]
≤p

f (u) + f (ν)
α

(24)

From (20) and (24), (19) becomes

f

([
up + νp

2

] 1
p
)

≤p
pαΓ(α + 1)

2(νp − up)α

[
I p,α

u+ f (ν) + I p,α
ν− f (u)

]
≤p

f (u) + f (ν)
2

,

and the theorem has been proved. �

Remark 4. Let p = 1. Then, Theorem 3 reduces to the result for LR-convex-IVF, which is also a
new one:

f
(

u + ν

2

)
≤p

Γ(α + 1)
2(ν − u)α

[Iα
u+ f (ν) + Iα

ν− f (u)
] ≤p

f (u) + f (ν)
2

.

If α = 1, then Theorem 3 reduces to the result for LR-p-convex-IVF, which is also a
new one:

f

([
up + νp

2

] 1
p
)

≤p
p

νp − up (IR)
∫ ν

u
xp−1 f (x)dx ≤p

f (u) + f (ν)
2

Let p = α = 1. Then, Theorem 3 reduces to the result for LR-p-convex-IVF, which is
also a new one:

f
(

u + ν

2

)
≤p

1
ν − u

(IR)
∫ ν

u
f (x)dx ≤p

f (u) + f (ν)
2

If f = f , then we get inequality (13) from Theorem 3.
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If p = 1 and f = f , then from Theorem 3, we obtain fractional HH-inequality for
convex function, see [41]:

f
(

u + ν

2

)
≤ Γ(α + 1)

2(ν − u)α

[Iα
u+ f (ν) + Iα

ν− f (u)
] ≤ f (u) + f (ν)

2
.

If α = 1, and f = f , then Theorem 3 reduces to the result for LR-p-convex-IVF, see [10]:

f

([
up + νp

2

] 1
p
)

≤ p
νp − up

∫ ν

u
xp−1 f (x)dx ≤ f (u) + f (ν)

2

If α = p = 1 and f = f , then we obtain the classical inequality (1) from Theorem 3.

Example 2. Let p be an odd number, α = 1
2 , x ∈ [2, 3] and f (x) =

[
2 − x

p
2 , 2

(
2 − x

p
2

)]
.

Then, we clearly see that f ∈ �L([u,ν]) and f ∈ LRSX
(
[u, ν], R+

I , p
)
. Since f (x) = 2 − x

p
2

and f (x) = 2
(

2 − x
p
2

)
. Now, we compute the following:

f

([
up + νp

2

] 1
p
)

= f
(

5
2

)
=

4 −√
10

2

_
f

([
up + νp

2

] 1
p
)

=
_
f
(

5
2

)
= 4 −

√
10,

f (u) + f (ν)

2
= 2 −

√
2 −√

3
2

,

f (u) + f (ν)
2

= 4 −
√

2 −
√

3.

Note that
pαΓ(α + 1)

2(νp − up)α

[
I p,α

u+ f (ν) + I p,α
ν− f (u)

]
=

Γ
( 3

2
)

2
1√
π

3∫
2

(3p − xp)
−1
2 xp−1

[
2 − x

p
2 , 2

(
2 − x

p
2

)]
dx

+
Γ( 3

2 )
2

1√
π

∫ 3
2 (xp − 2p)

−1
2 xp−1

[
2 − x

p
2 , 2

(
2 − x

p
2

)]
dx

= 1
4

[
7393
5000 + 9501

5000

]
= 8447

10,000

and

pαΓ(α)
(νp−up)α

[
I p,α

u+ f (ν) + I p,α
ν− f (u)

]
=

Γ( 3
2 )

2
1√
π

3∫
2
(3p − xp)

−1
2 xp−1

(
2 − x

p
2

)
dx

+
Γ( 3

2 )
2

1√
π

3∫
2
(xp − 2p)

−1
2 xp−1

(
2 − x

p
2

)
dx

= 1
4

[
7393

10,000 + 9501
10,000

]
= 8447

20,000 .

Therefore, we have
4 −√

10
2

≤ 8447
20, 000

≤ 2 −
√

2 +
√

3
2

4 −
√

10 ≤ 8447
10, 000

≤ 4 −
√

2 −
√

3

and Theorem 3 is verified.

The next Theorem 4 gives the HH-Fejér type inequality for LR-p-convex-IVFs.
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Theorem 4. Let p, α > 0, u, ν ∈ I with ν > u, f ∈ �L([u,ν]) andW(x) = W
(
[up + νp − xp]

1
p

)
≥ 0 for x ∈ I. If f ∈ LRSX

(
[u, ν], R+

I , p
)
, then we have the HH-Fejér type inequality as follows:

f
([

up+νp

2

] 1
p
)[

I p,α
u+ W(ν) + I p,α

ν− W(u)
]

≤p

[
I p,α

u+ fW(ν) + I p,α
ν− fW(u)

]
≤p

f (u)+ f (ν)
2

[
I p,α

u+ W(ν) + I p,α
ν− W(u)

]
.

(25)

If f ∈ LRSV
(
[u, ν], R+

I , p
)
, then

f

([
up + νp

2

] 1
p
)[

I p,α
u+ W(ν) + I p,α

ν− W(u)
]
≥p

[
I p,α

u+ fW(ν) + I p,α
ν− fW(u)

]
(26)

≥p
f (u) + f (ν)

2

[
I p,α

u+ W(ν) + I p,α
ν− W(u)

]
.

Proof. Since f ∈ LRSX
(
[u, ν], R+

I , p
)
, then for � ∈ [0, 1], we have

f

([
up + νp

2

] 1
p
)

≤p
1
2

(
f
(
[�up + (1 − �)νp]

1
p

)
+ f

(
[(1 − �)up + �νp]

1
p

))
. (27)

Since W
(
[�up + (1 − �)νp]

1
p

)
= W

(
[�νp + (1 − �)up]

1
p

)
, then multiplying both

sides of (27) by �α−1W
(
[(1 − �)up + �νp]

1
p

)
, and integrating it with respect to � over

[0, 1], we have

2
∫ 1

0 �α−1 f
([

up+νp

2

] 1
p
)
W
(
[(1 − �)up + �νp]

1
p

)
d�

≤p
∫ 1

0 �α−1 f
(
[�up + (1 − �)νp]

1
p

)
W
(
[(1 − �)up + �νp]

1
p

)
d�

+
∫ 1

0 �α−1 f
(
[(1 − �)up + �νp]

1
p

)
W
(
[(1 − �)up + �νp]

1
p

)
d�

=
∫ 1

0 �α−1
[

f
(
[�up + (1 − �)νp]

1
p

)
, f
(
[(1 − �)up + �νp]

1
p

)]
×W

(
[(1 − �)up + �νp]

1
p

)
d�+∫ 1

0 �α−1
[

f
(
[(1 − �)up + �νp]

1
p

)
, f
(
[(1 − �)up + �νp]

1
p

)]
×W

(
[(1 − �)up + �νp]

1
p

)
d�.
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Let xp = �νp + (1 − �)up. Then, we have

2p
(νp−up)α f

([
up+νp

2

] 1
p
) ∫ ν

u (xp − up)α−1 W(x)dx

≤p
p

(νp−up)α

∫ ν
u (xp − up)α−1

[
f
(
[up − νp − xp]

1
p

)
, f

(
[up + νp − xp]

1
p

)]
W(x)xp−1dx

+
∫ ν

u (xp − up)α−1
[

f (x), f (x)
]
W(x)xp−1dx,

= p
(νp−up)α

∫ ν
u (xp − up)α−1

[
f (x), f (x)

]
W
(
[up − νp − xp]

1
p

)
xp−1dx

+
ν∫

u
(xp − up)α−1

[
f (x), f (x)

]
W(x)xp−1dx,

= p
(νp−up)α

∫ ν
u (xp − up)α−1

[
f (x), f (x)

]
W(x)xp−1dx

+
ν∫

u
(xp − up)α−1

[
f (x), f (x)

]
W(x)xp−1dx,

= p
(νp−up)α [

∫ ν
u (νp − xp)α−1 f (x)W(x)xp−1dx +

∫ ν
u (xp − up)α−1 f (x)W(x)xp−1dx].

Therefore, we have

pαΓ(α)
(νp − up)α f

([
up + νp

2

] 1
p
)[

I p,α
u+ W(ν) + I p,α

ν− W(u)
]

≤p
pαΓ(α)

(νp − up)α

[
I p,α

u+ fW(ν) + I p,α
ν− fW(u)

]
. (28)

Now taking the multiplication of (23) by �α−1W
(
[�νp + (1 − �)up]

1
p

)
, and integrat-

ing it with respect to � over [0, 1], we get

∫ 1
0 �α−1W

(
[�νp + (1 − �)up]

1
p

)
f
(
[�up + (1 − �)νp]

1
p

)
d�

+
∫ 1

0 �α−1W
(
[�νp + (1 − �)up]

1
p

)
f
(
[�νp + (1 − �)up]

1
p

)
d�

≤p [ f (u) + f (ν)]
∫ 1

0 �α−1W
(
[�νp + (1 − �)up]

1
p

)
d�.

Therefore, we have

pαΓ(α)
(νp − up)α

[
I p,α

u+ fW(ν)+̃I p,α
ν− fW(u)

]
≤p

pαΓ(α)
(νp − up)α .

F (u)+̃F (ν)

2

[
I p,α

u+ W(ν) + I p,α
ν− W(u)

]
. (29)

Combining (20) and (21), we get

f
([

up+νp

2

] 1
p
)[

I p,α
u+ W(ν) + I p,α

ν− W(u)
]

≤p

[
I p,α

u+ fW(ν) + I p,α
ν− fW(u)

]
≤p

f (u)+ f (ν)
2

[
I p,α

u+ W(ν) + I p,α
ν− W(u)

]
and the theorem has been proved. �

Remark 5. Let p = 1. Then, Theorem 4 reduces to the result for LR-convex-IVF, which is also a
new one:

f
(

u + ν

2

)[Iα
u+ W(ν) + Iα

ν− W(u)
] ≤p

[Iα
u+ fW(ν) + Iα

ν− fW(u)
] ≤p

f (u) + f (ν)
2

[Iα
u+ W(ν) + Iα

ν− W(u)
]
.
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Let α = 1. Then, Theorem 4 reduces to the result for LR-p-convex-IVF, which is also a new one:

f

([
up + νp

2

] 1
p
)

≤p
1∫ ν

u xp−1W(x)dx

∫ ν

u
xp−1 f (x)W(x)dx ≤p

f (u) + f (ν)
2

Let p = α = 1. Then, Theorem 4 reduces to the result for LR-convex-IVF, which is also a
new one:

f
(

u + ν

2

)
≤p

1∫ ν
u W(x)dx

∫ ν

u
f (x)W(x)dx ≤p

f (u) + f (ν)
2

If f = f and α = 1, then from Theorem 4, we get Theorem 5 of [39].
If f = f and α = 1, then from Theorem 4, we obtain the classical HH-Fejér type

inequality (2).
If f = f and W(x) = p = α = 1, then from Theorem 4, we get the classical HH-

inequality (1).
If W(x) = 1, then from Theorem 4, we get Theorem 3.

Theorem 5. Let p, α > 0, u, ν ∈ I with ν > u and f , g ∈ �L([u,ν]). If f , g ∈ LRSX
(
[u, ν], R+

I , p
)
,

then we have

pαΓ(α)
2(νp − up)α

[
I p,α

u+ f (ν)g(ν) + I p,α
ν− f (u) f (u)

]
≤p

(
1
2
− α

(α + 1)(α + 2)

)
M(u, ν) +

(
α

(α + 1)(α + 2)

)
N(u, ν). (30)

If f , g ∈ LRSV
(
[u, ν], R+

I , p
)
, then

pαΓ(α)
2(νp − up)α

[
I p,α

u+ f (ν) f (ν) + I p,α
ν− f (u) f (u)

]
≥p

(
1
2
− α

(α + 1)(α + 2)

)
M(u, ν) +

(
α

(α + 1)(α + 2)

)
N(u, ν) (31)

where
M(u, ν) = [ f (u)g(u) + f (ν)g(ν)]

and
N(u, ν) = [ f (u)g(ν) + f (ν)g(u)].

Proof. Since f , g ∈ LRSX
(
[u, ν], R+

I , p
)
, then for � ∈ [0, 1] we have

f
(
[�up + (1 − �)νp]

1
p

)
≤p � f (u) + (1 − �) f (ν),

and

g
(
[�up + (1 − �)νp]

1
p

)
≤p �g(u) + (1 − �)g(ν).

From the definition of p-convex-IVFs, it follows that 0 ≤p f (x) and 0 ≤p g(x), then
we have

f
(
[�up + (1 − �)νp]

1
p

)
g
(
[�up + (1 − �)νp]

1
p

)
≤p �2 f (u)g(u) + (1 − �)2 f (ν)g(ν) + �(1 − �)[ f (ν)g(u) + f (u)g(ν)]

(32)

Similarly, we have

f
(
[(1 − �)up + �νp]

1
p

)
g
(
[(1 − �)up + �νp]

1
p

)
≤p (1 − �)2g(u) f (u) + �2 f (ν)g(ν) + �(1 − �)[g(ν) f (u) + g(u) f (ν)]

(33)
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Adding (32) and (33), we get

f
(
[�up + (1 − �)νp]

1
p

)
g
(
[�up + (1 − �)νp]

1
p

)
+ f

(
[(1 − �)up + �νp]

1
p

)
g
(
[(1 − �)up + �νp]

1
p

)
≤p

[
�2 + (1 − �)2

]
[ f (u)g(u) + f (ν)g(ν)] + 2�(1 − �)[ f (ν)g(u) + f (u)g(ν)]

(34)

Multiplying both sides of (34) by �α−1 and integrating the obtained result with respect
to � over (0,1), we have

∫ 1
0 �α−1 f

(
[�up + (1 − �)νp]

1
p

)
g
(
[�up + (1 − �)νp]

1
p

)
d�

+
1∫

0
�α−1 f

(
[(1 − �)up + �νp]

1
p

)
g
(
[(1 − �)up + �νp]

1
p

)
d�

≤p M(u, ν)
∫ 1

0 �α−1
[
�2 + (1 − �)2

]
+ 2N(u, ν)

∫ 1
0 �α−1�(1 − �) d�.

(35)

Form (35), we have

1∫
0

�α−1 f
(
[�up + (1 − �)νp]

1
p

)
g
(
[�up + (1 − �)νp]

1
p

)
d�

+
∫ 1

0 �α−1 f
(
[(1 − �)up + �νp]

1
p

)
g
(
[(1 − �)up + �νp]

1
p

)
d�

= pαΓ(α)
(νp−up)α

[
I p,α

u+ f (ν)g(ν) + I p,α
ν− f (u)g(u)

]
.

(36)

and

M(u, ν)
1∫

0
�α−1

[
�2 + (1 − �)2

]
+ 2N(u, ν)

1∫
0

�α−1�(1 − �)d�

= 2
α

(
1
2 − α

(α+1)(α+2)

)
M(u, ν) + 2

α

(
α

(α+1)(α+2)

)
N(u, ν).

(37)

From (36) and (37), we have

pαΓ(α)
2(νp − up)α

[
I p,α

u+ f (ν)g(ν) + I p,α
ν− f (u) f (u)

]
≤p

(
1
2
− α

(α + 1)(α + 2)

)
M(u, ν) +

(
α

(α + 1)(α + 2)

)
N(u, ν)

and the required result has been obtained. �

Example 3. Let p be an odd number, [u, ν] = [0, 2], α = 1
2 , f (x) =

[
exp − 4, 2xp

]
, and

g(x) = [xp − 3, 2xp]. Then, f g ∈ �L([u,ν]) and

pαΓ(1+α)
2(νp−up)α

[
I p,α

u+ f (ν)g(ν) + I p,α
ν− f (u)g(u)

]
=

Γ( 3
2 )

2
√

2
1√
π

∫ 2
0 (2

p − xp)
−1
2 xp−1

[(
4 − exp

)
(3 − xp), 4x2p

]
dx +

Γ( 3
2 )

2
√

2
1√
π

∫ 2
0 (xp)

−1
2 xp−1

[(
4 − exp

)
(3 − xp), 4x2p

]
dx

≈ [2.6446, 5.8664].

Note that
M(u, ν) = [ f (u)g(u) + f (ν)g(ν)] =

[
13 − e2, 16

]
N(u, ν) = [ f (u)g(ν) + f (ν)g(u)] =

[
15 − 3e2, 0

]
.
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Therefore, we have(
1
2 − α

(α+1)(α+2)

)
M(u, ν) +

(
α

(α+1)(α+2)

)
N(u, ν) = 11

15
[
13 − e2, 16

]
+ 2

15
[
15 − 3e2, 0

]
≈ [3.1591, 11.7333].

It follows that
[2.6446, 5.8664] ≤p [3.1591, 11.7333],

and Theorem 5 has been illustrated.

Theorem 6. Let p, α > 0, u, ν ∈ I with ν > u and f , g ∈ �L([u,ν]). If f , g ∈ LRSX
(
[u, ν], R+

I , p
)
,

then we have

2 f
([

up+νp

2

] 1
p
)

g
([

up+νp

2

] 1
p
)
≤p

pαΓ(α+1)
2(νp−up)α

[
I p,α

u+ f (ν)g(ν) + I p,α
ν− f (u)g(u)

]
+
(

1
2 − α

(α+1)(α+2)

)
N(u, ν) +

(
α

(α+1)(α+2)

)
M(u, ν).

(38)

If f , g ∈ LRSV
(
[u, ν], R+

I , p
)
, then

f
([

up+νp

2

] 1
p
)

g
([

up+νp

2

] 1
p
)
≥p

pαΓ(α+1)
4(νp−up)α

[
I p,α

u+ f (ν)g(ν) + I p,α
ν− f (u)g(u)

]
+ 1

2

(
1
2 − α

(α+1)(α+2)

)
N(u, ν) + 1

2

(
α

(α+1)(α+2)

)
M(u, ν)

(39)

where M(u, ν) and N(u, ν) are given in Theorem 5.

Proof. Since f , g ∈ LRSX
(
[u, ν], R+

I , p
)
, then by hypothesis, for � ∈ [0, 1] we have

f
([

up+νp

2

] 1
p
)

g
([

up+νp

2

] 1
p
)

= f

[
[(1−�)up+�νp ]

1
p

2 + [�up+(1−�)νp ]
1
p

2

]
× g

[
[(1−�)up+�νp ]

1
p

2 + [�up+(1−�)νp ]
1
p

2

]

≤p
1
4

[
f
(
[�up + (1 − �)νp]

1
p

)
+ f

(
[(1 − �)up + �νp]

1
p

)]
×
[

g
(
[�up + (1 − �)νp]

1
p

)
+ g

(
[(1 − �)up + �νp]

1
p

)]
= 1

4

[
f
(
[�up + (1 − �)νp]

1
p

)
g
(
[�up + (1 − �)νp]

1
p

)]
+

[
f
(
[(1 − �)up + �νp]

1
p

)
g
(
[(1 − �)up + �νp]

1
p

)]
+

[
g
(
[(1 − �)up + �νp]

1
p

)
f
(
[�up + (1 − �)νp]

1
p

)]
+

[
f
(
[(1 − �)up + �νp]

1
p

)
g
(
[�up + (1 − �)νp]

1
p

)]
≤p

1
4

[
f
(
[�up + (1 − �)νp]

1
p

)
+ g

(
[�up + (1 − �)νp]

1
p

)
+ f

(
[(1 − �)up + �νp]

1
p

)
g
(
[(1 − �)up + �νp]

1
p

)]
+ 1

4
(
2�2 − 2� + 1

)
N(u, ν) + 1

2 �(1 − �)M(u, ν).

(40)
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Taking both multiplications of (40) with �α−1 and integrating the result with respect
to over (0,1), we have

1∫
0

�α−1 f
([

up+νp

2

] 1
p
)

g
([

up+νp

2

] 1
p
)

d�

≤p
1
4

[
1∫

0
�α−1 f

(
[�up + (1 − �)νp]

1
p

)
g
(
[�up + (1 − �)νp]

1
p

)
d�

+
1∫

0
�α−1 f

(
[(1 − �)up + �νp]

1
p

)
g
(
[(1 − �)up + �νp]

1
p

)
d�

]
+ 1

4

1∫
0

�α−1(2�2 − 2� + 1
)

N(u, ν) + 1
2

1∫
0

�α−1�(1 − �)M(u, ν)d�.

(41)

From (41), we get
1∫

0
�α−1 f

([
up+νp

2

] 1
p
)

g
([

up+νp

2

] 1
p
)

d�

=

[
1∫

0
�α−1 f

([
up+νp

2

] 1
p
)

g
([

up+νp

2

] 1
p
)

d�,
1∫

0
�α−1 f

([
up+νp

2

] 1
p
)

g
([

up+νp

2

] 1
p
)

d�

]
=

[
1
α f
([

up+νp

2

] 1
p
)

g
([

up+νp

2

] 1
p
)

, 1
α f
([

up+νp

2

] 1
p
)

g
([

up+νp

2

] 1
p
)]

= 1
α f
([

up+νp

2

] 1
p
)

g
([

up+νp

2

] 1
p
)

.

(42)

On the other hand, from (42) and taking �xp = �up + (1 − �)νp and yp = (1 − �)up +
�νp, we get

1
4

[∫ 1
0 �α−1 f

(
[�up + (1 − �)νp]

1
p

)
g
(
[�up + (1 − �)νp]

1
p

)
d�

+
∫ 1

0 �α−1 f
(
[(1 − �)up + �νp]

1
p

)
g
(
[(1 − �)up + �νp]

1
p

)
d�

]
+ 1

4

∫ 1
0 �α−1(2�2 − 2� + 1

)
N(u, ν)d� + 1

2

∫ 1
0 �α−1�(1 − �)M(u, ν)d�

= p
4(νp−up)α

⎡⎣ ∫ ν
u (ν

p − xp)α−1 f (x)g(x)xp−1dx +
∫ ν

u (y
p − up)α−1 f (y)g(y)yp−1dy,∫ 1

0 (ν
p − xp)α−1 f (x)g(x)xp−1dx +

∫ ν
u (y

p − up)α−1 f (y)g(y)yp−1dy

⎤⎦
+ 1

2α

(
1
2 − α

(α+1)(α+2)

)
N(u, ν) + 1

2α

(
α

(α+1)(α+2)

)
M(u, ν)

= pαΓ(α+1)
4(νp−up)α

[
I p,α

u+ f (ν)g(ν) + I p,α
ν− f (u)g(u)

]
+ 1

2α

(
1
2 − α

(α+1)(α+2)

)
N(u, ν) + 1

2α

(
α

(α+1)(α+2)

)
M(u, ν).

(43)

From (42) and (43), (41) becomes

2 f
([

up+νp

2

] 1
p
)

g
([

up+νp

2

] 1
p
)
≤p

pαΓ(α+1)
2(νp−up)α

[
I p,α

u+ f (ν)g(ν) + I p,α
ν− f (u)g(u)

]
+
(

1
2 − α

(α+1)(α+2)

)
N(u, ν) +

(
α

(α+1)(α+2)

)
M(u, ν)

Hence, Theorem 6 has been proved. �

Example 4. Let p be an odd number and α = 1 for � ∈ [0, 1], and the LR-p-convex f : [u, ϑ] =
[2, 3] → R+

I and LR-p-convex IVFs g : [u, ϑ] = [2, 3] → R+
I are respectively defined by f (x) =
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[
2 − x

p
2 , 2

(
2 − x

p
2

)]
and g(x) = [xp, 2xp]. Since f∗(x) = 2 − x

p
2 , f ∗(x) = 2

(
2 − x

p
2

)
and

g∗(x) = xp, g∗(x) = 2xp, then we compute the following

2 f∗
([

up+ϑp

2

] 1
p
)
× g∗

([
up+ϑp

2

] 1
p
)
= 20−5

√
10

2

2 f ∗
([

up+ϑp

2

] 1
p
)
× g∗

([
up+ϑp

2

] 1
p
)
= 40 − 10

√
10,

pαΓ(α+1)
2(νp−up)α

[
I p,α

u+ f∗(ν)× g∗(ν) + I p,α
ν− f∗(u)× g∗(u)

]
= 1

pαΓ(α+1)
2(νp−up)α

[
I p,α

u+ f ∗(ν)× g∗(ν) + I p,α
ν− f ∗(u)× g∗(u)

]
= 4,(

α
(α+1)(α+2)

)
M∗(u, ϑ) = 1

6

(
10 − 2

√
2 − 3

√
3
)

(
α

(α+1)(α+2)

)
M∗(u, ϑ) = 4

6

(
10 − 2

√
2 − 3

√
3
)

,

1
2 − α

(α+1)(α+2)N∗(u, ϑ) = 1
3

(
10 − 3

√
2 − 2

√
3
)

1
2 − α

(α+1)(α+2)N∗(u, ϑ) = 4
3

(
10 − 3

√
2 − 2

√
3
)

,

that means
20−5

√
10

2 ≤
(

1 + 30−8
√

2−7
√

3
6

)
,

40 − 10
√

10 ≤
(

4 + 60−16
√

2−14
√

3
3

)
,

hence, Theorem 6 has been illustrated.

4. Conclusions

In this work, we introduced the new class of LR-p-convex interval-valued functions
and established some new Hermite-Hadamard inequalities by means of the pseudo order
relation via Katugampola fractional integral operator. Useful examples that verify the
applicability of the theory developed in this study are presented. We intend to use various
types of LR-convex interval-valued functions to construct interval inequalities of interval-
valued functions. In the future, we will try to explore this concept for fuzzy-interval-valued
functions by means of the fuzzy pseudo order relation.
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Planck operator and with the time-fractional-damped term is studied. The concept of the Green
function is implemented to drive the analytic solution of the three-term time-fractional equation. The
explicit expressions for the Green function G3(t) of the three-term time-fractional wave equation
with constant coefficients is also studied for two physical and biological models. The explicit
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exponential functions are compared numerically. The Grünwald–Letnikov scheme is used to derive
the approximate difference schemes of the Caputo time-fractional operator and the Feller–Riesz
space-fractional operator. The explicit difference scheme is numerically studied, and the simulations
of the approximate solutions are plotted for different values of the fractional orders.
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1. Introduction and Important Definitions

The classical intermediate diffusion wave equation, the multiterm wave equation, can
be written as:

∂2 u(x, t)
∂t2 + k

∂u(x, t)
∂t

= LFP (u(x, t)) , −∞ < x < ∞ , t ≥ 0 , (1)

where the right-hand side of this equation is the known Fokker–Planck operator; see [1].
The Fokker–Planck operator is always associated with the stochastic processes and is
defined as:

LFP (u(x, t)) =
∂2 (a(x) u(x, t))

∂x2 − ∂

∂x
(b(x) u(x, t)) , (2)

where −∞ < x < ∞ , t ≥ 0 . The Fokker–Planck operator LFP can be derived following the
stochastic differential equations because it describes how a collection of initial data evolves
in time. This wave equation is governed by the initial conditions:

u(x, 0) = f (x0), ut(x, 0) = 0 , ut(0, t) = 0 , (3)

and the boundary conditions:

u(−∞, t) = u(∞, t) = 0 . (4)
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Equation (1) mathematically models sound propagation and many physical, chemical,
biological, medical, and other real-life phenomena. The description of u(x, t) depends on
the nature of the model. Generally, a(x) and b(x) are predefined functions according to
the model. b(x) represents the drift (the external force) acting on the wave. The constant k
with 0 < k < 1 is the friction coefficient of theresistance source. The telegraph equation or
the cable equation is a special case of Equation (1); see for example [2–5].

Experimental evidence shows that over diagnostic ultrasound frequencies, the acoustic
absorption in biological tissue and the wave propagation in many other natural phenomena
exhibit a power law with a noninteger frequency, i.e., t−β, with 1 < β < 2; see [6–8]. Here,
β = 1 represents the classical diffusion equation, 0 < β < 1 represents the time-fractional
diffusion equation, 1 < β < 2 represents the intermediate diffusion wave equation,
and β = 2 represents the classical wave equation. To mathematically model such real
phenomena, the extension to the time-fractional derivatives is required.

Experimentally, many physical and chemical phenomena exhibit very sharp random
walks (random jumps), and their continuous random walk is not a Brownian motion.
Solutes that move through fractal media commonly exhibit large deviations from the
stochastic processes of Brownian motion and do not require a finite velocity. The extension
to Lévy-stable motion is a straightforward generalization due to the common properties
of Lévy-stable motion and Brownian motion, but the Lévy flights differ from the regular
Brownian motion due to the occurrence of extremely long jumps, whose length is dis-
tributed according to the Lévy long tail ∼ |x|−1−γ, 0 < γ < 2. Therefore, in this paper, we
are interested in studying the spacetime-fractional intermediate diffusion wave equation
with the time-fractional-damped term, which reads:

D
t ∗

β u(x, t) + k D
t ∗

α u(x, t) = Lγ
FP (u(x, t)) , (5)

where 0 < β < 2, 0 < α ≤ 1, and 0 < γ < 2. The space-fractional Fokker–Planck operator
is defined as:

Lγ
FP = D

0 x
γ (a(x) u(x, t)) − ∂

∂x
(b(x) u(x, t)) . (6)

Here, D
0 x

γ is the Riesz–Feller potential operator [9]. This fractional operator allows us

to simulate the discrete solution along all the x-dimension. The Fourier transformation of
the Riesz–Feller operator is −|κ|γ f̂ (κ) for a sufficiently well-behaved function f (x). D

t ∗
β

is the Caputo time-fractional operator, D
t ∗

β, with 0 < β < 2. The Caputo time-fractional

operator (see [10]) is defined as:

D∗
β f (t) =

⎧⎪⎨⎪⎩
1

Γ(m−β)
{

t∫
0

f (m)(τ)

(t−τ)β+1−m dτ for m − 1 < β < m ,

dm

dtm f (t) for β = m ,
(7)

where:

Kβ(t − τ) =
(t − τ)β+1−m

Γ(m − β)
,

is its kernel and is called the memory function. This kernel reflects the memory effects
on many physical, biological, and other processes. The Caputo fractional derivative Dβ

∗ is
used as a time-fractional operator because of its image in the Laplace transform domain,
which is:

L{Dβ

∗ f (t); s} = sβ f̃ (s)− sβ−1 f (0)− ḟ (0)sβ−2 − · · · − f (m−1)(0)sβ−m , s > 0 .

As (̇0) = 0, · · · , f (m−1)(0) = 0, then:

L{Dβ

∗ f (t); s} = sβ f̃ (s)− sβ−1 f (0) , s > 0 . (8)
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In other words, the Caputo time-fractional operator is dependent on the initial condi-
tion, and this is the main reason for using it as a time-fractional derivative operator.

Some attempts have been made to discuss such problems. Luchko [11] attempted
to derive the fundamental solution of the multidimensional fractional wave equation
in order to discuss its solution for some special cases in the form of convergent series.
Gorenflo [12] discussed the stochastic processes related to the fractional wave equations
and their distributed order. Anh and Leonenko [13] presented the Green functions and
the spectral representations of the mean-squared solutions of the fractional diffusion–
wave equations with random initial conditions. Chen et al. [14] discussed the analytical
solution of the time-fractional telegraph equation with three kinds of nonhomogeneous
boundary conditions, namely the Dirichlet, Neumann, and Robin boundary conditions.
Wyss [15] used the Mellin transform theory to derive a closed-form solution of the fractional
diffusion equation in terms of Fox’s H-function. Abdel-Rehim et al. [16–18] studied the
explicit approximate solutions of the multiterm time-fractional wave equation and its
stationary solutions of different values of the fractional orders and their time evolutions.
The Grünwald–Letnikov scheme and the common explicit finite difference rules were
implemented to derive the approximate solutions that were proven to be convergent.
Sarvestani et al. [19] drove a wavelet approach for the multiterm time-fractional diffusion–
wave equation. Mainardi et al. investigated some numerical results to this equation in his
book [20].

The aim of the paper is to derive the analytical solution of the classical (1) and the
spacetime-fractional wave with time-fractional attenuation Equation (5). The analytic
solutions are given by using the separation of variables and by implementing the concepts
of the Green function of the three-term equations [9]. The resulting solutions are written in
the form of some known special functions. The solutions are proven to be asymptotically
convergent solutions. Two physical and biological applications to the time-fractional wave
equation associated with the Fokker–Planck operator are also discussed. The stationary so-
lutions are also given and compared. The approximate solutions of the two applications are
obtained by implementing the common finite difference rule and the Grünwald–Letnikov
scheme.

The organization of this paper is as follows: Section 1 is devoted to the Introduction.
Section 2 introduces the two physical and biological applications. Section 3 derives the
analytical solution of the classical models. Section 4 is devoted to the solution of the
time-fractional models. Section 5 introduces the approximate solutions of the two studied
models. Finally, Section 6 is devoted to simulating the approximate solutions and numeri-
cally discussing and comparing the asymptotic behaviors of the obtained special functions.

2. Applications

First, we begin by mathematically formulating the potential and current in an electric
transmission line (the cable equation). Consider a transmission line being a coaxial cable
containing the resistance R, inductance L, capacitance C, and leakage conductance G.
Introduce the function I(x, t) to represent the current and V(x, t) for the potential. These
variables satisfy the following coupled equations:

L
∂I
∂t

+ R I = −∂V
∂x

, (9)

and:
C

∂V
∂t

+ G V = − ∂I
∂x

. (10)

Differentiate (9) with respect to t and differentiate (10) with respect to x in order to
eliminate I and V. After some minor algebra, one can prove that both I and V satisfy the
same following equation:

∂2 I
∂t2 + (p + q)

∂I
∂t

= c2 ∂2 I
∂x2 − pqI , (11)
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where kc2 = R
C + G

C = p + q and bc2 = pq. Replacing I(x, t) by u(x, t), this equation is
rewritten as:

∂2u(x, t)
∂t2 + kc2 ∂u(x, t)

∂t
= c2 ∂2u(x, t)

∂x2 + bc2u(x, t) . (12)

The function V(x, t) satisfies the same Equations (11) and (12). This equation is called
the telegraph equation (cable equation) and mathematically models the electrical signal
traveling along the transmission cable in which the term k ∂u(x,t)

∂t is called the internal
resistance of the wires comprising the transmission lines. For further applications in
physics and to real phenomena, see [4,5,13]. For this model, the Fokker–Planck operator
is LFP = c2(Dxx + b).

The Continuous-Time Random Walk of a Population

This model describes a population of individuals moving either to the left or right
along the x-axis. The probability density function of moving right and left is w(x, t) and
v(x, t), respectively. The total population moving has density u(x, t) = w(x, t) + v(x, t). At
any time instant τ, each instant τ, any individual can move to the left with probability δ or
to the right with probability 1 − kτ. At the next time step, one has:

∂w(x, t)
∂t

= −ρ
∂w(x, t)

∂x
+ k(v(x, t)− w(x, t)) , (13)

and:
∂v(x, t)

∂t
= ρ

∂v(x, t)
∂x

− k(v(x, t)− w(x, t)) . (14)

Adding (13) and (14) and differentiating with respect to t, then subtracting (13)
from (14) and differentiating with respect to x, we obtain:

∂2(v + w)

∂t2 = ρ
∂2(v − w)

∂x∂t
, (15)

and:
∂2(v − w)

∂x∂t
= ρ

∂2(v + w)

∂x2 − 2k
∂(v − w)

∂x
. (16)

Subtracting (16) from (15), we obtain:

∂2u(x, t)
∂t2 + 2k

∂u(x, t)
∂t

= ρ2 ∂2u(x, t)
∂x2 . (17)

This means the Fokker–Planck operator in this case is LFP = ρ2Dxx. Now, take the
direction of the movement of the individuals into consideration. In other words, the
individuals move to the right with probability λ1 and move to left with probability λ2.
Make the suitable changes to the system of Equations (13) and (14) and follow the same
mathematical manipulation to obtain:

∂2u(x, t)
∂t2 + (λ1 + λ2)

∂u(x, t)
∂t

= ρ2 ∂2u(x, t)
∂x2 + ρ(λ1 − λ2)

∂u(x, t)
∂x

. (18)

Then, the Fokker–Planck operator is LFP = ρ2Dxx + ρ(λ1 − λ2)Dx. If λ1 > λ2, the
individual moves right, and if λ1 < λ2, the individual moves left. This is known as the
simple random walk model. Now, suppose the individual is sitting at the position xj at
the time instant tn and makes movements either to xj, xj − 1, or xj + 1 with probabilities
λ1, λ2, λ3 at the next time instant tn+1 with λ1 + λ2 + λ3 = 1. Then, we obtain a similar
wave equation, but with the Fokker–Planck operator defined as LFPu(x, t) = aDxxu(x, t) +
bDx(xu(x, t)). For more information about the random walk in biology, see [21].

The movement of the potential and electricity in the transmission line and the random
movement of the population are stochastic processes. Therefore, mathematically modeling
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them in spacetime-fractional differential equations is a natural generalization to their clas-
sical partial differential equations. The numerical results show the effects of the fractional
orders on the time evolution of approximate solutions.

3. The Analytical Solution of the Classical Models

To solve the above-defined partial differential equations, we use the separation of
variables method:

u(x, t) = X(x) T(t) , (19)

and the initial conditions (3) are rewritten as:

T(0) = 1 , Ṫ(0) = 0 , X(0) = δ(x) , X̀(0) = 0 , (20)

while the boundary conditions (4) are rewritten as:

X(−∞) = X(∞) = 0 . (21)

Applying Equation (19) to Equation (12) (see [14]), we obtain two ordinary differen-
tial equations:

c2 d2

X
dx2 + mx + bc2 = 0 , (22)

and:
d2T
dt2 + k

dT
dt

+ m T = 0 , (23)

where for the stability, the friction constant k is chosen to satisfy 0 < k ≤ 1. Equation (23)
models the harmonic oscillator in a resisting medium.

The solution of Equation (22) is:

X = c1 + c2 cos
√

m
c2 x + c3 sin

√
m
c2 x ,

and by applying the initial conditions (20), we obtain:

X = − bc2

m
+ cos

√
m
c2 x (24)

Applying the separation of variables on Equation (17), we obtain:

d2X
dx2 =

m
ρ2 X , (25)

and the same Equation (23). By applying the initial conditions (20), Equation (25) has
the solution X(x) = cos

√
m
ρ2 x. Now, the analytic solution of Equation (18) is given by

applying the separation, to obtain two ordinary differential equations:

ρ2 d2X
dx2 + (λ1 − λ2)ρ

dX
dx

+ mX = 0 , (26)

and the same Equation (23). Let λ1−λ2
ρ = B, then by applying the initial conditions (20),

Equation (26) has the solution X(x) = e
−B
2 x cos

√
B2−4mρ2

2 x. Now, we try to study the ana-
lytic solution of the general genetic random walk defined in Section 2, namely Equation (18).
This classical partial differential equation is obtained from the general Fokker–Planck
Equation (2) by choosing a(x) = a and b(x) = −bx to represent the diffusion constant and
the attractive linear force, respectively. Equation (1) is rewritten as:
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∂2u(x, t)
∂t2 + k

∂u(x, t)
∂t

= a
∂2u(x, t)

∂x2 + b
∂

∂x
(x u(x, t)) , (27)

Substituting Equation (19) into Equation (27), we obtain the following two ordinary
differential equations, defined as:

a
d2X
dx2 + bx

dX
dx

+ (b + m) X(x) = 0 , (28)

The solution of Equation (28) is the Weber function Dm(x) of order m (see [22–25]),

Xm(x) = Dm(

√
b
a

x) e−
bx2
4a , (29)

where the Weber function of variables (n, y) is the solution of the ordinary differential
equation d2Y

dy2 + y dY
dy + (1 + n)Y(y) = 0 and is defined as Dn = (−1)n e−y2/4 dn

dyn ey2/2;
see [23]. The constant Am is calculated from:

Am =
1

m!
√

2π

∞∫
−∞

u(x, 0)Dm(x) e
bx2
4a dx ,

taking into consideration the boundary condition (4). Equation (23) is an ordinary differen-
tial equation with constant coefficients having the solution:

T(t) = e−
kt
2
[
c1 sin(

√
k2 − 4m

4
)t + c2 cos(

√
k2 − 4m

4
)t
]

where 4m > k2 and the constants c1 and c2 are obtained from the initial conditions (20) as:

T(t) = e−
kt
2 cos(

√
k2 − 4m

4
)t . (30)

The solution of Equation (27) is:

u(x, t) = e−
kt
2

∞

∑
m=0

Am Dm(

√
b
a

x) e−
bx2
4a cos(

√
k2 − 4m

4
)t , (31)

where Am is a constant to be defined by using the initial conditions (3) as:

Am =
1

m!
√

2π

∞∫
−∞

f (x0)Dm(x)e
bx2
4a dx . (32)

Equation (23) could be solved by the three-term Green function method defined
by Podlubny [9]. First, apply the Laplace transformation to both sides of Equation (23)
to obtain:

(s2 + sk + m) T̃(s) = 1 + k . (33)

Let 1 + k = V0 > 1 represent the initial velocity of the wave propagation. Then,
rewrite (33) as:

T̃(s) =
s−2

1 + k
s

V0

1 − −ms−2

(1+k/s)

. (34)

Rewrite it again as an infinite series form (see [9]):

T̃(s) = V0

∞

∑
n=0

(−1)n mn s(−2n−2)

(1 + k
s )

n+1
, (35)
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and we need to use the Laplace inverse of two convoluted functions f (t) and g(t) defined as:

f (t) ∗ g(t) =
∫ t

0
f (t − τ)g(τ)dτ = L−1{ ˜f (s) ∗ ˜g(s); t} , (36)

then term-by-term inversion gives:

T(t) = V0

∞

∑
n=0

(−1)n

n!
mnt2(n+1)−1 E(n)

1,2+n(−kt) , (37)

where the two-parameter Mittag–Leffler function Eα,β(z) (see [26]) is defined as:

Eα,β(z) =
∞

∑
n=0

zn

Γ[αn + β]
(38)

and the kth derivative of the two-parameter Mittag–Leffler function is defined as:

E(k)
α,β(z) =

∞

∑
j=0

(j + k)!zj

j! Γ[αj + αk + β]
. (39)

Use the special function 1F1, which is the Hypergeometric1F1[a, b, c] function called
the Kummer confluent hypergeometric function 1F1(a; b; c). It is related to the convergent
function e−z by the relation 1F1(1, 1,−z) = e−z; for more details about the relation between
the Kummer confluent hypergeometric function and the Mittag–Leffler function, see [27,28].
Equation (37) can be written as:

T(t) = V0

∞

∑
n=0

(−1)n t1+2n 1F1[1 + n, 2 + 2n,−t]
Γ[2 + 2n]

. (40)

Finally, the analytic convergent solution in terms of the special functions, 1F1 and
Dm(x), reads:

u(x, t) = V0

∞

∑
m=0

∞

∑
n=0

Am (−1)n t1+2n 1F1[1 + n, 2 + 2n,−t]
Γ[2 + 2n]

Dm(

√
b
a

x) e−
bx2
4a , (41)

In what follows, we derive the stationary solution of the discussed model (1), i.e., the
solution as t → ∞. This solution is derived from Equation (1) by omitting the dependence
on the time variable t as:

a
d2u(x)

dx2 +
d

dx
(bx u(x, t)) = 0 . (42)

The solution of this equation is u(x) = c e− bx2
2a . In the section of the numerical results,

we give a numerical comparison of the above-defined special functions.

4. The Analytical Solution of the Time–Fractional Forced-Wave Equation with the
Fractional Damping Term

For γ = 2, 0 < β < 2, and 0 < α < 1, Equation (5) can be written as:

D
t ∗

β u(x, t) + k D
t ∗

α u(x, t) = LFPu(x, t) , (43)

where LFP is the general Fokker–Planck Equation (2). To find the analytic solution of
Equation (43), apply the separation of variables method. To obtain the same ordinary
differential Equation (28), for the independent variable x, and the following ordinary
differential equation for t:

D
t ∗

βT + k D
t ∗

αT + mT = 0 . (44)
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This equation represents the time-fractional harmonic oscillator in a fractional resisting
medium. Now, apply the Laplace transformation to both sides taking into consideration its
dependence on the initial condition (8) (see [3,9]) to obtain:

(sβ + ksα + m)T̃(s) = sβ−1 + ksα−1 . (45)

Again, rewrite Equation (45) as:

T̃(s) =
sβ−1 + ksα−1

(sβ + ksα + m)
= G̃3(s) P̃(s) , (46)

where G̃3(s) is the Laplace transform of the Green function of the three-term time-fractional
Equation (44), defined as:

G̃3(s) =
1

sβ + ksα + m
, (47)

and:
P̃(s) = sβ−1 + ksα−1 . (48)

Now, rearrange the terms of G̃3(s) as:

G̃3(s) =
s−β

1 + k
sβ−α

1

1 − −ms−β

1+ k
sβ−α

, (49)

and it can be rewritten as the sum of infinite series:

G̃3(s) =
s−β

1 − k
sβ−α

∞

∑
n=0

(−1)n( ms−β

1 + k
sβ−α

)n . (50)

The term-by-term inversion is based on the general expansion theorem for the Laplace
transform (see [9,29]); we obtain:

G3(t) =
∞

∑
n=0

(−1)n mn

n!
tβ(n+1)−1 E(n)

β−α,β+αn(−ktβ−α) , (51)

where E(n)
α,β is the nth derivative of Eα,β. The inverse Laplace transform of P̃(s) gives:

P(t) =
t−β

Γ[1 − β]
+

kt−α

Γ[1 − α]
. (52)

Now, to find the solution T(t) of Equation (44), the convolution property (36) is used
to obtain:

T(t) =
1

Γ[1 − β]

∫ t

0
(t − t′)−βG3(t′)dt′ + k

Γ[1 − α]

∫ t

0
(t − t′)−αG3(t′)dt′ . (53)

T(t) is obtained by using the convolution property (36) as:

T(t) =
∞

∑
n=0

∞

∑
j=0

(−1)n+jmnkj (j + n)!
n!j!Γ[β(n + j + 1)− jα]∫ t

0

( (t − t′)−β

Γ(1 − β)
+

k(t − t′)−α

Γ(1 − α)

)
t′β(j+n+1)−1−α j dt′ . (54)
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For the purpose of computing these integrals by Mathematica, it is better to rewrite
Equation (54) as:

T(t) =
∞

∑
n=0

∞

∑
j=0

(−1)n+jmnkj (j + n)!
n!j!Γ[β(n + j + 1)− jα]

( ∫ t

0

(t − t′)−β

Γ(1 − β)
t′β(j+n+1)−1−α j dt′ + k(t − t′)−α

Γ(1 − α)
t′β(j+n+1)−1−α j dt′

)
, (55)

These integrations are valid under the conditions:

Re[β] < 1, Re[α] < 1, t > 0, Re[−jα + β(1 + j + n)] > 0 .

Since 1 < β < 2, then the first integral is omitted because it is divergent. The final
computed form of T(t) is written as:

T(t) =
∞

∑
n=0

∞

∑
j=0

(−1)n+jmnkj (j + n)!
n!j!

( t−(1+j)α+(1+j+n)β

Γ[1 − (1 + j)α + (1 + j + n)β]

)
. (56)

Now, substitute T(t) defined in Equation (56) in Equation (53) to find the general
solution T(t) as:

T(t) =
∞

∑
n=0

∞

∑
j=0

(−1)n+jmnkj (j + n)!
n!j!

t(β−α)+j(β−α)+nβ

( 1
Γ[1 + (β − α) + j(β − α) + nβ]

)
. (57)

Now, by using the definition of the kth derivative of the Mittag–Leffler, E(k)
α,β(z), defined

in (39), we obtain the following elegant form of T as:

T(t) =
∞

∑
n=0

(−1)n mn

n!
tnβ+β−α E(n)

(1+β−α),(1+nβ)
(−kt(β−α)) . (58)

Finally, to find the general solution (44), substitute from Equation (58) Equation (29),
and after some minor mathematical manipulations, we obtain:

u(x, t) =
∞

∑
m=0

∞

∑
n=0

(−1)n AmDm(x)
mn

n!
tnβ+β−α E(n)

(1+β−α),(1+nβ)
(−kt(β−α)) , (59)

where the constant Am is obtained by applying Equation (32). This is the general solution
of the time-fractional forced wave equation with the fractional damping term. Finally, the
stationary solution of Equation (43) is obtained by takingthe dependence on the time of
Equation (43) to obtain the same Equation (42) and, consequently, the same solution. In
other words, the classical and time-fractional multiterm wave equations have the same
stationarity.

Another equation that has great interest among mathematicians and physicists is
the time-fractional diffusion Fokker–Planck equation. The Fokker–Planck equation was
numerically and analytically studied by Abdel-Rehim [25]. The studied version of the
time-fractional Fokker–Planck equation can be obtained from Equation (43) by putting
0 < α = β < 1 and φ(x, t) = 0 to obtain:

D
t ∗

β u(x, t) =
a

1 + k
∂2u(x, t)

∂x2 +
b

1 + k
∂

∂x
(x u(x, t)) , (60)

where a
1+k ≥ 0 is the constant of diffusion and b

1+k ≥ 0 is the drift constant. The simula-
tion of Equation (60) has the same stationary solution as the same studied models here.
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Equation (5) has only a solution in the Laplace–Fourier domain, and it is hard to invert it to
a unique solution. Therefore, it is better to seek convergent approximate solutions instead
of the analytic solutions that are given in terms of special functions.

5. Approximate Solutions

In this section, we implement the common finite difference tools besides the Grünwald–
Letnikov scheme to find the approximate solutions of the spacetime-fractional differential
Equation (5). We begin with the discrete scheme of the Riesz–Feller operator. The Riesz
space-fractional operator D

0 x
γ is a pseudo-differential and a symmetric differential operator

for the fractional order 0 < γ ≤ 2 and is defined as:

Iγ
0 Φ(x) =

1
2Γ(γ)cos(γπ/2)

∞∫
−∞

|x − ξ|γ−1Φ(ξ)dξ . (61)

This definition was extended by Feller [30] and Samko [31] to introduce the inverse
Riesz potential operator in the whole range 0 < α ≤ 2 as:

D
0 x

γ =
−1

2cos(γπ/2)
[I−γ
+ + I−γ

− ] , 0 < γ ≤ 2 , γ �= 1 , (62)

where I−α± are the inverse of the operators Iα±, and its Fourier transform reads:

D̂
0 x

γΦ(x) = −|κ|γ ˆΦ(κ) .

Since the Laplace operator Δ in one dimension, namely Δ = ∂2u(x,t)
∂x2 , is a symmetric

differential operator and its Fourier image is Δ̂2Φ(x) = −|κ|2 ˆΦ(κ), then we can simply
write D

0 x
γ = −(−Δ)γ/2; see for more details [30–33]. That is the reason for calling D

0 x
γ the

Riesz–Feller space-fractional operator.
Now, to derive the approximate solutions of the discussed models, one has to define

the grid point (xj, tn):
xj = jh, h > 0, j ∈ N , (63)

where j ∈ [−R, R], h = 1
2R+1 , and R ∈ N, while:

tn = nτ, τ > 0, n ∈ N0 . (64)

Introduce the clump y(n) as an approximation to u(x, t) as:

y(n) = {y(n)−R, y(n)−R+1, · · · , y(n)0 , · · · , y(n)R−1, y(n)R }T . (65)

Taking into consideration Equation (62), we have to distinguish the discrete scheme of
D

0 x
γ according to the values of γ.

I
h ±

−αyj(tn) =
1

hγ

∞

∑
i=0

(−1)i
(

γ

i

)
yj∓i , 0 < γ < 1 , (66)

while:

I
h ±

−αyj(tn) =
1

hγ

∞

∑
i=0

(−1)i
(

γ

i

)
yj±1∓i , 1 < γ ≤ 2 (67)

The case as γ = 1 is related to the Cauchy distribution, and one cannot use the Grünwald–
Letnikov scheme for discretizing D

0
1 because the dominator c± → 0 in Equation (62) is

undefined for γ = 1. Instead of the Grünwald–Letnikov scheme, we use the discretization
introduced in [34] and successfully numerically applied by Abdel-Rehim [18]. In these
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references, the discretization of D
0

1 was deduced from the Cauchy density p1(x, 0) = 1
π

1
1+x2 ,

and the discrete scheme reads:

I
h ±

−1yj(tn) =
−2
πh

yj(tn) +
1
h

∞

∑
i=1

(−1)i 1
πhi(i + 1)

yj∓i(tn) , (68)

where:
∞

∑
i=0

1
i(i + 1)

< ∞ . (69)

The Grünwald–Letnikov scheme of the Caputo time-fractional operator of order
0 < β ≤ 2, defined in Equation (7), reads:

D
t ∗

β u(x, t) =
n+1

∑
s=0

(−1)s
(

β

s

) y(n+1−s)
j − y(0)j

τβ
, 0 < β ≤ 2 . (70)

Combining the above schemes, one obtains the discrete scheme of (5) for a(x) = D
and b(x) = −bx for 1 < γ < 2 as:

τ−β(y(n+1)
j − βy(n)j −

n+1

∑
m=2

(−1)m
(

β

m

)
y(n+1−m)

j −
n+1

∑
m=0

(−1)m
(

β

m

)
y(0)j )

+ kτ−α(y(n+1)
j − αy(n)j −

n+1

∑
m=2

(−1)m
(

α

m

)
y(n+1−m)

j −
n+1

∑
m=0

(−1)m
(

α

m

)
y(0)j )

=
−h−γ

2cos γπ
2

∑
i∈Z

(−1)i
(

γ

i

)
{yj+1−i(tn) + yj−1+i(tn)}+ b

2

(
(j + 1)y(n)j+1 − (j − 1)y(n)j−1

)
.

(71)

Let 2
b = r and solve for yn+1 to obtain:

y(n+1) =

−1
(τ−β + kτ−α)

h−γ

2cos γπ
2

∑
i∈Z

(−1)i
(

γ

i

)
{y(n)j+1−i + y(n)j−1+i}

+
1

(τ−β + kτ−α)

(
(βτ−β + kατ−α)y(n)j +

j + 1
r

y(n)j+1 −
j − 1

r
y(n)j−1

)
+

1
(τ−β + kτ−α)

(
τ−β

n+1

∑
m=2

(−1)m
(

β

m

)
+ kτ−α

n+1

∑
m=2

(−1)m
(

α

m

))
y(n+1−m)

j

+
1

(τ−β + kτ−α)

(
τ−β

n+1

∑
m=0

(−1)m
(

β

m

)
+ kτ−α

n+1

∑
m=0

(−1)m
(

α

m

))
y(0))j .

(72)

This scheme is stable, and henceforth, the approximate solution is convergent if the
following condition is satisfied:

β + kτβ−α

hγ
+

2γ

cos γπ
2

≥ 0 , (73)

where 0 < k ≤ 1; see [35]. For 0 < γ < 1, we have:

I
h ±

−γyj(tn) =
1

hγ

∞

∑
i=0

(−1)i
(

γ

i

)
yj∓i , (74)

and to find the approximate solution of Equation (5) corresponding to this case, combine the
discrete scheme of the Caputo time-fractional operator (70) with (66) to obtain:
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y(n+1) =

−1
(τ−β + kτ−α)

h−γ

2cos γπ
2

∑
i∈Z

(−1)i
(

γ

i

)
{y(n)j+i + y(n)j−i}

+
1

(τ−β + kτ−α)

(
(βτ−β + kατ−α)y(n)j +

j + 1
r

y(n)j+1 −
j − 1

r
y(n)j−1

)
+

1
(τ−β + kτ−α)

(
τ−β

n+1

∑
m=2

(−1)m
(

β

m

)
+ kτ−α

n+1

∑
m=2

(−1)m
(

α

m

))
y(n+1−m)

j

+
1

(τ−β + kτ−α)

(
τ−β

n+1

∑
m=0

(−1)m
(

β

m

)
+ kτ−α

n+1

∑
m=0

(−1)m
(

α

m

))
y(0))j ,

(75)

where this scheme is also satisfied if the condition (73) is satisfied, but with 0 < γ < 1.
Finally, the discrete scheme for the singular case as γ = 1 reads:

y(n+1) =

−1
(τ−β + kτ−α)

(
−2
πh

y(n)j +
1
h

∞

∑
i=1

(−1)i 1
πhi(i + 1)

(y(n)j+i + y(n)j−i)

)

+
1

(τ−β + kτ−α)

(
(βτ−β + kατ−α)y(n)j +

j + 1
r

y(n)j+1 −
j − 1

r
y(n)j−1

)
+

1
(τ−β + kτ−α)

(
τ−β

n+1

∑
m=2

(−1)m
(

β

m

)
+ kτ−α

n+1

∑
m=2

(−1)m
(

α

m

))
y(n+1−m)

j

+
1

(τ−β + kτ−α)

(
τ−β

n+1

∑
m=0

(−1)m
(

β

m

)
+ kτ−α

n+1

∑
m=0

(−1)m
(

α

m

))
y(0))j ,

(76)

where this discrete scheme is stable and its corresponding approximate solution is conver-
gent if the following condition is satisfied:

β + kατβ−α +
2τβ

πh
≥ 0 . (77)

In the following section, we give the simulation of the time evolution of the approxi-
mate solution y(n) discussed here for different values of the fractional orders α, β, and γ
and for different values of the initial condition f (x).

6. Numerical Results

To computationally prove that the analytic solutions in terms of the Mittag–Leffler
function are convergent, we give a brief review of its asymptotic behaviors; see [35] and
the references therein. The short and long time behaviors of the Mittag–Leffler function are
computed from the following special forms:

Eβ(−tβ) ∼
∞

∑
n=0

(−1)n tnβ

Γ(nβ + 1)
as t ≥ 0 . (78)

This form is valid only for the short time. To deal with the long time, we have to
compute the following function:

Eβ(−tβ) ∼
sin βπ

π

Γ(β)

tβ
as t → ∞ , (79)

and another useful form of the Mittag–Leffler function, namely:

Eβ(−tβ) ∼ exp(
−tβ

Γ[1 + β]
) , (80)
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where this form is called the stretched exponential function. Substituting in this function
with β = 1, we obtain the fastest convergent function e−t. Figures 1 and 2 show the
asymptotic behaviors of the Mittag–Leffler function for the short and long time. The
Hypergeometric1F1[1 + n, 2 + n,−t] function is plotted in Figure 3 and is called the Kum-
mer confluent hypergeometric function. It is known that 1F1 is related to the convergent
function e−z by the relation 1F1(1, 1,−z) = e−z, for more details see [27,28]. Their time
evolution is plotted in Figure 4. The simulation of these special functions indicates that
the obtained analytic solutions are convergent as t → ∞.

Β

Β�

Β�

Β�

Figure 1. The simulation of the Mittag–Leffler as t : 0 → 1, for different values of β.

Β

Β�

Β�

Β�

Figure 2. The simulation of the Mittag–Leffler as t : 0 → 10, for different values of β.
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�

�

�

�

�

Figure 3. Hypergeometric1F1[1 + n, 2 + n,−t].

�� �

Figure 4. Hypergeometric1F1[1, 2,−t].

The time evolution of the approximate solution of the classical Equation (5), i.e., as
γ = 2, α = 1, β = 2, a(x) = 1, b(x) = −x and f (x) = sin πx

L , is plotted in Figures 5–8.

� �

� �

�

Figure 5. t = 2.
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Figure 6. t = 5.
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Figure 7. t = 10.

� �

� �

� �

�

�

Figure 8. t = 20.

The time evolution of the approximate solution of Equation (5) is as a(x) = a = 1,
b(x) = −bx = −x, k = 1, γ = 2, β = 1.7, α = 0.7, r = 100, and f (x) = sin πx

2r+1 is plotted
in Figures 9–12. The figures shows that the approximate solution reaches its stationary
solution very fast.
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Figure 9. t = 5.
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Figure 10. t = 10.
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�

Figure 11. t = 20.
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� �

� �
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�

Figure 12. t = 25.

The time evolution of the approximate solution of Equation (5) for a(x) = a = 1,
b(x) = −bx, γ = 0.8, β = 1.7, α = 1, k = 0.7 and f (x) = δ(x) is plotted in Figures 13–16.

� �

�

Figure 13. t = 2.

� �

�

�

�

Figure 14. t = 5.
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� �
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�

Figure 15. t = 10.

� �

�

�

Figure 16. t = 20.

The time evolution of y(n) of the same equation, but corresponding to γ = 1, β = 1.7,
α = 1, and f (x) = sin πx

L , is plotted Figures 17–20. These simulations show that the
approximate solution reaches its stationary solution at t = 20, and it does not change even
if we increase the number of iterations till we reach t = 60. This is a necessary property of
any stochastic process.

� �

�

�

Figure 17. t = 5.
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� �
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Figure 18. t = 20.

� �
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�

Figure 19. t = 40.

� �

�

�

Figure 20. t = 60.

7. Conclusions

In this paper, we studied the classical wave equation with the damped term and
associated with the stochastic Fokker–Planck operator. Two physical and biological models
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were studied as direct applications to this partial differential equation. The need to extend
the time first-order derivative to the Caputo time-fractional operator was discussed. The
need for the space-fractional operator was also discussed. The analytic solutions for the
classical models were studied to illustrate that the special functions are very necessary,
besides proving that the analytic solutions are not unique. The Laplace transform was
implemented to obtain the solution of the time-fractional differential equation of three
terms. The solution was given in terms of the Mittag–Leffler function and its nth derivative.

The explicit finite difference rules besides the Grünwald–Letnikov scheme were im-
plemented to obtain the approximate solutions of the studied models. The simulation of
the approximate solutions of the classical case and the space-time-fractional equations
with different values of the fractional orders were presented. As stochastic processes, the
approximate solutions do not change after reaching the stationary solution.
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Abstract: This paper establishes a model of economic growth for all the G7 countries from 1973 to
2016, in which the gross domestic product (GDP) is related to land area, arable land, population,
school attendance, gross capital formation, exports of goods and services, general government, final
consumer spending and broad money. The fractional-order gradient descent and integer-order
gradient descent are used to estimate the model parameters to fit the GDP and forecast GDP from
2017 to 2019. The results show that the convergence rate of the fractional-order gradient descent is
faster and has a better fitting accuracy and prediction effect.
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1. Introduction

In recent years, fractional model has become a research hotspot because of its advan-
tages. Fractional calculus has developed rapidly in academic circles, and its achievements
in the fields include [1–10].

Gradient descent is generally used as a method of solving the unconstrained opti-
mization problems, and is widely used in evaluation and in other aspects. The rise in
fractional calculus provides a new idea for advances in the gradient descent method. Al-
though numerous achievements have been made in the two fields of fractional calculus and
gradient descent, the research results combining the two are still in their infancy. Recently,
ref. [11] applied the fractional order gradient descent to image processing and solved the
problem of blurring image edges and texture details using a traditional denoising method,
based on integer order. Next, ref. [12] improved the fractional-order gradient descent
method and used it to identify the parameters of the discrete deterministic system in
advance. Thereafter, ref. [13] applied the fractional-order gradient descent to the training
of neural networks’ backpropagation (BP), which proves the monotony and convergence
of the method.

Compared with the traditional integer-order gradient descent, the combination of
fractional calculus and gradient descent provides more freedom of order; adjusting the
order can provide new possibilities for the algorithm. In this paper, economic growth
models of seven countries are established, and their cost functions are trained by gradient
descent (fractional- and integer-order). To compare the performance of fractional- and
integer-order gradient descent, we visualize the rate of convergence of the cost function,
evaluate the model with MSE, MAD and R2 indicators and predict the GDP of the seven
countries in 2017–2019 according to the trained parameters.
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139



Axioms 2021, 10, 257

The Group of Seven (G7)

The G6 was set up by France after western countries were hit by the first oil shock.
In 1976, Canada’s accession marked the birth of the G7, whose members are the United
States, the United Kingdom, France, Germany, Japan, Italy and Canada seven developed
countries. The annual summit mechanism of the G7 focuses on major issues of common
interest, such as inclusive economic growth, world peace and security, climate change and
oceans, which have had a profound impact on global, economic and political governance.
In addition to the G7 members, there are a number of developing countries with large
economies, such as China, India and Brazil. In the context of economic globalization, the
study of G7 economic trends and economic-related factors can provide a useful reference
for these countries’ development.

The economic crisis broke out in western countries in 1973, so the data in this paper
cover the period from 1973 to 2016, and data for the seven countries are available since
then. Some G7 members (France, Germany, Italy and the United States) were members of
the European Union (EU) during this period, so this paper also establishes the economic
growth model of the EU. Data for this article are from the World Bank.

2. Model Describes

The prediction of variables generally uses time series models [14] (for example, ARIMA
and SARIMA), or artificial neural networks [15,16], which have been very popular in recent
years. The time series model mainly predicts the future trend in variables, but it is difficult
to reflect the change in unexpected factors in the model. Additionally, the neural network
model needs to adjust more parameters, the network structure selection is too large, the
training efficiency is not high enough, and easy to overfit.

Although the linear model is simple in form and easy to model, its weight can intu-
itively express the importance of each attribute, so the linear model has a good explanatory
ability. It is reasonable to build a linear regression model of economic growth, which can
clearly learn which factors have an impact on the economy.

Next, we chose eight explanatory variables to describe the economic growth in this
paper. The explained variable is y, where y refers to GDP and is a function. The expression
for y is as follows:

y(t) = ∑
j=1,2,3,4,5,6,7,8

θjxj(t) + θ0 + ε, (1)

where t is year (t = 44), θ0 is the intercept. ε is an unobservable term of random error. θj
represents the weight of each variable. The eight explanatory variables are:

x1: land area (km2)
x2: arable land (hm2)
x3: population
x4: school attendance (years)
x5: gross capital formation (in 2010 US$)
x6: exports of goods and services (in 2010 US$)
x7: general government final consumer spending (in 2010 US$)
x8: broad money (in 2010 US$)

3. Fractional-Order Derivative

Due to the differing conditions, there are different forms of fractional calculus defini-
tion, the most common of which are Grünwald–Letnikov, Riemann–Liouville, and Caputo.
In this article, we chose the definition of fractional-order derivative in terms of the Caputo
form. Given the function f (t), the Caputo fractional-order derivative of order α is defined
as follows:

Caputo
cDα

t f (t) =
1

Γ(1 − α)

∫ t

c
(t − τ)−α f

′
(τ)dτ,
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where Caputo
cDα

t is the Caputo derivative operator. α is the fractional order, and the interval
is α ∈ (0, 1). Γ(·) is the gamma function. c is the initial value. For simplicity, cDα

t is used in
this paper to represent the Caputo fractional derivative operator instead Caputo

cDα
t .

Caputo fractional differential has good properties. For example, we provide the
Laplace transform of Caputo operator as follows:

L{Dα f (t)} = sαF(s)−
n−1

∑
k=0

f (k)(0)sα−k−1,

where F(s) is a generalized integral with a complex parameter s, F(s) =
∫ ∞

0 f (t)e−stdt.
n =: [α] is the α rounded up to the nearest integer. It can be seen from the Laplace transform
that the definition of the initial value of Caputo differentiation is consistent with that of
integer-order differential equations and has a definite physical meaning. Therefore, Caputo
fractional differentiation has a wide range of applications.

4. Gradient Descent Method

4.1. The Cost Function

The cost function (also known as the loss function) is essential for a majority of
algorithms in machine learning. The model’s optimization is the process of training the
cost function, and the partial derivative of the cost function with respect to each parameter
is the gradient mentioned in gradient descent. To select the appropriate parameters θ for
the model (1) and minimize the modeling error, we introduce the cost function:

C(θ) =
1

2m

m

∑
i=1

(hθ(x(i))− y(i))2, (2)

where hθ(x(i)) is a modification of model (1), hθ(x) = θ0 + θ1x1 + · · ·+ θjxj, which repre-
sents the output value of the model. x(i) are the sample features. y(i) is the true data, and t
represents the number of samples (m = 44).

4.2. The Integer-Order Gradient Descent

The first step of the integer-order gradient descent is to take the partial derivative of
the cost function C(θ):

∂C(θ)
∂θj

=
1
m

m

∑
i=1

(hθ(x(i))− y(i))x(i)j , j = 1, 2, . . . , 8, (3)

and the update function is as follows:

θj+1 = θj − η
1
m

m

∑
i=1

(hθ(x(i))− y(i))x(i)j , (4)

where η is learning rate, η > 0.

4.3. The Fractional-Order Gradient Descent

The first step of fractional-order gradient descent is to find the fractional derivative of
the cost function C(θ). According to Caputo’s definition of fractional derivative, from [17]
we know that if g(h(t)) is a compound function of t, then the fractional derivation of α
with respect to t is

cDα
t g(h) =

∂(g(h))
∂h

· cDα
t h(t). (5)
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It can be known from (5) that the fractional derivative of a composite function can be
expressed as the product of integral and fractional derivatives. Therefore, the calculation
for cDα

θj
C(θ) is as follows:

cDα
θj

C(θ) =
1
m

m

∑
i=1

(hθ(x(i))− y(i))Γ(1 − α)
∫ θj

c
(θj − τ)−α ∂[hθ(x(i))− y(i)]

∂θj
dτ

=
1
m

m

∑
i=1

(hθ(x(i))− y(i))x(i)j Γ(1 − α)
∫ θj

c
(θj − τ)−αdτ

=
1

m(1 − α)Γ(1 − α)
(θj − c)(1−α)

m

∑
i=1

(hθ(x(i))− y(i))x(i)j ,

and the update function is as follows:

θj+1 = θj − η
1

m(1 − α)Γ(1 − α)
(θj − c)(1−α)

m

∑
i=1

(hθ(x(i))− y(i))x(i)j , j = 1, 2, . . . , 8 (6)

where η is the learning rate, η > 0. α is the fractional order, 0 < α < 1. c is the initial value
of Caputo’s fractional derivative, and c < min{θj}.

5. Model Evaluation Indexes

We use the absolute relative error (ARE) to measure the prediction error:

AREi =
|yi − ŷi|

yi
.

To evaluate the fitting quality of gradient descent on the model, the following three
indicators can be calculated:

The mean square error (MSE):

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2.

The coefficient of determination (R2):

R2 = 1 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − ȳi)2

.

The mean absolute deviation (MAD):

MAD =

n
∑

i=1
|yi − ŷi|

n
.

In these formulas, n is the number of years (n = 44). yi and ŷi are the real value and
the model output, respectively. ȳi is the mean of the GDP.

6. Main Results

In this article, we standardize the data for each country before running the algorithm,
and each iteration to update θ uses m samples. The grid search method was used to
select the appropriate learning rate and initial weight interval, and the effects of different
fractional orders are compared to select the best order (see Table 1).The learning rate and
the initial weight interval are applicable to both fractional-order gradient descent and
integer-order gradient descent.
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Table 1. Parameters for different countries.

Country α Learning Rate Initial Interval

Canada 0.8 0.03 (−0.5, 0.5)
France 0.8 0.03 (−0.8, 0.8)

Germany 0.8 0.03 (−0.1, 0.1)
Italy 0.8 0.03 (−0.5, 0.5)

Japan 0.8 0.03 (−0.1, 0.1)
The United Kingdom 0.8 0.03 (−0.5, 0.5)

The United States 0.8 0.03 (−0.1, 0.1)
European Union 0.8 0.03 (−0.5, 0.5)

6.1. Comparison of Convergence Rate of Fractional and Integer Order Gradient Descent

In order to facilitate visual comparison, (4) and (6) are iterated 50 times, respectively,
as well as their convergence rates (see Figure 1).

As shown in Figure 1, for each dataset, after the same number of iterations, the
convergence rate of fractional-order gradient descent is faster than that of integer-order
gradient descent, which indicates that the method combining fractional-order and gradient
descent is better than the traditional integer-order gradient descent in the convergence rate
of update equation.

(a) (b)

(c) (d)

Figure 1. Cont.
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(e) (f)

(g) (h)

Figure 1. Comparison of convergence rate and fitting error between fractional- and integer-order
gradient descent: (a) Canada (b) France (c) Germany (d) Italy (e) Japan (f) The United Kingdom
(g) The United States (h) European Union.

6.2. Fitting Result

Then, we fit GDP with integer-order gradient descent and fractional-order gradient
descent, respectively. Start by setting a threshold and stop iterating when the gradient is less
than this threshold. The fitting effect diagram is shown in Figure 2, and the performance
evaluation of the model is shown in Table 2.

Table 2. Performance of integer order and fractional order gradient descent.

Canada France Germany Italy

Index Integer (4) Fractional (6) Integer (4) Fractional (6) Integer (4) Fractional (6) Integer (4) Fractional (6)

MSE (×1020) 2.2548 1.5689 7.3396 4.3851 7.6262 6.8976 3.2521 2.701
R2 0.9984 0.9989 0.9971 0.9983 0.9981 0.9983 0.9974 0.9978

MAD (×1010) 1.1015 0.9066 2.2076 1.68 2.2824 2.0203 1.4947 1.3146

Japan The United Kingdom The United States European Union

Index Integer (4) Fractional (6) Integer (4) Fractional (6) Integer (4) Fractional (6) Integer (4) Fractional (6)

MSE (×1020) 19.9103 16.6656 15.2421 13.7876 98.4201 60.7402 197.9143 90.5717
R2 0.9986 0.9989 0.9946 0.9951 0.9993 0.9995 0.9983 0.9992

MAD (×1010) 3.8663 3.2745 3.1182 2.9489 7.8593 5.714 11.8393 7.2684
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. Fitting of GDP of the G7 countries by fractional-order gradient descent method: (a) Canada
(b) France (c) Germany (d) Italy (e) Japan (f) The United Kingdom (g) The United States (h) Euro-
pean Union.
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It can be seen from Table 2 that the MSE, R2 and MAD results of GDP fitted by
fractional-order gradient descent are better than that fitted by integer-order gradient
descent, which indicates that, under the same iteration number, learning rate and initial
weight interval, the fitting performance of the data fitted by fractional-order gradient
descent is better than that of integer-order.

6.3. Predicted Results

Finally, in order to test the prediction effect of fractional- and integer-order gradient
descent on GDP, we forecast the GDP from 2017 to 2019, and used the ARE index to
measure the prediction error (see Table 3).

Table 3. Integer-order and fractional-order gradient descent for G7 countries’ GDP data from 2017 to 2019.

Country Year Actual Value
Predicted Value ARE

Integer Fractional Integer Fractional

2017 1869939124387.55 1851176120948 1865471720455.36 0.01003 0.00239
Canada 2018 1907592951375.51 1885635961969.18 1897212921116.78 0.01151 0.00544

2019 1939183469806.34 1913183323405.81 1924536620147.11 0.01341 0.00755

2017 2876185347152.35 2945583296625 2913853765393.87 0.02313 0.01211
France 2018 2927751436718.37 2987173241226.19 2955215192748.21 0.0193 0.0084

2019 2971919320115.83 3052414282679.98 3007640733954.07 0.02608 0.01103

2017 3873475897139.37 3992089822476.93 3987473981388.45 0.03062 0.02943
Germany 2018 3922591386837.48 4035516755191.92 4019973502352.35 0.02879 0.02483

2019 3944379455526.15 4007551577032.44 3942199462068.09 0.01602 0.00055

2017 2124019926800.66 2152553322306.66 2148504123256.22 0.01343 0.01053
Italy 2018 2144072575240.17 2184791916115.44 2178336024841.51 0.01899 0.01598

2019 2151420719257.08 1694388219398.54 1946816137097.53 0.21243 0.0951

2017 6150456276847.65 6246751221623.44 6217262375879.73 0.01566 0.01086
Japan 2018 6170335002849.18 6302599251651.13 6266099914852.53 0.02144 0.01552

2019 6210698351093.34 6274298653661.42 6272342082178.18 0.01411 0.01379

The United Kingdom
2017 2841238185971.41 2714332507299.13 2737032647202.61 0.04467 0.03668
2018 2879331251695.23 2735833239476.11 2760916583838.65 0.04984 0.041126
2019 2921446026408.24 2784137398857.08 2812534141119.14 0.047 0.03728

The United States
2017 17403783207186.7 17154216039682.2 17344565695242.3 0.01434 0.0034
2018 17913248631409.5 17681187933498.6 17835485270334.4 0.01725 0.00434
2019 18300385513295.6 18004286468803.1 18168502346487.9 0.01618 0.00721

European Union
2017 16012037378199.3 17983491434848.4 18072460558164 0.04479 0.04006
2018 16351210756244.2 18105516308926.6 18296349316535.8 0.05715 0.04272
2019 16605351894524 18828265531889.1 19241290506759 0.03446 0.01328

7. Conclusions

In this paper, the gradient descent method is used to study the linear model problems
which is different from [18,19]. The results show that, in addition to the least square
estimation, the gradient descent method can also solve the regression analysis problem
by iterating the cost function, and obtain good results, a without complicating the model.
It also improves the interpretability of explanatory variables. We apply the fractional
differential to gradient descent, and compare the performance of fractional-order gradient
descent with that of integer-order gradient descent. It was found that the fractional-order
has a faster convergence rate, higher fitting accuracy and lower prediction error than the
integer-order. This provides an alternative method for fitting and forecasting GDP and has
a certain reference value.
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Abstract: Heat exchangers are commonly used in various industries. A spiral-plate heat exchanger
with two fluids is a compact plant that only requires a small space and is excellent in high heat
transfer efficiency. However, the spiral-plate heat exchanger is a nonlinear plant with uncertainties,
considering the difference between the heat fluid, the heated fluid, and other complex factors. The
fractional order derivation model is more accurate than the traditional integer order model. In
this paper, a parallel fractional order derivation model is proposed by considering the merit of
the graphics processing unit (GPU). Then, the parallel fractional order derivation model for the
spiral-plate heat exchanger is constructed. Simulations show the relationships between the output
temperature of heated fluid and the orders of fractional order derivatives with two directional fluids
impacted by complex factors, namely, the volume flow rate in hot fluid, and the volume flow rate in
cold fluid, respectively.

Keywords: fractional order derivative model; GPU; a spiral-plate heat exchanger; parallel model;
heat transfer; nonlinear system

1. Introduction

A heat exchanger is most often used in industries such as space heating, refrigeration,
air conditioning, power stations, chemical plants, petrochemical plants, petroleum refiner-
ies, natural-gas processing, and sewage treatment. It uses the principle of heat transfer
between two or more fluids to transfer the heat energy of the high temperature heat fluid to
the low temperature heat fluid in order to heating the low temperature fluid or cooling the
high temperature heat fluid, which has the idea of energy saving [1]. A spiral-plate heat
exchanger is a compact plant that only requires a small space for installation compared
to traditional heat exchanger solutions and has excellent in high heat transfer efficiency
(See [2–4]). However, the spiral-plate heat exchanger is a nonlinear plant with uncertainties,
considering the difference between the heat medium, the heated medium and the other fac-
tors. In some applications, the output temperature heated or cooled for the heat exchanger
must be controlled accurately. Because the heat transfer coefficient of the heat exchanger is
impacted by various factors such as fluid flow, condition pressure, the uncertainties, the
error of the mathematical model, and a long-time delay, etc., so it is difficult to be accurately
modelled and controlled. In the past few years, the research of heat exchangers has mainly
focused on the design of heat exchangers [5–7]. In some papers (Such as [8,9]), an effective
internal fluid mathematical model is established by using the heat balance law between
the two fluids. Only the effect of the flow velocity on the heat transfer coefficient, but not
the effect of the two fluid flows velocity on the heat transfer time is considered.

Fractional order calculus and derivative is a old topic of a more than 300 years
since a letter written by Leibniz to L’Hopital in 1695 [10]. Fractional order calculus is an
extension from traditional integer calculus. The research of the theory and applications of
fractional order calculus and derivatives (such as in solution of fractional order calculus and
derivative [11,12] and stability [13–15]) expanded greatly over the 20th and 21st centuries.

Axioms 2021, 10, 344. https://doi.org/10.3390/axioms10040344 https://www.mdpi.com/journal/axioms

149



Axioms 2021, 10, 344

In recent years, fractional order calculus and derivatives have been used in various fields
such as engineering, physics, chemistry, and hydrology etc. The references in [10,16], give
some knowledges about fractional order calculus and derivative. The fractional order PID
controller was introduced by Podlubny in 1994 [10]. Fractional order controllers were
being used extensively by many researchers to achieve the better robust performance in
both the linear and the nonlinear systems. In [17], nonlinear thermoelastic fractional-order
model of nonlocal plates is studied. The reference [18] proposed a fractional nonlocal
elasticity model. They show elasticity model described by fractional order derivative
is more accurate than the traditional system described by integer order in theory and
application [19]. In control systems, modelling, stability, controllability, observability is
very important for performance. In fractional order system, these need to be considered
in [20–22], too. Nowadays, fractional order calculus and derivative are still the absence of
solution method and rapid computing algorithm [23].

GPU (That is graphics processing unit), which provides more computing units and
high data bandwidth in a limited area [24]. It is originally developed for graphics appli-
cations, now, it has been increasingly applied to do parallel computing in scientific and
engineering. GPU has higher execution efficiency for parallel data, and the more data
parallelism, the higher the execution efficiency. CUDA is a software and hardware system
that can make GPU work as a device for data parallel computing [25].

References [20,26–28] show elasticity model described by fractional order derivative
is more accurate than the traditional system described by integer order in theory and
application. Fractional order derivative equation is more suitable to describe thermoelastic
model than integer order equation. Heat transfer for the heat exchanger is thermoelastic
model. Therefore, it is motivated by the above references. Traditionally, a spiral-plate heat
exchanger mathematical model is constructed by integer order derivative equation. A
spiral-plate heat exchanger mathematical model constructed by fractional order derivative
equation is more accurate than conventional method. So, a parallel fractional order deriva-
tive model is proposed by considering the merits of GPU and fractional order derivative.
Further, parallel fractional order derivation model for the spiral heat exchanger is con-
structed. The parallel fractional order derivation model for the spiral-plate heat exchanger
executes faster than traditional model and can quickly reply to disturbance. In the future,
we will study operator-based robust nolinear control system for the spiral heat exchanger
by using the proposed parallel model [29–31].

The rest of this paper is constructed as follows. In Section 2, Preliminaries and
Problem Statement, a parallel fractional order derivative model is proposed, and the
problem statement is presented. A mathematic fractional order derivative model for the
spiral-plate heat exchanger is derived in Section 3, Mathematics Analysis. The proposed
parallel model for the spiral-plate heat exchanger with both the counter-flow type and
the parallel-flow type and implementation on GPU are given in Section 4. Then, Section 5
compares the relationships between the output temperature of the heated flow fluid and
the orders of the fractional order derivative with the two directional fluids, the volume flow
rate of cold fluid, and the volume flow rate of hot fluid, respectively. Finally, in Section 6, a
conclusion is given.

2. Preliminaries and Problem Statement

2.1. Parallel Fractional Order Derivative Model

In reference [32], parallel fractional order derivative model is not complete only
modelling of a spiral heat exchanger with counter-type by using fractional order equation
and without theory support. It is richened to derive this paper.
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According to the definition of the fractional order derivative (see Appendix A), the
fractional order derivative Equation (1) are given as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dq
t f (Δh) = − (Δh)−q Γ(q+1)

Γ(2)Γ(q) f (0) + (Δh)−q f (Δh)

Dq
t f (2(Δh)) = (Δh)−q Γ(q+1)

Γ(3)Γ(q−1) f (0)− (Δh)−q Γ(q+1)
Γ(2)Γ(q) f (Δh) + (Δh)−q f (2(Δh))

Dq
t f (3(Δh)) = −(Δh)−q −Γ(q+1)

Γ(4)Γ(q−2) f (0) + (Δh)−q Γ(q+1)
Γ(3)Γ(q−1) f (Δh)

−(Δh)−q Γ(q+1)
Γ(2)Γ(q) f (2(Δh)) + (Δh)−q f (3(Δh))

...

Dq
t f (N(Δh)) = (Δh)−q ∑N

j=1(−1)j Γ(q+1)
Γ(j+1)Γ(q−j+1) f (t − j(Δh)) + (Δh)−q f (N(Δh))

(1)

From (1), a parallel fractional order derivative model is described by the matrix, as follow.

Fk = (Δh)qDf rac + BFk−1 (2)

where Fk, Fk−1, Df rac ∈ RN , and B ∈ RN×N

Fk =

⎛⎜⎜⎜⎝
f (Δh)

f (2(Δh))
...

f (N(Δh))

⎞⎟⎟⎟⎠ (3)

Df rac =

⎛⎜⎜⎜⎝
Dq

t f (Δh)
Dq

t f (2(Δh))
...

Dq
t f (N(Δh))

⎞⎟⎟⎟⎠ (4)

B =

⎛⎜⎜⎜⎜⎜⎜⎝

−Γ(q+1)
Γ(2)Γ(q) 0 . . . 0
Γ(q+1)

Γ(3)Γ(q−1)
−Γ(q+1)
Γ(2)Γ(q) . . . 0

...
...

...
...

(−1)N Γ(q+1)
Γ(N+1)Γ(q−N+1)

(−1)(N−1)Γ(q+1)
Γ(N)Γ((q−N+1) . . . −Γ(q+1)

Γ(2)Γ(q)

⎞⎟⎟⎟⎟⎟⎟⎠ (5)

Fk−1 =

⎛⎜⎜⎜⎝
f (0)

f (Δh)
...

f ((N − 1)(Δh))

⎞⎟⎟⎟⎠ (6)

2.2. Problem Statement

Traditionally, a spiral-plate heat exchanger mathematical model is constructed de-
scribed by the integer order derivative equation. The spiral-plate heat exchanger mathemat-
ical model described by the fractional order derivative is more accurate than the traditional
method. So, a fractional order derivation model is considered to describe a spiral-plate
heat exchanger plant. Further, parallel fractional order derivative model is proposed by
considering the merit of GPU. The proposed parallel model executes faster than traditional
model and can quickly reply to disturbance. Further, we get the parallel fractional order
derivative model for the spiral heat exchanger by mathematics analysis.
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3. Mathematics Analysis

3.1. A Spiral-Plate Heat Exchanger Plant

A spiral-plate heat exchanger is shown in Figure 1. The spiral-plate heat exchanger is
used for its many merits, such as high-efficient heat transfer, small-size in comparison to
the other heat exchangers, and self-cleaning due to the special spiral structure.

Figure 1. A spiral-plate heat exchanger plant.

The spiral-plate heat exchanger is an excellent process equipment, but it is difficult
to obtain an accurate model due to a complex inner structure. The conventional method,
such as logarithmic mean temperature difference method, could not obtain good control
results. The other approach was conducted, but the obtained model was too complex. It is
difficult to design a model based controller. Therefore, we consider a novel spiral-plate
heat exchanger’s fractional order derivative model. Figure 2 gives the cross-section inner
structure of the spiral-plate heat exchanger. Where δh , δc δs is the width of hot fluid, the
width of cold fluid and the width of solid wall, respectively. In this study, the cross-section
inner structure as shown in Figure 2 is divided into a micro volume in cold fluid. The
fractional order derivative model is constructed by considering the heat balance of the hot
fluid and cold fluid, respectively.

r = b + a · θ, θ ∈ [0, 11π] (7)

Geometric parameters of the spiral-plate heat exchanger are denoted in Table 1.

Table 1. Parameters of the spiral heat exchanger.

Meaning Symbol Value

Geometric parameter of a spiral function a 0.005/π m/rad
Initial radius of hot fluid side b 0.08 m
The width of hot flow channel δh 0.005 m
The width of cold flow channel δc 0.005 m
The width of solid wall δs 0.0018 m
The height of the spiral-plate heat exchanger Z 0.011 m
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Figure 2. The cross-section inner structure of the spiral heat exchanger.

The heat exchanger is typically classified into the parallel-flow type and the count-flow
type by arrangement [33]. The parallel-flow type is that both the input and the output
of the two directional fluids (one is a hot fluid, the other is cold fluid) are in the same
directions. If both the hot fluid and the cold fluid are in the opposite directions, then it
is the counter-flow type heat exchanger. First, fractional order derivative model for the
spiral-plate heat exchanger with the counter-flow type is considered.

3.2. Fractional Order Derivative Model for the Spiral-Plate Counter-Flow Heat Exchanger

In this section, the spiral-plate heat exchanger with the counter-flow type is analysed
here. First, we consider the temperature variable in cold fluid, that is divided into a micro
volume as shown in Figure 3. Here, vh is the flow rate in hot fluid. vc is the flow rate in
cold fluid. The directions of vh, and vc are opposite. ΔV is a micro volume in cold fluid.
Δm1 is the heat flux transferring from the inside Th(x). Δm2 is the heat flux transferring
from the outside Th(x + C), C is the length to the angle of 2π.

Figure 3. The principle of heat transfer for the spiral heat exchanger.

153



Axioms 2021, 10, 344

As seen in Figure 3, it denotes the heat transferring between the two fluids for the
spiral-plate counter-flow heat exchanger.

Therefore, according to the heat energy balance law and heat transfer theory [34], the
equations are derived as follows.

ccρc(ΔV)
ΔTc(x, t)

Δt
= Δm1 + Δm2 (8)

ΔTc(x, t)
Δt

= Tc(x + Δx, t + Δt)− Tc(x, t) (9)

where cc, ρc, ΔV, k is the specific heat capacity of cold fluid, the density of cold fluid, a
micro volume, the heat transfer coefficient of the spiral-plate heat exchanger, respectively.
According to the Newton’s law of cooling.

k =
1
hh

+
δs

λ
+

1
hc

(10)

where hh, hc, δs, and λ is the heat transfer coefficient of hot fluid, the heat transfer coefficient
of cold fluid, the width of wall, thermal conductivity, respectively.

Δm1 = k · (Th(x, t)− Tc(x, t)) · (ΔA1) (11)

Δm1 is the heat flux transferring from Th(x, t) to Tc(x, t). Where ΔA1 is the heat transfer
suface area Th(x, t) to Tc(x, t).

Δm2 = k · (Th(x + C, t)− Tc(x, t)) · (ΔA2) (12)

Δm2 is the heat flux transferring from Th(x + C, t) to Tc(x, t). Where ΔA2 is the heat
transfer surface area Th(x + C, t) to Tc(x, t). Each element is of the length Δx and the heat
transfer surface area ΔA1, ΔA2, and ΔA1 ≈ ΔA2 = ΔA = (Δx) · Z, Z is the height of the
spiral-plate heat exchanger, Δx is the displacement of cold fluid that moves in time Δt,

ΔV = (Δx) · Z · δh, Δt =
Δx
vc

. So,

ccρcδcvc
ΔTc(x, t)

Δx
= k(Th(x, t) + Th(x + C, t)− 2Tc(x, t)) (13)

Using the thought of differential theory, the relationship between the length in the differen-
tial arc and the angle in differential arc is derived.

Δx =
√

Δr2 + (r(Δθ))2 (14)

Applying the spiral function of the spiral-plate heat exchanger, r = aθ + b, it is obtained
from (14):

Δx =
√

a2 + (b + aθ)2(Δθ) (15)

Substituting (15) into (13), the differential equation in cold fluid is obtained as follow.

ccρcδcvc
ΔTc(θ, t)

Δθ
= k

√
a2 + (b + aθ)2(Th(θ, t) + Th(θ + 2π, t) − 2Tc(θ, t)), θ ∈ [0, 11π) (16)

Because (16) is complex. we simplify (17) as follows.

ccρcδcvc
ΔTc(θ, t)

Δθ
= Fk

√
a2 + (b + aθ)2(Th(θ, t)− Tc(θ, t)), θ ∈ [0, 11π) (17)

where F is the constant between 1 and 2 relation to the shape of the heat exchanger.
According to the thought of fractional order derivative [10] (17) is extended from the
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integer order derivative to the fractional order derivative, we derive fractional order
derivative equation in cold fluid for the spiral-plate counter-flow heat exchanger as follows.
Fractional order of (18) is impacted by complex factors, it is difficult to derive by theory
method.

ccρcδcvcDq2
θ Tc(θ, t) = Fk

√
a2 + (b + aθ)2(Th(θ, t)− Tc(θ, t)), θ ∈ [0, 11π) (18)

With the same principle, the fractional order derivative equation in hot fluid is derived as
follows.

chρhδhvhDq1
θ Th(θ, t) = Fk

√
a2 + (b + aθ)2(Tc(θ, t)− Th(θ, t)), θ ∈ [0, 11π) (19)

A =
√

a2 + (b + aθ)2 (20)

Nonlinear fractional order derivative equations for the spiral-plate counter-flow heat
exchanger are given as follows.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Dq1
θ Th(θ, t) =

kFA
vhchρhδh

((Tc(θ, t)− Th(θ, t))

Dq2
θ Tc(θ, t) =

kFA
vcccρcδc

((Th(θ, t)− Tc(θ, t))

θ ∈ [0, 11π]

(21)

where vh(t) and vc(t) is the input flow rate of time t in hot fluid, the input flow rate of time
t in cold fluid side, respectively. {

QL1 = δhZvh

QL2 = δcZvc
(22)

where QL1 and QL2 is the input volume flow rate in hot fluid side and the input vol-
ume flow rate in cold fluid side, respectively. Substituting (22) into (21), fractional order
derivative model for the spiral-plate counter-flow heat exchanger is described as follows.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Dq1
θ Th(θ, t) =

kFAZ
QL1chρh

((Tc(θ, t)− Th(θ, t))

Dq2
θ Tc(θ, t) =

kFAZ
QL2ccρc

((Th(θ, t)− Tc(θ, t))

θ ∈ [0, 11π]

(23)

Considering initial conditions, Th(11π, t) and Tc(0, t) is the input temperature of time t in
hot fluid, the input temperature of time t in cold fluid, respectively.

3.3. Fractional Order Derivative Model for the Spiral-Plate Parallel-Flow Heat Exchanger

With the same method, the fractional order derivative model for the spiral-plate
parallel-flow heat exchanger is derived as follows.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Dq1
θ Th(θ, t) =

kFAZ
QL1chρh

((Tc(θ, t)− Th(θ, t))

Dq2
θ Tc(θ, t) =

kFAZ
QL2ccρc

((Th(θ, t)− Tc(θ, t))

θ ∈ [0, 11π]

(24)

Considering initial conditions, Th(0, t) and Tc(0, t) is the input temperature of time t in hot
fluid, the input temperature of time t in cold fluid side, respectively.
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The fractional order derivation equations for the spiral-plate parallel-flow heat ex-
changer are similar to that with the spiral-plate counter-flow heat exchanger, but the
boundary conditions are different.

4. Parallel Fractional Order Derivative Model for the Spiral-Plate Heat Exchanger and
Implementation on GPU

4.1. Parallel Fractional Order Derivative Model for the Spiral-Plate Heat Exchanger
4.1.1. Parallel Model for the Spiral-Plate Counter-Flow Heat Exchanger

Applying (1)–(6) into (23), parallel fractional order derivative model for the spiral-
plate counter-flow heat exchanger is described as follows.{

Thk = (Δθ)q1 Dh f rac + BhThk−1

Tck = (Δθ)q2 Dc f rac + BcTck−1
(25)

where Thk, Thk−1, Dh f rac ∈ RN , and Bh ∈ RN×N Tck, Tck−1, Dc f rac ∈ RN , and Bc ∈ RN×N

Thk =

⎛⎜⎜⎜⎝
Th(Δθ)

Th(2(Δθ))
...

Th(N(Δθ))

⎞⎟⎟⎟⎠ (26)

Bh =

⎛⎜⎜⎜⎜⎜⎜⎝

−Γ(q1+1)
Γ(2)Γ(q1)

0 . . . 0
Γ(q1+1)

Γ(3)Γ(q1−1)
−Γ(q1+1)
Γ(2)Γ(q1)

. . . 0
...

...
...

...
(−1)N Γ(q1+1)

Γ(N+1)Γ(q1−N+1)
(−1)(N−1)Γ(q1+1)
Γ(N)Γ((q1−N+1) . . . −Γ(q1+1)

Γ(2)Γ(q1)

⎞⎟⎟⎟⎟⎟⎟⎠ (27)

Thk−1 =

⎛⎜⎜⎜⎝
Th(0)

Th(Δθ)
...

Th((N − 1)(Δθ))

⎞⎟⎟⎟⎠ (28)

Bc =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
f rac−Γ(q2 + 1)Γ(2)Γ(q2) 0 . . . 0

Γ(q2+1)
Γ(3)Γ(q2−1)

−Γ(q2+1)
Γ(2)Γ(q2)

. . . 0
...

...
...

...
(−1)N Γ(q2+1)

Γ(N+1)Γ(q2−N+1)
(−1)(N−1)Γ(q2+1)
Γ(N)Γ((q2−N+1) . . . −Γ(q2+1)

Γ(2)Γ(q2)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(29)

Tck =

⎛⎜⎜⎜⎝
Tc(Δθ)

Tc(2Δθ)
...

Tc(N(Δθ))

⎞⎟⎟⎟⎠ (30)

Tck−1 =

⎛⎜⎜⎜⎝
Tc(0)

Tc(Δθ)
...

Tc((N − 1)(Δθ))

⎞⎟⎟⎟⎠ (31)
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So, the parallel fractional order derivative model for the spiral-plate counter-flow heat
exchanger is obtained.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Thk = (Δθ)q1
FkZA

QL1chρh
(HTcK−1 − ThK−1) + BhThk−1

Tck = (Δθ)q2
FkZA

QL2ccρc
(HThK−1 − TcK−1) + BcTck−1

Tcout = CTck

(32)

⎧⎪⎪⎨⎪⎪⎩
Dh f rac =

FkZA
QL1chρh

(HTcK−1 − ThK−1)

Dc f rac =
FkZA

QL2ccρc
(HThK−1 − TcK−1)

(33)

{
Thk = (Δθ)q1 Dh f rac + BhThk−1

Tck = (Δθ)q2 Dc f rac + BcTck−1
(34)

where

H =

⎛⎜⎜⎜⎝
0 0 0 . . . 0 1
0 0 0 . . . 1 0
...

...
...

...
...

...
1 0 0 . . . 0 0

⎞⎟⎟⎟⎠ (35)

C =
(

0 0 0 0 . . . 1
)

(36)

where C ∈ R1×N andH ∈ RN×N . The parallel fractional order derivative model for the
spiral-plate counter-flow heat exchanger is a model with the parallel input data. It has
high efficiency executed on GPU. The proposed parallel model is implemented on GPU by
using MATLAB and CUDA [25].

4.1.2. The Proposed Parallel Model for the Spiral-Plate Parallel-Flow Heat Exchanger

The parallel fractional derivation model for the spiral-plate parallel-flow heat ex-
changer is obtained by the same method with the spiral-plate counter-flow heat exchanger
presented as above.

From (23) with the same method, the parallel fractional order derivative equations for
the spiral-plate parallel-flow heat exchanger are described as follows.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Thk = (Δθ)q1

FkZA
QL1c1ρh

(TcK−1 − ThK−1) + BhThk−1

Tck = (Δθ)q2
FkZA

QL2ccρc
(ThK−1 − TcK−1) + BcTck−1

Tcout = CTck

(37)

⎧⎪⎪⎨⎪⎪⎩
Dh f rac =

FkZA
QL1chρh

(TcK−1 − ThK−1)

Dc f rac =
FkZA

QL2ccρc
(ThK−1 − TcK−1)

(38)

The parallel fractional order derivative model for the spiral-plate parallel-flow heat ex-
changer is described as follow.
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{
Thk = (Δθ)q1 Dh f rac + BhThk−1

Tck = (Δθ)q2 Dc f rac + BcTck−1
(39)

where Thk, Thk−1, Dh f rac ∈ RN , and Bh ∈ RN×N Tck, Tck−1, Dc f rac ∈ RN , and Bc ∈ RN×N .

4.2. Implementation on GPU for the Proposed Parallel Model

In this section, implementation on GPU of the proposed parallel model for the spiral-
plate heat exchanger is presented. The parallel model with the parallel data has faster
efficiency executed on GPU than on CPU. The thread blocks of the proposed parallel model
are given in Table 2.

Table 2. The thread blocks of the proposed parallel model implemented on GPU.

Figure No. Description

Figure 4 The thread block of the proposed parallel model
Figure 5 That of cold fluid for the counter-flow heat exchanger
Figure 6 That of hot fluid side for the counter-flow heat exchanger
Figure 7 That of cold fluid side for the parallel-flow heat exchanger
Figure 8 That of hot fluid side for the parallel-flow heat exchanger

The thread blocks of the proposed parallel model (2) implemented on GPU are shown
in Figure 4.
where

Fk =

⎛⎜⎜⎜⎝
f1
f2
...

fN

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
f (Δh)

f (2(Δh))
...

f (N(Δh))

⎞⎟⎟⎟⎠ (40)

B =

⎛⎜⎜⎜⎜⎜⎝
b0
b1
b2
...

bN−1

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

−Γ(q+1)
Γ(2)Γ(q) 0 . . . 0

Γ(q+1)
Γ(3)Γ(q−1)

−Γ(q+1)
Γ(2)Γ(q) . . . 0

...
...

...
...

(−1)N Γ(q+1)
Γ(N+1)Γ(q−N+1)

(−1)(N−1)Γ(q+1)
Γ(N)Γ((q−N+1)) . . . −Γ(q+1)

Γ(2)Γ(q)

⎞⎟⎟⎟⎟⎟⎟⎠ (41)

Figure 4. The thread blocks of the proposed parallel model.
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Df rac =

⎛⎜⎜⎜⎝
D f0
D f1

...
D fN−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
Dq

t f (Δh)
Dq

t f (2(Δh))
...

Dq
t f (N(Δh))

⎞⎟⎟⎟⎠ (42)

Fk−1 =

⎛⎜⎜⎜⎜⎜⎝
f0
f1
f2
...

fN−1

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
f (0)

f (Δh)
...

f ((N − 1)(Δh))

⎞⎟⎟⎟⎠ (43)

where Fk−1 is a parallel input data, Df rac is a parallel input derivation data, B is a matrix
relation to the order of fractional order derivation, Fk is a parallel output data.

The thread blocks of the proposed parallel model for the spiral-plate counter-flow
exchanger (32)–(34) are as shown in Figures 5 and 6.

Figure 5. The thread blocks of the proposed parallel model in cold fluid for the counter-flow heat
exchanger .

Figure 6. The thread blocks of the proposed parallel model in hot fluid for the counter-flow heat
exchanger.
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Here:

Tck−1 =

⎛⎜⎜⎜⎝
Tc(0)

Tc(Δθ)
...

Tc((N − 1)Δθ)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
Tc,in
Tc1

...
TcN−1

⎞⎟⎟⎟⎠ (44)

T̃hk−1 = HThk−1 =

⎛⎜⎜⎜⎝
ThN

ThN−1
...

Th1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
Th,out
ThN−1

...
Th1

⎞⎟⎟⎟⎠ (45)

Tck =

⎛⎜⎜⎜⎝
Tc(Δθ)

Tc(2(Δθ))
...

Tc(N(Δθ))

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
Tc1
Tc2

...
Th,out

⎞⎟⎟⎟⎠ (46)

In Figure 5, T̃hk−1 and Tck−1 is parallel input data, respectively. Tck is a parallel output data.

Thk−1 =

⎛⎜⎜⎜⎝
Th(0)

Th(Δθ)
...

Th((N − 1)Δθ)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
Th,in
Th1

...
ThN−1

⎞⎟⎟⎟⎠ (47)

T̃ck−1 = HTck−1 =

⎛⎜⎜⎜⎝
TcN

TcN−1
...

Tc1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
Tc,out
TcN−1

...
Tc1

⎞⎟⎟⎟⎠ (48)

Thk =

⎛⎜⎜⎜⎝
Th(Δθ)

Th(2(Δθ))
...

Th(N(Δθ))

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
Th1
Th2

...
Tc,out

⎞⎟⎟⎟⎠ (49)

In Figure 6, T̃ck−1 and Thk−1 is parallel input data, Thk is a parallel output data.
The thread blocks of proposed parallel model for the spiral-plate counter-flow exchanger

(37)–(39) are as shown in Figures 7 and 8.
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Figure 7. The thread blocks of the proposed parallel model in cold fluid for the parallel-flow heat
exchanger.

Here:

Thk−1 =

⎛⎜⎜⎜⎝
Th(0)

Th(Δθ)
...

Th((N − 1)(Δθ))

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
Th,in
Th1

...
ThN−1

⎞⎟⎟⎟⎠ (50)

Tck−1 =

⎛⎜⎜⎜⎝
Tc(0)

Tc(Δθ)
...

Tc((N − 1)Δθ)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
Tc,in
Tc1

...
TcN−1

⎞⎟⎟⎟⎠ (51)

Tck =

⎛⎜⎜⎜⎝
Tc(Δθ)

Tc(2(Δθ))
...

Tc(N(Δθ))

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
Tc1
Tc2

...
Th,out

⎞⎟⎟⎟⎠ (52)

Thk =

⎛⎜⎜⎜⎝
Th(Δθ)

Th(2(Δθ))
...

Th(N(Δθ))

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
Th1
Th2

...
Tc,out

⎞⎟⎟⎟⎠ (53)
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Figure 8. The thread blocks of the proposed parallel model in hot fluid for the parallel-flow heat
exchanger.

In Figure 7, Thk−1 and Tck−1 is a parallel input data, respectively. Tck is a parallel output data.
In Figure 8, Tck−1 and Thk−1 is a parallel input data, respectively. Thk is a parallel output

data. Fh =
FZkA

QL1chρh
, Fc =

FZkA
QL2ccρc

, Tc,in, Tc,out, Th,in, and Th,out is the input temperature and

output temperature in cold fluid, the input temperature and the output temperature in hot
fluid, respectively. Z−1 is a sampling delay time.

Bh =

⎛⎜⎜⎜⎝
bh0
bh1

...
bhN−1

⎞⎟⎟⎟⎠ (54)

Bc =

⎛⎜⎜⎜⎝
bc0
bc1
...

bcN−1

⎞⎟⎟⎟⎠ (55)

Therefore, parallel fractional order derivative model for the spiral-plate heat exchanger
is a parallel model with the parallel input and output data. It has high execution efficiency
implemented on GPU as shown Figures 4–8.

4.3. The Comparison of Execution Time for the Proposed Parallel Model on CPU and GPU

The proposed parallel model is implemented on CPU and GPU. Here, GPU (Gefore
GTX 1080TI) is used to execute the proposed parallel model. In Figure 9, the comparison
of execution time for the proposed parallel model on CPU and GPU is given. where Δθ is
discretisation angle for the proposed parallel model. N is Discrete total. It shows that as
the N increases, the execution time on the CPU increases, but the execution time on the
GPU changes little.
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Figure 9. The comparison of execution time for the proposed parallel model on CPU and GPU.

5. Simulation on the Proposed Parallel Model for the Spiral-Plate Heat Exchanger

In this section, it is analysed for the relationships between the output temperature in
cold fluid and the fractional orders q1, q2 for the proposed parallel model for the spiral-plate
heat exchanger, the volume flow rate in hot fluid and the volume flow rate in cold fluid.

5.1. Simulation Conditions

Simulation parameters of the spiral-plate heat exchanger are shown in Table 3.

Table 3. Simulation parameters of the spiral-plate heat exchanger.

Meaning Symbol Value

The densities of the two fluids ρc, ρh 1000 Kg/m3

The specific heat capacity of the two fluids cc, ch 4.2 KJ/(Kg · ◦C)
The input temperature of cold fluid Tc,in 20 ◦C
The input temperature of hot fluid Th,in 50 ◦C
Thermal conductivity of SUS304 λ 16.7 W/(m ◦C)
Heat transfer coefficients of the two fluids hh, hc 366 w/m2 · K
The orders for fractional order derivative q1, q2 0.9–1.02
The volume flow rate of hot fluid QL1 1–7 L/min
The volume flow rate of cold fluid QL2 1–7 L/min
Correction factor F 1.8
Simulation time t [0, 12] s

5.2. Simulation on the Proposed Parallel Model for the Spiral-Plate Counter-Flow Heat Exchanger

The index of all figures for the relationships between the output temperature of cold
fluid and the flow rates of hot fluid, cold fluid for the proposed parallel model of the
spiral-plate counter-flow heat exchanger is shown in Table 4.

Table 4. The relationships between the output temperature of cold fluid and the volume flow rates of
hot fluid, cold fluid for the proposed parallel model for the spiral-plate counter-flow heat exchanger.

Figure No. Descrption

Figure 10 q1, q2 = 0.9, 0.92, 0.94, 0.96, 0.98, 1.0
Figure 11 q1 , q2 = 1.004, 1.008, 1.01, 1.02
Figure 12 QL1 = 1 L/min, QL2 = 1, 3, 5, 7 L/min
Figure 13 QL1 = 3 L/min, QL2 = 1, 3, 5, 7 L/min
Figure 14 QL1 = 5 L/min, QL2 = 1, 3, 5, 7 L/min
Figure 15 QL1 = 7 L/min, QL2 = 1, 3, 5, 7 L/min
Figure 16 QL1 = 1, 3, 5, 7 L/min, QL2 = 1 L/min
Figure 17 QL1 = 1, 3, 5, 7 L/min, QL2 = 3 L/min
Figure 18 QL1 = 1, 3, 5, 7 L/min, QL2 = 5 L/min
Figure 19 QL1 = 1, 3, 5, 7 L/min, QL2 = 7 L/min
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5.2.1. Simulation with the Different Fractional Orders as q1, q2 ≤ 1

The relationships between the output temperature in cold fluid and the fractional
orders as q1, q2 ≤ 1 are shown in Figure 10. Those show that the output temperature
increases with the fractional orders q1, q2 rises up as shown in Figure 10.

Figure 10. The output temperature in cold fluid as q1, q2 ≤ 1.

5.2.2. Simulation with the Different Fractional Orders as q1, q2 > 1

The relationships between the output temperature in cold fluid and the different
fractional orders as q1, q2 > 1 are shown in Figure 11. It shows when q1, q2 = 1.025, the
output temperature in cold fluid is unstable.

Figure 11. The output temperature in cold fluid as q1, q2 > 1.

5.2.3. The Relationships between the Output Temperature in Cold Fluid and the Different
Volume Flow Rate of Hot Fluid

The relationships between the output temperature in cold fluid and the different
volume flow rate of hot fluid are shown in Figures 12–15. Those figures show that the
output temperature rises with the volume flow rate of hot fluid increases.
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Figure 12. The output temperature in cold fluid with QL1 = 1 L/min.

Figure 13. The output temperature in cold fluid with QL1 = 3 L/min.

Figure 14. The output temperature in cold fluid with QL1 = 5 L/min.
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Figure 15. The output temperature in cold fluid with QL1 = 7 L/min.

5.2.4. The Relationships between the Output Temperature in Cold Fluid and the Different
Volume Flow Rate of Cold Fluid

The relationships between the output temperature in cold fluid and the different volume
flow rate of cold fluid are shown in Figures 16–19. Those figures show that the output
temperature in cold fluid goes down with the volume flow rate of cold fluid increases.

Figure 16. The output temperature in cold fluid with QL2 = 1 L/min.

Figure 17. The output temperature in cold fluid with QL2 = 3 L/min.
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Figure 18. The output temperature in cold fluid with QL2 = 5 L/min.

Figure 19. The output temperature in cold fluid with QL2 = 7 L/min.

5.3. Simulation on the Proposed Parallel Model for the Spiral-Plate Parallel-Flow Heat Exchanger

The index of all figures for the relationships between the output temperature of cold
fluid and the flow rates of hot fluid, cold fluid for the proposed parallel model of the
spiral-plate parallel-flow heat exchanger is shown in Table 5.

Table 5. The relationships between the output temperature of cold fluid and the flow rates of hot
fluid, cold fluid for the proposed parallel model of the spiral-plate parallel-flow heat exchanger.

Figure No. Descrption

Figure 20 q1, q2 = 0.9, 0.92, 0.94, 0.96, 0.98, 1.0
Figure 21 q1 , q2 = 1.004, 1.008, 1.01, 1.02
Figure 22 QL1 =1 L/min, QL2 = 1, 3, 5, 7 L/min
Figure 23 QL1 =3 L/min, QL2 = 1, 3, 5, 7 L/min
Figure 24 QL1 =5 L/min, QL2 = 1, 3, 5, 7 L/min
Figure 25 QL1 =7 L/min, QL2 = 1, 3, 5, 7 L/min
Figure 26 QL1 = 1, 3, 5, 7 L/min, QL2 = 1 L/min
Figure 27 QL1 = 1, 3, 5, 7 L/min, QL2 = 3 L/min
Figure 28 QL1 = 1, 3, 5, 7 L/min, QL2 = 5 L/min
Figure 29 QL1 = 1, 3, 5, 7 L/min, QL2 = 7 L/min

5.3.1. Simulation with the Different Fractional Orders as q1, q2 ≤ 1

The relationships between output temperature in cold fluid and the fractional orders
as q1, q2 ≤ 1 are shown in Figure 20. They show that the output temperature rises with the
fractional orders q1, q2 increases as shown in Figure 20.
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Figure 20. The output temperature in cold fluid as q1, q2 ≤ 1.

5.3.2. Simulation with the Different Fractional Orders as q1, q2 > 1

The relationships between the output temperature in cold fluid and the fractional
orders as q1, q2 > 1 are shown in Figure 21. When q1, q2 is 1.025, the output temperature in
cold fluid is unstable.

Figure 21. The output temperature in cold fluid as q1, q2 > 1.

5.3.3. The Relationships between the Output Temperature of Cold Fluid and the Different
Volume Flow Rate of Hot Fluid

The relationships between the output temperature in cold fluid and the different
volume flow rate of hot fluid are shown in Figures 22–25. Those figures show that output
temperature in cold fluid rises with the volume flow rate of hot fluid increases.

Figure 22. The output temperature in cold fluid with QL1 = 1 L/min.
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Figure 23. The output temperature in cold fluid with QL1 = 3 L/min.

Figure 24. The output temperature in cold fluid with QL1 = 5 L/min.

Figure 25. The output temperature in cold fluid with QL1 = 7 L/min.

5.3.4. The Relationships between the Output Temperature of Cold Fluid and the Different
Volume Flow Rate of Cold Fluid

The relationships between the output temperature in cold fluid and the different
volume flow rate of cold fluid are shown in Figures 26–29. Those figures show that the
output temperature in cold fluid drops down with the volume flow rate of cold fluid
increases.
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Figure 26. The output temperature in cold fluid with QL2 = 1 L/min.

Figure 27. The output temperature in cold fluid with QL2 = 3 L/min.

Figure 28. The output temperature in cold fluid with QL2 = 5 L/min.
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Figure 29. The output temperature in cold fluid with QL2 = 7 L/min.

6. Conclusions

A parallel fractional order derivative model and the problem statement are introduced
in this paper. Then, the fractional order derivative model for the spiral-plate heat exchanger
is constructed by mathematic analysis and extending from classical integer order derivative.
Further, the parallel fractional order derivative model for the spiral-plate heat exchanger is
constructed by considering the merit of GPU. Finally, the parallel fractional order derivative
model for the spiral-plate heat exchanger is simulated. Simulations show the relationships
between the output temperature of heated fluid and the fractional orders of the two fluids,
the input volume flow rate of cold fluid, and the input volume flow rate of cold fluid,
respectively.
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Appendix A

Definition A1 ([10]). (the Caputo’s fractional order derivative)

C
a Dq

t f (t) =

⎧⎪⎪⎨⎪⎪⎩
1

Γ(n−q)

∫ t
a

f (n)(t)
(t − τ)n−q−1 dτ, n − 1 < q < n

dn f (t)
dtn , q = n

(A1)

where Γ(·) is gamma function defined by Γ(x) =
∫ ∞

0 e−ttx−1 and n is a positive integer number.

Definition A2 ([10]). (the Grunwald-Letnikov’s fractional order derivative)

GL
a Dq

t f (t) = lim
Δh→0

(Δh)−q

[ t − a
Δh

]
∑
j=0

(−1)j Γ(q + 1)
Γ(j + 1)Γ(q − j + 1)

f (t − j(Δh)) (A2)

where [·] means the integer part.
(A1) and (A2) are equivalent if f (·) is differentiable. (A1) is a continues type definition of

fractional order derivative. (A2) is a non-continues type definition of fractional order derivative.

171



Axioms 2021, 10, 344

(A2) is implemented easily on computer. (A2) is used in this paper. (A1) is easy to analyse system
performance such as stability, tracking, etc. for the fractional order control system.

If Δh ≈ 0 then

GL
0 Dq

t f (t) ≈ (Δh)−q
N

∑
j=0

(−1)j Γ(q + 1)
Γ(j + 1)Γ(q − j + 1)

f (t − j(Δh)) (A3)

where N is [ t−a
Δh ].
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Abstract: Malaria is a deadly human disease that is still a major cause of casualties worldwide. In
this work, we consider the fractional-order system of malaria pestilence. Further, the essential traits
of the model are investigated carefully. To this end, the stability of the model at equilibrium points is
investigated by applying the Jacobian matrix technique. The contribution of the basic reproduction
number, R0, in the infection dynamics and stability analysis is elucidated. The results indicate that
the given system is locally asymptotically stable at the disease-free steady-state solution when R0 < 1.
A similar result is obtained for the endemic equilibrium when R0 > 1. The underlying system shows
global stability at both steady states. The fractional-order system is converted into a stochastic model.
For a more realistic study of the disease dynamics, the non-parametric perturbation version of the
stochastic epidemic model is developed and studied numerically. The general stochastic fractional
Euler method, Runge–Kutta method, and a proposed numerical method are applied to solve the
model. The standard techniques fail to preserve the positivity property of the continuous system.
Meanwhile, the proposed stochastic fractional nonstandard finite-difference method preserves the
positivity. For the boundedness of the nonstandard finite-difference scheme, a result is established.
All the analytical results are verified by numerical simulations. A comparison of the numerical
techniques is carried out graphically. The conclusions of the study are discussed as a closing note.

Keywords: stochastic epidemic model; malaria infection; stochastic generalized Euler; nonstandard
finite-difference method; positivity; boundedness

MSC: 65M06; 65M12; 35K15; 35K55; 35K57

1. Introduction

Malaria is a Latin word which means “foul air”. Biologically, malaria is an ailment due
to the microorganism plasmodium, which is a bug found in the mosquito. It is also observed
that not all mosquitoes transmit malaria; only the female mosquito Anopheles can inject this
plasmodium into the human body, causing the fatal malaria disease. Its incubation period
varies from 7 to 30 days, and research shows that five types of malarial parasites are found,
namely, P. malarie, P. ovale, P. vivax, P. falciparum and P. knowles. In particular, P. falciparum is
extremely dangerous and fatal, causing a wide range of physical symptoms, such as fever,
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flu, severe chills, vomiting, muscle aches, headache, nausea, diarrhea, tiredness, low blood
pressure, respiratory disorder, cerebral disorder, and hemoglobin in the urine, with some
cases showing jaundice and anemia.

Physicians knew about this disease at least 2000 years ago, and noted that it is very
common in marshy areas, where stagnant water is found frequently. It was assumed that
water and malaria have some relation, and some volunteers at that time drank from pond
water but they did not show any symptoms. A treatment for malaria was discovered
accidentally in the seventeenth century, when Americans started to use the bark of the
plant Quina to cure this disease in America. In 1880, the name plasmodium was given to
this parasite because it resembled the multinucleated cells of the sludge type. Nowadays,
the vaccine of malaria is used to prevent it, but it is not so effective due to the fact that
plasmodium has a very complicated life cycle. Trials and experiments are still in progress.
Currently, the vaccine RTSS is used, but it is still rather inefficient.

In America, about 2000 cases of malaria are diagnosed every year. According to
the World Health Organization, 2.29 billion cases of malaria were reported in 2019, and
2.28 billion cases were reported in 2018. In 2019, there were 409,000 deaths. In 2018,
411,000 causalities were recorded, worldwide. In 2019, 23% of deaths were calculated in
Nigeria, 11% in Congo, 5% in Tanzania, and 45% in Niger. The only region in the world
which is free of malaria in northern Australia. In total, 94% of cases were reported in Africa
which was the highest ratio in the world. Children under the age of 5 years are at high risk;
about 67% of children died worldwide in 2019. In Pakistan, during the monsoon season,
the ratio of malarial patients remains at its peak. It is calculated that about 300,000 cases
are reported every year in Pakistan. Some cautions are taken to control malaria, such as
wearing full clothes during summer, using different mosquito-repellent lotions, using a net
on windows and doors, having a proper sanitation system for water, using nets at night
while sleeping, using different medicated body oils, etc.

In 2020, Cristhian et al. proposed a SIR model to inhibit malaria [1]. In 2020,
Olaniyi et al. presented an SEIR mathematical model to control malaria among travelers [2].
In 2020, Kim et al. modulated an SEI model to save Korean people from Plasmodium
vivax [3]. Ibrahim et al. introduced an SEIR model to control the transmission of malaria
disease using awareness techniques [4]. In 2020, Baihaqi et al. proposed an SEIRS p-model
to investigate how malaria disease spreads among humans [5]. In 2020, Traore et al. pro-
posed an ELPN model by describing different stages of mosquitoes that are involved in
malaria transmission [6]. Djidjou et al. formulated an SEIR model to study the effects
of weather conditions for spreading malaria disease [7]. That year, Pandey presented a
mathematical model to describe how domestic and industrial effluents play a major role in
malaria spreading [8]. In 2019, Song et al. introduced a malaria-dynamics mathematical
model [9]. In turn, Ogunmiloro presented a model to simulate the infectivity of plasmod-
ium and toxoplasma [10]; Koutou et al. proposed an ELPA model to study the relationship
of malaria with mosquito population [11]; and Bakary et al. suggested a model to analyze
the impact of frequent biting of mosquitoes and blood transfusions [12].

Beretta et al. studied mathematically the mortality in children and adults caused
by malaria [13]. Rafia et al. observed the consequences of vaccination on the dynam-
ics of malaria [14]. In 2017, Traoré et al. presented a model to estimate the variation in
the intensity of malaria epidemic by considering the seasonal effects and frequent bite
rate of mosquitoes [15]. In 2017, Mojeeb et al. presented an SEIR model to investigate
the ways to control the mosquito population and eradication of malaria outbreaks [16].
Olaniyi suggested a system to demonstrate the non-linearity in malarial propagation [17].
In 2011, Mandal et al. projected a system to understand the propagation of malaria dis-
ease [18], Chitnis developed an SEIR model to check the propagation of malaria by infec-
tious mosquitoes [19] and Smith et al. presented a scientific design to predict the presence
of malaria in a human population [20]. The purpose of this work is to propose a stochastic
compartmental system using fractional operators to model the spreading of more general
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epidemics in a human population. Our scheme will be able to preserve various important
properties of the solutions [21–25].

2. Mathematical Models

In this section, we introduce the extended stochastic fractional epidemic model [26].
To start with, we quote some basic definitions of fractional calculus.

Definition 1. The Riemann–Liouville fractional derivative of ψ : R → R of order α > 0 is
defined as

RLDα
0 ψ(t) =

1
Γ(k − α)

dk

dtk

∫ t

0

ψ(s)
(t − s)k−α−1 ds, ∀t ∈ R, (1)

where k = [α] + 1, k − 1 < α < k and Γ is the gamma function. Meanwhile, the respective Caputo
fractional derivative of order α is given by

C
0 Dα

t ψ(t) =
1

Γ(k − α)

∫ t

0
(t − s)k−α−1 dk

dtk F (s)ds (2)

To start with, let us consider the following compartmental epidemic model studied
in [26]:

dSh(t)
dt1

= μhNh(t)− βhSh(t)
(

Iv(t)
Nv(t)

)
− αhSh(t), (3)

dIh(t)
dt1

= βhS(t)h Iv(t)− (δh + αh + γh)Ih(t), (4)

dRh(t)
dt1

= γh Ih(t)− αhRh(t), (5)

dSv(t)
dt1

= μV Nv(t)− βvSv(t)
Ih(t)
Nh(t)

− αvSv(t), (6)

dIv(t)
dt1

= βvSv
Ih(t)
Nh(t)

− αv Iv(t). (7)

In the above system, Sh(t) describes the susceptible population at time t, Ih(t) is the
infected population, Rh(t) is the number of recovered individuals, Sv(t) is the susceptible
mosquitoes, Iv(t) is the number of infected mosquitoes, Nh(t) is the population size, and
Nv(t) is the total mosquito population. Meanwhile, μh is the per capita birth rate of human
individuals [time−1], αh is the per capita natural death rate for human individuals [time−1],
δh denotes the per capita disease-induced death rate for human population [time−1], βh is
the contact rate of human population [time−1], γh represents the per capita recovery rate
of humans [time−1], μv denotes the per capita birth rate of mosquitoes [time−1], αv is the
per capita natural death rate of mosquitoes [time−1], and βv is the mosquito contact rate
[time−1].

To generalize systems (3)–(7), we use fractional operators by a scaling of the model.
From (3),

1
μhNh

dSh
dt1

=
μhNh
μhNh

− βh
μh

(
Sh
Nh

)(
Iv

Nv

)
−
(

αh
μh

)(
Sh
Nh

)
, (8)

which leads to the equation
dsh
dt

= 1 − βshiv − α1sh, (9)

where sh = Sh
Nh

, iv = Iv
Nv

, α1 = αh
μh

, β = βh
μh

and t = t1μh. Similarly,
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dih
dt

= βshiv − (γ + α1)ih, (10)

div

dt
= v(1 − iv)− δiv. (11)

Here, γ = δh+γh
μh

, v = βv
Nv

, δ = αv
μv

, Rh = Nh − Sh − Ih, and Sv = Nv − Iv. Finally, the
following time-fractional system results:

Dα
t sh = 1 − βαsh(t)iv(t)− αα

1sh(t), (12)

Dα
t ih = βαsh(t)iv(t)− (αα

1 + γα)ih(t), (13)

Dα
t iv = vα(1 − iv(t))ih(t)− δαiv(t). (14)

In this system, we convey that Dα
t = C

0 Dα
t and, for simplicity, the birth rate and

death are same. Moreover, the solution region for systems (12)–(14) is Ω = {(sh, ih, iv) :
sh + ih + iv ≤ 1, sh ≥ 0, ih ≥ 0, iv ≥ 0}.

Finally, we investigate a stochastic extension of the fractional epidemic models (12)–(14)
following various stochastic approaches available in the literature [27–30]. More precisely,
we consider the following system of stochastic differential equations, which extends our
fractional epidemic model:⎧⎪⎨⎪⎩

Dα
t sh(t) = 1 − βαsh(t)iv(t)− αα

1sh(t) + σ1sh(t)dB1(t),

Dα
t ih(t) = βαsh(t)iv(t)− (αα

1 + γα)ih(t) + σ2ih(t)dB2(t),

Dα
t iv(t) = vα(1 − iv)ih(t)− δαiv(t) + σ3iv(t)dB3(t).

(15)

Here, σ1, σ2, and σ3 are stochastic perturbations of each state variable and Bm(t) is the
autonomous Brownian motion for each m = 1, 2, 3.

3. Mathematical Analysis

This part is devoted to obtain the equilibrium points of steady states and stability
analysis of systems (12)–(14). To that end, we set Dα

t sh(t) = Dα
t ih(t) = Dα

t iv(t) = 0.
Then, there are two equilibria of the epidemic models (12)–(14), which are the disease-free
E0 = (sh0 , ih0 , iv0) = (1, 0, 0), and the disease-existing steady state E1 = (s∗h, i∗h , i∗v). It is easy
to check algebraically that

i∗v =
vαi∗h

vαi∗h + δα
, (16)

s∗h =
(αα

1 + γα)(vαi∗h + δα)

βαvα
, (17)

i∗h =
βαvα − αα

1(α
α
1 + γα)δα

vα(αα
1 + γα)(βα + αα

1)
. (18)

On the other hand, to obtain the basic reproductive number, we apply the next
generation approach. This method assures that the following identity is satisfied:[

i∗h
i∗v

]
= F

[
ih
iv

]
− V

[
ih
iv

]
, (19)

where

F =

[
0 βαsh
0 0

]
, V =

[
(αα

1 + γα) 0
−vα δα

]
. (20)
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As a consequence,

FV−1 =
1

δα(αα
1 + γα)

[
βαshvα βαshαα + vα

0 0

]
(21)

We conclude that the basic reproductive number is

R0 =
βαvα

δα(αα
1 + γα)

. (22)

In what follows, we require the Jacobian associated to ouR system fractional differential
equations. Its determination is a straightforward task, and it can be readily checked that it
is given by

J(sh, ih, iv) =

⎡⎣−βαiv − αα
1 0 −βαsh

βαiv −(αα
1 + γα) βαsh

0 vα(1 − iv) −vαih − δα

⎤⎦ (23)

Theorem 1. The disease-free steady-state E0 is locally asymptotically stable when R0 < 1.

Proof. Let I3 represent the identity matrix of size 3 × 3. In order to study the stability at
the point E0(1, 0, 0), observe firstly that

|J(1, 0, 0)− λI3| =
∣∣∣∣∣∣
−αα

1 − λ 0 −βα

0 −(αα
1 + γα)− λ βα

0 v −δα − λ

∣∣∣∣∣∣ = 0, (24)

if and only if λ satisfies λ = −αα
1 or the quadratic equation

λ2 + (αα
1 + γα + δα)λ + δααα

1 + δαγα − vαβα = 0. (25)

By using Routh–Hurwitz criteria for second-order polynomials, we conclude that the
system is locally asymptotically stable at E0 if R0 < 1.

Theorem 2. If R0 > 1, then the system is locally asymptotically stable at E1.

Proof. Proceeding as in the previous theorem, it follows that the characteristic equation
associated to the Jacobian matrix at the equilibrium point is given by

λ3 + λ2(−A − D − G) + λ(AD + AG + DG − EF)− ADG − BCF + AEF = 0, (26)

where A = −βαiv − αα
1, B = −βαsh, C = βαiv, D = −(αα

1 + γ), E = βαsh, F = vα(1 − iv)
and G = −vαih − δα. The conclusion readily follows now from the Routh–Hurwitz criterion
for cubic polynomials.

The following lemma is provided to improve the global stability analysis of the system
(12)–(14).

Lemma 1 (Leon [31]). Let x : [0, ∞) → R+ be a continuous function, and let t0 ≥ 0. Then, for
any time t ≥ t0, α ∈ (0, 1) and x∗ ∈ R+, the following inequality holds:

Dα

[
x(t)− x∗ − x∗ln

x(t)
x∗

]
≤
(

1 − x∗

x(t)

)
Dαx(t). (27)

We tackle now the global asymptotic stability of the system (12)–(14) at the equilibrium
points.

Theorem 3. If R0 < 1, then the system is globally asymptotically stable at E0.
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Proof. Firstly, let us define the Lyapunov functional

G =

(
sh + (ih + iv)− sh0 − sh0 log

sh
sh0

)
=

(
sh − sh0 − sh0 log

sh
sh0

)
+ ih + iv. (28)

Using Lemma 1 now, we obtain that

Dα
t G ≤

(
sh − sh0

sh

)
Dα

t sh + Dα
t ih + Dα

t ih

=

(
sh − sh0

sh

)
(1 − βαshiv − αα

1sh) + βαshiv − (αα
1 + γα)ih + v(1 − iv)ih − δαiv

=
−(sh − sh0)

2

shsh0

− (αα
1 + γα)

(
ih − βαshiv

αα
1 + γα

)
− δα

(
iv − vα(1 − iv)ih

δα

)
.

(29)

Clearly, Dα
t G < 0 if R0 < 1. Meanwhile, Dα

t G = 0 if sh = 1, ih = 0 and iv = 0. We
conclude that the system is globally asymptotically stable at the disease-free equilibrium
point when R0 < 1.

Theorem 4. The system (12)–(14) is globally asymptotically stable at E1 when R0 > 1.

Proof. The proof is similar to that of the previous theorem. In this case, we construct the
Lyapunov functional at E1 as

G =

(
sh − s∗h − s∗hlog

sh
s∗h

)
+

(
ih − i∗h − i∗hlog

ih
i∗h

)
+

(
iv − i∗v − i∗vlog

iv
i∗v

)
. (30)

Using Lemma 1 and proceeding as in the proof of the preceding theorem, it follows
that

Dα
t G ≤

(
sh − s∗h

sh

)
Dα

t sh +

(
ih − i∗h

ih

)
Dα

t ih +

(
iv − i∗v

iv

)
Dα

t iv

= − (sh − s∗h)
2

(shs∗h)
− βαshiv(ih − i∗h)

2

(ihi∗h)
− vih(iv − i∗v)2

ivi∗v
.

(31)

Observe that Dα
t G ≤ 0 when R0 > 1. Moreover, Dα

t G = 0 if sh = s∗h, ih = i∗h and
iv = i∗v , which means that the system is globally asymptotically stable at the endemic
equilibrium solution.

Before closing this section, we investigate the sensitivity of the parameters of the
fractional epidemic model. To that end, we employ the derivative based local method to
take the partial derivatives of outputs with respect to inputs. Let

R0 =
βv

(α1 + γ)δ
. (32)

Observe that the following are satisfied:

Aβ =
β

R0
× ∂R0

∂β
= 1 > 0, (33)

Av =
v

R0
× ∂R0

∂v
= 1 > 0, (34)

Aα1 =
α1

R0
× ∂R0

∂α1
= −(

α1

α1 + γ
) < 0, (35)

Aδ =
δ

R0
× ∂R0

∂δ
= −1 < 0, (36)

Aγ =
γ

R0
× ∂R0

∂γ
= − γ

(α1 + γ)
< 0. (37)
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As a conclusion, β and v are sensitive, and all the remaining parameters concerning the
reproduction number are not sensitive.

4. Numerical Model

We present three generalized stochastic fractional techniques to solve the stochas-
tic fractional-order system (15), namely, Euler, Runge–Kutta and a nonstandard finite-
difference (NSFD) scheme. The first two are already standard techniques which are well
known in the literature [32,33]. The third model is a new technique which is constructed
using a non-local approach [34]. Throughout, Δt representS the temporal step-size.

Stochastic Euler method:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sn+1
h = sn

h +
(Δt)α

Γ(α + 1)
[1 − βαsn

h in
v − αα

1sn
h + σ1ΔB1sn

h ],

in+1
h = in

h +
(Δt)α

Γ(α + 1)
[βαsn

h in
v − (αα

1 + γα)in
h + σ2ΔB2in

h ],

in+1
v = in

v +
(Δt)α

Γ(α + 1)
[vα(1 − in

v )i
n
h − δαin

v + σ3ΔB3in
v ].

(38)

Stochastic Runge–Kutta method:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωn+1 = ωn +
1
6
[M1 + 2M2 + 2M3 + M4],

M1 = (Δt)φ(tn, ωn) + (Δt)σΔBψ(tn, ωn),

M2 = (Δt)φ
(

tn +
1
2

Δt, ωn +
1
2

M1

)
+ (Δt)σΔBψ

(
tn 1

2
Δt, ωn,

1
2

M1

)
,

M3 = (Δt)φ
(

tn +
1
2

Δt, ωn +
1
2

M2

)
+ (Δt)σΔBψ

(
tn 1

2
Δt, ωn,

1
2

M2

)
,

M4 = (Δt)φ(tn + h̄, ωn + M3) + (Δt)σΔBψ(tnh̄, ωn, M3).

(39)

NSFD method: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sn+1
h =

sn
h +

(Δt)α

Γ(α+1) [1 + σ1ΔB1sn
h ]

1 + hα

Γ(α+1) (βαin
v + αα

1)
,

in+1
h =

in
h +

(Δt)α

Γ(α+1) [β
αsn

h in
v + σ2ΔB2in

h ]

1 + hα

Γ(α+1) (α
α
1 + γα)

,

in+1
v =

in
v +

(Δt)α

Γ(α+1) [v
αin

h + σ3ΔB3in
v ]

1 + hα

Γ(α+1) (v
αin

h + δα)
.

(40)

Next, we establish the most important properties of the NSFD method.

Theorem 5 (Positivity). The deterministic form of system (40) preserves the non-negativity of the
solution.

Proof. All the equations in the system (40) contain no negative term. So, if the initial condi-
tions are non-negative, then the numerical solutions remain non-negative, as desired.

Theorem 6 (Boundedness). Suppose that the initial data of (40) are nonnegative. Then, there
exists a constant K(n, α) ≥ 0, such that sn

h , in
h , in

v ∈ [0, K(n, α)], for each n ∈ N.

Proof. By adding and rearranging the equations of the numerical model (40), we readily
check that
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sn+1
h + in+1

h + in+1
v

≤ sn+1
h

[
1 +

(Δt)α(βαin
v + αα

1)

Γ(α + 1)

]
+ in+1

h

[
1 +

(Δt)α(αα
1 + γα)

Γ(α + 1)

]
+ in+1

v

[
1 +

(Δt)α(vαin
h + δα)

Γ(α + 1)

]
= (sn

h + in
h + in

v ) +
(Δt)α

Γ(α + 1)
[1 + σ1ΔB1sn

h + βαsn
h in

v + σ2ΔB2in
h + vαin

h + σ3ΔB3in
v ].

(41)

The proof is established using mathematical induction, letting K(n + 1, α) be the right
end of this chain of identities and inequalities.

Next, we examine the stability of the NSFD system (40).

Definition 2 (Arenas et al. [21]). The discrete system (40) is asymptotically stable if there
exist constants K1, K2 and K3 with the property that sn+1

h ≤ K1, in+1
h ≤ K2 and in+1

v ≤ K3 as
α → 1−.

Theorem 7. Under the hypotheses of Theorem 6, the system (40) is asymptotically stable.

Proof. The conclusion of this result is a direct consequence of Theorem 6.

Before closing this section, we provide some numerical simulations for the stochastic
fractional-order epidemic model (15). To that end, we fix the model parameters as given
by Table 1 (see [26]). To start with, Figure 1 depicts the convergence behavior of each
compartment of the model at the endemic equilibrium (EE). The behavior of the graphs is
investigated for various values of α. Each graph adopts a random path to reach the EE at
the temporal step-size h = 0.1. When the step-size is increased, the infected population
may diverge at each value of the non-integer parameter. We conclude from this that the
generalized stochastic Euler method fails to illustrate the actual behavior of the disease
dynamics.

Table 1. Model parameters employed in the simulations of this work. Here, DFE stands for disease-
free equilibrium, and EE for endemic equilibrium.

Parameters Values

δα 0.6
αα

1 1
βα (DFE) 3
βα (EE) 3.5

γα 0.6
vα 0.3
σ1 0.09
σ2 0.008
σ3 0.007
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Figure 1. The graphical behavior of each sub-population is presented in the (a) numerical solution
of sh, (b) numerical solution of ih, (c) numerical solution of iv and (d) numerical solution of ih, with
different values of α, using the generalized fractional stochastic Euler method.

In a second experiment, we used the generalized stochastic Runge–Kutta method
to solve the same problem of the last paragraph. The results are shown in Figure 2,
which provides the convergence behavior of each compartment of the model at endemic
equilibrium (EE) for various values of α. When the step-size is increased above Δt = 0.1, the
infected population may diverge at each value of α. Again, we conclude that this method
is not a reliable tool to reflect the actual behavior of the model. On the contrary, Figure 3
provides two runs (left and right columns) obtained by means of the generalized stochastic
NSFD. The results show that this technique converges to the equilibrium solution for each
of the values of α considered, using steps of sizes between Δt = 0.1 and Δt = 100, and at
a low computational cost. In that sense, this method is more robust and reliable than the
standard approaches used for comparison purposes.
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Figure 2. The graphical performance of each sub-population is presented in the (a) numerical solution
of sh, (b) numerical solution of ih, (c) numerical solution of iv and (d) numerical solution of ih, with
different value of α, using the generalized fractional stochastic Runge–Kutta method.

0 50 100 150

t, h=0.1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

sh
(t

)

Generalized Stochastic NSFD-Endemic Equilibrium (EE)

α=0.90
α=0.85
α=0.80
α=0.75

(a) Numerical solution of sh

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

t, h=100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sh
(t

)

Generalized Stochastic NSFD-Endemic Equilibrium (EE)

α=0.90
α=0.85
α=0.80
α=0.75

(b) Numerical solution of sh

Figure 3. Cont.
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(c) Numerical solution of ih
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(d) Numerical solution of ih
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(e) Numerical solution of iv
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Figure 3. The graphical behavior of each sub-population is presented for two sets of numerical
experiments (left and right columns) with different values of α, using the generalized fractional
stochastic NSFD.

5. Conclusions

In this work, we departed from a fractional-order disease model and transformed it
into a non-parametric perturbation stochastic model. A generalized stochastic fractional
NSFD method was proposed and applied to solve the epidemic model under study. The
proposed scheme preserves the positivity of the numerical solutions at each temporal step.
The generalized stochastic fractional NSFD is also capable of preserving the boundedness
of the approximations. We proved that the given system has two steady states, namely, a
disease-free and an endemic steady state. Furthermore, the constraints under which the
given system is locally and globally asymptotically stable were investigated. It is concluded
that the system attains the local and global stability when the disease is absent if R0 < 1.
In the same way, the role of R0 when R0 > 1 was studied for the endemic equilibrium.
Two other methods (a generalized fractional Euler method and a generalized Runge–Kutta
method) were also applied to compare the obtained results. The simulations showed
that the proposed scheme is superior in terms of its capability to identify correctly the
equilibrium solutions, in that sense our present report investigated a structure-preserving
technique [35–37] to solve a mathematical system in epidemiology. As a final comment,
we would like to point out that the investigation of the stochastic system is justified by the
fact that solutions exist for that model. Indeed, notice that the drift functions of this model
are locally Lipschitz continuous, which implies that the solutions exist locally. The global
existence follows an argument similar to that in [38]. We do not provide the details, as such
a study is outside the scope of the present work.
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