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The Applications of Plasma Techniques II

Mariusz Jasiński

Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland; mj@imp.gda.pl

1. Introduction

This Special Issue “The Applications of Plasma Techniques II” in the section “Optics
and Lasers” of the journal Applied Sciences is intended to provide a description of devices
and processes related to plasma applications in the broad sense. Plasma is called the fourth
state of matter because its properties differ significantly from those of gas. Plasma can be
defined as a conductive medium generated by the ionization of gas. Thus, it occurs as a
mixture of photons, electrons, and ions, but it can also contain neutral atoms and molecules.
The concept of plasma includes media with very different properties. Densities and kinetic
energies of plasma components differ for various types of plasma by several or even more
orders of magnitude. Hence, plasmas can have very different applications. Nowadays,
plasma is very common in everyday life—from ubiquitous discharge lamps to plasma TVs.
In technology, plasma is used in areas as diverse as gas purification, production of chemical
compounds, surface treatment of materials, synthesis of nanoparticles, and deactivation of
bacteria, viruses, and cancer cells. Readers interested in this modern field of science and
technology are invited to enjoy this collection of articles, which will certainly excite the
curiosity of both scientists, engineers and medics interested in plasma applications. As a
guest editor of this Special Issue I wish you a pleasant reading.

2. Results

As a guest editor of this Special Issue of “The Applications of Plasma Techniques II”
in the “Optics and Lasers” section of the journal “Applied Sciences”, invited to write an
Editorial, below I briefly discuss the results of all articles published in this Special Issue.

2.1. Dual-Frequency Microwave Plasma Source

Chi Chen et al. in [1] presented a dual-frequency microwave plasma source based on
microwave coaxial transmission line, and 915 and 2450 MHz microwaves were used in this
study. Two waves were delivered from two ports into the plasma reactor. One of these
waves was used to excite the plasma and the other to regulate the plasma characteristics.
In this system, the electron density and electron temperature of plasma can be controlled
by feeding in different frequencies from the second port. In this way, different frequencies
can selectively drive the plasma characteristics. The OES (optical emission spectroscopy)
results confirmed that the particles with different energy levels showed different responses
at different frequencies. The comparison of the characteristics was carried out between
the single-frequency microwave plasma and the dual-frequency microwave plasma in
the same device. The presented device is interesting because it allows to some extent to
regulate such plasma parameters as electron density and electron temperature. The range
of these parameters can be extended by using microwave sources with adjustable power
and frequency.

2.2. Cold Plasma Treatment of Melanoma Cells

Yun-Hsuan Chen et al. in [2] showed the results of application of cold atmospheric
pressure plasma for treatment of melanoma (B16F10)-skin cancer cells (with and without
catalase enzyme in vitro). The generated cold plasma was characterized electrically and
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spectroscopically. Biological data showed that the plasma inactivated cancer cells but not
non-malignant cells. The authors state that the presence of the CAT enzyme confirmed
that the reactive oxygen and nitrogen species (RONS) play key roles in inactivating the
melanoma cancer cells. The authors conclude that the cold atmospheric plasma is a
promising tool to overcome certain cancerous and precancerous conditions in dermatology,
and that detailed investigation is still needed to understand the mechanisms underlying
the presented results. Humanity has been fighting cancer for a long time with a limited
success, so the presented cancer-fighting technique seems to be important.

2.3. Vortex Breakdown Control by the Plasma Swirl Injector

Gang Li et al. in [3] proposed and tested the concept of using the plasma swirler to
control vortex breakdown. The presented plasma swirler with a helical shape was adopted
to control the vortex breakdown. The plasma swirler with the electrode placed in the
streamwise direction was designed by the authors. The plasma actuation, in affecting
the onset and development of the vortex breakdown was captured and analyzed using
particle image velocimetry (PIV) technique. The flow field measurement demonstrated
that the plasma actuation was effective in controlling the development of vortex. The
authors conclude that the method being proposed here may represent an attractive way
of controlling vortex breakdown using a small amount of energy input without a moving
or intrusive part, and the plasma actuation offers great flexibility in flow and combustion
control.

2.4. Influence of Ag Electrodes Asymmetry Arrangement on Their Erosion Wear and Nanoparticle
Synthesis in Spark Discharge

Kirill Khabarov et al. in [4] investigated the effect of the asymmetry arrangement of Ag
electrodes on them erosive wear and presented the synthesis of nanoparticles (NPs) during
a spark discharge. The two types of discharge current pulses were studied: oscillation-
damped, in which the electrodes changed their polarities during a single discharge, and
unipolar, in which the electrodes had a given polarity during the discharge. The used elec-
trodes in the form of rods, one of which had a gas supply hole, were installed coaxially. The
authors demonstrated that it is possible to control the size and concentration of synthesized
nanoparticles by changing the degree of the electrodes asymmetry by setting their end
faces at a certain angle. With an increase in the degree of the electrodes asymmetry, larger
nanoparticles (with sizes greater than 40 nm) appeared in the aerosol composition and their
agglomeration increased. The results presented in this article can help spark discharge
users to optimize the placement of discharge electrodes.

2.5. Impact of the Samples Surface State on the Glow Discharge Stability in the Metals Treatment
and Welding Processes

Maksym Bolotov et al. in [5] presented the results of a study of the effect of sample
surface condition on the stability of glow discharge in metalworking and welding processes.
The main objective of this study was to investigate the effect of cathode macro and micro
relief on the existence of stable glow discharge in metalworking and diffusion welding
processes. It was determined analytically and supported experimentally that the stability
of the glow discharge is mainly affected by the generated sharp protrusions on the cathode
surface due to the pretreatment of the samples by machining before welding. It was found
that the increasing the cathode surface roughness from 10–15 μm to 60–80 μm led to the
rapid decreasing the region of the limiting pressure of the stable glow discharge from
1.33–13.3 kPa to 1.33–5.3 kPa. The results presented in this article may be helpful for
glow discharge researchers to optimize the working gas pressure and surface roughness of
discharge electrodes.

2.6. Surface Discharge Mechanism on Epoxy Resin in Electronegative Gases and Its Application

Herie Park et al. in [6] presented a work on the mechanism of surface discharge on
epoxy resin in electronegative gases and its application. The authors showed the character-
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istics of surface discharges in compressed insulating gases, including sulfur hexafluoride
(SF6), dry air and N2 under a non-uniform electric field. The experiments were conducted
with the gas pressure from 0.1 to 0.6 MPa using samples of epoxy dielectrics under an
AC voltage. The experimental results showed that the surface insulation performance
improved significantly using insulating gases containing electronegative gases, such as
SF6 and dry air. Among the various gases, SF6 and dry air, which are electronegative
gases, showed better insulating properties compared to N2 due to their electron attachment
capacity. The influence of electronegative gases on the surface ignition voltages, which
vary with the pressure in these gases, has been analyzed in detail through the processes of
electron attachment and detachment. The authors conclude that the physical information
obtained from the results of this study can be used to provide improved surface insulation
performance by using an insulating gas mixing technique in the design of SF6-free HV
equipment surface insulation.

3. Conclusions

The collection of articles discussed above covers various types of discharges and
various processes. The discharges presented include, for example, microwave, spark,
glow, or surface discharges. The characterizations of the sources of these discharges, the
parameters of the generated plasmas, as well as the applications of these plasmas are
discussed. The applications include, for example, the synthesis of nanoparticles or the
treatment of skin cancer cells. I hope that the presented articles will be valuable for readers
representing the world of science, medicine, and technology.
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Featured Application: In various microwave plasma fields, such as Microwave Plasma Chemical

Vapor Deposition (MPCVD), the dual-frequency plasma source could be used to control plasma

characteristics flexibly.

Abstract: A dual-frequency plasma source has many advantages in applications. In this paper, a
dual-frequency microwave plasma source is presented. This microwave plasma source is based on
a coaxial transmission line without the resonator, and it can be operated in a wide band frequency
region. Two microwaves are inputted from two ports into the plasma reactor: one is used firstly to
excite the plasma and the other one is used to adjust plasma characteristics. Based on the COMSOL
Multiphysics simulation, the experiment is carried out. In the experimental investigation, the
plasma electron density and electron temperature can be controlled, respectively, by feeding in
different frequencies from the second port, causing the particles at different energy levels to present
different frequencies. This exploratory research improves the operation frequency of dual-frequency
microwave plasma sources from RF to microwave.

Keywords: microwave plasma; dual-frequency plasma; electron temperature; electron density

1. Introduction

To control plasma characteristics flexibly, the dual-frequency plasma source has been
proposed and investigated [1–8]. The dual-frequency plasma source is a hybrid source,
in which one frequency is chosen to be much higher than the other in order to achieve
independent control of ion bombardment and electron density [9]. Research shows that,
in plasma etching, dual-frequency operating could reduce particle contamination in the
plasma reactor [10], and in the plasma-enhanced chemical vapor deposition (PECVD), dual-
frequency operating could improve the film stress, step coverage, chemical composition,
and film stability [11–14].

In previous studies, the exciting frequency for dual-frequency plasma sources mostly
were mostly radio frequency (RF), such as 13.56 MHz, 27.12 MHz, 320 MHz, 340 kHz,
and 40 kHz, and the structures of the plasma reactor are mostly capacitively coupled
plasma (CCP) and/or inductively coupled plasma (ICP). In recent years, more and more
microwave plasma sources have been proposed and applied [15–18]. However, dual-
frequency microwave plasma sources are rarely investigated. For most microwave plasma
sources, the microwave is propagated through a waveguide, and the plasma is excited in a
resonator. Different from CCP and ICP reactor structures [19], the size of the microwave
resonator is dependent on microwave frequency, and it is difficult to resonate two non-
harmonic frequencies in one resonator.

Here, a microwave coaxial transmission line is introduced as the reactor for a dual-
frequency microwave plasma source. In the coaxial transmission line, the electromagnetic
wave mode of the microwave is TEM mode, and ultra-wide band electromagnetic waves,
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from low-frequency wave to millimeter wave, could be inputted and propagated. The
2450 and 915 MHz microwaves, which are widely used in industry, are adopted in this
investigation. There are two ports to input the microwaves. The 2450 MHz microwave is
inputted from one port to excite plasma, and the 915 MHz microwave is inputted from
another to adjust the plasma characteristics. To investigate the characteristics of dual-
frequency microwave plasma, the microwave is inputted from two ports to excite the
plasma, and a comparison is conducted between single-frequency microwave plasma and
dual-frequency microwave plasma in the same reactor.

2. Experiment Design

The schematic diagram for the presented dual-frequency microwave plasma source
based on the microwave coaxial transmission line is shown in Figure 1.

Figure 1. Schematic of the coaxial line plasma driven by the dual microwave sources.

The plasma reactor is a coaxial line, whose outer diameter is 150 mm and the inner
diameter is 8 mm. A quartz glass tube surrounds the inner conductor. Between the outer
conductor and the quartz glass tube, there is a vacuum region in which the plasma is
excited. There are two microwave ports at the two ends of the coaxial transmission line.
One is used to input the 2450 MHz microwave, and another is used to input the 915 MHz
microwave. A magnetron microwave power generator (ASTeX AX2110) is used to generate
the continuous-wave 2450 MHz microwave. An isolation circulator with a water load
in an isolated way is connected to the magnetron microwave power generator. In this
way, the microwave feedback will be entirely absorbed by the water load. An ASTeX
SmartMatch is used to match the impedance so that the maximum amount of power can
be coupled with the plasma. The 2450 MHz microwave is transmitted from the generator
to the plasma reactor by the waveguide. A waveguide-to-coaxial adapter is designed and
installed to guide the microwave from the waveguide into the coaxial transmission line
plasma reactor through Port 1 [15]. A custom-made solid-state microwave power source
(Wattsine Electronic Technology Co., Ltd. Chengdu China) is used to generate a continuous-
wave 915 MHz microwave. The 915 MHz microwave is transmitted by N-type coaxial
cables. The incident and reflected powers are monitored by a bi-directional coaxial coupler
and Keysight power meter (Narda N1914A). A coaxial-to-coaxial adapter is designed and
installed to guide the microwave from the N-type coaxial cable into the coaxial transmission
line plasma reactor through Port 2. A coaxial low-pass filter is installed into N-type coaxial
cables to avoid the solid-state microwave power source affected by 2450 MHz.

There are several KF flanges on the outer conductor, which are used to connect a
vacuum pump, gas feed mass flow meter, and diagnostic devices. A Langmuir probe and
an optical emission spectrometry (OES) are used to diagnose and investigate the plasma
characteristics from two KF flanges in the center of the plasma reactor.

The experimental processes are as follows: First, pump the pressure in the reactor
below 10 Pa by a vacuum pump; second, adjust the argon flow rate at 15~20 sccm to stabilize
the discharge pressure at 80 Pa by the mass flow meter; then, turn on the microwave source
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at Port 1 to excite plasma discharge; finally, turn on the microwave source at Port 2 to adjust
plasma characteristics and measure the plasma parameters.

As shown in Figure 1, the coaxial transmission line is a non-resonant structure. Thus,
ultra-wide band electromagnetic waves could be inputted into the reactor. However, it
would only be discharged at the area near the input Port 1, and not at the whole reactor. To
produce a dual-frequency operation, the plasma must be affected by microwaves from both
ports. Therefore, the plasma excited by 2450 MHz from Port 1 should be distributed in the
whole reactor. To obtain the plasma distribution in the reactor, COMSOL Multiphysics is
used to simulate the plasma distribution at different microwave powers from Port 1.

In this investigation, the argon plasma considered in the simulated model contains
only electrons (e), positively charged argon ions ( Ar+ ), metastable-state argon (Ars),
and argon (Ar) atoms. For these species, the main transportation equations are provided
in Table 1 [20].

Table 1. Important collision processes in the argon discharge.

No. Reaction Type Energy Loss Δε (eV)

1 e + Ar = e + Ar Elastic
2 e + Ar = e + Ars Excitation 11.5
3 e + Ars = e + Ar Superelastic −11.5
4 e + Ars = 2e + Ar+ Ionization 15.8
5 e + Ar = 2e + Ar+ Ionization 4.24
6 Ars + Ars = e + Ar + Ar+ Penning ionization
7 Ars + Ar = Ar + Ar Metastable quenching

Stepwise ionization (Reaction 5 in Table 1) plays an important role in sustaining low-
pressure argon discharges. Excited argon atoms are consumed via superelastic collisions
with electrons, quenching with neutral argon atoms, ionization, or Penning ionization
where two metastable argon atoms react to form a neutral argon atom, an argon ion, and
an electron. Reaction 7 is responsible for the heating of the gas. The 11.5 eV of energy,
which was consumed in creating the electronically excited argon atom, returns to the gas
as thermal energy when the excited metastable-state argon atoms quenching.

In the simulation, the electron energy distribution function (EEDF) is approximately
set as the Maxwellian distribution function, due to the fact that the discharge pressure
80 Pa is greater than 6.66 Pa [21,22]. Although publications show that the plasma densities
in simulations as Maxwellian distribution are higher than experimental measurements,
they also show that the plasma distributions in simulations present good agreement with
experimental measurements [23–26]. Therefore, the Maxwellian distribution function is still
useful, and the plasma distributions at different exciting powers are normalized, presented
in Figure 2.

As shown in Figure 2, the plasma discharge area is spread with increasing Port 1
microwave power. When the inputted 2450 MHz microwave power is at 500 W, the
electron density near Port 2 is much lower than that near Port 1. When the inputted
2450 MHz microwave power is at 600 W, the electron density near Port 2 is a little lower
than that near Port 1, but the plasma distribution is still non-uniform. When the inputted
2450 MHz microwave power is at 700 W, the electron density near Port 1 is nearly the same
as that near Port 2, and in the area between Port 1 and Port 2, the plasma distribution is
approximately uniform. While electron density is sufficiently affected by microwave power,
the electron temperature is almost unaffected by microwave power changes. Therefore, the
microwave power at Port 1 was set at 700 W to excite the plasma.
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(a) (b) 

Figure 2. COMSOL simulation of the electron density and temperature distributions at a fixed pres-
sure of 80 Pa under Port 1 2450 MHz microwave power: (a) electron density (b) electron temperature.

3. Experiment Results

Based on the simulation results, the experiment was carried out in accordance with
processes listed in Section 2. Firstly, the 700 W 2450 MHz microwave was inputted into the
reactor from Port 1 at a pressure of 80 Pa. The plasma can be excited with the assistance
of an automatic impedance matchbox. In the center of the plasma reactor, the electron
density and temperature measured by the Langmuir probe were ne = 1.56 × 1016 m−3 and
Te = 2.46 (eV).

For microwave-excited plasma, electrons oscillate among the heavy immobile ions at
the plasma electron frequency. At this time, if another microwave with the frequency below
the plasma electron frequency is inputted from another port, the inertia of the electrons
is sufficiently low for them to respond to the electric field in the incident electromagnetic
wave, and the electron can, therefore, absorb energy from it. If the frequency of the
incident microwave is higher than the electron plasma frequency, the inertia of an electron
would be too high to enable it to respond fully to the incident microwave. Therefore, the
interaction of the microwave with individual electrons is relatively insignificant. Thus,
different interaction modes of microwaves with electrons can be achieved by controlling
the frequencies of the second incident microwaves [27].

The electron plasma frequency is a function of the electron number density and is
given by [27].

ωpe = 2πvpe =

√
nee2

ε0me
(rad/s) (1)

where υpe is the electron number density in Hz. The ne is the electron density, the ε0 is the
permittivity of free space, and the me is the mass of an electron. According to Equation (1),
for ne = 1.56 × 1016 m−3, the electron plasma frequency is νe = 1123 MH, which is located
between 2450 MHz and 915 MHz. Then, if the input microwave from Port 2 is 2450 or
915 MHz, the plasma would show different responding behaviors.

To compare with the influence of the 915 MHz microwave, a 2450 MHz solid-state
source was used instead of the 915 MHz solid-state source and the low-pass filter for
comparative experiments. In the experiment, 915 and 2450 MHz microwaves were in-
putted from Port 2 to investigate the plasma characteristics changes, respectively. Figure 3

8



Appl. Sci. 2021, 11, 9873

shows the effect of microwave inputted from Port 2 on the electron density and electron
temperature measured by the Langmuir probe.

Figure 3. Effect of the microwave inputted from port 2 measured by the Langmuir probe: (a) electron temperature;
(b) electron density.

Figure 3a shows that, when the second microwave was inputted from Port 2, the
plasma electron temperature gradually increased as the 915 MHz microwave power in-
creased and did not change sufficiently as the 2450 MHz microwave power increased. In
contrast, Figure 3b shows that, when the second microwave was inputted from Port 2,
the plasma electron density did not change sufficiently as the 915 MHz microwave power
increased, but it gradually increased as the 2450 MHz microwave power increased.

This means that the second incident microwaves with frequencies below the plasma
electron frequency could increase the electron temperature and affect the electron den-
sity indistinctly, and the second incident microwaves with frequencies above the plasma
electron frequency could increase the electron density and affect the electron temperature
indistinctly.

To investigate the physical mechanism of these phenomena, the OES results at different
conditions were analyzed, and the OES data were all obtained at 10-ms integral times. The
spectrum at only 700 W 2450 MHz microwave that was inputted from Port 1 acquired by
the OES method is presented in Figure 4.

Figure 4. Spectrum of the coaxial line plasma driven by the 2450 MHz microwave from Port 1 at a
power of 700 W and pressure of 80 Pa.

9
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The spectrum result presents two main particles in plasma: nitrogen molecule (N2)
and Ar. The N2 comes from air residue. In the experiment, the intensity of the Ar I line
group was much higher than the others. In the Ar I line group, the characteristic peaks at
Ar I 750.3869 nm, and Ar I 811.5311 nm were quite obvious with the highest intensity.

The OES data at the 200 W–915 MHz microwave that was inputted from Port 2 and at
the 200 W–2450 MHz microwave that was inputted from Port 2 are presented in Figure 5a,b,
respectively.

Figure 5. Spectrum of microwave inputted from Port 2 at the power of 200 W: (a) 915 MHz microwave; (b) 2450 MHz
microwave.

In Figure 5, it is obviously seen that the intensity of the Ar I characteristic peaks
was sufficiently improved when both 915 and 2450 MHz microwaves were inputted, and
different Ar I characteristic peaks show different changes. The intensity of the two highest
Ar I characteristic peaks (750.3869 and 811.5311 nm) at the 915 MHz microwave that
was inputted from Port 2 were higher than that of the 2450 MHz microwave that was
inputted from Port 2. Meanwhile, the intensity of other Ar I characteristic peaks (such as
696.5431 nm, 706.7218 nm, 772.3760 nm) at the 915 MHz microwave that was inputted from
Port 2 are lower than that of the 2450 MHz microwave that was inputted from Port 2.

The intensity changes of several Ar I characteristic peaks versus microwave power
that were inputted from Port 2 are shown in Figure 6.

Figure 6. Intensity changes of Ar I characteristic peaks versus microwave power inputted from port 2 (a) 750.3869 and
811.5311 nm; (b) 696.5431, 706.7218 and 772.3760 nm.
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The OES results show that when the intensity of the characteristic peaks is higher at
only 700 W 2450 MHz that was inputted from Port 1, the intensity increase is higher at
915 MHz that was inputted from Port 2 than at 2450 MHz that was inputted from Port
2 (Table S1, Figure S1). This indicates that particles at different energy levels presented
different responses to different frequencies. In addition, the particles at different energy
levels contributed different ratios in plasma electron density and electron temperature,
thus, different frequencies could selectively control the plasma characteristics.

4. Summary and Discussion

Based on the COMSOL Multiphysics simulation, a dual-frequency microwave plasma
source is proposed and investigated. This dual-frequency microwave plasma source is
based on the coaxial transmission line, and 2450 and 915 MHz microwaves are utilized in
this study.

In the experiment, the plasma was excited by a 2450 MHz microwave from Port
1 first, and then a 915 MHz microwave was inputted from Port 2 to adjust the plasma
characteristics. The measured experiment results by the Langmuir probe show that the
electron temperature gradually increases as the 915 MHz microwave power increases, and
there is little change in electron density. In contrast, if there is a 2450 MHz microwave that
is inputted from Port 2, the electron density increases as the microwave power increases,
and there is little change in the electron temperature. These phenomena of dual-frequency
microwave plasma are similar to dual-frequency RF plasma.

The OES method is used to investigate the physical mechanism of these phenomena,
and the OES results show that the particles at different energy levels presented different
responses to different frequencies. Thus, different frequencies could selectively control
the plasma characteristics. If a high-power wide bandwidth frequency tunable microwave
source is used as the power source from Port 2, the plasma electron density and electron
temperature would be controlled, respectively and precisely, in the dual-frequency mi-
crowave plasma source. This exploratory research would improve the operation frequency
of dual-frequency microwave plasma sources from RF to microwave.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app11219873/s1, Table S1: Intensity of Ar I characteristic peaks, Figure S1: Intensity of Ar
I characteristic peaks versus microwave power inputted from port 2 under pressure of 80 Pa and
700 W 2450 MHz microwave at Port 1.
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Received: 13 May 2021

Accepted: 30 June 2021

Published: 2 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in
Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan;
ttpss90128@gmail.com (Y.-H.C.); m120104012@tmu.edu.tw (P.-R.J.); pineapple2821@yahoo.com.tw (Y.-Y.Y.)

2 Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan;
jhhsieh@mail.mcut.edu.tw (J.-H.H.); jefflee@mail.mcut.edu.tw (J.-W.L.)

3 Center for Plasma and Thin Film Technologies, Ming Chi University of Technology,
New Taipei City 243, Taiwan

4 Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 110, Taiwan;
b8301120@yahoo.com.tw

5 Cell Physiology and Molecular Image Research Center, Taipei Medical University, Wan Fang Hospital,
Taipei 116, Taiwan

* Correspondence: bolouki@mail.mcut.edu.tw (N.B.); eychuang@tmu.edu.tw (E.-Y.C.)
† These authors contributed equally to this work.

Abstract: Cold atmospheric plasma (CAP) is a promising tool to overcome certain cancerous and
precancerous conditions in dermatology. A scheme of transferred CAP was first developed to
treat melanoma (B16F10) skin cancer cells as well as non-malignant (L929) cells in vitro. CAP was
transferred using a silicone tube with a jet system that was developed and was assessed as to whether
it could generate reactive oxygen and nitrogen species (RONS) at near-room temperature. The
transferred CAP was characterized electrically and spectroscopically. Biological data showed that the
transferred CAP killed cancer cells but not non-malignant (L929) cells. Plasma treatment was effective
with a time duration of 30 s, whereas non-malignant (L929) cells were less damaged during plasma
treatment. In addition, catalase (CAT) enzyme was applied to neutralize and detoxify the RONS
generated by the transferred CAP. These findings suggest that transferred CAP can be considered a
melanoma cancer therapy.

Keywords: melanoma cell (B16F10); plasma cancer therapy; cold atmospheric plasma (CAP); transferred
cold atmospheric plasma; reactive oxygen species (ROS); reactive nitrogen species (RNS); catalase

1. Introduction

Cancer is one of the major diseases and a leading cause of death worldwide. Among
the various forms of cancer, melanoma skin cancer is regarded as one of the deadliest
cancers. A survey revealed that melanoma skin cancer is rising faster than other types of
cancers particularly in developed countries [1], which is probably due to the increasing
ultraviolet (UV) radiation and holes in the ozone layer [2].

Advancements in cancer therapies are specifically due to innovative technologies from
various fields of science and engineering which have improved diagnostic and treatment
systems of patients. In the case of skin cancer cells, several treatment methods are suggested;
however, the suggested treatments include undesired side effects. For instance, surgery
as a primary treatment is able to remove skin cancer cells, including some healthy cells
around cancer cells. Such treatment may leave scarring, and in some cases may even be
painful. In the case of immunotherapy, several types of chemo-drugs are used for treating
skin cancer, but they have various unwanted side effects as well. Chemotherapy is known
as a common option for treating skin cancer cells [3]. Since this treatment is drug-based, in
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addition to side effects such as hair loss and so on, it is regarded as an ineffective treatment
due to drug resistance [4]. As reported in a previously published article, various skin
cancer cell treatments were well categorized, including the side effects of conventional
treatments for skin cancer cells [5].

Radiation treatment uses high-energy radiation, such as x-rays or particles, to kill skin
cancer cells. However, the side effects of radiation treatment are not usually limited to areas
that receive radiation. Typical side effects may include changes in skin color, nausea, hair
loss, and fatigue [6]. Suggested treatments for skin melanomas showed several advantages
and disadvantages for clinical patients. Furthermore, all melanoma patients must undergo
a screening process and get motivation or advice from dermatologists. They might be able
to avoid experiencing possible side effects from the therapy. Determining how to prevent
side effects during melanoma treatments and make melanoma patients comfortable is
important and urgently needed. One of the novel melanoma treatments relies on plasma at
atmospheric pressure.

In recent decades, plasma-based treatments were introduced in the field of medicine.
Plasma is the fourth state of matter, including charged particles (ions and electrons),
photons, and neutral atoms; it has a net neutral charge [7]. Plasma medicine has emerged
as an interdisciplinary research field combining plasma physics, plasma chemistry, biology,
and clinical medicine [8]. Plasma sources, in this field, are mainly focused on plasmas at
atmospheric pressure that generate charged particles, radicals, excited species, and reactive
oxygen (ROS) and nitrogen species (RNS). When interacting with ambient air, atmospheric-
pressure plasma transfers the energy of particles of a noble gas with oxygen and nitrogen in
ambient air; consequently, numerous ROS and RNS are generated such as oxygen radicals,
nitrogen species, and so on. Here, we also merge ROS and RNS to call them RONS. The
cytotoxicity effects of these species contribute to biomedical treatments [9–12], specifically
in cancer therapies [13–15].

Generally, cold atmospheric plasma (CAP) sources are generated with various elec-
trode configurations [16]. Herein, a dielectric barrier discharge (DBD)-based plasma jet
configuration was employed, as it is more adaptable and safer for biomedical treatment. A
specific configuration of the DBD-based plasma jet, which is called an extendable plasma
jet, was utilized for melanoma cell treatment. Similar configurations were reported for
endoscopic plasma applications [17], inner surface modification [18,19], and bio-targeting
of human cell lines, such as A431 (skin carcinoma), HEK 293 (kidney embryonic cells), and
A549 cell lines (human lung adenocarcinoma cells) [20]. In the case of biomedical treatment,
the use of transferred CAPs, including helium and neon gases, were reported [17,20];
however, using a transferred CAP including argon gas, has not yet been mentioned for
melanoma cancer cells. It should be noted that argon gas was just used for conventional
plasma jet systems [20]. It has been found that the temperature of argon plasma with the
configuration of the conventional plasma jet rose to around 40 ◦C. This heating problem is
due to using argon gas [21] that would not be biocompatible. Whereas, using a scheme
of transferred plasma, the gas temperature cools when the plasma gas is flowing from
upstream to downstream in the jet system. In this case, the gas temperature is kept at a
biocompatible level approaching room temperature to avoid harming patients’ healthy
cells. Furthermore, using the transferred plasma-based configuration, the high-voltage
side is kept away to enhance patient safety for future clinical applications. In addition,
compared to the large area irradiated with the volume DBD to kill or inactivate melanoma
cancer cells [22], the small area of the transferred plasma (with a diameter of around
1~2 mm) are more applicable and allow us to localize the plasma treatment on the skin
cancer cells/tumors.

RONS are considered to be bioactive products generated by treatment with CAP. Pre-
vious findings show that the conventional CAPs offer an approach for treating melanoma
skin cancer by RONS induction of cellular apoptosis [22–24]. Induction of cellular apop-
tosis by the conventional CAP treatment occurs through the establishment of RONS. The
formation of RONS by conventional CAP can also cause damage to DNA and cancer cell
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death. On the other hand, catalase (CAT) is responsible for neutralizing hydrogen peroxide
and for abrogating toxic RONS production [25] possibly by breaking hydrogen peroxide
down into water and oxygen. Herein, it is also investigated whether the addition of CAT is
able to prevent the toxic effects of RONS, generated by transferred CAP as a developed
plasma source.

In this study, an argon-based transferred CAP was developed for melanoma skin
cancer cells in vitro. First, the transferred CAP with argon gas was characterized electrically
and spectroscopically, then it was utilized for melanoma (B16F10) cell and non-malignant
(L929) cell treatments individually, as well as melanoma (B16F10) cell treatment with the
addition of CAT.

2. Materials and Methods

2.1. Transfer-CAP System

A scheme of transferring CAP using a silicone tube was utilized to produce a flexible
plasma for the cell treatment. The experimental setup of the transferred CAP is illustrated
in Figure 1. In this configuration, a 10-cm-long silicone tube was responsible for transferring
the plasma jet. Argon gas was utilized in this investigation as it is known to be an affordable
gas compared to other noble gases, such as helium and neon. Pure argon gas was adjusted
by a mass flow controller to a flow rate of 8 standard liters per minute (SLM).

Figure 1. (a) Experimental setup of the transferred argon plasma jet system including an ICCD camera for emission
characterization and spectrometer for spectroscopic characterization. (b) Image of the transferred cold atmospheric plasma
(CAP) including argon gas.

2.2. Transfer-CAP Generation
2.2.1. Electrical Measurement

A positive microsecond pulsed discharge with an on-time of 27 μs, an off-time of
47 μs (at a frequency of 12.5 kHz and duty cycle of 36%), and a peak voltage of 8.5 kV
provided electrical discharges. A typical voltage-current characteristic corresponding to
the transfer-CAP system is shown in Figure 2.
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Figure 2. A typical waveform of applied voltage and plasma current.

2.2.2. Emission and Spectroscopic Measurements

An intensified charge-coupled device (ICCD) and optical emission spectroscopy (OES)
were utilized to characterize the reactive species generated by the transferred CAP when it
interacted with ambient air. The measurement region was adjusted to be downstream of
the jet system as shown in Figure 1a.

2.3. Cell Experiments

L929 (a non-malignant mouse fibroblast cell line, accession number: ATCC® CCL-1™)
and B16F10 (a mouse melanoma skin cancer cell line, accession number: ATCC® CRL-
6475™) cells used for this study were cultured in a cell incubator under standard culture
conditions: humidified 5% CO2, at atmospheric pressure, at 37 ◦C in Dulbecco’s modified
Eagle medium with 1% (v/v) penicillin/streptomycin, 10% (v/v) fetal bovine serum (FBS),
1% (v/v) 1-glutamine, and 1% (v/v) non-essential amino acids (NEAAs).

2.3.1. Cell Viability Analysis

We individually seeded L929 and B16F10 cells into 96-well plates (at 104 cells/well,
with 5% CO2, at atmospheric pressure, at 37 ◦C) then cultured them for 2 days until they
reached confluence. Before plasma treatment, we removed all culture medium from all
wells and treated cells with transferred CAP for 30 s (with and without the addition of CAT
from bovine liver with the concentration of 1 mg/50 mL). Subsequently, to test the cell
viability after transfer-CAP treatment, we added fresh culture medium (200 μL/well) and
a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) solution (1 mg/mL,
20 μL/well) for a 1.5-h incubation. The supernatant medium was then removed, and
dimethyl sulfoxide (DMSO) solution (200 μL/well) was added to dissolve the cellular for-
mazan crystals which had formed. Formazan was quantified with a plate reader (Spactra-
Max 190) at a wavelength of 570 nm. Data are expressed as an average absorbance (optical
density; OD) of triplicate experimental samples + standard deviation (SD) of the average.

2.3.2. Live/Dead Experiment

We seeded B16F10 cells (2 × 105 cells/dish into 35-mm confocal dishes) and cultured
them for 2 days in a 5% CO2 atmosphere at 37 ◦C. After transfer-CAP treatment, mor-
phological changes in melanoma cells were assessed following staining protocols of a
LIVE/DEAD® Viability (Calcein AM)/Cytotoxicity (EthD-III) Assay Kit (ThermoFisher).
Fluorescent signals of live/dead cells were then observed with an IX81 optical microscope
(Olympus, Tokyo, Japan). Morphological changes of cells treated with transferred CAP
were also microscopically analyzed with the IX81 optical microscope (Olympus).
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2.3.3. Fluorescence RONS and Catalase Level Analysis in Cells

In this study, B16F10 cells were seeded on confocal dishes incubated under 5% CO2
at 37 ◦C until adherence and confluence were achieved. Before CAP treatment, the
medium was removed. Then, transferred CAP was applied for 30 s. Fluorescent 4′,6-
diamidino-2-phenylindole (DAPI) was used to stain cell nuclei. Cells were stained with
2′,7′-dichlorodihydrofluorescein diacetate (H2DCF-DA) [26] to detect the amount of intra-
cellular RONS generated using an IX81 fluorescent microscope (Olympus) after treatment.
The immunofluorescence was employed to examine the expression of catalase in L929
cells and B16F10 cells. The bioactivity of catalase was assessed with fluorescence. Cells
were seeded into 96-well (104 cells/wells) until attachment and blocked by 1% of serum.
For immunofluorescence staining, catalase primary antibodies conjugating fluorescein
isothiocyanate diluted 1:39 in PBS were incubated with the cells for 1 h. The unbound
antibodies were washed with PBS. Fluorescence emission measurements were determined
through a fluorescence microplate reader (n = 13).

2.3.4. Statistical Analysis

Experimental data are presented as the average (AVE) ± SD. Test results were sta-
tistically evaluated using Student’s t-test. The obtained values were considered to be
statistically significant at p < 0.05.

3. Results and Discussion

3.1. Transfer-CAP Characterization

Figure 3a shows the emission of the transferred CAP. Using optical filters with 50%
transmission, which were mounted in front of the ICCD camera, hydroxyl, and atomic
oxygen radicals were observed as shown in Figure 3b,c, respectively. The dominant species
of the spectra measured by OES were a hydroxyl peak (309 nm) and a nitrogen band
(300~450 nm) as well as an argon band, as shown in Figure 3d. A similar spectrum
related to the conventional argon-based plasma jet was reported for melanoma tumor
treatment [27]. Moreover, a small peak of atomic oxygen radical (777.1 nm) was observed
in the spectra (Figure 3e). The small peak of atomic oxygen radical was also reported in a
radio-frequency plasma jet with argon [28] and argon/oxygen gas feeds [29]. Although the
gas feed used in our system was argon, the generated RONS such as hydroxyl and atomic
oxygen radicals as well as nitrogen species observed by OES were mainly respectively
generated via energetic electron collisions with water molecules, oxygen, and nitrogen of
the ambient air [30]. As a result, the presence of RONS generated by the transferred CAP
was confirmed by emission and spectroscopic characterizations.

Gas Temperature

Biomedical applications of CAP first utilized plasma at thermal equilibrium, which
was based on thermal energy for tissue removal, disinfection, and cauterization of thermally
stable biomedical instruments. However, it is not suitable for heat-sensitive substances
such as living tissues, as cells cannot tolerate such high temperatures. Recent advances in
novel plasma sources, which can generate transferred CAP under atmospheric pressure
in an open space at nearly room temperature, have allowed direct contact between live
human cells and plasma yet avoid thermal damage. Implementation of cold plasma is
essential for biological or medical treatment (Figure 4a), as only plasma with a temperature
slightly higher than the body temperature which can be utilized to avoid harm and distress
to patients’ cells. As shown in Figure 4b,c, an infrared (IR) camera was used to confirm that
the gas temperature remained near room temperature after passing through an extended
silicon tube. The thermal image data (Figure 4b,c) show that the temperature in the area
of the transferred CAP remained under 30 ◦C during plasma treatment. For instance, a
conventional argon-based CAP with a reported temperature of 35 ◦C to 40 ◦C was utilized
for melanoma cells treatment [23]. A helium-based CAP with a temperature-controlled
environment was also presented for melanoma treatment [24] although using argon is

17



Appl. Sci. 2021, 11, 6181

more affordable than helium gas. On the other hand, as mentioned in the introduction,
using argon gas leads to a heating problem that causes a relatively high gas temperature
compared to the room temperature. The treated biological cells and tissue could be dam-
aged by heating with a temperature around 40 ◦C although there is no specific threshold
temperature for heating damage [31]. In our case, during the plasma treatment, as shown
in Figure 4b, the thermal image presents a gas temperature less than 30 ◦C, which is much
safer for avoiding possible heating damage to biological cells and tissue.

Figure 3. Transferred cold atmospheric plasma (CAP) emission captured by an ICCD camera with an
exposure time of 0.5 s. (a) Transferred CAP emission without an optical filter. (b) Hydroxyl radical
emission using an optical filter with 50% transmission. (c) Atomic oxygen radical emission using an
optical filter with 50% transmission. (d) A typical spectrum obtained with a spectrometer during
transferred CAP treatment including hydroxyl and (e) atomic oxygen radicals.

3.2. Cell Viability

Cell lines of non-malignant murine (L929) fibroblasts and malignant murine melanoma
(B16F10) cells were employed in this study. We examined whether the transferred CAP
could kill B16F10 cancer cells in an in vitro model as well as explore the potential mecha-
nisms that allow for the specific ablation of cancer cells without affecting non-malignant
(L929) cells. We cultured cells in cell medium as shown in Figure 5a. Non-malignant (L929)
cells and cancerous B16F10 cells were next collected by trypsinization and centrifugation
(at 1200 rpm for 5 min). Collected cells were sub-cultured until used further. For plasma
treatment, we removed the culture medium and applied the transfer-CAP system to cells.
As a result, after transfer-CAP treatment, using an MTT assay and visible microscopy,
we investigated cell viability and morphology as shown in Figure 5b,c, respectively. Cell
viability results showed that the number of viable non-malignant (L929) cells was ca. 2~3-
fold higher than the number of cancer B16F10 cells after the transferred CAP treatment.
Therapeutic effect is one of the most imperative considerations of cancer treatment. Spec-
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troscopic (Figure 3d,e) and MTT (Figure 5b) data suggest that the generation of RONS by
transferred CAP preferentially killed malignant melanoma (B16F10) cells without exhibit-
ing significant cytotoxicity toward non-malignant (L929) cells. Similar published findings
also supported our experimental data [23,24]. In addition, the optical morphological data
showed that the transferred CAP resulted in the separation of cancer cells compared to
the before transfer-CAP treatment (Figure 5c). As shown in Figure 5c, optical image data
suggests that the transferred CAP also could cause cell shrinkage and damage cancer cells.
Transfer-CAP treatment thus led to morphological changes of melanoma cancer cells.

Figure 4. (a) The image of transferred cold atmospheric plasma, (b,c) thermal images captured by
the IR camera.

Figure 5. (a) Cell culture and collection of L929 and B16F10 cells. (b) Cell viability of L929 and B16F10 cells before and after
plasma treatment. (c) B16F10 cell morphology was imaged by optical microscopy at different magnifications before and
after transferred CAP treatment. (* p < 0.05).

3.3. Live/Dead Experiment (Control, 30 s, and 30 s with CAT)

The transferred CAP generates RONS, including hydroxyl, atomic oxygen radicals,
and nitrogen species, as shown in Figure 3. RONS-induced death of cells is a strategy for
cancer treatment [32]. At low levels, RONS play crucial roles during redox homeostasis
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and in biological signals. However, high levels of RONS are able to break the balance,
causing irreversible oxidative damage to lipids, carbohydrates, proteins, and DNA. RONS
can be catalytically decomposed into water and oxygen by CAT, which defends cells
from RONS oxidative damage [32]. CAT is a biological enzyme that plays key roles in
cellular antioxidant defense mechanisms precipitated by the accumulation of RONS. To
further examine the CAT and CAP relationship on B16F10 cancer cells, CAT was added to
melanoma cancer (B16F10) cells before transfer-CAP treatment in the following cell viability
test. In the live/dead study, 1 mg CAT/50 mL was pre-added to the cell culture medium for
the co-culture of B16F10 cancer cells, and then cells were treated with transferred CAP. As
shown in Figure 6a, the fluorescent-green represents live cells and red represents dead cells,
which differ in the two treated groups. In the control group (B16F10 cells plus fluorescent
dyes), 30 s of CAP treatment, leads to cell death. In the group after co-culture with CAT,
it can clearly be observed that CAT might preserve cells alive even after treatment with
transferred CAP. In addition, the MTT assay was used for further quantification (Figure 6b).
The MTT data suggest that CAT adds potential protection to the transferred CAP resulting
in a higher cell viability, compared to cells treated by the transferred CAP without CAT
(Figure 6b). Furthermore, Image J software was used to quantitatively calculate green live
cell fluorescent signals (Figure 6c). As shown in Figure 6b,c, the transferred CAP-treated
group given CAT had higher cell viability than that of the transferred CAP-treated group
without CAT. The addition of biological CAT is recognized to be a mechanism of cellular
defense against RONS. Its function helps to balance the amount of cell RONS, whereas
an imbalance between RONS and RONS-scavenging enzymes can lead to an event called
oxidative stress [33].

3.4. Cell RONS Analysis (Control, 30 s, and 30 s with CAT)

Cellular RONS were seen to increase under CAP treatment, as shown in Figure 7a. The
production of RONS in cells exists in equilibrium with antioxidant defenses. At moderate
levels, RONS are believed to be important for regulating physiological and biological
functions involved in development, including cell-cycle progression and differentiation,
proliferation, and migration. RONS play vital roles in the immune system, maintaining a
redox balance, and are associated with the bioactivation of various cell signaling pathways.
Excess RONS in cells causes damage to cellular proteins, lipids, nucleic acids, organelles,
and membranes that can lead to activation of cell death processes, including cell apoptosis.
Apoptosis is a greatly modulated process that is critical for the survival and development of
multicellular organisms. These multicellular organisms usually must discard cells that are
possibly harmful or superfluous or that possess accumulated mutations. Apoptosis features
a representative set of biochemical, pathological, and morphological aspects whereby cells
undergo a sequence of self-destruction [34].

We used a cellular RONS analytical method to confirm the CAT and CAP roles on
B16F10 cancer cells. Cell RONS levels can be determined in live cells by converting
the non-fluorescent 2′,7′-dichlorofluorescein diacetate (DCFDA) that is oxidized into the
fluorescent tracer, 2′, 7′-dichlorofluorescein (DCF). The generated fluorescent signal is
directly proportional to the amount of DCFDA chemically oxidized into DCF. As the
fluorescent emission is at the wavelength of ca. 529 nm, it can be determined by fluorescence
microscopy, thereby measuring hydroxyl, peroxyl, and other RONS bioactivity in tested
cells. Thus, melanoma cells were treated with the transferred CAP in the same way as
the aforementioned cell culture method, then cells were stained with DAPI, and DCFDA
RONS fluorescence was detected. The fluorescence intensity of RONS was much higher
in CAP-treated cells (Figure 7a). The generated cellular RONS signals potentially came
from the contributions of applied CAP or cell death after CAP treatment. However, the
detailed mechanisms of RONS generation inside cells need to be investigated in the future.
At the same time, the group that received CAT, after quantitative plasma treatment and
analysis with Image J software (Figure 7b), possessed lower RONS fluorescent signals
than the transfer-CAP-treated group without CAT, which confirms the original hypothesis.
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Furthermore, an interesting research [35], reported that CAP can help in wound healing
(non-malignant L929 cells). According to published literature, a moderate ROS level is
vital for promoting cell proliferation [36]. A moderate level of ROS plays an essential role
in the cell signaling that controls cell survival and cell proliferation. However, a rise in
ROS level could damage cell components for example DNA, lipids, proteins, triggering an
imbalance among cellular reduction-oxidation (redox) situations and causing homeostasis
disruption (in the case of cold-plasma treated cancer cells). By comparing the intensities
of the immune-stained CAT level, the staining protein level detected by fluorescence
microplate reader in non-malignant L929 cells group was much higher than that in the
malignant B16F10 cells cell lines (p < 0.05), which suggests possible higher expression of
CAT in L929 cells. The higher CAT expression from L929 cells group might possess an
augmented ROS scavenging efficacy, compared to that of the B16F10 cells group, thus
causing an anticancer effect when CAP is applied on B16F10 cells (Figure 7c). At present,
thus we conclude that CAP can kill B16F10 melanoma cells effectively.

Figure 6. (a) Fluorescence image of B16F10 cells treated with transferred cold atmospheric plasma
(CAP) after 30 s without and with CAT. Green fluorescence represents live cells, while red fluorescence
represents dead cells. (b) Cell viability (MTT) after 30 s of treatment without and with CAT. Cell
viability was calculated with normalizing the survival of the treated cells group (transferred CAP 30
s) as 100%. (c) Fluorescence intensity after 30 s of treatment without and with CAT (green alive cell
fluorescent signals). (* p < 0.05) Control: B16F10 cells plus fluorescent dyes.
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Figure 7. Cellular (B16F10 cells) reactive oxygen and nitrogen species (RONS) generation. (a) Quali-
tative and (b) quantitative RONS data indicating that cells that received catalase (CAT) could inhibit
RONS generation after cold atmospheric plasma (CAP) treatment compared to the CAP-treated
group (without CAT). (c) Cellular CAT levels were determined by immunofluorescence. (* p < 0.05).

4. Conclusions

A transferred argon-driven plasma jet using a silicone tube was employed to make a
flexible plasma jet system for melanoma skin cancer cell treatment. Results showed that the
transferred plasma jet was able to effectively kill (inactivate) melanoma skin cancer cells.
In addition, the presence of the CAT enzyme confirmed that RONS play key roles in killing
melanoma cancer cells. The transferred CAP treatment was effective with a short time
duration of 30 s, whereas non-malignant (L929) cells were less damaged during plasma
treatment. This means that the transferred plasma jet can be considered for melanoma skin
cancer therapy. Even though our and other groups proved CAP has anticancer outcomes,
detailed investigation is still needed to understand the mechanisms underlying this result.
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Abstract: Vortex breakdown, observed in swirling flows, is an interesting physical phenomenon
relevant to a wide range of engineering applications, including aerodynamics and combustion. The
concept of using a plasma swirler to control vortex breakdown was proposed and tested in this study.
The effect of plasma actuation on controlling the onset and development of the vortex breakdown
was captured by particle image velocimetry. Flowfield measurement results suggested that, by
varying the strength of the plasma actuation, the location and size of the vortex breakdown region
was controlled effectively. The plasma swirl injector offers a method for optimal control and efficient
utilization of vortex breakdown. The method being proposed here may represent an attractive
way of controlling vortex breakdown using a small amount of energy input, without a moving or
intrusive part.

Keywords: vortex break down; plasma swirl injector; dielectric barrier discharge; swirling flow control

1. Introduction

As an active flow and combustion control device, the dielectric barrier discharge
(DBD) actuator has drawn much attention for its fast response, low power consumption,
and simple structure, as described by Roth et al. [1]. The operation of the DBD actuator is
purely electric without any moving part, which is attractive to many applications. Recent
investigations on plasma actuators have been reviewed by Moreau [2], Corke et al. [3],
Wang et al. [4], Kriegseis et al. [5], Leonov et al. [6] and Konstantinidis [7], to name but a few.
Flow separation control by the DBD actuator was widely researched. Roupassov et al. [8]
observed that the heat released by nanosecond pulse actuation can produce shock waves,
where the associated secondary vortex flows disturbed the main flow and caused an
efficient transversal momentum transfer into the boundary layer. Flow separation control
was investigated experimentally by Little et al. [9] on an airfoil leading edge up to 62 m/s
with nanosecond pulse plasma actuator. They pointed out that the plasma actuator was
similar to an active trip, which can generate coherent spanwise vortices at post stall.
Fujii [10] showed that actuation in burst mode was very effective for controlling flow
separation at a Reynolds number of 6.3 × 104, where the three features of the flow structure,
associated with flow separation control, were emphasized and guidelines for the effective
use of DBD actuators were proposed. Meanwhile, the modelling approach of Shyy et al. [11]
was adopted by Hasan et al. [12] to simulate the 3D separated flow over a hump model
with the inlet velocity of 34.6 m/s. They demonstrated that the flow separation was
completely suppressed with the actuator placed just downstream of the separation point
at an applied frequency of 5 kHz. Through flowfield measurement by particle image
velocimetry (PIV) and a pressure cap over a wing section, Skourides et al. [13] emphasized
that the actuation frequency was critical to the control authority of a nanosecond-DBD
actuator. Pescini et al. [14] used a micro plasma actuator to suppress flow separation in
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the low-pressure turbine of small engines. They pointed out that the sinus waveforms
outperformed other waveforms slightly. Lo et al. [15] tested the effective flow separation
control over the rear end of a lorry (1:20 scale) by the plasma actuation with the free stream
velocity at 30 m/s. They found that the shear layer was deflected more downwards due to
the actuation. However, the flow characteristics in the wake region was not significantly
modified by the actuation and they concluded that no flow control effect was observed
in their study. All of these studies demonstrate the wide range of applications of plasma
actuation, with further potentials to be explored.

Using ionic wind (which is the airflow induced by electrostatic forces linked to plasma
discharge) for local cooling is also an interesting research topic. Go et al. [16] demonstrated
that heat transfer was increased by ionic wind through distortion of the boundary layer.
Roy and Wang [17] developed the idea of film cooling enhancement by plasma actuator.
Through PIV and infrared thermography measurements, Audier et al. [18] found that the
actuation deflected the jet toward the wall and delayed its diffusion into the cross flow,
and, as a result, the effectiveness of the film cooling was increased. Through numerical
simulation, the mechanism of film cooling improvement by plasma actuator was analyzed
by Xiao et al. [19]. They found that the counter rotating vortex pairs were weakened by
the actuation, which led to less interaction and reduced mixing between the main flow
and the jet flow. A pressure sensitive paint technique was adopted by Kim et al. [20]
to investigate the effect of DBD actuation on the film cooling effectiveness of a 30◦ slot
with the mainstream velocity at 10 m/s. They pointed out that the improvement was
not significant and that the actuator configuration should be optimized. Uehara and
Takana [21] developed a plasma actuator cooling device in millimeter scale channels with
a height of 2.5 mm, 10 mm, and 50 mm, without an upper wall. They found that the
heat transfer coefficient was inversely proportional to the channel height. However, when
the height was 2.5 mm, the heat transfer coefficient was larger than that of the height
of 5 mm. They attributed this to the suppression of backward flow which impeded the
cooling performance. They were optimistic about the feasibility of the plasma actuator
cooling for a confined space. The plasma actuator was also adopted to control noise and
vibration. The experiments of Hebrero et al. [22] showed that plasma actuators exhibited
the ability to suppress vortex-induced vibration around a rigid circular cylinder. During
their experiments the flow velocity was varied between 3 to 4.25 m/s (6000 < Re < 8500).
Yokoyama et al. [23] demonstrated that the plasma actuation was effective in reducing the
cavity tone with the acoustic resonances at freestream velocity of 30 m/s by introducing
streamwise vortices with fine displacement. A new corner-type actuator configuration was
designed by Jong et al. [24] to control flow induced noise in a cavity. They demonstrated
that the aero-acoustic lock-on was suppressed for freestream velocities below 12.5 m/s
by the inward-inducing actuator. PIV measurement showed that a secondary circulating
flow region was created by the actuation which prevented lock-on. The experimental
research of Silva et al. [25] demonstrated that the DBD actuators were able to reduce
aerodynamic noise from slats with wind tunnel velocity of 27.4 m/s. They also pointed out
that the control authority of the actuators tested was still poor for real flight conditions,
and that further research is needed to produce more efficient plasma actuators. The control
effects of the plasma actuation on the flow around an oscillating plate was investigated by
Sato et al. [26]. They pointed out that it was possible for the DBD actuator to control the lift
with a mechanism similar to that of an insect. They found that the appropriate adjustment of
the driving time played an important role in lift enhancement. Motta et al. [27] numerically
assessed the effectiveness of plasma actuators for load alleviation on a compressor cascade.
They demonstrated that it was effective to alter the blade loading by proper triggering of
the pressure and suction side of the actuation. A number of studies have been carried out to
enhance the performance of DBD actuators, such as the shape of the serpentine actuator [28],
wire type electrode [29], microfabricated DBD actuator [30], sawtooth electrode [31], and
DBD active grid [32].
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Vortex breakdown (VB) observed in swirling flows is an interesting physical phe-
nomenon relevant to a wide range of engineering applications such as aerodynamics (delta
wing, and blade tip leakage flow) and combustion. Peckham and Atkinson [33] first re-
ported vortex breakdown on a delta wing at a high angle of attack. The vortex lines near
the edges of the wing experience a sudden change in shape when the angle of attack is
increased. This phenomenon is referred to as vortex breakdown. Sarpkaya [34] observed
three types of vortex breakdown: double helix, spiral, and axisymmetric (bubble). Bubble
breakdown is characterized by a stagnation point on the swirl axis, followed by an abrupt
expansion of the centerline to form an envelope of recirculating fluid [35]. Leibovich [36]
defined vortex breakdown as “a disturbance characterized by the formation of an internal
stagnation point on the vortex axis, followed by a reversed flow in a region of limited axial
extension”. Several theories were proposed to explain the process of vortex breakdown,
such as critical state or wave phenomena theory [37], boundary layer separation or flow
stagnation [38], and hydrodynamic instability [39]. Shtern [40] recommended the swirl-
decay mechanism (SDM) as a simple physical reason for the vortex breakdown occurrence,
and also pointed out that SDM indicated efficient means for vortex breakdown control.
The flow and boundary conditions have a strong effect on the breakdown process. Sarp-
kaya [34] observed a periodic transition between bubble-type and spiral-type depending
on the flow and boundary conditions. Aithaus et al. [41] observed the transition from
bubble-type and spiral-type, both in experiments and numerical simulations, and proposed
a feedback model for the initiation and development of the bubble-type breakdown. It is of
practical important to study methods of controlling VB, so that it can be enhanced when
it is beneficial and weakened when it is detrimental. The main techniques employed to
control VB include temperature gradient (Herrada and Shtern [42]), shape modification
(Srigrarom and Kurosaka [43]), blowing (Schmucker and Gersten [44], Gutmark and Guil-
lot [45]), rotation of the end walls (Mununga et al. [46]), the addition of near-axis swirl
(Husain et al. [47]), and energy deposition (Zheltovodov et al. [48]). Mitchell and Delery
reviewed the early research on VB control in detail [49], while the developments in this
area are continuously evolving.

Although vortex breakdown should be suppressed on a delta wing, it is commonly
adopted in combustion and acts as a stabilizer to enhance reactant mixing and stabilization
of the flame by recirculating hot gases into its base. Inspired by the idea of accelerating the
same fluid particles continuously, we designed a plasma swirler with the electrode placed
in the streamwise direction [50]. The plasma swirl injector is effective in diffusion and
premixed flame control [51,52], and can be integrated into a low swirl injector to control the
flame lift off height accurately [53,54]. The electrode of the plasma swirler was optimized
as a helical shape to enhance its performance [55]. In this study, the concept of using the
plasma swirler to control vortex breakdown was proposed and tested. A plasma swirler
with a helical shape was adopted to control the vortex breakdown. The plasma actuation, in
affecting the onset and development of the vortex breakdown, was captured and analyzed.

2. Layout of the Experimental Setup

The plasma swirl injector with a helical-shaped electrode was adopted for this research.
Figure 1 shows the sketch and the photograph of the plasma swirl injector used in the ex-
periment. Design parameters and advantages of the helical shape electrode were discussed
previously [55]. The length and inner diameter of the quartz glass tube are 100 mm and
36 mm, respectively. In this study, the actuator was further optimized. The electrodes were
arranged perpendicular to the blades at the inlet of the electrode. Compared to that of
170 mm in the earlier study [55], the helix pitch was shortened to 100 mm, which means
the electrode was longer and more plasma could be generated at the same voltage. The
length of the electrode was approximately 130 mm. The activated and grounded electrodes
were stuck to the inside and outside wall of the injector with a width of 2.5 mm and
7.5 mm, respectively.
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(a) Sketch of the plasma swirler (b) Photograph of the plasma swirler 

Figure 1. Sketch and photograph of plasma swirler with helical shape electrodes.

In the experiment, air volumetric flow was 175 l/min and the corresponding bulk
flow velocity in the injector was approximately 3 m/s. The power inputs of the plasma
generator were approximately 31~76 W and the electrodes on the inner wall were activated
with a peak-to-peak amplitude of 12~21 kV. Parameters of the five test cases are listed in
Table 1.

Table 1. The five test cases and their experimental conditions.

Test Case
Actuator

Status
Waveform

Type

Voltage
Amplitude

(kV)

Voltage
Frequency

(kHz)

Power
Inputs

(W)

1 OFF - - - -
2 ON Sinusoidal 12 9 31
3 ON Sinusoidal 15 9 45
4 ON Sinusoidal 18 9 60
5 ON Sinusoidal 21 9 76

Figure 2 shows the schematic of the experimental setup in this research. The flowfields
of the five test cases were captured by 2D PIV, manufactured by Lavision (Gottingen,
Genmany) [55]. A screw compressor supplied compressed air, which was then settled into
two tanks of 1.2 m3. A small wind tunnel, manufactured by 3D printing, was installed on
a displacement device. Through the bottom inlet of the wind tunnel, air flowed into the
settling chamber, in which two layers of honeycomb were used to improve flow uniformity.
A contraction section, with an area ratio of 6:1, was used to further improve the flow quality.
A mass flowmeter was utilized to regulate and measure the flow rate.
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Figure 2. Schematic of the experimental setup.

3. Results and Discussion

The flowfield, obtained by 2D PIV, provides information about the presence and loca-
tion of vortex breakdown. The leading edge of the VB could be identified by a stagnation
point along the centerline. Contours of axial velocity in the centerline plane (the laser plane
in Figure 2) were captured for each case to provide a global quantitative and qualitative
depiction of the flowfield. Figure 3a–e, from 2D PIV measurements, show the axial velocity
magnitude contours and vectors in the XZ plane for the five conditions tested, with a bulk
velocity of 3 m/s and a corresponding Reynolds number of 7171 based on the injector
diameter. The approximate exit of the injector was at Z = −2 mm. Location of a breakdown
zone can be identified by the negative axial velocity and recirculating flow.

Generally, the axial velocity distribution of a low swirl flowfield accords with the
normal distribution of this type of jet flow, but the maximum axial velocity moves away
from the axis due to the effect of the mesh plate of the low swirl injector, forming a double
peak velocity profile as shown in Figure 3a. The velocity in the annular region is higher
because of the significant downward momentum of the flow in this region, compared with
the flow in the central region. The central low velocity region, as well as the shear layer
between the non-swirling core and swirling annulus, are critical for flame stabilization.
When the swirl jet flows out of the low swirl injector, the low pressure in the center region
of the swirl flow recovers gradually, which leads to the generation of the reverse pressure
gradient in the axial direction. Without plasma actuation, the axial pressure gradient is
not large enough to cause reverse flow. At 12 kV, the decrease of axial velocity near the
central region can be observed, where the central low velocity region swells slightly and the
degree of flow expansion increases as well, but the actuation is not strong enough to cause
flow reversal and no vortex breakdown is observed, as shown in Figure 3b. Increasing the
strength of actuation to 15 kV resulted in the generation of a stagnation point as a result of
the reverse pressure gradient increase and the decrease of the axial velocity. Although the
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low velocity region and the degree of flow expansion remained almost unchanged, flow
reversal occurred in a small region and the onset of the breakdown bubble was observed
in regions close to the centerline at around Z = 15 mm, as shown in Figure 3c. Bubble-
type breakdown is characterized by a nearly axisymmetric region of reversed flow, with a
stagnation point at the forward end. As the actuation voltage was further increased to 18 kV,
the stable bubble-type vortex breakdown was observed to migrate upstream and was fully
established with a forward stagnation point at about Z = 1 mm and a backward stagnation
point at Z = 36 mm, as shown in Figure 3d. Its outer shape was nearly axisymmetric and
can be visualized as a bubble. Due to the existence of the vortex, the outer boundary of the
jet expanded immediately after it flowed out of the injector. As the strength of actuation
was increased to 21 kV, the breakdown zone grew further due to the enhanced backflow,
and its nose becomes less pointed and wider, as shown in Figure 3e. The breakdown zone
shifted upstream with the forward stagnation point penetrating into the injector, but the
position of the backward stagnation point changed very slightly compared to that of 18 kV.
This shows that the actuation does not significantly affect the overall location of the bubble,
although it enhances its size. The interior structures of the bubble were nearly the same for
the two cases.

Based on these results, it can be concluded that the 15 kV actuation is strong enough
to trigger the onset of vortex breakdown with a relatively low power input. The upstream
stagnation point and the center of the breakdown bubble migrated upstream with increas-
ing actuation strength, whereas the downstream stagnation point maintained a constant
position. Bubble-type breakdown was stable under these conditions. The overall shape
of the bubble did not change significantly with the strength of actuation increased from
18 kV to 21 kV. The interior structures of the bubble were nearly the same, containing one
major cell or vortex ring. The gross exterior appearance of the bubble was axisymmetric,
while the internal structure was asymmetric to some extent. The length-to-diameter ratio
of the bubble was approximately 1.61 and 1.48, with the maximum diameter occurring
at approximately Z = 20 mm and Z = 18 mm for 18 kV and 20 kV, respectively. With the
increase of the excitation voltage, the asymmetry between the two different sides of the
vortex ring increased, but the number of vortex rings did not increase.

  
(a) DBD actuation off 

Figure 3. Cont.
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(b) DBD actuation on (12 kV) 

  
(c) DBD actuation on (15 kV) 

  
(d) DBD actuation on (18 kV) 

Figure 3. Cont.
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(e) DBD actuation on (21 kV) 

 
Figure 3. Contours of mean axial velocity magnitude, streamlines, and vectors (left: magnitude contours and streamlines;
and right: vectors) in the XZ plane with bulk velocity of 3 m/s.

Figure 4 summarizes the axial velocity profiles along the centerline (X = 0 mm) for
the five cases with voltages ranging from 0 kV to 21 kV. The figure shows that the grad-
ual increase of voltage resulted in a gradual deceleration of the axial velocity along the
centerline and a gradual appearance and upstream movement of the vortex breakdown.
Without plasma actuation, the axial velocity at the injector outlet was 1.2 m/s. Moving
downstream, the axial velocity linearly decreased to Z = 22 mm, achieving a lower value
of 0.23 m/s. Then a velocity plateau appeared, which means the velocity remained es-
sentially unchanged. Applying the 12 kV excitation, the axial velocity distribution in
the Z = 0~20 mm zone moved down slightly, and the injector outlet velocity dropped to
0.99 m/s, but the overall change was not obvious, and the velocity plateau positions coin-
cided. When the excitation was increased to 15 kV, the injector outlet velocity decreased
to 0.62 m/s, and the axial velocity, in the range of Z = 0~20 mm, decreased appreciably.
However, because the vortex breakdown zone was very small and did not pass through
the jet centerline, the stagnation point and recirculation zone cannot be captured in the
axial velocity distribution along the centerline. When the excitation was increased to 18 kV,
the injector outlet velocity decreased to −0.1 m/s, and an obvious backflow zone appeared
in the region of Z = 0~40 mm. When the excitation was further increased to 21 kV, the
overall velocity distribution changed slightly. Although the magnitude of the reverse
velocity increased slightly, the length of the vortex zone and the position of the stagnation
point remained basically unchanged. The velocity increased linearly after it reached the
minimum value at Z = 22 mm, and no velocity plateau could be observed.

Figure 5 shows the axial velocity magnitude contours and streamlines with a bulk
velocity of 5.7 m/s. The plasma actuation-induced bubble-type vortex breakdown was
still obvious, while the interior structures of the bubble contained one major cell as well.
However, the size of the bubble decreased, which indicates that the effect of plasma
actuation decreases with the increase of flow rate. More work is needed to establish the
correlations between the effectiveness of plasma actuation, the jet inlet velocity, and other
parameters, in order to gain a full understanding. Further research is needed to enhance the
plasma flow control authority to put this method into engineering applications, including
full-scale applications.
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Figure 4. Profiles of the mean axial velocity.

   

(a) Actuation off                                    (b) Actuation on        

Figure 5. Contours of mean axial velocity magnitude and streamlinesin the XZ plane with bulk velocity of 5.7 m/s.

4. Conclusions

In this study, the concept of using the plasma swirler to control vortex breakdown
was proposed and tested. It was observed in the experiments that, by varying the strength
of the plasma actuation, the vortex breakdown region could be effectively controlled. The
plasma swirler, as a nonintrusive, no-moving-part method of controlling vortex break-
down, was demonstrated experimentally. Flowfield measurement demonstrated that the
plasma actuation was both effective and efficient in controlling the development of vortex
breakdown. Experimental results showed that the 15 kV actuation was strong enough to
trigger the onset of vortex breakdown. The overall shape of the bubble did not change
significantly when the strength of actuation increased from 18 kV to 21 kV. The interior
structures of the bubble were nearly the same, containing one major cell or vortex ring.
Without involving moving parts or mass adding, the plasma actuation offers great flexibil-
ity in flow and combustion control. It offers a choice for fundamental research of vortex
breakdown phenomena, where the actuation strength and frequency can be varied and
controlled easily. Further research is needed to enhance the plasma flow control authority
to put this method into engineering applications.
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Abstract: For nanoparticle synthesis in a spark discharge, the influence of the degree of electrode
asymmetry in the rod-to-rod configuration, using the example of silver electrodes, on the energy
efficiency and nanoparticle composition is studied. The asymmetry degree was determined by the
angle between electrodes’ end faces. Two types of discharge current pulses were used: oscillation-
damped and unipolar, in which electrodes changed their polarities and had a constant polarity during
a single discharge, respectively. A significant influence of the asymmetry degree of the electrode
arrangement on the synthesized nanoparticle size, agglomeration and concentration, and on the
synthesis energy efficiency, has been established. An increase in the degree of the electrode asymmetry
with the oscillation-damped discharge current pulse led to an increased mass production rate and
energy efficiency of nanoparticle synthesis, a significant fraction of which had large dimensions of
more than 40 nm. The effect of the transfer of synthesized nanoparticles to the opposite electrode at
the unipolar discharge current pulse led to the appearance of electroerosive instability, manifested in
the formation of a protrusion on the anode surface, around which spark discharges, leading to its
further growth and electrode gap closure.

Keywords: spark discharge; nanoparticle synthesis; silver electrodes; electrodes asymmetry

1. Introduction

A spark discharge (SD) [1,2] is a good method for producing nanoparticles (NPs) of
small size (less than 20 nm) by the electrical erosion [1] of the electrode material [3] with a
fast response due to instantaneous changes in the parameters of the electrical discharge
circuit [4]. In the SD processes, high-energy spark discharges are created between two
electrodes in a controlled gasflow, eroding the electrode material and forming NPs in
the form of aerosol [5]. A large set of SD parameters makes it possible to fine-tune the
shape, size, and concentration of the synthesized NPs. For instance, this method can be
applied for NP synthesis for the purpose of formation and doping of multicomponent
structures: metal alloys [6,7], semiconductor quantum dots [8–11], optical and magnetic
materials [12], and high-temperature superconductors [13,14]. Additionally, the method is
convenient for manufacturing devices for microelectronics and photonics [15], gas [16,17]
and biological sensors [18] based on NPs, microconductors, resistors [19,20] and capacitive
elements [2]. However, incorrect selection of method parameters leads to non-optimal
use of the discharge energy [21] and the production of large parasitic particles (more than
40 nm).

SD parameters, determining the diversity of NPs and the stability of their synthesis,
have been studied by different methods, but there are still questions that require detailed
consideration. Thus, the authors of [4,22] studied the size and shape dependence of the
synthesized particles from the discharge pulse energy, frequency of discharge repetition,
and parameters of the carrier gas, such as the composition, flow rate, pressure, and tem-
perature of the gas medium [23–25]. For example, the energy released in the discharge
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and the pulse repetition rate are both key parameters that strongly influence the size,
shape, and concentration of the synthesized NPs [8]. However, determining the exact value
of the energy in the discharge is a complex experimental task, solved by measuring the
current and voltage in the interelectrode gap in SD processes for NP synthesis [4] and
for micro-electro discharge machining (EDM) [26,27]. The authors of [4] were measuring
pulsed voltage across the interelectrode gap and proposed an algorithm for determining
the energy transferred into the discharge gap. In the paper [26] Yang et al. received the
spark discharge waveforms in the gap and presented a model for the micro-EDM param-
eters’ prediction. D’Urso et al. [27] performed a method for the evaluation of discharge
parameters and investigated their influence and the influence of electrode size on stainless
steel drilling by micro-EDM. A simpler approach is to estimate the energy released in the
spark gap by approximating the active impedance of the gap with an equivalent constant
electrical resistance [1,5].

Additionally to the energy parameters, the influence of the electrodes’ relative position
and the gas flow blowing past them on the synthesis of particles is of great interest. There
are many configurations of the electrode arrangement for spark discharge generators (SDG):
rod-to-rod, rod-to-tube, pin-to-plate, wire-in-hole, and wire-to-hole [28,29]. Each of them
requires precise adjustment and control of the electrodes’ positions. For instance, in wire-
in-hole and wire-to-hole configurations with a wire thickness of about 0.5 mm, it is quite
difficult to stabilize the position of the wire electrode in the gas flow. Thus, in the work [30],
electrodes were constantly adjusted to prevent the electrical circuit break. Currently, the rod-
to-rod configuration is the most common. It involves a pair of cylindrical electrodes fixed
in crimping holders and separated by a gap [31]. At the same time, this configuration is the
least demanding for the electrodes’ setup accuracy for the purpose of particle synthesis
repeatability. The influence of the electrodes’ position relative to the gas flow on the size
and shape of particles and their agglomerates was studied experimentally and by computer
modeling methods by the authors of [32]. It was also found that the diameter of rod-shaped
electrodes significantly affects the energy efficiency of NP synthesis [21].

In this paper, we study the influence of another important parameter on the processes
of NP synthesis in the SD—the degree of asymmetry of the electrode arrangement in the
rod-to-rod configuration on the example of silver electrodes. The two types of discharge
current pulses were studied—oscillation-damped, in which the electrodes changed their
polarities during a single discharge, and unipolar, in which the electrodes had a given
polarity during the discharge. Electrodes in the form of rods, one of which had a gas supply
hole, were installed coaxially. The end faces of the installed electrodes, from which the
electrical erosion of the material was performed during the discharge current flow, were
oriented in parallel and at an angle. Here, the parameters of the gas flow and the capacitor
initial energy were the same in these experiments.

2. Materials and Methods

In this paper, we study the changes in the size and morphology of silver NPs obtained
in the SD on different setup variants for electrodes’ working surfaces and on changes in
parameters of the SDG electrical circuit. A schematic representation of the SDG setup is
shown in Figure 1a. The SD was formed between two coaxially exposed cylindrical silver
electrodes with a diameter of 8 mm, along the axis of one of which a cylindrical hole with a
diameter of 1.4 mm was made to supply a gas flow into the interelectrode gap. The distance
between the two nearest points of electrodes was initially set to 1 mm. The electrical part
of the SDG circuit was implemented in two different versions—with an additional ballast
resistor with a nominal resistance of 5.0 Ω, causing a unipolar discharge current pulse
(UDP), and without it, causing an oscillation-damped discharge current pulse (ODP). In
each case, the voltage waveform on the capacitor during a discharge was recorded by the
oscilloscope DPO4102B-L (Tektronix, Beaverton, OR, USA) with an upper limit frequency
of 20 MHz on a fast scan from a RC-voltage divider with an upper limit frequency of
about 7 MHz. Since the ODP and UDP correspond to the oscillations with a positive value
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of the square of the present frequency ω2 = ω2
0 − γ2 > 0 (with ω2 → +0 for the UDP

case), the signal form is well described by the damped cosine function in the experiment
(Figure 2) [33]:

U = Uce−γt cos ωt. (1)

 

Figure 1. Equivalent representation of (a) the SDG setup and (b) of electrodes with the different position of their ends: (1)
installed in parallel and at an angle for the experiments with (2) the ODP and (3) the UDP.

 

Figure 2. Waveforms of the voltage pulse (a) without and (b) with a ballast resistor in the electrical circuit for the symmetrical
position of electrodes.

Here and next, Uc stands for the voltage amplitude, t for time, γ = Re(2L)−1 for the
damping coefficient, ω0 = (LC)−0.5 for the natural frequency of harmonic oscillations,
Re = R+ Rs for the total equivalent electrical resistance of the discharge circuit, represented
as the sum of the equivalent electrical resistances of the discharge circuit R and of the spark
gap Rs, and L and C for circuit inductance and capacitance, respectively.

NP synthesis during the erosion of electrodes was done in a T-shaped chamber made
of refractory glass (Duran, Milville, NJ, USA) in an argon atmosphere (99.9999%) at an
excess pressure of 10 kPa, recorded by a pressure gauge, with a gas flow rate of 200 mL/min,
recorded by the flow meter RRG-12 (Eltochpribor, Zelenograd, Russia).

The experiments were conducted in the mode of the interelectrode gap electrical
breakdown. The nominal value of the discharge capacitor was C = 107 nF, the initial values
of the capacitor charging voltage and frequency of capacitor discharges were Uc = 1100 V
and ν = 500 Hz, respectively. In the case of the ODP, the electrical resistance R and the
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inductance L of the discharge circuit, without active loss in the interelectrode gap, were
determined by the corresponding parasitic values in wires and in the capacitor. In the case
of the UDP, a ballast-cooled resistor with a nominal value of 5.0 Ω was additionally installed.
Approximating the discharge voltage waveforms for the symmetrical position of electrodes
(Figure 2) with the function (1), the unknown equivalent total electrical resistance and
inductance of the discharge circuit, including the spark gap, were L = 1.31 μH, Re = 0.40 Ω
and L = 1.97 μH, Re = 6.16 Ω for the ODP and UDP, respectively. Electrical resistances
of the discharge circuit R = 0.13 Ω and 5.55 Ω with the ODP and UDP, respectively, were
measured at the natural frequency of discharge current oscillations by the impedance
spectrometer RLC-meter AMM-3058 (AKTAKOM, Santa Clara, CA, USA). In this case,
current and potential contacts of the device were connected to symmetrically arranged
electrodes at ends facing each other. Taking into account these measurements, equivalent
electrical resistances of the interelectrode spark gap were 0.27 Ω and 0.61 Ω for the ODP
and UDP, respectively.

At the beginning of each experiment, electrodes’ surfaces, intended for the electroero-
sive NP synthesis, were polished on the grinding and polishing machine Digiprep Accura
(Metkon, Bursa, Turkey) to a roughness of Ra = 0.5 μm. The average electrode roughness
was measured by the optical profilometer S neox (Sensofar, Terrassa, Spain) on the confocal
20× lens from the area 800 × 800 μm2.

In the experiments, electrodes were arranged coaxially and their nearest end faces
were located parallel (at the angle of 0◦) and at the angles of 7◦ and 15◦ for the ODP and
parallel (at the angle of 0◦) and at the angles of 3◦ and 10◦ for the UDP. Assuming that the
electrode with a positive potential does not undergo significant erosion in the case of the
UDP, only cathode end face was beveled, whereas in the case of the ODP, ends of both
electrodes were set at an angle (Figure 1b).

NPs were synthesized in the process of electrode erosion by a pulse-periodic SD
continuously for 6 h maximum. During this experiment, we studied the statistical size
distribution of silver NP agglomerates in the aerosol stream by their differential electrical
mobility via the aerosol NP analyzer SMPS 3936 (TSI Inc., Shoreview, MN, USA). The
statistical agglomerate size distribution was described by a log-normal distribution. The
time dependence of the NP agglomerates modal size during electrode wear was constructed
from distributions maxima. In parallel, we recorded changes in the capacitor charging
voltage and the frequency of capacitor discharges in the setup by oscillograph readings.
In addition, samples of the synthesized NPs were studied by the transmission electron
microscope (TEM) JEM-2100 (JEOL, Ltd., Tokyo, Japan) for each regime under the study.
For that purpose they were deposited on TEM grids in 5–10 min intervals from the start of
experiments and after the establishment of thermodynamic equilibrium in the spark gap.
Based on the TEM images, we collected statistics on the NPs size for at least 1000 pieces
approximating them by round particles of equivalent cross-sectional area and drew their
size distribution. At the end of experiments, we investigated electrodes’ end faces after
their electrical erosion, and their elemental composition in the scanning electron microscope
(SEM) JSM 7001F (JEOL, Ltd., Tokyo, Japan) with the option of energy dispersive X-ray
spectroscopy (EDX).

At the beginning and in the end of each experiment, we weighed electrodes on the
scale SQP-F SECURA 225D-1ORU (Sartorius Lab Instruments, Goettingen, Germany) with
a resolution of 10 μg to estimate the electrodes’ mass loss as a result of their erosion.

3. Results

Installing electrodes in the synthesis chamber of SDG, it is difficult to avoid some
asymmetry in their relative positions. The appearance of random angles between the
planes of erosion ends of electrodes leads to a change in the composition of synthesized
NPs and to non-reproducible results. In the present study, we purposely set a certain
degree of electrode asymmetry and evaluated its effect on the size, shape and concentration
of NPs, as well as the energy efficiency of synthesis with the ODP in which the electrodes
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changed their polarities during a single discharge, and UDP, in which the electrodes had a
given polarity during the discharge.

3.1. The Influence of the Degree of Electrodes Asymmetry on the NP Synthesis with the ODP

The characteristic side view of an electrode pair installed in the discharge chamber,
with end faces located at the angle of 15◦ to each other, is shown in Figure 3 for the three
cases of the ODP: the initial position before the SD process, during the SD process, and 6 h
after the SD process. As it can be seen from Figure 3b, the SD is localized in the region of the
shortest distance between the electrodes, which is characteristic of the electric breakdown
of gas gaps. Figure 3c shows a significant wear of the beveled end faces of both electrodes
during 6 h of processing: the ends were aligned during this time to a parallel state. Photos
of the electrodes end faces, SEM images of their surface characteristic areas (types 1–3 in
Figure 4a–c) and chemical composition of the obtained surfaces for the cases of electrodes
parallel location and location at the angle of 15◦ are shown in Figure 4. Moreover, the
surface characteristic areas of type 3 are similar to each other for the cases of parallel
orientation (Figure 4b) and at an angle (Figure 4c).

 

Figure 3. Photos of the gap between the electrodes with end faces forming the angle of 15◦: (a) before the start of the SD
process, (b) during the discharge process and (c) 6 h after the spark treatment by the ODP.

The SEM image of area 1 of Figure 4a shows a typical surface of the original polished
electrode, characterized by an average roughness of Ra = 0.5 μm. On the electrodes’ end
faces, initially located at the angle of 15◦ (Figure 4b), after processing with the SD, two
typical areas marked in the Figure 4b with the numbers 2 and 3 are observed. As it
can be seen from the SEM image of the area 2, the polished surface of the electrode is
covered with a loose layer of dendrite-like NP agglomerates. Presumably, the main part of
such agglomerates was formed with electrical erosion and transferred from the opposite
electrode. Area 3 represents exactly the electrode surface treated with the SD, and as it can
be seen from the SEM image, it consists of overlapping craters with dimensions of about
10 μm. Each subsequent discharge, leading to the formation of a new crater, can occur in
places of increased electric field density on microprotrusions formed over the previous
crater edge as a result of spilling molten metal. The elemental composition of Ag electrode
surfaces, according to the results of EDX (Figure 4g–i), dominantly consist of silver for all
cases, presented in Figure 4a–c. In this case, the presence of carbon may be associated with
the presence of carbon-containing compounds in the carrier gas and adsorbed substances
in the gas discharge chamber and on the initial electrodes.
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Figure 4. (a) Photos of the polished electrodes, (b) the electrodes after 6 h of NP synthesis with the ends initially located at
the angle of 15◦ and (c) with the initially parallel ends, (d–f) SEM images of the corresponding characteristic areas 1, 2, 3,
indicated in the photos of the electrode ends, and (g–i) EDX spectra of Ag electrode surfaces marked 1–3 in (a–c).

For the three cases of the mutual arrangement of electrodes end faces (in parallel
and at the angles of 7◦ and 15◦), time dependences of modal distribution sizes of NP
agglomerates and their concentrations, determined by electrical mobility during 6 h of NP
synthesis, were studied (Figure 5).

A characteristic of the measured dependences of agglomerates’ modal dimensions
from time is their asymptotic approximation to the average size of about 150 nm during 6 h
of NP synthesis for each of the three cases of mutual arrangement of electrodes’ end faces.
Such an asymptotic behavior of the average agglomerate size–time–function indicates
the stability of the SD process on asymmetrically installed electrodes, which leads to the
formation of parallel end faces. The dependences comparison for the three cases shows
that the average initial agglomerates’ size and the average curvature of the function are
higher with a greater degree of the electrodes’ asymmetry. These features can be explained
by a higher wear rate of electrodes with the end faces located at a large angle, due to their
electrical erosion.
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Figure 5. Time dependences of the modal size of NP agglomerates and their concentrations during the electrodes wear by
the ODP for electrodes with ends (a,d) located parallel and at the angles of (b,e) 7◦ and (c,f) 15◦.

The behavior of the dependences of the capacitor charging voltage and frequency of
capacitor discharges with the ODP for the three cases of the electrodes’ end arrangement,
as it can be seen from Figure 6, has a common feature after the start of charge-discharge
processes. Within first 5 min, there is an almost-identical decrease in the capacitor charging
voltage and a simultaneous increase in the discharge frequency by about 35%. This effect
is logically associated with the establishment of a stationary high-temperature regime in
the spark gap and in electrodes. Next, the charging voltage curves monotonically increase
and the discharge repetition rate curves monotonically decrease faster as the initial angle
between electrodes’ end faces increases. This effect can be associated with the erosion wear
of the beveled electrodes end faces and, consequently, with a more rapid increase in the
interelectrode gap distance in comparison with the case of parallel setup of the electrodes’
ends. This behavior correlates well with increased modal size of NP agglomerates and
their concentrations with an increase in the angle between electrodes’ ends (Figure 5). We
also note that the configuration of the electrodes’ arrangement with the parallel ends gives
the most stable behavior of the dependences of the capacitor charging voltage, frequency
of discharges, and modal size of synthesized NP agglomerates and their concentrations.

It is also of interest to compare characteristic dimensions of craters formed by the
SD on surfaces of electrodes initially installed parallel and at the angle 15◦ (Figure 7a,b).
SEM images of the electrode surfaces being under erosion for 2 h were analyzed. The
analysis was carried out only for the upper craters with a closed outer border in the form
of a breastwork. As it can be seen from the comparison of the crater size distributions
(Figure 7c,d), in the case of the initial parallel arrangement of electrodes end faces, the size
of craters is noticeably smaller than when the electrodes end faces are located at an angle.
This effect is logically explained by a smaller equivalent working area of electrodes’ initially
installed at an angle, and, as a result, a higher average discharge current density. At the
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same time, the craters’ average diameter is less than 20 μm in both cases, corresponding to
experimental observations in previously performed works of other authors [34–36].

 

Figure 6. The dependences of (a) the capacitor charging voltage and (b) frequency of the capacitor discharges for the case of
synthesis with the ODP for electrodes’ ends located parallel and at angles of 7◦ and 15◦.

 

Figure 7. (a,b) SEM images of electrode faces subjected to electrical erosion and (c,d) the size distributions of craters for the
cases of (a,c) the initial parallel arrangement of ends and (b,d) at the angle of 15◦.
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The sizes of synthesized primary NPs collected on TEM grids were analyzed on
a series of TEM images (Figure 8a–c) for the three cases of the initial arrangement of
electrodes end faces: parallel and at the angles of 7◦ and 15◦. For this purpose, we obtained
number-size distributions of NPs as part of agglomerates, and next converted them into
mass-size distributions (Figure 8e,f), which clearly reflect the mass fraction of particles of
different sizes.

 

Figure 8. (a–c) TEM images and (d–f) mass distributions of NPs for the synthesis with the ODP and electrodes ends
arranged (a,d) parallel and at the angles of (b,e) 7◦ and (c,f) 15◦.

The given mass distributions qualitatively and quantitatively characterize the size
and shape of synthesized NPs and their agglomerates for the three variants of the electrode
ends arrangement. When going from the case of the parallel end faces arrangement to the
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case of their setup at a large angle, the NPs agglomeration increases, individual NPs form
necks and NP agglomerates transform into aggregates. Additionally, despite the increase
in the proportion of particles with a diameter up to 40 nm, the number of large parasitic
particles with a size larger than 40 nm increases with an increase in the asymmetry degree
of the electrodes’ arrangement (Figure 8f). The mass fraction of parasitic particles turns out
to be significant and equals 33% and 66% for the location of electrodes’ ends at the angles
of 7◦ and 15◦, respectively.

When calculating the energy efficiency of the SDG, it was taken into account that the
capacitor charging voltage Uc(t) and the discharge frequency ν(t) are the values changing
over the time of NP synthesis (Figure 7). Therefore, the total energy periodically stored in
the capacitor and transferred to the discharge circuit during the NP synthesis operation
time t was determined by the next formula [33]:

Et =
∫ t

0

CU2
c (t)
2

ν(t)dt. (2)

To determine the part of the energy released directly in the spark gap, one can use the
equivalent representation of the spark gap by the constant electrical resistance Rs. In this
case, the total energy released per single discharge pulse of length τ can be represented as
a sum of two terms: the energy release in elements of the discharge circuit and the energy
release in the spark gap:

Epulse = R
∫ τ

0
I2dt + Rs

∫ τ

0
I2dt. (3)

A similar approach of calculating the discharge energy parameters was previously
used in the works [1,26]. Using Formula (3), total energy released in the interelectrode gap
during the whole SD process is calculated as follows:

Es
t = Et

Rs

Re
. (4)

The energy efficiency characterizing the useful output of the SDG is the synthesized
NPs mass produced per unit useful energy consumed and expressed by the formula [1]:

md
e =

ΔM
Es

t
, (5)

where ΔM = ΔM1 + ΔM2 is the total mass of the synthesized NPs, equal to the mass
loss of the two electrodes as a result of the NPs synthesis for time t. The total NPs mass
after 6 h of synthesis, and the corresponding energy efficiency for the ODP at different
arrangements of electrodes’ end faces are presented in Table 1.

Table 1. The decrease in the electrodes’ mass, the energy release in the interelectrode gap, and the
energy efficiency of synthesis with the ODP.

Angle ◦ ΔM1, mg ΔM2, mg ΔM, mg Es
t , kJ ms

e,
μg
kJ

0 12.90 ± 0.01 21.87 ± 0.01 34.77 ± 0.01 304 ± 3 114 ± 1

7 24.29 ± 0.01 47.34 ± 0.01 71.63 ± 0.01 316 ± 3 226 ± 2

15 30.12 ± 0.01 47.28 ± 0.01 77.40 ± 0.01 323 ± 3 239 ± 2

The maximum mass consumption of electrodes was observed for the ends installed
at angles of 7◦ and 15◦. This feature can be explained by comparison of the actual mass
consumption of the electrodes after 6 h of NP synthesis with the NP mass-size distribution
(Figure 8). Additionally, with an increase in the angle between electrodes’ end faces, an
increase in the energy efficiency of the NP synthesis is evident.
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3.2. The Influence of the Degree of Electrodes Asymmetry on the NP Synthesis with the UDP

The UDP, which occurs when the ballast resistor is inserted in the discharge circuit,
was characterized by approximately twice less amplitude and duration comparable to one
half-wave of the ODP. Thus, the total electric charge passing through the spark gap in a
single discharge pulse was about 7 times less for the UDP than for the ODP. For this reason,
the electrical erosion wear of the electrodes during the several hours of the experiment
was not sufficient to form on the cathode a significant area parallel to the anode, even at
the angle of 10◦. Therefore, experiments on the electrical erosion of electrodes and NP
synthesis by the UDP were carried out with unchanged electrode shape at the macroscale.

It was found that, in processes of NP synthesis with the UDP, in cases of parallel
arrangement of electrodes’ ends or with a small slope of the cathode surface (3◦), an
electroerosive instability of the spark process occurred. It was manifested in the localization
of spark channels to some response areas of electrodes end faces and was random in time.
On the anode end face, a protrusion from the electrodes material had been appearing at
the location of the spark channel. The protrusion grew over time and reduced the gap
between electrodes. Reaching the cathode, it formed a metal bridge between electrodes,
short-circuiting the interelectrode gap and ceasing spark discharges and NP synthesis. The
start of the protrusion’s rapid growth from the anode to the cathode is clearly indicated
by the sudden change in functions of the capacitor charging voltage and the frequency
of the capacitor discharges. This is represented in Figure 9 by black and red lines. The
time of the beginning of the metal protrusion formation on the anode is longer for the
cathode end face orientation at the angle of 3◦ than for the case of parallel arrangement of
electrodes’ ends. In the case of the cathode end face oriented at an angle, NP deposition on
the anode reduces as it becomes easier for NPs to leave the interelectrode gap. Obviously,
the protrusion is formed by NPs synthesized from the cathode material and transferred to
the anode.

 

Figure 9. The dependences of (a) the capacitor charging voltage and (b) the frequency of capacitor discharges for the case of
synthesis with the UDP for electrodes’ ends arranged in parallel and at the angles of 3◦ and 10◦.

The time dependences of modal sizes and concentrations of NP agglomerates synthe-
sized in the SD with the UDP at different arrangements of the electrode ends are shown in
Figure 10. From the comparison of these dependences, one can see an increase in the initial
modal size of agglomerates with an increase in the angle between electrodes’ end faces.
This can be explained in the analogy with the case of the ODP by the localization of SDs
in the area of the shortest distance between electrodes that leads to the increased current
density in the SD and to the synthesis of large NPs.
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Figure 10. Time dependences of the modal size of NP agglomerates and their concentrations during the electrodes wear by
the UDP for electrodes ends arranged (a,d) in parallel and at the angles of (b,e) 3◦ and (c,f) 10◦.

Since, in the case of the UDP, a significant part of the capacitor’s energy was dissipated
on the ballast resistor, the energy spent on the electrical erosion of the electrode material was
much lower than in the case of the ODP, and the synthesized NP agglomerates had smaller
dimensions. Herewith, for the arrangement of electrodes ends at the maximum angle (10◦),
an asymptotic approximation of the dependence of modal sizes of NP agglomerates from
time to the average size of about 130 nm is observed.

In the process of NP synthesis with the UDP, the anode end face is covering with an
array of dendrite-like NPs. The cathode end face is modified by electrical erosion, followed
by the formation of a set of overlapping microcraters. Such microcraters are formed as a
result of evaporation and spilling of metal heated by the SD at places where it occurs on
the cathode. According to the SEM images of electrode ends shown in Figure 11, one can
observe the structure of their typical surface after the prolonged treatment by SDs. Since
craters are found only on the cathode, we can logically assume that the anode is covered
with NPs synthesized on the cathode. Thus, NPs synthesized from the cathode material
are partially transferred to the anode and partially carried away in the form of aerosol by
the transport gas. Herewith, the average size of craters turns out to be much smaller for
the UDP than for the ODP (Figure 7c,d and Figure 11c,d). Moreover, the average crater’s
dimensions were found to be larger at the area of spark channel location on the cathode
(Figure 11c) opposite the growing protrusion on the anode than at the cathode area aside
the spark channel location (Figure 11d).
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Figure 11. SEM images of typical surfaces of the (a) anode and (b) cathode after prolonged processing in the SD with
the UDP and size distributions of craters on the cathode (c) at the area of spark channel location opposite the growing
protrusion on the anode and (d) at the area aside the spark channel location for the case of the initial parallel arrangement
of electrodes’ ends.

A protrusion formed on the anode with the UDP was studied in optical and scanning
electron microscopes (Figure 12). The photo in Figure 12a shows the localization of the
spark channel in the discharge process at the stage of growth of the protrusion from the
upper electrode (anode). Moreover, before the main protrusion growth begins, many
clusters of NPs are gather on the anode in the form of micro-protrusions, which are located
in a ring at a distance of about 2 mm from the center of the anode (in Figure 12b inside
the dashed circle). When one of those protrusions begins to dominate, the growth of
remaining protrusions stops, except for a single one quickly moving to the cathode, closing
the interelectrode gap with a conducting bridge. Localization of the SD channel from a
growing protrusion is similar to the previously observed SD processes with the pin-to-plane
electrode configuration for pin-cathode [37] and pin-anode cases [38].
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Figure 12. (a) Photo of the SD localization in the spark gap at the point of growth of the protrusion from the anode;
(b) Optical microscope image of the anode end face with the designation of micro-protrusions formation area (dashed circle)
and the dominant protrusion (solid circle); (c–f) SEM images of characteristic parts of the growing protrusion microstructure.
Subfigure (e) is a magnified part of subfigure (d).

The microstructure study of the growing conductive protrusion (Figure 12c) in SEM
allows us to conclude that in the central part of the protrusion the stacking of dendrite-
like NP agglomerates is dense (Figure 12f) and on its periphery, the NP agglomerates
assemble in the form of clusters with a loose stacking (Figure 12d,e). At the same time,
many dendrite-like agglomerates in the central part of the protrusion are molten, probably
due to their participation in the transfer of the SD current to the anode (Figure 12f).

In experiments with the UDP, we analyzed the dispersed composition of aerosol NPs
by TEM and measured the mass loss of the cathode and anode. According to a series
of TEM images of NPs (for example, Figure 13a–c) for each of the three variants of the
electrodes’ ends arrangement, the mass-size distributions of NPs (Figure 13d–f) were
determined. It indicates that with an increase in the degree of electrodes asymmetry the NP
agglomeration increases. In the case of electrodes parallel ends, a large number of isolated
NPs were observed (Figure 13a). In the case of the electrodes’ ends arrangement at the
angle of 3◦, the particles mainly formed small agglomerates. At the angle between ends
of 10o, the energy release density in the discharge became sufficient for the fusion of NPs
with the necks’ formation specific for strong aggregation. At the same time, in all cases, a
great number of NPs with sizes of 2–5 nm were observed, which did not make a significant
contribution to the mass distribution. However, we have not detected NPs larger than
40 nm in these experiments, probably due to an order of magnitude lower energy release
in the spark gap compared to similar experiments with the ODP.
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Figure 13. (a–c) TEM images and (d–f) mass-size NPs distributions for the cases of NP synthesis with the UDP for electrodes’
end faces arranged (a,d) in parallel and at angles (b,e) 3◦ and (c,f) 10◦.

Analysis of changes in the electrodes’ mass after the completion of the SD process
with the UDP showed that the main mass loss was at the cathode, and the anode mass
might even slightly increase (Table 2). The increase in mass is logically associated with
the transfer of synthesized NPs to the anode, including the growth of a metal protrusion
leading to the formation of an interelectrode bridge. From Table 2, one can see that the
electrodes’ mass loss (mainly for the cathode) grows with an increase in the degree of
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electrode asymmetry. However, the energy efficiency in the case of the UDP varies slightly
depending on the angle between electrodes’ ends.

Table 2. The electrodes’ mass loss, the energy release in the interelectrode gap, and the energy
efficiency of the NP synthesis with the UDP.

Angle, ◦ ΔManode, mg ΔMcathode, mg ΔM, mg Ed
t , kJ md

e ,
μg
kJ

0 −0.68 ± 0.01 3.41 ± 0.01 2.73 ± 0.01 18.0 ± 0.2 152 ± 2

3 0.33 ± 0.01 5.01 ± 0.01 5.34 ± 0.01 28.7 ± 0.3 186 ± 2

10 −0.14 ± 0.01 7.72 ± 0.01 7.58 ± 0.01 60.9 ± 0.6 124 ± 1

4. Discussion

As established in the experiments presented above with the pulse-periodic SD, in
the regimes with the ODP and the electrodes’ asymmetric arrangement during the NP
synthesis, their protruding parts are increasingly worn out by electrical erosion, forming
parallel surfaces that increase in area and are covered with craters from spot discharges.
At each moment of time, a certain area of the electrode is involved in electric discharge
processes, usually in the form of a segment of the electrode cross-section (for example, in
Figure 4b). Thus, we can say that from the start of the pulse-periodic SD process, equivalent
working areas of electrodes, in the case of their ends arranged at an angle, increase from a
minor value to the full cross-sectional area of the electrode perpendicular to its axis.

The kinetics of the increase in the working area of the electrodes arranged at an angle
is correctly displayed by the observed patterns of decreasing time dependencies of the
average NP agglomerate size and their concentration measured in the flow by NP electrical
mobility (Figure 5). Additionally, the role of the small working area of electrodes initially
arranged at an angle is in the greater average energy efficiency ms

e over 6 h of the process
for higher angles between electrodes end faces (Table 1). The average energy efficiency is
the integral with respect to time from current energy efficiency function, monotonically
decreasing from the start highest value. Experimental data obtained allow us to estimate
the decrease in kinetics of the current energy efficiency and its maximum initial value. The
current energy efficiency

me(t) = μ(t)/Pd(t) (6)

is followed from (5) and expressed as the mass loss rate by synthesized NPs μ(t) per current
power released in the interelectrode gap determined from (2) and (4):

Pd(t) =
Rs

Re

CU2
c (t)
2

ν(t). (7)

The mass loss rate by synthesized NPs μ(t) can be estimated from experimental de-
pendencies of the concentration N(t), the average size of NP agglomerates D(t), measured
by their electrical mobility (Figure 5), and from the value of the electrode mass loss ΔM
(Table 1) [39]:

μ(t) =
dM
dt

= A
π

6
D3(t)ρN(t)V = ΔM

N(t)D3(t)∫ T
0 N(t)D3(t)dt

, (8)

where ρ is the density of the NP material, V is the gas flow through the synthesis chamber
and A is the constant coefficient that takes into account the analyzed fraction of the aerosol
flow and the difference between the mass-weighted average NP size and the average size
in terms of electrical mobility, which are reduced in the final expression. The calculations
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also use the expression for the total electrode mass loss during the time T as the integral
from the mass loss rate by the synthesized NPs:

ΔM =

T∫
0

μ(t)dt = AρV
π

6

T∫
0

N(t)D3(t)dt. (9)

Dependences μ(t), me(t) and Pd(t) calculated from experimental data for the three
cases of the degree of electrode asymmetry are shown in Figure 14. The electrical power
Pd(t) entering the spark gap varies slightly with time except for the first 5 min, during
which the working area is heated by SDs. However, the mass loss rate and the energy
efficiency are described by steeply and monotonically decreasing functions.

 

Figure 14. (a) The electrodes’ mass loss rate, (b) energy efficiency, and (c) power released in the spark gap for the three cases
of the degree of the electrode asymmetry with the ODP.

The observed effect of the energy efficiency decreasing or of the increasing in the equiv-
alent working area of electrodes’ ends initially arranged at an angle correlates qualitatively
with the theoretically predicted effect of reducing the energy efficiency of NP synthesis
with an increase in the diameter of the electrodes used [21]. Previously, it was noted that a
higher mean temperature of electrodes increases mass production [23,36,40] and can lead
to an increased production of large particles. This is realized in our experiments at the
initial moments of the discharge process between electrodes ends arranged at an angle,
when the equivalent working area of electrodes is small and the average density of the
discharge current is high.

In experiments with the UDP, even when a cathode end had the angle of 10◦, the
synthesis of parasitic particles (more than 40 nm) was not observed, and the agglomeration
of NPs was not significant. This occurred because, in the case of the UDP, the energy
released in the spark gap per pulse was almost an order of magnitude less than in the case
of the ODP. Therefore, there was no high energy release density even when the discharge
was localized between beveled electrodes.

NP arrays on electrodes’ end surfaces, as shown in Figure 4e, appeared in the case of
an asymmetric arrangement of electrode end faces with the ODP. These surfaces, covered
with NPs and not covered with discharge craters, indicate the deposition of a significant
part of synthesized NPs back to the electrode and, probably, the transfer from the opposite
electrode. Earlier in [23,36], the authors also noted the transfer of large particles to the
opposite electrode and the transfer of NPs synthesized from the cathode material on the
cathode [41,42].

Our experiments on the NP synthesis by the SD with the UDP, in which the mass of
the anode increased (Table 2), clearly indicate the transfer of a significant proportion of
synthesized NPs from the cathode to the anode. It is known that in the experiments with the
UDP, each electrode works mainly as anode or as cathode and the electrical erosion of the
cathode material turns out much higher than that of the anode, which was more accurately
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measured for larger interelectrode gaps in [43,44]. The width of the interelectrode gap
of about 1 mm in our work contributed to an increased transfer of synthesized NPs to
the opposite electrode. Since the erosion wear of the anode is much less than that of the
cathode under these conditions, the material transferred from the cathode compensates the
mass loss of the anode and can even increase it.

The origin of protrusions of NP clusters at the anode occurs due to the increased
transfer of synthesized NPs from the cathode. These protrusions contribute to the electric
field localization and, consequently, increase the probability of an electric breakdown of
the gas in front of such protrusions. The growth of such protrusions is unstable, since
the highest of them will more likely increase the local electric field and cause subsequent
SD from the cathode in its direction. It is this single protrusion that grows and localizes
the entire discharge process from the opposite region of the cathode. The growth of
such a protrusion can be considered as the unstable process of the SD developing with a
positive feedback. Moreover, the discharge process is stopped when the growing protrusion
reaches the cathode and forms a conductive metal bridge between electrodes. To avoid
instability due to the protrusion growth, it is necessary to create conditions for the removal
of synthesized NPs from the interelectrode gap with higher efficiency. To do this, the rate of
removal of NPs from the interelectrode gap must be greater than the rate of their synthesis.

Considering all the above, the reason for the absence of effects of the protrusions
growth and the closure of the spark gap by a conducting bridge with the ODP becomes
clear. In this case, the anode and cathode change their roles at each subsequent half-wave
of the discharge current and are almost equal in the intensity of their electrical erosion.

5. Conclusions

The main result of this work is the revelation of another important parameter signifi-
cantly affecting the processes of electrodes electrical erosion and the synthesis of NPs in
a pulse-periodic SD—the degree of the electrodes’ asymmetry in the rod-to-rod (rod-to-
thick tube) configuration. It was demonstrated that it is possible to control the size and
concentration of synthesized NPs by changing the degree of the electrodes’ asymmetry by
setting their end faces at a certain angle. With an increase in the degree of the electrodes’
asymmetry, larger NPs (with sizes greater than 40 nm) appeared in the aerosol composition
and their agglomeration increased. This behavior, observed with an increase in the angle
between electrodes end faces, is associated with the localization of SD channels in the region
of the shortest distance between electrodes and, consequently, with a local increase in the
density of the discharge current and in the density of the power released in the discharge.

During the electroerosive wear of asymmetrically arranged electrodes by the ODP, a
great part of the end faces of both electrodes became parallel. At the same time, parameters
of the synthesized NPs approached those of the NPs synthesized on initially symmetric
electrodes. This led to an asymptotic decrease in the average size of NP agglomerates to
150 nm for the case of the ODP and to 130 nm for the case of the UDP at the maximum
degree of the electrodes’ arrangement asymmetry.

In conclusion, it is also important to note that, with the ODP, an increase in the degree
of electrodes’ asymmetry led to an increased mass production rate and energy efficiency of
NP synthesis, and a significant part of this increase was due to the contribution of large
NPs with a size of more than 40 nm. Thus, in these regimes a large mass production
rate was realized with a sharp deterioration in the qualitative composition of NPs. The
parallel arrangement of electrodes’ end faces provided the most stable mode of continuous
synthesis of NPs of small sizes (less than 40 nm), both for the ODP and UDP. It is also
important that, in all the cases, a significant proportion of synthesized NPs remained
inside the interelectrode gap, settling on electrodes’ end faces and not contributing to the
energy efficiency of the synthesis. This effect can be minimized by controlling the SDG
configuration and the speed parameters of blowing the electrode ends with gas, and by
increasing the width of the gap between electrodes.
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The effect of synthesized NP transfer to the opposite electrode with the UDP led to
the occurrence of electroerosive instability. It appeared in the form of a protrusion on
the anode surface, around which the SD process is localized, causing its further growth.
This process led to an unstable regime of NP synthesis. As instability developed, the
height of the protrusion on the surface of the anode increased, reducing the gap between
electrodes. The protrusion grew due to the transfer of the cathode material by synthesized
NPs to the area of its formation at the anode. Nevertheless, in the context of individual
NP synthesis and the reduction of their agglomeration in the aerosol, the use of UDPs
may be promising for practical applications, provided that the electroerosive instability
development is prevented. Our further research will be devoted to finding conditions for
preventing such instabilities.
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Abstract: The low temperature plasma of glow discharge has found a widespread use as a heating
source in welding and surface treatment of metals. The meticulous analysis of glow discharge’s
instabilities in these processes allowed us to highlight the physicochemical characteristics of the
cathode surface (the welded or treated samples) as one of the main reasons of its transition into an
electric arc—as a more stable form of gas discharges. The prolonged arc action on the samples surfaces
inevitably leads to the disruption of the technological process and, consequently, to undesirable
overheating of samples. In this regard, the main aim of this work is to study the influence of the
macro- and micro relief of the cathode on the stable glow discharge existence in the processes of
metals treatment and diffusion welding. It has been analytically established and experimentally
supported that the glow discharge’s stability is mainly affected by the sharp protrusions generated
on the cathode surface because of samples pre-treatment by machining before welding. It has been
established that the rough surface pre-treatment with the Rz about 60–80 μm decreases the pressure
range of glow discharge sustainable existence from 1.33–13.3 kPa to 1.33–5.3 kPa compared with the
surface machining with the Rz about 10 μm.

Keywords: diffusion welding; plasma; glow discharge; surface treatment; plasma techniques

1. Introduction

Nowadays, to obtain qualitative permanent joints of heterogeneous materials the
methods of welding in a solid state are widely used. The most prevalent of these is a
diffusion bonding. The wide nomenclature of compounds creates a complex of specific
requirements for diffusion bonding’s energy sources. These requirements are mainly related
to the acceptability of a wide range of materials and shapes of products, the accuracy of
the specific heat capacity control and the ability of the wide regulation of the sample’s
temperature [1].

The distributed plasma of a glow discharge burning in a rarefied gas atmosphere at
a pressure of 0.1–10 kPa is widely used in processes accompanied by the direct action of
charged electric particles on the treated or welded materials. Known works consider the
possibility of application of gas discharges technique in the field of thin films deposition,
metals surfacing, treatment and modification of metals before welding [2–5]. Still, as
practice has shown, diffusion welding [6] and thermal and chemical-thermal surface
treatment [7] are the most appropriate. This is due to the high technological capabilities
of the glow discharge, which in these processes can serve both a processing tool and a
source of thermal energy for their implementation simultaneously. Additionally, a glow
discharge has high technical, economic, and environmental indicators, for instance, high
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heating productivity, energy savings, and last but not least the absence of environmental
pollution [8].

However, during surface treatment or welding of metals, the instabilities of samples
temperature (discharge cathode in these processes), the pressure of the working gas, the
voltage of the power supply, and a number of other factors, can lead to the transition of
a glow discharge into another form of gas discharge—an electric arc [9] (Figure 1). In
this case, the distributed glow discharge transforms into a contracted form. Its cathode
spot narrows to a very small size, increasing the energy concentration dramatically. A
prolonged action of a concentrated arc discharge inevitably leads to the local melting and
destruction of samples.

(a) (b) 

Figure 1. The view of the glow discharge on the cathode surface in stable (a) and unstable (b) burning modes during the ion
treatment (the bright spots to the right—arc breakdowns).

The probability of arcing increases with the rising of the total and specific power
of the discharge. The energy characteristics of the ionic treatment processes are mainly
determined by the magnitude of the discharge current and the gas pressure in the working
chamber. The development of processes’ productivity leads to the necessity of increasing
their values. That, in turn, entails rising of average current density (j) in the cathode spot of
the discharge and the average specific volumetric power (jE) in the discharge plasma [10].
However, with increasing of discharge energy characteristics in the interelectrode gap, the
short-term local arc breakdowns with a duration of one or two half-periods of the rectified
current can form (Figure 2).
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( ) 

 
(b) 

Figure 2. Oscillogram of the discharge current in stable (a) and unstable (b) mode. (Glow discharge current 4 A. Oscillograms
were recorded from a shunt of 3 Ohm connected to the discharge circuit).

In [11,12], the glow discharge’s instabilities are closely associated with its contraction
(compression) and transition to a cord form of discharge with the increasing of volumetric
power (jE) accordingly. The gas in the cord discharge heats up extremely while the burning
voltage decreases and eventually the cord switches into an arc electric. Such a mechanism
of glow discharge’s instability is associated with volumetric processes in positive column
of the discharge plasma, and therefore is more characteristic of extended discharges of the
laser type [13], where the length of the interelectrode gap is 0.5–1.0 m. In the processes
of ion treatment and welding of metals, a stationary DC glow discharge burns between
the electrodes with a limited distance of 0.005–0.05 m. In these conditions, processes in
the near-electrode regions of the discharge can affect negatively its stability. The largest
voltage drop (100–300 V) and the greatest electric field strength accordingly are observed
in the cathode region of the discharge where there are the processes of electron ionization
and multiplication which determine the glow discharge existence. These processes are
affected by conditions both in the volume of the cathode layer and on the surface of the
cathode itself. They are quite fully investigated and described in [14–16]. However, they
do not consider the impact of the cathode surface characteristics on the stability of the glow
discharge while surface treatment and welding of metals, which makes it impossible to
determine and establish their optimal values from the point of view of process productivity
and discharge stability. In this regard, the aim of this work is to study the effect of the
physicochemical characteristics of the samples surface on the stability of a glow discharge
and the development, on this basis, of technological recommendations for the selection of
values of the mode parameters that ensure the stable discharge existence while diffusion
welding and metals treatment.
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2. Methods

The main physicochemical characteristics of the metals surface includes its macro- and
micro relief, as well as the presence of chemical compounds on it. Even after machining, the
surface of the vast majority of structural metals is covered with a thin layer of natural oxide.
Oxide films are not ideal dielectrics, but they possess a certain conductivity. The resistivity
(ρ) of most oxide films of the processed metals (Fe, Cu, Mo, W, Ti, etc.) is 103–105 Ohm m,
and the characteristic value of the dielectric constant is ε ≈ 2–10 [17]. Therefore, from an
electro-technical point of view, an oxide film’s capacitance and resistance are connected in
parallel. The capacitive properties of the film appear at times t0 ≤ εε0ρ ≈ 3 (10−8–10−6)
sec [18]. The maximum electric field strength due to the accumulation of charge on the
oxide film over this time is defined as

E ≈ 1
εε0

t0∫
0

jdt ≈ jp, (1)

where j—the current density at the cathode of the discharge.
In a normal glow discharge, the gas pressure in the working chamber determines

the current density in the cathode spot and at the pressures of 1.33–13.3 kPa it can reach
102–103 A/m2. Thus, in a normal DC glow discharges at pressures characteristic of tech-
nological processes of metal treatment and welding, the electric field may not reach the
values of the electric field strength breakdown for thin oxide films. As it was mentioned
in [16], the heating of the oxide films to a 1200 K leads to a rapid decrease of its resistivity
(four to six orders of magnitude). Therefore, taking into account the simultaneous heating
of the films together with the samples and the noticeable decline in the film resistance
with increasing of the temperature, the emergence of arcing breakdown is unlikely. Conse-
quently, the presence of an oxide film on the surface of the cathode (product) can make a
massive impact on the discharge’s stability but only on the cold cathodes. With the heating
of cathode, this factor becomes unimportant.

The next parameters characterizing the state of the cathode surface are its macro- and
microrelief. In this case, the glow discharge’s stability can be affected with the pronounced
roughness protrusions obtained after machining, but not with the smoothly changing
surface waviness. Figure 3 shows profile curves of the sample’s surfaces obtained af-
ter treatment with a roughness of 60–80 μm (Figure 3a) and about 10 μm (Figure 3b),
respectively. For this purpose, a profilometer TR—200 was used.

 
(a) 

Figure 3. Cont.
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(b) 

Figure 3. The profile curves of the samples surfaces obtained after machining by rotational turning with the roughness
about 80 μm (a) and 10 μm (b): 1—single placed; 2—ridge-shaped protrusions.

The external view of the device and treated samples themselves are shown in Figure 4.

(a) 

 
(b) 

Figure 4. The view of a profilometer TR-200 (a) which is made up of: 1—display; 2—control panel; 3—sensor (pickup) and
treated samples (b).
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The undergoing intense ions bombardment, the protrusions heat up much more
noticeably than the bulk of the electrode (cathode). This inevitably leads to the superheat
point’s emergence on the cathode surface to temperatures exceeding the melting or boiling
point of the metal. In this case, a glow discharge can transit to the local vapor arcs [19,20].
This can be observed most likely in case when the surface of the protrusions is large enough
to provide heating to high temperatures, and the heat transfer to the bulk of the samples is
too small.

3. The Analytical Equation of a Glow Discharge Energy Stability while Treatment and
Welding of Metals Depending on Cathode Surface State

Cylinders, cones or hemispheres can be taken as a model of individual micro protru-
sions [21]. The possibility of their heating to a boiling point is provided:

qs = qν − qT , (2)

where qs—the energy perceived by the surface of the protrusion from ions bombarding
the cathode: qs = SjUct (where S—the area of the lateral surface of the protrusion, Uc—the
cathodic potential drop in the discharge, t—time); qv—the heat content of the protrusion
material at the boiling point: qν = VcγTboil (where V—the protrusion volume, c—the heat
capacity of the metal, and γ—the density); and qT—the energy diverted from the protrusion

into the sample: qT = 2πλRT[1 − er f
(

R
4at

)
]
−1

, (where λ—the thermal conductivity of
the cathode material, R—the radius of the protrusion base, and T—the cathode surface
temperature).

In the processes of thermal ion treatment and diffusion welding, when the temperature
of the samples is much lower than the boiling point of metal, condition (2) is feasible if
qT → 0. In order to neglect the heat transfer to the samples, the value of t must be the same
order as the glow discharge’s transition time into the arc t = 10−4–10−6 sec. So, then

qs = qνorSjUct = VcγTboil , (3)

In this case, for the micro relief of structural steels, it is necessary that the S/V ratio
is 105–107 cm−1 (where S—the area of the lateral surface of the protrusion and V—the
protrusion volume). Nevertheless, even at t = 1 sec, it is necessary that the value of
S/V ≥ 102 cm−1. Such ratios of the surface and volume of the micro protrusion are possible
only for thin protrusions and burrs. For real surfaces machined by turning or grinding,
this ratio is much less than one, which indicates a low probability of fulfilling condition (2).
Hence it follows that at the cathode’s current densities corresponding to a glow discharge
(up to 103 A/m2), the probability of melting and evaporation of the roughness ridges is
pretty small. This limits the possibility of thermionic emission from their vertices.

At the same time, sharp protrusions on the cathode surface creates the local distortions
of the electric field nearby the cathode surface. Electric field distortions near the protrusions
facilitates the attraction of positive ions toward them and as a result, the active points with
the increased charges concentration are formed. This, in turn, leads to dramatic increase in
the electric field strength in these regions. The length of this region (dc) is determined by
the cathode material as well as kind and pressure (p) of the working gas, and can be found
from the ratio:

pdc = c, (4)

where c—a constant value for particular gas and its pressure (for a glow discharge burning
in a nitrogen, c = 0.42 Pa m [22]). At a nitrogen pressure of 1.33–13.3 kPa, the average
electric field strength near the discharge cathode is

Eav =
Uc

dc
, (5)

where Uc is the cathode potential drop, which is 215 V for a glow discharge in nitrogen.
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In these conditions, the Eav reaches up to 106–107 V/m. A further increase in the
electric field strength inevitably leads to the appearance of a current of field electron
emission from the tip of the protrusion due to the ejection of electrons from the surface by
a strong electric field. A noticeable field emission current, sufficient for the existence of an
arc discharge, appears at the electric field strength of about 109 V/m. In this regard, it is
advisable to assess the degree of influence of the protrusions surface roughness on a local
increase in the electric field strength at the cathode of a glow discharge. Meanwhile, the
magnitude of the field strength does not depend on the number of protrusions, but on their
size and shape.

In mechanical engineering, the surface machining of samples of the third—sixth class
of cleanliness is widely used. In this case, the maximum height of the surface protrusions
varies, respectively, from Rz = 40–80 to 6–10 μm. Since the height of the micro protrusion is
much less than the interelectrode gap (of 0.01 m or more), for calculation of electric field of
such protrusion the electrostatics task has being solved about the conductive ellipsoid in
an external field parallel to one of the main axes of the ellipsoid [23]. This is an equivalent
to a semi-ellipsoidal protrusion on one of the flat electrodes, or to the gap between two
electrodes parallel to each other (Figure 5) which exceeds protrusion height. If the x is
the axis of the protrusion in the form of a semi-ellipsoid of rotation perpendicular to the
electrode, where x = 0, then the field strength on the extension of this axis when x is greater
than the height of the protrusion h is [22]:

E(x) = Eav

[
(1 − arth c

x − c
x

arth c
h − c

h
) +

1

(arth c
h − c

h )(
x2

c2 − 1) x
c

]
, (6)

where Eav is the average electric field strength created in the cathode region of a glow
discharge by a cathodic potential drop; c—half the distance between the ellipsoid focuses
located on the x axis (Figure 5), determined, according to [24], as c =

√
a2–b2.

Figure 5. Scheme of a semi-elliptical protrusion on the surface of a flat cathode: a, b are the semi axes
of the ellipsoid; h—the height of the protrusion; dc—the length of the cathodic potential drop region.

The term in square brackets in this expression describes the field strength increasing
due to the presence of a protrusion. Denote it by βE, then the expression (6) can be written
as E(x) = Eav βE. The term in parentheses of expression (6) is always less than one and on
the surface of the protrusion at x = h vanishes. Therefore, the main is the second term, the
value of which is maximum at minimum x, i.e., at x = h and at the x = dc simultaneously.
Figure 4 shows the dependence of the field enhancement βE on the ratio h/dc. Expression
(6) describes an increase in the field strength on a flat smooth cathode from a protrusion
having a smooth peak with a considerable radius. For a hemispherical protrusion having
the same semi axes a = b, the field enhancement is βE ≈ 3 [25]. The results of calculating βE
from expression (6) for surface protrusions in the form of semi-ellipsoidal extended along
the x-axis are shown in Figure 6. The graph also shows that, depending on the degree of
protrusions elongation, the electric field enhancement at their apex can reach up to 10–30.
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Figure 6. The dependence of the field enhancement on the cathode surface on the ratio of the
protrusion’s height and the length of the cathodic potential drop region: 1—ratio a/b = 4; 2—ratio
a/b = 2.

In practice, after machining protrusions are formed on the surface, having an acute-
angled shape, with a radius at the apex within the unit fractions of micrometers (Figure 3).
The acute-angled protrusions contribute dramatically to a more intense electric field distor-
tions and an additional increase in its intensity nearby the protrusion. Such an increase in
electric field strength can be estimated by the coefficient [21]:

μ =
h
r

, (7)

where h—the height of the protrusion; r—the curvature radius on the peak of the protrusion.
For protrusions with a height of 20–40 μm or more with a radius of vertex curvature

from fractions to units of micrometers (Figure 3), the value of μ can reach up to μ ≥ 10.
Then the field strength near the vertices of such protrusions will be

E(x) = EavβEμ, (8)

Under conditions of increased gas pressure, the boundary of the region of cathodic
potential drop declines sharply and approaches the vertices of micro protrusions roughness
x = dc ≈ h. As a result, the local field strength near the vertices of such protrusions can reach
E(x) ≥ 109 V/m. Such values of the local electric field strength provide for a current density
of field emission from the peak of the protrusions of jfe ≥ 107 A/m2, sufficient for an arc
breakdowns exciting in the interelectrode gap [26]. The latter is in many orders higher
than the current density in the cathode spot of the glow discharge. It is suggested that
in these conditions the Joule’s heating and evaporation of the vertices of the protrusions
entail the arc breakdowns [27]. In this case, condition (2) can already be fulfilled, i.e., the
probability of melting and evaporation of protrusions increases dramatically. In turn, the
latter contributes to the development of thermionic emission from these areas with the arc
formation on the surface of the cathode spot of an arc discharge. As was mentioned above
the long-term action of a stable arc discharge on a surface of the samples can lead to their
melting and destruction.

Hence, for the prevention of a glow discharge transition into an electric arc, the
length of the cathodic potential drop must exceed the maximum height of the roughness
protrusions. The cleanliness class of the samples surface treatment determines this.

The adequacy of this assumption has been checked under conditions of ion treatment
in a glow discharge in a nitrogen. The cylindrical c with dimensions of 20 × 60 mm made
of steel A 659 CS Type 1020 (cathode of discharge simultaneously) were used. The glow
discharge was powered from a controlled full-wave rectifier with an output voltage of
0–1000 V through a ballast resistor of 80 Ohm. The discharge current was of 4 A. A flat
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annular anode located at a distance of 0.008 m from the cathode surface was used as the
second discharge electrode (Figure 7).

 

Figure 7. The schematic view of experiments: 1—treated samples (cathode); 2—anode ring; 3—
plasma of glow discharge; dc—the length of the cathode potential drop.

The steel samples obtained by rough, semi-finishing and finishing had the height
of the surface roughness protrusions of 60–80, 30–40, and 10–15 μm accordingly. During
treatment, a gradual increase in gas pressure in the working chamber was performed.

As the criteria of glow discharge stability, the limiting pressure at which the short-
term arcs at the interelectrode gap emerge developing, apparently from the tops of the
highest or most sharp protrusions was chosen. A further rising of a gas pressure is
accompanied by an increase in the frequency of microarc discharges formation until a
stable electric arc is established in the discharge gap. The cathode (products) temperature
while treatment was 700–1000 K. The cathode’s temperature was measured with the
chromel-alumel thermocouple at three different points in the axial direction and then the
results was averaged. The view of treatment by stable glow discharge and in the moments
of arcing breakdowns (blurred by flare and multitude of micro-arcs) are shown in Figure 8.

 
(a) (b) 

Figure 8. The visualized scheme of treatment in a stable (a) and disturbed (b) by a multiple micro-arcs breakdown glow
discharge.
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The experimental results are shown in Figure 9 in the form of a curve corresponding
to the averaged over the results of a number of measurements, the limiting values of gas
pressure depending on the parameters of the surface relief. Here along with the dimensions
of the roughness protrusions, the values of the extent of the cathodic potential drop region
corresponding to the gas pressures are given.

 

Figure 9. The experimental dependence of the working gas pressure (P) on the surface roughness
parameters (Rz) according to the conditions of glow discharge stability: (dc—cathodic potential drop
region).

The obtained results indicate that the glow discharge’s instabilities really begin to
appear when the boundary of the cathodic potential drop region (dc) approaches the
vertices of the micro protrusions. A glow discharge remains stable at gas pressures below
the obtained experimental curve. Knowing the samples surface characteristics in the form
of the Rz = Rmax quantity, enables to determine the gas pressure boundary values for the
various technological processes of ion treatment or diffusion bonding, as well, in advance.

4. Conclusions

It is shown that the low temperature plasma of DC glow discharge which burns in the
active or inert gases at the medium pressures is the perspective source of surface heating
in the processes of diffusion bonding and ion treatment of metals. At the same time, a
number of factors on the cathode surface can emerge, which leads to the transition of a
glow discharge into an electric arc as a more stable form of gas discharges. In this study,
the impact of macro and micro relief of the samples on the stability of a glow discharge
while diffusion bonding and treatment of metal has been analyzed and analytical equation
of a glow discharge energy stability boundary has been obtained. The main conclusions of
this study can be summarized, as follows:

1. The emergence of oxide films on the surfaces of specimens during welding or metals
treatment does not lead to a significant disruption of a glow discharge stability as
long as electrical field strength does not exceed the breakdown values.

2. On the other hand, the roughness of a cathode’s surface affects the glow discharge
stability at the working gas pressures when the height of the protrusions roughness
becomes comparable to the length of the cathode potential drop region dc.

3. The direct dependence of the dc length on the gas pressure allows to determine the
limit values of the latter based on the given characteristics of the samples surface
microrelief which ensures the stable glow discharge existence during ion treatment
and welding of metals. In our experiments the increase of the cathode surface rough-
ness from 10–15 μm to 60–80 μm led to a rapid decrease of the region of the limiting
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pressure of the stable glow discharge existence from 1.33–13.3 kPa to a 1.33–5.3 kPa,
respectively.
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Abstract: This study presents the surface discharge characteristics of insulating gases, including
sulfur hexafluoride (SF6), dry air, and N2, under a non-uniform field. Surface discharge experiments
were conducted, with the gas pressure ranging from 0.1 to 0.6 MPa, on samples of epoxy dielectrics
under an AC voltage. The experimental results showed that the surface insulation performance
significantly improved in insulating gases possessing electronegative gases, such as SF6 and dry air.
Surface flashover voltages of SF6 were saturated with an increasing pressure, compared to dry air
and N2. The surface discharge mechanism is proposed to explain the improvement and saturation
of dielectric characteristics of the electronegative gas in complex dielectric insulations, as well as
its influence on the surface flashover voltage. As an application, an insulation design method is
discussed with regards to replacing SF6 gas in high-voltage power equipment based on the knowledge
of the physics behind gas discharge.

Keywords: surface discharge; epoxy resin; electronegative gas; high-voltage power equipment

1. Introduction

Sulfur hexafluoride (SF6) plays an important role as an insulating gas in high-voltage power
equipment. More than 80% of SF6 produced worldwide is supplied for use in high-voltage gas
circuit breakers, gas-insulated switchgears, and gas-insulated lines, due to its exceptional physical and
chemical properties, including its high dielectric strength, current interruption performance, thermal
conductivity, thermal stability, nonflammability, nontoxicity, and non-explosive characteristics [1–4].

Despite the outperformance of SF6, its use in power equipment is becoming increasingly dangerous
owing to its high global warming effect, its long atmospheric lifetime, and the high toxicity of
decomposed byproducts that result in many environmental problems. The global warming potential
(GWP) of SF6, relative to CO2, over a 100-year time horizon is 23,500. This means that the global warming
effect of 1 kg of SF6 gas is equivalent to that of 23.5 tons of CO2 in the atmosphere. Considering that
the global annual emission of SF6 was 8100 tons in 2012, which is equivalent to annual greenhouse gas
emissions of approximately 185 million tons of CO2, its overall GWP impact is not marginal compared
to that of CO2 [5]. Owing to its high greenhouse effect, the European Union intends to reduce the SF6

sales of 2014 to one-fifth by 2030 [6]. The California Air Resources Board (CARB) has proposed stricter
requirements governing the use of SF6, including phasing out its usage in gas-insulated equipment
and further reducing allowable greenhouse gas (GHG) emissions from such equipment from 2020
onwards [7]. Moreover, the decomposition products are produced by the electrical and thermal
decomposition of SF6 in the presence of other molecules, such as H2O, SiO2, N2, O2, H2, and Ar.
It should be noted that the products containing fluorine and/or sulfur in SF6 decomposition, including
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as S2F10, SF4, and hydrofluoric acid (HF), are highly reactive, corrosive, and toxic. These are also potent
GHGs [8].

Therefore, to reduce its use, many replacements for SF6 have been investigated for application
in high-voltage power equipment. These investigations have focused on using common gases (CO2,
N2, and dry air), halogenated gases (CF3I, hydrofluoroolefins (HFOs), and perfluorinated compounds
(PFCs)), and mixture gases as substitutes for SF6. Their dielectric strength and characteristics have been
compared with those of SF6 [9]. In addition to gas insulation, composite insulation has been applied to
SF6-free gas-insulated switchgear (GIS), instead of simple dielectric insulations by vacuum, gases, or
solid dielectrics [10,11]. Composite insulation is a method of using a solid dielectric and an insulating
gas together. However, composite insulation comes with problems of deterioration in the insulation
performance of the equipment, due to the use of a solid dielectric. The insulation performance
deteriorates owing to the formation of a triple junction or a surface discharge. The triple junction
induces a high electric field in the region where an electrode is in contact with both the insulating gas
and the solid dielectric. Surface discharge is undesired gas breakdown that occurs on a surface at a
high voltage, lower than the breakdown voltage of the insulating gas. This breakdown is attributed to
the weak point of the dielectrics used and their interactions within the power equipment [10,12,13].

To design a composite insulation for SF6-free power equipment, it is necessary to investigate the
fundamental surface discharge characteristics of the composite insulation and identify its weaknesses.
Extensive research has been conducted on the surface discharge mechanism in different materials under
different electric fields formed by AC, DC, and impulse voltage [10,14–16]. Béroual et al. [10,14,15]
presented the experimental characterization of discharge propagation over insulators such as Bakelite,
epoxy, and glass immersed in a single gas or mixture gas, under lightning impulse, DC, and AC
voltages. The shape and length of creeping discharge patterns were investigated to understand the
capacitive charge effect and electric field influence. Kato et al. [16] conducted experiments under a
negative impulse voltage to clarify the surface flashover characteristics based on the existence of surface
charges on an alumina insulator in a vacuum. The influence of surface charges on the electric field and
the secondary electron emission avalanche were explained. These investigations have succeeded in
revealing that the surface charges of insulators influence the surface flashover characteristic.

In order to investigate the occurrence of surface flashover, the effects of the gas medium and its
pressure, thickness and dielectric constant of a solid insulator, roughness and shape of the electrode,
and applied voltage on gas breakdown have been further explored [3,17–21]. These investigations have
reported that surface flashover occurs at the triple junction and in its vicinities in several common and
specified factors influencing the surface discharge [19]. Park et al. [3] compared the surface discharge
characteristics of different gas media, such as SF6, N2/O2 mixture gases, and imitation air, and explained
the important role of the O2 concentration in the N2/O2 mixed gas. Lim et al. [19] conducted
a comparative study on SF6 alternative candidate gases for investigating the surface insulation
performance of eco-friendly gas, including N2/O2 mixture gas, dry air, and compressed air under AC
voltage. Based on the experimental results and the comparative study, the effect of moisture contained
in the candidate gases and the correlation among the electric filed intensity, collision-ionization
coefficient, electron attachment coefficient, and gap length were discussed. Douar et al. [20] presented
the ignition of surface discharges and their propagation governed by repulsion due to electrostatic
force and attraction caused by nonlocal photo-ionization.

Before the occurrence of surface flashover, the solid dielectric causes the occurrence of physical
phenomena, such as electron emission at a triple junction, surface charge accumulation, photoemission,
and a secondary electron emission avalanche (SEEA). These phenomena contribute to electron
avalanches and the formation of a conductive channel on the dielectric surface. There are several
surface discharge mechanisms, based on electron generation and the high electric field as a physical
phenomenon in a vacuum [16,18,22]. However, this physical phenomenon and the detailed
progression of surface discharge have not yet been fully understood in compressed gases with
various electronegative gases. This means that prior research dealing with the progression and
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suppression of surface discharge is rather limited, in terms of the detailed physical processes of
electron generation and disappearance in compressed gas. Although the authors have studied the
effect of the concentration of O2 on surface discharge characteristics in compressed gas in previous
works [3,19], many studies on surface discharge seem to be carried out under vacuum or gases with
a pressure of 0.3 MPa or less. This research trend has led to a gap in knowledge about the detailed
mechanism by which an electronegative gas among high-pressure gases generates electrons during the
surface discharge process. This knowledge gap means that the surface insulation design of SF6-free
high-voltage equipment with high-pressure compressed gas is still a challenging problem. In this
paper, we analyze the effect of SF6 and O2 in compressed gas on electron generation during the
surface discharge progress, and provide useful physical information for the surface insulation design
of high-pressure SF6-free high-voltage equipment.

This study describes the surface discharge characteristics of epoxy resin in compressed gases (i.e.,
SF6, dry air, and N2) under a non-uniform electric field. It aims to understand the solid-gas composite
insulation characteristics and analyze the effect of secondary electron attachment emitted from the
dielectric surface on the surface insulation performance. The reason for the excellent surface insulation
performance of electronegative gases (SF6 and dry air) is explained in detail in this paper, based on the
physics governing the gas discharge and the surface discharge mechanisms.

The remainder of this paper is organized as follows. The experimental setup and experimental
procedure are introduced in Section 2. The experimental results of the surface discharge characteristics
in compressed gas dielectrics are presented in Section 3. The surface discharge mechanism and the
insulation design method of an SF6-alternative insulating gas, based on the effect of the electronegative
gases and electron swarm parameters, are discussed in Section 4. Finally, conclusions are presented in
Section 5.

2. Experimental Setup and Method

A parallel needle-plane electrode system enclosed in an experimental gas-insulated switchgear
(GIS) filled with different gases was used in this study. The specifications of the electrodes used in this
experiment are as follows: The needle electrode (N) had a diameter of 5 mm and 20◦ angle of a point
(θ). The diameter of the plane electrode (P) was 59 mm. Both electrodes were made of stainless steel
and were arranged vertical to each other. The solid dielectric used was made of epoxy resin and was in
the form of a disc with a diameter (d) of 100 mm and a thickness (t) of 2 mm. The sample of epoxy
resin was inserted between the electrodes. The distance between the epoxy dielectric and the needle
electrode was zero, and the needle electrode was carefully contacted, without damaging the epoxy
surface, since damage to the epoxy surface affects the surface flashover voltage. Figure 1a illustrates a
schematic diagram of the experimental electrodes and a solid dielectric arrangement.

The experimental gas-insulated switchgear (GIS) chamber is shown in Figure 1b. This chamber
is made of stainless steel of a 20 mm thickness and consists of two layers: An interior part with a
diameter of 260 mm, height of 460 mm, and volume of 25 L, and an exterior part with a diameter
of 460 mm, height of 500 mm, and volume of 83 L. Two windows were used to observe the inside
of the experimental chamber. These windows were made of acryl with a diameter of 110 mm and
thickness of 20 mm. The chamber was designed and manufactured to endure a fixed temperature
range (−90–100 ◦C) and pressure up to 1.0 MPa. It was also capable of withstanding an AC voltage
of 300 kV. A pressure gauge was installed to measure the pressure inside the chamber. The chamber
could be preserved at a pressure of 6.67 × 10−2 Pa by using a vacuum pump (SINKU KIKO Co., Ltd.
Miyazaki, Japan, GUD-050A).

71



Appl. Sci. 2020, 10, 6673

  

(a) (b) 

Figure 1. Experimental setup: (a) Scheme of the electrode arrangement and (b) the experimental
GIS chamber.

The insulation gases used were SF6, dry air, and N2. Dry air was produced by a dry air production
device. The device had three types of filters that could reduce impurities and lower the dew point of
dry air. The final dew point of dry air produced using this device was less than −60 ◦C. These gases
were pressurized from 0.1 to 0.6 MPa, inside the chamber of the device.

The experiments were performed under AC voltage supplied by a high-voltage generator
(DY-106-Korea, AC 300 kV/120 mA) with a voltage rising speed of 3.15 kV/s. As an AC power source is
actually used as the operating power of GIS, gas-insulated transmission lines (GIL), and gas circuit
breaker (GCB), it is very important to analyze the surface discharge characteristics and mechanisms for
the device and equipment working under AC power. After ventilation of the chamber to 6.67 × 10−2 Pa,
each type of gas was inserted and pressurized from 0.1 to 0.6 MPa, inside the chamber. AC voltage
was applied to the electrodes at each pressure level that the gases were subject to. Then, the surface
flashover voltages were sequentially measured five times. The average value of this measurement is
referred to as the mean surface flashover voltage (VB) in this study. The surface flashover voltages
were measured using a high-voltage probe.

3. Experimental Results

Figure 2 illustrates the surface flashover voltages of SF6, dry air, and N2, each at a gas pressure
ranging from 0.1 to 0.6 MPa. From this, the effect of pressure on the surface flashover voltages and
the breakdown voltages can be analyzed. These voltages increase monotonically with an increasing
pressure of SF6, dry air, and N2. This monotonous rise is attributed to a shorter mean free path
with an increasing gas pressure. The short mean free path limits the acceleration of electrons and
reduces the number of electrons with high kinetic energy between the electrodes. The limitation and
reduction suppress collision ionization and the SEEA, and such suppression results in an increase in
the breakdown voltage and surface flashover voltage. An interesting observation in Figure 2 is the
surface discharge characteristic of SF6. The insulation characteristics of electronegative gases such
as SF6, under a non-uniform electric field, are a clear N-shaped breakdown voltage. This N-shape
rises after the breakdown voltage decreases with an increase in pressure [23,24]. The N-characteristic
has also been observed in N2/SF6 mixed gas containing 0.1% SF6 [24]. However, the N characteristics
were not revealed in this study. The corona stabilization effect due to positive space charges leads to
N-shaped properties. It is presumed that the unobserved N-characteristic in this study is due to the
weak corona stabilization effect, because of the different experimental conditions employed by other
researchers [23,24]. The most evident difference between the references [23,24] and our experiment
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is the presence of a solid dielectric. The existence of the solid dielectric may strongly influence the
distribution of positive ions between electrodes. The mechanism of surface discharge in our electrode
system with a solid dielectric would be different from the mechanism of breakdown in an electrode
system without any dielectric. The dominant mechanism of surface discharge is the SEEA from the solid
dielectric, while that of breakdown manifests as additional avalanches due to positive space charges.

The solid dielectric placed between electrodes plays an important role as an electron source
that emits electrons through electron collision and photon irradiation on the surface of the dielectric.
Therefore, the dielectric leads the electron generation mechanism, including SEEA and photoemission,
while developing surface discharge over the solid dielectric. In contrast, this electron generation
mechanism does not occur in the breakdown mechanism under the electrode system without any solid
dielectric between electrodes.

Figure 2 shows that the surface flashover voltage measured with a solid dielectric is higher than
the breakdown voltage of the electrode system without any solid dielectric. In general, as the solid
dielectric forms a triple junction point with a high electric field and electron sources, it is known that
the surface flashover voltage is lower than the breakdown voltage. However, our experimental results
showed the opposite. This is because the diameter of the solid dielectric is considerably larger than
that of the plane electrode in our electrode system.

Figure 2. Surface flashover voltage (Δ, SF6; �, dry air; and �, N2) and breakdown voltage (•, SF6; �,
dry air; and �, N2).

The surface insulation performance and the rate of increase in surface flashover voltages with
an increasing pressure are noticeably different for electronegative gases (i.e., SF6 and dry air) and
the non-electronegative gas (i.e., N2). The surface insulation performance of SF6 and dry air was
better than that of N2 in the gas pressure range of this experiment. SF6, being an electronegative
gas, demonstrated a higher surface insulation performance than that of dry air. The excellent surface
insulation performance of electronegative gases (SF6 and dry air) is due to the electron attachment
mechanism. Although both SF6 and dry air are electronegative gases, the difference in the surface
insulation performance between these gases was possibly due to the electron attachment cross section,
which represents the electron attachment capability of gases. Saturation of the surface flashover voltages
with an increasing pressure was observed in SF6—evidently more than in dry air and N2—within a gas
pressure range of 0.1 to 0.4 MPa.

The rate of increase of the surface flashover voltage with an increasing pressure is shown in Figure 3.
The insulating gas containing N2 was insensitive to saturation in the pressure range. This saturation
is presumed to be due to the electron detachment of negative ions in the electronegative gases (i.e.,
SF6 and O2) during surface discharge development. As N2 cannot attach electrons, negative ions
are not formed in N2. This means that no electron detachment mechanism occurs in N2. A detailed
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interpretation of the surface insulation performance and surface flashover voltage saturation will be
explained in Section 4 based on surface discharge mechanisms.

P

V
B

Figure 3. Rate of increase in the surface flashover voltages (•, SF6; �, dry air; and �, N2).

4. Discussion

4.1. Surface Discharge Mechanism

This section describes the surface discharge mechanism in detail, explaining the experimental
results presented in Section 3. The main outcomes were an improved surface insulation performance of
insulating gases containing electronegative species and noticeable saturation of the surface insulation
performance of SF6 with an increasing pressure. These two results seem to be inherently related to the
mechanisms of electron attachment and electron detachment, respectively, during the progression of
surface discharge. The electron attachment is a mechanism by which SF6 and O2 trap electrons moving
to the positive electrode to form negative ions between two electrodes. This reduces the number
of electrons that cause collision ionization and the SEEA on the dielectric surface, thereby resulting
in a higher surface insulation performance from the inclusion of an electronegative gas. However,
the negative ions generated by electron attachment emit electrons from collisions among electrons,
positive ions, and negative ions. As this electron detachment adds electrons between the electrodes, it
may limit the rise of the surface flashover voltage.

Surface discharge is developed by an initial electron, the SEEA, a surface streamer, and conductive
channel formation. The formation of an initial electron depends on the polarity of the applied voltage.
When the applied voltage is positive, the initial electron is generated by the electron detachment of a
negative ion around the needle electrode or electron emission from the epoxy surface. Examples of
electron detachment from SF6

− ions can be presented as follows under an appropriate condition for
each case [25]:

Collisional detachment: SF−6 + SF6 → SF6 + SF6 + e ,

Photodetachment: SF−6 + hυ→ SF6 + e ,

Thermally-induced detachment: SF−6 + heat→ SF6 + e .

When the applied voltage is negative, an initial electron is generated by field emission from the
cathode at the triple junction, where the electrode, solid dielectric, and insulating gas make contact.
This electron collides with the epoxy surface. Then, the generated initial electron contributes to the
emission of secondary electrons from the surface. The secondary electrons again lead to an SEEA at the
epoxy surface and collision ionization in the gas. During the process of collision ionization, photons
emitted from the excited molecules are irradiated to both the epoxy surface and other molecules.
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This irradiation results in photoemission and photoionization and can supply additional electrons in the
discharge space between the electrodes. The electrons generated by field emission, the SEEA, ionization
collision, photoemission, and photoionization can attach themselves to an electronegative gas.

During the development of surface discharge, negative ions can form from the electron attachment
process. However, these ions can also disappear due to the electron detachment mechanism during
the same surface discharge development. As the surface discharge develops with an increase in the
applied voltage, the SEEA and photoemission can become more prominent. Owing to the active SEEA
and photoemission processes, a surface streamer develops along the epoxy surface. The head of the
streamer advances based on what the electron source is (photoionization/photoemission), and the
surface streamer intersects between the electrodes. When a conductive channel is formed between
the electrodes due to the surface streamer and the presence of many electrons, surface flashover
finally occurs.

The most evident difference between an electronegative gas and a non-electronegative gas is the
occurrence of electron attachment or detachment during the process of surface discharge development.
The authors believe that these processes are the key determining factors that explain the experimental
results. Electron attachment is the only process that removes electrons in the discharge space between
electrodes in the surface discharge mechanism. The removal of electrons suppresses the formation
of the streamer and conductive channels. This suppression is the reason behind the high surface
insulation performance of an electronegative gas. Therefore, the surface insulation performance of the
insulating gas containing electronegative gases SF6 and O2 is superior to that of N2.

Although SF6 and dry air are both electronegative gases, the disparity in the surface insulation
performance between these gases can be explained by the difference in the electron attachment cross
section, which determines the characteristics of the gases. Since the surface discharge grows on the
surface of the epoxy dielectric, the capturing of electrons emitted from the surface appears to contribute
to a significant improvement in the surface insulation performance. Electrons are generated from
the epoxy surface during surface discharge by the SEEA and photoemission processes. The energy
range of the electrons emitted from the surface by these processes was assumed to be 3.0–4.5 eV [16,26].
Figure 4 shows the electron attachment cross sections of SF6 and O2 in the electron energy range.
Evidently, the cross section of SF6 is considerably larger than that of O2. From this figure, it can be
assumed that the ability of secondary electrons, emitted from the epoxy surface, to attach themselves is
significantly better in SF6 than in O2.

 
Figure 4. Attachment cross sections of gases (—, SF6 and ---, O2).

The progress of the streamer and the formation of a conductive channel on the epoxy surface
can be suppressed by the capture (attachment) of the secondary electrons due to the large electron
attachment cross sections. This could be the reason why SF6, which has an excellent electron attachment
ability in the electron energy range of 3.0–4.5 eV, exhibits a superior surface insulation performance
compared to dry air [27].
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In addition, the noticeable saturation of surface flashover voltages with an increasing pressure, in
the pressure range of 0.1 to 0.4 MPa in SF6, may be related to electron detachment. During surface
discharge development, negative ions collide with electrons, positive ions, and other negative ions
in the medium. Electrons attached to electronegative gas are then separated and detached from the
negative ions by these collisions. The separated electrons are imbibed into the SEEA or collision
ionization, helping the formation of a conductive path along the epoxy surface between the electrodes.
In other words, a large number of negative ions can improve the surface insulation performance, and at
the same time, can function as electron sources [28]. The electron detachment of negative ions mainly
occurs from collisions with ions rather than high electric fields [29]. Since the mean free path becomes
shorter as the pressure increases, it can be assumed that the collision of positive and negative ions also
occurs more frequently with an increasing pressure. Frequent collisions activate electron detachment,
causing a noticeable saturation of the surface insulation performance with an increasing pressure.
The rise of the surface flashover voltage of SF6 at 0.6 MPa may be related to a high-pressure surface
discharge mechanism, such as leader discharge.

4.2. Insulation Design Method of an Insulating Gas Alternative to SF6 Based on Electron Swarm Parameters

An insulation design method that can ensure a good insulation performance in high-voltage
power apparatus such as GIS can be proposed from our experimental results, derived from Figure 2.
The surface insulation performance can be enhanced by the inclusion of electronegative gases and
an increase in the gas pressure. Therefore, these factors must be considered during insulation design.
However, very rarely is apparatus designed with a gas pressure exceeding 1.0 MPa [23]; therefore, it is
desirable to incorporate the addition of electronegative gases into the insulation design method.

An insulation design using a mixture of electronegative gases should be carried out upon analyzing
the electron swarm parameters of the gases. These parameters are the electron attachment cross section
and electron scattering cross section. The electron attachment cross section represents the ability of an
electronegative gas to capture electrons. This ability depends on the energy of the electrons. There are
certain energy ranges in which electronegative gases can effectively and easily capture electrons. In the
discharge space, electrons accelerated by the applied electric field are distributed with various values
of kinetic energy. The improvement in the insulation performance of the gas is attributed to the
easy and effective capture of these electrons. Therefore, there is a need for a method of selecting an
electronegative gas with a large electron attachment cross section spanning a wide range of electron
energies. The lower the kinetic energy of the electrons, the easier the electron attachment is; thus, for
insulation design, it is preferable to select an electronegative gas possessing a wide electron attachment
cross section in a low electron energy range.

Meanwhile, the electron scattering cross section represents the ability to reduce the kinetic energy
of electrons, which are accelerated by the applied electric field. This reduction of kinetic energy
effectively activates the electron attachment of electronegative gases. Therefore, electron scattering
results in high-energy electrons with the sufficient ionization capacity becoming inactive, consequently
resulting in effective electron attachment.

Since the electron attachment process is more important than the ionization process in the
prevention of a breakdown, only the addition of an electronegative gas is usually conducted in the
insulation design method. However, for producing a higher insulation performance, the electron
swarm parameters cannot be overlooked. Based on these two parameters (the electron attachment
cross section and electron scattering cross section), the mixture gas that is more suitable for insulation
design should include a gas with electron attachment abilities and the ability to suppress the electron
behavior. It is preferable to include a mixture of two or more auxiliary gases with different electron
attachment cross section peaks, depending on the electron energy, because one electronegative gas
cannot capture all electrons in a considerably wide electron energy region. Meanwhile, the mixing
of gases with an electron scattering capability that reduces the electron energy in the electron energy
region corresponding to the peak of the electron attachment cross section should be recommended.

76



Appl. Sci. 2020, 10, 6673

Based on these electron swarm parameters, the experimental results reported that the 2.5% positive
lightning impulse breakdown voltage of SF6/air and SF6/CO2 in 0.05 to 0.45 MPa under a non-uniform
electric field with a gap of 10 mm is higher than that of pure SF6 [30]. Kojima et al. [31] studied the
insulation properties of a mixed gas containing two or more electronegative gases based on the electron
attachment cross section, depending on the electron energy.

In addition to selecting the insulating gas, engineering techniques can be applied to an insulation
design method, and these techniques should be integrated into high-voltage apparatus with a
selection method of insulating gas that considers the electron swarm parameters. The engineering
techniques are improvements in electrodes and solid dielectrics, details of which can be found
in references [11,32–36]. The theoretical principles governing the engineering techniques are the
suppression of electron generation and relaxation of the concentrated electric field. Since suppression
and relaxation are the direct factors influencing gas breakdown, a good insulation performance can
also be ensured with these engineering techniques. Therefore, when insulation gas selection and
engineering insulation techniques are simultaneously applied to high-voltage apparatus, the surface
insulation performance of the apparatus can be improved, owing to a synergistic effect that imbibes
physical and engineering elements.

Therefore, the selection of insulating gas based on the physics of gas discharge (i.e., electron
swarm parameters) is more important than engineering insulating design techniques. This is because
engineering insulation design techniques are based on physical knowledge (i.e., physical mechanisms
and physical analysis), while the insulation performance of the high-voltage apparatus is significantly
dependent on the insulating gas. To date, single or mixed insulating gases that can completely replace
SF6 in terms of insulation, arc quenching, and liquefaction have not yet been reported in the fields
of applied physics and high-voltage engineering. The authors believe that a new insulating gas
as an alternative to SF6 can be discovered or developed, based on the physics-based knowledge of
gas discharge.

5. Conclusions

This study investigated the surface discharge characteristics of epoxy resin in compressed gases,
namely SF6, dry air, and N2, in a non-uniform electric field. Among the different gases, SF6 and dry air,
which are electronegative gases, revealed better insulation performances compared with N2, owing
to their electron attachment ability. The effect of electronegative gases on surface flashover voltages,
varying with the pressure in these compressed gases, was analyzed in detail through the processes of
electron attachment and electron detachment. Electron attachment induced an increase in the surface
flashover voltage of the electronegative gas. Electron detachment seemed to result in saturation of the
voltages as the pressure increased. A surface discharge mechanism that includes electron attachment,
electron detachment, and secondary electron emission (SEEA and photoemission) was proposed for an
analysis of the surface flashover voltages, which varied with the gas pressure. From this mechanism,
it was found that the physical phenomena governing the behavior of electrons, including electron
attachment, electron detachment, and electron scattering, are related to an improvement in the dielectric
strength of the mixed gas. Based on these findings, techniques for improving the dielectric strength
of mixed gases were discussed from a physics and engineering point of view. The discussions and
knowledge of the physics behind gas discharge suggest the possibility of a new insulating gas to
replace SF6. To discover and develop the new insulating gas, theoretical and experimental attempts to
understand the effects of varying the pressure on electron attachment and electron detachment are
required. In addition to such attempts, the insulation characteristics of gases and mixed gases and
their discharge mechanisms under DC and AC voltages must specifically be identified. This study
contributes to explorations attempting to expand the knowledge of physics that governs gas discharge.
The physical information obtained from the results of this study can be used to secure improved surface
insulation performances by using the technique of mixing insulation gas in the surface insulation
design of SF6-free high-voltage equipment.
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