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Preface to “Integrated Soil and Water Management: 
Selected Papers from 2016 International  
SWAT Conference” 

We are facing a time of uncertain environmental challenges. The ever-increasing trend in 
atmospheric CO2 is changing the climatic dynamics, which will influence all aspects of our life. Although 
events such as US decision on climate change cast a shadow over the reality of climate change, some 
trivial facts and their grave consequences cannot be ignored or disputed. These facts and their chain 
reactions are: Rising CO2 will increase earth’s temperature; this will cause metling of water stored in ice 
caps and permafrosts, increase capacity of atmosphere to store water, and increase evapotranspiration; 
these will speed up the climatic dynamics putting more water in the atmosphere causing heavier rainfalls 
depleting water resource of the atmosphere in a shorter time, which will cause droughts in other places 
and floods in others. The net effect will be chaotic periods of colds and warms, droughts and floods. We 
rely on models to quantify these changes and to predict them, therefore, our models need to be sound 
accounting correctly for the basic physical laws. As models are simplifications of reality, practicing 
“correct neglect” is essential in developing useful models. Furtheremore, the models need to be calibrated, 
regionalized correctly, and their uncertainties quantified before they can be reliably used. The current 
special issue of Water is a step forward in creating, testing, and implementing models to predict the future 
changes. In this publication, issues related to climate change, model calibration/uncertainty, and effects of 
human activity in watersheds are modeled and discussed. Much further work needs to be done and we 
hope that younger scientists are inspired by the current work. 

Karim Abbaspour, Raghavan Srinivasan, Saeid Ashraf Vaghefi, Monireh Faramarzi and Lei Chen 

Special Issue Editors 
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Abstract: Application of integrated hydrological models to manage a watershed’s water resources are
increasingly finding their way into the decision-making processes. The Soil and Water Assessment
Tool (SWAT) is a multi-process model integrating hydrology, ecology, agriculture, and water
quality. SWAT is a continuation of nearly 40 years of modeling efforts conducted by the United
States Department of Agriculture (USDA) Agricultural Research Service (ARS). A large number of
SWAT-related papers have appeared in ISI journals, building a world-wide consensus around the
model’s stability and usefulness. The current issue is a collection of the latest research using SWAT
as the modeling tool. Most models must undergo calibration/validation and uncertainty analysis.
Unfortunately, these sciences are not formal subjects of teaching in most universities and the students
are often left to their own resources to calibrate their model. In this paper, we focus on calibration
and uncertainty analysis highlighting some serious issues in the calibration of distributed models.
A protocol for calibration is also highlighted to guide the users to obtain better modeling results.
Finally, a summary of the papers published in this special issue is provided in the Appendix.

Keywords: calibration; validation; uncertainty analysis; sensitivity analysis; pre-calibration analysis;
SWAT-CUP

1. Introduction

This special issue on “Integrated Soil and Water Management” deals with the application of the
Soil and Water Assessment Tools (SWAT) [1] to a range of issues in watershed management. A total of
27 papers attest to the importance of the subject and the high level of research being conducted all
over the globe. A common factor in almost all the published papers is the calibration/validation and
uncertainty analysis of the models. Of the 27 papers published in this issue, 20 are calibrated with
SWAT-CUP [2–4]. As the credibility of a model’s performance is in the calibration/validation and
uncertainty results, we devote this overview paper to the outstanding issues in model calibration and
uncertainty analysis.

Steps for building a hydrologic model include: (i) creating the model with a hydrologic program,
such as in our case, ArcSWAT; (ii) performing sensitivity analysis; (iii) performing calibration and
uncertainty analysis; (iv) validating the model, and in some case; (v) performing risk analysis. Here we
discuss these steps and highlight some outstanding issues in the calibration of large-scale watershed
models. A protocol for calibrating a SWAT model with SWAT-CUP is also proposed. Finally, we briefly
review all papers published in this special issue in the Appendix.

Water 2018, 10, 6 1 www.mdpi.com/journal/water
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To avoid any confusion and for the sake of standardizing the SWAT model calibration terminology,
we summarized the definition of some common terms in Table 1.

Table 1. Definition of some terminologies.

Terminology Definition

SWAT An agro-hydrological program for watershed management.

Model A hydrologic program like SWAT becomes a model only when it reflects
specifications and processes of a region.

Watershed A hydrologically isolated region.

Sub-basin A unit of land within a watershed delineated by an outlet.

Hydrologic response
unit (HRU)

The smallest unit of calculation in SWAT made up of overlying elevation, soil,
land-use, and slope.

Parameter A model input representing a process in the watershed.

Variable A model output.

Deterministic model A model that takes a single-valued input and produces a single-valued output.

Stochastic model
A model that takes parameters in the form of a distribution and produces output
variables in the form of a distribution also. SWAT and most other hydrologic
models are deterministic models.

Next to the terms in Table 1, the term sensitivity analysis refers to the identification of the most
important influence factor in the model. Sensitivity analysis is important from two points of view:
First, parameters represent processes, and sensitivity analysis provides information on the most
important processes in the study region. Second, sensitivity analysis helps to decrease the number
of parameters in the calibration procedure by eliminating the parameters identified as not sensitive.
Two general types of sensitivity analysis are usually performed. These are one-at-a-time (OAT) or local
sensitivity analysis, and all-at-a-time (AAT) or global sensitivity analysis. In OAT, all parameters are
held constant while changing one to identify its effect on some model output or objective function.
In this case, only a few (3–5) model runs are usually sufficient (Figure 1). In the AAT, however,
all parameters are changing; hence, a larger number of runs (500–1000 or more, depending on the
number of parameters and procedure) are needed in order to see the impact of each parameter on
the objective function. Both procedures have limitations and advantages. Limitation of OAT is that
sensitivity of one parameter is often dependent on the values of other parameters, which are all
fixed to values whose accuracy is not known. The advantage of OAT is that it is simple and quick.
The limitation of AAT is that parameter ranges and the number of runs affect the relative sensitivity
of the parameters. The advantage is that AAT produces more reliable results. In SWAT-CUP, OAT is
used to directly compare the impact of three to five parameter values on the output signal (Figure 1),
whereas AAT uses a multiple regression approach to quantify sensitivity of each parameter:

g = α +
n

∑
i=1

βibi (1)

where g is the objective function value, α is the regression constant, and β is the coefficient of parameters.
A t-test is then used to identify the relative significance of each parameter b. The sensitivities given
above are estimates of the average changes in the objective function resulting from changes in each
parameter, while all other parameters are changing. This gives relative sensitivities based on linear
approximations and, hence, only provides partial information about the sensitivity of the objective
function to model parameters. In this analysis, the larger in absolute value the value of t-stat, and the
smaller the p-value, the more sensitive the parameter.
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Figure 1. Sensitivity of discharge to three different values of CN2 in one-at-a-time (OAT) analysis.

The term calibration refers to a procedure where the difference between model simulation and
observation are minimized. Through this procedure, it is hoped that the regional model correctly
simulates true processes in the physical system (Figure 2).

Figure 2. Conceptualization of model calibration.

Mathematically, calibration boils down to optimization of an objective function, i.e.,

Min : g(θ) = ∑v
j=1[wj ∑

nj
i=1(xo − xs)

2
i ], (2)

or,

Max : g(θ) = ∑v
j [wj(1 −

∑
nj
i=1(xo − xs)

2
i

∑
nj
i=1(xo − xo)

2
i

)], (3)

where g is the objective function, θ is a vector of model parameters, xo is an observed variable, xs is
the corresponding simulated variable, v is the number of measured variables to be used to calibrate
the model, wj is weight of the jth variable, and nj is the number of measured observations in the jth
variable. The case for v > 1 if often referred to as multi-objective calibration containing, in our case,
variables such as discharge, nitrate, sediment, etc. A large number of different objective function
formulations exist in the literature, 11 of which are used in SWAT-CUP.

Calibration is inherently subjective and, therefore, intimately linked to model output uncertainty.
Parameter estimation through calibration is concerned with the problem of making inferences about
physical systems from measured output variables of the model (e.g., river discharge, sediment
concentration, nitrate load, etc.). This is attractive because the direct measurement of parameters
describing the physical system is time consuming, costly, tedious, and often has limited applicability.
Uncertainty stems from the fact that nearly all measurements are subject to some error, models are
simplifications of reality, and the inferences are usually statistical in nature. Furthermore, because one
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can only measure a limited number of (noisy) data and because physical systems are usually modeled
by continuum equations, no calibration can lead to a single parameter set or a single output. In other
words, if there is a single model that fits the measurements there will be many of them. This is an old
concept known as the non-uniqueness problem in the optimization literature. Our goal in calibration is,
then, to characterize the set of models, mainly through assigning distributions (uncertainties) to the
parameters that fit the data to satisfy our assumptions as well as other prior information [3].

The term uncertainty analysis refers to the propagation of all model input uncertainties (mapped in
the parameter distribution) to model outputs. Input uncertainties can stem from the lack of knowledge
of physical model inputs such as climate, soil, and land-use, to model parameters and model structure.
Identification of all acceptable model solutions in the face of all input uncertainties can, therefore,
provide us with model uncertainty expressed in SWAT-CUP as 95% prediction uncertainty (95PPU)
(Figure 3).

Figure 3. Illustration of model output uncertainty expressed as 95% prediction uncertainty (95PPU) as
well as measured and best simulated discharge variable.

To compare the 95PPU band with, for example, a discharge signal, we devised two statistics
referred to as p-factor and r-factor [2,3]. p-factor is the percentage of measured data bracketed by the
95PPU band. These measurements are within the simulation uncertainty of our model; hence, they are
simulated well and accounted for by the model. Subsequently, (1-p-factor) represent the measured data
not simulated well by the model, in other words, (1-p-factor) is the model error. r-factor is a measure
of the thickness of the 95PPU band and is calculated as the average 95PPU thickness divided by the
standard deviation of the corresponding observed variable:

r − f actorj =

1
nj

∑
nj
ti=1

(xti ,97.5%
s − xti ,2.5%

s )

σoj
(4)

where xti ,97.5%
s and xti ,2.5%

s are the upper and lower boundary of the 95PPU at time-step t and simulation
i, nj is the number of data points, and σoj is the standard deviation of the jth observed variable.

Validation is used to build confidence in the calibrated parameters. For this purpose, the calibrated
parameter ranges are applied to an independent measured dataset, without further changes.
The analyst is required to do one iteration with the same number of simulations as in the last calibration
iteration. Similar to calibration, validation results are also quantified by the p-factor, r-factor, and the
objective function value. It is important that the data in validation period meets more or less the
same physical criteria as the calibration period. For example, climate and land-use of the validation
period should pertain to the same kind of climate and land-uses as the calibration period. Also, if for
example, river discharge is used to calibrate the model, then the average and variance of discharges in
the two periods should more or less be the same.

Risk analysis is a step usually ignored in most hydrological modeling. We often build a model,
calibrate it and report the model uncertainty, but do not take the next step to analyze the problem.
For example, we simulate nitrate concentration in the rivers or in the groundwater, or quantify soil
erosion and soil losses, but do not go further to quantify their consequences in the environment or on
human health. One impediment is usually the existence of uncertainty in the outputs. A large body of
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literature exists on decision-making under uncertainty, but there is still no standard and easy way of
communicating the uncertainty to decision-makers. Environmental scientist researchers and engineers
should pay more attention to this problem. One way forward would be to transform the uncertainty
to risk. A monitory risk value is more tangible to a decision-maker than uncertainty. The risk can be
calculated as the probability of failure (or loss) multiplied by the cost of failure (or loss):

Risk = Pr(F).Cost(F) (5)

To demonstrate, assume that we are interest in calculating the risk of soil loss due to erosion.
To calculate the probability of soil loss, we propagate the parameter ranges that were obtained during
calibration by performing an iteration of, for example, 1000 simulations. Using the “No_Observation”
option for extraction, we extract the sediment loss from a sub-basin of interest (Table 2, column 1).
Next, we can calculate the cost of soil loss in ways that could include loss of fertilizer, loss of crop yield,
loss of organic matter, etc. [5–7]. Here, we assumed a cost of 10 $ tn−1 to replenish the loss of fertilizer
(Table 2, column 2).

Table 2. Statistics of cumulative distribution for soil loss resulting from model uncertainty.

Before Terracing After Terracing

Soil Loss
(tn ha−1)

Cost of Soil
Loss ($ ha−1)

Prob. of
Soil Loss

Risk of Soil
Loss ($ ha−1)

Soil Loss
(tn ha−1)

Cost of Soil
Loss ($ ha−1)

Prob. of
Soil Loss

Risk of Soil
Loss ($ ha−1)

Gain
($ ha−1)

513 5130 0.29 1501 209 2090 0.41 460 1041
534 5340 0.14 747 219 2190 0.59 241 506
601 6010 0.14 841 258 2580 0.72 464 376
668 6680 0.09 601 296 2960 0.78 414 187
735 7350 0.06 441 335 3350 0.86 335 106
802 8020 0.05 481 373 3730 0.91 261 220
869 8690 0.05 434 411 4110 0.94 206 229
936 9360 0.06 562 450 4500 0.95 180 382
1003 10,030 0.05 502 488 4880 0.98 244 258
1070 10,700 0.06 642 527 5270 1.00 211 431

Expectation 6751 3016 3735

In the “echo_95ppu_No_Obs.txt” file of SWAT-CUP, one can find the probability distribution
of soil loss (Table 2, column 3). In this example, we have an uncertainty on soil loss in the range
of (513 tn ha−1 to 1070 tn ha−1). It is important to realize that this range is the model solution.
Most researchers here search for one number to carry their research forward. But the model, because of
uncertainty, never just has one number as the solution. The risk can then be calculated by Equation (5)
as the product of cost of soil loss by the probability of soil loss (Table 2, column 3).

To carry the example forward, assume that with the help of terracing we can cut down on soil
loss. Implementing this management option in SWAT and running an iteration as before, we obtain
the new loss soil and its probability distribution (Table 2). We can again calculate the risk of soil loss
after terracing and calculate the Gain or profit of terracing as:

Gain = Riskb − Riska (6)

where b and a stand for before and after terracing. In the last row of Table 2, the expected values are
reported, where the expected value of gain as a result of terracing is calculated to be 3735 $ ha−1.
If the cost of terracing is less than this amount, then there is a profit in terracing. The same type of
analysis can be done with different best-management options (BMP) in SWAT and the most profitable
one selected.

2. Outstanding Calibration and Uncertainty Analysis Issues

Calibration of watershed models suffers from a number of conceptual and technical issues,
which we believe require a more careful consideration by the scientific community. These include:
(1) inadequate definition of the base model; (2) parameterization; (3) objective function definition;
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(4) use of different optimization algorithms; (5) non-uniqueness; and (6) model conditionality on the
face of the above issues. Two other issues having an adverse effect on calibration include: (7) time
constraints; and (8) modeler’s inexperience and lack of sufficient understanding of model parameters.
In the following, a short discussion of these issues is presented.

2.1. Inadequate Definition of the Base Model

An important setback in model calibration is to start the process with an inadequate model. Failure
to correctly setup a hydrologic model may not allow proper calibration and uncertainty analyses,
leading to inaccurate parameter estimates and wrong model prediction. To build a model with an
accurate accounting of hydrological processes, a data-discrimination procedure is needed during model
building. This includes: (i) identifying the best data set (e.g., climate, land-use, soil) from among,
at times, many available data sources; (ii) accounting for important processes in accordance with the
“correct neglect” principle where only ineffective processes are ignored in the model. Often important
processes, which are usually ignored, include: springs, potholes, glacier/snow melts, wetlands,
reservoirs, dams, water transfers, and irrigation. Accounting for these measures, if they exist, leads to
a better physical accounting of hydrological processes, which significantly improves the overall model
performance. This avoids unnecessary and arbitrary adjustment of parameters to compensate for the
missing processes in the model structure.

In this special issue, Kamali et al. [8] address the issue of the existence of many datasets and their
effects on the assessment of water resources. They combined 4 different climate data with 2 different
land-use maps to build 8 different models that they calibrated and validated. These models led
to different calibrated parameter sets, which consequently led to different quantification of water
resources in the region of study (Figure 4).

Figure 4. Range of four water resources components. (a) WY = water yield; (b) BW = blue water;
(c) SW = soil water; (d) ET = evapotranspiration obtained from eight calibrated models. C represents a
climate data set, and L represents a land-use dataset. (Source: Kamali et al. [8]).

2.2. Parameterization

There are two issues in parameterization: (1) which parameters to use; and (2) how to regionalize
the parameters. Not all SWAT parameters are relevant to all sub-basins, and not all should be used
simultaneously to calibrate the model. For example, rainfall is a driving variable and should not be
fitted with other parameters at the same time. Similarly, snow-melt parameters (SFTMP, SMTMP,
SMFMX, SMFMN, TIMP) and canopy storage (CANMX), which introduce water into the system,
should not be calibrated simultaneously with other parameters as they will cause identifiability
problems. These parameters should be fitted first and fixed to their best values and then removed from
further calibration.
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The other issue deals with regionalization of the parameters. That is, how to distinguish between
hydraulic conductivity of the same soil unit when it is under forest, as opposed to being under pasture
or agriculture. For this purpose, a scheme is introduced in SWAT-CUP where a parameter can be
regionalized to the HRU level using the following assignment:

x__<parname>.<ext>__<hydrogrp>__<soltext>__<landuse>__<subbsn>__<slope>

where x is an identifier to indicate the type of change to be applied to the parameter (v is value
change; a adds an increment to existing value; and r is for relative change of spatial parameters and it
multiplies the existing parameter value by (1 + an increment)). <parname> is SWAT parameter name,
<ext> is SWAT file extension code; <hydrogrp> is hydrologic group; <soltext> is soil texture; <landuse> is
land-use type; <subbsn> is sub-basin number(s); and <slope> is the slope as it appears in the header
line of SWAT input files. Any combination of the above factors can be used to calibrate a parameter.
The analyst, however, must decide on the detail of regionalization as on the one hand, a large number
of parameters could result, and on the other hand, by too much lumping, the spatial heterogeneity of
the region may be lost. This balance is not easy to determine, and the choice of parameterization will
affect the calibration results (see [9,10] for a discussion). Detailed information on spatial parameters is
indispensable for building a correct watershed model. A combination of measured data and spatial
analyses techniques using pedotransfer functions, geostatistical analysis, and remote sensing data
would be the way forward.

2.3. Use of Different Objective Functions

There are a large number of objective functions with different properties that could be used in
model calibration [11,12]. The problem with the choice of objective functions is that they can produce
statistically similar and good calibration and validation results, but with quite different parameter
ranges. This adds a level of uncertainty to the calibration process, which could make the calibration
exercise meaningless. In this special issue, Hooshmand et al. [13] used SUFI-2 with 7 different objective
functions to calibrate discharge in Salman Dam and Karkhe Basins in Iran. They found that after
calibration, each objective function found an acceptable solution, but at a different location in the
parameter space (Figure 5).

Figure 5. Uncertainty ranges of calibrated parameters using different objective functions for a project
in Karkheh River Basin, Iran. The points in each line show the best value of parameters, r_ refers
to a relative change where the current values are multiplied by (one plus a factor from the given
parameter range), and v_ refers to the substitution by a value from the given parameter range. (Source:
Hooshmand et al. [13]).
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2.4. Use of Different Optimization Algorithms

Yang et al. [14] showed that different calibration algorithms converge to different calibrated
parameter ranges. They used SWAT-CUP to compare Generalized Likelihood Uncertainty Estimation
(GLUE) [15], Parameter Solution (ParaSol) [16], Sequential Uncertainty Fitting (SUFI-2) [2–4],
and Markov chain Monte Carlo (MCMC) [17–19] methods in an application to a watershed in China.
They found that these different optimization algorithms each found a different solution at different
locations in the parameter spaces with roughly the same discharge results. In this special issue,
Hooshmand et al. [13] also showed that use of SUFI-2, GLUE, and ParaSol resulted in the identification
of different parameters ranges, with similar calibration/validation results, which led to simulation of
significantly different water-resources estimates (Figure 6).

Figure 6. Uncertainty ranges of the parameters based on all three methods applied in Salman Dam
Basin, Iran. The points in each line show the best value of the parameters, r_ refers to a relative change
where the current values are multiplied by one plus a factor from the given parameter range, and
v_ refers to the substitution by a value from the given parameter range. (Source: Hooshmand et al. [13]).

2.5. Calibration Uncertainty or Model Non-Uniqueness

As mentioned before, a single parameter set results in a single model signal in a deterministic
model application. In an inverse application (i.e., calibration), the measured variable could be
reproduced with thousands of different parameter sets. This non-uniqueness is an inherent property
of model calibration in distributed hydrological applications. An example is shown in Figure 7 where
two very different parameter sets produce signals similar to the observed discharge.

We can visualize non-uniqueness by plotting the response surface of the objective function versus
two calibrating parameters. As an example, Figure 8 shows the inverse of an objective function, based
on the mean square error, plotted against CN2 and GW-REVAP in an example with 2400 simulations.
In this example, CN2, GW-REVAP, ESCO, and GWQMN were changing simultaneously. Size and
distribution of all the acceptable solutions (1/goal > 0.8) are shown in darker shade. This multi-modal
attribute of the response surface is the reason why each algorithm or each objective function finds a
different good solution.
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Figure 7. Example of parameter non-uniqueness showing two similar discharge signals based on quite
different parameter values.

Figure 8. The “multimodal” behavior of the objective function response surface. All red-colored peaks
have statistically the same value of objective function, which occur at the different regions in the
parameter space.

To limit the non-uniqueness problem, we should: (i) include more variables in the objective
function (e.g., discharge, ET or crop yield, nutrient loads, etc.); (ii) use multiple outlets for calibration;
and (iii) constrain the objective function with soft data (i.e., knowledge of local experts on nutrient
and sediment loads from different land-uses, etc.). The downside of this is that a lot of data must
be measured for calibration. The use of remote-sensing data, when it becomes practically available,
could be extremely useful. In fact, the next big jump in watershed modeling will be made as a result of
advances in remote-sensing data availability.

2.6. Calibrated Model Conditionality

A model calibrated for a discharge station at the outlet of a watershed should not be expected
to provide good discharge results for outlets inside the watershed. The outlets inside should be
“regionally” calibrated for the contributing sub-basins. Also, a model calibrated for discharge,
should not be expected to simulate water quality. Calibrated parameters are always expressed as
distributions to reflect the model uncertainty. In other words, they are always “conditioned” on the
model assumptions and inputs, as well as the methods and data used for model calibration. Hence,
a model calibrated, for example, for discharge, may not be adequate for prediction of sediment; or for
application to another region; or for application to another time period.
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A calibrated model is, therefore, always: (i) non-unique; (ii) subjective; (iii) conditional; and
subsequently (iv) limited in the scope of its use. Hence, important questions arise as to: “When is a
watershed model truly calibrated?” and “For what purpose can we use a calibrated watershed model?”
For example: What are the requirements of a calibrated watershed model if we want to do land-use
change analysis? Or, climate change analysis? Or, analysis of upstream/downstream relations in
water allocation and distribution? Or, water quality analysis? Can any single calibrated watershed
model address all these issues, or should there be a series of calibrated models each fitted to a certain
purpose? We hope that these issues can be addressed more fully by research in this field.

Conditionality is, therefore, an important issue with calibrated models. Calibrated parameters (θ)
are conditioned on the base model parameterization (p), variables used to calibrate the model (v), choice
of objective function (g) and calibration algorithm (a), as well as weights used in a multi-objective
calibration (w), the type and number of data points used for calibration (d), and calibration-validation
dates (t), among other factors. Mathematically, we could express a calibrated model M as:

M = M(θ|p, v, g, a, w, d, t, . . . .) (7)

To obtain an unconditional calibrated model, the parameter set θ must be integrated over all factors.
This may make model uncertainty too large for any practical application. Hence, a model must always
be calibrated with respect to a certain objective, which makes a calibrated model only applicable to
that objective.

2.7. Time Constraint

Time is often a major impediment in the calibration of large-scale and detailed hydrologic models.
To overcome this, most projects are run with fewer simulations, resulting in less-than-optimum
solutions. To deal with this problem, a parallel processing framework was created in the Windows
platform [20] and linked to SUFI-2 in the SWAT-CUP software. In this methodology, calibration of
SWAT is parallelized, where the total number of simulations is divided among the available processors.
This offers a powerful alternative to the use of grid or cloud computing. The performance of parallel
processing was judged by calculating speed-up, efficiency, and CPU usage (Figure 9).
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Figure 9. The speed-up achieved for different Soil and Water Assessment Tools (SWAT) projects.
The number of processors on the horizontal axis indicates the number of parallel jobs submitted.
The figure shows that most projects could be run 10 times faster with about 6–8 processors. (Source:
Rouholahnejad, et al. [20]).

2.8. Experience of the Modeler

The success of a calibration process depends on the accuracy of the mathematical model and the
procedures chosen for the calibration as already noted. However, the experience of the modeler plays
an important role, and in this sense, calibration can be described as an art as well as a science [21–24].
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3. A Protocol for Calibration of Soil and Water Assessment Tools (SWAT) Models

Calibration of watershed models is a long and often tedious process of refining the model for
processes and calibrating parameters. We should usually expect to spend as much time calibrating a
model as we take to build the model. To calibrate the model we suggest using the following general
approach (also see Abbaspour et al. [2]).

3.1. Pre-Calibration Input Data and Model Structure Improvement

Build the SWAT model in ArcSWAT or QSWAT using the best parameter estimates based on the
available data, literature, and the analyst and local expertise. There is always more than one dataset
(e.g., soil, land-use, climate, etc.) available for a region. Test each one and choose the best dataset
to proceed. It should be noted that for calibration, the performance of the initial model should not
be too drastically different from the measured data. If the initial simulation is too different, often
calibration might be of little help. Therefore, one should include as much of the important processes
in the model as possible. There may be processes not included in SWAT (e.g., wetland, glacier melt,
micronutrients, impact of salinity on crop yield), or included in SWAT but with unavailable data
(e.g., reservoir operation, water withdrawal, and water transfers); or with available data, but unknown
to the modeler. This requires a good knowledge of the watershed, which may be gained from literature
or local experts, or by using the “Maps” option in SWAT-CUP, which can recreate the sub-basins and
rivers on the Microsoft’s Bing Maps (Figure 10).

At this stage, also check the contribution of rainfall, snow parameters, rainfall intercept, inputs
from water treatment plants, and water transfers. A pre-calibration run of these parameters is necessary
to identify their best values, and then to fix them in the model without further change.

Figure 10. The Maps option of SWAT-CUP can be used to see details of the watershed under
investigation, such as dams, wrongly placed outlets, glaciers, high agricultural areas, etc.

3.2. Identify the Parameters to Optimize

Based on the performance of the initial model at each outlet station, relevant parameters in the
upstream sub-basins are parameterized using the guidelines in Abbaspour et al. [2]. This procedure
results in regionalization of the parameters.
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3.3. Identify Other Sensitive Parameters

Next to parameters identified in step 2, use the one-at-a-time sensitivity analysis to check the
sensitivity of other relevant parameters at each outlet. To set the initial ranges of parameters to be
optimized, some experience and hydrological knowledge are required on the part of the analyst.
In addition to the initial ranges, user-defined “absolute parameter ranges” should also be set if
necessary. These are the upper and lower limits of what is physically a meaningful range for a
parameter at a site.

3.4. Running the Model

After the model is parameterized and the ranges are assigned, the model is run some
300–1000 times, depending on the number of parameters, model’s execution time, and system’s
capabilities. SUFI-2 is an iterative procedure and does not require too many runs in each iteration.
Usually, 3–4 iterations should be enough to attain a reasonable result. Parallel processing can be used to
greatly improve the runtime. PSO and GLUE need a larger number of iterations and simulations (100–5000).

3.5. Perform Post-Processing

After simulations in each iteration are completed; the post-processing option in SWAT-CUP
calculates the objective function and the 95PPU for all observed variables in the objective function.
New parameter ranges are suggested by the program for another iteration [2,3].

3.6. Modifying the Suggested New Parameters

The new parameters may contain values outside the desired or physically meaningful ranges.
The suggested values should be modified by the user guiding the parameters in a certain desired
direction, or to make sure that they are within the absolute parameter ranges. Use the new parameters
to run another iteration until desired values of p-factor, r-factor, and the objective function is reached.

Author Contributions: All authors formulated the concept. Karim C. Abbaspour wrote the initial version,
Saeid Ashraf Vaghefi and Raghvan Srinivasan contributed by editing and suggesting revisions.

Conflicts of Interest: There authors declare no conflict of interest.

Appendix A

Summary of the papers in the “Integrated Soil and Water Management” special issue (Table A1).
1,2—Chambers et al. [25,26] evaluated two different approaches for modeling historical and

future streamflow and stream temperature in Rhode Island, USA. They found that between 1980–2009,
the number of stressful events (i.e., high or low flows occurring simultaneously with stream
temperatures exceeding 21 ◦C) increased by 55% and average streamflow increased by 60%. For future
scenarios, however, the chance of stressful events increases on average by 6.5% under the low-emission
scenario and by 14.2% under the high-emission scenario relative to historical periods.

3—Chen et al. [27] studied the effect of different fertilization and irrigation schemes on water and
nitrate leaching from the root zone. They concluded that N-application based on soil testing helps to
improve groundwater quality.

4—Cuceloglu et al. [28] simulated the water resources of Istanbul and quantified the spatial
distribution of the region. Their results show that the annual blue-water potential of Istanbul is 3.5
billion m3, whereas the green-water flow and storage are 2.9 billion m3 and 0.7 billion m3, respectively.

5—Ding et al. [29] showed that total nitrogen load increased with increasing slope in a Yangtze
River-cultivated Regosol soil.

6—Fabre et al. [30] studied the effect of permafrost degradation as a result of increasing
temperature in the largest Arctic river system: the Yenisei River in central Siberia, Russia. Once the
climate data and soil conditions were adapted to a permafrost watershed, the calibration results showed
SWAT was able to estimate water fluxes at a daily time step, especially during unfrozen periods.
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7—Fant et al. [31] evaluated the effect of climate change on water quality of the continental US.
They report that under the business-as-usual emissions scenario, climate change is likely to cause
economic impacts ranging from 1.2 to 2.3 (2005 billion) USD/year in 2050 and 2.7 to 4.8 (2005 billion)
USD/year in 2090 across all climate and water-quality models.

8—Gharib et al. [32] investigated the combined effect of threshold selection and Generalized
Pareto Distribution parameter estimation on the accuracy of flood quantiles. With their method,
one third of the stations showed significant improvement.

9—Grusson et al. [33] studied the influence of spatial resolution of a gridded weather (16- and
32-km SAFRAN grids) dataset on SWAT output. They reported better performance of these data
relative to measured station data.

10—Hooshmand et al. [13] investigated the impact of the choice of objective function and
optimization algorithm on the calibrated parameters. They reported that different objective functions
and algorithms produce acceptable calibration results, however, with significantly different parameters,
which produce significantly different water-resources estimates. This adds another level of uncertainty
on model prediction.

11—Kamali et al. [8] studied the impact of different databases on the water-resources estimates
and concluded that while different databases may produce similar calibration results, the calibrated
parameters are significantly different for different databases. They highlighted that “As the use of any
one database among several produces questionable outputs, it is prudent for modelers to pay more
attention to the selection of input data”.

12—Kamali et al. [34] analyzed characteristics and relationships among meteorological,
agricultural, and hydrological droughts using the Drought Hazard Index derived from a SWAT
application. They quantified characteristics such as severity, frequency, and duration of droughts using
the Standardized Precipitation Index (SPI), Standardized Runoff Index (SRI), and Standardized Soil
Water Index (SSWI) for historical (1980–2012) and near future (2020–2052) periods. They concluded
that the duration and frequency of droughts will likely decrease in SPI. However, due to the impact of
rising temperature, the duration and frequency of SRI and SSWI will intensify in the future.

13—Lee et al. [35] studied the impacts of the upstream Soyanggang and Chungju multi-purpose
dams on the frequency of downstream floods in the Han River basin, Korea. They concluded that the
two upstream dams reduce downstream floods by approximately 31%.

14—Li et al. [36] studied the effect of urban non-point source pollution on Baiyangdian Lake in
China. They found that the pollutant loads for Pb, Zn, TN and TP accounted for about 30% of the total
amount of pollutant load.

15—Ligaray et al. [37] studied the fate and transport of Malathion. They used a modified
three-phase partitioning model in SWAT to classify the pesticide into dissolved, particle-bound,
and dissolved organic carbon (DOC)-associated pesticide. They found that the modified model gave a
slightly better performance than the original two-phase model.

16—Lutz at al. [38] evaluated the impact of a buffer zone on soil erosion. Their results indicated
that between 0.2 to 1% less sediment could reach the Itumbiara reservoir with buffer strip provision,
which would have an important effect on the life of the dam.

17—Marcinkowski et al. [39] studied the effect of climate change on the hydrology and water
quality in Poland. They predicted an increase in TN losses.

18—Paul et al. [40] determined the response of SWAT to the addition of an onsite
wastewater-treatment systems on nitrogen loading into the Hunt River in Rhode Island. They concluded
that using the treatment systems data in the SWAT produced a better calibration and validation fit for
total N.

19—Qi et al. [41] compared SWAT to a simpler Generalized Watershed Loading Function (GWLF)
model. The performances of both models were assessed via comparison between simulated and
measured monthly streamflow, sediment yield, and total nitrogen. The results showed that both
models were generally able to simulate monthly streamflow, sediment, and total nitrogen loadings
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during the simulation period. However, SWAT produced more detailed information, while GWLF
could produce better average values.

20—Rouholahnejad et al. [42] investigated the impact of climate and land-use change on the water
resources of the Black Sea Basin. They concluded in general that the ensemble of the climate scenarios
show a substantial part of the catchment will likely experience a decrease in freshwater resources by
30% to 50%.

21—Senent-Aparicio et al. [43] investigated the effect of climate change on water resources of
the Segura River Basin and concluded that water resources were expected to experience a decrease of
2–54%.

22,23—Seo et al. [44,45] used SWAT to simulate hydrologic behavior of Low Impact Developments
(LID) such as the installation of bioretention cells or permeable pavements. They report that application
of LID practices decreases surface runoff and pollutant loadings for all land-uses. In addition, post-LID
scenarios generally showed lower values of surface runoff, lower nitrate in high-density urban land-use,
and lower total phosphorus in conventional medium-density urban areas.

24—Tan et al. [46] investigated the accuracy of three long-term gridded data records: APHRODITE,
PERSIANN-CDR, and NCEP-CFSR. They concluded that the APHRODITE and PERSIANN-CDR data
often underestimated extreme precipitation and streamflow, while the NCEP-CFSR data produced
dramatic overestimations.

25—Vaghefi et al. [47] coupled SWAT to MODSIM, which is a program for optimization of water
distribution. They concluded in their study that the coupled SWAT-MODSIM approach improved the
accuracy of SWAT outputs by considering the water allocation derived from MODSIM.

26—Wangpimool et al. [48] studied the effect of Para Rubber Expansion of the water balance of
Loei Province in Thailand. They found that displacement of original local field crops and disturbed
forest land by Para rubber production resulted in an overall increase in evapotranspiration of
roughly 3%.

27—White et al. [49] describe the development of a national (US) database of preprocessed climate
data derived from monitoring stations applicable to USGS 12-digit watersheds. The authors conclude
that the data described in this work are suitable for the intended SWAT and APEX application and
also suitable for other modeling efforts, and are freely provided via the web.
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Abstract: It has become increasingly important to recognize historical water quality trends so that
the future impacts of climate change may be better understood. Climate studies have suggested
that inland stream temperatures and average streamflow will increase over the next century in New
England, thereby putting aquatic species sustained by coldwater habitats at risk. In this study we
evaluated two different approaches for modeling historical streamflow and stream temperature in a
Rhode Island, USA, watershed with the Soil and Water Assessment Tool (SWAT), using (i) original
SWAT and (ii) SWAT plus a hydroclimatological model component that considers both hydrological
inputs and air temperature. Based on daily calibration results with six years of measured streamflow
and four years of stream temperature data, we examined occurrences of stressful conditions for brook
trout (Salvelinus fontinalis) using the hydroclimatological model. SWAT with the hydroclimatological
component improved modestly during calibration (NSE of 0.93, R2 of 0.95) compared to the original
SWAT (NSE of 0.83, R2 of 0.93). Between 1980–2009, the number of stressful events, a moment in time
where high or low flows occur simultaneously with stream temperatures exceeding 21 ◦C, increased
by 55% and average streamflow increased by 60%. This study supports using the hydroclimatological
SWAT component and provides an example method for assessing stressful conditions in southern
New England’s coldwater habitats.

Keywords: SWAT model; coldwater fish; stream temperature; hydroclimatological model; water
quality; hydrology

1. Introduction

Stream temperatures in the New England region of the United States have been increasing steadily
over the past 100 years [1]. Over the next century, freshwater ecosystems in New England are expected
to experience continued increase in mean daily stream temperatures and an increase in the frequency
and magnitude of extreme flow events due to warmer, wetter winters, earlier spring snowmelt, and
drier summers [1–9]. As the spatial and temporal variability of stream temperatures play a primary
role in distributions, interactions, behavior, and persistence of coldwater fish species [7,10–16], it has
become increasingly important to understand historical patterns of change so that a comparison can
be made when projecting the future effects of climate changes on local ecosystems.

This study used the Soil and Water Assessment Tool (SWAT) [17] developed by United States
Department of Agriculture to generate historical streamflow and stream temperature data, followed
by an assessment of the frequency of “stressful events” affecting the Rhode Island native brook trout
(Salvelinus fontinalis). Brook trout, a coldwater salmonid, is a species indicative of high water quality
and is also of interest due to recent habitat and population restoration efforts by local environmental
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groups and government agencies [18,19]. This fish typically spawns in the fall and lays eggs in
redds (nests) deposited in gravel substrate. The eggs develop over the winter months and hatch
from late winter to early spring. However, the life-cycle of brook trout is heavily influenced by the
degree and timing of temperature changes [11,20]. High stream temperatures cause physical stress
including slowed metabolism and decreased growth rate, adverse effects on critical life-cycle stages
such as spawning or migration triggers, and in extreme cases, mortality [7,21–24]. Distribution is also
affected as coldwater fish actively avoid water temperatures that exceed their preferred temperature
by 2–5 ◦C [25,26]. Studies have shown that optimal brook trout water temperatures remain below
20 ◦C. Symptoms of physiological stress develop at approximately 21 ◦C [21], and temperatures above
24 ◦C have been known to cause mortality in this species [11].

Flow regime is another central factor in maintaining the continuity of aquatic habitat throughout
a stream network [22,27–32]. While temperature is often cited as the limiting factor for brook trout,
the flow regime has considerable importance [33]. Alteration of the flow regime can result in changes
in the geomorphology of the stream, the distribution of food producing areas as riffles and pools
shift, reduced macroinvertebrate abundance and more limited access to spawning sites or thermal
refugia [20,34,35]. Reductions in flow have a negative effect on the physical condition of both adult
brook trout and young-of-year. Nuhfer et al. (2017) studied summer water diversions in a groundwater
fed stream and found a significant decline in spring-to-fall growth of adult and young-of-year brook
trout when 75% flow reductions occurred. The consequences of lower body mass are not always
immediately apparent. Adults may suffer higher mortality during the winter months following the
further depletion of body mass due to the rigors of spawning. Poor fitness of spawning adults may
result in lower quality or reduced abundance of eggs [20]. Velocity of water through the stream reach
may affect sediment and scouring of the stream bed and banks, reducing the availability of nest sites.

To address the importance of both stream temperature and flow regime, stressful events
are defined herein as any day where either high or low flow occurs simultaneously with stream
temperatures above 21 ◦C. High and low flows will be considered as those values in the 25-percent
and 75-percent flow exceedance percentiles (Q25, Q75) of the 30-year historical flow on record at the
study site, i.e., Cork Brook in north-central Rhode Island (Figure 1). These temperature and flow
parameters were also chosen in part due to their regional applicability since many efforts are being
made to conserve coldwater fish habitats in Rhode Island [18].

Analytical tools can be employed to generate models showing the effects of atmospheric
temperatures on stream temperatures [8,36–41]. This study uses SWAT to simulate historical
streamflow and stream temperature data. Then, a hydroclimatological stream temperature SWAT
component created by Ficklin et al. [36] is incorporated to demonstrate its applicability in southern New
England watersheds. This component reflects the combined influence of meteorological conditions
and hydrological inputs, such as groundwater and snowmelt, on water temperature within a stream
reach. Previous studies have shown that the hydroclimatological component can be used in small
watersheds [36] and in New England [42]. Lastly, the generated stream temperature and streamflow
data are analyzed to understand the frequency of stressful conditions for coldwater habitats in
Cork Brook.

The results provide a site-specific approach to identifying critical areas in watersheds for best
management practices with the goal of maintaining or improving water quality for both human
consumption and aquatic habitat. In this study, the hydroclimatological component more accurately
predicted stream temperatures at the study site. Between 1980 and 2009, the percent chance of stressful
conditions occurring on a given day due to low streamflow levels and higher stream temperatures
have increased at Cork Brook. A total of 98% of all stressful events simulated between 1980 and 2009
occurred during the low flow period rather than the high flow period. Knowing how water resources
have historically responded to climate change and providing managers the most efficient analytical
tools available will help identify habitats that have historically been less susceptible to unfavorable
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conditions. If climate trends continue as expected, decisions to protect a habitat based on its known
resilience may have a large impact on how resources and preservation efforts will be allocated.

 

Figure 1. The Cork Brook watershed empties into the Scituate Reservoir, the main drinking water
supply for the City of Providence, Rhode Island, USA.

2. Materials and Methods

The selected study site was Cork Brook in Scituate, Rhode Island. This small forested watershed
is a tributary to the Scituate Reservoir, which is part of the larger Pawtuxet River basin beginning
in north-central Rhode Island and eventually flowing into Narragansett Bay. The Scituate Reservoir
is the largest open body of water in the state and is the main drinking water source to the City of
Providence. Human disturbance within the Cork Brook watershed is minimal, and most of the land
cover is undeveloped forest and brushland; however, a portion (14%) of the land use is classified
as medium density residential. USGS station number 01115280 is located approximately four km
downstream from the headwaters and been continuously recording streamflow at the site since 2008
and stream temperature since 2001 [43]. The mean daily discharges at the gauge are historically lowest
in September (0.025 m3/s) and highest in March (0.27 m3/s), with an annual average of approximately
0.11 m3/s. Average daily stream temperature is estimated at 7.8 ◦C since 2001.

This study uses the hydrologic and water quality model SWAT for simulating streamflow and
stream temperature. SWAT is a well-established, physically-based, semi-distributed hydrologic model
created by the United States Department of Agriculture (USDA) in 1998 [17]. The model is capable
of simulating on a continuous daily, monthly and long-term time-step and incorporates the effects
of climate, plant and crop growth, surface runoff, evapotranspiration, groundwater flow, nutrient
loading, land use and in-stream water routing to predict hydrologic response and simulate discharge,
sediment and nutrient yields from mixed land use watersheds [17,44–46]. As a distributed parameter
model, SWAT divides a watershed into hydrologic response units (HRUs) exhibiting homogenous land,
soil and slope characteristics. Surface water runoff and infiltration volumes are estimated using the
modified soil conservation service (SCS) 1984 curve number method, and potential evapotranspiration
is estimated using the Penman-Monteith method [47,48].
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The Rhode Island Geographic Information System (RIGIS) database is the main source for the
spatial data used as model inputs [49]. RIGIS is a public database managed by both the Rhode
Island government and private organizations. Typical SWAT model inputs in ArcSWAT [50] include
topography, soil characteristics, land cover or land use and meteorological data. Information collected
for this study includes the following: 2011 Land use/land cover data derived from statewide 10-m
resolution National Land Cover Data imagery [51]; soil characteristics collected from a geo-referenced
digital soil map from the Natural Resource Conservation Service (NRCS) Soil Survey Geographic
database (SSURGO) [52]; and topography information extracted from USGS 7.5-min digital elevation
models (DEMs) with a 10-m horizontal, 7-m vertical resolution. Based on the spatial data provided,
the seven-km2 Cork Brook watershed was delineated into four subbasins and 27 HRU units using land
use, soil and slope thresholds of 20%, 10% and 5%. Regional meteorological data from 1979 to 2014
including long term precipitation and temperature records were recorded by a National Climate Data
Center weather station near the study site; the data were downloaded from Texas A&M University’s
global weather data site [53,54].

The SWAT Calibration and Uncertainty Program (SWAT-CUP), Sequential Uncertainty Fitting
Version 2 (SUFI-2) [55,56], was used to conduct sensitivity analysis, calibration and model validation
on stream discharge from the output hydrograph. Performance was measured using the coefficient
of determination and Nash-Sutcliffe Efficiency (NSE) and percent bias (PBIAS). The coefficient of
determination (R2) identifies the degree of collinearity between simulated and measured data, and
NSE was used as an indicator of acceptable model performance. R2 values range from 0 to 1 with
a larger R2 value indicating less error variance. NSE is a normalized statistic that determines the
relative magnitude of the residual variance compared to the measured data variance [57]. NSE ranges
from −∞ to 1; a value at or above 0.50 generally indicates satisfactory model performance [44,58–60].
This evaluation statistic is a commonly used objective function for reflecting the overall fit of a
hydrograph. Percent bias is the relative percentage difference between the averaged modeled and
measured data time series over (n) time steps with the objective being to minimize the value [61].
The model was validated by using calibrated parameters and performance checked using NSE, R2 and
percent bias.

The most recent version of SWAT (2012) estimates stream temperature from a relationship
developed by Stefan and Preud’homme [17,62] that calculates the average daily water temperature
based on the average daily ambient air temperature. Ficklin et al. developed another approach using a
hydroclimatological component, which calculates stream temperature based on the combined influence
of air temperature and hydrological inputs, such as streamflow, throughflow, groundwater inflow
and snowmelt. Once the Cork Brook model was calibrated for streamflow, the hydroclimatological
component was incorporated. A separate analysis of groundwater contributions to stream discharge
was conducted for Cork Brook using an automated method for estimating baseflow [63]. An estimated
60% of stream discharge at Cork Brook is contributed to baseflow as opposed to overland flow.
Therefore, incorporating the hydroclimatological component into the model may provide a more
accurate prediction of stream temperature.

The main Equations (1) and (2) for water temperature (Tw) created by Ficklin et al. are listed
below and described in the sequential paragraph:

Tw = TWinitial + (Tair − Tinitial)K(TT), if Tair > 0, (1)

Tw = TWinitial +
[
(Tair + ε)− TWinitial

]
K(TT), if Tair < 0, (2)

where Tair is the average daily temperature, K(1/h) is a bulk coefficient of heat transfer ranging from 0
to 1, TT is the travel time of water through the subbasin (h) and ε is an air temperature coefficient. The ε
coefficient is an important component because it allows the water temperature to rise above 0 ◦C when
the air temperature is below 0 ◦C. If air temperature is less than 0 ◦C, the model will set the stream
temperature to 0.1 ◦C. These details are further discussed in the results section of the paper. The source
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code for the Ficklin model was downloaded from Darren Ficklin’s research webpage at Indiana State
University [64]. No additional spatial data were required for the added component and no additional
streamflow calibration was necessary because discharge outputs were unchanged. Stream temperature
parameters associated with the hydroclimatological model component were calibrated manually with
the stream temperature data recorded at USGS Gauge 01115280. The same performance metrics (NSE
and R2) were used to determine model reliability for temperature simulation.

Upon model calibration and validation, output data simulated by SWAT with the
hydroclimatological component were processed to determine the occurrence of stressful conditions
in Cork Brook from 1980 to 2009. As previously discussed, a stressful event for this study is defined
as any day where both temperature and flow extremes occur. This study used the Q25 and Q75 flow
exceedance percentiles as indicators because of their general use in the field of hydrology [65–67] and
their ecohydrological importance to coldwater fish including brook trout [11,28,30,33,68]. The most
critical period for the species is typically the lowest flows of late summer to winter, and a base flow
of <25% is considered poor for maintaining quality trout habitat [11,33]. A Q75 represents the lowest
25% of all daily flow rates, and a Q25 exceedance characterizes the highest 25% of all daily flow rates.
Flow-exceedance probability, or flow-duration percentile, is a well-established method and generally
computed using the following equation:

P = 100 × (
M

n + 1
) (3)

where P is the probability that a given magnitude will be equaled or exceeded (percent of time), M is
the ranked position (dimensionless) and n is the number of events for period of record [67]. For the
stressful event analysis, the exceedance probability and average daily stream temperature for each
date were identified. If the day fell into the Q25 or Q75 percentile, and if the stream temperature was
greater than 21 ◦C, then the day was tagged as being a thermally stressful event.

3. Results and Discussion

3.1. Model Calibration & Validation

3.1.1. Stream Discharge

The initial model was run for the entire period of precipitation and rainfall data availability
(1979–2014) and then calibrated in SWAT-CUP using a portion of the existing observed streamflow
data from the USGS gauge. The model was calibrated for daily streamflow over a two-year time-span
from 2009 to 2010 (Figures 2 and 3) due to a limited availability in observed data (2008–present). The
model was validated for the year 2012 because the 2011 data showed evidence of discharge misreading
and 2013 weather data were incomplete. The hydrological parameters producing the best overall fit of
the modeled hydrograph to the observed hydrograph are summarized in Table 1, and the statistical
results of daily streamflow calibration and validation are shown in Table 2.

 

Figure 2. A simulated 2009–2010 hydrograph produced by the calibrated Cork Brook SWAT model
compared to observed data from USGS Gauge 01115280.
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Figure 3. Streamflow scatterplot of modeled and observed average daily streamflow from USGS gauge
0111528 during 2009–2010.

The most sensitive parameters in model calibration were primarily related to groundwater and
soil characteristics. The alpha-BF (baseflow) recession value was one of the most effective parameters
and had a small value of 0.049. The alpha baseflow factor is a recession coefficient derived from
the properties of the aquifer contributing to baseflow; large alpha factors signify steep recession
indicative of rapid drainage and minimal storage whereas low alpha values suggest a slow response
to drainage [63,69]. The threshold depth of water in the shallow aquifer (GWQMN) was sensitive in
model calibration and the depth of water is relatively shallow (0.6 m). This is the threshold water
level in the shallow aquifer for groundwater contribution to the main channel to occur. Optimal
groundwater delay was short, i.e., 1.2 days. Since groundwater accounts for the majority of stream
discharge within Cork Brook, the sensitivity of soil and groundwater parameters was expected. Other
factors were incorporated based on the small size of the watershed, such as surface lag time, slope
length, steepness and lateral subsurface flow length, and the presence of snow at the site in the winter,
such as snowmelt and snowpack temperature factors.

Table 1. Range of values for the most sensitive parameters in SWAT streamflow calibration using
SWAT-CUP. The parameter is listed by name and SWAT input file type, definition and the range of
values that were selected for the model.

Parameter Definition Value Range Units

CN2.mgt SCS runoff curve number −0.40–0.75 -
ALPHA_BF.gw Baseflow alpha factor 0.0–0.10 1/Days
GW_DELAY.gw Groundwater delay 0.0–7.0 Days

GWQMN.gw Depth of water in shallow aquifer for return flow 200–1000 mm
v__SMTMP.bsn Snowmelt base temperature −0.5–2.0 ◦C

ESCO.hru Soil evaporation compensation factor 0.15–0.65 -
EPCO.hru Plant uptake compensation factor 0.15–65 -

SLSOIL.hru Slope length for lateral subsurface flow 0.0–150.0 m

Table 2. Statistical results produced by SWAT-CUP for daily stream discharge using the parameters
listed in Table 1.

Streamflow R2 NSE PBIAS

Calibration 0.70 0.71 −0.01
Validation 0.54 0.50 0.03
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3.1.2. Stream Temperature

Once the initial SWAT model was satisfactorily calibrated and validated for discharge, the
hydroclimatological component was added to the SWAT files and the model was run using both
the basic SWAT approach and the revised stream temperature program. The hydroclimatological
temperature model had no effect on stream discharge; therefore, the discharge was not re-calibrated.
The hydroclimatological model was manually calibrated for stream temperature by changing several
variables in the basin file associated with the hydroclimatological component: K, lag time and seasonal
time periods in Julian days (Table 3). The K variable represents the relationship between air and stream
temperature and ranges from 0 to 1. As K approaches 1, the stream temperature is approximately the
same as air temperature, and as K decreases, the stream water is less influenced by air temperature [36].
The temperature outputs are also sensitive to the lag time, a calibration parameter corresponding to
the effects of delayed surface runoff and soil water into the stream. Stream temperature was calibrated
using observed data recorded by the USGS gauge from 2010 to 2011 and validated from 2012 to 2013.

Table 3. Hydroclimatological SWAT calibration parameters for daily stream temperature. Time period
is in Julian days and the lag unit is days.

Time Period Alpha Beta Phi K Lag Time

1–180 1.0 1.0 1.0 1.0 4
181–270 1.0 1.0 0.8 0.8 2
271–330 1.0 1.0 0.8 0.8 2
331–366 1.0 1.0 1.0 0.7 4

The above parameters produced satisfactory stream temperature calibration statistics for the
hydroclimatological model, as summarized in Table 4. During the winter and spring, the stream
temperature is roughly the same as the air. In the summer and fall, the K value is decreased and the
stream temperature is less affected by air temperature. This may be due to extensive tree shading [36],
which is in agreement for Cork Brook as it is a relatively small watershed that is predominantly
forested [70]. The lag time is relatively short throughout the year and is similar to the surface and
groundwater delay parameters set during stream discharge calibration. The Ficklin et al. approach
generated comparable R2 value but a higher NSE than the basic SWAT approach. More importantly,
the hydroclimatological model better predicted the occurrence of stressful stream temperatures
compared to the original SWAT model during the calibration and validation periods (Figure 4).
Therefore, since stream temperature is the main driving component in which a situation is considered
stressful for brook trout, the hydroclimatological model appears less likely to over-predict stressful
conditions than the original SWAT model.

Table 4. Statistical results of the daily stream temperature calibration. The average recorded stream
temperature at the USGS gauge is 7.8 ◦C.

Model Type R2 NSE Mean Stream Temperature

Basic SWAT Calibration 0.93 0.83 12.5 ◦C
Basic SWAT Validation 0.94 0.83 12.9 ◦C

Ficklin Calibration 0.95 0.93 9.9 ◦C
Ficklin Validation 0.96 0.94 10.0 ◦C
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Figure 4. The number of days per month that stream temperatures exceeded the stress threshold of
21 ◦C during the stream temperature calibration and validation periods (2010–2013).

3.2. Stream Conditions and Stressful Event Analysis

The SWAT model incorporating the added hydroclimatological component was used for stressful
event analysis, as it proved to be more accurate than the basic SWAT model. The model predicted
an increase in the magnitude of stream discharge increases by each decade between 1980 and 2009,
as shown in Figure 5, although the shape of the flow duration curve stayed relatively consistent.
The simulated stream discharge rates increased as well, averaging 0.06 m3/s in 1980–1989, 0.08 m3/s
in 1990–1999 and 0.10 m3/s between 2000 and 2009. The maximum streamflow fluctuated, 1.74 m3/s
in 1980–1989, 2.75 m3/s in 1990–1999 and 1.93 m3/s between 2000 and 2009. Several existing studies
have examined how the climate has changed over the last 30-years in New England. Since 1970, Rhode
Island’s annual precipitation has increased 6–11%. Fewer days with snow cover and earlier ice-out
dates are occurring [71,72]. A large-scale regional study [1] collected climate and streamflow data from
27 USGS stream gauges recorded for a historical average of 71 years throughout the New England
region. The study indicated that there were increases over time in annual maximum streamflows.
The stream discharge results produced by the Cork Brook model align well with what has been
observed statewide and across New England and support claims that certain effects of climate change
are already beginning to take place.

Figure 5. Simulated flow duration curves by decade generated by the SWAT model with the
hydroclimatological component. Stream discharge is equal to zero at the 100th percentile.
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As water temperatures increase due to global warming, brook trout may benefit from sustained
flows which will prevent stream temperatures from rising further and help ensure that downstream
habitat remains connected to headwaters. On the other hand, a sustained increase in flow magnitude
can change the geomorphology and may not be beneficial for aquatic species during the spawning
season when flows are normally lower [30]. An increase in stream discharges during the low flow
season may put redds at risk of destruction from sedimentation or sheer velocity. Changes in
streamflow magnitude may also increase turbidity or redistribute riffle and pool habitat throughout
the stream reach. This may decrease the availability of suitable habitat as brook trout prefer stream
reaches with an approximate 1:1 pool-riffle ratio [11]. Pool and riffle redistribution can also affect the
type and quantity of local macroinvertebrate populations. Since warming temperatures will have an
impact on body condition as fish enter the winter months, the available food supply can become an
even more critical factor as the climate changes.

To identify the number of stressful events simulated by the model, output data were analyzed by
decade (1980–1989, 1990–1999 and 2000–2009) and over the entire 30-year period. The percent chance
that a stressful event would occur on any given day throughout the time period was also calculated.
These results are shown in Table 5 below.

Table 5. Stressful event analysis of SWAT with the hydroclimatological component. Shown is the
percent chance that of the 3653 days per each decade and 10,958 days between 1980 and 2009, a day
with any type of stress will occur, a day with flow stress will occur, a day with temperature stress will
occur and the percent chance of an event.

Date Indicator Any Type of Stress Stream Temp. >21 ◦C Q25 or Q75 Flow Stressful Event

1980–1989
Days 2066 252 1814 84

% Chance 56.6 6.9 49.7 2.3

1990–1999
Days 2049 228 1821 122

% Chance 56.1 6.2 49.8 3.3

2000–2009
Days 2007 196 1811 131

% Chance 54.9 5.4 49.6 3.6

1980–2009
Days 6142 676 5466 338

% Chance 56.0 6.2 49.9 3.1

The model predicted an increase in the number of stressful events between 1980 and 2009 with the
greatest change taking place between the first decade (1980–1989) and the second decade (1990–2009). It is
interesting to note that although the model predicted an increase in number of stressful events between
1980 and 2009, the number of temperature stress days and the number of flow stress days generally
decreased between decades (Table 5). Figure 6 have been created to gain a better understanding of how the
co-occurrence of temperature stress and the flow stress has changed in Cork Brook.

(a)

Figure 6. Cont.
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(b)

(c)

(d)

Figure 6. Cork Brook simulated flow duration curve and stream temperatures for SWAT with the
hydroclimatological component over three decades. (a) 1980–1989, (b) 1990–1999 (c) 2000–2009 and
(d) 1980–2009. The secondary y-axis begins at 21 ◦C and any temperatures that are not above the
stressful threshold are not shown in the figures. The stream temperatures in the Q25–Q75 range are
omitted from each figure.

The graphs show that of all 338 stressful events simulated between 1980 and 2009, only seven
events occurred within the Q25 flow percentiles. The remaining events simulated by the model
occurred when flows were within the Q75–Q97 flow percentile because lower, slower flows are exposed
to air longer, causing them to increase or decrease in temperature more easily. The fact that there
were no stressful events above the Q97 flow percentiles is most likely attributed to groundwater
inputs. During the dry or low flow periods in summer and fall, baseflow will be the primary
input to groundwater fed streams. Because the hydroclimatological model component takes the
groundwater temperature into consideration, the lowest discharge amounts the model simulates will
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likely be baseflow driven and therefore cooler than water that is continuously exposed to ambient
air temperatures. This is good news for coldwater fish species which spawn in the fall or those that
begin their migration into headwaters during the low flow season, as the chance of exposure to high
temperatures is lessened from groundwater contributions.

The greatest change in the number of stressful events occurred between the first and second
decades where the count of stressful events increased from 84 in 1980–1989 to 122 in 1990–1999.
Comparing Figure 6, the stressful events stretch from Q75 to Q87 in 1980–1989, whereas in 1990–1999
the events extend into the Q96 percentile. This shows that a combination of flow and temperature
should be taken into consideration when making management decisions or evaluating the quality of
aquatic habitat. For instance, managers can be reassured that withdrawing water during Q25 flows
will not be as harmful to fish as withdrawing during Q75 flows. During drought years, it may become
tempting to withdraw additional groundwater resources. However, the knowledge that groundwater
can help reduce the occurrence of stressful events to fish during low flows may influence a manager’s
choice. Because Cork Brook is upstream from the Scituate Reservoir, water resource management
decisions are especially applicable to this watershed.

Further analysis of 2-, 7- and 10-day moving averages at the lowest 25th percentile flow suggested
that the majority of high stream temperatures are occurring during the 2-day low flow conditions as
opposed to the 7-day and 10-day low flows (Figure 7). Such details can have important implications
for aquatic species. Brook trout have been observed to tolerate higher stream temperatures provided
their physical habitat remains stable [34]. If the co-occurrence of temperature and flow stresses last
longer, then physiological stresses to individual trout may become more apparent. The data simulated
from 1980 to 2009 provide a helpful baseline for comparing future projections and will help determine
if the resilience of local brook trout populations may become strained under future climate conditions.

Figure 7. The number of days per decade that stream temperatures exceeded the stress threshold of
21 ◦C during the 2-, 7- and 10-day moving averages at the lowest 25th flow percentile.

4. Conclusions and Future Work

Since the hydroclimatological model was shown to be more accurate, future research projects
should consider using the new component in similar watersheds throughout the region for both
historical and climate change assessments. This study found that the long-term historical stream
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temperature data recorded by the USGS gauge at Cork Brook were necessary for model calibration.
Therefore, scientists should have a reliable set of observed stream temperature data to calibrate and
validate the stream temperature output, especially if studying ecosystems that are particularly sensitive
to temperature related parameters. Other related future work may include applying the methodology
to other types of temperature-sensitive aquatic organisms such as certain macroinvertebrate species.
Macroinvertebrates form part of the base of the food chain, and fluctuations in their population
or distributions throughout a stream reach can impact higher trophic level species that prey on
these organisms.

Another consideration for future work is to limit the stressful event analysis to the spring and
summer months when brook trout are more sensitive to warmer stream temperatures. Also, a study
could be conducted to see if stressful events occur sequentially. This study took a wider approach by
examining how stream temperatures and streamflow vary throughout the entire year. This timeframe
was chosen for several reasons. First, since this is the only study of its kind within these watersheds,
we did not have enough information to say with certainty that no changes to stream temperature
or streamflow would occur during the fall and winter. In fact, some scientists predict that by the
end of the century Rhode Island will have a climate similar to that of Georgia [71], in which case
stream temperatures would almost certainly increase during the winter months. Second, while
stream temperatures and streamflow during the winter months are not as critical for brook trout
compared to the summer, winter conditions do effect embryo development. For instance, the length of
embryo incubation during the winter ranges from 28 to 45 days depending on the temperature of the
stream water [11]. Lastly, while this study focused on brook trout, our hope is that the methodology
can be applied to other types of aquatic species that may be sensitive to stream conditions during
other seasons.

The purpose of this study was to gain a better understanding of the historical conditions in
coldwater habitat using SWAT. We successfully showed that SWAT with the hydroclimatological
component is more accurate than the original SWAT model at this forested, baseflow driven watershed
in Rhode Island. Moreover, thermally stressful event identification is a functional approach to analyzing
model output. The data simulated from 1980 to 2009 provide a helpful baseline for comparing future
projections by combining two important indicators for the survival of coldwater species.
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Abstract: Climate studies have suggested that inland stream temperatures and average streamflows
will increase over the next century in New England, thereby putting aquatic species sustained
by coldwater habitats at risk. This study uses the Soil and Water Assessment Tool (SWAT) to
simulate historical streamflow and stream temperatures within three forested, baseflow-driven
watersheds in Rhode Island, USA followed by simulations of future climate scenarios for comparison.
Low greenhouse gas emission scenarios are based on the 2007 International Panel on Climate Change
Special Report on Emissions Scenarios (SRES) B1 scenario and the high emissions are based on the
SRES A1fi scenario. The output data are analyzed to identify daily occurrences where brook trout
(Salvelinus fontinalis) are exposed to stressful events, defined herein as any day where Q25 or Q75
flows occur simultaneously with stream temperatures exceeding 21 ◦C. Results indicate that under
both high- and low-emission greenhouse gas scenarios, coldwater fish species such as brook trout
will be increasingly exposed to stressful events. The percent chance of stressful event occurrence
increased by an average of 6.5% under low-emission scenarios and by 14.2% under high-emission
scenarios relative to the historical simulations.

Keywords: SWAT model; coldwater habitat; stream temperature; water quality; hydrology;
climate change

1. Introduction

Concerns have arisen regarding the impact of warming stream temperatures on brook trout
(Salvelinus fontinalis) habitat due to climate change. Over the next century, freshwater ecosystems
in the New England region of the United States are expected to experience a continued increase in
mean daily stream temperatures and an increase in the frequency and magnitude of extreme high flow
events due to warmer, wetter winters, earlier spring snowmelt, and drier summers [1–9]. As the spatial
and temporal variability of stream temperatures play a primary role in distributions, interactions,
behavior, and persistence of coldwater fish species [7,10–16], it has become increasingly important
to understand what challenges freshwater fisheries managers will face because of climate change.
Analytical models such as the Soil and Water Assessment Tool (SWAT) [17] can be used to estimate the
effects of climate change on stream temperatures and aquatic species [5,18–24]. Several studies have
used global climatic model output or temperature and precipitation variations to drive hydrologic and
stream temperature models for the United States [25] and worldwide [8]. This study uses both SWAT
and global climate data downscaled for New England [3,4,26–28] to simulate the effects of increasing
air temperatures and changes to regional rainfall patterns on coldwater fish habitats in southern New
England watersheds.

The SWAT model was used to generate historical and future stream temperature and streamflow
data, followed by an assessment of the frequency of “stressful events” affecting the Rhode Island
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native brook trout. Brook trout, a coldwater salmonid, is a species indicative of high water quality
and is also of interest due to recent habitat and population restoration efforts by local environmental
groups and government agencies [29,30]. This fish typically spawns in the fall and lays eggs in redds
(nests) deposited in gravel substrate. Eggs develop over the winter months and hatch from late
winter to early spring [11,12,31]. The life cycle of brook trout, however, is heavily influenced by the
degree and timing of temperature changes. High stream temperatures cause physical stress including
slowed metabolism and decreased growth rate, adverse effects on critical life-cycle stages such as
spawning or migration triggers, and in extreme cases, mortality [7,10,32–35]. Distribution is also
affected as coldwater fish actively avoid water temperatures that exceed their preferred temperature
by 2–5 ◦C [36,37]. Studies have shown that optimal brook trout water temperatures are below 20 ◦C,
symptoms of physiological stress develop at approximately 21 ◦C [33] and temperatures above 24 ◦C
have been known to cause mortality in this species [12].

Flow regime is another critical factor in maintaining the continuity of aquatic habitats throughout
a stream network [35,38–43]. While temperature is often cited as the limiting factor for brook trout,
the flow regime has equal importance [44]. Alteration of the flow regime can result in changes
in the geomorphology of the stream and the distribution of food-producing areas as riffles and
pools shift. Changes in the distribution of riffles and pools can cause a decrease in food-producing
areas, reduced macroinvertebrate abundance and more limited access to spawning sites or thermal
refugia [12,31,45,46]. Reductions in flow have a negative effect on the physical condition of both adult
brook trout and young-of-year. Nuhfer et al. found a significant decline in spring-to-fall growth of
brook trout when 75% flow reductions occurred [45]. The consequences of lower body mass are not
always immediately apparent. Adults may suffer higher mortality during the winter months following
the further depletion of body mass due to the rigors of spawning. Poor fitness of spawning adults
may result in lower quality or abundance of eggs and a decline in hatching during the late winter to
early spring [31]. Velocity of water through the stream reach can affect sediment and scouring of the
stream bed and banks, reducing the availability of nest sites or, in the event of low flows, cause water
temperatures to rise.

To address the importance of both stream temperature and flow regime, “stressful events” are
defined herein as days where either high or low flow occurs simultaneously with stream temperatures
exceeding 21 ◦C. For the purpose of this study, high and low flows will be considered as the values
exceeding the 25-percent and 75-percent percentiles (Q25, Q75) for both historical and future simulated
SWAT model output. Two Wood-Pawcatuck River headwater subbasins, the Queen River and
the Beaver River, were selected as study sites due to their pristine, undisturbed aquatic habitat.
A third pristine watershed, Cork Brook, was chosen as a study site because of its association with the
Scituate Reservoir, which supplies drinking water to the city of Providence, Rhode Island. This study
incorporated two climate change scenarios for future stream conditions at the three project sites.
Low greenhouse gas emission scenarios are based on the 2007 International Panel on Climate Change
Special Report on Emissions Scenarios (SRES) B1 scenario and the high-emission scenarios are based
on the SRES A1fi scenario. Model output was analyzed over four time periods: historical (1980–2009),
short term (2010–2039), medium term (2040–2067) and long term (2070–2099) to understand how
coldwater habitat in these watersheds will react to climate change over the next century. Results provide
a site-specific approach for watershed managers trying to determine the types and distribution of
future habitat risk to coldwater species. As the demands for water quality and quantity increase
for wildlife and human consumption over the next century, new evaluation techniques will help
anticipate and solve unprecedented challenges. In the Wood-Pawcatuck and Cork Brook watersheds,
the anticipated challenges may include an increase in stressful conditions.
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2. Materials and Methods

2.1. Study Sites

Three watersheds were selected to achieve the objective: Queen River, Beaver River and Cork
Brook. The Queen and Beaver watersheds lie adjacent to each other within the Wood-Pawcatuck
watershed in southern Rhode Island (Figure 1). In its entirety, the 800 km2 watershed is comprised
of seven drainage basins and two major rivers. The upper reaches of the Wood-Pawcatuck
watershed trend towards undisturbed rural environments. The watershed becomes increasingly
urban and impaired towards the downstream reaches before emptying into Little Narragansett Bay.
This watershed supports native brook trout populations, high-quality wildlife habitat and a species
diversity that is unique for a watershed of this scale in southern New England [30,47–56]. The effect of
climate change on stream water quality is a serious concern in Wood-Pawcatuck watershed and many
non-profit organizations, recreational fishing groups and government agencies have taken interest in
the long-term survival of local brook trout.

The Beaver River and the Queen River watersheds cover areas of approximately 23 and 52 km2,
respectively. Many similarities exist between the two subbasins. Land use is primarily forest although
wetlands and agriculture make up a small portion of each watershed. Both are HUC 12 river
headwaters to the larger Pawcatuck river and each watershed hosts nature preserves owned and
managed by The Nature Conservancy [54,57]. Continuous and permanent United States Geological
Survey (USGS) gauges have been recording flow data for several decades within each river [58].
The Beaver River USGS gauge (number 01117468) is located near Usquepaug, RI where it intersects
State Highway 138, or approximately 5.8 km upstream from its confluence with the Pawcatuck
River. The gauge has been in continual operation since 1974. Mean daily discharges at the Beaver
River gauge are typically lowest in September (0.02 m3/s) and highest in April (1.04 m3/s), with
annual mean daily discharge of 0.59 m3/s. USGS gauge station (number 01117370) is located on
the intersection between the Queen River and Liberty Road, and data has been recording since 1998.
Discharges at the Queen River gauge are higher, historically lowest in August (0.039 m3/s) and
highest in March (2.08 m3/s) with mean daily discharges of approximately 1.06 m3/s. A separate
analysis of groundwater contributions to stream discharge was conducted using an automated method
for estimating baseflow [59]. A noteworthy difference between the two watersheds is the baseflow
contributions to each river, 93% within the Beaver River and 78% for the Queen River.

The third study site is Cork Brook in Scituate, Rhode Island. This small forested watershed is
a tributary to the Scituate Reservoir, which is part of the larger Pawtuxet River basin beginning in
north-central Rhode Island and eventually flowing into Narragansett Bay. The Scituate Reservoir
is the largest open body of water in the state and is the main drinking water source to the city
of Providence. Cork Brook is approximately four km long and covers an area of approximately
seven km2. Human disturbance within the watershed is minimal and most of the land use within
the watershed is undeveloped forest and brushland, although a portion (14%) of land use within the
watershed is classified as medium density residential. USGS station number 01115280 is located on
Rockland Road near Clayville, RI, which has been continuously recording streamflow at the site since
2008 [58]. A primary difference between the Cork Brook and Wood-Pawcatuck watersheds is size
and the stream discharge amounts. The mean daily discharges at the gauge are historically lowest in
September (0.025 m3/s), highest in March (0.27 m3/s) and annually average approximately 0.11 m3/s.
Average daily stream temperature is estimated at 7.8 ◦C since 2001. An important similarity to the
Beaver and Queen watersheds is groundwater contribution; baseflow contributes the majority (60%)
of stream discharges.

36

Bo
ok
s

M
DP
I



Water 2017, 9, 732

Figure 1. The study sites include the Beaver River, Queen River and Cork Brook watersheds in
Rhode Island, USA.

2.2. Model Setup

This study uses the hydrologic and water quality model SWAT for simulating streamflow and
stream temperature. SWAT is a well-established, physically-based, semi-distributed hydrologic model
created by the United States Department of Agriculture (USDA) in 1998 [17,60–62]. Surface water
runoff and infiltration volumes are estimated using the modified soil conservation service (SCS) 1984
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curve number method, and potential evapotranspiration is estimated using the Penman–Monteith
method [63,64]. Stream temperature is estimated from air temperature based on a linear regression
method developed by Stefan and Prued’homme [17,65]:

Tw(t) = 5.0 + 0.75Tair(t − δ) (1)

where (TW) represents average daily water temperature (◦C), (Tair) represents and average daily air
temperatures (◦C). Time (t) and lag (δ) are in days. Water temperatures follow air temperatures closely,
the time lag for a shallow stream is expected to be on the order of a few hours due to the thermal
inertia of the water [65]. The average relationship indicates that when the daily air temperature is
close to 0 ◦C then the water will be approximately 5 ◦C warmer. When the daily air temperature is
below 20 ◦C the water temperature is likely to be greater than the air temperature [65]. The Rhode
Island Geographic Information System (RIGIS) database is the main source for the spatial data used
as model inputs [66]. RIGIS is a public database managed by both the RI government and private
organizations. Typical SWAT model inputs in ArcSWAT [67] include topography, soil characteristics,
land cover or land use and meteorological data. Information collected for this study includes the
following: 2011 Land use/land cover data derived from statewide 10-m resolution National Land
Cover Data imagery [68]; soil characteristics collected from a geo-referenced digital soil map from
Natural Resource Conservation Service (NRCS) Soil Survey Geographic database (SSURGO) [69];
and topography information extracted from USGS 7.5-min digital elevation models (DEMs) with a
10-m resolution. Regional meteorological data from 1979 to 2014 including long term precipitation and
temperature statistics were downloaded from Texas A&M University’s global weather data site [70,71].

Based on the spatial data provided, SWAT delineated the watersheds into HRU units, which
are represented as a percentage of the subbasin area. The user sets a soil, land and slope threshold
based on the level of heterogeneity within a watershed and when a parcel of land meets or exceed all
thresholds a HRU is created. The Beaver River basin is generally homogenous and was delineated into
five subbasins and 12 HRUs using land, soil and slope thresholds of 20%. The Queen River has more
variability in the type and distribution of land use throughout the watershed. This watershed was
delineated into eight subbasins and 17 HRUs using land, soil and slope thresholds of 25%, 20% and
20%. Cork Brook was delineated in SWAT to create four subbasins and 27 HRUs using land, soil and
slope thresholds of 20%, 10% and 5%. The soil types and elevation changes are variable throughout
the Cork Brook watershed and as such these thresholds were reduced to capture basin heterogeneity.

2.3. Model Calibration & Validation

The SWAT Calibration and Uncertainty Program (SWAT-CUP), Sequential Uncertainty Fitting
Version 2 (SUFI-2) [72,73], was used to conduct sensitivity analysis, calibration and model validation
on daily stream discharge from the output hydrograph. Performance was measured using coefficient
of determination and Nash-Sutcliffe Efficiency (NSE) and percent bias (PBIAS). Coefficient of
determination (R2) identifies the degree of collinearity between simulated and measured data and NSE
was used as an indicator of acceptable model performance. R2 values range from 0 to 1 with a larger R2

value indicating less error variance. NSE is a normalized statistic that determines the relative magnitude
of the residual variance compared to the measured data variance [74]. NSE ranges from −∞ to 1; a value
at or above 0.50 generally indicates satisfactory model performance [60,75–77]. This evaluation statistic
is a commonly used objective function for reflecting the overall fit of a hydrograph. Percent bias is
the relative percentage difference between the averaged modeled and measured data time series over
(n) time steps with the objective being to minimize the value [78]. The model was validated by using
calibrated parameters and performance checked using NSE, R2 and percent bias.

Each model was run for the entire period of precipitation and rainfall data availability (1979–2014)
and then calibrated for daily streamflow in SWAT-CUP via SUFI-2 using a portion of the existing
observed data at each associated USGS gauge. The Beaver River and Queen River watersheds were
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calibrated over the same five-year time span from 2000 to 2005 due to data availability and avoidance
of natural streamflow anomalies in 2010 and 2006. Validation occurred from 2007 to 2008 in both the
Beaver and Queen River watersheds. Meanwhile, the Cork Brook model was calibrated for streamflow
over a shorter two-year time-span from 2009 to 2010 due to a limited availability in observed discharge
data (2008–present). The Cork Brook model was validated for the year 2012 because the 2011 data
showed evidence of discharge anomalies and 2013 weather data were incomplete. The modeled
hydrographs versus the observed hydrographs are shown in Figures 2–4 and the statistical results of
calibration and validation are shown in Tables 1 and 2.

(a)

(b)

Figure 2. (a) Hydrograph and (b) scatterplot of observed versus SWAT modeled streamflow at Beaver
River USGS gauge 01117468 during calibration years 2000–2005.

(a)

Figure 3. Cont.
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(b)

Figure 3. (a) Hydrograph and (b) scatterplot of observed versus SWAT modeled streamflow at Queen
River USGS gauge 01117370 during calibration years 2000–2005.

(a)

(b)

Figure 4. (a) Hydrograph and (b) scatterplot of observed versus SWAT modeled streamflow at Cork
Brook USGS gauge 01115280 during calibration years 2009–2010.

Table 1. Statistical results of daily streamflow calibration produced by SWAT-CUP.

Watershed R2 NSE PBIAS

Beaver River 0.64 0.57 0.13
Queen River 0.58 0.58 0.002
Cork Brook 0.70 0.71 −0.01
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Table 2. Statistical results of daily streamflow validation produced by SWAT-CUP.

Streamflow R2 NSE PBIAS

Beaver River 0.66 0.60 0.13
Queen River 0.60 0.59 0.003
Cork Brook 0.54 0.50 0.03

The most sensitive parameters in daily streamflow calibration are summarized in Table 3 and were
primarily related to groundwater and soil characteristics. The alpha-BF (baseflow) recession value was
one of the most effective parameters for all three models and the values were all very small. The alpha
baseflow factor is a recession coefficient derived from the properties of the aquifer contributing to
baseflow; large alpha factors signify steep recession indicative of rapid drainage and minimal storage
whereas low alpha values suggest a slow response to drainage [59,79]. Alpha-bnk (bankflow) was
another sensitive parameter, which is simulated with a recession curve like that used for groundwater.
For this parameter, a high value at all three sites indicates a flat recession curve, which is similar to
the alpha-bf value that specifies a slow response to drainage. The threshold depth of groundwater in
the shallow aquifer (GWQMN) is small and very similar between all three models, less than a meter
within each. This is the threshold water level in the shallow aquifer for groundwater contribution to
the main channel to occur. Since groundwater accounts for the majority of stream discharge at all sites
the sensitivity of soil and groundwater parameters was expected.

Table 3. Range of values for ten most sensitive parameters during daily streamflow calibration using
SWAT-CUP for (a) Beaver River, (b) Queen River and (c) Cork Brook. Parameters are listed by name
and SWAT input file type, definition and the range of values that were selected for the model.

Parameter Definition Value Range Units

(a) Beaver River parameters for daily streamflow calibration.

CN2.mgt SCS runoff curve number −60–75 -
ALPHA_BF.gw Baseflow alpha factor 0.0–0.10 1/Days
GW_DELAY.gw Groundwater delay 0.0–10 Days

TIMP.bsn Snowpack temperature lag factor −1.5–2.0 -
ALPHA_BNK.rte Baseflow alpha factor for bank storage 0.50–1.0 Days

OV_N.hru Manning’s (n) value for overland flow 1.0–30 -
SLSUBBSN.hru Average slope length 10–50 m

(b) Queen River parameters for daily streamflow calibration.

CN2.mgt SCS runoff curve number 60–75 -
ALPHA_BF.gw Baseflow alpha factor 0.0–0.10 1/Days
GW_REVAP.gw Groundwater revap coefficient 0.02–0.15 Days
GW_DELAY.gw Groundwater delay 0.0–10.0 Days

GWQMN.gw Depth of water in shallow aquifer for return flow 150–1000 mm
TIMP.bsn Snowpack temperature lag factor 0.0–1.0 -

ALPHA_BNK Baseflow alpha factor for bank storage 0.5–1.0 Days

(c) Cork Brook parameters for daily streamflow calibration.

CN2.mgt SCS runoff curve number −60–75 -
ALPHA_BF.gw Baseflow alpha factor 0.0–0.10 1/Days
GW_DELAY.gw Groundwater delay 0.0–7.0 Days

GWQMN.gw Depth of water in shallow aquifer for return flow 200–1000 mm
SMTMP.bsn Snowmelt base temperature −0.5–2.0 ◦C
ESCO.hru Soil evaporation compensation factor 0.15–0.65 -
EPCO.hru Plant uptake compensation factor 0.15–0.65 -

SLSOIL.hru Slope length for lateral subsurface flow 0.0–150.0 m
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2.4. Climate Change Variables

The anticipated change in average air temperature and precipitation over short term (2010–2039),
medium term (2040–2069) and long term (2070–2099) time-spans for low and high greenhouse
gas (GHG) scenarios were incorporated and compared to the historical period (1980–2009).
Low greenhouse gas emission scenarios are based on the 2007 International Panel on Climate Change
SRES B1 scenario and the high emissions are based on the SRES A1fi scenario. The B1 scenario is
a situation where economic growth incorporates clean, ecologically friendly technology and GHG
emissions levels return to pre-industrial concentrations, estimated at CO2 levels of 300 parts per million
(ppm). The high-emission scenario (A1fi) is a scenario based on fossil fuel intensive technologies for
worldwide economic growth resulting in CO2 levels reaching 940 ppm.

Climate variables in the calibrated SWAT subbasin input files (.sub) were edited to simulate the
future scenarios. The default carbon dioxide (CO2) concentration, relative rainfall adjustment and
temperature increases (◦C) are 330 parts per million (ppm), zero and zero respectively. The default
values within all .sub files for each model were replaced with climate change variables. The variables
used in this study are based on values published by Wake et al. at the University of New
Hampshire [26–28], which were generated from four global climatic models downscaled to the New
England region. Two of the published climate grids for Rhode Island were adopted and modified for
this study and four different CO2 levels were used. SWAT output for all low-emission scenarios is
based on 330 ppm (the lower limit in the SWAT program code) and the RI climate grid change factors
in Table 4a,c. For the high-emission alternatives, the short, medium and long-term SWAT climate
change simulations were run with CO2 levels at 540, 740 and 940 ppm, respectively, in addition to the
RI climate grid change factors in Table 4b,d.

Table 4. Climate change variables adopted and modified from Wake et al., 2014 [27] for (a,b) Kingston,
RI (Beaver River and Queen River) and (c,d) North Foster, RI (Cork Brook). Low emissions (a,c) based
on SRES A1fi scenario and high emissions (b,c) based on SRES B1 scenario. Temperatures (Temp.)
listed as degree (◦C) increase, averaged from the published minimum and maximum temperatures.
Precipitation (Precip.) values listed as a relative change computed based on the published values.

Indicator January February March April May June July August September October November December

(a) Low Emissions–Kingston, RI

Short-term Temp. 0.97 0.97 1.42 1.42 1.42 0.83 0.83 0.83 0.36 0.36 0.36 0.97
Med-term Temp. 1.50 1.50 2.47 2.47 2.47 1.58 1.58 1.58 0.56 0.56 0.56 1.50
Long-term Temp. 2.17 2.17 3.25 3.25 3.25 1.97 1.97 1.97 0.83 0.83 0.83 2.17
Short-term Precip. 8.76 8.76 9.80 9.80 9.80 17.9 17.9 17.9 5.59 5.59 5.59 8.76
Med-term Precip. 14.3 14.3 10.3 10.3 10.3 17.9 17.9 17.9 6.90 6.90 6.90 14.3
Long-term Precip. 14.9 14.9 16.3 16.3 16.3 18.6 18.6 18.6 10.6 10.6 10.6 14.9

(b) High Emissions–Kingston, RI

Short-term Temp. 0.97 0.97 0.83 0.83 0.83 1.11 1.11 1.11 1.00 1.00 1.00 0.97
Med-term Temp. 2.22 2.22 2.36 2.36 2.36 3.06 3.06 3.06 3.00 3.00 3.00 2.22
Long-term Temp. 3.83 3.83 4.28 4.28 4.28 5.22 5.22 5.22 4.92 4.92 4.92 3.83
Short-term Precip. 8.09 8.09 14.2 14.2 14.2 12.5 12.5 12.5 4.93 4.93 4.93 8.09
Med-term Precip. 10.0 10.0 15.8 15.8 15.8 12.5 12.5 12.5 6.2 6.2 6.2 10.0
Long-term Precip. 22.3 22.3 22.0 22.0 22.0 10.2 10.2 10.2 8.16 8.16 8.16 22.3

(c) Low Emissions–North Foster, RI

Short-term Temp. 1.00 1.00 1.42 1.42 1.42 0.97 0.97 0.97 0.39 0.39 0.39 1.00
Med-term Temp. 1.58 1.58 2.53 2.53 2.53 1.81 1.81 1.81 0.58 0.58 0.58 2.22
Long-term Temp. 2.22 2.22 3.33 3.33 3.33 2.25 2.25 2.25 0.81 0.81 0.81 2.22
Short-term Precip. 10.6 10.6 11.3 11.3 11.3 16.9 16.9 16.9 6.62 6.62 6.62 10.6
Med-term Precip. 12.9 12.9 11.9 11.9 11.9 17.4 17.4 17.4 10.1 10.1 10.1 12.9
Long-term Precip. 16.2 16.2 15.6 15.6 15.6 17.4 17.4 17.4 11.8 11.8 11.8 16.2

(d) High Emissions–North Foster, RI

Short-term Temp. 0.97 0.97 0.89 0.89 0.89 1.22 1.22 1.22 0.89 0.89 0.89 0.97
Med-term Temp. 2.22 2.22 2.50 2.50 2.50 3.28 3.28 3.28 2.78 2.78 2.78 2.22
Long-term Temp. 3.86 3.86 4.47 4.47 4.47 5.50 5.50 5.50 4.64 4.64 4.64 3.86
Short-term Precip. 6.29 6.29 10.8 10.8 10.8 15.7 15.7 15.7 2.08 2.08 2.08 6.29
Med-term Precip. 8.84 8.84 11.3 11.3 11.3 18.0 18.0 18.0 2.76 2.76 2.76 8.84
Long-term Precip. 17.7 17.7 20.0 20.0 20.0 17.4 17.4 17.4 5.37 5.37 5.37 17.7
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2.5. Stressful Event Identification

Upon model calibration, validation and incorporation of climate change variables, output data
for both model versions were processed to predict the occurrence of stressful conditions in all three
watersheds from 1980 to 2099. As previously discussed, a stressful event for this study is defined
as any day where both temperature and flow extremes occur. This study used the Q25 and Q75
flow exceedance percentiles as indicators because of their common use [80–82] and ecohydrological
importance to brook trout. The most critical period for the species is typically the lowest flows of
late summer to winter and a base flow of <25% is considered poor for maintaining quality trout
habitat [12,44]. A Q25 exceedance characterizes the highest 25% of all daily flow rates and Q75
represents the lowest 25% of all daily flow rates [82]. For the stressful event analysis, the exceedance
probability and average daily stream temperature for each date were identified. If the day fell into the
Q25 or Q75 percentile, and if the stream temperature was greater than 21 ◦C, then the day was tagged
as being a thermally stressful event.

3. Results and Discussion

3.1. Historical Conditions

The modeled average daily stream temperature was nearly the same at all three sites. The average
daily discharge, however, was different at all three sites and corresponded to watershed area, with the
highest discharge within the Queen River (largest watershed) and the lowest discharge within Cork
Brook (smallest watershed) (Table 5). This is in agreement with the observed data, the Queen River
had the highest discharge followed by the Beaver River and Cork Brook. The calibrated model for each
watershed was first run over the entire 30-year period (1980–2009) (Table 5) to understand the percent
chance that a stressful event will occur on a given day. Of the three study sites, the Queen River had
the highest percent chance that a stressful event would occur on any given day and the Beaver River
had the lowest percent chance (Table 6).

Table 5. The average stream temperature simulated by SWAT 1980–2009.

Watershed Average Daily Stream Temp. (◦C) Average Daily Discharge (m3/s)

Beaver River 13.0 0.38
Queen River 13.0 1.0
Cork Brook 12.5 0.081

Table 6. Stressful event analysis of SWAT simulation for the three study sites.

Date Watershed Indicator Any Type of Stress Stream Temp. > 21 ◦C Q25 or Q75 Flow Stressful Event

1980–2009

Beaver River
Days 6416 959 5457 511

% Chance 58.6% 8.8% 49.8% 4.7%

Queen River
Days 6506 959 5547 700

% Chance 59.4% 8.8% 50.6% 5.5%

Cork Brook
Days 6875 1409 5466 551

% Chance 62.7% 12.9% 49.9% 4.4%

The frequency of stress events in the three watersheds are similar (Table 6). The chances of any
type of stress occurring within the watersheds vary by just 1.1%. One difference between Cork Brook
and the Pawcatuck watersheds is the number of days with stream temperatures greater than 21 ◦C.
The Beaver River and the Queen River have the same number of days with temperature stress because
the air temperature for each model was collected from the same weather station. The number of
days with stream temperature greater than 21 ◦C at Cork Brook is 46% higher than the Pawcatuck
watersheds. This may be attributed to the low discharge levels at Cork Brook (0.081 m3/s) because
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lower, slower flows are exposed to air longer causing them to increase or decrease in temperature more
readily. This interpretation is illustrated in Figures 5–7, which show the distribution of high stream
temperatures within the Q25 and Q75 percentiles for each watershed. For all watersheds, a greater
number of stressful events occurred during periods of low flow rather than periods of high flow.

Figure 5. Beaver River simulated historical flow duration curve and stream temperatures.
The secondary y-axis begins at 21 ◦C and any temperatures that are not above the stressful threshold
are not shown in the figure. The stream temperatures in the Q25–Q75 range are omitted from the figure.

Figure 6. Queen River simulated historical flow duration curve and stream temperatures.
The secondary y-axis begins at 21 ◦C and any temperatures that are not above the stressful threshold
are not shown in the figure. The stream temperatures in the Q25–Q75 range are omitted from the figure.

Figure 7. Cork Brook simulated historical flow duration curve and stream temperatures. The secondary
y-axis begins at 21 ◦C and any temperatures that are not above the stressful threshold are not shown in
the figure. The stream temperatures in the Q25–Q75 range are omitted from the figure.
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Lastly, it is interesting to note the occurrences of stressful events within each watershed.
Even though the Queen River has the same number of temperature stress days as the Beaver River, a
difference of only 90 flow stress days increased the percent chance of stressful event occurrences from
4.7% in the Beaver River to 5.5% chance in the Queen River. This shows that a combination of flow and
temperature should be taken into consideration when making management decisions or evaluating the
quality of aquatic habitat. Such details can have important implications for aquatic species. Brook trout
have been observed to tolerate higher stream temperatures provided their physical habitat remains
stable [45]. If the co-occurrence of temperature and flow stresses increases, then physiological stresses
to individual trout may become more apparent. The data simulated from 1980 to 2009 provide a
baseline for comparing future projections, and will help determine if the resilience of local brook trout
populations may become strained under future climate change conditions by combining two important
indicators for survival.

3.2. Future Projections

New England is predicted to experience a warmer and wetter climate due to global warming [3].
Since 1970, Rhode Island specifically has had the average maximum and minimum air temperatures
increase by 1.2 ◦C annually and by 2020–2099 it is expected that there will be hotter summers
with 12–44 more days above 50 ◦C [26]. Also since 1970, the frequency and magnitude of extreme
precipitation events has increased and annual precipitation has increased 6–11%. By 2020–2099, annual
precipitation averages will increase by 18–20% and a two-fold increase in extreme precipitation events
is expected to occur. A decrease in snow cover is anticipated and Rhode Island may have 20–32 fewer
snow covered days [26].

3.2.1. Stream Discharge and Stream Temperature

Within the Beaver and Queen Rivers the simulated stream discharge change was much greater
for high CO2 emission scenarios 2010–2099 than for low CO2 emission scenarios, a change of 3.4 ◦C
as opposed to 1.6 ◦C, respectively. Discharges between the two Wood-Pawcatuck subbasins were
different and a greater change was observed in the Beaver River subbasin. In the Beaver River,
under the low-emission scenario 2010–2099 the discharges increased by 23% related to historical
discharges and under the high-emission scenario increased by 71%. In the Queen River, under the
low-emission scenario 2010–2099 the discharges increased by 19% of historical discharge levels and
under the high-emission scenario increased by 49%. This is interesting because groundwater inputs
are greater in the Beaver River (93%) than in the Queen River (78%). In the New England region,
baseflow contributions have shown an upward trend likely linked to increasing precipitation [83] and
climate change may be impacting storage by increasing the volume of water held in groundwater
or as soil moisture within the basin. When storage is exceeded, the upper streamflow quantiles may
be affected [84]. Brook trout can benefit from increased baseflow. Groundwater inflow can cool
stream water [85], especially when flows are lower in the summer months [86]. Brook trout rely on
groundwater seeps as refugia from increased stream temperatures and to keep developing embryos
submerged in cool water [12].

An increase in stream temperature and streamflow was also seen in Cork Brook. Stream temperature
increased by 1.6 ◦C between 2010 and 2099 under the low-emission scenario and 3.5 ◦C under the
high-emission scenario, very similar to the degree changes in the Pawcatuck watersheds. Between 2010
and 2099, discharges increased by 20% under the low-emission scenario and 60% under the high-emission
scenario. While not exact, the changes in discharge at Cork Brook for the low-emission scenario are
more similar to the changes within the Queen River based on percent increase although under the
high-emission scenario Cork Brook is the median between the Beaver River and Queen River. Overall, the
SWAT streamflow projections in the three watersheds align well with climate change predictions for
New England under the low-emission simulations and exceed predictions under the high-emission
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simulations [26]. The modeled average daily stream temperature and average daily stream discharge
increased at all sites for both low and high CO2 emission scenarios (Table 7).

Table 7. Average stream temperature and streamflow simulated with climate change variables for
(a) Beaver River, (b) Queen River and (c) Cork Brook. High and low CO2 emission scenarios projected
for short (2010–2039), medium (2040–2069) and long-term (2070–2099). Unchanged historical results
included for reference.

Scenario Date Average Daily Stream Temp. (◦C) Average Daily Discharge (m3/s)

(a)

Beaver River Historical 1980–2009 13.0 0.38

Beaver River Low Emissions
2010–2039 13.6 0.44
2040–2069 14.2 0.45
2070–2099 14.6 0.47

Beaver River High Emissions
2010–2039 13.7 0.49
2040–2069 15.0 0.53
2070–2099 16.4 0.65

(b)

Queen River Historical 1980–2009 13.0 1.0

Queen River Low Emissions
2010–2039 13.6 1.14
2040–2069 14.2 1.16
2070–2099 14.6 1.19

Queen River High Emissions
2010–2039 13.7 1.20
2040–2069 15.0 1.27
2070–2099 16.4 1.49

(c)

Cork Brook Historical 1980–2009 12.5 0.081

Cork Brook Low Emissions
2010–2039 13.2 0.09
2040–2069 13.25 0.10
2070–2099 14.11 0.10

Cork Brook High Emissions
2010–2039 13.25 0.10
2040–2069 14.52 0.10
2070–2099 15.97 0.13

3.2.2. Flow Regime

The flow duration curves for each watershed were compared to historical streamflow (1980–2009)
and future long term (2070–0299) scenarios to assess the flow conditions at the end of the century
(Figures 8–10). The curve for each watershed under the low emission scenarios changed very little
in shape even though the stream discharges were increased. Under the high-emissions scenario the
magnitude of discharges also increases but in the Beaver River and Cork Brook, the shape of the rating
curve became flatter in the Q50–Q75 percentiles. A flat curve generally indicates that flows are sustained
throughout the year and can be caused by factors such as groundwater contributions to the stream reach.

As water temperatures increase due to global warming, brook trout may benefit from sustained
flows that will prevent stream temperatures from rising further and help ensure that downstream
habitat remains connected to headwaters. From this perspective, the Beaver River and Cork Brook
may provide better future trout habitat in comparison to the Queen River, which saw little change to
the shape of the rating curve. On the other hand, a sustained increase in flow magnitude can change
the geomorphology and may not be beneficial for aquatic species during the spawning season when
flows are historically lower [41]. An increase in stream discharges during the low flow season may
put redds (nests) at risk of destruction from sedimentation or sheer velocity. Changes in streamflow
magnitude may also increase turbidity or redistribute riffle and pool habitat throughout the stream
reach. This may decrease the availability of suitable habitat as brook trout prefer stream reaches with
an approximate 1:1 pool-riffle [12]). Pool and riffle redistribution can also affect the type and quantity
of local macroinvertebrate populations. Since warming temperatures will have an impact on trout
body condition as fish enter the winter months, the available food supply can become an even more
critical factor as the climate changes.
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Figure 8. Beaver River flow duration curves simulated for high and low CO2 emission scenarios by the
end of the long-term (2070–2099). Unchanged historical results included for reference.

Figure 9. Queen River flow duration curves simulated for high and low CO2 emission scenarios by the
end of the long-term (2070–2099). Unchanged historical results included for reference.

Figure 10. Cork Brook flow duration curves simulated for high and low CO2 emission scenarios by the
end of the long-term (2070–2099). Unchanged historical results included for reference.
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3.2.3. Timing of Stream Temperatures

The model predicted that between 1980 and 2099 stream temperatures in all watersheds will
increase by 1.6 ◦C under the low-emission scenario or 3.4 ◦C under the high-emission scenarios
(Table 7). Further analysis was conducted to assess if the temporal distribution of stream temperatures
has changed throughout the year. In the Beaver and Queen River watersheds no change to the timing
of high stream temperatures was observed and high temperatures continued to occur primarily in
July–September (Figure 11a). In the Cork Brook watershed, however, the model predicted that the
occurrence of high stream temperatures will increase and will occur as early as April by the end of the
century under both high- and low-emission scenarios (Figure 11b). In all watersheds, the number of
days with stressful temperatures during the low-emission scenario increased only slightly compared
to historical observations. The number of occurrences per month increased under the high-emission
scenario for all watersheds compared to historical simulations.

(a) (b)

Figure 11. The number of days per month that stream temperatures exceeded the stress threshold in
1980, 2099 under low CO2 emissions and 2099 under high CO2 emissions in (a) the Beaver and Queen
Rivers which had the same weather station and (b) Cork Brook.

Stream temperatures reaching the stressful threshold sooner in the year will have implications for
those coldwater species in Cork Brook. A shift in the timing of high stream temperatures can influence
the development of both young-of-year and adult individuals. Embryos develop over winter and the
length of incubation is temperature dependent; 45 days for development at 10 ◦C, 165 days at 2.8 ◦C
and 28 days at 14.8 ◦C [12]. Higher temperatures earlier in the spring will mean that fish experience
physiological stress sooner and may not be able to survive until the spawning period in late fall when
stress will be relieved by cooler temperatures. Additionally, because brook trout avoid warmer water
and are rarely found in streams with 60 days mean temperatures above 20 ◦C [7,33], changes to the
temporal distribution of stream temperatures will likely have an effect on the spatial distribution of
trout [7,10–16].

3.2.4. Stressful Event Analysis

The results of the stressful event analysis are summarized in Table 8 over 30-year increments.
There are few notable differences between the three watersheds when the data were assessed over
these 30-year increments. An analysis in 10-year increments, however, yielded greatly different results
(Appendix A). Of the three sites between 1980 and 2099, the Queen River watershed had the greatest
(i.e. maximum) number of stressful days and percent chance of an event occurring under both low CO2

emissions (7 of 12 decades) and high CO2 emissions (8 of 12 decades). Under low-emission scenarios,
the Beaver River had the maximum count just once and under the high-emission scenario the Cork
Brook watershed had the maximum count once. Under the low-emission scenario, the difference in
percent chance of a stressful event occurring from 1980–1989 compared to 2090–2099 was calculated as
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4.6% in the Beaver River, 6.7% in the Queen River and 8.4% in Cork Brook. Under the high-emission
scenario, the difference in percent chance of a stressful event occurring from 1980–1989 compared to
2090–2099 is 13.4% in the Beaver River, 14.8% in the Queen River and 14.3% in Cork Brook

Table 8. Percent chance of a stressful event occurring under future climate scenarios. Results for each
watershed by 30-year increments. High and low CO2 emission scenarios projected for short (2010–2039),
medium (2040–2069) and long-term (2070–2099). Unchanged historical results included for reference.

Date Emission Scenario Unit Beaver Queen Cork

1980–2009
Historical

% Chance
4.7 5.5 4.4

Historical 4.7 5.5 4.4

2010–2039
Low

% Chance
6.2 6.9 6.5

High 7.2 7.9 7.2

2040–2069
Low

% Chance
7.9 8.5 7.1

High 12.4 13.1 11.3

2079–2099
Low

% Chance
9.0 9.8 8.6

High 16.1 16.8 15.2

The Beaver River has a lower change in stressful event chance than the other watersheds for both
low-emission and high-emission climate change scenarios. This may be because it has the greatest
percent of groundwater contributions and streams that are groundwater fed receive inputs that are
less exposed to ambient air temperatures. The benefits of groundwater inputs are greater under
the low-emission scenario and less effective under the high-emission scenarios. For instance, the
watershed with the least amount of baseflow (Cork Brook) has a change in percent chance that is more
than double that of the watershed with the highest baseflow (Beaver River). Under the high-emission
scenario, however, the change in percent chance is less distributed and the Beaver River and Cork
Brook differ by just 1%. Groundwater temperatures are expected to follow projected increases in mean
annual air temperature from climate warming [86]. Under the high-emission scenario, this effect may
be more prominent allowing for less dampening of in-stream temperatures by baseflow.

The number of stressful events under the high-emission scenario is greater than the number of
events under the low-emission scenario for every decade since 2010, in every watershed (Figures 12–14).
The graphs also show that for future simulations the number of events in any given decade is higher
than the previous decade except for 2060–2069 in the Queen River and 2070–2079 in the Beaver River
and Cork Brook. Additionally, it should be noted that there is a minor disconnect between the historical
trend and the short-term future simulations; In the Queen River and in Cork Brook Cork there is a
higher occurrence between 2000–2009 than there is 2010–2019. The timing of the decrease is likely a
result of shifting the model from the regular SWAT code to SWAT with added climate variables, rather
than the simulation itself.

Of the three watersheds, the Beaver River and Cork Brook are most likely to provide resilient
habitat for brook trout as the local water conditions change due to global warming. Under low-emission
scenarios, the Beaver River more frequently displayed the lower percent chance of a stressful event
occurring and under the high-emission scenario Cork Brook more frequently had the lowest percent
chance by the end of the century. Under both the high- and low-emission scenarios, the chance of
stressful events occurring was consistently predicted to be greater in the Queen River. Possible causes
of this difference are the larger size of the Queen River watershed and the two tributaries located
upstream of the watershed outlet. Fisherville Brook and Queen’s Fort Brook are two waterways that
discharge into the Queen River (Figure 1). The Queen’s Fort Brook flows along the eastern side of
the watershed through the agricultural area and Fisherville Brook is located along the western side of
the watershed where the slope is steeper. Additionally, the main stem of the Queen River itself flows
through a large golf course in the middle of the watershed. The tributaries and the main stem come
into closer contact with the heterogeneous areas of the basin and may be able to capture additional
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effects of climate change not seen in the other watersheds. This is not to say that coldwater habitat
restoration is not worthwhile in the Queen River, rather that more effort will be needed to restore or
maintain brook trout populations in this watershed.

Figure 12. Number of stressful events predicted in the Beaver River watershed between 1980 and 2099
under historical conditions, low CO2 emissions and high CO2 emission scenarios.

Figure 13. Number of stressful events predicted in the Queen River watershed between 1980 and 2099
under historical conditions, low CO2 emissions and high CO2 emission scenarios.

Figure 14. Number of stressful events predicted in the Cork Brook watershed between 1980 and 2099
under historical conditions, low CO2 emissions and high CO2 emission scenarios.

Stream temperatures in all three watersheds were simulated to increase under both low CO2

and high CO2 emission scenarios. It is challenging to discern from this study if stream temperatures
in the Beaver River or the Queen River differ significantly because the UGSG gauges at the basin
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outlet do not record stream temperature and the weather station data used in SWAT simulations was
the same for both watersheds. Simulated results do show, however, that stream temperatures will
increase through the end of the century by either 1.6 ◦C under low emissions or 3.4 ◦C under high
emissions in these two watersheds. One-way resource managers can buffer this effect is by preserving
existing canopy cover along the riparian corridor. Forest harvesting can increase solar radiation in the
riparian zone as well as wind speed and exposure to air advected from clearings, typically causing
increases in stream water temperature regimes [87,88]. Additionally, managers may also advocate for
preserving groundwater resources that discharge to the streams because baseflow will help regulate
stream temperatures, especially if the global low CO2 emission scenario is achieved.

4. Conclusions and Future Work

To help managers identify which areas within a watershed are in the greatest need of protection,
a subbasin analysis could be conducted. For instance, both Wood-Pawcatuck basins are home to
small preserves managed by The Nature Conservancy. Setting up the model so that a subbasin outlet
(as opposed to the watershed outlet) is located within each preserve will allow for assessing site
specific conditions when it is not practical to create a model on a small scale. If model output shows
that historically these preserves have changed very little, and that future simulations predict minimal
change, then managers can put efforts and financial resources towards other preserves that are in
greater need.

Another consideration for future work is to limit the stressful event analysis to the spring and
summer months when brook trout are more sensitive to warmer stream temperatures. Also, a study
could be conducted to see if stressful events occur sequentially. This study took a wider approach by
examining how stream temperatures and streamflow vary throughout the entire year. This timeframe
was chosen for several reasons. First, since this is the only study of its kind within these watersheds
we did not have enough information to say with certainty that no changes to stream temperature or
streamflow would occur during the fall and winter. In fact, some scientists predict that by the end of the
century Rhode Island will have a climate similar to that of South Carolina and Georgia [26], in which
case stream temperatures would almost certainly increase during the winter months. Second, while
stream temperatures and streamflow during the winter months are not as critical for brook trout
compared to the summer, winter conditions do effect embryo development. For instance, the length of
embryo incubation during the winter ranges from 28 to 45 days depending on the temperature of the
stream water [12]. Lastly, while this study focused on brook trout, our hope is that the methodology
can be applied to other types of aquatic species that may be sensitive to stream conditions during
other seasons.

Finally, since all three of these watersheds are baseflow driven, using a model approach that
considers the influence of groundwater discharges on stream temperatures would be valuable. A study
conducted by Ficklin et al. developed a hydroclimatological SWAT component that incorporates
the effects of both air temperatures and hydrological inputs, such as groundwater, on stream
temperatures. Previous studies have shown that the hydroclimatological component can be used in
small watersheds [89] and in New England [90]. Since the hydroclimatological model component
takes the groundwater temperature into consideration, the stream reach will receive inputs that are
less exposed to ambient air and therefore cooler during the summer and slightly warmer than the air
during the winter. Using a SWAT model with this component may produce more accurate stream
temperature results in streams that are baseflow driven.

The purpose of this study was to gain a better understanding of the effects of climate change
on coldwater habitat using SWAT. We successfully showed that SWAT can be used to simulate both
historical and future climate scenarios in forested, baseflow-driven watersheds in Rhode Island.
Moreover, thermally stressful event identification can be a functional approach to analyzing model
output. The results indicate that climate change will have a negative effect on coldwater fish species
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in these types of ecosystems, and that the resiliency of local populations will be tested as stream
conditions will likely become increasingly stressful.

Acknowledgments: A thank you to Thomas Boving of the University of Rhode Island and Jameson Chace of
Salve Regina University for their insight and review of this Master’s thesis project. We would also like to thank
Khurshid Jahan for her help organizing the stream temperature data and creating a template for data processing.
We would also like to thank S-1063 Multistate Hatch Grant for supporting this research.

Author Contributions: B.M.C. and S.M.P. conceived and designed the experiments; B.M.C. performed the
experiments; B.M.C., S.M.P. and A.J.G. analyzed the data; B.M.C. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Stressful event results for each watershed by decade. High and low CO2 emission scenarios
projected for short (2010–2039), medium (2040–2069) and long-term (2070–2099). Unchanged historical
results included for reference.

Date Emission Scenario Unit Beaver Queen Cork

1980–1989
Low

Days 200 141 127
% Chance 5.5% 3.9% 3.5%

High Days 200 141 127
% Chance 5.5% 3.9% 3.5%

1990–1999
Low

Days 130 213 168
% Chance 3.6% 5.8% 4.6%

High Days 130 213 168
% Chance 3.6% 5.8% 4.6%

2000–2009
Low

Days 185 346 256
% Chance 5.1% 9.5% 7.0%

High Days 185 346 256
% Chance 5.1% 9.5% 7.0%

2010–2019
Low

Days 172 141 216
% Chance 4.7% 3.9% 5.9%

High Days 203 238 221
% Chance 5.6% 6.5% 6.0%

2020–2029
Low

Days 249 213 252
% Chance 6.8% 5.8% 6.9%

High Days 308 334 276
% Chance 8.4% 9.1% 7.6%

2030–2039
Low

Days 200 346 335
% Chance 5.5% 9.5% 9.2%

High Days 317 330 358
% Chance 8.7% 9.0% 9.8%

2040–2049
Low

Days 221 273 223
% Chance 6.0% 7.5% 6.1%

High Days 364 445 375
% Chance 10.0% 12.2% 10.0%

2050–2059
Low

Days 325 334 278
% Chance 8.9% 9.1% 7.6%

High Days 516 555 410
% Chance 14.1% 15.2% 11.0%

52

Bo
ok
s

M
DP
I



Water 2017, 9, 732

Table A1. Cont.

Date Emission Scenario Unit Beaver Queen Cork

2060–2069
Low

Days 320 343 363
% Chance 8.8% 9.4% 9.9%

High Days 547 543 540
% Chance 15.0% 14.9% 14.8%

2070–2079
Low

Days 276 326 276
% Chance 7.6% 8.9% 7.6%

High Days 502 597 487
% Chance 13.7% 16.3% 13.3%

2080–2089
Low

Days 337 412 338
% Chance 9.2% 11.3% 9.3%

High Days 662 694 566
% Chance 18.1% 19.0% 15.5%

2090–2099
Low

Days 370 389 433
% Chance 10.1% 10.6% 11.9%

High Days 692 682 649
% Chance 18.9% 18.7% 17.8%
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Abstract: Field experiments were carried out in Huantai County from 2006 to 2008 to evaluate the
effects of different nitrogen (N) fertilization and irrigation management practices on water leakage
and nitrate leaching in the dominant wheat–maize rotation system in the North China Plain (NCP).
Two N fertilization (NF1, the traditional one; NF2, fertilization based on soil testing) and two irrigation
(IR1, the traditional one; IR2, irrigation based on real-time soil water content monitoring) management
practices were designed in the experiments. Water and nitrate amounts leaving the soil layer at a
depth of 2.0 m below the soil surface were calculated and compared. Results showed that the IR2

effectively reduced water leakage and nitrate leaching amounts in the two-year period, especially in
the winter wheat season. Less than 10 percent irrigation water could be saved in a dry winter wheat
season, but about 60 percent could be saved in a wet winter wheat season. Besides, 58.8 percent
nitrate under single NF2IR1 and 85.2 percent under NF2IR2 could be prevented from leaching. The IR2

should be considered as the best management practice to save groundwater resources and prevent
nitrate from leaching. The amounts of N input play a great role in affecting nitrate concentrations in
the soil solutions in the winter wheat–summer maize rotation system. The NF2 significantly reduced
N inputs and should be encouraged in ordinary agricultural production. Thus, nitrate leaching and
groundwater contamination could be alleviated, but timely N supplement might be needed under
high precipitation condition.

Keywords: water leakage; nitrate leaching; maize; winter wheat; optimized nitrogen fertilization;
optimized irrigation

1. Introduction

The North China Plain (NCP) is a major grain-producing region in China with a long-term
average annual precipitation of 550 mm, most of which occurs from June to September, and an average
yearly crop evapotranspiration of 850 mm. To obtain higher grain yields, a large amount of fertilizer
and water were supplied by farmers in this region. It was reported that the average annual amount
of nitrate input was above 500 kg N·ha−1 in the NCP [1]. In some high-yielding farmlands, the
input even reached as high as 600 kg N·ha−1 [2]. Farmers’ traditional N fertilization practice usually
causes high nitrate losses because of excessive N input. Research on field-scale N balances found that
about 50% of N applied under traditional fertilization management practice was not accounted for
by crop removal [3]. With excess surface water application, soluble nitrate can leach below the root
zone to underlying groundwater, causing possible contamination of drinking water [4]. Excessive N
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input and inefficient application of irrigation water have caused heavy groundwater contamination
in the NCP. Between the years 2002 and 2007, the nitrate concentration in shallow groundwater
doubled [5]. Besides, a lack of surface water in this area led to the excessive extraction of groundwater
for agricultural production, bringing about an annual 1.5 m drop in the groundwater level [6,7]. Water
shortage and groundwater pollution have become important environmental concerns in the NCP.
Improving water and N management in the farmland to reduce both groundwater exploitation and
farmland nitrate leaching is of great importance to protect the groundwater resources.

Limited irrigation and reduced N application may be effective measures to reduce farmland
nitrate leaching and to improve water and N use efficiencies. Reduction of the applied N fertilizer
rate to an optimized rate can reduce soil nitrate leaching [8–10]. Nowadays, the optimized irrigation
technique based on real-time monitoring of soil water content has been widely used in agricultural
production and provides us an irrigation control measure [11]. It could attain the dual objectives
of water-saving and high yield. Furthermore, the optimized N fertilization based on soil testing is
a fertilization management practice that quantitatively supplies N fertilizer to ensure crop growth.
It increases N use efficiencies of crops by a comprehensive consideration of available N in soil and crop
N demand in different stages [11]. However, there have been few studies focused on the environmental
effects of both the irrigation based on real-time monitoring of soil water content and the optimized N
fertilization based on soil testing in the typical rotation system in the NCP so far.

The amounts of water leakage and nitrate leaching in the soil were the keys to analyze the effects of
irrigation and fertilization management practices on nitrate leaching characteristics. Both water leakage
and nitrate leaching were related to irrigation/precipitation, the rate and type of N fertilizer applied,
the variety of crops, and other environmental factors. Major methods for direct measurement on water
leaching amounts and nitrate leaching amounts include large lysimeter, leakage plate, tensiometers
and so on [12–17]. Certainly, each method has its limitations and advantages. Currently, the method
of using a tensiometer combined with Darcy’s law [18] to determine the nitrate content in the soil
solution has been extensively applied.

Huantai County, Shandong Province, China, is the first county reaching 1000 kg/ha (wheat and
maize) per year in the north Yangtze River. The winter wheat–summer maize rotation system is the
basic cropping system in this region. To acquire a high crop yield, farmers depend heavily on the use
of groundwater for irrigation in addition to a high N fertilizer application. Inadequate fresh irrigation
supply in this region demands careful use and less contamination of all the available water resources.
In this paper, both the water leakage and nitrate leaching amounts under different irrigation and
fertilization management practices were obtained and analyzed. Results of this study would be useful
to improve water and N fertilization management in the NCP to achieve a sustainable development
of agriculture.

2. Materials and Methods

2.1. Site Description

Our experimental fields are located in Maojia Village of Xingcheng town, Huantai County
(Figure 1). Experiment fields with relatively uniform soil types and hydrogeological conditions
(groundwater level 15–20 m below soil surface) were chosen to ensure similar background.
The experiments were carried out from to June 2006 to July 2007. Before this, a 1-year pre-trial
from June 2005 to May 2006, the same as the formal experiment, had been conducted. During the
experimental period, rainfall from June 2005 to May 2008 in the county was also collected (Figure 2).
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Figure 1. Location of the study area and the sampling sites.

Figure 2. Daily rainfall and irrigation events from June 2005 to May 2008 in Huantai County.

2.2. Experiment Design

There were two irrigation management practices to meet the water requirements of the crops:
the local traditional irrigation (IR1) and the optimized irrigation (IR2). Two fertilization management
practices were also designed to meet the N requirements: the local traditional N fertilization (NF1)
and the optimized N fertilization (NF2). A combination of the two factors (NF1IR1, NF2IR1, NF1IR2,
NF2IR2) were applied in 12 plots with three replicates.

The traditional irrigation management practice is a local famer’s practice in the high-yielding
winter wheat and summer maize system of the NCP. In this situation, irrigation events are usually
arranged at the planting stage, before the over-wintering stage, at the regreening stage, at the shooting
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stage, and before the harvesting stage for winter wheat. Under the optimized irrigation management
practice, sprinkler irrigation was used to keep plant-available soil water content (the difference in water
content between measured field capacity and permanent wilting point in laboratory) between 40%
and 85% according to the growth stages of the crop within defined soil depths [19]. Notably, because
precipitation was relatively high and temporally even during the summer maize season, no extra
irrigation is needed in our experiments. However, an irrigation event with 67.5 mm at the heading
stage of summer maize under the two irrigation management practices was applied. The detailed
irrigation dates and amounts during the winter wheat season are shown in Figure 2.

The traditional N fertilization management practice also represents a local farmer’s practices
in cropping. The traditional N fertilization management received 150 kg N·ha−1 (urea) at planting
(incorporation after broadcasting) and another 150 kg N·ha−1 (urea) at the regreening stage (broadcast
followed by irrigation) for winter wheat. As for summer maize, it received 100 kg N·ha−1 (urea)
as first topdressing fertilizer (broadcast followed by irrigation or before rain) at the three-leaf stage,
shooting stage, and heading stage, respectively. The rate and time of N fertilization in the optimized
N fertilization management practice was based on an improved Nmin method, which considered the
synchronization of crop nitrate demand and soil nitrate supply [11]. It is required to ensure the growth
of crops in different growth stages. The rates of phosphorus and potassium fertilizer were the same in
all the management practices, applied as basal fertilizer once before winter wheat is sown. The rate of
phosphorus was 375 kg P2O5·ha−1, and potassium was 225 kg K2O·ha−1. Detailed fertilization dates
and rates are shown in Table 1.

Table 1. N fertilization dates and rates under different management practices.

Items Crop Stage Fertilizer Application Rate/kg N·ha−1

Season Date NF1IR1 NF2IR1 NF1IR2 NF2IR2

2006,
Summer maize

2-June three-leaf stage 100 100 38
28-June shooting stage 100 35 100
23-July heading stage 100 100 38

Subtotal 300 35 300 38

2006–2007,
Winter wheat

5-October planting stage 150 150
20-March regreening stage 150 40 150 35
16-April 22 18
Subtotal 300 62 300 53

2007,
Summer maize

26-May three-leaf stage 100 100
9-June 63 57

26-June shooting stage 100 100
28-July heading stage 100 100

Subtotal 300 63 300 57

2007–2008,
Winter wheat

16-October planting stage 150 150
20-March regreening stage 150 44 150 36
16-April 30 31
Subtotal 300 74 300 67

Total 1200 234 1200 215

2.3. Observation Items and Methods

Water leakage and nitrate leaching amounts are main data needed to realize the analysis. Water
and nitrate monitoring experiments combined with Darcy’s Law [20] were combined to estimate the
leaching amounts. Though requiring many parameters and less accuracy, this method is cost-saving
and includes both upward and downward movement of water. It has obvious advantages in
multi-treatment field experiments.

The tensiometer was used to obtain the soil water potentials (mm, sum of soil matrix and
gravimetric potentials) in these experiments. Considering the root system of the crops, mainly
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distributed within a 2.0 m depth soil layer, the tensiometer installation depths in the soil profile
were accordingly set at 1.8 m and 2.0 m depth in each field. The soil volumetric water contents of soil
layers (0–2.0 m) were measured by a neutron probe (calibrated for about ten times at the beginning of
the experiments) at 20 cm intervals. Both the soil volumetric water contents and tensiometer readings
were recorded once a week. The soil water storage (0 to 2.0 m depth) of the experimental sites was
calculated based on soil volumetric water content and layers of soil thickness; the thickness of each
layer of soil in our study was 0.20 m. Field water capacity was calculated from the average profile
water content for two 3-day periods just after irrigation or significant rainfall in summer. In this paper,
it is 54.3 mm.

Suction cups (i.e., soil solution samplers) were installed at 2.0 m depth below the soil surface
to obtain soil solutions. The soil solutions were collected biweekly. A portable vacuum pump was
applied up to 80 kPa suction for 24 h to collect all solutions in the suction cups. When the soil was too
dry to collect samples, soil samples were collected instead and extracted with 0.01 M CaCl2 solution.
Nitrate concentrations of all the soil solutions were determined by a continuous flow analytical system
(TRAACS 2000 system, Bran and Luebbe, Norderstedt, Germany). Water from both precipitation and
irrigation events was also sampled to determine nitrate concentrations, and then multiplied by water
amounts to obtain the nitrate input to the soil.

Meteorological data such as precipitation were obtained from an automatic weather station of the
local water conservancy bureau. In winter, observations of both water leakage and nitrate leaching
were suspended because of freezing.

Water leakage amount at the 2.0 m depth of the soil profile was calculated by Darcy’s Law
combined with the Van Genuchten model [20–22]. The Van Genuchten model was used to obtain
the parameters in the soil water characteristic curve. The obtained parameters were needed to
determine K(h). Then, K(h) was used in Darcy’s Law, which was used to calculate the water transport.
The formulas are listed as follows:

q200(t) = K(h) × (H180(t) − H200(t))/ΔH, (1){
θ(h) = θr +

θs−θr

[1+|ah|n]m , when h < 0

θ(h) = θs , when h = 0
, (2)

K(h) = Ks(
θ − θr

θs − θ
)

l
[

1 − (1 − (
θ − θr

θs − θ
)

1/m
)

m]2

(3)

where q200(t) is the water leakage amount at 2.0 m depth of the soil profile during t (mm·day−1);
K(h) is the hydraulic conductivity (mm·day−1); h is the matrix potential (mm) measured once a week;
H180(t) and H200(t) are soil water potentials (mm) at 1.8 m and 2.0 m depth of the soil profile during t
(measured once a week in this paper), respectively; t is the measurement period (7 days here); ΔH is
the distance between the 1.8 m and 2.0 m depths (mm); θs, θr, and θ(h) are saturated, residual, and
measured soil volumetric water content, respectively (%); θr, θs, α, m, n, l are parameters of the soil
water characteristic curve (analyzed by the Van Genuchten model). The soil layer at 1.6 m to 2.0 m
depth was chosen, and finally, these parameters were found to be 0.11, 0.39, 0.059, 0.324, 1.48, and 0.5,
respectively; KS is the saturated hydraulic conductivity (24.6 mm·day−1, measured in laboratory by
the constant head method [23].

Q(T) =
∫ T

0
q200(t)dt (4)

where Q(T) is the water leakage amount at 2.0 m depth of the soil during a period T (mm); T is the
measurement cycle (days, growth season of winter wheat or summer maize in this paper).

Nitrate leaching amounts were calculated as the product of the nitrate concentrations and the
corresponding Q(T) through the 2.0 m depth soil profile as follows:

62

Bo
ok
s

M
DP
I



Water 2017, 9, 141

N(T) =
∫ T

0
C(t) q200(t)/100dt (5)

Duncan’s multiple range test was used to determine significant differences in means of water
leakages and nitrate leaching amounts among the four management practices [24]. It is a method of
multiple comparisons in which the group means are ranked from smallest to largest (a, b, c, etc.).

3. Results

3.1. Water Leakage at 2.0 m Depth

In the summer maize growth season of 2006, no severe water leakage occurred at 2.0 m depth
of the soil under the traditional and the optimized fertilization management practice (Figure 3a).
The precipitation during the whole summer maize growth season of 2006 was temporally evenly
distributed and about 200 mm less than the average annual precipitation (1962–2007) (Figure 4). Under
all the management practices, the soil water storage in 2.0 m soil depth soil was, most of the time,
lower than the field capacity (Figure 3b). The precipitation could only meet the requirement of summer
maize growth. Only minor water leakage occurred in the period from August to September in 2006
(Figure 3a).

Figure 3. Water leakage and soil water storage (a) water leakage at a depth of 2.0 m under different
fertilizer and irrigation management practices; (b) soil water storage in the 0–2.0 m soil profile.

During the winter wheat growth season of 2006–2007, due to the drought in the past summer
maize season, no water leakage occurred in winter (Figure 3a). In the spring of 2007, no water
leakage occurred under the IR2 management practices, but water leakages were observed under
the IR1 management practices (Figure 3a). Furthermore, the amounts were 39.5 mm under NF1 and
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52.1 mm under NF2 management practice, respectively (Table 2). The corresponding leakage rates
(leakage/(irrigation + precipitation), the same below) were 8.8% and 11.6%, respectively, which
showed significant difference. The data indicated that even under the drought condition in the
previous summer maize growth season, the traditional irrigation could still lead to farmland water
leakage in the next winter wheat growth season. The traditional irrigation events in the spring of 2007
and the relatively higher precipitation in March (Figure 4) resulted in rapid increased soil water storage
(five irrigation events in Figure 2), which exceeded the field capacity, eventually leading to water
leakage. However, under the IR2 management practice, the optimized irrigation amount prevented
soil water storage from exceeding the field capacity, which could greatly reduce the risk of water
leakage (Figure 3b). Although there was little difference in total irrigation amount between IR1 and
IR2 (Table 2), small quantities in the high frequency (seven irrigation events in Figure 2) of IR2 can
maintain the soil water content in a reasonable range, which might have reduced the possibility of
water leakage into deeper soil layers. In addition, the more irrigation occurences, the more water
evaporation loss might have happened during the irrigation process.

Figure 4. Monthly precipitation from June 2005 to May 2008 in Huantai County.

Table 2. Soil water balance under different irrigation and fertilizer management practices.

Management Practices NF1IR1 NF2IR1 NF1IR2 NF2IR2

2006,
Summer maize

Precipitation (mm) 266.1 266.1 266.1 266.1
Irrigation (mm) 67.5 67.5 67.5 67.5

Water leakage amount (mm) 8.1d 10.1bc 9.2c 11.8a
Water leakage rate */% 2.4 3.0 2.8 3.6

2006–2007,
Winter wheat

Precipitation (mm) 111.3 111.3 111.3 111.3
Irrigation (mm) 337.5 337.5 327.0 313.0

Water leakage amount (mm) 39.5b 52.1a 0 0
Water leakage rate/% 8.8 11.6 0 0

2007,
Summer maize

Precipitation (mm) 486.5 486.5 486.5 486.5
Irrigation (mm) 67.5 67.5 67.5 67.5

Water leakage (mm) 52.0c 88.0a 57.9c 72.0b
Water leakage rate/% 9.4 15.9 10.5 13.0

2007–2008,
Winter wheat

Precipitation (mm) 322.6 322.6 322.6 322.6
Irrigation (mm) 337.5 337.5 143.0 120.0

Water leakage (mm) 106.0b 134.1a 37.1d 61.1c
Water leakage rate/% 16.1 20.3 8.0 13.8

Total water leakage amount (mm) 205.6b 284.0a 104.2d 145.2c

Total water leakage rate/% 10.3 14.2 5.8 8.3

Notes: data in the same line with a same letter means no significant difference in means according to Duncan’s
multiple range test (p < 0.05); * presents the percent of water leakage that accounts for the sum of precipitation
and irrigation.
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In the summer maize growth season of 2007, precipitation of 434.1 mm from June to August had
led to the continuously increased soil water storage (Figure 3b). Also, heavy water leakages were
observed. Total water leakages were 52.0 mm, 88.0 mm, 57.9 mm and 72.0 mm under NF1IR1, NF2IR1,
NF1IR2 and NF2IR2, respectively, and the corresponding water leakage rates were 9.4%, 15.9%, 10.5%
and 13.0% (Table 2). Under the same irrigation management practice, water leakages under NF2

management practice were obviously higher than those under NF1 management practice. Nutrient
leaching due to frequent rainfalls and untimely topdressing under NF2 management practice might
have a negative effect on crop growth, thus more water leakage occurred. During the winter wheat
growth season of 2007–2008, excessive precipitation (Figures 2 and 4) caused severe water leakage
(Figure 3a). The water leakages were 106.0, 134.1, 37.1 and 61.1 mm under NF1IR1, NF2IR1, NF1IR2

and NF2IR2, respectively. Furthermore, the corresponding leakage rates were 9.4%, 15.9%, 10.5% and
13.0%, respectively (Table 2).

Under the same fertilization management practice, the water leakages under IR2 were significantly
less than those under IR1 (Table 2), illustrating that the optimized irrigation could sharply reduce water
leakage. Under the same irrigation management practice, water leakage under NF1 was less than
that under NF2 (Table 2). During this season, the precipitation was 107.0 mm higher than the average
annual value (Figure 4). Thus, water was adequate for wheat growth, and nutrient supply had become
one of the key factors for the wheat growth. Furthermore, the NF1 provided more adequate N fertilizer
for wheat growth, and then increased the water consumption and reduced the risk of water leakage.

Besides, under IR1, water leakage mainly occurred before the wintering, the regreening, and
the harvesting stages, especially at the harvesting stage (Figure 3a). Under the rich precipitation
conditions, the soil water storage often exceeded the field water capacity (Figure 3b), directly resulting
in the water leakages. Under IR2, the irrigation amounts were 143.0 and 120.0 mm under NF1IR2 and
NF2IR2, respectively. The soil water storage rarely exceeded the field water capacity, which greatly
reduced the risk of water leakage occurring (Figure 3b).

During four crop growth seasons over two years, the total water leakages were 205.6, 284.0,
104.2, and 145.2 mm and the total water leakage rates were 10.3%, 14.2%, 5.8% and 8.3% under
NF1IR1, NF2IR1, NF1IR2, NF2IR2 management practices, respectively (Table 2). There was a significant
difference between any two management practices.

3.2. Nitrate Concentrations of the Soil Solutions at a Depth of 2.0 m

Table 1 showed that NF2 significantly reduced N inputs. Due to the 1-year pre-trial and less N
inputs of the NF2 management practice, the nitrate concentrations of the soil solutions at a depth of
2.0 m in the four crop growth seasons were obviously lower than those under NF1 (Figure 5). It should
be noticed that the nitrate concentrations under both NF2IR1 and NF2IR2 management practices had
shown a decreasing trend from 2006 to 2008, while the two under NF1IR1 and NF1IR2 tended to
increase. Under the NF2, the groundwater may face less nitrate contamination risk. Under the same
NF1 or NF2 management practices, the nitrate concentrations of IR2 were higher than those under IR1

management, suggesting that higher water input under IR1 might have diluted nitrate concentrations.
During the whole winter wheat and summer maize season from 2006 to 2007, less precipitation

(Figure 2) and only minor water leakage (Figure 3a) indicated that both N fertilization and the irrigation
management practices had no obvious effect on nitrate concentration changes. Nitrate concentrations
contained a stable level in the four management practices, respectively.

In July and August of 2007 in the summer maize season, heavy water leakage occurred (Figure 3a)
and nitrate concentrations of NF1IR1 and NF1IR2 increased sharply at a maximum of 114 and
121 mg N·L−1, respectively (Figure 5). The 434.1 mm precipitation from June to August in 2007
(Figure 2) led to soil water storage that was higher than the field water capacity (Figure 3b). The nitrate
in the soil moved from the upper soil layer down to the 2.0 m profile along with the water movement.
However, under the NF2, nitrate concentrations of both NF2IR1 and NF2IR2 were at a lower level,
ranging from 27–37 mg N·L−1 to 31–42 mg N·L−1, respectively (Figure 5).
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During the winter wheat season from 2007 to 2008, nitrate concentrations of NF2IR2 hovered
between 18 and 28 mg·L−1 and those of NF2IR1 between 21 and 33 mg·L−1 (Figure 5). Nitrate
concentrations under NF2 were only about one-third of those under NF1. This showed that nitrate
contents at the 2.0 m depth of the soil profile under the optimized nitrate fertilization were effectively
controlled, though the values still exceeded the drinking water standard in China (20 mg N·L−1).

Figure 5. Nitrate concentrations of soil solutions at a depth of 2.0 m under different N and irrigation
management practices.

3.3. Nitrate Leaching Amounts from the Soil Profile at a Depth of 2.0 m

From 2006 to 2007, during the maize season, minor nitrate leaching occurred in all the four
management practices (Figure 6 and Table 3). During the following winter wheat growth season,
minor nitrate leaching occurred under NF1IR1 and NF2IR1, and the nitrate leaching amounts were 23.0
and 24.0 kg N·ha−1, respectively (Table 3). Almost no nitrate leaching was observed under NF1IR2

and NF2IR2. Because water movement is the driving force of nitrate leaching, the lower amount of
water leakage (Figure 3a) under IR2 effectively minimized nitrate leaching in this season.

Figure 6. Nitrate leaching amounts under different N and irrigation management practices during the
experiment. Negative values are represented by moving downward only.

66

Bo
ok
s

M
DP
I



Water 2017, 9, 141

Table 3. Summary of nitrate inputs from rainfall, irrigation water and N fertilizer applied, and nitrate
leaching in both wheat–maize cropping years.

Items Management Practices NF1IR1 NF2IR1 NF1IR2 NF2IR2

2006,
Summer maize season

Nitrate input/kg N·ha−1

from fertilization 300.0 35.0 300.0 38.0
from precipitation 5.2 5.2 5.2 5.2

from irrigation 4.8 4.8 4.8 4.8
Total 310.0 45.0 310.0 48.0

Leaching amount/kg N·ha−1 4.6a 5.3a 5.4a 5.6a
Nitrate leaching rate/% 1.5 11.8 1.7 11.6

2006–2007,
winter wheat season

Nitrate input/kg N·ha−1

from fertilization 300.0 62.0 300.0 53.0
from precipitation 2.5 2.5 2.5 2.5

from irrigation 21.1 21.1 20.1 14.5
Total 323.6 85.6 322.6 70.0

Leaching amount/kg N·ha−1 23.3a 24.0a - -
Nitrate leaching rate/% 7.1 28.0 - -

2007,
summer maize season

Nitrate input/kg N·ha−1

from fertilization 300 63 300 57
from precipitation 8.6 8.6 8.6 8.6

from irrigation 4.2 4.2 4.2 4.2
Total 312.8 75.8 312.8 69.8

Leaching amount/kg N·ha−1 71.0b 41.5c 98.4a 38.6c
Nitrate leaching rate/% 22.7 54.8 31.5 55.2

2007–2008,
winter wheat season

Nitrate input/kg N·ha−1

from fertilization 300.0 74.0 300.0 67.0
from precipitation 4.4 4.4 4.4 4.4

from irrigation 21.2 21.2 8.6 7.5
Total 325.6 99.6 313.0 78.9

Leaching amount/kg N·ha−1 74.2a 30.6b 27.5b 11.0c
Nitrate leaching rate/% 22.8 30.7 8.8 13.9

Total leaching amount/kg N·ha−1 172.8a 101.4c 131.2b 55.1d

Total Nitrate leaching rate/% 13.6 33.1 10.4 20.7

Note: data in the same line with the same letter means no significant difference in means according to Duncan’s
multiple range test (p < 0.05).

During the summer maize season in 2007, serious nitrate leaching occurred under all the four
management practices (Figure 6). The total leaching amounts of NF1IR1, NF2IR1, NF1IR2, and NF2IR2

were 71.0, 41.5, 98.4 and 38.6 kg N·ha−1, respectively (Table 3). The leaching amounts were far greater
than those in 2006. Serious water leakage for excessive rainfall that occurred in this season may
account for this case (Figures 2 and 3a). Under the same NF1 management practice, the nitrate leaching
amount under IR2 was significantly higher than that under IR1. Comparably, under the same NF2

management, the nitrate leaching amount under IR2 and IR1 was quite similar. We concluded that
under NF1IR2, higher soil residual nitrate that existed in the former winter season led to higher nitrate
concentrations in the soil solutions (Figure 5). Therefore, the nitrate leaching amount under this
management practice was the maximum in condition of high rainfalls (Figure 2). Interestingly, nitrate
leaching amounts under NF2IR1 and NF2IR2 were approximately half of those under NF1IR1 and
NF1IR2. Though more water leakages were observed under NF2IR1 and NF2IR2 (Table 2), lower nitrate
concentrations in the soil solutions (Figure 5) prevented higher nitrate from leaching. Besides, from
the perspective of nitrate leaching rates (leaching/(fertilization + irrigation + precipitation), the same
below), about 55% of nitrate input leached from the soil under the two NF2 management practices
(Table 3). Consequently, timely N topdressing should be given more attention to increase crop growth
under the NF2 management practice.

During the winter wheat season from 2007 to 2008, a slightly higher N input than the last
summer maize season (Table 1) was adopted under NF2 for the heavy water leakage (Figure 3a).
Figure 6 showed that relatively sufficient precipitation in winter led to nitrate leaching under the four
combinations. The leaching amounts of NF1IR1 and NF2IR1 were 74.2 and 30.6 kg N·ha−1, respectively
(Table 3). By contrast, those of NF1IR2 and NF2IR2 management practices were 27.5 and 11.0 kg N·ha−1,
respectively (Table 3). The IR2 helped to reduce both water leakage and nitrate leaching. Besides,
under the same irrigation management practice, the leaching amount under NF2IR1 was about half of
that under NF1IR1, and the leaching amount under NF2IR2 was about one-third of that under NF1IR2.
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The optimized N fertilization based on the soil testing measure could also prevent farmland nitrate
from leaching effectively. Under the two effects of both N management and irrigation management, as
much as 85.2% (= 1 − 10.97/74.21) of the nitrate leaching amount was prevented from contaminating
the groundwater.

4. Discussion

After the two-year experiment, water leakages under the four management practices were
compared. The obtained water leakage rate under the traditional irrigation was in line with the
reported results by Zhang et al. [25]. Judging from effects of preventing water leakage, the combination
of NF1IR2 was the best management practice. The magnitude effects followed the order of NF1IR2 >
NF2IR2 > NF1IR1 > NF2IR1 (Table 2). It is the IR2 management practice that prevented water leakage
from leaching effectively. Inversely, the NF2 management practice tended to aggravate water leakage,
especially under high precipitation condition. Nutrient leaching due to frequent rainfalls and untimely
topdressing under NF2 management practice (about 55% of nitrate input had leached on the basis of
much less N input) might have resulted in poorer crop growth, and more water leakage. Guidance for
timely nitrogen topdressing should be considered.

From the effects of nitrogen and irrigation management practices on nitrate concentrations at
2.0 m depth of the soil profile, it is easy to find that concentration gaps caused by nitrogen input are
higher than those caused by irrigation (Figure 5). The amounts of nitrogen input play a great role in
decreasing nitrate concentrations in the soil solutions. Reduction in the traditional nitrogen fertilization
should be considered in this area. Increasing evidence has reported that nitrate leaching occurred in
low-rainfall regions, episodically during extraordinarily wet periods [26,27]. In our study, the total
nitrate leaching amounts under NF1IR1 and NF1IR2 were 172.8 and 131.2 kg N·ha−1, respectively
(Table 3). These results were supported by other studies in this region [25,28]. The continuous two-year
observations in this experiment also showed us the elevated nitrate concentrations in the relatively
wet summer maize and winter wheat season, especially under the traditional nitrogen fertilization
management practice. Thus, soil nitrate movement to a deeper soil layer was an important pathway
that caused nitrate losses in this winter wheat–summer maize rotation system.

Though heavier water leakage might be caused by nitrogen input based on soil testing, NF2

management practice is still an alternative for farmers here to effectively decrease nitrate leaching
amounts and prevent groundwater contamination. Lower nitrate concentrations in the soil solution at
2.0 m depth prevented heavier nitrate from leaching (Table 3), especially when it is combined with the
IR2 management practice. Under NF2IR2, the least 55.0 kg N·ha−1 over the two years was observed.
However, the effects of NF2 on crop growth should be given more attention. The IR2 had significant
positive effects on both water and nitrate loss in this area.

It is reported that excessive irrigation would lead to decreased crop water use efficiency [29].
Management practices that adjust water application to crop needs also reduced nitrate leaching by a
mean of 80% without a reduction in crop yield [30]. In this study, less than 10 percent irrigation water
could be saved in a dry winter wheat season (from 2006 to 2007), but about 60 percent could be saved
in a wet winter wheat season (from 2007 to 2008) under the IR2 management practice.

Single optimized fertilization might not work in preventing nitrate leaching in the dry
winter wheat season (Table 3), but in the wet winter wheat season, a reduction of 58.8 percent
nitrate leaching was acquired in the wet winter wheat season. A combination of NF2 and IR2

management practice could reduce 85.2 percent of nitrate leaching, compared with NF1IR1 (Table 3).
Thus, optimized management practices may reduce nitrate leaching risk and could enhance
environmental sustainability.

The best management practices to minimize nitrate contamination of groundwater in this area
include the use of an efficient irrigation method and an optimized fertilization method. The use of an
optimized irrigation method combined with soil-testing nitrogen fertilization reduced nitrate input
and prevented nitrate leaching over the 2-year period. However, the economic and environmental costs
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due to applying too much groundwater might not induce farmers to embrace the new technological
changes without a detailed cost-effective analysis of equipment and endeavor.

5. Conclusions

Water shortage and groundwater pollution due to excessive water use and nitrogen inputs are
important environmental concerns in the NCP. The development of better irrigation and nitrogen
fertilization management practices that minimize groundwater pollution is crucial. Field results
showed that irrigation water, nitrogen fertilizer use, and nitrate leaching could be decreased
substantially by applying the optimized water management in comparison with traditional methods.
The optimized nitrogen fertilization management could effectively reduce nitrate concentrations of
the soil solutions at 2.0 m depth, and then prevent nitrate leaching. However, it should be carefully
managed to achieve stable grain yields. Further study is needed to find a way to maintain grain output
while adopting the optimized nitrogen fertilization management practice when precipitation is too high.
The optimized irrigation management practice should be considered to save groundwater resources.
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Abstract: Uncertainties due to climate change and population growth have created a critical situation
for many megacities. Investigating spatio-temporal variability of water resources is, therefore,
a critical initial step for water-resource management. This paper is a first study on the evaluation of
water-budget components of water resources in Istanbul using a high-resolution hydrological model.
In this work, the water resources of Istanbul and surrounding watersheds were modeled using the
Soil and Water Assessment Tool (SWAT), which is a continuous-time, semi-distributed, process-based
model. The SWAT-CUP program was used for calibration/validation of the model with uncertainty
analysis using the SUFI-2 algorithm over the period 1977–2013 at 25 gauge stations. The results
reveal that the annual blue-water potential of Istanbul is 3.5 billion m3, whereas the green-water
flow and storage are 2.9 billion m3 and 0.7 billion m3, respectively. Watersheds located on the
Asian side of the Istanbul megacity yield more blue-water resources compared to the European side,
and constitute 75% of the total potential water resources. The model highlights the water potential
of the city under current circumstances and gives an insight into its spatial distribution over the
region. This study provides a strong basis for forthcoming studies concerning better water-resources
management practices, climate change and water-quality studies, as well as other socio-economic
scenario analyses in the region.

Keywords: hydrological modeling; SWAT; SWAT-CUP; water-resources modeling; water availability;
water potential; Istanbul

1. Introduction

As demand for water increases across the world, the availability of freshwater in many regions
is likely to decrease due to population growth, industrialization, land use and climate change.
Climate change due to the greenhouse effect plays a vital role in the availability of freshwater
and is just one of the pressures facing water resources today. Nearly all of the climate change
projections indicate substantial decreases in water availability in the Mediterranean region in the
future [1–5]. On the other hand, rapid population increase, urbanization, and industrialization in this
region have had a significant effect on the regional hydrological cycle. As the population increases,
the provision of clean water in the megacities of developing countries becomes increasingly more
complex [6]. Continuing urbanization poses a major challenge to providing adequate water services to
the metropolis [7].

Quantifying the water resources of a megacity is essential for providing the strategic information
needed for long-term planning of the city’s water security. Conventional water-resource planning and

Water 2017, 9, 814 71 www.mdpi.com/journal/water

Bo
ok
s

M
DP
I



Water 2017, 9, 814

management have mostly been based on “blue-water” resources, which serve the needs of engineers
who are responsible for coping with infrastructure projects for water supply [8]. Blue water is generally
defined as “the sum of river discharge and deep groundwater recharge”. “Green water”, however, is
differentiated by Falkenmark and Rockström [8] between green-water resources and green-water flows.
According to their definition, “green-water resource is the moisture in the soil”. This is the renewable
part that can potentially generate economic returns and the source of rainfed agriculture. Green-water
flow, however, is the actual evaporation (the non-productive part) and the actual transpiration
(the productive part), commonly referred to together as the actual evapotranspiration [9]. Thus,
it is vital to evaluate the blue- and green-water potential for human activities. This water paradigm is
successfully used to evaluate water resources and its availability throughout the world using Soil and
Water Assessment Tool (SWAT) models at continent, country, or basin scales [9–15].

In 2016, Istanbul had a population of 15 million within the city proper. It is not only the most
populous city in Turkey, but one of the biggest conurbations in the world whose population is still
increasing due to a high level of migration by approximately 250,000 people every year [16] from all
over the country. The annual population growth rate is 2.8%, which is almost twice the overall rate
of Turkey [17]. Furthermore, due to the Syrian war, Istanbul hosts 600,000 Syrian refugees per year.
Demand for water in the city, which is supplied mainly (about 98%) from surface water resources in
15 watersheds, is about 3 million m3 day−1, including domestic and industrial consumption as well as
non-reserve water (NRW) or water losses. Water supply has always been a great challenge throughout
the history of Istanbul, from ancient times to the present.

One of the most comprehensive studies on İstanbul’s water resources is reported by the
Istanbul Master Plan Consortium (IMC) [18] for the planning of water-supply, wastewater and
stormwater investments in the Istanbul Metropolitan Area. Akkoyunlu et al. [19], Eroglu et al. [20],
Yuksel et al. [21], Altinbilek [22], Saatci [23], Ozturk and Altay [24] and van Leeuwen and Sjerps [17],
reported on current water-management strategies, challenges in water supply, and future directions
regarding water administration in the city mostly based on the IMC report. Few studies can be found
on water budgets of the watersheds of Istanbul covering individual sub-basins [25,26]. Kara and
Yucel [27] and the Istanbul Water and Sewerage Administration (ISKI) [28] used trend analysis to study
the impact of climate change on extreme flows in Istanbul. They concluded that a significant impact
could be expected on the frequency and amount of hydrological extremes such as floods and droughts.
Cuceloglu and Ozturk [29,30] quantified the water-budget components of major freshwater resources
of Istanbul by using the SWAT model. Rouholahnejad et al. [12] studied the water resources of the
European part of Turkey in the context of the Black Sea Basin.

To the best of our knowledge, no systematic modeling work has been done on the water resources
of Istanbul to quantify both the potential of all watersheds in supplying potable water, and to
quantify water availability in terms of various components of the water budget with a high resolution.
This study has been conducted to fill this gap, and will be the first study covering all of the current
and planned catchment areas of Istanbul. Also, the hydrological model built in this study will serve as
the base model for forthcoming studies to evaluate climate change impacts and water quality in order
to guide engineers, experts, as well as policy-makers and authorities in the region.

The overall objectives of the current study are: (1) to build a high-resolution hydrological model
for all the watersheds (existing and planned) that could supply drinking water; (2) to calibrate and
validate the model and perform sensitivity and uncertainty tests upon its outputs; and (3) to reveal the
current water budget in terms of blue- and green-water resources. For this purpose, we used SWAT to
build the hydrological model and SWAT-CUP to calibrate and validate the model.
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2. Materials and Methods

2.1. Study Area

Istanbul is located in the north-west of Turkey within the Marmara region, intersecting two
continents, namely Asia and Europe. The surface area of Istanbul is 5540 km2. Forest territories cover
44% of the city, mainly in the northern part. A large majority of the settlements (with a 2700 capita/km2

population density) are concentrated on the south coast of the city (Figure 1). The city has a transitional
climate, impacted by the Black Sea to the north, and the Marmara Sea and the Aegean Sea to the south.
The northern parts of the city, where forested areas mostly lie, is affected by northerly colder air masses
of maritime and continental origins, whereas the southern part shows the general characteristics of the
Mediterranean climate [31]. The average temperature in winter months is between 2 ◦C and 9 ◦C, and
in summer months between 18 ◦C and 28 ◦C. The city receives about 815 mm of precipitation per year
as a long-term average, according to the recorded stations in the city [32].

 
Figure 1. Istanbul city boundary and main land cover classes.

Istanbul has a population of nearly 15 million people, and it is expected that this number will
grow to 21 million by 2050 [16,18]. In parallel with the increase in population, daily water consumption
will grow due to changes in lifestyle, income level and eating habits. Today, gross water demand in
the city is estimated to be 175 L/capita-day, and this figure is expected to reach 225 L/capita-day by
2050 including industrial usage and NRW. Figure 2 shows the historical population changes and water
demand of Istanbul.
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Figure 2. Population changes and annual water demand of Istanbul between 1975 and 2016.

As of today, 15 drinking-water reservoirs operate to meet the demand for potable water in Istanbul.
To meet the water demand of the Istanbul metropolitan area, ISKI had to expand its service area beyond
the city border (Figure 3). Currently, ISKI is responsible for the management and the protection of the
water resources located in different administrative regions to supply drinking water to the Istanbul
metropolitan area. There are several ongoing projects to increase the potential water capacity and
protect catchments for the future. Six of the main drinking-water reservoirs and their watersheds are
within the city border, namely, Terkos, Buyukcekmece, Alibey, Sazlıdere, Omerli, Elmalı and Darlık;
and the rest, the Kazandere and Papucdere Reservoirs, Istranca Creeks and the Melen System, are in
neighboring cities (Figure 3). Istanbul has an unbalanced distribution in terms of its water resources
and population between the Asian and European sides. In numbers, the Asian side has 77% of the
water resources (including the Melen System) while it hosts 35% of the population (Table 1).

Table 1. Water resources and the population distribution for Istanbul.

Water Resources Population Annual Water Potential (Million m3/Year)

Asian side * 5,250,000 1909 (77%)
European side 9,750,000 568 (23%)

Grand annual total 15,000,000 2477

Note: * Greater Melen Dam and Melen Stage III Transmission Line included (to be constructed in 2018).

There are plans for the Melen watershed, located in the western part of the Black Sea Region
and 180 km to the east of Istanbul (Figure 3), to provide water to Istanbul in the medium and long
term [33]. In order to convey water from the Asian side to the European side, a 6-m diameter and
5551-m long Bosphorous tunnel was constructed. The tunnel goes 135 m below sea level, crossing the
two continents, with a capacity to transfer 3 million m3 of water daily [23].

In order to investigate the water-resources availability of Istanbul, we studied the current
watersheds of the city as well as the surrounding potential catchments of Istanbul. This area is
located between 40.3 to 42.1 north latitude and 27.1 to 31.7 east longitude, which includes the area next
to Istanbul, the Black Sea coast of Trakya Region (Istranca Sub-region), Kapıdag Peninsula, Izmit Bay,
the Sapanca and Iznik Lake watersheds, downstream of Sakarya River, and the Melen watershed in
the Western Black Sea Basin in Turkey (Figure 4). The total study area is around 20,790 km2. Although
there are more flow stations maintained by the State Hydraulic Works (DSI) in the region, 25 stations
were found to be suitable over the area for this study. Among these, 12 gauge stations are within the
current watersheds of Istanbul, and 13 are located in the remaining parts of the study area (Figure 4).
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Thus, we used these hydrometric stations for regionalization of the hydrological model parameters in
the ungauged catchments.

 

Figure 3. Watersheds used to supply drinking water located both in the Asian and European sides of
Istanbul, with administrative boundaries over the region.

 

Figure 4. Location of the water resources of Istanbul, topography, rivers, climate grids and discharge
stations used in the model.
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2.2. SWAT Model

SWAT is a hydrological model developed by the US Department of Agriculture (USDA)
Agricultural Research Service [34,35]. It is a continuous-time, semi-distributed, process-based model,
developed to evaluate alternative management strategies on water resources and non-point source
pollution in large river basins [36].

Water balance is the driving force behind all the processes in SWAT because it impacts plant growth
and the movement of sediments, nutrients, pesticides and pathogens [36]. In SWAT, a watershed is
divided into multiple sub-basins, which are then further subdivided into hydrologic response units
(HRUs) based on unique combinations of land use, soil, management and topographical features. The
model simulates hydrology of a watershed in two phases. In the first phase, called the land phase, the
hydrological processes of a watershed are simulated at the HRU level and water balance calculated for
each sub-basin. The pathways of water movement in the land phase simulated by SWAT are given as
canopy storage, surface runoff, evapotranspiration, infiltration, lateral sub-surface flow, return flow,
revap from shallow aquifers, and percolation to the deep aquifer. In the second phase (the routing
phase), after the loadings of water, sediment, nutrients and pesticides are determined, and loadings
are routed through streams and reservoirs within the watershed [37]. A schematic representation of
hydrological cycle elements simulated by SWAT is given in Figure 5.

Figure 5. Schematic representation of hydrological cycle elements in SWAT.

More details and model equations can be found in the SWAT technical documentation
(http://swatmodel.tamu.edu) and in Arnold et al. [34]. A general overview of SWAT model use,
calibration and validation is discussed by Arnold et al. [36], and historical development, applications,
and future research directions are summarized in Gasmann et al. [38] and Douglas-Mankin et al. [35].

2.3. Model Inputs and Setup

The SWAT model requires a land-use map, climate data, soil map, and topography. Due to the
lack of local data to build a model, data required for this study were compiled from global datasets.
River discharges and water consumption rates were obtained from local administrations (Table 2).

The soil map was produced by the Food and Agriculture Organization/United Nations
Educational, Scientific and Cultural Organization (FAO–UNESCO) global soil map [39], which provides
data for 5000 soil types (65 for Turkey) comprising two layers (0–30 cm and 30–100 cm depth)
at a spatial resolution of 10 km. The land-use map was obtained from the CORINE 2000 Land
Cover datasets (http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2000-raster-3)
at a resolution of 100. A digital elevation model (DEM) was constructed from the Shuttle Radar
Topography Mission (SRTM) database at a 90-m spatial resolution (http://srtm.csi.cgiar.org/). Three
different climate database sources were available for the region: (1) measured data collected from
the State Meteorological Service (MGM) in 17 temperature and rainfall climate stations with <15%
missing data for the period 1960–2013; (2) gridded data constructed from Climate Research Units
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(CRU) with a 0.5◦ resolution for the period 1970–2007, and 0.25◦ gridded data from Climate Forecast
System Reanalysis (CFSR) for the period 1979–2014, amounting to 48 and 103 grid points, respectively.

Table 2. Data description, source, and resolution in the current study.

Data Type Source
Data
Resolution

Digital elevation map
(DEM) Shuttle Radar Topography Mission (SRTM) http://srtm.csi.cgiar.org/ 90 m

Land use
European Environment Agency CORINE Land Cover (year 2000)
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-
2000-raster-3

100 m

Soil FAO-UNESCO global soil map http:
//www.fao.org/nr/land/soils/digital-soil-map-of-the-world/en/ 5 km

Climate data
Climate Research Unit http://www.cru.uea.ac.uk 0.5◦
Climate Forecast System Reanalysis (CFSR)
http://cfs.ncep.noaa.gov/cfsr/ 0.25◦

Turkish State of Meteorological Service http://www.mgm.gov.tr/ 17 Stations

River discharge Turkish State of Hydraulics http://en.dsi.gov.tr/ 25 Stations
Monthly

Population and water
consumption rates

Turkish Statistical Institute http://www.turkstat.gov.tr/Start.do Yearly
Istanbul Water and Sewage Administration www.iski.gov.tr/

We used the ArcSWAT 2012 interface to set up the model. Despite using a high-resolution
DEM in the model, in order to avoid the discrepancies, particularly during the stream network
delineation, we used the burn-in feature of ArcSWAT with river data obtained from the Google Earth
software. Also, to delineate coastal catchment areas more accurately, a threshold drainage area of 100 ha
was chosen. Inland sub-basin outlets were manually added to represent reservoirs, gauge stations,
main river channels, and other topographical features in the watershed; while coastal outlets were
created automatically by the software based on the given threshold. As a result, the study area was
configured with 1335 sub-basins, which were further discretized into 3315 HRUs. The model could
not represent 4% of the real area as a result of the precision of basin delineation near the coastal zones.
However, this missing area does not affect principal objectives of the study. The total simulated area in
the current model is 19,960 km2.

Except for two stream gauges, none of the gauges are affected by the reservoir operations.
Therefore, we did not use the reservoir operation rule in the current model. The available river
discharge data in the region varies between 10 years and 32 years. Five elevation bands in each
sub-basin were established to adjust for orographic change in temperature (−6.5 ◦C km−1) and rainfall
(100 mm km−1). Potential evapotranspiration (PET) is simulated using Hargreaves method [40],
actual evapotranspiration (ET) is estimated based on the methodology of Ritchie [41], and surface
runoff is calculated by the Soil Conservation Service (SCS) curve number procedure [42].

According to the acquired data (Table 2), the model was simulated from 1977 to 2013 (37 years),
and the first 3 years were used as a warm-up period to allow the processes simulated to reach a dynamic
equilibrium and decrease the uncertainty of the initial conditions of the model. The simulation includes
both dry and wet years occurring in the historical period. Figure 6 depicts the yearly cumulative
precipitation in Istanbul between the years 1977 and 2014, including both drought and wet periods.
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Figure 6. Annual precipitation of Istanbul including severe dry and wet periods for the city in the last
50 years.

Due to the availability of more than one climate database, we evaluated three different datasets as
a preliminary analysis of the model. According to the preliminary model results during the model
set-up, CFSR outperformed the local dataset and CRU captured better the streamflow dynamics and
also the total rainfall distribution over the study area. Most of the watershed area evaluated in this
study are protected zones without any settlements [24], thus land-use changes are negligible.

For model calibration, validation and uncertainty analysis we used the SUFI-2 algorithm [43,44]
in the SWAT-CUP software. All uncertainties in the model, such as a parameter, measured data
(e.g., stream flow), driving variables (e.g., rainfall), and conceptual framework, are expressed as
a set of parameter ranges by SUFI-2. The algorithm tries to capture most of the measured data
within the 95% band of prediction uncertainty (95PPU). The uncertainty (95PPU) is quantified at
the 2.5% and 97.5% levels of the cumulative frequency distribution of an output variable obtained
using the Latin hypercube sampling technique. Two indices are used to measure the goodness
of calibration/uncertainty performance, the P-factor (ranges 0 to 1), which is the percentage of
data captured by 95PPU band, and the R-factor (ranges 0 to ∞), which is the average thickness
of the uncertainty band divided by the standard deviation of the related measured variable [43,44].
These two indices are used to judge the strength of the calibration procedure where a value of
>0.7 for the P-factor and a value of around 1 for the R-factor would be satisfactory, depending
on the study [11,12]. More information about the algorithm is given by Abbaspour et al. [11,44].
SUFI-2 allows the use of different objective functions such as R2, RSR or Nash–Sutcliffe efficiency
(NSE) [45]. Despite the fact that we used NSE as an objective function, percent bias (PBIAS) [46] and
R2 of the calibration/validation results were also evaluated as well as the P-factor and the R-factor in
order to assess the model performance and model output uncertainty.

3. Results and Discussion

3.1. Calibration and Validation of River Discharges

Although SWAT parameterization has been done based on the parameters given in Table 3
together with initial and final ranges for the calibration, in order to improve model performance
especially in high altitudes where snow processes become predominant, we changed the snow melt
temperature (SMTMP), snow fall temperature (SFTMP), and maximum and minimum snowmelt rate
factors (SMFMX, SMFMN) to −3.71, 3.21, 5.68 and 3.05, respectively. These numbers were obtained
after several simulations in SWAT-CUP. Adjusting the parameter related to snow processes improves
the model’s performance, in particular at the discharge stations located in mountainous region of
the study area. After fixing these parameters (to their best values obtained by the preliminary runs),
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the protocol given in Abbaspour et al. [11] was followed for calibration/validation as well as sensitivity
and uncertainty analysis.

Table 3. List of the model calibration parameter.

SWAT Parameter Definition
Initial
Range

Final Range t Value p Value

r__CN2.mgt SCS runoff curve number for
moisture condition II −0.5 to 0.5 −0.20 to 0.39 −9.742 6.73 × 10−21

r__SOL_AWC().sol Soil available water storage capacity
(mm H2O/mm soil) −0.5 to 0.5 −0.06 to 0.80 0.390 0.696

r__ESCO.hru Soil evaporation compensation factor −0.2 to 0.2 −0.21 to 0.06 −0.572 0.567

r__GW_REVAP.gw Groundwater revap. coefficient −0.5 to 0.5 −0.13 to 0.60 0.033 0.973

r__GWQMN.gw Threshold depth of water in shallow
aquifer for return flow (mm) −0.5 to 0.5 −0.52 to 0.15 −1.615 0.106

r__REVAPMN.gw Threshold depth of water in the
shallow aquifer for “revap” (mm) −0.5 to 0.5 −0.50 to 0.16 1.695 0.090

r__ALPHA_BF.gw Base flow alpha factor (days) −0.5 to 0.5 0.00 to 0.97 4.497 8.28 × 10−6

r__SOL_K().sol Soil conductivity (mm h−1) −0.5 to 0.5 −0.09 to 0.72 1.851 0.064

r__SOL_BD().sol Soil bulk density (g cm−3) −0.5 to 0.5 −0.03 to 0.89 0.011 0.990

Note: The term “r__” was used for the relative changes in the parameter between the ratio of a given range,
“()” was used for all layers of soil, and the extension of the parameter states the file name of the SWAT files.

Nine SWAT parameters were selected for model calibration for all discharge stations. Half of the
river discharge data were used for calibration and the remainder were used for validation.
The parallel processing option of SWAT-CUP [47] considerably reduced the model simulation time.
One iteration and 600 simulations with nine parameters were adequate for obtaining satisfactory
calibration and validation results. There are different gridded climate datasets covering the region of
our study. Using these datasets could be quite useful for evaluating the uncertainty caused by using
different input data [48]. Furthermore, scientists may consider the possibility of using a stochastic
hydrological rainfall-runoff model if there are not enough data of precipitations in a specific study
area [49,50].

As expected, the CN2 parameter was the most sensitive parameter for outflow, followed by
ALPHA_BF. Although the SOL_BD and GW_REVAP parameters seemed to be less sensitive as
indicated by their t-stat and p-value (Table 3), they contributed to increased model calibration results
for river discharges considerably. t-stat depicts parameter sensitivity: the larger the t-value, the more
sensitive the parameter; whereas the p-value indicates the significance of the t-value: the smaller the
p-value, the less chance of a parameter being accidentally assigned as sensitive [11].

Twenty-five gauge stations on discontinuous stream networks were parameterized and calibrated
simultaneously. R2 ranges from 0.39 to 0.82 for calibration, and 0.41 to 0.82 for validation, while NSE
values vary from 0.31 to 0.81 for calibration, and 0.33 to 0.81 for validation. Model outputs for most of
the discharge stations can be judged as satisfactory according to Moriasi et al. [51]. Table 4 represents
the calibration and validation results and model performance criteria for the 25 gauges stations used
in this study.

Except for the two gauge stations (Nos.: 1190 and 1322) our simulations captured the 60–90%
(P-factor values ranges from 0.6 to 0.9) of observed data during simulation (Table 4). Poor simulation
results at these stations originate from high base-flow simulations in dry periods and high peak
simulations during wet periods. This is due to the CFSR climate station located in the east of the Iznik
Lake (Figure 4), which overestimates the precipitation in these catchments. The larger R-factor values
representing higher uncertainty for the stations (gauge station Nos.: 243, 341 and 656) located on the
Istanbul city border, is most likely a result of rapid urbanization having occurred in that catchment
in the last few decades. Most of the stations in the study area had R2 and NSE of more than 0.5 both
in calibration and validation (Figure 7). Poor simulation results were obtained downstream of areas
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with intensive water-resource development (regulators, water store operations) and urbanization
(increasing settlement and urban drainage systems) because of processes that were not included
the model.

Table 4. Model performance indicators of 25 gauge stations for calibration and validation.

Gauge
Station No.

Calibration Validation

P Factor R Factor R2 NSE PBIAS P Factor R Factor R2 NSE PBIAS

5 0.71 1.24 0.39 0.31 −26.8 0.67 0.80 0.53 0.50 8.3
50 0.75 1.04 0.66 0.65 1.4 0.75 1.14 0.41 0.35 6.2

108 0.90 1.32 0.78 0.73 14.2 0.72 1.20 0.50 0.33 21.9
171 0.83 1.03 0.86 0.84 −1.2 0.78 1.37 0.58 0.43 −5.5
243 0.82 1.53 0.61 0.48 −23.1 0.81 1.10 0.78 0.78 1.8
252 0.62 0.83 0.82 0.81 3.8 0.49 0.86 0.68 0.67 4.4
293 0.62 0.72 0.80 0.79 15.8 0.51 1.06 0.57 0.46 −25.0
341 0.74 1.49 0.78 0.69 −5.2 0.81 1.21 0.69 0.68 9.3
526 0.69 1.10 0.67 0.64 −6.8 0.60 1.08 0.65 0.64 −5.5
541 0.80 1.00 0.52 0.50 16.6 0.81 0.93 0.80 0.79 9.2
542 0.77 1.03 0.55 0.53 14.2 0.83 0.98 0.77 0.77 5.1
571 0.69 0.97 0.68 0.68 −0.1 0.70 0.89 0.72 0.72 −7.2
577 0.72 0.97 0.79 0.77 −8.3 0.54 0.77 0.48 0.48 8.9
656 0.64 1.46 0.78 0.37 −56.6 0.57 1.32 0.81 0.55 −64.5
670 0.83 1.28 0.79 0.68 −12.3 0.67 1.63 0.80 0.41 −49.9
672 0.84 1.10 0.81 0.77 15.6 0.89 1.10 0.85 0.81 15.6
764 0.74 1.01 0.55 0.53 8.1 0.73 1.00 0.69 0.67 7.1
768 0.82 1.05 0.74 0.74 2.5 0.70 1.57 0.64 0.31 −39.1
835 0.77 1.23 0.68 0.61 −4.2 0.84 1.15 0.82 0.81 4.4
1016 0.72 1.37 0.69 0.50 −33.9 0.65 1.17 0.79 0.78 −13.1
1028 0.73 0.70 0.64 0.59 18.3 0.74 0.89 0.69 0.61 25.3
1047 0.65 0.75 0.66 0.53 32.1 0.69 0.78 0.74 0.65 28.9
1190 0.43 0.71 0.68 0.60 3.5 0.31 1.21 0.71 0.65 −31.3
1230 0.78 1.20 0.74 0.72 −10.3 0.76 1.18 0.74 0.74 −2.0
1322 0.32 0.68 0.62 0.59 −14.0 0.25 0.57 0.57 0.52 −6.2

 

Figure 7. Comparison of simulated and observed discharge data using the coefficient of determination
(R2) and Nash–Sucthlife coefficient (NSE) for the calibration and validation period.
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Average discharge rates of the rivers in the study area varies from 0.2 m3 s−1 to 44 m3 s−1

(Figure 8). Extreme discharge values of about 150 m3 s−1 were captured by our model quite well.
For the simplicity and clarity of graphs, calibration and validation periods are shown in one graph
continuously (Figure 8).

 

 

 

Figure 8. Illustration of the SWAT-CUP output for the simulation period depicting the observed,
simulated and 95% prediction uncertainty (95PPU). These hydrographs belong to gauge station Nos. 50,
243, 542 and 835, respectively.
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3.2. Water Availability

To show the spatial distribution of precipitation, mean annual rainfall is depicted over the
study area (Figure 9a). The catchments on the Black Sea coast of the Asian side receive the highest
average annual rainfall in the study area where the major water resources of the city are located.
The southern part of Istanbul, with an average annual rainfall of 550–720 mm, receives the least
amount of precipitation. Model results of blue and green water are represented at the 50% probability
level of the the 95PPU for the period 1977–2013. These were calculated for 1335 sub-basins (Figure 9b–d).
Blue-water (water yield + deep percolation) potential of the watershed on the Asian side is greater
than the European side; likewise, green-water storage (soil moisture) (Figure 9b,c). The results reveal
that the average blue-water potential of Istanbul is 630 mm, whereas the green-water flow and storage
are 382 mm and 129 mm, respectively.

 

Figure 9. Spatial distribution of simulated average (1980–2013) annual (a) precipitation; (b) blue-water
resources; (c) green-water flow and (d) green-water storage for the study area.

Blue-water potentials reach up to 943 mm year−1 in some catchments such as Omerli, Darlık and
Melen which are located on the Black Sea coast. Besides, Buyukcekmece represents poor potential
ranging from 0 to 316 mm year−1 due to less precipitation and a higher potential evapotranspiration
rate as well as urbanization in that catchment. The spatial distribution of soil moisture (green-water
storage) indicates higher values ranging from 100 to 150 mm year−1, especially in the eastern part
of the study area (Figure 9c). In the current situation, small-scale rainfed agricultural activities play
an important role for local villages. Therefore, optimal management strategies are necessary to achieve
a balance between supplying water to Istanbul and supporting the agricultural activities and economic
growth as well as sustaining high water quality in this region. As shown in Figure 9d, due to the amount
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of available water for transpiration and evaporation, green-water flows in Asian-side watersheds
(495 mm year−1) are higher in comparison to the European side (386 mm year−1).

To illustrate the reliability of water resources over the years, we calculated the coefficient of
variation CV = σ/μ × 100 for the years 1980–2013 in each sub-basin (Figure 10), where σ is the
standard deviation and μ is the mean of the variable.

Figure 10. Coefficient of variation (CV) of the modelled annual (1980–2013) (a) blue-water resources;
(b) green-water flow and (c) green-water storage.

CV is an indicator of the reliability of the water resources from year to year [9]. The smaller
the CV, the smaller the year-to-year variability of a variable and the more reliable the estimates.
Blue-water flows are quite important due to their contribution to the reservoir used for domestic
water demand. Although the temporal variation of the blue-water resources is not very large, water
resources on the Asian side seem more reliable than the European side, especially in the Darlık,
Sungurlu, Isaköy and Kabakoz watersheds, which have the smallest CV values in the study area
(Figure 10a). These values indicate a higher reliability of this resource over time and, hence, a less risky
opportunity for a water-supplying project. Green-water storage (soil moisture) is generally relatively
less variable in most of the area between the values 0–49%, except the catchments near Iznik Lake,
which is located in southern part of the study area, and which has CV values between 167% and 303%
(Figure 10b). This situation is most likely caused by excessive industrial consumption and agricultural
irrigation in the region. Temporal variation of evapotranspiration (green-water flow) varies over the
study area (Figure 10c) and larger values are obtained in the eastern part of the study area where water
availability is greater (Figure 9d).

Model results in hru level aggregated to watershed level and the water potential of each reservoir
include both Asian and European sources as well as the current and planned water resources together.
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We calculated the water potential by multiplying the catchment area with blue-water potential (water
yield + deep aquifer recharge) of each watershed, and plotted 95% prediction uncertainty band for
each (Figure 11).

Figure 11. Comparison of the simulated 95PPU SWAT prediction (1980–2013) for water potential with
the available data from the Istanbul Water and Sewerage Administration (ISKI) for the watersheds
of Istanbul.

As shown in Figure 11 the ISKI estimates are within or close to the 95PPU of our model predictions.
Larger differences between model results and ISKI values are observed in the watersheds that are the
major reservoirs of Istanbul. This result might be due to possible water losses such as evaporation from
the reservoirs, transfer operations, water usage in the watershed, and the effects of urban drainage
systems, which were not included in our calculations of water potential for ISKI. Thus, our model
gives the “gross” water potential of each watershed. A considerable part of water losses occurs in aged
and poorly managed water distribution systems [52–54]. This phenomenon needs to be measured and
calculated in detail to estimate the “net” water potential of the city.

According to the prediction of water potential, the watersheds located on the Asian side constitute
almost 75% of the total water resources of Istanbul. The Melen watershed has the highest water
potential with 1.5 billion m3 year−1 (45% of total water resources), and is followed by Omerli, Terkos,
and Buyukcekmece, which are currently in use. These three watersheds will be essential for the city
considering their large water potential. The Omerli, Terkos and Buyukcekmece sources will meet 25%
of the total demand in future. As these sources are located in the Istanbul administrative boundary
and under pressure of urbanization, protection of these catchments will assure adequate water supply
to the city next to the planned resources (Kabakoz, Isakoy and Sungurlu catchments).

Figure 11 also shows that the parameter range obtained using data from 25 discharge stations
simultaneously yields quite satisfactory results for the ungauged basin in regions such as Elmali II,
Darlik, Istanca Creeks, Kazandere and Papucdere.

4. Conclusions

Socio-economic developments, rapid urbanization, and population increase have put pressures
on Istanbul’s water resources in the last few decades. Thus, matching the water demand of the city
requires effective water-management strategies and more projects to supply water from different
administrative boundaries. Quantification of available water is an essential part of the management of
the water resource of Istanbul. This study contributes significant insights into the water availability of
the city and its vicinity, at both regional and watershed level.
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Model results reveal that watersheds supplying drinking water on the Asian side are more reliable
and more abundant. However, the majority of the population (thereby most of the water demand) is
on the European side; planned water resources for the future are mostly located on the Asian side and
are outside the city boundaries. Water transfers from these catchments are vital to meeting the water
demands of Istanbul.

Water resources on the Asian side encompass almost 75% of the total potential. These catchments
(except Omerli) are pristine and so far not affected by heavy urbanization. Therefore,
optimal management strategies in these catchments play a significant role in balancing water supply
and local activities (agriculture, energy production, recreation etc.). Also, protection of these catchments
in terms of not only water quantity but also quality is vital to the city. The Melen watershed is of
utmost importance as it will provide 45% of the total water demand of the city in the future. Melen
and its significant water potential (1.5 billion m3 per year) could be highly beneficial in the case of
increasing population and in drought periods. In addition to increased water potential capacity, water
re-use, decreasing water loss in the supply network, upgrading urban drainage system, rainwater
harvesting, and the efficient use of available water will make better use of available water in Istanbul.

More detailed analysis in the study area covering quantitative assessment of each watershed for
different scenarios such as drought, socio-economic change, land-use conditions, as well as climate
change scenarios, could provide more information and significant knowledge of value to policy-makers,
local administrators and experts. The well-established and calibrated model developed in this study
provides a strong basis for forthcoming studies in the Istanbul megacity regarding reservoir operations
and management, the impact of climate change, as well as water-quality and biodiversity issues in
the reservoirs.
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Abstract: The upper reach of the Yangtze River is an ecologically sensitive region where water loss,
soil erosion, and nonpoint source (NPS) pollution are serious issues. In this drainage area, regosol
is the most widely distributed soil type. Cultivation on regosol is extensive and total nitrogen (TN)
has become a common NPS pollutant. Artificial rainfall experiments were conducted to reveal the
influence mechanisms of rainfall and terrain on TN losses from regosol. The results showed that
there were positive correlations between precipitations and TN loads but negative ones between
precipitations and TN concentrations. Furthermore, negative correlations were more obvious on
fields with slopes of 5◦ and 25◦ than on other slopes. With increasing rainfall intensity, TN loads rose
simultaneously. However, TN concentration in runoff-yielding time presented a decline over time.
As far as terrain was concerned, TN loads grew generally but not limitlessly when slopes increased.
Similarly, TN concentrations also rose with rising slopes; upward trends were more obvious for
steeper slopes. Furthermore, the initial runoff-yielding time became longer for steeper slopes and the
differences under various rainfall intensity conditions diminished gradually.

Keywords: total nitrogen; artificial rainfall experiments; rainfall; terrain; regosol; influence mechanisms

1. Introduction

With economic and social development, water contamination has become a serious problem
in many countries [1–3]. With control of point source contamination, nonpoint source (NPS)
contamination has become dominant cause of water contamination due to its multi-source, wide
distribution, the difficulty of controlling it and so on [4–6]. Nowadays, identifying effect factors and
their mechanisms of influence on NPS pollutant exports have become research hotspots in the field of
NPS pollution control [7–9].

Rainfall is known as the driving force of NPS pollution, while terrain is the main effect factor in
the generation and transport of NPS pollutants [10,11]. Where NPS pollutants are concerned, total
nitrogen (TN) is critical, being dissolved in runoff and adsorbed in sediment with soil and water
loss [12–14].

The Yangtze River is the third longest river in the world and the longest in China. Its drainage
area accounts for 18.8% of the land area in China [15–17]. The upper reach of the Yangtze River is
defined from the source of the Yangtze River to the Three Gorges Dam (the largest dam in the world)
and with a length of 4504 km and a drainage area of 106 km2 [18]. Water pollution control for the
upper reach of the Yangtze River plays a significant role in water and soil conservation, maintaining
biodiversity, and ensuring water environment security in the whole river basin [19–21]. In the upper
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reach of the Yangtze River, regosol is the dominant soil; it is suitable for cultivation but erodible [22].
Therefore, understanding the influence mechanisms of rainfall and terrain on total nitrogen losses from
regosol is essential for NPS pollution research, pollution control and the environmental protection of
the Yangtze River’s water [23].

In recent decades, a great deal of research concerning the influence of rainfall and terrain on NPS
nitrogen pollution has been carried out worldwide [24–26]. A comparative study of the effects of
rainfall events on the removal of NPS nitrogen determined the efficiency ratio indexes, load summation
and load regression in the Kyeong—a stream basin, South Korea [27]. Rainfall shortly after the surface
application of poultry manure was shown to have the potential to significantly increase surface
runoff TN concentration in Iowa, United States [28]. A study carried out in a typical rain field of
black soil in Northeast China indicated that different tilling systems led to distinctively different
concentrations of losses of water-soluble nitrogen and particulate nitrogen, and loss of water-soluble
nitrogen and particulate nitrogen per unit area [29]. Land use, sediment and sand content play
dominant roles in affecting NPS pollutant export and contribute to the high heterogeneity of TN
in regosol in the Sichuan Province in the upper reach of the Yangtze River [30]. Wilson and Weng
found that concentrations of TKN, nitrate, nitrite and TN in surface water depended heavily on the
spatiotemporal distribution of land use/land cover in the Lake Calumet area near Chicago, United
States [31]. However, previous studies have mostly concentrated on the effects of land use and sand
content on nitrogen loss in watersheds, while the influence mechanisms of rainfall and terrain with
respect to nitrogen losses have not been thoroughly discussed. Therefore, these influence mechanisms
need to be better understood; one method involves artificial rainfall experiments on regosol under
simulated rainfall and terrain conditions.

The objective of this study is to reveal the influence mechanisms of rainfall and terrain
characteristics on TN losses from regosol. This research aims to reflect how TN losses from regosol
are affected by rainfall and terrain characteristics such as precipitation, rainfall intensity, rainfall
duration, and slope conditions. For this study, artificial rainfall experiments were conducted in which
rainfall and terrain conditions were divided into different levels. The first part of this paper shows the
relationships between rainfall conditions and TN load, TN concentration, and the initial runoff-yielding
time. The effects of terrain conditions on TN load, TN concentration, and the initial runoff-yielding
time will also be discussed. Our goal is to give researchers a reference in understanding transport
processes, establishing simulation models, and identifying parameters for modeling NPS pollution.
This research may also provide support for decision making by administrators of NPS pollution control
and land management.

2. Materials and Methods

2.1. Experimental Materials

Regosol soil, which accounts for 13.18% of the upper reach of the Yangtze River, has the
characteristics of abundant fertility but high erodibility, resulting from hillslope in the drainage
area (Figure 1) [32]. In our research, the experimental field was located in Chongqing City in the upper
reach of the Yangtze River, where soil and water loss and NPS pollution are serious problems because
of abundant rainfall and steep slopes [33]. The experimental field (106◦43′ E, 29◦53′ N) was located
on a hillside of the Beibei district of Chongqing City where the soil type is regosol. Precipitation and
rainfall intensity in that location were the factors representing rainfall characteristics, and the slope
was chosen to represent typical terrain, one that has significant effects on TN losses.
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Figure 1. Distribution of regosol in the upper reach of the Yangtze River.

The 20 cm of topsoil was selected as soil samples to eliminate the spatial heterogeneity of physical
and chemical properties for various soil samples. The regosol was crushed gently, passed through a
7 mm sieve to remove stones and impurities, air-dried by the oven drying method to reduce initial
soil water content rate to 12.16%, and then mixed thoroughly. The physical and chemical properties
of the soil samples are listed in Table 1. Regosol is thin, usually less than 50 cm; little was more
than 1 m deep. Generally, regosol contains calcium carbonate, showing a neutral or slightly alkaline
reaction. The sample had a clay mineral content of 7%–12% smectite, 8%–10% illite, 7%–11% chlorite,
35%–40% quartz, 27%–31% feldspar, 3% haematite, and 3% others. The microbiological component
was composed of 7.0 × 106 bacteria per gram of dry soil, 6.7 × 104 actinomycetes per gram of dry soil,
and 2.1 × 103 fungi per gram of dry soil. Other components also influence nitrogen retention, such as
organic matter content, soil texture, and so on.

Table 1. Physical and chemical properties of soil samples.

Soil Layer
(cm)

Unit Weight
(g/cm3)

Initial Soil Water
Content Rate (%)

Organic Matter
(g/kg)

TN
(g/kg)

TP
(g/kg)

0–20 1.30 12.16 8.75 0.76 0.68

Microbes have effects on the forms of nitrogen in soil. For example, the existence of nitrogen-fixing
bacteria and phosphorus bacteria could add available nitrogen content in soil, denitrifying bacteria
could slow the conversion of available nitrogen to ineffective nitrogen, and, in soil, some bacteria
activate nitrogen and turns it into nutrients that plants can absorb [34]. Furthermore, other soil
components have effects of the background value of nitrogen; for instance, the content of clay particles
in soil could affect the mass fraction of TN in soil [35]. Meanwhile, those impacts mainly related to
temperature [36]. However, in this study, TN was taken as the pollutant, which included various
forms of nitrogen; therefore, the impacts of the conversion among various forms of nitrogen on TN
concentrations and TN loads could be ignored. In addition, the background value of TN in soil and
temperature were constant in the experiments. Therefore, it could be deduced that microbes and other
soil component were not the key factors that caused changes of TN concentrations and TN loads in
the rainfalls.

Precipitation and rainfall intensity were selected as the variables to study rainfall characteristics,
and the slope was based on the typical terrain in order to study their significant effects on TN losses.

2.2. Experimental Devices

For a small-scale artificial rainfall experiment, the experimental plot is usually less than 5 m2 with
the length, width and depth of the soil box at 1–2 m, 0.5–1 m and 0.22–0.5 m, respectively [37]. In our
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experiments, three identical steel soil boxes, each 1.0 × 0.6 × 0.25 m and with two wheels at the base,
were designed to minimize experimental error. Each soil box had apertures on the side near the wheels
to allow runoff and sediment to transport freely. The bottom of the box was extended 0.1 m outward
along the long side and a groove with small holes was set on the right-hand side of the extension to
collect runoff and sediment. On the opposite side of the groove, a regulating screw was attached so
that the slope angle of each soil box could be adjusted from 0◦ to 65◦. The structure of the soil boxes is
shown in Figure 2.

Figure 2. Structure of the soil box.

In our experiments, a Norton nozzle-type rainfall simulator was adopted, consisting of a water
supply system as well as a spraying system and produced in the United States (Figure 3). The height of
the nozzle was 2.5 m and the hydraulic pressure was 0.04 M Pa, which made the sizes and distribution
of raindrops were similar to those in nature. The rainfall intensity could be set at different levels by
changing the frequency of nozzle swings and was stable to maintain a consistent condition.

Figure 3. Structure of the Norton nozzle-type rainfall simulator.

2.3. Experimental Design

As mentioned in Section 2.1, taking soil from a hillside where the soil type was regosol and
the preprocessing of the regosol included crushing, sieving, air drying, and mixing. Afterwards,
five 5-cm soil layers were compacted in a soil box so that the lower soil layer was loosed before
the upper one was filled, to prevent soil stratification. After the filling was completed, a cutting
ring method was used to guarantee the soil bulk density was about 1.30 g/cm3, similar to that in
nature. Domestic water with a TN concentration of 1.68 mg/L was used as an artificial rainfall source
to simulate rainfall. In Chongqing City, the pH of domestic water is 7.93, that of rainwater is 5.64,
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and difference can be found between them. Previous researches have demonstrated that pH has
impacts on adsorption-desorption reactions [38,39]. In this research, the major form of TN was the
dissolved one and the durations of experiments were relatively short, which led to a relatively weak
adsorption-desorption effect. For those concerns, experimental error caused by such difference is
regarded as acceptable.

The artificial rainfall source was assumed to have a composition similar to that of natural rainwater.
According to precipitation data supplied by the National Meteorological Information Center, maximum
rainfall intensity in Chongqing City in recent decades has exceeded 100 mm/h. Therefore, four
rainfall intensities were adopted in this study: 30 mm/h, 60 mm/h, 90 mm/h and 120 mm/h.
Normal precipitation from one rainfall would not usually exceed 80 mm; in combination with the
designed rainfall intensities, we set rainfall duration at 40 min to simulate natural conditions and make
the comparison and analysis more intuitive. Five slopes (5◦, 10◦, 15◦, 20◦ and 25◦) were designed
representing regional terrain; moreover, the Water and Soil Conservation Law of the People's Republic of
China prohibits cultivation or crop planting on fields with a slope of 25◦ or more. The 20 experimental
scenarios with various rainfall intensities and slopes are shown in Table 2.

Table 2. Scheme of artificial rainfall experiments.

Slope (A)

Rainfall Intensity (B)
30 mm/h (B1) 60 mm/h (B2) 90 mm/h (B3) 120 mm/h (B4)

5◦ (A1) A1B1 A1B2 A1B3 A1B4
10◦ (A2) A2B1 A2B2 A2B3 A2B4
15◦ (A3) A3B1 A3B2 A3B3 A3B4
20◦ (A4) A4B1 A4B2 A4B3 A4B4
25◦ (A5) A5B1 A5B2 A5B3 A5B4

In this research, runoff-yielding times for all scenarios were 40 min; specifically, rainfall times
were between 41.55 and 52.43 min. After runoff occurred on the soil surface of the soil boxes, it was
collected by water butts. Specifically, the runoff occurring within 5 min was gathered in a water butt;
therefore, all runoff for one scenario was collected in 8 water butts because runoff-yielding time for
each scenario lasted 40 min. By this means, runoffs in all scenarios were measured. The soil was
reloaded for each experiment to avoid influence caused by variations of soil water content and bulk
density. The runoff and its TN concentration were measured and monitored after each simulated
rainfall. As far as TN loss in regosol was concerned, dissolved nitrogen was the main form. Specifically,
dissolved nitrogen was mainly nitrite, and ammonium nitrogen was the major component of the
adsorbed nitrogen.

2.4. Data

In this study, the independent variables included precipitation, rainfall intensity, and slope,
while the dependent ones contained TN load, TN concentration, and the initial runoff-yielding time.
To ensure runoff-yielding time was 40 min for each rainfall, precipitations varied from 23.09 to
86.36 mm due to different rainfall intensities and the initial runoff-yielding times. Rainfall intensity
was 30 mm/h, 60 mm/h, 90 mm/h and 120 mm/h, and slopes of 5◦, 10◦, 15◦, 20◦, and 25◦ were
adopted to reveal the influence mechanisms of rainfall and terrain on TN in various scenarios in the
study area.

The TN load measured in these experiments contained not only dissolved nitrogen in the rainfall
runoff but also adsorbed nitrogen on the sediments. The general measure processes were as follows.
Firstly, water samples were filtrated, by which the supernatant containing dissolved nitrogen and
the sediments carrying adsorbed nitrogen were divided. Afterwards, the concentrations of dissolved
nitrogen in water samples and those of adsorbed nitrogen in sediment samples were measured. Finally,
TN concentration was achieved as the sum of dissolved nitrogen concentration and adsorbed one,
while mg/L was adopted as the unit. The initial runoff-yielding time took into account the interval
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between rainfall and runoff generation, because soil water content did not reach the saturation point
or generate runoff at the beginning of rainfall.

As mentioned above, the runoff occurring within one 5-min period was gathered in one water
butt. In order to measure TN concentration, water was sampled in each water butt, which indicated
that a measured TN concentration represented the average value in a corresponding 5 min. As far as
dissolved nitrogen in the water samples was concerned, its concentration was measured by alkaline
potassium persulfate digestion-UV spectrophotometric method [40]. The processes for determining
concentration of dissolved nitrogen were as follows. Firstly, a calibration curve was obtained to
calculate the difference between the corrected absorbance of the standard solution and that of a zero
concentration solution. Secondly, a 10 mL water sample and a 10 mL pure water were measured to
correct absorbance. Afterwards, the concentrations of water samples were achieved by the equation
(national standard water quality-determination of total nitrogen-alkaline potassium persulfate digestion UV
spectrophotometric method HJ 636-2012):

ρ =
(Ar − a)× f

bV
(1)

where ρ was mass concentration of TN in water sample (mg/L), Ar was the difference between the
corrected absorbance of water sample and that of blank test, a was the intercept of the calibration curve,
b was the slope of the calibration curve, V was the volume of water sample (mL), and f was dilution
ratio of the water sample. For quality control and quality assurance, the digestion temperature was
assured between 120 ◦C and 124 ◦C, and the digestion time was guaranteed as 50 min.

As for adsorbed nitrogen, its concentration was measured by semi-micro Kjeldahl method. Firstly,
1.0000 g of air-dried sediment sample was took, and its water content was tested. Secondly, the
sediment sample went through heating digestion, which included ones concerned and not concerned
nitrate and nitrite nitrogen. Blank tests of heating digesting were also taken. Thirdly, ammonia
was distilled, distillate was titrated with a 0.005 mol/L sulfuric acid standard solution, and the
volume of the acid standard solution was recorded. Lastly, the equation was adopted to calculate the
concentration of adsorbed nitrogen in sediment samples (national standard method for the determination
of soil total nitrogen (semi-micro Kjeldahl method) HY/T 53-1987):

ρ =
(V − V0)× CH × 0.014

m
(2)

where ρ was the concentration of adsorbed nitrogen in the sediment sample (mg/L), V was the volume
of sulfuric acid standard solution when distillate was titrated (mL), V0 was the volume of the sulfuric
acid standard solution when blank water was titrated (mL), CH was the concentration of the sulfuric
acid standard solution (mol/L), 0.014 was the millimol mass of nitrogen atom, and m was the mass
of the air-dried soil sample. Meanwhile, the pH of distillate was assured as alkaline to release the
ammonia completely so that accurate results would be attained. In addition, TN loads were obtained
as the products of runoffs and TN concentrations, which were based on those of dissolved nitrogen
and adsorbed one.

SPSS, software specialized for correlation analysis, linear, and nonlinear regression analysis [41],
was used to process the experimental data. The method of correlation analysis was adopted to analyze
the relationships between precipitation and TN load, precipitation and TN concentration, rainfall
intensity and TN concentration, rainfall intensity and the initial runoff-yielding time, slope and TN load,
slope and TN concentration, and slope and the initial runoff-yielding time. By analyzing TN loads and
TN concentrations under different rainfall intensities and slopes in the artificial rainfall experiments,
the effects of rainfall and terrain on TN load, TN concentration, and the initial runoff-yielding time
were revealed by correlation analysis.
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3. Results and Discussion

3.1. Effects of Precipitation on TN Losses

3.1.1. Effects of Precipitation on TN Load in Runoff

During the process of rainfall, dissolved nitrogen, including dissolved organic nitrogen, nitrate
nitrogen, and ammonium nitrogen were carried by rainfall runoff. Meanwhile, adsorbed nitrogen
was adsorbed on soil sediments and then transported by water and soil loss. In the experiments,
the correlations between precipitations and TN loads under five slopes were obtained, as shown in
Figure 4.

Figure 4. Correlations between precipitations and TN loads under different slopes.

Generally, we found that there were positive linear relationships between precipitation and TN
loads on different slopes, i.e., TN loads rose with increased precipitation. Table 3 shows the correlations
between TN loads and precipitations under different slopes.

It can be seen that runoff increased and more dissolved nitrogen was generated when precipitation
increased. In addition, more sediment was transported by the runoff and adsorbed nitrogen loss
became more serious. Therefore, the heavier the rainfall was, the more nitrogen the rainfall runoff and
sediment generated, and the severer the TN loss became. TN load losses were slightly different for
different slopes, indicating that slope is an important factor affecting TN loss, which will be discussed
thoroughly in Section 3.3.1.

Table 3. Correlations of TN loads and precipitations under different slopes.

Slope Correlation Correlation Coefficient

5◦ y = 0.6164x − 2.1767 0.9892
10◦ y = 0.6640x − 1.9772 0.9880
15◦ y = 0.8357x − 4.3185 0.9992
20◦ y = 0.9463x − 4.5229 0.9997
25◦ y = 0.9844x + 0.0897 0.9874

In Figure 4, the existence of the initial runoff-yielding times demonstrates that there is an interval
between the beginning of rainfall and runoff generation. Rainfall merely infiltrated into the soil at the
beginning of rainfall and runoff did not begin immediately, because soil water content was relatively
low initially. With increased precipitation, soil water content reached the saturation point, and then
runoff generation as well as TN loss began to occur from the scouring effect of rainfall runoff.
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3.1.2. Effects of Precipitation on TN Concentration in Runoff

The correlations between precipitations and TN concentrations in runoff under various slopes
are shown in Figure 5. Those under slope 5◦, 10◦, 15◦, 20◦ and 25◦ are shown as Figure 5a–e,
respectively. The downward sloping lines in Figure 5 show that TN concentration declines with
increasing precipitation, though this is not the case for TN load.

Figure 5. Correlations between precipitations and TN concentrations under slopes of (a) 5◦; (b) 10◦;
(c) 15◦; (d) 20◦; (e) 25◦.

At the start of rainfall, TN load accumulation in the soil was relatively high, and more nitrogen
could dissolve in the rainfall water and adsorb on sediments. Therefore, TN went through the processes
of dissolution and adsorption for several minutes before runoff began. Once soil water content reached
the saturation point, the initial runoff carried the dissolved and adsorbed nitrogen, so that the TN
concentration was relatively high at first. As the rainfall continued, the decline of TN concentration
was caused by the decreasing background value of TN in soil, so that less nitrogen was dissolved in
the runoff and adsorbed on the sediment.

Moreover, the declines on various slopes differed slightly. Compared to other slopes, TN
concentrations declined most obviously on those at 5◦ and 25◦. For a gentle slope (5◦), rainfall
infiltration lasted a relatively long time before runoff generation, so that nitrogen in soil dissolved
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sufficiently. Therefore, TN concentration on a gentle slope at the initial runoff-yielding time was
relatively high. After that, the scouring effect become weaker and resulted in less dissolved and
adsorbed nitrogen carried by runoff and sediment, which caused TN concentration to decrease rapidly.
For a steep slope (25◦), the reason of TN concentration at the initial runoff-yielding time was relatively
high was that the runoff velocity was relatively small owing to gravity, the runoff infiltration rate was
low, the runoff on the sloping field was large, and more TN was transported by runoff and sediment
within a short time. With scouring, the background value of TN in the soil decreased, so that TN
removed by runoff also diminished.

3.2. Effects of Rainfall Intensity on TN Losses

3.2.1. Effects of Rainfall Intensity on TN Concentration in Runoff

Due to the obvious relationship between precipitation and rainfall intensity, the effects of rainfall
intensity on TN load were similar to those of precipitation on TN load, and therefore the effects are not
discussed in detail. The correlation between rainfall intensity and TN concentration on various slopes
is shown in Figure 6. It should be explained that TN concentrations on the five slopes under the same
rainfall intensity were averaged as one value to eliminate the influence of slope on TN concentration.

Figure 6. Correlation between rainfall intensity and TN concentration.

The effects of slope on TN loss will be discussed in Section 3.3.1. Rainfall intensity and TN
concentration are negatively correlated, which can be formulated by a quadratic polynomial, and the
square of the correlation coefficient (R2) is 0.9702. It can be seen that more runoff is generated under the
condition of higher rainfall intensity. Meanwhile, the background value of TN in soil was consistent
throughout our experiments; hence TN concentration declined as rainfall intensity increased.

3.2.2. Effects of Rainfall Intensity on the Initial Runoff-Yielding Time

Correlation analysis on the relationship between precipitation and the initial runoff-yielding
time showed that the former had no obvious effects on the latter. In contrast, there was a negative
correlation between rainfall intensity and the initial runoff-yielding time (Figure 7). It can be explained
that as rainfall intensity increases, more raindrops fall on a slope over a certain duration and soil water
content increases rapidly. On the other hand, heavy rainfall causes broken soil particles to fill the gap
and form water film, which causes the infiltration capacity of the runoff to decrease [37]. Those factors
generated rapid runoff even before rainfall infiltrated thoroughly into deep soil, which caused the
initial runoff-yielding time to be short.
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Figure 7. Correlations between rainfall intensities and the initial rainfall-yielding times.

In Figure 7, the initial runoff time shortens when the slope rises, since increasing slope makes
rainfall infiltration weaker and leads to easier runoff generation. It can be also seen that the effects
of slope on the initial runoff time become indistinct as rainfall intensity increases to a certain degree.
The difference among the initial runoff-yielding times on different slopes was obvious under a rainfall
intensity of 30 mm/h: the longest time was 12.43 min on the 5◦ slope and the shortest was 6.17 min
on the 25◦ slope. With increased rainfall intensity, the difference gradually diminishes. At a rainfall
intensity of 120 mm/h, the difference between the maximum and the minimum is reduced from
6.26 min under rainfall intensity of 30 mm/h to 1.63 min. It can be seen that slope is a key factor
affecting runoff generation when rainfall intensity is relatively small, and the initial runoff-yielding
time decreases significantly as the slope increases. With rising rainfall intensity, the effect of rainfall
intensity on runoff generation became more and more important, and the differences of the initial
runoff-yielding times on different slopes lessen.

3.3. Effects of Slope on TN Losses

3.3.1. Effects of slope on TN Load in Runoff

Figure 8a reflects TN loads in runoff on different slopes under different rainfall intensities.
In Figure 8b, various rainfall intensities on certain slopes were averaged to eliminate the influence of
rainfall intensity on TN load. The correlation between slope and TN load can be expressed as by a
quadratic polynomial, and the square of correlation coefficient (R2) is 0.9745, as shown in Figure 8b.

Figure 8. (a) Effects of slopes on TN loads under different rainfall intensities; (b) Correlation between
slope and TN load.
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Generally, TN load rises as slope increases, under various rainfall intensity conditions. The
influence of slope on TN load can be explained by the following aspects. For steeper slopes, the
scouring effect is stronger, a larger amount of runoff is generated, more sediment is transported, and
more serious TN loss occurs. Previous studies have shown that there is a critical value for TN loss
on slopes, so that soil erosion and TN loss do not increase limitlessly with greater slope [42]. In our
experiments, slight drops in Figure 8a also supported the idea that TN load might reach a peak with
the rise of slope. TN load decreased slightly as slope increased from 20◦ to 25◦ under rainfall intensities
of 90 mm/h and 120 mm/h.

3.3.2. Effects of Slope on TN Concentration in Runoff

Figure 9 shows the correlation between slope and TN concentration, which can be expressed as a
quadratic polynomial where the square of correlation coefficient (R2) is 0.9218. In Figure 9, four rainfall
intensities on varying slope were averaged in order to eliminate the influence of rainfall intensity on
TN concentration.

Figure 9. Correlation between slope and TN concentration.

TN concentration showed a positive correlation with slope, and increases were more obvious for
steeper slopes. It can be explained that the steeper the slope was, the faster the velocity of water flow
became, the stronger the scouring effect, the worse the soil erosion, so that nitrogen dissolution and
adsorbed nitrogen loss are greater. However, runoff generated from different slopes does not vary very
much with rainfall intensity; therefore, TN concentration rises with the increase of slope. Moreover,
the increases were more obvious for steeper slopes, which also indicated that the increases of TN loads
were more significant than those of runoff for greater slopes.

3.3.3. Effects of Slope on the Initial Runoff-Yielding Time

In our experiments, the relationships between slope and the initial runoff-yielding times showed
negative correlations for all rainfall intensities (Figure 10). For a steeper slope, the contact time
between rainfall and sloping field was shorter, the gravity of rainfall drops in slope surface direction
became larger, rainfall infiltration was weakened, and runoff formed more easily; hence the initial
runoff-yielding time was shorter. Figure 10 also shows that the differences among initial runoff-yielding
times under various rainfall intensities diminish gradually with increasing of slope. Therefore, it can
be deduced that slope plays a more important role in runoff generation as it increases, due to the
increasing impacts of various factors.
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Figure 10. Correlations between slopes and the initial rainfall-yielding times.

4. Conclusions

In this study, the influence mechanisms of rainfall and terrain characteristics on total nitrogen
(TN) losses from regosol were revealed by a series of artificial rainfall experiments. Natural rainfall and
terrain conditions were simulated in 20 designed scenarios, which consisted of four rainfall intensities
(30 mm/h, 60 mm/h, 90 mm/h, and 120 mm/h) and five slopes (5◦, 10◦, 15◦, 20◦, and 25◦), with
runoff-yielding time lasting 40 min.

The results showed that there were positive linear relationships between precipitations and TN
loads under different slopes. There were delays before runoff generation, which demonstrated that
there was an interval between the beginning of rainfall and runoff generation. In contrast, negative
linear relationships represented the correlations between precipitations and TN concentrations, and
the decreases of TN concentrations with increased precipitation were obvious on sloping fields at 5◦

and 25◦ of slope. The effects of rainfall on TN loss indicated that total precipitation was an important
influencing factor and driving force for TN loss. Due to the obvious relationship between precipitation
and rainfall intensity, the effects of rainfall intensity on TN load were similar to those of precipitation
on TN load. As far as the effects of rainfall intensity on TN concentration were considered, they
presented as a negative correlation. Similarly, the initial runoff-yielding time also showed a negative
correlation with increased rainfall intensity. The initial runoff-yielding time was short for a steep
slope, and the differences among the initial runoff-yielding times under designed slopes decreased
as the rainfall intensity increased. TN load generally increased with an increase of slope, but not
limitlessly, which can be deduced by slight drops of TN load on slopes with 25◦ comparing to TN
loads on slopes with 20◦ under rainfall intensities of 90 mm/h and 120 mm/h. As for the relationship
between slope and TN concentration, results showed that it was a positive one, with upward trends
of TN concentrations with increasing slope more obvious for steeper slopes. Initial runoff-yielding
times exhibited downward trends with increasing of slope, and the differences under various rainfall
intensities diminished gradually with increasing of slope. It could be concluded that the steeper the
slope was, the more serious the TN loss was.

Other research has shown that TN losses increased with increased rainfall intensity and TN
concentration in runoff did not limitlessly increase, and those results were confirmed by this
study [42,43]. The runoff volume increased with the increasing rainfall intensity and the increasing soil
moisture content, and decreased with the increasing vegetation cover. These factors also significantly
affected the losses of N. In other words, a longer and more intense rainfall resulted in a higher loss of
N [23]. The N concentration in runoff was high at an early stage, and then reduced with increasing
time [44]. All of this research presented conclusions similar to those of this study. This study reveals
the effects of precipitation, rainfall intensity, and slope on TN losses from regosol with quantitative
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correlation analysis, which has not been discussed thoroughly in previous studies. This study provides
theoretical support for NPS pollution simulation and pollution control in reference to these influential
factors and their influence mechanisms. The effects of rainfall and terrain on dissolved nitrogen in
runoff and adsorbed nitrogen on sediments are also shown here. In the future, we hope to determine
the critical slope value of TN losses from regosol and the influence mechanisms of natural rainwater
and underlying surfaces on TN loss under multiple rainfalls.

Acknowledgments: This research work was funded by the National Natural Science Foundation of China
(51309097), the National Key Scientific and Technological Projects of the PRC (2014ZX07104-005), and the
Fundamental Research Funds for the Central Universities of PRC. The authors gratefully acknowledge the
financial support of the programs and agencies.

Author Contributions: Xiaowen Ding conceived and designed the experiments; Ming Lin performed the
experiments; Guihong Jiang contributed to data measurement; Ying Xue analyzed the data; Xiaowen Ding
and Ying Xue wrote the paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Kalavrouziotis, I.K.; Arambatzis, C.; Kalfountzos, D.; Varnavas, S.P. Wastewater Reuse Planning in
Agriculture: The Case of Aitoloakarnania, Western Greece. Water 2011, 3, 988–1004. [CrossRef]

2. Sui, J.; Wang, J.; Gong, S.; Xu, D.; Zhang, Y. Effect of Nitrogen and Irrigation Application on Water Movement
and Nitrogen Transport for a Wheat Crop under Drip Irrigation in the North China Plain. Water 2015, 7,
6651–6672. [CrossRef]

3. Ahmed, W.; Hughes, B.; Harwood, V.J. Current Status of Marker Genes of Bacteroides and Related Taxa for
Identifying Sewage Pollution in Environmental Waters. Water 2016, 8, 231. [CrossRef]

4. Park, Y.S.; Engel, B.A.; Harbor, J. A Web-Based Model to Estimate the Impact of Best Management Practices.
Water 2014, 6, 455–471. [CrossRef]

5. Ahn, S.R.; Kim, S.J. The Effect of Rice Straw Mulching and No-Tillage Practice in Upland Crop Areas on
Nonpoint-Source Pollution Loads Based on HSPF. Water 2016, 8, 106. [CrossRef]

6. Alvarez, S.; Asci, S.; Vorotnikova, E. Valuing the Potential Benefits of Water Quality Improvements in
Watersheds Affected by Non-Point Source Pollution. Water 2016, 8, 112. [CrossRef]

7. Blumstein, M.; Thompson, J.R. Land-use impacts on the quantity and configuration of ecosystem service
provisioning in Massachusetts, USA. J. Appl. Ecol. 2015, 52, 32–47. [CrossRef]

8. Datri, C.W.; Pray, C.L.; Zhang, Y.X.; Nowlin, W.H. Nutrient enrichment scarcely affects ecosystem impacts of
a non-native herbivore in a spring-fed river. Freshw. Biol. 2015, 60, 551–562. [CrossRef]

9. Xing, W.M.; Yang, P.L.; Ren, S.M.; Ao, C.; Li, X.; Gao, W.H. Slope length effects on processes of total nitrogen
loss under simulated rainfall. Catena 2016, 139, 73–81. [CrossRef]

10. Shen, Z.Y.; Chen, L.; Hong, Q.; Qiu, J.L.; Xie, H.; Liu, R.M. Assessment of nitrogen and phosphorus loads and
casual factors from different land use and soil types in the Three Gorges Reservoir Area. Sci. Total Environ.
2013, 454–455, 383–392. [CrossRef] [PubMed]

11. Recanatesi, F.; Ripa, M.N.; Leone, A.; Luigi, P.; Luca, S. Erratum to: Land use, climate and transport of
nutrients: Evidence emerging from the Lake Vico case study. Environ. Manag. 2013, 52, 503–513. [CrossRef]
[PubMed]

12. Gaddamwar, A.G.; Rajput, P.R. Analytical study of Bembala damp water for fishery capacity, portability and
suitability for agricultural purposes. Int. J. Environ. Sci. 2012, 2, 1278–1283.

13. Laine-Kaulio, H.; Koivusalo, H.; Komarov, A.S.; Lappalainen, M.; Launiainenc, S.; Laurénc, A. Extending the
ROMUL model to simulate the dynamics of dissolved and sorbed C and N compounds in decomposing
boreal mor. Ecol. Model. 2014, 272, 277–292. [CrossRef]

14. Darmawi, S.; Burkhardt, S.; Leichtweiss, T.; Weber, D.A.; Wenzel, S.; Janek, J.; Elm, M.T.; Klar, P.J. Correlation
of electrochromic properties and oxidation states in nanocrystalline tungsten trioxide. Phys. Chem.
Chem. Phys. 2015, 17, 15903–15911. [CrossRef] [PubMed]

15. Hu, B.Q.; Wang, H.J.; Yang, Z.S.; Sun, X.X. Temporal and spatial variations of sediment rating curves in the
Changjiang (Yangtze River) basin and their implications. Quat. Int. 2011, 230, 34–43. [CrossRef]

101

Bo
ok
s

M
DP
I



Water 2017, 9, 167

16. Hu, G.Y.; Dong, Z.B.; Lu, J.F.; Yan, C.Z. Driving forces responsible for aeolian desertification in the source
region of the Yangtze River from 1975 to 2005. Environ. Earth Sci. 2012, 66, 257–263. [CrossRef]

17. Pan, B.Z.; Wang, H.Z.; Ban, X.; Yin, X.A. An exploratory analysis of ecological water requirements of
macroinvertebrates in the Wuhan branch of the Yangtze River. Quat. Int. 2015, 380, 256–261. [CrossRef]

18. Liu, B.; Hu, Q.; Wang, W.P.; Zeng, X.F.; Zhai, J.Q. Variation of actual evapotranspiration and its impact on
regional water resources in the Upper Reaches of the Yangtze River. Quat. Int. 2011, 244, 185–193.

19. Ding, X.W.; Shen, Z.Y.; Hong, Q.; Yang, Z.F.; Wu, X.; Liu, R.M. Development and test of the Export Coefficient
Model in the upper reach of the Yangtze River. J. Hydrol. 2010, 383, 233–244. [CrossRef]

20. Zhang, N.; He, H.M.; Zhang, S.F.; Jiang, X.H.; Xia, Z.Q.; Huang, F. Influence of reservoir operation in the
upper reaches of the Yangtze River (China) on the inflow and outflow regime of the TGR-based on the
Improved SWAT Model. Water Resour. Manag. 2012, 26, 691–705. [CrossRef]

21. Li, C.L.; Zhou, J.Z.; Ouyang, S.; Wang, C.; Liu, Y. Water Resources Optimal Allocation Based on Large-scale
Reservoirs in the Upper Reaches of Yangtze River. Water Resour. Manag. 2015, 29, 2171–2187. [CrossRef]

22. Zhao, X.L.; Jiang, T.; Du, B. Effect of organic matter and calcium carbonate on behaviors of cadmium
adsorption-desorption on/from purple paddy soils. Chemosphere 2014, 99, 41–48. [CrossRef] [PubMed]

23. Liu, R.M.; Wang, J.W.; Shi, J.H.; Chen, Y.X.; Sun, C.C.; Zhang, P.P.; Shen, Z.Y. Runoff characteristics and
nutrient loss mechanism from plain farmland under simulated rainfall conditions. Sci. Total Environ. 2014,
468, 1069–1077. [CrossRef] [PubMed]

24. Patil, R.H.; Laegdsmand, M.; Olesen, J.E.; Porter, J.R. Effect of soil warming and rainfall patterns on soil n
cycling in northern europe. Agric. Ecosyst. Environ. 2010, 139, 195–205. [CrossRef]

25. Ding, X.W.; Shen, Z.Y.; Liu, R.M.; Chen, L.; Lin, M. Effects of ecological factors and human activities
on nonpoint source pollution in the upper reach of the Yangtze River and its management strategies.
Hydrol. Earth Syst. Sci. Discuss. 2013, 11, 691–721. [CrossRef]

26. Kakuturu, S.; Chopra, M.; Hardin, M.; Wanielista, M. Total nitrogen losses from fertilized turfs on simulated
highway slopes in Florida. J. Environ. Eng. 2013, 139, 829–837. [CrossRef]

27. Shin, J.; Gil, K. Effect of rainfall characteristics on removal efficiency evaluation in vegetative filter strips.
Environ. Earth Sci. 2014, 72, 601–607. [CrossRef]

28. Diaz, D.A.R.; Sawyer, J.E.; Barker, D.W.; Mallarino, A.P. Runoff Nitrogen Loss with Simulated Rainfall
Immediately Following Poultry Manure Application for Corn Production. Soil Sci. Soc. Am. J. 2010, 74,
221–230. [CrossRef]

29. Hao, C.L.; Yan, D.H.; Xiao, W.H.; Shi, M.; He, D.W.; Sun, Z.X. Impacts of typical rainfall processes on nitrogen
in typical rainfield of black soil region in northeast china. Arab. J. Geosci. 2015, 8, 1–13. [CrossRef]

30. Wang, H.J.; Shi, X.Z.; Yu, D.S.; Weindorf, D.C.; Huang, B.; Sun, W.X.; Ritsema, C.J.; Milne, E. Factors
determining soil nutrient distribution in a small-scaled watershed in the purple soil region of Sichuan
Province, China. Soil Tillage Res. 2009, 105, 35–44. [CrossRef]

31. Wilson, C.; Weng, Q. Assessing surface water quality and its relation with urban land cover changes in the
Lake Calumet area, Greater Chicago. Environ. Manag. 2010, 45, 1096–1111. [CrossRef] [PubMed]

32. Chen, X.; Huang, Y.; Zhao, Y.; Mo, B.; Mi, H. Comparison of loess and purple rill erosions measured with
volume replacement method. J. Hydrol. 2015, 530, 476–483. [CrossRef]

33. Shen, Z.Y.; Chen, L.; Ding, X.W.; Hong, Q.; Liu, R.M. Long-term variation (1960–2003) and causal factors of
non-point-source nitrogen and phosphorus in the upper reach of the Yangtze River. J. Hazard. Mater. 2013,
252, 45–56. [CrossRef] [PubMed]

34. Philippot, L.; Spor, A.; Hénault, C.; Bru, D.; Bizouard, F.; Jones, C.M.; Sarr, A.; Maron, P.A. Loss in microbial
diversity affects nitrogen cycling in soil. ISME J. 2013, 7, 1609–1619. [CrossRef] [PubMed]

35. Hassink, J. The capacity of soils to preserve organic c and n by their association with clay and silt particles.
Plant Soil 1997, 191, 77–87. [CrossRef]

36. Marcarelli, A.M.; Wurtsbaugh, W.A. Temperature and nutrient supply interact to control nitrogen fixation in
oligotrophic streams: An experimental examination. Limnol. Oceanogr. 2006, 51, 2278–2289. [CrossRef]

37. Huang, J.; Wu, P.; Zhao, X.N. Effects of rainfall intensity, underlying surface and slope gradient on Soil
infiltration under simulated rainfall experiments. Catena 2013, 104, 93–102. [CrossRef]

38. Hong, J.; Li, T.; Xuan, H.; Yang, X.; He, Z. Effects of pH and low molecular weight organic acids on
competitive adsorption and desorption of cadmium and lead in paddy soils. Environ. Monit. Assess. 2012,
184, 6325–6335.

102

Bo
ok
s

M
DP
I



Water 2017, 9, 167

39. Gondar, D.; López, R.; Antelo, J.; Fiol, S.; Arce, F. Effect of organic matter and pH on the adsorption of
metalaxyl and penconazole by soils. J. Hazard. Mater. 2013, 260, 627–633. [CrossRef] [PubMed]

40. Gross, A.; Boyd, C.E.; Seo, J. Evaluation of the Ultraviolet Spectrophotometric Method for the Measurement
of Total Nitrogen in Water. J. World Aquac. Soc. 1999, 30, 388–393. [CrossRef]

41. Jiang, F.; Zhou, K.; Deng, H.; Li, X.; Zhong, Y. Study on Enterprise’s Employees’ Safety Training Based on
SPSS. In Proceedings of the 2009 International Conference on Computational Intelligence and Software
Engineering, Wuhan, China, 11–13 December 2009; IEEE: New York, NY, USA, 2009; pp. 1–4.

42. Shao, X.J.; Wang, H.; Hu, H.W. Experimental and modeling approach to the study of the critical slope for the
initiation of rill flow erosion. Water Resour. Res. 2005, 41, W12405. [CrossRef]

43. Schwenke, G.D.; Haigh, B.M. The interaction of seasonal rainfall and nitrogen fertiliser rate on soil N2O
emission, total N loss and crop yield of dryland sorghum and sunflower grown on sub-tropical Vertosols.
Soil Res. 2016, 54, 604–618. [CrossRef]

44. Qian, J.; Zhang, L.P.; Wang, W.Y.; Liu, Q. Effects of vegetation cover and slope length on nitrogen and
phosphorus loss from a sloping land under simulated rainfall. Pol. J. Environ. Stud. 2014, 23, 835–843.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

103

Bo
ok
s

M
DP
I



water

Article

Using Modeling Tools to Better Understand
Permafrost Hydrology

Clément Fabre 1,*, Sabine Sauvage 1, Nikita Tananaev 2,3, Raghavan Srinivasan 4,

Roman Teisserenc 1 and José Miguel Sánchez Pérez 1

1 ECOLAB, Université de Toulouse, CNRS, INPT, UPS, 31055 Toulouse, France;
sabine.sauvage@univ-tlse3.fr (S.S.); roman.teisserenc@ensat.fr (R.T.);
jose-miguel.sanchez-perez@univ-tlse3.fr (J.M.S.P.)

2 P.I. Melnikov Permafrost Institute, SB RAS, Merzlotnaya Str. 36, 677010 Yakutsk, Sakha Republic, Russia;
nikita.tananaev@gmail.com

3 Ugra Research Institute of Information Technologies, Mira Str. 151, 628011 Khanty-Mansiysk, Russia
4 Spatial Science Laboratory in the Department of Ecosystem Science and Management,

Texas A&M University, College Station, TX 77845, USA; r-srinivasan@tamu.edu
* Correspondence: clement.fabre21@gmail.com

Academic Editor: Karim Abbaspour
Received: 27 April 2017; Accepted: 26 May 2017; Published: 10 June 2017

Abstract: Modification of the hydrological cycle and, subsequently, of other global cycles is expected
in Arctic watersheds owing to global change. Future climate scenarios imply widespread permafrost
degradation caused by an increase in air temperature, and the expected effect on permafrost hydrology
is immense. This study aims at analyzing, and quantifying the daily water transfer in the largest
Arctic river system, the Yenisei River in central Siberia, Russia, partially underlain by permafrost.
The semi-distributed SWAT (Soil and Water Assessment Tool) hydrological model has been calibrated
and validated at a daily time step in historical discharge simulations for the 2003–2014 period.
The model parameters have been adjusted to embrace the hydrological features of permafrost. SWAT
is shown capable to estimate water fluxes at a daily time step, especially during unfrozen periods, once
are considered specific climatic and soils conditions adapted to a permafrost watershed. The model
simulates average annual contribution to runoff of 263 millimeters per year (mm yr−1) distributed
as 152 mm yr−1 (58%) of surface runoff, 103 mm yr−1 (39%) of lateral flow and 8 mm yr−1 (3%) of
return flow from the aquifer. These results are integrated on a reduced basin area downstream from
large dams and are closer to observations than previous modeling exercises.

Keywords: permafrost; modeling; hydrology; water; Yenisei River; SWAT

1. Introduction

Ongoing climate change became consensual through a plethora of studies [1]. This global warming
is particularly important at high latitudes because of the Arctic amplification effect [2]. Significant
alteration of the hydrological cycle and, subsequently, in other global cycles is expected in Arctic
watersheds [3–6]. Arctic hydrology is poorly understood, and largely understudied, compared to
lower and mid–latitudes [7,8]. Arctic catchments are genuinely remote areas, where data acquisition is
complicated by natural conditions, logistics and societal issues. Field studies are scarce and these data,
particularly for the Russian territory, are virtually unexposed to a wider international audience [9].
Most of the largest Arctic rivers are followed by an extremely limited number of gauging stations,
which is steadily declining throughout last decades [10].

The complexity of Arctic hydrology is also a challenge for the modelers. Insolation seasonality
affects the energy state of Arctic watersheds and an enormous difference in energy input between the
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seasons. Hydrological processes follow this pattern, and are virtually stagnant in winter while highly
dynamic in transition seasons, i.e., during spring freshet [11]. Water in the Arctic alternates between
ice and liquid phases on a seasonal basis, both in surface and subsurface compartments. This regular
phase transition implies sound modifications of runoff storage and pathways with the presence of
permafrost, controlled by the active layer depth and its intra-annual fluctuations [12].

Permafrost hydrology emerged as a distinct branch of hydrological sciences in the U.S. in early
1980s, when sufficient data on the water balance and runoff regime of the High Arctic Rivers became
available [13]. It has been widely acknowledged since then that the interaction of water fluxes and soil
freeze-thaw processes has by far the most important hydrological effect in permafrost environment.
The seasonally-thawed (active) layer accommodates the totality of hydrogeochemical activities in the
continuous permafrost areas, the statement which became a ‘mantra’ since this keystone publication
by M.-K. Woo saw the light. Water transport in the soil is only possible when the active layer is
thawed, since frozen soil effectively acts as an aquitard [14]. Depending on soil properties and regional
climate, the active layer can attain the thickness from first tens of centimeters to more than 2 m in
the continuous permafrost zone [15,16]. Thicker active layer limits the occurrence of surface flow,
but promotes deeper percolation of water, participation of deeper soil layers in water transfer in pores
or unfrozen corridors [17].

The seasonality of freeze-thaw processes affects the changes in hydraulic properties of permafrost
soils, and the watershed hydrology in general [13]. Early in winter the active layer is completely frozen,
and flow is interrupted even in major Arctic catchments, e.g., the Yana (basin area A = 90,000 km2) and
the Anabar (A = 107,000 km2) Rivers. During the spring, solar radiation penetrates the snow cover,
starting the annual cycle of active layer development. By late autumn, the active layer reaches its
deeper limit and water can travel freely in the upper meters of the soil profile. During winter, the active
layer freezes again from the bottom and from the top and snow starts to accumulate.

Hence, while the soil is part-time frozen, precipitation mostly follows the surface and shallow
subsurface pathways. Deep subsurface flow enters the hydrological stage seasonally, mostly in
discontinuous permafrost. Freeze-thaw processes affect moisture storage in soils by limiting the
infiltration and partitioning of water fluxes between surface and subsurface compartments [9].
The average flow partitioning between these compartments at the outlet of a permafrost watershed
should be completely different from those found in other latitudes. Hydrogeological regime is
insufficiently studied in permafrost areas [7,18], though several efforts have been made in recent years
both to compile existing observations and to model permafrost–groundwater interactions [12,19–21].

Previous experiments in the Arctic domain permitted the establishment of an estimation of this
precipitations and flows distribution. They found a ratio close to 50/50 between rainfall and snow for
the Yenisei watershed [22]. Only one study tested the flows distribution for Arctic watersheds and
they established a 60/40 ratio for surface and subsurface flows [17]. Snowpack contribution to the
water balance has an important impact on the behavior of the river throughout the year. The release
of a large part, up to 50% in some regions [9], of precipitation by snowmelt is responsible of a spring
freshet in the Arctic rivers, occurring in May and June [23]. Arctic river ice breaks up between April
and June. One-third to roughly half of the annual discharge delivered to the Arctic Ocean occurs from
May to July [23].

The hydrological effects of the frozen ground are best detectable in the regions completely
underlain by permafrost, i.e., in continuous permafrost zone with 90—100% areal coverage.
In discontinuous permafrost, with 50–90% coverage, unfrozen areas represent significant pathways for
both shallow and deep subsurface waters [12]. Farther south, in the sporadic (10–50%) and isolated
(less than 10%) permafrost zones, hydrological significance of frozen ground is negligible, and is
perceivable only locally. These four permafrost types constitute respectively 54%, 16%, 14% and 16%
of permafrost soils in the Northern Circumpolar Region [24].

Coupled heat and water fluxes calculation represents the major concern in permafrost hydrology
and this issue is far from being resolved [13,25]. Permafrost models perform predominantly at the
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large scale and rarely downscale for hydrological processes [26], or, being downscaled and adjusted for
hydraulic effects, are not designed to reproduce water fluxes at the catchment scale [27]. Hydrological
models, in their turn, largely oversimplify soil heat transfer and phase transitions in the subsurface
compartment [28], computationally heavy [29], require over-calibration [30], or are explicitly incapable
to upscale point, or stand-scale, permafrost features to the whole catchment volume [31]. Promising
results have been obtained recently using a modular Cold Regions Hydrological Model (CRHM)
for two permafrost watersheds in western China [32]. Introduction of water-permafrost interactions
to the surface runoff module of a global land surface model (JULES) showed unexpectedly poor
performance of the snowmelt water routing module, making JULES incapable to reproduce spring
flood peak on the Lena River [33]. Snowmelt representation in other hydrological models deems to be
imprecise [28]. The effect of permafrost continuity, in a spatial context, is rarely taken into account
explicitly. Hülsmann et al. [34] diagnosed major modeling issues in a relevant study.

This work aims to analyze, to understand and to quantify water fluxes dynamics for a big
permafrost watershed, the Yenisei watershed scale (2,540,000 km2 [23]) using the hydrological modeling
approach coupled to discharge data at daily time scale at the outlet of the watershed. The objectives of
the study are:

• to evaluate the role of permafrost soils in water transfer,
• to identify the hydrologically relevant features for each permafrost class, and the runoff routing

through a large Arctic watershed of the Yenisei River,
• to characterize and quantify the different hydrological pathways,
• to perform hydrological modeling of the Yenisei River at daily time step, accounting

for the hydrological functions of permafrost, in order to allow predictions under
non-stationary conditions.

2. Results

2.1. Hydrological Response

2.1.1. Daily Modeled Discharge

Daily discharge is correctly predicted during the validation period (Figure 1). Some peaks are
underestimated by the model (e.g., May 2005) while others are overestimated (e.g., May 2008) but
the global behavior of the modeling is good with a good detection of the high flow periods. After
the freshets, our modeling underestimates sometimes the recession (e.g., 2006) and the low flows
(e.g., 2009 and 2010). The statistical performance is satisfactory with a Nash and Sutcliffe Efficiency
(NSE) and a coefficient of determination (R2) above 0.75 in the calibration and in the validation
period and with reasonable percent bias (PBIAS) and root mean square error-observations standard
deviation ratio (RSR) (Figure 1). For a daily time step modeling, our results are considered as very
good. Table 1 details the goodness of indices for low and high flow periods. The discharges above
30,000 m3 s−1 represent a small part of the observed discharges and are not as well predicted as the
low flow discharges which is especially seeable with the R2. The PBIAS confirms this statement by
revealing an underestimation of high flows by the model.
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Table 1. Goodness of indices discretized by flow periods. Here, the discharge is considered high when
it exceeds 30,000 m3 s−1.

Daily Time Step Modeling Monthly Time Step Modeling

Number of Values Calibration Validation Calibration Validation

Low flow periods 1175 NSE 0.70 0.66 0.87 0.74
R2 0.55 0.50 0.57 0.80

PBIAS 2.0 −1.0 7.6 2.0
RSR 0.43 0.67 0.36 0.51

High flow periods 189 NSE 0.75 0.78 0.71 0.86
R2 0.37 0.44 0.08 0.56

PBIAS 25.7 22.0 30.5 19.2
RSR 0.52 0.45 0.54 0.37

Figure 1. Daily simulated hydrograph compared to daily observations at the Yenisei outlet with
goodness of indices. In orange is represented the 95PPU zone resulting from the last SWAT-CUP run.
We observe a good dynamic and a good representation of spring floods.

2.1.2. Comparison with the Modeling at a Monthly Time Step

Compared to the daily modeled discharge, the monthly time step modeling underestimates
considerably the freshets with peaks not exceeding 70,000 m3 s−1 (Figure 2). But, low flow periods are
as well represented with this time step than with daily time step and the same uncertainties remain
concerning under and overestimations by the model. However, our modeling at a monthly time step
predict correctly the average monthly discharge during the validation period. In details, the monthly
predictions are often higher than the daily predictions during the increase in discharge (Figure 2).
On the contrary, the recession and the low flow periods are higher in the daily time step modeling.
The change in the time step has a low impact in the statistical performance which is in the same range
than the one in Figure 1. The NSE and the R2 increase by less than 0.1. The rising is due to the loss
of information by changing the time step. The crushing of the predictions at a monthly time step are
underlined by a lower R2 during high flow periods (Table 1). Nevertheless, the statistical analysis
during low flow periods is close to the one for daily time step modeling.
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Figure 2. Simulation at a monthly time step at the Yenisei outlet compared to the daily simulation and
observations shown in Figure 1 with goodness of indices for the monthly simulation. The peaks are not
as well represented but the dynamic low flows are still respected. The hatched zones represents the
periods where the monthly modeled discharge is higher than the daily modeled discharge.

2.2. Modeled Water Balance

By integrating the reservoirs and the total area of the watershed in the global water balance,
the modeled mean annual discharge at the outlet is 237.8 millimeters per year (mm yr−1) with a
standard deviation of 38.7 mm yr−1. The yearly average predicted water balance is close to the
observed one with a lack of 3.8 mm yr−1 of water (Table 2).

As inputs flows, the model returns a ratio of 56/44 for rainfall/snowfall distribution with amounts
of respectively 265.7 and 206.3 mm yr−1 resulting in an average annual precipitation amount of
472 mm yr−1. Evapotranspiration is returned as 199 mm yr−1, or 42% of total precipitation, with a
potential evapotranspiration of 364 mm yr−1. Sublimation reaches 10.5 mm yr−1, or 5.5% of the annual
snowfall. Percolation is as low as 11 mm yr−1.

Concerning the flows entering the river, the reservoirs are excluded from the average water
balance. Only are considered here fluxes flowing on the slopes of the watershed. The following
results are only integrating the modeled basin surface, that is to say 1,383,398 km2 as mentioned
before, or approximately 58% of the total watershed area at the Igarka gauging station (2,440,000 km2).
Simulated average annual water flow is 263 mm yr−1. Surface runoff contributes to the streamflow for
152 mm yr−1, lateral runoff represents 103 mm yr−1 of the streamflow and the return flow from the
shallow aquifer participates for 8 mm yr−1 (which corresponds to 58%, 39% and 3% of the contribution
to the streamflow). The surface runoff is dominant during the discharge peak after snowmelt (Figure 3).
The surface runoff is still dominant after the increase in discharge at the beginning of the third period
(see Materials and Methods) because permafrost has not yet thawed. The lateral runoff is mostly
present during the third period after the recession but explains most of the discharge during the
fourth period when permafrost is freezing again from the top and the bottom and when snow starts
to accumulate (see Materials and Methods). The groundwater flow is low regardless the season but
follow the same trend as the lateral runoff being present after permafrost unfreezing.

Regarding the respect of the water flows distribution in the basin, the hypotheses on the
permafrost properties which have been done upper (see Materials and Methods) seem good.
By comparing average daily precipitations and average air temperature in the whole basin and
the average flows distribution, we underline the water stock which is not restituted to the outlet before
snowmelt (Figure 3). Temperature is the main vector in the distribution of water by melting snow
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and unfreezing permafrost. At the beginning of the snowmelt, the discharge at the outlet comes from
surface runoff while during the recession, because the active layer is larger, lateral runoff explains a
bigger part of the discharge.

Table 2. Interannual mean of water fluxes at the Yenisei outlet compared to previous studies.
The discharges and specific discharges are calculated with the watershed area at the outlet: 2,440,000 km2.

Source
ArcticGRO

Dataset
This Study

Finney
et al. (2012)

Ducharne
et al. (2003)

Alkama
et al. (2006)

Nohara
et al. (2006)

Arora
(2001)

Yang et al.
(2015)

Years 2003–2013 2003–2013 1989–1999 1980–1988 1980–1994 1901–2010
Data Observed Simulated Simulated Simulated Simulated Simulated Simulated Simulated

Model SWAT TOPMODEL RiTHM LMDZ TRIP AMIP2 SDGVM
Runoff (mm yr−1) 241.6 ± 31.3 237.8 ± 38.7 140 140.6 151.7 ± 44.3 179 189 273.8

Discharge
(109 m3 yr−1) 589.5 ± 76.4 580.2 ± 94.4 341.6 343.1 370.1 ± 108.1 436.8 461.2 668.1

Difference with
observed data (%) 1.6 42.1 41.8 37.2 26.0 21.8 13.3

Figure 3. Interannual spatial average contribution to the streamflow per day for all the HRUs.
We highlight 4 periods with 4 different hydrological behaviors corresponding to the conceptual
model described in Materials and methods. In the boxes are noted the accumulated contribution
on each period for surface runoff (S), lateral runoff (L) and groundwater (G). The average amount
of precipitations per day and the average air temperature in the whole basin are also represented.
The horizontal lines correspond to the modeled limits of snowfall (dashed line, 1.52 ◦C) and snowmelt
(solid line, 4.75 ◦C) temperature (see Table 2). The vertical lines which separates the periods represents
the date when temperature reaches the limits defined.

2.3. Spatial Water Transfer

A dynamic study of the spatial distribution of annual mean fluxes of surface, subsurface and
groundwater runoffs has been performed in order to follow the water flows in the watershed. We have
focused on the year 2013 because it yields the best results compared to the rest of the study period
(NSE: 0.79; R2: 0.87). Figure 4 shows cartographies of water flows contribution to streamflow at
points of interest highlighted in Figure 5. The increase in discharge is mainly explained by surface
runoff in the North of the basin and by lateral runoff in the South of the basin. This date underlines
the unfreezing of the active layer which occurs firstly in the South and allows the lateral runoff.
At the peak of discharge, the active layer has unfrozen and surface and lateral runoff are possible in
a large part of the basin. Then, the decrease in discharge is mostly sustained by subsurface runoff
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and local precipitation events which completes the analysis done with the Figure 3. The groundwater
contribution is only significant in the southern parts of the watershed where the permafrost is not
present and seems to not impact significantly the watershed functioning.

Figure 4. Spatial water flows dynamics at different key periods of the year 2013 in the Yenisei watershed
(frozen period, unfreezing, peak of discharge and recession; see Figure 5). The strong disturbance in
the surface and lateral runoffs during snowmelt and permafrost unfreezing is clear.

Figure 5. Representation of the modeled discharge at the Yenisei outlet.
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The water contribution to streamflow are mostly dependent on the presence or not of permafrost
(Figure 6). The surface runoff is doubled in sporadic zones which could be linked to a rapid increase in
temperature and a rapid snowmelt in these regions. The lateral flow remain in the same range in each
type of permafrost. But, in the permafrost free zones, the flow is lowered as water can be transferred in
the aquifer and as expected, the groundwater flow is only significant in the zones where no permafrost
is found. The absence of permafrost implies a recharge of the aquifer which provokes a return flow.
Nevertheless, we observe a decrease from sporadic to isolated permafrost zones in both surface and
lateral runoff. As isolated permafrost zones present higher temperature, this decrease could be linked
to a highest evapotranspiration.

Figure 6. Average contribution to streamflow for each flow depending on the type of permafrost.

3. Discussion

3.1. Conceptualization of Permafrost Hydrology in the Yenisei Watershed and Outputs

Our conceptualization seems good regarding the results obtained in this study. Indeed, the
modeled water cycle is consistent with the observed values. The resulting average flows between the
compartments match observations made in other works on the field [17]. Concerning precipitation,
the modeled total amount and the rain/snow ratio is in the observed range. The modeled
evapotranspiration and sublimation are in the range of numerous observations made from Arctic
watersheds in Russia, Canada and Alaska [22,30,33–36].

The simulated surface/subsurface ratio, which is 58/39 in this study, is close to observations made
in Canadian watersheds with a ratio of 60/40 [17]. The low contribution (3%) of deep groundwater
to the annual modeled streamflow is as expected for this hydrological system [19]. The average
percolation rate is low, as it is naturally restricted in permafrost landscapes by an impermeable
boundary of the active layer bottom.

The automatic calibration has allowed a sensitivity analysis to bring to light the most sensitive
parameters calibrated. This automatic adjustment calibrates all the parameters together by creating
a batch of parameters for a run and it returns the best combination of parameters after all runs.
The strong influence of the snow behavior is clear in this model regarding the sensitivity analysis
results (Table 4; see Materials and Methods). Snowmelt and meltwater routing are the main primers of
the Yenisei River hydrology. Automatic calibration have not included the parameters DEP_IMP and
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SLSOIL (depth to impermeable layer and slope length for lateral subsurface flow). They have been
found to be extremely influential and they have implied strong changes in the hydrological regime,
which pulled the results too far away from the reality.

Several parameters have been manually calibrated according to literature while others have been
calibrated in order to return values in the hydrological cycle close to observations in literature. Ranges
for snowfall and snowmelt parameters (SFTMP, SMTMP, SMFMX, SMFMN, SNO50COV and TIMP;
see Materials and Methods) have been established by expertise and the final values have been kept for
representing well the flows peaks and the distribution between snowfall and rainfall. The minimum
snow water content that corresponds to 100% snow cover in millimeters (SNOCOVMX) has been
approached with literature [37]. The DEP_IMP parameter, representing the maximum depth of the
active layer, has been established with the work of Zhang et al. (2005) [15] as mentioned before.
The SLSOIL parameter has been fixed for representing correctly the distribution between surface and
subsurface runoff according to Carey and Woo [17] which seems to be a good representation of the
flows distribution in permafrost soils. Finally, the three last parameters (CANMX, LAT_TTIME and
ESCO) have been adjusted using the work of Hülsmann et al. [38].

The system definition could be discussed. By taking the reservoirs out of the conceptualization,
we avoid strong controllers of the water and other elements transfer. Considering the two last reservoirs
as water inlets is a good first approach in order to reproduce the behavior of water in these areas
but can be improved. By integrating in the modeling the reservoirs managements, and by this way
the whole upstream part of the watershed, the model would be enhanced making the refinement of
our predictions possible. On the other hand, the discharge has been checked by a quick comparison
between observations and predictions at the exit of the Boguchany reservoir on the Angara River and
at the exits of the Nizhnyaya Tunguska and the Podkamennaya Tunguska tributaries with observed
data available on the 2008–2013 period, which confirms our assumptions in different zones of the
modeled watershed (see Materials and Methods). The introduction of an active layer in the modeling
by using the parameter DEP_IMP allows a good representation of permafrost characteristics and thus
a water flows distribution representative of Arctic watersheds.

Simulated water fluxes are closer to observations than in other previous studies (Table 2). It could
be explained by our good representation of high flow periods while previous studies did not succeed
in representing the snowmelt contribution to streamflow [33]. By integrating snowmelt and permafrost
unfreezing events in the modeling, we can argue that this study returns more precise predictions than
past researches. Nevertheless, approximately 3.8 mm yr−1 are still missing in the annual average
discharge but the difference in the water balance is the lowest compared to past researches and is less
than 10% of the total runoff (Table 2). A focus on the high flows during the whole period and on low
flows which are underestimated (Table 1) during some summers (e.g., 2006, 2007 and 2008) could be
done to allow a first good improvement of our modeling. These missing 3.8 mm yr−1 could also come
from the low number of the real meteorological stations used as inputs. With data from only 9 stations,
we could have missed precipitation events after the spring freshet in sub-catchments, as observed
in Figure 3. Other precipitation data are available in the Yenisei watershed but not easily accessible.
By collecting all these data, new stations could be implemented in the model and an improvement in
the capacity of the model to represent low flow periods could be reached.

Finally, we have selected a small number of discharge data during freshets because the confidence
level accorded to the rating curve method is low in Arctic watersheds due to the quick increase in
discharge. It implies difficulties to study the hydrology in the watershed. Our calibration and statistical
analysis performances are reduced by this strict selection of data in the ArcticGRO dataset during
these particular periods.

3.2. Future Modeling Improvements for the Arctic Rivers

This study includes new strengths in modeling permafrost hydrology. We have shown the
importance of modeling at a daily time step in Arctic watersheds to collect more information on the
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hydrological behavior of those basins. Modeling at a monthly time step limits the understanding of
the freshet and of the water pathways. The transition from low flow to high flow periods occurs in few
days and a daily time step modeling allows more precise predictions. Monthly time step modeling
approaches the permafrost hydrology observed in the daily time step modeling especially for low flow
periods, but the peaks are strongly reduced and do not match the observations due to the low observed
data available during high-flows periods as shown in Table 1 which has definitely repercussions on the
spatial discretization of water pathways. Precisely, daily time step modeling permits a spatial study of
water pathways on days of interest which is important to characterize the origin of the water and the
snowmelt intensity (Figure 4).

By integrating high flow periods, by conceptualizing and implementing the active layer in a model
and by including each type of permafrost in the study, the obtained results are better than that from
previous efforts. This study is the first study following spatially water flows from each compartment
during the year. On the other hand, this research reveals some weaknesses. Unlike the work of
Zhang et al. (2005) [15], the active layer is not implemented variable temporally and not at the same
scale. Each sub-basin has received a value of the depth to the impervious layer depending on the type
of permafrost according to the paper of Zhang et al. (2005) [15] and to expertise. A reconsideration of
this parameters at a smaller scale could increase the goodness of the returned results or an integration
of the active layer model by Zhang et al. (2005) [15] to refine the spatial representation of the active
layer in our modeling could be a good improvement. In a same time, the snow cover extent could be
checked as it is already studied by remote sensing [37].

However, improvements in the assumptions made in this modeling could be introduced.
The representation of the active layer, which has the biggest influence on the distribution of flows,
allows a good representation of the peaks and the recessions. But, the hypothesis used to represent the
active layer with only spatial variations is weak because in reality, the active layer thickness varies
also temporally as shown before. As a first perspective, the conceptualization could be improved by
implementing the temporal fluctuation of the active layer and to better represent the dynamic of soils
conditions. In order to achieve this goal, models available for big watersheds scale should integrate
other equations and parameters adapted to permafrost soils. The most straight and evident way is
the development of a separate SWAT module for soil physics and heat transfer. This implies also the
development of a dedicated open database of permafrost soil properties, including heat transmissivity
and the like. This module will make the model computationally more demanding, but this is the only
way of providing relevant hydrological forecasts based on future climate scenarios.

3.3. Limit of the Model for Permafrost Soils

The SWAT model allows spatial and temporal predictions of hydrological fluxes in a large Arctic
watershed. Some other models could have returned more precise results but with a need of larger
number of measured variables which, unlike the variables used in SWAT, are quite difficult to collect.
It could be interesting to use the Hydrograph model on the Yenisei because it has already been
successfully used on another big arctic watershed, the Lena River [39], and then compare the model
performance on catchments presenting permafrost soils. Explicit permafrost description through heat
fluxes and variable active layer depth is not available, though essential for permafrost catchment
modeling. The SWAT model does not currently include soil heat transfer module, as it is an overkill
for more temperate regions.

4. Materials and Methods

4.1. Study Area

The Yenisei River has the seventh largest watershed worldwide, and the largest in the Arctic
domain, with a basin area of 2,540,000 km2 [23]. The Yenisei is the fifth longest river in the world
(4803 km [23]) with the sixth biggest discharge at the outlet (17,700–19,900 m3 s−1 [23,40–42]). The main
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stream comes from Western Sayan Mountains (Southern Siberia), crosses the Central Siberia in south
to north direction, and drains into the Kara Sea (Figure 7). Its largest tributary, the Angara River,
comes from Mongolia and is fed by the Lake Baikal, the biggest freshwater reserve on Earth [43].
Its average discharge is 4500 m3 s−1 and it sustained water flow during the frozen period with an
average discharge of 3000 m3 s−1. The mean annual discharge at the Yenisei outlet approaches
20,000 m3 s−1 with peaks exceeding 100,000 m3 s−1 during the highest freshets; low flow discharge
around 6000 m3 s−1 during winter is mainly sustained by water releases by dams [42].

The Yenisei watershed embodies three geographically distinct regions: mountainous headwater
area of the Southern Siberia at the southern limit of the watershed, a relatively plain area of boreal forest
in its central and northern parts, and Central Siberian Plateau in the northern part of its northernmost
large tributary basin, the Nizhnyaya Tunguska River (Figure 7). The mean elevation is 670 m and the
average basin slope is 0.2% [23].

Figure 7. Topography and mains streams of the Yenisei watershed from its sources to the Igarka
gauging station using a digital elevation model from de Ferranti and Hormann.

The southern and central parts of the Yenisei watershed are dominated by Podzoluvisols,
Cambisols and Podzols while Cryosols and Gleysols cover the largest area in the Northern parts
(Figure 8a). The taiga (boreal coniferous forest) is dominant in this watershed, but the tundra is also
present in the northernmost part of the watershed, and steppe is a typical landcover class on the
southern basin margin (Figure 8b).
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Permafrost soils overlay 90% of the Yenisei watershed and are distributed as followed: 34% of
continuous permafrost, 11% of discontinuous permafrost and 45% of sporadic and isolated permafrost
(Figure 8c [44]). It may influence hydrology, as mentioned before, and a lag time for snowmelt should
be taken into account in the conceptual model.

Figure 8. Soils, land use and permafrost distribution along the Yenisei watershed. (a) Soils distribution
from the Harmonized World Soil Database at a 1 km resolution. We see a large diversity of soils among
the whole watershed; (b) Land use distribution from the Global Land Cover 2000 Database at a 1 km
resolution. The forest classes correspond to the tundra distribution. The shrub cover classes correspond
to the taiga; (c) Model adaptation of the Yenisei watershed and permafrost extent. The GIS map
classifies permafrost types as the percentage of extent: continuous (90–100%), discontinuous (50–90%),
sporadic (10–50%) and isolated (0–10%). Source: National Snow and Ice Data Center (NSIDC), based
on Brown et al. (1998) [45].

The watershed outlet has been established near Igarka (67◦27′55” N, 86◦36′09” E), since the river
flow downstream from this settlement is affected by the marine influence, causing perturbations in
discharge and a salinity increase which disturbs water chemistry. Discharge data are available at the
outlet (see Section 3.2 for description).
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Several physiographical objections complicate our modeling exercise. Firstly, uneven permafrost
distribution across the watershed forces to implement different modeling strategies for the sub-basins,
or even their parts, void of permafrost and for those which are perennially frozen. Secondly, the SWAT
model does not provide a separate module for soil physics and heat transfer calculations, so the active
layer presence and development are to be accounted for, using only the means, currently available in
the model interface. Finally, hydropower generation is an important activity in the Yenisei basin, related
to metallurgy which is highly energy-consumptive. Thus, seven large dams have been constructed on
the Yenisei and the Angara rivers in the 1960s and 1970s, actually maintaining a minimum daily flow
ca. 6000 m3 s−1 at the outlet throughout the low flows season.

4.2. Observed Data

Observed discharge data are available at the basin outlet at a daily timestep, originating from
daily water stage observations at the Igarka gauging station [46]. Water stage values are recalculated to
daily flow values using a rating curve, which is not openly available. Daily flow values at this station
were measured regularly from 1930s to late 1980s at a cross-section around 3 km downstream from the
water stage gauge, using the standard velocity-area method [47]. Stream velocity was measured at
several verticals from a boat using a propeller device at five depth points. To our knowledge, the most
recent direct flow measurement at the Igarka gauge dates back to 2003.

Daily flow data used in this paper for calibration and verification purposes for the period between
1999 and 2014 comes from the Arctic Great Rivers Observatory (ArcticGRO) dataset (Table 3). Daily
discharge data at the large dams exits and at the tributaries outlets are available from the Roshydromet
online database (Table 3) for the 2008–2013 period. During the freshet, the discharge is not measured
because of field difficulties but estimated. The confidence accorded to these data is low so we exclude
them of the dataset for this study. Since the reservoirs management practices are not publicly available,
we exclude from consideration the basin areas upstream from the Krasnoyarsk hydropower station
(HPS) on the Yenisei River, and upstream from the Ust’-Ilimsk HPS on the Angara River which reduce
the area of the basin to 1,383,398 km2 (Figure 8c). The Ust’-Ilimsk HPS is downstream the Lake Baikal
and then integrates its water delivery. On the Angara, the most downstream reservoir is currently the
Boguchany HPS, but it has been under construction until 2013 and is thus considered as having no
significant impact on flow redistribution in the preceding years. These two mentioned HPSs have been
considered as inlets in the model, delivering an average daily flow of 3000 m3 s−1 each.

Table 3. SWAT data inputs and observations datasets.

Data Type Observations Resolution Source

Digital
Elevation (DEM) - 500 m Digital Elevation Data

(http://www.viewfinderpanoramas.org/dem3.html)

Soil dataset - 1 km
Harmonized World Soil Database v 1.1

(http://webarchive.iiasa.ac.at/Research/LUC/External-World-
soil-database/HTML/index.html?sb=1)

Land use
dataset - 1 km

Global Land Cover 2000 Database
(http:

//forobs.jrc.ec.europa.eu/products/glc2000/products.php)

River network
dataset - - Natural Earth (http://www.naturalearthdata.com)

River discharge 2003–2013 - Arctic Great Rivers Observatory (http://arcticgreatrivers.org/)

Reservoirs
deliveries 2008–2014 - Roshydromet (https://gmvo.skniivh.ru/)

Meteorological
dataset 1999–2014 -

Observed: Global center for meteorological data, VNIIGMI-MCD,
Region of Moscou (http://aisori.meteo.ru/ClimateR)

Simulated: Climate Forecast System Reanalysis (CFSR) Model
(http://globalweather.tamu.edu/)
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4.3. Model Choice

Different models have been used in past researches to simulate permafrost hydrology.
The TOPMODEL used by Stieglitz et al. (1999) [48] on the Imnavait Creek watershed in Alaska (2 km2)
and by Finney et al. (2012) [33] on the biggest Arctic watersheds is a surface runoff model which
show its limits for Arctic watersheds by omitting lateral and return flows from the modeled water
cycle. The Topoflow model used by Schramm et al. (2007) [28] is a spatially distributed, process-based
hydrological model, designed primarily for permafrost catchments. This model is able to correctly
reproduce the hydrological processes in Arctic systems but seems not easy to use for large catchments
because it requires strong calculations and does not take into account soil properties at different depths.
Though, modeling at large scale have been performed. The Hydrograph model [39] has been used
at small and very large scale (the Lena basin) in numerous studies. This model estimates the heat
fluxes and permafrost hydrology with good accuracy at a stand-scale [30], but its applicability is
limited by a virtually random spatial distribution of model parameters, expulsion of lateral flow from
model equations, and oversimplistic channel routing description. The RiTHM model is an adaptation
of the MODCOU model, which is a regional spatially-distributed model and can estimate surface
runoff, infiltration and return flow from groundwater to the streamflow. Again, by not taking into
account lateral flows in model equations, permafrost hydrology is not estimated with accuracy [49].
Nohara et al. (2006) [50] have performed a simulation on different catchments in the world using TRIP,
a model that considers the water transport in the watershed as a displacement of water depending on
the velocity of water. This model does not handle human implications in the water cycle (e.g., dams)
and does not include evaporation and sublimation module, which are essential in Arctic systems.
The LMDZ model has been applied to some of the northernmost basins in the world including the
Yenisei River basin [51]. This model handles snowmelt but does not consider percolation processes,
which is useless in order to represent the active layer dynamics. In a same way, the SDGVM tool has
been used in a multi-model analysis on various watersheds on a large period of study (1901–2010 [52]).
This model is adapted to plant growth but provides runoff outputs. Future improvements in this model
will allow handling of permafrost soils and snow behavior but is still unable to correctly represent
permafrost hydrology.

The Soil and Water Assessment Tool (SWAT) is a hydro-agro-climatological model developed
by USDA Agricultural Research Service (USDA-ARS; Temple, TX, USA) and Texas A&M AgriLife
Research (College Station, TX, USA) [53]. Its performance has already been tested at multiple
catchments of different sizes and in various physiographical settings ([54–58] and references therein).
It is a semi-distributed model which has been firstly designed to predict impacts of human activities
on water management in ungauged catchments. Importantly, both the SWAT model and the ArcSWAT
interface are open–source and free software, allowing reproducibility of the results once the input data
are well–documented and openly available [59].

This study uses the SWAT model to simulate the hydrology of a permafrost watershed including
HPS. SWAT uses small calculating units, called Hydrological Response Units (HRUs), homogeneous in
terms of land use and soil properties [60]. The SWAT system coupled with a geographical information
system (GIS) engine integrates various spatial environmental data, including soil, land cover, climate
and topographical features. The SWAT model manage soils types and properties. It decomposes the
water cycle and returns the water pathways and other information on the water cycle in the studied
watershed. Theory and details of hydrological processes integrated in SWAT model are available
online in the SWAT documentation [61]. The SWAT model has already been tested in permafrost
watersheds [38,39].

4.4. Modeling Data Inputs

The ArcSWAT software has been used in the ArcGIS 10.2.2 interface [62] to compile the SWAT
input files. All the inputs data used in the study are detailed in Table 2. The DEM resolution has been
chosen coarse because of the watershed size. The soil map comprises 6000 categories but has been
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simplified to 36 categories and soil properties have been adjusted by expertise. Global soils have been
aggregated into categories representative with average properties. The soils have been aggregated
on their common structural properties and average soils categories result. Observed meteorological
data have been extracted from 9 stations located in the reduced watershed (Figure 7) for precipitations.
The other variables (temperature, average wind speed, solar radiation and relative humidity) have
been extracted from a global climatic model [63]. Observed variables have been compared to the
predictions by the CFSR model and a good correlation has been observed for all of them, except
precipitation. In order to have a larger number of inputs data, simulated data have been preferred
for all the variables except for the precipitations where observations have been used as inputs. Daily
discharge data at the outlet of two reservoirs have been used: one on the Yenisei at Krasnoyarsk and
one on the Angara at Ust’-Illimsk (Figure 7 [64]).

The catchment has been firstly discretized automatically by ArcSWAT into 250 sub-basins. In order
to take into account the effect of the big reservoirs in the upper part of the watershed, we have
introduced 2 inlets in the modeling at the reservoirs localizations, which have been fed by the observed
data at the reservoirs exits. This step has reduced the modeled basin to an area of 1,383,398 km2,
resulting in 140 sub-basins. These sub-basins have been further divided into 1884 HRUs which are a
combination of 14 land use classes, 13 soil classes and three slope classes (0–1, 1–2, and >2%).

4.5. Conceptualization

The conceptual model used in this study is based on the snow and the soil behavior depending on
the season (Figure 9). While few studies have been done on the subject, in permafrost affected areas the
groundwater flow is considered low or null regardless the season. Indeed, as the soil is always frozen
in the deepest layers, water is trapped as ice which inhibits a return flow from aquifers. As a first
period, during winter, the stability of the snowpack and the soil freezing sustain low flows. Discharge
in the main river is maintained almost exclusively by dams [42]. The second period corresponds to the
spring freshet. An increase in temperature induces a rapid snowmelt which is the main contributor
to the surface runoff during few days. A subsurface flow accompanies the surface flow which is a
result of a first unfreezing of the superficial layers. In a third time, during the recession, the active
layer reaches its maximal depth and surface and subsurface flows are at in the same range. The last
period shows the active layer freezing from the bottom and the top and the snow starts to accumulate
again. Only lateral flow is possible with a piston effect then cease with the permafrost freezing.

Figure 9. Conceptual model for Arctic watersheds hydrology. The cross corresponds to low interactions.
The arrows represent the distribution of surface (S), lateral (L) and groundwater (G) flows depending
on the snowmelt and the freeze-unfreeze processes of permafrost. The average ratio is 60/40 according
to Carey and Woo (1999). Adapted from Tananaev (2015) [65] and Hülsmann et al. (2015) [38].
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4.5.1. Climate Approach

Concerning the climate approach, an attention to the behavior of snow that regulates most of the
spring flood in these regions has been devoted. Indeed, the annual average ratio rainfall/snowfall
is assumed to be 60/40 regarding the work of Su et al. (2005) [22]. Indeed, the snow pack must melt
enough before flow could be detectable.

Parameters controlled by temperature have been calibrated with attention to separate rainfall and
snowfall and to contain the snowpack on the lands before the massive snowmelt. Evapotranspiration
and sublimation have also been followed with attention because of their significance in these
ecosystems, ranging respectively between 36 and 50% of precipitation [22,30,33–36] and between
4 and 20% of snowfall [66,67].

4.5.2. Distribution of the Flows Returning to the River

A main step of the conceptualization has been to consider a low or null groundwater contribution
to streamflow which is linked to the soils conceptualization. So far, groundwater flows have not been
studied well in Arctic watersheds [7] but are assumed to be extremely low due to soil permafrost
conditions. The surface/subsurface flows ratio, which is assumed to be close to Canadian watersheds
i.e., 60/40 [17], has been followed with attention in the manual calibration.

4.5.3. Permafrost Approach

Permafrost behavior in the watershed is accounted for in the model following an approach
from Hülsmann et al. (2015) [38]. An impermeable boundary has been set within the soil profile,
which corresponds roughly to the active layer bottom ultimately limiting percolation in permafrost
environments [19]. Impermeable boundary depth has been assigned as a function of permafrost
extent class in each sub-basin, based on the active layer depth estimates from Zhang et al. (2005) [15].
By remote sensing, they have estimated with the annual thawing index an average depth of the
active layer. The conceptualized maximal depth of the active layer has been set to 800 mm, 1500 mm,
1750 mm and 2000 mm respectively for continuous, discontinuous, sporadic and isolated permafrost.
This approach neglects the temporal development of the active layer, its gradual thawing through
summer, and subsurface runoff inhibition in winter.

4.6. Model Calibration and Validation

The simulation has been performed from January 2003 to July 2014 (excluding a 4-year spin-up
from 1999 to 2002). As a first step, the calibration has been done manually based on literature and
expertise by comparison to observed data. The discharge has been calibrated at a daily time step from
January 2003 to December 2008 and validated from January 2009 to July 2014. Discharge at reservoirs
exits and tributaries outlets have been checked in order to supervise the good displacement of water in
the basin.

In a second time, the calibration has been done automatically with 3 iterations of 500 simulations
using the Sequential Uncertainty Fitting analysis routine (SUFI-2 [68,69]) of the SWAT Calibration
and Uncertainty Procedures (SWAT-CUP) software [70] to select the best value for all parameters
in ranges outlined by the manual calibration, and to perform sensitivity and uncertainty analysis.
Each simulation has selected a list of parameters taken in the ranges defined before and the objective
function has been calculated after running the model with this set of parameters on the study period.
The algorithm is designed to capture the measured data in the 95% prediction uncertainty (95PPU) of
the model in an iterative process with an objective function [57]. In our case, the objective function
considered has been to increase the Nash and Sutcliffe efficiency (NSE; developed below). Then,
Latin hypercube samplings have been performed to obtain the cumulative distribution of the output
variables. The 95PPU has been calculated by integrating the cumulative distributions between 2.5%
and 97.5%.

119

Bo
ok
s

M
DP
I



Water 2017, 9, 418

Table 4 gives calibrated and validated parameters values ranked by sensitivity.

Table 4. Calibrated values of SWAT parameters. The SLSOIL and the DEP_IMP parameters have not
been integrated in the SWAT CUP runs because of their high sensitivity. Because their modification
disrupt completely the water flows distribution, we have decided to keep them fixed.

Parameter Name
Input
File

Literature
Range

Calibrated
Value

Sensitivity
Rank

SMTMP Snow melt base temperature (◦C) .bsn −5–5 4.75 1

SMFMN Melt factor for snow on December 21
(mm H2O/◦C-day) .bsn 0–10 0.25 2

TIMP Snow pack temperature lag factor .bsn 0–1 0.42 3
SMFMX Melt factor for snow on June 21 (mm H2O/◦C-day) .bsn 0–10 8.26 4

SNO50COV Fraction of SNOCOVMX that
corresponds to 50% snow cover .bsn 0–1 0.57 5

LAT_TTIME Lateral flow travel time (days) .hru 0–180 9.06 6
SFTMP Snowfall temperature (◦C) .bsn −5–5 1.52 7

SNOCOVMX Minimum snow water content that
corresponds to 100% snow cover (mm H2O) .bsn 0–500 67.73 8

ESCO Soil evaporation compensation factor .bsn 0–1 0.86 9
CANMX Maximum canopy storage (mm H2O) .hru 0–100 1.90 10
SLSOIL Slope length for lateral subsurface flow (m) .hru 0–150 3 X

DEP_IMP Depth to impervious layer in soil profile (mm) .hru 0–6000 800–2000 X

4.7. Model Evaluation

The performance of the model is evaluated using 4 indices recommended for hydrological
modeling studies [65]: the NSE, the R2, the PBIAS and the RSR. The NSE is a normalized statistic,
usually used in hydrological modeling, which determines the relative magnitude of the residual
variance (“noise”) compared to the measured data variance (“information”) [71,72].

NSE = 1 − Σ(obs − sim)

Σ
(

obs − obs
)

where obs and sim represents observed and simulated data while obs is the observed data mean.
NSE ranges from −∞ to 1. If NSE = 1, there is a perfect match between simulated and observed
data. If NSE = 0, it indicates that model predictions are as accurate as the mean of the observed data.
If NSE < 0, the mean of the observations is a better predictor than the model. The NSE is usually used
because it is easy to interpret. Indeed, the more the NSE is close to 1, the more accurate the model is.
Modeling at a daily step are generally considered satisfactory if NSE > 0.5 [71] and are considered
really good when NSE exceed 0.75.

R2 describes the degree of collinearity between simulated and measured data [71]. R2 represents
the proportion of the variance in measured data explained by the model and ranges from 0 to 1,
with higher values indicating less error variance. As the NSE, values greater than 0.5 are typically
considered good and excellent when R2 is higher than 0.75.

R2 =
Σ
(

obs − obs
)(

sim − sim
)

(
Σ
(

obs − obs
)2
)0.5(

Σ
(
sim − sim

)2)0.5

The PBIAS measures the average tendency of the simulated data to be larger or smaller than
their observed counterparts [71]. It expresses the percentage of deviation between simulations and
observations and the optimal value is 0. PBIAS can be positive or negative which reveals respectively
a model underestimation or overestimation bias [71].

PBIAS =
Σ(obs − sim) × 100

Σ(obs)

120

Bo
ok
s

M
DP
I



Water 2017, 9, 418

The RSR is calculated as the ratio of the RMSE and standard deviation of measured data [65].
The RSR ranges from the optimal value of 0 to +∞.

RSR =

√
Σ(obs − sim)√
Σ
(

obs − obs
)

Two other indices, the p-factor and the R-factor, are used in automatic calibration [68]. The p-factor
corresponds to the percentage of observed data included in the 95PPU. If we consider the model
uncertainty, the more the p-factor is close to 1, the more the model is perfect. For simulations at a
monthly time step, the p-factor is adequate if it is higher than 0.7 [57]. The R-factor is calculated by
dividing the average width of the 95PPU band by the standard deviation of the considered variable.
The R-factor should be lower than 1.5 to be considered adequate [57].

5. Conclusions

The objectives of this paper have been to better analyze water fluxes and pathways in Arctic rivers
and produce a performing model adapted to permafrost soils. This study allows a quantification of
these fluxes at the outlet of the biggest Arctic basin, the Yenisei, with a spatial variability by quantifying
the fluxes in each sub-basin. This work offers a discretization of the flows distribution in a permafrost
affected watershed. This is the first study trying to model water displacement in an Arctic watershed
presenting different types of permafrost in these scales of time and space. Concerning modeling,
this study is the first one trying to conceptualize the active layer and to implement it in the model.
Another advantage of this study in front of prior researches on water discharge in Arctic rivers is the
integration of high flow periods in the daily time step modeling while previous studies do not succeed
to represent peaks due to snowmelt and approach the observed discharge at the outlet. The model has
returned average annual water flows to the river of 152, 103 and 8 mm yr−1 attributed respectively
to surface runoff, lateral runoff and return flow from the shallow aquifer for a yearly water inflow of
263 mm yr−1 for the modeled watershed. The permafrost plays a temporal role in the distribution of
water. Surface runoff explains most of the peak of discharge while the recession is sustained by lateral
runoff. By integrating the reservoirs and the whole area of the watershed, the simulated discharge at
the outlet reaches 237.8 mm yr−1, a result closer to observations than previous modeling. Daily time
step modeling seems the better way to predict water flows in Arctic watersheds regarding the speed of
changing between high and low flow periods. This study is still a first step in hydrological modeling
of Arctic systems and need other improvements to return more trustworthy results. However, it could
be used as an interesting tool to do predictions on the Yenisei hydrological cycle disturbances due to
climate change and their impacts on the Arctic Ocean functioning, as shown in Kuzin et al. (2010) [6]
and to follow biogeochemical flows such as organic carbon exports from permafrost soils which is a
main issue in Arctic areas and a consequent threat at a global scale.
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Abstract: Climate change and freshwater quality are well-linked. Changes in climate result in changes
in streamflow and rising water temperatures, which impact biochemical reaction rates and increase
stratification in lakes and reservoirs. Using two water quality modeling systems (the Hydrologic and
Water Quality System; HAWQS and US Basins), five climate models, and two greenhouse gas (GHG)
mitigation policies, we assess future water quality in the continental U.S. to 2100 considering four
water quality parameters: water temperature, dissolved oxygen, total nitrogen, and total phosphorus.
Once these parameters are aggregated into a water quality index, we find that, while the water quality
models differ under the baseline, there is more agreement between future projections. In addition,
we find that the difference in national-scale economic benefits across climate models is generally larger
than the difference between the two water quality models. Both water quality models find that water
quality will more likely worsen in the East than in the West. Under the business-as-usual emissions
scenario, we find that climate change is likely to cause economic impacts ranging from 1.2 to 2.3
(2005 billion USD/year) in 2050 and 2.7 to 4.8 in 2090 across all climate and water quality models.

Keywords: water quality; climate change; economic valuation; mitigation; greenhouse gases;
model comparison

1. Introduction

Climate change is projected to have widespread effects on freshwater quality due to increasing
temperatures and changes in patterns of river runoff and extreme events [1] (pp. 69–112). Rising water
temperatures, reduced lake mixing, and increased biotic consumption of dissolved oxygen each reduce
water quality [2] (pp. 445–456). Evidence of rising river and lake temperatures [3,4] (pp. 1–5),
and decreased mixing of lakes and reservoirs (i.e., increased stratification) [5,6] have already been
observed. There is an economic value associated with these changes in water quality, measured in terms
of changes in the quality of recreation opportunities and commercial activity. A variety of studies have
examined the impact of water quality on activities such as river and lake visits, boating, and swimming
and fishing in a number of geographic contexts. The authors of [7] provide an example of this by
translating biophysical modeling estimates of water quality into human preferences and find households
in Virginia are willing to pay $184 million per year (in 2010 dollars) to improve water quality.
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Recent studies have investigated the impacts of climate change on water quality, and one in
particular focused on the resulting economic impacts. Boehlert [8] (pp. 1326–1338) used a parsimonious
water quality model to analyze how climate change impacts in the contiguous United States (CONUS)
translate to economic benefits of climate change mitigation. The authors find that at a national level,
annual economic impacts of a high emission future scenario on water quality of $1.4 billion in 2050
and $4 billion in 2100 for the CONUS, using a water quality index approach and a willingness-to-pay
valuation. Although this study employed multiple climate models to show the effect of climate
uncertainty, the analysis relied on only a single water quality model, begging the question of whether
the findings would hold if a different water quality models were used.

Differences in General Circulation Model (GCM) projections have been a focus of many studies,
and have highlighted model bias among well-trusted and complex climate models. The findings
of these studies have developed a common-practice of using many GCMs to produce a range of
impacts, and therefore produce an ensemble of risks. Recently, climate change biophysical impact
analyses have begun to take a similar strategy by comparing results across various biophysical
models, e.g., the Agricultural Model Intercomparison and Improvement Project (AgMIP) part of the
Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, https://www.isimip.org/). In addition,
Schewe [9] uses a large ensemble of global hydrologic models to assess global water scarcity under
climate change. The authors of [10] take the multi-model assessment further by evaluating the impacts
of climate change using regional scale models on three large-scale river basins with three hydrologic
models. However, to the knowledge of the authors, no existing study has used multiple water quality
models to assess the impacts of climate change on water quality.

In this study we project future water quality in CONUS using two water quality models:
Hydrologic and Water Quality System (HAWQS) and the model system used in [8] (pp. 1326–1338),
which we refer to as “US Basins” for the remainder of the study for simplicity. HAWQS builds off of
the widely accepted Soil and Water Assessment Tool (SWAT) by advancing functionality, primarily
through minimizing the necessary initialization time. This improves the ease of application to national
scale analyses [11] (p. 164). Although prior analyses specifically using HAWQS for water quality
analyses are limited (see [11] (p. 164) for an example), the underlying SWAT model is widely used in
water quality modeling ([12] (pp. 16–29), [13] (pp. 228–244)). US Basins is a linked water systems and
water quality model designed to evaluate the impacts of climate change on water quantity and quality
outcomes. In [8] (pp. 1326–1338), the authors use US Basins to estimate the impacts of climate change
and global greenhouse gas (GHG) mitigation effects on U.S. water quality.

We present projections of future water quality parameters in CONUS—namely, river flow, water
temperature, dissolved oxygen, total nitrogen, and total phosphorus—for both HAWQS and US Basins.
These are projected for five climate models and two emissions scenarios, with total water quality
impacts shown through a Climate-oriented Water Quality Index (CWQI) and estimates of resulting
changes in economic value (willingness-to-pay; WTP). The goal of this study is not to compare the two
water quality models, resulting in a recommendation of which model is more accurate. A study of
that nature would be more effective either at a smaller spatial scale (e.g., a single basin) or focused
on individual model components (e.g., water temperature or stream flow). Instead, this study aims
to make use of both models to better understand the impacts of climate change on water quality in
CONUS, which is analogous to the common use of multiple GCMs in climate change impact studies to
address the uncertainty of future climate projections.

The remainder of this document presents the modeling and valuation approaches, a presentation
of model results, and a discussion of findings and future research recommendations.

2. Methodological Approach

We produce biophysical outputs from two water quality models, process those into a water quality
index and changes in economic outcomes, and compare these three outputs across a common set of
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climate scenarios. Below we describe these common climate scenarios, each of the models, the loading
inputs, and the valuation approach.

2.1. Forcing Scenarios and Climate Projections

This multi-model water quality impacts modeling exercise is contributing to the Climate Change
Impacts and Risk Analysis (CIRA; [14]) project, an effort to quantify the physical and economic
impacts of climate change in futures with varying assumptions about global greenhouse gas (GHG)
emissions. The CIRA analytic framework uses a consistent set of climate forcing, climate projection,
and socioeconomic scenarios to enable comparisons of impacts across space, time, and sectors. As such,
the climate scenarios and projections used in this article to estimate changes in water quality are
consistent with those of the broader CIRA project.

The emissions and climate scenarios are based on those generated for the Intergovernmental
Panel on Climate Change’s Fifth Assessment Report (AR5). For the emissions, two Representative
Concentration Pathways (RCPs) are used: RCP4.5 and RCP8.5. RCP8.5 represents a warmer global
future caused by higher GHG emissions, which results in a total change in radiative forcing by 2100
(compared to 1750) of 8.5 W/m2. RCP4.5 provides a future with additional mitigation on GHG
emissions and results in a change in total radiative forcing of 4.5 W/m2. Of the many GCMs generated
for the AR5, five were selected for this study. These were selected based on multiple objectives,
related to the full scope of CIRA2 studies, and capture much of the temperature and precipitation
change projected for the CONUS across the broader set of CMIP5 GCMs. The selected GCMs are the
CanESM2 (from Canadian Centre for Climate Modeling and Analysis), CCSM4 (Community Climate
System Model version 4), GISS-E2-R (from the Goddard Institute for Space Studies), HadGEM2-ES
(from Met Office Hadley Centre), and MIROC5 (Model for Interdisciplinary Research on Climate).
To select these, the points of mean change in temperature and precipitation across CONUS were
plotted using scatter plots (i.e., precipitation change on the X-axis and temperature on the Y-axis).
The GCMs selected best represent the variability, or “scatter”, of the full set. More detail is provided
in Supplementary Material. These projections were downscaled using a statistical process that uses
a multi-scale spatial matching scheme to select analog days from observations across CONUS [15,16].
This dataset, LOCA (Localized Constructed Analogs; [17]), results in a 1/16 degree resolution for daily
maximum temperature, daily minimum temperature, and daily precipitation. Additional climate
variables—solar radiation, wind speed, humidity, minimum and maximum daily air temperature,
air pressure —required were developed using a binning approach, sourcing the historical values from
the Princeton Land Surface Hydrology Group [18] (pp. 3088–3111). More detail on the climate scenario
selection and processing is provided in the Supplementary Material. These variables were aggregated,
for this analysis, to the USGS 8-digit Hydrologic Unit Code (HUC-8) scale (more detail on the HUC
can be found in [19]). Furthermore, each climate projection through 2099 is split into two 20-year
“eras”: 2050 (2040–2059) and 2090 (2080–2099). These eras are compared to a 20-year baseline climate
of 1986–2005. Average changes in temperature and precipitation across the LOCA scenarios and over
time are displayed in Figure 1.

Note that in the results section (Section 3), we often focus on two GCMs (rather than the full set
of 5 GCMs) for simplicity of presentation—namely, GISS-E2-R and MIROC5. These GCMs represent
two extremes as pertains to water quality and exhibit different spatial patterns of changes in climate.
The GISS-E2-R climate model projects less increases in air temperature than the others, with wetter
conditions in the East. Alternatively, the MIROC5 climate model projects high increases in air
temperature and considerable drying, especially in the central region of CONUS. The full set of
the results for the five GCMs is provided in the Supplementary Material.
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Temperature (°C) Precipitation (% change)

Figure 1. Mean projected changes in temperature (◦C; left) and precipitation (%; right) for the five
climate models, two emissions scenarios, and the 2050 and 2090 eras. Changes are between the average
of the 20-year projected era and the 20-year baseline.

2.2. Description of HAWQS

The Hydrologic and Water Quality System (HAWQS; [11]) is a web-based Decision Support
System developed at the Texas A&M University Spatial Sciences Laboratory and funded by the United
States Environmental Protection Agency (EPA) Office of Water. HAWQS is an advanced, total water
quantity and quality modeling system with databases, interfaces and models that evaluates the impacts
of proposed regulations, water quality management actions and scenarios of climate and land use
change on the quality and quantity of the Nation’s streams and rivers.

The core engine of HAWQS is the watershed water quality and quantity simulation model, Soil and
Water Assessment Tool (SWAT). Originally developed by the U.S. Department of Agriculture (USDA),
SWAT has been the core simulation tool for numerous US national and international assessments of soil
and water resources. SWAT is a physically-based, computationally efficient model that continuously
simulates a large array of watershed processes for a defined period of record. Details of the SWAT
modelling methods are described in the Theoretical Documentation [20].

HAWQS is designed to support national-scale economic benefit assessments of potential water
quality management strategies (including policy scenarios and best management practices), and is
capable of supporting a wide variety of national- and regional-scale economic and policy analyses by
simulating baseline and alternative water quality conditions for sediments, pathogens, nutrients,
biological oxygen demand, dissolved oxygen, pesticides, and other characteristics. The model
follows a broad modeling sequence: (1) the landscape phase, where the primary processes are
climate, soil water balance, nutrient and sediment transport and fate, land cover, plant growth, farm
management; and (2) the main channel phase, where the main processes are river routing, sediment
and nutrient transport through the rivers and reservoirs. While HAWQS is capable of modeling
CONUS at the spatial scale of the 10- and 12-digit HUC, the 8-digit HUC is used in this study.

2.2.1. Landscape

In HAWQS, runoff is modeled using the Soil Conservation Service (SCS) curve number procedure
on a daily basis, adjusting for antecedent soil moisture, canopy interception (thus effective rainfall),
land cover, slope and soil type. The parameters for this calculation are collected from United States
Department of Agriculture—Natural Resource Conservation Service, State Soil Geographic [21] and
topography from [22]. The simulated buildup and transport of nutrients and Biological Oxygen
Demand (BOD) in the landscape are modeled in HAWQS in response to agricultural management,
municipal point-sources, and atmospheric deposition [23]. Agricultural land use data were derived
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from the National Agricultural Statistics Service [24]. In the landscape, solar radiation, relative
humidity, minimum and maximum daily temperature, and wind speed, and leaf area, are used to
estimate crop growth and runoff.

2.2.2. Main Reach and Reservoirs

The daily estimates of runoff, lateral and ground water flow including any contribution from tiled
land surfaces are added to the main routing stream after routing through the tributaries for channel losses.
Once the water is added to the main routing, the water is routed using variable storage coefficients [25]
(pp. 100–103) through each 8-digit HUC reach with point sources added in each reach based on the
contribution of nitrogen and phosphorus by population. If reservoirs are present, the SWAT routes water,
nutrients and sediment through the reservoirs based on their characteristics. Reservoir information
is sourced from the National Inventory of Dams [26]. River flows, derived from the United States
Geological Survey [27], were used for calibration and validation of the flow at selected locations across
CONUS. Water consumptive use data were sourced from [28] for surface and groundwater uses.

Within each 8-digit HUC, the main river reach and reservoirs are assumed to be well-mixed.
Water temperature is calculated based on dampened changes in daily air temperature developed by [29].
The transport of nutrients, dissolved oxygen, and sediment in streams is modeled in the stream by keeping
track of changes in mass on a daily basis. All details of SWAT calculations are well-documented in [20].

2.3. Description of US Basins

The version of the US Basins model used here is described in [8] (pp. 1326–1338). Precipitation and
temperature from each climate scenario are inputs into: (a) a rainfall-runoff model (CLIRUN-II),
which is used to simulate monthly runoff; and (b) a water demand model, which projects the water
requirements of the municipal and industrial (M&I) and agriculture sectors. With these runoff and
demand projections, a water resources systems model produces a time series of reservoir storage,
release, and allocation to the various demands in the system, which include M&I, agriculture,
transboundary flows, and hydropower. The water quality model is driven by QUALIDAD [30],
which uses managed flows and reservoir states to simulate a number of water quality constituents in
rivers and reservoirs. Since US Basins does not include a representation of loading transport through
the landscape, loading into the main river reaches is exogenous. For this study, nonpoint agricultural
loadings from the HAWQS landscape (phosphorus, nitrogen and BOD) are used directly in US Basins,
equally distributed across each segment within the HUC-8. Due to the computational intensity of US
Basins, one year of mean climatology is used for the baseline period and future eras.

2.3.1. Runoff and Water Demand

The climate projections for each emission scenario were used to develop monthly runoff estimates.
Runoff modeling converts the climate shifts into changes in surface water availability important for
the water resource systems model. Surface water runoff was modeled with the rainfall-runoff model
CLIRUN-II (see [31,32]), the latest available application in a family of hydrologic models developed
specifically for the analysis of the impact of climate change on runoff, first proposed by [33] (pp. 1–16).
Water demands are the other side of the water balance, and are developed using 2005 data from the U.S.
Geological Survey on annual water withdrawals and consumptive use in a range of sectors including
irrigation, M&I use, mining, thermal cooling, and several other sectors [34] (p. 52). These data are
available at the 3109 counties of CONUS and spatially averaged to the 8-digit HUC resolution using
the same approach taken by the U.S. Forest Service in their development of the Water Supply Stress
Index (WaSSI; [35]).

2.3.2. Water Resources Planning Model

Reservoir management and routing in US Basins is simulated using a water resource systems
scheme, where the simulated runoff—used as surface water supply—and projected water demands
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are used to optimize water allocation based on a prescribed set of priorities. Three demand types,
or nodes, are modeled throughout the system, which are in competition for water dependent on the
sequence (upstream/downstream). The node types are municipal and industrial (M&I) water use,
hydropower generation, and irrigation withdrawal. The hydrologic boundaries used to define the
basins are the 2119 8-digit HUCs of CONUS. The structure of each basin is generic, prescribed with
input characteristics that are unique to each HUC. Reservoir data, such as locations, hydropower
capabilities, and the information needed to calculate surface area and volume are all retrieved from the
Army Corps of Engineers [26]. Hydropower production is calculated and calibrated to the National
Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) model [36]
(pp. 275–3000). For each of the basins, the priorities of the various water users are assumed to be in the
following order: (1) minimum flows driven by environmental and trans-boundary concerns; (2) M&I
water demands (including mining and thermal cooling); (3) irrigation demands; and (4) hydropower
production. More detail on the calibration and verification of US Basins can be found in [37].

2.3.3. Water Quality Model Description

Using the managed flows and reservoir storage and volume from the water planning model as well
as climate parameters, we use the QUALIDAD model [30] to track several water quality constituents for
each 8-digit HUC, including temperature, dissolved oxygen (DO), three nitrogen species, two phosphorus
species, a generic metal, and salt. QUALIDAD is a parsimonious water quality model that is designed
to model daily water quality dynamics at the basin scale. The mathematical representations of these
processes are detailed in [30]. The mass balance equation is solved numerically using the Matlab
Ordinary Differential Equation (ODE) 15 s [38] (pp. 1–22). All variables in this model have a daily time
step except temperature, which is hourly. For simplicity, monthly flows are transformed to daily using
a spline interpolation, which is certainly a limitation the US Basins approach and plans are in place to
address this in the future. To track water quality constituents within the CONUS framework, each 8-digit
HUC is divided into a number of segments based on the [39], which is a dataset built upon the EPA’s
digital record of over 60,000 river reaches in the U.S., intended for national water-quality modeling.
For each river segment, the data set contains corresponding parameters such as flow, velocity, segment
length, and the sequence of segments. Based on these parameters, the main river channel is found
within each 8-digit HUC, and then separated into segments based on travel time estimates optimized to
reduce numerical dispersion. Each constituent is modeled separately in each segment, and upstream to
downstream mass transfer is governed using numerical methods documented by [30,31]. More detail on
the CONUS routing framework is provided in [40].

Temperature is tracked within QUALIDAD using a heat budget model approach [41],
that simulates the surface heat exchange of a body of water as well as water sources/sinks through
inflows from upstream basins, outflows downstream, small tributaries, and groundwater. Strzepek [40]
includes more detail on this approach. We assume that each riverbed is parabolic, following [42], which
helps to derive a relationship of flow with surface area and velocity. Wind speed, relative humidity,
daily temperature range, solar radiation, and air pressure are used in addition to precipitation and
temperature to calculate water temperature.

In the summer, as temperature warms and solar radiation increases, stratification in temperate
reservoirs occurs. Temperature during the season of stratification is modeled differently for reservoirs,
where a two-layer model is used, representing both the epilimnion (top) and the hypolimnion (bottom)
layers. For example, if the reservoir is bottom-releasing (i.e., outflow is occurring in the hypolimnion)
then the water state (e.g., dissolved oxygen levels) in the bottom layer flows downstream.

A detailed sensitivity analysis of this process-based mass balance approach that governs the water
quality calculations of US Basins can be found in [8] (pp. 1326–1338).
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2.4. Summary of Key Differences between US Basins and HAWQS

There are several key differences between the HAWQS framework and the US Basins framework
(summarized in Table 1). To start, US Basins is computationally intensive, due to the ODE solver, and for
this study mean climate conditions are used for each era and scenario, as discussed. Alternatively,
HAWQS runs the full set of transient years, resulting in 20 years for each era and scenario. The process
of converting climate into flow is estimated differently. Although HAWQS is not fully calibrated across
CONUS, HAWQS has been calibrated and verified across large areas of CONUS [43,44]. Then, runoff,
routing, and water withdrawal is translated into flows based on a pre-calibrated scheme. On the other
hand, US Basins uses estimates of naturalized runoff to calibrate the runoff model on a long-term
mean monthly basis across CONUS. These runoff estimates are applied to a prioritization scheme of
water uses to estimate flow and reservoir levels. Furthermore, US Basins focuses on the water quality
of the main reach, lacking many of the landscape and tributary processes applied in HAWQS, which
includes 225,000 landscape units distributed across CONUS. The loadings between the two models are
also different, discussed in detail in Section 2.5.

Table 1. Summary of key differences between US Basins and Hydrologic and Water Quality System (HAWQS).

Parameter/Characteristic US Basins HAWQS

Number of years per “era” One year 20-years
Runoff model CLIRUN, calibrated, monthly SWAT, daily

Landscape Simple
Complex, includes land management,
fertilizer application, more complex

crop model, among others

Water quality model QUALIDAD, daily SWAT, daily
Reservoirs Stratified, 2-layer Well mixed with seasonal settling and decay rates

Main Rivers Multiple segments per HUC8 Well mixed
Water Allocation/management Priority scheme, hydropower, monthly Based on a calibration of flows, daily

Water Temperature Energy balance, hourly Dampened air temperature, daily
DO saturation Based on temperature and elevation Based on temperature

Although the water quality models both use many of the same mass balance equations in-stream
as outlined in [41], the application is different. HAWQS solves these mass balances on a daily
basis assuming the main reach and reservoirs are well-mixed and the water temperature equation
is estimated based on air temperature. US Basins splits the main reach into segments, as described
previously, and the reservoirs into two vertical layers to account for summer stratification. In addition,
these mass balance equations in the reach and reservoirs are solved numerically using ODE solvers.
The water temperature is also solved numerically using an energy balance equation. Additionally,
US Basins accounts for the effect of elevation on the DO saturation level while HAWQS DO saturation
is based on water temperature only, without the elevation effect.

Many of the specific implications of these differences are discussed in the Results section
that follows.

2.5. Loading Inputs to US Basins and HAWQS

In each model, loadings enter the system as point and nonpoint sources. Agricultural nonpoint
source loadings were developed in HAWQS using data available from the Spatially Referenced
Regressions on Watershed Attributes (SPARROW) model (see [45]). These included total annual
nitrogen and phosphorus from fertilizer application, as well as BOD outputs from livestock.
Non-point loadings were modeled using HAWQS to estimate the transport of nonpoint loadings
to the main river reaches and reservoirs. These loadings vary with runoff, as SWAT includes crop, tree,
and plant nitrogen, phosphorus, and carbon cycles. The longer the nutrients stay in the soil, the more
they are consumed by vegetation. As climate change affects runoff, each climate scenario has a unique
set of nitrogen and phosphorus loadings from agriculture (see Figure 2). Note the similarities between
the inverse of changes in precipitation (Figure 1), and the changes in loadings presented below.
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Baseline Total Nitrogen Loadings (kg/year) Baseline Total Phosphorus Loadings (kg/year)

Changes in Total Nitrogen Loadings (%) Changes in Total Phosphorus Loadings (%)
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Figure 2. Non-point source nitrogen and phosphorus loadings under the baseline (top) and climate
change (bottom) derived from HAWQS outputs. Variability in loading patterns across climate scenarios,
emissions scenarios, and time is driven by the response of the landscape model to changes in river
runoff under climate change.

In both HAWQS and US Basins, loadings from municipalities were estimated using export
coefficients for both nitrogen (2 kg/person/year) and phosphorus (0.3 kg/person/year) derived
from [46]. BOD loadings from municipalities are excluded. These annual per capita loadings were
scaled to kilograms based on U.S. population projections developed using the Integrated Climate
and Land Use Scenarios (ICLUS, version 2 [46] (pp. 20887–20892); [47]) model. Using the UN
Median Variant projection for the U.S. [47], ICLUSv2 was applied to generate county-level population
projections at five-year time steps between 2000 and 2100, which were then spatially averaged to
the 8-digit HUCs. This population projection is consistent across both GHG mitigation scenarios.
These point source loadings rose proportionately to projected population through 2100. In addition,
HAWQS includes loadings from atmospheric deposition, which is based on wet and dry deposition
from historical observation stations on a monthly basis by 8 digit HUCs [23]. These loadings from
atmospheric deposition were excluded in US Basins because US Basins lacks a model of the landscape
as discussed previously.
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2.6. Valuation of Water Quality

In this study, the economic impacts of changes in water quality measures are estimated using
a valuation of changes in a water quality index. Many water quality indices have been developed
over the past 50 years. The National Sanitation Foundation (NSF) (explained in detail in [48]) built on
previous work by incorporating expert judgement and provides a template for many water quality
indices developed since (e.g., [49]). In this study, we use a water quality index following a similar
approach outlined by [49], which follows three steps: (1) obtain measurements on water quality
constituents, obtained directly from the water quality model previously described; (2) convert each
measurement into a subindex using water quality curves and (3) aggregate the subindex values into
the WQI. McClelland [48] provides water quality curves (step 2) and aggregation weights (step 3) for
nine water quality parameters. Using this approach, we develop a “Climate WQI” (CWQI) similar
to the one used in [8] (pp. 1326–1338), which uses four subindex calculations: water temperature,
as well as the concentrations of DO, total phosphorus, and total nitrogen. In this study, we use an
updated form of the subindex calculations for DO, total nitrogen and total phosphorus from [50].
The subindex curves vary for total nitrogen and total phosphorus across the U.S. by Level III Ecoregion
and are based on a fitted exponential function. In contrast, the DO subindex curve, based on an
exponential relationship below saturation and a second order polynomial above saturation, is the
same across CONUS. The temperature subindex calculation [48] is based on deviations from mean
water temperature and described in more detail in [8] (pp. 1326–1338). More detail on the subindex
calculations can be found in Supplementary Material.

Similar to [8] (pp. 1326–1338), the relationship between changes in CWQI and changes in
WTP—used here as an indicator of economic costs and/or benefits—is developed from the full
linear meta-regression transfer function from [7], using a piecewise linear function. We use state-level
data from the [50] on persons per household to convert WTP per household to WTP per person to
develop a national WTP across scenarios and eras. Van Houtven [7] also distinguished WTP by users
and non-users. We use state-level boating survey data [51] to weight each 8-digit HUC by fraction
of users and non-users. Although “users” include a broader group than boaters, information on
other categories was not available at the national level. Both the users/non-users and persons per
household are scaled using the population projections discussed previously. The four water quality
parameters in each HUC-8 are aggregated, weighting by total HUC-8area, to the Level-III Ecoregions.
Because boaters are a subset of all users, and because users have a higher WTP per person than
non-users, our approach likely underestimates aggregate WTP for improvements in the CWQI.

3. Results and Discussion

The following section outlines the water quality parameters from the models, starting with the
baseline followed by the future projections. As mentioned, these focus on flow, water temperature,
total nitrogen, total phosphorus, dissolved oxygen, and CWQI, followed by WTP. The section continues
with a more quantitative comparison of the two water quality models and a short discussion.

3.1. Baseline Model Outputs

In this section, we describe the main differences in the baseline water quality parameters from both
models and identify the main causes for these differences. Figure 3 shows the mean baseline managed
flow, water temperature, and DO concentrations. Overall, the spatial patterns of flow between HAWQS
and US basins are quite similar, although the magnitudes of flow differ, particularly in the western
US where HAWQS flows are higher. These differences are not unexpected, as the US Basins model
relies on a calibrated rainfall-runoff model (CLIRUN-II), whereas the HAWQS simulates runoff using
partially calibrated curve numbers in SWAT. The lower western river flows in US Basins result in higher
nitrogen and phosphorus concentrations in these rivers than in HAWQS. The situation is comparable
with DO, where the spatial patterns between the two models are quite similar, although the magnitude
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of concentrations is generally higher in HAWQS. As discussed previously, SWAT does not adjust for
elevation in the DO saturation equation, resulting in higher DO values in high elevation regions in
CONUS as compared to US Basins. As for water temperature, US Basins tends to estimate higher
water temperatures than HAWQS across CONUS. This is not unexpected since the water temperature
in HAWQS (also in SWAT) does not take into account solar radiation, relative humidity, and water
depth, while US Basins includes these effects. Also note that US Basins is using a single mean climate
year, and does not include inter-annual variability, which also accounts for many of these differences.
This also applies to the remainder of the results.

(a) Managed Flows (MCM/year)

(b) Water Temperature (°C)

(c) Dissolved Oxygen (mg/L)

Figure 3. (a) Mean baseline flow (MCM/year); (b) water temperature and (c) dissolved oxygen (mg/L),
1986–2005, at the Hydrologic Unit Code (HUC)-8 watershed scale for US Basins and HAWQS.

Figure 4 shows the median total phosphorus and total nitrogen concentrations in the main reach
in each HUC-8. Both the spatial patterns and magnitudes of each constituent are similar across the
two models. As noted above, concentrations in US Basins are higher than HAWQS in the western US
because of lower river flows. Also, US Basins uses monthly flows, which cannot account for intra-monthly
variations in flow. This also results in differences in concentrations. In addition, US Basins excludes
atmospheric deposition while it is included in HAWQS. Atmospheric deposition primarily influences
nutrient concentrations in areas with higher precipitation, especially in eastern CONUS.

Figure 5 shows the scatter plot of the baseline CWQI across the 85 Level III Ecoregions as well as
a map of the differences, where positive values indicate that HAWQS WQI is higher than US Basins.
There is a clear difference between the east and west, where HAWQS WQI is higher in the west and
US Basins is higher in the east. These differences illustrate two of the major differences in the models.
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The lower CWQI values in the west in US Basins is primarily driven by lower managed flows in the
west than in HAWQS, where lower flows results in higher concentrations of nitrogen and phosphorus
and lower DO. In the east, these differences are primarily driven by the additional loadings in HAWQS
through atmospheric deposition.

(a) Total Nitrogen (mg/L)

(b) Total Phosphorus (mg/L)

Figure 4. Mean baseline nitrogen (a) and phosphorus (b) concentrations (mg/L), 1986–2005, at the
HUC-8 watershed scale for US Basins and HAWQS3.2. Climate change impacts and effect of greenhouse
gas (GHG) mitigation on water quality.

Figure 5. Scatter plot of baseline Water Quality Index (WQI) for HAWQS and US-Basins as well as
correlation coefficient (R) and 1:1 line (left) and map of difference in WQI between HAWQS and US
Basins (right), where positive values indicate that HAWQS WQI is higher than US Basins. These are
both shown across the 85 Level III ecoregions in contiguous United States (CONUS).
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3.2. Projected Model Outputs

Next we focus on the projections of these water quality parameters under climate change. As noted
in Section 2.1, we focus on two GCMs for simplicity—GISS-E2-R and MIROC5. Figure 6 shows the
change in managed flows for both water quality models for 2050 and 2090. Both water quality models
generally project larger changes in flow in 2090 than 2050. There are also a number of differences
between flow projections. For GISS-E2-R, HAWQS projects larger decreases in the flow in the southwest
than US Basins, while US Basins projects larger decreases in flow in the central portion of the country.
The increase in flow in the east is consistent across both HAWQS and US Basins. For MIROC5, both
HAWQS and US Basins project decreases in flow in the central portion of CONUS with less change in
the east and slight wetting in the northwest. The most striking difference between HAWQS and US
Basins in MIROC5 is the southwest, where HAWQS projects large decreases. However, this portion
of the country is dry, so the relative change (as shown in percent) is large but the total change in
flow smaller than other portions of the country. These differences between the water quality model
projections of managed flow represent a complex interaction between changes in climate, modeled
runoff, and the model assumptions about reservoir management.

HAWQS US Basins
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Figure 6. Percentage changes in mean projected (left) HAWQS and (right) US Basins river flow at the
HUC-8 watershed scale for both the GISS-E2-R and MIROC5 climate models, two emissions scenarios,
and two eras.

Figure 7 shows the changes in water temperature for both climate models and water quality
models in 2050 and 2090 and both RCPs. Since water temperature is primarily driven by changes
in air temperature, this water quality parameter shows the most similarity between the two water
quality models. However, the two models estimate water temperature using completely different
equations, as previously discussed. These, along with the differences in changes in runoff and flow
account for the different spatial patterns shown for the two models. The 2050 results show moderate
increase in water temperature, while the results in 2090 are more extreme with increases above 4.5 ◦C
in MIROC5, RCP85.

Figure 8 shows the percent change in total nitrogen concentrations. Both models show larger
changes in 2090 than in 2050. Both water quality models agree that the south-central U.S. and the area
around the Great Lakes are likely to see increases in total nitrogen. HAWQS shows large increases in
total nitrogen in the southwest for all GMS and RCPs in 2090, albeit more pronounced in MIROC5 than
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GISS-E2-R, while US Basins show decreases in this region. Figure 9 shows changes in total phosphorus
concentrations across CONUS. HAWQS consistently projects increase in phosphorus levels along the
southwest coast and Texas. In contrast, US Basins projects larger increases in the central U.S., especially
in 2090, as well as in the east. Differences in nitrogen and phosphorus concentration changes can be
explained primarily by the differences in flow changes for these two models. Also notice the differences
in the change in concentrations in the drier areas—namely, the southwest—where the models differ in
sign. Since flows are low in these areas, the resulting concentrations are sensitive to flow changes.
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Figure 7. Changes (◦C) in mean projected (left) HAWQS and (right) US Basins water temperature
at the HUC-8 watershed scale for both the GISS-E2-R and MIROC5 climate models, two emissions
scenarios, and two eras.
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Figure 8. Percentage changes in mean (left) HAWQS and (right) US Basins nitrogen concentrations
at the HUC-8 watershed scale for both the GISS-E2-R and MIROC5 climate models, two emissions
scenarios, and two eras.
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HAWQS US Basins
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Figure 9. Percentage changes in mean (left) HAWQS and (right) US Basins phosphorus concentrations
at the HUC-8 watershed scale for both the GISS-E2-R and MIROC5 climate models, two emissions
scenarios, and two eras.

Figure 10 shows percent changes in DO for the same eras and scenarios. In both water quality models,
there are consistent decreases in DO in the east. HAWQS shows large decreases around Texas, areas
in the southwest, and along the East coast, with areas of increases in the western mountainous regions.
US Basins shows the largest decrease in DO around the Great Lakes. Since DO is largely influenced
by temperature through levels of DO saturation (i.e., higher temperatures reduce DO saturation levels,
thereby reducing DO aeration), DO generally decreases in the future. However, DO is also influenced by
changes in nitrogen, phosphorus, and BOD loadings, as well as changes in flow. In both models, changes
in DO are largest for 2090 as compared to 2050 and larger for RCP85 than RCP45.
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Figure 10. Percentage changes in mean (left) HAWQS and (right) US Basins dissolved oxygen for, at the
HUC-8 watershed scale, both the GISS-E2-R and MIROC5 climate models, two emissions scenarios,
and two eras.
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Changes in CWQI are shown in Figure 11. For both water quality models, changes in CWQI are
more pronounced in the east than in the west from increases in loadings, causing higher concentrations
of total nitrogen and total phosphorus, and temperature being higher in this area. For HAWQS,
changes in CWQI are largest along the east coast, although this pattern also shows in US Basins in
MIROC5 RCP85. US Basins tends to show larger increases in CWQI in the central U.S. and around
the Great Lakes. Since this is an aggregation of the changes in water quality parameters previously
discussed, many of these differences between projected CWQI changes can be explained by the model
differences already discussed. For example, HAWQS shows larger decreases in CWQI in the west
relative to US Basins, for GISS-E2-R in particular. These can be explained by increases in nitrogen and
phosphorus in the west as compared to US Basins projections of nitrogen and phosphorus.
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Figure 11. Changes in mean (left) HAWQS and (right) US Basins levels of the Climate-Water
Quality Index at the Level-III Ecoregion scale for both the GISS-E2-R and MIROC5 climate models,
two emissions scenarios, and two eras.

Tables 2 and 3 show correlations of changes in CWQI and WTP across the Level III Ecoregions for
the five GCMs, two emissions scenarios, and two future eras. The least agreement between the water
quality models is found in the GISS-E2-R GCM in 2050 for RCP45, which represents the climate with
the least change, of the ones shown, in both temperature and precipitation. However, there is more
agreement between the water quality models for future climates with higher radiative forcing, either
by mitigation policy or era, and larger projected changes in climate as seen in MIROC5.

Table 2. Correlation coefficients of changes in CWQI across the Ecoregions between HAWQS and
US Basins.

CanESM2 CCSM4 GISS-E2-R HadGEM2-ES MIROC5

RCP45
2050 0.08 0.02 0.05 0.31 0.47
2090 0.21 0.39 0.45 0.33 0.43

RCP85
2050 0.05 0.01 0.21 0.29 0.35
2090 0.36 0.36 0.44 0.37 0.46
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Table 3. Correlation coefficients of changes in WTP across the Ecoregions between HAWQS and
US Basins.

CanESM2 CCSM4 GISS-E2-R HadGEM2-ES MIROC5

RCP45
2050 0.32 0.14 0.27 0.50 0.59
2090 0.34 0.38 0.40 0.44 0.42

RCP85
2050 0.33 0.21 0.35 0.51 0.53
2090 0.50 0.40 0.48 0.48 0.54

We find that while the models present a different picture of baseline water quality, the projections
of aggregate water quality as expressed through CWQI tend to exhibit stronger levels of agreement
and that as changes in climate become more drastic—i.e., in projections of climate with higher solar
forcings either in time or global GHG mitigation policy—agreement, across the two models is highest.
As discussed, differences in these water quality projections from the two models point to dissimilarities
in the model structure and inherent bias of each water quantity and quality model. As these are
complex systems modeled over large geographic areas, inconsistencies in the outcomes of the two
models are expected. However, we find greater levels of agreement across the water quality models in
the direction and magnitude of CONUS-wide climate change impacts.

3.3. Valuation

The following section focuses on the valuation results, in terms of changes in WTP, for both
water quality models at the Level III ecoregions. Figure 12 shows these WTP changes, in 2005
USD/year/person for the two climate models, two eras, and two mitigation policies. Note that
decreases in WTP reflect the willingness to pay in order to avoid the given water quality scenario
relative to the baseline. Since these values are directly related to the changes in WQI, these maps
resemble the maps in Figure 11. Although there are differences in WTP changes across the two models,
both models consistently show decreases in WTP in the future, with few increases across ecoregions.
Decreases under RCP45 are smaller, generally, than under RCP85, with this pattern more pronounced
in 2090 than 2050. WTP decreases are more pronounced particularly in the east on all counts than in
the west. HAWQS continues to show more impacts on the west coast than US Basins, while US Basins
shows more consistent increases in WTP in the Midwest, and the lower Mississippi basin.
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Figure 12. Changes in mean (left) HAWQS and (right) US Basins Willingness to Pay per person
(USD/year) at the Level-III Ecoregion scale for both the GISS-E2-R and MIROC5 climate models,
two emissions scenarios, and two eras.
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National level WTP per person is shown in Figure 13 and total WTP is shown in in Table 4
for all five GCMs, RCPs, eras, and the two water quality models. In all GCMs and water quality
models, WTP decreases most for RCP85 compared to RCP45. The largest changes in WTP are shown in
the HadGEM2-ES GCM with the least projected for GISS-E2-R. Differences between these two GCM
projections for both water quality models are 3.9 USD/person/year for RCP85 in 2090. In contrast, the
largest difference between the two water quality models for RCP85 in 2090 is 1.8 USD/person/year for
CanESM2. Since CanESM2 shows the largest changes in precipitation, this difference in WTP between
the water quality models can be explained in part by the absence of atmospheric deposition in US Basins.
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Figure 13. National willingness-to-pay (WTP) (USD/person/year) for HAWQS (left) and US-Basins
(right) for all five General Circulation Models (GCMs).

Table 4. Total WTP (in billion 2005 USD/year) for all five GCMs and global GHG mitigation scenarios.

CanESM2 CCSM4 GISS-E2-R HadGEM2-ES MIROC5

RCP45
2050

HAWQS −$1.36 −$1.00 −$0.95 −$1.83 −$1.42
US-Basins −$1.38 −$1.01 −$0.67 −$1.68 −$1.62

2090
HAWQS −$2.59 −$2.62 −$2.16 −$3.50 −$3.03

US-Basins −$2.22 −$1.91 −$1.45 −$2.94 −$2.59

RCP85
2050

HAWQS −$1.66 −$1.35 −$1.17 −$2.34 −$1.68
US-Basins −$1.61 −$1.26 −$1.10 −$2.11 −$1.87

2090
HAWQS −$4.46 −$3.98 −$3.06 −$4.78 −$4.00

US-Basins −$3.67 −$3.24 −$2.66 −$4.35 −$4.00
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4. Conclusions

We find that, as the end-goal of this study is about national scale economic benefits, differences
between the increases in WTP for the two water quality models is less than differences between the
five GCMs. Decreases in total national WTP in RCP85 range from 1.2 to 2.3 (2005 billion USD/year)
in 2050 and 2.7 to 4.8 in 2090 across all climate and water quality models. Converted to a net present
value, discounting at 3% and using the mean WTP across GCMs, results in a total decline in WTP of
$28.9 and $26.3 billion for RCP45 for HAWQS and US Basins, respectively. For RCP85 this value is
$38.2 and $35.8 billion for HAWQS and US Basins, respectively. The overall benefit of GHG mitigation
is substantial, at a present value of $9.3 (HAWQS) and $9.5 (US Basins) billion for RCP4.5 compared to
RCP8.5. These results are similar to the total impacts found in [8] (pp. 1326–1338) using only one GCM,
where the net present value of GHG mitigation benefit, using a policy similar to RCP4.5, was found to
be $10.7 billion. Note that these WTP estimates are based on recreational value, which is only a portion
of the economy likely to be affected by decreases in water quality.

As both HAWQS and US Basins represent complex hydrologic, biochemical, and heavily managed
systems over a broad spatial area, there are certainly limitations to the models and data. In general,
both models take a parsimonious approach to modeling the system, so instead of rigorous calibration
and validation that is typically performed on detailed models of “project-scale” studies, these models
use a process-based, mass balance approach in order to assess general behavior and response to a
changing climate. The hydrology in both models is at least partially calibrated, as previously discussed.
The water quality modelling, on the other hand, is generally uncalibrated and relies on mass balance
and commonly used parameters. For this reason, we do not present results at detailed scales in either
time or space and rely on large-scale changes from the baseline water quality projection for the purpose
of informing policy rather than individual project construction or design. This study is not the first to
use either model in this way. SWAT, the basis of HAWQS, has often been used in ungauged basins
(e.g., [52–54]) and US Basins was also designed for this type of analysis. However, this is a limitation,
and detailed analysis should be performed on a case-by-case basis when needed. Another limitation
is that the WTP values used in this study are based on recent estimates and would likely change in
the future. Also, the population projections used in this analysis do not vary by RCP, although the
populations are likely to change under different forcing levels. However, this decision was made
intentionally, in order to isolate the effects of climate change from changes related to population change.
In addition, US Basins is the use of only one “median” year to represent the baseline and future eras.

In this study, we have compared only two water quality models. This work can be expanded by
comparing more water quality models to understand how other developed methods for projecting
future water quality can result in alternative conclusions. Also, as in all climate change impact
studies, we are limited by the spatial scale and uncertainty of the GCMs. Climate-related uncertainties
were also not fully addressed here, in part by using a subset of the CMIP-5 models, but also by not
including uncertainties related to initial conditions (addressing the chaos in the system), as in [37].
In addition, over the last several decades, large improvements have been made in agricultural and
urban water conservation, agricultural soil conservation, farming technologies, urban stormwater
and wastewater treatment, and protection of critical natural areas. In recent years, large amounts of
agricultural land have been removed from soil conservation programs in order to produce more corn for
ethanol, and growth of urban areas has removed large amounts of agricultural land from production.
Future modeling efforts can address many of the impacts of land use changes, new agricultural
and urban water management technologies, and environmental policies. These and other research
endeavors are an important part of understanding the future of water quality in the U.S. and the effect
of Climate Change.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/9/2/118/s1.
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Abstract: Floods are costly natural disasters that are projected to increase in severity and frequency
into the future. Exceedances over a high threshold and analysis of their distributions, as determined
through the Peak Over Threshold (POT) method and approximated by a Generalized Pareto
Distribution (GPD), respectively, are widely used for flood frequency analysis. This study investigates
the combined effects of threshold selection and GPD parameter estimation on the accuracy of flood
quantile estimates, and develops a new, widely-applicable framework that significantly improves
the accuracy of flood quantile estimations. First, the performance of several parameter estimators
(i.e., Maximum Likelihood; Probability Weighted Moments; Maximum Goodness of Fit; Likelihood
Moment; Modified Likelihood Moment; and Nonlinear Weighted Least Square Error) for the GPD
was compared through Monte Carlo simulation. Then, a calibrated Soil and Water Assessment Tool
(SWAT) model for the province of Alberta, Canada, was used to reproduce daily streamflow series
for 47 watersheds distributed across the province, and the POT was applied to each. The Goodness
of Fit for the resulting flood frequency models was measured by the upper tail Anderson-Darling
(AD) test and the root-mean-square error (RMSE) and demonstrated improvements for more than
one-third of stations by averages of 65% (AD) and 47% (RMSE), respectively.

Keywords: peak over threshold (POT); extreme value analysis; flood; extreme hydrological events;
flood quantiles

1. Introduction

Floods are considered the most destructive and wide-spread natural disaster, and account annually
for about 50 percent of all natural disasters world-wide [1,2]. Further, intensification of the hydrological
cycle with climate change may lead to larger and more frequent floods [3–6], and land use change
may increase flood risk through expansion of urban areas, which typically limit soil permeability [7],
or through development in the flood plain. Examples of recent extreme flood events include flooding
in the Calgary, Alberta, area in 2013, which created the costliest natural disaster in Canadian history,
with damage of approximately $6 billion [8], and the largest number of flood events recorded in a
single year in the United States in 2016, the most catastrophic of which occurred in Louisiana [9].
In Europe, the May–June 2013 flooding of the Elbe, Oder, and Danube rivers in Germany produced the
third “flood of the century” since 1997 [10].
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To mitigate flood risks, understanding the relationship between flood events and their probability
of occurrence is a critical first step from both economic and environmental points of view [1,11].
A systematic assessment of flood risks is therefore vital for sustainable watershed management and
planning. More specifically, a rigorous analysis of flood events helps to identify the risk of flooding at
various locations and aids in selection of appropriate design periods for structures such as dams and
levees [12–14]. Thus, reliable predictions of flood magnitude will improve both the sustainability and
economic efficiency of water resources systems.

Flood Frequency Analysis (FFA) is a standard method used to detect relationships between flood
magnitudes and the corresponding frequency of occurrence. FFA has largely been applied in four
categories: on-site FFA, climate/weather-informed on-site FFA, historical and paleo-flood analyses,
and regional FFA [13]. In this paper, the focus is on-site FFA, which is performed by fitting a chosen
probability distribution to flood events sampled from streamflow records at the site of interest [15].
Three different approaches are available for flood event sampling from a streamflow record: the annual
maxima (AM), the partial duration series, and the peaks over a threshold (POT) [16–21]. Although
the AM is the most common because of its simplicity, it samples only one event per year [14,17,19];
therefore, it may result in a loss of information, if the second or third peak within a year—which can
be greater than the flood peak in other years—is ignored. This situation is particularly problematic
in regions where the record of historical streamflow is short. In contrast, the POT includes all peaks
above a certain flow value (the threshold), which provides flexibility in controlling the number of
events included in the analysis. Comparisons between AM and POT series have found that POT
offers a smaller uncertainty of estimated values, because of the larger quantity of data involved in
the analysis [18,22,23]. More specifically, Cunnane [24] conducted a statistical analysis that showed
greater statistical efficiency, or more precise estimation of the parameters, for POT where the average
number of peaks per year included in the POT series was greater than 1.65.

The standard practice in POT fits a distribution to exceedances above a selected threshold.
In selecting this threshold, it must be high enough to identify the distribution underlying the excess
series and to maintain the independent and identically distributed (IID) flood variables assumption.
It also should not be so high as to increase the variance by reducing the number of events needed for
reliable inferences [13,25]. Therefore, the optimal threshold detection has been of interest in earlier
studies [19,25–35], which have suggested various approaches based on graphical and/or analytical
methods. An example of the graphical approach is the Mean Residual Life plot (MRL), while analytical
approaches include the Square Error method (SE), the Multiple Threshold Method (MTM), and the
Likelihood Ratio Test method (LRT). Numerous studies have stated that the performance of FFA
with POT is dependent upon the threshold selection method applied but its effect was not studied
(e.g., [36–38]). Zoglat et al. [25] noted the subjectivity of the graphical methods and therefore compared
different analytical methods towards threshold selection, with the LRT method found to be the best
and SE second-best, with satisfactory performance. However, it is difficult to generalize this approach
because the comparison was performed for only one hydrometric station.

After sampling the flood peaks, a distribution is chosen for the FFA model. There are several
probability distribution methods used to model extreme events. Generalized Pareto Distribution (GPD) is
widely used to model extreme floods over a threshold. It has been used successfully to estimate return
values of flood events in conjunction with a POT method. Pickands [39] first introduced the GPD as a
two-parameter family of distributions for exceedances over a threshold and showed that it is a stable
distribution for excesses over thresholds. To determine appropriate parameter values, numerous estimators
for the GPD have been proposed in the literature, with the Maximum Likelihood Estimator (MLE) [39],
Method of Moments (MOM) [40], and the Probability Weighted Moments (PWM) used most widely.
Additional methods have also been proposed, including Likelihood Moment Estimations (LME) [41],
the modified Likelihood Moment Estimator (NEWLME) [42], and the Nonlinear Weighted Least Squares
estimator (NWLS) [43]. For an extensive discussion of the various methods see de Zea Bermudez and
Kotz [44]. Estimator performance has been found to vary considerably with both the flood-event sample
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sizes and the value of the GPD shape-parameter, such that estimators that perform well in some situations
may perform poorly in others. For example, Hosking and Wallis [40] introduced the PWM estimators for
the GPD and compared them to the MOM and MLE estimators. They showed that the MOM and PWM
estimators have lower bias and variance than MLE estimators for sample sizes less than 500; however,
both are sensitive to threshold choice and sometimes result in infeasible estimates [29]. Many other
simulation studies have provided a quantitative comparison of the performance of different estimators
(e.g., [36–38,45]). These simulation studies pointed out that estimator performance depends on the threshold
selection method without a quantitative measure of this effect.

Overall, there are numerous factors influencing the accuracy of the modeled return period of an
extreme flood. Among them are the length and accuracy of flow records, the criteria used to identify
independent flood peaks, the threshold selection method, and the estimator of the selected probability
distribution. Moreover, the performance of various parameter and quantile estimators can vary greatly in
terms of their bias, variance, and sensitivity to threshold choice; and consequently affect the accuracy of the
estimated return values [37,46]. Given the key role of threshold selection in reducing uncertainty prediction,
the POT method is still under-employed, particularly for studying the impacts of climate change. In climate
change studies, application of the POT method can be beneficial as it provides useful information about
the time of floods along with their magnitudes. Accordingly, it is important to measure the performance of
the GPD estimator quantitatively along with the effect of threshold selection (POT) on its performance.

The purpose of this study is to propose a novel systematic procedure for assessing the combined
effect of the threshold selection method and GPD parameter estimator on the accuracy of flood
frequency distribution calculations. First, a comparison between older and more recent methods
proposed for the GPD over a wide range of flood event sample sizes and shape parameters was
undertaken. Further, POT was applied to a large number of streamflow series using different
combinations of threshold selection methods and parameter estimators and the goodness of fit of
the flood frequency distributions were assessed. We hypothesize that more accurate flood frequency
models can be obtained by improving threshold selection and GPD parameter estimator selection.

This paper is organized as follows. Section 2 describes the study area, data used for the analysis,
and the methods employed in this study. Section 3 presents the results from applying POT on simulated
streamflow records from SWAT model along with the analysis and discussion of these results. Section 4
includes the summary and conclusions of the study.

2. Materials and Methods

2.1. Study Area, Hydrologic Model, and Data Overview

Given the large spatial extent of Alberta, the variability of the hydro-meteorological conditions,
and the availability of a calibrated Soil and Water Assessment Tool (SWAT) model [47] for the province
of Alberta, Canada for the period 1986–2007 that allows us to obtain streamflow records across the
entire province, Alberta presented an ideal study region. One of the three Canadian Prairie Provinces,
Alberta has an area of about 661,000 km2 that encompasses 17 river basins principally originating from
the east slopes of the Canadian Rockies, and that drain eastward to Hudson Bay through the provinces
of Saskatchewan and Manitoba or northward to the Arctic Ocean [48]. Alberta has a relatively dry
climate. In the north, the average annual precipitation ranges from 400 mm in the northeast to over
500 mm in the northwest, while in the south, it ranges from 450 mm to less than 350 mm in the
southeast. Northern Alberta is dominated by Boreal forests and was wet for the 100 years between
1900 and 2000 [49]. Southern Alberta is dominated by grassland that has experienced progressively
decreasing precipitation for the period 1960–2000 [49]. Alberta has cold winters and warm summers
with a mean annual temperature ranging from 3.6 ◦C to 4.4 ◦C.

Despite its relatively low average precipitation, Alberta is experiencing increasing flooding trends
mainly because of high variability in precipitation [50]. For example, flooding in the city of Calgary in
2013 is considered to have been the costliest natural disaster in Canadian history [8]. Thus, the province

149

Bo
ok
s

M
DP
I



Water 2017, 9, 692

makes an interesting case study because of its heterogeneous hydro-climatic conditions, diverse land
management practices, and the occurrence of extreme hydrologic events (e.g., floods). Alberta forms
the basis of an assessment of our research objectives and the development of a comprehensive practical
guideline for the most suitable methods for threshold selection and parameter estimation methods
under diverse hydro-climatic conditions.

The stream flow data used for the study are daily average discharges as simulated by the
SWAT model [48]. Input variables for the SWAT hydrologic model of Alberta have been carefully
selected to represent the actual physical processes related to natural and anthropogenic features
(e.g., snow, potholes, glaciers, reservoirs, dams, and irrigated agriculture), and to minimize input
data uncertainties [48]. The model has been extensively calibrated and validated using the discharge
data of about 130 hydrometric stations for the 1983–2007 period in the province [47] (See Table S1),
and can simulate stream flow and other water resource components in 2255 sub-basins across the
province. In this study we used a subset of 47 stations/outlets spread across the province (see Figure 1),
based on efficiency criteria that were used to assess the calibrated performance of the model based on
simulated versus observed discharges e.g., bR2, NSE, and R2 [48]. Only the stations with bR2, NSE,
and R2 greater than 0.6 were considered, because these values provide both reliable streamflow records
and a sufficient number of stations to cover various river basins that encompass a diverse range of
topographic, hydrologic, and climatic conditions.

Figure 1. Map of the study area presenting geographic distribution of the 17 main river basins
(background colors), and 47 hydrometric stations used in the study.

2.2. Probability Modeling

In flood probability modeling, a distribution is fitted to excesses above a high threshold (POT) for
a selected streamflow sample. For flood peak flows, extreme value theory shows that the distribution
of exceedances of a high-enough threshold will tend to follow a Generalized Pareto distribution [37,51].
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The theoretical development of the GPD can be found in Coles [17]. The cumulative distribution
frequency (CDF) for the GPD is derived from the following equation:

Fu(x) = Pr(X − u < x|X >u) =

⎧⎨⎩ 1 −
(

1 + ξ(x−u)
σ

)−1
ξ

ξ �= 0

1 − e(− x−u
σ ) ξ = 0

, (1)

where x is the flood peak flow in m3/s, ξ is the shape parameter, u is the location parameter, also known
as the threshold, and σ is the scale parameter. In special cases, ξ = 0 and ξ = 1 yield an exponential
distribution and a uniform distribution, respectively, while a Pareto distribution is obtained when
ξ < 0. Note that selection of the threshold, u, reduces the three-parameter GPD to a two-parameter
distribution. To evaluate the Goodness of Fit, a comparison between the modeled CDF and the
empirical distribution function (EDF) was performed. The EDF is calculated from,

F̃
(

x(i)
)
=

i
n + 1

, (2)

where i is the rank of the flood event and n is the sample size [17].
In this study, the data were sampled from 47 streamflow gauges using two threshold selection

methods (see Section 2.2.3). The sampled data were then fitted to GPD using each of the parameter
estimators considered in this study (see Section 2.2.1), and the fitted distributions were compared with the
empirical distribution. To assess the Goodness of Fit, the root-mean-square error (RMSE) and p-value of the
Anderson-Darling test (AD) were computed. The Anderson Darling statistic allots extra weight to floods in
the tail of the distribution [30], which are of importance when estimating floods with high return periods.

2.2.1. GPD Parameter Estimators

Several techniques are available for the estimation of GPD parameters, including MLE [39],
PWM [40], LME [41], NEWLME [42], MGFAD [27], and NWLS [43].

1 Maximum Likelihood Estimator (MLE): MLE is the most efficient method of parameter estimation,
particularly for large streamflow sample sizes. It maximizes the likelihood function (L) for the
sampled independent flood peaks (x), and is derived from,

L(ξ, σ) = ∏n
j=1 f

(
xj, ξ, σ

)
, (3)

where f = dF
dx . The estimated parameters are the values that maximize Equation (3). Although the

algorithms used to compute MLE estimated parameters run into convergence problems, Ashkar and
Tatsambon [36] argue that this behavior is simply due to incorrect choice of the numerical algorithm.

2 Probability Weighted Moments Estimator (PWM): The PWM estimator has a lower bias and
variance than the MLE estimator for sample sizes less than 500 [40]. The PWM of a sampled flood
peak (x) with distribution function F is derived from the following equation:

Mp,q,r = E
(

xPFq(1 − F)r
)
=
∫ 1

0
[x(F)]PFq(1 − F)rdF, (4)

PWM always exists, is computationally straightforward, and is a function of the plotting position,
which makes it more stable. However, PWM estimates are sensitive to the threshold choice [37,40].

3 The Likelihood Moment Estimator (LME): LME is a hybrid between likelihood and moment
estimators, and was proposed by Zhang [41]. The LME for a streamflow sample size of n is
derived from the following equation:

1
n ∑n

j=1(1 − θXi)
P − 1

1 − r
= 0, θ < X−1

(n), (5)
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where θ = ξ/σ and P = −rn
∑n

j=1 log(1−θxj)
. In this equation the parameter r < 1 is chosen before the

estimation [42].

Zhang [41] shows that when r = ξ, the LME and MLE asymptotic variances are the same. The LME
is simple to compute and less sensitive than other parameter estimators to threshold choice [37].
In this study, an initial guess of the value of ξ was made by the PWM as recommended by
Mackay et al. [37].

4 The Modified Likelihood Moment Estimator (NEWLME): The NEWLME method was proposed
by Zhang and Stephens [42] to address complexities in the MLE numerical solution and to avoid
computational problems. The method is similar to the Bayesian methods [37] and its solution is
calculated as follows:

θ̂ =

∫
θ·π(θ)L(θ)dθ∫
π(θ)L(θ)dθ

, (6)

where L(θ) = n
[
log
(

θ
ξ

)]
+ ξ − 1 with ξ = −n−1 ∑n

i=1 log(1 − θxi) is the profile log-likelihood
function, and π(θ) is a data-driven density function for θ [42]. This allows the parameters to be
computed very efficiently [37].

5 The Maximum Goodness of Fit–Anderson-Darling Estimator (MGFAD): Moharram et al. [52]
proposed least-square type estimators, which are found by minimizing the sum of squared
difference between the empirical and the model quantiles. Luceño [27] proposed an estimator
with a similar approach, in which the estimates are obtained by minimizing the square differences
between the empirical and the model distribution functions using various Goodness of Fit statistics.
Luceño [27] included the Cramer-von Mises [30], the Anderson-Darling [30], and the right-tail
weighted Anderson-Darling statistics [53]. The different statistics considered by Luceño [27]
were found to have strong positive bias and high root-mean-square error (RMSE) in estimating
high quantiles for small sample sizes [37]. Only the Maximum Goodness of Fit estimator with
Anderson-Darling statistic (MGFAD) was considered in this study.

6 The Nonlinear Weighted Least Squares Estimator (NWLS): A new estimator based on the
nonlinear weighted least squares estimator (NWLS) was recently proposed by Song and Song [38],
and revised and improved by Park and Kim [43]. The calculation of the NWLS estimator is a
two-step procedure that is calculated using Equations (7) and (8) as follows:

(
ξ̂1, σ̂1

)
= argmin(ξ,σ) ∑n

i=1

[
log

1 − Fn(xi)

1 − Fn(u)
− log

(
1 − Gξ, u, σ(xi)

)]2
, (7)

(
ξ̂2, σ̂2

)
= argmin(ξ,σ) ∑n

i=1

[
i(n − i + 1)

(n + 1)2(n + 2)

]−1[
Fn(xi)− Fn(u)

1 − Fn(u)
− Gξ, u, σ(xi)

]2
, (8)

Park and Kim [43] compared the performance of the NWLS with some other estimators, and it
was found to be highly competitive for heavy-tailed data (ξ > 0). In this study, the performance of the
NWLS was tested for the case ξ < 0.

2.2.2. Performance Analyses of the GPD Estimators and the Monte Carlo (MC) Sampling Experiments

Performance of the GPD parameter estimators depends on both the sample size, n, and the value of
the GPD shape parameter, ξ [37]. Since the streamflow records did not provide a sufficient range of events
to yield reasonable estimates for the entire range of possible values in a given GPD model, a Monte Carlo
sampling technique [54] was used to generate different samples in order to evaluate the performance of
the six GPD parameter estimators described in Section 2.2.1. A total of 10,000 random samples of different
n, ξ, and σ combinations was generated. Samples of size n = 40, 50, ..., 200, 500, and 1000 were used for the
parameter estimation, with the ξ values ranging from −0.5 to 0.5 (ξ = −0.5, −0.4, −0.3, −0.2, −0.1, 0, 0.1,
0.2, 0.3, 0.4, 0.5), and of the scale parameter σ ranging from 20 to 1000. Then, from each sample, the shape
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and scale parameters were computed by the parameter estimator and the 0.99 quantile was obtained from
the resulting distribution. To evaluate the performance of the six parameter estimation methods, four
statistics were computed: the average biases in estimating the shape and scale parameters, the 0.99 quantile
(upper quantile), and the average root-mean-square error (RMSE). The comparison between different
estimators for each threshold selection method focused on the upper tail Anderson-Darling test (AD), as it
evaluates the ability of the model to estimate high quantiles. The other statistics (e.g., RMSE) were used to
evaluate the model performance further, if the AD test values were similar.

In the application of flood frequency analysis, the value of the scale parameter can vary significantly,
from 100 to 1000 or more; therefore, we examined the effect of varying scale parameter values on the
accuracy of estimating the 0.99 quantile.

2.2.3. Threshold Selection Methods

The choice of a threshold is an important practical problem with a solution that is primarily based
on a compromise between estimator bias and variance. In other words, it affects the performance of the
different GPD parameter estimators. To investigate further the effect of the threshold selection method on
the performance of the GPD parameter estimators, data were sampled from 47 streamflow gauges using
the threshold selection methods. Various methods to select thresholds have been proposed in the literature.
For the application, one option includes graphical methods, which are relatively easy to apply. However,
they have some shortcomings. First, the interpretation of these plots is unclear in practice [17], and it is
clearly difficult to determine which portion of the curve is completely linear. Second, graphical techniques
cannot be automated and the uncertainty associated with threshold selection cannot be estimated [55].
Figure 2 shows a range of potential optimum threshold values, making the use of a single value from the
range in the analysis subjective. Compared to graphical methods, analytical methods are less subjective
and the computations can easily be programmed. Zoglat et al. [25] compared various threshold selection
techniques. Two analytical methods outperformed the other techniques and were employed in our study:
The Square Error Method (SE) and Likelihood Ratio Test method (LRT). A brief description of the two
methods is provided as follows:

The SE optimal threshold value is the value for which the mean square error of the EDF and
CDF is the minimum for an estimator. Zoglat et al. [25] suggested an algorithm based on the work of
Beirlant et al. [51]. The main steps of the algorithms are as follows (Adapted from Zoglat et al. [25]):

1. Let u1, . . . , um be m equally spaced increasing threshold candidates (um is the threshold
corresponding to the minimum number of exceedances—the number of years in the record
multiplied by 1.65 [24]). For j = 1, . . . , m, let ξ̂uj, σ̂uj be the estimates from any of the six
parameter estimators employed in the study of the scale and shape parameters of the GPD
underlying the exceedances over the threshold uj.

2. Find Nuj, the number of exceedances over uj.

3. Simulate ν independent samples of size Nuj from GPD with parameter ξ̂uj, σ̂uj.

4. For each α ∈ A = {0.05, 0.1, 0.15, . . . , 0.95}, and each i = 1, . . . , ν, calculate the quantile qi
(α,uj)

of the ith simulated sample compute Equation (9).

qsim
(α,uj)

=
1
ν ∑ν

i=1 qi
(α,uj)

, (9)

5. For j = 1, . . . , m calculate the square error, SEuj = ∑
α∈A

(
qsim
(α,uj)

qobs
(α,uj)

)

2

, where qobs
(α,uj)

is the observed

quantile corresponding to the simulated quantile.
6. The optimal threshold value is the value of minimum SEuj .
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LRT was proposed by Zoglat e al. [25]. It is based on using the likelihood ration test statistic to test
the hypothesis H0 : ui is the optimal threshold against H1 : uk is the optimal threshold. The LRT statistic
is given by:

LR(ui, uk) = −2 log
f (ξ̂ui , σ̂ui , Xui )

f (ξ̂uk , σ̂uk , Xui )
, (10)

where LR is the likelihood ratio, f (. . .) is the likelihood function, Xui is the vector of observations
exceeding ui, and Xuk is the vector of observations exceeding uk. For LRT application, the maximum
threshold is selected to correspond to 36 exceedances—the number of years in the record multiplied by
1.65 [24]. For more details on LRT method see Zoglat et al. [25].

Further, to meet the requirements for the POT method, an independence test is applied to ensure
that peaks identified with the POT method correspond to different flood events. The test is conditional
for the set of sampled peaks and is a prerequisite to any statistical frequency analysis and to the Poisson
process assumption [17,19]. To assess the degree of dependence between flood peaks, we examined
autocorrelation coefficients. Specifically, when the absolute values of autocorrelation coefficients for
different lag times, in time series with n observations, are less than or equal to the critical values, the flood
peaks can be regarded as being independent from each other [22,56]. The critical values are equal to
±1.96/

√
n, corresponding to the 0.05 significance level, where n is the sample size. If more than two values

exceed the critical values, this means the flood peaks are dependent; therefore, a higher threshold level
without a restriction on the duration between flood peaks must be tried, as recommended by Ashkar and
Rouselle [57]. In addition, the number of the sampled peaks was compared to 1.65 times the number of
years in the record to ensure that it exceeds this lower bound and that the POT is therefore more effective
than the AM series, as recommended by Cunnane [24]. The peaks were sampled automatically by an
algorithm we developed in R [58]. Then the autocorrelation values of peaks were calculated and the figures
were plotted using the “forecast” package in R [59] and visually checked.

In application, it is more convenient to interpret the POT flood frequency model in terms of
quantiles or return levels [17,22]. Flood estimates can be made based on Poisson model, negative
binomial, and binomial models. It is not necessary to prefer one model to the other models. Regardless
of accepting or rejecting the Poisson hypothesis any of the three models can be used [60,61]. For more
details on modeling the quantiles and return levels please refer to Cunnane [60] and Coles [17].

Figure 2. Mean Residual Life plot for the sampled flood peaks in (m3/s) with approximate 95%
confidence intervals represented by the dotted lines. The horizontal (u) and the vertical axes represent
the threshold value and the mean excess, respectively. The dotted lines illustrate the approximate 95%
confidence intervals.

3. Results and Discussion

Quantile estimates and shape parameter estimates (ξ) are presented here, with a focus on the
accuracy of the predicted high quantiles (floods with high return periods) rather than on the estimated
parameters of the distribution.
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3.1. Performance Analyses Results of the GPD Estimators Using MC Sampling Data

The average biases of the 99% quantile and shape parameter (ξ) for sample sizes ranging
from n = 40 to 500 for different parameter estimators are presented in Figures 3 and 4, respectively.
The results can be summarized as follows (also see Table 1):

• Generally, the relative bias of estimated parameter values and the 99% quantile decreased with
increasing sample size (n). However, for short tails (ξ < 0) the bias was still high in the case of
MLE and LME, even if the sample size was increased to 300.

• PWM: Very consistent and among all methods the least sensitive to sample size (n). However,
it had a medium sensitivity to the sample size and medium bias for heavy tails with respect to
estimating the shape parameter.

• LME: For heavy tails, LME was among the parameter estimators that had the lowest bias and
sensitivity to the sample size. However, for short tails the biases in estimating the 99% quantile
and shape parameter were very high.

• MLE: Very accurate in estimating the 99% quantile. However, it had a high bias in estimating the
shape parameter and was very sensitive to the sample size for heavy and short tailed distributions.

• NEWLME: Average performance in estimating the 99% quantile for heavy tails and the shape
parameter for short tails. In contrast, NEWLME excelled when estimating the shape parameter
for heavy tails and estimating the 99% quantile for short tails.

• MGFAD: The most accurate and the least sensitive to sample size in estimating the shape parameter.
However, it had a very high bias and sensitivity to the sample size when estimating the 99% quantile.

• NWLS: No trend of decreasing bias with increasing sample size (n) in predicting the 99% quantile.
However, it showed a similar trend in the case of shape parameter estimations with average bias
compared to the other methods.

In the application of flood frequency analysis, the value of the scale parameter can vary significantly,
from 10 to 1000 or more; therefore, we examined the effect of varying scale parameter values on the
accuracy of estimation of the 0.99 quantile. Surprisingly, the LME method, often reported as one of the
better methods for GPD fitting in previous comparative studies [41,42,62], was found to be sensitive to
high values of the scale parameter. In contrast, the other methods did not show the same sensitivity to the
scale parameter value.

Table 1. Sensitivity analyses of the parameter estimators to the sample size (n) for estimating the shape
parameter (ξ) and the 99% quantile. Low represents an average bias range of 0–10% of the highest calculated
bias, Medium represents the range 10–30% of the highest calculated bias, High represents values greater
than 30%. Abbreviations are as follows: PWM—probability weighted moments, LME—likelihood moment
estimator, MLE—maximum likelihood estimator, NEWLME—modified likelihood moment estimator,
MGFAD—maximum goodness of fit-Anderson Darling estimator, NWLS—Nonlinear weighted least
square estimator.

Parameter Estimator
Shape Parameter 99% Quantile

ξ > 0 ξ < 0 ξ > 0 ξ < 0

PWM Medium Low Low Low
LME Low High Low High
MLE High High Low Low

NEWLME Low Medium Medium Low
MGFAD Low Low High High
NWLS High Medium High High
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Figure 3. Bias in estimating the 99% quantile for different tails. Note that the Y axis (Bias %) scale differs
between graphs. Abbreviations are as follows: PWM—probability weighted moments, LME—likelihood
moment estimator, MLE—maximum likelihood estimator, NEWLME—modified likelihood moment
estimator, MGFAD—maximum goodness of fit-Anderson Darling estimator.
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Figure 4. Bias in estimating the shape parameter (ξ) for different tails. Abbreviations are as
follows: PWM—probability weighted moments, LME—likelihood moment estimator, MLE—maximum
likelihood estimator, NEWLME—modified likelihood moment estimator, MGFAD—maximum
goodness of fit-Anderson Darling estimator, NWLS—Nonlinear weighted least square estimator.

3.2. Application of POT to Observed Streamflows

The six parameter estimators were applied for the thresholds selected by both LRT and SE methods
to the 47 stations from the study area. Accuracy of shape parameter estimation and the Goodness of Fit
obtained with respect to AD and RMSE for different ranges of the shape parameter value are summarized
in Table 2 for LRT and Table 3 for SE. Models developed for thresholds chosen by the SE method generally
could not accurately estimate the shape parameter value. In contrast, models developed with NWLS with
thresholds selected by the LRT method had high goodness of fit for heavy tails. Furthermore, models
developed by MGFAD with thresholds selected by LRT method had high Goodness of Fit for short tails.

Generally, models developed with thresholds selected by the LRT had better Goodness of Fit
with respect to the Anderson Darling (AD) test and higher RMSE. In contrast, models developed
with thresholds selected by the SE had lower RMSE and higher AD statistics. The behavior of the
parameter estimators was found to be similar within the ranges of the shape parameter identified
in Tables 2 and 3.
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Table 2. Goodness of Fit that can be achieved by a combination of the likelihood ratio test method
(LRT) and different parameter estimators for different ranges of the shape parameter (ξ) in terms
of (1) the bias in predicting the shape parameter, (2) Anderson-Darling (AD) test, and (3) the
root-mean-square error (RMSE). High represents a variance ranges from 0% to 3% of the lowest
possible RMSE or AD, Medium represents the range 3–10% of the lowest possible RMSE or AD,
Low represents values greater than 10%. Abbreviations are as follows: AD—Anderson-Darling,
RMSE—root-mean-square error, PWM—probability weighted moments, LME—likelihood moment
estimator, MLE—maximum likelihood estimator, NEWLME—modified likelihood moment estimator,
MGFAD—maximum goodness of fit-Anderson Darling estimator, NWLS—Nonlinear weighted least
square estimator.

Parameter Estimator PWM LME MLE NEWLME MGFAD NWLS

Ξ
ξ > 0 Low Low Low Low Medium High
ξ < 0 Low Medium High Medium High Medium

AD

ξ > 0.4 Low Low Low Low Low Low
0.4 > ξ > 0.2 Low High High Low Low Low
0.2 > ξ > 0 Low Low High Low Low Low

0 > ξ > −0.15 Low Low High Medium Medium Low
−0.15 > ξ > −0.25 Low Low Low High Low Low

ξ <−0.25 Medium Low Low High Medium Medium

RMSE

ξ > 0.4 Low Low Low Low Low Low
0.4 > ξ > 0.2 Low Low Low Low Low Low
0.2 > ξ > 0 Low Low Low Low Low Low

0 > ξ > −0.15 Low Low Low Low Low Low
−0.15 > ξ > −0.25 Low Low Medium Low Low Low

ξ < −0.25 Low Low Low Low Low Low

Table 3. Goodness of Fit that can be achieved by a combination of the square error method (SE) and
different parameter estimators for different ranges of the shape parameter (ξ) in terms of (1) the bias in
predicting the shape parameter, (2) Anderson-Darling (AD) test, and (3) the root-mean-square error (RMSE).
High represents a variance ranges from 0% to 3% of the lowest possible RMSE or AD, Medium represents
the range 3–10% of the lowest possible RMSE or AD, Low represents values greater than 10%.

Parameter Estimator PWM LME MLE NEWLME MGFAD NWLS

Ξ
ξ > 0 Low Low Low Low Low Low
ξ < 0 Low Low Low Low Low Low

AD

ξ > 0.4 Low Low Low Low Low High
0.4 > ξ > 0.2 Low Low Low Low Low Low
0.2 > ξ > 0 Low Low Low Low Low Low

0 > ξ > −0.15 Low Low Low Low Low Low
−0.15 > ξ > −0.25 Low Low Low Medium Low Low

ξ < −0.25 High Medium Low High Medium High

RMSE

ξ > 0.4 High High High High Medium Low
0.4 > ξ > 0.2 High High High Medium High High
0.2 > ξ > 0 High High High Low Low Low

0 > ξ > −0.15 High High High Medium Medium Medium
−0.15 > ξ > −0.25 High High High Low Medium Medium

ξ < −0.25 Low High Medium Medium Medium High

We investigated different combinations of threshold selection methods and parameter estimators
to develop a new framework that improves the Goodness of Fit and minimizes the AD statistic and
RMSE and, consequently, obtains more accurate predictions of flood return periods. We found that the
combination of LRT and MLE outperformed other combinations for shape parameter values ranging
from −0.15 to 0.4, while the LRT and NEWLME combination was the best for short tails for the range
of shape parameter values from −0.25 to −0.15. For short tails with shape parameter values less than
−0.25 and for heavy tails with shape parameter values greater than 0.4, the SE and NWLS gave the best
fit compared to the other methods. Our results demonstrate that the choice of best combination of
parameter estimation and threshold selection methods depends on the range of values of the shape
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parameter. Hence, it is critical to have an accurate estimate of the shape parameter value prior to
fitting the distribution. The combination of LRT and NWLS was found to perform best in predicting
shape parameter values greater than zero, while the LRT with MGFAD was the best among other
combinations to predict the shape parameter for short tails. Overall, based on the above findings,
we have created a new framework for obtaining a more accurate flood frequency distribution that
considers both the effect of threshold selection method and parameter estimator, as illustrated in the
flow chart of Figure 5.

It could be argued that the MLE convergence problem may constrain the applicability of the resulting
framework, because the MLE method for shape parameter values from −0.15 to 0.4 may produce solutions
for MLE that do not converge. Although it is theoretically possible to have datasets for which no solution
exists to the likelihood equations, it appears to be a very rare case in practical applications in hydrology [30].

The models for 47 hydrometric station records were fitted using the framework developed in
this work (Figure 5). The resulting fitted models were compared to the models using the approach
proposed by Zoglat et al. [25] (LRT-MLE). When the new framework was applied (e.g., Figure 4),
a significant improvement in AD and RMSE was achieved. The Anderson-Darling (AD) test results
was improved for 38% of the stations by an average of 65%. In addition, the RMSE was decreased for
35% of the stations by an average of 47% (see supplemental Table S2 for percentage improvements).

Further, the relationship between the sample size, i.e., the number of peaks, and the variance
in the estimated shape and scale parameters was investigated. For the two parameters, the variance
was found to increase with a decrease in the sample size, a result that agrees with those of other
studies [13,25]. See supplemental Table S2 for the estimated parameters and their variance, and Figure
S1 and Figure S2 for the relationship between the variance in shape and scale and the sample
size. In addition, we investigated the sample size and variance of the two parameters versus the
drainage area. We found that the variance in scale parameter increases with increasing drainage
area, since—under the same hydrological conditions—increasing the drainage area increases the flow,
which in turn increases the scale parameter value. A larger scale parameter value results in a larger
variance in the scale parameter estimation (see Figure S3 for the relationship between the variance in
scale and the drainage area). Further, the variance in the shape parameter decreases with increasing
drainage area (see Figure S4 for the relationship between the variance in scale and the drainage area).
Finally, the sample size decreases with increasing drainage area (see Figure S5 for the relationship
between the sample size and drainage area).

Figure 5. Flow chart of the resulted framework for the choice of accurate combination of threshold
selection techniques and the parameter estimators. Abbreviations are as follow: SE—square error
method, LRT—likelihood ratio test method, MLE—maximum likelihood estimator, PWM—probability
weighted moments, NEWLME—modified likelihood moment estimator, NWLS—Nonlinear weighted
least square estimator.
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4. Conclusions

The performance of the POT method and the accuracy of estimated floods depend on both the
selected threshold and the parameter estimator. In this paper, we proposed a systematic and flexible
procedure to assess the combined effect of the threshold selection method and the GPD parameter
estimator on the accuracy of the flood frequency distribution. The accuracy of estimating the shape
parameter value and the 0.99 quantile were investigated for the MLE, PWM, LME, NEWLME, MGFAD,
NWLS estimators by conducting a series of Monte Carlo simulation studies. We found that NWLS
and MLE are better parameter estimation methods for heavy tails, while MLE, NEWLME, and NWLS
are better parameter estimation methods for short tails. Furthermore, in addition to the tail behavior
effect, the value of the scale parameter can also significantly influence the accuracy of LME.

In our study, the six parameter estimators were applied for the thresholds selected by both
LRT and SE methods to each of 47 streamflow records. Our results demonstrated that the effects of
variations in parameter estimators and threshold selection method must be performed a priori to allow
for the most accurate estimates of flood frequency.

We tested our hypothesis by trying different combinations of threshold selection methods and
parameter estimators to minimize the AD statistic and RMSE of the developed models. A new
framework resulted from this minimization process. The new framework was then applied to each
of 47 stations and the developed models using the new framework were compared to the models
developed using MLE for parameter estimator and LRT as the threshold selection method. Using the
new framework, the AD test results improved for 38% of the stations by an average of 65%. In addition,
the RMSE was decreased for 35% of the stations by an average of 47%. Hence, more accurate flood
frequency models and flood estimates can be obtained using the new framework, with its improved
threshold selection and GPD parameter estimator selection.

The framework developed in this study is widely applicable since it is based on the analysis
of data of 47 watersheds with diverse geo-hydro-climatic conditions. More importantly, given that
the assumption of independent and identically distributed flood variables is maintained, it will
be applicable in other catchments irrespective of their location and other hydrological conditions.
Two main reasons can explain our conclusion: (i) from a statistical point of view, the sampled data
covered a sufficient range of the shape parameter values that can be found in any catchment irrespective
of the location of the catchment, as suggested by Hosking and Wallis [40] and later confirmed by
Choulakian and Stephens [30]. In addition, the methods that were concluded to be dependent on the
scale parameter value were not considered in the framework; (ii) the framework suggested in Figure 5
was generated from a combination of Monte-Carlo simulations and datasets sampled from streamflow.
The results of the sampled streamflow peaks are in accordance with the findings from Monte-Carlo
simulations that were based on generated datasets and covered a broader range of values of thresholds,
shape parameter, and scale parameter.

The findings of this study can be applied to a wide range of situations. First, our systematic
assessment procedure can be used to investigate the combined effect of new GPD parameter estimators
and threshold selection methods, leading to better estimations for all POT applications in general,
and specifically to flood frequency analysis. More accurate flood estimates are important for climate
change adaptation requirements including insurance applications, establishment of the design flood for
hydraulic and flood protection structures, and the projection of climate change impacts on flood events.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/9/9/692, Table S1:
Basic information of the 47 hydrological stations. Average daily Streamflow data are available from SWAT model,
calibrated, and validated for the 1986–2007 period, Table S2: The number of peaks and values of the estimated
shape (ξ) and scale (σ) parameters and their variance, along with the percentage of improvement of RMSE and
AD for the stations, Figure S1: The relationship between the sample size (n) and the variance in shape parameter
Var(ξ) values, Figure S2: The relationship between the sample size (n) and the variance in scale parameter Var(σ)
values, Figure S3: The relationship between the variance in scale parameter Var(σ) values and the drainage area
(km2), Figure S4: The relationship between the variance in shape parameter Var(ξ) values and the drainage area
(km2), Figure S5: The relationship between the sample size (n) and drainage area (km2).
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Abstract: This study explored the influence of the spatial resolution of a gridded weather dataset
when inputted in the soil and water assessment tool (SWAT) over the Garonne River watershed.
Several datasets are compared: ground-based weather stations, the 8-km SAFRAN product
(Système d’Analyse Fournissant des Renseignements Adaptés à la Nivologie), the 0.5◦ CFSR product
(Climate Forecasting System Reanalysis) and several derived SAFRAN grids upscaled to 16, 32, 64 and
128 km. The SWAT model, calibrated on weather stations, was successively run with each gridded
weather dataset. Performances with SAFRAN up to 64 or 128 km were poor, due to a contraction of
the spatial variance of daily precipitation. Performances with 8-km SAFRAN are similar to that of the
aggregated 16- and 32-km SAFRAN grids. The ~30-km CFSR product was found to perform well at
some sites, while in others, its performance was considerably inferior because of grid points where
precipitation was overestimated. The same problem was found in the calibration, where data at some
weather stations did not appear to be representative of the subwatershed in which they are used to
compute hydrology. These results suggest that the difference in the representation of the climate was
more influential than its spatial resolution, an analysis that was confirmed by similar performances
obtained with the SWAT model calibrated on the 16- and 32-km SAFRAN grids. However, the better
performances obtained from these two weather datasets than from the ground-based stations’ dataset
confirmed the advantage of using the SAFRAN product in SWAT modelling.

Keywords: SWAT; SAFRAN; weather data input; spatial resolution

1. Introduction

Semi-distributed hydrological models, such as the soil and water assessment tool (SWAT [1–3]),
are becoming increasingly popular for water management at the watershed scale [4–6]. One of the
main challenges in achieving their maximum potential is accessing proper data with which to establish
them. Over the years, distributed soil and land cover data have become more reliable and accessible,
mainly because of advancements in remote sensing and a relatively slow rate of evolution. On the
other hand, climate data are often problematic. Indeed, climate networks are prone to being irregularly
spaced and operated over non-uniform periods. This problem may be circumvented by using gridded
climate products constructed from weather reanalysis systems, such as CFSR (Climate Forecasting
System Reanalysis) from NOAA’s National Centers for Environmental Prediction [7], ERAs from the
European Centre for Medium-Range Weather Forecasts (ECMWF) [8], SAFRAN (Système d’Analyse
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Fournissant des Renseignements Adaptés à la Nivologie) from Météo-France, the French weather
agency [9–11] or the L15 dataset covering North America and described in Livneh, et al. [12].

The use of gridded climate products within an SWAT setup has recently been investigated.
For instance, Fuka, et al. [13] found that the CFSR product provides stream discharge simulations
that are as good as or better than models forced by using traditional weather stations. A similar
conclusion was reached by Auerbach, et al. [14]. Dile and Srinivasan [15] highlighted the benefit of
using the CFSR product in sparsely-monitored regions, where CFSR and conventional databases led to
minor differences, except for one watershed for which CFSR gave much higher average annual rainfall.
Monteiro, et al. [16] demonstrated the superiority of one ERA-derived product (WFDEI–WATCH
Forcing Data ERA Interim [17]) over CFSR. Finally, in a comparison of several weather input datasets,
de Almeida Bressiani, et al. [18] concluded that the best option for hydrological simulation is the CFSR
product used with ground-based climate data.

Others studies explored the influence of weather data density based on a single type of
data. For instance, Chaplot, et al. [19] used 1–15 precipitation gauges in two different watershed
(51 and 918 km2) and showed the benefit of a higher data resolution. Such a benefit is however
more substantial when larger watersheds are considered and remains limited on small ones [20].
Based on this conclusion, subsequent studies aimed at increasing the spatial resolution of ground-based
weather data, in order to improve simulation. Different methods were tested to interpolate weather
data to better fit model requirements (from the nearest neighbour method to the Thiessen polygon
method) [21–23]. In all of these studies, the main concern was the common lack of density when using
ground-based weather station data, which could be offset using interpolated data.

Working with gridded data, the opposite question may be considered. The resolution of the
gridded climate products has indeed continued to improve over the years, to the point that operational
hydrologists have to question the need for more detailed information when a model such as SWAT
has a user-defined areal discretisation that influences the way in which climate data are manipulated
within the model. As the model uses a single weather chronicle per subbasin, a too high spatial
discretisation of the weather data may lead to a loss of information to the hydrological model.

This study uses an SWAT setup on the Garonne River, a large alpine watershed in southwest
France (55,000 km2), to explore the relationship between the resolution of gridded climate data and
SWAT internal discretisation using: (i) available ground-based data; (ii) the native 8-km SAFRAN
product; (iii) the native ~30-km CFSR product; and (iv) several aggregated, upscaled SAFRAN-derived
databases that may better suit the SWAT model discretisation and could avoid a loss of information.

2. Materials and Methods

2.1. Study Site

The 525-km Garonne River is an important French fluvial system that flows into the Atlantic
Ocean after draining a watershed extending over an area of 55,000 km2 across three distinct geographic
entities: the Pyrenees to the south, with peaks exceeding 3000 m, the plateau of the Massif Central to
the northeast that reaches up to 1700 m in altitude and the plain in between whose elevation is typically
less than a few hundred metres (Figure 1). The actual SWAT implementation, however, is limited to
the 50,000-km2 area upstream of Tonneins, where tides cease to influence the discharge.

The Garonne watershed offers diversified topography and land cover, good data availability,
good prior knowledge of the hydrological system [24] and some successful SWAT setups built around
available ground-based climate data [25–28].
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Figure 1. Location and elevation of the Garonne River watershed at Tonneins, with a 150-subwatershed
areal discretisation monitored by 21 gauging stations and several types of ground-based climate stations.

2.2. The SWAT Model

SWAT [1–3] is an agro-hydrological semi-distributed model that requires an areal discretisation
process that consists of dividing the watershed into subwatersheds based on the river network and
topography. SWAT then identifies hydrological response units (HRUs) within each subwatershed,
based on soil, land cover and slope information. HRUs are then used to compute a water balance
articulated around four reservoirs: snow, soil, shallow aquifer and deep aquifer. The main hydrological
processes include infiltration, runoff, evapotranspiration, lateral flow and percolation. Computation
is performed at the HRU level, aggregated at the subwatershed level, and flows are routed toward
reaches to the catchment outlet.

It is important to stress that SWAT uses only one climate data source per subwatershed to compute
its water balance, thus opening up the issue of optimal climate data spatial resolution. Nonetheless,
it has been successfully implemented in many locations worldwide to simulate a large range of water
components of the hydrological cycle [4–6].

ArcSWAT 2012, a GIS-based graphical interface [29], was used to identify the subwatersheds
and HRUs and to generate their associated input files. It should be noted that the number of
subwatersheds within SWAT is directly influenced by the resolution of the topography and by
a user-defined threshold that defines the minimum drainage area required to form the beginning of
a stream, since every river confluence corresponds to a potential subwatershed outlet. Extensive SWAT
and ArcSWAT documentation, including theoretical and technical manuals, can be consulted on the
SWAT website [30].
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2.3. Data Availability

Data sources for this study are presented in Table 1. River discharge data are available from
21 gauging stations spread over the watershed and covering the period from 2000 to 2010 (Figure 1).
Two climate datasets from Météo-France were compared: standard stations providing precipitation
at 36 sites, temperature at 28 sites, and solar radiation, relative humidity and wind speed at eight
sites (Figure 1) and the 8-km SAFRAN product providing all of the required variables at each grid
point [9–11]. SAFRAN uses the optimal interpolation (OI) method [31], which corrects background
values against all nearby observed data, applying a linear regression in which observations are
weighted by distance and associated error. In SAFRAN, the background values originate from the
ARPEGE meteorological model from the French meteorological agency [32] or the ECMWF operational
archives, while the observations are from a large range of datasets, such as ground-based climate
stations, snow monitoring networks, weather balloons and dropsondes.

Table 1. Data sources. CFSR, Climate Forecasting System Reanalysis.

Data Type Data Source Scale

DEM NASA/METI [33] Grid cell 90 m × 90 m
Land cover CORINE Land Cover [34] 1:100,000
Soil European Soil Database [35] 1:1,000,000
Climate (stations/SAFRAN) Météo-France [36] 8 × 8 km (SAFRAN)
Climate CFSR NOAA [7,37] 0.5◦ × 0.5◦
River discharge Banque Hydro [38]

The SAFRAN grid is constructed in three stages: interpolation of all atmospheric parameters to a
300-m vertical resolution, horizontal interpolation of the surface parameter and temporal interpolation.
A more comprehensive description of this process is reported in Durand, Brun, Merindol, Guyomarch,
Lesaffre and Martin [9] and Quintana-Segui, Le Moigne, Durand, Martin, Habets, Baillon, Canellas,
Franchisteguy and Morel [10].

A second gridded climate product, the CFSR grid, was used in this comparison [7]. Free access is
now provided to SWAT users via the Texas A&M University spatial sciences website [37] which
automatically creates SWAT-formatted input files. The CFSR has latitudinal and longitudinal
resolutions of 0.5◦, which over the Garonne watershed correspond to a resolution of ~35-km in
latitude and ~25-km in longitude. The CFSR was built around coupled atmospheric, oceanic and
surface modelling components, corrected with satellite, aircraft, radiosonde, pibal and in situ data
from both land and ocean [7]. Like SAFRAN, the data are interpolated according to the OI method,
as described in Xie, et al. [39] for land surfaces and Reynolds, et al. [40] for ocean surfaces.

2.4. Watershed Discretisation

As mentioned above, the SWAT model only uses one source of climate information per
subwatershed: the one nearest to the centroid. The number of information points used by the
model is therefore directly linked to the areal discretisation defined by the user during the SWAT
implementation phase. However, the delineation of the subwatersheds was initially based on the
need for a fair representation of all of the hydrological processes prevailing on the watershed and
on computing time allocation. In this project, data presented in Table 1 have been used to set up
the SWAT model. The watershed was divided into 150 subbasins to allow the representation of the
different hydrological behaviours highlighted by Probst [24]. HRUs were defined on soil, land use
and slope, retaining only information covering more than 10% of the subbasin area, as proposed by
Srinivasan [41].
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2.5. Aggregation of the SAFRAN Product

In order to evaluate the spatial appropriateness of the SAFRAN 8-km product against the SWAT
areal discretisation of the Garonne River watershed, other resolutions of the former were computed,
aggregating the gridded information to 16, 32, 64 and 128 km, respectively.

All climate datasets, including information from the ground stations, were then used in turn to
simulate the hydrology of the Garonne River. In the first step, a reference calibration was undertaken
based on the ground stations (Figure 1). SWAT was then run with the native SAFRAN product,
the native CFSR product and all SAFRAN-aggregated grids. During the second stage, new calibrations
were performed based on the native 8-km SAFRAN product and the SAFRAN product aggregated to
32 km (see Section 3.1). In all instances, performance values were computed and compared for the
2000–2010 period at a monthly time step.

2.6. Sensitivity Analysis and Calibration Process

Sensitivity analysis and calibration were undertaken within SWAT-Cup [42] using the SUFI-2
(Sequential Uncertainty Fitting 2) algorithm [43]. SWAT-Cup is an external software tool that allows
SWAT users to perform automatic calibrations [44]. They are then given the option of several calibration
algorithms, of which SUFI-2 is known to identify an appropriate parameter set in a limited number of
iterations [45].

A sensitivity analysis was performed, following the one-at-a-time procedure proposed by
Abbaspour [42]. Thirty two parameters were considered in the analysis (Table 2). Five runs were performed
over the 10-year period from 2000 to 2010, preceded by a three-year warming period (1997–2000).

Table 2. Parameters considered in the sensitivity analysis. HRU, hydrological response unit. For more
details on parameters name see [46].

Parameters Description Min. Max. Default

EPCO Plant uptake compensation factor 1 0 1
SURLAG Surface runoff lag time 0.5 1 4

GW_Delay Groundwater delay 0 500 31
GW_Revap Groundwater “revap” coefficient 0.02 0.2 0.02
GWQMN Threshold in the shallow aquifer for return flow to occur 0 5000 1000

GWHT Initial groundwater height 0 25 1
GW_SPYLD Specific yield of the shallow aquifer 0 0.4 0.003
SHALLST Initial depth of water in the shallow aquifer 0 50,000 500
DEEPST Initial depth of water in the deep aquifer 0 50,000 1000

ALPHA_BF Base flow alpha factor (days) 0 1 0.048
REVAPMN Threshold in the shallow aquifer for “revap” to occur 0 500 0
RCHRG_DP Deep aquifer percolation fraction 0 1 0.05

ESCO Soil evaporation compensation factor 0 1 0.95
CN2 (relative test) Soil conservation Services (SCS) runoff curve number −0.2 0.2 HRU

CANMX Maximum canopy storage 0 100 HRU
OV_N Manning’s “n” value for overland flow 0.01 30 HRU

SOL_AWC (relative test) Available water capacity of the soil layer −0.5 0.5 soil layer
SOL_K (relative test) Saturated hydraulic conductivity −10 10 soil layer
SOL_Z (relative test) Depth from soil surface to bottom of layer −500 500 soil layer

EVRCH Reach evaporation adjustment factor 0.5 1 1
EVLAI LAI at which no evaporation occurs from the water surface 0 10 3
SFTMP Snowfall temperature −10 10 4.5
SMTMP Snowmelt base temperature −10 10 4.5

TIMP Snowpack temperature lag factor 0 1 1
SMFMX Maximum melt rate for snow during the year (summer solstice) 0 20 1
SMFMN Minimum melt rate for snow during the year (winter solstice) 0 20 0.5

SNOW50COV Snow water equivalent that corresponds to 50% snow cover 0 1 0.5
SNOWCOVMX Snow water content that corresponds to 100% snow cover 0 100 1

SNO_SUB Initial snow water content 0 300 0
TLAPS Temperature lapse rate −10 10 −6
PLAPS Precipitation lapse rate −100 500 0
SNOEB Initial snow water content in elevation bands 0 300 0

Once the most sensitive parameters were identified (see Supplementary Materials for more
detail), 1500-run calibrations were performed as recommended by Yang, Reichert, Abbaspour,
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Xia and Yang [45]. The SWAT-Cup calibration was achieved sequentially from upstream to
downstream, one gauging station at the time, using the Nash–Sutcliffe efficiency criterion (NSe) [47] as
the objective function. NSe is a normalised metric allowing a comparison between the variance of the
observed dataset and the existing variance of residual errors between this same observed dataset and
the simulated one. It ranges from −∞ to 1 and is sensitive to large errors. It equals 0 when the model
is as accurate as the mean of the observed dataset and equals 1 when the model offers a perfect fit.

After calibration, the performance was evaluated using the same criterion, but calculated on the
root square of discharge values (NSeSqrt) in order to diminish the influence of large errors on the
metric. Indeed, the NSeSqrt is influenced more greatly by common flows and the error on the global
simulated volume [48,49].

3. Results and Discussion

3.1. Climate Data of Different Resolutions

Seven climate datasets were compared for the Garonne River watershed: the network of standard
ground stations, the 8-km SAFRAN product, SAFRAN aggregated to 16, 32, 64 and 128 km and the
30-km CFSR product. SAFRAN and CFSR come from a combination of meteorological simulations
and observations and may therefore possess a different spatial variance than the network of ground
stations. SAFRAN aggregation also results in a reduction in variance or, in other words, reduces its
ability to describe irregular, non-uniform precipitation patterns [50].

Ranges in the spatial variance of the daily precipitation are compared in Figure 2 for the watershed
of the Garonne River at Tonneins. As expected, aggregation smoothed out spatial irregularities,
which is evident in Figure 2 in the significant loss of large variance events when reducing the resolution
from the initial 8 km to the aggregated 128 km. On the other hand, not all precipitation events are
non-uniform, so it was mostly higher values of the variance distributions that were affected by the
aggregation process.

Figure 2. Ranges of the spatial variance of daily precipitation for the seven climate datasets. The box
represents the 25th and 75th percentiles of the distribution; the line is the median; and the whiskers
extend to the most extreme values.

Figure 2 also illustrates the spatial variance of the precipitation reported by the network of ground
stations. The 8-km SAFRAN had a narrower and lower distribution and a lower median value than
the network of stations, but the use of information from many different sources and an 8-km resolution
allowed SAFRAN to report more irregular events. In practice, the variance of the network between the
16- and 32-km aggregated SAFRAN grids in terms of spatial variance was an indication of the factual
resolution of the irregularly-spaced climate stations. Finally, the CFSR product offered yet another
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distribution of the spatial variance of daily precipitation, which lay between the aggregated 32-km and
64-km SAFRAN grids.

The fact that the choice was made to break down the watershed into 150 subwatersheds limited the
number of local climate information points to 150 and raised the question of the optimal resolution of
climate data. Indeed, too high a resolution forced SWAT to disregard much of the information, and too
low a resolution forced SWAT to use the same information for many adjacent subwatersheds, whereas
the resolution of the climate grid had a direct influence on its ability to describe non-uniformities in the
precipitation patterns, as mentioned above. This issue is illustrated in Figure 3, which shows points of
local climate information used by SWAT. It is evident that SWAT was not able to make use of all of the
8-km information; it used most of the 16-km information and used nearly all of the information from a
resolution of 32-km and more. From this perspective, the 32-km SAFRAN grid was the closest to the
resolution of the station network, as was the 30-km CFSR product.

Figure 3. Weather data used by the SWAT model when fed with each different dataset. The notation
143/872 indicates the number of grid points used by the model out of the grid points located over
the watershed (a higher first number indicates that the model used a grid point located outside
the watershed).

3.2. Hydrological Performance

Figures 4 and 5 compare the performance values (NSe and NSeSqrt) of the SWAT model calibrated
with the network of ground stations and run with each SAFRAN grid and the CFSR grid (values of the
calibrated parameters can be found in the Supplementary Materials). Using the data from SAFRAN did
not improve on the network of ground stations, except at two sites, Larra and Villefranche, where the
initial performance was unsatisfactory. Excessive aggregation was detrimental to SWAT performance,
as depicted by the much lower SWAT performance when operated with the 64- or 128-km SAFRAN
grids, while the other three resolutions were closer to one another in terms of performance.
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CFSR data produced heterogeneous performances, mostly similar to those obtained with the
8-, 16- and 32-km SAFRAN grids, and was even better than in the calibration for the St Béat station
(see Figure 1), but also for stations where the SWAT model completely failed to simulate the discharge.
When comparing different products, the fact that 8-, 16- and 32-km SAFRAN grids produced similar
performances, which were worse than the weather station data and for several stations, very different
from the CFSR performance values, indicated that it was not so much an issue of spatial resolution
than one of a different representation of the climate.

It is noteworthy that the performance of the Saint Béat and Valentine gauging stations declined as
the aggregation increased. Both stations are located in the Pyrenean part of the watershed, where the
model is quite sensitive to the snow-relative calibration [28].

As for the Larra and Villefranche sites, each site drains a single subwatershed, where no merging
with other subwatersheds can compensate for any errors in a climate series. These poor performance
values may also be a representation of a widespread problem when using in situ gauging stations:
weather data used to compute hydrological processes in a subwatershed could originate from a distant
gauging station and may not be representative of the subwatershed [13]. Indeed, when the weather
stations’ datasets were used in the SWAT model, computations in subwatersheds upstream of the
Villefranche and Truyère-Amont sites were performed using the same weather station, located in
the subwatershed upstream of the Truyère-Amont station (Figure 1). Unlike the Villefranche site,
no important loss in performance at Truyère-Amont was seen, suggesting that even though the
weather station was located close to the Villefranche watershed, it was not representative of that
particular system.

As for the CFSR grid, it proposed non-representative precipitation data in some areas. Indeed,
a detailed analysis of the hydrographs (not illustrated) revealed that CFSR forced SWAT to overestimate
discharges greatly at Larra and Laguepie, a problem that was then transmitted downstream to Verdun,
Loubéjac, Lamagistère and Tonneins, while discharge was underestimated at Millau and Sarrans.
When comparing hydrographs and hyetographs, it appeared that overestimations were mainly caused
by grid points where precipitation was overestimated when compared to the rest of the grid. This was
consistent with the findings of Dile and Srinivasan [15], who encountered the same situation over the
Blue Nile watershed.

In order to document the issue of SAFRAN and the network of stations not reporting exactly the
same climatology, it was decided to recalibrate SWAT alternately using the 8- and 32-km SAFRAN
grids, since the 8-km resolution described spatial non-uniformity better, and the 32-km resolution was
the closest to the network’s (values of calibrated parameters are provided as Supplementary Materials).

Here, Figures 6 and 7 show poorer SWAT performance values when calibrated with the network
of climate stations than with any of the two SAFRAN grids, which was consistent with previous
studies [13,18]. Better performance values at the Larra and Villefranche sites when using SAFRAN
tended to confirm that, at least for these two sites, climate stations were either non-representative or
included errors. Moreover, the performance at Tonneins, which integrates climate data across the entire
watershed, confirmed the superiority of the SAFRAN product. This highlights the benefit of using a
gridded dataset developed from the interpolation and cross-checking of weather data, which avoids
temporal gaps, is less influenced by very local events and guarantees space-time consistency for all
meteorological variables [11].

The performance of the 8- and 32-km SAFRAN grids was mostly similar, indicating that the grid
resolution did not have a considerable influence on the calibration. The largest gain was at Saint Béat in
the Pyrenees, where the 32-km resolution proved to be quite beneficial, as it was for the CFSR dataset.

In this case, the Pyrenean gauging stations do not behave differently from the other ones,
in opposition to the previous modelling step when running SWAT (reference calibration) with the
various upscale grids, which led to a loss in performance values at those sites. Moreover, for some of them
(St Beat, Roquefort and Portet), a gain in performance is obtained. These results confirmed the capacity of
the calibration to take full advantage of the available information, especially in mountainous regions.

173

Bo
ok
s

M
DP
I



Water 2017, 9, 54

F
ig

u
re

6
.

N
as

h–
Su

tc
lif

fc
ri

te
ri

on
of

th
e

SW
A

T
m

od
el

ca
lib

ra
te

d
w

ith
th

e
w

ea
th

er
st

at
io

ns
,t

he
na

tiv
e

SA
FR

A
N

gr
id

an
d

th
e

32
-k

m
SA

FR
A

N
gr

id
.T

he
Y-

ax
is

di
sp

la
ys

ga
ug

in
g

st
at

io
ns

fr
om

up
st

re
am

to
do

w
ns

tr
ea

m
(s

ee
al

so
Fi

gu
re

1)
.I

tc
an

gl
ob

al
ly

be
no

te
d

th
at

th
e

up
sc

al
in

g
pr

oc
es

s
of

th
e

SA
FA

R
A

N
pr

od
uc

th
as

va
ri

ou
s

im
pa

ct
s

fr
om

on
e

si
te

to
th

e
ot

he
r.

Fo
r

in
st

an
ce

,u
ps

ca
le

gr
id

s
in

th
e

Py
re

ne
an

pa
rt

of
th

e
w

at
er

sh
ed

(S
tB

ea
t,

V
al

en
tin

e,
R

oq
ue

fo
rt

,F
oi

x
an

d
Po

rt
et

)l
ea

d
to

th
e

la
rg

es
tl

os
s

of
pe

rf
or

m
an

ce
.T

hi
s

is
du

e
to

th
e

im
po

rt
an

tc
lim

at
e

in
ho

m
og

en
ei

ty
ov

er
m

ou
nt

ai
no

us
re

gi
on

s
th

at
ar

e
hi

gh
ly

re
du

ce
d

by
th

e
up

sc
al

in
g

pr
oc

es
s

(F
ig

ur
e

2)
.

174

Bo
ok
s

M
DP
I



Water 2017, 9, 54

F
ig

u
re

7
.

N
as

h–
Su

tc
lif

fc
ri

te
ri

on
ca

lc
u

la
te

d
on

th
e

sq
u

ar
e

ro
ot

(N
Se

Sq
rt

)d
is

ch
ar

ge
va

lu
e

ca
lib

ra
te

d
w

it
h

th
e

w
ea

th
er

st
at

io
ns

,t
he

na
ti

ve
SA

FR
A

N
gr

id
an

d
th

e
32

-k
m

SA
FR

A
N

gr
id

.T
he

Y-
ax

is
di

sp
la

ys
th

e
ga

ug
in

g
st

at
io

n
fr

om
up

st
re

am
to

do
w

ns
tr

ea
m

(s
ee

al
so

Fi
gu

re
1)

.

175

Bo
ok
s

M
DP
I



Water 2017, 9, 54

4. Conclusions

The implementation of a semi-distributed hydrological model generally involves breaking down
the watershed space into homogeneous units that are compatible with the dynamic computation of the
hydrological processes. In the case of the SWAT model, only one climate grid point per subwatershed,
the nearest one, was used for the calculations, raising the question of the optimal resolution of the
climate data. In this study, the 45,000-km2 Garonne River watershed at Tonneins, which drains a
substantial part of southwest France to the Atlantic Ocean, was used to compare three sources of
climate information in different formats and resolutions, namely the available climate station network,
the 8-km SAFRAN product and the ~30-km CFSR product. SAFRAN grids aggregated to 16, 32, 64
and 128 km were also explored.

A spatial breakdown of the Garonne watershed into 150 subwatersheds was deemed as optimal
to represent the hydrological functioning of the catchment, as well as adequate regarding to computing
costs. From this breakdown results also the limitation of the number of local climate grid points to 150.
A higher climate data resolution would therefore force SWAT to disregard much of the information,
and a much lower resolution would force SWAT to use the same information for many adjacent
subwatersheds, whereas the resolution of the climate grid had a direct influence on its ability to
describe non-uniformities in the precipitation patterns.

The results showed that aggregating SAFRAN up to 64 or 128 km was detrimental to the
description of non-uniform precipitation events, to the point of leading to a much poorer performance
when used with the SWAT implementation calibrated on the available network of climate stations.
The native 8-km SAFRAN product offered the variability of daily precipitation events, while the
aggregated 16- and 32-km SAFRAN grids and the ~30-km CFSR product ranges of spatial variance
were similar to that of the network of climate stations.

Running the SWAT model calibrated on the network of climate stations with the 8-, 16- and 32-km
SAFRAN grids led to very similar performance values at most sites, but lower than those previously
obtained in calibration. These results suggest that the difference in the representation of the climate
was more influential than its spatial resolution in simulating the hydrological processes within the
SWAT model. Using CFSR with the same framework provided similar overall performance values
as SAFRAN for some sites, but for others, CFSR provided precipitation rates that were judged to be
unrealistic when compared to the other climate databases.

The great importance of the quality of the climate product over its resolution was confirmed when
calibrating SWAT with the native 8-km SAFRAN and its aggregated 32-km counterpart, since both of
these datasets led to very similar performances that were better overall than the calibration performance
values previously obtained by calibrating SWAT with the network of climate stations.

Results obtained in this study are consistent with previous works revealing the benefit of using
a gridded dataset. However, the choice of the dataset is influenced by (1) the resolution range,
which must be adapted to the model definition, even if certain resolution seems to lead to similar
performance values, and (2) the representation of the climate by the dataset. It is thus quite important
to select a dataset that is suitable to the model and to the climatological characteristics of the watershed.

The present study was based on monthly time step performance computations, compatible with
water planning needs, where the influences of extreme precipitation are limited. An equivalent study
calculating performances at a daily time step could generate additional findings that could have flood
warning applications.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/9/1/54/s1.
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Abstract: The successful application of hydrological models relies on careful calibration and
uncertainty analysis. However, there are many different calibration/uncertainty analysis algorithms,
and each could be run with different objective functions. In this paper, we highlight the fact
that each combination of optimization algorithm-objective functions may lead to a different set of
optimum parameters, while having the same performance; this makes the interpretation of dominant
hydrological processes in a watershed highly uncertain. We used three different optimization
algorithms (SUFI-2, GLUE, and PSO), and eight different objective functions (R2, bR2, NSE, MNS,
RSR, SSQR, KGE, and PBIAS) in a SWAT model to calibrate the monthly discharges in two watersheds
in Iran. The results show that all three algorithms, using the same objective function, produced
acceptable calibration results; however, with significantly different parameter ranges. Similarly,
an algorithm using different objective functions also produced acceptable calibration results, but with
different parameter ranges. The different calibrated parameter ranges consequently resulted in
significantly different water resource estimates. Hence, the parameters and the outputs that they
produce in a calibrated model are “conditioned” on the choices of the optimization algorithm and
objective function. This adds another level of non-negligible uncertainty to watershed models, calling
for more attention and investigation in this area.

Keywords: calibration; uncertainty analysis; conditional parameters; SUFI-2; GLUE; PSO

1. Introduction

Distributed hydrologic models are useful tools for the simulation of hydrologic processes,
planning and management of water resources, investigation of water quality, and prediction of the
impact of climate and landuse changes worldwide [1–5]. The successful application of hydrologic
models, however, depends on proper calibration/validation and uncertainty analysis [6].

Process-based distributed hydrologic models are generally characterized by a large number of
parameters, which are often not measurable and must be calibrated. Calibration is performed by
carefully selecting the values for model input parameters (within their respective uncertainty ranges)
and by comparing model simulation (outputs) for a given set of assumed conditions with observed
data for the same conditions [7].

Hydrological model predictions are affected by four sources of error, leading to uncertainties in
the results of the model. These are: 1- input errors (e.g., errors in rainfall, landuse map, pollutant source
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inputs); 2- model structure/model hypothesis errors (e.g., errors and simplifications in the description
of physical processes); 3- errors in the observations used to calibrate/validate the model (e.g., errors
in measured discharge and sediment); and 4- errors in the parameters, which arise from a lack of
knowledge of the parameters at the scale of interest (e.g., hydraulic conductivity, Soil Conservation
Service (SCS) curve number). These sources of error are commonly acknowledged in many studies
(e.g., Montanari et al. [8]).

Over the years, a variety of optimization algorithms have been developed for calibration and
uncertainty analysis, such as the Generalized Likelihood Uncertainty Estimation method (GLUE) [9],
the Sequential Uncertainty Fitting procedure (SUFI-2) [10], Parameter Solution (ParaSol) [11], and Particle
Swarm Optimization (PSO) [12,13]. Although these algorithms differ in their search strategies, their goal
is to find a set of the best parameter ranges, satisfying a desired threshold assigned to an objective
function. Furthermore, many objective functions have also been developed and are in common usage,
such as Nash-Sutcliffe efficiency (NSE) [14], the root mean square error (RMSE), the observations
standard deviation ratio (RSR) [15], and Kling-Gupta efficiency (KGE) [16], to name just a few.

A comparison of the performance of hydrological models under different optimization
algorithms [17–20] and objective functions [21,22] has been the subject of some scrutiny in the literature.
Examples of this are the work of Arsenault et al. [19], who compared ten optimization algorithms in
terms of the method performance with respect to model complexity, basin type, convergence speed,
and computing power for three hydrological models. Wu and Chen [20] compared three calibration
methods (SUFI-2, GLUE, and ParaSol) within the same modeling framework and showed that SUFI-2
was able to provide more reasonable and balanced predictive results than GLUE and ParaSol. Wu and
Liu [21] examined four potential objective functions and suggested SAR as a reasonable choice.
In a more comprehensive study, Muleta [22] examined the sensitivity of model performance to nine
widely used objective functions in an automated calibration procedure. Less attention, however,
has been paid to the optimized parameter values obtained under different optimization algorithms
and objective functions, in addition to their impact on the interpretation of hydrological processes in
the studied watersheds.

In this study, we examine the sensitivity of optimized model parameters to different optimization
algorithms and objective functions, as well as their impacts on the calculation of water resources in two
different watersheds in Iran. The current paper focuses on the GLUE, SUFI-2, and PSO algorithms and
the objective functions R2, bR2, NSE, MNS, RSR, SSQR, KGE, and PBIAS (see Table 1 for a definition
of the function). To achieve our objectives, we used the Soil and Water Assessment Tool (SWAT) [23]
in the Salman Dam Basin (SDB) and Karkheh River Basin (KRB). For model calibration, we used
SWAT-CUP [24], which couples five optimization algorithms to SWAT, allowing the use of different
objective functions for SUFI-2 and PSO algorithms.

Table 1. Formulation of the objective functions.

Objective Function Reference Formulation *

Modified Coefficient of determination (bR2) [25] bR2 =

{ |b|.R2 for b ≤ 1
|b|−1.R2 for b > 1

Coefficient of determination (R2)
- R2 =

[∑i (Qi,o−Qo)(Qi,s−Qs)]
2

∑i (Qi,o−Qo)
2

∑i (Qi,s−Qs)
2

Nash-Sutcliffe efficiency (NSE)
[14] NSE = 1 −

[
∑n

i=1 (Qi,o−Qi,s)
2

∑n
i=1 (Qi,o−Qo)

2

]

Modified Nash-Sutcliffe efficiency (MNS)
[25] MNS = 1 − ∑n

i=1 |Qi,o−Qi,s|j
∑n

i=1 |Qi,o−Qo|j
with j ∈ N

Ratio of standard deviation of observations
to root mean square error (RSR)

[15] RSR = RMSE
STDEVo

=

[√
∑n

i=1 (Qi,o−Qi,s)
2
]

[√
∑n

i=1 (Qi,o−Qm)2
]
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Table 1. Cont.

Ranked sum of squares (SSQR) [26] SSQR = 1
n ∑n

i=1 [Qi,o − Qi,s]
2

Kling-Gupta efficiency (KGE)
[16] KGE = 1−

√
(R − 1)2 + (α− 1)2 + (β− 1)2

Percent bias (PBIAS)
[27] PBIAS = 100 ∗

[
∑n

i=1 (Qi,o−Qi,s)

∑n
i=1 Qi,o

]
* R is the correlation coefficient between observed and simulated data; b is the slope of regression line between
observed an simulated data; Qi,o and Qi,s are the ith observed and simulated values, respectively; Qo, Qs are the
mean observed and simulated values, respectively; n is total number of observations; α = σs/σm and β = μs/μm
where σm and σs are the standard deviation of the observed and simulated data, respectively, and μm and μs are the
mean of observed and simulated data, respectively.

2. Materials and Methods

2.1. Hydrologic Model SWAT

SWAT is a process-based, spatially distributed, and time continuous model. The program is open
source and is commonly applied to quantify the impact of landuse and climate change, as well as the
impact of different watershed management activities on hydrology, sediment movement, and water
quality. SWAT operates by spatially dividing the watershed into multiple sub-basins using digital
elevation data. Each sub-basin is further discretized into hydrologic response units (HRUs), which
consist of uniform soil, landuse, management, and topographical classes. More information on SWAT
can be found in Arnold et al. [7] and Neitsch et al. [28].

2.2. Calibration/Uncertainty Analysis Programs

SUFI-2 is a semi-automated approach used for calibration, validation, and sensitivity and
uncertainty analysis. In SUFI-2, all sources of parameter uncertainties are assigned to parameters.
The uncertainty in the input parameters are described as uniform distributions, while model
output uncertainty is quantified by the 95% prediction uncertainty (95PPU) determined at the
2.5% and 97.5% levels of the cumulative distribution of output variables obtained through Latin
hypercube sampling.

Two indices determine the model’s goodness-of-fit and uncertainty: p-factor and d-factor.
The p-factor is the percentage of observed data bracketed by the 95% prediction uncertainty (95PPU),
while the d-factor is the average thickness of the 95PPU band divided by the standard deviation of
the observed data. In the ideal situation, where the simulation exactly matches the observed data,
the p-factor and d-factor tend to be 100% and 0, respectively, but these values cannot be achieved
for real cases due to the errors from different sources. A wide d-factor can lead to a large p-factor,
but SUFI-2 searches to bracket most of the measured data with the smallest possible uncertainty band
(d-factor) [24].

GLUE relies on the output of numerous Monte Carlo simulations in which a global optimum
parameter set is sought and any assessment of parameter uncertainty is made with respect to that
global optimum. In GLUE, all sources of uncertainty (i.e., input uncertainty, structural uncertainty,
and response uncertainty) are also accounted for by parameter uncertainty. This method is based on
the concept of non-uniqueness, which means that different parameter sets can produce equally good
and acceptable performances of model predictions due to the interactions of different parameters.
This concept rejects the idea of a unique global optimum parameter set. The objective of GLUE is to
identify a set of behavioral models within the universe of possible model/parameter combinations.
The term “behavioral” is used to signify models that are judged to be “acceptable” on the basis
of the available data. In this method, a large number of model runs are performed with different
randomly chosen parameter values selected from prior parameter distributions. To quantify how
well the parameter combination simulates the real system, a likelihood value is assigned to each set
of parameter values by comparing the predicted simulation and observed data. Then, this value is
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compared to a cutoff threshold value that is selected arbitrarily. Each parameter set that leads to
a likelihood value less than the threshold value is discarded from future consideration [29].

PSO is a population- (swarm-) based statistical optimization technique inspired by the social
behavior of bird flocking or fish schooling. PSO is initialized with a group of random particles (solutions)
moving through the search space for optima. During the optimization process, PSO generates the
positions of particles (coordinate in the parameter space) and their velocities (step change in space),
and then updates the velocity of each particle using the information from the best solution it has
achieved so far and a global best solution obtained by all the other particles. The new position of each
particle is calculated by updating the current position using the velocity vector [12].

2.3. Objective Function

To assess the impact of the objective functions on the calibration results and final sensitive
parameter ranges, we used the following popularly used functions: the coefficient of determination
(R2) and modified R2 (bR2), Nash-Sutcliffe efficiency (NSE), Modified Nash-Sutcliffe efficiency (MNS),
ratio of the standard deviation of observations to root mean square error (RSR), ranked sum of
squares (SSQR), Kling-Gupta efficiency (KGE), and percent bias (PBIAS). The formulation of these
eight objective functions is presented in Table 1.

2.4. Case Studies

The first case study is the Salman Dam Basin (SDB) located in the arid regions of south-central
Iran. This region includes the watershed upstream of the Salman Farsi Dam (Figure 1a). The area
of the SDB is approximately 13,000 km2, with geographic coordinates of 28◦26′ N to 29◦47′ N and
51◦55′ E to 54◦19′ E. The elevation of the basin ranges from less than 800 m above sea level in the
southern areas to more than 3100 m in the northern areas of the basin. The main river in the SDB is
Ghareh-Aghaj, with an annual average discharge of 18 m3·s−1. The average annual precipitation is
less than 250 mm·year−1 in the central and southern part of the watershed, and >750 mm·year−1 in
the northwest regions.

The second case study is the Karkheh River Basin (KRB), which is the highly studied basin of
the Challenge Program in Water and Food [30], located in western Iran. The KRB covers an area of
51,000 km2 and lies between 30◦ N to 35◦ N and 46◦ E to 49◦ E geographic coordinates, with an elevation
ranging from less than the mean sea level to more than 3600 m (Figure 1b). The Karkheh river is
the third longest river in Iran, with an annual average discharge of 188 m3·s−1 [31]. The climate is
semi-arid in the uplands (north) and arid in the lowlands (south). The precipitation exhibits large
spatial and temporal variability. The mean annual precipitation is about 450 mm·year−1 , ranging
from 150 mm·year−1 in the lower arid plains to 750 mm·year−1 in the upper mountainous parts [31].
A large multi-purpose earthen embankment dam, Karkheh, was built on the river and has been
utilized since 2001 in order to supply irrigation water in the Khuzestan plains (in the lower Karkheh
region), and hydropower generation and flood control. Management information relating to Karkheh
reservoir operation (i.e., the minimum and maximum daily outflow, reservoir surface area, and spillway
conditions) was considered in the SWAT model of KRB [3].

2.5. Model Setup

2.5.1. SDB and KRB Models

For this study, we used ArcSWAT 2012 with ArcGIS (ESRI-version 10.2.2). The input data and their
sources are listed in Table 2. The SDB and KRB watersheds were discretized into 184 and 333 sub-basins,
respectively. The sub-basins were further subdivided into 1115 and 3002 homogeneous hydrological
response units (HRUs), respectively, by fixing a threshold value of 5% for landuse and 10% for soil
type. By using these thresholds, soils and landuses with smaller areas than their respective thresholds
were integrated into larger soil and landuses, respectively, by an area weighted scheme.
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Table 2. Data description and sources used in the SWAT projects.

Data Type Source

Digital Elevation Maps (DEM) (resolution 90 m) The Shuttle Radar Topography Mission (SRTM by NASA) [32]

Soil data (resolution 10 km) The Food and Agriculture Organization of the United Nations [33]

Landuse data
Satellite images (IRS-P6 LISS-IV and IRS-P5-Pan satellite images,
ETM + 2001 Landsat)

Weather data (minimum and maximum daily air temperature and
daily precipitation)

Iranian ministry of Energy, The Iranian Meteorological Organization,
and WFDEI_CRU data (0.5◦ × 0.5◦)

River discharge Iranian ministry of Energy

Digital river network and geological position of reservoirs and dams Iranian ministry of Energy

Management information of Karkheh reservoir operation (i.e.,
minimum and maximum daily outflow, reservoir surface area,
and spillway conditions)

Iranian ministry of Energy

The Hargreaves method [34] was used to simulate the potential evapotranspiration (PET).
The maximum transpiration and soil evaporation values were then calculated in SWAT using
an approach similar to Ritchie [35], where soil evaporation is estimated by using the exponential
functions of soil depth and water content based on PET and a soil cover index based on aboveground
biomass. Plant transpiration is simulated as a linear function of PET and the leaf area index, root depth,
and soil water content [36]. The modified SCS curve number method was used to calculate surface
runoff, and the variable storage routing method was used for flow routing.

 

Figure 1. Location of the study areas: (a) Salman Dam Basin (SDB) and (b) Karkheh River Basin (KRB).

Monthly discharges in the SDB model were calibrated from 1990 to 2008 and validated from 1977
to 1989, and in the KRB, the same periods were 1988–2012 and 1980–1987, respectively, using daily
observed flows from four and eight river discharge stations, respectively, (Figure 1). A three-year
duration was considered as the warm up period, in order to account for the initial conditions.

To calibrate the model, we initially selected 15 parameters for SDB based on a preliminary
one-at-a-time sensitivity analysis and nine parameters for KRB based on the previous research
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works [3,37]. Ashraf Vaghefi et al. [3] used SUFI-2 to model KRB and identified nine parameters
based on their global sensitivity analysis (Table 3). As one-at-a-time analysis is quite limited due to
the large interactions between parameters, we initially used a large number of parameters for further
analysis. To evaluate the impact of various optimization algorithms and objective functions on the
final calibrated parameter ranges, we calibrated each model using the same initial parameter ranges
(Table 3) and followed the calibration protocol presented by Abbaspour et al. [6]. Initially, the snow
parameters were fitted separately and their values were fixed to avoid identifiability problems with
other parameters. Similar to rainfall, snow melt is also a driving variable and its parameters should not
be calibrated simultaneously with other model parameters.

Table 3. Initial ranges and descriptions of the parameters used for calibrating the SWAT models in the
Salman Dam Basin (SDB) and Karkheh River Basin (KRB).

Parameter Description
Parameter Range

SDB KRB

min max min max

* r_CN2.mgt SCS runoff curve number −0.2 0.2 −0.3 0.3
** v_CH_N2.rte Manning’s “n” value for main channel 0 0.3 0 0.3

v_ALPHA_BF.gw Baseflow alpha factor (days) 0 0.3 0 1
r_SOL_BD.sol Moist bulk density −0.5 0.5 −0.5 0.5

v_GW_DELAY.gw Groundwater delay (days) 30 450 0 500
v_SMFMX.bsn Max. melt rate for snow during year 0 10 0 20
v_SFTMP.bsn Snowfall temperature −5 5
v_SMTMP.bsn Snow melt base temperature −5 5
v_SMFMN.bsn Minimum melt rate for snow during year 0 10

v_TIMP.bsn Snow pack temperature lag factor 0 1
v_ESCO.hru Soil evaporation compensation factor 0.7 1
v_CH_K2.rte Effective hydraulic conductivity in channel 5 130

r_SOL_AWC.sol Available water capacity −0.4 0.4
r_SOL_K.sol Saturated hydraulic conductivity −0.8 0.8

v_ALPHA_BNK.rte Baseflow alpha factor for bank storage 0 1
v_GWQMN.gw Threshold depth of water in the shallow aquifer 0 5000

r_OV_N.hru Manning’s “n” value for overland flow −1 1
v_GW_REVAP.gw Groundwater “revap” coefficient 0 0.2

* r_ refers to a relative change in the parameters were their current values are multiplied by (1 plus a factor in the
given range); ** v_ refers to the substitution of a parameter value by another value in the given range [24]).

Monthly discharges in both watersheds were calibrated separately using the eight different
efficiency criteria in Table 1. Then, the goodness of calibration results were compared for different
objective functions using the criteria in Table 4. For bR2 and MNS, we introduced measures based
on the results of similar studies [22,38,39], where the satisfactory threshold values for bR2 and MNS
were considered greater than or equal to 0.4. No such threshold could be specified for SSQR as the
measured and simulated variables are independently ranked and its value depends on the magnitude
of the variables being investigated.

Table 4. General performance ratings for a monthly time step [15,40].

Performance
Rating

R2 NSE RSR PBIAS KGE

Very good 0.75 < R2 ≤ 1 0.75 < NSE ≤ 1 0 ≤ RSR ≤ 0.5 PBIAS < ±10 0.9 ≤ KGE ≤ 1
Good 0.65 < R2 ≤ 0.75 0.65 < NSE ≤ 0.75 0.5 < RSR ≤ 0.6 ±10 ≤ PBIAS < ±15 0.75 ≤ KGE < 0.9

Satisfactory 0.5 < R2 ≤ 0.65 0.5 < NSE ≤ 0.65 0.6 < RSR ≤ 0.7 ±15 ≤ PBIAS < ±25 0.5 ≤ KGE < 0.75
Unsatisfactory R2 ≤ 0.5 NSE ≤ 0.5 RSR > 0.7 PBIAS ≥ ±25 KGE < 0.5

2.5.2. Optimization Algorithms

To compare the parameters obtained in each optimization method, we used similar conditions
in terms of behavioral and non-behavioral parameter values, objective function types, calibration
parameters and their prior ranges, number of runs, and statistical criteria. The NSE was selected as
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the common objective function for all three optimization algorithms. The behavioral threshold was
set at NSE ≥ 0.5. The criteria NSE, p-factor, and d-factor were used to evaluate model performance.
In SDB, we used three iterations with 480 simulation runs (totally 1440 simulation runs) for SUFI-2
and 1440 simulation runs for GLUE and PSO. In KRB, we used five iterations with 480 simulation runs
(totally 2400 simulation runs) for SUFI-2 and 2400 simulation runs for GLUE and PSO. The parallel
processing option of SWAT-CUP [41] was used to run SUFI-2 with different objective functions. GLUE
and PSO usually require a large number of simulations. However, because of our relatively good initial
parameter values and reasonable parameter ranges (based on the previous works mentioned above),
fewer runs were needed to produce satisfactory results.

2.5.3. Statistical Analysis

We used the non-parametric Kruskal-Wallis test to assess whether the ranges of sensitive
parameters obtained by different objective functions were significantly different from each other.
The test is based on an analysis of variance using the ranks of the data values, not the data values
themselves. If the Kruskal-Wallis test was significant, we used Tukey’s post-hoc test to determine
which objective functions produced similar or different parameters.

3. Results

3.1. Sensitivity of Model Performance to the Objective Functions Used in SUFI-2 Algorithm

Based on the criteria of Table 4, all objective functions performed better than satisfactory, except
for PBIAS in the calibration stage (Table 5). In the validation, the Barak station did not have satisfactory
results for six of the objective functions. This could be due to extensive water management and human
activities in the upstream of Barak during the validation period.

Table 5. Calibration and validation (in parentheses) results by eight different objective functions using
the SUFI-2 optimization algorithm.

Station bR2 R2 NSE MNS RSR SSQR KGE PBIAS

- Salman Dam Basin (SDB)

B.Bahman 0.57 (0.52) 0.64 (0.57) 0.57 (0.48) 0.46 (0.38) 0.66 (0.7) 6.3 (3) 0.76 (0.7) 37.8 (34.6)
Ali abad 0.62 (0.56) 0.79 (0.71) 0.65 (0.7) 0.53 (0.5) 0.6 (0.53) 11 (3.8) 0.76 (0.75) 9.6 (−19.4)

Barak 0.57 (0.15) 0.67 (0.36) 0.64 (0.14) 0.41 (0.13) 0.61 (0.88) 0.93 (2.1) 0.65 (0.05) −6.9 (−5.5)
T.karzin 0.62 (0.61) 0.76 (0.61) 0.74 (0.57) 0.53 (0.42) 0.52 (0.65) 13 (17) 0.84 (0.62) −40.5 (−9)

- Karkheh River Basin (KRB)

Aran 0.51 (0.57) 0.61 (0.57) 0.73 (0.51) 0.49 (0.49) 0.81 (0.7) 8.1 (11) 0.48 (0.49) −43.00 (58.5)
Polchehr 0.59 (0.54) 0.62 (0.45) 0.55 (0.5) 0.47 (0.42) 0.66 (0.76) 38 (110) 0.75 (0.74) −7.30 (−9.5)

Ghorbaghestan 0.68 (0.71) 0.69 (0.71) 0.67 (0.66) 0.53 (0.49) 0.56 (0.6) 14 (85) 0.82 (0.72) 4.70 (10.6)
Haleilan 0.66 (0.69) 0.71 (0.58) 0.65 (0.62) 0.52 (0.5) 0.58 (0.64) 170 (130) 0.79 (0.8) 3.10 (0.2)
Tang saz 0.65 (0.73) 0.72 (0.69) 0.66 (0.54) 0.53 (0.45) 0.58 (0.66) 250 (240) 0.82 (0.8) −1.40 (−4.5)
Afarineh 0.51 (0.37) 0.67 (0.54) 0.56 (0.42) 0.41 (0.49) 0.65 (0.78) 180 (740) 0.67 (0.48) 22.20 (32.4)

Jelogir 0.67 (0.67) 0.71 (0.62) 0.66 (0.59) 0.50 (0.5) 0.57 (0.64) 480 (980) 0.83 (0.81) 4.80 (7.2)
Payepol 0.39 (0.56) 0.43 (0.6) 0.13 (0.27) 0.16 (0.4) 0.94 (0.85) 730 (4400) 0.56 (0.67) 14.30 (14.6)

For an illustration example, we plotted the best and the worst calibration results for the T.Karzin
sub-basin in SDB in Figure 2. The discharges based on NSE were quite similar and close to the
observation, while PBIAS showed a systematic delay in the recession leg of the discharge.
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Figure 2. Calibration (1990–2008) and validation (1977–1988) results of monthly simulated discharges
showing performance of the best (NSE) and the worst (PBIAS) objective functions for the T.Karzin
station in Salman Dam Basin (SDB).

In KRB, all objective functions performed better than satisfactory for all sub-basins except in
Payepol (Table 5). For KRB, we obtained similar results to Ashraf Vaghefi et al. [3], who also modeled
this watershed with SWAT. They reported larger uncertainties in the southern parts of the Karkheh
Dam (i.e., Payepol station), because of higher water management activities. While in the northern part
of the Dam (i.e., Afarine and Jologir stations), the uncertainties were smaller, and in general, model
performance was better [3].

At the Payepol station, the validation results were better than the calibration results because the
Karkheh Dam was constructed after the validation period. However, the results from some objective
functions like NSE and RSR were still unsatisfactory in Payepol.

To compare the closeness of the final discharges in all objective functions, we calculated the
correlation coefficient table (Table 6). The high correlation coefficients among the best simulated
discharges in KRB show that most objective functions led to similar results. As in SDB, in KRB, PBIAS
displayed the worst correlation with the other methods.

Table 6. Correlation coefficients of the objective functions based on the best simulation in the calibration
period using the SUFI-2 algorithm.

Case Study Objective Function bR2 R2 NSE MNS RSR SSQR KGE PBIAS

Salman Dam
Basin (SDB)

bR2 1.00 0.88 0.96 0.93 0.96 0.94 0.95 0.58
R2 - 1.00 0.93 0.93 0.95 0.83 0.87 0.61

NSE - - 1.00 0.98 0.98 0.96 0.98 0.56
MNS - - - 1.00 0.96 0.95 0.97 0.54
RSR - - - - 1.00 0.93 0.94 0.55

SSQR - - - - - 1.00 0.99 0.46
KGE - - - - - - 1.00 0.50

PBIAS - - - - - - - 1.00

Karkheh River
Basin (KRB)

bR2 1.00 0.97 0.95 0.96 0.96 0.84 0.97 0.79
R2 - 1.00 0.98 0.99 0.98 0.81 0.98 0.74

NSE - - 1.00 0.98 1.00 0.78 1.00 0.70
MNS - - - 1.00 0.98 0.83 0.98 0.76
RSR - - - - 1.00 0.78 1.00 0.69

SSQR - - - - - 1.00 0.79 0.95
KGE - - - - - - 1.00 0.71

PBIAS - - - - - - - 1.00

We conclude here that the final results of the monthly discharges in our two case studies are not
very sensitive to the objective functions in the SUFI-2 algorithm. In our two case studies, except PBIAS,
other objective functions produce equally acceptable simulation results. However, this is not a general
conclusion because in other regions, where, for example, snow melt is dominant, a certain objective
function that targets a specific feature of the discharge may perform better and be more desirable.
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3.2. Sensitivity of Model Parameters to Objective Functions

In SUFI-2, parameters are always expressed as distributions, beginning with a wider distribution
and ending up with a narrower distribution after calibration. In this study, we used a uniform
distribution to express the parameter uncertainty. The parameters obtained by each objective function
in the SDB and KRB study sites showed significantly different ranges (Figure 3), even though the
simulated discharges were not significantly different. This illustrates the concept of parameter
“non-uniqueness” and the concept of “conditionality” of the calibrated parameters. An unconditional
parameter range is a parameter range that is independent of the objective function used in calibration.
By this definition, the unconditional parameter range of CN2 for B.Bahman would be the range
indicated by the broken line in Figure 3. However, this translates into a very large parameter uncertainty.
This indicates that there is a significant uncertainty associated with the choice of objective functions
with respect to parameter ranges.

 

Figure 3. Uncertainty ranges of calibrated parameters using different objective functions in (Top) SDB
and (bottom) KRB. The points in each line show the best value of parameters, r_ refers to a relative
change where the current values are multiplied by (one plus a factor from the given parameter range),
and v_ refers to the substitution by a value from the given parameter range [24]).
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Using the Kruskal-Wallis test, we determined which parameter ranges were significantly different
from the others (Table 7). As an example, the parameter CN2 for the upstream sub-basins of the
B.Bahman outlet were not significantly different for NSE, SSQR, and KGE, while they were significantly
different for all other objective functions. A careful analysis of the results in Table 7 reveals that there
is no clear pattern of similarity or differences between the objective functions. However, it is clearly
indicated that the NSE method has the most common parameters with other objective functions,
followed by RSR and KGE.

Table 7. Results of Tukey’s post-hoc test to determine if parameters obtained by different objective
functions were statistically different or similar.

Case Study Parameter bR2 R2 NSE MNS RSR SSQR KGE PBIAS

Salman Dam
Basin (SDB)

r_CN2.mgt (B.Bahman) - - A1 - - A1 A1 -
r_CN2.mgt (Ali abad) B1 - B2 - B2 B3 B1 B3

r_CN2.mgt (barak) - - C1 C1 - - C2 C2
r_CN2.mgt (T.Karzin ) - - D1 D1 - - D1 -

v_ESCO.hru - - - - - E1 E1 -
v_ALPHA_BNK.rte F1 F2 - - F1 F3 F3 F2

r_SOL_BD.sol - - - G1 G1 - - -
v_GW_DELAY.gw - - H1 - - - - H1

v_CH_K2.rte - I1 I2 I1 I2 - I2 -
v_CH_N2.rte J1 J2 J2 - J2 - - J1

r_SOL_AWC.sol - - K1 - K1 - - -
r_SOL_K.sol - - - L1 L2 L2 L1 l1

v_ALPHA_BF.gw - - M1 - - - - M1

Karkheh
River Basin

(KRB)

r_CN2.mgt - A1 A2 - A2 - A1 -
v_CH_N2.rte B1 B1 B2 - B2 - - -

v_ALPHA_BF.gw C1 C1 C2 C3 C2 - C3 C3
r_SOL_BD.sol - - D1 - D1 - - D1

v_GW_REVAP.gw - - E1 - E1 E1 - -
v_GWQMN.gw - F1 F2 F1 F2 - F2 -

v_GW_DELAY.gw - - G1 G1 G1 - - -
r_OV_N.hru H1 - H2 - H2 H1 H2 -

3.3. Sensitivity of Water Resources Components to the Objective Functions

Next, we calculated the water resource components for parameters obtained by different objective
functions. To show this, we calculated the actual evapotranspiration (AET), soil water (SW), and water
yield (WYLD) (Figure 4). The long-term annual averages of these variables in SDB, based on the best
parameter values given by different objective functions, show significant differences. Furthermore,
it is seen that the regional water resources maps of AET, SW, and WYLD exhibit significant differences
in their spatial distributions (Figure 5).

 

Figure 4. Uncertainty ranges of annual average (a) actual evapotranspiration (mm·year−1); (b) soil
water (mm·year−1); and (c) water yield (mm·year−1) derived by different objective functions in Salman
Dam Basin (SDB).
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Figure 5. Distribution of annual average (top) actual evapotranspiration (mm·year−1), (middle) soil
water (mm·year−1), and water yield (mm·year−1) modeled by SWAT using different objective functions
in calibration in Salman Dam Basin (SDB).
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Faramarzi et al. [2] reported a range of 120–300 mm·year−1 in their national model for AET for
the same region. In the current study, the minimum and maximum values of the annual average AET
were determined by RSR and KGE as being 191 and 295 mm·year−1, respectively (Figure 4a). These
values are within the uncertainty ranges reported by Faramarzi et al. [2]. The results of SW and WYLD
in SDB (Figure 4b,c) also corresponded well with the values reported by Faramarzi et al. [2].

3.4. Sensitivity of Calibration Performance and Model Parameters to Optimization Algorithms Using NSE

In SDB, the maximum NSE values in all three optimization techniques were higher than 0.6;
hence, they all achieved satisfactory results (Table 8). The p-factor values verify that most of the
observed discharges were bracketed by the 95PPU of simulations by SUFI-2, followed by GLUE and
PSO during the calibration and validation periods. Using a threshold value of NSE ≥ 0.5, the SUFI-2
algorithm found 214 behavioral solutions in 480 simulations, while PSO and GLUE achieved 477 and
283 behavioral solutions in 1440 simulations, respectively. Although PSO and GLUE used a larger
number of simulations, the p-factor and d-factor of SUFI-2 show a better performance than GLUE,
followed by PSO. This would probably be expected as the latter two algorithms were not allowed to
fully exploit the parameter spaces due to the limited number of runs. However, in this study, we used
relatively good initial parameter values and uncertainty ranges, and all of the methods obtained quite
similar and satisfactory results.

Table 8. Performance of the optimization algorithms and the number of behavioral parameter ranges
for the calibration and/validation periods in Salman Dam Basin (SDB) and Karkheh River Basin (KRB).

Case
Study Performance

SUFI-2 GLUE PSO

Cal. Val. Cal. Val. Cal. Val.

SDB

P-factor 0.84 0.88 0.65 0.68 0.57 0.58
d-factor 1.22 1.83 0.93 1.44 0.61 0.88

Best NSE value 0.65 0.47 0.7 0.45 0.62 0.45
No. of behavioral parameter sets 214/480 - 283/1440 - 477/1440 -

KRB

P-factor 0.55 0.6 0.15 - - -
d-factor 0.67 0.78 0.22 - - -

Best NSE value 0.53 0.51 0.5 - 0.47 -
No. of behavioral parameter sets 103/480 - 3/2400 - 0/2400 -

In KRB, GLUE and PSO were not successful in calibrating the SWAT model based on the defined
conditions (i.e., initial parameter ranges, number of simulation runs, and behavioral threshold value),
as there were no behavioral parameter sets. The SUFI-2 algorithm achieved satisfactory simulations
of discharge, with NSE = 0.53 and NSE = 0.51 for the calibration and validation periods, respectively.
The p-factor was 55% and the d-factor was around 1, indicating a reasonable uncertainty in the calibration
and verification results (Table 8). More than 100 behavioral solutions in 480 simulations were found
with NSE ≥ 0.5, while only three behavioral solutions were found by GLUE and no behavioral solution
was found by PSO in the 2400 simulation (Table 8). Yang et al. [17] calibrated the Chaohe Basin in
China and showed that the application of SUFI-2 based on the Nash–Sutcliffe coefficient used the
smallest number of model runs to achieve similar prediction results to GLUE. Additionally, in the
current study, in both watersheds, the SUFI-2 algorithm used the smallest number of runs to achieve
similar results to GLUE and PSO. As already mentioned, GLUE and PSO in KRB were not allowed to
fully explore the parameter spaces, which is the reason for their relatively poor performances here.

Although all three algorithms underestimated the monthly discharge at SDB, they obtained
similarly good results based on the performance criteria given by Moriasi et al. [15] (Figure 6) and
(Table 9). The calibrated parameters estimated by the three algorithms have larger overlaps than those
by different objective functions (Figure 7). PSO provided the widest ranges of parameter uncertainty,
followed by GLUE and SUFI-2.
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Figure 6. Calibration (1990–2008) and validation (1977–1989) results of the monthly simulated
discharges using the three optimization algorithms (SUFI-2, GLUE, and PSO), with NSE as the objective
function in the T.Karzin station in Salman Dam Basin (SDB).

 

Figure 7. Uncertainty ranges of the parameters based on all three methods applied in Salman Dam
Basin (SDB). The points in each line show the best value of the parameters, r_ refers to a relative
change where the current values are multiplied by one plus a factor from the given parameter range,
and v_ refers to the substitution by a value from the given parameter range [24]).
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Table 9. Correlation coefficient among the best simulation of discharges obtained by all optimization
techniques in all stations at Salman Dam Basin (SDB).

Optimization Technique SUFI-2 GLUE PSO

SUFI-2 1.00 0.99 0.98
GLUE - 1.00 0.98
PSO - - 1.00

Based on multiple comparison tests, half of the calibrated parameter ranges obtained by SUFI-2,
GLUE, and PSO were significantly different in SDB. Between GLUE-PSO, SUFI2-GLUE, and SUFI2-PSO,
five, four, and four parameters out of 18 were found not to be significantly different from each other,
respectively. Overall, the sensitivity of the parameters to different objective functions was found to be
larger than the sensitivity to optimization algorithms. This is expected because objective functions
solve different problems, while calibration methods basically solve the same problem.

4. Conclusions

We investigated the sensitivity of parameters, model calibration performance, and water resource
components to different objective functions (R2, bR2, NSE, MNS, RSR, SSQR, KGE, and PBIAS) and
optimization algorithms (e.g., SUFI-2, GLUE, and PSO) using SWAT in two watersheds. The following
conclusions could be drawn:

1) In most cases, different objective functions with one optimization algorithm (in this case SUFI-2)
led to satisfactory calibration/validation results for river discharges in both case studies. However,
the calibrated parameters were significantly different in each case, leading to different water
resource estimates.

2) Different optimization algorithms with one objective function (in this case NSE) also produced
satisfactory calibration/validation results for river discharges in both case studies. However,
the calibrated parameters were significantly different in each case, resulting in significantly
different water resources estimates.

Finally, the important message of this work is that the calibration/validation performance may
not be sensitive to the choice of optimization algorithm and objective function, but the parameters
obtained may be significantly different. As parameters represent processes, the choice of calibration
algorithm and objective function may be critical in interpreting the model results in terms of important
watershed processes.
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Abstract: A large number of local and global databases for soil, land use, crops, and climate are
now available from different sources, which often differ, even when addressing the same spatial
and temporal resolutions. As the correct database is unknown, their impact on estimating water
resource components (WRC) has mostly been ignored. Here, we study the uncertainty stemming
from the use of multiple databases and their impacts on WRC estimates such as blue water and soil
water for the Karkheh River Basin (KRB) in Iran. Four climate databases and two land use maps
were used to build multiple configurations of the KRB model using the soil and water assessment
tool (SWAT), which were similarly calibrated against monthly river discharges. We classified the
configurations based on their calibration performances and estimated WRC for each one. The results
showed significant differences in WRC estimates, even in models of the same class i.e., with similar
performance after calibration. We concluded that a non-negligible level of uncertainty stems from the
availability of different sources of input data. As the use of any one database among several produces
questionable outputs, it is prudent for modelers to pay more attention to the selection of input data.

Keywords: input data uncertainty; multiple data sets; calibration; modeling; SWAT; SUFI-2

1. Introduction

The successful application of hydrological models depends on their performance during
calibration/validation and the degree of model uncertainty. However, the process of calibration
is difficult and subjective [1]. This is partly as a result of modeling errors stemming from different
sources such as: correctness and adequacy of the input data [2,3], the model’s lack of accounting of
relevant physical processes in the watershed [4,5], and also the experience of the modeler in manual
calibration [6,7].

In the past decade, there has been a major push towards data collection on for example climate,
soil, and land use by different agencies such as government ministries (at the local and national levels),
educational institutions, local companies, aeronautic industries (e.g., NASA (National Aeronautics
and Space Administration) and the University of East Anglia, UK) as well as global organizations such
as the FAO (Food and Agriculture Organization). These data, from a hydrological point of interest,
include elevation, climate, soil, land use, and river water quantity and quality. A challenging trend that
could impact model uncertainty is the availability of multiple datasets of varying and mostly unknown
quality for a given region. Selection of only one dataset from among many could have a significant
impact on the model calibration and output results. In general, neglecting the uncertainty stemming
from different sources of input data during calibration might produce outputs that are not appropriate
or representative of real situations [8]. In other words, inappropriate input data (e.g., climate data with
errors or incomplete values) can result in unrealistic model parameters [9], which will in turn produce
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unrealistic model outputs. Therefore, no matter how the model is used, it is always good to know how
it performs based on different datasets [10].

Several studies have attempted to explore the sensitivity of hydrological models to land use [11,12],
climate [9,13,14], or digital elevation models (DEM) [12,15]. Some studies conducted initial tests on
the available data prior to calibration, then chose the data that appeared to perform the best based on
certain model efficiency criteria [16,17]. Others studied the sensitivity of model outputs to precipitation
ensembles [18,19], and their effects on water resource components of non-calibrated models [14,15,20].
Although all these schemes are important and necessary, in all of them, the prediction uncertainty was
based on only one dataset. However, in this work, we are concerned with the uncertainty arising from
multiple datasets, where each may have its own uncertainties.

In this work, using the soil and water assessment tool (SWAT), we built eight different models
based on four different climate databases and two different land use maps. These models were
calibrated using nine measured discharge stations (hereafter referred to as outlets) at the Karkhe
River Basin (KRB) in Iran. We then calibrated these models and (i) compare their performances
and parameters; and (ii) compare their outputs in terms of water yield (WY) (total amount of water
entering the main channel in each time step), blue water (BW) (water yield plus deep aquifer discharge),
evapotranspiration (ET), and soil water content (SW).

2. Materials and Methods

2.1. Study Area

The Karkheh River Basin (KRB) is the third largest river basin in Iran (Figure 1). The basin is
a benchmark watershed studied in the CGIAR (Consultative Group on International Agricultural
Research) challenge program on water and food [21]. It is located in the western part of Iran with
a total area of about 50,800 km2 and stretches from the Zagros Mountains to the Hoor-Al-Azim
Swamp (a trans-boundary wetland located at the Iran–Iraq border). The amount of yearly precipitation
varies from 250 mm year−1 in the southern part up to 750 mm year−1 in the northern part of the
basin [22]. The elevation of KRB varies from 3 m a.s.l in the south to over 3000 m a.s.l in the north
(Figure 1). Nearly 60% of the basin is between 1000–2000 m a.s.l and 20% of the region is below 1000 m
a.s.l [23,24]. The highest peak in the region is 3645 m a.s.l. In the northern regions with high elevation,
the temperature decreases to below 0 and therefore snowmelt contributes to runoff. A study performed
by Saghafian et al. [25] showed that the snow water equivalent is about 17% of long-term annual
precipitation in the region.

2.2. Hydrological Simulation

SWAT [26] is a semi-distributed, time continuous watershed simulator operating on daily and
sub-daily time steps. The model has been developed to quantify the impact of land management
practices in large and complex watersheds coupling land- and routing-phases in the hydrological cycle.
Spatial parameterization of SWAT is performed through dividing the watershed into subbasins and
further into hydrological response units (HRU) by overlaying soil, landuse, and slope. Hydrological
processes include surface runoff, percolation, lateral flow, flow to shallow and deep aquifers, return
flow to streams, potential evapotranspiration, snow melt, and transmission loss. A more detailed
description of SWAT is given in Neitsch et al. [27]. In this study, we used ArcSWAT 2012.10.1 (Revision
591), where the ArcGIS version 10.3.1 environment was used for project development.
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Figure 1. Left: the Karkheh River Basin and its location on a map of Iran. Right: the figure shows
elevation, main river, and nine outlets (O1–O9) used in calibration.

2.3. Model Calibration and Parameterization

The SWAT model was calibrated using the SUFI-2 algorithm in the SWAT-CUP (SWAT calibration
uncertainty procedures) software [28]. SWAT-CUP can be used for sensitivity analysis, multi-site
calibration, and uncertainty analysis. SUFI-2 is an iterative algorithm. It maps all model uncertainties
on the parameter ranges. The overall uncertainty in the output is quantified by the 95% predictive
uncertainty (95PPU) calculated at the 2.5% and 97.5% levels of cumulative distribution of an output
variable obtained through Latin hypercube sampling. In this study, we used bR2 as the efficiency
criterion (g) for comparing the simulated and observed discharge values defined as [29]:

g =

{
|b|R2 f or |b| ≤ 1
|b|−1R2 f or |b| > 1

(1)

where R2 is the coefficient of determination and b is the slope of the regression line between the
simulated and measured data. For multiple outlets, the objective function Θ is formulated as:

Θ =
1

∑n
i=1 wi

n

∑
i=1

wigi (2)

where n is the number of discharge outlets; and wi is the weight for station i which is set to 1 for all
stations. The goodness-of-fit and the degree to which the calibrated model accounts for the uncertainty
are assessed by r-factor and p-factor. The p-factor is a fraction of measured data bracketed by the 95PPU
band and varies from 0 to 1, and the r-factor is the average width of the 95PPU band divided by the
standard deviation of the measured variable. A value around 1 is targeted for this parameter [28].
These two indices can be used to judge the strength of the calibration and prediction uncertainty.
A larger p-factor can be achieved at the expense of a larger r-factor. Hence, often a balance must
be reached between the two. When acceptable values of r-factor and p-factor are reached, then the
parameter ranges are considered to be the calibrated parameter ranges. Abbaspour et al. [17] mentioned
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that p-factors larger than 0.7 and r-factors smaller than 1.5 are adequate. However, this also depends on
the scale of the project and the adequacy of the input. The literature shows that a p-factor larger than
0.5 is still acceptable [16,30].

2.4. Data and Model Setup

For the study area, a DEM map was obtained from the Shuttle Radar Topography Mission with
a spatial resolution of 90 m [23] (Figure 1). The soil map was obtained from the global soil map of
the Food and Agricultural Organization (FAO) of the United Nations, which provides data for 5000
soil types comprising two layers (0–30 cm and 30–100 cm depth) at the spatial resolution of 10 km.
Of these, 17 soil types were used in our study area. Other soil variables such as hydralic conductivity
and bulk density were obtained from the works of Schuol et al. [31]. Four sets of daily climate data
(C1, C2, C3, C4) and two landuse maps (L1, L2) were obtained from different sources as described in
Table 1.

Table 1. Description of climate and land use data for the Karkheh River Basin (KRB).

Data Sources Description

D
ai

ly
cl

im
at

e
da

ta
(1

97
7–

20
04

)

C1 Iranian Ministry of Energy database; local observation
data based on ground level measurement [32]

Variables used are daily
precipitation, maximum
and minimum
temperature

C2
Iranian Meteorological Organization database; local
observation data based on ground level measurement
(http://www.irimo.ir/eng/index.php)

C3

Modeling grid cell centroids data obtained from
GFDL-ESM2M (Geophysical Fluid Dynamics
Laboratory of national oceanic and atmospheric
administration—Earth System Model) General
Circulation Model (GCM) climate model with
0.5◦ × 0.5◦ resolution—Global level [33]

C4
Merged from selected stations in C1 and C2 based on
their performance in discharge simulation—Details
illustrated in Section 3.1 and Figure 2

La
nd

us
e

L1
United States Geological Survey (USGS) Global Land
Cover Characterization (GLCC) database [34] with
90m resolution for year 1997

Classification according
to Figure 2e and Table 2

L2

Created from Indian Remote Sensing-Linear P6
(IRS-P6) satellite with Linear Imaging and Self
Scanning (LISS-IV) sensor, IRS-P5 satellite with
panchromatic cameras, Enhanced Thematic
Mapper+2001 (ETM+2001) Landsat, and 3300 field
sampling points [35] with 90m resolution for year
2009_ENREF_34

Classification according
to Figure 2f and Table 2

C1, C2, and C4 are based on observation data and C3 is from a GCM (General Circulation Model)
model (Figure 2). For C3, the daily rainfall was bias corrected using the nearest locally measured
stations from C1 and C2. We used a simple ratio method, in which for each month, we divided the
average GCM data by the observed data and then divided the daily GCM data by this factor to obtain
the daily rainfall data.

The locations and the numbers of climate stations (or grids) within the study region differ from one
dataset to the other (Figure 2a–d). The seasonal precipitation depicts some spatial difference among the
four databases (Figure S1) mostly in the upper parts of KRB compared to the lower regions. C1 shows
the lowest amount of winter precipitation in the western KRB compared to the other databases where
the amount of precipitation inceases to above 80 mm month−1. The spring precipitation shows
approximately similar distribution in all databases except in C3, where slightly high precipitation
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occurs in northern KRB (Figure S1). Less differences are noticed in the summer and fall precipitations.
Despite approximately similar spatial distribution for the seasonal percipitation, the yearly temporal
variations are not the same for all four sources of climate data (Figure S2). For example, relatively high
precipitation is noticed during 2000–2004, as well as in year 1987 for C3. The average temperature
shows similar values in four sources in the southern KRB in all seasons with the exception of summer
temperatures in C3 (Figure S3). In the upper KRB, C3 shows slightly higher temperatures mostly in
the western side (Figure S3).

Figure 2. (a–d) The location of climate station in the four sources of climate data C1, C2, C3, and C4.
(e,f) The land use classifications in the L1 and L2 maps.

L1 and L2 were produced with two different approaches in two different years, 2009 and 1997,
respectively. L2 was produced locally for the region of study, whereas L1 was obtained from the USGS
(United States Geological Survey) global land use map. Table 2 lists different classes of each map
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corresponding to the SWAT landuse database and the percentages of each land use type. For example,
L1 has 25.8% forest lands, while L2 has only 0.2%. On the other hand, L2 has 32.7% shrubland, which is
only 1.4% in L1. Both maps show approximately the same percentage of crop and irrigated crop lands,
but with different spatial distributions.

Table 2. Percentage of area in each category of two land use maps after being fed into Soil and Water
Assessment Tool (SWAT).

Land Use Categories L1 (%) L2 (%)

All forest types 25.8 0.2
Grassland 18.3 20.5
Crop land 19.2 22.4

Irrigated crop land 23.1 23.5
Barren and sparsely vegetated 0.0 0.5

Urban residential medium density 8.8 0.1
Shrub land 1.4 32.7

Savanna 2.0 0.1
Water bodies 1.4 0.0

The four climate databases and two land use maps were designated as C1L1, C2L1, C3L1,
C4L1, C1L2, C2L2, C3L2 and C4L2, from which eight SWAT models (i.e., eight configurations) were
constructed. Considering 8000 ha as the minimum drainage area, a total of 333 subbasins were created
for the study area. We used three slope classes (0–2%; 2–4%; and 4–99.99%). The threshold for land use,
soil, and slope were all set to 15%, which produced 1520 HRUs for L1 and 1450 HRUs for L2. Potential
evapotranspiration was calculated using the Hargreaves method.

For the calibration of all configurations, we used monthly values for the nine outlets (O1–O9
in Figure 1) recorded by IWPCO (Iran Water and Power Resources Development Company, Tehran,
Iran) [36]. We calibrated the models using parameters sensitive to discharge, selected based on the
initial model simulation, the guidelines suggested by Abbaspour et al. [17], and the experience gained
from previous work in the same river basin [37,38], as explained in Table 3. The snow parameter i.e.,
“maximum snow melt rate” was set to 5 mm C−1 day−1 based on the work of Vaghefi et al. [37] in all
eight configurations.

Table 3. List of parameters included in the calibration of the eight different configurations and
their description.

Parameter Definition Initial Values

r_CN2.mgt SCS (Soil Conservation Service) runoff curve number for
moisture condition II Spatially variable

r_SOL_AWC.sol Soil available water storage capacity
(mm H2O/mm soil) Spatially variable

v_ESCO.hru Soil evaporation compensation factor 0.95
r_OV_N.hru Manning’s n value for overland flow Spatially variable

v_ALPHA_BF.gw Base flow alpha factor (days) 0.048
v_GW_DELAY.gw Groundwater delay time (days) 31
v_GW_REVAP.gw Capillary flow from groundwater into root zone 0.02
r_REVAPMN.gw Threshold depth of water in the shallow aquifer (mm) 750

v_GWQMN.gw Threshold depth of water in the shallow aquifer
required for return flow to occur (mm) 1000

All analyses were conducted for the years 1977–2004 considering the first three years as a warm-up
period, 1988–2004 as calibration, and 1980–1987 as validation periods. We calibrated each model
using five iterations with 480 simulations in each iteration. After an iteration, the objective function,
the 95PPU band for all nine outlets, and the new ranges of parameters were calculated [17]. The best
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parameter of the current iteration was used to calculate the new range of parameters and modify the
previous ranges. The procedure continued until satisfactory p-factor and r-factor values were reached
or no further improvements were seen in the objective function.

2.5. Statistical Analysis: Multiple Comparison Test

We used the non-parametric Kruskal–Wallis test to compare if the bR2 values in the nine outlets
obtained by different models significantly differed from each other or not. The test is based on
an analysis of variance using the ranks of the data values, not the data values themselves. The p-value is
the criteria used to estimate probability of rejecting the null hypothesis (H0: all models are statistically
similar) of a study when that hypothesis is true. The conventional value for the p-value is set at 0.05.
The threshold shows that any p-value lower than 0.05 results in a statistically significant difference,
while values above 0.05 present statistically insignificant differences. More detail is given in Zar [39].

2.6. Analytical Framework

To analyze the differences in the performances of the eight model configurations, we used the
following general approach:

(1) Run each configuration before calibration and calculate the model efficiency criterion, bR2, [28] for
the nine discharge outlets. Examining model performance based on default parameters (Table 3)
is important in determining how the model should be calibrated and which parameters should
be adjusted [17]. Harmel et al. [40] also defined “initial evaluation of model performance” as
the first step to make the best judgment to guide model refinement. If important processes
or key input information are neglected, then the model should not be calibrated, because
wrong and meaningless parameters will be obtained. Furthermore, comparison of the pre-
and post-calibrated parameter ranges (uncertainties) indicates the information content of the
variable(s) used to calibrate the model. If we achieve a large reduction in the parameter
uncertainties, then the variable(s) used to calibrate the model (as they appear in the objective
function) have high information content.

(2) Calibrate each configuration in the same way against the monthly observed river discharges.
Then compare the efficiency criteria from after calibration with those from before.

(3) Perform a multiple comparison significance test [39] on non-calibrated and calibrated
configurations to identify configurations that are significantly different or similar to each other in
terms of bR2 efficiency criteria and classify them into three classes (Class1 with high performance,
Class2 with medium performance, Class3 with low performance). The selection of the number
of classes and the classification were based on the null hypothesis and pair-wise comparison of
the configurations. We started with C1L1 and made a pairwise comparison with the remaining
seven models. Those that were significantly different from C1L1 were taken out of this class.
Now, all other members of C1L1 except C1L1 were compared with each other pairwise. The set
that was similar with C1L1, but was different from the others was also taken out of this class.
We continued this until all members of a group were not significantly different in a pair-wise
comparison. We repeated this process for the configurations that were not in the first class.

(4) Calculate and compare the annual WY, BW, SW, and ET for each model using calibrated parameter
ranges obtained in the 480 simulations at the sub-basin level. The components were then
aggregated to the entire watershed level using the weighted area average method.

(5) Calculate and quantify the uncertainties of the water resource components WY, BW, SW, and ET
resulting from the different configurations using the coefficient of variation (%CV).
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3. Results and Discussion

3.1. Model Performance and Parameters

Initial evaluation of the different configurations based on the initial parameter values (Table 3)
showed significant differences in their performance compared to each other (Figure 3a). The efficiency
criteria (bR2) of all the configurations except C3L1 and C3L2 indicated that they could be improved by
calibration. Looking at the hydrographs and the bR2 values of the nine outlets and also at the climate
stations that furnished the rainfall in their respective sub-basins, we noticed that C2L1 had higher bR2

in outlets O1–O3 (0.23, 0.11, and 0.31 respectively) than C1L1 (0.12, 0.08, and 0.15 respectively). We saw
the same patterns when we compared C1L2 with C2L2. We therefore constructed C4 (Figure 2d) by
combining the better performing climate stations from C1 and C2 (Figure 2d). To statistically compare
the eight configurations, a significance test was performed and the configurations were classified
into Class1, Class2, and Class3 based on the average bR2 of nine outlets. For the pre-calibration runs,
C4L1 and C4L2 fell in Class1, C3L1 and C3L2 in Class3, and the other four in Class2 (Figure 3b).
While bR2 was used to calculate the objective function and model classification, we also computed the
average Nash–Sutcliffe efficiency (NS) values of nine outlets [41] as a supplemental reference for the
evaluation of all configurations which also showed relatively low values (Table 4).

Figure 3. (a) The performance of the eight configurations in simulating discharge before calibration
(single model run). Red lines show the average bR2 obtained from the nine outlets and the boxes
show the 25th and 75th percentiles and the whiskers show the maximum and minimum. (b) The three
performance classes obtained from the multiple comparison significance test before calibration. The dots
show the average bR2 and the ranges indicate the standard error.

After calibration, the eight configurations showed significant improvement as indicated by bR2

(Figure 4a) compared to pre-calibration results (Figure 3a). Similar to pre-calibration, configurations
of the same climate datasets in the two different land use maps fell in the same class after calibration
(Figure 4b). This indicates the insensitivity of land use to discharge in our case, which also corroborates
the conclusion of Yen et al. [11] who found the same level of performance with different land uses after
calibration. In our region, it could also mean that the land use maps were not too different from each
other for most classes except shrub land and forest, which comprised about 30% of KRB, and urban
areas (with about 8.5%), and that their influence on discharge were not significant.

Overall, C1L1 and C1L2 showed the best performance. One can see that C1 with the fewest number
of climate stations (Figure 2a) performed better in combination with both land uses. SWAT assigns
to each sub-basin climate data from the nearest station. The C1 climate stations better represented
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the entire basin albeit with fewer stations (Figures S1 and S2). Hence, in this example, the number of
climate stations did not seem to have as important impact as the quality of the data in them.

C3L1 and C3L2 did not have satisfactory performance before and after calibration. This indicates
the poor quality of the C3 climate database, which was generated with the bias-corrected GFDL-ESM2M
(Geophysical Fluid Dynamics Laboratory of national oceanic and atmospheric administration—Earth
System Model) GCM model on 0.5◦ grid resolution for KRB. This suggests that the measured climate
data at a river basin level, which usually suffer from missing values and other quality problems,
still performed better for this region than the estimated global gridded data. Looking at the spatial
distribution of seasonal precipitation and temperature (Figures S1 and S3), one could see that there is
no significant difference among different climate datasets, however the temporal variability (yearly
precipitation) is noticeable (Figure S2). Many studies have assessed the impacts of gridded data for
simulating runoff [14,42,43]. The results showed that their quality vary significantly from one region
to the other. For example, Vu et al. [42] showed poor performance of the PERSIANN (precipitation
estimation from remotely sensed information using artificial neural networks) and TRMM (tropical
rainfall measuring mission) rainfall data compared to the station data.

Figure 4. (a) The performance of the eight configurations in simulating discharge based on the best
simulation after calibration. The red lines show the average bR2 obtained from the nine outlets,
the boxes show the 25th and 75th percentiles and the whiskers show the maximum and minimum.
(b) The three performance classes obtained by the multiple comparison significance test after calibration.
The dots show the average bR2 values and the ranges indicate the standard error.

C4L1 and C4L2, which performed best before calibration, did not improve as significantly as C1L1
and C1L2 after calibration and fell in Class2. This indicates that selection of the best performing
climate stations based on checking their performance prior to calibration might not work after
calibration. We noticed that the initial performance of O1–O3 was low in C1L1 and C1L2 compared
to C2L1 and C2L2. However, apparently this was related to the inaccuracy of the initial parameter
values. After parameter adjustment, they outperformed other configurations. The average NS values
of the nine outlets for calibrated configurations in Class1 are above 0.60, indicating good model
performance (Figure 4b). Configuration models in Class2 have slightly lower NS, especially in C2L2.
The reason is NS varies between −∞ to 1, hence, one outlet with rather lower NS can lower the
average NS of the basin. Configurations C3L1 and C3L2 had negative NS values, indicating very poor
model performance.

The discharge hydrographs of the different configurations are shown in Figure 5 for the outlet O7
as an example, with the other outlets shown in the supplementary material (Figures S4–S11). As shown,
more than 50% of the observed discharges are within the 95PPU bands depicted with green shades in
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all configurations, except C3L1 and C3L2, where significant overestimations can be noticed, especially
after 2000. A significant decrease is recorded in the observed values in the region at the end of the
period due to severe droughts occurring after 2000 [44]. This can also be noticed in the temporal
variation of rainfall for these datasets (Figure S2). All configurations except C3L1 and C3L2 could
capture such extreme situations.

The p-factor values for the calibration and validation periods were larger than 0.50 for
configurations of Class1 and Class2, indicating that more than 50% of the observed data were bracketed
by the 95PPU bands (Table 4). For these two classes, the r-factor was smaller than 1.5 during calibration
and validation, indicating reasonable prediction uncertainties.

Figure 5. Comparison of simulated and observed discharge values in the O7 outlet (Figure 1) during
the calibration and validation periods. The green shaded region is the 95PPU band. The best simulation
(i.e., the simulation with the highest bR2) is shown by the blue line.

Table 4. The performance of the eight configurations during the calibration and validation periods.

Configuration
Calibration Period 1988–2004 Validation Period 1980–1987

NS p-factor r-factor NS p-factor r-factor

C1L1 (Class1) 0.60 0.68 1.19 0.61 0.59 1.32
C2L1 (Class2) 0.51 0.54 1.23 0.50 0.52 1.39
C3L1 (Class3) −3.5 0.41 1.77 −0.5 0.25 1.05
C4L1 (Class2) 0.49 0.64 1.12 0.51 0.58 1.36
C1L2 (Class1) 0.62 0.71 1.37 0.60 0.67 1.50
C2L2 (Class2) 0.46 0.54 1.47 0.48 0.50 1.27
C3L2 (Class3) −1.69 0.37 0.60 −1.75 0.38 1.32
C4L2 (Class2) 0.51 0.65 1.15 0.53 0.60 1.27
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After calibration, each parameter attained a different range (Figure 6). Yang et al. [45] showed
that different optimization algorithms lead to differently-calibrated parameter ranges. Here, it is seen
that different existing input datasets also lead to differently-calibrated parameter ranges for the same
region. This highlights the problem of the “conditionality” of calibrated models which is caused by
the multimodality of the response surface of the objective function as discussed by Abbaspour [46].
Overall, the ranges of CN2 are relatively similar in all configurations (except C1L2). Similar patterns
for CN2 were found in the study of Strauch et al. [19] in the Pipiripau River in Central Brazil where
the fitted values of CN2 were relatively similar for all rainfall input models.

Figure 6. The initial (vertical lines) and final ranges (grey bars) of the parameters considered in the
calibration. The dots show the best parameter sets based on the best value of the objective function.
“v_” indicates an absolute change where the initial parameter value is replaced by another value. “r_”
indicates a relative change where the initial parameters are multiplied by (1 + a given value).

The C1L1 and C1L2 configurations have statistically the same calibration results. However, it is
important to note that the CN2 of these configurations have different ranges from each other, indicative
of different hydrological processes in the region which are explained by the parameters. For example,
while the “best” relative value of CN2 (e.g., the value of CN2 where the objective function is maximum)
for C1L2 was −0.25, it was 0.05 for C1L1. The actual CN2 values for sub-basin #35 (obtained from
average CN2 of all HRU in this sub-basin) as an example were 53 and 78, respectively. The latter
represents a surface-runoff-dominated system, while the former is an infiltration-dominated system.
Generally, non-uniqueness in the domain of parameters is an important problem in the calibration
of distributed models [47]. This can partly be resolved by better understanding of the watershed
hydrology leading to constraining ranges of parameters in the objective function.

Other parameters showed larger variations among different configurations in terms of both ranges
and best fitted values (Figure 6). For example, significant variability is found among the ranges and
best fitted values of GW_REVAP (groundwater parameters), indicating that different configurations
attempt to fit differently. Our objective function is based on comparing observed and simulated
discharge values and contains no measured variables that directly explain the status of groundwater
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processes. Therefore, a high degree of uncertainty remained in the model relative to groundwater
parameters. Overall, we found that there is a high degree of parameter uncertainty, which would not
be apparent if only a single dataset was used. Use of different data sources adds a new dimension
to the existing category of “input data uncertainty” which mostly stem from potential errors in data
collection or incomplete data.

3.2. Estimation of Water Resource Variables

The water resource components simulated with the calibrated model configurations show quite
different behaviors for WY, BW, SW, and ET (Figure 7a–d) due to differences in the parameters of each
configuration. Large ranges of values were obtained for different variables. For example, WY varies
between 80–270 mm year−1 and SW varies between 30–58 mm year−1. We do not have observed
records for variables such as SW and ET to judge their reliability, but we can comment on their
differences in different configurations. For example, C1L1 from Class1 and C3L1 from Class3 have
approximately the same SW values, whereas SW based on C4L1 from Class1 is more similar to the
models of Class2.

BW and WY had similar patterns of classification i.e., models with similar WY also showed similar
BW. This similarity between BW and WY is related to the “deep aquifer percolation fraction (DAP)”
parameter assumed to be 5% for arid regions like KRB. BW is obtained from the summation of WY and
DAP. In this paper, DAP was a constant fraction which was significantly smaller than WY. Therefore,
BW and WY showed similar patterns. ET is mostly influenced by temperature. Therefore, it shows
similar values in models of the same climate datasets.

Another observation is that in all models and for all water resource components except SW,
land use seems to have no significant impact e.g., C4L1 and C4L2 produced approximately the same
results for WY, BW, and ET. Likewise, WY and BW of C1L1 and C2L1 were slightly smaller than C1L2
and C2L2, respectively, and ET of C1L1 and C2L were slightly larger than C2L1 and C2L2. Models
of Class2 also showed similar results with respect to different land uses, indicating that in this work,
land use is not an important factor in water resource components, with the exception of the soil water.
This might be partially due to approximately similar percentage of areas allocated to each land use
class in the L1 and L2 maps for most classes, except shrub land and forest, which were less than 30%
different (Table 2), resulting in variability mostly in SW. Besides, while the spatial distribution of each
class indicates some differences (Figure 2e,f), the percentage remained similar.

Figure 7. Range of four water resources components; (a) WY = water yield; (b) BW = blue water;
(c) SW = soil water; (d) ET = evapotranspiration obtained from eight calibrated configurations during
the studied period. The three colors identify configurations with high (Class1: green), medium (Class2:
blue), and low (Class3: red) performance in simulating discharge values as displayed in Figure 4b.
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3.3. Uncertainty in Water Resource Variables

Next, we investigated the uncertainty in the water resource components by calculating the
coefficient of variation (%CV) using outputs from the eight calibrated configurations in 480 simulations.
As illustrated in Figure 8, the uncertainty due to multiple input datasets is larger for ET and SW than
for BW and WY. The median value of CV is 45% for SW and approximately 46% for ET. For WY and
BW, this is about 31.5% and 32%, respectively. WY is directly related to the river discharge used in
the objective function definition, but SW and ET are not directly adjusted based on observed data,
therefore their estimates contain larger uncertainties.

Figure 8. Comparison of the uncertainty in the water resource components stemming from the use of
eight different input datasets. The boxplot shows the 25th and 75th percentiles of coefficient of variation
(%CV) obtained from 480 simulations and the whiskers show the maximum and minimum %CV.

4. Conclusions

Different input datasets usually exist for modeling the hydrology of a watershed. As analysts
usually consider only one database in their analysis, the uncertainty due to multiple existing databases
goes unnoticed. Our findings here are based on model configurations built with different climate data
and land use maps and calibrated against nine outlets using bR2 as the objective function. All calibrated
models were compared to each other in terms of simulating different components of water resources.
The following points were highlighted in this research:

(i) Multiple model configurations built for a region with datasets coming from different sources produce
significantly different parameter sets after calibration, albeit with similar calibration results.

(ii) Subsequently, water resource components are significantly different for different configurations,
resulting in large model output uncertainties.

(iii) Discharge prediction seems to be less sensitive to different land uses, which is the same conclusion
made by Yen et al. [11]. Additionally, the present study pointed to the impact of both land use
and climate data on different components of water resources, such as SW and ET.

(iv) The uncertainty is larger for SW and ET compared to WY. Decreasing uncertainty for these
components relies on observed records data.

Our findings, therefore, highlight a significant level of uncertainty in modeling results stemming
from uncertain data inputs (used in models) for a region. Ajami et al. [8] state that neglecting
different aspects of uncertainty during the calibration of hydrological models may result in inconsistent
outputs. We hence emphasize that it may be prudent for modelers to pay more attention to the
existence of uncertainty from multiple sources of data (especially climate data) in combination with
other sources of uncertainty such as spatial data resolution [48], objective functions, or optimization
algorithms [38]. We also suggest that the calibration of models against more observed variables such
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as evapotranspiration or soil moisture may help to select better models. It is worthy to note that local
decision makers and engineers should compromise between the expected accuracy of the model and
the time and resources invested in data collection and assimilation.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/9/9/709/s1.
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Abstract: Studies using Drought Hazard Indices (DHIs) have been performed at various scales, but
few studies associated DHIs of different drought types with climate change scenarios. To highlight the
regional differences in droughts at meteorological, hydrological, and agricultural levels, we utilized
historic and future DHIs derived from the Standardized Precipitation Index (SPI), Standardized
Runoff Index (SRI), and Standardized Soil Water Index (SSWI), respectively. To calculate SPI, SRI, and
SSWI, we used a calibrated Soil and Water Assessment Tool (SWAT) for the Karkheh River Basin (KRB)
in Iran. Five bias-corrected Global Circulation Models (GCMs) under two Intergovernmental Panel
on Climate Change (IPCC) scenarios projected future climate. For each drought type, we aggregated
drought severity and occurrence probability rate of each index into a unique DHI. Five historic
droughts were identified with different characteristics in each type. Future projections indicated a
higher probability of severe and extreme drought intensities for all three types. The duration and
frequency of droughts were predicted to decrease in precipitation-based SPI. However, due to the
impact of rising temperature, the duration and frequency of SRI and SSWI were predicted to intensify.
The DHI maps of KRB illustrated the highest agricultural drought exposures. Our analyses provide a
comprehensive way to monitor multilevel droughts complementing the existing approaches.

Keywords: SWAT; drought hazard index; future drought projection

1. Introduction

Drought is a natural hazard with adverse impacts on water resources, agriculture, and the
environment [1–3]. In the literature, it is defined as a recurring prolonged dry period, which affects
different components of the hydrological process [4]. Drought is a complex phenomenon that is
difficult to quantify. This is because its characterization relies on different components of the water
cycle; drought impacts evolve over time, so it is time-dependent. Climate change is likely to shift the
patterns of drought and exacerbate the frequency and intensity of drought events in the foreseeable
future. Therefore, a more comprehensive insight to drought should simultaneously take into account:
(1) different components of the hydrological cycle and their interactions; (2) drought features in
spatial and temporal domains using aggregation methods; and (3) future changes of components
under projected climate change scenarios. Existing literatures mostly look at only one or two of
the abovementioned aspects. Despite its significance for effective regional drought management,
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considering all perspectives together using a standardized procedure has not been well documented
so far.

Depending on the scope, drought has been classified into meteorological, agricultural,
hydrological, and socioeconomic categories [5,6]. The first three types of droughts reflect the physical
characteristics of a drought phenomenon (namely physical drought). Socioeconomic drought is
concerned with the water shortfall whose impact ripples through socioeconomic systems [7]. Although
all types of droughts originate from a deficiency of precipitation [5], hydrological drought is usually
out of phase with or lags behind the occurrence of a meteorological drought [8]. This is mainly because
it takes some time before precipitation shortfall emerges in different subsurface components of the
hydrological system, such as soil moisture, groundwater, and streams [8].

In order to alleviate the expected impacts of droughts, decision makers need to monitor drought
using timely and reliable indices on both spatial and temporal scales. A common measurement
tool used for this purpose is drought indices, which are believed to be more functional than raw
precipitation or runoff variables for evaluating spatial and temporal characteristics of drought [9].
The Standardized Precipitation Index (SPI) [10] is broadly applied to monitor meteorological
droughts [11–13]. Meteorological drought indices have been evaluated together with hydrological and
agricultural indices to gain a broader understanding of drought propagation through the hydrological
cycle (here called multilevel drought assessment). Hisdal et al. [14] assessed meteorological
and hydrological droughts in Denmark on a regional scale and found that hydrological drought
is less frequent, more persistent, and less homogeneous compared to meteorological droughts.
Liu et al. [15] characterized drought propagation in groundwater systems using a standardized
groundwater level index and SPI, showing that groundwater drought lasts longer with higher
intensity. Tallaksen et al. [16] explored drought propagation in hydrology by looking at precipitation,
groundwater recharge, hydraulic head, and river discharge in a groundwater-fed catchment in UK.
Tadesse et al. [17], Vidal et al. [1], Tokarczyk et al. [18], and Duan et al. [19] found that drought impacts
can be seen differently in each type, and more importantly, in the different affected regions. As such,
their findings explain the reason for developing a comprehensive drought monitoring model for
different types of droughts to give decision-makers detailed information on drought characteristics.

Drought has been inevitably interwoven with climate change impacts. Central to this concern
is whether drought will become more frequent, severe, and widespread in the coming decades or
not [20–22]. Water resource management to mitigate drought risks relies on understanding future
characteristics such as the degree of severity, probability of occurrence, frequency, and duration of
expected droughts [23–25]. Many researchers have projected occurrences of droughts under future
climate scenarios by using Global Circulation Models (GCMs) [2]. Lee et al. [26] analyzed climate
change impacts on different characteristics of drought in the Seoul region using four GCMs and
reported a decrease in mild drought frequency, but an increase in the frequency of severe and extreme
droughts._ENREF_18 Leng et al. [27] assessed the climate change impact on biophysical droughts using
daily climate projections under five GCMs with the RCP8.5 (Representative Concentration Pathways)
scenario in China. Their findings confirmed that meteorological, agricultural, and hydrological
droughts will variably occur on different temporal and spatial scales. Liu et al. [28] used SPI,
Standardized Runoff Index (SRI), and Palmer Drought Severity Index (PDSI) to construct historical
and future projection of drought patterns for the Blue River Basin in Oklahoma. Their results predicted
more drought events in the future (2010–2099). They also recommended PDSI and SRI as the most
functional indices for drought risk assessment.

Drought hazard is usually defined as an aggregation of the frequency, intensity, duration, and
spatial extent of occurrences [29]. Despite the extensive research on multilevel drought identification
using drought indices under historic and future conditions, fewer studies have focused on associating
climate change scenarios with composite drought hazard indices of different drought types. This level
of analysis has received even less attention in Iran’s river basins with semi-arid climate. To fulfill this
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research demand, we examine the historic and future drought hazard using an ensemble of climate
scenarios in the Karkheh River Basin (KRB) of Iran.

KRB is one of the nine watersheds studied in the CGIAR (Consultative Group on International
Agricultural Research) Challenge Program on Water and Food (CPWF) [30]. The basin is one of the
most agriculturally important areas in Iran, which produces about 10% of the country’s wheat [31].
It is also an example of a dryland system with a wide spectrum of bio-physical and socio-economic
conditions as well as complex agricultural problems. While the properties of drylands around the
world can widely vary [32,33], lessons learned from the drought assessment of such a complex system
can be useful in other catchments in terms of methodology and providing detailed insights on key
elements required for assessing different aspects of drought. The standardized and holistic drought
hazard assessment implemented in this study can be conducted in other basins to identify regions
exposed to drought.

Most of the research studies conducted in KRB have concentrated on water resource
allocation [31,34], variability assessment in one or two components of water cycle [35–37], historic
meteorological and agricultural droughts [38], or future projection in one drought type [39]. None of
these research studies have looked at drought hazard indices of three different types. There is also an
apparent lack of implementation of hazard analyses considering historic and future perspectives. Such
detailed analyses are an essential step toward evaluating drought vulnerability of agricultural and
water resources sectors and help policymakers recognize threats to different sectors.

The current study was carried out in order to analyze characteristics and relationships among
meteorological, agricultural, and hydrological droughts using Drought Hazard Index (DHI) derived
from a Soil and Water Assessment Tool (SWAT) hydrologic model. In the sections that follow,
we analyze drought characteristics such as severity, frequency, and duration using SPI, SRI, and
Standardized Soil Water Index (SSWI) for historical (1980–2012) and near future (2020–2052) periods to
identify drought hotspots in the region.

2. Materials and Methods

2.1. Study Area

KRB covers an area of 51,000 km2. It is the third largest basin in Iran and the food basket of the
country [40]. The basin is divided into three catchments: Northern Karkheh (NKRB), Central Karkheh
(CKRB), and Southern Karkheh (SKRB) (Figure 1). The climate of KRB is mainly semi-arid with annual
precipitation ranging from 150 mm in SKRB to 750 mm in NKRB [40]. A number of dams were built or
have been proposed for construction for irrigation and hydropower purposes [41]. The Karkheh dam
located in the most downstream part of the basin, was constructed in 2002 to provide irrigation to the
dry and lowland plains and is the largest reservoir in the basin (Figure 1) [41]. The Seymareh dam, the
second most notably multipurpose dam, is under construction and is expected to be completed by
2025 [41].

KRB uses a rainfed production system in areas upstream of the Karkheh dam. The upper basin
is dominated by pasture and scattered and sparse forest, which has been converted into rainfed
and partially irrigated agriculture [41]. In recent years, groundwater has been excessively used for
irrigation purposes. In contrast, SKRB is mostly under an irrigated production system (71% irrigated
and 29% rainfed), but the amount of precipitation does not fulfill crop water requirements [30,41].
Wheat is the dominant crop, especially in rainfed condition. Other cultivated crops are chickpea, barley,
and maize [30].
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Figure 1. The Karkheh River Basin (KRB) and the three major catchments (Northern Karkheh (NKRB),
Central Karkheh (CKRB), and Southern Karkheh (SKRB)). The figure shows the main river, Karkheh
dam, 31 climate stations, and 9 observed discharge outlets used for calibration.

2.2. Agro-Hydrological Simulation and Model Calibration

SWAT [42] is a process-based, semi-distributed, continuous-time model, used to estimate water
budget components in many studies. Hydrologic modeling in SWAT is based on a soil water
balance equation. The primary components estimated in the model include surface water flow,
evapotranspiration, soil infiltration, and percolation to shallow and deep aquifers. The model
estimates surface water flow using the modified SCS-CN (Soil Conservation Service-Curve Number)
method, which estimates the amount of infiltration and runoff from rainfall excess based on land
use, hydrologic soil group, and antecedent moisture condition. According to the SCS-CN method,
the total rainfall is divided into initial abstraction, continuous abstraction, and excess rainfall [43].
Daily precipitation, land use characteristics, and soil profile features are used as input for calculations.
A detailed description of all hydrological processes in the model is provided by Neitsch et al. [44].

The Sequential Uncertainty Fitting Procedure (SUFI-2) is used for model calibration [45]. SUFI-2
quantifies prediction uncertainty using a 95% prediction uncertainty (95PPU) band calculated by
expressing a range for parameters to map all sources of uncertainties. Two indices are used to measure
the goodness-of-fit of the calibrated model: p-factor and r-factor [46]. The p-factor is the percentage of
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measured data bracketed by the 95PPU band. It varies between 0 and 1, where 1 indicates an ideal case,
meaning that 100% of the measured data are inside the 95PPU band. The r-factor is the relative width
of the uncertainty band divided by the standard deviation of the observed variable. More details are
given by Abbaspour et al. [47]. The bR2 criterion (the weighted version of coefficient of determination
R2) [46] and the Nash Sutcliffe (NS) [48] were used as objective functions to measure the degree of
match between simulated and observed discharge values.

2.3. Model Set-Up and Data

For the study area, a digital elevation map (DEM) was obtained from NASA’s Shuttle Radar
Topography Mission (SRTM) with a spatial resolution of 90 m [49]. A soil map, containing information
such as maximum rooting depth of soil profile, soil porosity, and bulk density, was obtained from the
global soil map of Food and Agricultural Organization (FAO). The database provided over 5000 soil
types from which 17 were in our study area. Each soil type comprised two layers (0–30 and 30–100 cm)
at the spatial resolution of 10 km and other soil variables calculated by Schuol et al. [50]. Daily climate
data including precipitation and temperature at 31 stations (Figure 1) were obtained from WATCH
(Water and Global Change) Forcing Data methodology applied to ERA-Interim (a re-analysis of
meteorological observations produced by the European Centre for Medium-Range Weather Forecasts)
data-Climate Research Unit (WFDEI-CRU) [51] at 0.5◦ × 0.5◦ resolution for 1980–2012. The land use
map was created from the Indian Remote Sensing-Linear P6 (IRS-P6) satellite with Linear Imaging
and Self Scanning (LISS-IV) sensor, IRS-P5 satellite with panchromatic cameras, Enhanced Thematic
Mapper+2001 (ETM+2001) Landsat, and from 3300 field sampling points collected by IWPCO (Iran
Water and Power Resources Development Company, Tehran, Iran) [52]. The monthly discharge values
at nine observed discharge outlets (Figure 1) from IWPCO [53] were used for model calibration
(1988–2012) and validation (1980–1987).

We obtained future daily climate data, including precipitation and minimum and maximum
temperatures, from the Inter-Sectoral Impact Model Inter-comparison Project (ISI-MIP) for five GCMs
based on Coupled Model Intercomparison Project (CMIP5) data [54] driven by RCP scenarios of
the Intergovernmental Panel on Climate Change (IPCC) fifth assessment report [55] at a 0.5◦ × 0.5◦

spatial resolution. Details of the five GCMs (HADGEMES, GFDL, IPSL, MIROC, and NORESM) are
summarized in Table 1.

Table 1. Description of the five Global Circulation Models (GCMs) used in this study obtained from
Coupled Model Intercomparison Project (CMIP5).

GCM Name Institute Full Name

HadGEM2-ES Met Office Hadley Centre (additional HadGEM2-ES realizations
contributed by Instituto Nacional de Pesquisas Espaciais)

IPSL-CM5A-LR Institute Pierre-Simon Laplace

GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory-Earth System Model

MIROC-ESM-CHEM
Japan Agency for Marine-Earth Science and Technology, Atmosphere
and Ocean Research Institute (The University of Tokyo) and National
Institute for Environmental Studies

NorESM1-M Norwegian Climate Centre-Earth System Model

The daily rainfall and temperature data from the five GCMs were bias corrected using the nearest
local measured stations. For rainfall, we used a simple ratio method, in which for each month, we
divided the average GCM data by the observed data and divided the daily GCM data by this factor
to obtain future daily rainfall data. For the temperature, we tested linear and nonlinear models as
described by Wilby et al. [56] and chose a fourth-degree regression model. In general, the results of the
first-degree linear and fourth-degree nonlinear models were similar except for very small and very
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large temperature values, where the nonlinear model performed systematically better, as was also
reported by Abbaspour et al. [47].

We used ArcSWAT 2012 with Esri’s ArcGIS version 10.2. A total of 333 subbasins and 1507 HRUs
(Hydrologic Response Units) were created. The model was calibrated in five iterations with
480 simulations in each iteration. The time required for one single 33-year simulation was about
13 min. Considering 480 simulations in each iteration of calibration, we needed 100 h. In this paper, we
used the parallel processing features of SWAT-CUP (a calibration/uncertainty or sensitivity program
interface for SWAT) [57], where simulations were distributed over 24 CPUs, decreasing the required
time to approximately 4.5 h. After calibration, model outputs including soil water, discharge, and
precipitation at subbasin level were used as input variables for drought analysis.

2.4. Drought Analysis Methods

The commonly used SPI [10] was selected to monitor meteorological drought. It is computed by
fitting a suitable probability distribution function (fx) to the frequency distribution of precipitation. We
chose a 2-parameter gamma distribution as the probability density function [58,59]. The cumulative
distribution function (Fx) is then the integral over fx as:

Fx =
� x

0
fx(x) dx x : precipitation (1)

To obtain the SPI, we transformed Fx using an inverse normal transformation function with mean
0 and standard deviation 1. Six SPI classes were defined as: extreme wet, wet, mild, moderate, severe,
and extreme drought [59] (Table 2).

Table 2. Six drought classes and weight and rate assigned to each drought class based on drought
severity and drought occurrence probability, respectively. SPI, Standardized Precipitation Index; SRI,
Standardized Runoff Index; SSWI, Standardized Soil Water Index.

Class
SPI, SRI, SSWI

Values
Weight

Rates Based on % of Occurrence
Probability (Pr)

Extreme wet Larger than 1 0 -

Wet 0 to 0.99 0 -

Mild −0.99 to 0 W1 = 1
If (17.9 < Pr ≤ 25.7) → R1 = 1
If (25.7 < Pr ≤ 30.4) → R1 = 2
If (30.4 < Pr ≤ 34.6) → R1 = 3

Moderate −1.49 to −1 W2 = 2
If (5.9 < Pr ≤ 8.3) → R2 = 1
If (8.3 < Pr ≤ 10.3) → R2 = 2
If (10.3 < Pr ≤ 13) → R2 = 3

Severe −1.99 to −1.5 W3 = 3
If (1.5 < Pr ≤ 3.7) → R3 = 1
If (3.7 < Pr ≤ 5.6) → R3 = 2
If (5.6 < Pr ≤ 8.3) → R3 = 3

Extreme Smaller than −2 W4 = 4
If (0.7 < Pr ≤ 2.2) → R4 = 1
If (2.2 < Pr ≤ 3.4) → R4 = 2
If (3.4 < Pr ≤ 7.6) → R4 = 3

SPI-X could be defined over different time scales (X = 1, 3, 6, 12, and 24-month). SPI-X at each
month is obtained from total precipitation over the last X months. For example, SPI-3 at the end
of February compares the December–January–February precipitation total in that particular year
with the December–January–February precipitation totals of all other years. The SPI method can
also be applied to soil moisture and discharge variables [10,60,61] as indicators of hydrological and
agricultural droughts, respectively. In this study, we used the same method to calculate SRI based on
discharge and SSWI based on soil water content.
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2.5. Drought Hazard Index

To aggregate the severity and occurrence probability features of each index into one unique index
for the entire study period, we calculated the Drought Hazard Index (DHI) using the methodology
proposed by Shahid et al. [62] and later by Rajsekhar et al. [63]. In this method, each of the four drought
classes is given a particular weight from 1 to 4, which represent mild (W1), moderate (W2), severe (W3),
and extreme droughts (W4), respectively (Table 2). Furthermore, each class i receives a rate Ri from 1
to 3, based on its probability of occurrence obtained from the Jenks natural break method [64] (Table 2).
The final DHI is aggregated as:

DHI = (W1 × R1) + (W2 × R2) + (W3 × R3) + (W4 × R4) (2)

As a result, three degrees of hazard intensity, namely low (DHI < 18), medium (21 < DHI < 18),
and high (DHI > 21), are defined using Jenks natural break classification method.

3. Results

3.1. Performance of the KRB Hydrologic Model

The KRB hydrologic model provided reasonable accuracy after calibration. The p-factor for
calibration (1988–2012) and validation (1980–1987) periods were larger than 0.55, indicating that more
than 55% of the observed data were bracketed by the 95PPU band (Table 3). The r-factor values were
mostly around 1 for all discharge stations, indicating reasonable prediction uncertainties in both
calibration and validation periods. The average values of bR2 were 0.53 and 0.60 for calibration and
validation periods, respectively. The NS efficiency values were larger than 0.5 in most discharge outlets,
which are satisfactory results.

Table 3. Calibration and validatation performances of simulated discharge in SWAT. NS, Nash Sutcliffe.

Outlet Names
Calibration Period (1988–2012) Validation Period (1980–1987)

p-Factor r-Factor bR2 NS p-Factor r-Factor bR2 NS

Akan 0.56 1.04 0.51 0.37 0.66 1.17 0.57 0.51
Polchehr 0.57 0.82 0.49 0.55 0.70 0.92 0.54 0.50

Ghurbagestan 0.74 0.83 0.59 0.67 0.73 0.93 0.71 0.66
Haleilan 0.67 0.82 0.62 0.65 0.73 0.95 0.68 0.62
Tangsaz 0.75 0.93 0.64 0.66 0.65 1.09 0.73 0.54
Afrine 0.53 0.66 0.46 0.56 0.63 0.58 0.37 0.42
Jelogir 0.64 0.89 0.67 0.66 0.71 1.12 0.67 0.59

Payepol 0.52 1.04 0.38 0.13 0.64 1.08 0.56 0.27
Hamidieh 0.55 1.08 0.43 0.18 0.65 1.23 0.51 0.17

3.2. Temporal Propagation of Droughts in Historic Period

To calculate SPI, SRI, and SSWI, monthly values of precipitation, river discharge, and soil water
(1980–2012) from 333 subbasins were aggregated into the NKRB, CKRB, and SKRB catchments levels
(Figure 1) using weighted areal averages. The SPI evolution over 1, 3, 6, 9, 12, and 24-month time
scales (Figure S1) showed higher drought frequency for shorter time scales. Moreover, less persistency
was noticed at time scales shorter than six months. On the other hand, although in SPI-24, the
severe drought period of 2000–2002 was identified, the extreme drought years of 1992 and 2008
were less obvious. This shows that 6, 9, 12-month time scales are more representative of drought
periods. In this paper, SPI-12 was selected as the time scale of interest, as was also suggested by
Lloyd-Hughes et al. [59], Gocic et al. [65], and Raziei et al. [66].

The historic time series of SPI-12, SRI-12, and SSWI-12 in the three catchments (Figure 2) show
that the basin experienced most severe drought conditions after 1999 and most extreme wet conditions
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during 1993–1996. Overall, five drought events (D1–D5) with different meteorological, hydrological,
and agricultural drought characteristics were identified between 1980 and 2012 (Figure 2a–c). In the
meteorological sector (Figure 2a), the first drought event (D1) started in late 1983 with mostly
moderate severity and lasted until late 1984. The event, however, persisted until early 1986 in SKRB.
Meteorological drought D2 started in 1989 with mild severity in the three catchments and lasted until
late 1991 with severe intensity in NKRB and CKRB. The subsequent event (meteorological D3) in 1997
had a short duration with mostly mild to moderate severity in all catchments. Meteorological event
D4 started in mid-1999 with extreme severity. It lasted until 2001 in NKRB and CKRB and until 2004 in
SKRB. The basin experienced another extreme event D5 from 2007 to 2010 with higher severity at the
beginning and in SKRB at the end of the period.

Figure 2. The historic patterns of (a) SPI-12 for meteorological; (b) SRI-12 for hydrological; and
(c) SSWI-12 for agricultural droughts in three major catchments of KRB.

Not all meteorological droughts had hydrological (Figure 2b) and agricultural (Figure 2c)
signatures. Meteorological drought D1 registered as severe hydrological drought only in late 1984 in
CKRB and as agricultural drought in late 1984 in SKRB. The D2 event had mostly a mild to moderate
effect on hydrological drought, while producing severe agricultural drought in CKRB in 1991. D3 had
almost the same pattern in hydrological sectors, whereas severe agricultural droughts were identified
in 1997 in NKRB and CKRB. The major reason for higher severity of D3 in the agricultural sector
is probably related to two months of extreme drought in early 1996, resulting in mild agricultural
drought in 1996. From this time until the start of event D3, there was not enough time for soil moisture
to replenish itself. In SKRB, the extreme wet conditions after 1996 accelerated replenishment of soil
moisture and this caused a less severe agricultural drought during the D3 event. Meteorological
drought D4 resulted in extreme hydrological and agricultural droughts. The meteorological event D5
resulted in a similar pattern for the hydrological sector, except for the extreme case in 2010, which
showed up as an agricultural drought in SKRB.
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Comparison of the correlation coefficient in droughts of different sectors in the six time scales
(SPI-, SRI-1, 3, 6, 9, 12, 24, and SSWI-1, 3, 6, 9, 12, 24 months) and in the three catchments (Table 4)
showed that the meteorological droughts are better correlated with hydrological and agricultural
droughts of longer time periods. For example, SPI-1 is mostly correlated with SRI-3 (0.83 in NKRB, 0.79
in CKRB, and 0.60 in SKRB). SPI-3 and SPI-6 are mostly correlated with SRI-6 and SRI-9, respectively
(highlighted box in Table 4). Similarly, SPI-3 shows the highest correlation with SSWI-9 (0.79 in
NKRB, 0.78 in CKRB, and 0.76 in SKRB). This most likely suggests a 3-month lag of hydrological and
agricultural responses to meteorological drought.

Table 4. Correlation coefficient of SPI with SRI and SSWI in different time scales and in three catchments;
the highlighted boxes show the highest correlation values of SPIs with SRIs and SSWIs.

Catchment SPI-1 SPI-3 SPI-6 SPI-9 SPI-12 SPI-24

NKRB

SRI-1 0.55 0.27 0.12 0.05 0.07 0.09
SRI-3 0.83 0.71 0.38 0.23 0.16 0.16
SRI-6 0.76 0.87 0.77 0.53 0.40 0.35
SRI-9 0.64 0.74 0.85 0.77 0.59 0.47

SRI-12 0.58 0.65 0.75 0.81 0.76 0.56
SRI-24 0.42 0.50 0.60 0.64 0.68 0.83

CKRB

SRI-1 0.49 0.24 0.10 0.05 0.07 0.10
SRI-3 0.79 0.66 0.37 0.23 0.18 0.19
SRI-6 0.72 0.83 0.76 0.53 0.42 0.40
SRI-9 0.61 0.73 0.85 0.78 0.62 0.54

SRI-12 0.54 0.64 0.75 0.82 0.80 0.64
SRI-24 0.39 0.50 0.62 0.66 0.71 0.87

SKRB

SRI-1 0.36 0.20 0.11 0.07 0.08 0.12
SRI-3 0.60 0.51 0.32 0.22 0.18 0.25
SRI-6 0.46 0.56 0.57 0.43 0.35 0.41
SRI-9 0.41 0.49 0.64 0.58 0.48 0.49

SRI-12 0.37 0.48 0.61 0.67 0.64 0.58
SRI-24 0.26 0.36 0.47 0.51 0.56 0.79

NKRB

SSWI-1 0.63 0.30 0.16 0.09 0.10 0.10
SSWI-3 0.70 0.65 0.37 0.27 0.23 0.19
SSWI-6 0.67 0.79 0.74 0.56 0.49 0.41
SSWI-9 0.57 0.71 0.81 0.78 0.67 0.56

SSWI-12 0.47 0.59 0.72 0.78 0.79 0.64
SSWI-24 0.32 0.42 0.50 0.52 0.56 0.82

CKRB

SSWI-1 0.68 0.32 0.15 0.09 0.09 0.09
SSWI-3 0.71 0.68 0.37 0.26 0.23 0.20
SSWI-6 0.63 0.78 0.74 0.55 0.47 0.42
SSWI-9 0.51 0.67 0.77 0.75 0.63 0.55

SSWI-12 0.41 0.56 0.67 0.73 0.74 0.62
SSWI-24 0.32 0.41 0.48 0.50 0.52 0.75

SKRB

SSWI-1 0.71 0.45 0.28 0.19 0.10 0.14
SSWI-3 0.62 0.74 0.50 0.43 0.28 0.30
SSWI-6 0.56 0.76 0.81 0.61 0.48 0.43
SSWI-9 0.49 0.69 0.85 0.83 0.65 0.53

SSWI-12 0.39 0.59 0.77 0.85 0.84 0.63
SSWI-24 0.32 0.43 0.53 0.53 0.56 0.88

3.3. Future Characteristics of Droughts (Severity-Frequency-Duration)

The temporal variation of the three types of droughts under the RCP2.6 (Figure S2) and RCP8.5
(Figure S3) scenarios in five GCMs (2020–2052) shows that KRB will likely be more susceptible to
droughts in the future. However, drought periods and their severities are different among GCM
models and for different types of droughts. Overall, SPI-12 patterns (Figure S2a) show more severe
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meteorological droughts after 2045 under RCP2.6. In this scenario, severe hydrological (Figure S2b)
droughts and extreme agricultural (Figure S2c) droughts are observed after 2035. In RCP8.5 (Figure S3),
severe and extreme droughts for all three types also mostly appear in the same time period.

We compared historic and future droughts by using Probability Density Functions (PDFs) of
SPI-12, SRI-12, and SSWI-12 for different severities (Figure 3a–r). The uncertainty bands stemming
from the differences in the five GCMs are wider for mild and moderate meteorological and hydrological
drought classes (SPI-12 and SRI-12 between −1.5 and 0) as compared with other classes, indicating
lesser agreement between different GCMs. For agricultural drought, larger uncertainty is noticed for
wet conditions (SSWI-12 between 0 and 1).

Figure 3. The probability density function (PDF) of different severities of SPI-12 (a–f), SRI-12 (g–l),
and SSWI-12 (m–r) in RCP2.6 and RCP8.5 scenarios. The grey bands are extracted from maximum and
minimum values in the five GCMs and the black lines indicate the historic PDFs.

The resulting PDFs in the entire region, with the exception of agricultural drought in CKRB and
SKRB, show a shift to left in the grey band, especially in the left leg of graphs for both RCP2.6 and
RCP8.5, indicating higher probability of droughts (especially mild and moderate droughts) in the
future. The left shift is slightly larger in RCP8.5 compared to RCP2.6 in all catchments. Agricultural
drought in CKRB and NKRB, however, shows a tendency to shift to the right for most GCM models,
indicating smaller probability of mild to moderate droughts. No significant change is observed
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in the probability of extreme meteorological droughts in the three catchments (the left tails of the
distributions). The wider bands of SRI-12 compared to SPI-12 indicate larger uncertainties in the
hydrological drought predictions by GCMs. The agricultural drought index (Figure 3m–r) shows
a shift to the right, especially in the right tail of graphs for both the RCP2.6 and RCP8.5 scenarios,
indicating higher probability of wet conditions. On the other hand, the agricultural sector is more
exposed by extreme and severe droughts in CKRB and SKRB, as their probabilities are higher. The wide
uncertainty band during wet conditions shows less agreement among the five GCMs.

To compare frequency and duration of historic droughts, we defined a drought event as having
SPI-12, SRI-12, or SSWI-12 < 0 for at least two months. The historic frequency shows there were
on the average 15 meteorological droughts, 5 hydrological droughts, and 10 agricultural droughts
(Figure 4a–c). These droughts had durations of 8 months, 3.5 months, and 6 months, respectively
(Figure 4d–f). During the historic period, meteorological droughts were more frequent with longer
duration. The reason is that we considered periods of longer than two months as a drought event.
So, some of the very short and mild meteorological events did not register signatures in other sectors
(Figure 2). Besides, SRI-12 and SSWI-12 are influenced by precipitation as well as temperature, whereas
SPI-12 depends only on precipitation.

Figure 4. Comparison of the frequency and duration of historic and future of (a,d) SPI-12, (b,e) SRI-12,
and (c,f) SSWI-12 droughts based on an ensemble of five GCMs. The red lines inside the boxes show
the median, the boxplots show the 25 and 75 percentiles, and the whiskers show 5 and 95 percentiles
from 333 subbasins in KRB.

Similarly, future projections show the highest frequency of meteorological drought. However,
compared to the historic period, there are fewer differences between frequency and duration of the
three drought types. Moreover, the duration and frequency of future hydrological and agricultural
droughts are predicted to increase compared to historic period. It is interesting to note that future
prediction of meteorological droughts is smaller in frequency and shorter in duration (Figure 4a,d)
compared to historic meteorological drought. Drought frequency is expected to decrease from a
median value of 15 to 10 and 12 in RCP2.6 and RCP8.5, respectively. This pattern is mostly caused
by an unusually large number of droughts in the KRB during 2000 to 2010, which resulted in a high
historic drought frequency. Hydrological droughts are, however, more frequent in the future with
longer duration. There does not seem to be a large difference in the historic and future agricultural
droughts. This is mainly due to the impact of both precipitation and temperature variables in the
calculation of hydrologic and agricultural indices. Only slight differences between RCP2.6 and RCP8.5
are observed in all cases.
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3.4. Composite Droughts Index, DHI

Spatial distributions of the composite meteorological DHI under future climate change conditions
show that KRB would probably experience a higher degree of meteorological DHI compared to the
historic period. Most of KRB will probably be exposed to medium meteorological DHI except eastern
sides of CKRB where high meteorological DHI is predicted. Hydrological DHI responded differently
for both historic and future conditions (Figure 5d–f). Generally, KRB is predicted to be more exposed
to high hydrological DHI in western NKRB and CKRB. SKRB will probably be less exposed to high
hydrological DHI. High agricultural DHI during the historic period was limited to the western part of
KRB (Figure 5a,d), however, both RCP2.6 and RCP8.5 predict higher agricultural DHI (Figure 5g–i) in
all catchments. In fact, RCP8.5 puts most of KRB under high agricultural DHI.

Figure 5. Spatial variations of meteorological DHI (a–c), hydrological DHI (d–f), and agricultural DHI
(g–i) comparing the historic and future variations in RCP2.6 and RCP8.5. The results are obtained from
an ensemble of five GCMs.
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4. Discussion and Conclusions

SPI, SRI, and SSWI with the aid of a SWAT model captured past drought periods. The selected
indices were found to be suitable for drought monitoring, since the severe and extreme periods
agreed with historical records over the past 33 years of the study period reported previously [37,41].
We found a 3-month lag between incipient meteorological droughts and the time that hydrological
droughts were observed. While occurrence of a lag between meteorological and hydrological droughts
is reported in many studies [8,67], the length of lag time varies by study. For example, Liu et al. [28]
found that hydrological drought was not observed until 2 months after meteorological drought, and
Stefan et al. [68] reported a 2–3-month lag between the precipitation and river discharge anomalies
during winter and a 0–1 month delay in summer. Generally, not only precipitation, but also factors
such as rainfall interception, temperature, evapotranspiration, and a basin’s morphological conditions
contribute to discharge formation. In our study, the lag time between meteorological and hydrological
droughts might be related to different reasons in the upper to lower catchments. In NKRB and CKRB,
the lag might be mostly due to the mountainous characteristic of catchments. The flow that contributes
to rivers in these catchments are mostly from snow melt of the mountainous areas, which occurs at a
later time than the actual precipitation. However, lagged response in SKRB is most probably associated
with a mixed-flow regime. Within this catchment, not only precipitation, but also the discharge from
NKRB and SKRB contributes to flow, however, with some lag due to the varying time of concentration.
Therefore, the timing of hydrological drought differs from meteorological drought.

We chose soil moisture to quantify SSWI to monitor agricultural drought because it is more
relevant compared to evapotranspiration in basins with semi-arid climates. In the semi-arid regions,
the rate of potential evapotranspiration (atmospheric demand) is substantially larger than actual
evapotranspiration (soil’s ability to supply water), causing soil moisture to be at the wilting point for
most of the year [69]. In our study, SSWI-12 showed a 3-month delay with SPI-12, as temperature also
influenced soil moisture content. With increasing temperature in the summer season, evaporation
increases, causing a depletion of soil water content.

For KRB as a whole, the future climate is likely to increase the probability of severe and
extreme droughts. Comparison of the results with future projection of the Köppen-Geiger climate
classification [70] also confirms a shift of climate zone from warm to arid in SKRB. The frequency
and duration of future droughts will probably increase based on SRI-12 and SSWI-12, but decrease
for SPI-12. The reason is that SPI-12 is computed based on precipitation alone, while indices of
hydrological and agricultural droughts depend on both temperature and precipitation. The spatial
extent of high agricultural DHI is predicted to be much larger in the future, especially in SKRB. This
shows the complexity in translating meteorological droughts to agricultural and hydrological sectors,
as drought propagation into two latter types depends on the climate of the region as well as the
responses of the hydrological cycles and differs depending on physiographic characteristics of the
regions such as permeability, topography, and land use. Higher exposure of the agricultural sector
to drought poses additional challenges to agricultural production, as KRB has already experienced
serious water shortages in the last two major droughts (D4 and D5) and irrigated agriculture had to
rely heavily on the exploitation of groundwater.

In conclusion, one of the strengths of our applied approach is the use of a standardized definition
of drought indices, which made our analysis consistent for comparing different drought types
irrespective of the climatic conditions and the regions. The paper also made some contributions
toward exploring behaviors of drought propagation in hydrological systems and identifying regions
that will be more exposed to drought risks in the future. The distributed agro-hydrological model SWAT
was used to estimate soil water content and runoff at a fine spatial resolution. Comparison of multiple
drought indices of different aspects allows for a better monitoring of space-time drought characteristics.

Similar analyses and sets of selected indices could be applied to other basins with different scales
for a better understanding of drought effects. The high spatial resolution obtained from applying
a physically based model can be aggregated to district, farm, and provincial levels, as the findings
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from multiple scales are usually complementary to each other [71]. The standardized procedure
facilitates linking drought indices with socioeconomic factors to broaden the knowledge on physical
and social vulnerability. For example, by linking the agricultural DHI with crop yields, one can
quantify crop drought vulnerability and risks, which are essential for food security purposes. Similarly,
hydrological DHI is an appropriate candidate to measure drought indices that assess the status of
water resources vulnerability. Such joint interpretations help decision makers with proposing better
allocation of resources.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/9/4/241/s1,
Figure S1: Evolution of SPI over different time scales in three catchments of KRB; Figure S2: The future heat
map of (a) meteorological, (b) hydrological, and (c) agricultural droughts in RCP2.6 scenario in three catchments
of KRB; Figure S3: The future heat map of (a) meteorological, (b) hydrological, and (c) agricultural droughts in
RCP8.5 scenario in three catchments of KRB.
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Abstract: The purpose of this study is to evaluate the impacts of the upstream Soyanggang and
Chungju multi-purpose dams on the frequency of downstream floods in the Han River basin,
South Korea. A continuous hydrological model, SWAT (Soil and Water Assessment Tool), was
used to individually simulate regulated and unregulated daily streamflows entering the Paldang
Dam, which is located at the outlet of the basin of interest. The simulation of the regulated flows
by the Soyanggang and Chungju dams was calibrated with observed inflow data to the Paldang
Dam. The estimated daily flood peaks were used for a frequency analysis, using the extreme Type-I
distribution, for which the parameters were estimated via the L-moment method. This novel approach
was applied to the study area to assess the effects of the dams on downstream floods. From the
results, the two upstream dams were found to be able to reduce downstream floods by approximately
31% compared to naturally occurring floods without dam regulation. Furthermore, an approach to
estimate the flood frequency based on the hourly extreme peak flow data, obtained by combining
SWAT simulation and Sangal’s method, was proposed and then verified by comparison with the
observation-based results. The increased percentage of floods estimated with hourly simulated data
for the three scenarios of dam regulation ranged from 16.1% to 44.1%. The reduced percentages were
a little higher than those for the daily-based flood frequency estimates. The developed approach
allowed for better understanding of flood frequency, as influenced by dam regulation on a relatively
large watershed scale.

Keywords: SWAT; regulated and unregulated streamflows; flood frequency analysis; sangal’s method

1. Introduction

Growing industrial, municipal, and agricultural demands for water have increased the need for
dam construction [1]. Numerous dams have been built in the majority of the world’s rivers to provide
water supply, electricity production, and the mitigation of flood risk. River hydrology, geomorphology,
and ecology have been substantially altered through dam construction. In particular, dams have
major impacts on river hydrology, primarily through changes in the timing, magnitude, and frequency
of high and low flows, ultimately producing a hydrologic regime that differs significantly from the
natural pre-dam conditions [2–4].

Various studies dealing with downstream hydrograph alterations caused by dams have been
undertaken. For example, Gregory and Park [5] examined the changed pattern of river discharge
and channel capacity below a dam in the basin of the River Tone, England. Their results showed that
the downstream peak discharge was reduced by 40% after the dam construction, and the reduction
of channel capacity downstream from the reservoir persisted for a distance of 11 km. Page [6]
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demonstrated that the construction of the Burrinjuck Dam increased the return period of bankfull
discharge in Wagga Wagga, Australia. Galat and Lipkin [7] studied the hydrological alterations of the
Missouri River flows using the Index of Hydrological Alteration (IHA), indicating that the river flows
were heavily influenced by the reservoirs, but they dissipated below tributary junctions. Maingi and
Marsh [8] analyzed pre- and post-dam daily discharge data for the Tana River, Kenya, using flood
frequency analysis and the computation of various IHAs, demonstrating a significant modification
in the hydrologic regime after dam construction. They also estimated the frequency and duration
of floods for 71 vegetation sample plots by simulating the hydrologic water profiles, showing an
increase in days flooded from the pre- to the post-dam period. Magilligan et al. [9] assessed hydrologic
changes at 21 dams of various sizes scattered across the U.S., and found that on average the 2-year flow
decreased by 60% after dam installation [10]. Pegg et al. [11] used a time series approach to examine
the daily mean flow for 10 Missouri River locations with data from the pre- and post-alteration periods.
The results suggest that human alterations on the Missouri River, particularly in the middle portion
that is most strongly affected by impoundments and channelization, have resulted in changes to the
natural flow regime. Batalla et al. [12] investigated how hydrograph alteration from dams varies
though the river network, and determined that the influence of dams on mean monthly flow and flood
magnitude diminished with the distance downstream because of increasing drainage area. Magilligan
and Nislow [13] presented an analysis of pre- and post-dam hydrological changes from dams that
cover the spectrum of hydrologic and climatic regimes across the U.S. They applied the IHA to assess
the type, magnitude, and direction of hydrologic shifts for 21 gauge stations due to dam installation,
and found that 1-day through 90-day minimum flows increased significantly, while 1-day though 7-day
maximum flows decreased significantly following impoundment. Singer [14] reported basinwide
patterns of hydrograph alteration via statistical and graphical analysis from a network of long-term
streamflow gauges in the Sacramento River basin in California, U.S. In this study, pre- and post-dam
flows were compared with respect to the annual flood peak, annual flow trough (lowest value), annual
flood volume, time to peak, flood drawdown time, and interarrival time. Yang et al. [1] investigated
the spatial patterns of the hydrologic alterations caused by dam construction in the middle and lower
Yellow River, China during the most recent five decades using the range of variability approach (RVA)
method in which 33 hydrologic parameters were used to assess the hydrologic alterations in terms of
streamflow magnitude, timing, frequency, duration, and rate of change. Romano et al. [15] evaluated
the pre-dam versus post-dam differences in flood frequency and duration below the Carlyle Dam,
lower Kaskaskia River, U.S. The results indicated a decrease in flood duration and frequency, and a
decrease in annual flood frequency variation at a near site below the dam. However, their results also
showed that hydrological alterations were related to climate rather than dam effects at a far distance
downstream from the dam, emphasizing that the distance downstream from the dam and downstream
tributary and watershed characteristics should be considered. These works mentioned above have
indicated that dams appear to decrease flood peaks and increase low flows. However, these have all
focused only on comparing pre- and post-dam flows with respect to the hydrograph characteristics of
frequency, magnitude, and shape; they do not focus on naturalized flow conditions that would have
existed before dam construction without the effect of regulation.

Some investigations have compared historical regulated flow data with natural flow data
generated by rainfall-runoff modeling to assess the impacts of dams on flood flows. The U.S. Geological
Survey (USGS) [16,17] has published reports evaluating the effects of flood detention reservoirs on
flood frequencies, as well as peak discharges along downstream reaches for several small urban
drainage basins with areas of 0.1–0.37 square miles in Georgia, U.S. In the study, the Distributed
Routing Rainfall-Runoff Model (DR3M), developed by the USGS, was used to simulate the long-term
peak discharges for conditions with and without the flood detention reservoirs. The relationships
of flood-frequency, between those with and without reservoirs, were developed based on these
long-term peak discharges. Peters and Prowse [18] quantified the effects of regulation on the Peace
River, Canada, based on comparisons between pre-regulated, regulated, and naturalized flow regimes.
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In their work, a modified Streamflow Synthesis and Reservoir Regulation (SSARR) model was used to
naturalize the river flows. Montaldo et al. [19] analyzed the flood hydrograph attenuation induced by
a reservoir system for the Toce River basin, Italy, using a Flash-flood Event-based Spatially distributed
rainfall-runoff Transformation, including Reservoir System (FEST98RS). Sayama et al. [20] developed
a rainfall-runoff prediction system for the Yodo River basin, Japan, and demonstrated that the system
was able to simulate complex dam operations, such as preliminary release, peak attenuation, and
cooperative operations by multiple dams. Gross and Moglen [21] developed regression equations,
both natural and with the dam, for predicting the influence distance of flow regulation downstream of
a dam using the Geographic Information System (GIS), the HEC (Hydrologic Engineering Center)-1
model, and the stage-storage-discharge curves for 34 dams in Maryland, U.S. All these studies relied
on rainfall-runoff modeling to assess the post-dam effects on flood flows. From these reviews, it
can be seen that previous studies on the impact of dams and reservoirs have predominantly focused
on alterations in the hydrograph. However, none have quantified the effects of regulation on flood
frequency, except those conducted by the USGS [16,17]. A possible reason for the lack of studies
assessing the effects of dams on flood frequencies during the post-dam period is that generating flood
data over a sufficient period of time for a flood frequency analysis is difficult.

Traditionally, flood frequency estimations have been based on statistical analyses using available
gauged flood peaks. In cases where long records of measured streamflow data are not available, an
estimate of flood frequency must be based on event simulation or continuous simulation modeling.
The availability of powerful computers has made it possible to move towards techniques for flood
estimation based on continuous simulation modeling [22]. Since the late 1990s, the estimation of
flood frequency was approached using the continuous simulation of stream flow time series [23–31].
The main advantages of this approach are that the streamflow can be considered as a single term,
without explicit prior separation into direct runoff and baseflow, and the problem associated with the
antecedent wetness condition, which is very important in the consideration of event simulation, is
largely removed because this condition is an integral part of the modeling procedure [23]. Furthermore,
other merits of using a continuous simulation model to simulate streamflow include: the use of longer
data series for the frequency analysis, the ability to simulate streamflow under future land use/climate
conditions, and no assumption of a direct transformation of a design rainfall to a design flood [25].
These advantages of continuous simulation modeling make it possible to more elaborately explore
various hydrological problems.

Therefore, the objective of this study is to investigate the potential of a continuous simulation
model for assessing the effects of a dam on the characteristics of downstream flood frequencies.
A continuous simulation model, SWAT (Soil and Water Assessment Tool), was used to predict the
stream flow time series, both with and without dams, which were then analyzed to produce flood
frequency curves. The SWAT model was developed by the U.S. Department of Agriculture (USDA)
Agricultural Research Service and is a quasi-distributed model used for simulating runoff at the
watershed scale [32,33]. The reasons for selecting the SWAT model include its wide global use and
good performance for predicting daily runoff hydrographs. Moreover, the model is an open source
code program; thus, it can be modified to improve its performance. This paper outlines the overall
procedure of the SWAT-simulation-based flood frequency estimation and discusses the results of the
impacts of the upstream Soyanggang and Chungju multi-purpose dams on the flood frequency of
downstream flows in the Han River basin, South Korea.

231

Bo
ok
s

M
DP
I



Water 2017, 9, 264

2. Methodology

2.1. SWAT Model Description

The SWAT model was developed as a watershed scale hydrological model for assessing the effects
of land use and management on the long-term runoff, sediment, and non-point source pollution
loads to surface water bodies on a daily basis. The major components of SWAT include: weather,
hydrology, erosion, plant growth, nutrients, pesticides, land management, and streamflow routing.
The methods for estimating the hydrological components are briefly described below. The model allows
for simulation with high level spatial detail by dividing the watershed into multiple sub-watersheds,
which are then partitioned into additional areas, called Hydrologic Response Units (HRUs). The water
in each HRU is stored in or released from four storage volumes: snow, soil profile, shallow aquifer, and
deep aquifer. Snow melts on days when the maximum temperature exceeds a preselected threshold
value. Melted snow is treated as rainfall for estimating the amount of runoff and percolation. The soil
profile is subdivided into multiple layers for soil water processes, such as infiltration, evaporation,
plant uptake, lateral flow, and percolation. Surface runoff or infiltration from daily rainfall is calculated
using a modified Soil Conservation Service (SCS) Curve Number (CN) method, or is otherwise
calculated using the Green-Ampt method. The model individually computes the evaporation from
soils and transpiration from plants. Potential evapotranspiration (PET) can be calculated using the
Penman–Monteith, Priestley–Taylor, or Hargreaves methods. Potential soil water evaporation is
estimated using a function of the PET and leaf area index. Actual soil evaporation is estimated using
exponential functions for the soil depth and water content. Plant water uptake is simulated by a linear
function of the PET, leaf area index, and root depth, and is limited by the soil water content. The soil
percolation component is estimated using a water storage capacity technique, in which downward
flow occurs when the field capacity of a soil layer is exceeded. The shallow aquifer is recharged by the
water from the bottom of the soil profile by the percolation process. Simultaneous to percolation, the
lateral sub-surface flow in the soil profile is calculated using the kinematic storage model, which is a
function of the saturation hydraulic conductivity, slope length, and slope. The recharge and discharge
of groundwater were estimated using exponential attenuation weighting functions. These hydrological
components for each HRU are summed over a sub-watershed. The calculated flow obtained for each
sub-watershed is then routed through the river channels. Finally channel routing is simulated using
the variable storage or Muskingum method. More details can be found in the work of [34].

2.2. Study Area

The seven dams located upstream of the Paldang Dam are shown in Figure 1, including: the
Soyanggang and Chungju multi-purpose dams, and the Hwacheon, Chuncheon, Uiam, Cheongpyeong,
and Goesan dams for electricity generation in the Han River basin. In this study, the impacts of the
two major multi-purpose dams, Soyanggang and Chungju, on the downstream flood frequency were
assessed at the Paldang Dam. According to [35], the dams for electricity generation (Hwacheon,
Chuncheon, Uiam, Cheongpyeong, and Goesan) have little effect on flood control and were therefore
not included in this assessment. The Chungju Dam, which was built lastly among the dams considered
in this study, was constructed in 1986, therefore, the data period used in this work starts from that year.
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Figure 1. Study area.

2.3. Approach for Flood Frequency Assessment

Current inflows to the Paldang Dam are regulated by the upstream multi-purpose dams, Chungju
and Soyanggang. Data without the influence of the dams are not available; therefore, a frequency
analysis was not possible. The SWAT model allows for daily streamflow estimation, without the
influence of the dam, by designating upstream dams as inlet conditions of the model and plugging
upstream dam inflows into the inlets. The historical dam inflows can be regarded as unregulated
flows below the dams. Therefore, in this study, SWAT simulations were performed to generate
streamflows for the conditions without dams; then the simulated streamflow data was used for the
flood frequency analysis.

The effects of dams on the peak inflows and flood frequencies at the Paldang Dam were
determined by simulating the annual peak flows with and without dams. Annual peak flows for
the period 1986–2015 were simulated by the SWAT model. Several scenarios were built based on the
presence of dams, and the resulting flood frequencies were compared to each other to characterize the
effects of dam regulation on floods. The first simulation was for existing conditions, i.e., with dams
in place. Subsequent simulations involved eliminating individual dams to determine the effect of a
single dam on the peak flows for the entire basin. The model was also used to simulate conditions
without any dams for a basin to examine the cumulative effects of upstream dams on the peak flow at
the outlet.

SWAT simulation is based on a daily time step; as such, the SWAT model cannot represent a small
time scale, such as hours or minutes, for simulating sharp peaks. To overcome this, Sangal’s method
was used to estimate the instantaneous peak flow from the mean daily flow. Sangal [36] suggested a
practical formula, shown in Equations (1) and (2), based on the assumption of a triangular hydrograph,
in which the instantaneous peak flow is estimated from the mean daily flow for three consecutive days,
including the peak day.

Qmax =
Q1 + Q3

2
+

2Q2 − Q1 − Q3

K
(1)

K =
4Q2 − 2Q1 − 2Q3

2Qpeak − Q1 − Q3
(2)

where Qmax is the predicted instantaneous peak flow (m3/s), Q2 is the mean daily flow (m3/s) of the
day that includes the peak flow, Q1 and Q3 are the mean daily flow (m3/s) for the days before and
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after the peak flow day, respectively, K is the base factor calculated from the historical mean daily
and peak flows, and Qpeak is the actual peak flow (m3/s). Sangal [37] applied this method to streams
with drainage areas that varied from less than 1 km2 to more than 100,000 km2 in Ontario, Canada,
using the data of 3946 peak flows collected from a total of 387 stations and achieved results with
reasonable accuracies. Also, the base factor K is an important parameter and can be estimated from
historical flows. In this study, a reasonable estimate of K(= 0.96) is calculated from historical flows at
the Paldang Dam.

3. SWAT Modeling

3.1. Input Data and Model Preparation

The SWAT model is applicable for assessing the effects of dam regulation on downstream floods.
Accordingly, the model was used in this study to assess the changes in downstream floods regulated
by the upstream multi-purpose dams in the Paldang Dam watershed. As shown in Figure 1, the
Soyanggang, Chungju, Hwacheon, and Goesan Dams comprised the model inlets from their respective
upstream watersheds. Instead of simulating runoff from the entire watershed, the observed discharges
from the Soyanggang and Chungju dams were directly plugged into the model, with runoffs from the
remaining watersheds then simulated to determine the flood inflows to the Paldang Dam. This was
intended to eliminate errors associated with the runoff simulation for upstream watersheds. In addition,
the Chuncheon, Uiam, and Cheongpyeong electricity generation dams that are located in the middle of
the study watershed were not considered in the modeling because they are incapable of flood control
and discharge all inflows nearly without detention for electricity generation. Therefore, the inflows to
the Paldang Dam can be simulated reasonably even though the electricity generation dams were not
considered. Table 1 shows the inlet conditions at the upper dams to be implemented. The inflow and
outflow for the Soyanggang and Chungju dams in 1990 is illustrated in Figure 2.

Table 1. Inlet Conditions at the Upper Dams.

Scenarios Soyanggang Chungju Hwacheon Goesan

Current state Outflow Outflow Outflow Outflow
Scenario 1 Inflow Outflow Outflow Outflow
Scenario 2 Outflow Inflow Outflow Outflow
Scenario 3 Inflow Inflow Outflow Outflow

Figure 2. Inflow and Outflow in 1990. (a) Soyanggang Dam; (b) Chungju Dam.

Daily climatic data of precipitation, solar radiation, maximum/minimum temperature, wind
speed, and relative humidity from 1986 to 2015 were used for the SWAT model simulation. A Digital
Elevation Model (DEM), with a 100 m mesh size, mid-classified land cover from the Ministry of
Environment, and soil map from the National Institute of Agricultural Sciences were utilized as the
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spatial input data for the model. The entire study watershed was divided into 21 sub-watersheds.
The two methods of the temporally weighted average CN method [37] and non-linear storage routing
technique [38] were incorporated into the SWAT model in this study for better simulation of the
surface runoff and streamflow routing, respectively. Evapotranspiration was estimated using the
Penman-Monteith equation.

3.2. Model Calibration and Validation

The parameters of the SWAT model were calibrated using the observed daily inflow data collected
from 1986 to 1995 at the Paldang Dam. The parameters were manually adjusted to fit the daily
simulations as close as possible to the observations. The statistics of the coefficient of determination
(R2) and Nash–Sutcliffe efficiency (NSE) [39] were used to evaluate model performances. For a brief
description of the calibration procedure, firstly, the soil evaporation compensation coefficient (ESCO)
parameter was calibrated to match the total amount of runoff. The other internal parameters were
then adjusted for better simulation of the hydrograph, especially for the flows during recession and at
peak time. We increased the CN value with the Antecedent Moisture Condition (AMC)-II condition
(CN2) during the flood season (June–September) by 20% from the default value to increase the peak
flow. In addition, we calculated the CN value of each day using the temporally weighted average
CN method [37]. The CH_N (Manning’s n) parameter related to the channel routing was estimated
as 0.030 using the non-linear storage routing technique [38], which is higher than the default value,
in consideration of the natural channel condition and reliability of the value estimated. The two
parameters of average slope length for the subbasin (SLSUBBSN) and adjustment factor for the
lateral flow (ADJF), which are related to the interflow generation, were then calibrated. The delay of
groundwater recharge (GW_DELAY) parameter was adjusted to generate a reasonable shape of the
recession hydrograph. Table 2 shows a list of the calibration parameters and their optimal values.

Table 2. Calibrated model parameters.

Parameter Description Calibrated Value

ESCO Soil evaporation compensation factor 0.65
CN2 CN value with the AMC-II +20%

CH_N Manning’s n 0.03
ADJF Adjustment factor for lateral flow (default = 1) 2

SLSUBBSN Average slope length for subbasin (m) Max (10, default)
GW_DELAY Groundwater delay (days) 150

Figure 3a shows a good agreement between the observed and simulated daily runoff for the
calibration period of 1986–1995. The model performance statistics of R2 and NSE using the optimal
parameter values for the calibration period were satisfactory, at more than 0.85. The calibrated
parameter values were then applied to the SWAT model to simulate the flow time series of the
validation period of 1996–2015 to evaluate the model prediction ability. Figure 3b shows a good model
performance with R2 and NSE values greater than 0.85. It reveals that the hydrologic processes were
reasonably modeled by the SWAT model.
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Figure 3. Comparison of the observed and simulated inflows to the Paldang Dam for (a) calibration
period (1986–1995) and (b) validation period (1996–2015).

3.3. Model Results

The runoff ratio, flow duration curve, and daily streamflow discharge simulated by SWAT were
analyzed at the Paldang Dam. The runoff ratio is defined as the runoff volume divided by the rainfall
volume that occurred during the flood season (June–September) of each year. Table 4 contains the
observed and simulated runoff ratios from 1986 to 2015, as well as the statistical values of R2 between
the simulated and observed daily flows. The results are highly acceptable.

Table 3. Runoff ratio and Determination coefficient.

Year
Rainfall

(mm)

Runoff (mm) Runoff Ratio (%) Determination
Coefficient (R2)Observed Simulated Observed Simulated

1986 788.9 378.0 357.9 47.9 45.4 0.795
1987 1206.4 940.1 865.5 77.9 71.7 0.867
1988 712.8 374.6 398.5 52.5 55.9 0.849
1989 850.7 334.8 372.1 39.4 43.7 0.733
1990 1545.5 1128.7 1040.7 73.0 67.3 0.856
1991 925.4 421.9 429.0 45.6 46.4 0.722
1992 719.7 249.7 277.1 34.7 38.5 0.709
1993 797.8 508.1 481.1 63.7 60.3 0.745
1994 687.7 220.9 261.8 32.1 38.1 0.721
1995 1236.1 822.6 750.4 66.5 60.7 0.904
1996 715.7 370.3 365.0 51.7 51.0 0.854
1997 730.4 458.6 386.2 62.8 52.9 0.729
1998 1276.0 726.0 702.9 56.9 55.1 0.877
1999 1108.3 580.2 610.5 52.4 55.1 0.854
2000 926.1 424.3 449.5 45.8 48.5 0.770
2001 753.5 285.7 311.6 37.9 41.4 0.798
2002 926.0 465.0 537.0 50.2 58.0 0.934
2003 1277.0 724.2 717.5 56.7 56.2 0.842
2004 1051.5 614.4 628.4 58.4 59.8 0.864
2005 1209.1 527.0 501.0 43.6 41.4 0.749
2006 1242.3 732.2 756.6 58.9 60.9 0.971
2007 1027.9 589.7 525.8 57.4 51.1 0.960
2008 909.5 374.3 373.2 41.2 41.0 0.941
2009 1013.4 487.4 459.0 48.1 45.3 0.925
2010 1074.0 477.4 436.2 44.4 40.6 0.914
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Table 4. Runoff ratio and Determination coefficient.

Year
Rainfall

(mm)

Runoff (mm) Runoff Ratio (%) Determination
Coefficient (R2)Observed Simulated Observed Simulated

2011 1568.8 919.7 903.4 58.6 57.6 0.974
2012 990.0 405.9 382.6 41.0 38.6 0.870
2013 1050.5 548.9 496.5 52.3 47.3 0.964
2014 494.9 125.7 144.0 25.4 29.1 0.914
2015 395.8 86.5 91.0 21.8 23.0 0.980

Average 973.7 510.1 500.4 50.0 49.4 0.828

From the simulated daily flows, the exceedance probability of the flow, referred to as the flow
duration curve, was plotted with that based on the observed data, as shown in Figure 4. In can be seen
that all sections of the high, intermediate, and low flows were simulated with reasonable accuracy.

Figure 4. Observed and Simulated Flow Duration Curve at the Paldang Dam.

Figure 5 compares the hydrographs of the observed and simulated daily inflows to the Paldang
Dam for large, mid, and low flood years between 1986 and 2015. The simulated inflows matched well
with the observed inflows (average R2 = 0.828 in Table 4).

Figure 5. Cont.

237

Bo
ok
s

M
DP
I



Water 2017, 9, 264

Figure 5. Observed and Simulated Daily Inflow at the Paldang Dam. (a) Large flood years (left: 1990,
right: 1995); (b) Mid flood years (left: 2003, right: 2004); (c) Low flood years (left: 2014, right: 2015).

4. Results and Discussion

4.1. Flood Frequency Analysis of the Observed and Simulated Daily Inflows

The annual maximum series of simulated and observed inflows at the Paldang Dam were extracted
from the simulated and observed hydrographs. Comparisons between the annual maximum series of
simulated and observed inflows for the study period (Figure 6) showed the robustness of the SWAT
simulation (R2 = 0.903, Root Mean Square Error (RMSE) = 0.187 m3/s).

Figure 6. Annual Maximum Series of Observed and Simulated Daily Inflow.
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A flood frequency analysis was performed on the annual maximum series of simulated and
observed daily peak inflows at the Paldang Dam. The data used is shown in Figure 6. In this study, the
probability distribution of Extreme Value Type-I was selected for the flood frequency analysis, with the
relevant parameters estimated using the method of L-moments, as described by [40]. A comparison of
flood estimates and frequencies computed from both the simulated and observed data is shown in
Figure 7. Comparing the observed and simulated flood estimates, the flood estimates based on the
simulated streamflow were slightly overestimated compared to the observed data. The overall errors
ranged from −1.84% to 3.18%. This small error suggests satisfactory correspondence between the
simulated and observed flood frequencies.

Figure 7. Observed and Simulated T-year Floods at the Paldang Dam (Daily).

4.2. Influence of Regulated Flow by the Dam on Daily Flood Frequency

The inflows to the Paldang Dam, under the regulation of the upstream dams, were evaluated in
the previous section. To assess the dam effects on the flood frequency, flood flows into the Paldang
Dam without upstream dam regulation need to be estimated and compared with regulated floods.
Three scenarios were constructed for the unregulated flood simulation based on the existence of an
individual dam: Scenario 1 (Chungju dam only), Scenario 2 (Soyanggang dam only), and Scenario 3
(no dam), as shown in Table 1. The runoff from all watersheds without any dam (Scenario 3)
was simulated to estimate the unregulated floods to the Paldang Dam. Similar to the regulated
flow simulation, the measured outflows or inflows of each dam were used as inlets to the model.
The measured outflow or inflows were subjected to flow directly to the downstream channel of each
dam for the watersheds with a dam, i.e., the Soyanggang and Chungju dams, for Scenarios 1 and 2.

Figure 8 shows a comparison of the hydrographs for the current state with the Chungju and
Soyanggang dams (w/CJ, SY) and the three scenarios for 1990, 1995, 1999, and 2006, where high
flood peaks occurred. It was obvious that regulation resulted in a marked reduction in discharges.
For example, between Scenario 3 (natural flow condition; w/o CJ, SY) and the current state, the peaks
were reduced by an average of 30.9% for the years studied.

Figure 9 depicts the simulated annual maximum series of inflows for the three scenarios at the
Paldang Dam from 1986 to 2015. As expected, the modeled peaks for the three scenarios were higher
than those found in the historical records for the current state with the effects of the Soyanggang and
Chungju multi-purpose dams. In Figure 9, the slopes indicate the degree of increase in the peaks.
Disregarding the effects of the dams on the peak attenuation would lead to considerably larger design
flood estimates.
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Figure 8. Hydrographs according to the Scenarios at the Paldang Dam. (a) 1990; (b) 1995; (c) 1999;
(d) 2006.

Figure 9. Annual Maximum Series according to the Scenarios (Daily).

Figure 10 presents the flood frequency for each scenario. Natural (Scenario 3) and regulated
(Scenario 1, 2, current) flood frequency curves indicated similar patterns for all scenarios.
The discrepancy between the flood with and without the dams indicates the effect of regulation
by the dam. Assuming Scenario 3 represents the flood frequency under natural conditions, the
regulated flood frequencies estimated from the current state and Scenarios 1 and 2 were 70.1%, 81.2%,
and 90.1% of the natural flood, respectively. The 100-year flood under the current state (27,050 m3/s)
appeared to be equivalent to the natural flood, with 10 to 20-year return periods, which implies the
substantial effect of the dam on flood regulation. The percentage increases expected in the flood
estimates for Scenarios 1, 2, and 3 for the return periods of 2, 5, 10, 20, 50, and 100 years without dams
are listed in Table 5. The data presented in Table 5 reveal that the removal of the Soyanggang Dam
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from the basin would increase flood peaks by 15.6% to 16.5%, the removal of the Chungju Dam would
increase flood peaks by 28.5% to 28.7%, and the removal of both dams would increase floods by 41.5%
to 45.4%. The effect of the Chungju Dam on the flood peak attenuation was about twice that of the
Soyanggang Dam. This difference in the effects of dams on flood peaks can be attributed to the dam
size and stage-outflow in relation to each dam.

Figure 10. Flood Change for different Return Periods according to the Scenarios (Daily). T-year
represents the different return period.

Table 5. Percent Increase in T-year Floods according to the Scenarios (Daily) (%).

Scenarios
Return Periods (Years)

2 5 10 20 50 100 Ave.

Scenario 1 16.5 16.0 15.9 15.8 15.7 15.6 15.9
Scenario 2 28.5 28.6 28.6 28.6 28.6 28.7 28.6
Scenario 3 45.4 43.3 42.6 42.1 41.7 41.5 42.7

4.3. Influence of Regulated Flow by the Dam on the Hourly Flood Frequency

Knowledge of instantaneous peak flows is often required to estimate or assess the design flood for
hydraulic structures, such as dams and levees, because there may be significant streamflow variations
within hours, especially for small basins. For the basin of interest in this study, the annual maximum
hourly and daily peak inflow data observed at the Paldang Dam from 1986 to 2015 are plotted in
Figure 11. The mean ratio of annual maximum hourly to daily peaks was 1.47, which indicates that the
use of mean daily data may cause underestimation of the design flood.

Figure 11. Annual Maximum Series of Hourly and Daily Observed Inflow at the Paldang Dam.
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Figure 12 shows the comparison of flood frequency curves based on the observed daily and hourly
annual extreme data. The ratios of hourly to daily floods were calculated for return periods of 2, 5, 10,
20, 50 and 100 years, which resulted in an average of approximately 1.39. It is obvious that there was a
significant difference between the hourly and daily peaks; therefore, it is necessary to use small time
scale peak flow data for a precise flood frequency assessment.

Figure 12. Comparison of the Hourly and Daily Frequency Curve at the Paldang Dam.

To test the validity of Sangal’s method for predicting the instantaneous peak flow at the Paldang
Dam, a comparison between the observed and estimated hourly peak flows was conducted, the results
of which are shown in Figure 13. The estimated values of the hourly peak flow presented a RMSE of
less than 0.170. The R2 value between the observed and estimated data was 0.882, which represents a
high correlation. From these statistical values, it was concluded that Sangal’s method is reasonable for
estimating the hourly peak flows at the Paldang Dam, the outlet of the study area.

Figure 13. Annual Maximum Series of Observed and Estimated Peak Inflow at the Paldang Dam.

The daily flow peaks simulated by SWAT were converted to hourly flow peaks using Sangal’s
method, and a series of annual maximum hourly peak flows was then constructed for a flood frequency
analysis (Figure 14).
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Figure 14. Annual Maximum Series according to the Scenarios (Hourly).

The flood frequency estimates based on hourly data, obtained by combining the SWAT simulation
and Sangal’s method, were compared with the observation-based results, as shown in Figure 15. Flood
frequency estimates based on the simulated data were slightly overestimated, but the errors for return
periods of 2, 5, 10, 20, 50, and 100 years were less than 8% (ranged from −2.49% to 7.13%). Therefore,
the combination of the SWAT simulation and Sangal’s method is suitable for estimating small time
scale flood peaks.

Figure 15. Observed and Simulated Floods for different Return Periods at the Paldang Dam (Hourly).
T-year represents the different Return period.

For the same scenarios described in Section 4.2, the effects of dams on peak inflows and flood
frequencies on an hourly basis at the Paldang Dam were assessed for conditions with and without
dams (Figure 16 and Table 6). The hourly peak flow data were simulated by the procedure mentioned
above. A comparison of the flood frequency estimates at the Paldang Dam for the current condition
(with the Soyanggang and Chungju dams) and for the condition representing the removal of the
Soyanggang Dam (Scenario 1), indicated that the peak inflows increased from 16.0% to 16.1% for the 2,
5, 10, 20, 50 and 100 year return periods. The removal of the Chungju Dam (Scenario 2) caused the
peak inflows to increase from 26.0% to 32.1%. Therefore, Scenario 2 had a greater effect on the peak
flow than Scenario 1. The peak flow increment ratio with the removal of both dams (Scenario 3) was
slightly lower than the summation of the respective peak flow increment ratios for the removal of the
individual dams (Scenarios 1 and 2).
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Figure 16. Flood Change for different Return periods according to the Scenarios (Hourly). T-year
represents the different return period.

Table 6. Percent Increase in T-year Floods according to the Scenarios (Hourly) (%).

Scenarios
Return Periods (Years)

2 5 10 20 50 100 Ave.

Scenario 1 16.0 16.1 16.1 16.1 16.1 16.1 16.1
Scenario 2 26.0 29.3 30.4 31.1 31.8 32.1 30.1
Scenario 3 43.6 44.0 44.2 44.3 44.3 44.4 44.1

5. Conclusions

This study explored the downstream flood frequency alterations caused by dam construction in
the Han River basin, South Korea, during 1986–2015 using streamflows simulated by a continuous
model, SWAT. The model was used to simulate the long-term peak flows at the Paldang Dam for
conditions both with (current state) and without (removal of the Soyanggang Dam or/and the Chungju
Dam) upstream dams. Flood frequency curves were established from the simulated annual peak flows
for each of these conditions by fitting a series of annual peak flow data to the Extreme Value Type-I
distribution. The individual and cumulative effects of upstream dams on the downstream flood
frequency were assessed by comparing the developed flood frequency curves. The main conclusions
are as follows:

(1) A comparison of the simulated daily peak flows with the observed data indicated that the use of
the SWAT model was suitable for estimating the flood frequency. A close correlation (R2 = 0.903,
RMSE = 0.187 m3/s) between the daily flood estimates for the return periods of 2, 5, 10, 20, 50
and 100 years, computed from the observed and simulated daily inflows to the Paldang Dam,
was achieved under the current condition, i.e., with the Soyanggang and Chungju dams in place.

(2) The effect of the Chungju Dam on the flood frequency at the Paldang Dam was found to be greater
that of the Soyanggang Dam during the simulation periods. The removal of the Soyanggang Dam
(Scenario 1; regulation by the Chungju Dam only) caused an increase in the daily flood peaks by
15.9%, while the removal of the Chungju Dam (Scenario 2; regulation by the Soyanggang Dam
only) increased the daily flood peaks by 28.6%.

(3) The peak flow increment ratio by removing both Soyanggang and Chungju dams (Scenario 3) was
slightly lower than the summation of the respective peak flow increment ratios from Scenarios 1
and 2.

(4) To overcome the inability of SWAT to reproduce sharp events within hours, a procedure
incorporating Sangal’s method for estimating instantaneous peak flow from the daily flow
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into the SWAT simulation has been proposed in the present work. As a result of the flood
frequency analysis on an hourly basis using this procedure, the errors in the flood estimates were
less than 8%, which leads to acceptable accuracy.

(5) The increased average percentage of the hourly flood estimates for the three scenarios, relative to
the current state, were 16.1%, 30.1%, and 44.1%, for the removals of the Soyanggang, Chungju,
and both dams, respectively. These increased percentages were a little higher than those for the
estimated daily flood frequencies.

(6) The developed approach allows for a better understanding of flood frequency alterations during
the post-dam period, which will improve the applicability of continuous simulation models for
the analysis of flood frequency.
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Abstract: Due to the high density of buildings and low quality of the drainage pipe network in
the city, urban non-point source pollution has become a serious problem encountered worldwide.
This study investigated and analyzed the characteristics of non-point source pollution in Baoding
City. A simulation model for non-point source pollution was developed based on the Stormwater
Management Model (SWMM), and, the process of non-point source pollution was simulated for
Baoding City. The data was calibrated using data from two observed rainfall events (25.6 and 25.4 mm,
the total rainfall on 31 July 2008 (07312008) was 25.6 mm, the total rainfall amount on 21 August
2008 (08212008) was 25.4 mm) and validated using data from an observed rainfall event (92.6 mm,
the total rainfall on 08102008 was 92.6 mm) (Our monitoring data is limited by the lack of long-term
monitoring, but it can meet the requests of model calibration and validation basically). In order
to analyze the effects of non-point source pollution on Baiyangdian Lake, the characteristics and
development trends of water pollution were determined using a one-dimensional water quality
model for Baoding City. The results showed that the pollutant loads for Pb, Zn, TN (Total Nitrogen),
and TP (Total Phosphorus) accounted for about 30% of the total amount of pollutant load. Finally,
applicable control measures for non-point source pollution especially for Baoding were suggested,
including urban rainwater and flood resources utilization and Best Management Practices (BMPs) for
urban non-point source pollution control.

Keywords: Baoding City; SWMM; non-point source (NPS) pollution; Baiyangdian Lake; rainfall-runoff

1. Introduction

Over the past decades, high-speed urbanization has led to increasing imperviousness in
urban-underlying surface in many parts of the world [1]. An increase in imperviousness results
in marked changes in water circulation patterns and may result in higher risks of flood disaster in
urban areas [2–4]. Particularly, this problem is exacerbated by increases in urban dust levels due
to a sharp growth of the urban population and industrial activities in developing countries such as
China [5,6]. Since a large quantity of urban dust is transported into water bodies by rainfall-runoff
processes, this might cause serious deterioration of urban water quality. This process has been
recognized as urban non-point source pollution and has become a great threat to the urban water
environment [7–9]. This pollution process is very complex because it involves diverse pollutants
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that originate from various non-point sources in an urban environment, such as suspended solids,
organic materials, nutrients, heavy metals, and pesticide residue [10–13]. Health-related conditions
for both human beings and aquatic organisms can be greatly affected by this type of pollution due to
stormwater and the associated urban non-point sources [14]. This is particularly true in many cities in
China, which is one of the most expedite economic and industrialized countries in the world. Therefore,
urban stormwater can lead to both qualitative and quantitative problems in the receiving waters.

In recent years, the management of the quantity and quality of stormwater runoff from urban
areas has become a complex task and an increasingly important environmental issue for urban
communities [15–17]. To deal with this issue, computer-aided models are extremely useful for
simulating and predicting the quantity and quality of urban stormwater. For example, since the
1970s, the United States and other developed countries have started to apply mathematical models
to simulate the processes of urban rainfall-runoff. In addition, these models were widely used for
evaluating effects of surface runoff pollution on various drainage systems and the corresponding
receiving water bodies. These widely used urban stormwater models include the Source Loading and
Management Model (SLAMM), the Storage, Treatment, Overflow, Runoff Model (STORM), the Model
for Urban Sewers (MOUSE), the Stormwater Management Model (SWMM), and various derivative
models [18–20]. Among them, SWMM is a computerized program that can assess the impacts of
surface runoff pollution and evaluate the effectiveness of many mitigation strategies. It was first
developed in 1971 and has undergone several major upgrades since then [18,21]. The current edition,
Version 5, which runs under Windows, is a complete revision of the previous release. It is widely used
throughout the world for supporting planning, analysis, and design related to stormwater runoff, and
it integrates sewers, sanitary sewers, and other drainage systems in urban areas [22].

Research into the applications of the SWMM model in China has been conducted for decades.
The SWMM model has been described as the classic non-point source pollution model [23,24].
The Morris screening method was used for a local sensitivity analysis of the parameters in the
hydrologic and hydraulic modules of the SWMM model, in order to identify the sensitivity of the
model parameters and perform an uncertainty analysis [25] (Section 3, the Electronic Supplementary
Information, ESI). The results showed that the impact factors of the three most sensitive parameters
were coefficients of imperviousness [26].

Baiyangdian Lake, situated centrally in the North China Plain, is the kidney of North China.
The lake plays vital roles in flood reservation and environmental pollution decomposition [27].
However, Baoding City is the largest city in the upper basin, the human activities in the city have an
important impact on the ecological environment of the Baiyangdian Lake. The quantity of sewage
that drained into Baiyangdian Lake from Baoding City was about 25 to 33.6 × 104 t per day, and
the quantity of sewage that drained into lake by secondary storm water runoff can reach about 25 to
30 × 104 t per day [28]. A large number of contaminants draining into Baiyangdian Lake is a serious
threat to the Baiyangdian water ecological environment. Therefore, it is of great practical significance
to research the impact of non-point source pollution of Baoding City on the water environment of
Baiyangdian Lake.

Therefore, the objective of this research is to understand the process of non-point source pollution
in Baoding City and the concentration of non-point source pollutants at the outfall of the catchment.
Our monitoring data is limited by the lack of long-term monitoring, the use of only three sets of
data, two used to calibrate and the other one to validate the model, is rather insufficient. However,
it was already demonstrated by Di Modugno et al. that even a minimum amount of experimental
observations may provide relevant information necessary to enhance design procedures and to improve
the efficiency of systems aimed at first flush separation, storage, and treatment [29]. Our main objectives
are to (1) develop a simulation model for non-point source pollution based on SWMM, and based
on the model results, analyze the characteristic effects of the non-point source pollution in an urban
catchment in Baoding City and (2) reveal the effects of the non-point source pollution of Baoding City
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on Baiyangdian Lake with a one-dimensional water quality model, the results will be useful for better
control of urban non-point source pollution and water environmental recovery of Baiyangdian Lake.

2. Materials and Methods

2.1. Overview of Baoding City and Baiyangdian Lake

Baoding City is located in the mid-east of Hebei Province, and Baiyangdian Lake is located in
the east, Taihang Mountain in the west, and the vast and fertile Hebei Great Plains in the north and
south (Figure 1). The urban area is 312.3 km2, with a population of 1.07 million people. The city is
located in the plains, and the terrain slopes from northwest to southeast and extends to the Taihang
Mountain area in the northwest with a gentle slope. The city has 12 rivers and streams, of which the
Caohe and Tanghe River cross the city and flow into Baiyangdian Lake, which is called the “Pearl of
North China” [28].

Figure 1. Monitoring sections location in Baiyangdian Lake.

With the rapid economic development, water resource shortages, water consumption, and sewage
emissions in Baoding City continue to increase, and because the pollution control measures are less
developed, several water-related environmental problems have become more significant. The first
problem is the pollution of the flood drainage system. Sewage is discharged into the rivers, causing
the destruction of the water environment.

Lake Baiyangdian, situated centrally in the North China Plain, is located 130 km south of Beijing
(Figure 1). The surface area of the lake is 366 km2, with a catchment area of 31,200 m2. The lake depth
varies according to the hydrologic conditions, but is usually less than 2.0 m [27,30,31]. The annual
mean precipitation is less than 450 mm, and the annual mean ambient temperature is less than 17 ◦C
in climate changes. With average annual runoff of 3.57 × 109 m3, the lake plays vital roles in flood
reservation, environmental pollution decomposition, etc. Moreover, the lake is a monomictic lake with
only one entrance accepting pollutant emissions from Fuhe River [24] (Figure 1).

2.2. Available Data

The data of rainfall on 31 July 2008 (07312008), 21 August 2008 (08212008), and 10 August 2008
(08102008), was measured by rain gauge. Precipitation was recorded every 5 min. The total rainfall on
07312008 was 25.6 mm, but only lasted for approximately 2 h and had a high rainfall intensity. The total
rainfall amount on 08212008 was 25.4 mm, lasted for approximately 7 h, but had a much lower rainfall
intensity. The total rainfall on 10 August 2008 (08102008) was 92.6 mm, lasted approximately seven
hours and was the strongest rainstorm that occurred from July to September 2008.
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Our monitoring data is limited by the lack of long-term monitoring, the use of only three sets of
data, two used to calibrate and the other one to validate the model, is rather insufficient. However,
it can meet the requests of model calibration and validation at a basic level [29].

2.3. Methods

To analyze the process of non-point source pollution of Baoding City and the effects of non-point
source pollution on Baiyangdian Lake, we use the Stormwater Management Model (SWMM) and
the one-dimensional water quality model. In the course of the study, the technical route is as
follows (Figure 2).

Figure 2. Diagram of the technical route.

According to the hydrological parameters, quality parameters and hydraulic parameters of the
model, the sensitivity analysis of the model parameters was carried out, and the SWMM model of
Baoding City was established after repeated calibration and verification. The simulation process of
non-point source pollution in Baoding City is divided into typical simulation of stormwater runoff and
simulation of annual rainfall-runoff. The influence of stormwater runoff and annual rainfall-runoff
pollution on the Baiyangdian Lake water environment were studied by analyzing the characteristics of
pollution reduction along the Fuhe River.

2.3.1. SWMM Model

SWMM, a dynamic rainfall-runoff simulation model, is used for single event or long-term
(continuous) simulation of runoff quantity and quality from primary urban areas. The runoff
component of SWMM operates on a collection of sub-catchment areas that receive precipitation
and generate runoff and pollutant loads. The routing portion of SWMM transports this runoff through
a system of pipes, channels, storage/treatment devices, pumps, and regulators. SWMM tracks the
quantity and quality of runoff generated from each sub-catchment, and the flow rate, flow depth, and
quality of water in each pipe and channel during a simulation period are comprised of multiple time
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steps. This section briefly describes the methods SWMM uses to model stormwater runoff quantity
and quality through the following two processes [21].

(1) Runoff Simulation

SWMM uses the St. Venant equations for flow simulation [32,33]. The St. Venant equations
represent the principles of conservation of momentum (Equation (1)) and conservation of
mass (Equation (2))

∂y
∂x

+
v
g

∂v
∂x

+
1
g

∂v
∂t

= So − S f (1)

∂Q
∂x

+
∂A
∂t

= 0 (2)

where y is the water depth, m; v is the velocity, L·t−1; x is the longitudinal distance, m; t is the time,
s; g is the gravitational acceleration, 9.8 m/s; So is channel slope, dimensionless; Sf is friction slope,
dimensionless; A is the area of the flow cross-section and a function of y based on the geometry of the
conduit, m2; Q is the discharge and it is equal to A × v, m3·s−1.

Equation (1) represents hydrostatic pressure, convective acceleration, local acceleration, and
gravity and frictional forces, respectively. Representing the effects of turbulence and viscosity, the
friction slope (Sf) is calculated in SWMM using Manning’s equation [18]:

S f =
Q2

1
n2 A2R4/3

(3)

where n is Manning’s roughness coefficient, t·L−1/3; R is hydraulic radius, m; Q and A are
defined previously.

Equation (3) is substituted into Equation (1), and the resulting equation is solved for Q:

Q =
1
n

AR2/3(
∂y
∂x

+
v
g

∂v
∂x

+
1
g

∂v
∂t

− SO)
1/2

(4)

Since there is no known analytic solution, an iterative finite-difference method is applied to
Equations (2) and (4) to solve the equations. For each time step, the discharge, area, and water depth
(y) at the outlet of each conduit are derived.

(2) Water quality simulation

In this paper, the exponential function is used as the surface pollutant build-up and wash-off
algorithms of the SWMM model, and the build-up and wash-off algorithms used to simulate these
two processes (Section 2 in the ESI).

Water quality routing within conduit links assumes that the conduit behaves as a
continuously-stirred tank reactor (CSTR). Although the assumption of a plug flow reactor might
be more realistic, the differences will be small if the travel time through the conduit is on the same
order as the routing time step. The concentration of a constituent exiting the conduit at the end of a
time step is determined by integrating the conservation of mass equation and using average values for
quantities that might change over the time step, such as flow rate and conduit volume [22].

Solute transport is simulated with the assumption of complete and instantaneous mixing within
each element of the sewer system. The instantaneous mixing assumption introduces artificial
dispersion; however, as the number of conduit elements is increased within a system, solute transport
is represented by pure advection [22]. The overall transport of solutes through the system is executed
through a mass balance calculation that incorporates decay. The concentrations of solutes are
determined using the finite difference form of the continuity equation [18]:

∂(Vc)
∂t

= Qici − Qoco − kcV + s (5)
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where c is the concentration in the mixed volume, m·L−3; V is the volume, L3; t is the time, t; Qi and
Qo are the inflow (i) and outflow (o) rate, L3·t−1; ci and co are the concentrations of the influent and
effluent, m·L−3; k is the decay constant, t−1; s is the source (or sink), m·t−1.

Assuming complete mixing and applying a finite-difference scheme, Equation (5) becomes:

cj+1 =
(cj(Vj(

2
Δt − (D1 + D2))− Qo,j) + (ci,j + Qi,j) + (ci,j+1 + Qi,j+1) + D2 · S(Vj + Vj+1))

(Vj+1 · ( 2
Δt + (D1 + D2)) + Qo,j+1)

(6)

where j is the time-step number; D1 is the decay constants, t−1; D2 is the growth constant, t−1;
S = maximum growth, m·L−1; Dt is the time increment, t, and the other parameters were defined
with Equation (5).

2.3.2. One-Dimensional Water Quality Model

Sewage and rainwater from Baoding City flow into the Fuhe River and a biochemical reaction
occurs gradually in the flow process under the action of natural microorganisms. As a result, the main
pollutant COD is decomposed as the flow process has been lengthened. For the Fuhe River with small
ratio of width to depth, pollutants can be mixed in these sections (Jiaozhuang, Wangting, Anzhou,
Nanliuzhuang) in a relatively short period of time. A one-dimensional water quality model that can
simulate the migration of pollutants along the river longitudinal has been described in [34,35] and is
defined as:

C(x) = C0 exp(−k · x
u
) (7)

where C(x) is the contaminant concentration of the control section, mg/L; C0 is the contaminant
concentration of the initial section, mg/L; k is the self-purification capacity of the pollution, 1/d; x is
the longitudinal distance of the control section of the downstream section of the sewage outfalls, m; u
is the average flow velocity of the polluted belts along the river banks, m/s.

3. Results and Discussions

3.1. Model Calibration and Model Validation

In this study, the drainage system of Baoding City was generalized based on an analysis of the
drainage system and field reconnaissance of the study area. The entire city was divided into three
sub-watersheds: a middle sub-watershed, a southern sub-watershed, and a northern sub-watershed,
based on the actual drainage system (Figure 3). The rainfall-runoff of the middle sub-watershed
flowed into Yimuquan River, Hou River, and Qingshui River, and then flowed together into the Fuhe
River. The urban rainfall-runoff of the southern sub-watershed and northern sub-watershed was also
generalized to flow into flood embankments as gravity flow and then flow into the Fuhe River, without
regard for processed rainfall-runoff through the sewage treatment plant.

A total of 447 rainwater pipe nodes and 447 rainwater pipes were generalized (including rainwater
pipes, sewage pipes, and open channels). The diameter of rainwater pipes ranged between 400 and
1400 mm, and some pipes had a rectangular cross-section of 2000 mm × 2000 mm, while the bottom
width of open channels varied between 5 and 14 m. Furthermore, three outlets were generalized,
Node_556, Node_557, and Node_558. Node_557 was the Jiaozhuang section on the Fuhe River of
the middle sub-watershed, Node_556 and Node_558 were the sections on the northern and southern
flood embankments, respectively, and they represented the outlets of the northern and southern
sub-watersheds (Figure 4, Tables S1 and S2 in the ESI). Based on the generalization of the drainage
system, the boundaries of trunk roads and streets in conjunction with field reconnaissance and research,
and taking into account a topographic map and the convergence characteristics of Baoding City, the
whole urban catchment was divided into 450 sub-catchments, with a total area of 130.76 km2 (Figure 5
and Tables S3 in the ESI).
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Figure 3. Drainage system diagram of Baoding City.

Figure 4. Drainage system generalization of Baoding City.
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Figure 5. Sub-catchment diagram of Baoding City.

3.1.1. Model Calibration

(1) Parameters of SWMM

SWMM parameters include hydrological, hydraulic, and water quality parameters. It is relatively
easy to determine the hydraulic parameters by surveying pipes and networks. However, the
hydrological parameters are relatively difficult to determine. The parameters in this study were
obtained through the model handbook and field surveys. Table 1 lists the major hydrological and
hydraulic parameters, their ranges, and methods for determining the parameters.

Table 1. Major hydrological, hydraulic parameters of Stormwater Management Model (SWMM) and
their range and obtain methods.

NO. Parameter Meaning Data Range Data Source

1 Manning-N Manning coefficient of Pipe 0.005~0.04 SWMM handbook
2 N-Imperv Mannings N of impervious area 0.005~0.04 field survey, SWMM handbook
3 N-perv Mannings N of pervious area 0.1~0.8 field survey, SWMM handbook
4 S-Imperv Depression storage on impervious area 0.2~2 (mm) field survey, SWMM handbook
5 S-perv Depression storage on pervious area 2~10 (mm) field survey, SWMM handbook

6 Pct-Zero Percent of impervious area with no
depression storage 50~80 (%) field survey, SWMM handbook

7 MaxRate Maximum rate on infiltration curve 3~50 (mm/h) SWMM handbook
8 MinRate Minimum rate on infiltration curve 1~3 (mm/h) SWMM handbook
9 Decay Decay constant for infiltration curve 2~7 SWMM handbook

10 Imperv (%) Percent of impervious area 10~90 (%) field survey, Google Earth

11 Width Width of overland flow path depends on the area
of sub-catchment GIS

12 Slope Average surface slope (%) 0.1~2 (%) GIS

The parameters for the accumulation of pollutants in water quality portion of the model
were obtained by measurements, but empirical values were used for the scouring parameters.
The sub-catchments in the SWMM model were divided into four types of land-use including business
areas, residential areas, industrial areas, and green areas. Moreover, the main pollution factors
including COD, TN, TP, Pb, and Zn, which were produced by rainwater mixing with the urban dust,
were simulated in the model. The parameters for pollutant accumulation and erosion in different
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land-use types are shown in Tables 2 and 3, wash off exponent means the runoff exponent in wash
off function, and wash off coefficient means wash off coefficient or Event Mean Concentration (EMC).
The cumulative amount of surface pollution is directly related to land use condition, greening condition,
traffic condition, rainfall interval and rainfall intensity. The distribution of dust accumulation on the
surface is: industrial area > traffic area > residential area > green area. In this study, we regard the
different land use types had the same cumulative rate constants and half-saturated accumulation times.
The cumulative rate constant was 0.5 and the half-saturated accumulation time was 10 days.

Table 2. Maximum accumulation quantity of pollutants on different land use types kg/hm2.

Area COD TN TP Pb Zn

Commercial area 46 15.6 0.64 0.12 0.62
Residential area 58 8.6 0.24 0.056 0.22
Industrial area 43 10.3 0.38 0.12 0.22

Green area 20 14.5 0.17 0.045 0.11

Table 3. Wash off parameters of pollutants on different land use types.

Area Parameter COD TN TP Pb Zn

Commercial
area

wash off coefficient 0.003 0.004 0.004 0.004 0.004
wash off exponent 1.4 1.8 1.7 1.7 1.8

Residential
area

wash off coefficient 0.003 0.004 0.002 0.004 0.004
wash off exponent 1.4 1.8 1.7 1.7 1.8

Industrial
area

wash off coefficient 0.003 0.004 0.004 0.004 0.004
wash off exponent 1.4 1.8 1.7 1.7 1.8

Green area
wash off coefficient 0.003 0.002 0.001 0.001 0.001
wash off exponent 1.2 1.4 1.2 1.2 1.2

(2) Sensitivity Analysis

A sensitivity analysis is used to study the impacts of parameters on the model output to identify
the key parameters of the model. The results from a sensitivity analysis by Huang [26] and Wang [27]
and the sensitivity ranking of the hydraulic and hydrological parameters in SWMM are listed in
Table 4. For different output variables, the sensitivity order of each parameter is also different, for
runoff coefficient, the order of parameter according to the sensitivity is Imperv(%) > S-Imperv >
Pct-Zero > N-Imperv > Width.

Table 4. Sensitivity ranking of hydraulic and hydrological parameters in SWMM.

Runoff Factor 1 2 3 4 5

Runoff Coefficient Imperv(%) S-Imperv Pct-Zero N-Imperv Width
Peak Discharge Imperv(%) S-Imperv N-Imperv Width Pct-Zero

Peak Discharge Time Manning-N N-Imperv S-Imperv Width Pct-Zero

(3) Calibration Results

The hydrology, hydraulic, and water quality parameters in SWMM were calibrated by using
rainfall data from 31 July 2008 (07312008) and 21 August 2008 (08212008). The rainfall amount was
nearly identical but had different characteristics. The total rainfall on 07312008 was 25.6 mm, but only
lasted for approximately 2 h and had a high rainfall intensity. The total rainfall amount on 08212008
was 25.4 mm, lasted for approximately 7 h, but had a much lower rainfall intensity. Therefore, these two
rainfall events were well suited to represent rainfall and could be used to calibrate the SWMM model
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for Baoding City. First, the SWMM parameters were established by using measured parameters and
the empirical coefficient, and then the parameters were adjusted manually until the simulated results
agreed well with the measured results. Based on the parameter sensitivity analysis, the parameter
calibration mainly focused on parameters with relatively high sensitivity, while parameters with low
sensitivity were adjusted roughly or the empirical coefficient was used directly. We used trial and error
for adjustments and there was a good fit for the quantity and quality curves between the simulated
and the measured processes. The results are shown in Figures 6 and 7. The simulated water quality
process line of 07312008 rainfall and 08102008 rainstorm fit well with the measured water quality
process line, but the simulated water quality process line of 08212008 did not fit well.

Figure 6. Measured and simulated hydrograph of rainfall-runoff and water quality of 07312008 on
Jiaozhuang section.
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Figure 7. Measured and simulated hydrograph of rainfall-runoff and water quality of 08212008 on
Jiaozhuang section.

3.1.2. Model Validation

The rainfall-runoff data from 10 August 2008 (08102008) was used to validate the simulated
results of the SWMM output, which was based on the calibrated data. The total rainfall on 08102008
was 92.6 mm, lasted approximately seven hours and was the strongest rainstorm that occurred from
July to September 2008. The curves of measured and simulated runoff and water quality are shown
in Figure 8.

The relative error (RE) between the mean value of the measured data and the corresponding
simulation data is used to test the goodness-of-fit.
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Figure 8. Measured and simulated hydrograph of rainfall-runoff and water quality of 08102008 on
Jiaozhuang section.

3.2. Error Analysis

3.2.1. Runoff

We obtained a good fit for the simulated and measured hydrograph data for the Jiaozhuang
section, but the simulated peak runoff volume was higher than the measured peak runoff volume by
about 30%, and the simulated peak runoff occurred about 30 min prior to the measured peak runoff.
However, the rate of decrease in the simulated peak runoff was also slower than the measured peak
runoff. Moreover, there were certain differences between simulated and measured runoff volume
(Table 5). In the middle sub-watershed of Baoding City, rainwater flowed into the Yindingzhuang
sewage plant and, therefore, the volume was 80,000–100,000 cubic meters. By adding this portion of the
runoff to the other runoff data, the relative error of the SWMM results was acceptable. The calibrated
relative error (RE*) is shown in Table 5.
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Table 5. Simulated runoff volume and measured runoff volume on Jiaozhuang section.

Analysis Period Rain Time
Rainfall

(mm)
Simulated Runoff
Volume (104 m3)

Measured Runoff
Volume (104 m3)

RE
(%)

RE*(%)

Calibration Period
07312008 25.6 33.40 18.87 −77.0 −24.3 ~−15.7
08212008 25.4 28.83 15.87 −81.6 −20.8 ~−11.4

Validation Period 08102008 92.6 94.19 60.97 −54.5 −36.6 ~−32.7

3.2.2. Rainfall Runoff Coefficient

Based on the integrated rainfall-runoff coefficient point, the rainfall-runoff coefficients on 07312008,
08212008, and 08102008 were 0.376, 0.337, and 0.653, respectively, which was consistent with the
empirical rainfall-runoff coefficient values (0.3–0.7) of Baoding City (Section 4 and Table S4 in the ESI).

3.2.3. Water Quality

With regard to the water quality simulation, the results indicated that there was a better fit for the
simulated and measured water quality hydrograph data for 07312008 and 08102008 than for 08212008.
In the three simulation processes, the heavy metals Pb and Zn exhibited peak values, and the simulated
peak values and times of occurrence were consistent with the measured values and times, indicating
that the simulations for Pb and Zn were successful. However, concentrations of TN, TP, and COD did
not exhibit peak values. The concentrations of the three elements decreased during the rainfall-runoff
process and then gradually returned to levels seen prior to the rainfall-runoff event. The measured
times of recovery for the TN, TP, and COD concentrations were earlier than the simulated times,
especially for the rainfall event on 08212008. This was possibly due to the low rainfall intensity and
short duration; consequently, the conditions were not ideal for simulating erosion processes, and poor
simulation results were obtained. This was consistent with the results of the rainfall-runoff process
that showed that the rate of decrease of the simulated runoff was longer than the measured time.
This indicated that the SWMM model simulated water quality appropriately, especially for a rainfall
with heavy intensity.

3.2.4. Continuity Errors

The continuity errors for the three rainfall-runoff simulations, including the calibration and
validation periods, are shown in Table 6. The continuity error was lower for surface runoff and flow
routing than for the simulation of water quality. Research has suggested that the continuity error
should be less than 10% in SWMM [22]. The continuity error was acceptable for the simulation process
in this research, except for slightly higher values for the simulation of water quality on 07312008.

Table 6. Continuity errors of simulation.

Analysis Period Rain Time Surface Runoff Flow Routing Runoff Quality

Calibration period 07312008 −0.09% −0.15% 14.23%
08212008 −0.01% −0.05% 8.09%

Validation period 08102008 −0.06% −0.07% 6.45%

3.3. Simulation Results

3.3.1. Simulation Results of 08102008 Storm Water Runoff

The results of the simulations for stormwater runoff on 08102008 are shown in Table 7 and are
as follows: (1) the runoff and output of the total non-point source pollution load were higher for the
northern and middle sub-watersheds than for the southern sub-watershed. This was not only due to
the larger area of the northern and middle sub-watersheds compared to the southern sub-watershed,
but also because the imperviousness was lower for the southern sub-watershed than for the other
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two sub-watersheds; (2) the overall stormwater runoff on 08102008 was 4.52 × 106 m3, the average
flow was 50.83 m3/s, and the maximum flow for the system was 136.48 m3/s; and 3) the output values
for the non-point source pollution loads for Pb, Zn, TN, TP, and COD in the stormwater runoff on
08102008 were 145.50, 556.72, 29,412.84, 874.98 and 74,218.42 kg, respectively.

Table 7. Runoff and output of total non-point source pollution load on export section of 08102008.

Node
Average

Runoff (m3/s)
Max. Runoff

(m3/s)
Total Runoff

(104 m3)

Output Non-Point Source Pollution Load (kg)

Pb Zn TN TP COD

Node_556 22.51 61.55 196.70 60.56 238.82 11453.24 224.75 27970.87
Node_557 15.75 43.00 142.60 66.36 254.04 13425.89 595.08 35596.38
Node_558 12.57 32.97 112.53 18.58 63.87 4533.71 55.15 10651.17
System 50.83 136.48 451.83 145.50 556.72 29412.84 874.98 74218.42

3.3.2. Simulation Results of 2008 Rainfall-Runoff

The results of the simulations for rainfall-runoff in 2008 are shown in Table 8. The annual rainfall
in 2008 was 564.3 mm, and the rainfall from June to September was 451 mm, which accounted for 80%
of the total annual rainfall. The simulation started on 1 January 2008, and ended on 31 December 2008.
Winter snowmelt runoff was not taken into account in the simulation. The infiltration losses were
103.48 mm, evaporation losses were 227.81 mm, and surface runoff was 233.39 mm. Furthermore, the
rainfall-runoff coefficient was 0.414 and the continuity error was −0.068%.

Table 8. Runoff and output of total non-point source pollution load on export section of 2008.

Node
Average

Runoff (m3/s)
Max. Runoff

(m3/s)
Total Runoff

(104 m3)

Output Non-Point Source Pollution Load (kg)

Pb Zn TN TP COD

Node_556 0.38 18.48 1200.77 140.4 526.3 26127.3 523.7 91681.3
Node_557 0.99 14.97 3116.06 682.2 1747.7 1089088 82203 2997034
Node_558 0.16 8.6 496.30 29.4 88.9 7947.5 92.1 27371.1
System 1.53 41.81 4813.13 852.0 2362.8 1123163 82819 3116086

The annual rainfall-runoff in 2008 was 48.13 × 106 m3, the average flow was 1.53 m3/s, and the
maximum flow for the system was 41.81 m3/s. The total runoff of the middle sub-watershed was
31.16 × 106 m3, which accounted for 60% of the total annual runoff. This was due to the location of
the middle sub-watershed in the center of the city in an area of high imperviousness. For the 2008
rainfall-runoff, the annual output of the non-point source pollution loads for total Pb, Zn, TN, TP, and
COD was 852.0 kg, 2362.8 kg, 1,123,163 kg, 82,819 kg, and 3,116,086 kg respectively. The pollution
load of the middle sub-watershed accounted for 80% of those values. Furthermore, the pollution
load for TN and TP of the middle sub-watershed accounted for more than 90% of the total due to an
average imperviousness of as much as 85% for the central city, which was conducive to rainfall-runoff
generation. Another reason was the growth of inflow during dry season mainly generated in the
middle sub-watershed.

3.4. Influence of Non-Point Source Pollution from Baoding City on Baiyangdian Lake

3.4.1. Analysis of Non-Point Source Pollution Load in Baoding City

The total discharge and non-point source pollution loads of the rainstorm and annual rainfall
processes in Baoding City are shown in Table 9. The total discharge of a single storm on 20080810
was 4.52 ×106 m3, and the output of the non-point source pollution load of the total Pb, Zn, TN, TP,
and COD was 145.5 kg, 556.7 kg, 29,412.8 kg, 875 kg, and 74,218.4 kg, respectively. Without any Best
Management Practices (BMPs), the total amounts of the output pollutants Pb, Zn, TN, TP, and COD
were almost doubled. With street-sweeping and other BMPs, the total output of the pollution loads
for Pb and Zn increased by more than 50%, while TN, TP, and COD approximately doubled in value.
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The removal efficiency of BMPs to Pb and Zn was approximately 10%, while for TN, TP, and COD,
the removal efficiency was only about 1%, demonstrating that BMPs had a positive influence on the
control of the non-point source pollution load in the basin.

Table 9. Total discharge and non-point source pollution load of Baoding City Basin.

Rain
Time

Rainfall
(mm)

Total Discharge
(104 m3)

BMPs
Output Non-Point Source Pollution Load (kg)

Pb Zn TN TP COD

08102008 92.32 451.83 N 145.5 556.7 29,412.8 875.0 74,218.4

1998 514.8 3453.31
N 554.3 1560.9 591,187.1 41,738.1 1,616,665.4
Y 518.0 1416.9 584,777.5 41,563.7 1,595,238.3

2008 564.3 4813.13
N 852.0 2362.8 1,123,163.2 82,818.9 3,116,086.2
Y 797.2 2148.6 1,114,198.4 82,559.8 3,081,398.4

3.4.2. Reduction of Pollutants along the Fuhe River

The sewage and stormwater discharge from Baoding City through the city’s drainage network
and eventually pass through the Fuhe River into Baiyangdian Lake (Figures 1 and 2), which is located
approximately 45 km away. This small flow of sewage from Baoding City to Baiyangdian Lake requires
about two days, while a storm flood with large velocity requires about 5 h [28]. During this time, major
pollutants are degraded and reduced.

Based on a study of COD reduction along the Fuhe River [36,37] and Equation (7), the value for
k is 0.5 day−1 and u = 22.5 km/day Section 5 in the ESI). The coefficients were verified by using the
measured data shown in Table 10, and Equation (6) was well-suited to simulate the process of the
longitudinal attenuation of COD.

Table 10. Pollutant concentration of the sections mg/L.

Section TN TP COD

Jiaozhuang 49.33 2.34 97.75
Wangting 27.45 1.22 42.74
Anzhou 25.55 1.21 31.84

Nanliuzhuang 15.31 0.34 32.52

3.4.3. Effects on the Water Environment of Baiyangdian Lake

There were seven sample locations for water quality monitoring in Baiyangdian Lake (Figure 1),
and the results are shown in Table 11.

Table 11. Water quality monitoring data of Baiyangdian Lake.

Parameters
Concentration (mg/L) Mean

(mg/L)Zaolinhzuang Wangjiazhai Guangdianzhangzhuang Quantou Caiputai Duancun Shaochedian

Pb 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
TN 1.79 2.15 2.68 1.57 0.8 1.19 1.74 1.71
TP 0.07 0.14 0.12 0.09 0.05 0.09 0.06 0.09

The total discharge and the point and non-point source pollution load in the Jiaozhuang section of
Baoding City are shown in Table 12. The input concentration of Pb, TN, and TP from the storm runoff
on 08102008 was two times, 3.8 times, and 2.1 times higher, respectively, than the average concentration
in Baiyangdian Lake.
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Table 12. Total discharge and pollution load of the point source and non-point source of Baoding City.

Time Emission Source
Total Flow of

Discharging (104 m3)

Pollution Load (kg)

Pb Zn TN TP COD

1998
Rainfall-runoff 3453.31 554.3 1560.9 591,187.1 41,738.1 1,616,665.4

Industrial Sewage 4500.00 1350.0 2250.0 2,475,000.0 225,000.0 6,750,000.0
Total pollution 7953.31 1904.3 3810.9 3,066,187.1 266,738.1 8,366,665.4

2008
Rainfall-runoff 4813.13 852.0 2362.8 1,123,163.2 82,818.9 3,116,086.2

Industrial sewage 6000.00 1800.0 3000.0 3,300,000 300,000.0 9,000,000.0
Total pollution 10,813.13 2652.0 5362.8 4,423,163.2 382,818.9 12,116,086.2

As rainfall-runoff and industrial sewage moves from Baoding City from the cross section into
Baiyangdian Lake, and water losses occur along the way, including evaporation loss, river leakage
loss, and loss due to agricultural irrigation. The pollutant load of rainfall-runoff input Baiyangdian
Lake from Baoding City was deducted due to the losses of water along the way. The mean annual
losses account for 40% of total water volume. If only river leakage losses are considered for a single
rainstorm event, the leakage loss accounts for 15% of the total runoff. During the 10 years from 1998 to
2008, the growth in the non-point source pollution loads for Pb, Zn, TN, TP, and COD were 178.6 kg,
481.2 kg, 134,539.6 kg, 7866 kg, and 330,784.6 kg, respectively. The non-point source pollution load
input accounted for the proportion of total pollution load input also increased.

4. Conclusions

In this paper, a simulation model for non-point source pollution of Baoding City was developed
based on SWMM. Two typical measured rainfall-runoff processes on 07312008 and 08212008 were
used to calibrate hydraulic and hydrological parameters of SWMM using trial and error for debugging.
After the calibration of the model simulation error can be controlled within −36.6% to −11.4%,
the actual process and the simulation process have achieved good fitting effect. The fit between
measured and simulated processes was good, demonstrating that the model calibration was successful.
The simulation results showed that a typical rainstorm on 08102008 produced a total runoff of
4.52 × 106 m3, and the non-point source pollution loads for Pb, Zn, TN, TP, and COD were 145.50,
556.72, 29,412.84, 874.98 and 74,218.42 kg, respectively.

The annual rainfall-runoff volume in 2008 was 48.13 × 106 m3, and the total runoff of the pipe
network was 31.16 × 106 m3, which accounted for 60% of the total annual runoff. The annual non-point
source pollution loads for Pb, Zn, TN, TP, and COD were 852.0 kg, 2362.8 kg, 1,123,163 kg, 82,819 kg,
and 3,116,086 kg, respectively, and the pollution load of the pipe network accounted for about 80% of
those values.

The one-dimensional water quality model was applied in the research, the simulation results
showed that the average concentration of TN and TP of the annual rainfall-runoff was about 10 times
higher than that of Baiyangdian Lake. The input water for rainfall-runoff was 20.72 × 106 m3 in 1998,
accounting for 43% of the total amount of rain and sewage in Baoding City. The non-point source
pollution loads for Pb, Zn, TN, TP, and COD were 332.6 kg, 936.5 kg, 341,866.4 kg, 19,868.7 kg, and
356,833.7 kg, respectively. The rainfall-runoff water input was 28.88 × 106 m3 in 2008, accounting
for 45% of the total amount of rain and sewage. The non-point pollution loads for Pb, Zn, TN, TP,
and COD were 511.2 kg, 476,406.0 kg, 1,417.7 kg, 27,734.7 kg, and 687,618.3 kg, respectively. From
1998–2008, the total input of the non-point source pollution load for rainfall-runoff in Baoding City has
increased, and the annual input accounted for about 30% of the total amount of pollutant load.

Based on the simulation results of non-point source pollution, applicable control measures for
non-point source pollution especially for Baoding City would be taken, such as urban rainwater
and flood resources utilization and Best Management Practices (BMPs) for urban non-point source
pollution control, which including engineering and non-engineering measures. In future research, the
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control measures can be enhanced for floods control and pollutant reduction. In this way, the research
would be more practical guidance.

Our monitoring data is limited by the lack of long-term monitoring, the use of only three sets of
data, two used to calibrate and the other one to validate the model, these can meet the requests of
model calibration and validation at a basic level, and the result of this study has its limitations. Further
research will be needed to improve this study.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/9/4/249.
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Abstract: Exposure to highly toxic pesticides could potentially cause cancer and disrupt the
development of vital systems. Monitoring activities were performed to assess the level of
contamination; however, these were costly, laborious, and short-term leading to insufficient
monitoring data. However, the performance of the existing Soil and Water Assessment Tool (SWAT
model) can be restricted by its two-phase partitioning approach, which is inadequate when it comes
to simulating pesticides with limited dataset. This study developed a modified SWAT pesticide model
to address these challenges. The modified model considered the three-phase partitioning model that
classifies the pesticide into three forms: dissolved, particle-bound, and dissolved organic carbon
(DOC)-associated pesticide. The addition of DOC-associated pesticide particles increases the scope
of the pesticide model by also considering the adherence of pesticides to the organic carbon in the
soil. The modified SWAT and original SWAT pesticide model was applied to the Pagsanjan-Lumban
(PL) basin, a highly agricultural region. Malathion was chosen as the target pesticide since it is
commonly used in the basin. The pesticide models simulated the fate and transport of malathion
in the PL basin and showed the temporal pattern of selected subbasins. The sensitivity analyses
revealed that application efficiency and settling velocity were the most sensitive parameters for the
original and modified SWAT model, respectively. Degradation of particulate-phase malathion were
also significant to both models. The rate of determination (R2) and Nash-Sutcliffe efficiency (NSE)
values showed that the modified model (R2 = 0.52; NSE = 0.36) gave a slightly better performance
compared to the original (R2 = 0.39; NSE = 0.18). Results from this study will be able to aid the
government and private agriculture sectors to have an in-depth understanding in managing pesticide
usage in agricultural watersheds.

Keywords: soil and water assessment tool; pesticides; malathion; agricultural watershed; modified
SWAT model

1. Introduction

Agriculture has been substantial to the Philippine economy and has contributed 10.2% to 13.2% of
the country’s GDP in the past decade [1]. To keep up with this demand, various kinds of pesticides were
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applied to different crops and vegetables to help increase food supplies and provide greater revenue for
farmers. However, exposure to pesticides could potentially cause cancer and disrupt the development
of vital systems (endocrine, reproductive, and immune systems) [2–4]. Pesticide contamination in
soil and water also has negative effects on the diversity of the flora and fauna of local areas thereby
disturbing the existing ecosystem [5–7]. Various kinds of pesticides are used in agriculture depending
on the target pests. Hence, many kinds of chemicals exist and find their way into the groundwater,
surface water, soils, and eventually drinking water [8–11]. Several attempts have been made to monitor
and map out their potential areas of contamination in the Philippines, especially in highly agricultural
areas [12–14].

Laguna de Bay is the second largest freshwater lake in Southeast Asia and the largest in the
Philippines. It is located east of Metro Manila, the Philippine capital, and is part of the Laguna de Bay
basin. The basin has one of the fastest economic growth among others and it is a major water resource
for agriculture, fisheries, and domestic use of the surrounding communities that has an estimated
population of six million people [15]. In the recent years, the lake has been threatened by waste
discharges of the industrial, urban, and residential areas from the west and by intensive agricultural
activities from the east [16]. The presence of pesticides and other micropollutants led to the increasing
levels of toxicity and fish-kill occurrences in the lake [17,18]. Many efforts have been made to improve
the water quality of the lake such as rehabilitation programs and cleanup operations within the vicinity
of the basin. Monitoring activities were also performed to assess the level of contamination. However,
these were short-term and limited to a few selections of pesticides [17–19]. Applying environmental
models to available monitoring datasets of pesticides can help broaden the understanding of the
behavior of these micropollutants in the environment. However, existing modeling studies of Laguna
de Bay basin lack watershed-scale analyses of pesticides used in its agricultural activities [14].

Processes driving pesticide fate and transport are on the whole well-known and are incorporated
in various pesticide models operating at plot or watershed spatial scales, such as the crop model
STICS (Simulateur mulTIdiscplinaire pour les Cultures Standard), MACRO (Water and solute
transport in macroporous soils), PEARL (Pesticide Emission Assessment at Regional and Local
scales), PRZM (Pesticide Root Zone Model), and SWAT (Soil and Water Assessment Tool) [20,21].
Several studies have already shown that the watershed-scale SWAT model was an efficient tool
to model pesticides fate and transport [22–25]. However, the SWAT model performance can be
restricted by its two-phase partitioning approach, which is inadequate when it comes to simulating
pesticides with limited dataset. In this study, we modified the SWAT model by incorporating the
three-phase partitioning model to improve the pesticide simulations, especially for watersheds with
scarce dataset that are often common in developing countries. The modified model considered the
three-phase partitioning model that classifies the pesticide into three forms: dissolved, particle-bound,
and dissolved organic carbon (DOC)-associated pesticide. This approach is a first for pesticides and it
differs from the original SWAT model that classified pesticides into two categories: pesticide sorbed
into solid phase and pesticide in solution. The addition of DOC-associated pesticide particles increases
the scope of the pesticide model by also considering the adherence of pesticides to the organic carbon
in the soil.

We aimed to: (1) conduct a watershed-scale analysis of the fate and transport of pesticides,
specifically malathion, and increase the accuracy of the simulated malathion loading using the modified
pesticide model; and (2) perform a case study by applying the original SWAT model and modified
pesticide model to a catchment with limited dataset, such as PL basin, and compare their performance.
Malathion is an organophosphate insecticide used in PL basin for crops and vegetables. It is preferred
by farmers due to its effectiveness against a wide range of pests and short half-life. The SWAT model
was used to construct the watershed model for one of the subbasins of the Laguna de Bay basin,
namely the Pagsanjan-Lumban (PL) basin. SWAT is a widely-used, physically-based hydrologic model
that can predict the impact of water management practices [26,27]. It can simulate the flowrate and
the transport of nutrients, pesticides, and sediments in watersheds. Implementing a watershed-scale
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analysis of the fate and transport of the malathion in the Laguna de Bay basin using watershed models
will give an insight on the dominant processes affecting pesticide loadings to the soil and water.
Results from this study will aid the government and private agriculture sectors to have an in-depth
understanding in managing pesticide usage in an agricultural watershed.

2. Materials and Methods

2.1. Study Area

PL basin is located at the southeastern part of Laguna de Bay basin in the Southern Tagalog
Region (CALABARZON) of the Philippines. It has a catchment area of 454.45 km2 (121◦24′ E~121◦37′

E, 14◦37′ N~14◦21′ N) that drains to Laguna de Bay. The watershed experiences two types of Philippine
climate: (1) Type II; and (2) Type III. The eastern part of the basin experiences Type II climate that
has no dry season with a very pronounced maximum rain period from December to February and
a minimum rainfall period from March to May [28]. On the other hand, the western part has a Type
III climate that has a short dry season, varying from 1 to 3 months, in December to February [28].
Areas close to Mt. Banahaw at the southernmost part of the basin have relatively uniform rainfall
distribution throughout the year [29]. However, the basin in general experiences a dry period from
November to April due to the rain shadow effect of the Sierra Madre mountain range while the wet
period occurs for the remaining months [29]. The average annual rainfall of the basin is 2996 mm,
which mostly fall during the monsoon period.

Figure 1 shows the Digital Elevation Model (DEM) of the PL basin. The areas near Mt. Banahaw
at the southern region have the highest elevation, ranging from 560 m to 2170 m, while the eastern
region near Sierra Madre ranges from 350 m to 560 m. The region near the outlet, including Lumban
delta, has the lowest elevation, which ranges from 0 m to 200 m. Negative values can also be observed
within the Lumban delta indicating that the elevations are below sea level and are often submerged
in water. The outlet of the basin was set at the Lumban Station before the river branched out to the
Lumban delta to exclude the possibility of water intrusion from the lake.

Figure 1. The digital elevation model of the Pagsanjan-Lumban watershed.
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The basin has two major tributaries that branch out after the Lumban Station (outlet) as shown
in Figure 1. Due to the presence of two reservoirs in the northern half of the basin, most of the
discharge during dry days comes from the Pagsanjan River situated at the southern half of the PL
basin. Pagsanjan River has a length of 54.1 km and a drainage area of 311.8 out of the 454.45 km2 of PL
basin, with a mean annual runoff of 53.1 m3·s−1 [29]. The runoff pathways in the north were modified
to collect the water in the reservoirs; hence, water only flows to the outlet during extreme rain events.

2.2. Monitoring Data

The locations of the monitoring stations for the flowrate, weather, and malathion are shown in
Figure 1. The daily flowrate data from May 2014 to October 2016 at Lumban Station and the weather
data (precipitation, temperature, humidity, and wind speed) at Cavinti Station from 2014 to 2016
were acquired from the Integrated National Watershed Research and Development Project (INWARD),
the weather data from 1979 to 2014, including the solar values, were generated from the Climate
Forecast System Reanalysis (CFSR) of the Global Weather Data for SWAT [30,31], and the malathion
concentrations were monitored at Lucban Station by Varca [16]. A total of 26 sampling events at Lucban
Station, with a frequency of at least two water samples a month, were carried out from December
2007 to November 2008 to measure the malathion concentrations. Each water sample was analyzed
to measure the total concentration of malathion, which was used as comparison for the pesticide
simulations in this study.

2.3. Hydrology Model

SWAT is a physically-based watershed model developed for the USDA Agricultural Research
Service (ARS) to simulate the impact of land management practices on water, sediment, nutrients, and
pesticide yields in large complex watersheds [32,33]. The model operates at a daily time step and uses
readily available inputs such as [34]: topography (DEM with a 90 m resolution from United States
Geological Survey (USGS)/National Aeronautics and Space Administration Shuttle Radar Topography
Mission), hydrography, weather data (INWARD and CFSR), landuse/land cover (USGS Global Land
Cover Characterization database), and soil type (Food and Agriculture Organization). The delineation
threshold of the PL basin was 2.5 km2, thus; it was divided into eight subbasins with 54 hydrological
response units (HRU). Each of these HRUs is a unique combination of soil type, landuse, and slope.
The threshold for soil, landuse, and slope was set to 0 to include non-agricultural areas in the basin
that are less than 1% of the subbasin areas.

Table 1 summarizes the calibration and validation periods of the flowrate simulation.
The calibration period was from September 2014 to May 2015 while the validation was from May
2014 to July 2014 and June 2016 to September 2016. The available flowrate dataset started from May
2014 until September 2016. We first compared the observed flowrate to the precipitation and noticed
that the peaks of the flowrate did not match the precipitation for a period. This period was removed
after concluding that the sensor was faulty at that time. The SWAT—Calibration and Uncertainty
Program (SWAT-CUP) was then used to calibrate and validate the SWAT flowrate parameters shown
in Table 2. Simulated flowrates in 2007 and 2008 were then applied to simulate malathion fate based
on the available malathion dataset (December 2007 to November 2008).

Table 1. Summary of the calibration and validation periods.

Process Period

Spinup Time (2 years) January 2005–December 2006
Pesticide Calibration December 2007–November 2008

Flow Calibration September 2014–May 2015
Flow Validation May 2014–July 2014 and June 2016–September 2016
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2.4. Pesticide Modeling

The malathion loadings were then calibrated using the original SWAT and modified SWAT
pesticide models. Both models need the management operation schedule to simulate the application of
pesticide in the basin. In this study, malathion was applied to HRUs with “Tomato” (TOMA) as land
cover. This is based on a previous study that summarized the pesticide usage of the farmers in the PL
basin, which affects two HRUs from Subbasins 7 and 8 (shown in Figure 1) [35]. TOMA was assumed
as a collective representative of the vegetable crops in the PL basin that used malathion during the
pesticide application period. Two planting seasons were implemented for TOMA. The first season
starts in January while the second season starts in June. Malathion was then applied for 12 times for
3 months after planting at a rate of 0.57 kg/ha for every application (first season: January to March;
second season: June to August). Based on this schedule, the pesticide models were then run to simulate
malathion loading in the HRUs with TOMA as land cover. The models are further discussed in the
next subsections.

2.4.1. Original SWAT Pesticide Model

The pesticide module in the SWAT model was applied to calibrate the malathion loadings in the
PL basin. Figure 2 shows that the SWAT pesticide model used the two-phase partitioning approach
that classify the pesticides as: pesticide sorbed into solid phase and pesticide in solution or liquid
phase. Table 3 shows the pesticide parameters that describe the reaction and transport processes of
malathion starting from the application (foliar, soil surface, and subsurface). These processes include
degradation, infiltration, leaching, surface runoff, volatilization, and wash off mechanisms.

 

Figure 2. Original SWAT model applies the two-phase partitioning approach: pesticide in liquid phase
and pesticide sorbed to the solid phase. Modified pesticide model assumes the three-phase partitioning
model: dissolved pesticide, particle-bound pesticide, and DOC-associated pesticide.

Table 3. Pesticide parameters for calibration and sensitivity analysis of the original SWAT model.

Parameter Description Module Method MIN MAX

SKOC Soil adsorption coefficient normalized for soil organic carbon (L·kg−1) PEST Replace 1 5000

HLIFE_S Degradation half-life of the chemical on the soil (day−1) PEST Replace 0 100

HLIFE_F Degradation half-life of the chemical on the foliage (day−1) PEST Replace 0 100

WSOL Solubility of the chemical in water PEST Replace 0 1000

WOF Wash off fraction PEST Replace 0 1

AP_EF Application efficiency PEST Replace 0 1

PST_DEP Depth of pesticide incorporation in the soil (mm) MGT Replace 0 500

PERCOP Pesticide percolation coefficient BSN Replace 0 1

CHPST_KOC Pesticide partition coefficient between water and sediment in
reach (m3·g−1) SWQ Replace 0 0.1

CHPST_REA Pesticide reaction coefficient in reach (day−1) SWQ Replace 0 0.1

CHPST_VOL Pesticide volatilization coefficient in reach (m·day−1) SWQ Replace 0 10
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Table 3. Cont.

Parameter Description Module Method MIN MAX

CHPST_STL Settling velocity for pesticide sorbed to sediment (m·day−1) SWQ Replace 0 10

SEDPST_REA Pesticide reaction coefficient in reach bed sediment (day−1) SWQ Replace 0 0.1

CHPST_RSP Resuspension velocity for pesticide sorbed to sediment (m·day−1) SWQ Replace 0 1

SEDPST_ACT Depth of active sediment layer for pesticide (m) SWQ Replace 0 1

CHPST_MIX Mixing velocity (diffusion/dispersion) for pesticide in reach (m·day−1) SWQ Replace 0 0.1

SEDPST_BRY Pesticide burial velocity in reach bed sediment (m·day−1) SWQ Replace 0 0.1

PSTENR Enrichment ratio for pesticide in the soil CHM Replace 0 5

2.4.2. Modified Pesticide Model

Figure 3 shows the schematic diagram of the fate and transport of the pesticides for the modified
SWAT pesticide model. The modified model applied in this study was based on the watershed-scale
model from a previous study of the same authors about modeling the fate and transport of polycyclic
aromatic hydrocarbons (PAH) and linking the PAH model with SWAT [36]. This study further
developed the model to include the pesticide application based on the original SWAT model and
other equations related to the fate and transport of pesticides. The approach of the original 2-phase
partitioning SWAT model on the fate and transport of pesticides was modified by considering the
three-phase partitioning model shown in Figure 2. Figure 4 shows the diagram of using MATLAB as
platform for the modified approach. Table 4 shows the parameters of the modified pesticide model.

 

Figure 3. Fate and transport diagram of pesticides in the environment with the modified SWAT model.
The three-phased partitioning model approach that we applied for the pesticide was also based on
a previous study of the same authors about modeling the fate and transport of polycyclic aromatic
hydrocarbons (PAH) and linking the PAH model with SWAT.

 

Figure 4. Flow diagram of the modified pesticide model. SWAT output and management plan of
malathion were used as input in MATLAB for the pesticide simulations.
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Table 4. Pesticide parameters for calibration and sensitivity analysis of the modified model.

Parameter Description Unit

foc Organic carbon fraction in soil -
ρsoil Soil density kg·m−3

poro Porosity
fDOC Fraction of the dissolve organic carbon -

x1 Enrichment ratio coefficient 1 -
x2 Enrichment ratio coefficient 2 -
vs Settling velocity of suspended particles in the channel m·s−1

En Diffusion coefficient -
Cp,1 Wash off coefficient for particle-bound pesticide -
Cfd,1 Wash off coefficient for dissolved pesticide -
Cp,2 Wash off exponent for particle-bound pesticide -
Cfd,2 Wash off exponent for dissolved pesticide -

α Decay coefficient in water due to solar intensity -
CDOC,1 Wash off coefficient for DOC-associated pesticide -
CDOC,2 Wash off exponent for DOC-associated pesticide -

μk,p Degradation rate constant for the particle-bound pesticide on the soil surface s−1

θk,p Temperature adjustment factor for particle-bound pesticide -
μk,fd Degradation rate constant for the dissolved pesticide on the soil surface s−1

θk,fd Temperature adjustment factor for dissolved pesticide -
μk,DOC Degradation rate constant for the DOC-associated pesticide on the soil surface s−1

θk,DOC Temperature adjustment factor for DOC-associated pesticide -

Accumulation of Pesticide

Pesticides are usually distributed to the foliage and soil surface during application. In this case,
separate equations were applied to calculate the amount of pesticides on the foliage and the soil
surface [37]. This approach is similar to the original SWAT model. The amount of pesticides on foliage
(pstf, kg of pesticide ha−1) and on the soil surface (pstsurf, kg of pesticide ha−1) were determined by the
equations below [37]:

pstf = gc × pst′ (1)

pstsurf = (1 − gc) × pst′ (2)

where gc is the fraction of the ground surface covered by plants (-) and pst′ is the efficient amount of
pesticide applied (kg of pesticide ha−1). These terms were determined by the following equations [37]:

gc = (1.99532 − erfc × [1.333 × LAI − 2])/2.1 (3)

pst′ = apef × pst (4)

where erfc is the complementary error function (-), LAI is the leaf area index (-), apef is the pesticide
application efficiency (-), and pst is the original amount of pesticide applied (kg of pesticide ha−1).

Pesticide on the foliage was assumed to be affected by wash off due to rain events and degradation.
The amount of pesticides washed off by precipitation from the plants (pstf,wsh, kg of pesticide ha−1)
were determined using the equation below [37]:

pstf,wsh = frwsh × pstf (5)

where frwsh is the wash off fraction for the pesticide on the foliage (-). Degradation of pesticide on the
foliage was then calculated using the following equation [37]:

pstf,t = pstf,0 × exp[-kp,f × t] (6)
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where pstf,t is the amount of pesticide on the foliage at time t (kg of pesticide ha−1), pstf,0 is the initial
amount of pesticide on the foliage (kg of pesticide ha−1), kp,f is the degradation rate constant of the
pesticide (day−1), and t is time (day).

Pesticides on Soil

The original SWAT model assumed that the pesticide is either sorbed to the solid phase or
dissolved in solution [37]. The three-phase partitioning model was used to estimate the different forms
of pesticide in the soil. This method classifies the pesticide into three classes: dissolved pesticide,
pesticide adsorbed on dissolved organic carbon ([DOC]), and pesticide adsorbed on particles. The total
pesticide and dissolved pesticide concentrations in the bulk saturated soil are defined by the following
equations [38]:

Cbs
t = Cbs

p + Cbs
d (7)

Cbs
d = Cbs

fd + Cbs
D◦C (8)

where Cbs
t is the total pesticide concentration in the bulk soil (kg·L−1 bulk soil), Cbs

p is the concentration
of particle-bound pesticide (kg·L−1 bulk soil), Cbs

d is the dissolved pesticide concentrations in the bulk
saturated soil (kg·L−1 bulk soil), Cbs

fd is the dissolved pesticide, and Cbs
DOC is the DOC-associated

pesticide. Combining Equations (7) and (8) yields the following equation:

Cbs
t = Cbs

p + Cbs
fd + Cbs

D◦C (9)

The terms Cbs
p and Cbs

D◦C can also be determined by multiplying Cbs
fd by the coefficients shown

in Equations (10)–(12) below [38]:
Cbs

p = rsw × Ksw × Cbs
fd (10)

Cbs
D◦C = [DOC] × KDOC × Cbs

fd (11)

[DOC] = fDOC × OM (12)

where rsw is the soil-to-water ratio (kg·L−1), Ksw is the soil-water distribution coefficient [L·kg−1],
KDOC is the dissolved organic carbon-water partition coefficient (L·kg−1), fDOC is the fraction of DOC,
and OM is the concentration of the organic matter (kg·L−1). OM was calculated by dividing the mass
of the soil carbon in the soil organic matter with the water yield, which were both simulated by the
original SWAT model [36]. Cbs

p, Cbs
fd, and Cbs

D◦C from Equation (9) can also be determined by using
the pesticide in bulk soil fractions [36,38]:

Cbs
p = fp × Wcp × exp(-μp) × εpstsed (13)

Cbs
fd = fdfd × Wcf × exp(-μf) (14)

Cbs
D◦C = fdD◦C × WcDOC × exp(-μDOC) (15)

where fp (-), Wcp (kg·L−1 bulk soil), and μp (s−1) are the fraction, wash off load, and rate constant of
particle-bound pesticide, εpstsed is the enrichment ratio (-), fdfd (-), Wcf (kg·L−1 bulk soil), and μf (s−1)
are the fraction, wash off load, and rate constant of dissolved pesticide, and fdDOC (-), Wcf (kg·L−1 bulk
soil), and μDOC (s−1) are the fraction, wash off load, and rate constant of DOC-bound pesticide. The
enrichment ratio was calculated using this equation [37] :

εpstsed = x1 × (sed/WY)x
2 (16)

where x1 and x2 are the enrichment ratio coefficients, sed is the sediment yield (metric tons), and
WY is the water yield (mm H2O). Surface runoff of the suspended particles to the channel was also
considered in the wash off loads and wash off fractions of the pesticide. The suspended particles
affected by the wash off mechanism are described in the following equations [36]:
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Wcp = Cp1 × qC
p2 × Cbs

t (17)

Wcf = Cf1 × qC
f2 × Cbs

t (18)

WcDOC = CDOC1 × qC
DOC2 × Cbs

t (19)

where Wcp, Wcf, and WcDOC are the wash off loads of the particle-bound, dissolved, and DOC-associated
PAHs exported to the river via runoff (kg·L−1 bulk soil); Cp1, Cf1, and CDOC1 are the wash off coefficients
for the particle-bound, dissolved, and DOC-associated PAHs (-); q is the runoff rate per unit area; and
Cp2, Cf2, and CDOC2 are the wash off exponents for the particle-bound, dissolved, and DOC-associated
PAHs (-), respectively.

The degradation term, previously shown in Equations (13)–(15), is a temperature-dependent rate
constant expressed as the first-order reaction. The rate constant for the three phases was defined as:

μ = μi × θ(T − 2◦) (20)

where μi is the initial rate constant for the pesticide [s−1], θ is the temperature adjustment factor
for pesticide (-), and T is the temperature (◦C). μ and θ were then calibrated for the particle-bound,
dissolved, and DOC-associated pesticide.

Pesticide loadings on the soil and into the water were computed by [38]:

Cp = (Cbs
p − Cbs,out

p)/ρ (21)

Cwfinal = Cbs
d + Cbs,out

p (22)

where Cp and Cw are the pesticide loading on soil [pesticide per solid mass] and in water [pesticide per
fluid mass], respectively, and Cwfinal is the final pesticide loading in water.

Pesticides in Water

The pesticides in the channels are then subjected to the following mechanisms and processes due to
water movement and reactivity of the pesticide with other components present in the water: advection,
dispersion, photodegradation, and settling processes upon entering the channel [36]. The concentration
of the pesticide in the waterbody was determined after considering these processes. This is expressed
by the modified advection-dispersion equation:

(∂C/∂t) + u × (∂C/∂x) = DL × (∂2C/∂x2) − C × [f × (vs/h) + aI] (23)

where C is the concentration of pesticide in water (g·m−3), t is time (day), x is distance (m), u is
the velocity of the water (m·s−1), DL is the dispersion coefficient (m2·d−1), f is the fraction of the
particulate pesticide in water (-), vs is the settling velocity (m·s−1), h is the depth of the channel
(m), a is the photodegradation coefficient (m2·MJ−1·d−1), and I is the solar intensity (MJ·m−2).
The photodegradation term in the equation was added to the advection-dispersion equation to fit the
pesticide model.

2.5. Sensitivity Analyses

The sensitivity analyses for the flowrate and pesticide were simultaneously done with the
calibration. SWAT-CUP applies the Latin-Hypercube (LH) sampling method, which is based on
the Monte Carlo simulation, and set the Nash–Sutcliffe efficiency (NSE) as the objective function
(Section 2.6). This is a robust method that requires a large number of simulations and computational
resources [39]. LH sampling randomly assigns a value within the permitted range of each parameter to
complete a parameter set. The One-factor-At-a-Time (OAT) sensitivity test was then commenced after
the sampling. This method takes one parameter for each run and changes its value to determine how
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each parameter affects the results. Sensitive parameters were determined based on their probability
values or p-values. Parameters with less than 0.01 p-value were labeled as sensitive. The LH-OAT
method was applied to the SWAT hydrology and pesticide models in this study.

2.6. Evaluation Criteria

The coefficient of determination (R2), Nash–Sutcliffe Efficiency coefficient (NSE), root mean
square error (RMSE), and percent bias (PBIAS) were then calculated to evaluate the SWAT and the
modified model. These statistical indices can determine whether the model performance is satisfactory
or unsatisfactory [40]. R2 and NSE were calculated for the calibration and validation periods of
the flowrate (Table 1), while R2, NSE, RMSE and PBIAS were determined for pesticide. For a daily
time-step, the model is acceptable or satisfactory when the R2 and NSE values are greater than 0.5 and
when the RMSE and PBIAS values reach the optimal value of 0. A lower RMSE value is an indicator
that the model has less residual variance [41]. PBIAS shows if the model has under- or overestimated
the results compared to the observations, and lower absolute PBIAS values indicate more accurate
model simulations [42].

SWAT-CUP also has other criteria to quantify the strength and uncertainties of the calibration
analysis. Given the small dataset of this study, the P-factor and R-factor of the iteration were also noted.
P-factor represents percentage of the simulated data covered by the 95% uncertainty band (95PPU)
and it ranges from 0 to 1 [43]. A P-factor value greater than 0.5 is desirable since it entails that more
than 50% of the simulated data are acceptable. R-factor, on the other hand, estimates strength of the
calibration by dividing the average thickness of the 95PPU band with the standard deviation of the
measured data [43]. The range of the R-factor starts from 0 to infinity; high and low R-factor values
correspond to a thicker and thinner 95 PPU bands, respectively. A P-factor of 1.0 and an R-factor of 0
signifies a perfect simulation of the observed data.

3. Results and Discussion

3.1. Flowrate Calibration

Figure 5 shows the comparison of the observed and SWAT-simulated flowrate at Lumban Station.
The model did not implement the presence of reservoirs and paddy fields due to the lack of information;
hence, it was assumed that these factors would affect the flowrate calibration when it comes to water
storage. The calibration process yielded an R2 value of 0.42 and an NSE of 0.22 while the validation
period has 0.10 and −2.87, respectively. These values are less than the desired value of 0.5 [40], showing
that the SWAT model is slightly unfit and underperforming. The lack of information regarding
the management of the two reservoirs (storage, release, and distribution) may have significantly
degraded the performance of the model [44]. The SWAT model of the PL basin was limited to a small
dataset, which was a major disadvantage during the calibration (227 observed flowrate) and validation
(158 observed flowrate) of the flowrate. The intense rainfall events happened in the calibration period;
hence, the entire basin drains to the outlet, as mentioned in Section 2.1. This is in contrast with the
validation period that included the days with dry to mild rainfall, which only drains the southern
part of the basin. The 95PPU band of the flowrate calibration in Figure 5 has a P-factor value greater
than 0.5 and an R-factor value of less than 1. This result indicates that more than 50% of the simulated
flowrate is within the acceptable uncertainty [43]. The validation period, on the other hand, has a
P-factor of 0.18 and an R-factor of 0.72, indicating that only 18% of the simulated flowrate during this
period is within the uncertainty range.

Nine parameters were found to have a significant effect on the flowrate (Table 5). Surface runoff lag
coefficient (SURLAG) was the most sensitive parameter with a calibration value of 0.051 h. This value
is negligible compared to the default value in SWAT, which is four hours. As SURLAG decreases,
more water is stored in the basin, indicating that surface runoff does not go directly to the channel
in the PL basin and is instead stored elsewhere [45]. The presence of two reservoirs in the northern
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half of the basin, mentioned in Section 2.1, may have affected the SURLAG value. A huge percentage
of the runoff was immediately collected by the reservoirs instead of getting released across the basin.
The water can also be stored in the foliage and paddies that are present in the basin. This is supported
by the other sensitive parameters: Manning’s “n” value for the tributary channels (CH_N1), second
most sensitive; the initial SCS runoff curve number for moisture condition II (CN2), third; baseflow
alpha factor (ALPHA_BF), fourth; and effective hydraulic conductivity in tributary channel alluvium
(CH_K1), fifth.

Figure 5. Observed and simulated flowrate (m3·s−1) at Lumban Station over the calibration
(September 2014–May 2015) and the validation (May 2014–July 2014 and June 2016–September
2016) periods, together with the 95% uncertainty band (95 PPU). The flowrate is plotted against
the precipitation (mm) for the whole period.

Table 5. SWAT parameters for calibration and sensitivity analysis of the original SWAT pesticide model.

Rank Parameter Fitted Value

1 SURLAG 0.051
2 CH_N1 0.12
3 CN2 −0.096
4 ALPHA_BF 0.46
5 CH_K1 48.4
6 RCHRG_DP 0.97
7 CH_K2 42.2
8 SLSUBBSN 75.8
9 OV_N 0.33

CN2 signifies the soil permeability of the basin [46]. Increasing CN2 values is associated with the
increase of imperviousness of the basin. This can be related to how urbanized the basin is. During
calibration, SWAT-CUP relatively changes the CN2 value at the HRU level since HRUs have varying
CN2 values. In general, CN2 in PL basin has a calibrated value of −0.096 or −9.6%, indicating a general
decrease in the CN2 values of each HRU. Hence, the basin is slightly more pervious compared to the
default values suggested by SWAT. This result was expected since PL basin is highly agricultural [29].
ALPHA_BF, on the other hand, is the baseflow recession constant, a direct index of groundwater flow
response and is a basin-wide parameter. It has a calibrated value of 0.46, suggesting an intermediate or
average response to the change in recharge, slightly leaning towards the slow response (slow response:
0.1–0.3; rapid response: 0.9–1.0). The result can indicate that it is possible for water to be stored in
the shallow aquifer that can also be associated to the CH_K1 value. CH_K1 controls the transmission
losses from the surface runoff in the tributary. It is determined by the type of bed materials present
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in the channel bed. The calibrated result of 48.4 mm·h−1 falls on the moderately high loss rate that
ranges from 25 mm·h−1 to 76 mm·h−1. This value characterizes the tributary bed material as sand
and gravel mixture with low silt-clay content, which makes it easier for the transmission losses of
to percolate into the shallow aquifer. Another sensitive parameter that has a similar description to
CH_K1 is the effective hydraulic conductivity in the main channel alluvium (CH_K2). The calibrated
value of CH_K2, 42.2 mm·h−1, falls within the same range as CH_K1, indicating that the main channel
has similar characteristics as the tributary channel. Having a lower CH_K2 value compared to CH_K1
signifies that the bed material of the main channel is a slightly more consolidated compared to the
tributary channels. The second most sensitive parameter also describes the tributary channel in the
basin, CH_N1. CH_N1 has a calibrated value of 0.12, which indicates the channel is well maintained
and full of weeds and brushes (excavated or dredged) or it is heavy timbered with lots of vegetation
as well (natural stream). The deep aquifer percolation fraction (RCHRG_DP) was also found to be
sensitive, with a calibrated value of 0.97. This result indicates that a huge fraction of percolation from
the root zone recharges the deep aquifer [47]. However, the value is extremely high compared to the
other studies with high RCHRG_DP values. Schuol et al. [48] estimated a range of 0.4 to 0.65 for the
West Africa subcontinent, while Me et al. [47] yielded a value of 0.87 for a New Zealand catchment
with mixed landuse. Though it can be assumed that the RCHRG_DP value for PL basin is also high,
it should also be noted that this parameter may have been affected by the discrepancies formulated
from the limited dataset (Section 2.2) and that the fraction (0.97) is too high for this basin. Lastly, the
average slope length (SLSUBBSN) and Manning’s value for overland flow (OV_N) have calibrated
values of 75.8 m and 0.33, respectively.

3.2. Pesticide Calibration with SWAT Pesticide Model

After the flow calibration and validation, SWAT-CUP was applied to calibrate and analyze the
sensitive parameters of the SWAT pesticide model. The calibration processes of the flowrate and
pesticide were done separately to incorporate the same calibrated values of the flowrate parameters
for the original SWAT model and the modified model. Figure 6 shows the observed and the
simulated results of the malathion concentrations at Lucban Station using the original SWAT model.
The calibration process yielded an R2 of 0.39, an NSE of 0.18, a PBIAS value of 59.2%, and an RMSE
of 3492.23 mg. Five parameters were found to be significant in the SWAT pesticide model (Table 6).
The most sensitive parameter was the application efficiency (AP_EF) of the malathion with a calibrated
value of 0.13. This indicates that only 13% of the applied malathion is deposited on the foliage and soil
surface while the rest are lost in the atmosphere, which can be due to the type of pesticide application
and management practices of the farmers in the basin. The pesticide partition coefficient between
water and sediment in the reach (CHPST_KOC) was the second most sensitive parameter with a fitted
value of 0.0012. A low value indicates that malathion is highly mobile in the water in its dissolved
form, thereby increasing its potential for long-distance transport [16,49]. This parameter is followed
by the degradation half-life of malathion on the soil surface (HLIFE_S), the reaction coefficient in the
channel (CHPST_REA), and the soil adsorption coefficient for soil organic carbon (SKOC) that have
calibrated values of 6.26 day−1, 0.037 day−1, and 3594.52 L·kg−1, respectively. The sensitivity analysis
determined that the pesticide application, degradation in the soil, and the sediment interaction and
reactivity of malathion in water were the important processes that influenced the fate and transport of
malathion in the basin.

Table 6. Sensitive parameters of the SWAT pesticide model.

Rank Parameters Fitted Value

1 AP_EF 0.13
2 CHPST_KOC 0.0012
3 HLIFE_S 6.26
4 CHPST_REA 0.037
5 SKOC 3594.52
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Figure 6. Observed and simulated malathion concentrations at Lucban Station over the calibration
(December 2007–November 2008) period together with the 95% uncertainty band (95 PPU).

3.3. Pesticides Calibration with Modified Pesticide Model

Table 7 revealed that the settling velocity (vs) was the most sensitive parameter, which suggest that
the interaction of malathion particles in the water greatly affects the malathion transport. Degradation
rate constant of the dissolved malathion particles (μk,fd) was the second most sensitive, which can be
attributed to how malathion readily dissolves in water compared to soil. This was followed by, in no
particular order, the wash off coefficient (Cfd,1) and exponent (Cfd,2), diffusion coefficient (En), porosity
(poro), soil density (ρsoil), organic carbon fraction in soil (foc), and temperature adjustment factor of
the particle-bound malathion (θk,p). Malathion parameters that are associated with the particulate
phase were sensitive for both models. However, the specific parameters are not exactly the same.
The modified model has a more detailed formalism since it applied the three-phase partitioning model.
This gave a visual understanding of the different forms of malathion that were greatly affected by
wash off, which is the dissolved malathion. In this case, it can be assumed that dissolved malathion
is more susceptible to wash off and most likely to end up in the channel compared to the other two
malathion phases, particle-bound and DOC-associated malathion. Aside from the malathion-specific
parameters, soil properties were also important such as the soil density, porosity, and organic carbon
fraction of the soil.

Table 7. Sensitive parameters of the modified pesticide model.

Rank Parameters Fitted Value

1 vs 0.0001
2 μk,fd 4.25 × 10−5

3 Cfd,1 1.14
4 Cfd,2 0.549
5 poro 0.50
6 foc 0.20
7 En 0.1006
8 θk,p 1.16 × 10−5

9 ρsoil 1.06

3.4. Comparison of Observed and Simulated Malathion Loading

Figure 7 shows the observed and simulated values of the monitoring dataset. The modified model
has 0.52, 0.36, 48.6%, and 3088.05 mg values for R2, NSE, PBIAS, and RMSE, respectively. Based on
these evaluation criteria, the modified model performed better compared to the SWAT model (statistics
mentioned in Section 3.2).
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Figure 7. (a) Logarithmic scale (-); and (b) normal scale (milligram) of the observed and simulated
malathion loadings at Lucban Station. This shows the comparison of the observed malathion data and
simulated loading by the original SWAT and modified SWAT model.

The observed data were compared to the simulated loading by SWAT and the modified model
in Figure 8. The figure includes the logarithmic (Figure 8a) and actual (Figure 8b) scale of the values,
which reveals the similarities and differences between the models. Both models were able to achieve
a small deviation between the observed and simulated low malathion loading. Comparing the two
simulations, the modified model captured more low values compared to SWAT. However, the models
were poorly able to simulate the high values as seen in the two plots (Figure 7), the results were
comparable for both models. Figure 7 shows the time series of the malathion loading simulated
by the SWAT and modified models compared to the SWAT-projected flowrate from January 2007 to
December 2008 at the Lucban Station. The malathion simulations peaked during the duration of the
pesticide application. However, the peaks of modified model showed more consistency compared to
the increasing peaks of the SWAT model. Both models have similar peak levels at the fourth peak, but
the SWAT model gave a more distinct pattern compared to the modified model.

Figure 8. Time series of malathion loading simulated by the original SWAT and the modified SWAT
models, observed malathion loading at the Lucban Station, and SWAT simulated flowrate.
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4. Conclusions

Insufficient data were one of the limitations of this study that imply high uncertainty in both
models. However, building a SWAT model for the flowrate calibration was made possible in this study.
Equations that are relevant to the fate and transport of pesticides were added to the modified model
prior to simulations. The objectives of this study were also met by simulating the malathion loading in
the PL basin using the SWAT and modified model. Hence, the following conclusions were derived:

1. The sensitivity analysis of the hydrology model revealed that the flowrate of the PL basin is
greatly influenced by the perviousness of the soil and the characteristics of the tributary channel
that stores and retains the water in the basin.

2. The modified pesticide model gave a slightly better performance compared to the original SWAT
model, considering the statistical analyses performed (R2, NSE, PBIAS, and RMSE).

3. Application efficiency was the most sensitive parameters for the original SWAT model,
suggesting a possible need to improve the pesticide application and management practices
of farmers in the basin, while settling velocity was the most sensitive for the modified
models. Parameters associated with particulate-phase malathion, especially the degradation of
particle-bound malathion, were also significant to both models.

4. The temporal patterns of the target subbasin simulated by the models showed that the modified
model has more consistent peaks during the duration of pesticide application compared to SWAT.

This study focused on the comparison of the outcomes of the modified model with the commonly
used SWAT hydrological model. The modified model and the original SWAT model were able to
identify similar sensitive parameters. However, further development of the model is needed to
incorporate pesticide application scenarios and interaction of soil and water media to the atmosphere.
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Abstract: Soil erosion and deposition mechanisms play a crucial role in the sustainability of both
existing reservoirs and newly planned projects. Soil erosion is one of the most important factors
influencing sediment transport yields, and, in the context of existing reservoirs, the surrounding
watersheds supply both runoff and sediment yield to the receiving water body. Therefore, appropriate
land management strategies are needed to minimize the influence of sediment yields on reservoir
volume and, hence, the capacity of power generation. In this context, soil erosion control measures
such as buffer strips may provide a practical and low-cost option for large reservoirs, but need to
be tested at the catchment scale. This paper represents a study case for the Itumbiara hydroelectric
power plant (HPP) in Brazil. Four different scenarios considering radially planted buffer strips
of Vetivergrass with widths of 20 m, 40 m, 100 m and 200 m are analyzed. A semi-distributed
hydrological model, SWAT, was used to perform the simulations. Results indicate a reduction of
sediments transported to the reservoir of between 0.2% and 1.0% per year is possible with buffer
strip provision, and that this reduction, over the life of Itumbiara HPP, may prove important for
lengthening the productivity of the plant.

Keywords: sediments; Indian grass; reservoir; SWAT; Brazil

1. Introduction

Soil erosion and subsequent land degradation is recognized as an internationally important issue
that has significant environmental and socio-economic impacts. There are direct links between land
management techniques and the rate of sediment erosion, driven by wind and water processes.
Focusing on water related processes at the watershed scale, eroded sediment is transported
across the land and into receiving water bodies from where it is conveyed through river systems,
eventually depositing within the linked fluvial-estuarine-coastal system. In fluvial systems with large
anthropogenic interventions (e.g., hydropower dams and reservoirs), sediment deposition can be
exacerbated by large impoundments that act as sediment sinks within the watershed. With limited
potential for large-scale sediment flushing, this sedimentation can build up over time, reducing
available storage and decreasing the efficiency of the reservoir system (e.g., through lower attenuation

Water 2016, 8, 489 284 www.mdpi.com/journal/water

Bo
ok
s

M
DP
I



Water 2016, 8, 489

of flood flows, reduced potential for hydropower production, less water for irrigation supply, or any
combination of these) [1].

In agricultural watersheds, inappropriate cultivation practices often accelerate erosion rates and
thereby increase sediment movement from the land surface and subsequent transport in streams
and rivers. Similarly, the occurrence of large areas of exposed soils between cultivation seasons
influences ground infiltration rates and overland surface flows, thus potentially increasing soil
erosion rates observed during this period significantly [2,3]. When accelerated sediment erosion
occurs in upstream river basins, it can result in detrimental impacts to downstream engineering
infrastructure—in particular, reservoirs impoundments and associated hydropower operations [4].
Implementation of best management practices is therefore required in these critical erosion prone areas
to control such losses and to protect receiving impoundments from high sediment loads [5–8]. Thus,
improved insight and understanding of the interplay between soil erosion/sedimentation mechanisms
within the surrounding watershed and potential land management strategies, such as buffer strip
implementation, designed to mitigate these processes (and, hence, reduce sediment transport yields
from the watershed), will have a crucial role in formulating “best-practice” design and management to
ensure the sustainability of planned or existing reservoirs [9,10].

The government of Brazil is currently investing heavily in large hydropower plants to meet the
increasing energy demands of the country. However, the loss of water storage volume within these
impoundments due to sedimentation from the surrounding watersheds is recognized as a significant
problem for some of these newly constructed reservoirs, impacting upon their useful operating life.
In an attempt to address this issue, engineers are involved in developing better management strategies
to identify critical regions within the watersheds that contribute most to these land erosion (and
subsequent reservoir sedimentation) problems and to propose possible intervention measures to
manage water and sediment resources more effectively.

A number of different hydro-mechanical properties can be identified to explain the protective
role that vegetation has in promoting slope stabilization, reducing soil erosion risk, and filtering
sediment movement through overland flow (i.e., runoff). In this context, a tight, dense cover of grass or
herbaceous vegetation can provide superior protection against the impact of water (e.g., arising from
precipitation) and wind erosion, whilst filtering and trapping the sediment load carried in overland
flow. The deep-rooted, woody vegetation is effective in mitigating or preventing shallow mass stability
slope failures. Therefore, the loss or removal of slope vegetation can result in either increased rates of
erosion or a higher incidence of mass slope failure.

The use of Vetiver grass (Indian grass) as a vegetation type for delivering such potential sediment
or soil erosion mitigation can provide both environmental and financial benefits. It has a root
system that is resistant to changes in the water level within the reservoir and does not require
frequent maintenance. Furthermore, it will grow virtually anywhere (i.e., not constrained by site
conditions), which makes it unique for erosion mitigation and slope stabilization. When planted closely
(approximately 10 cm apart) across the slope to form a hedge, its biological growth characteristics
provide an effective dense vegetation barrier that filters out run-off sediment, dissipates hydraulic
forces, and spreads out excess water evenly across the length of the hedge barrier. These properties
make it an ideal vegetation type for buffer strip implementation and can stabilize slopes and filter
sediment from overland flow. Figure 1 shows the schematized role of Vetiver grass in interrupting
overland flow and trapping/filtering out sediments.
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Figure 1. Schematic of the role of Vetiver grass in filtering sediment carried in overland flow.

Table 1. Existing literature overview of experimental studies applying Indian grass.

Study Application Scale Results

[11]

Experimental investigation of runoff reduction
and sediment removal by vegetated filter strips
into cropland. Study with grass species including
Vetiver grass. (Debre Mewi Basin Ethiopia)

Use of 1.5 m wide strips

Desho with the highest tiller
number and density, and the
second highest in root length
revealed better STE than the other
grass species, Vetiver (59%),
Senbelet (49%), Akirma (36%) and
Sebez (20%).

[12]

Experimental investigation of runoff reduction
and sediment removal by vegetated filter strips
into cropland. Effectiveness of tropical grass
species (Elephant grass, Lemon grass, paspalum
and sugarcane) as sediment filters in the riparian
zone of Lake Victoria, Uganda.

At filter lengths of 2.5, 5 and
10 m.

Under natural rainfall, more than
70% of sediment was trapped in
the first 5 m, and lengthening the
strip to 10 m only resulted in a
marginal increase in sediment
trapping effectiveness.

[13]

Experimental investigation in Three Gorges Dam
Area, China. Contour hedgerows have been used
in this area to control soil erosion and to improve
hillslope stability in the catchment of this
river section.

Use of 10 m wide strips.

Measured runoffs during natural
rainfall events show that all types
of plant hedgerow had notable
effects on reducing runoff and soil
loss. The reduction in soil losses
ranged from 18.4% to 70.0% and
runoffs were reduced by 17.2%
to 70.8%.

[14]

Experimental investigation. Reduction of runoff
and soil loss over steep slopes by using Vetiver.
Field experiments were conducted at Kasetsart
University, Thailand.

2 m in width, 3 m in vertical
height, 10.44, 8.08, and 6.71

m in length.

The study found that Vetiver
hedgerows reduce runoff volume
by 31%–69% and soil loss by
62%–86% on steep slopes of
30%–50%.

[15]

Experimental investigation of runoff reduction
and sediment removal by vegetated filter strips
into cropland. Two types of hedgerow widths
(two-row and three-row) were planted for each
of three species of vegetation Bahia grass, Vetiver
and Daylily. (Red soil region of China)

The hedgerows were 10 m
long with a spacing of 5 m

between the rows.

The three selected vegetation
types exhibited the similar
efficiencies in filtering sediment
under the experimental
conditions. Generally, the soil loss
from the grass hedges was
controlled by the characteristics of
the grass stems, regardless of the
hedge widths.

[16]

Experimental investigation of runoff reduction
and sediment removal by vegetated filter strips
into cropland. Six different treatments: control
(without any treatment), soil bund alone, and soil
bund combined with tephrosia, Vetiver grass,
Elephant grass and a local grass called Sembelet.
(northwestern of Ethiopia)

Each of the treatments was
tested on an area of 180 m2.

Soil bund combined with
Elephant grass had the lowest
runoff (40%) and soil loss (63%) as
compared to the other treatments.

International research and applications of the Vetiver eco-engineering technique have grown since
the 1980s in terms of both theory and practice (detailed in Table 1). Standard sites for the application
of Indian grass include river banks, reservoirs edges, slopes, and critical erosion areas, such as end
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zones of flow, where it can form effective buffer strip vegetation. Brazil’s hydropower reservoirs have
significant perimeters that make them susceptible to erosion and stabilization issues. Hence, erosion
treatments that focus on reducing sediment delivery to the reservoir and do not use significant areas
of land must be a priority. In the existing literature on Vetiver grass, while there are variations in the
scales of experimental studies conducted to date (see Table 1 for details), the majority of studies have
focused on plots between 1 m and 30 m wide. As such, there is no clear consensus in the literature
about the large-scale application of Vetiver grass in erosion control and sediment trapping/filtering.

There is therefore a need to upscale these field findings to larger watershed scales in order to
understand their effectiveness in reducing sediment delivery to the river basin, hence their ability
to control sediment deposition within receiving reservoirs. Consequently, the objective of this
study was to identify specific erosion prone areas within a case study watershed—the Itumbiara
hydroelectric power plant (HPP) in Brazil—and to investigate the efficiency of the identified potential
biostabilization/sediment filtering methods on sediment yields. The paper aims to upscale in situ
findings to understand the efficiency of geotechnical interventions at the watershed scale using the
Soil and Water Assessment Tool (SWAT), a basin scale modeling approach. Results are presented from
the preliminary assessment of the role of edge vegetation in the form of a buffer strips composed of
Vetiver (Indian) grasses and in mitigating sediment delivery to the Itumbiara HPP reservoir.

2. Materials and Methods

For the purposes of the study, a semi-distributed, basin-scale hydrological model, capable of
simulating surface water and sediment movement was required to analyze sediment delivery (yield)
to the reservoir and the potential efficiency of any proposed biostabilization and sediment filtering
methods. Over the years, a number of hydrological models (e.g., MIKE SHE, AGNPS, and the Soil and
Water Assessment Tool (SWAT)) have been developed [4,17–19] to simulate water flow and sediment
transport at the river-basin scale. The current study uses SWAT, a process-based hydrological model,
developed by the USDA, Agricultural Research Service (ARS), which can be applied to large ungauged
basins [20–22]. Previous studies using SWAT have addressed a variety of watershed issues (e.g.,
van Griensven et al. [23]; Gassman et al. [24]; Mishra et al. [5]; Cao et al. [25]; Tuppad et al. [26];
Mukhtar et al. [27]). A detailed description of the SWAT model, and its capabilities for watershed
hydrological and sediment modeling can be found in van Griensven et al. [23].

2.1. Study Site: Itumbiara HPP, Brazil

The Itumbiara Dam is an earth-fill embankment dam on the Paranaíba River near Itumbiara city
in Goiás, Brazil (Figure 2), incorporating a HPP with an installed capacity of 2082 MW. The impounded
reservoir has a plan area of 778 km2 and can store 12.5 km3 of useful water volume for power generation.
The upstream watershed of the Itumbiara HPP is approximately 5685 km2. A weather station is located
adjacent to the northwest sub-basin (i.e., sub basin 82, Figure 2), which records average annual rainfall
of 1638 mm. The sediment erosion characteristics in the reservoir watershed are regarded as being
representative of those found around many other Brazilian reservoirs.
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Figure 2. Itumbiara hydroelectric power plant (HPP)—Brazil: left hand figures (top to bottom): Brazil,
Goias State in Brazil, location of Itumbiara HPP in Goias Sate; right hand figures (top to bottom): Map
of Itumbiara HPP showing sub-basins; zoomed detail of the study area divided into 7 sub-basins (23,
30, 46, 64, 67, 71, and 82), showing laminar erosion susceptibility.

A team of researchers from the Institute of Socio-Environmental Studies at the Federal University
of Goiás (IESA-UFG) developed an erosion potential map (see Figure 2) for the watershed, as part of
a R&D project funded by the HPP operating company (Eletrobras Furnas). This map was created by
estimating the density of erosion at the reservoir edge and associated interfluves, using a statistical tool
(Kernel, ArcMap software), and combining this with other environmental factors for the watershed
sub-basins such as soil classification, coverage and landuse, surface geomorphic character, slope and
hypsometry. From the erosion susceptibility map (Figure 2), it is clear that, of the total reservoir
watershed (approximately 5685 km2), only about 167 km2 reports significantly high erosion potential.
The study used the erosion potential map to focus on this smaller critical area to investigate in
detail the potential of Vetiver grass to reduce sediment yield to the reservoir. This detailed analysis
(Figure 2) therefore focused on 7 adjacent sub-catchments with significant erosion potential that all
drained directly to the reservoir. This sub-area is referred to herein as the study watersheds. Finally,
Figure 3a–d show the landuse, soil classification, slope, and digital elevation model for the Itumbiara
HPP study watersheds.

Figure 3. Study area detailed data maps (a) Landuse; (b); soils (c) topography; (d) DEM.
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2.2. SWAT Model Input Data

The required input data for the SWAT model setup in the current Itumbiara HPP case study is
described below:

• Landuse: The landuse map (Figure 3a) used images from INPE via Landsat-5 satellite TM sensor
(Thematic Mapper) with a spatial resolution of 30 m. Complementary images from Japanese
satellite ALOS were used, with 2.5 m spatial resolution. Field visits were undertaken to validate
the images where necessary. The catchment is dominated by pasture—PAST (42.2%), generic
agricultural land—AGRL (27.4%), forest-evergreen—FRST (21.4%), forest-mixed—FRST (6.7%),
forest-deciduous—FRSD (0.8%), and barren or sparsely vegetated—BSVG (2.3%).

• Digital elevation model (DEM): A 30 m by 30 m resolution DEM was obtained from the
TOPODATA project [28]. The DEM was used to delineate the upstream watershed of the
Itumbiara HPP. Sub-watershed parameters such as slope gradient, length, and the stream network
characteristics such as channel slope, width, and length were derived from the DEM (Figure 3d).

• Soil data: The soil data of Itumbiara HPP watershed was added to the SWAT soil database
manually (at a resolution of 30 m by 30 m). The soil groups were classified using RADAM
BRASIL [29] and the FAO’s (Food and Agricultural Organization of United Nations) texture
classification for tropical soils. The average altitude of the survey was 12 km at 690 km/h.
The imaging system used GEMS (Goodyear Mapping System 1000), which operates at X-band
(wavelengths close to 3 cm and often between 8 and 12.5 GHz). In addition, other methodologies
were used to provide information on soil type including infrared and multispectral radar images,
low altitude overflights, on-site field visits, and petrographic analysis. The soil map of the study
watershed is shown in Figure 3b. For the whole catchment, the following soils are present (with
percentage abundance in brackets): hapliccambisol—CX (33%), leptsol-regosol—RL + RR (16.5%),
red oxisol—LV (13.6%), ultisol—PV (12.7%), gleysol—GX (10.1%), red yellow oxisol—LVA (8.2%),
red yellow oxisol-haplic—LVA + CX (5.7%), leptsol—RL (0.2%).

• Hydrometeorological data: The data required for the model included rainfall, river discharge, and
climate data (temperatures, solar radiation, humidity, and wind speed). Daily rainfall and climate
data was available for one station inside the Itumbiara HPP (shown in Figure 2). The analyzed
rain gauge provided data over the period from 1987 to 2013.

3. Results

3.1. SWAT Model Calibration

As part of the model calibration, a sensitivity analysis of the SWAT model parameters was
performed, using the Latin hypercube one-factor-at-a-time (LH-OAT SWAT option) sampling
procedure, to determine the most influential parameters for runoff and sediment yield [23]. The first
three years were used as a warm-up period to minimize uncertain initial conditions, as the SWAT
manual recommends.

Table 2 presents the results of this sensitivity analysis, showing the ranking and sensitivity level
of each parameter tested. The sensitivity index (SI) was defined using the manual mode based on
Equation (1) [30]. The higher the obtained sensitivity index value is, the higher the model sensitivity is
compared to the parameter, where (a) values larger than 1 indicate high sensibility; (b) values between
1 and 0.8 indicate intermediate sensibility; and (c) values smaller than 0.8 indicate low sensibility.
It is valuable to notice that values close to zero indicate that the model does not present sensibility to
the parameter.

SI =
R1−R2

R12
I1−I2

I12
(1)

where SI is the index in relation to the entry parameters; R1 is the obtained result with the model
related to the smaller entry data; R2 is the obtained result with the model related to the largest entry
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data; R12 is the average of the obtained results with smaller and largest entry data; I1 is the smaller
entry data; I2 is the largest entry data; I12 is the average of the entry data.

Table 2. Result of sensitivity analyses.

Parameter Description Rank Sensitivity Level Sensitivity Index (SI)

Cn2 Initial SCS runoff curve number 1 High 4.25
USLE_P USLE equation support 2 High 2.90

Sol_Z Soil Depth 3 High 1.31
Esco Soil evaporation compensation 4 Intermediate 0.98
Slope Average slope steepness 5 Intermediate 0.96

Sol_Awc Available water capacity 6 Intermediate 0.85
Canmx Max canopy storage 7 Intermediate 0.83

Blai Max potential lead area index 8 Intermediate 0.82
Biomix Biological efficiency 9 Weak 0.63
Surlag Surface runoff lag time 10 Weak 0.55

Slsubbsn Average slope length 11 Weak 0.28

The results indicate that the most important (Rank 1, “excessively sensitive”, Table 2) parameter
was Cn2 (initial SCS runoff curve number), suggesting that this parameter directly affects the soil
permeability, the landuse, and the antecedent soil water conditions.

Within the study, watershed sub-basin 71, flow (velocity), and sediment (turbidity) data was
measured from a sampling campaign at the main basin outlet to the reservoir, which was used for
calibration of the SWAT model. The data was in the form of daily spot samples, taken at a depth of
1 m from the surface.

Next, the model was calibrated, using the top three ranked sensitive parameters in the SWAT
model (Table 2), against observed field data collected in 2013 (See Figure 4). Manual calibration was
undertaken, focusing on the most sensitive parameters. These were varied until reasonable agreement
was achieved (Figure 4). The SWAT model performance for the calibration period (April 2013) was
evaluated using Nash–Sutcliffe efficiency (NSE), and the results were 0.889 for the flow data and 0.751
for the sediment data. Figure 4 presents the results of the calibration process for both sediment yields
and flow over the calibration period, while Table 3 shows the calibrated parameters—Cn2, USLE_P,
and SOL_Z—and multiplying factors used. Due to the length of the measured record, validation is not
possible in this case.

Figure 4. Calibrated (simulated) and observed sediment delivery and flow from sub-basin 71.
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Table 3. Calibration parameters.

Variable Ranking Original Multiplying Factor Final Values

Cn2 1 42.50 1.19 50.58
USLE_P 2 0.29 3.07 0.89

Sol_Z (mm) 3 1.31 0.66 0.86

In cases where validation is not possible, it is standard to undertake an uncertainty or sensitivity
assessment of the calibrated model. This was undertaken, and the results indicated that changing the
calibrated parameters ±20% reduced the NSE value for sediment to 0.50.

3.2. Land Management Scenario: Buffer Strip Implementation

Once calibrated, the model could be used to implement different Vetiver/Indian grass buffer strip
configurations to test their effectiveness in reducing sediment yields. Within the SWAT model, the
hydro-mechanical processes (Figure 1) of the Vetiver grass were modeled by implementing a new
landuse layer consisting of the Vetiver/Indian grass vegetation type along the perimeter of the reservoir.
This captured the interruption of the overland flow process and represented appropriately the sediment
filtering/trapping properties of the grass buffer strips (Figure 1). Specifically hydrological parameters
were modified in order to do this. Manning’s n (roughness) alongside the SCS runoff curve numbers
was modified to represent the buffer strip implementation. The Vetiver/Indian grass was adopted as
the treatment method along the perimeter of the reservoir as shown in Figure 5.

Figure 5. Indication of buffer strip implementation at the sub-basin outflows into the reservoir.

In order to upscale the In Situ findings of the influence of Vetiver/Indian grass buffer strips on
the reservoir sediment yield, a number of different scenarios were considered and modeled with the
SWAT model. Four different scenarios were devised to understand the potential benefits for erosion
mitigation and sediment filtering/trapping by implementing this grass biostabilization measure as
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watershed-scale buffer strips at the Itumbiara HPP site (note: this buffer strip comprises Vetiver/Indian
grass at the outflows from critical watersheds, thus avoiding existing forested areas):

• Baseline Scenario: Existing model with no additional vegetation;
• Scenario 1: incorporate a 20 m wide buffer strip around the sub-basin outflows into the reservoir;
• Scenario 2: incorporate a 40 m wide buffer strip around the sub-basin outflows into the reservoir;
• Scenario 3: incorporate a 100 m wide buffer strip around the sub-basin outflows into the reservoir.
• Scenario 4: incorporate a 200 m wide buffer strip around the sub-basin outflows into the reservoir.

These scenarios were modeled by changing the landuse adjacent to the reservoir shoreline to
implement the buffer strip (Figure 5).

3.3. SWAT Model Simulations with Buffer Strips Implemented

The potential benefits to be gained from varying widths of buffer strips planted with Vetiver
(Indian) grass were determined in comparison to the baseline scenario. Table 4 details the sediment
production for each sub-basin in the study watershed (Figure 2) and shows the potential reduction in
sediment yield obtained for each of the four scenarios (i.e., for increasing buffer radius). It is clear that
this is non-linear in some instances (e.g., basins 46 and 71). In order to determine the effectiveness of
the buffer strips, Figure 5 shows the actual landuse in the sub-basins in the study watershed. Each
sub basin has a different landuse categorization, which is plotted alongside the reduction in sediment
delivery for each sub-basin in Figure 6.

Table 4. Sediment yield results.

Sub-Basin
Area
(ha)

Baseline
Sed.

(ton/Year)

Indian Grass Buffer

20 m 40 m 100 m 200 m

Sed.
(ton/Year)

Reduction
(%)

Sed.
(ton/Year)

Reduction
(%)

Sed.
(ton/Year)

Reduction
(%)

Sed.
(ton/Year)

Reduction
(%)

23 1766 3693 3683 0.27 3679 0.38 3663 0.81 3643 1.35
30 1154 2272 2265 0.31 2262 0.44 2251 0.92 2237 1.54
46 1719 3619 3593 0.72 3589 0.83 3541 2.16 3489 3.59
64 5167 10,004 9998 0.06 9996 0.08 9986 0.18 9974 0.30
67 3318 2386 2382 0.17 2381 0.21 2374 0.50 2366 0.84
71 1960 2468 2445 0.93 2436 1.30 2425 1.74 2385 3.36
82 1628 3682 3669 0.35 3663 0.52 3643 1.06 3605 2.09

Sum. 16,712 28,124 28,035 0.32 28,006 0.42 27,883 0.86 27,699 1.51

Figure 6. Decrease of sediment delivery per sub-basin (and landuse designation breakdown),
demonstrating the implementation of varying buffer strip widths.
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From the results, it is possible to understand the influence of replacing the current landuse by
a Vetiver (Indian) grass buffer strip in each sub basin. Quantitative variations of the response of each
sub basin are complicated by the heterogeneity of landuse, the soil properties, and the slope in each.
There is no direct relationship between the area of the sub-basin and Vetiver (Indian) grass efficiency
potential (Table 4).

4. Discussion

Each sub-basin has particular characteristics that influence its sediment transport capacity and
subsequent delivery, including the distribution of landuse, the slope, the percentage of shoreline
to the reservoir, and the soil type. This makes the analysis complex. Results indicate that planting
Vetiver/Indian grass at the reservoir sub-basin outflows can contribute to a reduction of carried
sediments. Therefore, providing buffer strips of Indian grass on the margins of the Itumbiara HPP
reservoir generates a reduction in sediment transportation into the reservoir. In a conservative scenario,
considering a typical tropical soil density value (2.65 ton/m3), it is possible to obtain a decrease of
around 160.4 m3/annum of soil sediments using Vetiver; taking into consideration that the study
area represents around 3% of upstream watershed of the Itumbiara HPP. This indicates that the
methodology would be beneficial for the Itumbiara HPP system.

This finding demonstrates the usefulness of buffer strip implementation for reservoir management
in erosion susceptible areas. Ignoring the problem of sediment erosion and subsequent sediment
delivery to the reservoir could cost up to 30% of the generation capacity of a hydroelectric plant,
as evidenced in China, Africa, and the United States [31]. Studies such as the one reported here
can provide a useful insight into the role of land management and erosion control practices (in this
case, buffer strips) in reducing sediment yield. However, any management techniques identified
as successful through a modeling strategy must be accompanied with sufficient and appropriate
institutional support to coordinate the correct implementation and maintenance of measures.

In the current study, relatively low percentages of sediment transport reduction at the outflow
of each studied sub-basin were observed due to the introduction of the Vetiver/Indian grass in
comparison to other studies. This shows some degree of contribution by the introduced methodology
but also demonstrates the need for further investigation of potential alternatives of soil use and
adoption of larger areas of permanent preservation.

The model has a number of limitations. For example, (i) the paucity of calibration data requires the
upscaling in parameterization for the model, and (ii) the buffer strips are currently only implemented on
the reservoir outflows from the 7 studied sub-basins out of the 275 hydrological sub-basins comprising
the total reservoir watershed. Thus, if there were more widespread sediment management strategies
imposed in the form of buffer strips along the full perimeter of each sub-basin that could result
in significant reductions to the total sediment reservoir yield. Another constraint to be taken in
consideration is that changes to reservoir water level are currently not considered. Added benefits
could be realized with the extension of these buffers adjacent to all watercourses through the catchment.
In fact, this type of intervention may be more beneficial than increasing the width of the buffer strips
at the reservoir outflows. Additionally, the current study only considers the hydrological response
to landuse change, but ignores the impact of climate change and human factors on hydrological
factors. However, vegetation and land surface hydrology are intrinsically linked with long-term
climate change [32], and water abstractions and climate change have resulted in variations in annual
runoff [33]. Therefore, in future studies, forcing factors related to climate and human impacts should
be introduced into the input layer of the model structure so that future landuse/cover types will be
more realistically reflected.

5. Conclusions

To adequately and effectively target and implement erosion control measures to reduce reservoir
sedimentation, distributed erosion modeling can be used to support decision making. However, the
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availability of sufficient data to calibrate and validate streamflow and sediment dynamics is crucial
for the successful application of such models. The presented methodology and results indicate that
distributed erosion and sediment yield modeling with SWAT, supported by sufficient data on discharge
and sediment yields of different points in time and space, can provide quantitative insight into scaling
up the effectiveness of site-specific erosion control measures and the subsequent benefit to downstream
reservoir sedimentation. Thus, this paper presents a first step towards evaluating the role of buffer
strips on sediment yield, demonstrating the benefit of scaling up alternative techniques to treat erosion
in reservoirs of hydroelectric plants. However, this is an indicative, exploratory study; further, more
detailed studies are required.
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Abstract: Future climate change is projected to have significant impact on water resources availability
and quality in many parts of the world. The objective of this paper is to assess the effect of projected
climate change on water quantity and quality in two lowland catchments (the Upper Narew and
the Barycz) in Poland in two future periods (near future: 2021–2050, and far future: 2071–2100).
The hydrological model SWAT was driven by climate forcing data from an ensemble of nine
bias-corrected General Circulation Models—Regional Climate Models (GCM-RCM) runs based on the
Coordinated Downscaling Experiment—European Domain (EURO-CORDEX). Hydrological response
to climate warming and wetter conditions (particularly in winter and spring) in both catchments
includes: lower snowmelt, increased percolation and baseflow and higher runoff. Seasonal differences
in the response between catchments can be explained by their properties (e.g., different thermal
conditions and soil permeability). Projections suggest only moderate increases in sediment loss,
occurring mainly in summer and winter. A sharper increase is projected in both catchments for TN
losses, especially in the Barycz catchment characterized by a more intensive agriculture. The signal of
change in annual TP losses is blurred by climate model uncertainty in the Barycz catchment, whereas
a weak and uncertain increase is projected in the Upper Narew catchment.

Keywords: climate change effect; sediment; nutrients; SWAT; water quality

1. Introduction

The threat of climate change is one of the greatest challenges of the modern age and preventing it
is a key strategic priority for the European Union. According to Intergovernmental Panel on Climate
Change (IPCC) Synthesis Report [1], climate change will cause significant changes in the quality and
availability of water resources. However, while it is a robust finding that precipitation is projected to
grow in northern Europe and decrease in southern Europe [2], both annually and during the summer,
changes in central and eastern Europe are more complex. There is a moderate consensus between
large-scale hydrological projections driven by EURO-CORDEX that both floods and droughts might
be on the rise in this region [3–5].

Although climate change is not explicitly included in the text of the European Water Framework
Directive (WFD), the step-wise approach of the river basin management planning process makes
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it well suited to adaptively manage climate change impacts. Potentially, all elements included in
the definition of WFD qualitative and quantitative status of water are sensitive to climate change.
However, the present practice shows that climate change problems have not been adequately dealt with
in water resources management and policy formulation in Poland and many other European countries.
For example, in Poland, recent updates of the river basin management plans lacked consideration of
effects of climate change on water quality and did not look beyond the upcoming horizon of 2030.
The role of research within the context of international and national policies and actions to adapt to
climate change is crucial. It provides the basis for: (i) understanding the causes of climate change;
(ii) projecting future changes; (iii) assessing and quantifying the impacts and vulnerabilities at global
and regional scale; and (iv) elaborating effective adaptation and mitigation policies and their practical
implementation [1]. The great challenge for policy and decision-makers is to understand these climate
change impacts and to develop policies while ensuring an optimal level of adaptation. In order to
make decisions on how to best adapt, it is crucial to have access to accurate and reliable data on the
possible impact of climate change.

Climate scenarios downscaled from GCMsthat use either empirical-statistical or dynamical
downscaling, provide the best available information for assessing future impacts of climate change
on the water quality of surface water bodies [6]. A common technique for investigating their impact
at the catchment scale is to use climate forcing data (precipitation, temperature, and sometimes
other variables) obtained from climate models as new input for hydrological models [7]. Modeling,
with a notable use of fully-distributed physically-based or semi-distributed process-based models
of intermediate complexity, is the most feasible approach to establish projections of climate change
impacts on freshwater resources [6]. There are a great number of studies, which have been carried
out to assess the possible effects of climate change on the water quality parameters using different
hydrological models at a range of spatial scales.

Table 1 lists selected studies applying different hydrological models to assess the impact of
future climate change projections. The projections are based on various emission scenarios and
climate models, on water flow and water quality parameters. Most studies focus on multi-variable
analysis (mostly total nitrogen (TN), total phosphorus (TP), total suspended sediment (TSS) and
nitrate nitrogen (NO3-N), but single-variable studies can also be found. Nearly all studies have
shown that climate change is likely to have a significant impact on contaminants’ loads. Most indicate
an overall increase in contaminants loads [8–16]. It is obvious that this increase corresponds to
water flow augmentation driven by precipitation increase. The opposite results that indicate the
contaminants loads are decreasing [17–19] are likewise strongly correlated with the flow pattern which
is projected to decrease in these particular studies. Mixed nutrients emission response reported by
Arheimer et al. [20], Records et al. [21] and Molina-Navaro et al. [22] is an effect of diverse flow changes
during the projected periods. Very few studies indicate that future climate change is likely to have
a negligible impact on single variables like sediment [11,23], TN [24], and NO3-N [25].

Table 1. Selected studies assessing climate change impact on water quantity and quality. The last four
columns show the dominant direction of simulated effects of climate change on different parameters
(see legend below the table).

Reference
Country/
Region

Area
(km2)

Hydrological
Model

Climate Models
(Emission
Scenarios)

Future
Horizons

Effect on:

Flow
Sediment

Load
TN *
Load

TP *
Load

[11] USA 248 SWAT 112(3)
2015–2034
2045–2064
2080–2099

— — ↑ ↑

[20] Baltic Sea
Basin 1,700,000 HYPE 16(4) 1971–2000

2071–2100 ↓↑ ↓↑ ↓↑

[18] USA 17,000 SWAT 19(4) 2046–2065
2080–2099 ↓ ↓

[25] Canada 3858 SWAT 1(1) 2025-2050 ↑ — NO3 ↑PO4
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Table 1. Cont.

Reference
Country/
Region

Area
(km2)

Hydrological
Model

Climate Models
(Emission
Scenarios)

Future
Horizons

Effect on:

Flow
Sediment

Load
TN *
Load

TP *
Load

[13] Slovenia 30 SWAT 6(1)
2001–2030
2031–2060
2061–2090

↑ ↑ ↑ ↑

[15] Canada 630 SWAT 6(1) 2041-2070 ↑ ↑ ↑

[26] Poland,
Russia 20,730 SWIM 15(1)

1971–2000
2011–2040
2041–2070
2071–2098

↑ ↓NO3 ↑PO4

[12] Finland 301,300 VEMALA 3(1)
1971–2000
2010–2039
2040–2069

↑ ↑ ↑

[24] USA 7588 SWAT 3(3) 2046–2065
2080–2099 ↑ ↑ — ↑

[19] USA 492,000 SWAT 1(1) 2046–2065 ↓ ↓NO3

[16] Mongolia 447,000 WaterGAP3 1(1) 2071–2100 ↑ ↑

[8] Czech
Republic 2180 SWIM 2(1)

2011–2040
2041–2070
2071–2100

↑ ↑NO3

[23] Canada 629 SWAT 3(1) 2041–2070 ↑ — ↑ ↑
[14] Germany 980 SWAT 7(2) 2041–2070 ↑ ↑NO3 ↑

[9] Baltic Sea
Basin 1,700,000 HYPE/STAT 8(2) 1961–2099 ↑ ↑ ↑

[22] Spain 88 SWAT 11(3) 2046–2065
2081–2100 ↓ ↓NO3 ↓↑

[10] Poland 482 SWAT 1(1) 2050 ↑ ↑NO3 ↑PO4

[21] USA 4000 SWAT 6(2) 2030–2059 ↓↑ ↓↑ ↓↑ ↓↑

[17] USA 505 SWAT 1(1)
2011–2040
2041–2070
2071–2100

↓ ↓NO3

Notes: Legend: ↑ mostly increase; ↓ mostly decrease; ↓↑ mixed pattern; — no significant changes. * Whenever NO3
or PO4 is given in parentheses, it means that the study dealt with either NO3–N or PO4–P, and not TN and TP.

To date, Poland has not been a region with intensive studies investigating climate change effects
on water, sediment and nutrient losses. Two exceptions, included in Table 1, are: (1) the study of
Piniewski et al. [10] conducted in a small catchment in north Poland, using only one climate scenario,
and the “delta change” approach as the method of processing the climate forcing into the hydrological
model; and (2) the study of Hesse et al. [26], covering mainly Russia and only a small part of coastal
area in north Poland, using 15 scenarios from the ENSEMBLES project [27]. No studies were performed
for the dominant type of Polish landscape, i.e., the Polish plain, a diverse region with variable levels
of agricultural intensity and other pressures on water resources. In a wider context, none of the
studies listed in Table 1 used the newest generation of climate model runs from CORDEX experiment
(although two studies [18,21] used statistically downscaled CMIP5 projections). They are available at
higher resolution than all predecessors which is an important features for hydrological modeling.

Against this background, the objective of this paper is to assess the effect of projected climate
change on water quantity (annual and seasonal water balance components and discharge) and quality
(sediment, TN and TP losses). The SWAT model is used in two Polish catchments and it is representative
for the majority of the lowland areas of the country. The study looks into projected changes for
two future time horizons within 21st century (2021–2050 and 2071–2100) under the Representative
Concentration Pathway (RCP) 4.5, using an ensemble of nine EURO-CORDEX model scenarios [2].
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2. Materials and Methods

2.1. Study Area

The Upper Narew (NE Poland) and the Barycz (SW Poland) catchments in which the study
was conducted are the sub-catchments of two large Polish river basins (the Vistula and the Odra,
respectively) (Figure 1). They drain areas of 4231 km2 (Upper Narew, of which 27% belong to
Belarus) and 5522 km2 (Barycz). Both belong to the vast Polish Plain. According to the geographical
regionalization of Kondracki (1997), the Barycz catchment belongs to the Central European Plain,
while the Upper Narew catchment to Easter European Plain. These two regions were formed by glacial
erosion in the Pleistocene ice age. Both catchments are within the extent of most Pleistocene glaciations,
with two exceptions: the first one, Gunz, that covered only the Upper Narew catchment; and the last
one, Würm, whose southern border almost touched both watersheds. Consequently, both catchments
are characterized by a flat relief with an average elevation of 152 m a.s.l. in the Upper Narew and
127 m a.s.l. in the Barycz. In both, the prevailing type of soils are sands and loamy sands, whereas
heavy, impervious soils are rare. However, the fraction of permeable soils in the Barycz catchment
is distinctly higher (62.8% vs. 27.3%, estimates based on the input soil map and classification of
Pazdro [28]). Moderate differences in land cover also can be observed. Total area of forests is slightly
higher in the Upper Narew than in the Barycz catchment (43.6% vs. 38.9%). Compared to much lower
values for the Barycz catchment (0% and 8%), the Upper Narew catchment has a high abundance of
wetlands and grasslands (8% and 16%, respectively).

Figure 1. Location of investigated catchments: (A) the Barycz catchment; and (B) the Upper Narew
catchment. Three gauges labeled with red font (Osetno and Korzeńsko for the Barycz and Żółtki for
the Upper Narew) are used for showing plots of measured flow and concentrations in Figure 2.

The climate of the Upper Narew catchment is more continental, being often influenced by cold
polar air masses from Russia and Scandinavia, whereas the climate of the Barycz catchment is milder,
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with more frequent influence of maritime air from the West. This is reflected in mean annual air
temperature that equals 7.1 and 8.3 ◦C for the Upper Narew and the Barycz catchments, respectively
(climate statistics based on [29]). The difference in mean winter temperature (−3.2 vs. −0.6 ◦C) is
much larger than between mean summer temperature (17 vs. 17.7 ◦C). Mean annual precipitation total,
equal to 670 mm in the Upper Narew catchment, is slightly higher compared to the Barycz catchment
(632 mm). However, winter and summer total precipitation have very similar magnitude in both
catchments: 127–129 mm, and 234–237 mm, respectively.

The differences in climatic and physiographic characteristics between two catchments clearly
affect their hydrology. Annual total runoff coefficient equal to 0.26 in the Upper Narew catchment
is much higher than the corresponding value for the Barycz catchment (0.19). However, what is
important is the difference in monthly distribution of runoff (Figure 2a). A more continental climate
together with less permeable soils and higher water retention capacity (wetlands, grasslands and
forests) in the Upper Narew catchment lead to a higher magnitude and later occurrence of spring
snow-melt floods. The magnitude of these types of floods, occurring in the Barycz catchment in March,
is roughly half of the magnitude of the Narew floods. At the same, time runoff in January and February
is higher in the Barycz catchment than in the Upper Narew catchment.

Figure 2. Mean monthly statistics of hydrological and water quality parameters for two stations
(cf. Figure 1 for location) in the Barycz catchment (the Barycz river at Osetno and the Orla river
at Korzeńsko) and one in the Upper Narew catchment (the Narew river at Żółtki): (a) runoff;
(b) sediment concentration; (c) NO3–N; (d) TN; (e) PO4–P; and (f) TP. Joint period of flow data (source:
Institute of Meteorology and Water Management—National Research Institute) availability (1961–1986)
was selected for calculations of runoff. In the case of water quality parameters (source: General
Inspectorate of Environmental Protection), the period of available data was 1992–2013, with typically
one measurement per month, although many years had missing values.

Significant differences, placing the studied catchments on the extreme opposite ends, are noted in
terms of the human dimension (Table 2, Figure 3):
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• agriculture: its intensity, reflected by the crop structure, fertilizer rates, livestock density and the
level of drainage;

• population density and its derivatives, e.g., the amount of pollution from the wastewater treatment
plants (WWTPs); and

• water retention (reservoirs and ponds).

In general, waters of the Barycz catchment are subject to more intensified human pressures
due to greater numbers of point sources and more intensive agriculture. In this context, the Upper
Narew catchment is representative for less economically developed eastern Poland, while the Barycz
catchment is more similar (although less developed) to western European countries. Additionally, it
has probably the most intensive level of freshwater aquaculture (carp ponds) in Poland, with 8100 ha
of ponds of the total capacity estimated as 73.1 million m3. In contrast, the Upper Narew catchment
has very little ponds and one relatively large reservoir (Siemianówka, situated in the upstream part)
with a total capacity of 79.5 million m3, which is the only important water management facility in
this catchment. Mean monthly runoff of the Upper Narew shown in Figure 2 is not influenced by
Siemianówka reservoir because the underlying data come from the period prior to construction year
(1991). However, the effect of fish ponds on the Barycz runoff can be assessed by comparing the
plots between two gauges: Osetno (influenced by the whole pond system), and Korzeńsko (under
the negligible influence of ponds). Lower runoff values in January and February for Osetno reflect
upstream withdrawals for filling the ponds. Higher values of runoff observed in September and
October at Osetno gauge illustrate upstream discharges of pond water into the stream network.

Table 2. Comparison of selected human pressure characteristics of the Upper Narew and the Barycz
catchment (sources: [30,31]).

Category Parameter Barycz Upper Narew *

Agriculture

Fraction of arable land (%) 47 23
Fraction of grassland (%) 9 18
Mineral nitrogen fertilizer rate (kg·ha−1) 91 45
Mineral phosphorus fertilizer rate (kg·ha−1) 17 10
Livestock density (LSU·ha−1) 1.21 0.73

Urban

Population density (persons·km−2) 89 36
Fraction of high density urban land cover (%) 1.2 0.45
Number of point sources (per 1000 km2) 7.1 3.5
Specific wastewater discharge from WWTPs (dm3·s−1·km−2) 0.09 0.03
Specific sediment load from WWTPs (Mg year−1·km−2) 0.3 0.03
Specific TN load from WWTPs (kg·year−1·km−2) 47.5 36.9
Specific TP load from WWTPs (kg·year−1·km−2) 8.2 2.8

Water Retention
Fish ponds volume (103 m3/km2) 12.9 1.3
Reservoir volume (103 m3/km2) - 20

Note: * All parameters are calculated exclusively for the Polish part of the Upper Narew catchment.

The differences in human pressures between catchments are well reflected in their surface water
quality characteristics, as shown in Figure 2b–f. Annual mean concentrations of five analyzed elements,
total suspended solids (TSS), nitrate-nitrogen (NO3-N), total nitrogen (TN), mineral phosphorus
(PO4-P) and total phosphorus (TP), are distinctly higher for both stations in the Barycz catchment than
in station located in the Upper Narew catchment. It is noteworthy that the threshold concentrations of
good ecological status are frequently exceeded in the Barycz catchment, while being rarely exceeded
in the Narew catchment. With exception of TSS, pollution is much higher in the Orla tributary of the
Barycz river, which can be explained by the fact that its catchment has the highest level of agricultural
intensity within the Barycz catchment (cf. Figure 3). The monthly dynamic of the nitrogen and
phosphorus compounds differs considerably. Both TN and NO3-N have a strong correlation with
runoff and achieve the highest values in winter and the lowest in summer, in all three stations. Such
a seasonal pattern, related to the physics of nitrogen transport within the catchment, is typical for
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catchments in Poland [32,33]. This type of seasonal fluctuation is caused mainly by high mobility of
nitrates not being assimilated by plants during dormancy season and contributing to streams via lateral
and groundwater flow. These two transport pathways are favored, especially in winter and early
spring, when evapotranspiration is low whereas infiltration can be high. During the growing season
and intensive plant uptake, less mineral nitrogen particles are transported to streams. A different
pattern, with highest values in the low flow period (summer and autumn), can be observed for both
phosphorus forms, which is also in line with literature on P dynamics in different types of Polish
rivers [33,34].

 

Figure 3. Spatial comparison of selected human pressure characteristics of the Upper Narew (UN) and
the Barycz (B) catchment. Top panels show fertilizer rates, bottom left panel shows the crop structure
and bottom right panel shows discharges from the wastewater treatment plants in both catchments.

2.2. Modelling Approach

In this study, we build upon the existing, extensively calibrated and validated SWAT models of the
Barycz and the Upper Narew catchments [35]. While the full description of model setup, calibration
and validation was presented in the latter study, here we provide a brief overview, important in the
context of the main goal of the present paper.

2.2.1. Model Setup, Calibration and Validation

SWAT is a process-based, semi-distributed, continuous-time model which simulates the movement
of water, sediment, and nutrients on a catchment scale [36]. It is a comprehensive tool suitable for
investigating the interaction between climate, land use and water quantity or quality. It enables
simulation of long-term impacts of land use and climate changes on water, sediment, and nutrient
yields in catchments with varied topography, land use, soils and management conditions [22].
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Major data items and their sources used to create the SWAT model setup of the Upper Narew and
Barycz catchments are listed in Table 3. Throughout the whole process of developing the model setups,
an attempt was made to use the same data sources and approaches for both catchments. Nevertheless,
for the upstream part of the Upper Narew (lying in Belarus), data from various global databases,
usually characterized by lower resolution had to be used.

Table 3. Data items and sources used to create the SWAT model setup of the Upper Narew and
Barycz catchments.

Data Type Source Resolution/Scale

DEM PL CODGiK 10 m

DEM BY SRTM v4.1
(NASA)

Horizontal 90 m;
Vertical 16 m

Rivers and lakes PL MPHP2010
(IMGW-PIB) 1:10,000

Land Cover PL Landsat 8
CLC 2006 (GDOS)

30 m
100 m

Land Cover BY MODIS
Landcover 500 m

Soil map PL IUNG-PIB 1:100,000

Soil map BY HWSD v 1.2 1:1,000,000

Climate PL/BY CPLFD-GDPT5 5 km

Atmospheric deposition of
nitrogen (dry and wet) GIOS

1 station for the Upper
Narew/3 stations for the

Barycz (outside the catchment)

Agricultural statistics GUS Commune level

Notes: Abbreviations: BY, Belarus; CLC, Corine Land Cover; CODGiK, Central Agency for Geodetic and
Cartographic Documentation; CPLFD-GDPT5, CHASE-PL Forcing Data–Gridded Daily Precipitation & Temperature
Dataset–5 km [37]; DEM, Digital Elevation Model; GDOS, General Directorate of the Environmental Protection;
GIOS, Chief Inspectorate of Environmental Protection; GUS, Central Statistical Office of Poland; HWSD, Harmonized
World Soil Database; IMGW-PIB, Institute of Meteorology and Water Management, National Research Institute;
IUNG-PIB, Institute of Soil Science and Plant Cultivation, National Research; MPHP, Hydrographic Map of Poland;
NASA, National Aeronautics; PL, Poland; SRTM, Shuttle Radar Topography Mission.

Delineation of the catchment based on the 10-m resolution DEM resulted in division of the Upper
Narew catchment into 243 sub-basins and 503 of the Barycz catchment. The land cover map was
a combination of CORINE Land Cover (CLC) 2006 and post-processed Landsat 8. Intersection of
land cover map, soil map, and slope classes resulted in creation of 4509 HRUs in the Upper Narew
catchment and 8569 in the Barycz catchment. Daily precipitation and air temperature (minimum and
maximum) data (1951–2013) were acquired from 5 km resolution gridded, interpolated using kriging
techniques, dataset (CPLFD-GDPT5) based on meteorological observations coming from the Institute
of Meteorology and Water Management (IMGW-PIB; Polish stations) [37]. The use of interpolated
climate data in the SWAT model was reported to increase the model performance for a case study in
Poland [38].

Parameterization of different pollution sources present in the catchment plays a critical role in
water quality modeling. The following anthropogenic pollution sources were analyzed:

1. Diffuse pollution from agricultural areas: Commune-level statistical data were used to determine
mineral fertilizer use and livestock population in order to impose a spatial variability of fertilizer
rates in the model setup.

2. WWTPs: Defined in the model setup only when the daily average wastewater discharge exceeded
50 m3·day−1. For each WWTP, discharge and nutrient loads were expressed as constant or mean
yearly values depending on the available data, usually originating from plant operators.
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3. The septic systems function of SWAT was used to model the effect of pollution loads coming
from population not connected to WWTPs (using cesspits or septic tanks, with or without
sub-surface drainage).

4. Atmospheric deposition (dry and wet) of nitrogen (nitrate and ammonium): Defined based on
one station for the Upper Narew and three stations for the Barycz as a fixed average value for the
entire catchments.

Calibration phase was conducted in SWAT-CUP using the SUFI-2 algorithm (Sequential
Uncertainty Fitting Procedure Version 2) where the Kling–Gupta efficiency (KGE) was used as
an objective function [39]. Additionally, percent bias (PBIAS) that measures the average tendency of
the modeled data to be larger or smaller than their observed counterparts, was also tracked. In the
calibration and validation, ten flow gauges (data acquired from IMGW-PIB) and nine water quality
monitoring stations (concentration data acquired from the General Inspectorate of Environmental
Protection) were used in the Upper Narew. Likewise, in the Barycz there were seven flow gauges
and eight water quality monitoring stations (Figure 1). Discharge, TSS, NO3-N, TN, PO4-P and TP
loads were calibrated and validated in each catchment. For both catchments the calibration period
for discharge was 1976–1985, and the validation period was 1986–1991, whereas for water quality
variables these periods were set to 1999–2005 and 2006–2010, respectively. The inconsistency in
selection of periods for discharge and water quality was because selection was optimized with respect
to the abundance of observation data. Due to an objective of capturing spatial patterns of runoff and
sediment/nutrient transport, a good spatial representation of gauges was crucial. About one half
of flow gauging stations in both catchments were closed in 1990s, which was a reason for selecting
an earlier period for discharge. In contrast, water quality monitoring by state agencies became more
frequent and more abundant only in late 1990s.

Marcinkowski et al. [35] reported variable values of goodness-of-fit measures across different
gauges and variables. For discharge, simulations were assessed as good (median KGE above 0.7 in
both catchments). For other variables, spatial, multi-site calibration revealed problems in achieving
satisfactory results for the entire set of stations taken into consideration. In consequence, there were
both stations with good and satisfactory fit (KGE above 0.5), and stations with unsatisfactory behavior
(PBIAS higher than 55% for sediment and higher than 75% for nutrients, cf. Moriasi et al. [40] for
evaluation criteria). Among reasons for poor behavior in some stations, Marcinkowski et al. [35]
reported: (1) the dominant importance of global over local parameters in calibration; (2) simultaneous
calibration of different pools of water quality parameters (with different optimal parameter sets
achieved for different pools); and (3) input uncertainty (e.g., differences between defined agricultural
management operations and the reality). A previous study applying SWAT in Poland for modeling
water quality also showed that [41], frequently, the magnitude of the highest observed loads of
nutrients is captured well by the model, but there is a shift in timing by a few days (the flood peak is
sometimes advanced or lagged by 1–3 days compared with the timing of the peak identified in the
observed data) which has a negative effect on the objective function value.

It should be noted that even though there was a temporal inconsistency between certain input
(e.g., land cover) and output (discharge) data of over 20 years, it did not affect the results much.
We estimated the magnitude of land cover changes between 1990 and 2012 using CORINE Land
Cover maps from the corresponding years. The analysis indicated that the patterns of change in both
catchments were similar (agriculture areas converted mainly into artificial surfaces or forests). However,
the rates of change were not very high, not exceeding 5% in any of the catchments. Furthermore,
additional evaluation of discharge simulation in the more contemporary period (1990–2013) showed
that the goodness-of-fit measures remain satisfactory.

2.2.2. Climate Change Scenarios

In this paper, SWAT is driven by climate forcing data from the CHASE-PL Climate Projections:
5-km Gridded Daily Precipitation & Temperature Dataset (CPLCP-GDPT5) [42], consisting of nine
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bias-corrected GCM-RCM runs (involving four different GCMs and four different RCMs) provided
within the EURO-CORDEX experiment projected to the year 2100 under RCP 4.5 [43]. A quantile
mapping method (QMAP) developed by the Norwegian Meteorological Institute was applied as a bias
correction procedure [44]. All bias-corrected values of parameters of concern were available for the
following three time slices: 1971–2000, 2021–2050, and 2071–2100. Three first years of each period were
truncated, since a warm-up period of three years is used for SWAT simulations. The corresponding time
horizons will be hereafter referred to as “historical period”, “near future” and “far future”, respectively.
Future changes in simulated discharge, water balance components and water quality variables were
estimated by comparing model outputs for the future periods relative to historical period.

The model runs were carried out assuming constant land use and absence of water management
(reservoirs, fish ponds), in order to illustrate pure climate change effect. For the sake of map
presentation, projected changes from nine ensemble members were summarized as the ensemble
median change, whereas climate model uncertainty was analyzed on the level of areal mean
catchment responses.

3. Results

3.1. Climatic Projections

Since within-catchment spatial variability of projected temperature and precipitation change is
low in both catchments, the analysis focuses on areal mean changes. The annual and seasonal climate
change signal is similar in both catchments (Figure 4). The warming is ubiquitous and accelerating in
time for each individual climate model. The mean annual warming rate is slightly higher in the Upper
Narew than in the Barycz catchment. Seasonal patterns are similar, with the winter increase higher
than the increase projected in remaining seasons. The largest difference between two investigated
catchments is projected for the minimum temperature in winter and spring in the far future: it is
higher by 0.5 ◦C in the Upper Narew than in the Barycz catchment. The robustness (sensu [45]) of
annual temperature increase is high in both catchments (cf. [43]). Seasonal temperature projections are
more robust for the minimum temperature, Tmin, than for the maximum temperature, Tmax. Notably,
in the near future, Tmax projections in winter and summer are characterized by a substantial model
disagreement in the Barycz catchment.

Figure 4. Multi-model ensemble projections of annual and seasonal average temperature for the near
(NF) and the far (FF) future under RCP 4.5 in comparison to the historical (Hist) period. B stands for
the Barycz catchment and UN stands for the Upper Narew catchment.
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Annual total precipitation is projected to increase in both catchments by 5.6% in the near future
and by 9.1%–9.5% in the far future. Although the spread in projections related to different RCMs
is substantial (slightly higher for the Upper Narew catchment), the agreement on the direction of
change is ubiquitous (Figure 5). The seasonal patterns are also similar between catchments, with a
relatively high increase in winter and spring and a weaker increase or a decrease in summer and
autumn. In the far future the spring precipitation increase is distinctly higher than in other seasons,
exceeding 20% in both catchments. The largest difference between catchments can be observed for
summer precipitation in the far future that is (i.e., the ensemble median) projected to increase by 6.5%
in the Barycz catchment and only by 0.1% in the Upper Narew catchment. The uncertainty of summer
precipitation is the largest among all seasons in both catchments.

Figure 5. Multi-model ensemble projections of annual and seasonal precipitation for the near (NF) and
the far (FF) future under RCP 4.5 in comparison to the historical (Hist) period. B stands for the Barycz
catchment and UN stands for the Upper Narew catchment.

Annual precipitation change projections for the near future are not statistically significant
according to most of the climate models in both catchments. The models agree well that the
projected change is low. Despite the fact that the distance between catchments is almost 500 km,
the precipitation change signal is similar. Seasonal projections of changes are significant for winter and
spring, and insignificant for summer and autumn. Lack of robustness (statistically significant changes,
but large disagreement about the magnitude) can be observed in the far future for both annual and
spring totals. More in-depth characteristics of robustness of precipitation projections performed at
a larger scale of the Vistula and Odra basins can be found in Piniewski et al. [43].

3.2. Hydrological Response to Climate Change

Hydrology of both catchments is considerably affected by projected warming and changes in
precipitation patterns. As shown in Figure 2 and discussed in Section 2.1, the baseline hydrology of
investigated catchments differs substantially, so it is very interesting to assess the effect of roughly
similar climate change signal (cf. Figures 3 and 4) on different baseline hydrological conditions of two
lowland catchments.
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3.2.1. Snow Melt

Snow conditions are characterized in SWAT by the amount of melted snow [36]. The amount of
water originating from snow melt is projected to substantially decrease, by 23% and 40% (ensemble
median) in both catchments, in the near and far future, respectively (Figure 6). However, due to
the difference in climate conditions (i.e., the frequency of temperatures falling below zero) between
catchments, the response varies considerably across months. In the Barycz catchment snow melt in
autumn and spring is projected to almost vanish by the end of 21st century, whereas in winter it is
shown to decrease by 37%. In contrast, snow melt occurring between November and February in the
Upper Narew catchment will remain almost unchanged, which can be explained by an increase in
precipitation compensating an increase in temperature (cf. Figure 4). However, snow melt occurring
in March and April in the Upper Narew catchment will undergo the largest change. While in the
historical period a very distinct peak in snow melt occurs in March, in the near future this peak is much
less apparent, and in the far future it is shifted to February. April snow melt is expected to literally
vanish by the end of the century.

Figure 6. Multi-model ensemble projections of monthly snow melt (between November and April) for
the near and the far future under RCP 4.5 in comparison to the historical period.

3.2.2. Evapotranspiration and Soil Water

Actual evapotranspiration (ET) is projected to increase in both catchments by 2.6%–3.3% in the
near future and by 3.7%–6.8% in the far future (ensemble medians), in accordance with projected
temperature increase (cf. Figure 4). Actual ET in the Upper Narew catchment is projected to undergo
a higher increase than in the Barycz catchment, and this happens mainly due to the projected increase
in spring season. Both the magnitude of change and the spread of the ET projections among all
ensemble members are relative low (Figure 7). The highest relative increase, reaching 8% in the far
future, is projected in winter, but since the historical value for winter is very low, this change is not
very high when expressed in absolute values. It is noteworthy that projected changes in potential
evapotranspiration (simulated in SWAT using Hargreaves method) are quite similar, although the
magnitude of change in the far future is slightly lower.
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Figure 7. Multi-model ensemble projections of annual and seasonal actual evapotranspiration (ET)
for the near (NF) and the far (FF) future under RCP 4.5 in comparison to the historical (Hist) period.
B stands for the Barycz catchment and UN stands for the Upper Narew catchment.

According to the ensemble median, projected increase in mean annual soil water content (amount
of water in the soil profile expressed in mm) is relatively low in both catchments, not exceeding 9% in
the far future, and is slightly higher for the Barycz than for the Upper Narew catchment (Figure 8a).
Climate model spread for the far future is more than double of the baseline period spread. Since
the Upper Narew catchment is characterized by heavier soils, the mean soil water content is slightly
higher there. However, seasonal patterns in both catchments are the same, with winter maximum and
summer minimum. While in winter and spring soil water is projected to increase according to SWAT
projections driven by the majority of RCMs in both catchments. The difference between catchments
can be observed for summer and autumn: in the Barycz the increase is projected, but for the Upper
Narew the direction and magnitude of projected changes are highly uncertain. This can be related to
lower increases (or decreases) in summer and autumn precipitation for the latter, particularly in the far
future (cf. Figure 5), but also to the differences in soil physical characteristics.

Annual percolation (movement of water past the bottom of the soil profile to the groundwater
aquifers) is projected to increase by a rate at least two times higher in the Barycz catchment than in the
Upper Narew catchment (Figure 8b). Due to the nature of projected changes in winter precipitation
and temperatures, more rainfall is projected in winter in both catchments, which triggers a sharp
increase in percolation in this season in both catchments, i.e., more than the two-fold increase for
the far future. Catchments behave differently for the remaining seasons: while for the Upper Narew
catchments no clear conclusion can be made, as the model spread increases, low to moderate increases
are projected for the Barycz catchment.
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Figure 8. Multi-model ensemble projections of annual and seasonal soil water content (a) and
percolation (b) for the near (NF) and the far (FF) future under RCP 4.5 in comparison to the historical
(Hist) period. B stands for the Barycz catchment and UN stands for the Upper Narew catchment.

3.2.3. Water Yield, Surface Runoff and Baseflow

In SWAT, water yield is calculated as the sum of surface runoff, lateral (sub-surface) flow and
baseflow, in the absence of transmission losses. Both in the Barycz and the Upper Narew catchment
surface runoff and baseflow are dominating components and constitute approximately 90% of total
water yield, so they are discussed in more detail below.

The median of projected changes in water yield, i.e., the portion of precipitation that reaches
the stream, is significantly higher for the Barycz catchment (24% and 38% in the near and far future,
respectively), than in the Upper Narew catchment (9% and 20%, respectively; Figure 9a). This large
difference is partly explained by the fact that the baseline value for the latter is considerably higher,
i.e., 170 mm vs. 123 mm (cf. Figure 2). Seasonal patterns of change are quite similar, with the most
pronounced increase occurring in winter, which is in line with projections of other variables shown
above. In three remaining seasons, the increases are either low or the uncertainty is so high that it is
difficult to conclude on the direction of change.

Present differences in water yield between two investigated catchments can be to a large extent
explained by differences in surface runoff, whose annual total is equal to 40 mm in the Barycz
catchment, and nearly the double of it in the Upper Narew catchment (Figure 9b). Little can be
concluded on projections of surface runoff on annual level, as the climate model uncertainty dominates.
However, interesting patterns can be noted on seasonal level. In the Upper Narew catchment,
a moderate increase in surface runoff is projected in winter and a moderate decrease in spring.
In contrast, in the Barycz catchment surface runoff decreases in both seasons, although with a rather
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low rate. These behaviors can be well explained by projected patterns in precipitation (Figure 6)
and snow melt (Figure 7). With milder and wetter winters, more (or less) melted snow forms more
(or less) surface runoff, whereas more rainfall contributes to higher infiltration, as the occurrence
of soil freezing is more rare. In contrast, in summer and autumn, changes in surface runoff follow
to a large extent changes in rainfall. As shown in Figure 9b, overall, the uncertainty in these two
seasons increases, especially in summer. Higher projected summer precipitation increase for the Barycz
catchment translates into higher surface runoff change, although in absolute values the figure remains
low (14 mm).

 

Figure 9. Multi-model ensemble projections of annual and seasonal water yield (a) and its two major
components, surface runoff (b) and baseflow (c), for the near (NF) and the far (FF) future under RCP
4.5 in comparison to the historical (Hist) period. B stands for the Barycz catchment and UN stands for
the Upper Narew catchment.
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Projected changes in baseflow (Figure 9c) follow to a large extent changes in percolation (Figure 8b),
although a lag in seasonal pattern can be visible (maximum values reached in spring rather than in
winter). In general, both the signal of change and the uncertainty increase their magnitude in the
future horizons. While in the baseline period the Upper Narew catchment has higher baseflow than
the Barycz catchment, an inverse relationship occurs in the far future. Projected changes in the lateral
flow component (not shown) are similar to those presented for the baseflow.

3.3. Sediment and Nutrient Transport Response to Climate Change

Sediment and nutrient transport response to climate change forcing is presented in two forms:
(1) catchment-averaged sediment, TN and TP losses, i.e., the amount of sediment, TN and TP that is
transported from land (sub-basins) to the river network, shown as box plots across all climate models;
and (2) spatially-explicit changes in sediment, TN and TP losses presented on maps of the ensemble
median. The results are presented as differences between future periods and the reference period,
expressed in kg·ha−1.

Mean annual sediment losses are projected to increase in both catchments, although the baseline
levels are different: roughly three-fold higher values in the Upper Narew catchment, illustrating higher
fraction of erosive soils in this region (Figure 10a). Projected changes follow, to some extent, changes in
surface runoff (Figure 9b), showing an increase in sediment losses in winter and summer in the Upper
Narew catchment, and a decrease in winter and an increase in summer in the Barycz catchment.

Mean annual TN losses in the historical period are nearly three-fold higher in the Barycz catchment
(5.6 kg/ha) than in the Upper Narew catchment (1.9 kg/ha; Figure 10b). This is presumably related to
different levels of agricultural intensification of both catchments (cf. Figure 2). An increase by 35%
in TN losses is projected for the Barycz catchment in the far future, whereas an increase by 45% is
projected for the Upper Narew catchments according to the ensemble median. In both catchments,
but notably in the Barycz catchment, most of projected increase occurs in winter, which is in line with
projections of percolation (Figure 8b) and baseflow (Figure 9c). While in the present climate, spring is
the season with highest TN losses in the Barycz catchment, in the far future climate it is likely to be
winter rather than spring.

Intensive agriculture of the Barycz catchment is likely to explain differences in the baseline period
mean annual TP losses, i.e., values that are nearly two-fold higher than in the Upper Narew catchment
(Figure 10c). The SWAT model projections of climate change impacts show moderate increases for
the Upper Narew catchment and high uncertainty for the Barycz catchment. However, seasonal
patterns are slightly different. In the Barycz catchment, the most distinct signal is projected in summer,
forced by an increase in precipitation in this season. In contrast, in winter, TN losses are projected to
decrease. In the Upper Narew catchment, increases are prevailing in winter and summer, whereas
small decreases occur in spring. Autumn is the season with high model spread.

Projected sediment, TN and TP losses are characterized by high spatial variability (Figures 11–13).
For TN, the western part of the Upper Narew catchment (including sub-catchments of Horodnianka,
Awissa and Orlanka) has the highest increase, exceeding 2 kg·ha−1 in the far future (Figure 12).
In the Barycz catchment, spatial variability is even higher, and the north of the catchment, including
sub-catchments of Orla, Dąbroczna and Polski Rów, has the highest increase, exceeding 5 kg·ha−1 in
the far future. In both catchments, areas with the highest projected increase in TN losses coincide with
areas with the most intensive agriculture (Figure 2). For both sediment and TP losses, the situation is
more complex, i.e., there are areas with both increases and decreases in each catchment and projection
horizon. This is presumably related to a different dominant transport pathway of sediment and TP
(surface runoff), whose projected changes are also variable in space. Patchy patterns also reflect the
fact that, as shown in Figure 10a,c, sediment and TP losses projections are actually highly uncertain,
so within the ensemble there exist climate models for which the increases would be prevailing as well
as models for which decreases would be prevailing.
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Figure 10. Multi-model ensemble projections of annual and: seasonal sediment (a); TN (b); and TP (c)
losses, for the near (NF) and the far (FF) future under RCP 4.5 in comparison to the historical (Hist)
period. B stands for the Barycz catchment and UN stands for the Upper Narew catchment.
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Figure 11. Projected change in sediment losses (total amount of sediment transported from sub-basins
to streams) in the Upper Narew and Barycz catchments in the near and far future according to the
ensemble median.

Figure 12. Projected change in TN losses (TN transported by all types of pathways from sub-basins
to streams) in the Upper Narew and Barycz catchments in the near and far future according to the
ensemble median.

 

Figure 13. Projected change in TP losses (TP transported by all types of pathways form sub-basins
to streams) in the Upper Narew and Barycz catchments in the near and far future according to the
ensemble median.
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4. Discussion

Projections of climate change derived from an ensemble of nine bias-corrected RCMs under RCP
4.5 consistently suggest an increase in temperature and precipitation over Poland [29,42]. An important
feature of precipitation change for two catchments investigated in this paper, the Upper Narew located
in the east and the Barycz located in the west, is that it is not seasonally constant, but is much higher
for winter (by 13%–15% in the far future) and spring (by 21%–24% in the far future) than for summer
and autumn (changes not statistically significant). This signal, uniform across two catchments, forces
a complex response in hydrology. First, snow melt is projected to decrease considerably, but this
decrease is distributed equally over winter and spring in the Barycz catchment, and occurs almost
exclusively in spring in the Upper Narew catchment. Small increases (but with a low spread as well) in
actual evapotranspiration are projected in both catchments. In contrast, increases in soil water content
are blurred by high climate model spread, with exception of winter and spring, when the signal is
stronger. Higher fraction of permeable soils in the Barycz catchment leads to a higher increase in
percolation and baseflow as compared to the Upper Narew catchment. For annual surface runoff
projections, the signal is overshadowed by the noise, but two different types of signals emerge in the
seasonal projections: mild decreases in winter and spring and a mild increase in summer in the Barycz
catchment, and an increase in winter and summer accompanied by a decrease in spring in the Upper
Narew catchment.

Projected changes in sediment and nutrient losses result from a combination of reasons: climate
change itself, projected changes in hydrology, as well as different soil conditions and land cover.
Soil erosion was not a major problem in investigated catchments in the reference period and
future projections suggest only moderate increases in sediment loss, occurring mainly in summer
(both catchments) and winter (the Upper Narew, related to increased surface runoff). A sharper
increase is projected in both catchments for TN losses. Here, much higher changes are projected
for the Barycz catchment, which is already subject to a nearly three-fold higher TN losses than the
Upper Narew catchment in the reference period. Seasonal changes in TN losses are connected to the
dominant transport pathway of TN, which is sub-surface flow. The strongest increase is projected for
winter season in the Barycz catchment, when percolation and baseflow are also projected to increase
significantly. These results are overall consistent with the previous study carried out in Poland by
Piniewski et al. [10], reporting projected increases in NO3-N leaching to groundwater and river loads in
a small coastal catchment in north Poland, according to a single, “warmer and wetter” climate scenario.
In contrast, Hesse et al. [26] reported that majority of Polish and Russian rivers in the Vistula Lagoon
are expected to have decreased loads of NO3-N and NH4-N. On the other hand, the ENSEMBLES
projections used in their study were less consistent in agreement on precipitation increase than the
EURO-CORDEX projections used here.

A slightly different picture occurs for TP losses: at annual level, the uncertainty dominates
in the Barycz catchment, whereas a weak and uncertain increase is projected in the Upper Narew
catchment. Since surface runoff is the principal transport pathway of TP, the seasonal changes in TP
losses follow those of surface runoff: an increase in summer in both catchments (but stronger in the
Barycz catchment) and in winter season, an increase in the Upper Narew catchment and a decrease in
the Barycz catchment. Previous impact studies in Polish catchments [10,26] reported more apparent
increases in phosphorus (PO4-P) loads than in the present study.

This study has evaluated the pure effect of changing climate on water quantity and quality in two
different lowland catchments in Poland, using state-of-the-art climate projections and estimating their
uncertainty propagating by the hydrological model. Among several limitations of this study, one has
to note that the results are based on a single RCP 4.5. It is well known that the current greenhouse
gases emissions are on the RCP 8.5 trajectory, so it would be interesting to analyze the projections
for this forcing as well. The same ensemble of climate models as the one used here, but driven by
RCP 8.5, shows that both the rate of temperature increase and the rate of precipitation increases are
expected to be higher for this RCP in both studied catchments [43]. Particularly, high increases in
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precipitation are projected in winter and spring seasons. Runoff change projections studied in another
paper [46] demonstrate that the increases in runoff are also higher under RCP 8.5 than under RCP 4.5.
This shows that the changes of precipitation are not compensated by the changes in temperature and
evapotranspiration under warmer and wetter conditions. Even though water quality simulations have
not been carried out under RCP 8.5 within this study, it can be expected that with a higher magnitude
of increase in winter runoff, higher TN losses could be projected, whereas the results for sediment and
TP losses are more uncertain. In fact, as shown in the study of Sun et al. [47], the effect of water quality
parameter uncertainty on total suspended solids and total phosphorus load projections was generally
greater than the effect of GCM uncertainties, particularly during high-load events.

For water resources management in Poland, the message is mixed. First, “wetter” scenarios
on the Polish Plain may seem beneficial, as this region is generally known to be affected by water
scarcity [48]. Particularly, in the Barycz catchment, increased water availability is likely to help
sustain water-demanding fish pond systems. In the Upper Narew catchment, it may help sustain
environmental flows through the wetlands of the Narew National Park [49]. Secondly, increased
sub-surface runoff is expected to trigger an increase in TN losses, particularly in the Barycz catchment,
characterized by a high fraction of land vulnerable to nitrate leaching. These results suggest that climate
change may require additional adaptation actions on top of the “business-as-usual” actions aimed at
non-point source pollution mitigation in Poland. Future studies should assess what kind of measures
would help achieve the highest reduction in future TN losses, particularly in the more vulnerable
Barycz catchment. An important finding of this study is that the majority of the projected increase in
TN losses occurs in winter season, suggesting that maintaining vegetative cover on agricultural fields
in winter could be a good solution [10,50,51].
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model scenarios. Paweł Marcinkowski and Mikołaj Piniewski wrote the manuscript. Paweł Marcinkowski,
Mikołaj Piniewski and Ignacy Kardel created the art work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pachauri, R.K.; Meyer, L.A. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III
to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland,
2014; p. 151.

2. Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.;
Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact
research. Reg. Environ. Chang. 2014, 14, 563–578. [CrossRef]

3. Alfieri, L.; Burek, P.; Feyen, L.; Forzieri, G. Global warming increases the frequency of river floods in Europe.
Hydrol. Earth Syst. Sci. 2015, 19, 2247–2260. [CrossRef]

4. Roudier, P.; Andersson, J.C.M.; Donnelly, C.; Feyen, L.; Greuell, W.; Ludwig, F. Projections of future floods
and hydrological droughts in Europe under a +2 ◦C global warming. Clim. Chang. 2016, 135, 341–355.
[CrossRef]

315

Bo
ok
s

M
DP
I



Water 2017, 9, 156

5. Papadimitriou, L.V.; Koutroulis, A.G.; Grillakis, M.G.; Tsanis, I.K. High-end climate change impact on
European runoff and low flows—Exploring the effects of forcing biases. Hydrol. Earth Syst. Sci. 2016, 20,
1785–1808. [CrossRef]

6. Krysanova, V.; Kundzewicz, Z.W.; Piniewski, M. Assessment of climate change impact on water resoures.
In Handbook of Applied Hydrology, 2nd ed.; Singh, V.P., Ed.; McGraw-Hill Education: New York, NY, USA,
2016; p. 1440.

7. Teutschbein, C.; Seibert, J. Regional Climate Models for Hydrological Impact Studies at the Catchment
Scale: A Review of Recent Modeling Strategies: Regional climate models for hydrological impact studies.
Geogr. Compass 2010, 4, 834–860. [CrossRef]

8. Martínková, M.; Hesse, C.; Krysanova, V.; Vetter, T.; Hanel, M. Potential impact of climate change on nitrate
load from the Jizera catchment (Czech Republic). Phys. Chem. Earth Parts ABC 2011, 36, 673–683. [CrossRef]

9. Meier, H.E.M.; Müller-Karulis, B.; Andersson, H.C.; Dieterich, C.; Eilola, K.; Gustafsson, B.G.; Höglund, A.;
Hordoir, R.; Kuznetsov, I.; Neumann, T.; et al. Impact of Climate Change on Ecological Quality Indicators
and Biogeochemical Fluxes in the Baltic Sea: A Multi-Model Ensemble Study. AMBIO 2012, 41, 558–573.
[CrossRef] [PubMed]

10. Piniewski, M.; Kardel, I.; Giełczewski, M.; Marcinkowski, P.; Okruszko, T. Climate Change and Agricultural
Development: Adapting Polish Agriculture to Reduce Future Nutrient Loads in a Coastal Watershed. AMBIO
2014, 43, 644–660. [CrossRef] [PubMed]

11. Ahmadi, M.; Records, R.; Arabi, M. Impact of climate change on diffuse pollutant fluxes at the watershed
scale. Hydrol. Process. 2014, 28, 1962–1972. [CrossRef]

12. Huttunen, I.; Lehtonen, H.; Huttunen, M.; Piirainen, V.; Korppoo, M.; Veijalainen, N.; Viitasalo, M.;
Vehviläinen, B. Effects of climate change and agricultural adaptation on nutrient loading from Finnish
catchments to the Baltic Sea. Sci. Total Environ. 2015, 529, 168–181. [CrossRef] [PubMed]

13. Glavan, M.; Ceglar, A.; Pintar, M. Assessing the impacts of climate change on water quantity and quality
modelling in small Slovenian Mediterranean catchment—Lesson for policy and decision makers: Assessing
the impacts of climate change on river basin modelling. Hydrol. Process. 2015, 29, 3124–3144. [CrossRef]

14. Mehdi, B.; Ludwig, R.; Lehner, B. Evaluating the impacts of climate change and crop land use change on
streamflow, nitrates and phosphorus: A modeling study in Bavaria. J. Hydrol. Reg. Stud. 2015, 4, 60–90.
[CrossRef]

15. Gombault, C.; Madramootoo, C.A.; Michaud, A.; Beaudin, I.; Sottile, M.-F.; Chikhaoui, M.; Ngwa, F. Impacts
of climate change on nutrient losses from the Pike River watershed of southern Québec. Can. J. Soil Sci. 2015,
95, 337–358. [CrossRef]

16. Malsy, M.; Flörke, M.; Borchardt, D. What drives the water quality changes in the Selenga Basin: Climate
change or socio-economic development? Reg. Environ. Chang. 2016, 16, 209–216. [CrossRef]

17. Ye, L.; Grimm, N.B. Modelling potential impacts of climate change on water and nitrate export from
a mid-sized, semiarid watershed in the US Southwest. Clim. Chang. 2013, 120, 419–431. [CrossRef]

18. Cousino, L.K.; Becker, R.H.; Zmijewski, K.A. Modeling the effects of climate change on water, sediment,
and nutrient yields from the Maumee River watershed. J. Hydrol. Reg. Stud. 2015, 4, 762–775. [CrossRef]

19. Jha, M.K.; Gassman, P.W.; Panagopoulos, Y. Regional changes in nitrate loadings in the Upper Mississippi
River Basin under predicted mid-century climate. Reg. Environ. Chang. 2015, 15, 449–460. [CrossRef]

20. Arheimer, B.; Dahné, J.; Donnelly, C. Climate Change Impact on Riverine Nutrient Load and Land-Based
Remedial Measures of the Baltic Sea Action Plan. AMBIO 2012, 41, 600–612. [CrossRef] [PubMed]

21. Records, R.M.; Arabi, M.; Fassnacht, S.R.; Duffy, W.G.; Ahmadi, M.; Hegewisch, K.C. Climate change and
wetland loss impacts on a western river’s water quality. Hydrol. Earth Syst. Sci. 2014, 18, 4509–4527.
[CrossRef]

22. Molina-Navarro, E.; Trolle, D.; Martínez-Pérez, S.; Sastre-Merlín, A.; Jeppesen, E. Hydrological and
water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use
management scenarios. J. Hydrol. 2014, 509, 354–366. [CrossRef]

23. Mehdi, B.; Lehner, B.; Gombault, C.; Michaud, A.; Beaudin, I.; Sottile, M.-F.; Blondlot, A. Simulated impacts
of climate change and agricultural land use change on surface water quality with and without adaptation
management strategies. Agric. Ecosyst. Environ. 2015, 213, 47–60. [CrossRef]

24. Jayakody, P.; Parajuli, P.B.; Cathcart, T.P. Impacts of climate variability on water quality with best management
practices in sub-tropical climate of USA. Hydrol. Process. 2014, 28, 5776–5790. [CrossRef]

316

Bo
ok
s

M
DP
I



Water 2017, 9, 156

25. El-Khoury, A.; Seidou, O.; Lapen, D.R.; Que, Z.; Mohammadian, M.; Sunohara, M.; Bahram, D. Combined
impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian
river basin. J. Environ. Manag. 2015, 151, 76–86. [CrossRef] [PubMed]

26. Hesse, C.; Krysanova, V.; Stefanova, A.; Bielecka, M.; Domnin, D.A. Assessment of climate change impacts on
water quantity and quality of the multi-river Vistula Lagoon catchment. Hydrol. Sci. J. 2015, 1–22. [CrossRef]

27. Van der Linden, P.; Mitchell, J.F.B. ENSEMBLES: Climate Change and Its Impacts: Summary of Research and
Results from the ENSEMBLES Project—European Environment Agency; Met Office Hadley Centre: Exeter,
UK, 2009.

28. Pazdro, Z.; Kozerski, B. Hydrogeologia Ogólna; Wyd. 4. uzup.; Wydaw. Geol: Warsaw, Poland, 1990. (In Polish)
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37. Berezowski, T.; Szcześniak, M.; Kardel, I.; Michałowski, R.; Okruszko, T.; Mezghani, A.; Piniewski, M.
CPLFD-GDPT5: High-resolution gridded daily precipitation and temperature data set for two largest Polish
river basins. Earth Syst. Sci. Data 2016, 8, 127–139. [CrossRef]
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43. Piniewski, M.; Szcześniak, M.; Mezghani, A.; Kundzewicz, Z.W. Regional projections of temperature and
precipitation changes: Robustness and uncertainty aspects. Meteorol. Z. 2017. accepted.

44. Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM
precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth
Syst. Sci. 2012, 16, 3383–3390. [CrossRef]
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Abstract: Nonpoint source nitrogen pollution is difficult to effectively model in groundwater systems.
This study aims to elucidate anthropogenic nonpoint source pollution discharging into Potowomut
Pond and ultimately Narragansett Bay. Hydrologic modeling with Soil and Water Assessment
Tool (SWAT) and SWAT Calibration and Uncertainty Program (SWAT-CUP) was used to simulate
streamflow and nitrogen levels in the Hunt River with and without onsite wastewater treatment
systems (OWTS). The objective of this study was to determine how input of OWTS data impacts
nitrogen loading into the Hunt River Watershed in Rhode Island, USA. The model was simulated
from 2006 to 2014, calibrated from 2007 to 2011 and validated from 2012 to 2014. Observed streamflow
data was sourced from a US Geological Survey gauge and nitrogen loading data from University
of Rhode Island Watershed Watch (URIWW). From the results, adding OWTS data to the SWAT
simulation produced a better calibration and validation fit for total fit (Nash–Sutcliffe Efficiency
(NSE) = 0.50 calibration, 0.78 validation) when compared with SWAT simulation without OWTS data
(NSE = −1.3 calibration, −6.95) validation.

Keywords: nitrogen; SWAT; OWTS; waste water; septic; watershed

1. Introduction

Eutrophication poses a severe threat to coastal waters on local, regional, and global scales.
Coastal ecosystems are naturally nitrogen limited and runoff from terrestrial systems from agriculture,
wastewater, and industrial practices contributes to eutrophic areas of low dissolved oxygen, known
as dead zones [1]. Dead zones have been documented as doubling in occurrence every decade since
the mid 1900s and have been increasing in areal extent. Factors such as rising ocean temperatures,
increasing ocean acidification, sea-level rise, and changing climate variables are acting synergistically
to exacerbate the eutrophication problem [2]. Often, eutrophication, leading to conditions of hypoxia
and anoxia in coastal waters, is overlooked until broad scale detrimental effects are obvious [3].
The breakdown of coastal fisheries and large fish kills garner the most attention to eutrophic conditions.
Fisheries located in shallow coastal waters are the most at risk and instances of fishery and shellfish
closures have increased in recent years.

Narragansett Bay, located in the state of Rhode Island (RI), USA is no exception to the problem of
excess nitrogen (N) and resulting eutrophication of coastal waters. Areas of the bay have experienced N
inputs for over the past 200 years and impacted areas have expanded in extent as the state’s population
has grown and development has increased throughout the state. Rhode Island is the smallest state
and is the second most densely populated with roughly one million residents [4]. Over the past
several decades, the bay has ranked as one of the most heavily fertilized estuaries in the USA with
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the majority of nutrients originating from point sources [5,6]. The largest point source contributor is
sewage treatment plants (STPs) [6] in the northern portion of the bay where the state capitol is located
and the population density is highest. Through the years, the state has faced harmful algal blooms
stemming from eutrophication, leading to fisheries and beach closures, most often during the peak
summer tourism season. Both fisheries and tourism are vital to the state’s economy. In 2003, the state
experienced a severe fish kill with over one million menhaden, and other finfish and shellfish, killed
from anoxic conditions within Greenwich Bay, which is a smaller offshoot of Narragansett Bay [7].
This event spurred initiative for action to clean up pollution within the bay and to combat excess N
from entering the state’s coastal waters in order to reduce risks to the health of the coastal ecosystems
and the communities that rely upon them. Targeting the N point sources, the state set a goal of 50%
reduction of N discharge into the bay from 1995 to 1996 levels, limiting the allowable discharge volumes
of N from 11 wastewater treatment facilities in upper Narragansett Bay. The targeted reduction was
achieved through stages by 2012 [8]. Today, as N inputs decline from point sources, nonpoint sources,
such as urban runoff from septic systems, are becoming a proportionately larger contributor of N
into the bay. In RI, 30% of homes are on septic systems, also known as onsite wastewater treatment
systems (OWTSs) [8,9]. For coastal watersheds with households served predominantly by OWTSs,
these systems can serve as significant sources of N which can contribute to detrimental eutrophication
of coastal waters.

The Hunt River and two of its tributaries (Fry Brook and Scrabbletown Brook), lie within coastal
watersheds served predominantly by OWTSs. These waterbodies were listed as 303 (d) Group 1, under
the Clean Water Act for highest priority impacted waters in RI. The Hunt River and its tributaries have
made the 1998 303 (d), under the Clean Water Act list of impaired waterbodies for several years for
being impacted by fecal coliform. The majority of high bacteria counts were found to occur during
wet weather conditions. The 2001 total maximum daily loads (TMDL) report determined the largest
wet weather source of fecal coliform to be stormwater runoff. Fecal coliform monitoring is often used
as indication of pathogen presence; however, modeling fecal coliform in freshwater systems holds a
unique set of challenges. Bacteria fate and transport relies heavily on the nature of pollution events and
sensitivity of fecal coliform to environmental conditions [10]. Leaking sewer and septic infrastructure
greatly contributes to nonpoint nitrogen pollution to urban watersheds

In order to protect the health of any coastal community, it is important to quantify the influence of
STPs and OWTSs on groundwater flow and the contributions of nutrients from these systems to coastal
waters. For mitigation purposes, it is helpful to model these inputs on local watershed scales to identify
potential areas of high N inputs to target for reduction through policies and infrastructure development.
Few studies have been conducted modeling nutrient inputs on the watershed scale using the Soil
Water Assessment Tool (SWAT) due to complexities stemming from the uncertainty of differences
in subsurface hydrology, soil and water dynamics, and the often lack of detailed information about
OWTS [11]. Increased densities of OWTS have been shown to increase baseflow within a watershed
system [12–14], which can have the effect of increasing nutrient loading into ground and surface
waters, eventually entering into coastal waters. OWTSs have a biozone layered designed to filter
out nutrients, preventing their leaching into the groundwater. However, these biozone layers can
become ineffective over time, resulting in an increased discharge of nutrients into sensitive coastal
waters. Nutrient loading into a waterbody depends on local surrounding conditions, thus it is helpful
to conduct modeling on smaller scales to identify areas to target for N mitigation.

In this study, we modeled the amount of N entering into Narragansett Bay on the watershed scale,
with focus on the Hunt River Watershed. The Soil Water Assessment Tool (SWAT) was used to model
N inputs into Potowomut Cove, which is fed by the Hunt River, and connects to Narragansett Bay.
The effects on receiving waters due to nonpoint source loads, including OWTS could be effectively
modeled using SWAT. The development and application of hydrologic models such as SWAT could
therefore be used for the Hunt River Watershed to determine Best Management Practices (BMPs).
We used a gauged watershed to calibrate the SWAT model, and estimate streamflow and nutrient
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loading into the bay. Recent development in the SWAT model allows the users to account for presence
of septic systems or OWTSs. SWAT modeling also is unique in its ability to account for both watershed
and in-stream processes.

2. Materials and Methods

2.1. Study Area and SWAT Model Description

The Hunt River Watershed, as shown in Figure 1, is a small-scale (59.9 km2) watershed that cuts
across central Rhode Island, USA. The 11 kilometer Hunt River winds through several towns and
ultimately discharges through rural East Greenwich and into Potowomut Pond. From there, the river
known as Potowomut River flows southeasterly into Potowomut Cove and then into Narragansett Bay.
While the watershed is predominantly rural and undisturbed, rapid urbanization along the waterway
has driven significant increases in anthropogenic pollutants. The SWAT model is hydrologic modeling
software developed by the United States Department of Agriculture (USDA). The SWAT model
was originally developed to predict impact of land management on water, nutrients and sediments
of large ungauged basins. It was created as physically based, continuous, and computationally
efficient models [15,16]. In SWAT, the catchment area is subdivided into subbasins, river reaches
and hydrological response units (HRUs). Further subdivisions of HRUs are statistically performed
by considering a determined percentage of subbasin area that is independent of location within the
subbasin. SWAT uses a different routing scheme for runoff and chemistry through watersheds while
maintaining water balance for each watershed sector. Normally, the routing for chemical transport
includes sediments, erosion, plant growth, pesticides and nutrients. Modeling in-stream nutrient
processes is valuable for simulating more accurate environmental conditions. A nutrient process in
SWAT includes fate and transport of numerous nitrogen and phosphorus pools including organic and
inorganic forms in soil and stream. The SWAT in-stream water quality algorithms incorporate nutrient
interactions and relationships used in the Enhanced Stream Water Quality Model (QUAL2E) [17].
Recent advancements in SWAT modeling consider nutrient processes from OWTSs based on a biozone
algorithm [18]. This algorithm is a function of the net growth of septic biomass dependent upon soil
temperature and the leaching of soluble phosphorus through soil layers.

2.2. SWAT-CUP Model Description

The SWAT Calibration and Uncertainty Program (SWAT-CUP) is widely used for SWAT model
calibration and uncertainty analysis. This program offers various calibration algorithms, of which,
Sequential Uncertainty Fitting (SUFI2), a robust method compared to deterministic and stochastic
method [19], is used for this study. The SUFI2 approach was implemented due to its comprehensive
consideration of uncertainty sources in static input variables. Moreover, it gives the 95% probability
distribution model output variables based on propagation of uncertainty, often referred to as 95%
Prediction Uncertainty (95 PPU).

2.3. Input Data and Model Preparation

Numerous data sources were used to develop the SWAT model. Land cover data and soil data
were obtained from the Rhode Island Geographic Information System (RIGIS) [20]. Precipitation data
was acquired through the Parameter-elevation Regressions on Independent Slopes Model (PRISM)
climate mapping system [21]. The spatial coverage representing the watershed area which included
eight data stations of precipitation and temperature were downloaded from PRISM. Streamflow was
calibrated using USGS Gauge 01117000 (41◦38′28′ ′, −71◦26′42′ ′), located in North Kingstown, Rhode
Island, 4 kilometers upstream from the mouth of Narragansett Bay. The National Elevation Dataset
was downloaded for the Hunt River Watershed at a 10 m resolution (U.S. Geological Survey). Official
Soil Series Descriptions data was obtained from the Natural Resources Conservation Service (NRCS)
Soil Survey Geographic Database (SSURGO) [22]. Land Use/Land Cover (LULC) data was obtained
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from the United States Geological Survey (USGS) 2006 National Land Cover Dataset (NLCD) [23] in
30 m resolution. Elevation data was obtained from Digital Elevation Model (DEM) obtained from
United States Geological Survey National Elevation Data (NED) [24].

LULC data indicated that the land within the watershed delineation was dominated by forested
and urban areas. The headstream of the Hunt River is predominantly urbanized (Figure 1).

According to the LULC classification system, the watershed area is dominantly classified as
“Urban Development” (34%), and “Sewered Urban Area” (26%). Subbasins 1 and 5 are preeminently
urbanized, whereas subbasins 2–4, and 6 are a mixture of urban development and undisturbed habitat.
In respective order from highest to lowest, the remaining land use classifications identified in the
Hunt River Watershed were “Major Parks and Open Space” (18%), “Conservation and Limited” (12%),
“Reserve” (6%), and “Non-urban Development” (3%). Land classified as “Water Bodies” and “Prime
Farmland” were both identified at less than 1%. OWTS information is not publicly available for the
state of Rhode Island. In order to estimate the number of households on OWTS, sewer line data
from RIGIS [25] was overlaid on the Hunt River Watershed area to determine the sewered areas
of the delineated watershed using ArcGIS (ESRI—version 10.3.1). Urban areas served by sewers
were subtracted from the map area to estimate land area serviced by OWTSs. Using this method,
an estimated 94% of households (13.36 km2) residing on urban land within the watershed do not
have access to sewer, and were therefore classified as relying on OWTS for the purpose of this study.
There are no industrial waste water treatment facilities within the delineated watershed. Due to absence
of agricultural land use, nitrogen inputs from fertilizers, farmland, and livestock were negligible and
not included within the model.

A challenging aspect of modeling nutrients in Rhode Island is lack of continuous sampling data.
This project used data from the University of Rhode Island Watershed Watch (URIWW) program,
collected from five monitoring stations located along the Hunt River. The URIWW is a volunteer,
citizen-science program which conducts statewide monthly water quality sampling from May–October
each year, beginning in 2007 for the Hunt River [26]. Total nitrogen (TN) data collected from 2007 to
2014 was used for this study.

2.4. Model Setup and HRU Definitions

For this study, six outlet subbasins were created based on data from URIWW monitoring stations
of TN (Figure 1). Subbasins were divided into HRUs by assigning threshold values of land use and land
cover, soil, and slope percentage (Figure 2). Development of HRUs determines the land use/soil/slope
class combinations in the delineated subbasins based on predetermined threshold values. Thresholds
are typically chosen based on SWAT model objectives. Because the scope of this project focuses on
OWTSs in urban areas, the thresholds needed to be small enough to recognize the fragmented urban
areas within each subbasin. Therefore, HRU definitions were set at 5% land use, 5% soil, and 5% slope
percentage. These small-scale thresholds yielded 320 HRUs within the six subbasins. The SWAT model
was run with two distinct simulations to determine the effects of OWTS on modeling streamflow
and nitrogen inputs. Changing the status of septic systems was done by changing the “isep_opt”
value from 0 to 1. Other OWTS input parameters were considered as default which is as shown in
the Table 1. The OWTS variable in SWAT (isep = 1) converted the urban areas within subbasin 1 to
active septic system users. Both scenarios were simulated for 36 years, from 1981 to 2016, following the
SWAT model setup illustrated in Figure 3. The warm up period for the model was used by one year.
The observed data for Total Nitrogen data was used the years 2007 to 2016 for the simulation period.
The timespan for calibration and validation was confided by the availability of streamflow and TN
data. The calibration was completed with 30 TN data points, and validated with 19 TN data points.
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Table 1. Onsite wastewater treatment system (OWTS) input parameter.

Parameter Name Parameter Descriptions Value

SEP_CAP Average number of permanent residents in a house 2.5
BZ_Area Surface area of drain field (m2) 100

ISEP_TFAIL Time until failing system gets fixed (days) 70
BZ_Z Depth to the top of biozone layer (mm) 500

BZ_THK Thickness of biozone layer(mm) 50

SEP_STRM_DIST Distance to the stream from the septic hydrological
response unit (HRU) (km) 0.5

 
(a) 

Figure 1. Cont.
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(b) 

Figure 1. Figure 1 shows the Hunt River Watershed as delineated by the Soil and Water Assessment
Tool (SWAT) model: (a) The Hunt River Watershed delineated into six subbasins; (b) The Digital
Elevation Model, Slope Percent, Land Use, and Hydric Soil Groups for the Hunt River Watershed.
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Figure 2. Flowchart of SWAT Model Development and Calibration Scheme.

2.5. Model Evaluation Performance

Model evaluation performance through statistical analysis is crucial. Evaluation recommendations
prescribed by previous work [15,27] were used for this study. The three major categories of quantitative
statistics were standard regression, Nash and Sutcliffe dimensionless, and error index [28,29].
Coefficient of determination (R2), Nash and Sutcliffe Efficiency (NSE), and percent bias (PBIAS)
were used for model prediction in this study [15]. Coefficient of determination (R2) was used for
standard regression analysis by describing the degree of collinearity between simulated and measured
data. Values for the coefficient of determination range from −1 to 1, with 1 indicating a perfect linear
relationship, and 0 indicating no linear relationship.

The NSE is a dimensionless statistical measure that indicates the magnitude of residual variance
to measured variance through normalized statistics [28]. The NSE values may range between −∞ and
1, with 1 being completely inclusive. Values between 0.0 and 1.0 are generally acceptable values for
SWAT models [15]. Percent bias (PBIAS) is an error index analysis that measures the average tendency
of simulated data to be larger or smaller than their observed counterparts [30]. The optimal PBIAS
value is 0.0, with lower values indicating accurate model simulation. Positive PBIAS values indicate
model under-simulation bias, whereas negative values indicate overestimation bias [30].

3. Results

3.1. Model Sensitivity, Calibration and Validation

Nine hydrologic parameters were used in SWAT-CUP to calibrate streamflow. The parameters,
fitted value, range of parameter and P-value are presented in Tables 2 and 3. In the model,
1000 iterations were used for a 6-year simulation including a one-year warm-up period, with the
48th iteration yielding the best results. The two simulations analyzed in this study were streamflow
and N loadings with and without OWTSs. In both simulations, the hydrologic parameters selections
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were identical. Sensitivity of parameters is determined by identifying the lowest values for the
parameter “p-Value”. The “p-Value” serves as an indicator for sensitivity significance. By evaluating
the p-Values, Tables 2 and 3 indicate that CN2 is sensitive both with and without OWTS simulation.
Other sensitive parameters include GWQMN and REVAPMN for simulation without OWTS and
GW_DELAY and GW_REVAP for simulation with OWTS. In both simulations, curve Number and
groundwater parameter were common sensitive parameters and influenced more surface runoff and
base flow. In this study, the BFlow separation tool was used to determine the initial Alpha_BF [31].
As shown in both Tables 2 and 3, a higher ALPHA_BF value indicates higher base flows and lower
GWQMN resulted in lower base flows [11,16]. Finding optimal values for ALPHA_BF and GWQMN
ensures that the streamflow is separated well to account for runoff and baseflow.

Table 2. Sensitivity analysis for the SWAT model without OWTS.

Parameter Name Descriptions Fitted Value Range p-Value

R__CN2 Initial Soil Conservation Service Runoff Curve −1.11 −2–1.5 0.00

V__ALPHA_BF Base flow alpha factor (days) 0.74 0–1 0.88

V__GW_DELAY Groundwater delay (days) 30.62 30–450 0.37

V__GWQMN Thresholds depth of water in the shallow
aquifer required for return flow to occur (mm) 1.88 0–2 0.02

V__GW_REVAP Groundwater “revap” coefficient 0.04 0.02–0.2 0.52

V__SURLAG Surface lag factor 1.66 0–2 0.41

V__ESCO Soil evaporation compensation factor 0.207 0–1 0.42

V__EPCO Plant uptake compensation factor 0.08 0–1 0.45

V__REVAPMN Threshold depth shallow aquifer for “revap” to
occur (mm) 43.95 0–300 0.22

Note: “R” indicates that the existing parameter is added as a percentage of a given value and “V” is the existing
parameter value replaced by a given value.

Table 3. Sensitivity analysis for the SWAT model with OWTS.

Parameter Name Influence Fitted Value Range p-Value

R__CN2 Management −1.38 −2–1.5 0.00
V__ALPHA_BF Groundwater 0.745 0–1 0.23
V__GW_DELAY Groundwater 30.42 30–450 0.01

V__GWQMN Groundwater 1.57 0–2 0.31
V__GW_REVAP Groundwater 0.097 0.02–0.2 0.16

V__SURLAG Basin 1.47 0–2 0.81
V__ESCO HRUs 0.56 0–1 0.96
V__EPCO HRUs 0.26 0–1 0.28

V__REVAPMN Groundwater 84.9 0–300 0.79

Note: R indicates that the existing parameter is added as a percentage of a given value and “V” is the existing
parameter value replaced by a given value.

Figure 3 illustrates the observed streamflow, simulated streamflow, precipitation, and 95 PPU.
Table 4 shows all nitrogen parameters that were used in the total nitrogen calibration. Statistical
analysis for model calibration and validation is shown in Tables 5 and 6. Model fit value is classified
as “very good” [15] for stream calibration, with daily NSE of 0.75 and R2 of 0.78 (Table 5). For the
validation period, model fit was decreased with a NSE value of 0.4 and R2 of 0.68. Overall, model
performance was better for streamflow calibration in both scenarios. Meteorological forcing plays an
important role in hydrologic model performance. Better spatial representation of precipitation data
such as data from PRISM and temperature data ensures higher model performance compared to the
NCEP dataset [32]. The average precipitation for the Hunt Watershed is 1270 mm per year. Our model’s
average precipitation value was overestimated by 1367 mm per year, which could be due to Rhode
Island’s 2010 flood event. With fitted parameters, the model was simulated again from January 2012
to August 2016 for validation. Validation indicated that simulated flow was overestimated by 4%
which is indicated by smaller NSE values compared to the calibration period. This change in model
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performance could be attributed to the presence of a dry year in the validation period; however, the
model captured peak flow and remained consistent with the precipitation pattern. According to the
95 PPU plot (Figure 3), the uncertainty band was narrow for stream flow’s calibration period, ranging
between 34% and 50% on a daily basis.

 

Figure 3. Flow calibration and validation in the Hunt River Watershed.

Total nitrogen was calibrated and validated after streamflow was calibrated. Nitrogen data,
obtained from URIWW, was collected weekly from the months of May through October of each year.
Figure 4 show the calibration and validation of total nitrogen load using SWAT model. NSE, percent
bias, and coefficient of determination were calculated on a daily basis dependent on available data
from URIWW. A few particular point data were overestimated; however, the overall data fit was
acceptable. The model performance for total nitrogen loads for both simulations is shown in Tables 5
and 6. For the calibration period in the presence of OWTS, the model fit was satisfactory [15] with
NSE of 0.5, R2 of 0.5, and PBIAS of around 4%. For the validation period in the presence of OWTS,
the model fits were very good with NSE of 0.78, R2 of 0.81 and PBIAS of around 7%. Without the
presence of OWTS, model fit was poor with R2 of 0.14, negative NSE values, and high percentage bias.
According to Moriasi, negative NSE, high percentage bias, and R2 < 0.5 are considered as very poor
calibration [15]. The septic tank is a better reflection of nitrogen over the watershed.

 

(a) 

Figure 4. Cont.
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(b) 

Figure 4. Figure 4 shows Total Nitrogen simulation from the SWAT model using OWTS simulations:
(a) SWAT calibration from December 2006 to December 2011; (b) SWAT validation from September
2011 to July 2015.

Table 4. Total nitrogen calibration parameters.

Name Parameters Fitted Value

Nitrogen percolation coefficient V__NPERCO.bsn 0.2
Denitrification rate coefficient V__COEFF_DENITR.sep 0.32

Denitrification exponential rate coefficient R__CDN.bsn 1.4
Denitrification threshold water content R__SDNCO.bsn 1.1

Nitrification rate coefficient V__COEFF_NITR.sep 1.5

Table 5. Without OWTS input.

Statistical
Metric

Flow
Calibration

Flow
Validation

Total Nitrogen
Calibration

Total Nitrogen
Validation

R2 0.79 0.7 0.14 0.15
NSE 0.78 0.5 −1.3 −6.95

PBIAS −8 −12 72 −36

Table 6. With OWTS input.

Statistical
Metric

Flow
Calibration

Flow
Validation

Total Nitrogen
Calibration

Total Nitrogen
Validation

R2 0.78 0.68 0.5 0.81
NSE 0.75 0.4 0.5 0.78

PBIAS −18.4 −30 3.95 6.95

3.2. Influence of OWTS on Hydrologic Cycle

Figure 5a shows the percent increase in groundwater contributing to streamflow with and without
OWTS scenarios. When OWTS data was included, groundwater contribution to streamflow at the outlet
was increased for each year of simulation. The annual precipitation from 2008 to 2011 was roughly
1500 mm. From 2008 to 2011, the percentage increase in groundwater contribution to streamflow
was low compared to from 2012 to 2016. Therefore, groundwater contribution to streamflow due to
septic systems decreased in wet years and increased during dry years. There was a 30% increase in
groundwater during 2012, which was known to be a relatively dry year. Results also showed that
without the presence of OWTS, groundwater contribution to streamflow decreased in each year of
simulation. Therefore, it can be concluded that the influence of OWTS was high on the partition of total
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streamflow into its runoff and baseflow component. The study also showed that the presence of OWTS
has much less influence on the groundwater during wet year than dry year. Figure 5b shows that
comparison of annual total nitrogen (TN) load in each year of simulation for both scenarios. The TN
loads in each year of simulation for OWTS scenarios were twice as high as scenarios run without
OWTS input.

 
(a) 

 
(b) 

Figure 5. Plots of groundwater flow and total nitrogen inputs. Both charts are from 1 January 2007
to 31 August 2016. (a) Plot of annual percent increase in the groundwater contribution to streamflow
between model simulation with and without OWTS at the subbasin scale; (b) Plot of annual total
nitrogen with and without OWTS.

4. Discussion

Streamflow and TN load calibration and validation were found to be successful using the SWAT
model for the Hunt River Watershed. The model effectively captured nonpoint nitrate inputs from
OWTSs through hydrologic modeling of upstream and instream processes. By representing the area
under the septic system, using available sewer data and TN loads data, a more accurate model of
anthropogenic nitrogen inputs into the Hunt River Watershed was able to be developed. This study
showed the importance of groundwater contributions to streamflow and nitrogen loading and the
findings are corroborated by research conducted by Jeong et al. and Hoghooghi et al. [11,14].
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According to Jeong et al. [11] and Hoghooghi et al. [14], the contribution of groundwater to
streamflow is relatively high during dry years, similar to the research findings of this study.

Since the Hunt River Watershed is listed among the highest priority impacted waterbodies
within the state of RI, the ability to effectively model nonpoint nitrogen pollution is essential.
Accurate predictions of streamflow and nutrient simulations are important to effectively manage water
quality in the receiving watershed and therefore play an important role in nitrogen mitigation and
decision-making processes. The Hunt River Watershed’s proximity to Narragansett Bay emphasizes
the need for analyzing the impacts of nitrogen loading since this estuary has historically faced threats
from eutrophication [5,6]. While the Hunt River Watershed is predominantly forested, the urbanization
concentrated near the outlet amplifies the impact of OWTS into the receiving waters. Since the state
has significantly reduced the input of point source nitrogen pollution from sewage treatment plants,
OWTSs are proportionally becoming a larger source of nitrogen into the bay [8]. Despite reductions in
point sources to the bay, eutrophication remains a significant threat to Rhode Island’s fisheries and
tourism industries, thus managers and policy makers need accurate models for identifying areas to
target nitrogen pollution mitigation.

The use of URIWW data to successfully model nutrients entering Narragansett Bay highlights the
value of volunteer water quality monitoring programs for their long-term monitoring assessments.
While Narragansett Bay is no stranger to pollution, Rhode Island lacks historical nutrient data at daily
and statewide monitoring levels. The lack of data on these scales inhibits the ability for modelers to
make predictions based on past trends. Successful calibration of the Hunt River Watershed model
could largely be attributed to the availability and use of URIWW data.

While the Nash–Sutcliffe index reflects strong calibration and validation for the model, several
changes could be made to improve model fit. Limited knowledge of other nitrogen inputs into the
watershed prohibited higher calibration achievement. As listed in the Hunt River TMDL, multiple
point and nonpoint sources exist as major pollution contributors to the watershed. This model could be
expanded upon by evaluating other potential sources of total nitrogen (TN) including lawn fertilizers,
animal waste, and agricultural pollution. Another source of pollution that was not considered in
this study includes backflow from the Potowomut Cove, which has the potential to be a significant
contribution to the overall nitrogen budget within the area [33]. Additional nitrogen input sources
need to be evaluated for higher model calibration. Another source of potential error is a lack of
data on OWTS health, and how failing OWTS contribute to nitrogen loading within the watershed.
Currently, little data exists on the overall health of Rhode Island’s OWTSs. Additionally, RI has begun
implementing and requiring advanced nitrogen removal OWTS that remove nitrogen through bacterial
processes. However, there is still uncertainty on their magnitude of effectiveness and there is limited
information on how many of these septic systems are currently installed. In the future, this model
could be improved upon as more data becomes available on the status and health of OWTSs and other
sources of pollutants.

Overall, SWAT and SWAT-CUP can be used as a tool that supports land use management decisions.
Understanding how OWTS alter nitrogen and streamflow inputs into a small-scale watershed allows
for analysis of base restoration efforts on numerous user end-benefits. SWAT models are largely
acclaimed for their scenario modeling systems [34]. This research did not explore projected changes
via modeling scenarios; however, further research efforts could include scenario modeling due to
anticipated changes in climate patterns and urbanization. Overall, the model results imply that OWTS
input provides a better estimate of nitrogen loading, resulting in more accurate simulations of pollutant
loading into Potowomut Cove. Better prediction models are therefore important to provide informed
decision-making tools for the watershed managers and regulators.
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5. Conclusions

In this study, nitrogen nonpoint source pollution from OWTSs was modeled within the Hunt
River Watershed using the SWAT model. Although the Hunt River Watershed has urbanization,
it is served predominantly by OWTSs. Given that the waterbodies associated with the Hunt River
Watershed are listed among the highest priority impacted waters in RI, it is important to quantify
the impact that OWTSs have within this watershed. This study found that the presence of OWTSs
increased nitrogen loading within the watershed and the model fit increased for simulating TN loading
with the presence of OWTSs. The daily NSE TN load was 0.5 for the 6-year calibration period and
0.8 for the 6-year validation period. Narragansett Bay is no stranger to nitrogen pollution and often
faces threats to its local tourism and fishing economies due to eutrophication stemming from nitrogen
pollution. Modeling nitrogen pollution is essential to help quantify nitrogen loading into the bay to
identify target areas for possible management and mitigation. This study highlights the utility of using
SWAT to model nitrogen pollution from nonpoint sources. Nonpoint sources of nitrogen pollution are
proportionally increasing as contributors to nutrient enrichment in coastal waters as point sources of
nitrogen loading are decreasing within the state. More research is needed to monitor nonpoint nitrogen
sources throughout Narragansett Bay to strengthen current models and identify priority locations for
mitigation and management.
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Abstract: Watershed models have gradually been adapted to support both decision and policy
making for global environmental pollution control. In this study, two watershed models with
different complexity, the Soil and Water Assessment Tool (SWAT) and the Generalized Watershed
Loading Function (GWLF), were applied in two catchments in data scarce China, namely the Tunxi
and the Hanjiaying basins with contrasting climatic conditions (humid and semi-arid, respectively).
The performances of both models were assessed via comparison between simulated and measured
monthly streamflow, sediment yield, and total nitrogen. Time series plots as well as four statistical
measures (the coefficient of determination (R2), the Nash–Sutcliffe efficiency (NSE), percent bias
(PBIAS), and RMSE (root mean square error)—observations standard deviation ratio (RSR)) were
used to estimate the performance of both models. The results show that both models were generally
able to simulate monthly streamflow, sediment, and total nitrogen loadings during the simulation
period. However, SWAT performed better for detailed representations, while GWLF could produce
much better average values of the observed data. Thus, GWLF offers a user-friendly prospective
alternative watershed model that requires little input data and that is applicable for areas where
the input data required for SWAT are not always available. SWAT is more suitable for projects that
require high accuracy and offers an advantage when measured data are scarce.

Keywords: SWAT; GWLF; watershed modeling; comparison; streamflow; sediment; total nitrogen

1. Introduction

China is the biggest developing country in the world, and its rapid economic development
has resulted in a large number of significant water quality issues such as eutrophication of lakes
and reservoirs, deterioration of river water, and groundwater pollution [1,2]. To resolve these
environmental issues, the Chinese government gradually resorted to mathematical models to provide
a scientific basis for quantitative environmental management rather than exclusively depending on
empirical qualitative analyses [3]. Currently, numerous watershed models with various capabilities are
widely used in hydrological research and environmental resource management around the world [4,5].
These are powerful tools that enable us to understand the natural processes, as well as to find solutions
for problems, while assessing the environmental conditions on a the watershed scale [6]. However,
typically, there is a trade-off between model complexity, input data availability, and prediction ability
in a certain application objective [7]. Butts et al. developed a hydrological modeling framework that
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allows for the application of different model structures by providing varying levels of model complexity.
The authors reported that an increase of model complexity did not increase model performance for
a number of investigated cases. Accordingly, different models with different complexities had to be
selected for an exploration of the applicability of watershed models.

SWAT is a semi-distributed and physical-based hydrological model, which has evolved from
multiple previous models over more than 30 years [8,9]. Considerable applications in a wide range of
regions and environmental conditions have indicated SWAT to be an effective and acceptable tool both
for scientific research and policy making [10]. It has been extensively implemented throughout the
world, e.g., in America [11], Africa [12], and Australia [13]. In China, it has been used in the Chaohe
basin in the north of China [14], the Heihe basin in the west of China [15], and the Three Gorges
Reservoir Region in the south of China [16]. The primary categories to which SWAT has been applied
include hydrologic assessments [17,18], pollutant assessments [19], and climate change impacts [20,21].
The GWLF is a simpler, continuous process-based model, which has been used in America [22],
Ireland [23], and China [24] for various purposes. The Ministry of Environmental Protection of China
has endorsed the GWLF as an alternative model to promote water quality and to meet environmental
quality standards [25]. Both models were used to support the development of Total Maximum Daily
Loads (TMDLs) [26]. Due to their wide applicability, acceptance by the authorities, as well as their
different complexities, SWAT and GWLF were selected and compared in China for regions where
monitoring networks are incomplete compared to developed countries.

There have been many studies that compared watershed models. Li et al. [27] compared the
conceptual, lumped Water and Snow balance MODeling system (WASMOD) model to SWAT for
the Yingluoxia watershed and found that MASMOD provided the same, or even better results than
SWAT for the simulated hydrograph. Parajuli et al. [28] employed both the Annualized AGricultural
Non-Point Source (AnnAGNPS) and SWAT in south-central Kansas and their study indicated SWAT
as the most appropriate model for this particular watershed. Wilcox et al. [29] simulated the runoff on
six uncalibrated catchments using both a simple model and a complex model. Although their results
demonstrated that more complex catchment models yield more accurate results, the superiority of
complex models is not immutable for all watersheds. These studies show that different models lead to
different performance in different applications. A model comparison without considering the regional
differences is easily one-sided. Niraula et al. [30] applied the SWAT and GWLF models in east central
Alabama to identify critical source areas (CSAs) of sediment and nutrients. Both models performed
well for streamflow; however, SWAT slightly outperformed GWLF for sediment, total nitrogen (TN),
and total phosphorus (TP). The purpose of their study was to assess whether different model choice
would lead to a variance in the locations of CSAs and the authors did not conduct a comprehensive
comparison between the simulation results of SWAT and GWLF. Moreover, the authors conducted the
models on one site only, suggesting limited implications. Therefore, the objective of this study was to
conduct a comprehensive comparison between SWAT and GWLF and to evaluate their applicability in
two catchments with different climate, landuse, and soil type for monthly stream flow, sediment, and
total nitrogen in the data scarce China.

2. Materials and Methods

2.1. Study Sites

The study sites were chosen based on data availability and differences in climate, landuse and soil
types (Figure 1). The Tunxi catchment is located in Anhui Province, which was selected to represent
the humid south of China. It covers an area of approximately 2674 km2 with forest covering 74%,
agriculture area 15.8%, urban 4.6% and others. Red soil (55%), paddy soil (13%), and purple soil (9.8%)
are the predominant soil types. The basin had a subtropical humid monsoon climate with a mean
annual temperature of 15.5 ◦C and a mean annual precipitation of 1752 mm during the period from
1993 to 2013. The daily temperature was always above 0 ◦C. The 6736 km2 of the Hanjiaying basin
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were selected as a representation of the semi-arid north of China. It is one of the largest subbasins
of the Luan River watershed and located in Hebei Province, which is situated in the north of the
Qinling Mountains-Huaihe River line. Forest (49%) and agricultural land (25%) are the major land
uses within the basin. Brown soil (65%), and cinnamon soil (22%) are predominant in this watershed.
The basin plays an important role for ecological servicing and water supply to the region. The climate
is dominated by a temperate continental monsoon climate with a mean annual temperature of 5.62 ◦C
and a mean annual precipitation of 446 mm from 1993 to 2013. Monthly mean temperatures range
below 0 ◦C during the period from November to March and above 10 ◦C during the summer months
(June–August).

 

Figure 1. Location and elevation of the Hanjiaying and Tunxi watersheds.

Due to significant differences in meteorological conditions, these two sites are typical
representatives of the semi-arid north and the humid south of China, respectively (Figure 2).

Figure 2. Mean annual rainfall and temperature of two sites between 1993 and 2013.
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2.2. Watershed Models

SWAT is a distributed-parameter model, which was primarily designed by the Agricultural
Research Service (ARS) of the United States Department of Agriculture (USDA) to assess the effect
of land management practices on water, sediment, and agricultural chemical yields in large complex
watersheds over extended periods of time [31]. GWLF is a combined distributed/lumped parameter
model, which is based on a combination of simple runoff, sediment, and groundwater relationships and
empirical chemical parameters [32]. Both SWAT and GWLF models are continuous, pollutant-loading
models that operate with a daily time step.

Table 1 lists the major processes and related methods considered by SWAT and GWLF models.
SWAT and GWLF differ greatly in the way in which they delineate the watershed. Based on the
topological structure of river networks, SWAT first discretized the watershed into a number of
subbasins, subsequently dividing each subbasin into hydrologic response units (HRUs) according to
the unique land use, soil, and slope combinations [31]. In SWAT, each physical and chemical process is
modeled at HRU scale within the subbasin and then routed along the river network toward the outlet
of the watershed. However, the conception of subbasin does not exist in GWLF; therefore, it can only
identify surface loading from different land covers and the results of each area are simply added into
the watershed summation. In some sense, the model is distributed but lacks a spatial conception as
well as a channel route component. For sub-surface modeling however, it is considered a lumped
parameter model because it used uniform parameters for the entire watershed, ignoring the spatial
variability of physical and chemical processes [33]. The differences in emphasis on simplifying the real
environment lead to the diverse properties of various watershed models.

The hydrological process is the most important component in any watershed model as the drive
force during the whole simulation. Both models simulate the hydrological component based on the
water balance equation for the shallow aquifer. The SWAT model provides two methods to estimate
surface runoff: the modified SCS-curve number and the Green-Ampt infiltration method. In this study,
both models used different versions of SCS-CN to estimate the surface runoff volume, considering the
remaining amount for infiltration [34]. The GWLF describes groundwater with the linear reservoir
model, while SWAT uses empirical relationships. In addition, SWAT can calculate the lateral flow in
the unsaturated zone.
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In GWLF, erosion is simulated via the Universal Soil Loss Equation (USLE), which predicts the
average erosion, using a function of rainfall energy [44]. Then, a sediment delivery ratio and transport
capacities are applied to determine monthly sediment yield for each source area [33]. In contrast,
SWAT uses a modified version of the Universal Soil Loss Equation (MUSLE), which introduces a runoff
factor displacing energy factor to daily estimate erosion and sediment yield. A delivery ratio is not
required and sediment yields of single storms can be calculated [42,43].

Both models are also quite different in the way they estimate nutrient loads. The GWLF simply
calculates nutrient loads by multiplying N and P concentration coefficients with the runoff volume or
sediment yield at a monthly scale. It uses denitrification loss fractions to calculate the denitrification
amount. With the daily time step, SWAT models nutrient cycles via different pools to simulate their
mineralization, decomposition, and immobilization between inorganic and organic forms within the
soil. Then, the amount of mineral and organic nutrients transported in both land phase and routing
phase is calculated.

In addition to these basic components, SWAT has the additional powerful ability to simulate
crop growth, management, as well as the amount of pesticide, bacteria, algae, dissolved oxygen,
carbonaceous biological oxygen demand (CBOD), and their routing in the channel or reservoir.

2.3. Model Inputs

Table 2 summarizes the data used for the model setup in this study. To avoid different results
based on variations of model input data, we kept the input data of GWLF consistent with SWAT.
The SWAT (Version 2012) and the ReNuMa (Regional Nutrient Management) (Version 2.2.2) modeling
platform of GWLF (Version 2) were used. Thirty-meter resolution DEMs were used to determine the
watershed and sub-watershed boundaries in SWAT and GWLF identified runoff source areas based
on the same delineation. At both sites, land use data were used to obtain major cover classification
information and SWAT needs extra spatial datasets. Soil datasets were only used in SWAT to partition
the watershed into HRUs along with landuse and slope datasets. In SWAT, a combination of these three
datasets divided the Tunxi watersheds into 40 subbasins and 307 HRUs, while it divided Hanjiaying
into 33 subbasins and 258 HRUs. In GWLF, there were nine major landuse classes in Tunxi and seven
in Hanjiaying. Meteorological data of each subbasin were obtained from the weather station nearest
to its centroid for SWAT, while average climatic data were used for GWLF. Agriculture management
information of the Tunxi watershed was referenced to [46] and obtained from the local government in
Hanjiaying. Furthermore, population data were also required for the GWLF.

Table 2. Input data used in SWAT and GWLF.

Type of Data SWAT GWLF Tunxi Hanjiaying

DEM Digital elevation map Digital elevation map 30 m 30 m

Landuse Grid Proportion 1:100,000 1:100,000

Soil Grid and properties - 1:1,000,000 1:1,000,000

Meteorological
data

Daily air temperature (maximum, minimum, average), Daily average
temperature and

precipitation

28 stations 30 stationsdaily precipitation, daily wind,
daily solar radiation,

(2000–2013) (2006–2014)daily relative humidity

Flow discharge monthly Monthly 1 station 1 station
(2000–2013) (2006–2014)

Sediment yield monthly Monthly 1 station 1 station
(2000–2011) (2006–2014)

Nutrient load monthly Monthly 1 station 1 station
(2002–2013) (2006–2014)

2.4. Model Calibration, Validation, and Evaluation

In the Tunxi watershed, the period from 2001 to 2008 was chosen for model calibration, and
the data in 2000 were used as “warm up” to define appropriate initial conditions, and the latest five
years from 2009 to 2013 were used for model validation of streamflow and total-nitrogen, while the
sediment was validated from 2009 to 2011. For the Hanjiaying watershed, the periods of 2006–2011
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and 2012–2014 were selected as the calibration and validation periods, respectively for flow, sediment,
and total-nitrogen, while 2005 was used as the warm-up period. The simulation of SWAT and GWLF
was conducted with a monthly time step and followed the calibration sequence: flow, sediment,
and nitrogen.

Although multiple sets of parameters can obtain optimal fitting with the measured data, we
only selected one of them as representation to facilitate comparison of both models. Tables 3 and 4
show the parameters that were chosen and defined in this study. In SWAT, a sensitivity analysis was
conducted prior to model calibration and more than 20 major parameters were selected in Tunxi and
Hanjiaying. Calibration was manually and automatically conducted via SUFI-2 uncertainty analysis
through the SWAT-CUP program [47]. The SCS curve number (CN2) was the most critical parameter
for both stations, which is directly related to the runoff yield. As the value of CN decreased, overland
flow reduced, but infiltration potential increased. The base flow recession constant, αALPHA_BF, is a
direct index of groundwater flow response to recharge from the vadose zone [48]. Values vary from
0.1–0.3 for land with slow response to recharge to 0.9–1.0 for land with rapid response. The SLSOIL
was the key parameter, which we chose to adjust the lateral flow yield. By default, it is equal to
the value of the average slope length of the subbasin (SLSUBBSN), which tends to result in a high
lateral flow ratio. Therefore, we appropriately reduced its value for both sites. In Hanjiaying, two
additional parameters were considered due to their influence on the snowmaking process. SMTMP
defines the base temperature above which snowmelt is allowed. SNOCOVMX is the threshold depth
of snow above which the basin would be completely (100%) covered with snow. The soil property
parameter SOL_K was also included because the soil categories in the Hanjiaying basin are relatively
coarse. Parameters related to groundwater balance and channel routing were also taken into account.
Seven parameters were chosen to calibrate the sediment simulation with respect to erosion, maximal
sediment amount, and routing in the channel. For nitrogen, four parameters about nitrite and one
parameter about organic nitrogen were considered. Furthermore, we distributed several parameters
depending on landuse, soil texture, and slope. When the calibration of one variable was completed,
we retained an unchanged parameter range and began calibration of the next variable, unless results
were not satisfactory [47].

For the GWLF, parameters related to watershed specific characteristics such as runoff source areas
and populations were identified via GIS data analysis. Transport and nutrient parameters could be
estimated using default coefficients according to [49]. In this study, we used them as initial values and
manually calibrated them. A total of 11 parameters were selected for calibration. The meaning of each
parameter is listed in detail in Tables 3 and 4. After model calibration, the values of input parameters
remained unchanged during the validation process.

The model performance for fitting measured constituent data was qualitatively evaluated via
time series plots and quantitatively evaluated via four widely used statistics in watershed model
evaluation (Table 5).

The coefficient of determination (R2) indicates the degree of linear relationship between simulated
and observed data. A R2 value close to one indicates a better performance. However, it is very sensitive
to extremely high values. The Nash–Sutcliffe efficiency (NSE) is one of the most commonly used
criteria [50]. This is a normalized statistic, which can be used to determine the goodness of fit. The
NSE ranges from −∞ to 1, with 1 indicating a perfect match. The squared difference in equation
becomes the limitation of the NSE for overestimating higher values and neglecting lower values [51].
Percent bias (PBIAS) is an error index, generally used to measure the deviation of the constituent
of data. It calculates the average tendency of the simulated data to be either larger or smaller than
their observed counterparts with zero indicating the optimal value [52]. The RMSE (root mean square
error)-observations standard deviation ratio (RSR) combines the feature of an error index RMSE and
a normalization factor so that it can be applied to various constituents [53]. RSR ranges from the
optimal value of 0 to infinity and the smaller the RSR, the better the simulation results will be. Model
performance was judged based on statistics performance ratings as previously recommended [28,53].
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3. Results and Discussion

3.1. Flow

Figure 3 illustrates a comparison between observed and simulated monthly mean streamflow
series of both SWAT and GWLF models in two sites; the numerical criteria of model performance are
summarized in Table 6.

In the Tunxi watershed, SWAT and GWLF almost replicated the entire trend of the discharge
hydrograph with the simulated peak values and low flows consistently and perfectly matching the
observed data throughout all years (Figure 3a). The high R2 and NSE (above 0.9) values and the
reasonably low RSR (below 0.25) for the calibration and validation periods indicate the excellent
correlation and agreement between measured and simulated runoff for both models. Both SWAT and
GWLF models underestimated streamflow by 9.69% and 4.03% during calibration, respectively, while
overestimating the flow volume by 1.17% and 2.97% during the validation period. The average runoff
simulated by SWAT and GWLF were both close to the average of observations. For the Hanjiaying
watershed, the performance of both models degraded compared to the results for Tunxi. The shape
of the monthly hydrograph was largely reproduced and relatively large fluctuations were found for
the simulation of peak and low flows, contrasting with the measured data (Figure 3b). Based on the
similar values of R2, NSE, and RSR between SWAT and GWLF, both models were equally able to
predicted monthly streamflow during the entire duration of the simulation. However, GWLF produced
marginally better PBIAS values and slightly more accurate average monthly flow than SWAT, especially
during the validation period. According to these results, both models had an almost equal ability to
simulate the monthly streamflow with sufficient accuracy after adequate calibration. Furthermore, the
average runoff simulated by SWAT and GWLF were both close to the average of the observations.

Figure 3. Simulated and observed monthly streamflow for: (a) Tunxi watershed; and (b)
Hanjiaying watershed.

The critical reason for why the performance of both models was highly consistent at the same site
is that the same runoff calculating method (SCS CN) was utilized in both models. Furthermore, the

344

Bo
ok
s

M
DP
I



Water 2017, 9, 567

distinctly different behavior between the Tunxi and Hanjiaying watersheds of both models indicates
that the SCS is more suitable for areas with high flow. Some previous applications in areas with less
runoff yielded relatively poor statistics. Shen et al. [54] obtained a NSE of 0.711 and 0.690 during
calibration and validation periods for the monthly runoff of the Three Gorges Reservoir with mean
monthly observed values below 0.05 m3/s. Parajuli et al. [28] obtained a NSE of 0.56 and a PBIAS of
−95.06 in Red Rock Creek with normal flow volume below 1 m3/s. Li et al. [27] obtained a NSEs of
0.948 and 0.923, and REs of −0.071 and −0.084 during calibration and validation periods for the Heihe
River basin in China with mean monthly observed runoff above 49 m3/s. Other publications reported
that the performance of SWAT and GWLF in simulating low flows is not as useful as those of high or
normal flows [22,55]. In fact, Chahinian et al. [56] compared four different infiltration-runoff models
and all tested models had difficulties simulating low runoff events and even events characterized by
a mild rainfall hiatus. Furthermore, the authors contributed this phenomenon to the absence of soil
moisture re-distribution during flood events and to a constant value during the whole duration of the
flood event.

For the calibrated parameters in SWAT, Tunxi had a higher CN2; thus, more streamflow was
generated than in Hanjiaying, which is perhaps due to more abundant rainfall of Tunxi. The GWQMN
is considerably higher in the Tunxi watershed than in Hanjiaying, indicating that Tunxi has more
groundwater storage. The higher ALPHA_BF in Tunxi suggests a more rapid response to recharge
entering the aquifers than in Hanjiaying, which was further confirmed by the higher value of recession
coefficient in Tunxi of GWLF. The higher CH_K2 in Hanjiaying implies that its channel was easier
to loose water via transmission when there is no groundwater contribution. As for GWLF, CN2 is
also higher in Tunxi than Hanjiaying, which is consistent with SWAT. The parameter, unsaturated
available water, is mainly related to soil property. Red soil and brown soil are the main soil types of
Tunxi and Hanjiaying respectively. Brown soil is usually formed through eluviation and clayization
processes and has thus poor water permeability and good water holding capacity [57]. Hanjiaying
has a higher value of unsaturated available water than Tunxi, partially indicating that more water can
be sorted in brown soil than in red soil. As a whole, the variances among these parameters of both
models consistently reflect differences in hydrological processes under different catchments to some
extent. However, these differences still need to be experimentally verified.

3.2. Sediment

Figure 4 shows a graphical representation of the predicted and measured sediment yield on a
monthly basis. Furthermore, the numerical criteria of model performance in simulating sediment load
are summarized in Table 6.

In the Tunxi watershed, both models adequately simulated the trend of monthly sediment yield,
but tended to underestimate extremely high values. Furthermore, the GWLF performed worse than
SWAT in tracking peak timing (Figure 4a). In summary, both models showed very good correlations
and sufficient agreement between monthly measured and predicted sediment values according to
statistical criteria, except for PBIAS. During the calibration time, the GWLF model performed slightly
better than the SWAT model, based on the same R2, higher NSE, lower RSR, and lower PBIAS. During
the validation process, SWAT responded noticeably better than during the calibration period, while the
performance of the GWLF did not show an apparent improvement. In addition, the PBIAS degrees for
both models did not agree with other criteria and the values of SWAT were always higher than those
of GWLF throughout entire periods, indicating a higher bias to predict sediment. In the Hanjiaying
watershed, the performance of both models decreased compared to the results for Tunxi. The trend
shape of the monthly sediment was roughly represented and there were large fluctuations for the
simulation of peak and low flows compared to the measured data (Figure 4b). In general, both models
equally predicted monthly sediment loads with reasonable accuracy during the entire simulation time
based on the approximately identical values of R2, NSE, and RSR. In addition, the performance of
both models during the validation period increased compared to the calibration period. Furthermore,
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SWAT performed marginally better than GWLF to some extent; however, this difference was so small
that it was negligible. Furthermore, the average monthly sediment yield simulated by SWAT was
much higher and closer to the observed values than for GWLF. According to the analysis above, both
models were capable to predict the monthly sediment yield with adequate accuracy after sufficient
calibration and SWAT was more reliable during the validation period.

The similarity of the results of both models suggests that the difference between MUSLE and
USLE is not apparent in simulating monthly sediment loads, which has previously been suggested [54].
The good representation and increased performance the SWAT model during calibration and validation
periods may be attributed to the distributed property assessing spatial variations of the study sites.
In Tunxi catchment, the consistent performance of GWLF was partially achieved due to its capability
allowing sediment delivery ratio to be calibrated during different months. It simulated the peak
values of sediment between April and July during calibration period reasonably, whereas it did not
capture the peak values in February 2009 and March 2010 during validation periods. This indicates
that the GWLF lacks adequate flexibility in case when evident difference exists between calibration
and validation observed data, mainly due to its simple sediment parameters. Furthermore, errors of
manual measurement and adaption of empirical calculating equation could also affect the performance
of sediment in both models.

Figure 4. Simulated and observed monthly sediment yield for the: (a) Tunxi watershed; and (b)
Hanjiaying watershed.
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3.3. Total Nitrogen

Time series plots and numerical criteria of simulated and measured total nitrogen loads are
summarized in Figure 5 and Table 6, respectively.

For the Tunxi watershed, both the SWAT and GWLF models produced acceptable fluctuations
in comparison to the observed data, while the peak values tended to be underestimated by SWAT
in particular (Figure 5a). Although the R2 value of SWAT was similar to that of GWLF, the GWLF
model outperformed SWAT remarkably during both calibration and validation periods based on NSE,
RSR, and PBIAS. The GWLF constantly predicted the monthly TN loadings with very good accuracy:
R2 and NSE were above 0.8, RSR was above 0.5, and PBIAS stayed within 20. Compared to GWLF,
SWAT improved the results from fair to good. Furthermore, the average monthly total nitrogen yield
of GWLF was closer to the observed values than SWAT. The performance of both models during
the validation period did not have obvious change contrasted to that during the calibration period.
In the Hanjiaying watershed, the results of both models were not as satisfactory as those for Tunxi.
The SWAT model roughly represented the trend shape of the monthly TN loadings and had criteria
values ranging from good to very good during both calibration and validation periods. However,
the GWLF did not provide acceptable simulation results for all years, although its statistics analysis
during the calibration period was very good. Especially during the validation period, the time series
of the GWLF was too gentle to capture each fluctuation of the observed data (Figure 5b). In contrast
to SWAT, the average monthly TN predicted via GWLF was generally nearer to the measured values
during both the calibration and verification periods.

Figure 5. Simulated and observed monthly total nitrogen for the: (a) Tunxi watershed; and (b)
Hanjiaying watershed.

Based on the comparison above, the SWAT model was capable of providing a reasonable and
reliable prediction of monthly TN loadings especially in the Hanjiaying watershed where measured
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data were scarce. Several published studies verified the robustness of SWAT in representing nitrogen
loadings. Stewart et al. [19] used SWAT to predict water quality changes in Texas, reporting a very
good correlation (R2 = 0.89, 0.87) and good agreement (NS = 0.71, 0.73) of monthly organic nitrogen in
calibration and validation periods. Jha et al. [58] reported that SWAT performed very well on annual
and monthly nutrient predictions in the Raccoon River watershed during the simulation periods
with R2 and NSE exceeding 0.7 in most cases. Gassman et al. [10] summarized more than twenty
peer-reviewed articles and the values for R2 and NSE mostly exceeded 0.5, indicating that the SWAT
model is able to replicate a wide range of observed in-stream pollutant levels. This is due to SWAT
considering five different chemical forms of nitrogen as well as the mutual transformation between
them in the nitrogen cycle. However, GWLF only considers two different physical forms of nitrogen
and does not take the conversion between them into account. Furthermore, the nitrogen concentrations
remain constant during the whole model operating time. Thus, the accuracy achieved by GWLF is
heavily dependent on the efficacy of calibration, which perhaps results in its poor performance in
the Hanjiaying watershed where the measured data were limited. Furthermore, the value of CMD
was higher in the Tunxi watershed than in Hanjiaying, indicating that microbial activity tended to
be higher in this humid and warm area. In addition, the higher SHALLST_N of SWAT and nitrogen
concentrations in sediment and groundwater of GWLF indicate that Hanjiaying suffers more human
intervention than Tunxi. Actually, Hanjiaying has more agricultural land than Tunxi. This perhaps
contributed to the relatively degraded performance of both models for the Hanjiaying watershed.

4. Conclusions

In this study, we conducted a comparison between two watershed models with different
complexities and construction in two discrete sites that represent the semi-arid north and the humid
south of China. According to the quantitative statistics and graphical techniques, both the SWAT and
the GWLF model were capable of simulating monthly flow, sediment, and total nitrogen with adequate
accuracy. They performed similarly well in terms of streamflow and sediment. Furthermore, GWLF
outperformed SWAT in the Tunxi watershed, while it had opposite performance in Hanjiaying for
nitrogen simulation. The main conclusions of our study are listed below.

- The performances of both models in arid areas were not as good as the performances in humid
areas, indicating that climatic conditions could greatly affect the applicability of a given model.

- Due to the same adopted surface runoff calculation method (SCS CN), results of both models
in monthly streamflow were quite similar, even though the complexity of the model structures was
quite different.

- In contrast to GWLF, SWAT performed more dependable and robust in sediment and total
nitrogen and could reproduce the fluctuations of the observed data more accurately due to its spatial
property and more detailed description of reality.

- GWLF could provide similar or even better results and much closer average values to measured
data than SWAT in some cases.

- Due to its simpler structure, GWLF requires fewer data to set up, less time to run, and is easier
to be used than SWAT. However, it is not suitable for application in large catchments and cannot reflect
spatial variations due to the absence of channel route and spatial topological relationship of land uses.
Furthermore, GWLF is more dependent on the calibration process than SWAT.

Overall, the user friendly GWLF is more suitable for a basic analysis to support environmental
management in data-deficient areas such as China, where the basic data required by SWAT are not
always available or credible. Furthermore, SWAT has an advantage in areas where measured data are
scarce and is more suitable for projects that require high accuracy.
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Figure S1: The interface of the SWAT model, Figure S2: The interface of the SWAT-CUP, Figure S3: The interface of
GWLF modeling platform-ReNuMa. The Software is freely available for download from: http://swat.tamu.edu/
(assessed on 28 July 2017) and http://www.eeb.cornell.edu/biogeo/nanc/usda/renuma.htm (assessed on 28 July
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Abstract: As water resources become further stressed due to increasing levels of societal demand,
understanding the effect of climate and landuse change on various components of the water cycle is
of strategic importance. In this study we used a previously developed hydrologic model of the Black
Sea Catchment (BSC) to assess the impact of potential climate and landuse changes on the fresh water
availability. The BSC model was built, calibrated, and validated against observed daily river discharge
for the period of 1973–2006 using the Soil and Water Assessment Tool (SWAT) as the modeling tool.
We employed the A2 and B2 scenarios of 2017–2050 generated by the Danish Regional Climate
Model (HIRHAM), and four potential future landuse scenarios based on the Intergovernmental
Panel of Climate Change (IPCC)’s special report on emissions scenarios (SRES) storylines, to analyze
the impact of climate change and landuse change on the water resources of the BSC. The detailed
modeling and the ensemble of the scenarios showed that a substantial part of the catchment will
likely experience a decrease in freshwater resources by 30 to 50%.

Keywords: hydrology; Danube; Don; Dnieper; land use change; hydrological modeling

1. Introduction

Observational evidence from all continents and oceans shows that natural systems are affected by
regional climate changes, particularly by increases in temperature [1]. Nearly all regions of the world
are expected to experience a net negative impact of climate change on water resources and freshwater
ecosystems [1]. A number of studies have shown that climate change will have significant effects on
water availability, water stresses, and water demand [2,3]. Climate change will pose added challenges
to managing high disaster-risk areas, as it is virtually certain that the frequency and magnitude of
warm daily temperature extremes will increase, and cold extremes will decrease, in the 21st century at
the global scale [1]. It is expected that the frequency of heavy precipitation will increase in Southern
and Central Europe and the Mediterranean region, and that droughts will intensify because of reduced
precipitation and/or increased evapotranspiration [1].

The focus of this study is on the Black Sea Catchment (BSC), which lies in a transition zone between
the Mediterranean region in an arid climate of North Africa and the temperate and rainy climate of
central Europe. It is affected by interactions between mid-latitude and tropical processes. Because of
these features, even relatively minor modifications of the general circulation can lead to substantial
changes in the Mediterranean climate [4]. This makes the BSC a potentially vulnerable region to
climatic changes as induced, for example, by increasing concentrations of greenhouse gases [4]. Indeed,
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the Mediterranean region has shown large climate shifts in the past, and it has been identified as one
of the most prominent “Hot-Spots” in future climate change projections [5].

For the long-term strategic planning of a country’s water resources in the face of the evolving
climate and landuse changes, it is important to quantify the effects with a high spatial and temporal
resolution. However, no publication has really focused on the long-term evaluation of the BSC’s water
balance under a combination of climate and landuse change. Yet this may be the most beneficial
application of hydro-climatology to support long-term water resources management and planning.
Within this context, Giorgi and Lionello [4] reviewed a few climate change projections over the
Mediterranean region based on the most recent and comprehensive ensembles of global and regional
climate change simulations. There is also a comprehensive review of climate change projections over
the Mediterranean region reported by Ulbrich et al. [6] based on a limited number of global and
regional model simulations performed throughout the early 2000s. Moreover, a number of studies
have reported regional climate change simulations over Europe, which includes parts of the BSC [7–10].
As recognized by the two international environmental organizations in the region (Danube and
Black Sea), achieving an environmental sustainability that will improve human well-being strongly
depends on sustainable water resources management in this catchment [11]. Nevertheless, despite
the importance of this region within the global change context, assessments of water resources of the
entire catchment under different climate and landuse change projections do not exist in the literature.

Hydrologic models often used to assess the impacts of land and climate changes on water
resources include: WaterGap3 [12,13], HBV [14], MIKE-SHE [15], and the Soil and Water Assessment
Tool (SWAT) [16] among many others. These models are particularly useful as they can assess past as
well as possible future impact scenarios. SWAT [16] has proven its suitability for hydrologic impact
studies, especially under conditions of limited data availability [17]. The aforementioned hydrological
models often use global climate simulations for the 20th and 21st century under different greenhouse
gas forcing scenarios that are publicly available as a contribution to the fourth and fifth Assessment
Reports (AR4, AR5) of the Intergovernmental Panel on Climate Change (IPCC) to analyze the climate
change impacts on various aspect of hydrological cycle. In the current study, we employed the Danish
Regional Climate Model (RCM) HIRHAM, driven by the United Kingdom’s Hadley Center HadAM3H
Global Climate Model (GCM), under the scope of the PRUDENCE project to assess the future climate
change projections over the BSC. We used the quantification of landuse change scenarios which is based
on the framework provided by the Integrated Model to Assess the Global Environment (IMAGE) [18].
The four landuse change scenarios used in the current study comprise a number of plausible storylines
based on the IPCC’s special report on emissions scenarios (SRES) following four marker scenarios
representing different global socio-economic development pathways.

The objective of the study is to address the changes in various components of the water balance
including precipitation, evapotranspiration, and soil moisture under changing climate and landuse.
We used a previously calibrated hydrological SWAT model of the BSC [19] as the base model,
and incorporated the climate and land use change scenarios that are outlined above. We assessed the
variation in blue water (river discharge plus aquifer recharge) and green water (soil moisture and
evapotranspiration) across the BSC under changing climate and landuse scenarios.

2. Material and Methods

2.1. Study Area

The BSC drains rivers of 23 European and Asian countries (Austria, Belarus, Bosnia, Bulgaria,
Croatia, Czech Republic, Georgia, Germany, Hungary, Moldova, Montenegro, Romania, Russia, Serbia,
Slovakia, Slovenia, Turkey, Ukraine, Italy, Switzerland, Poland, Albania, and Macedonia) from an
area of 2.3 million km2 into the Black Sea (Figure 1). The catchment is highly populated (160 million
people) [20]. Major rivers draining into the Black Sea include Danube, Dniester, Dnieper, Don, Kuban,
Sakarya, and Kizirmak. The major mountainous peaks lie in the East and South, in the Caucasus and in
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Anatolia, and to the Northwest with the Carpathians in the Ukraine and Romania. Most of the rest of the
West and North of the catchment is low lying. The catchment has a distinct North–South temperature
gradient from <−3 ◦C to >15 ◦C (annual average) and a West–East precipitation gradient that is
decreasing with distance from the Atlantic Ocean. Areas of high precipitation (>3000 mm year−1)
are in the West, and areas of low precipitation (<190 mm year−1) are in the North and East [21].
The dominant landuse in the catchment is agricultural land, with 65% coverage according to MODIS
Land Cover [22].

 
Figure 1. Overview of the Black Sea Catchment depicting major rivers and measured stations of climate,
discharge, and nitrate. The labeled points a and b correspond to the labeled points in Figure 4.

2.2. Soil Water Assessment Tool (SWAT)

SWAT was used to simulate the hydrology of the BSC. SWAT is a process-based, semidistributed
hydrologic model that is developed to quantify the impact of land management practices on water,
sediment, and agricultural chemical yields in large complex watersheds with varying soils, landuses,
and management conditions over long periods of time. SWAT has been used for the assessment
of landuse and management impacts on water quantity and quality in many studies worldwide.
The spatial heterogeneity of the watershed is preserved by topographically dividing the catchment
into multiple sub-basins. The sub-basins are further subdivided into hydrologic response units
(HRU). These are lumped areas within a sub-basin with a unique combination of slope, soil type,
and landuse that enable the model to reflect differences in evapotranspiration for various crops and
soils. A simulation of the hydrologic cycle is separated into a land phase and a water phase [23].
The simulation of the land phase is based on the water balance equation, which is calculated separately
for each HRU. Runoff generated in the HRUs is summed up to calculate the amount of water reaching
the main channel in each sub-basin [23]. The water phase of the hydrologic cycle describes the routing
of runoff in the river channel, using the variable storage coefficient method by Williams [24]. A detailed
description of the model can be obtained from Neitsch et al. [23]. Figure 2 depicts a schematic view of
processes accounting for the land phase of the SWAT model.
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Figure 2. Schematic overview of available pathways for water movement in the land phase of the
SWAT model. GW, groundwater.

2.3. Landuse Scenarios

The landuse scenarios that are used in the current study were developed within the European
Union’s seventh research framework through the enviroGRIDS project [25]. The developed scenarios
comprise a number of plausible storylines based on a coherent set of assumptions, key relationships,
and driving forces, to create a set of quantitative, internally consistent, and spatially explicit scenarios
of future landuse covering the entire BSC (Figure 3). A trend of landuse change for different scenarios
is summarized in Table 1.

 
Figure 3. Black Sea Catchment’s landuse scenarios. BS, Black Sea.

The quantification of landuse scenarios is based on the outputs of the Integrated Model to Assess
the Global Environment [18] and on projections based on data from the Statistical Office of the European
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Communities (Eurostat) and the UN World Population and Urbanization Prospects [26]. The European
regional projections (forest, grassland, urban and built up, and cropland) were disaggregated at the
level of smaller administrative units (Nomenclature of Units for Territorial Statistics, level 2 (NUTS2)),
and then used as input to the regional/local land allocation Metronamica model [27] for 214 regions in
the BSC. The landuse change scenarios were quantified as yearly changes in landuses on 1 km × 1 km
grid cells, in two time steps, 2025 and 2050, for four scenarios covering the entire BSC. The landuse
scenarios were developed for cropland, grassland, forest, and urban areas for the BSC countries, while
the input data were derived from the MODIS land cover datasets [22] for the years 2001 and 2008.
A full description of the scenario developments and quantitative measures of changes in land cover
classes is presented by Mancosu et al. [28].

Table 1. Summary of landuse trends and driving forces in the Black Sea Catchment’s scenarios.

Landuse Scenarios

Driving Forces BS HOT BS ALONE BS COOP BS COOL

Population growth low very high low medium
Urban population increase increase slight increase slight increase

GDP growth very high slow high medium
Forest area increase decrease increase decrease

Grassland area increase decrease increase decrease
Cropland area increase increase decrease increase
Built-up area increase increase increase stable

Protected areas stable stable increase stable
Climate change high high lower low

Note: GDP, gross domestic product.

2.4. Climate Change Scenarios

Two future climate scenarios, HS and HB, were simulated for the period of 2010 to 2050,
representing the IPCC’s A2 and B2 scenarios, respectively. In this study, we used precipitation and
minimum and maximum temperature data from the PRUDENCE website. The data were downscaled
and bias corrected using the Delta method [29] based on Climate Research Unit (CRU) [30] data
(1901–2006). The CRU time series data for the control period are perturbed with changes, allowing
increase as a function of time. These changes are based on the parted differences of the monthly
probability distribution function (PDF). The PDF is partitioned into deciles, and observed time series
are gradually perturbed. The assumption behind the Delta method is that future model bias for
both mean and variability will be the same as for present-day simulations. Detail on downscaling
techniques and a bias correction procedure is available in a study by Gago Da Silva et al. [31].

2.5. Model Setup, Calibration, and Validation

The 2.3 million km2 area of the catchment is divided into 12,982 sub-basins. The sub-basins are
further divided into unique combination of soil, landuse, and slope, and formed 89,202 Hydrological
Response Units (HRUs). For a calibration and uncertainty analysis, we used the Sequential Uncertainty
FItting program SUFI-2, which is a tool for sensitivity analysis, multi-site calibration, and uncertainty
analysis. SUFI-2 is linked to SWAT in the SWAT-CUP software [32].

The inputs of the model are summarized in Table 2. The simulation period was 1970–2006,
designating the first three years as a warm up period. We used the ArcSWAT2009 interface for the
model setup and SWAT2009 Rev528 for a model run. Table 3 gives an overview of the relevant methods
used in the model setup. More details of the hydrologic model’s structure, setup, and performance in
the BSC can be found in Rouholahnejad et al. [19].
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For future simulations (2017–2050, including 3 years of warm up period), the two climate change
scenarios (HB and HS) were paired with the four landuse change scenarios (BS ALONE, BS COOL,
BS COOP, and BS HOT), leading to eight combinations of climate-landuse scenarios, and applied as
inputs to the calibrated hydrologic model of the catchment in eight separate model setups. In addition,
two model setups were designed to look at climate change only, with static landuse. The latter models
used MODIS landuse data of the historical hydrologic model as the static landuse. In the other eight
combinations of landuse-climate scenarios, a dynamically updating algorithm updated the landuses
yearly up to the end of the simulation period. A total of 10 different scenarios were therefore built
and analyzed.

Table 2. Sources of model input data and descriptions for the base model.

Type Source Description

DEM SRTM [33] 90 m resolution extracted for BSC

Climate CRU [30,34],
Solar Radiation [35]

0.5◦ resolution gridded climate data, daily temperature (min.; max.), daily
precipitation (1970–2006) daily global solar radiation from 6110 virtual
stations (1970–2006)

River ECRINS [36] 30 m resolution, from European Catchments and Rivers Network System
(ECRINS)

Soil FAO [37] 5 km resolution, from FAO-UNESCO global soil map, provides data for
5000 soil types comprising two layers (0–30 cm and 30–100 cm depth)

Landuse MODIS [22]
500 m resolution, by the NASA Land Processes Distributed Active Archive
Center (LP DAAC) at the USGS/Earth Resources Observation and Science
Center (EROS)

Management MIRCA2000 [38],
McGill yields data [39]

5 arc min resolution cropping area and the start and end month of cropping
periods, 5 arc min crop yield of three major crop (Wheat, Cory, Barely)

River discharge GRDC [40] 144 Monthly river discharge data (1970–2006)

Notes: DEM, Digital Elevation Model; SRTM, Shuttle Radar Topography Mission; BSC, Black Sea Catchment; CRU,
Climate Research Unites; ECRINS, European Catchments and RIvers Network System; FAO, Food and Agriculture
Organization; MODIS, Moderate Resolution Imaging Spectroradiometer; MIRCA, Monthly Irrigated and Rainfed
Crop Areas; GRDC, Global Runoff Data Centre.

Table 3. Soil and Water Assessment Tool (SWAT) processes used in the study.

Processes/Components Method

Evapotranspiration Hargreaves
Surface runoff Soil Conservation Service (SCS) curve number

Erosion Modified universal soil loss equation
Lateral flow Kinematic storage model

Groundwater flow Steady-state response from shallow aquifer
Stream flow routing Variable storage routing

3. Results and Discussion

The BSC hydrologic model was calibrated (1973–1996) and validated (1997–2006) at 144 river
discharge stations at daily time scales. The most sensitive parameters to discharge are as shown in
Table 4. An example of the simulated and observed stream flow along with the predictive uncertainty
band for the two labeled river discharge stations in Figure 1 are presented in Figure 4. These are two
examples of calibrated discharge stations, one at the border of Hungary and Romania and one in
Romania. We ran the model and calibration simulations at a daily time scale. However, given the scale
of the watershed, the outputs were extracted at monthly time scales.
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Table 4. List of sensitive parameters used for model calibration.

Parameter Name Definition

CN2.mgt SCS runoff curve number for moisture condition II
ALPHA_BF.gw Base flow alpha factor (days)
GW_DELAY.gw Groundwater delay time (days)

GWQMN.gw Threshold depth of water in shallow aquifer for return flow (mm)
GW_REVAP.gw Groundwater revap. coefficient
REVAPMN.gw Threshold depth of water in the shallow aquifer for ‘revap’ (mm)
RCHRG_DP.gw Deep aquifer percolation fraction

CH_N2.rte Manning’s n value for main channel
CH_K2.rte Effective hydraulic conductivity in the main channel (mm h−1)

ALPHA_BNK.rte Baseflow alpha factor for bank storage (days)
SOL_AWC().sol Soil available water storage capacity (mm H2O/mm soil)

SOL_K().sol Soil conductivity (mm h−1)
SOL_BD().sol Soil bulk density (g cm−3)

OV_N.hru Manning’s n value for overland flow
HRU_SLP.hru Average slope steepness (m m−1)

SLSUBBSN.hru Average slope length (m)
SFTMP().sno Snowfall temperature (◦C)
SMTMP().sno Snow melt base temperature (◦C)
SMFMX().sno Maximum melt rate for snow during the year (mm ◦C−1 day−1)
SMFMN().sno Minimum melt rate for snow during the year (mm ◦C−1 day−1)

Note: SCS, Soil Conservation Service.

Figure 4. Simulated and observed river discharges of (a) Crisul Negru and (b) Siret river in the Black
Sea Catchment (labeled in Figure 1). Shown in the picture are observation time series, best simulation
along with 95% prediction uncertainty band (green band). The P-factor is the percentage of measured
data bracketed by the 95 PPU band. It ranges from 0 to 1, where 1 is ideal and means all of the measured
data are within the uncertainty band. The R-factor is the average width of the band divided by the
standard deviation of the measured variable. It ranges from 0 to 1, where 0 reflects a perfect match
with the observation. Based on the experience, an R-factor of around 1 is usually desirable. NS and R2

are Nash–Sutcliffe efficiency and coefficient of determination, respectively.

3.1. Temperature and Precipitation in a Changing Climate

The HB and HS long-term average temperature scenarios show a 1–2.4 ◦C temperature increase
with a west to east gradient in the catchment. While the overall long-term pattern of increase in

359

Bo
ok
s

M
DP
I



Water 2017, 9, 598

temperature is similar in the two scenarios, HS depicts a larger temperature increase and over larger
areas (Figure 5g,h). The variation over time in future temperature scenarios (2020–2050) has almost the
same pattern as the historic temporal variation (1973–2006) with some discrepancies in the Danube
basin (Figure 5b,d,f).

 

Figure 5. Temperature distribution in the Black Sea Catchment: (a) average temperature, historic
(1973–2006); (b) coefficient of variation (CV) of historic temperature (1973–2006); (c) average
temperature HB scenario (2020–2050); (d) coefficient of variation of HB temperature (2020–2050);
(e) average temperature HS scenario (2020–2050); (f) coefficient of variation of HS temperature
(2020–2050); (g) deviation of HB future temperature scenario (2020–2050) from historic (1973–2006), ◦C;
(h) deviation of HS future temperature scenario (2020–2050) from historic (1973–2006), ◦C.
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The historical distribution of average precipitation (Figure 6a), along with its coefficient of
variation (CV) over time (Figure 6b), mark distinct precipitation distribution patterns with significant
temporal variation (as indicated by the high CV values) in regions around the Sea, and in the Danube,
Dnieper, and Don River basins. Historically, the upper Western part of the catchment in the alpine
region receives rain of about 1300 mm year−1 on average, which is much higher than precipitation
rates in other parts of the BSC where Ukraine, Russia, and Turkey lie. The regions with a smaller
historical precipitation rates tend to show a higher temporal variation in precipitation (Figure 6b).

 

Figure 6. Precipitation distribution in the Black Sea Catchment: (a) average precipitation, historic
(1973–2006); (b) coefficient of variation of historic precipitation (1973–2006); (c) average precipitation
HB scenario (2020–2050); (d) coefficient of variation of HB precipitation (2020–2050); (e) average
precipitation HS scenario (2020–2050); (f) coefficient of variation of HS precipitation (2020–2050);
(g) percent deviation of HB precipitation scenario (2020–2050) from historic (1973–2006); (h) percent
deviation of HS precipitation scenario (2020–2050) from historic (1973–2006).
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The two future precipitation scenarios are similar to the historic ones with regard to patterns
of long-term annual averages (Figure 6a,c,e). In future scenarios, the areas with small precipitation
expand as compared to the historic period (Figure 6a,c,e). The HS scenario, in general, suggests larger
decreases in precipitation in the catchment.

The anomaly maps of precipitation (Figure 6g,h) depict percent deviation from historic
precipitation for the entire catchment. The differences are calculated between the averages of 2020–2050
with those of 1973–2006. The HB scenario suggests a 5–15% decrease in precipitation in most regions
of the catchment, while the HS suggests a 10–24% decrease in the precipitation of Danube Basin (West
of the Black Sea) and a 4–10% decrease in precipitation in the rest of the catchment.

3.2. Fresh Water Resources under Changing Landuse and Climate

The term “blue water” [41] is widely used in the literature as the summation of the water yield
and deep aquifer recharge. The long-term average blue water resources of the BSC for the period
of 1973–2006 are shown in Figure 7a. The coefficient of variation of the blue water in the BSC
(Figure 7b) during the period 1973–2006 shows significant variation in the central and eastern parts
of the catchment as well as in Turkey, where the historic annual average of blue water is less than
100 mm year−1 (Figure 7b). In other words, the less the blue water is available, the more its variability
over time is. The anomaly map of blue water (Figure 7c) depicts the deviation of long-term average
blue water resources for the period of 2020–2050 from long-term average historic records (1973–2006)
under future landuse and climate change scenarios (ensemble of 10 scenarios).

The blue water resources calculated with the ensemble of 10 scenarios suggest a 10–50% decrease
in blue water resources in most parts of the catchment (Figure 7c). According to the future scenario
ensembles, blue water increases on average by 50% in the coastal areas of Georgia and Turkey, with
historically small blue water resources. However, this does not bring a significant increase in terms of
net blue water resources availability of the whole catchment, as the historical records in these regions
are quite small. Historical variations of blue water indicate low reliability (higher variability over time)
of blue water resources in Romania, parts of Ukraine, the Russian parts of the catchment, and Turkey
(Figure 7b). Our analysis shows that the poor conditions in these regions in terms of fresh water
availability will be further intensified under climate change (Figure 7c).

As soil moisture is an integral component of rainfed agriculture, the soil water distributions
projected under future climate change and landuse change scenarios are of a strategic importance. The
spatial variation of long-term average annual green water storage (soil moisture) (Figure 8a) shows
that most of the catchment lies in the range of 70–250 mm of soil moisture. However, the variation
over time shows a distinct East–West pattern, suggesting different levels of reliability for soil water in
the region. The Southern parts of the catchment tend to have smaller soil water with more variation
over time (Figure 8b), which makes the region less reliable in terms of green water storage resources.

The anomaly map of soil water (average of 10 scenarios) depicts the deviation of average future
(2020–2050) soil moisture from the average historic (1973–2006) soil moisture (Figure 8c). The average
of the 10 scenarios shows up to a 10–25% reduction in soil water in the Danube catchment and Northern
BSC in the upstream of Dnieper and Don, in Ukraine and Russia. There are indications of soil moisture
increase in Georgia, where both climate scenarios suggested an increase in precipitation. The coefficient
of variation among the 10 scenarios indicates that there is a good agreement between the scenarios
with less than 2% variation in the prediction of soil water in most parts of the catchment and 10–15%
variation in the Danube Delta and areas surrounding the Black Sea (Figure 8d).
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Figure 7. Spatial distribution of blue water resources in the Black Sea Catchment: (a) long-term
historical average (1973–2006); (b) temporal variation of historical blue water; (c) percent deviation of
future blue water (2020–2050) from the historic (1973–2006) based on the ensemble of the 10 scenarios.

The average of 10 scenarios suggests both an increase and a decrease in evapotranspiration across
the BSC under climate and landuse change scenarios (Figure 9c). There is also a sharp increase in
evapotranspiration of Georgia, which fits the increase in precipitation and temperature in this area.
The variation among the 10 scenarios is the highest in the Danube delta and the Black Sea costal area.
The average deviation from historic values (Figure 9c) suggests that evapotranspiration decreases
by up to 12% in the Danube basin under future scenarios of change. The variation between model
predictions of blue water, evapotranspiration, and soil moisture using four different future landuse
scenarios shows limited impacts of landuse changes as compared to climate (the coefficient of variation
is less than 1.3% among the four landuse scenarios) (Figure 10). Hence, the climatic signature is more
significant than landuse in this study. The variations between scenarios are more pronounced in the
blue water predictions (Figure 10a,b).
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Figure 8. Spatial distribution of green water storage (soil water) in the Black Sea Catchment:
(a) long-term historical average (1973–2006); (b) coefficient of variation (temporal variation) of the
green water storage (1973–2006); (c) percent deviation of future green water storage (2020–2050) from
the historic (1973–2006); (d) coefficient of variation of average soil moisture among the 10 scenarios.

 

Figure 9. Spatial distribution of green water flow (evapotranspiration) in the Black Sea Catchment:
(a) long-term historical average (1973–2006); (b) temporal variation of the green water flow (1973–2006);
(c) percent deviation of the future green water flow (2020–2050) from historic (1973–2006) based on
the ensemble of 10 scenarios; (d) coefficient of variation of actual evapotranspiration among the
10 scenarios.
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Figure 10. Coefficient of variation (CV) of the model predictions using four future landuse scenarios
(BS ALONE, BS COOL, BS COOP, and BS HOT) in combination with the HB future climate Scenario
(left column) and the HS future climate scenario (right column). (a,b) blue water resources; (c,d) green
water storage (soil moisture); (e,f) green water flow (evapotranspiration). LU, landuse.

3.3. Extreme Events

We compared the frequency of occurrences of wet days with the precipitation thresholds of >2
and >10 mm d−1 in five selected sub-basins in different climatic regions across the BSC (Figure 11).
In general, although the long-term average precipitation based on the two scenarios suggests a general
decrease in precipitation in the catchment, the frequency of the wet days are slightly higher under
future scenarios. In a sub-basin in the Eastern part of the BSC in Russia, the two climate scenarios
predicted a slightly higher number of days with precipitation larger than 2 mm as compared to
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historical climate (Figure 11a,b). This is a region with low annual rainfall (350–450 mm year−1) where
there are few rainfall events exceeding 10 mm d−1 throughout the year. In a sub-basin in Southern
Ukraine with 450–500 mm year−1 average annual precipitation, the frequency of wet days at the
threshold of >2 mm d−1 stays as large as the historic period (Figure 11c). The slight decreases in
number of days with >10 mm d−1 rainfall events indicate a smaller groundwater recharge, hence a
larger chance of receding groundwater.

 

Figure 11. Comparison of the number of wet days with >2 mm d−1 threshold (left column), and
>10 mm d−1 threshold (right column) between the historic (1973–2006) and HB and HS future climate
scenarios (2020–2050) for five selected sub-basins (a,b) a subbasin in Russia; (c,d) a subbasin in Ukraine;
(e,f) a subbasin in Austria; (g,h) a subbasin in middle Danube; and (i,j) a subbasin in Turkey.
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In the selected sub-basin in Austria with a rainfall rate of 1000–1350 mm year−1, the frequencies of
wet days with more than 2 mm d−1 rainfall increase as compared with the historical data (Figure 11e).

In a sub-basin in the Alpine region in the middle of the Danube Basin, historic records of
precipitation range between 1000–1350 mm year−1. Both the HB and HS scenarios predict an increase
in the number of wet days with a threshold of >2 mm d−1, while the increase in the winter months is
more distinct. The HS scenario predicts larger wet-day frequencies with the threshold of >10 mm d−1

than the HB scenario. The increase in precipitation frequencies at the threshold of >10 mm d−1 may
indicate more flood risks in this region. However, the increase in the frequencies of precipitation with
a large threshold (>10 mm d−1) stay within the historic records in this sub-basin (Figure 11h).

Finally, in a sub-basins in Turkey, the climate models behave differently from the Alpine region,
as the HB and HS climate scenarios predict a distinctly larger number of days with precipitation more
than 2 mm d−1 than what the historic records show. The precipitation events at 10 mm d−1 threshold,
however, are predicted to decrease in this selected sub-basin in Turkey (Figure 11i,j).

4. Summary

Combinations of two regional climate scenarios and four regional landuse scenarios were
incorporated in the current study to explore the possible future impacts of climate and landuse changes
on water resources of the Black Sea Catchment. The landuse scenarios were driven by the IPCC’s
special report on emissions scenarios (SRES) corresponding to four marker scenarios that represent
different global socio-economic development pathways. The climate scenarios were generated from
the Danish Regional Climate Model (RCM) (HIRHAM) for the IPCC’s SRES A2 and B2 scenarios
(HS and HB scenarios respectively). On average, the climate scenarios suggested a 5–15% decrease
in future long-term average annual precipitation in most parts of the catchment. The decrease in
precipitation is more pronounced in the HS scenario. According to the HS climate scenario, the Western
part of the catchment (Danube Basin) will experience a decline in precipitation by 25%. As the historic
precipitation records are large in this region, this is expected to have a large impact on the water
resources of the entire region, and leaves the catchment with a significant net decrease of precipitation.
Both scenarios suggest an increase in temperature by up to 2 ◦C with a west to east gradient. The
extent of changes in temperature is more severe in the HS scenario as compared to the HB scenario.

We also quantified the impacts of combined climate and landuse changes on freshwater distribution
in the BSC. As suggested by the ensemble of scenarios, on average, the catchment is expected to
experience a decrease in its blue water and green water storage resources, while the green water flow
(evapotranspiration) increases in some parts of the catchment and decreases in other parts (Figures 7–9).
In addition, the decrease in fresh water resources in areas with high temporal variability in their water
resources component (mainly in low lying countries around the Black Sea, such as Romania and
Ukraine and the Russian part of the catchment) increases the vulnerability with regard to fresh water
resources in these regions.

In our analysis, climate change had more pronounced effects on water resources, especially blue
water, as opposed to the landuse change. To see the detailed effect of landuse change on the water
resources component, it is beneficial to look at the water cycle at the HRU level, where the landuses are
identical. This will give a true measure of landuse change impacts on water resources. The strength
of the current work is the application of combined landuse and climate change scenarios. However,
the study neglects the future changes in soil parameters over time, which accompanies changing
landuses. Accounting for these changes will increase the confidence in the projected results, and needs
to be further investigated.

An additional concern is the use of two regional climate scenarios (HS and HB) in model
prediction while pursuing a thorough investigation based on the combined effect of many other Global
Climate Models or Regional Climate Models would reflect climate model uncertainties, and hence is
recommended. The study however, provides the basis to improve societal capabilities to anticipate
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and manage water resources both today and in the future climate change environment in the Black
Sea Catchment.
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Abstract: The Segura River Basin is one of the most water-stressed basins in Mediterranean
Europe. If we add to the actual situation that most climate change projections forecast important
decreases in water resource availability in the Mediterranean region, the situation will become totally
unsustainable. This study assessed the impact of climate change in the headwaters of the Segura
River Basin using the Soil and Water Assessment Tool (SWAT) with bias-corrected precipitation and
temperature data from two Regional Climate Models (RCMs) for the medium term (2041–2070) and
the long term (2071–2100) under two emission scenarios (RCP4.5 and RCP8.5). Bias correction was
performed using the distribution mapping approach. The fuzzy TOPSIS technique was applied
to rank a set of nine GCM-RCM combinations, choosing the climate models with a higher relative
closeness. The study results show that the SWAT performed satisfactorily for both calibration
(NSE = 0.80) and validation (NSE = 0.77) periods. Comparing the long-term and baseline (1971–2000)
periods, precipitation showed a negative trend between 6% and 32%, whereas projected annual mean
temperatures demonstrated an estimated increase of 1.5–3.3 ◦C. Water resources were estimated to
experience a decrease of 2%–54%. These findings provide local water management authorities with
very useful information in the face of climate change.

Keywords: water resources; SWAT model; climate change; Segura Basin; fuzzy TOPSIS

1. Introduction

Climate change as a result of increased greenhouse gas emissions leads to changes in hydrologic
conditions and results in various impacts on the availability of global water resources [1]. Spain is one
of the countries most vulnerable to the impacts of climate change in Europe due to the high spatial
and temporal irregularity of water resources and socio-economic characteristics [2]. In addition, future
climate tendencies show an increment in the temperature and a significant reduction in total annual
rainfall [3]. When these impacts occur in regions that already present low water resource availability
and frequent droughts, these impacts can be exacerbated. The Segura River Basin (SRB) is situated in
SE Spain and is one of the most water-stressed basins in Mediterranean Europe [4].

In global terms, the total water demand for consumption is 1800 hm3/year, where 86%
corresponds to agricultural use and 10% to urban uses. Against this demand data, annual natural
water availability is, on average, around 800 hm3/year [5]. This deficit is partly covered by water
from the Tagus-Segura water transfer and the use of unconventional water resources like treated
wastewater and desalinated water, but these resources are not enough and the SRB is still suffering
aquifer overexploitation [6]. The headwaters of the Segura River Basin (HWSRB) need to be studied
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thoroughly, as they are the most important sites for water resource generation in the basin [7]. The
HWSRB have an important relevance in SRB water resources, since they comprise 9% of the water
resource contribution, in spite of the fact that they covers only 1.2% of the area of the total watershed.

The SWAT has been successfully and widely used all over the world for different purposes,
including the evaluation of climate change impacts on water resources [8]. However, SWAT
applications assessing the water resources of Spain under changing climate conditions are scarce
in scientific literature. Such studies have mostly been conducted in the north of the country, where
there is an absence of water scarcity [9–14]. In the case of Spanish Mediterranean catchments, this
model has rarely been used [15].

The Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) is one of the
most used techniques for solving Multi-Criteria Decision Analysis (MCDA) problems and was first
developed by Hwang and Yoon [16]. In the classic formulation of the TOPSIS method, personal
judgements are represented with crisp values. However, crisp data are inadequate to model real-life
decision problems under many conditions. That is why the fuzzy TOPSIS method was proposed,
whereby the weights of criteria and ratings of alternatives are evaluated by linguistic variables
represented by fuzzy numbers to deal with the deficiency in the classic TOPSIS. The fuzzy TOPSIS
method has been widely applied in many fields; for example, energy [17], environment [18], industrial
processes [19], and climate change [20]. However, to the best of our knowledge, the only precedent in
the combined use of the SWAT model and the fuzzy TOPSIS method is found in Won et al. [21], wherein
the authors assessed the water use vulnerability in 12 basins of South Korea, using SWAT to simulate
hydrological components and fuzzy TOPSIS to rank the water use vulnerability in those basins.

The aim of the present study was to evaluate the climate change effect on the water resources of
the HWSRB. The specific objectives of this study included: (1) to reduce the uncertainty in climate
change projections by applying the fuzzy TOPSIS technique to rank climate models and (2) to explore
the water resource response to future climate projections for the HWSRB. To achieve these objectives,
we set up a hydrological model, using SWAT for the HWSRB. After calibration and validation of
the model, nine different climate models were downloaded from the EURO-CORDEX initiative [22]
and the fuzzy TOPSIS technique was applied to select which historical runs had the best fit with the
observed climate data during a baseline period (1971–2000). Once those climate models were ranked,
some of them were used to evaluate climate change in the study area for the medium term (2041–2070)
and long term (2071–2100) using two different representative concentration pathways (RCP4.5 and
RCP8.5). The results obtained in this study provide local water management authorities with very
useful information for the proper utilisation and management of water resources under climate change
conditions in this vulnerable region.

2. Description of the Study Area

The HWSRB is located in the southeastern region of Spain and covers an area of about 235 km2.
The basin is characterised by steep terrain, and the elevation ranges between 898 and 1912 m, as is
shown in Figure 1. The drainage network is formed by two main rivers, the Segura River and its
tributary, the Madera River. The whole basin drains into the Anchuricas Reservoir. The mean discharge
at the reservoir is 1.6 m3/s. This reservoir was constructed in 1957; it has a capacity of 6 hm3, and the
key purpose of the reservoir is to generate electricity. The study area is located mostly on permeable
outcrops, limestone, and dolomite of the Upper Cretaceous. Land use in the watershed is highly
forested; 61% of the surface is occupied by forests and 19% by Mediterranean shrubland vegetation.
The rest of the land use is mainly for range purposes. The predominant soil type is rendzic leptosol,
with variable depth always less than 50 cm, good drainage, and abundant stoniness [23].

The climate is typical Mediterranean with clear seasonality, rainy springs and autumns, and dry
summers. According to data from 1971 to 2000, the mean annual precipitation ranged from 511 to 1300 mm,
with an average value of 878 mm for the HWSRB, and the average annual temperature was 12.4 ◦C.
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Figure 1. Location of the headwaters of the Segura River Basin (HWSRB).

3. Methodology

In order to evaluate the future impacts of climate change on water resources, the hydrological cycle
was simulated in the headwaters of the SRB under different climate change scenarios. This process
included three main steps: (1) setting up the hydrological model with observed stream flow and climate
data; (2) selecting climate projections based on the fuzzy TOPSIS technique; and (3) incorporating
climate scenarios into the hydrological model to evaluate the impact of the climate change in the
headwaters of the SRB in the medium term (2041–2070) and long term (2071–2100).

3.1. SWAT Model

The SWAT [24] is a hydrological watershed model to evaluate the land practice water, sediment
transport, and agricultural chemical yields in complex watersheds where soils, land use, or
management can widely change.

The SWAT is a semi-distributed and physically based model. The balance equation used is

SWt = SWO + ∑
(

Rday − Qsurf − Ea − Wseep − Qgw

)
where SWt is the final water soil content, SWO is the initial water soil content, Rday is the
precipitation, Qsurf is the surface runoff, Ea is the evapotranspiration, Wseep is the percolation, and
Qgw is the amount of baseflow (all in mm).

The basin is divided into sub-basins and those, in turn, are divided into hydrologic response units
(HRUs). HRUs are defined by homogeneous regions with the same slope, soil, and land use. Each
HRU generates an amount of runoff that is routed to calculate the total runoff. In order to calculate
HRUs, the slope was divided into three classes (0%–8%, 8%–30% and >30%) and a threshold level of
10% was established to facilitate model processing and eliminate minor soils, slopes, and land uses for
each subbasin.
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3.1.1. Input Data for Hydrological Modelling

As for the data used to carry out the hydrological modelling, catchments were defined
based on the digital elevation model (DEM), available on the website of the National Center
for Geographic Information [25], with an accuracy of 25 m × 25 m. Meteorological data were
obtained from the high-resolution (approximately 12 km × 12 km) gridded data set called SPAIN02.
Detailed documentation of the development and analysis of the SPAIN02 data set can be found in
Herrera et al. [26]. In this study, potential evapotranspiration was simulated using the Hargreaves
method [27] due to the fact that it only requires minimum and maximum temperatures. Oudin et al. [28]
checked that water balance models using parsimonious temperature-based methods perform similarly
well compared to more data-demanding methods. The discharge data at the catchment outlet were
available on the Hydrographical Study Centre website [29].

In addition to DEM, the Geographic Information Systems (GIS) input data required to build the
SWAT model setup included a land cover map and a soil map. Land cover data were derived from
reclassified Corine Land Cover 2006 [30] (1:50,000). The soil data for the HWSRB were obtained from
the Harmonized World Soil Database (HWSD), assembled by the Food and Agriculture Organization
of the United Nations (FAO). This database provides data for 16,000 map units containing two different
soil layers (0–30 and 30–100 cm deep) [31].

3.1.2. Calibration and Validation of the SWAT Model

Sensitivity analysis was conducted to identify the most influential parameters for streamflow
simulation, which were adjusted during calibration. Automatic calibration with the Sequential
Uncertainty Fitting programme algorithm (SUFI-2) [32] was run with the sensible parameters and with
other relevants in baseflow, groundwater, and runoff to improve the fit. SUFI-2 is a stochastic calibration
that provides some relation between calibration and the uncertainty associated with ignorance about
natural systems and all other sources, such as driving variables, conceptual model, parameters, and
measured data. Detailed documentation of the SUFI-2 algorithm can be found in Abbaspour et al. [33].

The SWAT model was calibrated using monthly streamflow data for a period of thirteen years
(1988–2000). Calibration is the process when observed and generated values are fitted as much as
possible, searching for the best optimisation of an objective function; the Nash-Sutcliffe efficiency, in
this case [34]. After calibration, the model was validated using the monthly discharge data of twelve
years (1976–1987). Five years (1971–1975) were used to warm up the model in order to mitigate the
effects of the initial conditions on the model output. With the best iteration parameters, the model
performance was tested in a validation period and evaluated, as is shown in Table 1.

Table 1. Evaluation criteria for model performance [34].

Performance Rating NSE RSR PBIAS (%)

Very good 0.75 < NSE ≤ 1.00 0.00 ≤ RSR ≤ 0.50 PBIAS < ±10
Good 0.65 < NSE ≤ 0.75 0.50 < RSR ≤ 0.60 ±10 ≤ PBIAS < ±15

Satisfactory 0.50 < NSE ≤ 0.65 0.60 < RSR ≤ 0.70 ±15 ≤ PBIAS < ±25
Unsatisfactory NSE ≤ 0.50 RSR > 0.70 PBIAS ≥ ±25

Moriasi et al. [35] recommended the Nash-Sutcliffe efficiency (NSE), root mean square error to the
standard deviation ratio (RSR), and percent bias (PBIAS) as evaluation criteria for model performance.

3.2. Climate Scenarios and Statistical Bias Correction Method

The climate simulations used in this study consisted of 9 combinations of General Circulation
Models and Regional climate models (GCM-RCM) from the EURO-CORDEX initiative [22] with a grid
spacing of about 12.5 km (0.11◦ on a rotated grid). The EURO-CORDEX is an international climate
downscaling initiative that aims to provide high-resolution climate scenarios for Europe [36]. The
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simulations have been produced assuming concentration pathways RCP4.5 and RCP8.5, described
in van Vuuren et al. [37], and are listed in Table 2. For this study, 30 years of data from historical
simulation runs (1971–2000) were used as the baseline period. The future climate is represented with
two 30-year periods from the scenario simulation runs; medium term (2041–2070) and long term
(2071–2100).

Table 2. Overview of the Regional Climate Models (RCMs) considered.

Institution RCM Driving Model

Climate Limited-Area Modelling Community (CLMcom) CCLM4-8-17 CNRM-CM5
Climate Limited-Area Modelling Community (CLMcom) CCLM4-8-17 MPI-ESM-LR

Danish Meteorological Institute (DMI) HIRHAM5 EC-EARTH
Climate Service Centre in Hamburg, Germany (CSC) REMO2009 MPI-ESM-LR
Royal Netherlands Meteorological Institute (KNMI) RACMO22E EC-EARTH

Swedish Meteorological and Hydrological Institute (SMHI) RCA4 CNRM-CM5
Swedish Meteorological and Hydrological Institute (SMHI) RCA4 EC-EARTH
Swedish Meteorological and Hydrological Institute (SMHI) RCA4 MPI-ESM-LR

Institut Pierre-Simon Laplace (IPSL-INERIS) WRF331F IPSL-CM5A-MR

It is well known that climate model output data contain systematic errors and cannot be used
directly in hydrological simulations [38]. That is why a bias correction technique was also applied to
the downscaled data to increase the accuracy of the results. In this study, the bias correction technique
based on distribution mapping of precipitation and temperature was applied. The idea of distribution
mapping is to correct the distribution function of climate model values to agree with the observed
distribution function. In 2012, Teutschbein and Seibert [39] evaluated different methods for bias
correction of regional climate model simulations for hydrological climate change impact studies, and
they obtained very good results applying this technique. In order to extract and bias correct data
obtained from the climate models, the CMhyd tool was used [40].

3.3. Fuzzy TOPSIS

Fuzzy TOPSIS is based on the distance of each indicator for each regional climate model from the
ideal solution. The steps followed in the application of this technique first include the determination of
the fuzzy decision matrix, taking into account the number of climate models used and the indicators
evaluated. After that, in order to homogenise the evaluation supplied for all the criteria, their values
must be linearly normalised. Finally, the proximity coefficients (D+

i ,D−
i ) for each alternative are

calculated in accordance with ideal and anti-ideal values selected for each indicator. This technique is
designed to minimise the distance of a data object from the positive ideal solution (D+

i ) and maximise
the distance from the negative ideal solution (D−

i ) [14]. The closeness coefficient (Ci) of each alternative
is calculated as:

Ci =
D−

i(
D−

i + D+
i
) (1)

To establish the ranking of climate models, it is sufficient to sort them according to the decreasing
values of their closeness coefficient. A clear example of a fuzzy approach to ranking climate models
can be found in Raju and Kumar (2015) [20]. The climatic variables used were precipitation, minimum
temperature, and maximum temperature. The correlation coefficient (CC), normalised root mean
square deviation (NRMSD), and skill score (SS) [41] were used as performance indicators. Equal
weights were considered for each criterion, and ideal and anti-ideal values for all the indicators were
chosen as (1, 1, 1) and (0, 0, 0).
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4. Results and Discussion

4.1. Calibration and Validation

A global sensitivity analysis found the following sensible parameters (Table 3): SOL_AWC,
LAT_TTIME, SOL_BD, GW_REVAP, ALPHA_BF, RCHRG_DP, SOL_K, FFCB, OV_N, and GWQMN.
The presence of several of these parameters showed the great importance of groundwater (ALPHA_BF,
RCHRG_DP, GWQMN, and GW_REVAP) and lateral flow (LAT_TTIME) in this area, as is described
in Conan et al. [42] and Galván et al. [43], where shallow aquifers have a relevant role. Some soil
properties influence the opposition to the groundwater, and this justifies its presence as a sensible
parameter, like SOL_AWC, SOL_K, and SOL_BD, usually listed in other studies [44].

Table 3. Range and final parameter values after calibration.

Parameter Description Value Range Adjusted Value

SOL_AWC Available water capacity of the soil layer (mm/mm) (0, 1) 0.3
LAT_TTIME Lateral flow travel time (days) (0, 180) 174.6

SOL_BD Moist bulk density (Mg/m3) (0.9, 2.5) 1.01
GW_REVAP Groundwater “revap” coefficient (0.02, 0.2) 0.17
ALPHA_BF Baseflow alpha factor (days−1) (0, 1) 0.72
RCHRG_DP Deep aquifer percolation fraction (0, 1) 0.85

SOL_K Saturated hydraulic conductivity (mm/h) (0, 2000) 14.5

FFCB Initial soil water storage expressed as a fraction of field
capacity water content (0, 1) 0.69

OV_N Manning’s “n” value for overland flow (0.01, 30) 21.92

GWQMN Threshold depth of water in the shallow aquifer for
return flow to occur (mm) (0, 5000) 2459

CN2 SCS runoff curve number +2.40%
ESCO Soil evaporation compensation factor (0, 1) 0.56

In addition to these parameters, CN2 was considered due to its correlation with runoff production,
affecting baseflow as well. In addition, in a Mediterranean area where evapotranspiration has high
relevance, ESCO was added because of its function in driving the extraction of the evaporative demand
from lower soil layers [45,46].

As shown in Table 3, calibration with the SUFI-2 algorithm provided the best fitted values for the
parameters. The best iteration was a very good performance based on performance criteria [35], with
0.80 NSE, 1.22% PBIAS, and 0.45 RSR.

The calibrated parameters were similar to previous references in areas with similar Mediterranean,
warm, or semi-arid climatic or vegetation characteristics. The GW_REVAP value is close to the upper
limit of the range due to the presence of forests in the area, as occurs with OV_N [47]; this allows the
transfer of water to the root zone and increases evapotranspiration [46], which affects the baseflow
and points out the importance of evapotranspiration in the Mediterranean balance. ALPHA_BF has a
value that set aquifers as a medium-high velocity response to recharge [46]. The FFCB value is similar
to others demonstrated in other Mediterranean watersheds [48].

Validation was required after calibration. The model was run for the 1971–1987 period, including
five years for a warm-up period and, as in calibration, comparing monthly streamflow observed
values with the simulated values. The model performance in this step was still accurate, with
statistics described as good or very good, as shown in Table 4. Only PBIAS was worse than in
the calibration period.

Figure 2 shows an accurate global model performance comparing the simulated and observed
values; although the calibration period was drier than the validation and the streamflow had maximum
peaks in the validation period that the SWAT overestimated, this is not an unusual issue when a model
is implemented [7,43].
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Table 4. Calibration and validation period performance.

Calibration Validation

NSE PBIAS (%) RSR NSE PBIAS (%) RSR

0.80 +1.22 0.45 0.77 −12.64 0.48
Very good Very good Very good Very good Good Very good

Figure 2. Soil and Water Assessment Tool (SWAT) model calibration and validation. Validation
(1976–1987) and calibration (1988–2000).

4.2. Selection of RCMs Using TOPSIS

As shown in Table 5, data set grids relating to the period 1971–2000 obtained from SPAIN02 [26]
were compared with historical runs obtained from each of the 9 RCMs to assess the CC, NRMSD, and
SS under a fuzzy approach. Table 6 presents D+

i , D−
i , Ci, and a ranking pattern for every regional

climate model used. The top three positions are occupied by RCA4_CNRM-CM5, RCA4_EC-EARTH,
and HIRHAM5_EC-EARTH, with the relative closeness of 0.6216, 0.6213, and 0.4928. On the
contrary, the seventh, eighth, and ninth positions are occupied by CCLM4-8-17_MPI-ESM-LR,
WRF331F_IPSL-CM5A-MR, and REMO2009_MPI-ESM-LR, with the relative closeness of 0.1953, 0.1952,
and 0.0951. These results suggest that RCA4_CNRM-CM5 and RCA4_EC-EARTH are suitable as input
data for the SWAT modelling application in the case study.

Table 5. Normalised performance indicators obtained.

Model
CC NRMSD SS

pij qij rij pij qij rij pij qij rij

CCLM4-8-17_CNRM-CM5 0.5268 0.0000 0.0000 0.0000 0.9721 0.7978 0.0000 0.9630 0.7954
CCLM4-8-17_MPI-ESM-LR 0.0713 0.0588 0.9288 0.0766 0.0000 0.0000 0.0764 0.0000 0.0000

HIRHAM5_EC-EARTH 0.9960 0.0000 0.0000 0.9401 0.7408 0.0000 0.9389 0.7338 0.0000
REMO2009_MPI-ESM-LR 0.0000 0.3726 0.0000 0.0000 0.0000 0.1681 0.0000 0.0000 0.1692
RACMO22E_EC-EARTH 0.0000 0.8852 0.3098 0.0700 0.9579 0.0000 0.0699 0.9489 0.0000

RCA4_CNRM-CM5 0.0000 0.9725 0.0000 0.8774 0.8199 0.8003 0.8785 0.8483 0.8059
RCA4_EC-EARTH 0.8780 0.0386 0.7276 0.4320 0.7606 0.9630 0.4314 0.7892 0.9698

RCA4_MPI_ESM_LR 0.5958 0.0344 0.6874 0.0000 0.2168 0.0000 0.0000 0.2850 0.0000
WRF331F_IPSL-CM5A-MR 0.0713 0.0588 0.9288 0.0766 0.0000 0.0000 0.0764 0.0000 0.0000
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Table 6. Ranking pattern of global climate models.

Model D+
i D−

i Ci Rank

CCLM4-8-17_CNRM-CM5 2.0399 1.7508 0.4619 4
CCLM4-8-17_MPI-ESM-LR 2.7382 0.6640 0.1953 7

HIRHAM5_EC-EARTH 2.0125 1.9551 0.4928 3
REMO2009_MPI-ESM-LR 2.8383 0.2982 0.0951 9
RACMO22E_EC-EARTH 2.3078 1.5022 0.3943 5

RCA4_CNRM-CM5 1.1980 1.9677 0.6216 1
RCA4_EC-EARTH 1.3145 2.1562 0.6213 2

RCA4_MPI_ESM_LR 2.4879 0.8413 0.2527 6
WRF331F_IPSL-CM5A-MR 2.7382 0.6640 0.1952 8

4.3. Water Resource Response to Climate Change

4.3.1. Changes in Projected Precipitation and Temperature

The mean annual projected precipitation and temperature are displayed in Table 7. Similar
patterns are observed, with a general reduction in precipitation and a general increase in temperature.
Expected changes in precipitation under RCP4.5 are totally different depending on the model analysed.
While RCA4_EC-EARTH projects a slight increase in precipitation, RCA4_CNRM-CM5 projects a
reduction that ranges between 13% and 19%. This significant variability was also found in the climate
projections published by the Spanish agency of meteorology [49]. Under the RCP8.5 scenario, both
models show a negative trend in precipitation that ranges between 6% and 17% in the medium
term and 32% in the long term. With regards to projected temperature compared to the baseline
period, the mean annual temperature suggests a significant and steady increase across the HWSRB
in both scenarios. The temperature increase across the HWSRB will range between 0.9 and 1.3 ◦C
in the medium term and 1.3 and 1.8 ◦C in the long term in the RCP4.5 scenario and between 1.5
and 2.1 ◦C in the medium term and 2.7 and 3.3 ◦C in the long term in the RCP8.5 scenario. As for
temperature, there were no exceptions; all models showed a higher increase in temperature in the
long term compared to the medium term. These results are consistent with other studies in Spanish
Mediterranean areas [15,50].

As shown in Figure 3, the temperature increase in winter and autumn is lower than the increase
in warmer months, increasing the intra-annual difference of the temperature. The lowest increase in
temperature occurs in winter in the medium term in RCP4.5 (0.5 to 1.1 ◦C), while the largest increases
occur during summer in the long term in RCP8.5 (2.9 to 3.8 ◦C). These results are consistent with other
studies in small Mediterranean basins [15,50].

Table 7. Precipitation (mm) and temperature (◦C) means with their variations.

Scenario Model
Mean Annual Precipitation Mean Annual Temperature

1971–2000 2041–2070 2071–2100 1971–2000 2041–2070 2071–2100

RCP4.5 RCA4_EC-EARTH 862 885 (+3%) 871 (+1%) 12.4 13.7 (+1.3) 14.2 (+1.8)
RCA4_CNRM-CM5 906 732 (−19%) 788 (−13%) 12.4 13.3 (+0.9) 13.7 (+1.3)

RCP8.5 RCA4_EC-EARTH 862 811 (−6%) 615 (−32%) 12.4 14.5 (+2.1) 15.7 (+3.3)
RCA4_CNRM-CM5 906 756 (−17%) 615 (−32%) 12.4 13.9 (+1.5) 15.1 (+2.7)

Observed 877 12.4

With respect to seasonal precipitation change (Figure 4), both models agreed on projecting a
decrease in the precipitation for winter, spring, and autumn, while the precipitation will not suffer
significant variations in summer.
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Figure 3. Seasonal temperature change (◦C) in (a) RCA4_CNRM-CM5 (RCP4.5); (b) RCA4_CNRM-CM5
(RCP8.5); (c) RCA4_EC-EARTH (RCP4.5); and (d) RCA4_EC-EARTH (RCP8.5).

Figure 4. Seasonal precipitation change (mm) in (a) RCA4_CNRM-CM5 (RCP4.5);
(b) RCA4_CNRM-CM5 (RCP8.5); (c) RCA4_EC-EARTH (RCP4.5); and (d) RCA4_EC-EARTH
(RCP8.5).

4.3.2. Annual Streamflow Change

Under the RCP4.5 emissions scenario, the variability in the projected streamflow is very high,
ranging from +4% to −35% in the medium term and projecting in the long term an important decrease
that is expected to range between 2% and 23% (Figure 5). The possibility of a slight increment in the
streamflow, as can be seen for the RCA4_EC-EARTH model, agrees with estimated projections by the
Spanish government for the SRB [51], as does the prediction of a higher streamflow reduction in the
medium term compared with the long term. These results can also be compared to those obtained
by Estrela et al. [3], who also projected a reduction in mean annual runoff for the SRB between 21%
and 33%. Overall, the increase in temperature and the projected decrease in precipitation will result in
increased evapotranspiration, which will interact to reduce streamflow significantly [52]. Comparing
precipitation and streamflow results, it can be seen that, due to higher actual evapotranspiration, the
decreases obtained in streamflow exceed those in precipitation by 20%. These results are consistent
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with other studies in Mediterranean climates [53], in which the streamflow is very sensitive to a
decrease in precipitation in basins with high evapotranspiration rates.

Figure 5. Annual streamflow change in the medium term (2041–2070) and the long term (2071–2100).

4.3.3. Seasonal Streamflow Change

Figure 6 shows the seasonal streamflow changes resulting from the estimated scenarios. Overall,
a general seasonal streamflow decrease is expected for both scenarios and models. Only in winter
and spring does the RCA4_EC-EARTH model estimate an increase of streamflow, which is consistent
with the increment of precipitation estimated by this model. In summer, despite a lack of a clear
decrease in the precipitation, an important decrease in streamflow is estimated due to the increase in
the temperature, which would cause an increase in the evapotranspiration.

Figure 6. Seasonal evolution of the mean streamflow in (a) RCP4.5 (2041–2070); (b) RCP4.5 (2071–2100);
(c) RCP8.5 (2041–2070); and (d) RCP8.5 (2071–2100).
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4.3.4. Spatial Assessment of Expected Changes

As shown in Table 8, a significant agreement for the whole basin area was found due to the reduced
extension and the homogeneous hydrological characteristics of the HWSRB. However, sub-basin 1 will
suffer slightly higher reductions in its water resources.

Table 8. Spatial streamflow means distribution (m3/s) and relative changes of runoff.

Subbasin Model 1971–2000
RCP4.5

2041–2070
RCP4.5

2071–2100
RCP8.5

2041–2070
RCP8.5

2071–2100

1
RCA4_CNRM-CM5 13.1 8.1 (−38%) 9.7 (−26%) 9.2 (−30%) 5.8 (−56%)
RCA4_EC-EARTH 12.4 12.7 (+2%) 12.1 (−3%) 10.7 (−13%) 8.1 (−35%)

2
RCA4_CNRM-CM5 16.0 11.0 (−31%) 12.9 (−20%) 11.9 (−25%) 7.5 (−53%)
RCA4_EC-EARTH 14.6 15.5 (+6%) 14.5 (−1%) 13.3 (−9%) 10.1 (−31%)

3
RCA4_CNRM-CM5 35.5 23.1 (−35%) 27.3 (−23%) 25.6 (−28%) 16.2 (−54%)
RCA4_EC-EARTH 33.1 34.4 (+4%) 32.5 (−2%) 29.3 (−11%) 22.2 (−33%)

5. Conclusions

In this study the impacts of projected climate change on water resources in the HWSRB were
assessed. The Soil and Water Assessment Tool was used to simulate watershed hydrological processes,
and the fuzzy TOPSIS technique was applied in order to select suitable RCM-GCM combinations and
reduce uncertainties associated with climate modelling. Simulations with the calibrated model were
then conducted for the medium term (2041–2070) and the long term (2071–2100) under two different
representative concentration pathways, RCP4.5 and RCP8.5, based on CMIP5. The main findings can
be summarised as follow:

• The SWAT model was able to reproduce the current hydrological conditions of the basin. The
statistical results of calibration were NSE = 0.80, RSR = 0.45, and PBIAS = 1.22. The validation
results were NSE = 0.77, RSR = 0.48, and PBIAS = −12.68. These results are indicative of the SWAT
model’s good performance.

• NRMS, CC, and SS were used to rank nine coupled runs of the GCM-RCM model, applying the
fuzzy TOPSIS technique. Higher relative closeness was obtained by RCA4_CNRM-CM5 and
RCA4_EC-EARTH. That is why these combinations were suggested for the assessment of the
impact of climate change in the HWSRB.

• Based on the future projections, average annual temperature will increase about 3 ◦C and
precipitation will decrease by 32% by the end of the century.

• Compared with the baseline period (1971–2000), future water resources in the HWSRB will
experience a considerable change as the result of the changing temperature and precipitation.
In the medium term (2041–2070), streamflow presents a high variability under the RCP4.5 and
RCP8.5 scenarios, respectively. The largest alterations to streamflow are projected under RCP8.5
for 2071–2100, when they will decline between 33% and 54%.

• The results obtained from this modelling study may have strong implications in a basin
that is already suffering from high water stress. The simulated impacts of climate change
should be incorporated into water resource management plans to develop sustainable strategies.
Future strategies should be focussed on decreasing demands and increasing the amount of
unconventional water resources, but if the magnitude of the climate change renders these
strategies insufficient, the need for new water transfer from another basin could arise.
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Abstract: The effects of Low Impact Development (LID) practices on urban runoff and pollutants
have proven to be positive in many studies. However, the effectiveness of LID practices can vary
depending on different urban patterns. In the present study, the performance of LID practices was
explored under three land uses with different urban forms: (1) a compact high-density urban form;
(2) a conventional medium-density urban form; and (3) a conservational medium-density urban form.
The Soil and Water Assessment Tool (SWAT) was used and model development was performed to
reflect hydrologic behavior by the application of LID practices. Rain gardens, permeable pavements,
and rainwater harvesting tanks were considered for simulations, and a modeling procedure for the
representation of LID practices in SWAT was specifically illustrated in this context. Simulations
were done for each land use, and the results were compared and evaluated. The application of LID
practices demonstrated a decrease in surface runoff and pollutant loadings for all land uses, and
different reductions were represented in response to the land uses with different urban forms on a
watershed scale. In addition, the results among post-LIDs scenarios generally showed lower values
for surface runoff and nitrate in the compact high-density urban land use and for total phosphorus
in the conventional medium-density urban land use compared to the other land uses. We suggest
effective strategies for implementing LID practices.

Keywords: effectiveness of LID practices; different urban designs; SWAT; model development;
LID modeling

1. Introduction

Urbanization has caused many problems for runoff and pollutants due to the increase in
impervious surfaces. This increase in impervious surfaces changes natural flow characteristics, causing
increased runoff volume and peak flow rate, decreased groundwater recharge due to interrupted
infiltration to soil layers, and a lowered water table, consequentially causing decreased base flow [1,2].
In addition, urban runoff from impervious surfaces is a main transport mechanism for many pollutants,
such as sediment, heavy metals, and nutrients to nearby water bodies. These pollutants contribute to
the deterioration of water quality. New methods of stormwater management are therefore required to
mitigate the impact of urbanization on runoff and pollutants from an environmental perspective. One
alternative strategy is the implementation of Low Impact Development (LID) practices (or urban Best
Management Practices; urban BMPs), designed to treat water at the source where it is generated. LID
practices can reverse the deteriorated conditions back to a pre-development state or even better [3].
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Many studies of hydrology and water quality treatment through LID practices have been
conducted. LID practices have been deemed effective through positive results from experiments
and modeling. For instance, the installation of bioretention cells or permeable pavements has resulted
in large reductions in runoff volumes, peak flow rates, and pollutants [4–8]. For a modeling approach,
Abi Aad et al. [9] modeled rain tanks and rain gardens using Storm Water Management Model 5
(SWMM 5), and demonstrated that runoff was delayed and reduced by them. Ackerman and Stein [10]
indicated reductions of flow, sediment, and copper by a bioretention cell, a grassed swale, a planter
box, and a planter box with a grassed swale in their study that evaluated the effectiveness of BMPs
by using Hydrologic Simulation Program-Fortran (HSPF) coupled with a BMP module. Carter and
Jackson’s [11] study investigated the effects of green roofs on hydrology at four spatial scales using a
StormNet Builder model, which they showed significantly reduced peak runoff rates.

The effectiveness of LID practices, however, can vary depending on a variety of conditions. Some
studies have demonstrated that LID practices are reliant on watershed characteristics such as soils,
topography, and precipitation. Holman-Dodds et al. [12] reported large runoff on a low infiltration
type D soil despite the existence of LID practices and also indicated the decreased effectiveness of LID
practices under large precipitation. Brander et al. [13] revealed that the performance of LID practices
was effective on soil type A and small storms. The effectiveness of LID practices for small storms was
also presented in Ackerman and Stein [10], Carter and Jackson [11], Schneider and McCuen [14], etc.
In addition, the effects of LID practices were evaluated differently according to locations, numbers,
and types of LID practices [15,16].

Other than these watershed characteristics and LID practice conditions, there could be other
factors that influence the effectiveness of LID practices. One thing we could consider is the impact of
urban patterns. Some studies have determined the positive impacts of high-density urban pattern on
water volumes and pollutant loadings. Seo [17] investigated how the amount of runoff and pollutant
loadings were generated differently under three different urban planning designs and presented
the compact high-density urban type as the most effective urban type. Jacob and Lopez [18] also
evaluated the benefits of high density development for the reduction of water quality loadings in
comparison with standard suburban developments, mentioning it as an effective approach more than
traditional BMPs under their study conditions. Such studies imply that the effects of the application
of LID practices could vary with different urban patterns. However, a limited number of studies
have been performed on the effectiveness of LID practices under different urban design patterns.
For example, Brander et al. [13] analyzed the effects of infiltration practices on urban runoff under
their four development types (conventional curvilinear, urban cluster, coving, and new urbanism)
using a spreadsheet model, the Infiltration Patch (IP). They showed runoff reduction to be different for
the four types of development designs, and the smallest runoff was obtained for the urban clustered
design in most scenarios because of the large natural land area. Williams and Wise [19] simulated the
hydrologic responses from traditional and clustered developments with BMPs and LID practices using
the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS), and they indicated
very similar results to the results of the pre-development condition in the clustered development with
LID practices. Gilroy and McCuen [20] studied the three land uses: “single family”, “townhome”, and
“commercial lot” to identify the impact of location and volume capacity of urban BMPs (cisterns and
bioretention cells) on runoff volumes and peak discharge rates. They represented different percentages
of reduction in the three land uses under every scenario for location and volume. However, very few
studies have attempted to simulate LID practices and land use with different urban patterns, especially
for rain gardens (RGs), permeable pavements (PPs), and rainwater harvesting tanks (RWHs) (which
were considered in the present study), using the Soil and Water Assessment Tool (SWAT).

In this regard, we focused on the application of the LID practices in SWAT and on the evaluation of
the watershed-wide effectiveness of the LID practices under given different urban designs. The SWAT
model was developed to simulate three LID practices. The hydrologic and water quality results were
analyzed and compared with and without LID practices within the same land use and among different
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land uses. The results of the post-development states from the Seo [17] study were utilized as baseline
data to evaluate the post-development states with LID practices. In the text, the terms “pre-LIDs”
and “post-LIDs” are used to designate the post-development state before and after constructing LID
practices, respectively.

2. Materials and Methodology

2.1. Study Area Description

Runoff and pollutant problems caused by stormwater have been a crucial issue in coastal areas
because these areas receive pollutants from upstream sources [21,22] and are simultaneously affected
by the tide. In particular, urban areas usually face more serious threats because increased impervious
surfaces can discharge water and pollutants without natural handling. The study area, situated to the
north of League City, Texas, within the Clear Creek watershed, meets the described characteristics. It
is located downstream of Clear Creek near Galveston Bay, and is planned for regional development
(Figure 1).

 

 

Figure 1. The location of the study area (right) included in the Clear Creek watershed (left).

It is desirable to scale up the analysis of LID practices to a large watershed after observing
detectable water quantity and quality changes at a small level [23]. This is because modeling LID
practices at a large scale can make the noticeable effectiveness of LID practices difficult to assess, so
that it cannot provide information for changes that should be conducted at small-scale levels [23].
Thus, within the boundary of a pre-developed area, a roughly 3.5 km2 (350 ha) small area was
considered as the study area.

The topography ranges from 0 m to 11 m in elevation, with roughly 90% of the area within 6 m
to 8 m in elevation, so the slope of the area is mild. Typical characteristics of this area are high
runoff and low permeability. Four kinds of soils are present in this area. Addicks (loam) is the most
predominant, comprising about 61% of the soil, followed by Bernard (clay loam), comprising about
27% of the soil. Lake Charles (clay) and Aris (silt loam) cover the remainder. All soil properties are
represented as poorly drained hydrologic soil group (HSG) D. Wetland and hay are dominant, making
up about 60% of current pre-developed land use. The weather is generally typified by hot summers
and clement winters, indicating monthly mean temperatures of around 84 ◦F (29 ◦C) in August and
around 53 ◦F (12 ◦C) in January. The average annual temperature is around 70 ◦F (21 ◦C). The impact
of the oceanic climate decreases the difference between the low and high temperatures. The monthly
average precipitation ranges from about 50 mm to 165 mm, and the average annual precipitation is
about 1270 mm. A high probability of extreme storms exists in this area. The study area is located in
Harris County [24].
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2.2. Description of Input Data

Spatial and temporal input data, projected as an Albers Equal-Area Conic projection with North
American 1983 datum, were used for setting up the model. A 10 m squared resolution Digital
Elevation Model (DEM) was used to sufficiently express details, obtained from the Natural Resources
Conservation Service (NRCS) Geospatial Data Gateway.

For land uses, three different types of land use data, derived from potential urban layouts typical
of League City, were considered. These included: (1) a compact high-density urban land use (termed as
UHD); (2) a conventional medium-density urban land use (termed as UMD); and (3) a conservational
medium-density urban land use (termed as UMC) (Figure 2). The urban area of each land use consists
of residential and commercial areas. In the figure, parts of the residential and commercial areas are
enlarged from the entire urban areas representing those patterns. The same population applied to all
residential areas of land uses. UHD land use includes the smallest portion of residential area and is
urbanized, the most among the three urban designs, but also allows for most of the area to remain as
natural space. It has a larger roof area in the residential area than the other two designs in order to
accommodate an identical population. Thus, it represents a high percentage of imperviousness in the
residential area. UMD land use has a pervasive urban pattern in the United States. The residential part
of the urban area is composed of conventional neighborhoods consisting of single family units. A UMC
residential area includes conservational areas that have to be kept as green space under the same
base format with the conventional neighborhoods of the UMD residential area. Thus, it represents
less imperviousness than the UMD residential area. The UMD and UMC land uses have the same
size of residential area, and the residential area makes up more area than that of the UHD land use.
The commercial area of all urban areas is the same in size. In total, urban area occupied about 21%
and 56% in the UHD and UMD/UMC land uses, respectively. The residential and commercial areas
represent different impervious and pervious ratios for each urban area (Table 1). For the remaining
land areas, excluding urban areas, land use data obtained from the USDA NRCS Geospatial Data
Gateway were represented to a pre-development state. The same land use data from Seo [17] were
used to assess the effectiveness of LID practices under these different urban land uses, and more
detailed design specifications can be found in Seo [17].

 
(A) 

(B) (C) 

Figure 2. Three land use data with different urban forms (Parts of the residential and commercial areas
are enlarged): (A) Compact high-density urban land use (UHD); (B) Conventional medium-density
urban land use (UMD); and (C) Conservational medium-density urban land use (UMC).
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Table 1. Information for each urban area for the three land uses (in %).

Land Use Urban Area 1
Impervious/Pervious Fraction 2

Residential Commercial

UHD 21 61/39 68/32
UMD 56 44/56 75/25
UMC 56 41/59 68/32

Notes: 1 The proportion of an urban area for total land use area; 2 The fraction of impervious and pervious parts in
an urban area.

Soil data, the high-resolution Soil Survey Geographic Database (SSURGO), were obtained from
the NRCS Soil Data Mart (https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm). Daily
precipitation and temperature were collected from the National Climate Data Center (NCDC) at
Houston Clover Field and at the National Weather Service Office stations, considered as representative
stations for the study area. A weather generator was used for the rest of the weather dataset of
the simulation.

2.3. Model Selection

A watershed-wide evaluation for the effectiveness of LID practices is needed because stormwater
eventually has an influence on the final water body of a watershed [25]. It is cumbersome to calculate
reduction rates from all LID practice sites within a watershed for a watershed-wide evaluation.
Moreover, since the reductions of runoff and pollutant loads by LID practices can be affected by
various watershed characteristics such as topography, land use, soil property, precipitation, and
so forth, in this regard, a modeling approach is required to take into account all of these factors.
It is important to select an optimal model that properly reflects the hydrologic responses with the
application of LID practices. In the present study, SWAT was selected because it has an ability to
simulate the process of hydrology and water quality in a variety of studies for long periods [26–28].
SWAT has effective components for the simulation of water quantity and quality. It applies a modified
NRCS curve number (CN) method [29] to estimate surface runoff and a Modified Universal Soil
Loss Equation (MUSLE) [30] to calculate sediment yields. Different forms of nutrients which are
transformed into several pools (e.g., organic and inorganic pools) are also simulated. A comprehensive
description of the processes is provided in Neitsch et al. [31].

The model was initially developed for the purpose of simulating water quantity and quality from
agricultural and rural environments. However, it is gradually showing its capacity to simulate mixed
land uses, which have a large proportion of urban areas or urban settings [32–35]. In addition, the
suitability of SWAT in the simulation of agricultural BMPs has been proven. The benefits of many
agricultural practices have been examined and evaluated using SWAT [36,37]. This implies that SWAT
has the potential to predict water quantity and quality for urban watershed management systems [38].
Existing BMP tools have been upgraded and modified, and new tools for urban BMP modeling are
being added in SWAT. For example, Jeong et al. [39] reported a development of algorithms for urban
BMPs in SWAT such as Sedimentation-Filtration Basins, Retention-Irrigation Basins, Detention Ponds,
and Wet Ponds. Jeong et al. [32] also tested the Sedimentation-Filtration basins (SedFil) algorithm to
validate the capability of its components in SWAT. Additionally, the recently updated new version,
SWAT 2012, allows many conservation practices, which were not included in other existing models, for
modeling water quality by entering pollutant removal efficiencies. As the development of improved
tools is encouraged for LID modeling in SWAT, processes through updates and modifications are
continuously in progress to adequately represent LID practices.
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2.4. Previous SWAT Simulation

The pre- and post-development simulations from the Seo [17] study were used as baseline
simulations in order to investigate the effectiveness of LID practices under the same land uses with
her study. In the previous work, the influence of land use change on water quantity and quality
was identified under three different land uses. To do this, the following stepwise procedures were
conducted. The pre-development condition (termed as ‘prestate‘ was first taken into account to assess
the impact of urban development. The process was focused on calibration and validation to obtain
parameters that could stand for characteristics of the study area. The study area was difficult to calibrate
because of sparse and tidal-affected data. Thus, the upstream gauging station (United States Geological
Survey (USGS) site number: 08076997 with sufficient data and outside the impact of tidal currents)
was considered for calibration, and the SWAT simulation was carried out over the entire Clear Creek
watershed (424 km2), including the study area. The calibration process was performed by using both an
auto-calibration tool (sequential uncertainty fitting 2; SUFI2) and a manual approach. The performance
of SWAT was evaluated by a p-value, an r-factor, the Nash-Sutcliffe efficiency (NSE), a coefficient of
determination (R2), and mean absolute error (MAE). The validation process was conducted with the
same parameter values from the calibration. The uncertainty analysis for the streamflow represented
56% and 54% of the observed data bracketed by the 95% prediction uncertainty (95PPU in SWAT)
with values of 0.54 and 0.42 for the r-factor, respectively, in the calibration and validation processes.
The streamflow showed good correlation to the observation based on the performance indicator
values of 0.79/0.94 (R2), 0.77/0.92 (NSE), and 0.59/0.26 (MAE) for calibration/validation. The
results of nutrient loadings also indicated good correlation to the observed data, showing satisfactory
indicator values. This calibration process assumed that watershed properties are similar only across
the entire watershed.

After finishing the calibration process, the study area was separated from the Clear Creek
watershed and treated as one watershed data to consider post-development scenarios. The three
land uses with different urban designs (illustrated in the Description of Input Data section) were
applied to the study area. Initial conditions for the post-development simulations were set based
on the calibrated parameters from the pre-development simulation. Each land use was divided into
different sub-basins and Hydrologic Response Units (HRUs) based on land uses and soil properties.
A total of 4 sub-basins and 18 HRUs were produced in the UHD land use, and the UMD and UMC
land uses were delineated as 5 sub-basins and 18 HRUs apiece. Each post-development simulation was
individually run and investigated for surface runoff, nitrate, and total phosphorus (TP). Overall, the
results showed an increase of runoff and pollutant loadings due to the effect of the urbanization rate of
the post-development scenarios. The UMD land use represented a large increase, and a slightly lower
increase was indicated in the UMC land use compared to the UMD land use. The UHD land use was the
effective urban land use showing a minimal increase from the pre-development state. The final result
values were used for comparison with the results of the post-LIDs scenarios in the “Results” section.

2.5. Specification of Used LID Practices and Scenarios

Three types of LID practices were chosen to be used in this study: rainwater harvesting tanks
(RWHs), rain gardens (RGs), and permeable pavements (PPs). They are effective land management
practices that are commonly used in urban watersheds. These LID practices have specific locations,
taking up small areas or replacing existing impervious surfaces. It was assumed that RWHs are placed
above ground for every house unit in the UMD and UMC residential areas and underground in the
UHD residential area due to space restrictions. It was assumed that RGs are randomly installed in
individual yards or neighborhood units along the street system in the residential areas, and PPs are
taken into account only in the parking lots of commercial areas. Each LID practice was designed
to capture the runoff and runoff-borne pollutants generated only from specific sites: that is, RWHs
from roofs, PPs from parking lots, and RGs from residential areas, excluding roofs such as backyards,
driveways, and sidewalks. Table 2 provides the percentages of roofs and parking lots in the residential
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and commercial areas for each land use, acquired from each design data and by sampling similar
types of neighborhoods in Google Earth. These are the percentages of the areas covered by RWHs and
PPs. The percentages of the areas covered by RGs are 6.6% and 8.0% of the UHD and UMD/UMC
residential areas, respectively, and they were obtained by multiplying the rest of the percentages
excluding roofs in the residential areas by a size factor of RGs based on Mechell and Lesikar [40].
In this study, it was assumed that the areas covered by each type of LID practice in each urban area
were considered as full LID implementation. That is, each house has a rainwater harvesting tank,
all parking lots in the commercial area are replaced by permeable pavements, and rain gardens are
installed as much as the estimated percentages in the backyards of houses and public areas such as
sidewalk patios. Also, 100% efficiency without consideration of seasonal impacts was assumed for
all types of LID practices. These extreme conditions are ideal situations for new developments and
we recognize that they might not be practical in a retrofit, but this is for the purpose of evaluating the
benefit based on the LID practices that could be fully accommodated in the given LID areas for each
urban design. No LID practices are assumed to be in non-urban areas.

Table 2. Fractions of roofs and parking lots in the urban area of each land use (in %).

Land Use Roofs 1 Parking Lots 2

UHD 34 34
UMD 20 47
UMC 20 31

Notes: 1 Percentages of roofs occupied in the residential areas; 2 Percentages of parking lots occupied in
the commercial areas.

In the present study, we focused on simulating the existence of LID practices under three types
of land use with different urban patterns in order to evaluate the effectiveness of LID practices and
to identify an optimal development plan. Three post-LIDs scenarios were created based on the land
uses, and each was tested. They were assessed through comparison with pre-LIDs scenarios, already
performed in previous work. The results among the post-LIDs scenarios were also compared and
analyzed. Table 3 provides a summary of the scenarios addressed in the study.

Table 3. Summary of scenarios.

Land Use Urban Design
Name of Scenario

Pre-LIDs Post-LIDs

UHD Compact urban type with high density UHD UHDLIDs
UMD Conventional type with medium density UMD UMDLIDs
UMC Conservational type with medium density UMC UMCLIDs

2.6. Representation of LID Practices in SWAT

2.6.1. Model Development

LID practices capture runoff to the extent of their capacities, and then once their capacities are
exceeded, the LID practices discharge flows untreated. The SWAT model was developed to account
for the hydrological behavior of LID practices in urban areas. A simple modification and addition of
codes was conducted in the surface runoff subroutine.

The surface runoff in urban areas is estimated as the sum of surface runoff from the connected
impervious area and disconnected impervious/pervious areas. Surface runoff from the connected
impervious area is calculated by an impervious curve number. Surface runoff from the disconnected
impervious/pervious areas is computed by a composite curve number under a surface runoff equation
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(Equation (1)). Each surface runoff is multiplied by fractions of each area and then summed to obtain
the final urban surface runoff (Equation (2)).

Q or Qimp =
(P − 0.2S)2

(P + 0.2S)
(1)

Qtot = Q · (1 − fcimp) + Qimp · fcimp (2)

where Q and Qimp are the surface runoff depths (mm) in the disconnected impervious/pervious areas
and in the connected impervious area, respectively, Qtot is the total surface runoff depth in urban areas
(mm), P is precipitation (mm), S is a potential maximum retention (mm), and fcimp is the fraction of
the connected impervious area.

To consider the amount of surface runoff captured by LID practices, a modified surface runoff
equation (Equation (3)) was added in the existing codes.

QLIDs = Qtot − LIDval (3)

where QLIDs is the surface runoff depth (mm) in which the impact of LID practices is considered,
and LIDval is the surface runoff depth (mm) stored by each LID practice. This method was determined
based on McCuen’s study that subtracted the amount of water captured by infiltration practices from
urban surface runoff [41].

This is a suitable approach because SWAT has critical hydrologic algorithms that can best illustrate
the flow characteristics of the LID practices being considered. In the case of RGs and PPs that have a
natural infiltration system via soil layers, the amount of water exceeding storage capacity is generated
as surface runoff by the developed equation (Equation (3)), and the amount of water stored is reflected
as infiltration into the soil layers in SWAT. The difference between the amount of rainfall and the amount
of surface runoff influences the amount of infiltration into the soil layers such that if precipitation is,
for example, 110 mm and surface runoff is 100 mm, the amount of infiltration is 10 mm. However,
if 20 mm of water is captured by RGs or PPs, 80 mm of surface runoff is finally discharged by the
modified equation (Equation (3)) and the infiltrated water becomes 30 mm. That is, the 20 mm of
water is to be added for soil water routing. If the capacities of the RGs or PPs are larger than the urban
surface runoff, the amount of precipitation becomes the amount of infiltration. It is possible to simulate
these LID practices for not only single events but also for consecutive rainfall. When rainy days are
continuous, the daily subtraction from total surface runoff and its addition to the soil layers occurs by
Equation (3). However, consecutive rainfall is mostly from small storms, and it is less frequent that
large rainfall will occur continuously. In addition, the infiltration of the stored water affects the soil
moisture condition, and cases in which all soil layers are completely saturated are not common. Even
if that were the case, SWAT can model excess water as surface runoff.

In the case of RWHs, surface runoff is also released after rain tanks reach their volume capacity.
However, the water captured by rain tanks is not infiltrated, unlike RGs and PPs. Therefore,
the algorithm was additionally coded with relevance to its function. That is, codes were added
such that the water from roofs is accumulated in the rain tanks and the maximum storage depth of the
rain tanks is used in cases where the water accumulated exceeds the maximum storage depth of the
rain tanks. The intentional drainage of the rain tanks was then taken into account for the purpose of
reuse of the rain tanks. In this study, it was assumed that if there is no rainfall during a period of at
least seven days after cessation of rainfall, the stored water in the rain tanks is intentionally emptied
within the days between rainfall events. The stored water might be utilized for various purposes such
as watering lawns and gardens, but this is explained as a water loss in SWAT. The description was
mainly focused on the hydrologic components of SWAT related to the behavior of LID practices, and
the schematic flow chart of the subroutines of the SWAT codes related to the hydrologic behavior by
LID practices was added (Figure 3).
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Figure 3. Schematic flow chart of the hydrologic subroutines related to the behavior of LID practices
and description for the functions of each subroutine.

2.6.2. Design Storage Depth

Each LID practice holds different storage depths. In the case of RGs and PPs, the maximum runoff
depths that could be treated by them were determined based on the amount of rainfall that is given to
them and CN according to the degree of impervious and pervious fractions on each site. RGs and PPs
were assumed to be designed to capture the runoff generated from 1.5 inches (38.1 mm) of rainfall.
As 1.5 inches of rainfall is the 85th percentile storm event of the north central Texas region, the runoff
amount from the rainfall is a volume for water quality protection in this region (Technical Manual of
iSWM: http://iswm.nctcog.org/technical_manual.asp) [42]. An impervious CN (98) was used for PPs
in all land uses because they deal with only the water from parking lots. For RGs, both impervious CN
for the connected impervious covers and composite CN for the disconnected impervious/pervious
covers were utilized to calculate the runoff depths that RGs can store. The CN for RGs was estimated
differently for each land use because each land use has different urban patterns, comprised of different
percentages of impervious and pervious fractions.

In the case of RWHs, the 1000 gallon capacity rain tank was assumed to be a standard in the
medium-density residential area [43], and the storage depth was inversely calculated by Equation (4):

Capacity of rain tank (gal) = Storage depth (in) × 0.623 × Roof area (ft 2) × Runoff coefficient (4)

where 0.623 is the unit conversion factor, 0.9 runoff coefficient was used for roofs, and an average
roof area per unit was determined through the design data and sampling of similar neighborhoods in
Google Earth. A proportional volume of rain tanks was employed according to the roof area of each
land use. The same runoff depth was consequently used for RWHs in all land uses.

Overall, the same storage depths for PPs and RWHs and different storage depths for RGs were
applied for each land use (Table 4). The information for the maximum storage depths and types of LID
practices was provided as a text file in SWAT, and the subroutine that can read the information was
added in the SWAT algorithm.

Table 4. Maximum storage depth detained by each LID practice for each land use (in mm).

Land Use Rain Gardens
Permeable
Pavements

Rainwater
Harvesting

Tanks

UHD 22.45 32.52 12.94
UMD 19.11 32.52 12.94
UMC 17.83 32.52 12.94
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2.7. Model Configuration

The model processing procedure was very similar to the steps of the previous work except for the
urban land use to treat specific management practices. Other parameter values and input data were
unaffected, and the current urban land use data was more detailed, to facilitate the application of LID
practices to SWAT.

In order for RWHs and PPs to handle runoff only from roofs and parking lots, the roofs and
the parking lots were separately allocated as different HRUs. They were manually partitioned from
the existing HRUs of the residential and commercial areas by multiplying the current HRUs by
percentages of the areas for the roofs and parking lots (Table 2). New urban data for the roofs and
parking lots were added into the current urban data, and 100% impervious fractions were applied to
their properties. Impervious fractions in which the roofs and parking lots were excluded were applied
to the existing residential and commercial data. The urban type of the separated HRUs was replaced
by new individual urban numbers for the roofs and parking lots, and the values that represent each
type of LID practice were entered in the designated HRUs.

Through this process, a single type of LID practice was assigned to each HRU. That is, PPs were
considered in the HRUs of the parking lots, RWHs in the HRUs of the roofs, and RGs in the HRUs of
the residential urban areas. The same process was individually implemented for the three land uses.
The simulation was conducted from October 2006 to December 2011. Average monthly and yearly
results over the continuous periods were analyzed for all scenarios along with statistical analysis in
order to evaluate the watershed-wide effectiveness of LID practices on surface runoff, nitrate, and TP.
For the statistical analysis, a t-test was conducted for daily surface runoff, nitrate, and total phosphorus
data from precipitation events above 0.5 inches among scenarios to a 95% confidence level. All t-tests
conducted had more than 150 data points (n).

3. Results and Discussion

The performance of simulated LID practices positively affected all variables for all land uses.
Figures 4–6 and Table 5 represent the average monthly and yearly responses of LID practices for each
land use. As part of the surface runoff was detained by LID practices, the decreased surface runoff
was denoted in the post-LIDs scenarios of all land uses, showing a tendency to follow the behavior
of the pre-development state (Figure 4). The differences between the pre- and post-LIDs scenarios
were extracted differently for each land use. For the UHD land use, 14% of the surface runoff was
reduced, and 29% and 25% reductions were obtained in the UMD and UMC land uses, respectively,
on an average annual basis (Table 5). The results showed statistically significant differences between
the pre- and post-LIDs scenarios in all land uses (p-values < 0.05). The application of LID practices
also had an influence on subsurface hydrology. Since the water detained by LID practices infiltrated
into the soil layers, it increased the soil water content and, consequently, contributed to the increase
of both evapotranspiration (ET) and groundwater (GW) for all land uses (Table 5). The amount of
evaporation in a soil layer is determined by soil water content. Since the greatest effect of LID practices
on surface runoff was in the UMD land use, the amount of infiltration in that land use was greatest.
It increased soil water the most and led to the largest increase of ET. That is, ET was 10% greater under
the UMDLIDs scenario than the UMD scenario, 8% greater under the UMCLIDs scenario than the
UMC scenario, and 4% greater under the UHDLIDs scenario than the UHD scenario. In addition,
increased soil water affected the increase of groundwater, representing the same order of increase with
ET: that is, UMD land use > UMC land use > UHD land use. As seen from these results, the decrease
of surface runoff by LID practices was closely related to the increase of ET and GW, indicating that the
hydrologic behavior by LID practices was adequately simulated in SWAT.
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(A) 

(B) (C) 

Figure 4. Average monthly response of LID practices for surface runoff (SURQ) in each land use:
(A) Compact high-density urban land use (UHD); (B) Conventional medium-density urban land use
(UMD); and (C) Conservational medium-density urban land use (UMC). The term ‘prestate’ in the
chart means pre-development condition.

Table 5. Average annual response of LID practices under each land use (GWQ: Flow to groundwater;
ET: Evapotranspiration; NO3: Nitrate Loading; TP: Total phosphorus loading.

Scenario SURQ
(mm)

GWQ
(mm)

ET
(mm)

NO3 (kg) TP (kg)
Difference (% Reduction)

SURQ (mm) NO3 (kg) TP (kg)

UHD 374.66 45.76 855.66 430.92 431.64 52.97
(14%)

101.37
(24%)

46.45
(11%)UHDLIDs 321.69 63.19 893.13 329.55 385.19

UMD 473.32 15.78 797.02 591.87 449.55 135.51
(29%)

186.03
(31%)

110.69
(25%)UMDLIDs 337.81 79.17 874.85 405.85 338.86

UMC 462.73 15.80 808.16 577.19 443.46 117.80
(25%)

170.51
(30%)

97.43
(22%)UMCLIDs 344.93 74.74 872.13 406.68 346.03

In urban areas, pollutants are generally dependent on surface runoff. According to the decrease of
surface runoff by LID practices, the runoff-borne pollutants, nitrate (NO3) and total phosphorus (TP),
also showed decreases in the post-LIDs scenarios of all land uses (Figures 5 and 6 and Table 5). Nitrate
loadings were reduced by 24%, 31%, and 30% in the UHD, UMD, and UMC land uses, respectively,
and the results represented significant differences between the pre- and post-LIDs scenarios in all land
uses (p-values < 0.05). TP loadings decreased 11%, 25%, and 22% in the UHD, UMD, and UMC land
uses, respectively, on an average annual basis, and the results also showed statistically significant
differences between the pre- and post-LIDs scenarios (p-values < 0.05), except for the UHD land use.
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(A) 

(B) (C) 

Figure 5. Average monthly response of LID practices for nitrate (NO3) in each land use: (A) Compact
high-density urban land use (UHD); (B) Conventional medium-density urban land use (UMD); and
(C) Conservational medium-density urban land use (UMC). The term ‘prestate’ in the chart means
pre-development condition.

Overall, the degree of contribution of LID practices for all variables was smallest in the UHD
land use followed by the UMC land use, and it was largest under the UMD land use. This could be
attributed to the difference in the area covered by LID practices among land uses. The unit reduction
amounts by LID practices only in each urban area were largest in the UHD land use for all variables, as
seen in Table 6. However, the UHD land use had the smallest urban area and the smallest area covered
by LID practices among land uses, and thus the percent reduction by LID practices was smallest in the
UHD land use. The pre-development scenario was plotted along with the pre- and post-LIDs scenarios
(Figures 4–6), and was statistically analyzed with post-LIDs scenarios for the purpose of observing
the effect of LID practices (Table 7). From the results, it was observed that the post-LIDs scenarios
were statistically similar to pre-development conditions for surface runoff and total phosphorus.
In other words, LID practices reduced the increases in surface runoff and total phosphorus from the
development to pre-development state. However, with regards to nitrate, all post-LIDs scenarios were
significantly higher than the pre-development condition. That is, the application of LID practices could
not bring the negative effect of nitrate back to the pre-development condition.

396

Bo
ok
s

M
DP
I



Water 2017, 9, 193

 
(A) 

(B) (C) 

Figure 6. Average monthly response of LID practices for total phosphorus (TP) in each land use:
(A) Compact high-density urban land use (UHD); (B) Conventional medium-density urban land use
(UMD); and (C) Conservational medium-density urban land use (UMC). The term ‘prestate’ in the
chart means pre-development condition.

Table 6. Unit reduction amounts of surface runoff and nutrients by LID practices only in the urban
area for each land use.

Land Use Surface Runoff (mm) Nitrate (kg/ha) TP (kg/ha)

UHD 257.23 1.37 0.63
UMD 242.73 0.93 0.55
UMC 211.01 0.85 0.49

Table 7. Statistical results (p-values) from the t-test between pre-development and each post-LIDs
scenario for all variables.

Scenario
Pre-Development

Surface Runoff Nitrate TP

UHDLIDs 0.577 0.0025 * 0.72
UMCLIDs 0.382 1.00 × 10−6 * 0.32
UMDLIDs 0.439 1.60 × 10−6 * 0.34

Note: * indicates a statistically significant difference.

For the comparison among the final results of post-LIDs scenarios, low surface runoff and
pollutant amounts were observed under different urban land uses (Table 5). In the case of surface
runoff and nitrate, low values were achieved under the UHDLIDs scenario among the post-LIDs
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scenarios. This was because the impact of the UHD land use itself was the smallest among the land
uses because of its small proportion of urban area, indicating statistically significant differences from
both UMD and UMC land uses (Table 8). Thus, although the reduction caused by the application
of LID practices was smallest under the UHD land use, it exhibited the lowest surface runoff and
nitrate values achieved. In sequence, the UMDLIDs scenario showed a low value in comparison to the
UMCLIDs scenario. The result was opposite that of the UMD and UMC scenarios. That is, less surface
runoff and nitrate were generated under the UMC land use because it had a higher pervious fraction
than the UMD land use, but after applying LID practices, less surface runoff and nitrate were shown
in the UMD land use. This could be because while the area covered by RGs and RWHs was the same
under the two land uses, the area covered by PPs was larger, as much as the difference of the parking
lot area (16%), in the UMD land use compared to that in the UMC land use (Table 2). Contrary to the
surface runoff and nitrate, the high value of TP was shown in the UHDLIDs scenario. This result was
in contrast with the result from the pre-LIDs scenarios which represented a low TP value in the UHD
scenario. This was seen because although the UHD scenario indicated a low value for TP, this was
not a relatively lower TP value than those of the UMD and UMC scenarios (statistically significant
differences were not indicated, showing p-values above 0.05) and the effect of the LID practices was
also insignificant between the UHD and UHDLIDs scenarios (the p-value between the two scenarios
was 0.0662). Table 8 provides the results of the statistical analysis for all pre- and post-LIDs scenarios
for all variables.

Table 8. Statistical results (p-values) from the t-test for all pre- and post-LIDs scenarios.

Surface Runoff

Scenario UHD UHDLIDs UMC UMCLIDs UMD

UHDLIDs 2.00 × 10−10 * - - - -
UMC 1.10 × 10−6 * 5.30 × 10−14 * - - -

UMCLIDs 0.11 0.10 5.20 × 10−7 * - -
UMD 1.60 × 10−7 * 7.70 × 10−15 * 0.67 9.10 × 10−8 * -

UMDLIDs 0.04 * 0.26 9.00 × 10−8 * 0.71 1.50 × 10−8 *

Nitrate

Scenario UHD UHDLIDs UMC UMCLIDs UMD

UHDLIDs 1.40 × 10−5 * - - - -
UMC 3.40 × 10−7 * 2.00 × 10−16 * - - -

UMCLIDs 0.8565 8.20 × 10−5 * 1.00 × 10−5 * - -
UMD 8.30 × 10−8 * 2.00 × 10−16 * 0.8631 3.70 × 10−6 * -

UMDLIDs 0.7780 0.0003 * 7.20 × 10−7 * 0.6759 2.10 × 10−7 *

Total Phosphorus

Scenario UHD UHDLIDs UMC UMCLIDs UMD

UHDLIDs 0.0662 - - - -
UMC 0.6070 0.0709 - - -

UMCLIDs 0.0006 * 0.0257 * 0.0012 * - -
UMD 0.3109 0.0224 * 0.6773 0.0003 * -

UMDLIDs 0.0007 * 0.0314 * 0.0014 * 0.9193 0.0004 *

Note: * means a statistically significant difference.

Before applying LID practices to urban developments, UHD land use might be the best choice for
minimizing the impact of urbanization on surface runoff and pollutant loadings, as shown in other
studies [17,18,35]. Jacob and Lopez [18] mentioned the advantage of higher density development
outperforming traditional stormwater BMPs in pollutant reductions, due to the decrease of a
runoff-generating area. However, after the application of LID practices to urban developments,
all post-LIDs scenarios performed better than the UHD scenario (Table 5). Statistically, the UHD
scenario represented significant differences from the UHDLIDs and UMDLIDs scenarios in surface
runoff, from the UHDLIDs scenario in nitrate, and from the UMCLIDs and UMDLIDs scenarios in
TP (Table 8). In addition, when LID practices were applied to urban developments, the advantage
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of the UHD land use decreased. For example, in the case of surface runoff, although the UHDLIDs
scenario showed the lowest value among post-LIDs scenarios, the results of all post-LIDs scenarios
were very similar, not representing statistically significant differences (p-values > 0.05). This was seen
because the UHD land use used in this study had a lower urban density than the ones usually used
in other studies, and thus LID practices could make the impact of urban development more or less
equal altogether. On the contrary, in the case of TP, the highest value was obtained in the UHDLIDs
scenario, and statistically significant differences among post-LIDs scenarios existed (p-values < 0.05).
From these results, the UHD land use should not be considered as the perfect choice in reducing runoff
and pollutants when LID practices are applied to urban developments.

4. Conclusions

The present study provided an opportunity to examine the impacts of LID practices on flow
and pollutant loadings under three land uses with different urban patterns and to develop a model
for simulating the examined LID practices in SWAT. The method of representing LID practices in
SWAT was flexible and easily applicable. There is no model that completely incorporates all the
requirements to simulate various LID practices, but the developed model performed well for the
simulations of surface and subsurface hydrology and the consequential water quality. The results
demonstrated an applicability of the examined LID practices in SWAT. It is worth noting that the
model only addressed three of the four main LID practices (Green roofs were excluded due to cost of
construction). For proprietary and site specific LID practices, the model would need to be modified on
a case by case basis. In addition, reduction rates from field studies in Texas were used in this paper.
The use of data from local projects would enhance the model results when used in other regions.

The application of LID practices contributed to the reduction of surface runoff and pollutants
under all land uses, and the effectiveness of LID practices was demonstrated differently for each land
use in the watershed. The reductions were statistically significant in terms of the differences between
pre- and post-LIDs scenarios under all land uses for all variables (p-values < 0.05), except for TP
between the UHD and UHDLIDs scenarios (p-value = 0.0662 > 0.05). However, despite the significant
contribution of the LID practices in most cases, a large amount of surface runoff could still be generated
by heavy precipitation because LID practices are limited in capacity and area in land use. The Harris
County Flood Control District (HCFCD) and the Harris County Public Infrastructure Department
Architecture & Engineering Division (HCPID-AED) require new urban areas to follow a minimum
detention rate of 0.55 ac-ft per acre in order to control flooding. In considering this requirement, it is
necessary to study other alternatives that can cover the rest of the volume besides the volume of the
LID practices. This is beyond the scope of the present study and thus was not examined.

The results among post-LIDs scenarios showed that the UHD land use performed better in
achieving the low values for surface runoff and nitrate than the other land uses, and UMD land use led
to obtaining the low value for TP. Testing of the effectiveness of LID practices under different designs
could provide useful information on an optimal design. Such results would help regulators develop
effective LID policies on a city scale which could enhance the solutions for runoff and pollutant
problems for their watersheds. In addition, it should be noted that the results can be changed if
considering different watersheds with different soils, slopes, and land use properties, and different
conditions such as types and allocations of LID practices, or a budget of LID implementation. Therefore,
it is recommended that simulations be performed in advance under the development policy of a region
prior to constructing LID practices.
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Abstract: Low-impact development (LID) practices as a new approach to urban stormwater
management have demonstrated their positive effects through the reduction of surface runoff volumes
and pollutant loadings in a substantial amount of research. The effectiveness of LID practices can
be affected by various LID conditions such as type, location, and area. Cost is also an important
factor to be considered in the evaluation of LID effects. This study presented the optimal LID
conditions that can achieve targeted reduction goals with minimal cost, and analyzed the effectiveness
of LID practices under optimal LID conditions and the consequential cost on a watershed scale.
To determine cost-effective LID conditions, three types of LID practices (rain gardens, rainwater
harvesting tanks, and permeable pavements), two locations (residential and commercial areas),
and percent allocation of LID practices were considered. Manual optimization was conducted under
those LID conditions for five targeted reduction goals which were set for surface runoff and nutrient
loadings. The results provided various configurations of cost-effective conditions in treating the
targeted goals, and represented the impacts of the optimized LID conditions on the effectiveness
of LID practices and the consequential cost. The present study could ultimately assist regulators in
establishing proper watershed-scale strategies of LID conditions for effectively managing watersheds.

Keywords: low-impact development (LID) conditions; effectiveness of LID practices; manual
optimization; cost; watershed management

1. Introduction

Development increases impervious land cover [1]. Urban impervious surfaces have aggregated
stormwater problems. Specifically, surface runoff volume is significantly increased as infiltration is
hindered. This decreases groundwater recharge and accordingly reduces the amount of base flow [2].
Significant water-bound pollutants are conveyed to nearby water bodies by the increased urban runoff
flowing over the impervious surfaces [3]. It is necessary to take corrective action in response to these
stormwater problems. Installation of low-impact development (LID) practices is one method to offset
the adverse impact caused by urbanization. LID practices help to achieve both development and
environmental protection by imitating the hydrology of a pre-developed state. Research on the effects
of LID practices has been active and has comprehensively been addressed in a variety of studies.
Most studies have demonstrated the benefits of LID practices by showing an increase of recharge
rate [4] and reductions in runoff volume and pollutant loadings [5–8].

However, the degree of the effectiveness of LID practices can be affected by various factors.
Some studies, for example, have reported the different effects of LID practices on water quantity

Water 2017, 9, 270 402 www.mdpi.com/journal/water

Bo
ok
s

M
DP
I



Water 2017, 9, 270

and quality under different types of soil [9,10] and under various rainfall patterns [11–13]. A few
studies have pointed out that different effects of LID practices could exist depending on how
urban areas are designed [9,14,15]. Seo et al. [16] also evaluated the effectiveness of LID practices
on hydrology and water quality under three land uses with different types of urban patterns
(compact high-density, conventional medium-density, and conservational medium-density) using the
Soil and Water Assessment Tool (SWAT) and presented the optimal land use.

In addition to these external conditions, the effectiveness of LID practices can also be expected to
vary as a result of various LID planning and design factors such as type, location, area, and so forth.
Gilroy and McCuen [14] simulated the spatial and quantitative effects of cisterns and bioretention areas
using a developed spatio-temporal model and provided information on the spatial arrangements and
volumes needed to achieve effective results in reduction of runoff volumes and peak discharge rates.
Endreny and Collins [17] examined groundwater recharge and mounding by adjusting the spatial
arrangements of bioretention areas as distributed, clustered, and single units using a MODFLOW
model in an urban residential area of New York, USA. They determined that groundwater mounding
was highest when bioretention areas were arrayed as single units and lowest when they were
fully distributed. Brander et al. [9] identified the impact of the number of infiltration practices by
demonstrating that runoff differences among different urban types could be overcome by implementing
a number of infiltration practices. Ahiablame et al. [18] also evaluated the effects of LID practices on
runoff and pollutant loads according to the percent implementation of rain barrel/cistern and porous
pavement. While the above studies showed that studies addressing proper distribution and placement
of LID practices are needed, none provided an approach that would optimize the area of LID needed,
as a function of location and type, to meet a target runoff and pollutant reduction rate.

The establishment of proper watershed-scale strategies for LID conditions is required to obtain
optimal results for reductions of runoff volume and nutrient loadings. Cost is an essential factor that
must be considered along with the strategies because a restricted budget is usually given for performing
the strategies [19]. Gilroy and McCuen [14], in their study, simply determined several scenarios
for placing cisterns and bioretention areas according to the places where water was intercepted,
and Chaubey et al. [20] stated that random placement was normally used. However, such methods can
make a cost-effective scenario for LID conditions (which may result in better outcomes in reduction
with minimal cost) be missed as it is among unconsidered scenarios. Liu et al. [21] indicated that they
found the best effective scenario of LID and best management practices (BMP) conditions showing the
greatest reduction in runoff and pollutant loadings among 16 scenarios, but it was not a cost-effective
scenario. Therefore, optimization would be necessary. Many researchers have performed optimization to
accomplish the best effect close to a required target reduction goal at minimum cost [19,22–26]. However,
most studies have been for optimization of agricultural best management practices (conventional
stormwater treatment systems akin to LID practices) and have drawn the optimal scenario (or the
best solution) by utilizing various optimization tools, such as the genetic algorithm (GA), through
model development. While the use of tools enables evaluation of a myriad of probable options
for various LID conditions, it makes the process complex and increases the simulation time [24].
In particular, it becomes an inefficient method when considering just a few conditions or small
watersheds. In this regard, a manual technique for optimization is required, which can simplify the
complexity and easily provide information on cost-effective LID conditions at any watershed.

The purpose of this study was to present the optimal LID conditions that can attain targeted
reduction goals with minimal cost and to evaluate the effectiveness of LID practices under the optimal
conditions and the consequential cost on a watershed scale. A manual optimization was conducted for
identifying the optimal conditions of LID practices, using a Microsoft Excel spreadsheet. Five targeted
reduction goals were determined by using the results of reduction amounts by LID practices from the
Soil and Water Assessment Tool (SWAT). Three LID conditions were taken into account in the manual
optimization process: types of LID practices (rain gardens, rainwater harvesting tanks, and permeable
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pavements), locations (residential and commercial areas), and percent allocation of LID practices at each
location. The study was processed for surface runoff (SURQ), nitrate (NO3), and total phosphorus (TP).

2. Materials and Methodology

2.1. Case Study Area

The study was carried out in a small-scale area of approximately 350 ha (3.5 km2), comprised
of some portions of League City, Webster, and Friendswood in Harris County, Texas, as a case study.
The area is nested within the Clear Creek watershed and is situated at the downstream end of
Clear Creek (close to the outlet), which is in an area under the influence of tidal currents (Figure 1).
Estuarine areas have generally had more water problems (such as flooding and accumulation of
untreated pollutants) than other regions because of their geographical characteristics such as flat
topography with low elevations and a tidal-affected location. The area has elevations of 6–8 m Above
Mean Sea Level (AMSL). While current land use is in a pre-development state consisting of hay (28.23%),
rangeland (15.35%), wetland (30.71%), and forest (25.71%), a new urban area will be developed in
this area.

 

Figure 1. Study area location in the Clear Creek watershed boundary (Three round marks (green)
on the map are weather stations, and a short bar (black) is a boundary line for a tidal-affected and
non-tidal stream).

The new urban area is a conventional urban form of medium density (Figure 2). It will be
constructed with single family neighborhoods and a commercial district. It is one of the urban
strategies of League City [27]. Besides the urban areas, the remaining land use is the same as the
pre-development state. The soil of the study area is classified into four types: Addicks (61.4%),
Bernard (27.3%), Lake Charles (3.2%), and Aris (8.1%). The textures of the soils are mainly clay
and clay loam, and they all belong to hydrologic soil group (HSG) D, which has very low permeability.
Mild winters and hot summers are typical weather patterns for this region. The temperature averages
about 12 ◦C (53 ◦F) in January and about 29 ◦C (84 ◦F) in August. The average annual rainfall is
approximately 1270 mm, with an average monthly range of about 50–165 mm. Intense rainfall is typical
of this region because of its oceanic climate.
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Figure 2. New land use with the conventional urban form of medium density (blowups show residential
and commercial patterns, and the empty space is an unchanged natural state).

2.2. SWAT Model Description and Development

2.2.1. Model Description

The Soil and Water Assessment Tool (SWAT) is a model developed by the United States
Department of Agriculture-Agricultural Research Service (USDA-ARS). It has been extensively used
to deal with various water quantity and quality problems from many watersheds, and its capability
has been verified through results [28–33]. It is applicable to simulations of various sizes of watersheds
from small and medium watersheds to large watersheds [28–30]. It can also simulate long and short
terms and even sub-daily and sub-hourly time steps [31–33]. As SWAT is a distributed model, it can
discretize a watershed as subbasins and smaller hydrologic response units (HRUs), which are the
minimum-sized response units. It has essential model components such as surface runoff, infiltration,
groundwater, evapotranspiration, nutrient cycling, etc. All components are operated at an HRU level.

Surface runoff can be calculated based on a modified Natural Resources Conservation Service
(NRCS) curve number method [34] on a daily basis. Urban surface runoff is estimated respectively for
the disconnected impervious/pervious area and for the connected impervious area [35]. The amount
of infiltration depends on the amounts of precipitation and surface runoff. That is, it is estimated by
excluding surface runoff from rainfall. The infiltrated water is uniformly distributed in a soil layer
through a redistribution process. The soil water is percolated at water content above field capacity in
the soil layer, and groundwater is recharged by percolation. The amount of actual evaporation from
soil is affected by the water content of a soil layer. Sediment and nutrient processes interrelate with the
water process. A Modified Universal Soil Loss Equation (MUSLE) [36] predicts sediment yield, and it
is a function based on a runoff factor. The transportation of nitrate is influenced by surface runoff,
lateral subsurface flow, or percolation. Soil-attached nutrients such as organic and mineral phosphorus
and organic nitrogen are governed by sediment yield transported by surface runoff under a loading
function [37,38].

2.2.2. Model Development

SWAT processes can sufficiently explain hydrologic behavior of LID practices on a watershed
scale. In this study, three LID practices including permeable pavements (PPs), rain gardens (RGs),
and rainwater harvesting tanks (RWHs) were factored into an urban area. They partially store surface
runoff generated from an urban area up to their capacities and discharge water exceeding their
capacities as surface runoff. To reflect the hydrologic behavior of the LID practices, surface runoff
processes in SWAT were modified based on McCuen’s method [39]. In his method, runoff depth stored
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by infiltration practices is excluded from the runoff depth of post-development in order to calculate the
modified curve number that reflects the infiltration practices. The idea of the method was incorporated
into the surface runoff process as Equation (1):

QLIDs = Qtot − LIDval (1)

where Qtot is the surface runoff depth (mm) before the application of LID practices, QLIDs is the surface
runoff depth (mm) after LID practices are reflected, and LIDval is the storage depth (mm) of each type
of LID practice.

SWAT effectively represents hydrologic behavior by PPs and RGs under the developed equation.
As can be seen in the equation, surface runoff, excluding water stored by PPs and RGs, is computed,
and the water stored by PPs and RGs is added to the amount of infiltration. On the other hand,
RWHs are simply storage facilities that cannot directly infiltrate the stored water into soil layers, unlike
RGs and PPs. Thus, codes were additionally included so that water accrued in the rain barrels and
the accumulated water was deliberately drained to reuse them. The rain barrels were defined to be
empty after at least 7 consecutive dry days after a rainfall event. A text file that allows for entrance of
the storage depths for LID practices was included in a SWAT folder, and an algorithm that could read
the text file was coded. Nitrate and total phosphorus were runoff-borne pollutants and were treated
along with surface runoff. A detailed description of the representation of LID practices in SWAT can
be found in Seo et al. [16].

2.3. LID Conditions for Optimization

The three LID practices (PPs, RGs, and RWHs) are building-scale facilities frequently practiced
in urbanized areas which have very little space for installation. Each LID practice is site-specific.
In this study, they were assumed to address stormwater and the consequential pollutant loadings
only from each specific site: RWHs were installed below roofs and harvested runoff and pollutants
only from rooftops during rainfall, PPs were considered only in the parking lots of a commercial area
and collected runoff and pollutants generated only from parking lots, and RGs were integrated in
the backyards of each house or street system such as sidewalks at random and captured runoff and
pollutants generated from a residential area.

Each LID practice occupied different areas. In the case of RWHs, the roof area represented the area
of RWHs because RWHs deal with runoff only from roofs. The design data from League City offered
no information for roof area. Therefore, an average roof area was acquired from similar neighborhoods
with a conventional medium-density urban design through sampling in Google Earth, and total roof
area was determined by multiplying the average roof area by the number of lots presented from the
design data. The total area of RGs was estimated by multiplying a catchment area by a size factor
based on soil properties and depths of RGs [40]. The catchment area was applied for each residential
subbasin area in which the total roof area was excluded. This process was for the purpose of ruling
out runoff addressed by RWHs. The size factor 0.1 was used based on data from Bannerman and
Considine [41]. The total area of PPs was dependent on the percentage of parking lot area presented
in the commercial area of the design data. Consequently, 20% (36.37 ha) and 8% (14.55 ha) of the
residential area were considered as the areas for RWHs and RGs, respectively, and 47% (8.57 ha) of the
commercial area was taken into account as the area for PPs.

Each LID practice was designed to detain different runoff depths. The maximum storage depths
of PPs and RGs were limited to a rainfall size. They were calculated using 1.5 inches (38.1 mm)
of precipitation on each site based on the Curve Number (CN) method. An amount of 1.5 inches
of rainfall is the 85th percentile 24-h rainfall depth and it is a value referred to as water quality
protection by a stormwater management system in the North Central Texas Council of Governments
(NCTCOG) region [42] (For RWHs, 1000-gallon rain barrels were assumed to be used to treat runoff
and pollutants from roofs [43]. The volume was reversely divided by the average roof area to estimate
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maximum storage depth. As a result, PPs, RGs, and RWHs were sized to capture 32.52-mm, 19.11-mm,
and 12.94-mm runoff depths from each area, respectively. The information for the maximum areas and
storage depths of LID practices is summarized in Table 1.

Table 1. Specific information for maximum areas and storage depths of low-impact development (LID)
practices. RWHs: rainwater harvesting tanks; RGs: rain gardens; PPs: permeable pavements.

Practices

Area (ha) Storage Depth
of LID Practices

(mm)
Commercial Area

(Subbasin 2)
Residential Area

(Subbasin 3)
Residential Area

(Subbasin 4)

Total subbasin 18.22 83.28 98.55 -
RGs - 6.66 7.88 19.11

RWHs - 16.66 19.71 12.94
PPs 8.57 - - 32.52

2.4. Modeling Setup

In this study, “LID-absence” and “LID-presence” mean the post-development state without
and with LID practices, respectively. Simulations for LID-absence and LID-presence scenarios were
performed for the purpose of identifying the maximum LID benefits which would be ultimately used to
set targeted reduction goals. The targeted goals are illustrated in the “Manual Optimization” subsection.

The simulation for the LID-absence scenario was first configured by using several input data. It is
desirable to use high spatial resolution data for the simulation of a small study area for producing
accurate outputs. A ten by ten-meter digital elevation model (DEM) obtained from the USDA NRCS
Geospatial Data Gateway was used to describe topography in detail. For soils, the Soil Survey
Geographic Database (SSURGO) from the NRCS Soil Data Mart was applied. The daily rainfall and
temperature data of two stations, the National Weather Service Office and the Houston Clover Field,
were employed; these were acquired from the National Climate Data Center (NCDC). For humidity,
wind speed, and solar radiation, the data from a weather generator, which generates climatic data
using monthly mean data of many years, were used. The land use with a conventional urban form of
medium density was applied to obtain results in the post-development state. The urban area takes up
about 56% of total area and is separated as residential and commercial areas, which have 44% and 75%
impervious fractions, respectively. The remaining area (44%) remains unchanged as a pre-developed
area. The land use was represented as 5 subbasins, including 2 subbasins for the residential area and
1 subbasin for the commercial area, and 18 HRUs in total. SWAT was tested for surface runoff, nitrate,
and total phosphorus from October 2006 to December 2011. The results of the LID-absence scenario
indicated 473.32 mm for surface runoff, 591.87 kg for nitrate, and 449.55 kg for total phosphorus on
an average annual basis [16].

The simulation for the LID-presence scenario was performed under the same conditions as for
the LID-absence scenario, except for LID conditions. In order to test the LID-presence scenario, three
LID facilities were applied in SWAT: RWHs and RGs were considered in the residential area and PPs
were only considered in the commercial area. The LID practices were assumed to be fully placed and
implemented in the LID areas of Table 1, and seasonal impacts of LID practices were not reflected.
The application of LID practices was performed at an HRU level. The existing HRUs of the residential
and commercial areas were divided into separate HRUs for roofs and parking lots in order to treat
RWHs and PPs. The RGs were considered in the rest of the HRUs of the residential area. In order to
divide the HRUs, the percentages for the areas of roofs (20%) and parking lots (47%) were multiplied
by the existing HRUs. The roofs and parking lots were included as new urban types in the existing
urban data of SWAT, and each urban type was applied to the individual specific HRUs. The number
representing each LID was also applied to all HRUs that have LID practices. The LID-presence scenario
was run by using the modified SWAT, and the effects by LID practices were measured for runoff,
nitrate, and total phosphorus on a watershed scale. The LID practices mitigated the surface runoff and
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the consequential pollutants well in urban areas by showing decreased values from the LID-absence
scenario. The results of the LID-presence scenario represented 337.81 mm for surface runoff, 405.85 kg
for nitrate, and 338.86 kg for total phosphorus on an average annual basis. The detailed information
for modeling work can be found in Seo et al. [16]. The differences between the LID-absence and
LID-presence scenarios were calculated for all variables to set targeted goals [16].

2.5. Cost Estimation

Cost is an important measure for optimization. An annual total cost for each LID practice was
estimated as the sum of construction and maintenance costs, based on the following equation by
Arabi et al. [19] (Equation (2)):

Ctd =

[
C0 · (1 + s)td + C0 · rm ·

(
(1 + s)td − 1

s

)]
/td (2)

where Ctd is the annual cost per unit area during a design life ($/ft2/year), C0 is the construction cost
per unit area ($/ft2), rm is the proportion of maintenance to construction cost, s is the interest rate,
and td is the intended life of LID practices based on routine maintenance.

Data for the construction cost per unit area ($/ft2) were acquired through experiments at the Texas
A&M AgriLife Research and Extension Center in Dallas [44]. The cost of $6 per square feet was used for
RGs, $14 per square feet for PPs, and $1 per gallon for RWHs. In the case of RWHs, the cost per gallon
was converted to cost per unit area by replacing 1000-gallon rain barrel with the average roof area.
The function of LID practices decreases as time passes. Maintenance is thus continuously required to
keep the same effectiveness during the life-time of LID practices. For the computation of maintenance
costs, annually 5% was used as the proportion of maintenance of RGs to construction cost. This value
was referenced by the US Environmental Protection Agency [45]. In the case of PPs and RWHs that
have no reference data, 5%, the same as for RGs, was used for PPs because a similar maintenance cost
was incurred to maintain PPs in the experimental field of the AgriLife center [44], and a 1% ratio was
determined for RWHs due to the low maintenance requirements (cost determined based on several
systems constructed and built by Texas A&M AgriLife Extension). For all LID practices considered,
the same interest rate of 4.5% was considered and the same lifespan of 20 years was applied to the
cost calculation. As a result, the annual costs per unit area were estimated as 1.19 ($/ft2/year) for RGs,
2.79 ($/ft2/year) for PPs, and 0.04 ($/ft2/year) for RWHs.

2.6. Manual Optimization

2.6.1. Setting Targeted Goals

The United States Environmental Protection Agency (USEPA) has conducted a water quality
standards program which presents a threshold level to protect water bodies [46]. Under the policy,
states and local authorities develop region-specific criteria. However, no recommended criteria exist
for runoff or pollutant reductions in the study area and accordingly there is no given budget limitation.
Therefore, it was determined that five cases would be used as targeted goals to be controlled for
each variable. The targeted goals for each case included the following values: 25%, 35%, 45%, 55%
and 65% of the maximum reduction amounts for all variables. In the modeling work, the maximum
reduction amounts by LID practices were obtained from the difference between the LID-absence and
LID-presence scenarios and were 135.51 mm for surface runoff, 186.03 kg for nitrate, and 110.69 kg
for total phosphorus as average annual values in the watershed. For Case 1, 25% of the maximum
reduction amounts were targeted as reduction amounts to be managed: 33.88 mm for surface runoff,
46.51 kg for nitrate, and 27.67 kg for total phosphorus. Likewise, Cases 2, 3, 4 and 5 targeted 35%, 45%,
55% and 65%, respectively, of the maximum reduction amounts. The constant difference among cases
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was for facilitating evaluation of the effectiveness of LID practices from the considered LID conditions.
The targeted goals for each case are summarized in Table 2.

Table 2. Hypothetical cases for targeted goals.

Variable
Targeted Goal 1

Case 1 Case 2 Case 3 Case 4 Case 5

Surface runoff (mm) 33.88 47.43 60.98 74.53 88.08
Nitrate (kg) 46.51 65.11 83.71 102.32 120.92

Total phosphorus (kg) 27.67 38.74 49.81 60.88 71.95

Note: 1 Targeted goals for each case were 25%, 35%, 45%, 55% and 65% of the maximum reduction amounts by
LID practices.

2.6.2. Optimization Procedure

For the purpose of identifying the conditions of LID practices that achieve both a targeted goal and
minimal cost, a stepwise manual operation for optimization was attempted for all variables. The LID
conditions considered were type, location (subbasin), and percent allocation of LID area. Each type and
location of LID practices under 100% allocation were first taken into account to determine a ranking
for cost in handling unit reduction in order to ultimately minimize total cost for treating a targeted
goal. Step 1: In this study, RGs and RWHs were distributed only in the residential area, which was
composed of two subbasins (Subbasin 3 and Subbasin 4), and PPs were placed only in the commercial
area, which made up one subbasin (Subbasin 2). Each LID practice was considered in designated
subbasins, and thus five cases for the conditions were generated: RGs in Subbasin 3, RGs in Subbasin 4,
RWHs in Subbasin 3, RWHs in Subbasin 4, and PPs in Subbasin 2. The SWAT model was run for
each case. Step 2: The annual reduction amount by 100% allocation of LID practices in each case
was then investigated through the difference from the LID-absence scenario. Step 3: The annual cost
for the implementation of LID practices was estimated for every case by multiplying the annual
cost per unit area calculated under the cost equation (Equation (2)) by total LID area of each case
(given in Table 1). Step 4: The cost per unit reduction was calculated by dividing the annual cost into
the annual reduction amount for every case. Different values were obtained for every case, and they
were ranked in the order of least costly to most costly. Step 5: Optimization is then carried out based
on the type and location for the ranking of the cost per unit reduction. This was achieved as reduction
amounts, according to the percent allocation of LID practices, were accumulated up to the point that
a targeted goal was met. Step 6: The cost of each case was then estimated through the product of the
reduction amount according to the percent allocation of LID practices and the cost per unit reduction of
Step 4. The final total cost (TC) and the final cost per unit reduction (CPR) were obtained respectively
by the sum of the costs for each case and by dividing the final total cost into the targeted goal.

With regard to optimization of percent allocation, three constraint conditions were applied to
explore the behavior of the effectiveness of LID practices: (1) maximum adoption; (2) medium adoption;
and (3) minimum adoption. Maximum adoption means to allow full occupation in given LID areas
even if it is not feasible in reality. Medium adoption means to restrict the potential occupation of LID
practices to a maximum of 75% for RGs and RWHs and 50% for PPs. Thus, reduction amounts which
are not addressed by the difference in percent allocation from maximum adoption are passed on to
the next rankings. Minimum adoption is to require at least 20% occupation of LID practices but not to
exceed 75% for RGs and RWHs and 50% for PPs. In this case, after the 20% allocation is applied to all
rankings, the same process with medium adoption is conducted to address the remaining reduction
amount for meeting a targeted goal. The optimization was performed in the same way for targeted
goals of all variables under three constraint conditions. Figure 3 and Appendix A provide a stepwise
procedure and an example for surface runoff Case 5 under maximum adoption, respectively.
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Figure 3. Flow chart for a manual optimization procedure.

3. Results

3.1. Optimized Conditions

The cost-effective conditions for controlling each targeted goal were determined through the
optimization process for all variables (Tables 3–5). A variety of configurations were drawn for each
variable. For surface runoff, the optimized conditions were ranked in the order of RWHs (4), RWHs (3),
RGs (4), RGs (3), and then PPs (2) (numbers in parentheses mean a location (subbasin) of LID practices,
and thus RWHs (4) means RWHs located at Subbasin 4). For nitrate, they were arranged in the order
of RWHs (3), RWHs (4), RGs (4), RGs (3), and then PPs (2). In the case of total phosphorus, since the
amount reduced by RWHs was tiny compared to the cost for implementation of RWHs, the type of
RGs was prioritized to the cost-effective conditions, unlike surface runoff and nitrate: RGs (3), RGs (4),
RWHs (4), RWHs (3), and then PPs (2). The type of PPs was ranked last on all occasions because of their
high cost. Under these rankings, different percentages of allocation were assigned as seen in Tables 3–5,
which met the given targeted goals under three constraint conditions. In surface runoff and nitrate,
not only 100% allocation of RWHs but also the application of RGs was required even to address the
smallest targeted goal of Case 1 under the maximum adoption. This was because the RWHs were the
most cost-effective but the amount reduced by RWHs was small as described above despite the 100%
allocation at all locations. In total phosphorus, the RGs determined as the most cost-effective condition
were only considered in dealing with the targeted goals up to Case 5 under the maximum adoption.
Less cost-effective conditions were more considered in the medium and minimum conditions than in
the maximum condition for all variables.

3.2. Analysis of LID Effects

As can be seen through the optimization results, various combinations of conditions could affect
the effectiveness of LID practices. The impact of the optimized LID conditions on the effectiveness
of LID practices was observed through the comparison among cases of targeted goals. For example,
with regard to the result of maximum adoption for surface runoff (Table 3A), the effectiveness of LID
practices in the watershed increased as much as 13.55 mm in Case 2 by considering 22.62% more RGs (4)
than in Case 1. The effect increased 100% in Case 3 by extending RG occupation by as much as 45.24%,
and increased 200% in Case 4 as 59.86% more RGs (4) and 9.99% more RGs (3) were added compared
to Case 1. An increase of 300% was also shown in Case 5 as 59.86% more RGs (4) and 38.28% more RGs
(3) were considered compared to Case 1. When nitrate was a focused variable (Table 4A), 29.17% more
adoption of RGs (4) than in Case 1 improved the effectiveness of LID practices by 18.6 kg in Case 2.
The effect rose 100% in Case 3 as 58.34% more RGs (4) were added than in Case 1. Also, increases of
200% and 300% appeared in Cases 4 and 5, respectively, by further considering 70.13% more RGs (4)
and 21.41% more RGs (3) and by expanding to 70.13% more RGs (4) and 57.30% more RGs (3) than in
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Case 1. In the case of total phosphorus, as seen in Table 5A, the effectiveness of LID practices grew by
11.07 kg in Case 2 as 27.61% more RGs (3) were factored than in Case 1, and the effect increased 100%
in Case 3 as 31.04% more RGs (3) and 20.76% more RGs (4) were adopted than in Case 1. In addition,
improvements of 200% and 300% occurred in Cases 4 and 5 by adoption of 31.04% more RGs (3) and
44.47% more RGs (4) and of 31.04% more RGs (3) and 68.18% more RGs (4) than in Case 1, respectively.

The impact of the optimized LID conditions on the effectiveness of LID practices was also
observed through the comparison among constraint conditions. The result in Case 3 for surface
runoff, for example, showed fully occupied LID practices up to Ranking 3 and 18.1% RGs (3) under the
condition of medium adoption in order to meet the same targeted goal as maximum adoption (Table 3B).
Under the condition of minimum adoption, 67.52% RGs (4) were applied to Ranking 3 and the highest
and lowest constraint values were applied to the rest of the rankings (Table 3C). The different conditions
of LID practices were applied to the medium and minimum conditions, but the result represented that
the same effect of LID practices as for the maximum adoption was achieved.

Table 3. Results of optimization for surface runoff (LID type, location, and percent allocation
were optimized under the maximum, medium, and minimum constraint conditions, respectively).
Sub stands for Subbasin.

(A) Maximum Adoption

Ranking 1 Type Location
% Allocation

Case 1 Case 2 Case 3 Case 4 Case 5

1 RWHs Sub 4 100 100 100 100 100
2 RWHs Sub 3 100 100 100 100 100
3 RGs Sub 4 40.14 62.76 85.38 100 100
4 RGs Sub 3 0 0 0 9.99 38.28
5 PPs Sub 2 0 0 0 0 0

(B) Medium Adoption

Ranking Type Location
% Allocation

Case 1 Case 2 Case 3 Case 4 Case 5

1 RWHs Sub 4 75 75 75 75 75
2 RWHs Sub 3 75 75 75 75 75
3 RGs Sub 4 44.24 66.86 75 75 75
4 RGs Sub 3 0 0 18.1 46.39 74.68
5 PPs Sub 2 0 0 0 0 0

(C) Minimum Adoption

Ranking Type Location
% Allocation

Case 1 Case 2 Case 3 Case 4 Case 5

1 RWHs Sub 4 75 75 75 75 75
2 RWHs Sub 3 75 75 75 75 75
3 RGs Sub 4 22.28 44.9 67.52 75 75
4 RGs Sub 3 20 20 20 38.93 67.21
5 PPs Sub 2 20 20 20 20 20

Note: 1 Ranking is the order of least costly to most costly in handling unit reduction, and optimization was
conducted in the order of the rankings up to the point that targeted goals were met.

Table 4. Results of optimization for nitrate (LID type, location, and percent allocation were optimized
under the maximum, medium, and minimum constraint conditions, respectively).

(A) Maximum Adoption

Ranking 1 Type Location
% Allocation

Case 1 Case 2 Case 3 Case 4 Case 5

1 RWHs Sub 3 100 100 100 100 100
2 RWHs Sub 4 100 100 100 100 100
3 RGs Sub 4 29.87 59.04 88.21 100 100
4 RGs Sub 3 0 0 0 21.41 57.3
5 PPs Sub 2 0 0 0 0 0
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Table 4. Cont.

(B) Medium Adoption

Ranking Type Location
% Allocation

Case 1 Case 2 Case 3 Case 4 Case 5

1 RWHs Sub 3 75 75 75 75 75
2 RWHs Sub 4 75 75 75 75 75
3 RGs Sub 4 40.64 69.81 75 75 75
4 RGs Sub 3 0 0 29.51 65.42 75
5 PPs Sub 2 0 0 0 0 29.06

(C) Minimum Adoption

Ranking Type Location
% Allocation

Case 1 Case 2 Case 3 Case 4 Case 5

1 RWHs Sub 3 75 75 75 75 75
2 RWHs Sub 4 28.21 75 75 75 75
3 RGs Sub 4 20 38.84 68.01 75 75
4 RGs Sub 3 20 20 20 47.31 75
5 PPs Sub 2 20 20 20 20 29.06

Note: 1 Refer to the annotation in Table 3.

Table 5. Results of optimization for total phosphorus (LID type, location, and percent allocation were
optimized under the maximum, medium, and minimum constraint conditions, respectively).

(A) Maximum Adoption

Ranking 1 Type Location
% Allocation

Case 1 Case 2 Case 3 Case 4 Case 5

1 RGs Sub 3 68.96 96.57 100 100 100
2 RGs Sub 4 0 0 20.76 44.47 68.18
3 RWHs Sub 4 0 0 0 0 0
4 RWHs Sub 3 0 0 0 0 0
5 PPs Sub 2 0 0 0 0 0

(B) Medium Adoption

Ranking Type Location
% Allocation

Case 1 Case 2 Case 3 Case 4 Case 5

1 RGs Sub 3 68.96 75 75 75 75
2 RGs Sub 4 0 18.53 42.24 65.95 75
3 RWHs Sub 4 0 0 0 0 75
4 RWHs Sub 3 0 0 0 0 75
5 PPs Sub 2 0 0 0 0 36.3

(C) Minimum Adoption

Ranking Type Location
% Allocation

Case 1 Case 2 Case 3 Case 4 Case 5

1 RGs Sub 3 38.07 65.68 75 75 75
2 RGs Sub 4 20 20 35.7 59.4 75
3 RWHs Sub 4 20 20 20 20 75
4 RWHs Sub 3 20 20 20 20 75
5 PPs Sub 2 20 20 20 20 36.3

Note: 1 Refer to the annotation in Table 3.

3.3. Analysis of Costs

Final total cost (TC) and cost per unit reduction (CPR) generated from the optimized conditions
were compared and analyzed. All results displayed were the minimal costs that treated the given
targeted goals (Table 6 and Figure 4). In the comparison among three constraint conditions (that is,
the conditions that indicated the same effectiveness of LID practices), the maximum condition showed
the lowest TC and the lowest CPR for all cases and for all variables. This was a natural result because
more adoption of cost-effective LID conditions was possible in controlling the same targeted goal under
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the maximum condition as compared to the medium and minimum conditions. The maximum and
medium conditions presented similar TC while the minimum condition indicated a large difference
from the maximum and medium conditions (Figure 4). This was because 20% of the expensive PP
was applied under the minimum adoption for all cases. In the medium adoption of nitrate and
total phosphorus, abrupt increases in Case 5 could be also explained due to the application of PPs.
Meanwhile, in the comparison among the cases of targeted goals (that is, the conditions that indicated
the variation of the effectiveness of LID practices), the lowest TC and the lowest CPR resulted in Case
1 for all variables under the maximum and medium conditions. This was due to the fact that the more
a targeted reduction amount was increased, the more the total cost and the consequential cost per unit
reduction increased. The minimum adoption showed the same trend in TC. However, it presented
the lowest CPR in Case 5 for surface runoff and in Case 4 for nitrate and total phosphorus and the
highest CPR in Case 1 for all variables (Figure 4). This was seen because unlike the maximum and
medium conditions, the cost-effective conditions were ignored in up to 20% adoption in all cases
under the minimum adoption, and relatively expensive PPs compared to the other LID practices
were compulsorily considered. With regard to nitrate and total phosphorus, the reason why Case 4
was more cost-effective than Case 5 was also attributable to a higher percent occupation of PPs in
Case 5. That is, the increase of the total cost was significant compared to the increase of the targeted
reduction amount.

 

Figure 4. Annual total cost (TC) and cost per unit reduction (CPR) for all targeted goals under three
constraint conditions: (a) surface runoff (SURQ); (b) nitrate; and (c) total phosphorus (they are simply
schematized in Table 6).
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Table 6. Annual total cost and cost per unit reduction from optimized LID conditions for all targeted
goals under three constraint conditions.

Case Variable
Maximum Adoption Medium Adoption Minimum Adoption

TC 1 CPR 1 TC CPR TC CPR

5

Surface runoff

1,493,527.83 16,956.54 1,513,759.76 17,186.24 1,963,588.64 22,293.30
4 1,251,284.14 16,789.22 1,271,516.07 17,060.68 1,721,430.57 23,097.45
3 1,017,591.16 16,687.76 1,029,336.60 16,880.38 1,483,537.77 24,328.95
2 788,374.34 16,622.70 791,769.48 16,694.29 1,254,320.94 26,447.09
1 559,157.51 16,505.60 562,628.65 16,608.06 1,025,104.12 30,259.74

5

NO3

1,656,393.69 13,698.51 2,263,032.20 18,715.45 2,263,032.20 18,715.45
4 1,349,072.15 13,185.47 1,434,446.15 14,019.89 1,793,187.45 17,526.13
3 1,046,268.60 12,498.38 1,126,953.36 13,462.21 1,488,503.12 17,781.17
2 750,678.20 11,529.45 821,713.58 12,620.47 1,192,912.72 18,321.61
1 455,087.80 9785.39 526,072.52 11,311.72 963,350.07 20,714.15

5

TP

1,547,180.52 21,504.95 2,449,017.71 34,039.98 2,449,017.71 34,039.98
4 1,306,918.32 21,468.24 1,310,485.93 21,526.85 1,788,390.63 29,377.20
3 1,066,656.12 21,415.22 1,070,249.06 21,487.36 1,548,229.76 31,083.77
2 826,916.70 21,345.41 829,936.20 21,423.35 1,309,329.87 33,798.06
1 590,495.76 21,339.66 590,517.17 21,340.43 1,072,908.94 38,773.37

Note: 1 TC means total cost ($), and CPR means cost per unit reduction; the unit is $/mm for surface runoff and
$/kg for nitrate and total phosphorus (TP).

4. Impact of LID Use on Detention Requirements and Cost

Thus far, the effectiveness of LID practices and the consequential costs according to the optimized
LID conditions have been analyzed. However, the water volumes detained by LID practices under the
optimized conditions are small (Table 7) because the maximum capacities and allowable areas of LID
practices are limited. Thus, for heavy rainfall, a considerable amount of water that is not treated by
LID practices would be generated as surface runoff, directly entering channels. Such a large amount of
water that cannot be detained by LID practices needs to be taken into account by other methods for
controlling stormwater in the region. Therefore, detention ponds were incorporated in the study area
to reflect the water volume that could not be addressed by LID practices, and 100-year 24-h rainfall
(13 inches) was assumed in this region as the standard for heavy rainfall for the purpose of calculating
the volume that should be captured by detention ponds. First, the required detention volume by
urbanization was estimated by the difference between pre- and post-development states in surface
runoff. The volume that should be captured by detention ponds was then calculated by subtracting
the volume detained by LID practices from the required detention volume. The total cost of detention
ponds for addressing the calculated volume capacity was calculated using the following equation
developed by Brown and Schueler [47] (Equation (3)):

C = 24.5 × V0.705 (3)

where C is the establishment cost including construction, design, and authorization ($) and V is the
pond volume (ft3). For the calculation of annual cost, a 5% ratio for maintenance (rm) and a design
life of 20 years (td), obtained from the USEPA website, were considered and the same interest rate (s)
of 4.5% was applied. Additionally, the cost savings for the amount controlled by LID practices was
computed by the difference between the costs for the calculated detention volume and the required
detention volume. Total cost of detention ponds was greatest in Case 1 and accordingly cost savings
were the smallest in Case 1 (Figure 5). This was because the volume that should be captured by
detention ponds was increased by the smallest volume detained by LID practices in Case 1. The same
trend was indicated in all variables and all constraint conditions. Total phosphorus showed the greatest
difference in the cost of detention ponds between Case 4 and Case 5 under the medium and minimum
conditions. This was seen because the difference in the optimized LID conditions between two cases
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caused the difference in the volume detained by LID practices. The volume detained by LID practices
is affected by percent allocation and storage depth of LID practices, and thus it could vary depending
on the optimized LID conditions even with the same targeted goal. Why the costs of detention ponds
in total phosphorus were higher than those in the other variables could also be explained by the results
of the optimized LID conditions.

LID practices installed in urban areas generally are more expensive than detention ponds.
This study does not to compare LID practices to detention ponds. City authorities are being forced to
deal with stormwater generated from their regions for new urban developments. Thus, this section
presented the volumes that should be captured (that is, the volumes that exceed LID capacities)
for heavy rainfall and the consequential costs using detention ponds as a secondary stormwater
management method.

Table 7. Volume detained by detention ponds and the consequential cost and cost savings in detention
ponds for the amount controlled by LID practices for all cases of all variables under each constraint
condition. Ac-ft/ac stands for Acre-feet per acre.

Case Variable
Volume Detained
by LID Practices

(ac-ft/ac)

Volume Detained
by Detention Ponds

(ac-ft/ac)

Cost
($/Year)

Cost Savings
($/Year)

(A) Maximum Adoption

5

Surface runoff

0.0110 (7%) 1 0.1429 (93%) 243,339.92 13,050.24
4 0.0104 (7%) 0.1434 (93%) 244,048.85 12,341.31
3 0.0098 (6%) 0.1440 (94%) 244,731.94 11,658.22
2 0.0093 (6%) 0.1446 (94%) 245,401.17 10,988.99
1 0.0087 (6%) 0.1451 (94%) 246,069.64 10,320.51

5

NO3

0.0114 (7%) 0.1425 (93%) 242,862.80 13,527.36
4 0.0106 (7%) 0.1432 (93%) 243,762.77 12,627.39
3 0.0099 (6%) 0.1439 (94%) 244,648.16 11,742.00
2 0.0092 (6%) 0.1447 (94%) 245,511.16 10,879.00
1 0.0085 (6%) 0.1454 (94%) 246,372.89 10,017.26

5

TP

0.0038 (2%) 0.1501 (98%) 251,941.30 4448.86
4 0.0032 (2%) 0.1507 (98%) 252,634.31 3755.85
3 0.0026 (2%) 0.1512 (98%) 253,326.52 3063.63
2 0.0020 (1%) 0.1518 (99%) 254,016.45 2373.71
1 0.0014 (1%) 0.1524 (99%) 254,696.05 1694.11

(B) Medium Adoption

5

Surface runoff

0.0092 (6%) 0.1446 (94%) 245,482.09 10,908.07
4 0.0086 (6%) 0.1452 (94%) 246,188.43 10,201.73
3 0.0080 (5%) 0.1458 (95%) 246,893.92 9496.23
2 0.0074 (5%) 0.1464 (95%) 247,584.71 8805.45
1 0.0069 (4%) 0.1470 (96%) 248,250.71 8139.45

5

NO3

0.0105 (7%) 0.1433 (93%) 243,883.47 12,506.69
4 0.0090 (6%) 0.1448 (94%) 245,713.38 10,676.77
3 0.0083 (5%) 0.1456 (95%) 246,609.48 9780.67
2 0.0075 (5%) 0.1463 (95%) 247,497.80 8892.36
1 0.0068 (4%) 0.1470 (96%) 248,356.64 8033.52

5

TP

0.0109 (7%) 0.1430 (93%) 243,486.50 12,903.66
4 0.0032 (2%) 0.1506 (98%) 252,623.95 3766.21
3 0.0026 (2%) 0.1512 (98%) 253,316.18 3073.98
2 0.0020 (1%) 0.1518 (99%) 254,007.62 2382.54
1 0.0014 (1%) 0.1524 (99%) 254,696.05 1694.11
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Table 7. Cont.

Case Variable
Volume Detained
by LID Practices

(ac-ft/ac)

Volume Detained
by Detention Ponds

(ac-ft/ac)

Cost
($/Year)

Cost Savings
($/Year)

(C) Minimum Adoption

5

Surface runoff

0.0100 (6%) 0.1439 (94%) 244,574.79 11,815.37
4 0.0094 (6%) 0.1445 (94%) 245,281.97 11,108.18
3 0.0088 (6%) 0.1451 (94%) 245,975.87 10,414.29
2 0.0082 (5%) 0.1456 (95%) 246,643.69 9746.47
1 0.0077 (5%) 0.1462 (95%) 247,310.75 9079.40

5

NO3

0.0105 (7%) 0.1433 (93%) 243,883.47 12,506.69
4 0.0095 (6%) 0.1443 (94%) 245,072.51 11,317.65
3 0.0088 (6%) 0.1450 (94%) 245,961.40 10,428.76
2 0.0081 (5%) 0.1458 (95%) 246,822.47 9567.68
1 0.0057 (4%) 0.1482 (96%) 249,707.61 6682.55

5

TP

0.0109 (7%) 0.1430 (93%) 243,486.50 12,903.66
4 0.0055 (4%) 0.1483 (96%) 249,904.20 6485.96
3 0.0049 (3%) 0.1489 (97%) 250,599.27 5790.89
2 0.0043 (3%) 0.1495 (97%) 251,289.89 5100.27
1 0.0037 (2%) 0.1501 (98%) 251,972.56 4417.59

Note: 1 Parentheses include percentages of the volume detained by LID practices and the volume detained by
detention ponds.

Figure 5. Cost of detention ponds and cost savings for the amount controlled by LID practices for all
cases of all variables under each constraint condition (they are simply schematized in Table 7).

5. Conclusions

The study has presented the cost-effective LID conditions found through optimization and has
analyzed the effectiveness of LID practices on a watershed scale and the consequential costs. To attain
the goal, five targeted goals were set and LID conditions for type, location, and percent allocation were
optimized. The optimization ultimately came up with the most cost-effective and efficient guidelines
for LID planning in the study watershed. For example, if the region is given a budget of $600,000 in
dealing with surface runoff, it could consider the LID conditions of Case 1 for both maximum and
medium conditions. Or, if the region decides to allow maximum adoption to treat the targeted goal,
Case 3, for nitrate, it could apply the LID conditions of Case 3 and need at least $1,047,000.
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In general, what could be learned through the study was that maximizing the treatment effect of
each LID practice should be a priority as cost benefits increase linearly for each unit of surface runoff
that is captured. For each LID practice that is implemented, water managers thus need to focus on
maximizing the amount of runoff captured for each plot in order to increase cost effectiveness. In
addition, the cost-effective results of this study would be generated differently by other conditions
such as different types of LID practices besides RGs, PPs and RWHs, different limitations for the
allocation of LID practices, different treatment goals, watershed characteristics, and so forth. Therefore,
adequate studies for a variety of conditions should be done in advance to achieve cost-effective results
within a given budget before the installation of LID practices. Such studies would likely suggest
planning and design of LID projects that accomplish a balance between environmental and economic
aspects on a development or watershed scale.

As accounted for in the Manual Optimization section, the optimization method employed is
very simple and practical in providing cost-effective conditions. It is likely that this method would
be applicable in many studies and would easily assist watershed managers in determining the best
solution for the establishment of LID practices for their watershed management. In addition, this
study has been based on simple calculations using the results of modeling work. If field work had
been performed, it would have been possible to validate our results. Such an additional study would
be a very meaningful work in that it could lay the groundwork for studies on other watersheds.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/9/4/270/s1.
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Appendix A

 

Figure A1. Example for optimization of surface runoff Case 5 under maximum adoption. A Microsoft
Excel version of this table can be found in supplemental material.
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Abstract: Gridded climate products (GCPs) provide a potential source for representing weather
in remote, poor quality or short-term observation regions. The accuracy of three long-term GCPs
(Asian Precipitation—Highly-Resolved Observational Data Integration towards Evaluation of Water
Resources: APHRODITE, Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Network-Climate Data Record: PERSIANN-CDR and National Centers for Environmental
Prediction Climate Forecast System Reanalysis: NCEP-CFSR) was analyzed for the Kelantan River
Basin (KRB) and Johor River Basin (JRB) in Malaysia from 1983 to 2007. Then, these GCPs were
used as inputs into calibrated Soil and Water Assessment Tool (SWAT) models, to assess their
capability in simulating streamflow. The results show that the APHRODITE data performed
the best in precipitation estimation, followed by the PERSIANN-CDR and NCEP-CFSR datasets.
The NCEP-CFSR daily maximum temperature data exhibited a better correlation than the minimum
temperature data. For streamflow simulations, the APHRODITE data resulted in strong results
for both basins, while the NCEP-CFSR data showed unsatisfactory performance. In contrast, the
PERSIANN-CDR data showed acceptable representation of observed streamflow in the KRB, but
failed to track the JRB observed streamflow. The combination of the APHRODITE precipitation and
NCEP-CFSR temperature data resulted in accurate streamflow simulations. The APHRODITE and
PERSIANN-CDR data often underestimated the extreme precipitation and streamflow, while the
NCEP-CFSR data produced dramatic overestimations. Therefore, a direct application of NCEP-CFSR
data should be avoided in this region. We recommend the use of APHRODITE precipitation and
NCEP-CFSR temperature data in modeling of Malaysian water resources.

Keywords: NCEP-CFSR; APHRODITE; PERSIANN-CDR; SWAT; precipitation; Malaysia; streamflow;
tropical; river; extreme

1. Introduction

Precipitation is a major component of the water cycle and is also a key input to hydrological
and ecohydrological models. Meanwhile, the water cycle is largely influenced by changes in regional
temperature [1]. Therefore, long-term precipitation and temperature information are vital to study
climate changes, forecast local precipitation variability and extreme events trend analysis. Despite
this, acquisition of reliable precipitation and temperature data is still a challenging task, especially
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in developing countries. Ground-based gauge collection is generally regarded as the most accurate
precipitation and temperature acquisition approach. However, there is a sparse network of climate
stations in many regions due to high installation, operation and maintenance costs, and low awareness
of the importance of such information [2], resulting in the inability to capture precipitation and
temperature information at sufficient spatial and temporal resolutions.

Gridded climate products (GCPs), which have been developed from modeled and satellite
remotely sensed data sources, are potentially alternative sources of climate data for streamflow
modeling and other applications, which feature advantages of uninterrupted regional coverage,
and high spatial and temporal resolutions [3–5]. For instance, the National Centers for
Environmental Prediction Climate Forecast System Reanalysis (NCEP-CFSR) [6] and the Asian
Precipitation—Highly-Resolved Observational Data Integration towards Evaluation of Water
Resources (APHRODITE) [7] are available globally at a daily time-scale for periods of more than
35 years. Recently, Ashouri et al. [8] developed a new daily time-scale high resolution satellite
precipitation product, called the Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Network-Climate Data Record (PERSIANN-CDR), for long-term hydro-climatic
studies. However, the reliability of these products in many regions is still not well known.

Many studies have validated the performance of GCPs at either global, regional or catchment
scale [9–11]. Many of the studies reveal regional differences in GCP performance. For example,
Tan et al. [12] reported underestimation of precipitation values by APHRODITE over Peninsular
Malaysia, whereas Jamandre and Narisma [13] showed overestimation of the same product in the
Philippines. Based on Fekete et al. [14], such differences are expected to be larger in tropical regions
compared to temperate regions due to the high precipitation variability. In addition, GCPs are
associated with various uncertainties and differences in terms of algorithms, sources, spatial and
temporal resolutions [15]. These errors can propagate into streamflow modeling via water cycle
processes [16,17].

Reliable climate data are essential for hydrological modeling because errors in climate inputs could
lead to false model outputs. For example, an inappropriate model setup with inaccurate GCPs could
result in a seemingly “good” model [18], that leads to wrong simulations and subsequent decisions.
Therefore, a capability assessment of GCPs prior to applying them in a hydrological model is critical to
understanding and reducing these errors. In tropical regions, the capability of GCPs for hydrological
assessments have been evaluated in the upper Mara Catchment, Kenya [19]; Negro River Basin,
Amazon [20]; Blue Nile River Basin [21]; and Adean watersheds [22]. Vu et al. [23] compared five GCPs
in streamflow simulations of the Dak Bla River in Vietnam and concluded that APHRODITE performed
the best in replicating daily streamflows. APHRODITE was also used successfully by Le and Sharif [24]
to evaluate climate change impacts on streamflow in the Huang River Basin in Central Vietnam. Several
studies found that NCEP-CFSR performed poorly for streamflow simulations studies conducted in
tropical or sub-tropical regions [25–27]. However, Auerbach et al. [28] reported satisfactory streamflow
simulations using NCEP-CFSR for two catchments in Puerto Rico. Zhu et al. [29] and Ashouri et al. [30]
report that PERSIANN-CDR performed well when used in streamflow simulations of sub-tropical
catchments in China and the United States, respectively. Most studies have only focused on the GCP
precipitation data assessments; comparatively few studies have also assessed the accuracy of GCP
temperature data [31]. To date, the assessment of suitability and accuracy of these newly developed
GCPs in streamflow simulations is still limited in Malaysia.

The overall goal of this study is to investigate the performance of long-term GCPs relative to
climate data inputs via streamflow simulations for two major basins in Malaysia. This is an extension
of the previous study by Tan et al. [12] which evaluated the performance of different GCPs across the
entire country of Malaysia, but did not incorporate streamflow analysis. The specific objectives here
for the two study basins are: (1) to assess the accuracy of the APHRODITE, PERSIANN-CDR and
NCEP-CFSR data for precipitation and temperature data retrieval from 1983 to 2007; (2) to evaluate
the capability of these products for streamflow simulations using the Soil and Water Assessment
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Tool (SWAT) ecohydrological model [32–36]; and (3) to analyze the suitability of the three GCPs for
capturing extreme hydro-climatic events.

2. Study Area and Materials

2.1. Study Area

Two tropical basins, the Kelantan River Basin (KRB) and Johor River Basin (JRB), were selected as
study areas in this study due to differences in size, land use, topography and data availability (Figure 1).
The KRB (4◦ N~6◦ N, 101◦ E~103◦ E) drains an area of 12,134 km2 in northeastern Peninsular Malaysia.
The main channel of the Kelantan River extends a total distance of about 248 km, and flows northward
into the South China Sea. In 1990, the primary land use/land cover in the KRB was tropical forest
(84.9%), followed by rubber (9.9%), oil palm (4.5%), urban (0.5%) and paddy (0.2%). The basin elevation
ranges from 8 m a.s.l in the western region to 2174 m a.s.l in the southwestern regions. The KRB is
characterized by a tropical monsoon climate, with an average annual precipitation ≥2500 mm, most
of which falls from November to January [37]. The average annual temperature of the basin is about
27.5 ◦C. The KRB is frequently affected by monsoon flood events during the northeast monsoon season.

 

Figure 1. Spatial distribution of APHRODITE, PERSIANN-CDR, NCEP-CFSR and rain gauges over:
(a) Kelantan River Basin (KRB); (b) Johor River Basin (JRB); and (c) Peninsular Malaysia.
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The JRB (1◦ N~3◦ N, 103◦ E~104◦ E) drains an area of 1652 km2 in southern Peninsular Malaysia
(Figure 1b). The main river stem of the Johor River flows approximately 123 km southeast to the Strait
of Johor. Elevations within the JRB range between 3 m a.s.l. and 977 m a.s.l, the highest elevations
being located in the northern and western regions of the basin. The JRB is an agricultural production
region, which is dominated by oil palm (38.4%), forest (44.1%) and rubber (15.3%) in 1990. The average
annual precipitation and average annual temperature of the basin are 2500 mm and 26 ◦C, respectively.
The Johor River is an important freshwater resource for the Johor and Singapore population, so any
changes in water resources could lead to major impacts on agriculture, industrial and living conditions
in both regions. For example, continuous hot weather in April 2016 resulted in water levels in the
Linggiu Reservoir, located in the northern JRB falling to a new historic low.

2.2. Gridded Climate Products

Long-term GCPs are viable datasets that can be used for supporting the development of climate
change and mitigation strategies for both the KRB and JRB. The evaluation of GCPs for this study
focused on products characterized by long-term temporal climate datasets that contain data from at
least a 30-year period. Based on this criterion, the APHRODITE, PERSIANN-CDR and NCEP-CFSR
GCPs (Table 1) were assessed for the two study basins. Tan et al. [12] also reported that two Tropical
Rainfall Measuring Mission (TRMM) 3B42 products performed well in replicating precipitation data
for different sub-regions of Malaysia. However, the TRMM data were excluded from this study because
the temporal resolution only extends back to 1998.

Table 1. Details on gridded climate products used in this study.

Name Spatial Temporal Region Sources

Rain Gauges

Observation Point 1983–present Malaysia Malaysia Meteorological Department; Department of
Irrigation and Drainage Malaysia

Satellite

PERSIANN-CDR 0.25◦ 1983–present 60◦ S–60◦ N University of California, Irvine

Reanalysis data

APHRODITE 0.25◦ 1951–2007 Eurasia University of Tsukuba; Japan Meteorological Agency

NCEP-CFSR 0.3125◦ 1979–2014 Global National Centers for Environmental Prediction

APHRODITE is a long-term daily precipitation product that spans the 57-year period of 1951
to 2007, which was generated from thousands of gauge observations data collected from various
countries’ government agencies [7]. It was developed by the Research Institute for Humanity and
the Meteorological Research Institute of the Japan Meteorological Agency. APHRODITE is divided
into Middle East, Russia, Monsoon Asia and Japan regions. In this study, APHRODITE V1101
(Monsoon Asia) with a 0.25◦ resolution was used.

PERSIANN-CDR provides daily precipitation information from 1983 to the present for latitudes
60◦ S–60◦ N at a spatial resolution of 0.25◦. PERSIANN-CDR was established from the PERSIANN
algorithm using Gridded Satellite Infrared Data (GridSat-B1), a calibrated and mapped geostationary
satellite dataset [38]. The training of the artificial neural network is done using the NCEP stage IV
hourly precipitation data. The product is then adjusted by the Global Precipitation Climatology Project
(GPCP) monthly version 2.2 product [8].

NCEP-CFSR was constructed for a period of 36 years (1979 to 2014) at ~0.31◦ (38 km) resolution [6].
NCEP-CFSR is produced using cutting-edge data assimilation techniques and a forecast model that
extrapolates non-observed parameters from observed data, collected from various sources such as
rain gauges, ships, weather balloons and satellites. NCEP-CFSR data were obtained for the whole of
Peninsular Malaysia (latitude 0.7◦ N–6.8◦ N and longitude 98.7◦ E–105.2◦ E), and then the stations
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distributed over each basin were used. There are five climate parameters: temperature, precipitation,
wind speed, relative humidity and solar radiation. However, the analysis conducted here was limited
to just the NCEP-CFSR precipitation and temperature data, in order to maintain consistency with the
evaluation of the other two GCPs.

2.3. Ground-Based Gauge Data

Daily precipitation, maximum temperature and minimum temperature data from 1983 to 2007
were collected from the Malaysia Meteorological Department (MMD; http://www.met.gov.my/) and
the Irrigation and Drainage Department Malaysia (DID; http://www.water.gov.my/). There are
29 climate stations distributed across the KRB, but only three of them contain long-term maximum and
minimum temperature data. For the JRB, daily precipitation data are available at nine climate stations.
However, only two of the stations contain temperature data. In addition, monthly streamflow data
measured at the Jambatan Guillermard and Rantau Panjang stations located in KRB and JRB (Figure 1),
respectively, were collected from the DID for calibration and validation of the SWAT model. More
detailed information of streamflow measurements for the KRB, JRB and other basins in Malaysia are
available in a report prepared by DID [39].

2.4. Geospatial Data

The main input geospatial data for the SWAT model are a digital elevation model (DEM), a land
use map and a soil map. Tan et al. [40] evaluated four different DEM datasets on SWAT simulations in
the JRB, and found the 90 m Shuttle Radar Topography Mission (SRTM) DEM [41] performed the best.
Therefore, the SRTM DEM was selected in this study. The land use map and soil map produced in
1990 and 2002, respectively, were obtained from the Ministry of Agriculture and Agro-based Industry
of Malaysia (MOA; http://www.moa.gov.my/). In addition, the river network for each basin was
digitized from the topography map produced by the Department of Survey and Mapping Malaysia
(JUPEM; https://www.jupem.gov.my/). The digitized river networks were used to improve basin
delineation and river extraction of both basins, especially in low land regions, similar to the approach
used by Zheng et al. [42].

3. Methodology

3.1. Statistical Analysis

A set of continuous and categorical statistical analyses were used to evaluate the performance
of the GCPs against observations at annual, seasonal, monthly and daily scales (Figure 1).
As recommended by Tangang and Juneng [43], the climate data were divided into December to
February (DJF), March to May (MAM), June to August (JJA) and September to November (SON) for
seasonal scale assessment. The comparison was performed from 1983 to 2007 to provide a consistent
time period, which brackets the starting year of 1983 for the PERSIANN-CDR dataset and the final
year of 2007 for APHRODITE data. The point-to-pixel assessment was applied to prevent additional
uncertainties during interpolation of the gauge data [44]. For the overall assessment, all precipitation
values are pooled together from 1983 to 2007 [45]. In contrast, the NCEP-CFSR maximum and minimum
temperature could not be validated at the overall assessment scale as there were only two or three
climate stations that had temperature data in the KRB and JRB (Figure 1). Moreover, most of these
stations are located outside the basins, and thus cannot be used to represent the entire basins. Therefore,
the temperature data validation was conducted only for specific climate stations. In addition, the
paired student t-test method was used to assess the significant differences between rain gauges and
GCPs at the 0.05 significance level. Continuous statistical analysis such as Root Mean Square Error
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(RMSE), Pearson Correlation Coefficient (CC), Mean Error (ME) and Relative Bias (RB) were used [12].
The formulas of these approaches are shown as follow:

RMSE =

√√√√√ n
∑

i=1
(Gi − Oi)

2

n
(1)

CC =

n
∑

i=1
(Oi − O)(Gi − G)√

n
∑

i=1
(Oi − O)

2.

√
n
∑

i=1
(Gi − G)

2
(2)

ME =

n
∑

i=1
(Gi − Oi)

n
(3)

RB =

n
∑

i=1
(Gi − Oi)

n
∑

i=1
Oi

(100) (4)

where Gi and Oi are gridded and observed precipitation/temperature, respectively; i is used to label the
individual measurements; and n is the number of measurements. CC measures similarity in temporal
or spatial pattern between GCP and the observed data, RMSE evaluates the absolute average error
between two datasets, ME makes it possible to evaluate the bias in estimations, while RB estimates the
systematic overestimation and underestimation of GCP as a percentage (%). A good performance GCP
should have a high CC, versus low RMSE, ME and RB values.

Categorical statistical analysis was used to evaluate the ability of GCPs to discriminate between
precipitation and no precipitation event days, based on the following criteria [46]: (1) Accuracy (ACC),
which represents the level of agreement between the GCPs and rain gauges estimates; (2) Probability
of Detection (POD), which is a measure of how well the GCPs correctly detected rain gauge estimates;
(3) False Alarm Ratio (FAR), which is used to evaluate how often the GCPs detected precipitation,
but there was actually no precipitation recorded at the rain gauges; and (4) Critical Success Index (CSI),
which is an indicator of the fraction of precipitation correctly detected by GCPs. These categorical
approaches can be measured as follows:

ACC =
A + D

n
(5)

POD =
A

A + C
(6)

FAR =
B

A + B
(7)

CSI =
A

A + B + C
(8)

where A = correct detection (the GCP estimated precipitation, and precipitation was observed in rain
gauge); B = false alarm (the GCP estimated precipitation, but precipitation was not observed in rain
gauge); C = misses (the GCP did not estimate precipitation, but the rain gauge estimated precipitation);
and D = correct negative (the GCP did not estimate precipitation, and precipitation was not observed in
rain gauge). These values range between 0 and 1, where 1 is a perfect score for the ACC, POD and CSI,
while 0 is a perfect score for the FAR. For example, the GCPs miss detecting the precipitation by 20%,
if the FAR value is equal to 0.2. Further description of this approach is provided by Ebert et al. [46].
Based on Shen et al. [47], the quality of the GCP accuracy assessment is largely influenced by the
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density and distribution of local station networks. Hence, assessment should be conducted over valid
grid points only, where at least one station is available on each evaluated grid points.

3.2. SWAT Model

Current versions of the SWAT model represent more than three decades of model development
at the co-located U.S. Department of Agriculture and Texas A&M University laboratories in Temple,
Texas [34,35]. SWAT is usually executed at a daily time step for continuous simulations [36], typically
with a minimum climatic dataset consisting of daily precipitation, maximum temperature and
minimum temperature. The model has been applied for an extensive range of ecohydrological
problems and scenarios worldwide for watershed scales ranging from <1 km2 to entire continents
(e.g., see reviews by Gassman et al. [48,49]; Bressiani et al. [25]; Gassman and Wang [50]; and Krysanova
and White [51]). The model has also been used successfully for several hydrology and pollutant
transport studies conducted in Malaysia [40,52–55]. SWAT version 2012 (Revision 635) was used in
conjunction with the ArcSWAT interface version 2012.10_2.16 for this study.

In SWAT, a basin is usually first sub-divided into multiple sub-basins that are then further
delineated into hydrologic response units (HRUs), which are smaller spatial units consisting of
homogeneous soil, landscape, land use and management characteristics. HRUs represent a specific
percentage of the corresponding sub-watershed area and are not currently spatially identified in
SWAT. For this study, digitized stream networks were merged into the SRTM DEM using the “burn in”
method, resulting in the delineation of 22 and 11 sub-basins for the KRB and JRB, respectively (Figure 1).
Threshold values were then used in the ArcSWAT interface to create the HRUs, by setting minimum
percentages that specific soils, slopes or land use had to occupy within a given sub-basin in order
to be included in the KRB or JRB SWAT models. The hydrologic response unit (HRU) threshold
values were defined as 20% for land use and slope, and 10% for soil, resulting in the KRB and JRB
being further subdivided into 200 and 37 HRUs, respectively. Initial simulation of climate inputs,
hydrological balance, crop growth and pollutant cycling occurs at the HRU level in SWAT. Excess
discharge and pollutant exports are then aggregated across HRUs within a given sub-basin, input
into the stream network at the sub-basin outlet and then ultimately routed to the watershed outlet.
Further details regarding the theory, input requirements, and output options are provided in on-line
documentation [33,36].

3.3. SWAT Model Baseline Testing

Baseline hydrological testing of SWAT was performed for both the KRB and JRB prior to the
analysis of the GCPs. The respective baseline testing periods of 1983 to 1999 for the KRB and 1983
to 1992 for the JRB were based on streamflow data measured at the stream gauge sites shown for
each basin in Figure 1. The first two years (1983–1984) were used as initialization years for both
watersheds and the remainder of the time periods were subdivided into calibration (KRB = 1985–1994
and JRB = 1985–1988) and validation (KRB = 1995–1999 and JRB = 1989–1992) periods.

SWAT calibration was conducted using the Sequential Uncertainty Fitting algorithm (SUFI-2)
within the SWAT Calibration and Uncertainty (SWAT-CUP) software package [56], which is a flexible
algorithm that can process large numbers of input parameters. The Nash–Sutcliffe Coefficient (NSE)
and Coefficient of Determination (R2) statistics [57] were used to evaluate performance of simulated
streamflow. The NSE was selected as the optimal objective in the SWAT calibration; NSE values can
range from −∞ to 1, where values ≤ 0 indicate that the mean of the measured data is a better predictor
than the simulated values, indicating unacceptable performance. In addition, the R2 values range from
0 to 1, and were used to assess the collinearity of the observed and simulated streamflow, where 1 is
the ideal value. Based on Moriasi et al. [58,59], the performance of the SWAT model can be considered
as satisfactory/good if the NSE and R2 statistics are ≥0.5/0.7 and ≥0.6/0.75, respectively.

Following the SWAT calibration and validation phase, two different GCP scenarios were used
as inputs into the calibrated SWAT model. The first scenario consisted of incorporating only the
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precipitation data from the three GCPs into the SWAT model simulations. This allows comparison with
several previous studies, which only evaluated the GCP precipitation products. The second scenario
evaluated combinations of each GCP with the NCEP-CFSR temperature data (i.e., APHRODITE,
PERSIANN-CDR or NCEP-CFSR precipitation data + NCEP-CFSR temperature) on the SWAT outputs.
The second scenario is useful for assessing the applicability of the NCEP-CFSR temperature data in
SWAT modeling, due to the sensitivity of the water cycle to temperature data.

3.4. Extreme Events Analysis

Extreme climatic events can result in severe impacts on human society and the environment [60].
The majority of existing hydrological and climatological studies, including analyses of the impacts
of extreme climatic events have been conducted using ground-based gauge data [7,61]. Therefore,
evaluation of other types of precipitation products for extreme events would provide important
insight for determining their efficacy and accuracy for unusual climatic conditions [62]. Four indices
were used in this study to assess the performance of the three GCPs in capturing the pattern of
precipitation extremes over the KRB and JRB: (1) the number of precipitation days ≥10 mm·day−1 in
a year (R10mm); (2) the number of precipitation days ≥50 mm·day−1 in a year (R50mm); (3) the
annual maximum daily precipitation/streamflow amount(Rx1d); and (4) the annual maximum
consecutive five-day precipitation/streamflow amount (Rx5d). The latter two indices were adopted
to evaluate the accuracy of GCP-based SWAT simulated streamflows for maximum one-day and
five-day amounts. These extreme indices were recommended by the Expert Team on Climate Change
Detection and Indices [63]. Annual maximum one-day and five-day consecutive streamflow indices
were chosen because these indices can be used to study flood volume which is important for flood risk
management [29].

4. Results

4.1. Precipitation Validation

The result of the statistical assessment of the 25-year (1983 to 2007) comparisons between the
APHRODITE, PERSIANN-CDR and NCEP-CFSR annual, seasonal, monthly and daily precipitation
data versus the rain gauge observations for the KRB and JRB is listed in Table 2. The PERSIANN-CDR
monthly-scale precipitation was the only GCP data that did not show significant differences relative to
the KRB rain gauge observations, at a significance level of 0.05 (Table 2). The PERSIANN-CDR data
showed insignificant differences versus observations at the JJA seasons in both basins.

In the KRB, the APHRODITE precipitation data produced the best linear correlation for all
time-scales, with CC values varying from 0.38 to 0.74, followed by the PERSIANN-CDR and
NCEP-CFSR data. It is also clear that the APHRODITE and PERSIANN-CDR precipitation data
underestimated the annual, DJF, SON, monthly and daily precipitation amounts, based on the
respective positive and negative signs for the ME and RB indicators, while the NCEP-CFSR data
resulted in highly overestimated precipitation across the basin. In addition, the NCEP-CFSR data
showed the largest average errors as evidenced by the highest RMSE values that ranged from 19.49 mm
to 1695.34 mm for most of the time-scales, except for the DJF.

All other GCP data showed significant differences for annual, daily and monthly time steps
as compared to the rain gauge precipitation estimates for the JRB (Table 2). The APHRODITE data
produced the best results at the DJF, JJA, SON, monthly and daily time-scales, with CC values that
ranged from 0.44 to 0.73. In contrast, the NCEP-CFSR data resulted in the worst performance at
all time scales with CC values that spanned between 0.13 and 0.46. The APHRODITE data slightly
underestimated the MMA, SON, monthly and daily precipitation levels, versus the PERSIANN-CDR
and NCEP-CFSR data which produced large overestimations.

Generally, the GCPs show better linear correlation performance for the DJF and monthly time-scale
estimations as compared to other time scales in both basins. The results found here showed that the
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APHRODITE data produced the best precipitation estimation performance for over both basins, which
is in agreement with Tan et al. [12] who conducted a national assessment over Malaysia. The main
reason is due to the fact that the developers of APHRODITE incorporated MMD rain gauges’ data in
the development of the product [7]. On the contrary, NCEP-CFSR displays more serious errors and
dramatically overestimated the total precipitation compared to the other GCPs. Similarly, Roth and
Lemann [64] found that the total annual NCEP-CFSR precipitation data was three times greater than
observed precipitation data in Ethiopia. The distinct weaknesses that have been quantified for the
NCEP-CFSR data may be attributed to the scale differences, where the size of a grid point is huge
(up to 0.3125◦) compared to the station data which is a point-based measurement. The errors are
expected to be higher in a grid point with high spatial and temporal variability of precipitation as well
as for regions characterized by complex topography [65].

Table 2. Statistical analysis for daily, monthly, seasonal and annual precipitation in the Kelantan River
Basin (KRB) and Johor River Basin (JRB). (Bold indicate significance at 0.05).

KRB JRB

Time A P N A P N

Annual

RMSE (mm) 807.15 613.17 1695.34 399.51 514.77 1176.88
CC 0.38 0.34 0.11 0.45 0.46 0.21

ME (mm) −540.53 −33.40 1314.21 −73.22 318.73 1018.59
RB (%) −20.51 −1.27 49.87 −3.21 13.96 44.61

T test (t stat) 20.40 1.26 31.21 2.09 8.65 23.15

DJF

RMSE (mm) 334.13 288.09 333.39 191.87 232.70 406.94
CC 0.63 0.62 0.48 0.73 0.71 0.36

ME (mm) −186.71 −78.86 41.40 4.54 119.62 275.76
RB (%) −27.96 −11.81 6.20 0.76 20.13 46.40

T test (t stat) 12.52 4.85 2.41 0.19 4.87 10.84

MAM

RMSE (mm) 186.63 178.24 643.20 142.88 178.25 406.39
CC 0.62 0.61 0.51 0.52 0.61 0.38

ME (mm) −80.90 52.10 523.70 −23.98 102.77 336.59
RB (%) −16.55 10.66 107.10 −4.02 17.23 56.41

T test (t stat) 8.47 5.49 29.15 1.78 6.60 17.88

JJA

RMSE (mm) 212.59 184.19 499.33 127.20 157.30 246.20
CC 0.44 0.35 0.20 0.66 0.35 0.16

ME (mm) −119.85 12.34 391.51 −27.24 −6.25 170.00
RB (%) −21.05 2.17 68.76 −5.59 −1.28 34.91

T test (t stat) 15.04 1.57 30.70 2.04 0.50 13.20

SON

RMSE (mm) 310.21 269.49 552.17 153.81 192.77 334.56
CC 0.58 0.57 0.21 0.44 0.42 0.13

ME (mm) −146.49 −13.54 367.27 −24.12 105.81 245.79
RB (%) −16.24 −1.50 40.71 −3.98 17.45 40.55

T test (t stat) 11.20 0.97 21.29 1.86 7.62 15.11

Monthly

RMSE (mm) 126.98 118.62 210.02 78.15 93.86 149.75
CC 0.74 0.72 0.48 0.71 0.64 0.46

ME (mm) −45.04 −2.78 109.52 −6.10 26.56 84.88
RB (%) −20.51 −1.27 49.87 −3.21 13.96 44.61

T test (t stat) 21.20 1.24 41.20 2.28 9.29 26.36

Daily

RMSE (mm) 14.80 15.79 19.49 12.25 14.24 17.70
CC 0.43 0.35 0.22 0.55 0.35 0.17

ME (mm) −1.48 −0.09 3.60 −0.20 0.87 2.79
RB (%) −20.51 −1.27 49.87 −3.22 13.96 44.60

T test (t stat) 41.93 2.47 85.44 3.30 14.57 41.80

Accuracy 0.61 0.57 0.55 0.67 0.55 0.49
POD 0.87 0.86 0.94 0.89 0.89 0.96
FAR 0.48 0.51 0.52 0.45 0.54 0.57
CSI 0.48 0.45 0.46 0.51 0.44 0.42

Notes: A = APHRODITE; P = PERSIANN-CDR; N = NCEP-CFSR.
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4.2. Precipitation Spatial Variability

The monthly CC and RB values for the GCPs over both basins are presented in Figures 2 and 3,
respectively, to provide insights regarding spatial variability. Generally, high CC values for all
GCPs were found for the northern and eastern KRB sub-regions, which are near coastal and low
elevation areas (Figure 2a–c). All of the GCPs reflected strong performance of the CC values computed
for the northwest JRB sub-region, while lower CC values dominated in the middle of the basin
(Figure 2d–f). The APHRODITE data underestimated monthly ground-based precipitation at most
of the stations (Figure 3). In contrast, the NCEP-CFSR data dramatically overestimated monthly
precipitation at all of the stations, resulting in especially high RB values (more than 100%) for the
stations mainly distributed in the southwestern KRB sub-region, which is characterized by high
mountains (Figure 3c). The NCEP-CFSR was the only GCP which resulted in significant overestimates
for all stations distributed across the JRB.

Figure 2. The correlation coefficient of monthly precipitation of APHRODITE, PERSIANN-CDR
and NCEP-CFSR against rain gauges, respectively, over: (a–c) Kelantan River Basin; and (d–f) Johor
River Basin.

Figure 3. The relative bias of monthly precipitation of APHRODITE, PERSIANN-CDR and NCEP-CFSR
against rain gauges, respectively, over: (a–c) Kelantan River Basin; and (d–f) Johor River Basin.
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These findings agree with other studies, which state that GCPs generally are more reliable in low
land regions compared to higher elevations [66,67]. This might be due to misrepresenting the effects
of warm clouds, by infrared (IR) sensors that commonly appear on mountaintops [68]. The overall
less accurate performance of GCPs in mountainous regions may be due to fewer rain gauges that
can be used for product development. The installation and maintenance of climate stations in high
mountainous regions is often problematic because of difficulties related to physical access and the
fact the climate stations are representative of relatively small area due to high topography variability.
In general, the APHRODITE dataset performed better for mountainous regions compared to other two
GCPs, because the product has better orographic precipitation variability resolving skill [69].

4.3. Precipitation: Rain Detection and Intensity Assessment

The NCEP-CFSR data showed the most outstanding performance for rain detection ability
assessment, with POD values of 0.94 and 0.96 for KRB and JRB, respectively. However, the APHRODITE
exhibits better ACC skills for the JRB, indicating that it has a stronger capability to correctly estimate
overall precipitation and non-precipitation events in southern Peninsular Malaysia. In contrast, the
PERSIANN-CDR and NCEP-CFSR GCPs performed better for the KRB. The analysis further revealed
that the NCEP-CFSR data were most prone to predicting false rain event, which in fact were not
recorded by the rain gauges, resulting in the highest FAR values of 0.52 (KRB) and 0.57 (JRB). Moderate
CSI values were also predicted for all three GCPs ranging from 0.45 to 0.48 (KRB) and 0.42 to 0.51 (JRB),
demonstrating that roughly 50% of the precipitation was correctly estimated.

Figure 4 presents the probability distribution functions (PDFs) of precipitation intensity for
the KRB and JRB. The non-precipitation values ≤0.254 mm·day−1 (common rain gauge threshold
detection limit) were removed from the analysis. The three GCPs showed moderate underestimation
for the ≥50 mm·day−1 precipitation classes over both basins. The NCEP-CFSR data resulted in
significant overestimation for the 5–10 and 10–20 mm·day−1 precipitation classes in both basins.
This is similar to the results reported by Blacutt et al. [70], who also discovered the NCEP-CFSR
overestimated precipitation at 3–20 mm·day−1 class in Bolivia. They further reported the NCEP-CFSR
tended to overestimate precipitation during the annual precipitation season period. This problem
could potentially be amplified in both the KRB and JRB, which are typical tropical basins that
receive precipitation throughout the year, especially during the northeast monsoon and southwest
monsoon periods. The NCEP-CFSR data overestimation rate was higher for the JRB (up to 270% at
5–10 mm·day−1) compared to the KRB, because the Sumatra and Titiwangsa mountain ranges help to
reduce precipitation days in the KRB during the southwest monsoon season.

Figure 4. Probability distribution function (PDF) of daily precipitation from 1983 to 2007 from
APHRODITE, PERSIANN-CDR, NCEP-CFSR and rain gauges over: (a) Kelantan River Basin (KRB);
and (b) Johor River Basin (JRB).
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4.4. Temperature Validation

The statistical analysis of the NCEP-CFSR maximum and minimum temperature versus climate
stations temperature gauges (Figure 1) of the KRB and JRB is listed for various time scales in Table 3.
The temperature values from each temperature gauge were compared to the nearest NCEP-CFSR grid
point. Generally, the NCEP-CFSR temperature data have better correlation with observations at the
DJF and monthly time-scale, with CC values ranging from 0.6 to 0.91 and 0.57 to 0.93, respectively.
In addition, the daily maximum temperature data were better correlated with the observed data as
compared to the minimum temperature data. However, the average error of the daily maximum
temperature data (RMSE = 2.58 to 3.32 ◦C) is larger than the minimum temperature (RMSE = 0.98 to
2.68 ◦C) at all stations.

Box plots of the interactions between the NCEP-CFSR data and climate station maximum and
minimum temperature data, for the four climate stations distributed across the KRB and JRB, are shown
in Figure 5. The inter-quartile range shows that the minimum temperature at the 48679 station provides
the best performance, as the range of the NCEP-CFSR data versus the gauge data matched quite well.
The range of the NCEP-CFSR temperature data is larger than the observations at the all stations.
As can be seen from the Table 3 and Figure 5, the NCEP-CFSR temperature data tend to underestimate
the actual maximum and minimum temperature values. The main reason of the underestimation
could be due to the land use types [65]. For example, the 48679 station is located in an industrial
area where the surface temperature is expected to be higher. However, the NCEP-CFSR relies on
National Aeronautics and Space Administration (NASA) land use information data [71], so reliable
local land use information might be missing for the 48679 station location. Another possible reason for
the underestimation of the NCEP-CFSR data may be explained by the mismatch of the temperature
time measurement. For instance, the climate stations’ daily maximum and minimum temperature
data were taken at 0800 and 1400 local time, respectively, while the NCEP-CFSR daily maximum and
minimum temperature were obtained from hourly values [72].

Figure 5. Box plots of daily maximum and minimum temperature derived from NCEP-CFSR (N) and
temperature gauges (G) at: (a) 40586 station; (b) 48616 station; (c) 48672 station; and (d) 48679 station.
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Table 3. Statistical analysis for the NCEP maximum (Tmax) and minimum (Tmin) temperature in the
Kelantan River Basin and Johor River Basin.

Period 40586 48616 48672 48679

Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin

Annual
RMSE (◦C) 1.97 1.37 2.22 2.31 1.74 1.28 1.49 0.18

CC 0.74 0.82 0.43 0.62 0.72 0.81 0.53 0.84
RB (%) −5.81 −5.88 −6.43 −10.18 −5.27 −5.47 −4.36 0.22

DJF
RMSE (◦C) 2.66 1.92 3.25 3.02 1.81 1.31 1.63 0.25

CC 0.90 0.72 0.74 0.67 0.70 0.87 0.60 0.91
RB (%) −8.69 −8.53 −10.41 −13.65 −5.62 −5.63 −4.83 0.89

MAM
RMSE (◦C) 2.02 1.46 2.25 2.63 2.12 1.26 1.82 0.20

CC 0.90 0.48 0.71 0.25 0.81 0.67 0.75 0.84
RB (%) −5.66 −5.89 −5.92 −11.27 −5.95 −5.21 −4.83 −0.05

JJA
RMSE (◦C) 1.19 1.12 1.30 1.83 1.57 1.64 1.38 0.30

CC 0.45 0.70 0.07 0.63 0.65 0.55 0.27 0.59
RB (%) −2.64 −4.45 −2.65 −7.95 −4.69 −6.89 −3.99 0.14

SON
RMSE (◦C) 2.26 1.19 2.43 1.86 1.64 0.99 1.37 0.23

CC 0.42 0.51 0.38 0.54 0.62 0.70 0.51 0.80
RB (%) −6.62 −4.83 −7.20 −8.07 −4.84 −4.17 −3.88 −0.11

Monthly
RMSE (◦C) 2.18 1.50 2.48 2.46 1.89 1.36 1.67 0.35

CC 0.93 0.77 0.88 0.70 0.79 0.57 0.72 0.73
RB (%) −5.82 −5.90 −6.44 −10.21 −5.26 −5.48 −4.35 0.23

Daily
RMSE (◦C) 2.96 1.80 3.32 2.68 2.77 1.67 2.58 0.98

CC 0.74 0.60 0.68 0.53 0.55 0.28 0.50 0.38
RB (%) −5.81 −5.88 −6.43 −10.18 −5.27 −5.47 −4.36 0.22

4.5. Streamflow: GCPs Precipitation Data

Table 4 lists the best fitted calibration parameters for KRB and JRB. The calibration and validation
of the SWAT model were conducted based on local knowledge and a literature review of the SWAT
model in tropical regions (e.g., [54,55,73,74]). As can be seen in Table 4, the CN2 values were increased
by 1% and 13% for the KRB and JRB, respectively. This increment of CN2 values was also observed
in calibration of other tropical SWAT models [75–77]. The CN2 value was higher in the JRB as it is
dominated by oil palm plantations, where the surface runoff is generally higher than in a forest basin
(KRB). Generally, the SWAT simulations that were based on rain gauge data agreed well with the
observed streamflow during the calibration and validation periods for both the KRB and JRB (Figure 6).
The NSE values that were computed for the KRB (JRB) were 0.75 (0.78) and 0.65 (0.6) for the calibration
and validation periods, respectively (Table 5), and the corresponding KRB (JRB) R2 statistics were
0.87 (0.78) and 0.84 (0.61) indicating that the SWAT model performed well for both basins based on the
previously discussed suggested criteria [58,59].

Table 4. Optimal calibration parameters for Kelantan River Basin (KRB) and Johor River Basin (JRB).

No. Parameter Name Parameter
Range KRB JRB

Min Max Value Value

1 groundwater “revap” coefficient V_GW_REVAP 0.1 0.4 0.4 0.29

2 channel effective hydraulic conductivity V_CH_K2 0 80 56.4 66.67

3 baseflow alpha factor V_ALPHA_BF 0.1 0.5 0.12 0.14

4 initial SCS CN II value R_CN2 0 0.35 0.1 0.13

5 groundwater delay V_GW_DELAY 0 130 80.99 91

6 soil evaporation compensation factor V_ESCO 0.4 0.9 0.52 0.42

7 threshold water depth in the shallow aquifer for flow V_GWQMN 2200 4000 3940.6 3700

8 manning’s value for main channel V_CH_N2 0.2 0.3 0.28 0.24

9 available water capacity R_SOL_AWC 0 0.5 0.25 0.35

10 surface runoff lag time V_SURLAG 8 19 18.44 18.63

11 threshold depth of water in the shallow aquifer for “revap” to occur V_REVAPMN 70 320 232.3 95

12 deep aquifer percolation faction V_RCHRG_DP 0.4 0.6 0.52 0.58

Note: R indicates the default parameter value is multiplied by (1+ a given value) and V indicates the default
parameter value is replaced with the given value.
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Figure 6. Comparison of observed streamflow with gauge-based, APHRODITE, PERSIANN-CDR
and NCEP-CFSR precipitation-driven SWAT simulated monthly streamflow, respectively, in the:
(a) Kelantan River Basin; and (b) Johor River Basin.

Table 5. SWAT calibration and validation statistical results for the Kelantan River Basin (KRB) and
Johor River Basin (JRB).

Time KRB JRB

Calibration R2 0.87 0.78
Period NSE 0.75 0.78

RB 27.41 2.94

Validation R2 0.84 0.61
Period NSE 0.65 0.60

RB 26.57 −2.99

Among the three GCPs, the most accurate KRB SWAT simulations occurred in response to the
APHRODITE precipitation input, followed by the simulations driven by the PERSIANN-CDR and
NCEP-CFSR precipitation data. The SWAT simulation streamflow trends, based on the APHRODITE
and PERSIANN-CDR data, revealed overestimation of low streamflows and underestimation of high
streamflows. The predicted streamflow results obtained with the NCEP-CFSR data were unacceptable
as reflected by the negative NSE values (Table 6). In addition, the NCEP-CFSR precipitation data
resulted in relatively high overestimation of observed streamflows throughout the simulation period,
as indicated by the high RB values of 167.77% and 143.72% during the calibration and validation
periods, respectively.

Similar results were obtained in the JRB, where the SWAT simulations that were driven by the
APHRODITE precipitation data yielded the best calibration and validation (Figure 6 and Table 6),
followed again by the PERSIANN-CDR and NCEP-CFSR precipitation data. However, both the
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PERSIANN-CDR and NCEP-CFSR data resulted in unacceptable performance as shown, by the mostly
negative NSE values (Table 6). Overestimation of the observed streamflows is also clearly shown in
the PERSIANN-CDR- and NCEP-CFSR-based JRB SWAT streamflow predictions (Figure 6b) by 57.63%
and 142.45%, respectively, during the validation period (Table 6). However, the APHRODITE-based
data tracked the observed streamflow well (Figure 6b), which was also confirmed by the majority of
NSE, R2 and RB statistics (Table 6), which indicated satisfactory results based on previously suggested
criteria [58,59].

Table 6. Statistical analysis of GCPs performance in SWAT modeling in the Kelantan River Basin (KRB)
and Johor River Basin (JRB).

KRB JRB

A P N A P N

GCPs Precipitation

Calibration R2 0.74 0.78 0.28 0.44 0.31 0.18
Period NSE 0.69 0.49 −4.47 0.34 0.14 −2.39

RB 0.40 43.01 167.77 −19.38 21.20 81.60

Validation R2 0.68 0.63 0.23 0.61 0.49 0.40
Period NSE 0.64 0.15 −6.19 0.60 −0.11 −3.26

RB 13.48 41.92 143.72 −9.36 57.63 142.45

GCPs Precipitation + NCEP-CFSR Temperature

Calibration R2 0.75 0.78 0.28 0.44 0.32 0.17
Period NSE 0.70 0.46 −4.60 0.35 0.10 −2.60

RB 2.65 45.64 170.46 −18.39 24.26 84.88

Validation R2 0.69 0.64 0.23 0.61 0.49 0.40
Period NSE 0.62 0.10 −6.40 0.61 −0.18 −3.43

RB 15.43 44.18 146.30 −7.05 61.94 146.72

Notes: A = APHRODITE; P = PERSIANN-CDR; N = NCEP-CFSR.

4.6. Streamflow: GCPs Precipitation + NCEP-CFSR Temperature Data

The statistical indices (R2, NSE and RB) are summarized in Table 6 for the SWAT simulations that
were executed as a function of precipitation inputs from one of the three GCPs in combination with
the NCEP-CFSR temperature data. The combinations of GCP precipitation inputs and NCEP-CFSR
temperature data resulted in overestimations of the observed streamflow for the majority of the
simulation period for both basins. Similarly, the most severe streamflow overpredictions resulted in
response to the combination of NCEP-CFSR precipitation and NCEP-CFSR temperature data.

Generally, the integration of the NCEP-CFSR temperature data with the GCP precipitation
data did not result in significant impacts on the SWAT simulations for either basin, compared
to the simulations that were performed with just the GCP precipitation inputs. For example,
the differences of the validation NSE values between the APHRODITE precipitation data input
and the APHRODITE precipitation with the NCEP-CFSR temperature input for the KRB and JRB are
0.02 and 0.01, respectively. These findings show that the influence of the precipitation data on the
local hydrological cycle is very dominant relative to the effects of the temperature data in this tropical
region. This could be due to the small temperature range and variation that occurs in Malaysia as
compared to more temperate or arid regions in other global sub-regions.

Some success was obtained by forcing the SWAT model with the integration of the APHRODITE
precipitation and NCEP-CFSR temperature data. However, we could not ignore a tendency by the
APHRODITE data to underestimate the actual precipitation, which in turn offset some of the trend
in overestimated streamflow that occurred within the SWAT models in the two basins that we have
studied. Based on Faramarzi et al. [18], inaccurate input data, wrong model structure and inappropriate
model parameters could generate misleading SWAT model outputs. The input data error can easily be
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identified using more reliable observations, while the other two require local expert knowledge with
modeling skill. Hence, multiple GCP data should be evaluated through an initial assessment prior to
applying them in any hydrological models.

4.7. Extreme Event Assessment

The final aspect of the overall analysis was to evaluate the capability of the GCPs to predict extreme
precipitation events (Table 7). All of the GCPs showed significant differences at 0.05 significance level
when compared with the observed precipitation, except for the NCEP-CFSR data when assessed for the
Rx1d index for the KRB. The APHRODITE data exhibited better correlation with observed precipitation
for three of the indices (Rx1d, Rx5d and R10mm) in both basins versus the other GCPs, while the
PERSIANN-CDR data resulted in the best performance in the R50mm index estimation. In addition,
the majority of the RB values, which were calculated for the Rx1d, Rx5d and R50mm indices estimated
by the three GCPs, were negative. This is similar to the findings reported by Miao et al. [78], who found
that the PERSIANN-CDR data tends to underestimate the Rx1d and Rx5d indices in the eastern China
region. This can be explained by the fact that most of the GCPs underestimated the precipitation range
which is greater than 50 mm in the two basins (Figure 4).

Table 7. Statistical analysis for extreme precipitation indices in Kelantan River Basin and Johor River
Basin (bold indicate significance at 0.05).

Kelantan River Basin Johor River Basin

Indices A P N A P N

Rx1d

RMSE (mm) 96.34 83.11 78.03 74.25 82.04 73.58
CC 0.48 0.44 0.19 0.23 0.20 0.29

ME (mm) −70.00 −49.46 −3.01 −42.03 −56.58 15.41
RB (%) −54.47 −38.48 −2.34 −33.71 −45.38 12.36

T test (t stat) 23.98 16.31 0.95 9.24 11.69 2.70

Rx5d

RMSE (mm) 176.86 150.29 157.23 95.92 99.56 139.09
CC 0.62 0.53 0.21 0.57 0.39 0.18

ME (mm) −127.38 −74.32 −19.91 −53.27 −45.84 35.28
RB (%) −45.21 −26.37 −7.07 −24.03 −20.69 15.92

T test (t stat) 20.56 10.89 3.12 6.75 6.47 3.56

R10mm

RMSE (days) 23.56 22.87 75.11 14.91 29.78 61.60
CC 0.34 0.24 0.23 0.40 0.32 0.11

ME (mm) −13.33 11.05 64.57 5.42 24.74 55.78
RB (%) −16.79 13.92 81.32 8.07 36.81 83.00

T test (t stat) 15.15 13.11 30.43 4.60 13.56 30.66

R50mm

RMSE (days) 9.38 7.97 7.67 6.58 6.56 5.64
CC 0.40 0.45 −0.14 0.27 0.34 0.06

ME (mm) −7.90 −6.26 −1.19 −5.66 −5.67 −3.68
RB (%) −83.33 −66.08 −12.55 −70.76 −70.87 −46.08

T test (t stat) 36.00 27.18 4.51 12.55 23.30 12.55

Notes: A = APHRODITE; P = PERSIANN-CDR; N = NCEP-CFSR.

The RB statistic was used to quantify the difference in accuracy in simulating extreme streamflow
events, based on the Rx1d and Rx5d indices, between the rain gauge-based and other three GCPs
for the KRB (Figure 7) and JRB (Figure 8) because it provided a reliable basis for comparison of
different case studies [79]. The majority of the RB values calculated for the APHRODITE and
PERSIANN-CDR Rx1d and Rx5d indices are negative, indicating that most of the high streamflows
were underestimated. However, the reverse pattern can be observed for the RB values determined for
the respective NCEP-CFSR indices, indicating that streamflow was significantly overestimated in both
basins for the NCEP-CFSR-based SWAT simulations.
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Figure 7. Relative bias values of annual maximum: (a) one-day precipitation/streamflow;
and (b) five-day consecutive precipitation/streamflow from 1985 to 2007 in the Kelantan River Basin.

 

Figure 8. Relative bias values of annual maximum: (a) one-day precipitation/streamflow;
and (b) five-day consecutive precipitation/streamflow from 1985 to 2007 in the Johor River Basin.
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5. Discussion

In this study, six different sets of GCP precipitation and temperature inputs were forced to
drive the SWAT model. The overall results of the analyses of the GCP data clearly revealed that
the APHRODITE precipitation data resulted in the best performance of the three GCP data sources,
based on the SWAT simulation graphical and statistical results. These results agree with the findings
reported in several other studies, which showed that SWAT simulations executed with APHRODITE
precipitation data performed very well in central Vietnam [23,24,80]; glacier influenced basins in
mountainous regions in northwest China [81,82] and central Asia [83,84]; and a major tributary of the
Yangtze River in central China [85]. Lauri et al. [31] also found that executing the VMod hydrological
model [86] with combined APHRODITE precipitation and NCEP-CFSR temperature inputs accurately
replicated hydrological simulations based on surface climate inputs of the 795,000 km2 Mekong
River Basin in southeast Asia. These composite results underscore the strength of the APHRODITE
precipitation data for a variety of Asian conditions and that it can reliably be used for hydrological
applications in un-gauged, data limited or restricted basins in the Southeast Asia.

The results found here clearly show that the original NCEP-CFSR precipitation is not suitable
to apply for streamflow simulations in Malaysia, which is in agreement with the findings of
Monteiro et al. [27], Roth and Lemann [64] and Bressiani et al. [87] for other tropical or sub-tropical
conditions. However, the results found here conflict with the findings of Jajarmizadeh et al. [88],
who report successful SWAT streamflow simulation results using the NCEP-CFSR data for the Roodan
watershed that is located in southern Iran. Differences in climate and geographical conditions are the
most likely explanation for such differences between the Jajarmizadeh et al. [88] study and the results
reported in this research and other previously cited studies. In addition, the streamflow overestimation
that resulted from the use of the NCEP-CFSR data in this study could be related to possible problems
that occur over tropical regions [70], including the effects of the satellite algorithms on precipitation
estimation and the CFSR model parameterizations.

In general, the performance of the APHRODITE data was better for the KRB compared to the JRB.
This is due in part to a more complete distribution of rain gauges for the KRB versus the JRB (Figure 1);
the JRB lacks long-term climate data representation in the northern part of the basin. In addition, the
PERSIANN-CDR precipitation-based SWAT simulation also performed better for the KRB, which is
consistent with Zhu et al. [29] who found that the PERSIANN-CDR data resulted in a smaller relative
error in a data-rich region. These results are consistent with previously reported findings that improved
SWAT hydrologic simulations usually occur in response to precipitation inputs characterized by higher
resolution, versus lower resolution precipitation inputs [89–91].

As shown in Table 6, we also found that the effect of the basin size proved to be of minor
importance compared to the performance of the three GCPs. For instance, the NCEP-CFSR data
performed poorly in both basins, regardless of size and flow characteristics, while the APHRODITE
precipitation resulted in the best performance for both basins. We also note that differences in
sub-basin and/or HRU delineations, while not investigated in this study, typically do not impact SWAT
streamflow and other hydrologic outputs as discussed in a previous review of SWAT literature [48]
and reported in several subsequent SWAT applications [92–95].

Finally, it is important to emphasize that there were distinct periods within the overall simulation
timeframe in which prevailing periods of bias actually were reversed for a specific GCP; e.g., streamflow
extremes were overestimated during periods where precipitation extremes were underestimated.
For example, the PERSIANN-CDR underestimated the Rx1d precipitation index by about 45% during
1989, but the corresponding Rx1d streamflow index was overestimated by 31.3%. This is consistent
with the findings of a similar study conducted by Zhu et al. [29] for the Xiang River and Qu River
watersheds in China. This finding indicates that there are certain periods where the precipitation
generated by GCPs is unlikely to accurately capture the amount and durations of extreme events.
This is further exacerbated by the fact that there is a variation between the precipitation and streamflow
extremes temporal scales. For example, peak streamflow usually occurred a few days/hours after the
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corresponding peak precipitation, but the peak streamflow normally represents an accumulation of
precipitation events that occurred over several days/hours.

6. Conclusions

The performance of the APHRODITE, PERSIANN-CDR and NCEP-CFSR long-term gridded
climate products (GCPs) were evaluated versus observed climate data for the Kelantan River Basin
(KRB) and Johor River Basin (JRB), which are both tropical basins located in Peninsular Malaysia.
The analysis included the assessment of capability of replicating streamflow for both basins using
climate data from these GCPs as inputs to the calibrated SWAT model. The main conclusions obtained
are as follows:

(1) The APHRODITE data typically replicated the observed monthly and daily precipitation more
accurately over both the KRB and JRB, followed by the PERSIANN-CDR data and lastly the
NCEP-CFSR data. The APHRODITE data tended to underestimate the observed daily and
monthly precipitation in both basins, while the NCEP-CFSR data dramatically overestimated the
observed precipitation data. The PERSIANN-CDR data resulted in a slight underestimation of
the observed KRB precipitation and an overestimation of the JRB precipitation.

(2) The overall performance of the GCPs was better in low land and near coastal regions, such as the
northern and eastern KRB. On the contrary, the performance of the GCPs was poor for the high
mountainous regions located in the southwestern part of the KRB. Generally, the APHRODITE
data resulted in stronger replication of precipitation in mountainous regions compared to the
other two GCPs.

(3) The GCPs were found to have moderate accuracy (ACC), false alarm ratio (FAR), and critical
success index (CSI), and a high probability of detection (POD) over the two basins that we have
studied; the APHRODITE data resulted in the best performance. All three GCPs underestimated
the extreme precipitation ranges (≥50 mm·day–1) and dramatically overestimated the observed
moderate precipitation ranges (2–20 mm·day–1).

(4) The APHRODITE data resulted in strong replication of observed streamflows when input to
the calibrated SWAT simulations, while, the NCEP-CFSR was unable to replicate the observed
streamflows for either basin in the calibrated SWAT. The PERSIANN-CDR data generated an
in-between performance in the calibrated SWAT model, resulting in acceptable representation of
KRB observed streamflows but an inability to track the JRB observed streamflows.

(5) We recommend the integration of the APHRODITE precipitation and the NCEP-CFSR
temperature data for SWAT modeling in Malaysia as well as Southeast Asia region. However,
a bias correction should be conducted if the gauge data are available, in order to improve the
accuracy of the SWAT modeling.

(6) The APHRODITE data and PERSIANN-CDR data underestimated the annual maximum one-day
streamflow (Rx1d) and five-day consecutive streamflow (Rx5d) indices. In contrast, the
NCEP-CFSR dramatically overestimated the Rx1d and Rx5d streamflow indices in both basins.
Basically, all three GCPs performed poorly in capturing extreme events, where high bias was
found in certain periods.

Finally, these findings demonstrate how large uncertainties of GCP inputs can propagate within
streamflow modeling, which can greatly affect the accuracy of streamflow simulations. This could lead
to erroneous results that in turn could lead to wrong conclusions, which could impact the development
of management systems and local policies. Therefore, development of an improved quantification
framework for more accurate comparisons between different study areas should be a focus for future
research. Similar studies should be conducted in other watershed systems with varying climatic and
geographical conditions, to expand the testing of the GCPs and provide feedback to the GCP producers
that can be used to develop better products.

439

Bo
ok
s

M
DP
I



Water 2017, 9, 229

Acknowledgments: This research was supported by the Ministry of Higher Education Malaysia and Universiti
Teknologi Malaysia under the Transdisciplinary Research Grant Scheme (R.J130000.7809.4L835). The research was
also funded in part from support received from the U.S. Department of Agriculture, National Institute of Food and
Agriculture, Award No. 20116800230190, Climate Change, Mitigation, and Adaptation in Corn-Based Cropping
Systems. We acknowledge Malaysian government agencies for providing the hydro-climatic and geographical
data. Gratitude is also expressed to the original producers of the three global climate products for providing free
downloadable data.

Author Contributions: Mou Leong Tan collected, processed and analyzed the data, and drafted the manuscript.
Philip W. Gassman and Arthur P. Cracknell made contributions in reviewing and editing of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Held, I.M.; Soden, B.J. Robust responses of the hydrological cycle to global warming. J. Clim. 2006, 19,
5686–5699. [CrossRef]

2. Stokstad, E. Hydrology—Scarcity of rain, stream gages threatens forecasts. Science 1999, 285, 1199–1200.
[CrossRef]

3. Abera, W.; Brocca, L.; Rigon, R. Comparative evaluation of different satellite rainfall estimation products
and bias correction in the Upper Blue Nile (UBN) Basin. Atmos. Res. 2016, 178–179, 471–483. [CrossRef]

4. Yu, M.; Chen, X.; Li, L.; Bao, A.; Paix, M.L. Streamflow simulation by SWAT using different precipitation
sources in large arid basins with scarce raingauges. Water Resour. Manag. 2011, 25, 2669–2681.

5. Gebremichael, M.; Bitew, M.M.; Hirpa, F.A.; Tesfay, G.N. Accuracy of satellite rainfall estimates in the Blue
Nile Basin: Lowland plain versus highland mountain. Water Resour. Res. 2014, 50, 8775–8790.

6. Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.;
et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1057.
Available online: http://globalweather.tamu.edu (accessed on 21 March 2017).

7. Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE constructing a
long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Am.
Meteorol. Soc. 2012, 93, 1401–1415. Available online: http://www.chikyu.ac.jp/precip/english/products.
html (accessed on 21 March 2017). [CrossRef]

8. Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P.
PERSIANN-CDR: Daily precipitation climate data record from multi-satellite observations for hydrological
and climate studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. Available online: http://chrsdata.eng.uci.edu
(accessed on 21 March 2017).

9. Dinku, T.; Ceccato, P.; Grover-Kopec, E.; Lemma, M.; Connor, S.J.; Ropelewski, C.F. Validation of satellite
rainfall products over East Africa’s complex topography. Int. J. Remote Sens. 2007, 28, 1503–1526. [CrossRef]

10. Wang, J.D.; Wang, W.Q.; Fu, X.H.; Seo, K.H. Tropical intraseasonal rainfall variability in the CFSR. Clim. Dyn.
2012, 38, 2191–2207.

11. Mashingia, F.; Mtalo, F.; Bruen, M. Validation of remotely sensed rainfall over major climatic regions in
Northeast Tanzania. Phys. Chem. Earth 2014, 67–69, 55–63. [CrossRef]

12. Tan, M.L.; Ibrahim, A.L.; Duan, Z.; Cracknell, A.P.; Chaplot, V. Evaluation of six high-resolution satellite and
ground-based precipitation products over Malaysia. Remote Sens. 2015, 7, 1504–1528. [CrossRef]

13. Jamandre, C.A.; Narisma, G.T. Spatio-temporal validation of satellite-based rainfall estimates in the
Philippines. Atmos. Res. 2013, 122, 599–608. [CrossRef]

14. Fekete, B.M.; Vörösmarty, C.J.; Roads, J.O.; Willmott, C.J. Uncertainties in precipitation and their impacts on
runoff estimates. J. Clim. 2004, 17, 294–304. [CrossRef]

15. Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.;
Bolvin, D.; et al. The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation
analysis (1979-present). J. Hydrometeorol. 2003, 4, 1147–1167.

16. Behrangi, A.; Khakbaz, B.; Jaw, T.C.; AghaKouchak, A.; Hsu, K.; Sorooshian, S. Hydrologic evaluation of
satellite precipitation products over a mid-size basin. J. Hydrol. 2011, 397, 225–237. [CrossRef]

17. Seyyedi, H.; Anagnostou, E.N.; Beighley, E.; McCollum, J. Hydrologic evaluation of satellite and reanalysis
precipitation datasets over a mid-latitude basin. Atmos. Res. 2015, 164–165, 37–48.

440

Bo
ok
s

M
DP
I



Water 2017, 9, 229

18. Faramarzi, M.; Srinivasan, R.; Iravani, M.; Bladon, K.D.; Abbaspour, K.C.; Zehnder, A.J.B.; Goss, G.G. Setting
up a hydrological model of Alberta: Data discrimination analyses prior to calibration. Environ. Model. Softw.
2015, 74, 48–65.

19. Alemayehu, T.; van Griensven, A.; Bauwens, W. Evaluating CFSR and WATCH data as input to swat for the
estimation of the potential evapotranspiration in a data-scarce Eastern-African catchment. J. Hydrol. Eng.
2016, 21, 16. [CrossRef]

20. Getirana, A.C.V.; Espinoza, J.C.V.; Ronchail, J.; Rotunno Filho, O.C. Assessment of different precipitation
datasets and their impacts on the water balance of the Negro River Basin. J. Hydrol. 2011, 404, 304–322.

21. Dile, Y.T.; Srinivasan, R. Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds:
An application in the Blue Nile River Basin. J. Am. Water Resour. Assoc. 2014, 50, 1226–1241.

22. Strauch, M.; Kumar, R.; Eisner, S.; Mulligan, M.; Reinhardt, J.; Santini, W.; Vetter, T.; Friesen, J. Adjustment of
global precipitation data for enhanced hydrologic modeling of tropical Andean Watersheds. Clim. Chang.
2016, 141, 547–560. [CrossRef]

23. Vu, M.T.; Raghavan, S.V.; Liong, S.Y. SWAT use of gridded observations for simulating runoff—A Vietnam
river basin study. Hydrol. Earth Syst. Sci. 2012, 16, 2801–2811. [CrossRef]

24. Le, T.B.; Sharif, H.O. Modeling the projected changes of river flow in central Vietnam under different climate
change scenarios. Water 2015, 7, 3579–3598.

25. Bressiani, D.D.; Gassman, P.W.; Fernandes, J.G.; Garbossa, L.H.P.; Srinivasan, R.; Bonuma, N.B.;
Mendiondo, E.M. Review of Soil and Water Assessment Tool (SWAT) applications in Brazil: Challenges and
prospects. Int. J. Agric. Biol. Eng. 2015, 8, 9–35.

26. Creech, C.T.; Siqueira, R.B.; Selegean, J.P.; Miller, C. Anthropogenic impacts to the sediment budget of
São Francisco River navigation channel using SWAT. Int. J. Agric. Biol. Eng. 2015, 8, 140–157.

27. Monteiro, J.A.F.; Strauch, M.; Srinivasan, R.; Abbaspour, K.; Gucker, B. Accuracy of grid precipitation data
for Brazil: Application in river discharge modelling of the Tocantins Catchment. Hydrol. Process. 2016, 30,
1419–1430. [CrossRef]

28. Auerbach, D.A.; Easton, Z.M.; Walter, M.T.; Flecker, A.S.; Fuka, D.R. Evaluating weather observations and
the Climate Forecast System Reanalysis as inputs for hydrologic modelling in the tropics. Hydrol. Process.
2016, 30, 3466–3477. [CrossRef]

29. Zhu, Q.; Xuan, W.; Liu, L.; Xu, Y.-P. Evaluation and hydrological application of precipitation estimates derived
from PERSIANN-CDR, TRMM 3B42V7, and NCEP-CFSR over humid regions in China. Hydrol. Process. 2016,
30, 3061–3083. [CrossRef]

30. Ashouri, H.; Nguyen, P.; Thorstensen, A.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D. Assessing the
efficacy of high-resolution satellite-based PERSIANN-CDR precipitation product in simulating streamflow.
J. Hydrometeorol. 2016, 17, 2061–2076. [CrossRef]

31. Lauri, H.; Rasanen, T.A.; Kummu, M. Using reanalysis and remotely sensed temperature and precipitation
data for hydrological modeling in monsoon climate: Mekong river case study. J. Hydrometeorol. 2014, 15,
1532–1545. [CrossRef]

32. Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and
assessment—Part 1: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. Available online:
http://swat.tamu.edu/software/arcswat (accessed on 21 March 2017). [CrossRef]

33. Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil and Water Assessment Tool
Input/Tool File Documentation. Version 2012; Texas Water Resources Institute: College Station, TX, USA, 2012.

34. Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.;
Harmel, R.D.; van Griensven, A.; van Liew, M.W.; et al. SWAT: Model use, calibration, and validation.
Trans. ASABE 2012, 55, 1491–1508. [CrossRef]

35. Williams, J.R.; Arnold, J.G.; Kiniry, J.R.; Gassman, P.W.; Green, C.H. History of model development at Temple,
Texas. Hydrol. Sci. J. 2008, 53, 948–960. [CrossRef]

36. Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Grassland, J.R.W. Soil and Water Assessment Tool Theoretical
Documentation Version 2009; Agricultural Research Service Blackland Research Center: Temple, TX, USA, 2011.

37. Tan, M.L.; Ibrahim, A.L.; Cracknell, A.P.; Yusop, Z. Changes in precipitation extremes over the Kelantan
River Basin, Malaysia. Int. J. Climatol. 2016. [CrossRef]

441

Bo
ok
s

M
DP
I



Water 2017, 9, 229

38. Knapp, K.R.; Ansari, S.; Bain, C.L.; Bourassa, M.A.; Dickinson, M.J.; Funk, C.; Helms, C.N.; Hennon, C.C.;
Holmes, C.D.; Huffman, G.J.; et al. Globally gridded satellite observations for climate studies. Bull. Am.
Meteorol. Soc. 2011, 92, 893–907. [CrossRef]

39. Department of Irrigation and Drainage Malaysia (DID). Hydrological Procedure No. 15: River Discharge
Measurement by Current Meter; DID: Kuala Lumpur, Malaysia, 1995.

40. Tan, M.L.; Ficklin, D.L.; Dixon, B.; Ibrahim, A.L.; Yusop, Z.; Chaplot, V. Impacts of DEM resolution, source,
and resampling technique on SWAT-simulated streamflow. Appl. Geogr. 2015, 63, 357–368. [CrossRef]

41. Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.;
Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 75–79. [CrossRef]

42. Zheng, J.; Li, G.-Y.; Han, Z.-Z.; Meng, G.-X. Hydrological cycle simulation of an irrigation district based on a
SWAT model. Math. Comput. Model. 2010, 51, 1312–1318. [CrossRef]

43. Tangang, F.T.; Juneng, L. Mechanisms of Malaysian rainfall anomalies. J. Clim. 2004, 17, 3616–3622.
44. Dembélé, M.; Zwart, S.J. Evaluation and comparison of satellite-based rainfall products in Burkina Faso,

West Africa. Int. J. Remote Sens. 2016, 37, 3995–4014. [CrossRef]
45. Khan, S.I.; Hong, Y.; Gourley, J.J.; Khattak, M.U.K.; Yong, B.; Vergara, H.J. Evaluation of three high-resolution

satellite precipitation estimates: Potential for monsoon monitoring over Pakistan. Adv. Space Res. 2014, 54,
670–684.

46. Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of near-real-time precipitation estimates from satellite
observations and numerical models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64.

47. Shen, Y.; Xiong, A.Y.; Wang, Y.; Xie, P.P. Performance of high-resolution satellite precipitation products over
China. J. Geophys. Res. Atmos. 2010, 115, D2. [CrossRef]

48. Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical
development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [CrossRef]

49. Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the swat model special section: Overview and
insights. J. Environ. Qual. 2014, 43, 1–8. [CrossRef] [PubMed]

50. Gassman, P.W.; Wang, Y.K. Ijabe swat special issue: Innovative modeling solutions for water resource
problems. Int. J. Agric. Biol. Eng. 2015, 8, 1–8.

51. Krysanova, V.; White, M. Advances in water resources assessment with SWAT—An overview. Hydrol. Sci. J.
2015, 60, 771–783. [CrossRef]

52. Hasan, Z.A.; Hamidon, N.; Yusof, M.S.; Ab Ghani, A. Flow and sediment yield simulations for Bukit Merah
Reservoir Catchment, Malaysia: A case study. Water Sci. Technol. 2012, 66, 2170–2176. [PubMed]

53. Memarian, H.; Balasundram, S.K.; Abbaspour, K.C.; Talib, J.B.; Teh Boon Sung, C.; Sood, A.M. SWAT-based
hydrological modelling of tropical land use scenarios. Hydrol. Sci. J. 2014, 59, 1808–1829. [CrossRef]

54. Tan, M.L.; Ficklin, D.L.; Ibrahim, A.L.; Yusop, Z. Impacts and uncertainties of climate change on streamflow
of the Johor River Basin, Malaysia using a CMIP5 General Circulation Model ensemble. J. Water Clim. Chang.
2014, 5, 676–695.

55. Tan, M.L.; Ibrahim, A.L.; Yusop, Z.; Duan, Z.; Ling, L. Impacts of land-use and climate variability on
hydrological components in the Johor River Basin, Malaysia. Hydrol. Sci. J. 2015, 60, 873–889. [CrossRef]

56. Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale
hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale
SWAT model. J. Hydrol. 2015, 524, 733–752. [CrossRef]

57. Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment.
Adv. Geosci. 2005, 5, 89–97. [CrossRef]

58. Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Binger, R.L.; Harmel, R.D.; Veith, T. Model evaluation guidelines
for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900.

59. Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance
measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785.

60. Groisman, P.Y.; Knight, R.W.; Easterling, D.R.; Karl, T.R.; Hegerl, G.C.; Razuvaev, V.A.N. Trends in intense
precipitation in the climate record. J. Clim. 2005, 18, 1326–1350.

61. Li, C.; Wang, R.; Ning, H.; Luo, Q. Changes in climate extremes and their impact on wheat yield in Tianshan
mountains region, Northwest China. Environ. Earth Sci. 2016, 75, 1–13. [CrossRef]

62. Tan, M.L.; Tan, K.C.; Chua, V.P.; Chan, N.W. Evaluation of TRMM product for monitoring drought in the
Kelantan River Basin, Malaysia. Water 2017, 9, 57. [CrossRef]

442

Bo
ok
s

M
DP
I



Water 2017, 9, 229

63. Karl, T.R.; Nicholls, N.; Ghazi, A. CLIVAR/GCOS/WMO workshop on indices and indicators for climate
extremes workshop summary. Clim. Chang. 1999, 42, 3–7. [CrossRef]

64. Roth, V.; Lemann, T. Comparing CFSR and conventional weather data for discharge and soil loss modelling
with SWAT in small catchments in the Ethiopian highlands. Hydrol. Earth Syst. Sci. 2016, 20, 921–934.
[CrossRef]

65. Decker, M.; Brunke, M.A.; Wang, Z.; Sakaguchi, K.; Zeng, X.B.; Bosilovich, M.G. Evaluation of the reanalysis
products from GSFC, NCEP, and ECMWF using flux tower observations. J. Clim. 2012, 25, 1916–1944.
[CrossRef]

66. Derin, Y.; Yilmaz, K.K. Evaluation of multiple satellite-based precipitation products over complex topography.
J. Hydrometeorol. 2014, 15, 1498–1516.

67. Sun, W.; Mu, X.; Song, X.; Wu, D.; Cheng, A.; Qiu, B. Changes in extreme temperature and precipitation
events in the Loess Plateau (China) during 1960–2013 under global warming. Atmos. Res. 2016, 168, 33–48.
[CrossRef]

68. Yilmaz, K.K.; Hogue, T.S.; Hsu, K.L.; Sorooshian, S.; Gupta, H.V.; Wagener, T. Intercomparison of rain gauge,
radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting. J. Hydrometeorol.
2005, 6, 497–517. [CrossRef]

69. Krakauer, N.; Pradhanang, S.; Lakhankar, T.; Jha, A. Evaluating satellite products for precipitation estimation
in mountain regions: A case study for Nepal. Remote Sens. 2013, 5, 4107–4123. [CrossRef]

70. Blacutt, L.A.; Herdies, D.L.; de Gonçalves, L.G.G.; Vila, D.A.; Andrade, M. Precipitation comparison for
the CFSR, MERRA, TRMM3B42 and combined scheme datasets in Bolivia. Atmos. Res. 2015, 163, 117–131.
[CrossRef]

71. Meng, J.; Yang, R.Q.; Wei, H.L.; Ek, M.; Gayno, G.; Xie, P.P.; Mitchell, K. The land surface analysis in the
NCEP Climate Forecast System Reanalysis. J. Hydrometeorol. 2012, 13, 1621–1630. [CrossRef]

72. Fuka, D.R.; Walter, M.T.; MacAlister, C.; Degaetano, A.T.; Steenhuis, T.S.; Easton, Z.M. Using the Climate
Forecast System Reanalysis as weather input data for watershed models. Hydrol. Process. 2014, 28, 5613–5623.

73. Nyeko, M. Hydrologic modelling of data scarce basin with SWAT model: Capabilities and limitations.
Water Resour. Manag. 2014, 29, 81–94. [CrossRef]

74. Tan, M.L.; Ibrahim, A.L.; Yusop, Z.; Chua, V.P.; Chan, N.W. Climate change impacts under CMIP5 RCP
scenarios on water resources of the Kelantan River Basin, Malaysia. Atmos. Res. 2017, 189, 1–10. [CrossRef]

75. Fukunaga, D.C.; Cecílio, R.A.; Zanetti, S.S.; Oliveira, L.T.; Caiado, M.A.C. Application of the SWAT hydrologic
model to a tropical watershed at Brazil. Catena 2015, 125, 206–213. [CrossRef]

76. Pereira, D.R.; Martinez, M.A.; da Silva, D.D.; Pruski, F.F. Hydrological simulation in a basin of typical tropical
climate and soil using the SWAT model part II: Simulation of hydrological variables and soil use scenarios.
J. Hydrol. Reg. Stud. 2016, 5, 149–163. [CrossRef]

77. Yesuf, H.M.; Melesse, A.M.; Zeleke, G.; Alamirew, T. Streamflow prediction uncertainty analysis and
verification of SWAT model in a tropical watershed. Environ. Earth Sci. 2016, 75, 806. [CrossRef]

78. Miao, C.; Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Duan, Q. Evaluation of the PERSIANN-CDR daily rainfall
estimates in capturing the behavior of extreme precipitation events over China. J. Hydrometeorol. 2015, 16,
1387–1396. [CrossRef]

79. Schaefli, B.; Gupta, H.V. Do nash values have value? Hydrol. Process. 2007, 21, 2075–2080. [CrossRef]
80. Thom, V.; Khoi, D.; Linh, D. Using gridded rainfall products in simulating streamflow in a tropical

catchment—A case study of the Srepok River Catchment, Vietnam. J. Hydrol. Hydromech. 2017, 65, 18–25.
[CrossRef]

81. Wang, X.L.; Luo, Y.; Sun, L.; Zhang, Y.Q. Assessing the effects of precipitation and temperature changes on
hydrological processes in a glacier-dominated catchment. Hydrol. Process. 2015, 29, 4830–4845.

82. Gan, R.; Zuo, Q.T. Assessing the digital filter method for base flow estimation in glacier melt dominated
basins. Hydrol. Process. 2016, 30, 1367–1375.

83. Sidike, A.; Chen, X.; Liu, T.; Durdiev, K.; Huang, Y. Investigating alternative climate data sources for
hydrological simulations in the upstream of the Amu Darya River. Water 2016, 8, 441. [CrossRef]

84. Ma, C.K.; Sun, L.; Liu, S.Y.; Shao, M.A.; Luo, Y. Impact of climate change on the streamflow in the glacierized
Chu River Basin, Central Asia. J. Arid Land 2015, 7, 501–513. [CrossRef]

443

Bo
ok
s

M
DP
I



Water 2017, 9, 229

85. Xu, H.L.; Xu, C.Y.; Chen, S.D.; Chen, H. Similarity and difference of global reanalysis datasets (WFD and
APHRODITE) in driving lumped and distributed hydrological models in a humid region of China. J. Hydrol.
2016, 542, 343–356. [CrossRef]

86. Lauri, H.; de Moel, H.; Ward, P.J.; Rasanen, T.A.; Keskinen, M.; Kummu, M. Future changes in Mekong River
hydrology: Impact of climate change and reservoir operation on discharge. Hydrol. Earth Syst. Sci. 2012, 16,
4603–4619.

87. Bressiani, D.A.; Srinivasan, R.; Jones, C.A.; Mendiondo, E.M. Effects of spatial and temporal weather data
resolutions on streamflow modeling of a semi-arid basin, Northeast Brazil. Int. J. Agric. Biol. Eng. 2015, 8,
125–139.

88. Jajarmizadeh, M.; Sidek, L.M.; Mirzai, M.; Alaghmand, S.; Harun, S.; Majid, M.R. Prediction of surface flow
by forcing of Climate Forecast System Reanalysis data. Water Resour. Manag. 2016, 30, 2627–2640. [CrossRef]

89. Schilling, K.E.; Gassman, P.W.; Kling, C.L.; Campbell, T.; Jha, M.K.; Wolter, C.F.; Arnold, J.G. The potential for
agricultural land use change to reduce flood risk in a large watershed. Hydrol. Process. 2014, 28, 3314–3325.
[CrossRef]

90. Chaplot, V.; Saleh, A.; Jaynes, D.B. Effect of the accuracy of spatial rainfall information on the modeling of
water, sediment, and NO3-N loads at the watershed level. J. Hydrol. 2005, 312, 223–234. [CrossRef]

91. Moriasi, D.N.; Starks, P.J. Effects of the resolution of soil dataset and precipitation dataset on SWAT2005
streamflow calibration parameters and simulation accuracy. J. Soil Water Conserv. 2010, 65, 63–78. [CrossRef]

92. Rouhani, H.; Willems, P.; Feyen, J. Effect of watershed delineation and areal rainfall distribution on runoff
prediction using the SWAT model. Hydrol. Res. 2009, 40, 505–519. [CrossRef]

93. Wang, Y.; Montas, H.J.; Brubaker, K.L.; Leisnham, P.T.; Shirmohammadi, A.; Chanse, V.; Rockler, A.K. Impact
of spatial discretization of hydrologic models on spatial distribution of nonpoint source pollution hotspots.
J. Hydrol. Eng. 2016, 21, 12. [CrossRef]

94. Her, Y.; Frankenberger, J.; Chaubey, I.; Srinivasan, R. Threshold effects in hru definition of the Soil and Water
Assessment Tool. Trans. ASABE 2015, 58, 367–378.

95. Shen, Z.Y.; Chen, L.; Liao, Q.; Liu, R.M.; Huang, Q. A comprehensive study of the effect of GIS data on
hydrology and non-point source pollution modeling. Agric. Water Manag. 2013, 118, 93–102. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

444

Bo
ok
s

M
DP
I



water

Article

Modeling Crop Water Productivity Using a Coupled
SWAT–MODSIM Model

Saeid Ashraf Vaghefi 1,*, Karim C. Abbaspour 1, Monireh Faramarzi 2, Raghavan Srinivasan 3 and

Jeffrey G. Arnold 4

1 Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland;
Karim.Abbaspour@eawag.ch

2 Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton,
AB T6G 2E3, Canada; faramarz@ualberta.ca

3 Department of Ecosystem Science and Management, Texas A & M University, College Station, TX 77843,
USA; r-srinivasan@tamu.edu

4 Grassland, Soil and Water Research Laboratory, USDA Agricultural Research Service, Temple, TX 76502,
USA; Jeff.Arnold@ars.usda.gov

* Correspondence: saeedashrafv@gmail.com or seyedsaeid.ashrafvaghefi@eawag.ch; Tel.: +41-58-765-5359

Academic Editor: Athanasios Loukas
Received: 30 December 2016; Accepted: 17 February 2017; Published: 24 February 2017

Abstract: This study examines the water productivity of irrigated wheat and maize yields in
Karkheh River Basin (KRB) in the semi-arid region of Iran using a coupled modeling approach
consisting of the hydrological model (SWAT) and the river basin water allocation model (MODSIM).
Dynamic irrigation requirements instead of constant time series of demand were considered. As the
cereal production of KRB plays a major role in supplying the food market of Iran, it is necessary
to understand the crop yield-water relations for irrigated wheat and maize in the lower part of
KRB (LKRB) where most of the irrigated agricultural plains are located. Irrigated wheat and maize
yields (Y) and consumptive water use (AET) were modeled with uncertainty analysis at a subbasin
level for 1990–2010. Simulated Y and AET were used to calculate crop water productivity (CWP).
The coupled SWAT–MODSIM approach improved the accuracy of SWAT outputs by considering
the water allocation derived from MODSIM. The results indicated that the highest CWP across this
region was 1.31 kg·m−3 and 1.13 kg·m−3 for wheat and maize, respectively; and the lowest was
less than 0.62 kg·m−3 and 0.58 kg·m−3. A close linear relationship was found for CWP and yield.
The results showed a continuing increase for AET over the years while CWP peaks and then declines.
This is evidence of the existence of a plateau in CWP as AET continues to increase and evidence of
the fact that higher AET does not necessarily result in a higher yield.

Keywords: Karkheh River Basin; dynamic irrigation scheduling; irrigated wheat; irrigated maize;
uncertainty analysis; coupled SWAT-MODSIM

1. Introduction

Global human population growth requires increased food production, yet less water resources are
available for agriculture. This critical situation can only be resolved if water is managed more efficiently,
and crop yield per unit of water consumption increases [1]. Water shortage affects every continent in
the twenty-first century. Around 1.2 billion people, or almost one-fifth of the world’s population, live
in areas of physical scarcity, and 500 million people are approaching this situation. Another 1.6 billion
people, or almost one-quarter of the world’s population, probably face economic water shortage (where
countries lack the necessary infrastructure to take water from rivers and aquifers) [2]. Spatial and
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temporal distribution of precipitation, which rarely coincides with demand, is a critical problem in this
context [3].

Crop water productivity (CWP) is defined as the ratio of crop yield (Y) to the amount of water
required to produce that yield [4]. Increasing CWP is necessary to meet a decreasing water availability
and is a key element in improving agricultural water productivity, which is central to both economic
and social development [5].

Therefore, there is a high intresrt in increasing the productivity of water in the agricultural sector
to meet the future food demand [6]. In arid and semi-arid regions where the agricultural sector is
the main consumer of water resources and less opportunities exist for the development of new water
resources, the accurate estimation of CWP and increasing the productivity of existing water resources
is vital. Various researchers studied CWP at specific locations, with specific agricultural and water
management practices. Zwart and Bastiaanssen [4] reviewed 84 literature sources. They found that
globally measured average CWP values per unit water use are 1.09, 1.09, 0.65, 0.23 and 1.80 kg·m−3

for wheat, rice, cotton seed, cotton lint, and maize, respectively. They found that the range of CWP is
0.6–1.7 kg·m−3 for wheat, 0.6–1.6 kg·m−3 for rice, 0.41–0.95 kg·m−3 for cotton seed, 0.14–0.33 kg·m−3

for cotton lint, and 1.1–2.7 kg·m−3 for maize. Nhamo, et al. [7] evaluated crop evapotranspiration, crop
production and agricultural gross domestic product contribution to assess the crop water productivity
of Malawi from 2000 to 2013. They found an overall increase of 33% crop water productivity.
Giménez, et al. [8] used different full and deficit irrigation practices to calibrate and validate soil water
balance in western Uruguay using the soil water balance simulation model SIMDualKc. They found
water productivity values, ranging from 1.39 to 2.17 kg·m−3 and 1.75 to 2.55 kg·m−3 when considering
total water use and crop AET, respectively. Borrego-Marín, et al. [9] analyzed the impact of drought (2005,
2012) and drought management plans (2006–2008) on agricultural water productivity in Guadalquivir
River Basin in Spain for the period of 2004 to 2012. They found significantly higher water productivity
in irrigated than rain-fed agriculture. There is also much interest in the different methods to improve
the CWP. Kima, et al. [10] analyzed the effective depth of irrigation water that can keep the soil moisture
close to saturation for irrigation intervals to increase water productivity.

In general, the models on crop-water relations can be divided into two categories: empirical
and process-based models [11]. Most of the empirical models are regression-based models,
where a correlation is established between the statistical crop yield and local weather-related,
geostatistical-related, and management-related (e.g., irrigation) factors. Therefore, they can only
estimate yield, without predicting crop water uptake and soil evaporation. The process-based models
simulate the physiological development, growth and yield of a crop based on the interaction of
environmental variables and plant physiological processes (e.g., photosynthesis and respiration) [11,12].
They often have a weakness either in crop growth simulation or hydrology. Examples of process-based
models include Soil Water Atmosphere Plant (SWAP) [13], Soil Vegetation Atmosphere Transfer
(SVAT) [12], GIS-based Environmental Policy Integrated Climate model GEPIC [14], generic crop model
(InfoCrop) [15,16], FAO’s crop water productivity and yield response model (AquaCrop) [17–19], and
the global water assessment model (WaterGAP) [20]. There are two fundamental limitations in many of
the studies which have used these models: (i) The crop yield and consumptive water use estimated for
a given area are not linked with the water resources availability of that region. Therefore, one cannot
assess the aggregate impact of regional water resources availability, land use, and climate changes on
crop production directly. (ii) Uncertainties associated with crop models are not taken into account
and remained largely unquantified. There are some studies [21–24] that account for model-related
uncertainties in crop yield prediction. To the best of our knowledge, the aforementioned issues have not
been considered together in one package. Soil and Water Assessment Tool (SWAT) [25] has been used
widely to assess the impact of management practice, and climate and land use changes on water quality
and quantity and crop yield [26,27]. Using SWAT calibration, and uncertainty tool “SWAT-CUP”, [28]
many studies have considered the uncertainties of SWAT output variables such as discharge, and crop
yield [29–31]. Although SWAT has significant capabilities in the simulation of hydrologic components
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and crop yield interactively, the lack of an optimal water allocation module inhibits the dynamic
pattern of irrigation scheduling and increases uncertainty in Y and AET predictions.

Water allocation models can be used to optimize water allocation among different users.
Some examples of water allocation models are integrated water allocation model (IWAM) [32],
REsource ALlocation Model (REALM) [33], Water Evaluation and Planning (WEAP) [34], and river
basin network flow model for conjunctive stream-aquifer management (MODSIM) [35]. MODSIM has
been used in several studies to address the problem of water allocation between non-consumptive and
consumptive water demands at the basin scale [36–38].

This paper aims to study the water productivity of irrigated wheat and maize in agricultural
lands of the Lower KRB (LKRB) by using a coupled SWAT–MODSIM model considering dynamic
irrigation requirements. To the best of our knowledge, previous studies have not considered dynamic
time series of irrigation demands in the estimation of CWP through the aforementioned modeling
approach. SWAT is used to estimate spatial and temporal distributions of water availability and
irrigation water requirements, while MODSIM [35,39] simulates the processes of reservoir operations
for water allocations. The use of the coupled hydrological-water allocation model substantially
improves accuracy of Y and AET simulations and results in the implementation of more rational and
sustainable water management practices.

Karkheh River Basin (KRB) has traditionally been the central point of agricultural activities in
Iran. The basin, located in the arid southwest of Iran, is one of the most productive agricultural
areas of the country. It is known as the food basket of Iran [40] and produces about 10% of the
country’s wheat. Available water resources and desirable climatic conditions make it a suitable
basin for growing a broad range of crops. In the KRB, water availability is of great importance in
supporting economic and social development [41]. Due to limited potential for developing new water
resources and a significant decrease in downstream runoff due to both climate change and human
interventions, improving the productivity of the existing water resources in the basin is one of the
most important management challenges to sustainable food production [42]. Rafiee and Shourian [43]
used a simulation-optimization approach to find the optimal irrigation plan and crop pattern in the
Azadegan plain in the KRB. In the basin, excessive irrigation is a key management practice that leads
to remarkable water losses [44]. Therefore, several studies have concentrated on the issue of food
production in KRB [40,45]. It is also projected that the problem of water will further increase due to
climate change in southern parts of the basin [42].

The coupled SWAT–MODSIM approach in this study has some novel features: (i) it considers
dynamic irrigation requirements instead of constant time series of demands; (ii) it is a fully coupled
model and both models have feedback on each other; (iii) it is supported by a full tutorial which
facilitates the application of the coupled model in other similar research studies.

This paper is organized to (i) calibrate (1997–2010) and validate (1990–1996) crop yield at five
important agricultural regions in LKRB; (ii) model the spatial and temporal variability of crop yield
as well as crop consumptive water use with uncertainty analysis for wheat and maize at a subbasin
level, and calculate CWP; and (iii) analyze the relation between yields and consumptive water use
by quantifying the applied irrigation water and crop yield in each of the five regions by using the
coupled model.

2. Methodology

2.1. Study Area

Karkheh River Basin, with a total area of about 51,000 km2, is located in the south-western part
of Iran between 30◦ N to 35◦ N and 46◦ E to 49◦ E. KRB is the third largest agricultural river basin in
Iran [41] with a significant hydropower generation capacity. The southern part of the basin receives
an average annual precipitation of about 250 mm·year−1, whereas the northern part receives up to
700 mm·year−1 [46]. During the period 2006–2010, the average annual precipitation of the southern
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part decreased to 150 mm·year−1 [47]. Precipitation in many regions is insufficient to meet crop water
requirements, therefore irrigation is very important in LKRB [42,48–50]. The LKRB has been selected
for water productivity analysis in our study. The Karkheh Reservoir, in the most downstream part of
the basin, is the largest reservoir in the basin, and is operated for irrigation and hydropower. Table 1
presents the characteristics of Karkheh Dam operation, which are considered in our model. LKRB has
two major agricultural production systems. The rainfed system, which is dominant in Dashte Abbas
and Dolsagh, and the fully irrigated areas, which are scattered in all five regions [44]. The average
annual rainfall (2005–2010) in LKRB has recently been as low as 150 mm·year−1 [51]. Over the past
three decades, large rainfed areas have turned into irrigated areas mainly because of increasing access
to water (mainly groundwater). However, irrigation efficiencies in KRB are still low as 35%–50% [48,51].
The productivity of water is very low, i.e., 0.5 kg·m−3 for most of the field crops [41,46]. The total
irrigated area in LKRB is 360,000 ha with a planned expansion to 500,000 ha [44]. Major crops such as
wheat and maize are grown over 55% of the area [44,48].

Table 1. Characteristics of Karkheh dam in Karkheh River Basin.

Dam Name Status
Normal Level

(Meter above Sea Level)
m.a.s.l

Storage
(Miliion Cubic Meter)

MCM
Purpose

Karkheh Operational 220 4616 Irrigation and hydropower

The LKRB comprises of five major agricultural regions, i.e., Dashte Abbas, Dolsagh, Arayez,
Hamidiyeh, and Azadegan (Figure 1). The distribution of wheat and maize in these five regions is
given in Table 2. The spatial distribution of the main gauge stations for calibration and validation in
the basin is also presented in Figure 1.

Figure 1. The five important agricultural regions in lower Karkheh River Basin: 1—Dashte Abbas,
2—Dolsagh, 3—Arayez, 4—Hamidiyeh, 5—Azadegan.
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Table 2. Distribution of wheat and maize in five major agricultural lands in Lower Karkheh reported
by Iran Water and Power Resources Development Co. (2010).

Agricultural Land Total Area (ha) Irrigated Wheat Area (ha) Rainfed Wheat Area (ha)

Dashte Abbas 19,025 9720 2100
Dolsagh 16,133 6320 4200
Arayez 28,900 11,200 4300

Hamidiyeh 17,050 12,840 1100
Azadegan 71,093 50,050 7100

2.2. Description of SWAT Model

Soil and Water Assessment Tool (SWAT) is a continuous time, process-based, semi-distributed,
hydrologic model running on daily or sub-daily time steps. The model has been developed to quantify
the impact of land management practices and climate on water, sediment, and agricultural chemical
yields in large complex watersheds with varying soils, land uses, and management conditions over
long periods of time. The program, therefore, lends itself easily to climate and land use change analyses.
In SWAT, the spatial heterogeneity of the watershed is preserved by topographically dividing the basin
into multiple subbasins, and further into hydrologic response units (HRU) based on soil, land use, and
slope characteristics. These subdivisions enable the model to reflect differences in evapotranspiration
for various crops and soils. In each HRU and on each time step, the hydrologic and vegetation-growth
processes are simulated based on the curve number or Green-Ampt rainfall-runoff partitioning and
the heat unit phenological development method.

2.3. SWAT Model Calibration, Validation, and Uncertainty Analysis

Sensitivity analysis, calibration, validation and uncertainty analysis of SWAT is performed using
river discharge as well as wheat and maize historical yield data by utilizing the SUFI-2 algorithm [28,52]
in the SWAT-CUP software package [53]. This algorithm maps all uncertainties (parameter, conceptual
model, input, etc.) on the parameters, expressed as uniform distributions or ranges, and attempts
to capture most of the measured data within the model’s 95% prediction uncertainty (95PPU) in
an iterative process. The 95PPU is calculated at the 2.5% and 97.5% levels of the cumulative distribution
of an output variable obtained through Latin hypercube sampling. For the goodness of fit, as we
are comparing two bands (the 95PPU for model simulation and the band representing measured
data plus its error), two indices referred to as P-factor and R-factor are used [52]. The P-factor is
the fraction of measured data (plus its error) bracketed by the 95PPU band and varies from 0 to 1,
where 1 indicates 100% bracketing of the measured data within model prediction uncertainty, i.e.,
a perfect model simulation). The quantity (1-P-factor) could hence be referred to as the model error.
For discharge, a value of >0.7 or >0.75 has been reported to be adequate [28,52]. This depends on the
scale of the project and adequacy and precision of historical data. The R-factor, on the other hand, is
the ratio of the average width of the 95PPU band and the standard deviation of the measured variable.
A value of <1.5, again depending on the situation, would be desirable for this index [28,52]. These two
indices are used to judge the strength of the calibration/validation and predictive uncertainty. A larger
P-factor can be achieved at the expense of a larger R-factor. Hence, often, a balance must be reached
between the two. In the final iteration, where acceptable values of R-factor and P-factor are reached,
the parameter ranges are taken as the calibrated parameters. SUFI-2 allows usage of eleven different
objective functions such as R2, Nash–Sutcliff efficiency (NSE), and mean square error (MSE). In this
study, we used NSE and percent bias (PBIAS) for discharge [54] and root mean square error for crop
yield [31].

2.4. Description of the MODSIM Model

MODSIM is a generic river basin management decision support system, originally conceived
in 1978 at Colorado State University, making it the longest continuously maintained river basin
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management software package currently available [55]. MODSIM represents a river basin as a network
of links and nodes. Unregulated inflows, evaporation and channel losses, reservoir storage rights and
exchanges, stream–aquifer modeling components, reservoir operating targets, and consumptive and
instream flow demands are considered in MODSIM [56]. More details can be found in Labadie [55].

2.5. Model Setup and Data Collection

The soil data was obtained from Food and Agriculture Organization [57]; land use, crop and
agricultural management data were from Mahab [51]; the digital elevation model was provided by
hole-filled NASA Shuttle Radar Topographic Mission (SRTM) [58]; major local rivers and climate data
at nine climate stations in the basin were from Iran Water and Power Resources Development Co [44].
The Karkheh reservoir was included in the model with historical reservoir operation time series
data starting from 2000. The data were provided by the Ministry of Energy [59]. Monthly discharge
data for eight hydrological stations were provided by the local water authorities. Observed monthly
discharge and winter wheat, barley, and maize yields were used for model calibration (1997–2010) and
validation (1990–1996). The selection of calibration parameters was based on a sensitivity analysis and
past modelling experiences at the same location [28,60]. As a result, 26 parameters were selected for
calibrating both discharge (20 parameters) and crop yield (six parameters). The watershed system,
river network, and water allocation system in MODSIM are illustrated in Figure 2.

(a) (b)

Figure 2. (a) LKRB system in the SWAT River network and (b) water allocation system in MODSIM.

2.6. Coupling Hydrologic and Water Allocation Models

Optimal water allocation among competing users including hydropower generation is missing
in SWAT. The main feature of MODSIM DSS is in allocating available water resources to different
users optimally, irrespective of what sources they come from. That is why the idea of coupling
SWAT and MODSIM as two powerful tools for modeling both water availability and water allocation
(management) is a very attractive idea.

Although there are some studies, which have used both SWAT and MODSIM models [61–63] in
watershed modelling, they are not fully linked with feedback and most are not available for use by
other researches. In this work, water allocations from the reservoir to different demand sites and the
associated spatial units in SWAT (HRUs) are done based on the schedule derived from MODSIM’s
water allocation solutions obtained by iterative minimum cost network flow programs. Subsequently,
net irrigation requirement and inflow to the reservoir from SWAT outputs files (output.rch and
output.hru) at the corresponding HRUs and rivers will be extracted and converted as inputs to
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MODSIM. Once the amount of water allocated to each demand node (equivalent to HRUs in SWAT)
is determined by MODSIM, SWAT is run using new updated-by-MODSIM irrigation scheduling.
The quantities of water transferred to different HRUs are estimated for every time step. Figure 3
illustrates the structure of both models considering the unit of data exchanging between them.

Figure 3. Overview of the input–output and information exchange in the SWAT–MODSIM (SM) model.

The conceptual framework of SWAT–MODSIM execution is illustrated in Figure 4. Here are the
eight steps to a successful implementation of the coupled SWAT–MODSIM model:

1 Build the SWAT and MODSIM models for the specific watershed, ensuring that each HRU that
receives water should have a related demand node in MODSIM.

2 Calibrate and validate the SWAT model using SWAT-CUP
3 Extract the M95PPU of inflow to the reservoirs (from 95ppu.txt SWAT-CUP or 95ppu_No_Obs.txt

files) and net irrigation requirements (water deficit in each time step) by subtracting potential
evapotranspiration (PET) from actual evapotranspiration (AET) in the SWAT-CUP output file
95ppu_No_Obs.txt.

4 Import the net irrigation requirement and inflow to the reservoir to MODSIM from
SWAT-CUP outputs.

5 Execute the MODSIM model.
6 Extract the allocated water to each demand node for each time step from MODSIM outputs.
7 Import the monthly irrigation from MODSIM into SWAT management files for related HRUs.
8 Re-execute the SWAT-CUP with new management files.

More details can be found in the Supplementary material.

2.7. Estimation of Crop Water Productivity (CWP)

CWP combines physical accounting of water with yield or economic output to indicate the value
of a unit of water and can be calculated as:

CWP =
Y

AET
(1)
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where CWP is the crop water productivity in kg·m−3, Y is the crop yield in kg·ha−1, and AET is the
seasonal actual evapotranspiration in m3·ha−1, assumed here to be the crop’s consumptive water use,
so the above definition of CWP does not account for the waste of water due to irrigation inefficiencies.
Note that Y is the annual yield while AET is calculated on a monthly basis. The spatial resolution of Y,
AET, and CWP is at a subbasin level, but for comparison with other studies and the available statistics,
the results are aggregated to the level of agricultural lands.

 

Figure 4. Overview of the input–output and information exchange in the SWAT–MODSIM (SM) model.

3. Results and Discussion

3.1. Calibration and Validation of the Coupled Model for Wheat and Maize

As described in Section 2.3, 26 parameters were selected for calibration and validation based
on our previous study and literature sources. In the final iteration, eight parameters were found
to be sensitive parameters in our study. In this paper, for the sake of brevity, we only report the
results of our analyses for the calibration and validation of crop yields. More details on the calibration
and validation of discharge and sensitivity analysis of parameter can be found in Vaghefi, et al. [42].
Calibration and validation tasks were done based on the execution of steps described in Section 2.6.
At first, auto-irrigation with an unlimited source of water was used as a source of irrigation for
the agricultural region in LKRB to find the maximum amount of irrigation, which is needed at the
HRU level for each time step. After estimation of the net irrigation requirements and inflow to
Karkheh Reservoir, MODSIM was run. Finally, the management files of agricultural regions in LKRB
were updated considering MODSIM results for irrigation scheduling and the actual crop yields were
obtained by re-running of SWAT calibration by SWAT-CUP. Using this sequential procedure, the
calibration and validation results of the SWAT model improved considerably (Table 3, Figures 5 and 6).
The results show that observed yields are generally inside or quite close to predicted yield bands
for both wheat and maize. For irrigated wheat, the yield varies from 1850 to 3900 kg·ha−1, with
the highest yield found in the Hamidiyeh (2007 kg·ha−1) region and the lowest in the Dashte Abbas
(1990 kg·ha−1). For the irrigated maize, the lowest yield belongs to the Dolsagh region (2900 kg·ha−1)
and the highest to the Hamidiyeh region (7200 kg·ha−1). For the irrigated wheat, the P-factors are
generally larger than 0.77 for calibration and vary from 0.73 to 0.86 for the validation period (Table 3).

The R-factor values are also in acceptable ranges. For the irrigated maize production, the
uncertainties are larger than the irrigated wheat as indicated by generally larger R-factor values.
This is because of the higher sensitivity of maize production to the water stress than wheat.
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Table 3. Calibration (1997–2010) and validation (1990–1996) results of the coupled SWAT-MODSIM
model for irrigated wheat and maize using the SMS model in LKRB.

Agricultural Region

Calibration Validation

P-Factor R-Factor P-Factor R-Factor P-Factor R-Factor P-Factor R-Factor

Wheat Wheat Maize Maize Wheat Wheat Maize Maize

Dashte Abbas 0.77 0.21 0.79 0.65 0.76 0.34 0.65 0.59
Dolsagh 0.85 0.39 0.86 0.65 0.75 0.25 0.61 0.71
Arayez 0.83 0.43 0.79 0.69 0.74 0.27 0.61 0.73

Hamidiyeh 0.78 0.29 0.73 0.42 0.73 0.36 0.68 0.87
Azadegan 0.84 0.23 0.76 0.43 0.73 0.29 0.69 0.89

Figure 5. Results of the SWAT calibration and validation for wheat yield in Dashte Abbas (a,b),
Dolsagh (c,d), Arayez (e,f), Hamidiyeh (g,h), Azadegan (i,j) plains.
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Figure 6. Results of the SMS calibration and validation for maize yield in Dashte Abbas (a,b),
Dolsagh (c,d), Arayez (e,f), Hamidiyeh (g,h), Azadegan (i,j) plains.

3.2. Water Productivity of Wheat and Maize

The results of the coupled model for both calibration and validation periods and for the entire
region indicates that the basin-wide wheat water productivity (WWP) is equal to 0.94 kg·m−3, ranging
from 0.55 kg·m−3 to 1.21 kg·m−3. The highest WWP can be ascribed to higher yields under limited
water supply conditions. Lower WWP is mainly due to higher water application and relatively lower
wheat yields (Figure 7a). The basin-wide maize water productivity (MWP) is equal to 0.8 kg·m−3,
ranging from 0.55 kg·m−3 to 1.15 kg·m−3 (Figure 7b).
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(a) 

(b) 

Figure 7. Relationship between yield and irrigation water applied for wheat (a) and maize (b).

3.3. Yield-Irrigation Water Relations

The relation between wheat and maize yield and irrigation water applied for both calibration and
validation periods is presented in Figure 8. Data points of all regions from 1990 to 2010 for irrigated
wheat and maize are used in this illustration. One can observe from the figure that wheat yields vary
from 1.3 ton·ha−1 to 3.5 ton·ha−1 with an average of 2.5 ton·ha−1 for irrigated wheat, and from 2.1 to
7.2 ton·ha−1 with an average of 5 ton·ha−1 for maize. The irrigation water applied to the agricultural
regions is summarized in Table 4. Irrigation water varies from 2300 m3·ha−1 to 6662 m3·ha−1 and
4320 m3·ha−1 to 10,200 m3·ha−1 for irrigated wheat and maize respectively. The variation of irrigation
water applied is from 200 mm to 600 mm for irrigated wheat and from 400 to 1450 mm for maize
(Figure 8a,b).

Table 4. Results of the SM model for irrigation water applied to wheat and maize (m3·ha−1) in LKRB.

Agricultural Region
Wheat Maize

Imax Imin Iavg Imax Imin Iavg

Dashte Abbas 5980 2300 3120 8500 4320 6280
Dolsagh 6662 2563 3476 9469 4812 6996
Arayez 5560 3210 4150 9300 6340 9020

Hamidiyeh 5184 3500 4230 10,200 6800 9100
Azadegan 5890 4127 4690 9320 5890 8910

There is a positive relation between Y and CWP for both maize and wheat. There is a sharper
increase in WWP in response to increasing yield compared with maize. This suggests that a unit
increase in water results in a larger additional yield in wheat than irrigated maize, leading to a greater
improvement in CWP. It means that wheat yield is more responsive to additional water. This result
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is in agreement with what is reported by [64]; they have found that for the smaller yield range, less
incremental water is required to increase a unit of crop yield.

(a) 

(b) 

Figure 8. Relationship between crop water productivity and crop yield for wheat (a) and maize (b).

4. Summary and Conclusions

In this study, crop water productivity of LKRB was assessed using the coupled SWAT–MODSIM
model. The time series of actual irrigation demands of agricultural regions was dynamically simulated
by the SWAT model and fed into the MODSIM water allocation model. Through an iterative procedure,
the irrigation operation of SWAT was updated based on allocated water by MODSIM. Implementation
of the coupled model improved the calibration and validation of Y and simulation of AET and CWP.
The P-factors in the coupled models are generally larger than 0.77 for calibration and vary from 0.73 to
0.86 for the validation period.

The analysis showed that there are considerable differences in crop yields and productivity of
water in irrigated areas of the five agricultural regions of LKRB. The variation of irrigation water
applied was from 200 mm to 600 mm for irrigated wheat, and from 400 to 1450 mm for maize.
The results showed that basin-wide WWP is equal to 0.94 kg·m−3 and MWP is equal to 0.8 kg·m−3.
The results suggested that higher water consumption does not necessarily result in a higher yield.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/9/3/157/s1,
a comprehensive user manual of coupled SWAT-MODSIM model. The Software is freely available for download
from our web page: www.2w2e.com.
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Abstract: At present, Para rubber is an economical crop which provides a high priced product and is
in demand by global markets. Consequently, the government of Thailand is promoting the expansion
of Para rubber plantations throughout the country. Traditionally, Para rubber was planted and
grown only in the southern areas of the country. However, due to the Government’s support and
promotion as well as economic reasons, the expansion of Para rubber plantations in the northeast
has increased rapidly. This support has occurred without accounting for suitable cultivation of Para
rubber conditions, particularly in areas with steep slopes and other factors which have significant
impacts on hydrology and water quality. This study presents the impacts of Para rubber expansion
by applying the Soil and Water Assessment Tool (SWAT) hydrological model on the hydrology and
water balance of the Nam Loei River Basin, Loei Province. The results showed that the displacement
of original local field crops and disturbed forest land by Para rubber production resulted in an overall
increase of evapotranspiration (ET) of roughly 3%. The major factors are the rubber canopy and
precipitation. Moreover, the water balance results showed an annual reduction of about 3% in the
basin average water yield, especially during the dry season.

Keywords: hydrologic balance; SWAT model; land use change; evapotranspiration; plant parameters

1. Introduction

Zeigler et al. [1] estimated that over 500,000 ha of upland areas in southeast Asia had been
converted to Para rubber (Heveabrasiliensis) production in southeast Asia by 2009 and that the land
area devoted in the region to Para rubber production could double or triple by the year 2050 [1].
Updated estimates for the same timeframe indicate that the expansion of total rubber production area
in non-traditional Southeast Asia growing regions at >1,000,000 ha and that the production area could
increase by a factor of four by 2050 [2]. Much of the expansion is occurring in “marginal areas” that are
vulnerable to increased soil erosion and other environmental problems [3].

Para rubber has become one of the most important economic crops in Thailand, which is now the
largest exporter of Para rubber by volume worldwide [4]. Para rubber production started in southern
Thailand over a century ago [5] and has expanded greatly in that region since then due to favorable
climatic conditions and land types. However, the government of Thailand has implemented policies to
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promote the expansion of Para rubber plantations throughout other areas of the country. Due to the
Government’s support and promotion as well as for economic reasons, the expansion of Para rubber
plantations in the northeast has increased dramatically during the past decade. Continuing attractive
prices have resulted in particularly rapid expansion of Para rubber plantations during the past few
years, resulting an increase of nearly 500,000 ha (246,340 ha to 739,190 ha) between 2006 and 2015 [6–9],
confirming earlier projections of greatly expanded production [1]. The government support of Para
rubber production in the northeast has occurred without adequate investigation of suitable cultivation
conditions. This has resulted in Para rubber production occurring in areas with steep slopes, non-ideal
climatic conditions, and other factors which have resulted in significant negative impacts on regional
hydrology and water quality.

The northeastern region of Thailand consists of 20 provinces which cover a total area of about
170,226 km2 or one-third of the country (Figure 1). Forest areas in the region are rapidly becoming
degraded due to destruction of existing forest stands. This is occurring because of increased agricultural
and Para rubber production to support the rapidly growing population, and burning during the
summer to support wild game hunting. At present, the most extreme burning of forests in the country
is occurring in north and northeast Thailand [10].

Figure 1. Location of the Nam Loei River Basin (NLRB) within Loei Province and Loei Province within
northeast Thailand.

The northeastern region of Thailand (Figure 1) has a total agricultural area of 15.90 million ha,
of which 6.65 million ha are suitable for rubber plantations [11]. To date, only a small portion of this
potential area has been developed for Para rubber production although projections indicate greatly
expanded production in the future. Investigations are urgently needed to determine how expanded
rubber production in the northeast will impact environmental conditions in the region, especially
rainwater, humidity, soil characteristics, hydrologic balance, flow regime and rock formation. Changes
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in soil quality can have a strong effect on the amount of drainable water, as well as physical, chemical
and biological properties [12]. Decision-makers and planners face difficult challenges in meeting
water conservation objectives, and managing the engineering, socioeconomic and environmental
aspects of development and planning, related to Para rubber production in northeast Thailand. This is
especially true in certain sub regions such as the Nam Loei River Basin (NLRB) in Loei province
(Figure 1), where Para rubber production increased from 0.4% to 21.5% of the total land use between
2002 and 2015, resulting in an extremely volatile situation that is impacting the entire watershed. Hence,
technical tools including the Soil and Water Assessment Tool (SWAT) watershed-scale water quality
model [13–16] are needed to support in-depth hydrologic and environmental assessments of Para
rubber production in the region. SWAT has been extensively tested for a wide range of environmental
conditions and watershed scales [17–20] and has been used effectively in a number of land use change
studies [21–30]. Thus, the specific objectives of this research are to: (1) report the hydrologic impacts of
the increased Para rubber production in the NRLB that occurred during 2002 to 2009, and 2009 to 2015;
and (2) identification of inappropriate areas for rubber plantation and risks of landslide.

2. Materials and Methods

2.1. Description of Study Area

Loei Province covers 11,424 km2 in the upper northeastern region of Thailand (Figure 1) and is
the fifth largest province in the region. The NLRB drains 3915 km2 from its combined upper basin and
lower basin within Loei Province (Figure 1) and extends 231 km from the upper Phu Luang Range
to its outlet. The Nam Puan is the major tributary of the upper basin, which is initially comprised of
steep slopes but ultimately flows into a plain area where it joins the Nam Loei River within the Wang
Sa Phung District. The main river of the lower basin is the Nam Loei River, which flows through the
Muang District to the river plain within the Chiang Khan District to meet the Mekong River.

The average annual long-term rainfall and temperature is 1241 mm and 26.5 degree Celsius,
respectively, for the NLRB [31]. The range of monthly average minimum temperatures, maximum
temperatures, and precipitation over the 30-year period of 1981 to 2010 are shown in Figure 2 for
climate station 48353, which is located in the study region [32]. However extended drought problems
have resulted in streamflows of just 5% to 10% and 90% to 95% during the dry and rainy seasons,
respectively, relative to annual average streamflow. Eight major groups comprise the spatial extent
of soils in the NLRB, with the most dominant being the following three soil types: (1) the Slope
complex (Sc) soil group which covers 44.3% of the basin, and represents a soil mixture in steep areas
with >30% slopes that are generally characterized by forest, low permeability, and high risk of soil
erosion; (2) the Wang hi (Wh) soil group, which covers 16.5% of the basin, represents soils derived
from decay of various materials, and are characterized by fine-grain textures and high permeability;
and (3) the Chiang Khan (Ch) soil group, which cover 14.4% of the basin, is derived from river
sediments, and reflect sedimentary rock weathering and high permeability. Both the Wh and Ch soil
types are prone to collapse or landslides in steep areas. The basin is further characterized by minimum,
maximum and average elevations of 212 m, 1956 m, and 419 m, respectively. The land use of the basin,
based on 2002 land use data [33], can be classified into 14 categories: corn (23.4%), disturbed forest
(19.1%), forest–deciduous (12.5%), paddy field (12.3%), orchard (8.5%), sugarcane (5.9%), agricultural
land-row crops (5.9%), field crop (4.8%), urban area (4.0%), miscellaneous land (1.7%), plantation
(1.0%), water resources (0.4%), rubber tree (0.4%) and planted forest (0.2%). In 2002, the basin had
a total Para rubber plantation area of just 762 ha. The plantation area then increased to 68,800 ha
by 2009 and later to 100,000 ha by 2013, which met the expected goal established in a Para rubber
production strategy for the NLRB [10]. However, Para rubber production has continued to increase
since 2013, reaching 129,280 ha by 2015. Currently, the 2016 provincial policy points to an expansion
of an additional 100,000 ha of Para rubber plantations in the next five years [34], which will result in
almost double the land area currently dedicated to Para rubber production in the NLRB by 2020.
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Figure 2. Range of average monthly minimum temperatures, maximum temperatures and precipitation
at climate station 48353 during the 30-year period 1981–2010 [30].

2.2. Evaluation of Evapotranspiation (ET) at the Basin Scale

Evapotranspiration (ET) is a collective term that includes all processes by which water at the earth’s
surface is converted to water vapor. It includes evaporation from plant canopies, and sublimation and
evaporation from soil. ET is usually the primary mechanism by which water is removed from a watershed.
On average, ET equals about 62% of the precipitation that falls on landscapes across the globe except in
Antarctica [35], where runoff exceeds ET. An accurate estimation of ET is critical in assessing the impact
of climate and land use changes on water resources [36]. The water losses through ET are significant
in the hydrologic cycle; such losses are usually determined by estimating the availability of water
through soil moisture or groundwater, the energy and drying power of the air, and/or via land cover
and vegetation characteristics [37]. A new method of determining ET for Para rubber trees has been
developed in which the rubber tree ET is estimated by accounting for observed patterns of rubber root
water uptake as affected by the plant’s phrenology [38]. Specifically, the method considers vegetation
dynamics and corresponding water needs or evaporative demands. This contrasts with the traditional
approach of estimating Para rubber ET, which neglects the increased water use during the dry season
when both soil water content and canopy cover are minimal [38]. It is expected here that the SWAT
basin-scale hydrologic model will more accurately capture seasonal water balance and ET dynamics
that are more consistent with recent research, especially for larger scale rubber expansion situations
that exceed smaller stand levels.

2.3. Description of SWAT Model

SWAT is a public domain model jointly developed by the U.S. Department of Agriculture
Agricultural Research Service (USDA–ARS) and Texas AgriLife Research, a unit within the Texas
A&M University System [15–17]. Watersheds are typically simulated in SWAT by delineating the
respective watershed into subbasins and then further subdividing each subbasin into hydrologic
response units (HRUs), which are non-spatial land units consisting of homogeneous topographic,
soil type, land use, and management characteristics. Hydrologic cycling including precipitation
inputs, surface runoff, infiltration into the soil profile, ET, lateral subsurface flow, and flow via other
pathways is initially simulated at the HRU level. Nutrient cycling and transport, as well as sediment
losses, are also simulated first at the HRU scale. The HRU-level hydrologic and pollutant outputs
are then aggregated to the subbasin level and ultimately routed through the stream network to the
watershed outlet.

SWAT first simulates atmospheric water demands to calculate the maximum, unstressed ET,
commonly referred to as potential ET, before calculating the final actual ET. Three potential
ET methods are included in SWAT that vary considerably in the amount of required inputs:
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(1) Penman–Monteith [39], which requires solar radiation, air temperature, relative humidity and
wind speed; (2) Priestley–Taylor [40], which requires solar radiation, air temperature and relative
humidity; and (3) Hargreaves [41], which requires air temperature only [11]. Multiple options are also
provided in SWAT for simulating the partitioning of precipitation inputs between surface runoff and
infiltration, as well as for some other processes simulated in the model. Complete theoretical and user
input options are provided in the SWAT model documentation [36]. A revision of SWAT version 2009
(SWAT2009) was used in conjunction with the ArcGIS SWAT (ArcSWAT) interface for this study [42].

2.4. Application of SWAT

2.4.1. Data Input Needs and Sources

Topographic, soil, land use, climate, and management data are key inputs required for simulating
a watershed in SWAT. In-stream monitoring data are also important in regards to testing SWAT output.
Topographic, soil, and land use are usually input into SWAT in the form of digital spatial layers that
are overlaid within a Geographic Information System (GIS). All of these major data were prepared
in input format files for the SWAT simulations including spatial topographic, soil and land use data
(Table 1, Figures 3 and 4) obtained from various sources as described below.

Figure 3. Elevation ranges and distribution of soil types for the Nam Loei River Basin (NLRB), which are
based on 1:50,000 Digital Elevation and soil maps, respectively (Table 1).

Spatial topographic data required for the SWAT application were obtained in the form of a digital
elevation map (DEM) [43]. These DEM data are characterized by a 30 m × 30 m (1:50,000 scale)
resolution. The baseline land use data for year 2002 [44] and the spatial soil map were provided by
the Land Development Department [45]. The LDD soil data consist of the previously mentioned
8 major groups. All soil properties required for SWAT were surveyed from by the LDD in 2012 [46].
Daily climate data were used, including precipitation, temperature, solar radiation, wind speed,
and humidity data. These data were collected from rainfall gauges within the NLRB during the period
from 1985 to 2015 [32]. The daily precipitation data were obtained at 14 gauging stations (Figure 1),
while the daily temperature, solar radiation, wind speed and humidity data were collected from a
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single major weather station (Figure 1) of the Thai Meteorological Department (TMD). Two hydrologic
runoff stations located in the basin (gauges Kh.28A and Kh.58A in Figure 1) that are maintained by the
Royal Irrigation Department (RID) and have complete monthly runoff data were selected for model
calibration and validation [47].

Table 1. Model input data sources for Nam Loei River Basin (NLRB).

Data Type Scale Source a

1. Spatial Data

1.1 Administrative Data
– Administrative boundaries 1:50,000 DWR
– River layouts 1:50,000 DWR
– Catchment’s boundaries 1:50,000 DWR
– Drainage network 1:50,000 DWR

1.2 Physical Data
– Digital Elevation Model 1:50,000 RTSD
– Land use/Land Cover 1:50,000 LDD
– Soils 1:50,000 LDD

2. Time Series Data

2.1 Weather Data
– Rainfall 14 stations DWR, RID, TMD
– Temperature 1 station TMD
– Solar radiation 1 station TMD
– Wind speed 1 station TMD
– Relative humidity 1 station TMD
– Evaporation 1 station TMD

2.2 Hydrological Data
– River flow 2 stations RID

Notes: a DWR = Department of Water resources; LDD = Land Development Department; RID = Royal Irrigation
Department; RTSD = Royal Thai Survey Department; TMD = Thai Meteorological Department.

Figure 4. Distribution of land use in 2002 for the Nam Loei River Basin (NLRB) based on 1:50,000 land
use/land cover map (Table 1).
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2.4.2. Model Set Up

The NLRB was delineated into 19 subbasins and 389 hydrologic response units (HRUs) for the
SWAT simulations using the ArcSWAT Interface [42]. The delineation was performed as a function of
the DEM-based surface topography, which resulted in the configuration of the 19 sub basins used in
the SWAT simulations. The land use data were processed and reclassified to match the land use codes
used in SWAT, resulting in the previously described 14 land use categories. The eight major soil types
were also converted and reclassified to match the SWAT model soil formatting requirements. These
land use and soil data were then overlaid with the DEM data within ArcSWAT to create the HRUs.
The required weather data were incorporated or the simulations. The initial curve number values were
assigned based on the land use type and soil hydrologic group for the average antecedent moisture
condition of the runoff curve number method. The PET was computed by using the Penman–Monteith
method. The overall model simulation scenario period covered a 25-year duration from 1985 to 2009
using a daily time step, with a shorter time period used for model calibration and validation as
described below.

2.4.3. Sensitivity Analysis and SWAT Calibration and Validation

A sensitivity analysis is a useful procedure to determine which flow-related parameters are the
most influential in impacting total streamflow for SWAT applications, following guidance reported
for previous studies [16,48–51]. Performing a sensitivity analysis further supports the calibration of
SWAT and provides insight for the application of the model to other similar watersheds. In this study,
the SWAT CUP software package [52] was used to perform an automatic sensitivity analysis of the
impact of 19 different SWAT parameters on daily streamflow flow for the NLRB as described in the
Results and Discussion section.

Following the sensitivity analysis, calibration and validation of SWAT was performed which is
required to reduce uncertainty and increase confidence in its predictive abilities for the NRLB [16,49,50].
The calibration process included both multisite and multivariable aspects as discussed in previous
SWAT studies [16,50]. The calibration procedure consisted of 3 stages: (1) replicating the long-term
water balance over the calibration period; (2) accurately tracking the observed hydrograph shapes;
and (3) obtaining an accurate comparison between observed and simulated flow duration curves.
Calibration and validation of SWAT was performed by comparing the simulated monthly aggregated
stream flows versus corresponding measured monthly stream flows at two hydrological gauge stations
on the main stem of the Nam Loei River (Figure 1): Wang SaPhung (Kh.28A) in subbasin 14 and
Ban FakLoei (Kh.58A) in subbasin 6. Calibration was performed for 1994 to 2004 while validation was
conducted from 2005 to 2009. The parameters derived for the gauged catchments were then transferred
to the ungauged catchments, based on proximity and similarities in land use and soil types which
result in similar hydrological responses.

The accuracy of the model output variance was assessed using the Root Mean Squared Error
(RMSE) and Nash–Sutcliffe Efficiency (NSE) statistics [53,54], which are expressed as follows in
Equations (1) and (2):

RMSE =
∑n

i=1 (Q
obs
i − Qobs) · (Qsim

i − Qsim)√
∑n

i=1 (Q
obs
i − Qobs)

2 · ∑n
i=1 (Q

sim
i − Qsim)

2
(1)

NSE = 1 −

⎡⎢⎢⎣
n
∑

i=1

(
QObs

i − QSim
i

)2

n
∑

i=1

(
QObs

i − Qmean
)2
⎤⎥⎥⎦ (2)

where Qobs are the observed values and Qsim are the simulated values at time/place i.
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Values of RMSE can range from 0 to ∞ where a value of 0 indicates a perfect fit between the
simulated data and counterpart measured data [53]. The RMSE provides a measure of the difference
between the measured and simulated values or residual variance [55]. However, statistical results
generated with the RMSE can result in significant model bias during model calibration, even when the
error variances are small [56]. Thus it is desirable to use additional statistical evaluation when using
the RMSE such as the NSE.

The NSE estimates the magnitude of the simulated variance relative to the measured variance
and how accurately a plot of the modeled versus measured data fit a 1:1 line. The NSE can vary
from −∞ to 1, where 1 is a perfect fit and a negative value indicates that the average value of the
measured data would provide a better prediction than the simulated data. Statistical criteria for judging
the success of hydrological modeling results has been suggested [55,57] including an NSE value of
at least 0.5 to achieve a satisfactory level for comparisons of aggregate monthly simulation output
versus corresponding measured stream flow data. Following successful calibration and validation,
the calibrated SWAT model was used to evaluate the Para rubber land use scenario (describe below)
including evaluations of ET and water yield.

2.5. Development of Para Rubber Land Use Scenarios

Several factors need to be considered in developing the Para rubber land use scenarios for the
NLRB. First, it is important to consider the optimal climatic, soil, slope, and other conditions that
Para rubber should be grown under for the study region, especially in the context of typical current
practices in which rubber plantations are being established on very high, vulnerable slopes. Second,
crop parameters needed to be developed for Para rubber for this analysis. Third, 2002 baseline,
2009 scenario and 2015 scenario landuse layers had to be constructed in order to simulate the impact
of expanded Para rubber production in the NLRB during the period of rapid production expansion.
These aspects of the Para rubber scenario development are described below.

2.6. Optimal Environmental Conditions for Para Rubber Production

The rubber tree is native to the evergreen tropical rainforests which usually occur within 5◦

latitude of the equator. The climate of this region is characterized by heavy rainfall and no distinct
dry season [5]. The optimal climatic conditions for Para rubber include rainfall of 1250 mm or more,
evenly distributed throughout the year with no severe dry season and with 120–150 annual rainy days,
and a temperature range of about 26–30 ◦C [34]. In addition, the ideal elevation range for Para rubber
growth is from sea level up to 600 m above mean sea level; the growth rate will decline at higher altitudes.
Para rubber can grow on many soils, with the best options being well drained clayey and deep clay
soils, but it can withstand physical conditions ranging from stiff clays with poor drainage to well
drained sandy loams [5]. The most suitable soil conditions for Para rubber production are: (1) planted
at a depth which does not exceed 1 m in depth to allow for adequate future root penetration and
growth; (2) soil textures that range between loamy sand to clay loam with good drainage; (3) no gravel
or stone in the subsoil layer; and (4) the soil pH should range between 4.5 and 5.5 [34].

The ideal slope range for growing Para rubber trees is between 5% and 15%. Three categories
can be classified for this ideal range for the Loei River basin region: (1) low land areas with slopes
from 0% to 5%; (2) slopes ranging from 5% to 10% located in the plain areas; and (3) mild slopes that
typically range from 10% to 15%. About 30% (117,433 ha) of the total area within the basin region meets
these ideal slope characteristics [58]. However, the majority of the current Para rubber production in
the study region is currently occurring on much steeper slopes exceeding 15%, and is concentrated
especially in an extreme slope range of 30% to 35%. Therefore, Para rubber production on slopes
greater than 15% should be managed with terraces as shown in the photos and schematic in Figure 5.
It was outside the scope of the present research to account for such terrace systems as part of the SWAT
simulations reported in this study.
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Figure 5. Photos and schematic showing terrace system needed to help mitigate excessive runoff and
soil erosion that can occur when Para rubber trees are grown on high slopes >15%.

2.7. Para Rubber Crop Parameters

Crop growth in the SWAT model was set up for this study primarily using a heat unit schedule
approach. However, rice and other “field crops” were simulated for two growing seasons during
each year and thus both were simulated using specific planting and harvesting dates rather than
heat unit scheduling. Double cropping of wet season rice and dry season rice were accounted for in
the simulation; the second dry season crop is mostly grown in selected areas of Thailand that have
sufficient irrigation water available. The planting schedules of wet season rice, dry season rice and field
crops were simulated based on typical planting dates for each crop type in the region. The remaining
operations were controlled by the fraction of heat units for each crop using the heat unit scheduling
approach [36].

Para rubber is a perennial tree crop which grows year round; thus, annual planting and harvest
and operations were not simulated for Para rubber. Para rubber crop parameters were not available in
the ArcSWAT database for SWAT2009; thus, parameters had to be determined from measured data,
inferred from existing parameters for other tree species in the ArcSWAT database, or determined
from other sources. Values for 15 key Para rubber Tree (RUBR) crop parameters, and two other
vegetation-influenced input parameters, which were used for the NLRB SWAT analysis, are listed
in Table 2. The value selected for the maximum canopy height (CHTMX) were based on previously
reported measurements [5] while the maximum rooting depth (RDMX) value is based on other
measurements conducted by Thai scientists [58]. The other crop parameters in Table 2 were derived
mainly from existing tree crop parameters in the ArcSWAT database. The choice of curve number (CN2)
value for Para rubber trees reflects a woodland condition consisting of a thin stand, poor cover, no
mulch, and a soil type consistent with hydrologic soil group B drainage conditions [59]. The Manning’s
n value for overland flow (OV_N) represents high runoff for timberland conditions [60]. Minimum,
maximum and average values are listed for each crop parameter in Table 2. These parameter ranges
allow the user the flexibility to decrease or increase the crop parameter default values, typically by
approximately 10%.

Finally, the daily rubber tree water requirement rate was calculated by using the Bowen Ratio
method based on data collected for 10-year old rubber trees at an experimental site in Chachoengsao
Province. Temperature and humidity sensors were installed within and above the rubber tree canopy
at the site. Solar radiation and wind velocity sensors were also installed above the rubber tree canopy.
Soil temperature and soil moisture sensors were installed at 0 m and 0.10 m depths. A S-shape
regression had been proposed to describe the relation between crop coefficients (Kc) and the Julian
date. Therefore, the S-shape regression can be applied to evaluate the water requirement of rubber
trees at different locations beyond the experimental site [61].
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Table 2. Key Para rubber Tree (RUBR) crop parameters, and two other vegetation-influenced input
parameters, that were used for the Nam Loei River Basin (NLRB) SWAT analysis.

No. Parameter Code Description Minimum Maximum
Simulated

Value

1 BIO_E Biomass/Energy Ratio 1 90 5.6
2 HVSTI Harvest index 0.01 1.25 0.9
3 BLAI Maximum leaf area index 0.5 10 2.6
4 CHTMX Maximum canopy height 0.1 20 3.5
5 RDMX Maximum root depth 0 3 2
6 T_OPT Optimal temp for plant growth 11 38 20
7 T_BASE Minimum temperature required for plant growth 0 18 7

8 USLE_C Minimum value of USLE C factor applicable to the land
cover/plant 0.001 0.5 0.001

9 GSI Maximum stomata conductance (in drought condition) 0 5 0.75
10 RSDCO_PL Plant residue decomposition coefficient 0.01 0.099 0.05
11 ALAI_MIN Minimum leaf area index for plant during dormant period 0 0.99 0
12 D_LAI Fraction of growing season when leaf area starts declining 0.15 1 0.99

13 MAT_YRS Number of years required for tree species to reach
full development 0 100 10

14 BMX_TREES Maximum biomass for a forest 0 5000
15 EXT_COEF Light extinction coefficient 0 2 0.65

Additional Key Parameters Influenced by Para Rubber Vegetation

16 CN2 SCS runoff curve number for moisture condition II 25 98 66
17 OV_N Manning’s “n” value for overland flow 0.01 30 0.11

2.8. Land Use Change Scenarios

Table 3 shows the specific land use distributions for the 2002, 2009 and 2015 land use scenarios,
and the percentage difference for each land use category for two time periods: (1) between 2002 and
2009; and (2) between 2009 and 2015. The major changes in land use between 2002 and 2009 included
a nearly 11.5% increase in Para rubber production, a decline in corn production of 10%, a decrease
in disturbed forest land of over 9.7%, and increases in evergreen and deciduous forest of 7.35% and
2.1%, respectively. The largest shift in land use between 2009 and 2015 was an increase in Para rubber
production of 9.69%, which was primarily responsible for respective decreases of −3.57%, −2.99%,
−1.93%, −1.84% and −1.77% of corn, disturbed forest land, sugarcane, paddy fields and orchards.

Table 3. Distribution of land use for the 2002 and 2009 Nam Loei River Basin (NLRB) land use scenarios.

Item Land Use Categories LU–CODE
% of

LU–2002
% of

LU–2009
% Diff:

2002 vs. 2009
% of

LU–2015
% Diff:

2009 vs. 2015

1 Paddy field PDDY 12.28 11.86 −0.42 10.02 −1.84
2 Range–Brush RNGB - 0.19 0.19 0.19 -
3 Field crop FCRP 4.75 5.87 1.12 6.14 0.27
4 Corn CORN 23.38 13.33 −10.05 9.76 −3.57
5 Rubber Trees RUBR 0.38 11.84 11.46 21.53 9.69
6 Sugarcane SUGC 5.93 5.07 −0.86 3.14 −1.93
7 Agricultural Land AGRR 5.89 7.27 1.38 8.71 1.44
8 Plantations PLAN 1.04 1.06 0.02 1.06 0
9 Olives OLIV - 0.02 0.02 0.02 0
10 Orchard ORCD 8.54 5.89 −2.65 4.12 −1.77
11 Pasture PAST - 0.23 0.23 0.23 0
12 Water WATR 0.4 0.65 0.25 0.65 0
13 Disturbed forest land DTFR 19.08 9.33 −9.75 6.34 −2.99
14 Forest–Evergreen FRSE - 7.30 7.30 7.3 0
15 Forest–Deciduous FRSD 12.47 14.57 2.10 14.57 0
16 Planted forest PNFR 0.23 0.23 - 0.23 0
17 Miscellaneous land MISC 1.68 2.04 0.36 1.98 −0.06
18 Residential URBN 3.95 3.25 −0.70 4.01 0.76

Total 100.00 100.00 100.00
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The distribution of Para rubber production is also shown in the 2002 baseline land use map, versus
the 2009 and 2015 land use scenario maps, in Figure 6. These distributions of Para rubber production
areas further underscore the dramatic expansion of Para rubber tree plantations that occurred during
the 14-year period of 2002 to 2015 in the NLRB. The effects of the increase in Para rubber production
between the 2002 baseline and the two scenario years of 2009 and 2015 were accounted for in three
separate scenario simulations performed in SWAT. The baseline scenario was first executed using the
2002 land use distribution (Table 3) for a 25-year period (1985 to 2009). The 2009 and 2015 land use
scenarios were then performed for the same 25-year period to provide a consistent basis of comparison
versus the baseline scenario.

Figure 6. Spatial distribution of Para rubber production for the 2002 baseline versus the 2009 and 2015
land use scenarios in the Nam Loei River Basin (NLRB).

3. Results

3.1. Sensitivity Analysis

The top five most sensitive parameters as ranked in Table 4 were: (1) ALPHA_BF, base flow
alpha factor (days); (2) ESCO, soil evaporation compensation factor; (3) GQWMN, threshold depth of
water in the shallow aquifer required for return flow to occur (mm); (4) CN2, initial SCS runoff curve
number for moisture condition II; and (5) CH_K2, effective hydraulic conductivity in main channel
alluvium (mm·h−1). The most influential parameters found in the sensitivity analysis are consistent
with previously published summaries of the most widely used parameters in SWAT calibration [16,50].
The results also underscore the importance of accurate spatial and temporal precipitation inputs [16,50].
The choice of ALPHA_BF, CN2, ESCO and other parameters also varied (Table 4) between the two
subbasins that drain to gauges Kh.28A and Kh.58A, respectively.
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Table 4. Parameters ranges and results of the sensitivity analysis at the gauge stations located within
the Nam Loei River Basin (NLRB).

Name Description Process Min. Max.
Rank of

Sensitivity
Analysis

Optimum Value

Kh.28A Kh.58A

GW_DELAY Groundwater delay. GW 0 500 8 0.1 1

ALPHA_BF Base flow alpha factor (days). GW 0 1 1 0.995 0.6

GWQMN
Threshold depth of water in the shallow
aquifer required for return flow to occur. GW 0 5000 3 1200 445

GW_REVAP Groundwater “revap” coefficient. GW 0.02 0.2 6 0.2 0.2

REVAPMN
Threshold depth of water in the shallow
aquifer for “revap” to occur. GW 0 1000 - 65 100

RCHRG_DP
Groundwater recharge to deep
aquifer (fraction). GW 0 1 - 0.001 0.1

LT_TIME Lateral flow travel time. HRU 0 180 - 1 35

SLSOIL Slope length for lateral subsurface flow. HRU 0 150 - 0.5 5

CANMX Maximum canopy storage. HRU 0 100 - 12 20

ESCO Soil evaporation compensation factor. HRU 0 1 2 0.7 0.6

CH_N2 Manning’s “n” value for the main channel. RTE −0.01 0.3 7 0.2 0.146

CH_K2
Effective hydraulic conductivity in main
channel alluvium. RTE −0.01 500 5 5 7.5

ALPHA_BNK Baseflow alpha factor for bank storage. RTE 0 1 - 0.5 0.239

CH_N1
Manning coefficient for the
tributary channels. SUB 0.01 30 10 0.145 2

CH_K1
Effective hydraulic conductivity in
tributary channel alluvium (mm·h−1). SUB 0 300 - 30 100

CN2
SCS runoff curve number for moisture
condition 2. MGT 35 98 4 76 68

SOL_AWC
Available water capacity of the soil layer
(mm·mm−1 soil). SOL 0 1 9 0.198 0.244

SOL_BD Moist bulk density. SOL 0.9 2.5 - 1.255 1.051

SOL_K Saturated hydraulic conductivity. SOL 0 2000 - 103.8 65.2

3.2. Model Calibration and Validation

The statistical results of comparing the simulated SWAT calibration and validation aggregated
monthly streamflows versus corresponding measured streamflows are listed in Table 5 for both
gauge sites (Figure 1). The graphical comparisons between the simulated and measured monthly
streamflows for the calibration and validation period are shown in Figure 7 for gauge site Kh.58A.
The four NSE values computed for the two gauges during the calibration and validation period
all exceeded 0.5, indicating that SWAT produced satisfactory streamflow estimates per previously
suggested criteria [55,57]. The RMSE statistics were also all below 1.0 which further confirm that the
SWAT streamflow estimates satisfactorily replicated the measured streamflows.

Table 5. Calibration and validation results at streamflow gauge stations Kh.28A and Kh.58A a in the
Nam Loei River Basin (NLRB).

Station
Calibration (1994–2004) Validation (2005–2009)

RMSE NSE RMSE NSE

Kh.28A 0.75 0.69 0.72 0.64
Kh.58A 0.82 0.71 0.79 0.68

Notes: a Locations of streamflow gauge stations shown in Figure 1.
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The graphical comparisons between the simulated and measured aggregated monthly streamflows
for the calibration and validation period at gauge site Kh.58A (Figure 7) show that SWAT accurately
replicated most of the measured streamflow trends during the 11-year calibration period. However,
several peak monthly streamflows were under predicted, especially in the last three years of the
calibration period, which mirrors a tendency towards under prediction reported in a number of
existing SWAT studies (e.g., [15]) and points to the need for further improvement of the SWAT
hydrological algorithms, especially for Southeast Asia conditions. Similar graphical results occurred
for the other three gauge site/time period combinations and thus are not reported here.
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Figure 7. Simulated versus observed monthly streamflows at the Ban FakLoei station in the Nam Loei
River Basin (NLRB) (Kh.58A; Figure 1).

3.3. Overall Water Balance Results for the Land Use Scenarios

Table 6 shows the overall long-term average annual water balance results for the entire NLRB
predicted by SWAT for the 25-year 2002, 2009 and 2015 land use scenario simulations. The results of
the scenarios reflect the increases in Para rubber production and other shifts in land use that occurred
during the 2002 to 2009 and 2002 to 2015 time periods. Transmission losses were essentially negligible
for all three land use scenarios, and the estimated combined lateral subsurface flow and groundwater
flow were very similar between the three scenario simulations. However, the predicted ET increased
by nearly 17 mm, and the predicted surface runoff and water yield decreased by similar amounts for
the 2009 land use scenario as compared to the 2002 land use scenario. Similar, greater decreases in
reduced surface runoff and water yield, relative to the 2009 land use scenario, were estimated for the
2015 land use scenario. However, the simulated ET decreased by almost 12 mm between the 2015
and 2009 land use scenarios. These results underscore the impacts of both the increased Para rubber
production and shifting overall land use mixes in the NLRB between 2002 and 2015 (Table 3).

Table 6. Long-term (1985 to 2009) average annual water balance components for the 2002 and 2009
land use scenarios as estimated by SWAT for the entire Nam Loei River Basin (NLRB).

Water Balance Component
2002 Land Use
Scenario (mm)

2009 Land Use
Scenario (mm)

2015 Land Use
Scenario (mm)

Precipitation 1217.8 1217.9 1217.9
Surface runoff 230.8 212.7 193.8
Lateral subsurface flow 49.2 51.6 47.4
Groundwater (shallow aquifer ) flow 317.3 316.7 321.3
Evapotranspiration (ET) 590.8 607.4 595.7
Transmission losses 1.1 1.1 1.2
Total water yield a 596.1 579.9 561.4

Notes: a Total water yield = surface runoff + groundwater flow + lateral flow − transmission loss.
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3.4. Seasonal ET and Water Yield Responses

The 25-year average monthly precipitation, ET levels and water yields simulated for the 2002, 2009
and 2015 NLRB land use scenarios during the 25-year simulation period (1985 to 2009) are shown in
Figure 8. The initial increase in Para rubber plantations and other land use changes that had occurred
by 2009 (Table 3) resulted in predicted increases in ET in almost every month of the year, relative to
the baseline year of 2002 (Figure 8), except for March and April. The annual average ET increased
about 3% (Table 6), with the highest percentage increases occurring during the dry season months of
November to January and the lowest percentage increases occurring during the wet season months
of May, September and October. The estimated water yield responses between the baseline and 2009
Para rubber expansion scenario resulted in the opposite trend, with water yields decreasing in most
months, although slight increases occurred during the months of November, December and January.
The predicted percentage water yield changes ranged from +0.6% in January to over −10% in March
and April. The percentage declines in water yield predicted for the wet season were more constant as
compared to the dry season water yield impacts, ranging from −1% in October to −7% in October.

The continued expansion of Para rubber production and other land use changes between 2009
and 2015 (Table 3) resulted in stronger shifts in the predicted monthly ET levels and in the annual
hydrograph (Figure 8), with an earlier onset of the flood season and a decreased overall peak discharge
in September. The estimated ET for the 2015 land use scenario was higher during the dry season as
compared to 2002 and 2009 (Figure 8), except for November, but the opposite trend occurred during
the wet season, resulting in an overall decline of about 2% from 2009 to 2015 (Table 6). The overall
average dry period water yield was predicted to be about 13% higher for the 2015 land use scenario as
compared to the baseline during November to April. However, lower water yields were predicted
during most of the wet period except for the months of July and August (Figure 8). In total, the average
annual simulated water yield decreased almost 7% from the baseline to 2015 (Table 6).

Figure 8. Average monthly precipitation, and average monthly water yield and evapotranspiration
(ET) for the 2002 baseline, 2009 land use scenario and 2015 land use scenario, for the 25-year (1985 to
2009) simulation period for the Nam Loei River Basin (NLRB).

Table 7 provides comparisons of: (1) the long-term (25-year simulation period) average cumulative
amounts of ET (mm) and water yield (mm) that occurred during the wet season, dry season, and annually;
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(2) the percentages of the cumulative amounts that occurred during the wet season and dry season;
and (3) the percentage changes in annual average ET and WYLD that occurred due to the land use
changes between 2002 and 2009, and 2009 and 2015. These results show that nearly 80% of the water
yield occurred during the wet season during both the 2002 baseline and the 2009 and 2015 Para
rubber expansion land use scenarios (Table 7), as compared to the dry season. However, a more even
distribution of ET occurred between the wet and the dry seasons, with slightly higher levels occurring
during the dry season. Slight shifts in the overall amounts that occurred between the two seasons
were generally predicted for the 2009 and 2015 conditions relative to the 2002 baseline; the 2015
land use scenario ET estimates resulted in the largest relative shift that was predicted between the
two seasons (Table 7).

Various seasonal shifts were predicted to occur between 2002 baseline and the 2009 landuse
scenarios, and between the 2009 and 2015 land use scenarios (Table 7). Relatively minor shifts were
estimated between 2002 and 2009, with ET increasing by roughly 3% in both seasons versus 1% and 3%
declines in water yield for the dry season and wet season, respectively. ET was predicted to decrease
almost 10% during the wet season but increase nearly 6% during the dry season, between 2009 and
2015. In contrast, water yield was predicted to decrease during the wet season by about 3% and
increase by 1% during the dry season, between the two landuse scenarios. The estimated average
annual percentage change in ET from 2002 to 2009 was a decline of roughly 3% as compared to an
increase in water yield of close to 3% for the same time period (Table 7). In contrast, the predicted
average annual percentage change in both ET and water yield from 2009 to 2015 was a decline of
roughly 2% (Table 7).

Table 7. Comparisons of 25-year cumulative average seasonal and annual ET and water yields, and total
annual ET and water yield percentage changes that occurred due to the land use changes between 2002
and 2009, and 2009 and 2015, in the Nam Loei River Basin (NLRB).

Season
Baseline (2002)

Para Rubber Expansion Scenarios

2009 2015

ET (mm) WYLD (mm) ET (mm) WYLD (mm) ET (mm) WYLD (mm)

Wet Season 290.4 463.5 298.9 448.7 269.9 434.2
Dry Season 300.4 130.3 308.5 128.9 325.8 130.4

Annual (total) 590.8 593.8 607.4 577.6 595.7 564.6

Percentage in each season and overall percentage change

Wet season (%) 49.2 78.1 49.2 77.7 45.3 76.9
Dry season (%) 50.8 21.9 50.8 22.3 54.7 23.1

Annual (%) 2.8 −2.7 −1.9 −2.2

4. Discussion

As noted previously, substantial increases in rubber tree production are expected to occur in
Southeast Asia by 2050. Preliminary research suggests that this massive land use change could
exacerbate environmental problems in the region including increased soil erosion and sediment
transport to surface water, degraded soil quality, decreased stream flow, risk of landslides and probable
decreased soil carbon levels [1,2,62]. The majority of the area where rapid and widespread land
conversion to monoculture rubber plantation has occurred in continental SE Asia is also vulnerable
to extreme climatic events including typhoons, frost or drought, which can greatly reduce or even
destroy rubber production and further exacerbate environmental problems [3]. Furthermore, these
environmental problems may be magnified even more per projected future climate change in the
region [3]. Intensified Para rubber production has also negatively impacted biodiversity in production
areas located in Thailand and other subregions in Southeast Asia [63].
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The results of this study show that the expansion of rubber cultivation is resulting in a decreased
volume of water in the rainy season in the NLRB in northeast Thailand. In addition, during the dry
season the water content decreases, resulting in water shortages. The expansion of rubber production
in inappropriate areas with slopes over 35% [51] is more likely to result in increased flash floods
and landslides due to the intensive monoculture practices. This is especially true for the Nam Manh,
Nam Phu and Nam Paow subbasins, where 3000 ha of Para rubber plantations have been introduced on
landscapes with extremely high slopes. In addition, an additional 10,300 ha of Para rubber production
exists in more moderate slope areas (15% to 35% slopes) that are distributed across the upper, middle
and lower subregions of the NLRB. The Rubber Research Institute of Thailand has recommended that
terrace systems should be used for rubber production on slopes >15% [34] but this recommendation
is not being consistently followed. These specific problems occurring in Thailand, coupled with the
previously described environmental problems that are increasing Southeast Asia, underscore the
urgent need to develop measurement approaches, databases and modeling tools that can be used to
investigate Para rubber production problems throughout the region.

The amount of water that is required to initiate and sustain Para rubber plant growth depends on
many factors such as the type of plant species, the age of the plant and weather conditions such as
wind speed, temperature and humidity [61]. There are many ways to determine crop water use both
directly and indirectly. The measure by instrumentation is more accurate, but cannot be conducted
across large plantations. The application of mathematical models is a popular method and are widely
used in the study and evaluation of water use and water requirements of crops, which saves time and
cost. However, the use of mathematical models can require extensive input data depending on the
type and format of the model. There are parameters that must be calibrated and verified to ensure
the calculated results are close to the measured values. Furthermore, databases with appropriate
parameter values may not be available for some models. Thus, those databases must be brought
up-to-date to better meet the needs of end users.

The case study reported here that describes the expansion of Para rubber plantations in the NLRB
using SWAT is an example of an application that requires the development of important plant input
parameters. However, there is a need to further develop SWAT Para rubber input parameters that
better account for rubber species and age, rubber stems and leaves of rubber trees. In addition, there
is a need to improve the SWAT growth functions to be able to better account for the effects of rubber
tree growth phenomena related to the rooting structure that depletes deeper soil layers and results in
higher ET impacts, relative to traditional vegetation [36,64]. Finally, an overall expanded Para rubber
production and knowledge database is needed for Thailand and Southeast Asia in general.

5. Conclusions

The Soil and Water Assessment Tool (SWAT) model was applied to assess the impact of Para rubber
expansion in the Nam Loei River Basin in this study The application has designated the land use in the
year 2002 as the baseline versus historical Para rubber tree expansions in 2009 and 2015 as the land use
change scenarios. The stream flow estimated by SWAT showed annual average stream flow of about
1580 MCM. The average stream flow occurring during the rainy season (June–November) was about
1264 MCM (80% of the average annual stream flow) and in the dry season about 316 MCM (20% of the
average annual stream flow). The simulation was done using scenarios to assess the water balance
in the hydrological process. The results of the simulations showed that the increased production of
Para rubber, which replaced the original local field crop and disturbed forest land, resulted in an
increase of ET of about 3% from 2002 to 2009. However, additional increased Para rubber production
in combination with other land use shifts during 2009 to 2015 resulted in a predicted ET decrease of 2%.
The major factors that influenced this result were the rubber canopy and precipitation. Moreover,
runoff results reduced water balance in the basin by an annual average of about 3%, especially
during the dry season. However, the effect of ET on water resources has increased complexity and
uncertainty; the consideration of many parameters of Para rubber and a reflection on the past will help
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our understanding of the dynamic changes. The results of this study will help provide guidance for
decision-making about land use allocation or zoning for suitable Para rubber area. In addition, this
study will aid in the management and planning of water resources for the NLRB and other river basins
located in northeastern Thailand.
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Abstract: Water quality simulation models such as the Soil and Water Assessment Tool (SWAT) and
Agricultural Policy EXtender (APEX) are widely used in the US. These models require large amounts
of spatial and tabular data to simulate the natural world. Accurate and seamless daily climatic data
are critical for accurate depiction of the hydrologic cycle, yet these data are among the most difficult
to obtain and process. In this paper we describe the development of a national (US) database of
preprocessed climate data derived from monitoring stations applicable to USGS 12-digit watersheds.
Various sources and processing methods are explored and discussed. A relatively simple method
was employed to choose representative stations for each of the 83,000 12-digit watersheds in the
continental US. Fully processed climate data resulting from this research were published online to
facilitate other SWAT and APEX modeling efforts in the US.

Keywords: SWAT; APEX; climate

1. Introduction

Hydrologic and water quality models are increasingly being used to inform public policy at the
national and local scales. These models can be used to predict the effects of various anthropogenic
activities on water quality and quantity, making them useful tools for the purposes of: (1) watershed
and water resource planning; (2) evaluation of conservation programs; (3) effects of climate or land use
change. The Soil and Water Assessment Tool (SWAT) [1] and Agricultural Policy EXtender (APEX) [2]
are two popular models which operate on a daily time-step and are applied at decadal timeframes.
Both require a considerable amount of input data which must be accurate, consistent, continuous,
and cover the entire area of interest. These models require spatial data such as land use, soils, and
topography as well as climatic data including (at a minimum) daily precipitation, minimum, and
maximum temperature. When the area of interest is large, in this case the entire US, data development
is particularly challenging.

The Conservation Effects and Assessment Project (CEAP), is a national multiagency effort to
quantify the environmental benefits of existing conservation practices and the possible effects of future
conservation policy. The cropland portion of CEAP makes extensive use of hydrologic and water
quality models, including SWAT and APEX. Previous CEAP applications have used data developed
by [3] and prepared specifically for the effort, using a combination of daily ground based station and
monthly Parameter–Elevation Regressions on Independent Slopes Model (PRISM) predictions [4].
Daily (1960–2006) precipitation and temperature were estimated for each watershed and successfully
applied within CEAP [5,6].

As an ongoing effort, CEAP is being updated to include more recent data (up to 2016), improved
methods, and greater spatial detail. Previous CEAP efforts used watersheds based on 8-digit
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Hydrologic Unit Codes (HUCs), a hierarchical watershed classification system by the US Geologic
Survey (USGS). Future CEAP assessments will utilize 12-digit HUCs, which are approximately 40 times
smaller, thus allowing far more spatial detail to be included. This warrants the redevelopment of all
data sources, including climate. The scope and objectives of CEAP dictate the parameters by which
the climate dataset is developed. Climatic data must cover the entire continental US, reported daily,
and be nearly seamless for a 55 year period (1960–2015). Although coverage of the entire US is needed,
the required quality and density varies. CEAP is focused on agriculture, thus observation density
and accuracy are key in heavily cultivated areas. Topographic climatic effects are less critical in these
regions, tending to be more prominent in mountainous areas with little or no agriculture. CEAP is
designed to make average annual long term predictions to inform policy. It is far more important that
the climate data (especially precipitation) that is used is statistically representative than absolutely
accurate for a given location. Accurate average annual total precipitation, and the distributional
frequency and intensity of rainfall events are critical.

The primary models considered in this research are SWAT and APEX. These models share a
common development history, the major difference between them being that SWAT is a basin-scale
hydrologic model and APEX is more commonly used for field and small watersheds. Both are
distributed hydrologic models which divide a basin or field into smaller units to incorporate spatial
detail. In SWAT the unit is a subbasin, in APEX it is a sub-area. Water yield and pollutant loads
are calculated for each unit and routed through a stream network or across a landscape surface to
an outlet. In SWAT a single subbasin can be further divided into areas with the same soil, land use,
and slope called Hydraulic Response Units (HRUs). Processes within each HRU are lumped and
calculated independently from all other HRUs; the total nutrient or water yield for a subbasin is the
sum of all the HRUs it contains. HRUs allow more spatial detail for a large basin to be represented
in a computationally efficient manner. Both are process based continuous simulation models that
operates on a daily or sub-daily time step. Long-term simulations can be performed using simulated
or observed weather data. Relative impacts of different management scenarios can be quantified.

SWAT is the combination of ROTO (Routing Outputs to Outlets) [7] and SWRRB (Simulator for
Water Resources in Rural Basins) [8]. CREAMS (Chemicals, Runoff, and Erosion from Agricultural
Management Systems) [9], GLEAMS (Groundwater Loading Effects on Agricultural Management
Systems) [10] and EPIC (Erosion-Productivity and Impact Calculator) [11] all contributed to the
development of SWRRB and APEX. All of the models were developed, calibrated, and applied
utilizing precipitation data collected from networks of ground based stations, gridded precipitation
data were not available at the time.

The objective of this research is to evaluate differing data sources and methods to synthesize
seamless daily climate data (1960–2015) for the Contiguous US (CONUS) suitable for application with
SWAT and APEX at the 12-digit HUC level for the Cropland CEAP project. This article will focus
on application related issues and methods specific to these models; the raw accuracy of differing
climatic datasets is beyond this scope. These processed climate data are publicly released via the web
to support other SWAT and APEX modeling projects in the US.

2. Weather Data Development

2.1. Potential Data Sources

The selection and processing of climatic data for use in hydrologic models is more complex than
it may seem. For our purposes climate data are either: (1) point observations collected at discrete
weather stations; or (2) interpolations, remotely sensed, or simulations averaged over some spatial
extent, usually a grid. Daly discusses in detail some limitations of using these interpolated gridded
datasets [12]. Data are also summarized temporally, into hourly, daily, or monthly values. It is
imperative that the climate data be understood and matched to the assumptions and requirements
of the model in which these data are used. This is particularly important for precipitation, as it is
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the driving force for hydrologic models and often more spatially varied than temperature in the crop
producing regions which are the focus of the CEAP effort. In both SWAT and APEX a single set of
climatic observations are applied to an entire subbasin or subarea. In reality, precipitation may vary
dramatically across a subbasin during a single rainfall event; therefore, data collected at a single site
may be a poor representation for the entire subbasin. In contrast, streamflow data from a single site,
either observed or simulated, is in a sense an integration of all precipitation in its catchment.

There are several climatic datasets that may be useful for this purpose, each with their own
limitations. Gridded climatic data generally employ some interpolation or modeling method between
ground stations. This process may utilize other data such as topography or remote sensing. It is
difficult to assess the accuracy of these datasets as potential validation data are often based on the same
assumptions and/or underlining data as the dataset being evaluated and are not truly independent [12].

The Climate Forecast System Reanalysis (CFSR) [13] is a gridded global dataset (0.5◦ × 0.5◦) for
the period 1979 to 2009. These data have been processed into daily SWAT format and are available
online [14]. Another source of gridded climate data is Next Generation Weather Radar (NEXRAD)
which have been used in a variety of previous model applications [15–17]. NEXRAD data have
sufficient spatial resolution (4 km × 4 km), but little data are available prior to the early 1990’s. PRISM
data are also available from 1980 to near current on a monthly or daily basis at various grid resolutions
down to 800 m. As noted before these data have been previously used in CEAP.

The most comprehensive source of measured weather station data in the US is the Global Historical
Climatology Network (GHCN) [18]. This dataset integrates observations from 30 different station
networks with more than 40,000 stations in the CONUS dating back to the 1800’s. Although these
data have both the necessary spatial resolution, and time fame, they are far from seamless. Much of
the data are derived from stations operated by cooperative observers, including private individuals.
This network of weather stations is dynamic and changes from year to year making it difficult to use.

All of the aforementioned climatic data have been used in SWAT for various projects but direct
comparisons between datasets are limited. Because SWAT is typically calibrated, it can be difficult to
rigorously assess the accuracy of a particular model input by evaluating model performance alone. [19]
compared NEXRAD, PRISM, and station based data in the central US finding all three to produce
biased predictions of streamflow during dry periods, with PRISM exhibiting the least. They also
conducted a detailed review of recent SWAT climate data comparisons.

For the purposes of this particular model application, there is a strong preference among SWAT
and APEX developers to utilize station based data if possible. There are several reasons for this
preference: (1) SWAT and APEX were developed using data from ground based stations, the use of
gridded data may have unforeseen consequences; (2) the CEAP national assessment does not require
fine grained analysis in space or time; (3) the vast majority of SWAT and APEX applications use ground
based station data.

2.2. Evaluating Aggregation Effects

As stated before, these models apply a single set of weather observations to an entire subbasin
thus it is important that these data be representative of the entire subbasin. Average precipitation
across a subbasin can be derived from either gridded data sources or point station based data. Gridded
data can be spatially aggregated by overlaying with subbasin boundaries. Thiessen polygon weighting
or other procedures can be used to average point station observations across a subbasin. In either case,
the precipitation value used in a model for a subbasin is the average value across that subbasin. For
many applications that utilize monthly or annual climate summaries this maybe a very reasonable
approach, but there may be unintended consequences if the goal is to predict daily surface runoff,
sediment losses, or nutrient loss. The aggregation of individual observations into a single record
changes the statistical nature of the climatic data. As the spatial unit over which the averaging occurs
is larger, incorporating more stations or grid cells, there is less day to day variability in the aggregated
precipitation value. The number of days with rainfall within the record tends to increase while rainfall
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intensity is reduced even though the average annual precipitation may be unaffected. Surface runoff,
sediment loss, and nutrient transport area are driven by precipitation amount and intensity. Many of
the contributing complex natural processes are nonlinear, thus sensitive to both precipitation frequency
and intensity. Some evaluation of these aggregation effects on model predictions is necessary to aid in
the selection of appropriate data sources and processing methods.

To gage the effect of aggregation, a SWAT model was developed using NEXRAD data
aggregated at varying spatial scales. NEXRAD data in the Illinois River (HUC-8 11110103; Eastern
Oklahoma/Western Arkansas) was obtained at a 4 km resolution for the period 1990–2001. These
precipitation data were processed with differing levels of spatial aggregation ranging from 16 to
5500 km2 (1 to 342 individual NEXRAD cells). A template SWAT model of a single field (single HRU)
was prepared using local soil and crop (winter wheat) information. This model was not calibrated,
to do so could mask aggregation effects. Each aggregated weather dataset was incorporated into the
template, SWAT was executed, and relevant model predictions were recorded.

Figure 1 illustrates the relationships between several key SWAT predictions and the level of
aggregation present in the precipitation used. Variability in average annual precipitation was inversely
correlated with the aggregation area, but there was no systematic trend in mean values. Both runoff and
sediment yield were reduced with increasing aggregation area while evapotranspiration increased. This
analysis indicates that sediment and runoff may be reduced by 20% when using spatially aggregated
data, and that even at low levels of aggregation, model predictions may be significantly affected.
Other researchers have also noted that model performance when using NEXRAD data decreased with
increasing watershed size [15].

Figure 1. Soil and Water Assessment Tool (SWAT) model predictions for a single Hydraulic Response
Unit (HRU) (winter wheat) in the Illinois River (Eastern Oklahoma/Western Arkansas) as a function of
increasingly aggregated Next Generation Weather Radar (NEXRAD) precipitation data.

2.3. Network Selection

Climate data for this CEAP effort could be constructed using point station observations, individual
grid cells, spatial aggregations gridded data, or aggregated point station observations. The systematic
bias resulting from the use of spatially aggregated precipitation is a serious concern. Even though
point observation may not fully describe the climate for an entire subbasin, we believe that these data
are the more appropriate choice. Point observations could be derived from either daily grid based
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data like PRISM or station data. We elected to utilize measured station data for this effort, as these
data were used to develop these models, and are preferred by model developers. In addition, the vast
majority of SWAT and APEX applications utilize this type of data. The use of gridded data sources may
offer enhanced spatial resolution, but more study is needed prior to adoption in future USDA national
assessments. GHCN data were selected as the basis for the point climatic observations assembled for
this effort, as these data represent the largest source of observed daily surface measurements covering
the period of interest. All GHCN stations were downloaded from NOAA’s FTP Servers [20].

2.4. Filling Gaps

Data from 40,000 GHCN stations were examined and processed. Missing observations or those
with quality control flags were estimated using Shepard’s inverse distance weighting [21]. Weights are
based in the inverse of distance in kilometers between stations (Equation (2)). A weighted average was
calculated using data from the five nearest stations with data. The exact stations used vary day by day,
as there are frequently missing data at the surrounding stations as well.

u(x) =

{
∑5

i=1 wi(x)ui

∑5
i=1 wi(x)

(1)

wi(x) =
1

d(x, xi)
p (2)

where x is the value an interpolated point, xi is the value at a known point, d is the distance from x to
xi, wi is the weight for point i, and p is the power parameter which is set to 1.

This interpolation was selected because it is simple to code and not computationally intensive.
This method does result in some degree of unavoidable aggregation, but this is preferable to the
use of simulated data to fill these gaps. The consequences of these interpolation methods are
discussed subsequently.

The GHCN data were used to construct seamless records from 1900–2015 at all stations. Note
that the density of stations through time is variable and that many stations may be comprised entirely
of interpolated data prior to 1950. We chose to keep these data as they have some utility for model
warm-up. Process based models should be run for several years prior to the period of interest or
warmed-up to minimize the importance of initial state variables which are almost always unknown.

Interpolated estimates were calculated each day at every station even when local observations
were available. Having both the observation and interpolation for at least part of the period of interest
at a particular station allows the correlation and bias between the two to be examined, yielding an
accuracy estimate of the interpolation and the entire seamless record.

2.5. Station Selection

To support the development of a national 12-digit CEAP model it is necessary to identify stations
which are most representative of the average weather within each of 83,000 HUC-12 in the contiguous
US. Most HUC-12s had no weather station within their boundaries and must be represented by an
exterior station that may be many kilometers away. For each HUC-12 the three most representative
stations were identified from all GHCN stations using a ranking algorithm based on factors deemed
most important to SWAT and APEX in the context of the CEAP effort. The most critical factors
are precipitation frequency, intensity, and long term annual totals. It is far more important that the
distributional nature of precipitation is realistic than that any single event is accurate.

Three factors were considered and weighted into a final score for each candidate station. The first
criterion was completeness. No station with less than 10% measured precipitation data during the
period 1980–2015 was considered. This excluded 56% of all GHCN stations. The second criterion was
the distance from the centroid of the HUC-12 to each candidate station, with closer stations being
preferred. The final and most heavily weighted criterion was the ratio of average annual precipitation
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between the HUC-12 and each candidate station. PRISM 30-Year (1981–2010) normal precipitation
(800 m resolution) [22] was used to estimate annual precipitation at the centroid of each HUC-12.
The centroid was selected as it would be the most ideal single location for a weather station within a
given HUC-12. This criterion was weighted more heavily than the others to increase the likelihood that
the selected stations for a particular HUC-12 have the same topographic context. PRISM precipitation
estimates make extensive use of topographic factors including elevation and aspect. This prevents an
HUC-12 in a valley bottom from being represented by a station on a nearby mountaintop, where the
precipitation would be very different.

Various criteria weights and completeness cutoffs were examined iteratively and ultimately
based on professional judgement. Only stations with precipitation records that were more than
10% complete were considered. The estimated accuracy of the entire record at stations with 10%
complete records was 77%; stations that were 50% complete were estimated to be 84% accurate. This
marginal improvement in accuracy would have resulted in the disqualification of 12,800 stations (61%
of available stations). Using stations with 10% complete records seemed an appropriate compromise.
Interpolated temperature was more accurate, presumably due to less spatial variability. Stations with
10% complete records were estimated to be 94.4% and 96.2% accurate for minimum and maximum
temperature respectively.

Initially, completeness, distance, and the HUC-12 to station precipitation ratio were equally
weighted. A sample of resulting station selections were mapped and examined manually. Many station
selections exhibited a notable bias in PRISM estimated precipitation. Given the intended use of these
data, it was determined that the bias should be reduced by more heavily weighting the HUC-12 to
station precipitation ratio. Ultimately criteria weights of 1, 1, and 3 were selected for completeness,
distance, and the HUC-12 to station precipitation ratio. The top three scoring stations were selected for
each HUC-12 for use in SWAT and APEX models.

2.6. SWAT and APEX Testing

It is not possible to fully test these data, but inferences can be drawn from the precipitation
dataset by applying it with SWAT and APEX and examining the output. Using Shepard’s weighted
interpolation has the potential to introduce some of the same spatial aggregation issues described
previously. Because averaging is weighted inversely by distance, we would expect less modification of
the statistical nature of the interpolated estimate, and only on days when there are no measured data
at a selected station. A single field APEX and SWAT model template was set up to simulate a fallow
field with a common agricultural soil. Each selected station was incorporated into these models and
executed for a 40-year period. Simulated runoff and sediment yields were recorded, along with the
completeness (percent of non-interpolated data) of the climate record for that station.

3. Results

3.1. Station Selection

While the ultimate reliability of these data is difficult to assess, we can spatially examine the
selection criteria to qualitatively assess where limitations are likely to occur. The three metrics used for
station selection (completeness, distance, and HUC-12 to station precipitation ratio) are given for the
best candidate station for each HUC-12 in Figure 2. Station completeness varied spatially, with slightly
more complete stations selected in the central US agricultural regions, but the pattern is minimal.
Distance from HUC-12 to the selected station was strongly related to GHCN station density, with
fewer stations available in western US. The final factor, HUC-12 to station precipitation ratio indicated
that annual precipitation for stations selected in primarily agricultural areas were within 10% of the
PRISM estimates. This precipitation ratio is more variable in the western areas where station density is
low and spatial precipitation variability is greater due to topographic effects. There is potential for
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increased model error in these mountainous areas due to greater bias, but given minimal agriculture
there is little concern for the intended use of the data.

Figure 2. The three metrics used for station selection (completeness, distance, and HUC-12 to station
precipitation ratio) and estimated SWAT sediment yield depression for the best candidate station
selected for each HUC12 in this research.

3.2. SWAT and APEX Testing

Multiple regression was used to gage the importance of causal factors in SWAT and APEX
predicted sediment yield. Station precipitation was by far the most important factor, but station
completeness was also significant (α = 0.05). We found that for each 10% reduction in station
completeness, sediment yields were depressed by 1.5% in SWAT and 2.3% in APEX. This regression
was applied spatially in Figure 2. While this does not indicate how much interpolation is too much,
it does indicate the relative impact. Even though stations with as little as 10% measured data were
included in the selection process, the average completeness across all selected stations was 80%. This
indicates that on average sediment yields would be expected to be depressed approximately 3% in
SWAT and less than 5% in APEX due to the use of interpolated data. Sediment yield depression was
significantly greater in some HUC12s than others. While we would prefer that there was no overall
bias, less than 5% on average is an acceptable bias given the uncertainty of the original precipitation
data and the intended use of the data.

4. Conclusions

Climatic data are critically important in the application of natural resource models like SWAT
and APEX. There are many potential data sources and processing techniques that can be used to
provide these data. The purpose of this effort was to develop a dataset to meet the needs of a specific
modeling application; other applications may be best served by other weather data. Given the array of
potential weather data sources, it is possible, even likely that a more accurate final weather product
could be produced with additional effort. A full evaluation of other data sources and more complex
techniques would require more resources than are available and increase the potential for unforeseen
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consequences. We conclude that the data described in this work are suitable for the intended SWAT
and APEX application. These data are also suitable for other modeling efforts, and are freely provided
via the web.
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Appendix A

Daily station data in SWAT, ArcSWAT, and APEX formats are available on the web for download
at https://nlet.brc.tamus.edu/Home/Swat. This site includes several model based decision support
tools and is a repository of US SWAT and APEX formatted data.
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