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Special Issue “Data Processing and Modeling on Volcanic and Seismic Areas”
Reprinted from: Appl. Sci. 2021, 11, 10759, doi:10.3390/app112210759 . . . . . . . . . . . . . . . . 1
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Preface to ”Data Processing and Modeling on

Volcanic and Seismic Areas”

The Earth Sciences are continuously developing from a descriptive “naturalistic” science

towards an increasingly physical and “numerical” science. Quantitative data are being collected from

a huge variety of disciplines in a dramatically increasing way, from a huge variety of sensors on Earth

and remote satellites. This growth requires a parallel progression of the systems to archive, manage,

process and interpret data. A large scientific and technological effort is devoted to extracting as much

information as possible from the collected data.

The Special Issue collects up-to-date research on the processing and modeling of Earth Sciences

data, and addresses some the broad, currently challenging problems in volcanic and seismic topics.

The collection reveals the great need to manage the growing complexity of data and the

treatment of data, to try to describe the natural phenomena that are considered here.

The issue is aimed at any researcher who is curious about the state of the art in the use of data to

analyze and model processes related to volcanoes or earthquakes.

Alessandro Bonforte and Flavio Cannavò

Editors
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Volcanology, seismology and Earth Sciences in general, like all quantitative sciences,
are increasingly dependent on the quantity and quality of data acquired. In recent decades,
a marked evolution has characterized Earth sciences towards a greater use of analytical
and numerical approaches, shifting these fields from the natural to the physical sciences.

Understanding the physical behavior of active volcanoes and faults is critical to
assess the hazards affecting the population living close to active volcano and seismic
areas, and thus to mitigate the risks posed by those threats [1,2]. The knowledge of a
physical process requires the acquisition of a huge amount of information (data) on that
particular phenomenon.

Today, different kinds of data record the processes that operate in volcanic and tectonic
systems and provide insights that can lead to improved predictions of potential hazards,
both immediate and long term. The geoscience community has collected an enormous
wealth of data that require further analysis. The diversity and quantity of these geoscience
data and collections continue to expand [3].

The increasing amount of data and the availability of new technologies and instrumen-
tation at an ever-greater rate open new frontiers and challenges for acquiring, transmitting,
archiving, processing and analyzing the newly available datasets. Guo [4] predicted growth
for the general digital universe size of factor 10 from 2016 to 2025. Among all digital data,
scientific data are those relevant to the observation of natural phenomena and charac-
terized by non-repeatability, high uncertainty, high dimensionality and a high degree of
computational complexity [4]. This means that scientific data need to be well preserved,
due to the non-repeatability, and implies a parallel growth of processing capabilities to
be well exploited. Cheng et al. [5] highlighted the striking growth of Earth Science data
from molecular to astronomical scales and the increasing use of supercomputing tools
for supporting geoscience research. The authors evidence how, with the continuously
increasing availability of digital data, Earth Sciences are also turning from the traditional
question-driven or problem-driven approach, where scientists seek to find answers to
known questions, to the new data-driven one where scientists apply a data discovery
process that might find answers to still unknown questions.

In agreement with Cheng et al. [5], we believe that new integrated multi-disciplinary
knowledge systems and new data discovery techniques for handling and mining big
data for knowledge discovery would spur the integration of transdisciplinary and multi-
dimensional Earth science data. Furthermore, this will help the transition from a narrow
focus on separate disciplines to a holistic, comprehensive and integrative focus of the
different disciplines linked to the Earth Sciences.

With this aim, for this special issue titled “Data Processing and Modeling on Volcanic
and Seismic Areas”, we invited articles on all aspects of solid Earth Science that made use
of data to analyze and model processes related to volcanoes or earthquakes.

Manuscripts with various types of analyses, including volcanic ground deformation
modeling, seismic swarm characterization and volcanic gas measurement, have been
proposed and published.

Appl. Sci. 2021, 11, 10759. https://doi.org/10.3390/app112210759 https://www.mdpi.com/journal/applsci
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The collection provides an insight into the enormous need for increasingly com-
plex data analysis and modeling techniques to try to describe the natural phenomena
here considered.

This special issue was introduced to collect the latest research on the processing and
modeling of Earth Sciences data, and to address challenging problems with all topics related
to volcanoes and seismic areas. Various subjects have been addressed in this collection,
mainly on data processing for volcanic studies (three papers), tectonics (two papers) and
one paper on data analysis of a new instrument to measure gases.

The first contribution to this collection [6] reports the results of the processing and
combination of high-rate and low-rate geodetic data for revealing the dynamics underlying
violent volcanic eruptions at Mount Etna. This study evidences the wide spectrum of
ground deformation produced by these phenomena, to be investigated, processed and
modeled in order to generate a picture of the feeding system of the volcano and better
understand its dynamics and rates of magma transfer in the upper crust.

Another contribution focuses on volcanoes [7]: the authors exploit 20 years of high
temporal resolution satellite Thermal Infra-Red (TIR) data collected over three active volca-
noes (Etna, Shishaldin and Shinmoedake). They present the results of an analysis of this
dataset performed through a preliminary RST (Robust Satellite Techniques) algorithm im-
plementation to TIR data from the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER). This approach ensures efficient identification and mapping of vol-
canic thermal features even of a low intensity level, which is also useful in the perspective
of an operational multi-satellite observing system.

The contribution by Woohyun Son et al. [8] proposes specific depth-domain data
processing of migration velocity analysis (MVA) of seismic data collected during a survey
on a saline aquifer sediment in the Southern Continental Shelf of Korea. This analysis
allowed the authors to identify and determine the precise depth of a basalt flow that
could act as a cap rock for CO2 storage beneath the aquifer. The investigation, through
the geological model obtained from both time- and depth-domain processing, provides
suitable information for locating the best drilling sites for CO2 injection, maximizing the
storage volume.

In volcanic areas, gases represent important physical evidence of volcanic processes
that need to be measured. Parracino et al. [9] have shown how novel range-resolved
DIAL-Lidar (Differential Absorption Light Detection and Ranging) could herald a new era
in the observation of long-term volcanic CO2 gases.

An accurate and integrated analysis of different types of data such as GNSS, seismic
and MT-InSAR, has led, in the work by Gatsios et al. [10], to a first account of defor-
mation processes and their temporal evolution over recent years for Methana (Greece),
thus providing initial information to feed into a volcano baseline hazard assessment and
monitoring system.

Seismic data are among the most important data to understand the dynamics of the
Earth’s interior. A consistent analysis of a seismic swarm allowed Kostoglou et al. [11]
to shed more light on the regional geodynamics of the Kefalonia Transform Fault Zone
(Greece), and to follow the temporal evolution of the b-value to distinguish between
foreshock and aftershock behaviors.

Author Contributions: A.B. and F.C. contributed to the design and implementation of the special
issue and to the writing of the manuscript. All authors have read and agreed to the published version
of the manuscript.
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Abstract: We propose a multi-temporal-scale analysis of ground deformation data using both high-
rate tilt and GNSS measurements and the DInSAR and daily GNSS solutions in order to investigate
a sequence of four paroxysmal episodes of the Voragine crater occurring in December 2015 at Mt.
Etna (Italy). The analysis aimed at inferring the magma sources feeding a sequence of very violent
eruptions, in order to understand the dynamics and to image the shallow feeding system of the
volcano that enabled such a rapid magma accumulation and discharge. The high-rate data allowed
us to constrain the sources responsible for the fast and violent dynamics of each paroxysm, while the
cumulated deformation measured by DInSAR and daily GNSS solutions, over a period of 12 days
encompassing the entire eruptive sequence, also showed the deeper part of the source involved in
the considered period, where magma was stored. We defined the dynamics and rates of the magma
transfer, with a middle-depth storage of gas-rich magma that charges, more or less continuously, a
shallower level where magma stops temporarily, accumulating pressure due to the gas exsolution.
This machine-gun-like mechanism could represent a general conceptual model for similar events at
Etna and at all volcanoes.

Keywords: volcano geodesy; multidisciplinary monitoring; paroxysms; lava fountain; volcanic
eruption; modeling; tilt; GPS; InSAR; ground deformation

1. Introduction

Mt. Etna is the largest and highest volcano in continental Europe. It is located in
the central Mediterranean Sea, in eastern Sicily (Italy), just north of the city of Catania
(Figure 1). It lies on continental crust, over the collisional belt between the Nubia and
the Eurasia plates. The northern side of Etna lies on the external units of the Apennine-
Maghrebian chain, while the southern foot lies on the foredeep deposits, where the foreland
bends northwards beneath the chain. This geodynamic framework is further complicated
by the presence of the Maltese Escarpment, on the eastern foot of the volcano, separating
the continental crust in the west from the oceanic one of the Ionian basin in the east. Just
east of Etna, in fact, the collisional dynamics are no longer characterized by continental
crust collision but by the subduction of the oceanic Ionian beneath the Calabrian Arc.

The Mt. Etna volcano is also one of the most active volcanoes on our planet. It erupts
almost continuously, usually from its four summit craters (Figure 2), named Voragine
(VOR), Northeast Crater (NEC), Bocca Nuova (BN) and Southeast Crater (SEC), where,
since 2011, a new cone has formed and rapidly grown on its eastern slope, named the New
Southeastern Crater (NSEC) [1]. Less frequently, magma rises up from lateral fissures and
eruptions occur at lower altitudes on the volcano’s flanks, producing more hazardous lava
flows for those villages and rural areas surrounding the volcano.

Appl. Sci. 2021, 11, 4630. https://doi.org/10.3390/app11104630 https://www.mdpi.com/journal/applsci
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Figure 1. Location of Mount Etna in the central Mediterranean in the inset; in the main figure, the
detail of the geodynamic framework x surrounding the volcano (zoom on eastern Sicily–Calabrian
arc, red box in the inset). The shaded-relief basemap is a combination of Emodnet bathymetry (http:
//www.emodnet-bathymetry.eu, accessed on 16 March 2021) and SRTM 30 plus topography (Shuttle
Radar Tomography Mission, http://topex.ucsd.edu/WWW_html/srtm30_plus.html, accessed on
16 March 2021).

Eruptive activity at summit craters is usually characterized by strombolian activity of
varying intensity, up to the more energetic fire fountains and high-energy paroxysms.
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Figure 2. Mt. Etna summit craters: Voragine (VOR), Northeast Crater (NEC), Bocca Nuova (BN),
Southeast Crater (SEC) and New Southeastern Crater (NSEC). The 3D surface map is a combination
of very-high resolution optical images acquired by Pleiades satellites on 20160603 and an SRTM DEM.

2. The December 2015 Activity

Before the 2015 events, eruptive activity at Etna consisted of a series of paroxysmal
episodes at NSEC, which produced 50 lava fountains from 2011 to 2014. Conversely, after
several years of mainly degassing activity, starting on 3 December 2015, the VOR crater
underwent an extraordinary sequence of four very energetic paroxysms until December
5. Such a rapid sequence of such powerful events was never observed before on Etna,
especially if considering that, in the short period of time between 2 and 18 December 2015,
all the four summit craters produced explosive activity. The most powerful event was the
first one, while the following three events showed a decreasing energy. All showed the
same pattern starting from strombolian activity and rapidly evolving to lava fountains in a
few minutes, producing very high lava fountains, launching incandescent clasts to more
than 3 km above the crater rim and producing an eruptive column reaching 14 km a.s.l.,
then decreasing again to strombolian activity before ending [2]. In detail, on 3 December, at
about 02:00 UTC the explosive activity at the Voragine crater was characterized by a very
fast increase in the initial strombolian activity, which at about 2:40 UTC culminated in a
lava fountain (I episode) lasting 90 min, reaching a maximum height of the lava jet thrust
of 4100 m above the vent [3], and then gradually passed again to strombolian activity. The
same sequence was recorded twice on December 4; the lava fountains occurred at 9:15 UTC
(II episode ca. 80 min) and at 20:30 UTC (III episode with a duration of 90 min). Finally, in
the early afternoon of December 5 from 13:30 UTC, a slower increase in explosive activity
was observed at the VOR crater, switching to fountain activity at about 15:00 UTC for ca.
one hour and a half (IV episode). The entire sequence at VOR ended with the last episode
in the afternoon of December 5, lasting only 38 h, followed by weak strombolian activity
and short lava flows from NSEC until December 8. Authors in [2] estimated a volume for
pyroclastic deposits of about 7.1 × 106 m3, resulting in an average of about 1.8 × 106 m3

erupted during each paroxysm.
Such a violent eruptive phase, characterized by a sequence of paroxysms ranging from

lava fountains to sub-plinian explosions, are not uncommon. In the first half of 2000, Mt.
Etna generated 66 paroxysmal episodes [4] from the SEC, while the VOR crater produced
less but very powerful activity, a sub-plinian eruption in July 1998 [5] and another very
strong paroxysm one year later, in September 1999 [6]. Between 2011 and 2015, Mt. Etna
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saw more than 50 paroxysmal episodes from its summit vents. Furthermore, these kinds of
eruptions have also been observed on other basaltic volcanoes, from the first observations
and studies of Pelèean eruptions at Manam (Papua New Guinea) in the 1960s to the more
recent sequences at Kilawea (Hawaii) in the 1980s or at Fuego (Guatemala) in 2018.

3. Materials and Methods

To perform our analysis of the source feeding such a violent crisis on Etna, we exploited
the multi-parametric dataset coming from the permanent ground deformation networks
on the volcano (Figure 3) and the DInSAR images pair acquired across the entire eruptive
period by the ESA Sentinel-1 satellite.

 

Figure 3. Map of the permanent tilt and GNSS networks operating on Mt. Etna.

3.1. Tilt Data

On Mt. Etna, surface local inclination variations are continuously monitored by using
instruments able to detect tilt changes with high-precision data.

In December 2015, the Mt. Etna permanent tilt network consisted of 14 borehole
instruments and a long-base device (PDN, Figure 3). Over the last ten years, INGV
improved the network through the installation of sensors at greater depth: currently, eight
stations are at 27–30 m depth and six are 10 m deep, including three summit stations.

The deeper stations use biaxial self-leveling instruments with very high-precision
(10−8–10−9 radians) electrolytic bubble sensors for measuring the angular movement and
magnetic compasses that are able to detect tides. Almost all stations have a sampling rate
of 1 min. A description of the tilt instrumental characteristics is provided by [7–9].

Continuous tiltmeters recorded variations during the four fountain episodes occur-
ring on 3–5 December 2015. Tilt changes during the first, most powerful lava fountain
were recorded at all the stations showing values comprising a few tenths to a couple of
microradians with a mean value of 1.1 (Figure 4). The magnitude of episode II was slightly

8
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lower (mean value of 0.85 microrads), while the successive episodes had a significantly
smaller amplitude (mean values, respectively, of 0.5 and 0.35 microradians).

 

Figure 4. Tilt components recorded at several stations during the fountain episodes. Grey lines
highlight the 4 paroxysms evidencing associated changes. Radial (Rad) components are directed
toward summit craters and positive variations indicate an upward tilt. Oriented components (e.g.,
CBD N220◦E) indicate a downward tilt along the indicated direction.

The first change occurred on December 3 at about 02:30 UTC and all the four episodes
showed a mean duration of about 1 h. The pattern of the ground tilt was the same for each
event, even if its magnitude decreased from the first to last episode, evidencing similar
sources (Figure 4). At the end of the entire sequence, the tilt showed the same trends as
before the fountains.

The tilt vectors showed a general lowering toward an area positioned just west of the
Mt. Etna summit (Figure 5), suggesting a repeated occurrence of deflation processes.

9
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Figure 5. Observed tilt vectors cumulated during the first lava fountain indicating an edifice deflation.
MMT, MDZ, MSP and EC10 stations were out of order.

3.2. GPS Data

Geodetic monitoring on Etna started early in the 1970s with pioneristic trilateration
networks; since then, a continuous evolution of methods and technologies has led to the
current configuration and complexity designed for several applications and studies at
different space and time scales [10–12]. Now, with its 39 permanent stations, the Etnean
GPS network is one of the largest deployed on an active volcano (Etn@net, [13]). For
surveillance purposes, most of the stations are acquired every second and processed in
real-time at high-rate (1 Hz) by using the epoch-by-epoch algorithm of Geodetics ® RTD
software package [14].

High-rate GPS time series contain both systematic errors (e.g., multipath) and unmod-
eled stochastic noise, which can be in the same order of magnitude of the displacement
signal. In this study, we applied an ad-hoc strategy in order to minimize the noise level
of the time series. To this end, the high-rate data from continuous GPS stations belong-
ing to the INGV Etnean GPS network were processed in kinematic mode (which means
assuming that the station is continuously moving) by using three different algorithms:
(i) precise epoch-by-epoch solutions [14], by using the Geodetics RTD software which
provides independent estimates of positions for each epoch of dual-frequency; (ii) Precise
Point Positioning (PPP) solutions [15] by using the GIPSY software; and (iii) differential
phase kinematic [16] by using the TRACK software [17], which uses the ionosphere-free
LC observable double-differences with respect to nearby fixed stations. All the available
raw GPS data were decimated at 30 s and the solutions were sub-sampled with medians in
windows of 10 min. As a reference fixed station we chose ENIC (see Figure 3).

To highlight the displacement signals in the noisy time series of GPS components, we
calculated the baseline variations; this allowed us to significantly reduce common sources of
noise (e.g., atmosphere, constellation geometry, etc.) which were predominant in the high-
rate GPS data. In order to enhance the useful variations against the background noise and
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to further reduce the geodetic correlated noise, we combined the obtained time series from
the different processing software by a weighted mean optimized to minimize the resulting
associated uncertainties [18]. This can be obtained by considering the inverses of estimated
variances as weights (covariance matrix is also provided in the Supplementary Materials).

Figure 6 shows the time series calculated as the mean of all the considered baseline
relative variations, expressed in parts-per-million (ppm). To estimate the displacements
and their associated uncertainties, a piecewise linear regression was carried out on the
baseline time series. The choice of using a piecewise line to infer the slopes followed a
physical time continuity. The break points for the segmented line were set to the beginning
and ends of the paroxysms. A robust regression algorithm [19] was applied, by which
the piecewise regression line was made to fit the data set as closely as possible while
minimizing the sum of squares of the differences.

To verify the stability of the regression results, we tried to linearly fit independently
the episodes (e.g., yellow line in Figure 6C). It is worth noting that the variations are quite
similar and comparable with the ones obtained by piecewise regression. The only discrep-
ancy with our approach is the period in between the second and third paroxysms when
the independent linear fit does not show the same positive step as in the piecewise line.
However, this does not affect the coherent deflective behavior during the third paroxysm.

To infer the sources, we considered the total variations of the regression lines in the
eruptive periods.

Figure 6 shows that the eruptive periods were characterized by a shrinking, albeit
small, of the baselines crossing the summit area. This indicates a contraction of the volcano
edifice. The deformation strength was higher for the first event than for the last one,
indicating a progressive decay of the eruption energy. In some cases, it is possible to also
see a small inflation phase prior to the eruptions (a lengthening of some baselines crossing
the summit area).

It is worth noting that such variations are within the error bars of the data; nevertheless,
they are coherent among the baselines and follow the expected volcanic behavior, thus can
be considered reliable for a source estimation.

3.3. DInSAR Data

Sentinel 1A SAR (Synthetic Aperture Radar) images were acquired in TopSAR (Terrain
Observation with Progressive Scans SAR) Interferometric Wide mode, during ascending
orbit over Mt. Etna on December 2 and successively on the next ascending pass on
December 14, after the four paroxysms occurred. The differential interferogram (DInSAR)
combining the two subsequent passes, encompassing the entire eruptive activity at the
central crater, was processed with the GAMMA software, and in order to remove the
topographic phase, a Shuttle Radar Topography Mission (SRTM) Version 4 digital elevation
model with 3 arc-sec resolution was used, and is shown in Figure 7. This interferogram is
very useful to draw the total cumulated ground deformation pattern affecting the volcano
after such a violent eruptive phase. The interferogram clearly shows that, from December
2 to 14, the entire upper part of the volcano moved away from the satellite, meaning that it
moved downwards and/or eastwards (the satellite views from the west with an incidence
angle of about 38◦ from the vertical). The downwards and eastwards movement of the
ground is more evident on the upper western side of the volcano, while on the eastern side,
the downwards movements could be partially compensated by a westward one, coherently
with a deflation/contraction pattern.

Another small area showing local deformation is detected by DInSAR on the middle
NE flank of the volcano, related to the uppermost part of the well-known Provenzana-
Pernicana fault system [20,21] that was affected by a seismic swarm on 8 December 2015,
following the abrupt deflation produced by the four eruptions. Additionally, in this area,
the ground deformation pattern, moving away from the satellite on the southern side of
the fault (hangingwall), reveals a downwards/eastwards ground motion, in agreement
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with the usual oblique normal and left-lateral displacement of this fault system, clearly
related to the flank dynamics of the volcano [22–25].

 

Figure 6. Time series of GPS baselines. Black dots are the raw baseline measurements. Red stripes represent the eruptive
periods. Green lines are the optimal piecewise linear interpolation of time series for the considered periods. (A) Average
series of the relative variations (in ppm) of all the considered baselines, that can be read as the measured mean micro-strain.
(B) Time series of baseline variation between EPLU and EINT GPS stations. (C) Time series of baseline variation between
ECNE and ECPN GPS stations; the yellow segments represent the linear fit for each independent period.
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Figure 7. DInSAR interferogram of the ascending orbit pair from 2 to 14 December 2015. A fringe
(28 mm) of deflation is visible, affecting the whole upper part of the volcano, above 1500–2000 m a.s.l.,
and across the upper Pernicana-Provenzana fault system on the middle NE flank. The topography is
represented with white contour lines (every 500 m).

3.4. SISTEM—DInSAR and GPS Integrated Data

To estimate the total deformation occurring at the volcano during the entire crisis, we
produced a high-resolution map by integrating the DInSAR data with the GPS displace-
ments, calculated through PPP (Precise Point Positioning) processing by the GIPSY-OASIS
package on a daily basis over the same InSAR time window. This processing is independent
and widely different from the high-rate (HR) one, not only due to the different observa-
tion times but also being performed on daily standard RINEX (Receiver INdependent
EXchange) data, decimated from the original 1 to 30 s rate, processed in static mode to
achieve a unique, precise and not-moving solution for each day. 3D GPS and 1D/LOS DIn-
SAR displacements were integrated by the SISTEM algorithm [26], a software that allows
the complete integration of different ground deformation datasets in order to calculate,
point-by-point with the DInSAR ground resolution, the 3D components of the ground
motion over the 12-day period covered by DInSAR data. In this way, an integrated map
can be produced, similar to an interferogram for spatial resolution but containing, for each
pixel, the 3D motion of the ground (instead of the LOS component of the DInSAR image).

The main source of error of the DInSAR measurements is due to atmosphere noise,
especially related to the strong topography at Etna (often more than a fringe from base to
summit, see [27,28] and references therein). For this reason a preliminary step, before their
use, is the validation-correction of the DInSAR data with GPS and/or other independent
measures. The SISTEM algorithm not only integrates but also simultaneously validates
the DInSAR data with GPS by taking advantage of the positive features of both these
techniques, i.e., the high spatial resolution of the DInSAR and the 3-D measurements and
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subcentimeter accuracy level of the GPS. This integrated and cross-validated information
is able to give a more reliable interpretation of the geophysical phenomena producing
ground deformations.

The general pattern evidenced by DInSAR data (Figure 7) is mostly coherent with
the deformation highlighted by the 12-day GPS displacement pattern (thick arrows in
Figure 8), both evidencing, even with different resolution and completeness of information
(1D but high-resolution for InSAR and 3D but low-resolution for GPS), a contraction of
the volcano. The integration of both datasets (thin arrows and colors in Figure 8) images a
general deflation of the edifice well, especially evident on its western and southern slopes.
The match between the integrated and original observed GPS and DInSAR datasets has
been checked and validated for looking at possible artifacts. Results of the validation
process evidence a mean difference between observed GPS displacements and SISTEM
displacements at GPS points of about 1–1.5 mm (abundantly within the GPS errors) and
differences within 5 mm for most of the DInSAR interferogram (figures GPS vs. SISTEM
and SAR vs. SISTEM provided in the Supplementary Materials). The main deflation seems
to affect the upper part of the volcano, above 1700–1800 m a.s.l. (in agreement with the
interferogram, see Figure 7), which shows an evident radial contraction and a subsidence
of the ground.

 

Figure 8. 3D displacement map obtained by SISTEM algorithm over the December 2 to 14 period. Integrated horizontal
displacements are shown by (sub-sampled) blue vectors, while the vectors showing the GPS-only measured displacements
are evidenced by thicker arrows with white borders. The color map shows the integrated vertical displacements, according
to the color scale on the bottom left.
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A slight uplift is visible at a lower altitude, on the western and southern slopes. This
particular feature lets us suppose that two dynamics occurred in the 12-day interval en-
compassing the four fire fountains sequence: the rapid depletion of the feeding system,
related to the four eruptions and leading to the summit deflation with, probably, a simulta-
neous pressurization of a deeper source, producing a wider uplift, visible at the volcano
periphery, where it is not masked by the local deflation. These wider and, reasonably,
deeper dynamics cannot be investigated here, due to the superimposition of the much
stronger deflation; it needs more data, covering also longer and different time windows, to
be constrained and it is beyond the scope of this study.

4. Modeling

We used high-rate measurements from both GPS baselines and tilt variations to
estimate the causal sources of each paroxysm and, then, the integrated 3D SISTEM ground
deformation map to search for a cumulative source feeding the entire sequence. In this way
we exploited the availability and potential of HR data showing the continuous and rapid
deformation, even with a non-optimal signal-to-noise ratio, and the powerful integrated
map, in terms of both spatial resolution and quality of the signal. This allowed us to identify
the single-shot sources feeding each paroxysm and the entire feeding system involved
during the whole sequence.

Among all the possible HR baselines, we chose the baselines that showed clear pat-
terns, avoiding too-noisy baselines and redundancy (using a single GNSS site for at most
two baselines).

To calculate the displacements and their associated uncertainties, we fitted the baseline
time series with a piecewise linear regression line. The variations were calculated from the
segments at the eruptive periods.

Similarly, the tilt variations in the same periods were considered in the joint inversion.
The analytical model adopted to fit the geodetic data was the finite spherical source

model [29] and we used the GAME software [30] to invert the data, applying a hybrid
approach of genetic algorithm and pattern search [31]. The objective function was the sum
of the squared model residues weighted with their associated uncertainties. The model
parameter uncertainties were estimated by using a Jackknife approach [30,32].

The resulting sources show similar depths and coherent horizontal positions (within
the area of summit craters) as shown in Table 1. The location of the source was very stable
for the three paroxysms; taking into account the differences among the three solutions, the
results clearly define a volume located at around 1.8 km depth beneath the summit craters
area. The model fitting with the measured deformation data degrades as the energy of the
eruption decreases; it is good for the first event, becoming just sufficient for the third event
(see Figure 9).

In fact, the first two, stronger, paroxysms are those with the strongest signal-to-noise
ratio and this allows a better match between predicted and measured deformation. The
third one shows a less-fitting modeled deformation, especially on baselines 6–4 and 1–7
(Figure 9), due to a lower signal-to-noise ratio in the deformation data.

The last fountain did not show enough deformation to be coherently measured by a
sufficient number of considered GPS baselines. Thus, we avoided modeling the source.
The model’s fit with tilt data is shown in Table 2.

Table 1. Parameters of the single-shot sources for the first three paroxysms, from HR GNSS and tilt
data, together with the associated uncertainties at 2-sigma.

Paroxysm 1 Paroxysm 2 Paroxysm 3

UTM Easting (m) 498,921 ± 192 498,694 ± 95 499,017 ± 150
UTM Northing (m) 4,177,360 ± 166 4,177,110 ± 105 4,179,300 ± 172

Depth b.s.l. (m) 1876 ± 450 1840 ± 632 1763 ± 1032
Volume Change (M m3) −1.4 ± 0.2 −1.0 ± 0.2 −0.9 ± 0.2
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Figure 9. Model from the HR data relevant to the first three paroxysms. (A) Red circle indicates the position of the source,
gray arrows indicate the expected displacements and blue lines indicate the inverted baselines; (B) model fitting: green
points indicate the measured baseline variations, red points indicate the model predictions. The baselines are sorted in
descending order of the error (misfit).
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Table 2. Measured tilt components vs. model predictions for the 3 paroxysms. Tilt data are reported in microrads.

Paroxysm 1 Paroxysm 2 Paroxysm 3

Measured Predicted Measured Predicted Measured Predicted

x y x y x y x y x y x y
PLC 0.27 1.01 −0.41 2.35 0.19 0.82 −0.05 1.95 0.05 0.50 0.98 0.17
CDV 0.67 −0.22 0.44 −0.49 0.60 −0.20 0.35 −0.35 0.38 −0.08 0.20 −0.26
CBD 0.69 0.21 0.20 0.10 0.54 0.26 0.13 0.07 0.35 0.10 0.29 0.05
MNR 0.21 0.45 0.14 0.37 0.21 0.45 0.10 0.24 0.11 0.23 0.58 0.75
PDN 0.44 0.44 1.88 1.95 0.27 0.29 1.19 1.01 0.08 0.10 0.92 0.08
DAM 0.31 1.17 0.04 0.27 0.13 0.89 0.03 0.18 0.07 0.50 0.31 0.78
MGL −0.72 −0.37 −0.25 −0.08 −0.51 −0.35 −0.21 −0.06 −0.36 −0.18 −0.32 −0.22

In order to model the source feeding the entire sequence, that should represent the av-
erage location of the origin of the magma drained during the four paroxysms, we analyzed
the longer-term (12 days) but lower-noise data coming from GNSS and DInSAR. The 3D
deformation pattern depicted by integrating GNSS and DInSAR data from December 2 to
14 clearly defines a radial contraction of the entire edifice, accompanied by a general subsi-
dence centered on the summit part, indicating an evident deflation of the edifice. A circular
slight uplift at a lower altitude permits hypothesizing that a deep source was pressurizing,
able to produce a wider smooth effect, underlying the more evident and stronger deflation.
However, this uplift was not accompanied by radial horizontal expansion, the dominating
deformation being the centripetal direction of horizontal displacements imputable to the
deflation. For this reason, the deep pressurizing source cannot be constrained by a clear
deformation and we concentrated our efforts on modeling the deflating source.

In order to define the source of the observed cumulative deflation, we inverted the
3D SISTEM integrated data using a pressure source model, as formulated by [33], and
implemented it into the dMODELS Matlab® software package [34]. To search the minimum
of the residuals, we used an optimization routine based on the genetic algorithms approach,
as modified by [5], using the same procedure described in [23] by considering also the
volcano topography.

The goodness of the SISTEM integration, depends on the number of GPS points and
on the geometry of the GPS network, and this issue was largely investigated in [26].

Before using the integrated data, the deformation calculated by the integration has
been cchecked and validated at all corresponding GPS points, to ensure that it reproduces
what really observed by GPS; we also revert the SISTEM output into LOS displacements
for calculating the fit with the original DInSAR data (see supplementary material). Once
being sure that SISTEM integration does not introduce artifacts and unreal signals, we
think that inverting the integrated and validated data provides a better-constrained model
than inverting only the original GPS and DInSAR data. In this way, we gain millions of
points with 3D information instead of few tens with 3D and millions with only 1D.

The solution converged to a final fitness value of 75% with an average misfit of 1.4
and 4 mm for the horizontal and vertical components, respectively. The distribution
of the residuals (Figure 10) shows a general good fit of the expected deformation with
the observed one all over the volcano. Larger residuals can be observed on the vertical
component, where the uplift at a lower altitude remains unmodeled, while the subsidence
due to the deflation is well matched by the model.

The general solution for a prolate spheroid depends on eight parameters: the dimen-
sionless pressure change ΔP/ μ; the semimajor axis; the geometric aspect ratio A between
the length of the semimajor axis a and that of the two semiminor axes b; the source location
(x,y,z); the dip angle θ (measured from the free surface) and the azimuth angle ϕ (measured
clockwise from the positive North direction). In addition, we calculated the volume change
of the spheroid, according to [35].
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Figure 10. SISTEM inversion results. In the first row the real East–West, North–South and Vertical components are reported;
in the second and third row the corresponding Expected and Residual are reported, respectively; all the values are in mm.

The solution converged to an almost vertically dipping (78◦) prolate spheroid, N–S
oriented (N185E), located at about 6 km beneath the summit craters, losing about 6.5 million
cubic meters during the entire eruptive cycle (Table 3), which is close to the volume
(7 million cubic meters) estimated by [2]. This location should represent the original source
of magma, that was gradually depleted to feed the shallower single-shot sources, where
the gas exsolved and pressurized to charge each paroxysm.

Table 3. Parameters of the source modeled from SISTEM integrated deformation data.

Parameter Value

UTM Easting (m) 500,055 ± 59
UTM Northing (m) 4,179,769 ± 19

Depth b.s.l. (m) 6530 ± 22
Radius (m) 500 ± 0 (fixed)

A (b/a) 0.238 ± 0.01
ΔP/μ −0.18 ± 0.03

Dip Angle 78 ± 1◦
Azimuth 185 ± 2◦

Volume Change (M m3) −6.5

5. Discussion

HR data coming from tiltmeters and GNSS networks on Mt. Etna allowed us to
investigate in detail the very rapid deformation accompanying each of the four paroxysmal
episodes of the Voragine crater at Mt. Etna. From the time-series analysis it is evident that
the four paroxysms produced decreasing ground displacements, both on GNSS and tilt
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signals, confirming the decreasing energy and volumes emitted, as reported by [2]. By
inverting the ground deformation data recorded during the first three events, the location
of the modeled sources appears quite stable. Indeed, although the sources were estimated
separately in each of the considered periods, the coherence in the retrieved positions
suggests the presence of a single depletion volume; in fact considering the dispersion of
the three solutions, all of them fall in a small volume located beneath the summit craters
at a depth of about 5 km below the summit craters area. The involved volumes range
from 0.9 to 1.4 × 106 m3. The total volume of the first three paroxysms, coming from
the modeled sources by HR data, is about 3.3 × 106 m3. Even considering a hypothetical
volume of the fourth one, that should not exceed that of the third, the total volume is lower
than the volume erupted, as calculated by [2] for the entire sequence (around 7 × 106 m3).
This discrepancy could be related to the noisy data with respect to the low deformation
signal and/or to the not completely elastic behavior of the medium close to the surface
and around the summit craters and feeding system.

We should also consider that the shallow single-shot source mainly represents a level
where part of the magma, coming from depth, is temporarily stored for a few hours
before each paroxysm. Thus, the deflation does not necessarily represent the total volume
erupted from this source but only a partial variation of volume, the magma being mainly
in transit there.

The cumulated ground deformation revealed by more precise daily GNSS solution
and 12-days Sentinel-1 SAR interferogram depicts an overall wide deflation and contraction
of the entire edifice, suggesting a significant depletion of a deeper source, with respect
to those resulting from HR data inversions. The integration of both datasets makes the
ground deformation pattern even more evident and precise and allows a well-constrained
inversion to search for the source feeding the eruptive sequence. The modeled source is
a vertical and N–S oriented prolate spheroid, located at a higher depth of almost 6 km
b.s.l., always beneath the summit craters area. The volume lost by this source is about
6 × 106 m3, much more similar to the 7.1 × 106 m3 calculated by [2] for the entire sequence,
with respect to the single-shot sources. This seems to confirm the role of the shallower
source as a local and temporary storage of magma in transit and coming, instead, from this
middle-depth source at 6 km b.s.l. The DInSAR and integrated data also reveal a slight
uplift at lower altitudes on the flanks of the volcano; even though proving impossible
to be well constrained and modeled, this information enabled hypothesizing a further
and deeper source that was pressurizing during the entire period. As stated before, this
eventual deeper source needs more data to be constrained, over larger and different time
windows, and is beyond the scope of this investigation.

Considering this pulsating behavior of the shallow source, we can postulate that the
shallower source (~1.5–2 km b.s.l.) slowly accumulated, before each paroxysm, the same
volume of magma lost during each episode (as resulting from HR data inversions). We can
use the volume changes modeled and time intervals occurring between two consecutive
paroxysms to infer the magma feeding rate from the middle depth (~6 km b.s.l.) to the
shallower source, during each quiet phase. We can estimate that the shallow source charged
at a rate of about 10 m3/s before the second episode, 25 m3/s before the third one and
about 15 m3/s before the last lava fountain (considering a volume not greater than the third
one). This gives an average recharging rate of around 16 m3/s of magma ascent during the
quiet inter-paroxysm recharging phases. If we consider instead the total volume depleted
from the middle-depth source (6.5 × 106 m3), we can estimate an overall supply rate of about
29 m3/s of magma that moved from 6 km b.s.l. to the surface during the entire 2.6-days
period, or 31 m3/s if we consider the total volume (7.1 × 106 m3) reported by [2]. This
mean value (29 to 31 m3/s) averages a rate that actually oscillated from the recharging
rate of ~16 m3/s during closed-vent and non-eruptive conditions (magma moving from
6 to 1.5–2 km b.s.l), to the peak eruptive discharge rate of more than 300 m3/s during the
paroxysms (considering a mean volume of about 1.8 × 106 m3 erupted at each paroxysm
in about 90 min).
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We can perform a very preliminary comparison of this analysis with the last and
ongoing (at the time of writing) sequence of paroxysms at SEC (started on 16 February 2021).
There is still no precise estimation of the erupted volumes, so we can roughly estimate a
total volume of about 45 to 60 × 106 m3 erupted during 15 strong episodes occurring from
16 February to 19 March 2021 (based on the very first estimation of the volumes from INGV
bulletins available at https://www.ct.ingv.it/index.php/monitoraggio-e-sorveglianza/
prodotti-del-monitoraggio/bollettini-settimanali-multidisciplinari, accessed on 5 April
2021). Starting from this preliminary information, an overall supply rate of around 17 to
22 m3/s can be estimated over the entire month. This rate is comparable to what happened
in 2015 and analyzed here, leading to the supposition that the supply mechanism, geometry
and rates hypothesized for the 2015 paroxysms can be valid generally for other similar
eruptive sequences on Mt. Etna.

6. Conclusions

The coupling of high-rate, even if noisy, and precise, albeit if low-rate, data allowed
us to perform a comprehensive investigation of the dynamics leading to and enabling
very rapid magma movement and pressure accumulation and discharge, through an
impressive sequence of very violent eruptions. The overall picture coming from the
different rates data analyses constrains the feeding system underlying such a quick and
violent sequence of eruptive episodes (well summarized in Figure 11), allowing a rapid
magma upraise and discharge from the summit crater, located at about 3300 m a.s.l. at Mt.
Etna. In this framework, there is a deep, and not well-constrained here, pressurizing source
that provides gas-rich magma to a middle-depth reservoir, located at about 6 km depth.
This is the reservoir that gradually feeds the shallower system at about 1.5–2 km b.s.l.,
where the upper part of the magma batch temporarily stops and vesiculates, charging and
producing each paroxysm when the pressure, mainly due to the exsolution of gas, exceeds
the containment pressure of the hosting rocks inside the volcano.

 

Figure 11. Sketch of the feeding system resulting from HR and integrated ground deformation
modeling. A deep and fairly continuous magma upraise feeds a middle-depth storage level. During
the eruptive sequence, this storage is depleted to feed a shallower reservoir that works as a temporary
storage, charging to feed each single-shot paroxysm.
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The combined mechanism of two storage levels at different depths depicts the possible
feeding system of such high-discharge rate events, with a middle-depth storage of gas-rich
magma that charges, more or less continuously, at a recharging rate of about 15–20 m3/s, and
a shallower level where magma stops temporarily, accumulating pressure due to the gas
exsolution. When the pressure exceeds a threshold determined by lithostatic pressure and
structural conditions of the shallower feeding system, the paroxysm starts, draining not
only the magma accumulated in this shallower source but also part of that in the rest of the
feeding system at an eruptive discharge rate of more than 300 m3/s. When the gas pressure
is discharged below the threshold, the paroxysm ends and the shallower source starts to be
re-charged again. The overall supply rate of the entire sequence is about 29–31 m3/s, which
is similar to that estimated for the most recent sequence at SEC (February–March 2021).
Thus, the model suggests a machine-gun-like mechanism, comprising a middle-depth
reservoir continuously charging a shallower one that works as a firing chamber triggering
each single-shot paroxysm. This mechanism, and the overall supply rates needed to feed
this dynamic, could represent a general conceptual model for similar events at Etna and at
all volcanoes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app11104630/s1, XLS files refer to the tilt variations measured from December 2 to 7 at the eight
stations here considered. In the other three XLS files, the tilt measured for the first three paroxysms are
summarized. Each file lists the station name, its coordinates and its tilt components (in microradiants).
The baseline variations are stored in a data structure within the MAT file. The structure includes the
station names and locations, and a table with the baseline variations estimated for each period
of the piecewise linear regression. 3D_SISTEM_output.zip: zipfile containing Ue_SISTEM.asc,
Un_SISTEM.asc, Uu_SISTEM.asc SISTEM 3D Output (East, North and Up components of GPS
and DInSAR integrated deformation, respectively) in ESRI- ASCII grid format, Word Geodetic
System 1984 UTM, zone 33N (IGNF:UTM33W84), reference system (m) and a README.TXT file
describing these files. GPS.csv: GPS displacement relevant to 2–14 December 2015 timespan.
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Abstract: A seismic survey identified a basalt flow that could consist of cap rock of CO2 storage
beneath saline aquifer sediment in the Southern Continental Shelf of Korea. To determine the precise
depth of the basalt flow, specific depth-domain data processing of migration velocity analysis (MVA)
was applied to the seismic survey data. The accurate depth measurement of a target structure
provides crucial information when storing and stabilizing injected CO2 beneath basalt cap rock.
Strong reflections of seismic amplitude at the volcanic mounds were adjusted from the time domain
to the exact depth domain by the iterated velocity using MVA. The confidence of the updated
velocity was verified by the horizontal alignment of seismic events sorted according to their common
reflection point (CRP). The depth difference in volcanic mounds before and after MVA application
ranged from 32.5 to 60 m along the vertical axis, showing the eruption shape on the strong-amplitude
contour map in detail. The eruption shape of the top of volcanic mounds was verified with spatial
continuity in 3D geological interpretation. The presented results provide suitable information that
can be used to locate drilling sites and to prepare CO2 injection. The geological model obtained from
both time- and depth-domain processing can significantly influence the calculation of the storage
volume and can be useful for history matching studies.

Keywords: volcanic mounds; seismic time and depth processing; MVA; CO2 storage

1. Introduction

Areas affected by volcanic eruptions such as basalt lava flows or fissure vents are
frequently found across the Earth’s surface, arousing considerable scientific interest [1]. The
volcanic subsurface can be explored through the use of geophysical methodologies, e.g.,
gravity, magnetic and seismic surveys [2–4]. In the seismic exploration data, the volcanic
area shows strong amplitude events due to the relatively high contrast of density and
reflectivity [5]. Abrupt collapses, unexpected faults and subsidence are other common
characteristics of magmatic intrusions resulting from volcanic activity [6]. Aspects of the
reflection signal’s diversity present challenges in seismic data processing, particularly in the
estimation of velocity information [6–8]. Since the seismic data related to volcanic activity
have less commercial usefulness than the exploration data for hydrocarbon development,
the complicated data-processing procedure is often not applied. In addition, representative
research cases in which the velocity was obtained by processing seismic data have used
geophone-recorded data, which contain accurate depth information [7,8].

The increase in the scientific and/or engineering curiosity regarding volcanic regions
means that additional velocity-specific seismic data processing is required. Carbon capture
and storage (CCS) projects have led to expanded efforts to assess the storage, from depleted
reservoirs to saline aquifers with upper volcanic cap rocks [9,10]. Saline aquifers have
the advantage of large storage volume but require a sealing structure in order to safely
store CO2 [10,11]. Basalt flow, due to its rock-physical properties, may be a suitable cap
rock for the storing CO2 in the aquifer beneath the flow. Moreover, the mineralization
of carbon can prevent the migration of CO2, which leads to favorable stabilization for
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long-term storage [12]. To use basalt flow as the cap rock for CO2 storage, accurate
verification of the fracture zone and deformation should be carried out in both the time
and depth domains [13]. Optimized seismic data processing for basalt flow can provide
an accurate understanding of the possible fracture zone due to velocity anomalies and
possible deformations by subtle depth conversion.

In the Southern Continental Shelf of Korea (SCSK), there is an independent structure
formed by volcanic events, showing the potential of CCS [14,15]. Two-dimensional seismic
surveys were executed in 2018 across the areas of the SCSK to calculate the storage capacity
of CO2 for the saline aquifer. Determination of the exact depth of the target is important
when drilling injections and monitoring wells [16]. In the seismic sections, by applying
only time-domain processing, basalt flow shows high reflectivity contrast, which might
lead to errors during the geological interpretation. The boundary and lateral expansion of
basalt flow are not easy to analyze in terms of potential cap rocks for CO2 storage.

To enhance the seismic sections’ resolution, we applied both time-domain and depth-
domain processing using the MVA technique [17,18]. MVA is able to determine the velocity
with high accuracy by considering subtle changes in spatial velocities. We demonstrated
the iterated velocity and determined the accurate velocity from the flatness of the collected
CRP gathers. In order to confirm the effectiveness of our processing, amplitude contour and
root mean square (RMS) maps derived before and after MVA application were compared.
If the precise boundary and depth of volcanic mounds can be defined, CO2 storage capacity
can be calculated with confidence.

2. Structural and Geological Characteristics

The SCSK is located in the north of the East China Sea, which represents the western
arm of the Pacific Ocean. The rocks of the region are igneous, metamorphic and sedimentary
types, of which aged Precambrian gneiss and schist are the oldest [19]. Tertiary Pleistocene
strata are widespread, and large deltas and marine terrace deposits can be found along
the coasts. Several small, NNE-trending basins have been found, with a large area in the
intermediate basement [20]. A previous study noted that a sequence of Late Cretaceous
consists of fluviolacustrine, which is affected by volcanic activity [21].

Seismic reflections from the sequence between the Late Cretaceous and Late Eocene/
Early Oligocene are low to very high in amplitude, showing the various depositional
processes. The volcanic intrusion is thought to date back to the Early Miocene, and the flow
was covered by silt and siltstone until the Late Miocene [20,21]. The sedimentary layer
below the basalt eruption is mainly composed of unconsolidated inter-bedding sandstones,
claystones and occasionally siltstones, attributed to the subsidence of the Jeju Basin during
the Late Eocene to Early Oligocene [22]. A recent study focused on the potential for
CO2 storage using the basalt flow’s sealing ability above the sedimentary layer [16]. In
2018, the Korea Institute of Geoscience and Mineral Resources (KIGAM) carried out a
two-dimensional seismic survey on the Jeju Basin, north of the East China Shelf Basin, to
assess its potential for the storage of CO2 (Figure 1a). A total of nine multichannel seismic
lines were surveyed, covering an area of 130 square kilometers (Figure 1b).

The two formations of interest in this study were volcanic mounds and the lower
depositional layer, which can be cap rocks and storage for CO2. The results of the well-log
analysis showed that the petro-physical properties of good permeability and porosity are
important for potential CO2 storage [23]. The top volcanic mounds were identified by
anomaly in the well-log analysis for sonic and porosity properties (Figure 2). A vertical-
depth error can occur and/or be accumulated in the seismic data that normally are recorded
and displayed in the time-domain vertical axis.
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(a) (b)

Figure 1. (a) Survey area map and (b) seismic acquisition lines (modified from [24]). The bold red line is a representative
seismic processing line.

(a) (b)

Figure 2. (a) Geological summary of previous well-log of an adjacent study area (modified from [23]) and (b) well-log
analysis of (a) with storage potential zone. SPHI: sonic-derived porosity. Vsh: shale volume.
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3. Results of Seismic Data Processing

Seismic data processing consists of time- and depth-domain stages; the latter includes
MVA. The purpose of time-domain processing is to produce suitable subsurface images
to carry out successful geological interpretation of CO2 storage feasibility. Depth-domain
processing aims to accurately refine the depth of the subsurface, which is useful in the
drilling process and in the computation of storage volume. The following sections explain
how each of the two processing steps is executed, including the input parameters and
results of filter application.

3.1. Time-Domain Processing

Time-domain data processing was performed on offshore seismic survey lines
(Figure 1b) acquired from the study area (Figure 1a) using the Tamhae2 research vessel of
KIGAM. The bold red line in Figure 1b is a representative seismic line, with approximately
37.5 line-km. Seismic data were acquired using a 1.2 km (96 channels) streamer and the
air-gun source. Other detailed acquisition parameters are listed in Table 1.

Table 1. Seismic data acquisition parameters.

Parameter Description Value

Streamer

Streamer length (m) 1200
No. of channels 96

Group interval (m) 12.5
Offset ranges (m) 125~1325

Streamer depth (m) 7 ± 1

Recording Recording length (s) 5
Sampling rate (ms) 1

Source

Source type Bolt long-life air guns
Source volume (cu. in.) 1254

Source depth (m) 5
Source interval (m) 25

To confirm the effectiveness of the time-domain data processing techniques (Figure 3a)
applied in this paper, the results before and after the signal processing were compared
(Figures 4 and 5). Figures 4a and 5a show the shot gather and the stack section before the
signal processing, and there is a multiple (refer to the arrows) at around 1.05 s. We can
confirm from the results that the multiple was effectively attenuated (Figures 4b and 5b)
after the signal processing was applied. In addition, the amplitude spectra before (black
line in Figure 4c) and after (red line in Figure 4c) the signal processing were compared to
confirm the effectiveness of time-domain data processing. From Figure 4c, we can confirm
that the low-frequency signals were enhanced and the notches at higher frequencies were
removed after the signal-processing techniques were applied. Therefore, through the
application of time-domain data processing, the multiples and noise inherent in the field
data can be effectively attenuated. In addition, from the stack section (Figure 5b), after
applying the time-domain processing, the connectivity of the horizontal layers in the
region of interest (0.9 to 1.2 s) greatly improved, and detailed subsurface structures could
be imaged.
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Figure 3. Seismic data processing workflows in the (a) time and (b) depth domains.
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(a) (b)

(c)

Figure 4. Shot gathers (a) before and (b) after the signal processing. (c) Amplitude spectra before (black line) and after
(red line) the signal processing.
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(a)

(b)

Figure 5. (a) Stack section after applying only the preliminary processing in time-processing workflow. (b) Stack section
after applying the entire time-processing workflow (Figure 3a).

3.2. Depth-Domain Processing Using the MVA Technique

Depth-domain data processing flattened the CRP gathers, which proves that the
updated velocity is correct. The MVA technique is a data-processing method that can
obtain a reasonable velocity estimation using tomography or a wave equation for the
complex subsurface structures. Then, this velocity is used to generate a subsurface image
in the depth domain. In this study, a depth-domain data-processing workflow (Figure 3b)
using a tomography-based MVA technique [18] was applied. In order to obtain high-
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quality depth-domain results, e.g., seismic sections and velocities, the input data were
used with data (Figure 4b) whose signal-to-noise ratio was improved after applying the
signal processing in the time domain. The depth-domain interval velocity, converted from
the time-domain RMS velocity by the Dix equation [25], was used as the initial velocity
model. Next, the loaded time-domain data were sorted by the common offset data. After
calculating the travel time [26] using the eikonal solver, we performed Kirchhoff pre-stack
depth migration (PSDM) [27]. The migration results were sorted as CRP gathers, and the
residual move-out (RMO) technique [28] was applied. Finally, ray-based tomographic
velocity analysis [18] was applied to obtain the updated depth-domain velocity.

In this study, depth-domain processing using the MVA technique (Figure 3b) was
repeated three times. By comparing the depth-domain initial velocity (Figure 6a) converted
from the RMS velocity using time-depth conversion and the final velocity (Figure 6b)
obtained after MVA at the third iteration, we were able to confirm that the overall subsurface
velocity structures after applying MVA were greatly improved. In particular, it can be seen
from the velocity differences in Figure 6c that the velocity was significantly updated in the
region of interest (0.9 to 1.2 km), which corresponds to the depth of basalt flow.

(a)

(b)

Figure 6. Cont.
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(c)

Figure 6. (a) Initial depth-domain interval velocity for MVA obtained by converting the time-domain
RMS velocity. (b) Final updated depth-domain interval velocity after MVA at the 3rd iteration.
(c) Difference between (a) and (b).

In general, the CRP gather is analyzed to verify whether the velocity is correct. CRP
gathers are signals reflected from the same reflection point, so if the velocity is correct, the
CRP gather should be flat [28]. Therefore, we compared CRP gathers before (Figure 7a)
and after (Figure 7b) MVA to confirm that the final depth-domain velocity was reasonable.
From Figure 7, we can observe that the CRP gather became flatter after the MVA was
applied. Since the CRP gather was generated depending on the velocity, the depth of
the reflection events in the CRP gather was corrected using the updated velocity after
applying the MVA. In addition, in order to quantitatively confirm the accuracy of the
updated velocity, the velocity error curve according to the number of iterations is shown
in Figure 8. In general, the iteration number is determined by considering the trade-off
between accuracy and computational cost. It can be seen that the velocity error was reduced
to about 3.8% in the third iteration. From the error curve, we judged that the velocity
error sufficiently converged in the third iteration, and thus the MVA process was stopped.
Therefore, it was verified that the final depth-domain velocity obtained after applying the
MVA was reasonable.

Finally, to confirm the effectiveness of the depth-domain data processing, we compared
the stack sections before (Figure 9a) and after (Figure 9b) the MVA was applied. The red and
green lines represent the top of the basalt before and after MVA was applied, respectively.
In Figure 9b, the difference in depth between the two basalt tops ranges from 32.5 to 60 m.
The 3D depth-domain stack sections after applying MVA are also shown in Figure 10.
From the 3D results, the horizons between the in-line and the cross-line agree well with
each other, and the spatial depth variance of the basalt top before and after the MVA
application can be observed. Therefore, we confirmed that not only the velocity but also
the subsurface structure was corrected after applying the depth-domain data processing
using the MVA technique.
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Figure 7. (a) CRP gather before MVA and (b) CRP gather after MVA at the third iteration.

Figure 8. Velocity error curve at a depth of 960 m in the 2705th CRP gather.
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(a)

(b)

Figure 9. (a) Depth-domain stack section obtained by converting the time-domain result (Figure 5b). (b) Depth-domain
stack section after applying MVA at the 3rd iteration. The red and green lines represent the top of the basalt before and after
applying MVA, respectively. The difference in depth between the two basalt tops ranges from 32.5 to 60 m.
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Figure 10. 3D depth-domain stack sections after applying MVA at the 3rd iteration. The green and blue lines represent the
top of the basalt before and after applying MVA, respectively.

4. Seismic Interpretation

In order to compare the results obtained before and after the depth processing using
the MVA technique was applied, we interpreted a reflector, which was strong amplitude
(Figure 11). We picked the same reflector from the results obtained both before and after
depth processing was applied, and the reflectors are represented by contour maps in
Figure 11a,b. We confirmed the boundary using the seismic attribute of RMS analysis,
indicating an amplitude anomaly (Figure 11c,d). The RMS seismic attribute is a post-stack
analysis technique and computes the square root of the sum of squared amplitudes within
the specified window used.

The strong reflector from time processing (upper image in Figure 12a) vertically ranged
from 910 to 980 m, while the reflector from both time and depth processing (lower image
in Figure 12a) was mainly positioned below, ranging from approximately 970 to 1020 m.
The reflector was interpreted as the top of the volcanic mound. The volcanic body showed
high acoustic impedance compared with the surrounding clastic rocks, and products
derived from igneous rocks could be easily detected in sedimentary basins. The reflector
constrained to the RMS seismic attribute showed a circle-shaped geometry and the volcanic
body was located high in the center, indicating a volcanic mound (Figure 11a,c). Compared
with mound shape, in both time and depth processing (Figure 11b,d), lateral changes
were presented in greater detail, although the mound subjected to only time processing
(Figure 11a,c) was smoother. As a result of the interpretation, the results (Figure 12a) from
both time and depth processing using MVA show that the volcanic mound vertically shifted
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to a deeper position. The difference (Figure 12b) in the mound before and after depth
processing was applied was varied, ranging from 32.5 to 60 m. We suggest that geological
geometry or objects derived from both time and depth processing using MVA represent
vertical differences and show lateral variations (Figure 12b).

 

Figure 11. Contour maps of the strong reflector and RMS attributes. Geologically interpreted tops of the volcanic mounds
(a) before and (b) after depth processing. RMS amplitude attributes (c) before and (d) after depth processing showing
volcanic mounds’ anomalous region.

37



Appl. Sci. 2021, 11, 4244

Figure 12. (a) Overlapping tops of the volcanic mounds before (Figure 11a) and after (Figure 11b) the depth processing.
(b) The contour map represents vertical differences between Figure 11a,b.

5. Discussion

The direct subsurface information of a volcanic area can be acquired from the results
of analysis by drilling a core and well-logging. In the research area, we unfortunately did
not have adequate drilling or logging data. From the seismic survey data, we inferred a
basalt flow with strong amplitude contrast but could not determine the precise depth of
the target structure. Various geophysical methods pose challenges to acquiring the basalt
depth from indirect survey data. We focused on improving the velocity by using composite
seismic data-processing modules. MVA yielded accurate velocity information, and it is one
of the most innovative techniques among the tomography-based methods. Another option
for successful velocity calculation is the full waveform inversion method [29,30], which
is based on wave equation extrapolation. The selection of a velocity-calculation method
might be dependent on the available seismic data and geological interpretation.

The present seismic data-processing flow showed increased horizontal continuity
with regard to expansion phenomena, which leads to a reduced elevation range but a more
complicated shape. If more dense, gridded 3D seismic exploration data can be obtained
and processed, and more specific basalt eruptions can be observed in seismic images. Even
in the case of a 3D survey, the large aspect of the horizontal change will be similar and the
vertical depth will be similar, as demonstrated by the present results.

One challenge that remains unresolved is the tracking of changes in the anisotropic
medium. Although the basalt flow shows less anisotropy, it is necessary to accurately
consider the anisotropy of the cap rocks and images because it has migrated from the
eruption location. To consider the anisotropy, it is recommended to record the seismic
reflection signal using a streamer for as long as possible. With large offset data, anisotropic
MVA [31,32] will be possible, enabling the boundary of the basalt flow to be defined
more accurately.

6. Conclusions

The resolution of the basalt flow structure was improved by the use of optimized time-
and depth-domain data processing of offshore seismic data regarding the use of cap rocks
for CO2 storage. Time processing yielded a subsurface image section with an improved
signal-to-noise ratio by attenuating multiples and noise. Depth processing refined the
velocity distribution so that the depth of the basalt flow was corrected by the lateral and

38



Appl. Sci. 2021, 11, 4244

vertical axis. Depth-domain processing used the MVA technique to update the velocity
by the iteration of the travel-time calculation. Flattened CRP gathers qualitatively proved
that the results of the processing approached the exact depth of the basalt flow. To quantify
the accuracy of MVA, we confirmed that the velocity error stably decreased until third
iteration. The slice map showed the aspect of basalt intrusion in detail and suggested that
the cap rock was located at a greater depth of approximately 32.5–60 m compared with
when only time-domain processing was applied. Comprehensive seismic data processing
including both the time and depth domains is required when a relatively deep subsurface
structure resulting from volcanic activity is to be imaged.
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Featured Application: Volcano activity mapping and monitoring.

Abstract: The RST (Robust Satellite Techniques) approach is a multi-temporal scheme of satellite data
analysis widely used to investigate and monitor thermal volcanic activity from space through high
temporal resolution data from sensors such as the Moderate Resolution Imaging Spectroradiometer
(MODIS), and the Spinning Enhanced Visible and Infrared Imager (SEVIRI). In this work, we present
the results of the preliminary RST algorithm implementation to thermal infrared (TIR) data, at 90 m
spatial resolution, from the Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER). Results achieved under the Google Earth Engine (GEE) environment, by analyzing 20 years
of satellite observations over three active volcanoes (i.e., Etna, Shishaldin and Shinmoedake) located
in different geographic areas, show that the RST-based system, hereafter named RASTer, detected a
higher (around 25% more) number of thermal anomalies than the well-established ASTER Volcano
Archive (AVA). Despite the availability of a less populated dataset than other sensors, the RST
implementation on ASTER data guarantees an efficient identification and mapping of volcanic
thermal features even of a low intensity level. To improve the temporal continuity of the active
volcanoes monitoring, the possibility of exploiting RASTer is here addressed, in the perspective of an
operational multi-satellite observing system. The latter could include mid-high spatial resolution
satellite data (e.g., Sentinel-2/MSI, Landsat-8/OLI), as well as those at higher-temporal (lower-
spatial) resolution (e.g., EOS/MODIS, Suomi-NPP/VIIRS, Sentinel-3/SLSTR), for which RASTer
could provide useful algorithm’s validation and training dataset.

Keywords: volcanoes; ASTER; Robust Satellite Techniques; Google Earth Engine

1. Introduction

Several studies have shown the relevant contribution of satellite systems for inves-
tigating and monitoring active volcanoes, also in areas where ground-based devices are
fully operational (e.g., [1–4]). Those systems are capable of providing information about
changes of thermal volcanic activity leading to eruptions and of estimating the radiant
flux and the mass eruption rate (e.g., [5,6]). Moreover, they enable the identification of
thermal anomalies associated with hot degassing. This aspect is particularly relevant,
considering that short-term variations of non-eruptive thermal fluxes are essential for
volcano monitoring (e.g., [7]).

Among the systems developed to monitor active volcanoes from space, MODVOLC
exploits MODIS (Moderate Resolution Imaging Spectroradiometer), MIR (Medium In-
frared) and TIR (Thermal Infrared) data, at 1 km spatial resolution, to detect and quantify
high-temperature features such as lava flows. MODVOLC provides information about
thermal anomalies in terms of hotspot pixel number, total MIR radiance and radiant flux,
in both nighttime and daytime conditions [8,9].
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MIROVA [3] is another well-established MODIS-based system, performing over more
than 300 active volcanoes [10]. This system shows a good efficiency in also detecting
subtle hotspots (e.g., [3]). On the other hand, the lack of sensitivity of MODVOLC to low-
level thermal anomalies, ascribable to the use of a fixed threshold test used globally, was
demonstrated in several previous studies, also through comparison with MODLEN [11]
and RST (Robust Satellite Techniques) (e.g., [12,13]). The latter is a multi-temporal scheme
of satellite data analysis, which was used with success to study and monitor several active
volcanoes located in different geographic areas, using high temporal resolution satellite
data, from sensors such as AVHRR (Advanced Very High Resolution Radiometer), MODIS
and SEVIRI (Spinning Enhanced Visible and Infrared Imager) (e.g., [14,15]), offering an
extended dataset of multi-year satellite observations. The algorithm has also shown a
high potential in detecting subtle thermal activities, which may precede volcanic eruptions
(e.g., [2,4,16]).

In this work, we assess the RST potential in detecting and mapping volcanic ther-
mal anomalies by satellite through ASTER (Advanced Spaceborne Thermal Emission and
Reflection Radiometer) TIR data, at 90 m spatial resolution. ASTER was largely used in
volcanology, despite the nominal revisit time of 16 days, thanks to its features in terms of
spectral and spatial resolution (e.g., [17,18] and reference herein). Here, we show the re-
sults of the preliminary RST implementation on ASTER data, performed under the Google
Earth Engine (GEE) environment. GEE is a cloud-based platform providing access to thou-
sands of satellite images (e.g., European Space Agency-Sentinel, United States Geological
Survey-Landsat), and enabling their handling and analysis at planetary scale (see [19]
for more details). The high computational resources of GEE were previously exploited
to develop an freely accessible tool devoted to map volcanic thermal anomalies at global
scale (https://sites.google.com/view/nhi-tool), using MSI (Multispectral Instrument) and
OLI (Operational Land Imager) SWIR (shortwave infrared) data at 20/30 m spatial resolu-
tion [20,21]. Here, we evaluate the contribution of an RST-based system analyzing ASTER
TIR data, named RASTer (Robust ASTER Thermal anomaly system), in supporting the
operational monitoring of active volcanoes from space, particularly for subtle hotspots
identification. Mt. Etna (Italy), Shishaldin (AK, USA) and Shinmoedake (Japan) thermal
activities are analyzed in this study by comparing RASTer detections to those from the
largely accepted AVA (Aster Volcano Archive) database.

2. Materials and Methods

2.1. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)

ASTER is one of five instruments (i.e., CERES, MISR, MODIS and MOPITT) aboard
the Terra platform, launched in December 1999. Until April 2008, ASTER has collected
images in 14 spectral bands (an additional backward-looking band is used for stereographic
observations) in the VNIR (visible and near infrared), SWIR and TIR regions (Table 1).
Since April 2008, ASTER has provided data only in the VNIR and TIR bands, owing to the
failure of SWIR instrument. Each ASTER scene covers an area of 60 × 60 km; the spatial
resolution ranges from 15 m (VNIR) to 90 m (TIR). Due to several constraints (see [22]),
ASTER data acquisition is not everywhere guaranteed every 16 days, as its acquisitions
follow a pre-defined and/or an “on-demand” scheduling.

Since November 2016, all ASTER Level 1 Precision Terrain Corrected Registered At-
Sensor Radiance Product (AST_L1T) have been made freely available in Google Earth
Engine. Data stored in AST_L1T imagery are calibrated at-sensor radiance, and they have
been geometrically corrected and rotated to a north-up in UTM projection (see [23] for
more details).
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Table 1. Spatial and spectral resolutions of the ASTER bands.

Name Resolution Wavelength

B01 15 m 0.520–0.600 μm
B02 15 m 0.630–0.690 μm
B3N 15 m 0.780–0.860 μm
B04 * 30 m 1.600–1.700 μm
B05 * 30 m 2.145–2.185 μm
B06 * 30 m 2.185–2.225 μm
B07 * 30 m 2.235–2.285 μm
B08 * 30 m 2.295–2.365 μm
B09 * 30 m 2.360–2.430 μm
B10 90 m 8.125–8.475 μm
B11 90 m 8.475–8.825 μm
B12 90 m 8.925–9.275 μm
B13 90 m 10.250–10.950 μm
B14 90 m 10.950–11.650 μm

* Operational until April 2008.

2.2. Robust Satellite Techniques (RST)

The RST technique is an advanced change detection scheme (whose detailed de-
scription can be found in [24]), which considers each anomaly in space-time domain as a
deviation from a “normal” state, which may be determined by analyzing multi-annual time
series of homogeneous (e.g., same calendar month and overpass time) cloud-free satellite
records. A statistically based index, named ALICE (Absolutely Llocal—double “l” is used
to strengthen the concept that the index is local in space as well as in time [25]—Index of
Change of the Environment [25]), taking into account the signal variability due to natural
(e.g., different land covers, solar exposition) and observational (e.g., sun zenith angle,
satellite view angles) conditions, enables the identification of anomalous events in the
space-time domain, guaranteeing a high trade-off between reliability and sensitivity. The
ALICE index, in its general formulation, is computed as follows:

⊗V (x, y, t) =
V(x, y, t)− μV(x, y)

σV(x, y)
(1)

where V(x, y, t) is the signal measured at the time t and location (x, y), μV(x, y), and
σV(x, y) are corresponding expected value (generally the temporal mean) and standard
deviation computed using a homogeneous dataset (see above).

The RST detection scheme was used in several previous studies to identify hotspots
associated with volcanic activity (e.g., [2,4,12]), forest fires (e.g., [26]), gas flaring (e.g., [27])
and other events (e.g., [28]) analyzing MIR and/or TIR signal. Here, it is implemented,
for the first time, on ASTER TIR data by assessing its performance in mapping thermal
anomalies associated with volcanic activity.

2.3. Robust ASTER Thermal Anomaly System (RASTer)

In this paper, we implemented the RST algorithm under GEE by analyzing the signal
measured in the ASTER channel 13, which is centered at 10.6 μm (see Table 1). The index
in Equation (1) is then calculated pixel by pixel, according to the general RST prescriptions:

⊗TIR (x, y, t) =
BT10.6(x, y, t)− μBT10.6(x, y)

σBT10.6(x, y)
(2)

In Equation (2), the role of the variable V(x,y,t) is played by the brightness temperature
BT10.6(x, y, t) measured at the Top of Atmosphere (TOA) at around 10.6 μm (band 13),
μBT10.6(x, y), and σBT10.6(x, y) are the temporal mean and standard deviation computed for
each location (x,y) over 20 years (i.e., 2000–2020) of ASTER observations (e.g., a total of
635 ASTER images were analyzed to generate the spectral reference fields at Shinmoedake).
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The ⊗TIR(x, y, t) index is a standardized variable having a Gaussian behavior. Hence, pixels
having values of ⊗TIR(x, y, t) > 3 have a probability around 99.85% of being anomalous
(e.g., [13]). As discussed in previous studies, the ALICE index is intrinsically protected
against site effects (e.g., natural warming of volcanic rocks [2]). On the other hand, in this
work, due to a dataset much less populated than other sensors (in average 25–35 ASTER
daytime/nighttime images per month, spanning over twenty years of observations, are
available), we used a normalized index in combination with that in Equation (1) to also
detect subtle hotspots with a high confidence level of detection:

NDB12−B13(x, y, t) =
BT9.1(x, y, t)− BT10.6(x, y, t)
BT9.1(x, y, t) + BT10.6(x, y, t)

(3)

In Equation (3), BT9.1(x, y, t) and BT10.6(x, y, t) are the brightness temperatures mea-
sured at ~9.1 μm (i.e., band 12) and ~10.6 μm (i.e., band 13). TOA (Top of Atmosphere) BT
values were calculated from the radiance at sensor. High-temperature targets, emitting
strongly at shorter rather than longer TIR wavelengths, should lead to positive values
of the NDB12-B13 index. Hence, RASTer identifies thermal anomaly if at least one of the
following conditions is satisfied:

⎧⎪⎪⎨
⎪⎪⎩

⊗TIR(x, y, t) ≥ 4 (high intensity hot spots)
OR

⊗TIR(x, y, t) ≥ 3 AND NDB12−B13(x, y, t) > 0
(mid − low intensity hot spots)

(4)

The first test enables the identification of high-temperature features such as lava
flows, while the second one should favor the identification of less intense hotspots (e.g.,
those associated with a mid-low Strombolian activity), increasing the confidence level of
detection by combining the two above defined indices (i.e., ⊗TIR(x, y, t) and NDB12-B13).

2.4. The AVA Database

The ASTER Volcano Archive (AVA) is an archive of over more than 1500 active vol-
canoes dedicated to their global monitoring, providing access to thousands of daytime
and nighttime ASTER imagery at full resolution. Moreover, the AVA database also in-
cludes information about spectral signatures of volcanic emissions (e.g., eruption columns
and plumes), surficial deposits (e.g., lava flows) and eruption precursor phenomena
(e.g., [29]). Since 2000, the AVA database has included products (e.g., thermal anoma-
lies maps) generated from ASTER L1B granules. The AVA database, whose data and
products are disseminated in a common format (e.g., HDF, TIFF, KML) through the website
http://ava.jpl.nasa.gov was continuously updated until late 2017 ([18]). Information from
this ASTER-based system was also used to assess thermal anomalies flagged by algorithms
running on high temporal resolution satellite data (e.g., [30]). In this paper, we compare
RASTer to AVA detections by quantifying differences in detecting and mapping thermal
anomalies through ASTER TIR data over three different volcanic areas (see next section).

3. Results

3.1. Etna Volcano

Mt. Etna (37.748◦ N–14.999◦ E) is a stratovolcano located in Sicily (Italy) and represents
one of the most active volcanoes in Europe. Gas/ash emissions, Strombolian activities,
lava fountains and lava flows generally characterize its eruptive activity [31,32]. Mt. Etna
eruptions generally occur from summit craters (i.e., Voragine, Bocca Nuova, North East
Crater, Southeast Crater and New Southeast Crater; [33], e.g., during 2011–2015, [34–36], as
well as at the time of writing, intense paroxysms occurred; [37]), although some voluminous
flank eruptions were also recorded in recent years (e.g., July–August 2001; October 2002–
January 2003; September 2004–March 2005; May 2008–July 2009; [38,39]).
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Figure 1 displays the temporal trend of hot pixels flagged by RASTer (red triangles)
and AVA (green triangles) at Mt. Etna over the period 2000–2017 by analyzing an area of
10 km of radius centered around the summit crater. The plot shows that both RASTer and
AVA considered the eruptive events of July 2001 as the most intense (see hot pixels number).
In general, all the flank eruptions (see boxes in Figure 1) occurring during the investigated
period were well detected by both systems. Figure 2 displays, for instance, the thermal
anomaly maps generated by RASTer during some Mt. Etna flank eruptions. In particular,
the daytime ASTER scene of 29 July 2001 (Figure 2a) shows how RASTer mapped the areas
inundated by lava (see red and yellow pixels), indicating that the lava flow, moving in the
south direction, extended up to about 1120 m elevation. Figure 2b displays the RASTer
detection of 18 March 2014, showing a lava overflow from summit craters.

Figure 1. Time series (2000–2017) of the daily number of hot pixels flagged by RASTer and AVA at Mt. Etna. Dotted black
rectangles indicate the periods of Mt. Etna flank eruptions; these eruptive events show the highest daily number of hotspots.
The intense explosive and effusive activity at the Southeast Crater is also highlighted in the period September–December
2006. Similarly, the birth and growth of the New Southeast Crater in 2011–2015 is shown on the right side of the diagram.
Finally, a significant number of hotspots characterized Strombolian activity in 2017, mainly at the Voragine (VOR) and Bocca
Nuova (BN) craters.

In comparison with AVA, RASTer was capable of better mapping also less extended
thermal anomalies (e.g., those associated with moderate Strombolian activities). Two
examples are shown in Figure 3, displaying AVA and RASTer detections in reference to
the Mt. Etna flank eruptions of 21 June 2008 and 27 October 2002. It is worth noting as
RASTer was capable of mapping extensively and continuously (in the space domain) the
main lava flows. Moreover, it correctly identified (on 27 October 2002, Figure 3b) some
thermal anomalies that were not flagged at all by AVA (see crater area).
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Figure 2. Thermal anomalies detected by RASTer on ASTER scenes during the Mt. Etna flank eruptions of (a) 29 July 2001;
(b) 18 March 2014. More intense TIR anomalies referring to pixels with ⊗TIR(x, y, t) ≥ 4 are reported in red. The less intense
ones, with ⊗TIR(x, y, t) ≥ 3 AND NDB12−B13(x, y, t) > 0 (see text) are yellow colored. In the background, the ASTER band
3 TIR image.

The potential of RASTer in detecting subtle hotspots is emphasized in Figure 4, in
reference to Strombolian activity of January–May 2020. The figure shows the identification
of a thermal anomaly at the summit craters, where a Strombolian activity, gas-and-steam
and ash emissions occurred since October 2019 (https://www.ct.ingv.it/, multidisciplinary
bulletins), becoming spatially more extended during February–early March 2020. After-
ward, the number of hot pixels decreased, marking the reduction of thermal volcanic
activity at the Voragine-Bocca Nuova (VOR-BN) complex (the former Central Crater of Mt.
Etna). The comparison with information from field observations demonstrates the capacity
of the RASTer system in monitoring the whole dynamic of Mt. Etna thermal activity, up to
its lowest levels of intensity.
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Figure 3. Thermal anomalies detected on ASTER scenes during the Mt. Etna flank eruptions of (a) 21 June 2008 and (b)
27 October 2002 by RASTer (left side) and AVA (right side). Hotspots detected by RASTer are depicted as in Figure 2. The
hotspots detected by AVA are depicted in red.
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Figure 4. Thermal anomalies detected by RASTer at Mt. Etna during the period January–May 2020, associated with the
Strombolian activity recorded at the Voragine-Bocca Nuova complex.

3.2. Shishaldin Volcano

Shishaldin volcano is one of over 40 active volcanoes of Alaska (USA). This strato-
volcano, which is located in the Unimak Island (54.7554◦ N–163.9711◦ W), has a nearly
symmetrical cone (~16 km of diameter at the base) and reaches 2857 m above sea level
(the highest altitude in the Aleutian Islands). About 40 historical eruptions have occurred
at Shishaldin volcano (a summary of those events can be found in [40]). After 2000, a
number of eruptive episodes occurred; the main eruption occurring during 2000–2017
was that recorded on 17 January 2014. It was characterized by the lava emission within
the crater, low-level steam plumes, sporadic dustings of ash and ballistics on volcano
flanks [41]. Starting from 30 January 2014, satellite observations revealed an increase of
the surface temperature [42]. The presence of lava inside the crater was then reported
on 25 March, 13 May, 1 October and in late January 2015 [40,42]. Afterwards, Shishaldin
showed a low-level activity, continuing throughout 2015 and until the first months of 2016.
A new lava emission inside the crater occurred on 23 October 2019. In the following weeks,
lava flowed down the N and NE flanks; lava flows were revealed by independent satellite
observations during November–December 2019 [43]. In January 2020, a new lava effusion
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occurred; lava affected the northeast (traveling down for 2 km) and north flanks, producing
meltwater lahars [43].

Figure 5 displays the time series of RASTer and AVA detections at Shishaldin for the
period January 2014–2016, when both systems were operational. We considered an area of
8000 m of radius around the summit crater to perform the comparison. The plot shows that
RASTer detected a higher number of thermal anomalies than AVA and better emphasized
a number of eruptive episodes of the investigated volcano (in terms of daily number of
hotspots), indicating that the most intense Shishaldin activity occurred on 24 January 2015,
in presence of lava inside the crater.

Figure 5. Time series of daily number of hotspots flagged by RASTer and AVA (January 2014–2016) at Shishaldin volcano.

Additionally, to assess the RASTer capacity in providing information about thermal
anomalies at Shishaldin in recent years, Figure 6a shows an example of thermal anomalies
detected on ASTER TIR data on 20 October 2019, in correspondence with a minor thermal
activity that occurred at the summit crater. Figure 6b displays the lava flow on 8 January
2020, separating in two branches moving in the NW and NE direction, respectively. Those
maps confirm the RASTer efficiency in mapping lava flows (providing unique information
in periods when AVA products were not available), preserving a high sensitivity level even
in areas located at the high latitudes, characterized by a cold background, where traditional
fixed thresholds methods generally do not perform well (e.g., [44]).
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Figure 6. Thermal anomalies detected by RASTer at Shishaldin volcano on ASTER scenes of 20 October 2019 (a) and 8
January 2020 (b).

3.3. Shinmoedake Volcano

Shinmoedake (31.931◦ N–130.864◦ E) is an andesitic stratovolcano (1421 m above
sea level) located in Kyushu (Japan). The major Shinmoedake eruption occurred during
1716–1717. Other intense eruptive events were those of 1822, 1959, 1991 and 2008 (e.g., [45]).
In recent years, a new eruption occurred on 19 January 2011 ([46]). On 28 January, a lava
dome of about 200 m in diameter appeared on the crater floor. In the following three days,
the dome grew up to 600 m in diameter, as indicated by independent satellite observations
and overflights (e.g., [45,47]). The dome stopped growing in early February and only a
number of explosive episodes occurred in the following months.

The comparison of RASTer and AVA detections at Shinmoedake revealed the occur-
rence of only two thermal anomalies over 17 years of ASTER observations. They were
associated with the January–February 2011 eruption. Figure 7 shows these features, re-
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vealing that RASTer detected a higher number of hot pixels than AVA. In detail, Figure 7a
shows the thermal anomalies associated with a lava dome inside the crater (on ASTER
scenes of 31 January and 7 February 2011), which were underestimated by the AVA system
(see Figure 7b).

Figure 7. Thermal anomalies (red pixels) detected at Shinmoedake volcano on January–February 2011 (a) from RASTer;
(b) from AVA.

After the eruptive episodes of 2011, a new eruption was recorded on 6 March 2018.
A lava overflow to the NW rim of the summit crater was then observed three days later
([48]). Lava effusion stopped at the end of April 2018. Even in this case, it was not possible
to compare RASTer with AVA detections. Figure 8 shows the thermal anomaly detected by
RASTer from ASTER TIR data on 25 March 2018, confirming with a high accuracy level the
capacity of the proposed system in mapping lava flows.
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Figure 8. Thermal anomalies detected by RASTer at Shinmoedake volcano on 25 March 2018.

4. Discussion

We compared the RASTer and AVA detections in both nighttime and daytime con-
ditions over three different active volcanic areas. Table 2 summarizes the results of this
comparison, performed over the period May 2000–August 2017. The first column shows
that at Mt. Etna and Shinmoedake, RASTer and AVA flagged the presence of thermal
anomalies on the same number of ASTER scenes, although the number of hot pixels was
significantly different (see second column). Common thermal anomaly detections charac-
terized up to 86 ASTER scenes over Mt. Etna (see third column) where, however, higher
was the number of hot pixels flagged by RASTer. On the other hand, the number of unique
detections (fourth column) shows a possible complementarity of the two systems, which
could increase the continuity of information. In general, the higher number of hotspots
flagged by RASTer reveals a higher sensitivity to mid-low intensity thermal anomalies than
AVA. This is also confirmed by results achieved at Shishaldin volcano, where only two
thermal anomalies were flagged by AVA (see also results section).

Table 2. Summary of RASTer and AVA comparison performed by analyzing ASTER TIR data of 2000–2017 over Etna (Italy),
Shinmoedake (Japan) and Shishaldin (AK, USA).

Volcano

Number of ASTER Images
with Detected Thermal

Anomalies (Until August 2017)

Number of Pixels
Flagged as Thermal

Anomalies

Common Detections Unique Detections

Number
of Scenes

Number of Hot
Pixels

Number of Scenes

RASTer (R) AVA (A) R A R A R A

Etna 100 100 4070 3036 86 3947 3017 14 14
Shinmoedake 2 2 60 19 2 60 19 0 0

Shishaldin 9 2 26 2 2 8 2 7 0

Thermal anomalies flagged by RASTer, including those undetected by AVA, were in
good agreement with information from volcanological reports, as shown for instance in
Figure 9 in reference to the Mt. Etna activity. The figure displays the thermal anomalies de-
tected by RASTer on ASTER data of 2000–2020 and three different levels of thermal activity
derived from field reports, independent observations and scientific papers [33–39,49,50]. It
should be pointed out that RASTer detections were mostly associated with documented
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periods of Mt. Etna activity. An analysis is currently in progress to better assess hotspots
flagged in periods of undocumented thermal volcanic activity (e.g., 27 July and 4 August
2012). Those features were probably associated with minor thermal activities (e.g., [12])
unreported by field reports, also confirming the relevance of satellite observations in pro-
viding information about subtle phases of unrest in well-monitored volcanic areas (e.g., [4]).
Regarding the Shishaldin volcano—where, as for Shinmoedake, a long-quiescence period
occurred, about 88.8% of detected thermal anomalies were ascribable to intra-crater ther-
mal activities (e.g., May 2014–January 2015), and to lava effusions from volcano flanks
(e.g., January 2020) reported by the Global Volcanism Program (GVP). Thermal anomaly
detected by RASTer, ASTER scene of 12 August 2009, which was not confirmed by field
reports, is consistent with MODIS observations of July–August 2009 [51].

Figure 9. Time series of hot pixels flagged by RASTer at Mt. Etna in the period May 2000–2020 and different intensity levels
of Mt. Etna thermal activity (colors from yellow to red).

Those results show that RASTer provided reliable information about volcanic thermal
features of a different intensity level. This aspect is particularly relevant, considering that
the RST technique for volcanological applications (e.g., RSTVOLC algorithm) was previously
implemented on high temporal (low spatial) resolution satellite data, for which statistical
analyses can be based on a highly populated dataset. Hence, this work demonstrates
that RST is also capable of providing reliable results using mid-high spatial resolution
satellite data and in the presence of a less populated dataset (as for ASTER). It should be
stressed that, in this case, we did not implement the iterative pre-process used by RST
to remove signal outliers (e.g., extremely hot/cold pixels) [24] within GEE. Nonetheless,
RASTer was capable of performing an accurate mapping of thermal anomalies, as shown
in Figure 10 in reference to the ASTER scene of 17 October 2016 at 09:59 UTC. In detail,
Figure 10a shows the identification of some anomalous pixels at BN-VOR over the Mt.
Etna crater area. This thermal anomaly detection integrated information retrieved from
the Sentinel-2 MSI scene of the same day at 09:40 UTC, provided by the NHI (Normalized
Hotspot Indices) algorithm through the GEE-based tool [20]. The latter, indeed, flagged
some hot pixels over SEC (Southeast Crater-New Southeast Crater complex), (see blue
pixels in Figure 10b), but did not provide information about the BN-VOR thermal activity
detected by RASTer (red pixels). This thermal activity is probably associated with the
presence of incandescent material under the fresh lava, which was independently observed
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on the ground a few days before the ASTER overpass (e.g., [52]). Differences in thermal
anomaly identification are ascribable to the known limitations (e.g., missed detections in
presence of degassing plumes [24]) and advantages (mainly associated with the use of
satellite data at higher spatial resolution) of the NHI algorithm, which exploits NIR-SWIR
Sentinel-2/MSI observations, when compared with the RST-based approach applied here
to ASTER TIR data.

Figure 10. (a) ASTER TIR image 17 October 2016 at 09:54 UTC covering Mt. Etna area; (b) thermal anomalies detected by
RASTer (red pixels) and NHISWIR ([20]) on Sentinel-2/MSI data of 09:40 UTC (blue pixels) overlapped to the topographic
map of Mt. Etna.

The possible complementarity between RASTer and NHI systems is further enhanced
in the temporal domain, as shown in Figure 11 in reference to the Mt. Etna Strombolian
activity of 14–17 January 2021 where the integration of ASTER and Sentinel-2 observations
allowed for a more continuous monitoring of thermal volcanic activity. This integration can
also be usefully extended to other sensors (e.g., NHI runs on Landsat-8/OLI data [20,21]),
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further increasing the temporal continuity of active volcanoes monitoring that, for the
high-latitude regions, can today reach a mean temporal coverage up to 2 days (Figure 12).

Figure 11. Mt. Etna activity detected by NHI through the indices NHISWNIR and NHISWIR (the latter is used to detect
mid-low intensity hotspots [20]) on Sentinel-2/MSI data of 14 and 17 January 2021 (left and right panels) and by RASTer on
ASTER scene of 16 January 2021 (middle panel).

Figure 12. Evolution (2016–2021) of the temporal coverage achievable using a multi-satellite monitoring system integrating
L8-OLI, S2-MSI and Terra-ASTER observations. The plot shows for the Shishaldin volcano location the average temporal
gap among observations. Note as the launch of Sentinel-2B at the end of 2017 dramatically reduced the temporal gap from 4
on average (maximum 9) to 2 (maximum 3) days.

In addition, RASTer could be profitably used to assess information from systems
monitoring volcanoes in near real time (using satellite data at lower spatial resolution),
apart from areas (e.g., equatorial zones) where the scarcity and the bad quality of ASTER
images do not enable the full RASTer implementation. Among those systems, the ones
sharing the same RST-based approach, applied to data from polar (e.g., [2,14,30]) and
geostationary (e.g., [53]) meteorological satellite sensors, will benefit from a RASTer-based
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validation and training. The RASTer contribution to detect and map lava flows and other
thermal features related to volcanic activity is particularly relevant, considering that AVA
products are no longer available (since 2017), the NHI usage on ASTER data is limited
to 2000-2008 [54] and that other recent systems such as the ASTER Volcanic Thermal
Output Database (AVTOD; [55]) operate over specific regions of interest and not globally.
Indeed, ASTER also continues to play an important role in supporting volcanic activity
monitoring from space at the time of writing. This is demonstrated by Figure 13, where lava
flow (moving in E and SE direction toward Valle del Bove), associated with the powerful
Mt. Etna paroxysm of 16 February 2021 and the thermal activity at summit craters were
correctly identified and mapped by RASTer.

Figure 13. Thermal anomaly (red/yellow pixels) over Mt. Etna area detected by RASTer on 17 February 2021.

5. Conclusions

In this work, we presented and tested an RST-based algorithm to identify and map
volcanic thermal features through ASTER TIR data, processed under the GEE platform.
By analyzing results retrieved in three active volcanic areas (i.e., Etna, Shishadin and
Shinmodake), through comparison with the AVA database, we found that RASTer was
capable of successfully identifying thermal anomalies (as indicated by the relevant number
of unique detections), also providing accurate information about these features in terms
of shape and spatial extent. These outcomes demonstrate that RASTer may support the
monitoring of thermal volcanic activity from space, despite some limitations. Main factors
that could affect the RASTer detections are in fact bush fires, when occurring along the
volcano flanks, and clouds that may obscure the underlying thermal anomalies. The
computation of the normalized index defined in Equation (3) according to the general RST
detection scheme, along with the implementation of an iterative procedure devoted to
filter out signal outliers under the GEE environment, should further increase the RASTer
performance and will be the aim of future investigations.

This study also encourages the RST implementation on data from previous Landsat
missions and relative TIR sensors (Thematic Mapper and Enhanced Thematic Mapper plus).
Those data should favor the investigation of thermal volcanic activities occurring in the
past. Finally, this work opens new scenarios regarding the possible RST implementation
on Landsat-8/TIRS (Thermal Infrared Sensor) data at 100 m spatial resolution, especially
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in view of the launch of the next Landsat-9 satellite, which will improve the temporal
resolution of Landsat observations from 16 to 8 days.
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Abstract: The Methana volcano in Greece belongs to the western part of the Hellenic Volcanic
Arc, where the African and Eurasian tectonic plates converge at a rate of approximately 3 cm/year.
While volcanic hazard in Methana is considered low, the neotectonic basin constituting the Saronic
Gulf area is seismically active and there is evidence of local geothermal activity. Monitoring is
therefore crucial to characterize any activity at the volcano that could impact the local population.
This study aims to detect surface deformation in the whole Methana peninsula based on a long
stack of 99 Sentinel-1 C-band Synthetic Aperture Radar (SAR) images in interferometric wide swath
mode acquired in March 2015–August 2019. A Multi-Temporal Interferometric SAR (MT-InSAR)
processing approach is exploited using the Interferometric Point Target Analysis (IPTA) method,
involving the extraction of a network of targets including both Persistent Scatterers (PS) and Distributed
Scatterers (DS) to augment the monitoring capability across the varied land cover of the peninsula.
Satellite geodetic data from 2006–2019 Global Positioning System (GPS) benchmark surveying are
used to calibrate and validate the MT-InSAR results. Deformation monitoring records from permanent
Global Navigation Satellite System (GNSS) stations, two of which were installed within the peninsula
in 2004 (METH) and 2019 (MTNA), are also exploited for interpretation of the regional deformation
scenario. Geological, topographic, and 2006–2019 seismological data enable better understanding
of the ground deformation observed. Line-of-sight displacement velocities of the over 4700 PS
and 6200 DS within the peninsula are from −18.1 to +7.5 mm/year. The MT-InSAR data suggest a
complex displacement pattern across the volcano edifice, including local-scale land surface processes.
In Methana town, ground stability is found on volcanoclasts and limestone for the majority of the
urban area footprint while some deformation is observed in the suburban zones. At the Mavri Petra
andesitic dome, time series of the exceptionally dense PS/DS network across blocks of agglomerate
and cinder reveal seasonal fluctuation (5 mm amplitude) overlapping the long-term stable trend.
Given the steepness of the slopes along the eastern flank of the volcano, displacement patterns may
indicate mass movements. The GNSS, seismological and MT-InSAR analyses lead to a first account of
deformation processes and their temporal evolution over the last years for Methana, thus providing
initial information to feed into the volcano baseline hazard assessment and monitoring system.

Keywords: SAR; InSAR; ground deformation; Sentinel-1; volcano monitoring; GNSS; seismicity;
ground deformation; slope instability; MT-InSAR
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1. Introduction

It is well known that some of the most scenic landscapes and islands of Greece are due to the intense
volcanic activity that occurred centuries to millennia ago [1,2]. While Santorini is the most famous and
a worldwide renowned touristic site, there are other active volcanic systems (i.e., Milos and Nisyros)
within the south Aegean volcanic arc, which were formed from the subduction of the African tectonic
plate beneath the Eurasian plate. Of this arc, the Methana peninsula is the westernmost dormant
but geodynamically and hydrothermally active volcanic system [3]. The peninsula is connected with
the north-eastern coast of Peloponnesus by a narrow gooseneck-shaped isthmus and stretches for
approximately 44 km2 northward into the Saronic Gulf.

Of the around 32 andesitic and dacitic lava domes scattered across the peninsula, the Methana
volcano is the largest and is the subject of the present study. The volcanic hazard in Methana is
considered “low” [4]; given that the last historic eruption was registered in approximately 230 BC,
volcanic products derived from highly explosive eruptions were not found [3] and no alarming signs
were observed in recent times. However, several aspects provide sufficient motivation for a dedicated
investigation into the Methana volcano. From a hazard point of view, the neotectonic basin constituting
the Saronic Gulf area is considered seismically active [5], and the active fault systems therein were
considered preferential paths for present-day geothermal fluid leakage and, as such, potential sites for
magma uprising [3]. Thermal springs are indeed clear manifestations of volcanic geothermal energy
in Methana, and gas exhalations suggest a mixture between a dominant hydrothermal component
and mantle-derived fluids [3]. Additionally, from a risk point of view, the volcano is not far from
Athens (less than 50 km south-west) and any activity at the volcano would impact the local population
(about 2500 inhabitants over the year, increasing during summer due to tourism). Further proof that
monitoring the Methana volcano has recently been given higher priority on the agenda of Greek
institutions is provided by the installations of six seismological stations by the Greek Institute of
Geodynamics of the National Observatory of Athens (NOA) [6] alongside a new NOANET Global
Navigation Satellite System (GNSS) station [7]. This recent development significantly updates what
was stated by [4], i.e., of the whole Greek volcanic arc of Methana–Milos–Santorini (Thera)–Nisyros,
Methana is among the volcanic fields not efficiently monitored.

In this context, the present study aims to investigate and characterize the ground motions observed
at the surface of Methana volcano based on the results achieved by means of multi-interferogram
processing of Synthetic Aperture Radar (SAR) images collected by the Copernicus Programme Sentinel-1
satellite constellation in the period from March 2015 to August 2019. Interferometric SAR (InSAR)
approaches have been largely exploited to study and monitor surface deformation at different locations
across the volcanic arc (e.g., [8–17]) and have proved their effectiveness to provide a spatially distributed
estimation of volcanic activity due to magma chamber processes as well as shallow deformation
associated with hydrothermal activity (e.g., low temperature venting). Despite this abundant literature,
to the best of our knowledge, no InSAR study has previously focused on Methana.

Given the varied land cover and presence of vegetation at Methana, we intentionally selected
a Multi-Temporal InSAR (MT-InSAR) processing approach providing both Persistent Scatterers (PS)
and Distributed Scatterers (DS) in order to augment the monitoring capability and the number of
measurement points. In this way, we aimed to characterize not only the geodynamics of the whole
volcano but also the surface deformation along the steep slopes and stream gullies of the rugged
terrain of the volcanic landforms, of which the susceptibility to landslides and rockfalls has been
already highlighted in the literature [18]. Satellite MT-InSAR is complemented and interpreted in
combination with an analysis of regional seismicity characterizing the 2006–2019 period and with
geodetic data from continuous GNSS monitoring and Global Positioning System (GPS) benchmark
surveying. The latter is also used to calibrate and validate the MT-InSAR results, thus tying the
satellite-based estimates to the local geodetic reference used in the region and providing evidence to
corroborate MT-InSAR observations.
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2. The Study Area

Methana peninsula is located in the western Saronic Gulf south of Athens city (Figure 1) and is
one of the three volcanic centres (i.e., Aegina, Poros and Methana) representing the north-western
part of the active volcanic arc of the South Aegean. This Hellenic active volcanic arc also includes the
islands Milos, Santorini and Nisyros in its extension [19]. Methana and the other volcanic centres in
the Saronic Gulf are mostly monogenetic, and no composite volcanic structures are present [20].

Figure 1. (a)Simplifiedgeologicalmapof theMethanapeninsula, Greece(modifiedafter [21–23]), with indication
of Global Navigation Satellite System (GNSS) stations and local benchmarks and (b) topography from a 5.5-m
resolution digital surface model by the Hellenic Mapping and Cadastral Organisation.

According to [24], the Saronic Gulf is the longest active area of the South Aegean with geothermal
springs which are influenced by the active tectonic structure of the area as well as the existence of
the magmatic chamber. Volcanic activity in Methana lasted until 1700, when a submarine eruption
occurred north of Kameni Chora. Present day, active geothermal springs are reported mainly in the
eastern and northern parts of the peninsula [3]. Within Methana town, in the south-east, the thermal
springs are exploited at the open-air baths of the Thermal Spa and its neoclassical dwelling built
in 1930.

It is also crucial to mention the presence of the Pausanias submarine volcano, located 2 km off the
north-western shore of the peninsula [25]. According to [26], this submarine volcano was discovered
using seismic reflection data and volcanic activity occurred during the 3rd century BC.

The Saronic Gulf constitutes a neotectonic basin which was created 4–5 million years ago [27,28].
NE-SW normal faults dominate the broader region, while N-S, E-W and NNE-SSW striking normal
faults are also recognizable in the area [25] and are characterized by low seismic activity, chiefly with
shallow events [29].
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The geology of Methana consists of various volcanic formations with Late Pliocene–Pleistocene
small andesitic to dacitic flows and domes [30,31], which overlay the older volcanic rocks, as well as
the Mesozoic sedimentary basement [21,32].

A simplified geological map (Figure 1a) shows that the grey limestones are present in the
northwest (Upper Triassic–Lower Jurassic), while limestones with dolomites are present in the south
(Upper Jurassic–Cretaceous). These limestones constitute the basement of Methana and are located
under the volcanoclastic formations (rhyolite, dacite and andesite) [33]. Additionally, the Methana
peninsula has many tectonic faults, with a major fault crossing the town of Methana from west to east.

The tectonic regime of the region combined with the volcanic activity determined a rough
topography of the peninsula, which shows both flat basin areas with Quaternary fill and zones
dominated by high slope gradients and narrow valleys, often modelled by erosion processes (such as
in the south, between Vathi and Methana) [18]. The maximum elevation is 740 m above sea level (a.s.l.)
and occurs at Helona Mountain (Figure 1b).

3. Materials and Methods

3.1. SAR Data and Multi-Temporal InSAR Processing

A long stack of 99 SAR scenes acquired by the Copernicus Sentinel-1A and Sentinel-1B satellites
in ascending mode (relative orbit 102) was used in this study. SAR images are remote sensing satellite
data increasingly used for observing, mapping and monitoring Earth’s surface processes [34] and are
characterized by cloud-penetrating, day and night operational capabilities.

Among the Sentinel-1 SAR constellation imaging modes, we used the Interferometric Wide (IW)
swath, which is based on the novel Terrain Observation with Progressive Scans (TOPS) strategy [35].
IW images are composed of three sub-swaths (i.e., IW1, IW2 and IW3), each consisting of a series of
bursts, and provide a 250-km large coverage, with pixel resolutions of 5 m and 20 m (single look) in
range and azimuth, respectively [36]. The Sentinel-1 data used in this study were collected from the
Sentinel Hub platform and cover the time period from March 2015 to August 2019. The ascending
mode acquisition geometry was selected to undertake the analysis in order to optimize visibility of the
east-facing slopes, where the town of Methana (and thus the major urban settlement of the peninsula)
is located (see Figure 1).

The stack of 99 Sentinel-1 SAR scenes was processed using an advanced MT-InSAR approach,
an extension of the basic technique of Differential InSAR (DInSAR; e.g., [37,38]), that is based on the
phase comparison of multiple SAR images gathered at different times over the study region and allows
for measurements of land deformation along the line-of-sight (LOS) direction of the SAR sensor with up
to millimetre precision (e.g., [39]). Advanced DInSAR methods are increasingly being used in various
applications in the field of volcanology, seismology, crustal dynamics, landslides, land subsidence and
geothermal energy exploitation (e.g., [40–45]).

MT-InSAR methods exploit either Persistent (PS) or Distributed (DS) Scatterers or coherent
targets. Typically, PS are artificial objects that reflect the radar signal well, such as metal structures,
buildings and rock outcrops, and are used in Persistent Scatterer Interferometry (PSI), e.g., the Permanent
Scatterers (PS-InSAR) technique [46,47]. In urban areas, there is a prevalence of PS, and PSI methods
allow for analysis of even individual structures on the ground. Methods exploiting coherent targets
include algorithms such as the Small BAseline Subset (SBAS) method [48]. DS reflects lower radar
energy compared to PS targets and usually spans several pixels in high-resolution SAR images [49],
which exhibit similar scattering properties and can be used together for deformation estimation.
The identification and monitoring of such targets is helpful especially in suburban and more rural
areas, where the density of PS can be low. In such circumstances, the combination of PS and DS is
important for effective displacement monitoring using SAR Single Look Complex (SLC) data. What is
certain is that the processing aiming to detect both PS and DS requires large computing resource and
processing time [50].
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Concerning the precision of MT-InSAR measurements, error bars are extremely complex to estimate
theoretically, since they depend on several factors, including the number of SAR SLC images used,
the spatial density and quality (signal-to-noise ratio levels) of the measurement targets, their distance
from the reference PS, the climatic conditions at the time of SAR acquisition and the satellite repeat cycle.
Recent studies provide an empirical relationship between the number of SAR interferograms used and
the resulting precision of the ground deformation estimates (e.g., by using 50 ERS-1/2 interferograms,
a precision of 0.15 cm/year can be achieved with the SBAS method [51]).

In this study, the GAMMA SAR and Interferometry software (GAMMA Remote Sensing AG,
Gümligen, Switzerland) and the Interferometric Point Target Analysis (IPTA) method [52] were used
for the interferometric processing. The MT-InSAR processing workflow can be divided into two steps:
the pre-processing and the main processing using GAMMA/IPTA.

During pre-processing, parameter files for the 99 SLC images were created and used to perform orbital
refinement. The SLC images were co-registered based on the image used as a reference (20/09/2017), and a
single-reference stack of 98 differential interferograms was generated. The Shuttle Radar Topography Mission
(SRTM) 1-arcsec (i.e., 30 m/pixel) Digital Elevation Model (DEM) [53] was used during pre-processing to
subtract the topography contribution from the interferograms.

Using the 99 co-registered SLC images, a multi-reference stack was also created, containing both
single-pixel and multi-look differential interferometric phases. Multi-look differential interferometric
phases (DS) were first generated, and afterwards, single-pixel differential interferometric phases
(PS) were estimated using low spectral diversity and temporal variability of SLC intensity. Then,
single-look and multi-look phases were combined into one list of both PS and DS. The multi-reference
stack consists of 291 differential interferograms, pairing each scene with the 3 subsequent scenes
(triple redundancy). The perpendicular baselines of those 291 pairs were quite short, with the longest
baseline being 202 m. A high-accuracy Digital Surface Model (DSM) (5.5 m/pixel) provided by the
Hellenic Mapping and Cadastral Organisation (Figure 1b) was also used for the IPTA in order to
improve the quality of the output results. As reference point, the closest point to the GPS benchmark
“Methana South” (i.e., MESO station in Figure 1a; 37◦34′51.02562′′ N, 23◦22′12.14638′′ E) was selected.
Then, height corrections and atmospheric phases were computed using the combined point list.

The above model was refined by updating height corrections and atmospheric phases via iteration
of the last step two more times. Finally, the phases were converted into deformation time series,
which contained both PS and DS. Then, the deformation time series database was split into two separate
ones, one for the PS and the other for the DS targets.

3.2. GNSS Continuous Monitoring Data and GPS Benchmark Surveying

A small network of two benchmark stations was established in 2006 in Methana Peninsula
(Figure 1) [54]. These two stations were part of a larger GPS network established in the north-western
part of the Hellenic Volcanic Arc (including the island of Aegina and the volcanic area of Susaki) aiming
to study the ground deformation of this area. The stations in Methana were located in the northern
(i.e., station MENO) and southern (MESO) parts of the peninsula and were reoccupied several times
up to December 2019. All measurements took place approximately within the same period of the
year (usually late October to December) in an effort to minimize seasonal phenomena. The Methana
benchmark network was occupied using Leica receivers (SR9500 and AX1200). For each measurement
period, the two benchmark stations were occupied for a period of 48 to 60 h, with time sampling of
15 s. Such time sampling was used for local-scale solutions with nearby continuous GNSS stations for
which data were available with the same time sampling. While on regional-scale solutions, the data
were resampled to 30-s data sets in order to be processed together with the freely distributed 30-s
GNSS data available for European stations.

In early 2015, a continuous GNSS (cGNSS) station was also established in the Lygourio (LYGO)
close to Methana peninsula as part of the HxGN SmartNet (https://gr.nrtk.eu/), that, ever since,
has acted as local reference station. In addition, since August 2019, cGNSS data were available from
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a station (MTNA) located in the western part of Methana peninsula as part of the GNSS network of
the Institute of Geodynamics, National Observatory of Athens (NOA). Horizontal velocity results
from two more cGNSS stations were also available from the National Technical University of Athens
(NTUA), i.e., station METH installed in 2004 in the southern sector of Methana peninsula, and from [55],
i.e., station 010A located to the south-east of Methana peninsula, at Poros.

The available 30-s data from the two cGNSS stations (i.e., LYGO and MTNA) that were included
in this study were processed separately on a daily basis together with several other cGNSS stations
located in Greece as part of a regional network. From the time series of the station’s coordinates,
the cGNSS station velocity was estimated in the IGb08 reference frame (see Figures A1 and A2 in
Appendix A).

The GPS data were processed using BERNESE software (v.5.2, University of Bern, Bern,
Switzerland) [56]. The software allows for the estimation of epoch-wise receiver coordinates in
Precise Point Positioning (PPP) mode as well as in the double difference mode. For the present research,
the coordinates were calculated on a static mode. To get the best results, the PPP technique was used
as a first step to get a priori coordinate values that were consequently introduced in the more precise
double difference method. The GPS data from the benchmark stations and the other cGNSS stations in
the broader area of Methana were processed together with several other EUropean REference Frame
(EUREF) and cGNSS stations from Europe and Greece (http://www.epncb.oma.be) in order to define
the local reference frame and to calculate the station coordinates. All measurement periods were
processed with respect to the IGb08 reference frame (http://igscb.jpl.nasa.gov/network/refframe.html).
Absolute antenna phase centre corrections were used in the data analysis. Several supporting
files were introduced during the processing steps, aiming to define precise coordinates for the
stations. Precise orbits from CODE analysis centre (ftp://ftp.unibe.ch/aiub/CODE) were used in the
analysis, and a set of Earth orientation parameters was calculated. Crustal deformation caused by
changing mass due to ocean tides and the atmosphere was taken into consideration, introducing
auxiliary files. For the ocean loading effect, tide loading corrections were based on the FES2004
model (http://holt.oso.chalmers.se/loading). Atmospheric tidal loading coefficients were used from
a global grid based on the Ray and Ponte (2003) model [57]. For troposphere modelling, the Vienna
Mapping Function (http://ggosatm.hg.tuwien.ac.at) as well as the Neill mapping function were used.
Ambiguities were solved using several resolution strategies based on the baseline length and the
occupation time: (i) the wide-lane and narrow-lane techniques for the medium baselines (<10–200 km),
where initially the L5 linear combination is processed (wide-lane) and introduced as known (fixed)
in the subsequent run (narrow-lane) where the L3 linear combination is processed; (ii) the SIGMA
strategy for the very short baselines (in between the two Methana stations, where both L1 and L2
data were available and used); and finally, (iii) the quasi-ionosphere-free (QIF) strategy for the long
baselines (<1000–2000 km) were the main adopted ambiguity resolution strategies.

The long occupational time of the two GPS benchmark stations in Methana, during all measurement
periods, resulted into low uncertainties (at a 95% confidence level) with overall errors of about
2.4–3.1 mm and 2.5–5.1 mm for the horizontal and vertical coordinates, respectively. The processing
performed on daily sessions allowed for the extraction of a set of coordinates for each 24-h long period.
The final set of coordinates was the mean value of all the sessions, and the errors led to quantification
of the deviation of the daily coordinate solutions from the mean value.

3.3. Seismological Data and Processing

The digital seismological data used in this study were obtained from the database of the
seismological laboratory of the National and Kapodistrian University of Athens (NKUA; http://dggsl.
geol.uoa.gr/en_index.html).

The optimization of epicentres for the period 2006–2019 was carried out using the HYPOINVERSE
software (v.1.4, United States Geological Survey: Menlo Park, CA, USA) [58]. The final quality of
the relocated epicentres is very satisfactory due to the use of the one-dimension local velocity model
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developed by Karakonstantis et al. [59]. In particular, the root mean square (RMS) travel-time residual
for the whole study period was determined to be 0.46 s, while the means of the horizontal and vertical
direction uncertainties for the events’ hypocentres are 1.51 km and 5.82 km, respectively.

The seismological data were divided into two time periods. The first one coincided with the time
period that the GNSS data cover, i.e., January 2006 to August 2019, while the second period covered
the time span of the interferometric processing, i.e., March 2015 to August 2019 (see Section 3.1).

4. Results and Discussion

4.1. Evidence from the GNSS Data Analysis

The observed velocities (i.e., VE, VN and VU, along the east–west, north–south and vertical
direction, respectively) and associated standard deviations (i.e., STDV) from all cGNSS and local
benchmark stations are presented in Table 1. The LYGO cGNSS station exhibited SSE motion (Figure 2),
calculated for a period of more than five years, that describes the anticipated regional motion of the area
with respect to IGb08 [55] and is in good agreement with the two other cGNSS stations: METH and
010A. The newly established cGNSS station in the western Methana peninsula (i.e., MTNA) showed
significantly different velocity due to the short period that the station was operating (i.e., from August
to December 2019). The limited operational period reveals only a short portion of the station’s annual
trend and therefore could be biased by interannual variations. Consequently, these data have been
excluded from further investigation but still briefly presented for future comparison (see Figure A1
in Appendix A). The velocity results from the two local benchmark stations in Methana peninsula
(i.e., MENO and MESO) for a period of almost fourteen years (2006–2019) appeared consistent with
the regional velocity field concerning the horizontal component (Figure 2). However, the southern
station (i.e., MESO) revealed significant subsidence that has to be correlated with the MT-InSAR results
(see Section 4.5).

Table 1. Velocity values of the continuous Global Navigation Satellite System (cGNSS) and local Global
Positioning System (GPS) benchmark stations in Methana peninsula and the broader area in the IGb08
reference frame. Notation: V, velocity; STDV, standard deviation; E, east–west; N, north–south; and U,
vertical/up.

Station
VE

(mm/year)
VN

(mm/year)
VU

(mm/year)
STDVE

(mm/year)
STDVN

(mm/year)
STDVU

(mm/year)

LYGO 6.99 −12.97 −0.76 0.05 0.07 0.08
MTNA 7.02 3.35 4.88 1.26 1.76 6.37
MENO 6.50 −12.89 −0.21 0.21 0.33 0.30
MESO 7.02 −12.77 −5.24 0.15 0.08 1.12

METH * 6.77 −12.51 − 0.45 0.44 −
010A * 7.41 −13.01 − 0.43 0.44 −

* Values provided by the National Technical University of Athens (NTUA) and [55].

Aiming to better define the local deformation in Methana peninsula, the regional velocity vector
(as it was estimated in LYGO cGNSS station) was subtracted from the two local GPS benchmark stations
as well as the two other cGNSS sites (i.e., METH and 010A). Although the resulting horizontal velocity
vectors are very small (<1 mm/year) with significant errors (Table 2) indicating a uniform deformation
of the broader Methana area, there is a pattern of differential motion in the area (Figure 3). The northern
station (i.e., MENO) exhibits a westward motion, while the southern sites (i.e., MESO and METH)
showed a northward motion. However, the latter is quite arbitrary due to the small horizontal velocity
values and the resulting errors. The more evident differential behaviour between these two stations
is in the vertical component (Table 2), with the southern station (i.e., MESO) exhibiting noticeable
subsidence, as it was mentioned previously.
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Figure 2. Horizontal velocity vectors from cGNSS and local GPS benchmark stations in the broader
area of Methana peninsula with respect to the IGb08 reference frame. Stations METH and 010A were
retrieved from other sources (NTUA and [55]).

Table 2. Local velocity values of the benchmark stations in Methana Peninsula with respect to LYGO
station. Notation: V, velocity; STDV, standard deviation; E, east–west; N, north–south; and U, vertical/up.

Station
VE

(mm/year)
VN

(mm/year)
VU

(mm/year)
STDVE

(mm/year)
STDVN

(mm/year)
STDVU

(mm/year)

LYGO − − −
MENO −0.49 0.08 0.55 0.216 0.337 0.311
MESO 0.03 0.2 −4.48 0.158 0.106 1.123

METH * −0.22 0.46 − 0.453 0.435
010A * 0.42 −0.04 − 0.433 0.445

* Values provided by NTUA and [55].

Figure 3. Local horizontal velocity field calculated with respect to the LYGO cGNSS site.

4.2. Observations from the Seismic Data Analysis

The analysis of the seismic data shows that the Saronikos Gulf region is mainly characterized by
moderate seismic events and shallow depths, as already discussed in the literature [29]. During the
period from 2006 to February 2015, the most important earthquakes occurred in 2008, 2012 and 2014,
with magnitudes (Mw) of 3.4 to 4.2 and focal depths of 8 to 16 km. The focal mechanism solutions
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indicate the activation of NW-SE or NE-SW striking normal faults (Figure 4). Two clusters of intense
seismic activity are located offshore: between Methana and Poros Island, and NE of Aegina Island.
Shallow microseismicity is observed NW of Saronikos Gulf (in an area where the 2012 and Mw 4.1
earthquake occurred), offshore NW of Aegina island and at the southern coast of Attica (Figure 4).

Figure 4. Seismic activity recorded in 2006–February 2015.

For the period 2015–2019, there were three significant seismic events in the area: two moderate
shallow earthquakes with magnitudes Mw = 3.8 and Mw = 3.6 and a very deep one (depth = 142 km)
with magnitude Mw = 4.2 (Figure 5). In this period, a significant seismic swarm was observed NE of
Poros Island. The seismic activity in this cluster started in 2016 and continued with few events up to
2019. Additional to the surface seismicity, very deep (80–100 km) sporadic micro-events took place on a
wider area extending from Methana towards Hydra Island. These deep micro-events may be attributed
to the NE-subduction zone of the Ionian oceanic plate that reaches very deep in this area [5,54,59,60].

 

Figure 5. Seismic activity recorded in March 2015–August 2019.
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4.3. PS and DS Distribution

After MT-InSAR processing, 4769 PS targets and 6234 DS targets were retrieved (Figure 6).
The spatial densities of the targets in the area were calculated as 95.14 PS/km2 and 124.36 DS/km2

by considering the whole landmass of the peninsula (approximately 50 km2). Most of the targets
are located at low altitudes (up to approximately 100–150 m a.s.l. for PS and up to approximately
350–400 m a.s.l. for DS), where there are urban settlements, and also on geological formations which
exhibit high coherence, such as volcanoclasts. PS targets have a coherence greater than 0.70, while the
DS have coherence greater than 0.79.

Figure 6. Line-of-sight (LOS) deformation velocity in 2015–2019 from the Multi-Temporal Interferometric
Synthetic Aperture Radar (MT-InSAR) analysis for the (a) Persistent Scatterers (PS) and (b) Distributed
Scatterers (DS) datasets, overlapped onto satellite optical imagery (© 2020 TerraMetrics,© 2020 Google).

Very dense coverage of PS is observed at the Mavri Petra andesitic dome north of Kameni Chora
village due to the strong coherence over areas with sparse vegetation and bare ground, in particular
over large blocks of agglomerate and cinder (Figure 7). The Mavri Petra unit has the greatest density
of PS with 1241 PS/km2 and a density of DS of 198 DS/km2. The density of PS on Mavri Petra is even
greater than in Methana town, which is an urban area (see Section 4.5). Methana town has 794 PS/km2
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and 479 DS/km2. The lowest density of PS was observed in alluvial areas due to much lower coherence,
with 156 PS/km2 and 195 DS/km2. Volcanoclastic units have densities of 397 PS/km2 and 784 DS/km2.

 
Figure 7. (a) Aerial view of the Mavri Petra andesitic dome and (b) details from the south-east, including Kameni
Chora village (photographs© TobiasSchorr@Methana.de).

4.4. MT-InSAR Data Precision, Calibration and Validation

The present study is based on ascending SAR dataset only (see Section 3.1). Therefore, all results
and values reported hereinafter are LOS values if not explicitly stated otherwise.

The uncertainty observed in the estimated VLOS (i.e., standard deviation of the time series) is
2.8 mm/year on average for the PS dataset and 2.6 mm/year for the DS dataset. These values provide
an indication of the precision of the MT-InSAR results and suggest that the ±3.0 mm/year VLOS interval
can be considered the velocity range, indicating stability.

On the other hand, in order to estimate the accuracy of the MT-InSAR results, these were validated
using the local velocity values of the GPS benchmark stations MESO and MENO in Methana Peninsula
with respect to LYGO cGNSS station (Table 2). A frame of reference transformation was applied to the
velocity vectors in order to calculate the estimated LOS velocity of the two GPS benchmark stations
and to allow for comparison with the MT-InSAR data.
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Knowledge of the Euler angles (i.e., ωx, ωy and ωz; Table 3) of the Sentinel-1 LOS along the
ascending relative orbit 102 allowed us to generate the rotation table for each axis: R1, R2 and R3 via
Equations (1)–(3), respectively:

R1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 cosωx sinωx

0 − sinωx cosωx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

R2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosωy 0 − sinωy

0 1 0
sinωy 0 cosωy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

R3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosωz sinωz 0
− sinωz cosωz 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

Table 3. Euler angles of the Sentinel-1 LOS along ascending mode relative orbit 102.

Euler Angle Degrees Physical Interpretation

ωx 0 −
ωy −37.1 Incidence angle
ωz 11 Declination from the north (azimuth)

The right-hand rule was used to calculate the Euler angles because the reference frames are
right-handed. The incidence angle for the area where the two GPS benchmark stations are found
(namely, ωy) was estimated using the European Space Agency (ESA)’s SeNtinel Application Platform
(SNAP) software — Sentinel-1 toolbox S1TBX (v.7.0, SkyWatch, Waterloo, Canada),while the azimuth
angle of the ascending relative orbit 102 in the area (namely, ωz) was estimated using QGIS software
(v.3.14, QGIS.ORG, Switzerland).

Then, using Equation (4), the rotation matrix (5) was composed and finally exploited to transform
the reference frame into the LOS geometry:

R = R1(ωx) · R2(ωy) · R3(ωz) (4)

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.78293 0.15219 0.60321
−0.19081 0.98163 0
−0.59213 −0.11510 0.79758

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

The velocity vectors of GPS benchmark stations MENO, i.e., (6), and MESO, i.e., (7), were transformed
to the new reference of frame using Equation (8):

VMENO =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−0.49
0.08
0.55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦mm/year (6)

VMESO =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.03
0.20
−4.48

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦mm/year (7)

V′ = R · V (8)

The LOS velocity of the two benchmark stations was finally estimated: VLOS = −0.16 mm/year for
MENO and VLOS = −3.61 mm/year for MESO.

We calibrated the PS and DS datasets by tying the estimated VLOS at the closest scatterer to
the MESO station (i.e., 40 m away) to the value measured at the GPS station (i.e., −3.61 mm/year).
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As the scatterer originally exhibited a VLOS of +0.26 mm/year, the adjustment meant a VLOS shift of
−3.87 mm/year, which was applied to all PS and DS targets.

At MENO station, the calibrated VLOS from the MT-InSAR analysis equals −0.19 mm/year,
thus matching extremely well with the −0.16 mm/year VLOS measured at the GPS station and providing
validating evidence for the MT-InSAR dataset.

To account for the velocity shift due to calibration of the PS and DS targets to MESO station,
their time series were also adjusted as follows [61]:

di(tn) = diold(tn) −Vsh ∗ [tn − t0] (9)

where di(tn) is the adjusted position of target i at time tn, diold (tn) is its original position at time tn, Vsh is
the VLOS shift and t0 is the first date of the time series.

4.5. Interpretation of the Observed Ground Deformation

The maximum VLOS away from the sensor (i.e., negative values) that is observed after calibrations is
−8.5 mm/year from the PS dataset and−18.1 mm/year from the DS dataset (Figure 6). PS and DS with the
strongest movement away from the sensor are located on the eastern flank of the peninsula. Considering
the ascending mode-looking geometry and the orientation of the LOS, this could plausibly indicate the
occurrence of downslope mass movements. Compared with the topography displayed in Figure 1b,
these movements concentrate on the volcanic ranges and gully erosion landforms above the urban
settlements of Methana, Kipseli, Agii Teodori and Agios Georgios. Photo interpretation using Google
Earth imagery, however, did not highlight changes of specific landforms for the 2012–2019 period.

The maximum VLOS towards the sensor (i.e., positive values) from the PS dataset is +7.5 mm/year,
and that from the DS dataset is +3.8 mm/year (Figure 6). Some values above +3.0 mm/year are
observed for very few PS and DS scatterers, mainly located on the western flank of Methana peninsula.
These scatterers are, however, characterized by a high uncertainty of their deformation rate (i.e., up to
4.0–5.0 mm/year). Their estimated velocities are therefore not considered as robust as those of other
scatterers characterized by higher precision.

The northern portion of Methana town is built onto alluvium, and it seems more stable
(VLOS = −1.8 mm/year) than the central zone of the town, which is moving away from the satellite at
−2.5 mm/year (Figure 8a), although both zones show velocities within the range of stability. The central
zone is built onto volcanoclasts (Figure 8c), and the southern zone onto limestone (−2.9 mm/year).
The southern zone is moving away from the satellite with relatively low VLOS. Overall, it appears
that the majority of the urban area footprint (Figure 8d) is not affected by significant deformation,
while somehow, greater rates are found in the suburban zones, as revealed by the DS targets.

The deformation scenario at Vathi and Paleokastro (Figure 9a) shows that there is a slight
movement away from the satellite also in this sector of the peninsula. Similar to what was observed
for Methana town, PS targets in the region indicates that the urban areas have a mean value of
−0.9 mm/year, while the DS targets for the suburban and more rural zones show −3.1 mm/year.

Annual LOS velocities do not reveal any significant deformation patterns across the sparsely
vegetated outcrops at Mavri Petra (Figure 10a), which mostly shows both PS and DS with VLOS in the
range of ±3.0 mm/year and absence of any clear deformation patterns from the sole observation of the
annual LOS velocities. However, evidence of seasonal deformation can be detected in the time series at
several locations across the peninsula, including at Mavri Petra (Figure 10b) and at many other sites,
for instance at Vathi and Paleokastro (Figure 9b) and at Methana town (Figure 8b). However, in the
latter, this happens with less prominent amplitudes.
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Figure 8. (a) LOS deformation velocity in 2015–2019 from the MT-InSAR analysis, (b) example of time
series for a PS located on limestone, (c) geology/lithology and (d) urban footprint of Methana town:
(a,c,d) are overlapped onto satellite optical imagery (© 2020 TerraMetrics,© 2020 Google).

The detected seasonal fluctuations at Mavri Petra are significant, both for PS with LOS velocity
close to 0 mm/year and for PS with higher LOS velocity. Those displacements have an amplitude of
approximately 5 mm and periodicity of 1 year (Figure 10b). Similar amplitudes are found at Vathi and
Paleokastro (Figure 9b). The peaks of the fluctuations generally occur in the period October–March,
i.e., rainfall season [62]. This suggests the presence of a seasonal component in the deformation
behaviour that is potentially influenced by rainfall and overlaps onto the long-term, generally linear,
trend observed across the peninsula in 2015–2019. In this regard, seasonal signals are commonly
observed in surface deformation records in other sites worldwide (e.g., [63]), with annual or even
semi-annual periods and different amplitudes from negligible to significant, depending on their driving
causes. Future ground deformation investigations in Methana could be focused on identification and
removal of such periodical terms via advanced time series processing. This operation would better
enhance the long-term deformation behaviour of the observed sites which, in this case, may be partly
concealed by these fluctuations.

Higher LOS velocities (e.g., −5.0 to −10.0 mm/year) have been observed along steep valleys,
mainly on slopes with east orientation (Figure 11a), where visibility of the ascending mode LOS eases
the detection of downslope mass movements. The observed displacement could therefore be related to
extremely to very slow mass movements and slope instability affecting rugged terrain and volcanic
landforms that are recognized as prone to landslides and rock-falls [18]. Some seasonal fluctuations
are also detected in the time series (Figure 11b).
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Figure 9. (a) LOS deformation velocity over Vathi and Paleokastro in 2015–2019 from the MT-InSAR
analysis overlapped onto satellite optical imagery (© 2020 TerraMetrics,© 2020 Google) and (b) example of
time series for a PS located near Vathi town.

When the evidence from the MT-InSAR investigation is integrated with the outcomes of the GNSS
data analysis (see Section 4.1), it can be suggested that the ground motions that are observed from 2015
to 2019 are compatible with the anticipated “low” volcanic activity of Methana. This comes out very
evidently from the PS dataset and the generally low VLOS. Despite the low point density and spatial
coverage of the volcanic edifice, the overall spatial distribution of the PS deformation values does
not reveal a deformation field that could be reliably attributed to a typical volcanic inflation/deflation
dynamic of the whole Methana, as found in the literature for other active volcanic areas. On the
other hand, the DS dataset may suggest the presence of more widespread deformation patterns
along the eastern flank. However, there are only few cases where the observed motions associate
with specific landforms (e.g., narrow valleys, erosion gullies and superficial slides). In this regard,
the photo interpretation of the slopes through Google Earth optical imagery did not highlight specific
circumstances worth further investigation.
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Figure 10. (a) LOS deformation velocity over Mavri Petra in 2015–2019 from the MT-InSAR analysis
overlapped onto satellite optical imagery (© 2020 TerraMetrics,© 2020 Google) and (b) example of
time series for a PS located in the NW portion of Mavri Petra.

 

Figure 11. (a) LOS deformation velocity over the southern portion of Methana peninsula in 2015–2019
from the MT-InSAR analysis overlapped onto shaded relief of the 5.5-m digital surface model by the
Hellenic Mapping and Cadastral Organisation and (b) example of time series for a DS located in the SE
part of Methana peninsula.
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Due to the lack of strong seismic events (Mw > 4) or intense seismicity in the area of Methana
peninsula (see Section 4.2), the observed ground deformation could not be associated with the recorded
seismicity. There are active seismic zones in the vicinity of the peninsula; however, neither the location,
the depth nor the magnitude of these events could be directly associated with the observed motions.
Even if a seismic contribution to triggering superficial mass movements was present, this would
be plausibly limited to nearby seismic swarms. However, there is no hard evidence from ground
observations to support further such a hypothesis.

Accounting for the geothermal activity and warm springs at various locations in Methana, the only
situation where motions were found close to a thermal spring is in the immediate vicinity of the
open-air thermal baths of the Thermal Spa in the southern part of Methana town (see Figure 8a).
However, the LOS deformation rate values found in the PS dataset most likely associate with rock-fall
accumulation overlooking the road (Figure 12), while those in the DS dataset cannot be easily
separated from the wider deformation pattern extending across the above topography (see Figure 11).
The seasonality observed in the MT-InSAR time series in this area as well as at many other locations of
the peninsula appear to be more plausibly due to soil moisture and groundwater level oscillations,
partly controlled by precipitation, as discussed above. On the other hand, another process that could
explain such seasonality could be linked with fluctuations in the geothermal reservoir located in the
centre of Methana at a depth of approximately 2 km [64], though more investigation would be needed
to verify the potential occurrence of such a process.

 
Figure 12. (a) LOS deformation velocity of the PS over Methana town in 2015–2019 from the MT-InSAR analysis
overlapped onto satellite optical imagery (©2020 TerraMetrics,©2020 Google) and (b,c) ground-truth photographs
of rock-fall accumulation along the Methana–Taktikopolis road (© 2020 Google).
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5. Conclusions

In the context of the abundant literature of satellite InSAR studies on the south Aegean volcanic
arc and the published geological and geochemical research on Methana, the present study is the first
that undertakes a multi-temporal InSAR analysis of the most recent ground motions in the peninsula
in the period 2015–2019 and attempts to find correlations with local GPS benchmark, cGNSS and
regional seismicity data collected since 2006. Methana is located in the seismically active neotectonic
basin constituting the Saronic Gulf area, and recent efforts have been made by Greek institutions
to specifically monitor the peninsula, among which is the nomination of the Permanent Scientific
Committee “Greek Volcano Arc Monitoring” by the administrative board of the Earthquake Planning
and Protection Organization (EPPO) in June 2020. In this context, this study is timely in starting to put
together initial geodetic and satellite datasets to create a virtual monitoring network that, in the future,
could be developed into a proper volcano observatory system.

Based on the integrated data analysis, the general conclusion of this research is that the ground
motions observed in the Sentinel-1 MT-InSAR ascending mode data are compatible with the anticipated
“low” volcanic activity of Methana. Although the volcano does not show clear signs of activity in recent
years, it is a hotspot of potential concern given that it is adjacent to very high-density population areas,
including Athens and the surrounding major towns. The interpreted low level of activity is clearly the
initial baseline above which further investigations need to be conducted and will need to be verified
once the whole archive of SAR datasets dating back to the early 1990s is analysed (e.g., ERS-1/2 and
ENVISAT) and the ascending geometry of Sentinel-1 made available for this research is complemented
with same InSAR analysis of the matching descending dataset acquired over the peninsula since 2014.
It is evident that the use of one SAR geometry only limits the extent to which the observed LOS ground
motions can be interpreted. Therefore, future research may include processing of SAR data (even at
higher spatial resolution) from both ascending and descending geometries and reconstruction of the
3D deformation field as well as longer time series of geodetic data to improve our understanding of
the long-term deformation behaviour of the peninsula.
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Appendix A

Daily solutions for the continuous GNSS stations in Lygourio (LYGO) and in the western part of
Methana (MTNA) are provided in Figures A1 and A2, respectively.
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Figure A1. Time series for the three components of the daily solutions, spanning from January 2015 to
March 2020, for the continuous GNSS station in the Lygourio (LYGO) area, west of Methana peninsula.

Figure A2. Time series for the three components of the daily solutions, spanning from August to December
2020, for the continuous GNSS station MTNA, located in the western part of Methana peninsula.
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Abstract: A quite energetic seismic excitation consisting of one main and three additional distinctive
earthquake clusters that occurred in the transition area between the Kefalonia Transform Fault Zone
(KTFZ) and the continental collision between the Adriatic and Aegean microplates is thoroughly
studied after the high-precision aftershocks’ relocation. The activated fault segments are in an area
where historical and instrumental data have never claimed the occurrence of a catastrophic (M ≥ 6.0)
earthquake. The relocated seismicity initially defines an activated structure extending from the
northern segment of the Lefkada branch of KTFZ with the same NNE–SSW orientation and dextral
strike slip faulting, and then keeping the same sense of motion, its strike becomes NE–SW and its
dip direction NW. This provides unprecedented information on the link between the KTFZ and the
collision front and sheds more light on the regional geodynamics. The earthquake catalog, which was
especially compiled for this study, starts one year before the occurrence of the Mw5.4 main shock,
and adequately provides the proper data source for investigating the temporal variation in the b value,
which might be used for discriminating foreshock and aftershock behavior.

Keywords: seismic swarm; relocated aftershocks; transition zone; b value temporal variation; central
Ionian Islands (Greece)

1. Introduction

A moderate magnitude Mw5.4 earthquake occurred on 5 February 2019 in the offshore area north
of Lefkada Island, strongly felt in the Lefkada city and the onshore continental area to the east, with no
major damage or injuries reported. In the area, an adequate number of moderate earthquakes have
occurred in recent decades with not one having a magnitude larger than M6.0. The seismic excitation
started with an Mw4.2 shock that occurred on 15 January 2019 to the northeast of the main shock
which was followed by a very productive aftershock sequence with more than 250 located shocks by
15 March 2019.

The activated area is located at the boundary between the Kefalonia Transform Fault Zone (KTFZ)
to the south and the Adriatic–Eurasian collision to the north. The continental collision is expressed by
a belt of thrust faulting with an NE–SW direction of the axis of maximum compression. It runs along
the eastern coastline of the Adriatic Sea and terminates just north of Lefkada Island. The KTFZ is a
major dextral strike slip fault zone that frequently accommodates strong earthquakes, clustered in
space and time probably due to the stress transfer between the fault segments comprised in the fault
system [1]. The northernmost fault segment of the KTFZ was activated in 2003 with an Mw6.2 main
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shock and its rich aftershock sequence. The accurate location of these aftershocks provided for the first
time the indication that the major fault segments bound the western coastlines of the island, and the
contemporaneously activated secondary fault segments lie onshore [2]. No earthquakes with M ≥ 6.0
have occurred during the instrumental era along the collision front in the vicinity of the activated area.
Smaller magnitude earthquakes are also sparse in comparison with the remarkably active KTFZ.

Geophysical and geodetic studies have provided sufficient knowledge of the seismotectonic
properties of the area. Identifying in more detail the mechanism of transition along active boundaries
from the one plate to its neighbor remains a major scientific challenge. Tracing the kinematic and
dynamic variability along the active boundary can provide important clues for the transition area.
Microseismicity is mainly concentrated along the KTFZ and at the same time manifests the swarm-type
seismogenesis as a preferential style of strain release (Figure 1). This latter property becomes the tool
to decipher the localized strain pattern, since strong earthquakes occur rarely and not all in optimally
oriented faults, a fact that results in appreciable gaps in seismicity catalogs both in time and space.
The investigation of this activity is challenging to shed light on the seismogenic setting and the complex
geodynamics of the area, a prerequisite for any seismic hazard assessment study. Its location is critical
to decipher how these secondary structures play a role in accommodating strain at the borderline of
the KTFZ, an area where also reverse focal mechanisms were determined for moderate magnitude
earthquakes that occurred in the last few decades.

Figure 1. Active boundaries and seismicity in the Ionian Islands. The study area is delimited by a
rectangle, also shown in the inset where the entirety of Greece is depicted. Earthquake epicenters are
plotted according to the symbols and colors shown in the legend. The fault plane solutions of the
most recent (since 2003) main shocks are shown as equal area lower hemisphere projections, where the
compression quadrants are in red. The pink triangles denote the seismic stations used to record the
relocated earthquakes in the current study.

The adequacy of proper data provided by an earthquake catalog compiled for the targets of
this study allowed the monitoring of temporal variations of the b value, which from both laboratory
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experiments [3,4] and real data [5] seems to be linked with the stress state in a region in a way that
higher differential stress corresponds to lower b values. We then extend our investigations to the
temporal variations in b values aiming to detect whether they can act as an indicator for the main shock
occurrence or not.

2. Seismicity Relocation

2.1. Data Acquisition and Earthquake Relocation

Since the occurrence of the 2003 Lefkada Mw6.3 main shock, continuous seismic monitoring was
intensified in the area of the central Ionian Islands, namely Lefkada and Kefalonia, by firstly installing
temporary broadband and short period digital seismological stations, then by upgrading this network
into a permanent one [6] (http://geophysics.geo.auth.gr/ss/) and finally incorporating the stations in
the Hellenic Unified Seismological Network (HUSN). For the purpose of this study, we used some
additional stations located in the mainland, at distances not exceeding 90 km, in order to reduce the
azimuthal gap in the events location.

In order to identify the activated structure of the northern end of the Kefalonia Transform Fault
Zone (KTFZ), we compiled a catalog of 662 earthquakes, for the period February 2018–October 2019.
The starting time of the catalog was decided to be a year before the main shock in order to study any
pre-seismic patterns because it was observed that the seismic activity was considerable. The locations
were made by manual picking of 3560 P- and 3197 S- phases, using 14 broadband and short-period
stations of the HUSN. Phase pickings for the earthquakes with M ≥ 2.5 were performed manually by
the analysts of the Geophysics Department of the Aristotle University of Thessaloniki (GD-AUTh).
For the smaller magnitude earthquakes, phase picking was held manually by the authors of the present
work, as an ongoing procedure of more deeply understanding the seismotectonic and geodynamic
properties of the central Ionian islands.

Relocation was performed with the HYPOINVERSE [7] program using the 1D model (Table 1)
along with the vP/vS ratio for this region suggested by [8], for the relocation of the 2015 Lefkada
aftershock sequence. Station delays were calculated for further refining the locations, following a
procedure described in [9], to account for lateral crustal variations that are not considered in a 1D
model. The medians of the hypocentral errors derived by HYPOINVERSE are of the order of 2900m
for the horizontal and 1500 m for the vertical dimension.

Table 1. 1D velocity model used for the seismicity relocation in the present study.

VP (km/s) Depth (km)

5.850 0.0

5.870 1.0

5.980 2.0

6.635 6.0

6.490 8.0

6.525 9.0

6.560 11.0

6.580 13.0

6.625 21.0

6.700 28.0

8.000 40.0

Further relocation took place by applying the double difference (DD) algorithm [10], taking into
account both catalog and cross-correlation differential times and employing the conjugate gradients
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method (LSQR) [11] with appropriate damping. For the cross-correlation differential times, the time
domain cross-correlation technique was realized [12,13]. Waveforms with a duration of 60 s, starting at
the origin time of each earthquake, were prepared and band pass-filtered at 2–10 Hz with a second
order Butterworth filter. Cross-correlation was performed for a 1-s window length starting at the
arrival of the P and S phases, searching over a lag of 1 s. Differential times with a correlation coefficient
of 0.8 or more (CC ≥ 0.8) were kept being used in hypoDD.

In the application of the DD algorithm, five sets of iterations with five iterations each were
performed. The cross-correlation differential times were down weighted by a factor of 100 for the first
10 iterations, to obtain locations from the catalog data [8,14]. The catalog data was downweighted
by the same factor for the remaining 15 iterations to allow cross-correlation differential times to
better define the active structures. For the first five iterations, and considering the catalog data alone,
weighting was not applied. The relocation procedure took place for interevent distances less than or
equal to 5 km for the first 10 iterations of catalog data and cross-correlation times, reaching at 3 km for
the cross-correlation dataset at the final set of iterations.

2.2. Location Errors Estimation

The location errors calculated by hypoDD are underestimated, usually being a few tens of meters.
Thus, a bootstrap method was applied to the final residuals, creating a dataset by drawing samples
from the observed residual distribution, adding them to the differential times and then repeating the
relocation [15,16]. This procedure was repeated 200 times and then the 95% error ellipsoid per event
was computed by the resulting catalogs.

The jackknife method [15] was also applied to evaluate the station distribution effect on the final
catalog. The relocation was repeated omitting one station at a time, followed by a calculation of the
standard deviations per event. The medians calculated for the axis of the ellipsoids produced by the
bootstrap method and the medians of the standard deviations calculated from the jackknife method
are summarized in Table 2.

The errors produced by both methods show that in the west–east horizontal direction, they are
much larger than in the north–south direction. This reveals the effect of the station distribution on
the location accuracy, as the closer stations are located south of the activated area in the Lefkada and
Kefalonia islands, in a rather narrow N–S oriented zone covering a small azimuthal range in the E–W
direction. In addition, the number of stations is small to the east and north of the study area, in western
Greece, and obviously there are no stations to the west, an area covered entirely by sea.

Table 2. Median errors computed by the 95% confidence error ellipsoid for the bootstrap method and
median errors of standard deviations obtained from the jackknife method. Errors are presented in the
three main spatial directions.

Direction W-E N-S Depth

Bootstrap Median error (m) 1447 422 1806

Jackknife Median St. Deviation Errors (m) 1055 235 330

3. Fault Plane Solutions Determination

A centroid moment tensor for the main shock of the sequence was published soon after by GCMT
(https://www.globalcmt.org/CMTsearch.html), suggesting an almost pure strike slip motion with the
two nodal planes steeply dipping and striking either N–S or E–W. None of the nodal planes agree
with the epicentral distribution in the area surrounding the main shock. In the framework of this
study, the first polarities were exploited with the use of the FPFIT program [17]. The recordings of
the HUSN stations for earthquakes with magnitudes ML ≥ 3.0 were used for polarities identification.
Since most of the stations are located south of the activated area, providing a poor azimuthal coverage,
only impulsive onsets were used for the focal mechanism determination. Information on eight focal
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mechanisms that were calculated in this study is provided in Table 3. The available recordings in all
but one solution were in the azimuthal gap range of 122◦–138◦, with a median equal to 128◦.

One of the nodal planes determined for the main shock of Mw5.4, listed fourth in Table 3, striking
at 227◦, dipping to the northwest at an angle of 45◦, shows a good agreement with the epicentral
distribution of the relocated seismicity, as this will be discussed in the next section. For the four
strongest earthquakes, the available close opposite polarities projections ascertain the robust constraint
of the solution (Figure 4d). The significant dextral strike slip component (rake = 160◦) agrees well with
the regional stress field pattern. Most of the focal mechanisms determined for the smaller magnitude
earthquakes that belong to the same cluster along with the main shock (numbered 1, 2, 3 and 5 in
Table 3) are similar to that of the main shock. The fault plane solutions of the stronger earthquakes
that occurred south and west of the main cluster, and impressively all of them following the stronger
events occurrence of the main cluster, exhibit differentiation of the first nodal plane strike (10◦ and 30◦
for the events numbered 6 and 7 in Table 3 that belong to the second cluster, and 18◦ for the eighth
earthquake belonging to the southernmost cluster). They also differ from the gross faulting properties
of the Lefkada segment of the KTFZ [8,18].

Table 3. Information on the fault plane solutions determined in the present study. The first column
gives the serial number of each solution ordered according to the occurrence date and time, shown
in the second and third columns, respectively. The relocated epicentral coordinates and focal depths
follow in the next three 5th to 7th columns and the magnitude in the 8th column. The strike, dip and
rake of the 2 nodal planes are shown in columns 8–10 and 11–13, respectively. The azimuthal gap for
each solution is given in the last column.

n Date
Occurrence

Time

Lat
(oN)

Lon
(oE)

Depth
(km)

ML

Nodal Plane I Nodal Plane II
Az.

GapStrike
(o)

Dip
(o)

Rake
(o)

Strike
(o)

Dip
(o)

Rake
(o)

1 13/01/19 21:07:21.16 38.9849 20.6569 17.24 3.6 240 76 180 330 90 14 181

2 15/01/19 01:25:05.00 38.9904 20.6587 17.34 4.5 220 45 155 328 73 48 127

3 15/01/19 02:58:46.96 38.9957 20.6517 17.90 3.7 215 40 150 329 71 54 127

4 05/02/19 02:26:09.27 39.0101 20.6870 17.86 5.2 227 45 160 331 76 47 138

5 05/02/19 09:25:28.43 38.9931 20.6636 17.35 3.3 226 67 −153 125 65 −25 131

6 06/02/19 05:30:05.52 38.9242 20.6190 13.03 3.8 10 67 −156 270 68 −25 122

7 24/02/19 21:58:30.28 38.9005 20.6110 8.34 3.8 30 55 120 165 45 54 127

8 26/02/19 10:05:59.39 38.8823 20.6103 9.18 4.0 18 62 139 130 55 35 129

4. Seismicity Temporal and Spatial Characteristics

4.1. Temporal Distribution of Earthquakes

The seismic excitation attracted our attention from the first days, given that it started on 13 January
with an M3.6 earthquake, followed by numerous smaller ones, then an M4.5 shock on 15 January,
followed by an M3.7 after an hour and a half (see Table 3 for occurrence dates and times), all of them
felt by the inhabitants of the surrounding urban areas. The activity continued for months, exhibiting
alteration of active and relatively quiet periods. In order to investigate and analytically describe the
temporal behavior of this rather complex seismic activity, the cumulative number and magnitude
distribution of the earthquakes as a function of time are investigated and discussed.

Figure 2a shows the cumulative number of earthquakes that occurred since February 2018. The total
period is divided into four subintervals separated by three turning points where the color in the symbols
is changed. The first period spans from February 2018 until 15 January 2019, where a magnitude
4.5 earthquake occurred close to the incoming main shock. The activity of the first period (green
symbols in Figure 2a) presents two small swarms in February–March and May–June 2018 (temporal
clustering in Figure 2b), alternating with an almost stable seismicity rate, which could be considered as
the background rate (Figure 2b). The occurrence of the M4.5 earthquake on January 15 2019, along with
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its offsprings in one single day, is impressive (blue symbols in Figure 2a), as impressive is the relative
quiescence for about 20 days, which is more obvious in Figure 2b, when on 5 February, the main shock
with Mw5.4 occurred. One hundred aftershocks followed in two days and the activity presented an
exponential-like decrease up to shortly before the occurrence of the M4.0 earthquake on 26 February.
It seems that its occurrence followed a rejuvenation that could be considered as a foreshock phase,
and then its imminent aftershocks created a new short seismicity intensification. Soon after, the activity
declined as a function of time, as expected for an aftershock sequence.

 
Figure 2. (a) Cumulative daily number of earthquakes as a function of time. A very small onset in
seismicity is observed in Mid–January 2019 followed by the main onset after the main shock in early
February 2019. (b) Earthquake magnitudes as a function of time. The small onset of seismicity in
mid-January (blue symbols) corresponds to a magnitude 4.5 earthquake occurring near the main shock.

A map of the relocated seismicity is shown in Figure 3, where four colors are used to illustrate
the epicenters, corresponding to the four different periods as defined in Figure 2. The seismicity
is sparse and evenly distributed in the study area during 2018 (green color epicenters in Figure 3).
The M4.5 earthquake triggers significant microseismicity close to its epicenter and in an area of several
kilometers around (blue colored epicenters in Figure 3), much longer than its source dimensions.
The Mw5.4, strongest earthquake in the seismic excitation, triggered aftershocks in a rather large
seismic zone having an NE–SW orientation (red epicenters in Figure 3) for a short time interval during
which the activity was considerably increased (red dots in Figure 2b). In one day, the activity expanded
in the entire study area, manifesting a remarkable cluster comparatively far from the main shock, to
the southwest of its aftershock area. The earthquake magnitudes in this cluster are all smaller than 4.0.

In less than twenty (20) days of regular aftershocks rate decay, the activity was appraised again
on 26 February, when an M4.0 earthquake followed (yellow star in Figures 2 and 3). This indicates
a migration and expansion of the activity to the southern part of the study area. It is of paramount
importance then to explore further the sequential occurrence of the stronger members of this activity
and the possible triggering through transfer of stress among the activated fault segments, which will
be given in a later section of this study.
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Figure 3. Spatial distribution of the relocated seismicity. The epicenters are colored according to the
period of their occurrence as these periods have been defined and shown in Figure 2.

4.2. Spatial Distribution

The relocated seismicity allowed a refined and more reliable picture than the disperse epicentral
distribution provided from the regional catalog as shown in Figure 1, revealing four distinctive clusters
along with the disperse activity (Figure 4a). The northernmost cluster is associated with the main
shock epicenter, the location of which is shown with a green star, occupying an area of almost 7km
in length, slightly larger than expected for an MW5.4 earthquake, according to well-accepted scaling
laws [19–21]. The epicentral elongation at an NE–SW direction agrees with one of the nodal planes of
the focal mechanisms of the main shock and the four aftershocks that belong to this cluster (Figure 4a
and Table 3).

The activated fault segment with a strike of 220◦ dips to NW at an angle of 45◦ and is associated
with dextral strike slip faulting (rake = 160◦) with a considerable thrust component. This agrees with
the dextral strike slip motion of the KTFZ to the south of the study area, and the continental collision to
the north. The almost E–W azimuth of the axis of maximum compression also agrees with the regional
stress pattern. For a more detailed investigation of the geometry of this fault segment, the relocated
epicenters of the specific cluster alone are plotted in Figure 5a, along with two cross-sections, strike
parallel and strike normal that are shown in Figure 5b,c, respectively. It is worth to note here that the
focal depths are restricted in depths between 14 and 20 km, with the vast majority between 16 and
18 km, an important result for the identification of the seismogenic layer in the study area. The dip of
the fault plane as derived from the fault plane solution is again in perfect agreement with geometry of
the activated fault segment as this is revealed by the strike normal cross-section in Figure 5c.
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Figure 4. (a) Epicentral distribution of the relocated seismicity, plotted with different symbols and colors
according to their magnitude as shown in the inset, along with the fault plane solutions determined in
the current study depicted as equal area lower hemisphere projections, with the compression quadrants
shown in black. (b) Cross-section across a N–S direction, containing the entire set of the relocated
seismicity, with the hypocenters depicted with the same symbols as in (a) and the fault plane solutions
as frontal projections. (c) Same as in (b) for a cross-section across a W–E direction. (d) Fault plane
solutions along with the associated polarities (“+” for compression and “o” for dilatation) for the
earthquakes numbered 2, 4, 7 and 8 in Table 3.

The next seismicity concentration is located to the south of the previous cluster and encompasses
several earthquakes, the spatial distribution of which shows a barely preferable E–W elongation,
in agreement with the strike of the one nodal plane from the 05/02/2019 earthquake of M3.3 (Figure 4a).
The depth range is between 10 and 15 km, shallower than and exactly above the activated layer in the
main cluster and with a steeper dip angle (Figure 5b,c). The faulting type, in addition to the rotation
of its strike more to the north as mentioned before, exhibits a dextral strike slip motion with a slight
normal component.
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Figure 5. (a) Epicentral distribution for the main cluster, located at the northernmost point of the activity,
along with two cross-sections parallel and normal to its strike, PP and PN, respectively, (b) strike
parallel cross-section, (c) strike normal cross-section of the main cluster.

The epicentral distribution delineates a distinctly N–S striking structure, as one proceeds more
to the south, where two sub-clusters might be recognized, forming an almost N–S striking-activated
structure: the northern one, hosting the M4.0 strong event (yellow circle in Figure 4a) and forming a
narrow strip of relocated epicenters, and one to its south where the activity appears sparser. The focal
depths are now even more shallow, between 5 and 11 km, than the depth range of the relocated
seismicity further south to Lefkada [8,22]. Almost N–S striking, dipping to the east, a dextral strike
slip faulting holds for the two focal mechanisms determined for the M4.0 earthquake and one of its
foreshocks, again in full agreement with the faulting properties of the Lefkada fault branch of the
KTFZ [2].
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5. Coulomb Stress Changes and Possible Triggering

The spatial aftershock distribution is known to be affected by the static stress changes caused by
the main shock [23]. The change in Coulomb failure function (ΔCFF) is used to quantify closeness
to failure [24]. A positive value of ΔCFF on a fault indicates increased likelihood that this fault will
rupture in an earthquake. Values as small as 0.1 bar have been repeatedly shown to influence aftershock
activity ([23,25] among others). ΔCFF depends on the changes of shear and normal stress, Δτ and
Δσ, respectively, along with changes in the fluid pore pressure Δp of the rupture area, expressed by
the relation

ΔCFF = Δτ + μ (Δσ+ Δp), (1)

where μ is the coefficient of friction. Δp is expressed by the relation [25]

Δp = −B (Δσkk)/3, (2)

if undrained conditions are considered during the coseismic phase. B is the Skempton’s coefficient
(0 ≤ B < 1), with experimental values between 0.5 and 0.9 shown to be appropriate for rocks [26],
and Δσkk is the trace of the induced stress tensor. Assuming a ductile fault zone enclosed by a
homogeneous and isotropic medium, Equation (1) becomes

ΔCFF = Δτ + μ′ Δσ, (3)

where μ′ is the apparent coefficient of friction [24], which contains the effects of pore fluid as well as
the material properties of the fault zone. It is estimated by the equation

μ′ = μ(1− B) (4)

For this study, the values used to compute ΔCFF are μ=0.75 and B=0.5 as in [27] and as adopted
in other studies in Greece [28,29]. These values result in an apparent coefficient of friction of μ′≈0.4,
suggested by [1] for the area of the central Ionian Islands after testing different values and finding
the most appropriate one for this estimation. We calculated the stress changes due to the coseismic
slip of the main shock with the causative fault being approximated as a planar area with a length of
7 km and a width of 3 km, equal to the width of the seismogenic layer as explained in the previous
section. A seismic moment of Mo = 1.68·1017 N·m was adopted from the GCMT solution and with
the above source dimensions and a shear modulus of 33 GPa, a mean slip of 0.1745 m was estimated.
The Poisson ratio was fixed equal to 0.25.

The Coulomb stress changes were calculated for the faulting type of the main shock (strike = 227◦,
dip = 45◦, rake = 160◦) at a depth of 16.5 km, which is approximately the middle of the seismogenic
layer (Figure 5c), and are shown in Figure 6a along with the relocated aftershocks. It is evident that the
vast majority of the off-fault activity is located into stress enhanced areas. Given that the faulting type
of the earthquakes encompassing the other clusters differs from the one of the main shock, and that
the activity was more shallow, the stress field is inverted according to the faulting type of the M4.0
shock (strike = 18◦, dip = 62◦, rake = 139◦) at a depth of 11.5 km (Figure 6b). The earthquakes that
occurred south of the main cluster are located inside areas of positive stress changes, an evidence for
possible triggering, although with smaller values than in Figure 6a, possibly due to the difference in
the calculation depth.
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Figure 6. (a) Coulomb stress changes caused by the coseismic slip of the main shock, calculated at a
depth of 16.5 km, according to the faulting type of the main shock. Thin black line is the fault trace at
the depth of the top of the seismogenic layer, (b) same as in (a) for the faulting type of the strongest
M4.0 aftershock at a depth of 11.5 km.

6. Aftershock Sequence Analysis in Relation with Temporal Variations of b Value

The evolution of an aftershock sequence is among the key factors for operational forecasting, given
that the areas already hit by the main shock are continuously under the threat of a strong aftershock or
even a higher magnitude earthquake. Monitoring the seismicity is the means to evaluate the imminent
seismic hazard and several powerful tools have been developed in this respect. The occurrence of
a strong aftershock, or of a larger magnitude earthquake that is afterwards considered as the main
shock, along with the occurrence frequency of aftershocks depend upon the stress residuals and stress
redistribution before and after the target earthquake. The direct manifestation of the stress state is
the seismicity and one approach to detect fluctuations in its temporal behavior might be through the
detection of the temporal variations in the b value. The disadvantages of this procedure are frequently
connected with the lack of adequate data before the main shock that could prevent us from a robust
estimation of the b value, and the overlapping of the coda-waves in the first hours after the main shock
that can limit the early aftershocks detection capability [30]. However, the duration of our relocated
catalog starting one year before the main shock and careful inspection and manual phase picking
for aftershocks augmented the data sample and diminished the possible uncertainties in the b value
estimations. The approach that we apply is described in the next steps and follows the procedure
of [31].

A catalog encompassing 662 earthquakes that occurred from 4 February 2018 up to 10 October
2019 consists of our data sample for investigating the temporal behavior of the b value before and
after the main shock that occurred on 5 February 2019, one year after the incipience of the catalog.
Firstly, the completeness magnitude is detected through the maximum curvature (MAXC) method [32],
which is insensitive to sample sizes and shows great stability in estimating MC [33]. The magnitude
bin with the highest frequency of events corresponds to the threshold value, which in our case is found
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to be Mc = 1.3 (Figure 7). The b value of the GR law is computed through the maximum likelihood
estimation (MLE) method [34]:

b =
1

ln(10)
(
M−Mc + ΔM/2

) , (5)

where M is the mean value of the magnitudes and ΔM is the magnitude bin, usually chosen to be equal
to 0.1. This relation evidences the dependence of the b value on the choice of MC. Figure 7b reveals a
lack of earthquakes with magnitudes M ≥ 3.2 compared with expected ones from the FMD fit. Similar
breaks in FMD, also known as the nonlinearity problem, are attributed to aseismic stress release [35] as
well as to a lack of faults in a particular area capable to fail in specific magnitude earthquakes [36].
In our case, the observed deficit could be related either to the seismotectonic characteristics of the
study area or to the short time period of our dataset, or perhaps to both reasons. Nevertheless,
the investigation of the physical mechanism responsible for the nonlinearity in the FMD remains an
open issue for investigation and we believe that the data adequately support the investigation of the
temporal variations in the b value for the specific seismic sequence.

Figure 7. (a) Earthquake magnitudes, M ≥ Mc, as a function of time, (b) incremental (red triangles)
and logarithm of the cumulative frequency (blue triangles) as a function of magnitude. The black line
is the GR law fit with Mc = 1.3 according to maximum curvature (MAXC).

For the assessment of the temporal variations in the b value before and after the main shock, firstly,
we divided the catalog into two sub-catalogs, before and after the main shock with the Npre and Na f ter
sample sizes, respectively. Then, for each dataset, we recomputed the magnitude of completeness with
the same method, since it is more appropriate than the goodness of fit method for small sample sizes
(N∗ ≤ 200), which is the case here. A correction factor of +0.2 is considered in order to avoid biased
results in the b value estimation, since the Mc tends to be underestimated [33,37]. Table 4 summarizes
the details of the two datasets. In both cases, the magnitude bin with the highest frequency corresponds
to M = 1.3, so the completeness magnitude after the addition of the correction factor +0.2 is Mc = 1.5,
leading to Npre = 94 events before the main shock and Na f t = 226 aftershocks (see Figure S1 for the
GR law distribution of both datasets). Then, a sample window of size npre and na f t is determined
for the datasets before and after the main shock, respectively, for which we iteratively estimated the
b values moving at each iteration one event forward. A minimum number of events for the sample
size nthr = 50 is defined, which is the threshold for an approximately 15% error in the estimation of the
b value [35]. In this way, we achieved statistically reliable results.
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Table 4. Information on the two datasets used in the study.

Datasets Time Interval N Mc Nc a b

Pre-main shock 4/2/2018–5/2/2019 122 1.5 94 2.84 0.58

After-main shock 5/2/2019–8/10/2019 298 1.5 226 3.48 0.75

We tested different sample sizes in order to examine the dependency of the results on the choice
of the free parameters, npre and na f t (Figure 8). The time-varying evolution of the b value does not
significantly depend on the choice of these parameters in the size ranges (50 , 85). We set npre = 50
and na f t = 70, with 45 and 157 number of samples, respectively. However, we stress that with any
other combination, the same conclusions would have been reached.

Figure 8. Time-series of the b value for different sample sizes. The number of shocks (n) of each sample
is written at the left top corner of each box and it is the same for both the pre-main shock and after-main
shock datasets. Red dotted line corresponds to the main shock occurrence time, black dashed line to
the foreshock M4.5 occurrence time and the red and blue dots are plotted at the occurrence time of the
last event in each sample, respectively.

In our case, the magnitude completeness is assumed constant, however, it is generally suggested
to reevaluate it at each step since it can change in time, due to seismic network modifications or
detection limitations. We keep the same initially estimated completeness threshold for two reasons.
Firstly, the dataset covers a short period with relatively few events since it concerns the aftershock
sequence of a moderate size main shock, which must be taken into account with caution for a robust
estimation of the b value while evaluating iteratively the completeness threshold (many samples fall
under the minimum value nthr). Secondly, we verified that the geometry of the seismic network during
the study period was stable, meanwhile, we are highly confident about the monitoring analysis quality
since it was under our surveillance for the entire time interval. Nevertheless, we tested the temporal
fluctuations of the b values both with constant and moving magnitude completeness thresholds and
we did not observe significant variations through time (Figures S2 and S3). In all cases, the main
observation of decreasing b values after the M4.5 foreshock (dashed black line in Figure 8) compared to
the increasing ones just after the main shock held true, therefore, in our analysis, we continued with a
constant threshold that let us include more samples.
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Finally, we computed the median of the b values for the period of almost one year (from February
2018 until the last event before the foreshock of M4.5) as a reference value for the comparison with the
period between the foreshock and the main shock that occurred 21 days later, as well as with the entire
aftershock period. In Figure 9, the temporal variation in the b values with bre f = 0.64 is illustrated.
We can see that after the foreshock of M4.5 on 15 January 2019, the b values decrease rapidly compared
with the reference value by approximately 10%. In contrast, a general increase in the b values after the
main shock occurrence is observed, that exceeds 10% a day after, continues to increase and remains at
a level reaching 20% or more up to the end of the study period.

 
Figure 9. Top: the percent difference in the b values (blue circles) compared with the reference value
(cyan dashed-dot line). The vertical dotted line with the red star corresponds to the main shock
occurrence time and the black dashed vertical line to the occurrence time of the foreshock. Bottom:
same as in top but for the estimated b values.

7. Discussion and Conclusions

The seismic activity that manifested in 2019 in the offshore area north of Lefkada Island motivated
our investigation for the identification of the geometry and kinematics of the activated fault segments,
given that they are located at the junction between the two major active boundaries, namely the dextral
strike slip Kefalonia Transform Fault Zone and the collision between the Adriatic microplate and the
Greek mainland. It was expected to unveil the mode of kinematics and fill in the gap for the transition
from transform to collision, adding value to the exhaustive relocation and manual picking of arrival
phases for as many earthquakes as possible of the recorded ones, and the first polarities of the stronger
shocks that are associated with the activated fault segments.

The exact location and geometry of the offshore part of the KTFZ and its termination against the
thrust front was not identified with seismological data up to now. This lack of knowledge about its
northern extent is mostly due to the lack of moderate earthquakes at this location during recent years
where the seismological network detectability became efficient to provide the data for this analysis.
The geometry of the offshore faults identified in this study exhibiting mostly strike slip motion do
not match the orientation of the Lefkada fault branch. The difference in strike is ~20◦, with the
incorporation of a small thrust component in agreement with the adjacency of the compressional stress
field regime. The three observed clusters that are traced from the relocated seismicity in this study
exhibit spatial properties differentiation and reveal the 3D local structure, given that the focal depths
were relocated with high accuracy. The northern fault segment, although traced in already suggested

98



Appl. Sci. 2020, 10, 4491

kinematic models [38,39], is for the first time to be identified and investigated with seismological
recordings, and in particular, with such fine details. [38] referred to a right lateral strike-slip system that
resulted from the collision of western Greece with the Apulian platform, and runs through western
Greece to the KTFZ. The position of the identified activated fault segments, their strike and sense of
slip agree with the active fault mapping and suggested regional tectonics of [40]. A clockwise rotation
of the Ionian Islands and Akarnania block accommodated by major marginal strike-slip zones that
appeared segmented along their strike was suggested by [41].

Available fault plane solutions of moderate and strong earthquakes (M ≥ 5.0) in the Lefkada
segment of the KTFZ and the collision front extend as far as in the past such as 1973, from various
sources ([42] for the earthquake of 1973/11/04, [43] for the earthquake of 25/02/1994 and the GCMT
catalogue). Nevertheless, there are not any available focal mechanism solutions for earthquakes of
such magnitude in the study area. Fault plane solutions for smaller magnitude earthquakes in the
offshore area north of and close to Lefkada Island can be found in several studies ([8,44,45] among
others). Those solutions are either covering the offshore area that is the southern edge of our study area,
thus consistently following the NNE–SSW strike of the main fault zone, or they are not accompanied
by a highly accurate focal distribution as in our study, because even in the most recent cases of the 2003
and 2015 earthquakes, the seismic activity in the area of the main fault under study was not intense.

Figure 10 shows the identified active structures and a kinematic sketch of the study area. The focal
mechanisms determined in the present study (compression quadrants shown in red, and numbering
according to Table 3) along with the focal mechanisms of earthquakes with M ≥ 5.0 were already
published (green compression quadrants). Their origin time (YYYY/MM/DD) is shown on the top of
the beach balls. The thick gray lines denote the major active boundaries, namely the KTFZ, where the
dextral strike slip motion is shown by the antiparallel yellow arrows, and the collision front by the
sawtooth line. The prolongation of the KTFZ in the study area, as identified and documented in the
present study, is colored in red. The inset map shows the axes of maximum stress, P-axes, as they have
been taken from the fault plane solutions shown in the main part of the figure. The thick brown curved
arrows follow the P-axis rotation in agreement with the strike slip motion along the KTFZ and the
counterclockwise rotation of the Adria microplate.

The local fault system sheds more light on the transition from the dextral strike slip motion
along the KTFZ to the thrust faulting along the collision front. The thrust component present in the
fault plane solutions determined for the stronger earthquakes of the 2019 swarm put in evidence the
influence of the compressive stress field to the strike slip faults that are either striking along the KTFZ
(the southern ones) or “kinking” (the northern one) for compensating the kinematic direction prevalent
at this location. The slight but gradually changing rotation in the azimuth of the maximum stress
axes, from south (green arrows in Figure 10) to the northernmost edge of the 2019 activated structures
(red arrows), supports the hypothesis of a transpression movement in a transition zone between the
transform and collision zones.

The examination of the b value changes shows lower values before and higher after the main
shock occurrence. A noticeable decrease in the b value (from 0.6 to 0.5) was observed immediately
after the occurrence of the M4.5 foreshock on January 15 2019 and remained low until the main shock
occurrence on 5 February 2019. Then, it sharply increased to the values before the M4.5 foreshock and
gradually became higher, approaching the value of 0.9.
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Figure 10. Fault plane solutions of 16 earthquakes projected as equal area lower hemisphere projections,
where compression quadrants are in green for earthquakes of M > 5.0, that occurred before the
earthquake sequence in study and in red for earthquakes that were determined and belong to the
swarm investigated in this study. Thick grey lines denote the active boundaries of the Kefalonia
Transform Fault Zone (KTFZ) and the Apulian collision front. Red lines depict the identified fault
segment offshore Lefkada. Thin black line represents the Ionian thrust. Yellow arrows indicate relative
plate motion. The inset shows the P-axis inferred from the focal mechanisms. Black arrows illustrate
the characteristic direction of the axis, NE–SW for the earthquakes along the KTFZ and N–E for those.
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Abstract: Volcanologists have demonstrated that carbon dioxide (CO2) fluxes are precursors of
volcanic eruptions. Controlling volcanic gases and, in particular, the CO2 flux, is technically
challenging, but we can retrieve useful information from magmatic/geological process studies for
the mitigation of volcanic hazards including air traffic security. Existing techniques used to probe
volcanic gas fluxes have severe limitations such as the requirement of near-vent in situ measurements,
which is unsafe for operators and deleterious for equipment. In order to overcome these limitations,
a novel range-resolved DIAL-Lidar (Differential Absorption Light Detection and Ranging) has been
developed as part of the ERC (European Research Council) Project “BRIDGE”, for sensitive, remote,
and safe real-time CO2 observations. Here, we report on data collection, processing techniques, and
the most significant findings of the experimental campaigns carried out at the most hazardous volcanic
areas in Italy: Pozzuoli Solfatara (Phlegraen Fields), Stromboli, and Mt. Etna. The BrIdge voLcanic
LIdar—BILLI has successfully obtained accurate measurements of in-plume CO2 concentration and
flux. In addition, wind velocity has also been retrieved. It has been shown that the measurements of
CO2 concentration performed by BILLI are comparable to those carried out by volcanologists with
other standard techniques, heralding a new era in the observation of long-term volcanic gases.

Keywords: volcanic eruptions; volcanic plumes; CO2 flux; DIAL-Lidar; data processing techniques

1. Introduction

Volcanoes represent a significant threat and, at the same time, are a huge attraction since antiquity
for populations living nearby due to their fertile lands. At present, large populations live near active
or quiescent volcanoes and thus are at risk of their possible eruptions. It is well known that volcanic
eruptions can determine increasing air pollution levels; furthermore, they can influence climate [1] and,
in some circumstances, produce lethal eruptions that destroy the surrounding environment and cause
serious losses to national/international economies. Cautious valuation of volcano comportment and

Appl. Sci. 2020, 10, 6402; doi:10.3390/app10186402 www.mdpi.com/journal/applsci

105



Appl. Sci. 2020, 10, 6402

activity state is required to mitigate these effects, which can be carried out by instruments dedicated to
volcanic control [2].

Volcanologists can nowadays infer in real time, by modern technological and modeling
developments, the signals coming from seismic and ground deformations that usually happen
before eruptions. It is possible to know of an imminent eruption by detecting the stress changes
and magma accumulation/flow, thanks to the improvements in broadband seismometers, models,
and tools for processing seismic signals [3], and the constant implementation of satellite-based (GPS,
Global Positioning System [4] and InSAR, Interferometric Synthetic Aperture Radar [5]) geodetic
observations [6].

Volcanic plumes, fumaroles, and degassing grounds release incessantly magmatic volatiles (e.g.,
H2O, SO2, and CO2) [7], representing the external appearance of deep magma degassing [8,9]. These
volatiles are a source of priceless data for forecasting the likelihood of a volcanic eruption. Therefore,
accurate knowledge of volcanic gas composition and flux can provide alerts on possible eruptions [10],
and provide insights into the geophysical processes occurring in the inner parts of volcanoes.

As far as abundancy is concerned, CO2 is the second gas in volcanic fluids. Unfortunately, in
contrast to SO2, its measurements are much more complicated. In fact, efforts to achieve standoff
detection of the volcanic CO2 flux have been discouraged by technical challenges. This is mainly due
to the large atmospheric background, about 400 parts per million (ppm), which makes it difficult to
resolve the volcanic CO2 signal. For these reasons, there are few volcanic CO2 flux data in geophysical
studies (see [11–14] for fresh research).

In fact, SO2 can be found at the parts per billion concentration in the unperturbed
atmosphere, therefore its volcanic flux can be detected via routinely collected data from the ground
(e.g., DOAS, Differential Optical Absorption Spectroscopy [15]) and in space using UV (Ultraviolet)
spectroscopy [16–18]. Instead, standoff detection of volcanic CO2 has only been accomplished during
eruptions of mafic volcanoes, where ground-based Fourier transform infra-red (FTIR) spectrometers
can take advantage of magma/hot rocks as efficient light sources [19]. Conversely, monitoring of the far
more usual “passive” CO2 releases from quiescent volcanoes has implied access to risky summit craters
for direct measurement of fumaroles [20] or in situ sampling of plumes by implementing Multi-GAS
(Multi-component Gas Analyzer) systems [21] or Active-FTIR [22].

The employment of modern systems and networks for volcanic gas observations [8,20,23] has
made it possible to make significant progress in direct sampling techniques for volcano monitoring.
This has resulted in an improvement in time resolution of traditional ground-based volcanic gas
observations [24]. Moreover, taking advantage of fast advancements in optoelectronics, especially in the
last two decades including new coherent sources, detection systems, and spectrometric devices, we have
at present many optical remote techniques, both passive and active, ground-based, airborne, and even
space-borne, that are applicable to issues involving Earth CO2 degassing [12,14]. The improvements of
volcanic gas measurements in terms of numbers, quality, and time duration are providing evidence
that CO2 is the gas most directly linked to “pre-eruptive” degassing processes [21]. As confirmation of
this fact, precursory increases in CO2 plume flux have been recently detected at several volcanoes [25]
such as at Mt. Etna, the most active and dangerous volcano in Europe [26].

Taking into account the potentialities given by data on the volcanic CO2 flux for predicting
eruptions, the ability to remotely monitor this flux with a high time resolution is an important step
ahead in current volcanology.

Considering the stringent requirements of volcanological research and the great advantages of
active optical remote sensing (e.g., measurement not dependent of sunlight or other radiation sources,
safe monitoring distance, probing of sites difficult to access, large areal coverage, higher accuracy than
passive techniques, etc. [14]), ground-based lidar systems have represented, since their creation, a
valuable option for the remote detection of volcanic gases and aerosols. Such systems share many
advantages with seismic and deformation monitoring with respect to direct sampling; in a nutshell,
they can perform measurements from a safe area, while also allowing (semi)-continuous operation
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during eruptions. Moreover, gas amounts can be retrieved non-invasively in near real-time, obviating
the need for successive laboratory analysis, thus avoiding possible sample contamination, and—unlike
in situ sampling—standoff sensing techniques measure integrated or range-resolved gas concentrations
through cross-sections of the plume, thus providing a more informative characterization of composition
and flux of the volcanic plume [8].

Lidar systems have increasingly been used since the early 1980s for the valuation of volcanic
hazards (e.g., during the Soufriere and Mt. St. Helens eruptions in 1979 and 1981, respectively) [8].
Over the last 30 years, several lidars have been deployed to obtain data on the concentrations and
fluxes of sulfate aerosol [27–29] and ash [30]. Furthermore, laser remote sensing systems have been
used to detect volcanic particles in the troposphere at Mt. Etna (Italy) [31] and in the lower stratosphere
during the Pinatubo eruption (Philippines) [32]. In particular, the lidar at Garmisch-Partenkirchen
was one of the first examples of volcanic lidar implemented to observe the spread of the stratospheric
volcanic plume (from 10 to 28 km) by evaluating the time-series of vertical profiles of the scattering
ratio and vertically integrated column of the backscatter coefficient using a Nd:YAG laser operating at
532 nm. These measures were affected by the following average errors: peak scattering ratio: ±4–5%
and integrated backscatter coefficient: ±10% [32].

DIAL-Lidar (Differential Absorption Light Detection and Ranging), or simply DIAL, is based
on the fast switching of the wavelength of laser pulses on- and off-absorption of the molecule under
study. From the application of the Beer–Lambert law to the ratio of the lidar signals (detected radiation
vs. range) retrieved at both wavelengths, the range-resolved molecule concentrations (ppm) can be
obtained, thus determining the two-dimensional or even three-dimensional plume morphology. This
achievement is beyond the capabilities of FTIR, COSPEC (Correlation Spectrometer), and DOAS [15],
which provide the path length integrated concentrations (ppm m). DIAL has been deployed at the
main Italian volcanoes with UV lasers for tracking the total fluxes of SO2 [28,33]. In particular, the
first example of the quantification of volcanic SO2 fluxes by using the DIAL (active) technique is
reported in [33] where it was extensively compared with passive monitoring techniques (DOAS and
COSPEC). In the previously mentioned work, the lidar-based SO2 fluxes were 50% higher on average
than those derived with other standard passive techniques (COSPEC and DOAS) commonly used in
volcanology. This mismatch was interpreted as evidence of possible scattering-induced errors in the
passive techniques.

More recently, ATLAS (Agile Tuner Lidar for Atmospheric Sensing), a ground-based DIAL
system, has been implemented to perform measurements of water vapor flux at the Stromboli volcano
(Italy) [34]. To our knowledge, this was the first time that lidar retrieved water vapor concentrations in
a volcanic plume.

Finally, the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), an elastic backscatter
lidar operated from a satellite, was used to observe volcanic ashes from 15 to 20 April 2010, just after
the explosion of the Eyjafjallajökull volcano (Iceland) [35]. This has opened up new scenarios in future
volcanic-lidar applications.

However, the apparatuses previously described were costly, heavy, and not effective enough to be
implemented in the long-term period. Even though DIAL provides unprecedented opportunities to
volcanologists, it requires more advancement to become a reliable technique for routine observations.

In order to fill these gaps, a new DIAL system, designed to measure the volcanic CO2 flux, was
developed as part of the ERC (European Research Council) Starting Grant Project “BRIDGE”. The BrIdge
voLcanic LIdar (BILLI), assembled at the ENEA (Italian National Agency for New Technologies, Energy
and Sustainable Economic Development) Research Center of Frascati by the FSN-TECFIS-DIM group
(Diagnostics and Metrology Laboratory) [36], successfully retrieved three-dimensional tomographies
of volcanic CO2 concentration in the plumes at Italy’s most hazardous volcanic areas: Pozzuoli
Solfatara (Naples, Italy) [21,37,38], the Stromboli volcano (Aeolians Islands, Italy) [39,40], and Mt. Etna
(near Catania, Italy) [41,42].
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As far as we know, lidar measurements of CO2 have been performed in volcanic plumes only in
recent times, due to the previously mentioned technical challenges and the extreme environmental
operating conditions [14,21,37–42]. In the last decade, promising results have been obtained by using a
variant of DIAL, known as the Integrated Path DIAL (IPDIAL), but mainly to monitor ambient CO2

concentrations (e.g., power plants/industrial emissions), and an Open-Path laser Spectrometer (OPS) to
measure volcanic CO2 concentration and flux. However, despite the efforts to provide a remedy to
some drawbacks of DIAL-Lidar systems (in terms of costs, complexity of the setup and maintenance,
portability and integration time), the aforementioned systems had severe limitations such as the
need of a topographic target to perform the measurements of CO2, which were not range-resolved
(only path averaged gas concentrations were retrieved). In addition, the volcanic CO2 flux computed
by OPS was affected by a large uncertainty [14]. Therefore, it can be concluded that BILLI was the
first range-resolved DIAL system used to remotely measure both CO2 concentration and flux in a
volcanic plume.

In particular, as will be shown in the following paragraphs, BILLI has been deployed to retrieve
range-resolved profiling in wide plumes, thus providing spatio-temporal dispersion concentration
maps and high-resolution CO2 flux time-series. It has opened unprecedented possibilities in measuring
volcanic CO2: BILLI made it possible to clearly detect an excess of a few tens of ppm over a distance of
more than 4 km, considering a spatial and temporal resolution of 5 m and 10 s, respectively [42].

Quantifying the CO2 output from Pozzuoli Solfatara (October 2014) [21,37,38] and Stromboli (June
2015) [39–41] allows for the interpretation, and if possible, the forecast, of the upcoming development
of the volcano scenario, with huge benefits to the population living nearby. These examples show the
huge social values of lidar systems in monitoring gas emissions. Moreover, observations at densely
populated volcanic regions will have a high societal impact throughout Europe. In this regard, the
potential of our system has also been confirmed by the results acquired during the last experimental
campaign, carried out between July and August 2016 at Mt. Etna [42], retrieving a plume peak beyond
4 km.

The main goal of these experimental campaigns was to measure the exceedance of in-plume CO2

concentration and flux to provide useful information to volcanological research for a precocious alert
to the population in the event of eruptions.

In this paper, after a description of BILLI, special emphasis will be given to data processing and
analysis of the experimental results, which will be thoroughly discussed. This was made possible
by means of automatic software procedures written in MATLAB and based on the newly designed
BRIDGE DIAL data processing technique. Significant CO2 concentration profiles, dispersion maps,
and time-series of CO2 flux will be shown. Moreover, our monitoring was assessed by conventional
data and local meteorological measurements.

Finally, thanks to the BILLI system and from a complete time-resolved plume evolution, it was also
possible to retrieve the wind velocity (Stromboli field campaign, 2015), a useful parameter for the CO2

flux calculation and for the mitigation of volcanic hazards, especially in the field of air traffic security.

2. Materials and Methods

2.1. The BILLI System

A lidar, also known as an optical radar, is an active range-resolving optical remote measurement
system whose main components are composed of a transmitter (laser) and the receiver (telescope,
optical analyzer/detector, data acquisition/computer). The principle of operation is the following [43,44]:
the laser emits a light pulse into the atmosphere and its photons are scattered in all directions from
molecules and aerosols (particles, droplets, etc.) present in the air. Part of the light is backscattered
toward the telescope. Then, by means of a detector and computer, it is possible to analyze the
detected signal vs. The time elapsed between the emission and detection (t). This makes it possible to
characterize the chemico-physical properties of air along the beam. In fact, if R is the distance from the
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lidar of the backscattering layer and c is the speed of light, we can write R = ct/2. Going back and forth
from the backscattering layer, the laser pulse undergoes attenuation by air, as expressed by its extinction
coefficient, linked to the light absorption of its species. Often, the absorption lines of molecules are
narrow, making it possible to employ DIAL to retrieve their concentration. This technique uses the idea
of differential-absorption measurement in which two light pulses with slightly different wavelengths
(ON: the light is strongly absorbed by the species under investigation, OFF: the light is not absorbed
at all or at least much less) are emitted into the atmosphere, and two corresponding backscattered
signals are detected concurrently. The difference between the two profiles is directly linked to the
molecule abundance and this technique allows one to determine and map the concentrations of selected
molecular species in ambient air [43,44].

BILLI (whose technical scheme and experimental setup are reported in Figure 1) is a
monostatic-biaxial DIAL-Lidar system mounted in a small laboratory truck and is composed of
a transmitter and receiver equipment [21,37–42].

  
(a) (b) 

Figure 1. (a) Technical scheme of the BILLI DIAL system extrapolated and rearranged from the Figure 2
reported in [37]); (b) Experimental setup of the system during the Stromboli campaign (the volcano
summit is visible above the two inset pictures). The scanning mirrors and the laser system are visible in
the top and bottom inset picture, respectively.

The transmission sub-system is based on a double grating dye-laser optically pumped by an
injection seeded Nd:YAG laser (powerful, tunable and narrow-linewidth), a device for the frequency
generation (i.e., difference frequency mixing, DFM), and an optical parametric amplifier operating
in the NIR (Near IR) band (OPANIR). The limited tunability (few tenths of nm) of Tm, Ho:YLF, and
fiber lasers was the main reason of their exclusion (from the transmission sub-system during the
implementation stage) given the difficulties in choosing the best absorption line [36]. Instead, due to
the harsh environment near degassing craters that can cause burns on the surface of nonlinear crystals,
OPOs (optical parametric oscillators) have been discarded [37–39].

This transmitter was used to generate laser radiation at ≈2 μm, a region of the electromagnetic
spectrum absorbed by atmospheric CO2, with negligible cross-sensitivity to H2O [36].

The laser source of BILLI has the following characteristics [39]:

• 10 pm wavelength stability corresponding to about 0.2 cm−1 wavenumber stability;
• enhanced beam profile amplifier (EBPA);
• dynamic mode option (DMO); and
• piezo wavelength control (PWC).

The receiver sub-system is based on a Newton telescope and a detection system, which consists
of a thermoelectric-cooled InGaAs PIN photodiode, directly linked to the analog-to-digital converter
(ADC). Two large motorized elliptical mirrors (major axis: 450 mm) make it possible to scan all of the
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angles above the horizon. The specifications of the whole system are reported in Table 1, and more
details are available in previous works [21,37–42].

Table 1. Main specifications of the BILLI system during the BRIDGE field campaigns.

Transmitter Pulse energy 25 mJ

Pulse duration 8 ns

Repetition rate 10 Hz

Wavelengths ON: 2009.537 nm, OFF: 2008.484 nm
(Stromboli Volcano 2015, Mt. Etna 2016)

ON: 2012.194 nm, OFF: 2011.1 nm
(Pozzuoli Solfatara 2014)

Laser linewidth 0.04 cm−1

Beam divergence 0.5 mrad

Receiver Mirror coating Al

Clear aperture 300 mm

Focal length 900 mm

Field of View 1 mrad

Scanning elliptical mirrors Mirror coating Al

Clear aperture 320 mm × 451 mm

Detector module Photodiode InGaAs PIN

Diameter 1 mm

Responsivity 1.2 A·W−1

Gain 5.1·104 V·A−1

NEP 10 pW·Hz−1/2

Bandwidth 0–10 MHz

Analog-to-digital converter
(ADC)

Dynamic range 14 bit

Sampling rate 100 MS·s−1

From Table 1, it is possible to note that, with respect to the Pozzuoli Solfatara field campaign [21,37,38],
the operative wavelengths were slightly changed during the campaign carried out at Stromboli and
Mt. Etna [39–42]. This was due to the different mode of operation of the system.

In fact, in the first campaign, the line (2012.194 nm) was selected looking for low cross-sensitivity
to water vapor and high absorption coefficient [37,38] that was optimum for short-range measurements
of CO2 concentration, whereas, in the other cases, the main goal was to reach longer ranges. To do this,
the differential absorption cross section of carbon dioxide (Δσ) was reduced and a different ON line
(2009.537 nm) was chosen [39,42]. For more details, see Table 2 [21,37–42].

As will be shown in the following, it was observed that the measurement uncertainty was governed
by instability in the wavelength set. For this reason, from the Stromboli campaign, a photo-acoustic
cell—with CO2 at atmospheric pressure and temperature—was mounted at the laser output, thus
providing wavelength accuracy, repeatability, and stability, as has been shown in the laboratory [36–42].
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Table 2. Wavelengths, wavenumbers, and CO2 absorption coefficients calculated (at T = 296 K, P = 1
atm) during the field campaigns of Pozzuoli Solfatara, Stromboli volcano, and Mt. Etna.

Pozzuoli Solfatara, October 2014
Stromboli Volcano, June 2015 and Mt.

Etna, July 2016

Mode ON OFF ON OFF
Wavelength [nm] 2012.194 2011.1 2009.537 2008.484

Wavenumber
[cm−1]

4969.7 4972.403 4976.271 4978.880

CO2 Abs. Coeff.
[m−1]

7.474 0.331 1.934 0.302

CO2 Δσ [m−1] 7.143 1.632

Moreover, a new version of the software was developed: the step motor that modifies the resonator
cavity inside the dye laser now allows one to shift the emitted wavelength, and the photo-acoustic
signal was measured, averaging for 1 s (i.e., for 10 laser shots). In this way, the wavelength shown by
the laser monitor can be corrected for a small shift (0.12 cm−1) and the experiment and theory [45]
agreed within the linewidth of the emitted pulse (0.04 cm−1). This leads to being able to control the
wavelength with the photo-acoustic cell before every lidar measurement, so that the operator can fix
the ON and OFF wavelengths with a smaller error than the emitted linewidth [39].

Therefore, a gradual refinement of the system performances was obtained in the last two in-field
campaigns, thanks to the following measures:

• an appropriate choice of CO2 absorption cross section, which enabled both short- and
long-range measurements;

• the implementation of the photo-acoustic cell, resulting in a containment of systematic uncertainty
associated with measurements of CO2 concentration (see Section 2.2.5); and

• the reduction of the laser beam divergence due to a better optical setting, resulting in an
improvement in the signal-to-noise ratio (SNR).

As will be shown in the following, this allowed us to detect CO2 plume peaks beyond 4 km and
to improve the accuracy of the CO2 flux measurements. Finally, efforts have been spent to improve the
system portability and, in particular, to integrate existing data processing routines [42].

Summarizing, the main characteristics of the system are as follows:

• the lidar is able to explore the troposphere in both vertical and horizontal directions;
• every lidar return is obtained averaging at least 50 shots ON and OFF (interlaced between them

with tshift = 0.1 s);
• the temporal resolution of the lidar echoes (Δt) is about 10 ns, corresponding to a ΔR of 1.5 m,

although the actual time resolution of BILLI is 5 m: this latter value corresponds to the time
response of the detection system and is linked to its bandwidth [39]);

• a concentration profile can be obtained in about 10 s by a couple of lidar signals (ON and OFF)
using the newly designed mathematical technique explicitly developed for this application;

• starting from lidar signals of the same scan, it is possible to retrieve the dispersion map of in-plume
CO2 concentration (ppm) in the investigated area;

• knowing the (estimated) plume velocity, it is possible to obtain the carbon dioxide flux
(Kg·s−1) [21,41,42]; and

• starting from lidar profiles acquired successively, it is possible to track the motion of discrete
atmospheric particles emitted by the volcanic crater, and this allows one to also estimate the wind
velocity [38] (more details are reported in Section 3.2).

However, a comprehensive overview of the special features of BILLI has been reported in previous
works [21,37–42].
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2.2. The BRIDGE DIAL Data Analysis Technique

As above-mentioned, from the literature [44], it is well known that the radiation returned to the
lidar telescope vs. time is linked to the backscattering of the laser pulse by an atmospheric layer at a
specific range from the system. Consequently, lidars provide range-resolved characterization of the
atmosphere and of its components (particulates and molecules) along the path of the laser pulse. This
information can be displayed by means of intensity vs. distance graphs.

Considering that for our experiments a DIAL system was deployed, two different
wavelengths—λON and λOFF, absorbed and not absorbed, respectively, by carbon dioxide—were
used to acquire the intensity profiles. The difference between the two wavelengths was very small and,
as a consequence, the behavior of the atmosphere (e.g., considering aerosol and molecular attenuation
and turbulence effect on the beam transmission) was the same, except from the CO2 absorption. Thanks
to the difference in return between the nearly simultaneous λON and λOFF signals (as stated in Table 1,
the time interval between two successive laser pulses was 0.1 s), and using the previous mentioned
technique, the operator can retrieve the range-resolved CO2 concentration profile in volcanic plumes.

The BRIDGE DIAL technique is a mathematical procedure written with MATLAB software that
has been specifically developed for real-time data processing and graphic presentation of data, acquired
during the field campaigns carried out by the BILLI system. As recalled before, throughout the years,
both the system and the data analysis technique have been optimized. In this section., only the main
steps of the technique are reported, and more details are given in previous works [21,37–42].

2.2.1. Preliminary Steps

Generally, raw data are: (i) normalized by dividing the lidar signal by the laser energy; and
(ii) background-noise subtracted [44]. Background noise here is measured by averaging the farthest
part of the lidar echo (see Figure 2a(1)).

To simplify, during its travel to distance R, the pulse energy decreases: (i) exponentially, due to air
extinction; and as 1/R2, simply because the detected photons are directly proportional to A/R2 (i.e.,
the solid angle of the telescope), where A is its effective area. To compensate for this effect, the lidar
signal P(R) (where P is the received power as a function of range R) is commonly transformed into
the range-corrected signal (RCS). This is performed by multiplying the signal P(R) by R2 [44] (see
Figure 2a(2)).

Finally, to further improve the SNR (Signal-to-noise Ratio), up to 100 laser shots have been
averaged for every lidar return and a Savitzky–Golay filter [46] algorithm with 13 points was used (see
Figure 2a(2)).

2.2.2. Conversion of RCS (Range Corrected Signal) Profiles Into Range-Resolved Profiles of in-Plume
Excess CO2 Concentrations

The core of the BRIDGE DIAL technique consists of the following steps [21,37–42]:

• Evaluation of CO2 concentration in the natural background atmosphere (C0) outside the plume [39].
• Evaluation of the average excess CO2 concentration (ΔC) in the volcanic plume cross-section

(e.g., between two rockfaces as shown in Figure 1 [39]) encountered along the laser optical path in
the examined region with respect to C0.

• Calculation of the range-resolved excess of in-plume CO2 concentration, corresponding to each
i-th ADC channel of the lidar profile from (see Figure 2b):

CCO2,i = k·RCSi (1)

k =
ΔC(R 1 −R2)

ΔR
∑

i RCSi
(2)

112



Appl. Sci. 2020, 10, 6402

where k is the multiplication factor; ΔC—as we mentioned—is the average excess carbon
dioxide concentration measured between the two rockfaces and is inferred from the ratio of the
corresponding two lidar echoes; R1 and R2 indicate the ranges of the two rockfaces; ΔR is the
range interval corresponding to an ADC channel; and RCS is the range corrected signal.

 
(a) 

 
(b) 

Figure 2. (a) Example of a lidar profile acquired during the Stromboli volcano field campaign on 26
June 2015. (1) Data profiles in the form of signal intensity (arbitrary units, a.u.) vs. range (in meters)
cleaned by the noise. (2) Detail of the experimental RCS (Range Corrected Signal) and filtering of
the OFF channel using a Savitzky–Golay filter algorithm with 13 points in which the plume peak is
visible between two rockfaces in the range interval between 1800 and 2900 m. The laboratory peak in
(1) provides the start time of the pulse emission and is due to the reflection of some laser radiation
inside the mobile laboratory. The two rockface peaks (2), as their name indicates, are due to pulse
backscattering by the rockfaces of Stromboli. Finally, the peaks from 2200 to 2700 m are linked to the
backscattering of the laser pulse from the plume. (b) Particulars of the exceedance of in-plume CO2

concentration profile (acquired at 11:27, with an elevation 16.98◦ and azimuth 237.8◦). The quadratic
sum of statistical (2%) and systematic (5.5%) uncertainties led us to estimate an overall uncertainty of
about 6%.

It should be noted that, during the in-field preliminary setup, the system was optimized to
perform measurements in selected directions, where one or more topographic targets were partially
inside the lidar FOV (Field of View). This allowed us to retrieve some useful parameters (see C0, ΔC,
and k) for the initialization of the data analysis technique. Once the multiplication factor is known, it is
possible to perform sequential measurements multiplying each range-corrected lidar profile by this
factor, within the limits of the expected dispersal area of volcanic plume.

• Drawing CO2 dispersion maps by scanning the selected region and arranging subsequent
concentration profiles (acquired at different scanning angles and relative to the same scan) in
chronological order.
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2.2.3. Assessment of the Plume Transport Velocity

The plume velocity vp (m·s−1) can be inferred from UV camera photograms [21,41,42] or assessed
by implementing the correlation method [40,47].

The latter case consists of the following main steps [40]:

• Firstly, RCS is normalized by the laser emitted energy on a shot-per-shot basis (see Table 1) to
define a normalized signal S(Ri) independent of the energy fluctuation. Then, the mean normalized

signal
¯
S (R i

)
is obtained by averaging N successively recorded individual signals at successive

times tn.

• Second, once we know S(Ri) and
¯
S (R i

)
, it is possible to retrieve the information about the

shot-per-shot fluctuations of the signals, with respect to the mean normalized signal that is
contained in the fractional deviations (specific datasets in which the time evolution of in-plume
spatial aerosols inhomogeneities is clear) as:

f(R i, tn) =

S(R i, tn) −
¯
S (R i

)

¯
S (R i

) (3)

• Third, to determine the displacement of the backscattering inhomogeneities, a cross-correlation
function ρ(L, ΔH) is defined with respect to an altitude interval ΔH and to a lag value L,
corresponding to a discrete number of spatial points as:

ρ(L, ΔH) =
1

σσL

b∑
i=a

N − 1∑
n=1

f(R i, tn)f(R i+L, tn+1) (4)

and a superimposed Gaussian estimator is employed on the data to calculate the mean and
standard deviation values. These values, respectively, are used to infer the radial wind velocity
and its uncertainty.

• Finally, it is possible to measure the horizontal component of the wind velocity (in this kind of
application, the vertical component of wind can be neglected) as:

v =
vrcos θ
cos ΔΦ

(5)

where vr is the radial wind in the altitude interval ΔH determined from the lag value for which
the correlation is maximum; θ is the elevation angle of the telescope; and ΔΦ is the difference in
the azimuthal orientation of the wind vector and of the light path.

It should be noted that the described experimental technique (for the tracking of wind velocity)
has the advantage of being performed remotely, rapidly, and without additional costs, thanks only to a
further data processing routine integrated in the main data analysis software. Therefore, using the same
dataset, BILLI is able to perform multiple measures of in-plume CO2 concentration (in excess), flux,
and simultaneously, a good estimation of the plume transport velocity over large areas. This can also
be useful to provide a fast tracking of volcanic ash, in order to improve air traffic security. Nevertheless,
although promising results (in line with in-situ weather stations) have been obtained using the
correlation method, the main drawbacks are still high measurement uncertainty and discrepancy with
respect to other optical devices (e.g., UV camera images), probably due to the high fluctuations of wind
as a function of the altitude and the differences between the devices and/or data acquisition/processing
techniques [40].
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2.2.4. Evaluation of CO2 Flux

The values of CO2 concentrations reported both in the profiles (see Figure 2b) and the dispersion
maps (see Figure 3a, Figure 4a, Figure 5b) were used to compute the carbon dioxide flux (see Figure 3b,
Figure 4b, Figure 5c). To this aim, it is necessary to integrate the excess (i.e., background corrected)
carbon dioxide concentrations over the whole cross-section of the plume determined by each scan, and
multiply this amount by the transport velocity of the plume. Formally, the carbon dioxide flux (ΦCO2 ,
in Kg·s−1) is calculated from the following equation [21,41,42]:

ΦCO2 = vp·
PMCO2

103NA
·NmolCO2−total (6)

where vp is the plume transport velocity (m·s−1); NmolCO2−total is the total plume carbon dioxide
concentration (molecules·m−1); and PMCO2 and NA are the CO2 molecular weight and the Avogadro’s
constant, respectively. NmolCO2−total was calculated by integrating the effective average excess CO2

concentrations (Cexc,i in ppm) over the whole plume cross section, according to:

NmolCO2−total = Nh·10−6·
∑

i

Cexc,i·Ai (7)

where Nh is the atmospheric number density [molecules·m−3] at the crater; 10−6 converts it into parts
per million (ppm); and Ai represents the i-th effective plume area provided by:

Ai = li·ΔR (8)

where ΔR is the ADC resolution (1.5 m) and li is the i-th arc of the circumference:

li = Ri·θ (9)

where Ri is the i-th range vector (m) and θ is the angle resolution (rad).

  
(a) (b) 

Figure 3. (a) An example of a lidar scan in polar coordinates through the plume at an elevation of 12◦
(15 October 15 2014). The contour lines show isopleths of background-corrected CO2 mixing ratios in
the plume (expressed in ppm, the legend is the vertical colored bar), shown as a function of heading and
range. (b) Time-series of lidar-derived CO2 fluxes from Pisciarelli obtained from 15 October (afternoon)
to 16 October (afternoon), rearranged from Figure 4 reported in [21]. The timescale for the morning
scans on 15 October is shown in green. Each point refers to a particular scan through the plume (time is
the onset time of the scan, with each scan lasting 10–20 min) [21].
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(a) (b) 

Figure 4. (a) In-plume CO2 concentration map acquired on 26 June 2015 at Stromboli. Carbon dioxide
concentration varies as a function of increasing altitude (on the left of the map) and elevation (on the
right of the map). The superimposed grey points represent the vertical wind profile retrieved by BILLI
in the same dataset. Here, the mean value of the wind velocity was found about 1.3 m/s. The x-axis
error bar is the weighted average standard uncertainty of wind velocity, equal to 0.52 m/s. Instead, the
error bar on the y-axis represents the altitude halfwidth between adjacent regions (A, B, C, and D) [40]).
This figure has been obtained by combining Figure 4 and Figure 8 reported in [40]. (b) Time-series
of CO2 fluxes from Stromboli volcano from 24 to 29 June 2015, rearranged from Figure 5 reported
in [41]. The BILLI based fluxes (red circles) were obtained using the procedure detailed here [39,41].
For comparison, independent CO2 flux estimates, obtained by multiplying the in-plume CO2/SO2 ratio
(from Multi-GAS) by the SO2 flux (from UV cameras) are also presented (green squares) [41].

2.2.5. Evaluation of Uncertainty Sources

The main sources of uncertainty that affected our CO2 flux measurements are reported below [39,41]:

1. Systematic uncertainty of the carbon dioxide concentration measurement. Taking into account the
experience [21,41], the systematic uncertainty of the BILLI system was dominated by inaccuracies
in wavelength setting [39], and this led to errors in differential absorption cross section and, as a
consequence, in CO2 mixing ratio. In this regard, in order to control the transmitted wavelength
before each atmospheric measurement, a photo-acoustic cell filled with pure CO2 (at atmospheric
pressure and temperature) was implemented close to the laser exit. This allowed setting the
ON/OFF wavelengths used in this study with an accuracy better than the laser linewidth [39],
with an overall uncertainty in the wavelength setting equal to ± 0.02 cm−1 (half laser linewidth).
For these reasons, the systematic uncertainty of the CO2 concentration measurement was below
5.5% [41,42].

2. Statistical uncertainty of the carbon dioxide concentration measurement. Starting from the
calculation of the standard deviation of the signals corresponding to every ADC channel, and
implementing the standard uncertainty propagation technique [48], it has been possible to evaluate
the statistical uncertainty. This uncertainty varies as a function of distances from the system,
considering typical atmospheric and plume conditions encountered during field campaigns.
Typical values at 2.5 km and over 4 km from the system were estimated to be equal to 2% and
slightly above 5%, respectively [41,42].

3. Uncertainty linked to plume transport velocity. Mean and standard deviation of the wind velocity
were calculated, also in this case by the standard uncertainty propagation technique. Then, the
corresponding relative uncertainty was evaluated [48]. The assessed values ranged from 3% (at
Stromboli [41]) to 19% (at Pozzuoli [21]).

4. Uncertainty in the characterization of the integration area. Due to difficulties in accurately
assessing the surface where there is an excess of carbon dioxide concentration, this parameter
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represented the main source of uncertainty for the calculation of volcanic CO2 fluxes, with an
order of magnitude estimated to be about 25% [41].

If all uncertainty sources are statistically independent, all the components have to be quadratically
summed [48] in order to obtain the total uncertainty of volcanic CO2 fluxes, which varies from 20% to
30% (dominated by the area uncertainty [41,42]). This value is consistent with the results obtained
during the field campaigns of Pozzuoli (2014) [21], Stromboli (2015) [41], and Mt. Etna (2016) [42].

 
(a) 

  
(b) (c) 

Figure 5. (a) Lidar return at 12◦ of elevation: two wide and jagged peaks from the volcanic plume
are clearly visible; the CO2 profiles inside the volcanic plume are shown in the two red boxes.
The uncertainty was equal, respectively, to 6% for the left-side plume peak and 7.5% for the right-side
plume peak. (b) Vertical scan (fixed azimuth: 230◦) of the volcanic plume (CO2 excess) acquired on
31 July 2016 (12:47 p.m.–1:03 p.m., local civil time). With that fixed azimuth and in the elevation range
7–9◦, rockfaces reflect the laser pulse, corresponding to peaks that are not linked to the plume (rockfaces
are disentangled from plume because of the narrowness of peaks). (c) Carbon dioxide flux measured at
the northeast crater on 31 July 2016 (12:22 p.m.–6:08 p.m., local civil time). The bars show the error in
carbon dioxide flux (33%). Please note that the previous figures were extrapolated and rearranged
from Figure 2a, Figure 4c, Figure 5, respectively, reported in [42].

3. Results and Discussion

A brief overview of the experimental campaigns carried out over three years by the BILLI system
will be presented and discussed here.
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The first experimental campaign was carried out during October 2014. The system was placed
≈100 m far from the fumaroles of Pozzuoli Solfatara (Pisciarelli, Phlegraen Fields). The system
performed a horizontal scan at different elevations, retrieving, for the first time, CO2 concentration
dispersion maps and time-series of lidar-derived CO2 fluxes [21,37,38].

About ten months later (June, 2015), other tests were carried out at Stromboli Volcano Island,
where BILLI operated nearly 24 h for almost a week, performing horizontal and vertical scans. CO2

excess of a few tens of ppm was measured in some minutes in the volcanic plume up to a distance of
nearly 3 km far from the system. In addition, in this case, daily cycles of CO2 flux were successfully
retrieved [39–41].

Finally, the potential of the BILLI DIAL system was confirmed by the last field campaign at Mt.
Etna at the end of July 2016, where, for the first time, in-plume CO2 concentration peaks were retrieved
at a distance exceeding 4 km [42].

It should be noted that during all field campaigns, eye safety regulations were followed and
weather did not alter the BILLI operation, except for a moderate influence of the wind, as is reported in
Section 3.2 [21,37–42].

3.1. The Experimental Campaign of Pozzuoli Solfatara

The first field experiment was conducted at the Phlegraen Fields volcano [21,37,38]; this is a
rising caldera including Pozzuoli and the suburbs of Naples, among the most inhabited zones of Italy.
The bradyseismic crises of the volcano produced thousands of shallow earthquakes, and its activity has
been often, even if not continuously, active in the last few decades. Scientists and stakeholders observed
these recent crises, despite them not evolving into an eruption, bearing in mind the related important
hazard mitigation problems and the linked necessary interventions. These issues have become even
more critical taking into account that ground uplift restarted in 2012, with the intensification of
degassing activity, in the caldera center and at the main surface hydrothermal manifestations of
Solfatara and Pisciarelli. Current uplift/degassing unrests observed in Pozzuoli are probably due to
intermittent injections of carbon dioxide-rich gas in the hydrothermal system of the volcano, indicating
that fresh magma is supporting a strong inflow of gas from deep layers. Here, attention has been
focused on the degassing fumarolic vent of Pisciarelli that, besides a small augmentation in discharge
temperature (from less than 95 ◦C up to 110 ◦C), has visibly escalated in degassing activity over the
past decade (the carbon dioxide concentration in fumaroles has also risen), making it the most active
among the Italian fumarolic vent areas. Therefore, quantifying the CO2 output from Pisciarelli is vital
for the interpretation and possibly the prediction of future changes in this volcanic zone [21].

The system measured nearly continuously during both 15 and 16 October 2014, after the
experimental setup on 14 October. During the measurement operations, BILLI performed a horizontal
scan of the almost vertical plume in the 198◦–232◦ range of azimuth angles (see Figure 3a). The elevation
of 12◦ was used mostly for the performed scans, where the plume structure was fully resolved and the
lidar echoes were more intense. Controls proved that at lower and higher elevations, the plume was
often either optically too thick or too spread, so only a few additional scans at 0◦, 6◦, and 15◦ were
completed. A total of 200 lidar returns (100 at λON and 100 at λOFF, see Table 2) were ascribed to a
single profile and averaged to improve the SNR; in this way, the sampling frequency of the lidar echoes
was 0.05 Hz, which corresponded to a 20-s time resolution. As already discussed, the space resolution
of BILLI was 5 m. The combination of about 25 profiles yielded a total scan of the plume in around
10 min [21,37,38].

Thanks to the BRIDGE DIAL technique (see Section 2.2) it was possible to retrieve, globally, up to
40 scans of CO2 concentration in excess in the plume and, at the same time, the CO2 flux time-series.
The whole dataset covered almost three days of operation, for a maximum of nine consecutive hours.
Examples of the CO2 dispersion map and flux time-series are reported in Figure 3a,b, respectively [21].

Figure 3a illustrates the results of a typical scan (using the polar diagram) through the plume.
When the laser beam intercepted the plume, peak CO2 concentrations of up to 5000 ppm were measured.
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The plume was typically crossed at azimuth angles of 205–225◦ and at distances in the range of 50–70 m
from the system. At azimuth angles <205◦ and >225◦, or at distances <50 and >70 m, BILLI retrieved
the carbon dioxide concentration usually found in ambient air, thus providing confirmation that the
laser beam was able to scan the whole plume. This result directly corresponded to the most vigorously
degassing fumarolic vent of Pisciarelli. An evident CO2 peak, in scans performed at an elevation angle
of 6◦, was even clearer in the same fumarolic vent. This fact was also due to the reflection of the laser
beam off the rockfaces enclosing the vent [21,37,38].

Figure 3b, instead, illustrates CO2 flux time-series from the fumarolic system. Here, the
cross-correlation analysis, applied to sequences of visible images of the moving plume that were
co-acquired at a high rate (30 Hz) by a digital optical camera, was applied to achieve the vertical plume
transport velocity. The overall error in the calculated plume velocity was in the range from 10 to 28%,
leading to a total error of CO2 fluxes from 15 to 33% [21].

Thanks to the high time resolution (around 10 min) of the system, it was possible to follow
important intraday dynamics, nearly impossible to measure with conventional instruments for several
reasons such as environmental difficulties, high costs, instrumentation ineffectiveness, and the larger
amount of ambient air carbon dioxide that is present along the line of sight between the spectrometer,
target (plume), and the source of photons (sun, magma, and lava fragments).

The strong changes over timescales of tens of minutes are clear in the Pisciarelli hydrothermal site
such as from a peak emission of 4.4 Kg/s (at 18:23 h local civil time on 15 October) down to 1.9 Kg/s
after about 60 min. Apart from these fast variations, our data indicate a general constancy of CO2

output over timescales of a few days. The mean carbon dioxide emissions for 15 and 16 October
2014 were quite similar (2.63 ± 0.98 and 2.52 ± 0.84 Kg/s), corresponding to the total daily outputs of
256 ± 89 and 218 ± 71 tons, in that order. Furthermore, the carbon dioxide fluxes measured by BILLI
were in overall agreement with other estimations carried out with in situ data obtained with a portable
gas analyzer [21].

Nevertheless, our system has the following advantages: (i) external light sources are not required;
(ii) measurements can be performed without risk from a remote area; (iii) the spatio-temporal resolution
is finer; and (iv) the morphology of the plume can be obtained in some minutes.

Moreover, the big difference between the lidar echoes coming from the plume and ambient air
allows the operator to disentangle the carbon dioxide of volcanic origin, and therefore to quantify the
volcanic carbon dioxide flux. Such measurements are new in geophysics, and promise to contribute to
volcanological research.

Even though, at this experimental stage, a considerable number of further developments are needed
(e.g., system miniaturization, automation, independent measurements of in-plume wind velocity, and
long-distance remote sensing), the system performed the first measure of CO2 concentration and flux
in a volcanic plume [21].

3.2. The Experimental Campaign of Stromboli Volcano

The second field experiment was conducted at Stromboli Volcano Island. The volcanic activity
on the island is generally considered “regular” and mild (strombolian). Larger-scale vulcanian-style
explosions occasionally occur. Although these events, locally referred to as “major explosions” or
“paroxysms”, are not frequent and are short-lived (from tens of seconds to a few minutes), they could
be extremely dangerous for locals and authorized personnel, since they produce fallout of coarse
pyroclastic materials over wide dispersal areas. Moreover, neither geophysical nor volcanological
precursor signals were observed before these events occurred. This could be due to the fact that they
originate deep in the crustal roots of the volcano plumbing system. However, it has been observed that
the previously cited events are systematically preceded by days/weeks of anomalous CO2-rich gas
leakage from the Stromboli’s deep (8–10 km) magma storage zone. For these reasons, volcanologists
are considering with increasing interest CO2 flux emissions from the open-vent crater plume for the
monitoring of volcanic activity and hence for the assessment and mitigation of the related hazards [41].
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As in other volcanic areas, at Stromboli, the volcanic gas CO2 from a combination of simultaneously
measured SO2 fluxes and plume CO2/SO2 ratios has also been recently evaluated [7,11]. Even though
the remote measure of SO2 flux is possible by implementing UV spectroscopy [16], the CO2/SO2 ratio
requires in situ direct sampling/measurements close to hazardous active vents. For the previous
reasons, the implementation of the BILLI DIAL system for the remote observation of the volcanic CO2

flux, from distant and less risky locations, is a real advantage.
The system operated almost continuously from 24 to 29 June 2015 despite the harsh environmental

conditions due to the presence of high humidity, acid vapors, and re-suspended dust. It was placed
inside the fence of the local ENEL (main Italian electric company) power plant in the Scari area, ≈2.5 km
from the degassing vents on the volcano summit, between the margins of morphological peaks known
as Pizzo and Vancori, 918 and 924 m, respectively, above sea level (ASL). The laser beam typically
scanned the azimuth angles from 235.3◦ to 253.6◦ and the elevation angles from 15.2◦ to 27.4◦.

As stated in Section 2.1, in order to reduce the differential absorption cross section of CO2, the
transmitted wavelengths were changed with respect to the previous campaign (see Table 2). As a result,
longer distances were reached by the laser beam. Furthermore, the implementation of a photo-acoustic
cell filled with pure CO2 allowed us to reduce the systematic uncertainty, dominated by instability in
wavelength setting, to 5.5% (see Section 2.2.5). Compared to the previous experimental campaign, the
pulse repetition rate remained unchanged (10 Hz), instead both the temporal resolution was slightly
modified and set at 10 s because only 100 lidar returns (50 at λON and 50 at λOFF, interlaced) were
averaged for each scan to increase the SNR. A further improvement of the SNR and, therefore, of
the accuracy of both CO2 concentration and flux measurements was possible by employing filtering
algorithms and curve fitting techniques, in the preliminary data analysis steps (see Section 2.2.1).
Furthermore, by combining about 50 profiles, it was possible to obtain both vertical and horizontal
plume scans in less than 10 min. Eventually, by processing several repeated scans (usually 10) acquired
at different elevations, we also retrieved three-dimensional tomographies of the volcanic plume [39–41].

Thanks to an improved and fully automated version of the BRIDGE DIAL data processing routine
(taking into account local conditions and the changes in system setup), it was possible to retrieve up to
180 scans of CO2 concentration in excess in the plume and, at the same time, the CO2 flux time-series.
In addition, thanks to a further data processing routine (see Section 2.2.3), it was possible to estimate
the plume transport velocity and, hence, the local wind velocity. The whole dataset covered almost six
days of operation, for a maximum of 12 consecutive hours. Examples of CO2 dispersion map, wind
profiles, and flux time-series are reported in Figure 4a,b, respectively [39–41].

Figure 4a illustrates the results of a typical vertical scan through the plume as a function of range
(X axis), elevation angle, and altitude (Y axes). The tomography reported above was extrapolated from
the measurement session performed on 26 June 2015 between 11:26 and 11:46 (local civil time), and it
represents a dataset acquired as a single group of measurements slowly stepping up in elevation angle
(from 16.8◦ to 20◦) over the course of about 20 min, since, during that time, the plume displacement
was extremely clear. The carbon dioxide concentration in the zone under study is indicated by the color
scale, with peaks exceeding 60 ppm. Here, the volcanic plume was encountered in the 2150−2600 m
range, from 17 to 19.5◦ elevation angles, and a fixed azimuth of 237.8◦. Regions highlighted with red
boxes and named as A, B, C, and D were posited to be the same set of scatterers being tracked over time.
Therefore, they represent a useful example for summarizing the time evolution of inhomogeneities
relative to the volcanic plume. To appreciate these displacements, it is necessary to specify that particles
detected in region A need a certain amount of time to move to the regions B (about 3 min), C (about
6 min), and D (about 9 min). As observed in the field, these movements were mainly due to the
presence of wind blowing from north–northwest [40].

Considering both vertical and horizontal scans of the whole campaign, the beam hit the plume at
azimuth angles in the range 237–251◦, elevation angles in the range 16.5–20◦ (which means altitude
of 700–830 m) and at distances in the range 2200–2500 m. For azimuth angles <237◦ and >251◦, or
for distances <2200 and >2500 m, BILLI retrieved the carbon dioxide concentration we usually find
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in ambient air, thus providing confirmation that the laser beam was able to scan the whole plume.
This result was confirmed by direct observations [37,39].

The quality of the results (as in the example shown in Figure 4a), combined with the high temporal
resolution of the acquired data, allowed us to perform, almost simultaneously with in-plume CO2

concentrations, the first independent measurement of plume transport velocity (vp) and therefore of
the wind velocity, using the correlation method mentioned in Section 2.2.3 and detailed in a previous
work [40]. As already mentioned, the assessment of the wind velocity could be crucial for both the
CO2 flux retrieval and air traffic control applications. In this regard, a set of data (lasting about 90 min)
was selected from the morning of 26 June 2015.

An example of vertical wind profile was superimposed on the same dataset (lasting about 20 min)
of the CO2 concentration dispersion map reported in Figure 4a, showing a high consistency with the
time evolution of the in-plume spatial aerosol inhomogeneities (see the previously mentioned A, B, C,
D regions highlighted with red boxes).

The global weighted average value of wind velocity was found equal to 1.1 ± 0.4 m/s for the whole
measurement test session. Although promising in terms of cost saving and speed, our measurements
were slightly different from the ones acquired by the UV camera [41] and affected by a high uncertainty
level due to the presence of wind blowing in the perpendicular direction, with respect to the system
location, the worst observing condition for the tracking of the wind [40]. Nonetheless, they were found
in agreement, within the error bar, with weather data acquired by conventional devices and with a
precision comparable to that of stand-alone fixed-beam correlation lidars. It should be noted that,
a comprehensive comparison with local data was considered unreliable, since the nearest weather
station on the island performed 6-h average of weather parameters acquired at 4 m ASL and not at the
same height of the laser beam pointing. For these reasons, efforts will have to be devoted to advance
the configuration of BILLI (e.g., implementing at least three beams or a 360-degree scanning mirror) to
fully and accurately retrieve the three components (x, y, and z) of the wind velocity [40]. Therefore,
due to the constraints (in terms of dataset duration and results reliability) of our preliminary tests on
the fast tracking of wind velocity, during the Stromboli campaign, CO2 flux time-series were retrieved
using vp values obtained from processing the sequences of UV camera images [41].

Once having obtained the CO2 dispersion maps and the plume transport velocity using the
method described in Section 2.2.4, it was possible to retrieve the CO2 flux time-series with a cumulative
uncertainty equal to 25% (dominated by the integration area uncertainty), as reported in Figure 4b [41].
The results confined the CO2 flux during 24–29 June 2015 in the range from 1.8 ± 0.5 to 32.1 ± 8.0 Kg/s.
The daily mean values of CO2 flux were obtained by averaging all successful results for each
measurement day. The values range from 8.3 ± 2.1 (24 June) to 18.1 ± 4.5 (25 June) Kg/s and
corresponded to daily emissions of 718 and 1565 tons, in that order. These data are in agreement with
past carbon dioxide estimates carried out at Stromboli. Moreover, in Figure 4b, our lidar-based CO2

fluxes were compared with alternative measurements, obtained by multiplying the CO2/SO2 ratio by
the SO2 flux, which is obtained using the traditional Multi-GAS + UV spectroscopy-based techniques.
Despite the issues of the Multi-GAS + SO2 flux approach reported in the literature (distinct temporal
resolutions, and poor temporal alignment [41]), we found a general agreement between the CO2 fluxes
obtained by BILLI and the usual instruments. This provided reciprocal trust for both techniques.
Furthermore, BILLI-based carbon dioxide fluxes showed a better temporal resolution (≈16–33 min)
and greater continuity. Moreover, BILLI as well as other standoff instruments, is intrinsically safe for
operators [41].

In conclusion, although several improvements were made (higher distances reached, fully
automated operational routines, independent measurements of plume transport velocity) with respect
to the previous campaigns [39–41], efforts were needed to improve the system (in particular, improving
portability and reducing power requirements). At the same time, further in-field tests were still
necessary to fully explore the potential of our system, validating the reliability and efficiency of the
data analysis method.
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3.3. The Experimental Campaign of Mt. Etna

The last experimental campaign was carried out at Mt. Etna Volcano (3329 m ASL), a hostile
and only partially inhabited region located near Catania, in Sicily. Mt. Etna is the largest and most
important volcano in Italy and one of the most active volcanoes in the world. For these reasons, it was
the ideal place to test our system performances [42]. Similar to previous campaigns, the main goal was
to measure the exceedance of in-plume CO2 concentration and flux to provide useful information to
volcanological research for a precocious alert to the population in the case of eruptions.

The area chosen for our experiments was the northeast summit crater of the volcano (other craters
were discarded due to fact that volcanic plume is too dilute or only partially visible) and is characterized
by extremes of temperature, high humidity, and rates of rainfall, and the presence of acid vapors,
re-suspended dust and particles, which are toxic for humans and dangerous to the instrumentation.
Notwithstanding the harsh environment, BILLI operated practically continuously for nearly a week
(from 28 July to 1 August 2016 including an initial instrumental setup phase). During our experiment,
the system was placed on a trailer, loaded on a truck, positioned into the courtyard of the INGV (Italian
National Institute of Geophysics and Volcanology)observatory “Pizzi Deneri” at 2823 m ASL, on the
northeast side of the main crater. This fixed position, about 500 m below the volcano summit, was
≈3 km far from the most important craters [42]. Changing the elevation angle in the range 7–14◦
while fixing the azimuth angle (230◦), BILLI vertically scanned the plume. Atmospheric profiles were
recorded every 10 s, whereas each scan, obtained combining 24 profiles, was completed in ~15 min.

Taking into account the local conditions, both the setup (e.g., ON/OFF wavelengths) of the system
and the data processing routine remained the same as the previous campaign, with the only exception
of a reduction in the system weight (thanks to a rearrangement of the mechanical frame of the system).
For these reasons, in this case, laser beam also reached longer ranges and the systematic uncertainty
remained stable at 5.5%, whereas, as reported in the literature [39], the statistical uncertainty of lidar
profiles increased with range. At 2.5 km, a mean range, it was about 2% [41,42], while it exceeded 5%
at 4.2 km [42]. Thanks to the measures already adopted in the previous campaign and reported in
Section 2.1, the field setup at Mt. Etna, and the good weather conditions, a slight improvement in the
system performances was observed.

Thanks to the BRIDGE DIAL technique, it was possible to retrieve up to 220 scans (lasting
10–20 min) of CO2 concentration in excess in the plume and, at the same time, the CO2 flux time-series.
The whole dataset covered six days of operation, for a maximum of 12 consecutive hours. Examples of
CO2 profiles, dispersion maps, and flux time-series are reported in Figure 5a–c, in that order [40].

During the campaign, several configurations of plume were recognized, which varied as a function
of acquisition time. In fact, both the magnitude and the size of the CO2 plume were subject to change
with the elevation of the laser beam pointing angle and, obviously, they were also influenced by the
presence of wind [42].

In general, for elevation angle values comprised within 7◦ and 9◦, it was quite common to detect
narrow plume peaks (extending for about 500 m with magnitude values not exceeding 140 ppm)
attached or strictly close to the first or the second rockface of Mt. Etna. In fact, at that elevation angle
range, the laser beam altitude was lower than the summit crater. Therefore, the profiles’ behavior
could be justified by the proximity of the rockface behind the plume that, de facto, prevented the
complete dispersion of the volcanic cloud into the atmosphere and, at the same time, made the wind
contribution negligible.

The situation changed by increasing the elevation angle, as is shown by the profile reported in
Figure 5a, which was acquired in the free atmosphere at 15:19 (local civil time) with a 12◦ elevation
angle and a 230◦ azimuth angle [42]. In Figure 5a, it is possible to note two peaks, relative to CO2 plume,
highlighted by the red boxes. As expected from previous considerations, the first peak, localized
between 1250 and 2550 m, was extremely wide (it extends for more than 1 km) and its magnitude
exceeded the value of 150 ppm. Instead, the second plume peak, around 250 ppm, was detected
beyond 4 km (precisely from 4060 m to 4140 m) from the system location and represents the farthest
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plume peak ever detected by our system. The magnifications of both plumes are clearly visible in
the lower part of the figure. The measurement uncertainty (obtained by the quadratic sum of both
statistical and systematic uncertainties) is equal to 6% and 7.5%, respectively [42]. Instead, the portion
of the profile between the two mentioned plume peaks showed several oscillations. These latter were
due to the residual presence of instrument noise. For this reason, it was neglected. The behavior of
this plume could be justified by the fact that, for such elevation angles and altitudes, the plume was
completely dispersed in the free atmosphere and scattered by a moderate presence of the wind [42].

Figure 5b shows an example of CO2 dispersion vertical map, acquired on 31 July 2016, from
12:47 p.m. to 1:03 p.m. This time slot was selected for the relevance of the results. The tomography
represents the in-plume concentration exceedance as a function of elevation angle and range of
acquisition. The time evolution of the plume is clearly visible, highlighted by the red, orange, yellow,
and green spots with respect to the dark blue color that, instead, represents the CO2 concentration of
the natural background. As already stressed, at lower elevation angles, the plume was circumscribed
between the first and second rockface of Mt. Etna encountered by the laser beam. The rockface regions
have been highlighted by the semitransparent yellow dotted boxes in the lower side of each scan.
Instead, in the free atmosphere, the smoke plume rose and developed in both the vertical and horizontal
direction, covering a wide area, after a complete random dispersion. Plume fluctuations in the free
atmosphere were also probably due to a combination of the thermal updraft, from the main degassing
vents on the volcano summit, and on a smaller scale, to the presence of northwest wind blowing during
the measurement session. Furthermore, differences between subsequent maps were also probably due
to rapid, local, and random fluctuations of particles and gases emitted by the volcano [42].

Dispersion maps such as the one shown in Figure 5b provide the basis for the computation of the
volcanic carbon dioxide flux. In Figure 5c, an example of CO2 flux series, lasting 6 h (from 12:22 p.m.
to 6:08 p.m. local civil time), is reported. As in the Stromboli volcano campaign, CO2 flux was obtained
by multiplying the plume transport velocity with the plume CO2 molecular density. The first term was
obtained with a permanent UV camera network, while the second one was inferred by summing the
carbon dioxide excess over the cross section of the volcanic plume [42]. Then, following the procedure
reported in Section 2.2.4, it was possible to retrieve the CO2 flux. The CO2 flux varied from 13 to
92 kg/s (1235 to more than 8000 tons/day) during the measurement interval, with an average value
of 40 ± 13 kg/s (3900 ± 1287 tons/day). The bars in Figure 5c show the CO2 flux errors (≈30%), and
were calculated propagating the errors of plume velocity and CO2 concentration (procedure detailed
in [41,42]). The northeast crater exhibited quiescent degassing during the whole lidar operation. For
this reason, the usual variations in degassing were regarded as a consequence of the fluctuations in the
magma/gas transport rate occurring in the feeding conduits of Mt. Etna [42].

In order to add confidence to our results, the lidar-based CO2 flux time-series were compared with
independent measurements based on the usual techniques that involve determinations of SO2 fluxes
and CO2/SO2 ratios relative to the plume. The averaged values of CO2 flux retrieved by conventional
techniques was found to be equal to about 2750 ktons/day, in good agreement with our measurements.
Furthermore, our CO2 flux time-series (see Figure 5c) were found to be close to the historical time-series
retrieved by independent in situ observations: at Mt. Etna, on average, more than 2 ktons/day of
carbon dioxide are outputted every day in periods of quiescent passive degassing, while its carbon
dioxide emission rates were from 10 to 40 times larger during the effusive event of 2004–2005 [42].

In conclusion, the great novelty, with respect to the previous works [21,37–41], was that our
measurements allowed us to locate and track volcanic plumes beyond 4 km of distance from the system
location with a lower uncertainty level with respect to the first field tests. In addition, our detected
values in excess of CO2 concentration were consistent with both the conventional measurements
(according to volcanologists information) carried out in the same time interval, and with the previous
ones acquired during the Stromboli campaign [39–42].
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The results reported in this section can be considered to be extremely promising to validate
the reliability and accuracy of our system. Furthermore, they represent a further step forward in
ground-based volcano monitoring and volcanological research.

4. Conclusions

The main goal of this paper was to show the potential of mobile DIAL-Lidar systems for
volcanological research such as the one reported in this work, designed for the remote measurement of
both in-plume exceedance of volcanic CO2 concentration and flux, considered as precursors of volcanic
eruptions. Considering the difficulties and, in some circumstances, the hazardousness in retrieving
these parameters as well as the limits of conventional in situ instruments, the BILLI system and the
related BRIDGE DIAL data analysis technique have been developed. Here, particular emphasis has
been placed on the data collection and processing techniques, and the most significant findings of the
experimental campaigns carried out over three years at the most hazardous Italian volcanic areas.

Observing the results related to the three experimental campaigns, carried out from October 2014
to July 2016, it is possible to note a gradual refinement of the system performance and an improvement
in the accuracy of results. In fact, the implementation of the photo-acoustic cell has made it possible to
reduce the systematic uncertainty of CO2 concentrations to 5.5% and to evaluate a cumulative CO2

measurement uncertainty (considering both the statistical and systematic uncertainty) between 6%
and 7.5%.

The reported approach for the analysis of acquired data allowed us to retrieve, accurately and
rapidly, range-resolved CO2 concentration profiles and maps. Furthermore, and with the aim to
improve the already high potential of our system, a further data processing routine was implemented
and tested for independent measurements of the plume transport velocity. Nevertheless, this technique,
although promising, still requires efforts to be refined. In this way, BILLI will be able to perform
simultaneously measurements of CO2 concentration, CO2 flux and wind velocity, without additional
costs or the support of other conventional devices for the same purpose.

Both CO2 concentration profiles and maps are fundamental to describe the spatio-temporal
dispersion of the volcanic plume into the atmosphere. CO2 flux time-series retrieved by BILLI (affected
by an overall uncertainty of ≈25%) were extremely useful to volcanologists for a fast tracking of
volcanic activity, particularly if compared with conventional acquisitions.

The detected values in excess of CO2 concentrations and fluxes were in good agreement with
conventional measurements, carried out in the same time interval, but based on completely independent
and significantly different approaches. This has proven the sensitivity and reliability of our system for
the detection and monitoring of CO2, not only in limited areas, but also over extended regions and for
prolonged periods of time.

In summary, the novelty/advantage of this work is that the proposed standoff DIAL system
allows effective measurements (CO2 excess of a few tens of ppm has been clearly detected) to be
taken continuously and remotely (up to more than 4 km from the crater), therefore, from a safer
location free from the risks to which operators are exposed during direct sampling. In addition, data
have been acquired with much higher temporal (10 s) and spatial (5 m) resolution than conventional
instruments (the plume was scanned in few minutes rather than over several hours). Then, a complete
time-resolved plume evolution has been detected in several measurement sessions; this can be useful
for the assessment of the wind velocity, a crucial parameter not only for the CO2 flux retrieval, but
also for air traffic control applications. These performances allow the operator to characterize the
spatio-temporal evolution of the plume, thus providing—24 h and real time—accurate information on
an important precursor of eruptions.

To our knowledge, our system performed, for the first time, range-resolved measurements of
CO2 concentration and flux in a volcanic plume and the findings reported laid down the basis for a
new and smarter generation of active optical devices, specifically conceived for long-term volcanic
gas observation. Even though several improvements have been made (high distances reached, fully
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automated operational routines, reduction of system weight, and independent measurements of wind
velocity), further developments are still necessary before DIAL-Lidar systems can become operative
tools for real-time volcano monitoring. Efforts will have to be made, in particular, to improve portability
(the current system weight is about 1100 kg), to reduce power requirements (currently, 6.5 KW) and to
integrate existing system control and data processing routines to create a unique, user-friendly, and
fully automated software framework for the end-users.

In the near future, it will be desirable to deploy both ground-based (using a newly designed
laser-based system such as the one described in this paper together with conventional sensors) and
airborne (or space borne) platforms, forming a robust, integrated network for eruptions forecasting for
prolonged periods. This will allow us to provide useful information to volcanologists, concerning the
time evolution of volcanic gases in hazardous regions while working remotely and safely.
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